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Editorial on the Research Topic

High-Throughput Phenotyping in the Genomic Improvement of Livestock

Developments in the area of precision livestock farming (PLF) have promoted the use of
high-throughput phenotyping or monitoring in animal breeding and genetics research and
applications. For example, genome-enabled prediction, genome-wide association studies, and
gene expression analysis have been revisited to accommodate a new opportunity introduced by
high-throughput phenotyping (HTP) technologies. One of the most relevant challenges in this
context is the handling of large-scale data provided by automated processes such as images
collection, continuous real-time sensor-based measurements, and spectroscopy reports, among
others. Genomic data analysis has been becoming more complex due to increasing phenotypic
records from different data sources, as well as data structures and formats. The current Research
Topic addresses this specific topic and includes studies on generating high-throughput phenotypes
that were previously difficult or impossible to be measured manually, as well as on statistical or
computational methodologies for integrating emerging types of phenotypes in breeding strategies.
Such phenotypic traits can be used as indicator or novel traits for the genetic improvement
of livestock populations for contemporary and pressing phenotypes or economic and societal
importance such as animal health and welfare, environmental footprint, product quality, among
others. The insights collected in this Research Topic offer new approaches for collecting, storing,
and processing such HTP data.

Successful livestock breeding programs require large-scale and accurate phenotypic data, which
are also critical for genomic dissection of complex traits. Digital image analysis, which represents
the process of extracting meaningful information from images, can be used as input for imaging
processing techniques with direct application for livestock phenotyping. Other technologies, such
as activity monitor sensors, automatic feeding systems, and indirect biomarkers at the cellular and
physiological levels can be used to provide a wide variety of novel phenotypes. Additionally, the
infrared spectrometry has been gaining attention in PLF as a non-destructive measurement tool
and a great resource for on-line analysis.

Automated image processing is critical in any application of computer vision to HTP as the size
of generated image databases is often huge. Nye et al. proposed the Deep Automatic Phenotyping
Segmentation (DeepAPS) framework to show how automatically parsed bull images from web-
based sire catalogs together with pedigree data can be converted into useful information by

5

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.707343
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.707343&domain=pdf&date_stamp=2021-06-18
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fabyanofonseca@ufv.br
https://doi.org/10.3389/fgene.2021.707343
https://www.frontiersin.org/articles/10.3389/fgene.2021.707343/full
https://www.frontiersin.org/research-topics/10928/high-throughput-phenotyping-in-the-genomic-improvement-of-livestock
https://doi.org/10.3389/fgene.2020.00513


Silva et al. Editorial: High-Throughput Phenotyping in Livestock Improvement

inferring genetic parameters of several morphological
measurements in dairy cattle. DeepAPS is based on deep
learning, and represents a highly precise and automatic image
processing algorithm to generate several phenotypic measures,
including coat color and body conformational in dairy cattle.

Although image analysis and computer vision currently
represent one of the most promising technologies to provide
next-generation phenotypes for animal breeding purposes, there
is a need to understand peculiarities behind them. Based on
this issue, Fernandes et al. presented a detailed review focusing
on a variety of computer vison technologies available as well
as their applications to animal breeding programs. After a
discussion on different strategies to process digital images, they
review the main technologies available for imaging in animal
and veterinary sciences, and present a number of applications
of computer vision systems, including carcass and meat traits,
behavior, health, among others.

According to Brito et al., genomic evaluation for animal
welfare related traits using large-scale phenotyping is a suitable
alternative for reliable selection under a commercial production
system. The authors described the primary statistical and
bioinformatic methods available for this aim, focusing on
strategies for development of novel welfare indicator traits based
on HTP, such as recording of movements based on wearable
sensors and accelerometers. Sensor-based phenotypes such as
movement capture based on IMU (Inertial Measurement Unit),
sound analysis, and infrared thermography coupled with data
science are paramount to translate animal welfare indicators into
accurate genomic breeding values to be used in selective breeding
to improve animal resilience at a commercial level. Bouwman
et al. compared change point detection, local extreme approach,
and gradient boosting machine for signal segmentation of
turkey gait sequences collected from inertial measurement unit
sensors. They reported gradient boosting machine was the most
accurate method for signal segmentation to describe turkey
gait. Temperament is a behavioral trait that is underutilized in
animal breeding, mostly because the difficulties with systematic
data collection. As reported by Yu et al., temperament could
be considered as an indicator of production and efficiency
in genetic selection. The authors developed a four-platform
standing scale to objectively collect temperament data and

proposed factor analytic modeling to investigate the underlying
genetic interrelationships among temperament measures.

Infrared spectrometry has been also used to generate novel
complex traits in livestock. Bresolin and Dórea presented
a comprehensive review on mid- (MIR) and near-infrared
(NIR) spectrometry for prediction of complex dairy and beef
phenotypes, such as milk composition, feed efficiency, methane
emission, fertility, energy balance, health status, and meat quality
traits. The authors recommended the use of data mining tools to
predict such phenotypes based on MIR and NIR. Additionally,
Cecchinato et al. integrated experimental-lab measures, milk
infrared spectra, and genomics to improve difficult-to-measure
traits in dairy cattle populations. The authors concluded that
Fourier-transformed infrared spectroscopy provided acceptable
values of accuracy, making possible also the prediction for bulls
without phenotyped progeny.

High-throughput phenotyping techniques offer a
new opportunity to enhance genomic improvement of
livestock, especially for novel phenotypes. The studies
published in this Research Topic discuss excellent examples
of their potential applications, and also point out for
challenges and possible solutions. We encourage the
scientific community and industry to read these interesting
manuscripts and dive into this extremely exciting field of
HTP and its applications in PLF and genetic improvement of
livestock populations.
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Genome-Wide Association Analysis
Reveals Key Genes Responsible for
Egg Production of Lion Head Goose
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The lion head goose is one of the most important agricultural resources in China; however,
its breeding process is relatively slow. In the present study, a genome-wide association
study was performed for the genetic selection of egg production characters in lion head
geese. We detected 30 single-nucleotide polymorphisms located in or near 30 genes that
might be associated with egg production character, and quantitative real-time polymerase
chain reaction was used to verify their expression level in lion head geese. The results
showed that the expression levels of CRTC1 (encoding CREB-regulated transcription
coactivator 1), FAAH2 (encoding fatty acid amide hydrolase 2), GPC3 (encoding glypican
3), and SERPINC1 (encoding serpin family C member 1) in high egg production population
were significantly lower than those in the low egg production populations (*P < 0.05). The
expression levels of CLPB (encoding caseinolytic peptidase B protein homolog), GNA12
(encoding guanine nucleotide-binding protein subunit alpha-12), and ZMAT5 (encoding
zinc finger, matrin type 5) in the high egg production population were significantly higher
than those in the low egg production populations (*P < 0.05). The expression of BMP4
(encoding bone morphogenetic protein 4), FRMPD3 (encoding FERM and PDZ domain
containing 3), LIF (encoding leukemia inhibitory factor), and NFYC (encoding nuclear
transcription factor Y subunit gamma) in the high egg production population were very
significantly lower than those in the low egg production population (**P < 0.01). Our
findings provide an insight into the economic traits of lion head goose. These candidate
genes might be valuable for future breeding improvement.

Keywords: lion head goose, genome wide association study, egg production, candidate genes, quantitative real-
time polymerase chain reaction
INTRODUCTION

The lion head goose is named for the sarcoma that makes it resemble a lion's head from the front.
Lion head geese provide great economic benefits via the widespread consumption of their meat as
stewed products (Zhuang and Lin, 2006). Lion head geese, originating from Shantou Raoping in
Guangdong province, are the only large and major goose species in China, and are the germplasm
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resources under special state protection (Chen et al., 2011). Lion
head geese, whose ancestors are anser cygnoides, are herbivorous
animals showing fast growth and large body size; as such, their
feeding is relatively environment-friendly (Huang, 2009; He
et al., 2012). However, they show low fertility with an average
of 20–25 eggs per year (Zhang, 1991). The egg-laying period is
not continuous but is divided into three parts caused by its strong
broodiness (Wang, 2007). A lower laying rate may hinder the
development of the lion head goose industry. Therefore, based
on maintaining the characteristics of its original breeds,
improving the low fecundity has become an important
breeding objective of lion head goose, among which the egg
laying characteristics are one of the most significant aspects
(Wang et al., 2008). It is believed that egg production could be
improved by adopting a modern genome-enhanced
breeding scheme.

Genome-wide association studies (GWASs), which were
proposed first by Risch in 1996, are powerful and effective
tools to identify genetic markers associated with the trait of
interest (Risch and Merikangas, 1996). In recent years, a large
number of GWASs on human diseases have been published, such
as for vitiligo (Shen et al., 2016) and for livestock animals such as
pigs (Luo et al., 2012). Since the development of the HapMap
Project, a number of high-density single-nucleotide
polymorphism (SNP) chips for plant and animal species like
chicken, swine, cattle, sheep, and the like have been developed as
well (Gibbs et al., 2003). Hoglund et al. found that a total of
17,388 significant SNP markers and candidate genes associated
with female fertility were distributed on 25 chromosomes in the
Nordic Red cattle group (Hoglund et al., 2015). Shen et al. carried
out GWAS on Ningdu Sanhuang chickens with Chicken chip
and found the candidate gene, GARNL1, which was related to
reproductive traits (Shen et al., 2012). Xie used the Illumina
Porcine SNP60K chip to screen the potential candidate genes
that may be associated with the litter size of the Xiang Pig (Xie,
2016). The production of SNP chips and the appearance of high-
throughput sequencing technology have made GWAS an
important research strategy in some fields. GWAS is widely
accepted as a primary method for gene detection (Jiang
et al., 2010).

In the present study, we performed GWAS to identify SNPs
and potential genetic variants that may be associated with egg
laying character of the lion head geese. Then we attempted to
verify their functionality. As a result, we have identified certain
genes that might play important roles in the egg laying process.
MATERIALS AND METHODS

Animals Resources and Sample Collection
Lion head geese are the largest goose breed in China and are the
one of the world's big goose species. In the past 2 years, we have
bred a batch of lion head geese with high and low egg production
in the Shantou Baisha Research Institute of Original Species of
Poultry and Stock, Guangdong Province. These geese have the
Frontiers in Genetics | www.frontiersin.org 28
same growth environment and nutritional supplements, and they
have free access to food and water.

A total of 217 geese blood samples were collected at the
Shantou Baisha Research Institute of Original Species of Poultry
and Stock, including 136 high egg-production geese (more than
35 eggs per year) and 81 low egg-production geese (less than 25
eggs per year). Blood samples were stored at an ACD
anticoagulant tube at −80°C cryogenic refrigerator for
further experiments.

DNA Extraction and Whole Genome
Sequencing
Genomic DNA was extracted from peripheral blood cells of the
high and low egg production groups using a HiPure Blood DNA
Mini Kit (Magenbio, Guangzhou, China). After passing the
quality inspection of NanoDrop 2000 Spectrophotometer
(Thermo, America), the DNA samples were sent to Beijing
Genomics Institute (Shenzhen, China) for whole genome
resequencing. An Easy DNA Library Prep Kit (MGI, Shenzhen,
China) was used to carry out the double-enzyme digestion to
construct six libraries, re-sequenced using the BGISEQ-500RS
platform with an average 12× sequencing depth and coverage
of 8%.

Data Preparation and Statistical Analysis
Genotyping Data
To obtain better quality sequencing data, the raw data was
filtered using the software SOAPnuke (Chen et al., 2018). The
clean reads were then aligned with the Anser cygnoides
domesticus genome data (https://www.ncbi.nlm.nih.gov/
genome/31397?genome_assembly_id=229313) using BWA (Li
and Durbin, 2010; Lu et al., 2015). The software SAMtools and
GATK4 (https://software.broadinstitute.org/gatk/download/)
then were used to detect variations and SNPs (Li, 2011). To
limit the number of false positives and low confidence variants,
all called variants were filtered using hard filters set according to
the Broad Institute's hard filtering recommendations: quality by
depth (QD) 2.0, read position rank sum −8.0, Fisher strand (FS)
60.0, root mean square (RMS) mapping quality (MQ) 40.0,
strand odds ratio (SOR) 3.0, mapping quality rank sum test
(MQ Rank Sum) −12.5, quality 30, minimum allele frequency
5%, call rate 70%, and Hardy–Weinberg equilibrium (HWE)
P > 1e−6.

Then, Vcftools was used as a secondary filter, according to the
following criteria: minor allele frequency (MAF) 0.05, HWE
P = 1e−6, and max-missing 0.7 (Danecek et al., 2011).

Given the large number of scaffolds, scaffolds were combined
into 21 chromosomes. The ordered SNP loci were separated into
the 21 artificial chromosomes per 50 million base pairs (i.e. 1–50
Mbps, 51–100 Mbps etc.). Principal component analysis (PCA) was
performed to identify genetic variation and the population structure.

Phenotypic Data
Descriptive statistics of phenotypic data were carried out by SPSS
22 software (IBM Corp., Armonk, NY, USA), and the sample
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size, maximum, minimum, average and standard deviation of
high and low egg production samples were calculated.

Statistical Analysis
Genome wide association studies was performed using the
EMMAX software with egg production character classified by
dichotomies, i.e., the data was divided into high and low egg
production (Kang et al., 2010). The analysis model was as
follows:

P = m + Za + SNP + e

where P is the vector of phenotypes of the individuals, m is the
intercept of a straight line, Z is the incidence matrix of random
polygenic effects, a is the random polygenic effects, SNP is the
effect of a single nucleotide polymorphism, and e is the vector of
residual errors with e ~ N (0, Ise), where I is the identity of
matrix and se is the residual variance.

Multiple Hypothesis Testing and Correction
The tested SNP markers could be used to make a Bonferroni
adjustment with the 5% GWAS-wide significance level:

a =
0:05
n

where a is the GWAS-wide significance level, n is the number
of all tested SNP sites. In order to reduce false negative, and then
extending the threshold 20 times as the suggestive value.

Population Stratification
Population stratification refers to the existence of subpopulations
with different allele frequencies, which may pose a great threat to
the validity of GWAS results, and even leads to false-positive
results. The quantile–quantile plot (Q-Q plot) was used to assess
the GWAS results, to judge whether the P-value calculated by
SNP correlation analysis deviated from the hypothesis test on the
whole overall.

Detection of Candidate Genes
Based on the NCBI database (http://www.ncbi.nlm.nih.gov/) and
Ensemble (http://www.ensemblgenomes.org), these SNPs
identified by GATK4 were located in or near 30 genes.

Quantification of Candidate Genes
To observe whether the candidate genes were differentially
expressed in the high egg production group compared with the
low group, we performed quantitative real-time polymerase
chain reaction (RT-qPCR) for these genes. Total RNA was
extracted from PBCs using the TRIzol reagent, and synthesized
into cDNA using a Reverse Transcription Kit (Takara, Shiga,
Japan). The cDNA was then used as a template for RT-qPCR
using the CFX96 Touch (Bio-Rad, Hercules, CA, USA). The RT-
qPCR primer sequences were synthesized by Sangon Biotech
(Guangzhou, China) and were stored at −20°C for later use.
According to the instructions of 2× SYBR Green qPCR Master
Mix kit (Bimake, Houston, TX, USA), the RT-qPCR reaction was
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performed in triplicate and uses comprises 20 ml, containing
10 ml of 2× SYBR Green qPCR Master Mix, 0.4 ml of ROX
Reference Dye, 1 ml of cDNA template, and a 0.5 mM
concentration of specific primers. Thermal cycling parameters
were as follows: 95°C for 5 min; 40 cycles of 95°C for 15 s, 60°C
for 30 s, and 72°C for 30 s and 1 cycle of 95°C for 15 s, 60°C for
60 s, and 95°C for 15 s. Relative mRNA expression levels were
calculated using the 2−DDCt method and normalized using the
expression of GAPDH [encoding glyceraldehyde-3-phosphate
dehydrogenase, (Livak and Schmittgen, 2001)]. All the primers
for RT-qPCR are shown in Table S1.
RESULTS

Sample Phenotypic Data Statistics
The egg production performance of lion head goose was divided
into a high production group (>35 eggs per year) and a low
production group (<25 eggs per year).

The phenotypic data of low egg production was graphically
recorded in Figure 1A and high egg production was in Figure
1B. The sample size, maximum, minimum, average and standard
deviation of the trait measured in the current experiment were
presented in Table 1 and the boxplot is shown in Figure 1C. The
sample size, maximum, minimum, average and standard
deviation of the high egg production group were 136, 63, 35,
46, 54, while that in the low egg production group were 81, 25, 8,
17, 21, respectively. The annual egg production records for each
individual are shown in Table S2.

Sequencing Data Statistics
Aligning the clean reads to the reference sequence allowed us to
statistically analyze the sequencing depth, coverage rate, mapping
rate, and mismatch rate, as shown in Table 2. Based on 217
original high egg production and low egg production samples, 8
were excluded because of mismatch, leaving 209 samples (131
high egg production, 78 low egg production). And the average of
sequencing depth, coverage rate,mapping rate, andmismatch rate
are 12.05%, 7.56%, 91.31%, and 1.48%, respectively.

Genetic Variation and Population Structure
To determine data validity and population structure, PCA was
performed based on the variation of the sequence data, taking
principal component 1 as the horizontal and principal
component 2 as the ordinate (Figure 2). The differences
among individuals in each group were small, having high
similarity. However, the dispersion between the high and low
egg production groups was large, showing obvious population
differentiation and indicating that there was a great difference
between the two groups.

Significant Single-Nucleotide
Polymorphisms and Population
Stratification Assessment
The PCA results were used as covariates and EMMAX was used
for the GWAS analysis. In Figure 3, chromosomes 1–21 are
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shown separately with different colors. The corresponding
horizontal lines indicated the 5% GWAS-wide significance
levels and the threshold was expanded 20 times as a second
suggested value. The results are shown in Figure 3.

With the conditions of QD 2.0, Read Pos Rank Sum −8.0, FS
60.0, MQ 40.0, SOR 3.0, MQ Rank Sum −12.5, quality 30,
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minimum allele frequency 5%, call rate 70%, and HWE P >
1e−6, we finally identified 30 significant SNPs and the genes
located on or near them, as shown in Table 3.

The Q-Q plot showed that the screened SNPs were located
above the diagonal line, indicating that the analytical model is
reasonable. And the significantly higher points located at the top
right corner of the graph represented potential candidate
molecular markers associated with the trait (Figure 4).

Candidate Genes Analysis
To determine whether the candidate genes were differentially
expressed in the high and the low egg production group, we
performed RT-qPCR on these genes. The expression levels of
BMP4 (encoding bone morphogenetic protein 4), FRMPD3
(encoding FERM and PDZ domain containing 3), LIF
(encoding Leukemia inhibitory factor), and NFYC (nuclear
transcription factor Y subunit gamma) in the high egg
production population were significantly lower than those in
the low egg production population (**P < 0.01). The expression
levels of CRTC1 (encoding CREB-regulated transcription
coactivator 1), FAAH2 (encoding fatty acid amide hydrolase 2),
GPC3 (encoding glypican 3), and SERPINC1 (encoding serpin
TABLE 1 | Phenotypic statistics.

Group Sample
size

Maximum Minimum Average Standard
deviation

Low
group

81 25 8 17 21

High
group

136 63 35 46 54
TABLE 2 | Sequencing statistics.

Depth Coverage (%) Mapping rate (%) Mismatch (%)

Min 1.26 0.95 88.10 1.20
Max 35.64 16.85 93.06 1.79
Mean 12.05 7.56 91.31 1.48
FIGURE 1 | (A, B) The distribution of egg production in two groups. The horizontal axis shows the annual egg production and the vertical axis shows the frequency.
(A) is the distribution of low egg production group. (B) is the distribution of high egg production group. (C) is the boxplot of the average between the high and low
egg production groups.
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family C member 1) in the high egg production population were
significantly lower than those in the low egg production
population (*P < 0.05). The expression levels of CLPB
(encoding caseinolytic peptidase B protein homolog), GNA12
(encoding guanine nucleotide-binding protein subunit alpha-
12), and ZMAT5 (encoding zinc finger, matrin type 5) in the high
egg production population were significantly higher than those
in the low egg production population (*P < 0.05, Figure 5A). The
expression levels of the remaining genes (see Figure 5B for their
symbols) were not significantly different between the two groups
(Figure 5B).
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DISCUSSION

The Significance of Studying the Lion
Head Goose
The lion head goose is the largest meat goose currently bred in
China. It is characterized by a large size, crude feed tolerance, fast
growth, high forage reward, strong stress resistance, and has a
delicious meat that has extremely high economic value and is
deeply favored by consumers (Zhuang and Lin, 2006). Therefore,
an in-depth study of the breeding problem of lion head geese will
help to modernize the industry to meet market demand.
FIGURE 2 | Principal component analysis of egg production. Principal component 1 (PC1) and principal component 2 (PC2) values comprised the X-axis and the Y-
axis and were used to draw the scatter gram, and each dot represents one sample. Red points represent low-yield samples and blue points represent high-yield
samples.
FIGURE 3 | Manhattan plot of –log10 (P-values) for the egg laying traits in chromosome order. Each simulated chromosome contains 50 million bases. The solid line
indicates the 5% significance level and the dotted line indicates the suggested level that extended the threshold to 20 times. The red points and green points are the
significant SNPs.
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In this study, the high and low egg production populations
selected in a previous study were analyzed, and the number of eggs
per year was used as the parameter to carry out GWAS. The
phenotypic records of the egg laying character in this research were
normally distributed, which was consistent with the separation
characteristics and population separation characteristics.

Application of Genome-Wide
Association Study
In this study, we performed a GWAS for the egg production trait
of a lion head geese population. Genomic studies have been
carried out for many agricultural animals, such as chickens,
swine, sheep, cattle, and geese, however, few of them have
studied regionally important economic species such as lion head
geese in China. To the best of our knowledge, this is the first GWA
studies for the egg production character of lion head geese.
Currently, database such as NCBI and Ensembl contain few
reported goose sequences, which need to be further verification.
TABLE 3 | The SNPs related to egg laying trait was detected by GWAS.

Number SNP Position Gene P value

1 NW_013185654 11050658 CDH23 2.84E−07
2 NW_013185657 12830867 HSD17B12 3.21E−06
3 NW_013185670 6211741 EPHB3 3.95E−06
4 NW_013185674 6277159 GM2A 1.92E−09
5 NW_013185675 5989069 GNA12 4.83E−09
6 NW_013185680 1530955 NEXN 1.54E−06
7 NW_013185711 3613832 GPC4 4.56E−07
8 NW_013185714 4862813 FRMPD3 3.09E−06
9 NW_013185716 1472974 NFYC 4.45E−07
10 NW_013185724 1493289 GPC3 1.77E−06
11 NW_013185736 3684650 HTF3A 2.53E−06
12 NW_013185743 1607400 FGF9 4.42E−08
13 NW_013185754 2051719 FRY 4E−07
14 NW_013185766 1522744 ANTXR 1.51E−07
15 NW_013185777 85282 CLPB 1.12E−06
16 NW_013185779 779290 SMG7 1.30E−06
17 NW_013185791 1229858 SERPINC1 9.85E−07
18 NW_013185814 703561 SLITRK6 1.71E−07
19 NW_013185815 1430965 BMP4 4.21E−06
20 NW_013185816 1738455 RXRA 4.12E−06
21 NW_013185899 252542 CRTC1 2.37E−06
22 NW_013185902 401032 KCNAB2 3.75E−07
23 NW_013185915 928804 TMLHE 9.1E−07
24 NW_013185925 301227 LIMA1 5.46E−08
25 NW_013185930 275521 DDX49 2.86E−06
26 NW_013185967 383783 ELOVL4 2.28E−06
27 NW_013186001 299910 ZMAT5 2.11E−12
28 NW_013186015 302128 LIF 3.73E−06
29 NW_013186054 67611 FAAH2 6.08E−07
30 NW_013186105 38036 FBXL20 1.35E−07
GWAS, genome-wide association studies; SNPs, single-nucleotide polymorphisms.
FIGURE 4 | Quantile–quantile (Q-Q) plot of genome-wide association results
for egg production. The blue points represent SNPs, and the red points
represent the most significant SNPs.
FIGURE 5 | (A, B) The mRNA expression levels of key genes in different
groups. The horizontal axis shows the different genes, and mRNA expression
levels are on the vertical axis. Sign ** indicates extreme significance
(P < 0.01). Sign * indicates significance (P < 0.05). No marker means no
difference.
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The research on the breeding of lion head geese has lagged
behind that for other economically important species, which has
led to many problems in the lion head goose breeding industry,
such as backward breeding, and low productivity. With the
development of genome-enhanced breeding and the improved
the efficiency of genomic selection, it will be possible to protect
and develop the breeding resources of the lion head goose, thus
promoting the modernization and industrialization of the lion
head goose industry.

Significance of This Research
Next generation sequencing technology based on high-
throughput sequencing and molecular marker technology,
enables the fine mapping of functional genes. Genome
selection technology represents a new generation of molecular
breeding technology for livestock and poultry. This technique
has been successfully applied to the cultivation of sheep (Zhao
and Zhang, 2019). The high egg production traits of the lion head
goose breeding population, the identification of the SNPs, and
the selection of functional genes for economic traits will lay the
foundation for the development of genotyping technology for
lion head goose breeding.

Detection and Verification of Key Genes
Bioinformatic analyses at the Ensembl and NCBI databases were
used to identify the genomic location of SNPs that are significantly
associated with the selected trait. Subsequently, bioinformatics
and comparative genomics analysis were used to select key genes
and make preliminary annotations on related gene functions.

In this study, a GWAS was conducted on the egg production
trait of lion head geese, which detected 30 SNPs that were
significantly associated with the high egg-production
characteristic of lion head geese. We then screened the 30
genes that contained or were near, the SNPs.

Genes BMP4, FRMPD3, LIF, NFYC, CRTC1, FAAH2, GPC3,
SERPINC1, CLPB, GNA12, and ZMAT5 showed differential
expression in between the high and low egg production
populations of lion head geese.

In the present study, the expression levels of the BMP4, LIF,
NFYC and FRMPD3 genes in the low egg production population
of the lion head goose were significantly higher than those in the
high egg production population.

BMP4 (bone morphogenetic protein 4), a member of the
transforming growth factor beta (TGFb) superfamily of growth
factors, was first characterized for its role in bone metabolism
(Nilsson and Skinner, 2003). It was subsequently reported to be
involved in the regulation of embryonic mesoderm formation,
and the formation of primordial germ cells (Nilsson and Skinner,
2003). BMP4 mediates the formation of the mesoderm in mouse
embryos, in which knockdown of BMP4 leads to death and
neonatal malformation (Zhu et al., 2002). It was reported that
BMP4 inhibits secretion of progesterone by granulosa cells and
the expression of follicles in sheep and cattle (Monget et al., 2002;
Da et al., 2018). Our results were consistent with these reports,
i.e., BMP4might negatively affect the egg production character of
the lion head geese.
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FRMPD3 (FERM and PDZ domain containing 3), located on
the human X chromosome, is homologous to FRMPD4, which
indicated that FRMPD3 might mediate significant functions
related to excitability associated with neuronal migration
abnormality; however, the functions of FRMPD3 have not been
reported to be associated with poultry laying performance
(Mardinly, 2013).

LIF (leukemia inhibitory factor), a secretory glycoprotein, is
essential for the embryo implantation process inmice and humans
(Aghajanova, 2004). Females lackingLIF are infertile, because their
blastocysts cannot be implanted in the uterus, resulting in no
clinical pregnancy (Steck et al., 2004). Our results would seem to
conflict with those of previous reports, might reflect species
inconsistency, or other, as yet unidentified factors. This result
requires further verification and testing (Schofield and
Kimber, 2005).

NFYC (nuclear transcription factor Y subunit gamma), a
histone-fold domain-containing transcription factor, was
identified in mice and humans as an oncogene required for
the initiation and progression of tumors, and it engaged in
chromatin remodeling (Tong et al., 2015). As far as we
know, it has never been linked to reproductive function in
any species.

The expression levels of the CRTC1, FAAH2, GPC3, and
SERPINC1 genes in the high egg production goose population
were significantly lower than those in the low egg
production population.

CRTC1 (CREB-regulated transcription coactivator 1) is a
transcriptional coactivator that has a biological function that
affects energy balance and reproduction. Overexpression of
CRTC1 in mice led to obesity and infertility (Altarejos et al.,
2008). Breuillaud et al. showed that the CREB coactivator
CRTC1 is indispensable for mouse fertility (Breuillaud et al.,
2009). Our results were consistent with these reports, suggesting
that CRTC1 plays a negative role in the laying trait of the lion
head goose.

FAAH2 (fatty acid amide hydrolase 2), a member of the serine
hydrolase family of enzymes, regulates several physiological
processes, including appetite, inflammation, and various
reproductive processes like secretion of gonadotropin-releasing
hormone from the hypothalamus (Lunetta et al., 2015). FAAH2
may participate in negative regulation of egg laying.

GPC3 (glypican 3), a member of the heparan sulfate
proteoglycans, has been widely studied as a target in human
cancer, such as ovarian carcinoma. GPC3 mediates the
synthesis of integral membrane proteins that interact directly
with insulin like growth factor 2 (IGF2), which is considered
to be an important growth factor in ovarian cancer (Ofuji et
al., 2014; Wu et al., 2016). GPC3 induces apoptosis in ovarian
cells, suggesting that it plays an important role in the
development of ovarian cancer (Gonzalez et al., 1998).
According to comprehensive research reports, we believe that
low expression of GPC3 may promote egg laying in the lion
head goose.

SERPINC1 (serpin family C member 1), is the main
endogenous anticoagulant. Its mutations cause hereditary
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antithrombin deficiency and are associated with increased risk
for all forms of pregnancy-related complications, which cause
adverse pregnancy reaction (De la Morena-Barrio et al., 2012;
Rogenhofer et al., 2014). Thus, SERPINC1 may encourage low
egg production; however, its specific effects require to be
further verified.

The expression levels of CLPB, GNA12, and ZMAT5 in the
high egg production population were significantly increased
compared with those in the low egg production population.

CLPB (caseinolytic peptidase B protein homolog) encodes
an ATP-dependent chaperone. Disruption of CLPB is related
to human congenital microcephaly and small birth weight
(Capo-Chichi et al., 2015). Our results hint at a similar effect
in geese. An increase in CLPB might lead to an increase in
egg laying.

GNA12 (guanine nucleotide-binding protein subunit alpha-
12), the a subunit of a heterotrimeric G protein, participates in
cell transformation and embryonic development; is expressed in
the cytoplasm of Leydig cells; and has the biological function of
promoting the differentiation of cells and elongated sperm cells
into mature sperm (Hu et al., 2008, Udayappan and Casey,
2017). Shen et al. showed that preeclampsia is associated with
decreased methylation of GNA12 promoters (Shen et al., 2015).
Thus, the expression of GNA12 might promote high egg
production in the lion head goose.

For ZMAT5 (zinc finger, matrin type 5), there have been no
reports of its effects on animal reproduction.
CONCLUSIONS

In this study, based on the breeding group of lion head goose,
the blood DNA samples were collected to conduct a genome-
wide association study on egg production traits. Thirty SNPs
related to egg-producing traits were identified, and thirty genes
located in or near SNPs were screened. The selected key genes
were verified using RT-qPCR. The BMP4, CRTC1, FAAH2,
FRMPD3, GPC3, LIF, NFYC, and SERPINC1 genes might play
a negative role in the egg production character of the lion head
Goose. The CLPB, GNA12, and ZMAT5 genes might play a
positive role in egg production character in the laying trait of the
lion head goose. The ANTXR, CDH23, DDX49, ELOVL4,
EPHB3, FBXL20, FGF9, FRY, GM2A, GPC4, HSD17B12,
HTF3A, KCNAB2, LIMA1, NEXN, SLITRT6, SMG7, RXRA,
and TMLHE genes might have no significant effect on egg
production character of the lion head goose. These results
require further verification and confirmation.

In the past few years, GWASs have devoted to the
identification of key loci and genes related to the molecular
breeding of livestock and poultry. These genes may provide
novel target for hereditary approaches to improve breeding.
Developments in this area will be exciting and will affect the
future of genomic breeding. In view of the fact that most of these
genetic connections are limited, a large number of sample
studies are required in future investigations in order to detect
these subtle variations.
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Yanbian cattle is inhabitant of North of China, exhibiting many phenotypic features, such
as long, dense body hair, and abundant intramuscular fat, designed to combat the
extreme cold climate adaption. In the current study, we studied the cold tolerance of nine
Yanbian cattle by whole genome resequencing and compared with African tropical cattle,
N’Dama, as a control group. Yanbian cattle was aligned to the Bos taurus reference
genome (ARS-UCD1.2) yielding an average of 10.8 fold coverage. The positive selective
sweep analysis for the cold adaption in Yanbian cattle were analyzed using composite
likelihood ratio (CLR) and nucleotide diversity (qp), resulting in 292 overlapped genes. The
strongest selective signal was found on BTA16 with potential mutation in CORT gene, a
regulatory gene of primary hormone in the hypothalamic-pituitary-adrenal (HPA) axis, is
reported to be associated with the cold stress, representedfour missense mutations
(c.269C > T, p.Lys90Ile; c.251A > G, p.Glu84Gly; c.112C > T, p.Pro38Ser; c.86G > A,
p.Pro29His). Meanwhile another gene on BTA6, showed significantly higher selective
sweep signals for a cold adapted trait for hair follicle and length development, FGF5
(fibroblast growth factor 5) with a missense mutation (c.191C > T, p.Ser64Phe). Moreover,
cold adapted Yanbian cattle was statistically compared with the hot adapted N’Dama
cattle, a taurine cattle reported to show superior heat tolerance than zebu cattle, making
them better adapted to the hot regions of Africa. XP-CLR, Fst, and qp ratio were used to
compare both breeds, yielding 487, 924, and 346 genes respectively. Among the 12
overlapped genes, (CD36) (c.638A > G, p.Lys 213Arg) involved in fat digestion and
absorption plays an important role in membrane transport of long-chain fatty acid and its
expression could increase in cold exposure. Henceforth, our study provides a novel
genetic insights into the cold climate adaptation of Yanbian cattle and identified three
candidate genes (CORT, FGF5, and CD36), which can add to an understanding of the
cold climate adaptation of Yanbian cattle.
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INTRODUCTION

Cold climate adaptation is a general term used to describe the
physiological functions associated with cold adaptation. Studies
show that cold exposure will lead to increase the blood pressure
(De Lorenzo et al., 1999). During cold stress, the body tries to
save energy by cheap methods (such as standing hair) and by
changes posture to reduce surface area (Cannon and Nedergaard,
2004). To protect tissues from cold damage, the body adopts
different processes, which increases warm blood flow near the
surface of the skin (Cannon and Nedergaard, 2011). Those
adaptation mechanisms, as well as biological processes, suggest
the complex mechanisms of adaptation to cold.

Yanbian cattle is a taurine breed that living in northeast China
(Xin et al., 2010) and belongs to the “yellow” class of Chinese
cattle (Ji et al., 2014). Unlike majority of Chinese indigenous
breeds, Yanbian cattle have had no ancestral to breed with
indicine cattle (Xin et al., 2014). They are mainly used as
herbivores, especially in the rice fields but are also increasingly
used for the beef purpose. The living environment of Yanbian
cattle has long, freezing winters with snow-covered grounds half
a year and only brief summers. The temperature drops as low as
−37°C at the peak of the winter season (Figure S1). Yanbian
cattle exhibit unique morphoanatomical adaptations to the cold
climate with its long and dense hairs as predicted by Allen’s rule
(Allen, 1877), compactly built with short limbs. On the other
hand, N’Dama has been known for its heat resistance in the
harsh climatic conditions in Africa. The temperature rise as high
as 50°C in the summers, while the weather remains hotter rest of
the year as well. Thus, it is an ideal taurine to be compared with
Yanbian cattle to identify the potential temperature regulating
genes and pathways.

Along with constant release of whole-genomic sequence data
in domesticated cattle (Daetwyler et al., 2014; Stothard et al.,
2015; Kim et al., 2017), continuous expansion of directory to
genetic variants (Karim et al., 2011), gradual maturity of selective
theory and method (Vitti et al., 2013), the genetic basis of
phenotypic diversity can be hunted down at the complete
genome level. However, to our knowledge, no information has
yet been generated regarding the cold climate adaptation based
on whole genomes level in Yanbian cattle.

Yanbian cattle living in cold environments can be an excellent
model for the identification of genomic loci explaining cold
climate adaptation in cattle. Here, we are starting from the whole
genome scan of Yanbian and N’Dama cattle, and reported genes
that are positively selected in Yanbian cattle associated with cold
stress adaptation. We used composite likelihood ratio (CLR) and
qp statistics to study the diverse nature of Yanbian cattle, which
can provide genomic materials for genetic improvement of
Yanbian cattle adaptive traits. Furthermore, we also employed
three different statistical approaches i.e., XP-CLR, Fst, and qp
ratio, in order to detect selection signatures in Yanbian cattle,
compared to N’Dama cattle. The high fat content, marbling, and
the superior hide of Yanbian cattle needs to be well preserved
and further enhanced. However, the genetic predispositions
associated with adaption and enhanced cold tolerant
parameters remain uncertain. The current study will help us to
Frontiers in Genetics | www.frontiersin.org 218
enunciate the extreme environmental adaptations and the
positive selective sweeps in the Yanbian cattle.
MATERIAL AND METHODS

Library Construction and Sequencing
We generated whole-genome resequencing data for nine
Yanbian cattle, three of them have been generated from our
previous study (Chen et al., 2018). N’Dama cattle (n=10), a
natural inhabitant of temporal climate, was included in the study
for the genome comparison, in order to understand the heat and
cold tolerance in livestock (Kim et al., 2017). The genomic DNA
was extracted from the ear tissues using the standard phenol-
chloroform protocol (Sterky et al., 2017). In Supplementary
Note 1 we have detailed description about the approaches and
tools utilized in the current analysis.

Read Mapping and Single-Nucleotide
Polymorphism Calling
The clean reads were aligned to the latest reference genome
sequence (GCF_002263795.1) using Burrows-Wheeler Aligner
(BWA)-MEM (Li et al., 2009) with default parameters. The
Picard tools (version 1.106) were used to generate the quality
matrices whereas, the Genome Analysis Toolkit (GATK, version
3.8) was employed for the single-nucleotide polymorphism
(SNP) calling for mapping (McKenna et al., 2010). We used
“HaplotypeCaller,” “GenotypeGVCFs,” and “SelectVariants”
argument of GATK to call the raw SNP. The filtration of the
raw SNPs was conducted by using “variant Filtration” with the
following parameters: 1) the depth of base quality to ensure
variant confidence (QD) < 2.0; 2) the quality of mapping reads
(MQ) > 40.0; 3) also, the Phred-scaled P-value calculating with
Fisher`s exact test (FS) < 60.0; 4) ReadPosRankSum < −8.0, 5)
MQRankSum < −12.5; 6) mean sequence depth (for all
individuals) > 1/3× and < 3×; while, 7) SOR > 3.0.

Variant Functional Annotation
and Enrichment Analysis
The SNP were annotated by SnpEff tool using ARS-UCD1.2
database and gene set enrichment analyses were carried out with
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway using KEGG Orthology-Based
Annotation System (KOBAS) tool. To provide a preliminary
overview of the genomic excess and test its reliability, we
performed different GO and KEGG pathway enrichment
analyses with KOBAS using different lists of genes located in
chromosomal regions from the different selective analysis
methods of Yanbian to N’Dama cattle. The enriched pathways
and genes were selected stringently with an adjusted probability
(P < 0.05).

Selective Sweep Identification
The genome and nucleotide diversity were calculated by qp,
whereas, allele frequency for the positive selection signals were
attained by CLR in Yanbian cattle. To infer the scan in progress,
we used a 50 kb window for both statistical parameters. The CLR
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test uses information from allele frequencies to detect selective
scans and relies on determining skews in the allele spectrum to
bias rare and frequent alleles (Nielsen et al., 2005). Whereas, qp
analyzes the complete polymorphism data to compile the nature
of diversity of the species.

We also performedXP-CLR (Chen et al., 2010), Fst, andqp ratio
to identify the potential areas differentially, selected between
Yanbian and N’Dama cattle. XP-CLR is used for detecting
selective sweeps that models the multilocus allele frequency
differentiation between the two populations (Chen et al., 2010).
Weused a 50 kbnon-overlapping slidingwindowswith thenumber
of SNPs less than 600, and the correlation level reduced the
contribution of SNPs to the XP-CLR results to 0.95. XP-CLR
values in the top 0.5% of the empirical distribution (XP-CLR>
29.49) are designated as candidate selection scans, and genes that in
those window region are defined as potential candidate genes (Lee
et al., 2014). It will give more evidence to the same gene regions
using different methods (Qanbari and Simianer, 2014). Fst can
change the degree of differentiation between the different
populations of one species. If populations are differentiated, the
number of genetic differentiation in the selected locus region
increase while the difference in genomic region is greater than the
neutral conditions (Oleksyk et al., 2010). VCFtools were used to
calculate the Fst values of the candidate gene regions in a 50 kb
window size at an interval of 20 kb steps (Danecek et al., 2011).
Finally, the identified selective sweeps regionswere annotated to the
reference genome (ARS-UCD1.2) and were further explored
following the functional analysis. Lastly, qp ratio between
Yanbian and N’Dama cattle groups was calculated as ln(qp,
Yanbian/qp,N’Dama), which reflected the loss of nucleotide
diversity in Yanbian cattle relative to N’Dama.
RESULTS

Resequencing of Yanbian Cattle and
Single-Nucleotide Polymorphism Call
The re-sequenced Yanbian and the N’Dama cattle were pooled
together in a 19 cattle data set, generated to an average of 9.15X
coverage. In total, 4.2 billion reads were generated which were
aligned against the ARS-UCD1.2 reference genome using BWA
MEM algorithm, yielding ~4.1 billion mapping reads, covering
99.16% of the reference sequence across the region (Table 1).
After the SNP call, 11,331,903 and 5,720,198 SNPs in Yanbian
and N’Dama cattle, respectively were identified. The quality of
the SNP call was evaluated with the Ts/Tv ratio (Table 2). The
SNPs count of Yanbian cattle was observed to be larger than
Frontiers in Genetics | www.frontiersin.org 319
N’Dama, which might account for the low coverage and low
genetic diversity of N’Dama sequencing. At the same time, the
average ratios of homozygous versus heterozygous SNPs of
Yanbian and N’Dama cattle are 0.487 and 0.848, respectively,
TABLE 1 | Summary statistics of Yanbian and N’Dama cattle re-sequenced reads.

Sample name No. sample Raw reads Mapped reads aProperly paired reads bAverage coverage cAverage fold

Yanbian 9 2,722,889,367 2,716,850,732 2,691,580,076 99.78% 10.8X
N’Dama 10 1,474,655,523 1,453,725,812 1,424,295,346 98.54% 7.5X
Total 19 4,197,544,890 4,170,576,544 4,115,875,422 99.16% 9.15X
February 2020 | Volume
aProperly paired reads, “properly paired” means that both ends of the reads were mapped with correct orientation and their fragment sizes were less than 500 bp.
bAverage coverage, assembly coverage calculated as the proportion of bases in the genome assembly that were covered by at least one read.
cAverage fold, average fold that was calculated as the average depth of coverage across the whole genome.
TABLE 2 | Functional annotation of the identified single-nucleotide
polymorphisms (SNPs) in Yanbian and N’Dama cattle.

Fields Yanbian N’Dama Total

Sample
counts

9 10 19

aSNP
counts

11,331,903 5,720,198 12,246,286

bTs/Tv ratio 2.3604 2.3969 ***
Hom/Het
ratio

0.467871422 0.848630285 ***

cSNP
categories
dExon Synonymous variant 186,012 194,636 314,721

Initiator codon variant 16 13 21
Start lost 183 97 237
Stop gained 858 526 1,151
Stop lost 167 81 182
Stop retained variant 150 81 165

Splice Splice region variant 37,336 21,114 45,471
site Splice acceptor

variant
484 359 613

Splice donor variant 610 311 723
Intron Intron variant 48,543,638 27,356,467 55,275,820

Intragenic variant 7,816,671 4,242,273 8,544,070
UTR 5 prime UTR variant 57,009 36,103 72,734

5 prime UTR
premature-start
codon gain variant

9,935 6,167 12,529

3 prime UTR variant 243,890 122,412 279,308
Intergenic eUpstream gene

variant
2,709,568 1,467,399 3,120,061

eDownstream gene
variant

2,787,820 1,487,654 3,198,705

Intergenic region 6,128,216 3,047,398 6,503,198
Functional
classes

Missense 110,574 78,703 151,271
Nonsense 858 526 1,151

　 Silent 186,039 194,657 314,747
11
aSNP count; the overlapped SNP loci between samples were counted as one.
bTs/Tv ratio: transition–transversion ratio (Ts/Tv) is a method to check the quality of the
number of SNP calls.
cBecause the analysis to categorize the SNPs was done non-exclusively, some SNPs
were counted at multiple categories.
dSNP categories were clustered by six genomic regions: exon, splice site, intron, UTR,
flanking region, and intergenic
eUpstream/downstream: 5 Kbp regions that are adjacent to the both ends of a gene were
defined as upstream and downstream regions respectively.
The regions (***) were not calculated as it is not required.
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representing the more genetic diversity in North China with its
elevated heterozygous.

Biological Process and Pathways of
Yanbian Cattle Population
CLR and qp statistics were calculated for the Yanbian cattle
alone, to distinguish the positive selection region. Based on CLR
test statistic, we obtained 604 putative genes (Table S5) whereas,
680 positively selected genes were detected by qp test (Table S6).
Of these, 292 overlapped genes were detected in both statistics
(Figure 1C). GO and KEGG pathways were employed by
KOBAS, whereas, only 34 enriched pathways were retained
(correct p < 0.05; Table S7; Figure 1D).

Positive Selective Signature in Yanbian
Cattle Related to Cold Climate Adaptation
Among 292 candidate genes detected in both CLR and qp, some
positively selected genes were considered to be associated with
cold climate adaptation (CORT and FGF5). The strongest
selection signal found on BTA16 (16:43127555-43129154)
contains the CORT gene (Figures 1A, B), which was reported
Frontiers in Genetics | www.frontiersin.org 420
to be related with the cold stress in mouse, chicken, and humans
(Dronjak et al., 2004; Hangalapura et al., 2004). In the cold
exposure experiment of rats, CORT in the blood of rats
significantly increased after 2 h of cold exposure (Dronjak
et al., 2004). Meanwhile, the regulatory mechanism of cold
stress and stress was studied in chickens, and it was found that
CORT in plasma was considerably different under variable cold
stress levels (Hangalapura et al., 2004). To identify the potential
causal mutation around CORT locus, we checked all of mutations
of Yanbian cattle, and four missense mutations in CORT
(c.269C > T, p.Lys90Ile; c.251A > G, p.Glu84Gly; c.112C > T,
p.Pro38Ser; c.86G > A, p.Pro29His) were found.

Interestingly, we found a gene,fibroblast growth factor 5 (FGF5)
onBTA6 fromCLR test (Figure 1A), which has been reported to be
related to thedevelopmentofhair follicles andhair length incat, dog
and human (Drögemüller et al., 2007; Dierks et al., 2013; Higgins
et al., 2014). Meanwhile, we also found that FGF5 was located in a
significant region on chromosome fromqp test (Figure 1B). Under
cold stress conditions, long and dense hairs are very important in
order to keep the body warm against the cold environment, a
distinctive feature of Yanbian cattle.
FIGURE 1 | Genome-wide selection scan in Yanbian cattle. (A, B) Manhattan plot of the genome-wide distribution of composite likelihood ratio (CLR) and qp in
Yanbian cattle using 50 kb windows size and 20 kb step size, respectively. (C) Venn diagram showing the genes overlap among CLR and qp significant selection
region. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes. Advanced bubble chart shows enrichment of
differentially expressed genes in signaling pathways. Y-axis label represents pathway, and X-axis label represents rich factor (rich factor = amount of differentially
expressed genes enriched in the pathway/amount of all genes in background gene set). Size and color of the bubble represent amount of differentially expressed
genes enriched in pathway and enrichment significance, respectively.
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Biological Process and Pathway Between
Yanbian and N’Dama Cattle
Moreover, XP-CLR test was performed to distinguish the
positive selection region between Yanbian and N’Dama cattle.
Based on the analysis, we obtained 487 putative genes (Table S1).
Whereas, 924 and 346 candidate genes were identified using Fst
and qp ratio between the two populations, respectively. (Tables
S2 and S3). In addition, 12 overlapping genes from the three tests
were detected and evaluated for the functional studies
(Figure 2D). GO and KEGG pathways with KOBAS were used
to build on biological modules consisting of clusters of functional
terms. After wiping out duplicates, 1,375 genes were retained
from XP-CLR, Fst, and qp ratio for the analysis. KEGG pathway
analysis resulted in 98 significantly enriched pathways (correct
p < 0.05; Table S4). Vascular smooth muscle contraction,
circadian entrainment, hypertrophic cardiomyopathy (HCM),
fatty acid metabolism, and fat digestion and absorption were
involved as major enrichment pathway, which may play an
important role in the cold adaptation of Yanbian cattle.

Candidate Regions and Genes Under
Positive Selection in Yanbian and
N’Dama Cattle
Here, we compared the genomes of Yanbian and N’Dama cattle
to identify signatures of positive selection within each subspecies
following environmental and artificial selection pressures.
Twelve genes were overlapped in XPCLR, Fst, and qp ratio
Frontiers in Genetics | www.frontiersin.org 521
methods including fatty acid synthase (CD36; Figures 2A–C),
which plays main role in membrane transport in the heart and
adipose tissue. The expression of CD36 is increased in cold
exposure, which enhances brown adipose tissue (BAT) uptake
of TG-rich lipoprotein (TRL) and of albumin bound FA.
Previous studies have shown that CD36 gene in Hanwoo and
Yanbian cattle affects the intramuscular fat deposition.
Compared with N’Dama, Yanbian cattle have excellent meat
quality. Yanbian cattle have been in the cold environment for a
long time, and have a lot of fat deposits in their bodies, which is
helpful to resist the cold. The divergent mutations of CD36 gene
were checked between Yanbian and N’Dama cattle, and one
missense mutations (c.638A > G, p.Lys 213Arg) was found.
DISCUSSION

We herein carefully examined the whole genome resequencing of
Yanbian and N’Dama cattle. The Ts/Tv ratio indicate the quality
of resequencing, which was calculated to be 2.36 and 2.39 in
Yanbian and N’Dama cattle respectively, comparable with the
previous studies (Tables 1 and 2) (Choi et al., 2013; Choi et al.,
2015). As for the heterozygous and homozygous ratio were
concerned in the detected SNPs, the higher ratio of Yanbian
cattle suggests that it’s population structure maybe normal and
have a high heterozygosity rate.

Our study used resequencing data from Yanbian and N’Dama
cattle to reveal a detailed genomic information along with
FIGURE 2 | Genome-wide selection scan between Yanbian and N’Dama cattle. (A–C) Manhattan plot of the genome-wide distribution of qp ratio, XP-CLR, and Fst
between Yanbian and N’Dama cattle using 50 kb windows size and 20 kb step size, respectively. The threshold corresponding to the top 0.5% of qp ratio, XP-CLR,
and Fst are marked with a horizontal line, respectively. (D) Venn diagram showing the genes overlap among qp ratio, XP-CLR, and Fst significant selection region.
(E) Word cloud illustrating major enrichment pathway of these genes in qp ratio, XP-CLR, and Fst significant selection region.
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candidate genes associated to the cold climate adaptation in
Yanbian cattle. Yanbian cattle live in cold north China for a long
time. Many biological traits in Yanbian cattle have adapted to the
local cold environment, such as long and dense body hairs and
increased muscular fat. In order to study the cold-adaptive
mechanism of Yanbian cattle, N’Dama cattle was selected, a
Bos taurus cattle living in the hot areas of Africa, as the reference.
Cold adaptation research indicate that more than one
mechanism involved in the biological response to cold stress.
And it is a multi-factor complex trait that be affected by different
factors at different levels in molecular and mechanical aspects.
Consistent with the expectations of biological complexity of cold
adaptation, our selection test highlights several different
processes that are coherently responsible.

We calculated the CLR and qp to analyze the positive
selection of Yanbian cattle. The strongest selection signal of
CLR found on BTA16 (16: 43127555-43129154) contains the
CORT gene (Figure 1A), which was reported to be related with
the cold stress in mouse, chicken and humans (Dronjak et al.,
2004; Hangalapura et al., 2004). Secretion of CORT, a primary
hormone in the hypothalamic-pituitary-adrenal (HPA) axis,
exhibits a circadian rhythm in many species (Mormède et al.,
2007). At the same time, CORT levels are also used as one of the
biochemical parameters used to measure the physiological
response of animals to stressful environments. Hence,
increased cortisol levels in blood are an important stress
indicator (Grandin, 1997; Ndlovu et al., 2008). In the cold
exposure experiment of rats, CORT in the blood of rats
significantly increased after 2 h of cold exposure (Dronjak
et al., 2004). Meanwhile, the regulatory mechanism of cold
stress and stress was studied in chickens, and it was found that
CORT in plasma was considerably different under variable cold
stress levels (Hangalapura et al., 2004). At the same time, we
found four missense mutations in CORT (c.269C > T, p.Lys90Ile;
c.251A > G, p.Glu84Gly; c.112C > T, p.Pro38Ser; c.86G > A,
p.Pro29His). Also, CORT is one of the biochemical parameters
used to measure the physiological response of animals to stressful
environments. Under different cold stress levels, the study on the
regulation mechanism of cold stress and stress in chickens found
that CORT levels in plasma were significantly different
(Hangalapura et al., 2004). Meanwhile, we also identified
another gene FGF5 that may influence the hair length and
density in Yanbian cattle, which is very important for keeping
the body warm against the cold environment. FGF5 has been
reported to be related to the development of hair follicles and
hair length in cat, dog and human (Drögemüller et al., 2007;
Dierks et al., 2013; Higgins et al., 2014). Though, analyzing the
selection region of CLR test, FGF5 was found to be on top
prominent point on BTA6 (Figure 1A), and also was located in a
significant region on BTA6 from qp test (Figure 1B).

Three methods (XP-CLR, Fst and qp ratio) were used to
analysis the whole genome data and choose the significant
signals between Yanbian and N’Dama cattle. Twelve genes
(RBFOX1, CD36, GRXCR2, KCNB2, NSG2, ROBO1, NRXN1,
LINGO2, GRM5, and AMOTL1) were overlapped among XP-
CLR, Fst, and qp ratio. Among all, CD36 plays an important role
Frontiers in Genetics | www.frontiersin.org 622
in membrane transport of long-chain fatty acid (FA) in the heart,
skeletal muscle, and adipose tissue (Glatz et al., 2010). The
expression of CD36 is increased in cold exposure, which
enhances BAT uptake of TG-rich lipoprotein (TRL) and of
albumin bound FA (Bartelt et al., 2011). Previous studies have
shown that CD36 gene in Hanwoo and Yanbian cattle affects the
intramuscular fat deposition (Jeong et al., 2012). Also, the
expression of CD36 has been proven to be positively correlated
with obesity in dairy cows (Prodanović et al., 2016). Compared
with N’Dama, Yanbian cattle have excellent meat quality. Yanbian
cattle have been in the cold environment for a long time, and have
a lot of fat deposits in their bodies, which is helpful to resist the
cold. There are some pathways [fat digestion and absorption,
AMPK signaling pathway, phagosome, extracellular matrix
receptors (ECM)-receptor interaction] represented in Yanbian
and N’Dama cattle include CD36 genes (Figures 2A–C). Studies
have shown that fat digestion and absorption pathway affects the
heat production of animals, CD36 gene plays an indispensable role
in the heat production (Putri et al., 2015). Also, the expression of
CD36 has been reported to be positively correlated with obesity in
dairy cows (Prodanović et al., 2016).

As far as we know, Yanbian cattle as beef cattle is rich in muscle
fat. The phenomenon of fat abundance in muscle of Yanbian cattle
may be one of the mechanisms for resisting cold climate. A
missense mutation (c.638A > G, p.Lys 213Arg) was been found
between Yanbian and N’Dama cattle, we speculate that this may
be one of the causes of Yanbian cattle cold tolerance.
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Locomotion is an important welfare and health trait in turkey production. Current
breeding values for locomotion are often based on subjective scoring. Sensor
technologies could be applied to obtain objective evaluation of turkey gait. Inertial
measurement units (IMUs) measure acceleration and rotational velocity, which makes
them attractive devices for gait analysis. The aim of this study was to compare three
different methods for step detection from IMU data from turkeys. This is an essential
step for future feature extraction for the evaluation of turkey locomotion. Data from
turkeys walking through a corridor with IMUs attached to each upper leg were annotated
manually. We evaluated change point detection, local extrema approach, and gradient
boosting machine in terms of step detection and precision of start and end point of the
steps. All three methods were successful in step detection, but local extrema approach
showed more false detections. In terms of precision of start and end point of steps,
change point detection performed poorly due to significant irregular delay, while gradient
boosting machine was most precise. For the allowed distance to the annotated steps
of 0.2 s, the precision of gradient boosting machine was 0.81 and the recall was 0.84,
which is much better in comparison to the other two methods (<0.61). At an allowed
distance of 1 s, performance of the three models was similar. Gradient boosting machine
was identified as the most accurate for signal segmentation with a final goal to extract
information about turkey gait; however, it requires an annotated training dataset.

Keywords: inertial measurement unit, step detection, gait analysis, segmentation, accelerometer

INTRODUCTION

Locomotion is an important welfare and health trait in turkey production. Impaired locomotion
compromises growth and (re)production. Breeding programs tend to record locomotion of
selection candidates by scoring the conformation or walking ability by a human expert (Quinton
et al., 2011). These scores are repeatable, heritable, and valuable to the breeding program. However,
these scores are subjective and labor intensive and require animal handling. Therefore, an objective
automated locomotion score would be preferred. Sensor technology seems a promising tool for this
task. Additionally, it provides opportunities for repeated measurements of individuals, which could
lead to more accurate breeding values.

In recent years, sensor technologies have been introduced in livestock production, and
some of them are well suited for objective locomotion scoring like force platforms, cameras,
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and accelerometers. Force platform systems have been used
for locomotion phenotyping in experimental setups (Pastell
et al., 2006; Nääs et al., 2010; Maertens et al., 2011; Pluym
et al., 2013), but applications on farms are limited because they
are expensive and require frequent maintenance. Cameras are
upcoming tools in cattle and pigs, with the advantage that they
do not disturb the animal (Kashiha et al., 2014; Viazzi et al.,
2014; Kuan et al., 2019). However, adding individual animal
identification to the image data is a challenge. Accelerometers
are widely applied to individual cows and pigs for detecting
behavioral changes over time that can indicate signs of estrus and
health or welfare impairment, including lameness (e.g., Pastell
et al., 2009; Escalante et al., 2013; Tamura et al., 2019). Inertial
measurement units (IMUs) are a combination of accelerometer,
gyroscope, and sometimes a magnetometer. Besides acceleration,
they also measure rotational velocity; together, they can indicate
orientation. Human locomotion has been well studied using
IMUs, where they are considered as a cost-effective alternative
to optical motion systems, which are the golden standard in
kinematic analysis in laboratory settings (e.g., Seel et al., 2014;
Kluge et al., 2017).

In order to use IMUs for objective evaluation of turkey
locomotion, it is essential to describe individual steps
by extracting its features. Hence, accurate automated step
segmentation of the IMU profile, i.e., defining the start and end
point of a single step, is an essential first challenge. Therefore,
the aim of this study was to compare different methods for
automated step detection from IMU data from turkeys.

MATERIALS AND METHODS

IMU Data
The IMUs used for this study were wireless inertial-magnetic
motion trackers (MTw Awinda, XSens Technologies
B.V., Enschede, Netherlands). Each IMU contains a
triaxial accelerometer, triaxial gyroscope, and triaxial
magnetometer. An IMU weighs 16 g and its dimensions
are 47 mm × 30 mm × 13 mm. The IMU data were logged to a
computer in real time via a receiver.

Data were collected during the standard walkway test applied
in the turkey breeding program of Hybrid Turkeys (Hendrix
Genetics, Kitchener, Canada). In total, 85 animals were recorded
during 1 day. The animals were 20 weeks of age. Two IMUs
were attached using Velcro straps, one on each upper leg.
Then, the animal was placed in a corridor (∼1.5 m wide)
and stimulated to walk in one direction for approximately
5 m. The floor was covered with bedding the animals were
familiar with. Because these data were recorded during routine
processes, there was little time for the animals to get used to
the IMUs around their legs. Occasionally, the animals needed
stimulation to start walking or during walking. A person walked
along with the animal and waved his hand if needed; when
waving was not effective, the animals were tapped on the back
or finally pushed.

The recording of the IMU was at 100 Hz and was manually
started and stopped; on average, there was 20 s recording

material per animal. The IMU output consisted of calibrated
time series data for triaxial acceleration, triaxial free acceleration,
triaxial angular velocity, and triaxial magnetic field. In addition,
orientation data are provided in Euler representation (pitch, roll,
yaw), as well as unit quarternions represented by a normalized
quaternion q = [W X Y Z], with W being the real component and
X, Y, Z being the imaginary parts. More information about the
output data can be found in Paulich et al. (2018).

Annotation
The annotation was based on the knowledge that a complete
single step can be divided into two stages: (1) from the foot
separating from the ground to the foot reaching the highest
point, the acceleration at this stage starts to increase until it
reaches a maximum value; (2) from the highest point of the
foot to the foot hitting the ground, at this stage, the acceleration
drops from the maximum value to the minimum value (Wang
et al., 2017). In the IMU profile, clear indications of movement
can be seen. Knowing that the main actual movement of the
animals is walking through the corridor, it is safe to assume
these are steps. The location of the steps was annotated by hand
for 20 IMU profiles: both leg IMUs of 10 different animals.
Plots of acceleration magnitude against time were used to define
start and end position of the step. Acceleration magnitude
was calculated as

√
Acc_X2 + Acc_Y2 + Acc_Z2 where Acc_X,

Acc_Y, and Acc_Z are the output of the triaxial accelerometer in
X, Y, and Z direction, respectively (Wang et al., 2017). Half steps
at the beginning or end of a profile were not annotated, as well
as insignificant movements (acceleration magnitude <20 m/s2).
The number of annotated steps per profile ranged between
7 and 15 with an average of 9.9. These ranges were within
expectation from turkeys this age walking ∼5 m. In total, 198
steps (sum of annotated steps over 20 profiles) were annotated
and available for further analysis. Although more IMU profiles
were available, they were not manually annotated, because the
manual annotation was too time-consuming. In addition, the
20 IMU profiles resulted in sufficient steps (198) for model
development and performance testing (shown below).

Although we use this manual step annotation for model
training and performance evaluation, we do not consider it as
the truth. The start and end position of the annotated steps are
not perfectly accurate, but this was the best we could do with
the data at hand. The step annotation allows us to compare
performance of the different methods applied and what may
cause the observed differences.

Change Point Detection
Change point is used to denote a significant variation
in the probability distribution of time series. Detection of
such variations and exact moments when they occurred
may be accomplished with the broad family of supervised
and unsupervised methods, the extensive overview of which
can be found in Aminikhanghahi and Cook (2017). An
application of change point detection (CPD) approaches
to step segmentation were demonstrated, for example, by
Martinez and De Leon (2016). In our study, we applied an
unsupervised version of CPD that is called a singular spectrum
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transformation (SST). The basic idea of SST is that, for each
time point, it compares distribution in the interval before
the time point and an interval of the same length after the
time point and, based on this, assigns a change point score.
Comparison of distributions is made by comparing singular
spectrums of two trajectory matrices for these consecutive
intervals (Aminikhanghahi and Cook, 2017).

We developed the following algorithm based on the SST that
was applied to three acceleration signals Acc_X, Acc_Y, Acc_Z:

(a) To each signal, we applied a low-pass filter to reduce
the presence of noise. This step was required because
SST does not consider the effect of noise on the system
(Aminikhanghahi and Cook, 2017).

(b) For each de-noised signal, we applied SST with windows
equal to 10 time points and calculated a change point score.

(c) When the change point score was above 5% of the
maximum for a given signal, we declared the step; when
it was lower, we declared no step.

(d) Final decision was made by majority: if at least two of the
three acceleration signals indicated the step, we declared
step at that moment.

Local Extrema Approach
The local extrema approach (LEA) was inspired by the idea that
the significant local extrema in a signal should be associated with
the changes in the leg movements. Assuming that we have a set of
signals, the method can be described by the following procedure:

(a) To each signal (we used Acc_X, Acc_Y, Acc_Z, Gyr_X,
Gyr_Y, Gyr_Z, Roll, Pitch, and Yaw here), we applied a
low-pass filter to reduce the presence of noise.

(b) With a sliding window equal to 140 time points, we found
local minima and local maxima for each signal. Based on
the training data, a window of 140 time points ensures
there is at least one step in the sliding window, making it
the most optimal window to detect local extrema.

(c) From the set of all extrema discovered in step (b), we
filtered out those that were within less than 0.5 standard
deviations from the surrounding 10 measurements. This
step helped us, for example, to get rid of extrema found
in the regions where an animal was not moving and no
step had occurred.

(d) We combined significant local extrema from all the
considered signals into one set. Then, we kept only those
significant extrema that were found in more than one signal
or those for which there exists at least one other extrema
within 0.1 s (10 measurement to the right or 10 to the left).
We will refer to such extrema as important extrema.

(e) Based on the detected important extrema and density of
their distribution, we created a list of potential intervals
that contain steps. For the first local extrema, we formed
an interval that starts in that point and has a length of
0.6 s. Then, for the first extrema that has not ended up
in that interval, we checked whether it is within 0.12 s to
the end of the created interval, and if so, we added it to
the interval, consequently updating the interval’s length.

We continued this procedure until we could not find a new
extrema within 0.12 s to the interval. Then, we recorded
the detected interval as potential step interval and repeated
the procedure for the next important extrema. The time
thresholds of 0.6 and 0.12 s were chosen based on the
data to assure that only one step was occurring within an
interval. From the annotated data, the average step length
was 0.6 s, and there was at least 0.12 s in between two steps.

(f) If, in some potential step, interval distance between the
first important extrema to the second important extrema
was higher than 0.12 s, we removed the first important
extrema from the interval and proceed the check for the
next element of the interval.

(g) We filtered out intervals that have duration shorter than
0.2 s, because that is too short to be an actual step. We also
filtered out intervals that have two consecutive important
extrema that were located more than 0.25 s from each other,
to assure a dense set of important extrema that support
the evidence of a step. These thresholds were based on the
annotation of the steps.

(h) Finally, to avoid false-positive indications, we filtered out
intervals within which acceleration magnitude was lower
than 11 m/s2. Real steps always showed an acceleration
magnitude peak higher than 11 m/s2; below this value, it
may be noise or tremor in the legs.

The obvious drawback of the LEA method is that it depends
on a high number of parameters that probably will be different for
other species or even another age group of turkeys. While some
parameters allow slight deviation from the given numbers, the
set of measured signals does not. We found that it is impossible
to build successful LEA for step segmentation based only on
acceleration signals. The density of received important extrema
does not allow to distinguish between parts of the signals that
correspond to the step and no step periods.

Gradient Boosting Machine
We used a gradient boosting machine (GBM) implemented in R
version of H2O 3.20.0.8 (Landry, 2018) to predict the time points
that are part of steps in IMU profiles. The GBM method is a
supervised learning task with the advantage of high performance
and interpretable models (Elith et al., 2008). Each individual time
point within an annotated step was classified as step and each
individual time point outside an annotated step was classified
as non-step for model training. To build the GBM model, 60%
of the 198 manually annotated steps were used for training
(125 steps from 12 IMU profiles), 20% for validation (36 steps
from 4 profiles), and 20% as an independent test set (37 steps
from four profiles).

Except for magnetic field data, all standard IMU output
parameters as described above were used for step prediction, as
well as magnitude of acceleration. Each of the 20 parameters
were transformed by taking the difference between the actual
time point measure and a lag or lead measure. Each time series
was lagged by 5 to 10 time points, and led by 5 to 10 time
points. The lag/lead was applied to detect significant changes
in the profiles, the 5 to 10 time points relates to 0.05 to 0.1 s,
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which seemed reasonable for significant changes in movement
during walking. This resulted in 12 different time series
per parameter (e.g., Acc_X_lag5-Acc_X_lag10, Acc_X_lead5-
Acc_X_lead10), and a total of 240 predictor variables for the
GMB prediction of steps. We ran the GBM model with default
settings. The model parameters were as follows: number_of_trees
was 50, number_of_internal_trees was 50, model_size_in_bytes
was 21040, min_depth was 5, max_depth was 5, mean_depth was
5, min_leaves was 24, max_leaves was 32, and mean_leaves was
28.48. Performance results of the selected GBM model can be
found in the Supplementary Material.

The prediction of the step per time point is not very helpful in
defining features from a step; hence, step start and end needed to
be defined. Based on the predictions per time point, we defined
the start and end moment of the steps. Starting from the first
time point predicted to be a step, if it had at least 10 consecutive
step predictions, it was the starting point of that particular step.
The end point of that step was the last time point in the row
that was predicted a step. This resulted in some steps being very
close to each other, so close that they are likely part of the same
(annotated) step. Hence, steps within 10 time points were merged
together into one step.

Performance Assessment
The main goal of step segmentation is to provide subsequences
of a signal for the following feature extraction. Therefore, we
have two obvious requirements for segmentation methods: (i)
to maximize the number of recognized steps; and (ii) precise
start and end moments of the recognized steps. To evaluate
performance of proposed methods, we applied techniques used in
Haji Ghassemi et al. (2018) and Šprager and Jurič (2018). First, we
calculated the numbers of true-positive (TP), false-negative (FN),
and false-positive (FP) steps for the 198 annotated steps, where
TP are steps detected by the method and also labeled manually
in the annotation step; FN are steps that were annotated but not
detected by the method; FP are steps detected by the method but
which were not annotated.

Based on these numbers, we calculated three metrics:
precision = TP/(TP + FP) recall = TP/(TP + FN), and
F-score= 2(Precision× Recall)/(Precision+ Recall) (Rijsbergen,
1975). Precision provides punishment for the detected steps
that were not annotated; it is equal to one if there are no FP
steps. Similarly, recall provides punishment for the annotated
steps that were not detected by a method, and is equal to one
if there are no FN steps. The F-score is the harmonic mean of
precision and recall, and is equal to one if there are no FN or
FP steps but decreases with higher number of FP and FN steps
(Hand and Christen, 2018).

To be considered as a TP, both the start and end points
of detected steps should be within the allowed distance from
the corresponding start and end points of the annotated steps.
We compared the performance of the different step detection
methods at an allowed distance from 0.1 s to 0.5 s and 1 s.

In addition, the average delay per detected start and end point
of the corresponding annotated step was calculated for each
method. The delay was negative if the detected start or end point
was located before the annotated start or end point.

RESULTS

Change Point Detection
The proposed approach based on SST method for CPD detected
all steps for animal 010 (no FN) and the only FP detection
was actually a true step not annotated because its start point
might have been before recording (Figure 1). It revealed itself
as a quite robust method for step detection. When it comes to
the preciseness of the detection of start and end moments, we
observed significant delay. The peak of acceleration magnitude
is, in some cases, located outside the found interval because of
this delay in detection.

Local Extrema Approach
Results of LEA demonstrate less robustness in terms of step
detection in comparison to CPD. Figure 2 shows FP detection,
like second detected step for leg 1 of turkey 010, as well as FN
steps, like sixth annotated step for leg 2. Based on video material,
we confirmed that these were truly FP and FN detections.

Gradient Boosting Machine
Results of the GBM method are plotted in Figure 3 and
demonstrate that all annotated steps for animal 010 were
detected (no FN) and the only FP detection was actually a
true step not annotated because its start point might have
been before recording. The position of the steps detected using
the GBM model is acceptable, given that the annotation is
not perfect either.

Performance Assessment
Table 1 provides precision, recall, and F-score for the considered
methods. All these metrics were calculated based on annotated
steps of both legs of four turkeys that were left out of the training
of the GBM model. Based on the F-score, GBM performed best
at any of the evaluated allowed distances from the annotated
start and end points. Somewhat worse result was shown by
LEA. For small allowed distances, the performance of CPD
was very low. For an allowed distance of 0.1 s, the steps
detected by CPD were more than 0.1 s from the start and
end point of all annotated steps; hence, none of the steps were
declared as TP and precision and recall were zero. However, the
performance of CPD considerably increased with an increase of
allowed distance.

Unsatisfying performance of CPD for small values of allowed
deviation can be explained by the delay in step detection. There
was an average delay for start points of the steps of 0.27 s with a
standard deviation of 0.15 s. The average delay for the end points
was even higher: 0.47 s with a standard deviation of 0.11 s. This
indicated that the delays were not constant; therefore, it is not
possible to correct for the delay.

As to delays for LEA and GBM, the corresponding values are
much smaller in comparison to CPD. For LEA, average delay
in start points was 0.14 s (± 0.15 s), and 0.15 s (± 0.12 s) for
end points. For GBM, average delay in start points was 0.09 s
(± 0.14 s), and 0.05 s (± 0.05 s) for end points.
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FIGURE 1 | Results of CPD step segmentation for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line depicts manually labeled steps.

FIGURE 2 | Step segmentation results of LEA for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line shows manually labeled steps. Vertical gray lines corresponded to important extrema.

DISCUSSION

The aim of this study was to get accurate start and end position
of turkey steps based on IMU data. In terms of step detection

in general, all three compared methods were successful, although
LEA showed more false detections than CPD and GBM. In terms
of precision of start and end point of steps, CPD performed
poorly, while GBM was most precise.
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FIGURE 3 | Results of GBM step segmentation for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line shows manually labeled steps. The gray line represents the chance of being a step according to the GBM model (×15 for visualization).

Although the data collection was done in a controlled walking
test setup, the data are not as clean as experimental setups with
humans or trained animals like horses (Pfau et al., 2005). For
example, some animals were hesitating and needed stimulation,
after which they took a number of short fast steps before
continuing at a steady pace. This imposed some difficulties in
the annotation of the data, and also hampers accurate step
segmentation. It is, however, realistic data, and therefore more
diverse and comprehensive compared to experimental setups.
This will aid in the development of an algorithm applicable
to data retrieved in, for instance, group housing. In addition,
it also implicates that the detected steps may need further
filtering (e.g., based on standard deviation of certain step features

TABLE 1 | Performance results of the step detection methods for different allowed
distances (in seconds) from the annotated steps.

Method Metric 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 1.0 s

CPD Precision 0.00 0.01 0.07 0.15 0.49 0.97

Recall 0.00 0.01 0.07 0.14 0.47 0.91

F-score NA1 0.01 0.07 0.14 0.48 0.94

LEA Precision 0.25 0.61 0.74 0.85 0.90 0.95

Recall 0.23 0.56 0.69 0.78 0.82 0.88

F-score 0.24 0.58 0.71 0.81 0.86 0.92

GBM Precision 0.65 0.81 0.87 0.92 0.93 0.97

Recall 0.67 0.84 0.89 0.95 0.96 1.00

F-score 0.66 0.82 0.88 0.93 0.95 0.99

1NA = not applicable (due to division by zero).

within an individual) depending on the purpose of using the
automatically detected steps.

There was no golden standard system applied next to the
IMU sensor. In experimental settings, optical motion tracking
systems are often used as golden standard to test the IMU
performance (e.g., Seel et al., 2014; Kluge et al., 2017; Bosch
et al., 2018). Here, we used subjective annotation by a person
to define the step start and end positions in the IMU profiles
knowing that the animals underwent a walking test. In general,
we trust that the annotated steps are true steps and were able
to check doubtful cases with video material. However, the exact
start and end point are debatable, and might be somewhat
different if annotated again or by a different person. Therefore, we
showed performance results of the methods for different allowed
distances to the annotated steps. Also, steps at the beginning
or end of the profile were not annotated because the start or
end point was unclear. All three methods detected such steps,
but because they were not annotated, they showed up as FP
steps in the performance assessment. Although the annotation
was suboptimal for evaluation of accurate step segmentation, the
results show the potential of each method applied along with
their drawbacks.

The main problem of CPD was the inconsistency in delayed
detection of start and end point of steps. The delay inhibits
accurate extraction of step features describing the locomotion.
For example, the maximum acceleration magnitude that might
be an important feature is often outside the detected steps. Such
results make this method inappropriate for step segmentation
with the final goal to extract features that thoroughly describe
the turkey gait. However, in general, all annotated steps were
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detected; therefore, CPD is an appropriate method if exact
position is not relevant, for instance for step counting.

As it was demonstrated, LEA does not have problems with
the delay. However, it is outperformed by GBM. One possible
reason might be that LEA is an unsupervised method and was
not trained on the annotated steps that have somewhat subjective
nature as they are only an approximation of the truth. LEA has
the advantage that it does not need pre-annotation and we believe
that with some optimization of parameters, it can be applied for
other species as well.

In contrast to the LEA and CPD, the GBM method is a
supervised learning method that requires an annotated dataset
to train the model. Annotating a dataset is very time-consuming;
however, our results showed that the GBM model can be
trained on limited annotated data (i.e., 198 steps) with good
results for our specific problem. This makes it worthwhile to
invest in annotation. We used the GBM as it is state-of-the-
art implementation of a powerful classification algorithm, but
that does not reject the possibility that some other methods
of classification may work with similar level of performance. It
would be interesting to see how the trained GMB model performs
on IMU data from other species. For optimal performance, it
might require a species-specific annotated dataset to build a
species-specific GBM model.

We should admit that methods for step detection and
segmentation of gait signals are not limited to those evaluated
here. There exists a vast number of approaches that use local
structure similarly to LEA and, if possible, cyclicity in gait
sequences (Derawi et al., 2010; Hundza et al., 2014). The
most advanced, for example, presented in Derawi et al. (2010),
apply such techniques like dynamic time warping. Another
interesting possibility might be represented by clustering. While
it does not require pre-annotations, it needs a carefully prepared
set of features.

CONCLUSION

In this paper, we compared three approaches for segmentation
of turkey gait sequences obtained with IMU sensors. CPD is
commonly used for this purpose; the LEA was newly developed
based on characteristics of the data, while the GBM is an
advanced machine learning classification algorithm. We have
found that the GBM shows the best performance even for little
allowed deviation for the annotated steps. Performance of LEA
is somewhat worse. Significant inconsistent delay for start and
end point detection makes CPD inappropriate for detailed gait
analyses. GBM can be applied for signal segmentation with the
final goal to extract information about turkey gait; however, it
requires an annotated training dataset.
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Identifies Genomic Loci Associated
With Neurotransmitter Concentration
in Cattle
Qiuming Chen1†, Kaixing Qu2†, Zhijie Ma3, Jingxi Zhan2, Fengwei Zhang1, Jiafei Shen1,
Qingqing Ning1, Peng Jia1, Jicai Zhang2, Ningbo Chen1, Hong Chen1, Bizhi Huang2* and
Chuzhao Lei1*

1 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science
and Technology, Northwest A&F University, Yangling, China, 2 Yunnan Academy of Grassland and Animal Science, Kunming,
China, 3 Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China

Abnormal neurotransmitter concentration is one of the factors that affect the health
status, behavioral personality, and welfare level of animals, but the genetic basis of the
abnormality is still largely unknown. The objective of this study is to identify putative
genomic loci associated with neurotransmitter concentration in cattle. We measured
serotonin (5HT), dopamine (DA), cortisol, glutamate (Glu), and ACTH concentrations
in blood serum using double-antibody sandwich ELISA in 30 Brahman cattle and
127 Yunling cattle. Interestingly, we found that ACTH concentration was positively
correlated with body weight, cannon circumference, and hip width (P < 0.05).
Genome-wide association study (GWAS) was performed with mixed linear models
using autosomal SNPs derived from the whole-genome sequence. We identified five,
five, two, three, and five suggestive loci associated with 5HT, DA, cortisol, Glu, and
ACTH concentration, respectively. These 20 associated loci implicated 18 candidate
genes. For Glu concentration, the most significant association locus was assigned to
MCHR1, a G-coupled receptor that could modulate glutamate release. For dopamine
concentration, a very strong association locus was located in the intron of SLC18A2,
which is a critical mediator of dopamine dynamics. However, for ACTH concentration,
a very strong association locus was assigned to HTR1F, a G protein-coupled receptor
that can influence the release of ACTH. Other candidate genes of interest identified
for neurotransmitter concentration were PRMT6, GADD45A, PCCA, ANGPT1, ACCS,
LOC100336971, TNR, GSDMA, CNTN3, CARMIL1, CDKAL1, RBFOX1, PCDH15,
and LGALS12. Our findings will provide targets for the genetic improvement of
neurotransmitter-related traits in domestic cattle and basic materials for studying the
mechanism of neurotransmitter synthesis, release, and transport in human and animals.

Keywords: neurotransmitter concentration, genome-wide association study, candidate genes, Bos taurus,
Bos indicus
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INTRODUCTION

Neurotransmitters are endogenous chemical substances that
act as chemical messengers during synaptic transmission.
Abnormal of neurotransmitter concentration predisposes to
psychiatric and neurodegenerative disease in human. For
example, after treatment with clomipramine, the whole-
blood serotonin (5HT) content decreased in patients with
obsessive-compulsive disorder (Hanna et al., 1993). In the
early stages of Parkinson’s disease, the dopamine content was
reduced in peripheral blood lymphocytes (Caronti et al., 1999).
Therefore, investigation of neurotransmitter content in blood
is helpful for understanding the mechanism of psychiatric and
neurodegenerative disease in human.

In farm animals, neurotransmitter content in blood was
often acted as an indicator correlating with physiological state,
temperamental difference, and welfare level. In adult cow,
the cortisol concentration in plasma increased after machine
milking (Negrao et al., 2004). Previous behavioral experiments
have demonstrated that excitable cattle exhibited higher cortisol
concentration in plasma than moderate cattle (Curley et al.,
2006; Cooke et al., 2019). In animal welfare, previous study
has proved that minor corral changes and the adoption of
good handling practices in Nellore cows can reduce the cortisol
release of individuals (Lima et al., 2018). Experiments on
slaughter and transportation have also demonstrated that the
elevation of ACTH concentration in plasma is a response to
physiological stress in cattle (Knights and Smith, 2007; Zulkifli
et al., 2014). Although the revelation of genetic mechanisms
underlying plasma neurotransmitter concentration will provide
a genetic method to select individuals with a stable physiological
state and moderate temperament to raise the welfare level and
improve production efficiency in cattle, there are few studies that
establish the links between neurotransmitter concentration and
genetic variants.

Currently, with the decrease of sequencing cost, tens or
hundreds of thousands of SNPs can be used to identify the
relationship between important differential traits and genetic
variants. In milk traits, a genome-wide association study (GWAS)
proved that DGAT1 and SCD1 could affect fatty acid synthesis (Li
et al., 2015). In temperament traits related to neurotransmitter
concentration, previous studies have identified numerous QTLs
explaining phenotypic difference (Valente et al., 2016; dos Santos
et al., 2017). In fact, the number of SNPs for GWAS has risen
to tens of millions. For example, based on 25.4 million imputed
whole-genome sequence (WGS) variants, a meta-analysis of
GWAS identified 163 genomic regions significantly associated
with stature (Bouwman et al., 2018). However, no attempts
have been made to identify the genomic loci associated with
neurotransmitter concentrations.

The Yunling cattle breed considered in this study is a
composite of 1/2 Brahman cattle (Bos indicus), 1/4 Murray
Grey cattle (Bos taurus), and 1/4 Yunnan indigenous cattle
(Bos taurus × Bos indicus), respectively. Therefore, it is an
excellent model for the identification of genomic loci explaining
important differential phenotypic traits in domestic cattle. Here,
we detected five neurotransmitter concentrations in blood serum

using double-antibody sandwich ELISA in 29 Brahman cattle and
128 Yunling cattle and evaluated the effect of neurotransmitter
concentrations on body measurement traits. We uncovered
the genetic architecture for neurotransmitter concentration by
performing GWAS using the whole-genome sequence. The
findings provide genomic material for genetic improvement
of neurotransmitter-related traits in domestic cattle and basic
materials for exploring the mechanism of neurotransmitter
synthesis, release, and transport in mammals.

MATERIALS AND METHODS

Animals
The dataset came from Brahman cattle and Yunling cattle. All
test individuals are multiparous cows. To ensure the consistency
of reproductive status, the subjects were not within 2 weeks
pre-calving, calving, or within 2 weeks post-calving. In terms
of feeding management, the experimental animals consist of 36
pen-feeding individuals (five Brahman cattle and 31 Yunling
cattle) and 121 free-grazing individuals (25 Brahman cattle and
96 Yunling cattle). All pen-feeding individuals are fed a total
mixed ratio (TMR) of 65% coarse and 35% concentrated fodder.
From June to November every year, the free-grazing individuals
eat grass in the meadow, and from December to May every year,
this is supplemented with proper TMR.

Phenotypic Analysis
We encouraged the test individuals into a squeeze crush to
perform body measurement and to collect blood and tissue
samples. First, we determined 15 body measurement traits
using a measuring tape and a measuring stick. These 15
body measurement traits comprised the withers height, hip
cross height, body length, chest circumference, abdominal
circumference, cannon circumference, chest width, chest depth,
hip circumference, hip width, ischium width, head length,
forehead size, rump length, and body length. Next, the
whole blood was collected from a jugular vein to detect
neurotransmitter concentration. Finally, ear tissue was collected
to extract genomic DNA using an ear punch.

Serum was harvested from centrifuged whole blood samples
(2000 g centrifugation for 20 min) and then stored at −80◦C
prior to neurotransmitter concentration determination.
Neurotransmitter concentrations were determined by the
double-antibody sandwich ELISA method according to
the manufacturer’s manuals (MMBio, Jiangsu, China) by
comparison of samples with standard curves generated with
known concentrations. The absorbance was originally obtained
from a Multiskan MS Primary EIA V. 1.5-0 reader at a wavelength
of 450 nm. In addition, we checked for the effect of breed and
feeding regime on neurotransmitter concentration using the
general linear model in R software (“lm” function).

Genome Sequencing, Alignment, and
SNP Detection
DNA extracted from ear tissues taken from Brahman cattle
and Yunling cattle was used for this analysis. The standard
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phenol-chloroform protocol was used to isolate DNA
(Green and Sambrook, 2012). Whole-genome sequencing
was performed using the Illumina NovaSeq platform. The
size of the insert fragment was 500 bp. Finally, ∼16.51
billion reads were generated. Pair-end sequence reads
were mapped to the reference Bos taurus genome (ARS-
UCD1.2) using BWA-MEM (Li and Durbin, 2009) with default
parameters. Picard was used to exclude potential duplicate reads
(“REMOVE_DUPLICATES = true”). We used the Genome
Analysis Toolkit 3.8 (GATK) (Nekrutenko and Taylor, 2012)
(“HaplotypeCaller,” “GenotypeGVCFs,” and “SelectVariants”
modules) to call candidate SNPs. To filter SNPs and avoid
possible false positives, the “VariantFiltration” module of
GATK was adopted with the following options: (1) SNPs with
QD (variant confidence/quality by depth) < 2 were filtered;
(2) SNPs with FS (Phred-scaled P-value using Fisher’s exact
test) > 60 were filtered; (3) SNPs with Mapping Quality
Rank Sum < −12.5 were filtered; (4) SNPs with Read Pos
RankSum < −8.0 were filtered; (5) SNPs with sequence depth
(for all individuals) < 1/3x or >3x were filtered. Inference of
haplotype phase and imputing of missing alleles were performed
using Beagle (Browning and Browning, 2007). In addition, we
performed principal component analysis using smartPCA in
the EIGENSOFT v5.0 package (Patterson et al., 2006) to adjust
population stratification.

Partial Correlation Analysis
To investigate the relationship between neurotransmitter
concentrations and body measurement traits, partial Pearson’s
correlation adjusting for ancestry (principal component 1),
feeding regime, and breed was computed using the ppcor
package (Kim, 2015) in R.

GWAS Analysis
After filtering the SNPs with MAF > 0.1 or missing rate > 0.1,
a total of 12983056 SNPs remained and were used to carry
out GWAS analysis for neurotransmitter concentrations. The
association analysis was carried out using the Genome-Wide
Efficient Mixed-Model Association (GEMMA) software package
(Zhou and Stephens, 2012). The mixed linear model assumed the
following model:

y = Xα+ Sβ+ Kµ+ ε

where y is a vector of phenotypes, α is a vector of fixed
effects representing marker effects, β is a vector of fixed effects
representing non-marker effects, and µ is a vector of unknown
random effect. X, S, and K represent the incidence matrices
related to α, β, and µ, respectively, and ε represents a vector of
random residual effects. The principal component 1 was defined
as the S matrix. The kinship matrix calculated from nucleotide
polymorphism was defined as the K matrix.

To estimate the correction required for multiple testing, the
SNP data was subsequently pruned for linkage disequilibrium
in PLINK (Purcell et al., 2007), using a 50 SNP sliding
window with a five SNP increment between windows, retaining
only SNPs with a pairwise r2 < 0.2. The number of LD-
pruned SNPs (747,835) was defined as the effective number
of independent SNPs. Therefore, the P-value thresholds were

set at 6.7 × 10−8 (significant, 0.05/747835) and 1.3 × 10−6

(suggestive, 1/747835).
After completing GWAS, we further narrowed down our

findings to obtain corresponding candidate genes. Firstly,
we calculated the pairwise linkage disequilibrium among
SNPs associated with neurotransmitter concentration. The
borders of associated loci were defined according to the
LD value (r2 > 0.6). False-positive signals were filtered
for by retaining the associated loci with ≥2 suggestive
SNPs. The LD plots of suggestive SNPs for associated loci
were visualized using the Haploview program (Barrett et al.,
2005). Secondly, the SNP with the smallest Pwald value
in an association locus with neurotransmitter concentrations
was defined as the leading SNP. Finally, we performed
functional annotation for suggestive SNPs associated with
neurotransmitter concentrations using ANNOVAR (Wang et al.,
2010) according to the Bos taurus reference genome (ARS-
UCD1.2).

RESULTS

Effect of Neurotransmitter Concentration
on Body Measurement Traits
We measured five neurotransmitter concentrations, including
serotonin (5HT), dopamine (DA), cortisol, glutamate (Glu),
and ACTH in blood serum of Brahman cattle and Yunling
cattle using the double-antibody sandwich ELISA method. The
descriptive statistics of the five neurotransmitter concentrations
are summarized in Table 1. The coefficients of variation of 5HT,
DA, cortisol, Glu, and ACTH concentrations were 19.81, 18.42,
17.45, 17.23, and 18.87%, respectively.

We used a general linear model to test the influence
of breed and feeding regime on the five neurotransmitter
concentrations. The result showed that there was no significant
difference between Brahman cattle and Yunling cattle or
between free grazing and pen feeding. We also calculated
the pairwise partial correlations among neurotransmitter
concentrations (Figure 1). The result showed that there was no
significant correlation among neurotransmitter concentrations.
Meanwhile, the association between neurotransmitter
concentrations and the 15 body measurement traits was
also assessed using the above approach (Figure 1). It is
remarkable that only ACTH concentration was positively
correlated with body weight (rs = 0.251, P = 3.31 × 10−3),
cannon circumference (rs = 0.163, P = 0.043), and hip width
(rs = 0.168, P = 0.038).

Whole-Genome Data Description
Genomic DNA samples from 157 individuals were sequenced
to ∼5.60 × genome coverage each. About 16.51 billion
reads were aligned to the Bos taurus reference genome
sequence ARS-UCD1.2, and the average alignment rate was
99.55% (Supplementary Table S1). After filtering raw SNPs,
a total of ∼40.98 million SNPs were retained. In principal
component analysis, principal component 1 explained 3.5% of
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TABLE 1 | Descriptive statistics of five neurotransmitter concentrations.

Trait Maximum Minimum Mean SD CV (%) Skewness Kurtosis

5HT (ng/L) 3786 1948 2844 563.53 19.81 0.067 1.63

DA (ng/L) 228.4 112.6 168.3 31.01 18.42 0.164 1.89

Glu (µmol/L) 43.95 24.08 33.76 5.89 17.45 0.070 1.70

Cortisol (µg/L) 228.2 116.7 172.0 29.63 17.23 −0.001 1.86

ACTH (µg/L) 55.90 28.49 41.60 7.85 18.87 0.200 1.87

FIGURE 1 | Heatmap depicting Pearson’s correlation coefficients between neurotransmitter concentration and body measurement traits. Dot size and color
saturation represent the strength of the correlation. Significant correlations (P ≤ 0.05) are marked in blue.

the total variation and separated Brahman cattle from Yunling
cattle (Figure 2).

Genome-Wide Association Studies for
Five Neurotransmitter Concentrations
The GWAS Manhattan plot for 5HT concentration in blood
serum is shown in Figure 3A. In total, 36 SNPs were
found to be suggestively associated with variation in 5HT
concentration (Supplementary Table S2). After detecting the
linkage disequilibrium of these SNPs, we identified five suggestive
association loci for 5HT concentration in blood serum (Table 2).
According to the annotation of ANNOVAR software, the most
significant locus was observed on BTA15 and was located in gene
desert (regions over 500 kb that are devoid of protein-coding
genes). The second-ranked locus was observed on BTA4 and was
also located in gene desert. The third-ranked locus was observed
on BTA15, and its leading SNP was located in the intron of
ACCS. The remaining association loci were observed on BTA19
and BTA22, and their candidate genes embodied SLC39A11 and
CNTN3, respectively.

In Figure 3B, the GWAS for DA concentration shows that
25 SNPs were found to be suggestively associated with the
variation of DA concentration (Supplementary Table S3). After
detecting the linkage disequilibrium of these SNPs, we identified
five suggestive association loci for DA concentration (Table 2).

Based on the annotation of ANNOVAR software, the most
significant locus was observed on BTA23 and was located in the
intron of CDKAL1. The second-ranked locus, which was located
in the intron of PCCA, was observed on BTA12. The third-
ranked locus was observed on BTA19, and its leading SNP was
located in the intron of GSDMA. The remaining association loci
were observed on BTA25 and BTA26, and their candidate genes
included RBFOX1 and SLC18A2, respectively.

Figure 3C shows the GWAS Manhattan plot for cortisol
concentration in blood serum. In total, 12 SNPs were found to be
suggestively associated with variation in cortisol concentration
(Supplementary Table S4). After detecting the linkage
disequilibrium of these SNPs, we identified two suggestive
association loci for cortisol concentration (Table 2). After
annotation using ANNOVAR, the most significant locus was
observed on BTA16, and its nearest gene was LOC100336971.
Another associated locus was observed on BTA8 and was
located in gene desert.

The GWAS Manhattan plot for Glu concentration in
blood serum is shown in Figure 3D. In total, 11 SNPs were
found to be suggestively associated with variation of Glu
concentration (Supplementary Table S5). After detecting
the linkage disequilibrium of these SNPs, we identified
three suggestive association loci with Glu concentration
(Table 2). By means of ANNOVAR annotation, we found
that the most significant locus was observed on BTA5 and
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FIGURE 2 | PC plot (PC1 against PC2) using autosomal SNP markers.

was located ∼8 Kb upstream of MCHR1. The second-
ranked locus was observed on BTA3, and its leading
SNP was located upstream of KLF17. The third-ranked
locus was observed on BTA26 and located in the intron of
PCDH15.

In Figure 3E, our result shows that 34 SNPs were found
to be suggestively associated with the variation in ACTH
concentration in blood serum (Supplementary Table S6).
After detecting the linkage disequilibrium of these SNPs, we
identified five suggestive association loci for ACTH concentration
(Table 2). The most significant locus was observed on BTA3
and was located downstream of PRMT6. The second-ranked
locus was observed on BTA23 and was located in the
intron of CARMIL1. The third-ranked locus was observed on
BTA1, and its leading SNP was located upstream of HTR1F.
The remaining associated loci were observed on BTA3 and
BTA29, and their candidate gene contained GADD45A and
LGALS12, respectively.

The LD plots of 12 loci at which the number of suggestive
SNPs associated with neurotransmitter concentration in blood
serum was above 3 are presented in Figure 4. The results

show that four loci had LD blocks (the 1:35945547-35945584
locus, 3:36525172-36526078 locus, 15:68085551-69989675
locus, and 16:28978311-28979773 locus) with a length
of less than 1 kb. There were no LD blocks at the
remaining eight loci.

DISCUSSION

Previous studies on neurotransmitter concentration in blood
have primarily focused on physiological difference under
different conditions (Knights and Smith, 2007; Zulkifli et al.,
2014; Lima et al., 2018) or analysis of its correlation with
temperament in cattle (Curley et al., 2006; Cooke et al.,
2019). In our present study, cattle with a higher ACTH
concentration in blood serum tended to have better stature
for production (i.e., higher body weight, higher cannon
circumference, higher hip width). To our knowledge, this is
the first correlative identification between ACTH concentration
and body measurement traits. Although the correlation is
only phenotypic, the positive correlation between ACTH
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FIGURE 3 | Genome-wide association study of the concentrations of 5HT (A), DA (B), cortisol (C), Glu (D), and ACTH (E) in blood serum using the mixed linear
model. Red line and blue line indicate the significant threshold and suggestive threshold, respectively.

Frontiers in Genetics | www.frontiersin.org 6 March 2020 | Volume 11 | Article 13938

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00139 March 26, 2020 Time: 17:33 # 7

Chen et al. Genomic Loci Associated With Neurotransmitter

TABLE 2 | Descriptive summary of GWAS for five neurotransmitter concentrations.

Associated locus Leading variant MAF -log10Pwald Trait Candidate gene

1:35945547–35945584 1:35945558 0.236 7.13 ACTH HTR1F

3:36525172–36526078 3:36526016 0.229 7.45 ACTH PRMT6

3:77705305–77728559 3:77728559 0.398 6.70 ACTH GADD45A

3:101918733–102495677 3:101918733 0.382 6.80 Glu SLC6A9

4:84001170–84005564 4:84005564 0.490 7.04 5HT Gene desert

5:111980228–111980732 5:111980732 0.242 9.84 Glu MCHR1

8:42958091–42963716 8:42963716 0.481 5.97 Cortisol Gene desert

12:76815037–76912606 12:76859881 0.223 7.28 DA PCCA

15:68085551–69989675 15:69208676 0.277 7.37 5HT Gene desert

15:74154782–74195072 15:74186549 0.143 6.80 5HT ACCS

16:28978311–28979773 16:28978311 0.299 7.01 Cortisol LOC100336971

19:40301775–40310333 19:40301775 0.484 6.93 DA GSDMA

19:58424044–58426162 19:58424061 0.487 6.66 5HT SLC39A11

22:27517768–27527029 22:27517768 0.347 6.69 5HT CNTN3

23:32343204–32343711 23:32343711 0.178 7.45 ACTH CARMIL1

23:37336886–37344450 23:37344450 0.255 8.19 DA CDKAL1

25:5800850–5848346 25:5800850 0.169 6.13 DA RBFOX1

26:5310758–5310786 26:5310758 0.223 5.96 Glu PCDH15

26:37563598–37563603 26:37563603 0.182 5.92 DA SLC18A2

29:41276440–41791032 29:41791032 0.172 7.11 ACTH LGALS12

concentration and body measurement traits suggests that
improvement of ACTH concentration will have a positive impact
on cattle production.

Subsequently, we implemented GWAS to identify the genomic
loci explaining the phenotypic variance in neurotransmitter
concentrations in blood serum using the whole-genome
sequence. We identified five, five, two, three, and five suggestive
loci associated with 5HT, DA, cortisol, Glu, and ACTH,
respectively, suggesting that neurotransmitter concentration in
blood serum is polygenetically controlled. To our knowledge,
this is the first identification of genomic loci associated with
neurotransmitter concentration in blood serum in cattle
using GWAS. Moreover, we found that the LD level for the
suggestive loci was very low, suggesting that the loci associated
with neurotransmitter concentration were not the target of
phenotypic selection or did not experience bottlenecks or
gene drift. Although our sample size was smaller for GWAS,
the variants with high frequency and large effect have been
identified, and further GWAS with a larger sample size will
result in the identification of additional variants with low
frequency and small effect in future. In addition, our genome
coverage was very low (∼5.60×), but a previous study has
shown that very low-depth whole-genome sequencing is
an efficient alternative to complex trait association studies
(Schwartzentruber et al., 2018).

Among 20 suggestive loci, the most significant locus was
associated with glutamate concentration in blood serum and
was located 8 kb upstream of MCHR1, a G-coupled receptor for
the neuropeptide melanin-concentrating hormone, which
modulates glutamate release from presynaptic terminal
(Gao and van den Pol, 2001). Knockout MCHR1 mice
exhibited reduced anxiety-like behavior (Roy et al., 2006).

Another strong locus associated with glutamate concentration
was assigned to SLC6A9, encoding a glycine transporter.
In previous studies, glycine has been found to act as an
inhibitory neurotransmitter in the central nervous system
(Alfadhel et al., 2016) and an obligatory co-agonist of glutamate
involved in the regulation of glutamatergic neurotransmission
(Johnson and Ascher, 1987), which suggested that SLC6A9
may participate in the glutamate transporter. For dopamine
concentration in blood serum, a strong locus was located
in the intron of SLC18A2, which is a critical mediator
of dopamine dynamics in neuronal terminal (Lohr et al.,
2015). Another strong locus associated with dopamine
concentration was located in the intron of PCCA, which
is the alpha subunit of the heterodimeric mitochondrial
enzyme Propionyl-CoA carboxylase (Stankovics and Ledley,
1993). It has been demonstrated that dopa decarboxylase is
involved in dopamine synthesis (Seifert et al., 1980), suggesting
that PCCA may participate in the dopamine synthesis. In
terms of ACTH concentration, the nearest gene of a leading
SNP was HTR1F, a G protein-coupled receptor for 5HT,
which can regulate the HPA axis by moderating the output
of corticotropin-releasing hormone in the hypothalamus
and further influence release of ACTH (Falkenberg and
Rajeevan, 2010). The identification of these candidate genes may
provide better opportunities for investigating the molecular
mechanism of neurotransmitter synthesis, release, and
transport in mammals.

In conclusion, our study revealed that ACTH concentration
in blood serum was significantly related to body measurement
traits (body weight, cannon circumference, hip cross height,
and hip width). We performed GWAS for neurotransmitter
concentration in blood serum using autosomal SNPs derived
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FIGURE 4 | LD plots of suggestive SNPs on neurotransmitter concentration at the (A) 1:35945547–35945584 locus, (B) 3:36525172–36526078 locus, (C)
3:77705305–77728559 locus, (D) 3:101918733–102495677 locus, (E) 12:76815037–76912606 locus, (F) 15:68085551–69989675 locus, (G)
15:74154782–74195072 locus, (H) 16:28978311–28979773 locus, (I) 19:40301775–40310333 locus, (J) 19:58424044–58426162 locus, (K)
23:37336886–37344450 locus, and (L) 29:41276440–41791032 locus.

from WGS and then identified five, five, two, three, and five
suggestive loci associated with 5HT, DA, cortisol, Glu, and
ACTH, respectively. These 20 loci implicated 17 candidate
genes, including MCHR1 (a G-coupled receptor involved
in glutamate release), SLC18A2 (a critical mediator of
dopamine dynamics), and HTR1F (a G protein-coupled
receptor involved in release of ACTH). The revelation of
the genetic underpinnings of neurotransmitter concentration
will provide theoretical guidance for the improvement of
neurotransmitter concentration by genetic manipulation to
reduce stress, elevate welfare level, and boost productivity in
cattle. In addition, our findings are helpful for follow-up studies
to identify causal variants of difference in neurotransmitter
concentration in blood serum and investigate the molecular

mechanism of neurotransmitter synthesis, release, and
transport in mammals.
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Various methods have been proposed for genomic prediction (GP) in livestock. These
methods have mainly focused on statistical considerations and did not include genome
annotation information. In this study, to improve the predictive performance of carcass
traits in Chinese Simmental beef cattle, we incorporated the genome annotation
information into GP. Single nucleotide polymorphisms (SNPs) were annotated to
five genomic classes: intergenic, gene, exon, protein coding sequences, and 3′/5′

untranslated region. Haploblocks were constructed for all markers and these five
genomic classes by defining a biologically functional unit, and haplotype effects were
modeled in both numerical dosage and categorical coding strategies. The first-order
epistatic effects among SNPs and haplotypes were modeled using a categorical
epistasis model. For all makers, the extension from the SNP-based model to a
haplotype-based model improved the accuracy by 5.4–9.8% for carcass weight (CW),
live weight (LW), and striploin (SI). For the five genomic classes using the haplotype-
based prediction model, the incorporation of gene class information into the model
improved the accuracies by an average of 1.4, 2.1, and 1.3% for CW, LW, and
SI, respectively, compared with their corresponding results for all markers. Including
the first-order epistatic effects into the prediction models improved the accuracies in
some traits and genomic classes. Therefore, for traits with moderate-to-high heritability,
incorporating genome annotation information of gene class into haplotype-based
prediction models could be considered as a promising tool for GP in Chinese Simmental
beef cattle, and modeling epistasis in prediction can further increase the accuracy to
some degree.

Keywords: genomic prediction, genome annotation, haplotype, Chinese Simmental beef cattle, prediction
accuracy

INTRODUCTION

Genomic prediction (GP), which uses whole-genome markers to predict genomic breeding value,
has been widely used in breeding programs of plants (Heffner et al., 2009; Riedelsheimer et al., 2012;
de los Campos et al., 2013; Hayes et al., 2013) and domestic animals (Sonesson and Meuwissen,
2009; Hayes et al., 2010; Erbe et al., 2012; de los Campos et al., 2013), disease risk prediction for
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humans (Vazquez et al., 2012; Akey et al., 2014; Abraham
et al., 2016), and phenotype prediction of model organisms
(Ober et al., 2012; Kooke et al., 2016). Accompanied by the
fast development of genotyping and sequencing technologies,
various methods with different underlying statistical assumptions
have been proposed for GP, including penalized and Bayesian
regression methods (Whittaker et al., 2000; Meuwissen et al.,
2001; Gianola et al., 2006; VanRaden, 2008; Bennewitz et al.,
2009; Habier et al., 2011; Gianola, 2013; Morota and Gianola,
2014). These methods have been applied in cattle populations
to improve the prediction accuracy of direct genomic estimated
breeding values (DGVs) to some degree (Luan et al., 2009; Hayes
et al., 2010; Bolormaa et al., 2013; Fernandes Júnior et al., 2016;
Mehrban et al., 2017; Toghiani et al., 2017). However, these
established prediction methods have mainly focused on statistical
considerations and did not consider the abundantly available
biological information. Incorporating biological knowledge, like
annotation information (Gao et al., 2017) and gene expression
(Li et al., 2019), into GP using an appropriate method may
bridge the gap between mathematical models and the underlying
biological processes; thus, this information has the potential to
improve the prediction accuracy under certain circumstances
(Edwards et al., 2016).

Given the availability of genome annotation information,
some studies have tried to integrate this information into
prediction models to improve the predictive accuracies (Morota
et al., 2014; Do et al., 2015; Abdollahi-Arpanahi et al., 2016; Gao
et al., 2017; Nani et al., 2019). Single nucleotide polymorphisms
(SNPs) were divided into different genomic classes based on
the genome annotation information, and GP was conducted
for genomic classes using two strategies. The first strategy was
to assess the prediction accuracy for each genomic class, and
then the genomic class that give the best prediction accuracy
was further used for GP (Morota et al., 2014; Do et al.,
2015; Abdollahi-Arpanahi et al., 2016). Another strategy was
to assign different prior distributions for the different genomic
classes, and then all genomic classes were used for prediction
(MacLeod et al., 2016). These approaches for incorporating
annotation information into GP slightly improved the prediction
accuracy in some cases. For instance, Erbe et al. (2012) found
that SNPs in the transcribed class produce better predictive
performance than other classes in dairy cattle, with a slight
increase in prediction accuracy of 0.03 for milk yield, fat
yield, and protein yield traits on average. However, others
discovered that the prediction accuracy of genomic classes
was trait-dependent in the commercial chicken population,
and the predictive performance of the whole-genome region
remained more accurate (Morota et al., 2014). Generally,
these studies have not achieved significant improvements over
their corresponding predictions without annotation information.
Most studies simply applied standard prediction models for
genomic classes based on individual SNPs, with the basic
underlying assumption is that at least one marker is in linkage
disequilibrium (LD) with each quantitative trait locus (QTL)
under high-density markers. The marker density of genomic
classes declined after the partitioning, which caused fewer bi-
allelic SNPs in LD with a QTL.

An alternative is treating haplotypes that are on tuples of SNPs
as predictor variables in GP to compensate for the imperfect LD
between SNPs and QTLs (Cuyabano et al., 2015; Da, 2015). The
main benefit of using haplotypes for GP is that a haplotype is
expected to have a higher LD with a QTL than an individual
marker (Calus et al., 2008), and has better ability to identify
mutations than a single SNP (Cuyabano et al., 2014). For a trait
controlled by rare QTLs, the fitting haplotype could yield a higher
accuracy, regardless of the minor allele frequency (MAF) of the
QTL (de los Campos et al., 2013). When a high-density SNPs
chip was annotated into different genomic classes, at least two
SNPs may be included in a genome feature; thus, multi-allelic
haplotype-based prediction models are expected to capture the
state of a QTL better than single-SNP-based prediction models
for genomic classes (Calus et al., 2008; Meuwissen et al., 2014).

In this study, we used annotation information of the cattle
genome to divide Illumina BovineHD BeadChip into five
genomic classes, including intergenic regions (IGR), gene, exon,
protein coding sequences (CDS), and 3′/5′ untranslated regions
(UTR) classes. Then, haploblocks were created (Meuwissen
et al., 2014) and haplotype effects were modeled using both
numerical dosage and categorical coding strategies (Martini
et al., 2017) for each genomic class. Although an additive
model may explain a major part of the genetic variance in
different datasets (Hill et al., 2008), this model does not
explicitly capture any kind of interaction that may be present
in biochemical pathways that connect gene expression with
the ultimate target phenotype. Therefore, statistical models
that incorporate interactions between loci are considered as
potentially beneficial for GP (Palucci et al., 2007; Pettersson et al.,
2011; Su et al., 2012; Mackay, 2014). Epistasis resulting from
interactions between genes at different loci was recognized as
an important component in dissecting genetic pathways and
understanding the evolution of complex genetic systems (Phillips,
2008; Jiang and Reif, 2015). Overall, the objectives of this study
were (1) to compare the predictive accuracies of haplotype-
based prediction models with SNP-based prediction models,
(2) to characterize the predictive performance when genome
annotation information was incorporated into haplotype-based
prediction model, and (3) to investigate the contribution of
epistasis for the accuracy of GP for carcass traits in Chinese
Simmental beef cattle.

MATERIALS AND METHODS

Data
Our dataset includes 1346 Simmental cattle born between 2008
and 2015 from Ulgai, Xilingol League, and Inner Mongolia,
China. After weaning, cattle were moved to Jinweifuren Co.,
Ltd. (Beijing, China) for fattening under the same feeding and
management conditions. A more detailed description of the
management processes was reported in previous studies (Zhu
et al., 2016, 2017). All individuals were slaughtered at an average
age of 20 months, and carcass and meat quality traits were
measured in accordance with the guidelines proposed by the
Institutional of Meat Purchase Specifications. All animals used in
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the study were treated following the guidelines established by the
Council of China Animal Welfare. Protocols of the experiments
were approved by the Science Research Department of the
Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences (CAAS) (Beijing, China). The approval ID/permit
numbers are SYXK (Beijing) 2008-007 and SYXK (Beijing) 2008-
008. In our study, carcass weight (CW), live weight (LW), and
striploin (SI) were analyzed, and their statistical description was
summarized in Table 1.

Genotyping and Quality Control
The DNA for each animal was obtained from blood using
routine procedures. Samples were genotyped with Illumina
BovineHD BeadChip. This array contains 777,962 SNPs with
an average probe spacing of 3.43 kb and a median spacing
of 2.68 kb. Before statistical analysis, the original SNP dataset
was filtered using PLINK (v1.90) (Purcell et al., 2007; Chang
et al., 2015). Individuals and autosomal SNPs that failed in
any of the following criteria were removed, SNPs call rate
(>0.90) (MAF > 0.01), Hardy–Weinberg Equilibrium (p > 10−6)
and individual call rate (>0.90). Missing genotypes were
imputed using BEAGLE (v4.1) (Browning and Browning, 2016).
Consequently, 1331 individuals and 671,204 SNPs remained.
SNPs were coded as the number of copies of the minor allele,
i.e., 0, 1, and 2 for the first homozygote, the heterozygote,
and the second homozygote, respectively. About population
structure, like principal component analysis (PCA) and linkage
disequilibrium (LD) were performed in previous studies, which
have shown that this population could be separated into five
clusters, and the LD (r2) dropped below 0.2 at distances of 34 kb,
indicating that the implementation of GS in this population
requires at least 77,941 markers (Niu et al., 2016; Xia et al., 2016).

Heritability Estimation
Phenotypes were adjusted for the environmental fixed effects,
including sex, year, and the covariates of body weight upon
entering the fattening farm, and the number of fattening
days. Subsequently, the adjusted phenotypes were used for
further analysis. Variance components were estimated using
the following univariate animal model in ASREML (v4.1)
(Gilmour et al., 2015):

y = 1nµ+ Za+ e (1)

where y is the vector of the adjusted phenotypes, 1nis an n×
1 vector with entries equal to 1; µ is the overall mean; a ∼
N(0, σ2

aG) is a vector of random additive genetic effect, where G
is the additive genetic relationship matrix constructed using all
SNPs and σ2

a is the additive genetic variance, Z is incidence matrix
associating a; and e ∼ N(0, σ2

eI) is a vector of random residuals,
where I is the identity matrix and σ2

e is the residual variance. The
heritability of each trait was estimated using h2

= σ2
a/(σ

2
a + σ 2

e).

SNP Annotation
The latest bovine genome annotation (Bos_taurus.ARS-UCD1.2)
was downloaded from Ensemble1. According to genome

1http://asia.ensembl.org/index.html

annotation information, the bovine genome was partitioned into
five genomic classes: (1) intergenic regions (IGR), (2) gene,
(3) exon, (4) protein coding sequences (CDS), and (5) 3′/5′
untranslated regions (UTR) classes. Gene class contained the
exon class, and exon class represented a combination of CDS
and UTR classes. Thus, overlapping existed among different
genomic classes. Then, the SNPs of BovineHD Beadchip were
annotated into the corresponding genomic class based on their
physical position.

Haplotype Derivation and Encoding
For the gene, exon, CDS, and UTR classes, a genome feature
refers to a single gene, exon, CDS, and UTR, respectively; for
the IGR class, a genome feature refers to an interval between
two adjacent genes. A group of SNPs that were annotated in a
certain genome feature of the five genomic classes was called an
SNP set. The phased consecutive SNPs were used for haploblock
construction via the approach described by Meuwissen et al.
(2014) for each SNP set. The number of SNPs contained in
each haploblock depends on the predefined number of types
for haplotype allele configurations; here, we used 10 as the
maximum number of types (Meuwissen et al., 2014). For SNP sets
containing only one SNP, the 0-, 1-, or 2-encoded genotypes were
retained for further analysis. Subsequently, haploblocks with at
least two haplotype alleles were generated for each SNP set of
different genomic classes.

Haplotype effects were then modeled using both numerical
dosage (Calus et al., 2008; Cuyabano et al., 2014; Meuwissen et al.,
2014) and categorical (Martini et al., 2017) coding strategies. In
the numerical dosage model, pseudo-markers were generated for
haploblocks by counting the number of copies of the respective
allele carried by a certain individual, where the intra-locus
additive effects were assumed. The additivity assumption was
not necessary in the categorical coding, where the pseudo-
markers of haploblocks were coded according to the haplotype
allele configurations (genotypes), and each haplotype allele had
its own independent effect. Table 2 shows the coding of a
haplotype formed by two consecutive SNPs. Thus, for the five
genomic classes, the pseudo-marker matrixes with entries 0,
1, and 2 were reconstructed in both numerical dosage and
categorical models (CMs). For all markers, haploblocks were
constructed for each chromosome separately using the same
approach described above, and the process started from the first
marker and followed by their physical order, whereas the genome
annotation information was not used to define a biologically
functional unit.

Prediction Models
The prediction model used in this study was basically the same as
in Eq. (1), except for the different genomic relatedness matrices
G, which were constructed based on respective prediction
approaches (Table 3). In our study, the predictive accuracies of
using all markers were considered as a benchmark.

In numerical dosage models, GBLUP (VanRaden, 2008) was
performed for all markers, and the genomic relatedness matrix

was calculated as G = (M−P)(M−P)
′

2
∑m

i−1 pi(1−pi)
, where M denotes the (0,

Frontiers in Genetics | www.frontiersin.org 3 May 2020 | Volume 11 | Article 48145

http://asia.ensembl.org/index.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00481 May 14, 2020 Time: 19:58 # 4

Xu et al. Incorporating Genome Annotation Into GP

TABLE 1 | Statistical description and heritability estimation of three traits in Chinese Simmental beef cattle.

Traits1 The number of phenotype Mean (SD) Maximum Minimum h2(SE)

CW 1346 270.67 ± 45.20 486.00 162.60 0.42 ± 0.05

LW 1342 504.95 ± 70.22 776.00 318.00 0.38 ± 0.07

SI 1342 8.55 ± 1.99 15.90 3.21 0.40 ± 0.05

1Carcass weight (CW), live weight (LW), and striploin (SI).

TABLE 2 | Numerical and categorical coding of a haploblock formed by two consecutive single nucleotide polymorphisms (SNPs).

Haplotype allele 1 Haplotype allele 2 Categorical coding of haploblock1 Numerical coding of haploblock

AB Ab aB ab

AB AB AB|AB 2 0 0 0

AB Ab AB|Ab 1 1 0 0

AB aB AB|aB 1 0 1 0

AB ab AB|ab 1 0 0 1

Ab Ab Ab|Ab 0 2 0 0

Ab aB Ab|aB 0 1 1 0

Ab ab Ab|ab 0 1 0 1

aB aB aB|aB 0 0 2 0

aB ab aB|ab 0 0 1 1

ab ab ab|ab 0 0 0 2

1separates the strands of DNA. Considering this haploblock (let {A, a} and {B, b} denote alleles harbored by the two SNPs, respectively), four possible types of gametes—
AB, Ab, aB, and ab—could be generated and 10 types of genotypes are possibly formed in a large population (imprinting is not considered).

TABLE 3 | Genomic relatedness matrices for different genomic prediction models for all markers or haplotypes.

Models Description Relatedness matrices Use1

GBLUP Genomic best linear unbiased prediction G =
(M− P)(M− P)

′

2
∑m

i−1 pi(1− pi)
All markers

GHBLUP Haplotype based GBLUP GH =
MHM

′

H

QH
All markers

GHBLUP|GA Haplotype based GBLUP given genome annotation GHGA =
MHGA

M
′

HGA
QHGA

Genomic classes

CM Categorical marker effect model S = (

∑Q
q−1 ϕjik

m
)ij All markers

CE Categorical epistasis model E = 0.5×mS#(mS+ 1n×n)/m2 All markers

CHM Haplotype based CM SH = (

∑Q
q−1 ϕjiq

QH
)ij All markers

CHE Haplotype based CE EH =
0.5×QHSH#(QHSH + 1n×n)

Q2
H

All markers

CHM|GA CHM given genome annotation S̃ = (

∑Q
q−1 ϕjiq

QHGA

)ij Genomic classes

CHE|GA CHE given genome annotation Ẽ = 0.5×QS̃#(QS̃+ 1n×n)/Q2
HGA

Genomic classes

1Refers to the whole genome-wide SNP; genomic classes refer to IGR, gene, exon, CDS, and UTR class.

1, and 2) encoded genotype matrix, pi is the MAF of marker i,
m is the number of markers, and P is a matrix with columns
equal to 2pi. The haplotype-based genomic best linear unbiased
prediction (GHBLUP) was performed for all markers. The
haplotype-based genomic relatedness matrix in GHBLUP was
constructed as the dot product of the haplotype allele matrix

(MH) and expressed as GH =
MHM

′

H
QH

, where MH is the pseudo-
markers matrix with entries 0, 1, and 2 representing the number
of copies of each haplotype allele in a haploblock, and QH is the
total number of haploblocks of whole genome.

For the five genomic classes, haplotype-based genomic
best linear unbiased prediction given genome annotation
(GHBLUP|GA) was implemented. Similarly, the haplotype-based
genomic relatedness matrix in GHBLUP|GA was constructed

as GHGA =
MHGA M

′

HGA
QHGA

, where MHGA is the haplotype allele
matrix with pseudo-markers encoded with (0, 1, and 2), and
QHGA is the total number of haploblocks in the corresponding
genomic class.

In CMs, the SNP-based CM (Martini et al., 2017) was applied
for all markers, and the genomic relatedness matrix in CM is
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expressed as S with entries Sij =

∑Q
q−1 ϕjik

m , in which ϕjik was
scored 1 if individual j and i shared the same genotype on marker
k; otherwise, ϕjikwas scored 0, and m was the number of markers.
The haplotype-based CM (CHM) was applied for all markers as
well, in which the number of haploblocks that were in the same
state between pairs of individuals were counted. The genomic
relatedness matrix in CHM is expressed as SHwith entries SHji =

(

∑Q
q−1 ϕjiq
QH

), where ϕjiq was scored 1 if individual i and j share the
same haplotype allele configuration on haploblock q; otherwise,
ϕjiq was scored 0; QH was the total number of haploblocks,
which is the same with that in GH. Therefore, the entries of SH
represented the proportion of haploblocks with an identical state
between pairs of individuals. For the five genomic classes, the
haplotype-based CM assigned the genome annotation CHM|GA
was applied. Similarly, the genomic relatedness matrix was built
by counting the number of haploblocks that were in an identical
state between pairs of individuals (Gao et al., 2017) and expressed

as S̃ with entries S̃ji = (

∑Q
q−1 ϕjiq

QHGA
), whereϕjiq is the same as in

CHM, but QHGA is the total number of haploblocks in certain
genomic class, which is the same with that in GHGA .

To capture the first-order epistasis among SNPs, the CM
model can be extended to categorical epistasis (CE) model
(Martini et al., 2017). In the CE model, the genotype
combinations of each pair of loci were treated as categorical
variables, and the relatedness of two individuals was measured
by counting the number of pairs of markers in the same
state. The genomic relatedness matrix in the CE model was be
deduced from S via the formulaE = 0.5×mS#(mS+ 1n×n)/m2,
where # denotes the Hadamard product. The first-order epistasis
between pairs of haploblocks was modeled by extending CHM
to the haplotype-based categorical epistasis model (CHE) (Gao
et al., 2017), where the genotype combinations of each pair
of haploblocks were treated as a new categorical variable, and
the genomic relatedness matrix was calculated as EH = 0.5×
QHSH#(QHSH + 1n×n)/Q2

H. The corresponding epistatic model
that included the first-order epistasis among haploblocks was
developed for the five genomic classes and was denoted as
CHE|GA (Gao et al., 2017), where the genomic relatedness matrix
was constructed as Ẽ = 0.5× QS̃#(QS̃+ 1n×n)/Q2

HGA
.

Assessment of Prediction Accuracy
The accuracy of GP was assessed using fivefold cross-validation
(CV), which assigns animals randomly into five separate
subsets with near-equal size. Each subset was used as the
validation set only once, with phenotype masked, and the
remaining four subsets were treated as a training set. In order
to reduce random sampling effects, the CV layout described
above was replicated twenty times, where a new randomization
was implemented for each replicate so that the each of the
subset contains different individuals. DGVs were calculated
for each validation subset based on the genomic relatedness
matrix. For each replicate, the prediction accuracies were
assessed by the correlation between the DGVs and the pre-
adjusted phenotypes in the validation set divided by square
root of heritability. In addition, in order to assess the extent

of bias on GP, linear regression coefficients [b (y, DGV)] of
the pre-adjusted phenotypes (y) on the DGVs was calculated
for individuals in the validation set. Unbiased models are
expected to do not significantly different from 1, whereas
values greater than 1 indicate a biased deflation prediction of
DGVs and values smaller than 1 indicate a biased inflation
prediction of DGVs.

RESULTS

SNP Annotation and Heritability
Estimation
We annotated 671,204 filtered SNPs into five genomic classes
based on their physical positions. The annotation results and
descriptive statistics of each genomic class are displayed in
Table 4. Overall, 67.03 and 32.97% of the total SNPs were
annotated into the IGR and gene classes, respectively. Only 1.46,
1.05, and 0.39% of the total SNPs were annotated into the exon,
CDS, and UTR class, respectively. The average MAF among
these five genomic classes was in the range of 0.25 to 0.26. The
number of haploblocks of gene, exon, CDS, and UTR classes were
87,407, 45,748, 9287, 6799, and 2409, respectively. We counted
the number of genome features that were annotated by SNPs for
each genomic class (Table 4). For instance, 16,286 genes were
annotated by SNPs in the gene class, representing 66.30% of the
total genes in the bovine genome. Based on the GREML method,
the heritability estimates of CW, LW, and SI, were 0.42, 0.38, and
0.40 respectively.

Prediction Accuracy of Haplotype-Based
Prediction Model
We first compared the prediction accuracies of all markers
between haplotype-based prediction models (GHBLUPand CHM)
and the SNP-based prediction models (GBLUP and CM). The
results showed that the predictive performances of GHBLUP
andCHM were more accurate than GBLUP and CM in CW,
LW, and SI (Figure 1). In the numerical dosage models, the
accuracy of GHBLUP was 5.4, 9.8, and 7.1% higher than GBLUP
in CW, LW, and SI, respectively (Table 5). In the CMs, CHM
improved the accuracies by 7.8, 9.5, and 9.4% in CW, LW,
and SI, respectively, compared with the CM results. Generally,
the numerical dosage models performed better than CMs for
most traits. For all markers, GBLUP slightly outperformed CM
with 3.0, 0.7, and 1.2% higher accuracy in CW, LW, and SI,
respectively (Table 5). The predictive performance of GHBLUP
was 1% more accurate than CH M only in LW.

Prediction Accuracy of Haplotype-Based
Prediction Model Given Genome
Annotation
Under the haplotyped-based model, we further compared the
prediction accuracies for the genomic classes with all markers to
characterize the benefits of usage genome annotation information
in GP. We found that the accuracy of using gene annotation
to define haploblocks was consistently higher than that of
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TABLE 4 | Mapping results and statistical descriptions of each genomic classes.

Genomic class # of SNPs1 MAF Mean MAF (SD) # of haploblocks # of represented genome feature2

IGR class 449,918 (67.03%) 0.009–0.5 0.26 (0.15) 87,407

Gene class 221,286 (32.97%) 0.009–0.5 0.26 (0.15) 45,748 16,286 (66.30%)

Exon class 9814 (1.46%) 0.010–0.5 0.25 (0.15) 9287 9287 (4.08%)

CDS class 7024 (1.05%) 0.010–0.5 0.25 (0.14) 6799 6799 (3.17%)

UTR class 2614 (0.39%) 0.010–0.5 0.25 (0.15) 2409 2409 (7.26%)

All markers 671,204 0.009–0.5 0.26 (0.15) 115,005

1The number of SNPs annotated in five genomic classes, and their percentage of the whole genome-wide markers is indicated in parentheses. 2The number of genomic
features represented by SNPs in the corresponding genomic class, and their percentage of the total genome features of the reference genome in parentheses. The bovine
reference genome contains 24,559 genes, 227,610 exons, 214,584 CDS, and 33,137 UTR. # means “the number.”

FIGURE 1 | The prediction accuracies of different genomic classes in three traits of Chinese Simmental beef cattle.

all markers across all traits (Figure 1). In GHBLUP|GA, the
prediction accuracy of gene class was 0.403, 0.502, and 0.506 for
CW, LW, and SI, which were 1.3, 2.0, and 2.1% higher than using
GHBLUP, respectively. In the CM, CHM|GA outperformed CHM
in gene class, with accuracy improvements of 1.6, 2.2, and 0.5%
in CW, LW, and SI, respectively. For IGR, exon, CDS, and UTR
genomic classes, the accuracies using the two haplotype-based
prediction models were not improved. In GHBLUP|GA, gene
class had 0.6–7.9, 7.6–28.5, 11.2–32.6, and 14.9–30.9% higher
accuracies than IGR, exon, CDS, and UTR classes for the three
traits, respectively. Analogously, in CHM|GA, the accuracies of
the three traits using gene class were 0.1–6.9, 11.3–25.7, 15.1–
28.8, and 19.1–31.6% higher than that of IGR, exon, CDS, and
UTR classes, respectively (Table 5). Comparing the prediction
accuracy of numerical dosage with the CM, we found that
GHBLUP|GA maintained more accurate predictive performance
than CHM|GA in most genomic classes (Table 5).

Prediction Accuracy of Epistasis Model
Considering the prediction model including epistatic effects may
increase the accuracy and reduce the bias of DGVs. The results
showed that incorporation of first-order epistatic effects into

prediction model can slightly improve the prediction accuracies
for most traits and genomic classes (Figure 1). When including
the epistatic effects amongst SNPs into the CE model for all
markers, prediction accuracy increased by 1.1 and 0.4% in CW
and LW, respectively (Table 5). Similarly, the extension of CHM
to CHE for all markers improved the prediction accuracies
by 1.4 and 0.7% in CW and LW, respectively. For the five
genomic classes, compared with CHM|GA, CHE|GA also had
higher prediction accuracies in the IGR class of LW (0.3%), gene
class of LW (1.4%), exon class of CW (0.2%) and SI (0.6%),
CDS class of CW (0.3%) and SI (0.8%), and UTR class of CW
(0.4%) and SI (0.5%).

Regression Coefficient
Table 6 displayed the slope of the regression of the adjusted
phenotype on DGVs. For numerical dosage models, the
regression coefficients of all marker, IGR, and gene classes
were not significantly different from 1 in all traits, indicating
the predictions were not significantly biased. For CMs, the
regression coefficients of gene, exon, CDS, and UTR classes were
significantly different from 1 in CW and LW. However, the
regression coefficients for the predictions using the CMs that
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TABLE 5 | The prediction accuracies (SD) of different genomic classes in three traits of Chinese Simmental beef cattle.

Trait1 Numerical dosage model Categorical model Categorical epistasis model

CW All maker GBLUP 0.336 (0.05) CM 0.316 (0.06) CE 0.327 (0.06)

All maker GHBLUP 0.390 (0.06) CHM 0.394 (0.06) CHE 0.408 (0.06)

IGR class GHBLUP|GA 0.397 (0.06) CHM|GA 0.387 (0.06 CHE|GA 0.381 (0.06)

Gene class GHBLUP|GA 0.403 (0.05) CHM|GA 0.410 (0.06) CHE|GA 0.403 (0.06)

Exon class GHBLUP|GA 0.246 (0.06) CHM|GA 0.215 (0.05) CHE|GA 0.217 (0.05)

CDS class GHBLUP|GA 0.225 (0.06) CHM|GA 0.197 (0.05) CHE|GA 0.200 (0.05)

UTR class GHBLUP|GA 0.232 (0.06) CHM|GA 0.188 (0.05) CHE|GA 0.192 (0.05)

LW All maker GBLUP 0.384 (0.05) CM 0.377 (0.06) CE 0.381 (0.06)

All maker GHBLUP 0.482 (0.06) CHM 0.472 (0.06) CHE 0.479 (0.05)

IGR class GHBLUP|GA 0.423 (0.06) CHM|GA 0.425 (0.06) CHE|GA 0.428 (0.06)

Gene class GHBLUP|GA 0.502 (0.07) CHM|GA 0.494 (0.07) CHE|GA 0.508 (0.07)

Exon class GHBLUP|GA 0.217 (0.06) CHM|GA 0.237 (0.06) CHE|GA 0.237 (0.06)

CDS class GHBLUP|GA 0.176 (0.06) CHM|GA 0.206 (0.06) CHE|GA 0.203 (0.06)

UTR class GHBLUP|GA 0.193 (0.06) CHM|GA 0.178 (0.05) CHE|GA 0.179 (0.05)

SI All maker GBLUP 0.414 (0.07) CM 0.402 (0.07)) CE 0.402 (0.07)

All maker GHBLUP 0.485 (0.06) CHM 0.496 (0.06) CHE 0.479 (0.06)

IGR class GHBLUP|GA 0.487 (0.06) CHM|GA 0.500 (0.06) CHE|GA 0.485 (0.06)

Gene class GHBLUP|GA 0.506 (0.06) CHM|GA 0.501 (0.06) CHE|GA 0.500 (0.06)

Exon class GHBLUP|GA 0.430 (0.06) CHM|GA 0.388 (0.06) CHE|GA 0.394 (0.06)

CDS class GHBLUP|GA 0.394 (0.06) CHM|GA 0.350 (0.05) CHE|GA 0.358 (0.05)

UTR class GHBLUP|GA 0.357 (0.06) CHM|GA 0.310 (0.06) CHE|GA 0.315 (0.06)

1Carcass weight (CW), live weight (LW), and striploin (SI); prediction accuracies are averaged over the fivefold cross-validation (CV) and then over the 20 replicates.

TABLE 6 | Regression coefficients (SD) of pre-adjusted phenotypes on DGVs for three traits of Chinese Simmental beef cattle.

Trait1 Numerical dosage model Categorical model Categorical epistasis model

CW All maker GBLUP 1.102 (0.08) CM 1.097 (0.05) CE 1.087 (0.05)

All maker GHBLUP 1.062 (0.06) CHM 1.079 (0.06) CHE 1.388 (0.08)

IGR class GHBLUP|GA 1.064 (0.06) CHM|GA 1.080 (0.07) CHE|GA 1.318 (0.07)

Gene class GHBLUP|GA 1.071 (0.06) CHM|GA 1.090 (0.06) CHE|GA 1.300 (0.07)

Exon class GHBLUP|GA 1.131 (0.16) CHM|GA 1.143 (0.18) CHE|GA 1.135 (0.18)

CDS class GHBLUP|GA 1.173 (0.18) CHM|GA 1.169 (0.23) CHE|GA 1.156 (0.21)

UTR class GHBLUP|GA 1.165 (0.16) CHM|GA 1.232 (0.16) CHE|GA 1.218 (0.16)

LW All maker GBLUP 0.984 (0.10) CM 1.062 (0.09) CE 1.094 (0.09)

All maker GHBLUP 1.009 (0.07) CHM 1.023 (0.08) CHE 1.546 (0.10)

IGR class GHBLUP|GA 1.051 (0.07) CHM|GA 1.073 (0.08) CHE|GA 1.311 (0.08)

Gene class GHBLUP|GA 1.051 (0.04) CHM|GA 1.088 (0.04) CHE|GA 1.629 (0.04)

Exon class GHBLUP|GA 1.187 (0.30) CHM|GA 1.159 (0.22) CHE|GA 1.165 (0.22)

CDS class GHBLUP|GA 1.386 (0.31) CHM|GA 1.285 (0.25) CHE|GA 1.294 (0.25)

UTR class GHBLUP|GA 1.197 (0.29) CHM|GA 1.282 (0.33) CHE|GA CHE|GA 1.278 (0.32)

SI All maker GBLUP 1.079 (0.03) CM 1.076 (0.05) CE 1.083 (0.05)

All maker GHBLUP 1.038 (0.05) CHM 1.046 (0.04) CHE 1.414 (0.07)

IGR class GHBLUP|GA 1.038 (0.05) CHM|GA 1.049 (0.04) CHE|GA 1.338 (0.07)

Gene class GHBLUP|GA 1.050 (0.05) CHM|GA 1.050 (0.05) CHE|GA 1.643 (0.06)

Exon class GHBLUP|GA 1.055 (0.03) CHM|GA 1.048 (0.05) CHE|GA 1.052 (0.05)

CDS class GHBLUP|GA 1.058 (0.05) CHM|GA 1.046 (0.07) CHE|GA 1.049 (0.08)

UTR class GHBLUP|GA 1.064 (0.07) CHM|GA 1.081 (0.10) CHE|GA 1.080 (0.10)

1Carcass weight (CW), live weight (LW), and striploin (SI); for each trait (row), the values in bold face indicate the coefficient are significantly different from 1 (p < 0.05);
regression coefficients are averaged over the fivefold cross-validation (CV) and then over the 20 replicates.
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included the first-order epistasis were significantly different from
1 in all markers and genomic classes, suggesting that these models
increased the biasedness of GPs. Generally, among five genomic
classes, the regression coefficients of IGR and gene classes were
similar to those of all markers, and they contribute to less bias
prediction than exon, CDS, and UTR classes. When compared
haplotype-based prediction models without including epistasis to
the corresponding SNP-based prediction models, we found that
the formers’ regression coefficients were closer to one, with less
biasedness prediction.

DISCUSSION

Advances in high-throughput genotyping technology and the
availability of genome annotation information have contributed
to the improvement of the predictive performance of complex
quantitative traits in livestock species (Morota et al., 2014;
Do et al., 2015; Edwards et al., 2016; Nani et al., 2019). To
bridge the gap between mathematical models and underlying
biological processes, we combined bovine genome annotation
information with haplotype-based prediction models to improve
the predictive accuracies in Chinese Simmental beef cattle. In this
study, whole genome-wide SNPs of BovineHD Beadchip were
annotated to five genomic classes. The predictive performance
of five genomic classes and all markers was assessed using
both numerical and CMs, and the contribution of first-order
epistatic effects among SNPs and haploblocks were modeled
using categorical coding strategy.

Predictive Performance of
Haplotype-Based Prediction Model
Haplotypes have been used widely in human genetics research
(Curtis et al., 2001; Chapman et al., 2003; Curtis, 2007); in
animal breeding studies, haplotypes have been used for the
GP of breeding values with the use of high density SNP
chips (Calus et al., 2008; Boichard et al., 2012; Cuyabano
et al., 2014; Mucha et al., 2019). In this study, haplotype-based
prediction models (GHBLUP and CHM) were applied to the
whole genome-wide markers, and the result of this scenario
was treated as a benchmark. We found that the predictive
performance of haplotype-based prediction models was superior
to corresponding SNP-based prediction models in the three traits
(Figure 1), with higher accuracy and less bias. This was consistent
with previously reported results in simulated datasets (Calus
et al., 2008; Villumsen et al., 2009), dairy cattle (Cuyabano et al.,
2014; Hess et al., 2017; Karimi et al., 2018) and beef cattle
(Hayes et al., 2007). This may be attributable to haplotypes better
capturing LDs with causative mutation or QTLs than single SNPs.

In livestock, SNPs are commonly bi-allelic. When mutations
occur, the allele frequencies may remain (almost) unaltered.
However, mutations in different loci tend to cause major changes
in the haplotype frequencies (Curtis et al., 2001). Thus, when
haplotypes were analyzed, a QTL that was not in complete LD
with any individual bi-allelic SNP marker may be in complete LD
with a multi-marker haplotype. To use a haplotype as an indicator
variable in GP, previous studies defined haploblocks by setting

windows with a fixed number of SNPs to be placed together
as a haploblock (Boichard et al., 2012; Schrooten et al., 2013;
Hess et al., 2017), or by considering only the first locus out of
10 consecutive loci in genomic evaluation (Schrooten et al., 2013;
Meuwissen et al., 2014). Although their prediction accuracies
were improved in GP, the number of SNPs used to outline
haploblocks was arbitrarily defined.

To efficiently use the genome properties to define haploblocks
and reduce the number of variables for the GP models, several
researchers used only haplotypes with a high frequency in the
population (Mucha et al., 2019) or based on LD threshold
to define haploblocks (Cuyabano et al., 2015). For instance,
Cuyabano et al. (2014) used an average LD threshold (≥0.45)
to construct haploblocks and found that prediction accuracies
increased for the three traits compared with the commonly-used
individual SNP. Similarly, we used the cattle genome annotation
information to define a biologically functional unit and
constructed a haploblock for each unit. This strategy may reflect
underlying biological processes and avoid haploblocks being
arbitrarily defined. Our study contributes to the improvement
of prediction accuracy using a haplotype-based model, since
the functional unit contains the combined effects of tightly
linked cis-acting causal variants (Garnier et al., 2013; Da, 2015),
and the number of haplotypes having effects was significantly
larger than that for SNP models (Calus et al., 2008). Jiang
et al. (2018) indicated that the increase in accuracy bringing
by haplotype-based prediction models may be explained by this
model capitalizing on local epistatic effects among markers.

Predictive Performance Among Five
Genomic Classes
In our study, we applied | GA approaches based on the concept of
defining biologically functional units as predictor variables. The
results showed that the accuracies and biasedness of prediction
for gene and IGR classes were consistently better than those
for the exon, CDS, and UTR classes, regardless of which |
GA prediction models were used. Firstly, this finding may be
attributed to the number of SNPs annotated in its corresponding
genomic class, which decreased from the IGR to UTR classes. As
previously suggested, the number of markers plays an important
role in affecting the GP performance (Zhong et al., 2009;
Daetwyler et al., 2010). With decreasing number of markers, the
physical distance increased between the markers and QTLs and
reduced the LD between markers and QTLs, which would lead to
poor predictive power (Yang et al., 2010; Zhang et al., 2011; de
los Campos et al., 2013). Yang et al. (2010) found that when the
causative mutation loci had a lower MAF, a decrease in marker
density would result in an incomplete linkage between the SNP
and causative mutation loci; thus, these markers only explained a
limited genetic variance.

In our study, 67.03 and 32.97% of the total SNPs were located
within the IGR class and gene class, respectively, whereas only
0.39% of total SNPs was annotated in the UTR class, which had
the lowest predictive accuracy. Secondly, the average number
of SNPs in a haploblock may affect the prediction accuracy
of genomic classes as well. It is clear that if each haploblock
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consisted of only one marker, the haplotype-based prediction
models were exactly identical to the corresponding SNP-based
prediction models (Gao et al., 2017). In the IGR and gene classes,
87,407 and 45,748 haploblocks were constructed (Table 4),
respectively, and 96.82 and 94.21% of the total haploblocks
consisted of more than one SNP, which resulted in 5.15 and
4.84 SNPs per haploblock on average, respectively. However,
only 9287, 6799, and 2409 haploblocks were constructed in the
exon, CDS, and UTR classes. The average number of SNPs
per haploblock was 1.06, 1.03, and 1.08, respectively, which
indicated haplotype-based prediction models for these genomic
classes were similar to SNP-based prediction models. Finally,
the number of biological functional units that was used to
construct the statistical framework in the | GA approaches
could also be a key factor in affecting the predictive accuracies,
since the biological functional units may reflect the underlying
biological process.

According to the bovine genome annotation information,
the bovine reference genome contained 24,559 genes, 227,610
exons, 214,584 CDS, and 33,137 UTR. In this study, gene class
represented 66.3% (16,286 out of 24,559 genes) of the total
genes of the reference genome, whereas 4.08% (9287 out of
227,610 exons), 3.17% (6799 out of 214,584 CDS), and 7.26%
(2409 out of 33,137 UTR) of the total exons, CDS, and UTR
of reference genome were respectively represented by exon,
CDS, and UTR classes. Consequently, the high proportion of
biological-functional-unit-like genes may contribute to stronger
predictive power. Taken together, these factors may explain
the outstanding predictive performance displayed in gene class
compared with the other classes.

Benefits of Using Genome Annotation
Information in GP
When the genome annotation information was incorporated
into the haplotype-based prediction models, we also observed a
slight or moderate improvement in prediction accuracies for the
three traits. This can be explained by the traits having different
genetic architectures (Daetwyler et al., 2010). The number of
QTLs and the distribution of their effects may influence the
prediction accuracies of genomic classes. For three traits, the
gene class improved the prediction accuracy in comparison with
the result of all markers using the haplotype-based prediction
model, which was consistent with reported results in mouse and
drosophila populations (Gao et al., 2017). This may reflect that
genetic signals of the gene class are well tagged in these traits,
despite more haploblocks being constructed in the scenario of
all markers. The method of defining a biological unit through
haplotypes might have increased the linkage of markers and
QTLs, which not only allowed the effects of QTL to be better
captured but also reduced the density of unrelated markers.
Studies have reported that gene class has the most potential to
be enriched for trait-associated variants and was more likely
to explain a large proportion of the total additive variance
(Kamanu et al., 2012; Kindt et al., 2013; Koufariotis et al., 2014).
However, Morota et al. (2014) and Abdollahi-Arpanahi et al.
(2016) found that the gene class did not lead to an improvement

in predictive ability, and the whole genome-wide SNP-based
prediction model remained the most efficient method for GP in
chicken. These studies only annotated SNPs to the corresponding
genomic class and applied the routine GP process for genomic
classes. In this case, the genome annotation information cannot
be comprehensively used in the SNP-based model because
the biologically functional units were not defined as predictor
variables in the model.

The usage of genome annotation information of the IGR
class also led to a slight improvement in prediction accuracy in
CW and SI. Studies have suggested that the IGR class, such as
non-coding conserved regions, miRNA, and regulatory regions,
might harbor important genetic variants associated with complex
traits in crops (Hindorff et al., 2009; Schaub et al., 2012) and
humans (Gusev et al., 2014; Finucane et al., 2015). For instance,
a study suggested that more than 75% of identified SNPs are
embedded in regulatory genome segments in common human
diseases (Maurano et al., 2012). Therefore, the IGR class may
contribute to a large phenotypic variation. Overall, combining
the genome annotation information of the gene class with the
haplotype-based prediction models can improve the prediction
accuracies, and this can be considered as a promising tool of
GP for economically important traits in Chinese Simmental
beef cattle.

Effects of Numerical and Categorical
Model on Prediction Accuracy
When comparing the predictive performance of the numerical
model with the CM, we found that GBLUP slightly outperformed
the SNP-based CM in three traits. Martini et al. (2017) compared
the predictive performance of CM with GBLUP, and found
only slight differences in predictive ability between CMand
GBLUP among 13 traits in mouse. The CM does not use the
assumption of constant allele substitution effects like GBLUP;
instead, it models the independent effect of each genotype at
a locus, which enables the modeling of dominance (Martini
et al., 2017). The advantages of CM depend on the population
structure and the influence of the dominance effects on a
particular trait. One reason to use CM instead of GBLUP might
be the population having prevalent heterosis, since heterosis
creates a deviation from the linear dosage model. When most
loci are mainly present in only two of the three possible SNP
genotypes, the CM cannot substantially outperform GBLUP
(Martini et al., 2017). Gao et al. (2017) found that GHBLUP
outperformed CHM in eight traits, and CHM outperformed
GHBLUP in three traits. Analogously, in our study, GHBLUP|GA
displayed better predictive performance than CHM|GA in most
of the genomic classes among three traits. However, a similar
pattern was not observed by Gao et al. (2017), who found that
CHM|GA performed better than GHBLUP|GAin the gene class
among most traits.

Contribution of First-Order Epistasis to
Prediction Accuracy
Epistasis has long been recognized as a biologically influential
component contributing to the genetic architecture of
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quantitative traits (Mackay, 2014). Several genomic selection
approaches have been developed to model both additive and
epistatic effects (Xu, 2007; Cai et al., 2011; Wittenburg et al.,
2011; Wang et al., 2012). To minimize the inherently high
computational costs of those methods, EGBLUP (Jiang and
Reif, 2015) and kernel Hilbert space regression accommodating
epistasis within the GP models were proposed (Morota and
Gianola, 2014). Generally, the influence of epistasis on GP ranges
from positive to negative. In some studies, prediction accuracies
increased (Hayes et al., 2009; Su et al., 2012; Jiang and Reif, 2015;
He et al., 2016), whereas in others, modeling epistasis adversely
affected prediction accuracies (Lorenzana and Bernardo, 2009).
For instance, Su et al. (2012) extended GBLUP to EGBLUP to
estimate both additive and additive by additive epistatic genetic
effects. They found that the epistatic variance accounted for 9.5%
of the total phenotypic variance, and the predictive reliabilities of
genomic predicted breeding values increased by 0.3%, which was
consistent with the results reported by Muñoz et al. (2014). These
discrepancies can be explained by the complexities of the studied
traits, which are controlled by many loci exhibiting small effects
entailing a low QTL detection power.

In this study, the first-order epistatic effects were captured
by the categorical epistasis model, which can eliminate the
undesired coding-dependent properties of EGBLUP (He et al.,
2015; Martini et al., 2017). Although EGBLUP has been applied
in other studies (Jiang and Reif, 2015), Martini et al. (2017)
suggested that both EGBLUP and the Gaussian kernel in an
RKHS approach respond differently to a change in marker
coding: a translation of the coding impacts the predictive ability
of EGBLUP, but not that of the Gaussian kernel. The difference
of coding strategy in the CM with the traditional encoding (0,
1, 2) in EGBLUP meant that the additivity assumption was
not necessary in the categorical coding and the encoding of
SNPs or haploblocks corresponded to the allele configurations,
which enables the modeling of dominance (Martini et al.,
2017). In CMs, for all markers, the first-order epistasis of pairs
of SNPs were modeled by the CE model, and we found an
increase in predictive accuracies from step CM to the CE model
in all traits except SI. Martini et al. (2017) also found that
CE was slightly better than CM in the simulated and mouse
datasets.CHE modeling of the first-order epistasis between pairs
of haploblocks also increased the predictive accuracies of all
makers of CW and LW. Similarly, Gao et al. (2017) found an
improvement in predictive ability from CM to CE, and from
CHM to CHE. For genomic classes, we observed a slight increase
in accuracy in the gene class of LW and the CDS class of
SI from CHM|GA to CHE|GA. These findings suggest that the
first-order epistatic effects captured by markers was likely to
contribute to some of the phenotypic variations of the traits
observed in this study.

CONCLUSION

In our study, genome annotation information was incorporated
into the haplotype-based prediction model for GP of three

carcass traits in Chinese Simmental beef cattle. To enable
comparison, the SNP-based and haplotype-based prediction
methods were applied for all markers, and their results
were treated as a benchmark. We found that when the
haplotype was treated as a predictor variable, the prediction
accuracy improved in most traits. After combining the genome
annotation information of the gene class with the haplotype-
based prediction model, a further increase in accuracy was
observed in most traits compared with the results of all
markers obtained by haplotype-based prediction models without
genome annotation. The first-order epistatic effects among SNPs
and haplotypes slightly improved the prediction accuracy of
all markers in LW and CW. In conclusion, incorporating
genome annotation information of gene classes into GP
models through haplotype-based models could be considered
as a promising tool for the GP of carcass traits in Chinese
Simmental beef cattle.
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Estimating Conformational Traits in
Dairy Cattle With DeepAPS: A
Two-Step Deep Learning Automated
Phenotyping and Segmentation
Approach
Jessica Nye1*†, Laura M. Zingaretti1*† and Miguel Pérez-Enciso1,2*

1 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Barcelona, Spain, 2 ICREA,
Barcelona, Spain

Assessing conformation features in an accurate and rapid manner remains a challenge
in the dairy industry. While recent developments in computer vision has greatly improved
automated background removal, these methods have not been fully translated to
biological studies. Here, we present a composite method (DeepAPS) that combines
two readily available algorithms in order to create a precise mask for an animal
image. This method performs accurately when compared with manual classification
of proportion of coat color with an adjusted R2 = 0.926. Using the output mask,
we are able to automatically extract useful phenotypic information for 14 additional
morphological features. Using pedigree and image information from a web catalog
(www.semex.com), we estimated high heritabilities (ranging from h2 = 0.18–0.82),
indicating that meaningful biological information has been extracted automatically from
imaging data. This method can be applied to other datasets and requires only a
minimal number of image annotations (∼50) to train this partially supervised machine-
learning approach. DeepAPS allows for the rapid and accurate quantification of multiple
phenotypic measurements while minimizing study cost. The pipeline is available at
https://github.com/lauzingaretti/deepaps.

Keywords: image analysis, morphology, phenomics, image mask, deep learning, dairy cattle

INTRODUCTION

Breeding programs depend on large-scale, accurate phenotyping, which is also critical for genomic
dissection of complex traits. While the genome of an organism can be characterized, e.g., with
high density genotyping arrays, the “phenome” is much more complex and can never be fully
described, as it varies over time and changes with the environment (Houle et al., 2010). The
cost of genotyping continues to drop, but there is still a need for improvements in obtaining
high-performance phenotypes at a lower cost (Tardieu et al., 2017). In cattle, the number of
phenotypes recorded in traditional breeding schemes is relatively small, because its recording is
expensive. For instance, yearly milk yield is usually inferred by extrapolation using a few lactation
measurements, whereas actual milk production can now be measured individually and daily using
automated milking robots.

Frontiers in Genetics | www.frontiersin.org 1 May 2020 | Volume 11 | Article 51356

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00513
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00513
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00513&domain=pdf&date_stamp=2020-05-21
https://www.frontiersin.org/articles/10.3389/fgene.2020.00513/full
http://loop.frontiersin.org/people/863016/overview
http://loop.frontiersin.org/people/832267/overview
http://loop.frontiersin.org/people/456329/overview
http://www.semex.com
https://github.com/lauzingaretti/deepaps
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00513 May 19, 2020 Time: 19:6 # 2

Nye et al. DeepAPS: An Authomatic Phenotyping Approach

In addition to milk yield, dairy cattle breeders are interested
in conformational traits. These metrics are not only relevant
aesthetically but can also have an important influence on
an animal’s breeding value. Body conformation is associated
with dairy performance (Guliński et al., 2005) and longevity,
which strongly contributes to lifetime milk production (Sawa
et al., 2013). Milk production is positively correlated with
udder size (Mingoas et al., 2017). The highest negative
economic impact for dairy farmers is caused by lameness
either due to leg malformations or injury (Sogstad et al., 2006;
Green et al., 2010). Extracting the detailed conformational
phenotypes which may impact progeny success are likewise
time consuming and costly to collect, and in the absence
of quantitative tools, farmers often evaluate morphometric
measurements qualitatively.

The emergence of modern sensor technologies, such as
Unmanned Aerial Vehicles (UAV) combined with simple digital
cameras (Kefauver et al., 2017), mass spectroscopy, robotics, and
hyper-spectral images (Fahlgren et al., 2015), among others, have
revolutionized breeding programs, mainly in plants, allowing
for non-invasive evaluation of multiple complex traits. Although
in animal breeding their application is more scarce, modern
livestock farming is beginning to benefit from access to these
inexpensive sensor tools. Now, it is possible to remotely monitor
behavior (Guzhva et al., 2016; Foris et al., 2019; Zehner et al.,
2019) and animal welfare (Beer et al., 2016), assess movement
(Chapinal et al., 2011), measure body confirmation (Van Hertem
et al., 2013; Song et al., 2018), quantify individual food intake
(Braun et al., 2014; Beer et al., 2016; Foris et al., 2019), maintain
an optimum environment (Chen and Chen, 2019), or decrease
instances of stillbirths (Palombi et al., 2013; Ouellet et al., 2016).
These automated measurements rely on temperature (Palombi
et al., 2013; Ouellet et al., 2016; Chen and Chen, 2019), pressure
(Braun et al., 2014; Beer et al., 2016), movement (Chapinal et al.,
2011), and visual (Van Hertem et al., 2013; Guzhva et al., 2016;
Song et al., 2018; Foris et al., 2019; Zehner et al., 2019) sensors.

As several remote monitoring schemes are based on digital
images or video, automated image analysis techniques are
urgently needed to quantify traits of interest (Zhang et al.,
2018). Applying image analysis to breeding programs is not
new, however many of these methods largely depend on
time consuming image-by-image processing facilitated by the
researcher (as in Hayes et al., 2010; Cortes et al., 2017;
Rosero et al., 2019). The few automated resources currently
implemented for cattle analyses require complicated set-ups and
costly equipment (Chapinal et al., 2011; Song et al., 2018). This is
not surprising as accurately quantifying phenotypic information
is one of the most challenging aspects in biology (Houle et al.,
2011; Boggess et al., 2013; Rahaman et al., 2015).

The availability of new algorithms based on machine learning
has revolutionized computer vision, impacting a wide range
of fields that rely on computers to analyze images, with the
potential to optimize herd care and improve animal and plant
breeding program outcomes (Song et al., 2018; Foris et al., 2019;
Zehner et al., 2019). These recent advances have led to precise
object detection and semantic segmentation in complex images
(Girshick et al., 2014; Han et al., 2018; Gu et al., 2018).

Here, we show how automatically parsed web-based
catalog datasets can be converted into useful information
by automatically inferring genetic parameters of several
morphological measurements in dairy cattle. We combined web
scraping, deep learning, and statistical techniques in order to
achieve our objective. The proposed methodology is a mixture
between a supervised deep learning approach, Mask R-CNN
(He et al., 2017) and an unsupervised algorithm (Kanezaki,
2018) which can achieve highly precise automatic image
segmentation. After removing the background, phenotypic
information, including coat color and body conformational traits
can be easily quantified. Lastly, we demonstrate the potential
applications of this method in other datasets. We assert that our
work could constitute a good proxy for using inexpensive and
non-invasive computer vision techniques into the dairy cattle
breeding programs.

MATERIALS AND METHODS

Image Collection
Images of bulls were collected through web-scraping using
the python library Beautiful Soup (Richardson, 2007). Images
from sire catalogs of six Artificial Insemination companies
were collected. We additionally automatically collected bull
images from one semen provider1 and those of identified
familial relationships (daughters, dams, granddams, and great
granddams) where possible. We downloaded a total of 1,819
images. These images ranged in size between 339–879 pixels and
257–672 pixels for width and height, respectively. The animals are
Holstein with patched black and white bodies, but some images
are red Holstein. Individuals ranged in color from all white, all
black, all brown, to a mixture of the colors. The images were
flipped so that all animals faced the right side of the image using
ImageMagick version 7.0.9-0 convert -flop function. The animals
are standing in front of dynamic backgrounds including forest,
field, snow, water, and straw. All images contained only one
animal, and sometimes contained a person or an arm.

Automated Segmentation
One of the most challenging tasks in computer vision is instance
segmentation, i.e., the identification of boundaries of objects at
the pixel level (Kanezaki, 2018), whereas object classification, i.e.,
to determine if an object belongs to certain class is relatively
simpler. R-CNN (Girshick et al., 2014), a deep learning approach,
as well as Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren
et al., 2015), or Mask R-CNN (He et al., 2017) are widely used
to solve this task. Although these methods are efficient, they
are not accurate enough for some purposes since the obtained
segmentation often removes parts of the object of interest or
contains parts of the background.

We applied a two-step procedure to automatically segment the
animal’s profile as accurately as possible. The composite method
begins by using Mask R-CNN (He et al., 2017), which has three
outputs for each candidate object in an input image (Figure 1A):

1www.semex.com
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a class label (say “cow”), bounding box offset or region of interest
(RoI), and the object mask consisting of an approximate layout
of a spatial object. As in the original Mask R-CNN, we used the
annotated image database common objects in context (COCO;
Lin et al., 2014)2 to train the algorithm, and select the class codes
for cow. In short, Mask R-CNN is a deep learning algorithm
that consists of two steps: first, it proposes regions within the
image that may contain objects of interest and, second, generates
a mask for every detected object. The latter step consists of a
binary classification of pixels, either a pixel belongs to the object
or to the background. For more details about this method readers
can consult, e.g., https://towardsdatascience.com/computer-
vision-instance-segmentation-with-mask-r-cnn-7983502fcad1,
https://engineering.matterport.com/splash-of-color-instance-
segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
or should refer to He et al. (2017). Figure 1B shows the applied
mask predicted by Mask R-CNN, this mask removes the majority
of the background, but also removes parts of the cow’s body
making it necessary for the development of our two-step
composite method. We used the implementation of Mask
R-CNN in https://github.com/matterport/Mask_RCNN.

After the RoI and class labels are extracted, we select only the
RoI for our desired object (i.e., the bull or cow). This allows us
to remove some of the background and obtain a smaller, less
noisy image. As explained above, the Mask R-CNN segmentation
was not accurate enough for our purposes (Figure 1B).
Therefore, we passed the RoI and predicted mask to a modified
version of the unsupervised image segmentation algorithm from
Kanezaki (2018). We used the code available at https://github.
com/kanezaki/pytorch-unsupervised-segmentation. The original
algorithm relies on separating pixels from each other and
grouping them into distinct clusters based on color and texture.
The underlying assumptions of this model are that: (1) pixels
of similar features should be clustered together, (2) spatially
continuous pixels should be clustered together, and (3) the
number of clusters should be large. This is achieved by applying
a linear classifier which groups pixels into different clusters based
on their features. The difference between the original algorithm
and ours is we do not try to maximize the total number of
clusters, but instead we merely improve upon the mask generated
by Mask R-CNN based on pixel identity. This makes more
effective the algorithm to run, since the algorithm applied to
the whole original image was not completely satisfactory. This
proceeds by self-training the network through back propagation,
by alternating between two stages: (1) forward super pixel
refinement, and (2) backward gradient descent. Much like any
supervised approach this is achieved by calculating the cross-
entropy loss between network and cluster labels, then back
propagating the error rates used to update the convolutional filter
parameters. Backpropagation is a popular and clever method
used in deep learning. It allows computing the gradient of the loss
function very efficiently by using the chain rule for derivatives,
which greatly simplifies optimization in complex models.

After refinement through the unsupervised algorithm, we
obtained a relatively precise mask for our input image

2http://cocodataset.org

FIGURE 1 | Example input and outputs. (A) Original input image. (B) Mask
R-CNN applied mask. (C) DeepAPS raw output. (D) Final output of DeepAPS
after all applied filters. (E) Final DeepAPS mask applied to input image.
(F) Outline extraction of original input image. (G) Extracted landmark
coordinates. (H) Manual color segmentation. Image from Semex.

(Figure 1C). However, the unsupervised clustering still can
confound the foreground and the background. We then apply an
additional filter to the mask, median blur function from OpenCV
(Bradski, 2000), removing small islands that have been mislabeled
during the clustering step (Figure 1D). We lastly apply the mask
by coloring all pixels predicted to be in the background by a solid
color (Figure 1E).

To extract the proportion of and average color(s) from
each cluster, we apply k-means using the scikit-learn library
(Pedregosa et al., 2011). To measure anatomical features,
we extract only the outline of the desired object from
the mask (Figure 1F) using the edge detection algorithm
developed by Canny (1986) and implemented in OpenCV
(Bradski, 2000). After extracting the edge, we apply one
more filter to remove any islands that may remain using the
remove_small_objects function from the morphology package
available from scikit-learn (Pedregosa et al., 2011). Now that
the input image has been reduced down to just the object
outline, we can take advantage of common conformational
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FIGURE 2 | Example input and outputs. (A) Original input image. (B) Mask R-CNN applied mask. (C) DeepAPS raw output. (D) Final output of DeepAPS after all
applied filters.

features of the underlying data, and extract pixel coordinates.
For example, we extracted the coordinate of the pixel closest
to the bottom left corner which corresponds to the back
foot of the cow. We proceeded in this way to extract 13
coordinates from each animal (Figure 1G). We then calculate the
distance in pixels between various points, effectively extracting
body confirmations automatically. The 14 conformational
traits are described in Supplementary Figure S1. Code
for the whole pipeline is available at https://github.com/
lauzingaretti/deepaps.

Manual Segmentation
To check how accurate the automated segmentation was,
we manually segmented N = 481 images that were not
of Semex origin. We used Kanezaki’s demo.py program
(2018) in python3.6 (van Rossum, 1995) using default
parameters. The output images were opened in the

image processing software GIMP3, and the background
was manually changed from the colored cluster to
white (Figure 1H). To extract the color clusters, we
calculated the proportion of color clusters in each image
by using k-means as above, and manually matched each
color cluster to the original picture and removed the
proportion of background.

Genetic Parameters
To calculate heritabilities for the measured phenotypes, we
extracted pedigree information and constructed a relationship
matrix for each bull whenever possible. This was done by
automatic web scraping in the sire catalog website, where we
identified bull id, any relative type (i.e., daughter, dam, granddam,
and great granddam), and their images. From the list of bull and

3https://www.gimp.org/
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FIGURE 3 | (A) Correlation (adjusted R2 = 0.926) between manual and automated color segmentation of 481 images. (B) Example input image. (C) Applied
DeepAPS output mask. (D) Manual color segmentation. Image from Semex.

relatives’ ids, we computed the standard numerator relationship
matrix, which contains the genetic relationships assuming an
infinitesimal model. Bayesian estimates of heritability were
calculated with the R 3.5.2. (R Core Team, 2013) package BGLR
(Perez and de los Campos, 2014) using default priors. One
thousand Gibbs iterations were performed. Our sample sizes
were N = 1,338 for proportion of white and N = 1,062 for
morphological characteristics. The difference in sample size is
due to removing any image with a missing coordinate.

Application to Other Datasets
To assess the applicability to other datasets, we chose
two other objects that had been annotated in the COCO
database (Lin et al., 2014), horse and giraffe, as well as two
objects that had not been annotated, butterfly and duck.
We downloaded 50 images from the internet that had the
license set to “labeled for non-commercial reuse” for horse
and giraffe and 100 images for butterfly and duck. For the
unannotated objects we annotated 50 of the images using
VGG Image Annotator (VIA; Dutta and Zissermann, 2019).
These annotations were used to train a model in Mask

R-CNN using the starting weights of the COCO database
(Lin et al., 2014). The model was trained for 20 epochs and
default parameters. Using either the COCO or custom model,
DeepAPS was applied and the composite mask was visually
assessed for accuracy.

RESULTS

We first visually compared the masks generated by the three
methods that were applied to our entire dataset of 1,819
images (Figure 2A). When we used the supervised algorithm
Mask R-CNN and applied the mask to the input images
(Figure 2B), we observed in all cases parts of the cow body
were removed along with the background (i.e., tail, nose,
ear, and hoof). These masks are not satisfactorily precise
to extract morphological measurements. The unsupervised
segmentation by back propagation (Figure 2C) often
separates the precise border between cow and background,
but that this method on its own is not automated. Each
output image would still need to be processed separately
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FIGURE 4 | (A) posterior h2 distribution of the white coat color, (B) posterior
h2 distribution of the gait, (C) posterior h2 distribution of the chest depth, (D)
posterior h2 distribution of the back height, (E) posterior h2 distribution of the
back deviation, (F) posterior h2 distribution of the front height, (G) posterior h2

distribution of the back leg height, (H) posterior h2 distribution of the front leg
height, (I) posterior h2 distribution of the cow length, (J) posterior h2

distribution of the face length, (K) posterior h2 distribution of the head length,
(L) posterior h2 distribution of the head width, (M) posterior h2 distribution of
the neck width, (N) posterior h2 distribution of the triangle body area, (O)
posterior h2 distribution of the polygon body area.

in order to match which body parts were grouped into
each color cluster. DeepAPS (Figure 2D) across our input
dataset produces a more accurate mask than Mask R-CNN
and a fully automated mask, which the unsupervised
approach fails to do.

In order to assess how accurately we were able to extract the
true coat color percentage from each image, we compared manual
and automated color segmentation. Our test set consists of 481
manually annotated images. After removing the background,
we clustered each bull into one- or two-color components and
extracted the percentage of dark and light colors in the coats. The
automated method reports a highly accurate color segmentation
with an adjusted R2 = 0.926 (Figure 3A) when compared to
manual segmentation (Figures 3B–D). The images that fall out as
outliers belong to one of two groups, the majority of the outliers
have small image sizes (less than 400 × 400 pixels), and therefore
the quality was not sufficient to accurately separate the body into
two color classes, the second group were bulls with a two-toned
body color, in which the legs were of a different color than the
body. In these cases, the algorithm has difficulty in separating the
dark-colored legs from the dark background.

Because the mask recovered after using this composite
method is so precise, we could extract coordinates of 13 points
located around the outline of the cow body (Figure 1G and
Supplementary Figure S1) which allowed for measurements of
14 body conformation distances (see Supplementary Figure S2
for phenotypic distributions). Next, we estimated heritability

FIGURE 5 | Application of DeepAPS method to four additional datasets.
(A) Horses and (B) Giraffes trained using the COCO database. (C) Butterflies
and (D) Ducks trained using 50 custom annotations.

using 1,338 images of related animals, in which we had partial
information about great granddam, granddam, dam, bull, and
daughter relationships. Our relationship matrix consists of
689 families, with an average of 2.6 individuals per family.
Figure 4 shows the 15 posterior distributions of the heritability
calculations and lists average values. Coat color proportion has
the highest calculated heritability h2 = 0.82, followed by body area
(triangle) h2 = 0.43, body area (polygon) h2 = 0.38, and cow body
length h2 = 0.34. These values are similar to previously published
results (Hayes et al., 2010; Pritchard et al., 2013). These high
heritability measurements indicate foremost that the meaningful
genetic information can be quickly and easily extracted from
imaging and pedigree data available online.

To assess whether this method is robust to the type and
quality of the underlying data, we downloaded images from
the internet of horse, giraffe, butterfly, and duck. These images
were randomly collected, and we had no control over quality,
size, lighting, or background. We also wanted to test how many
input annotations are required to produce a robust mask using
DeepAPS. Because the two-step method uses back propagation
in order to refine the predicted mask generated from the machine
learning algorithm, we hypothesized that fewer annotations
would be needed. Therefore, we annotated 50 images for the
butterfly and duck datasets, as they were not pre-annotated in the
COCO database. We found that overall, our composite method
preforms accurately (Figure 5). The masks generated from the
thousands of annotations from the COCO dataset were precise
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(Figures 5A,B), while those based on only 50 annotations were
still far more accurate than using any currently available method
(Figures 5C,D). These results together indicate this method is
robust to input data and can still preform reliably despite being
trained by few instances, making it a promising tool for automatic
morphological analyses.

DISCUSSION

In recent decades, there have been vast improvements in
molecular and statistical methods applied to animal and plant
breeding. While modern livestock studies typically involve the
analysis of entire genomes and/or vast number of polymorphic
sites (Börner et al., 2012; Wiggans et al., 2017; Yin and König,
2019), high throughput phenotyping is lagging, especially in
animal breeding. Often, phenotypic variation is explored today
in the same manner as it was done decades ago, using simple
quantifications such as length, number, categorical classifications,
etc (Houle et al., 2010, 2011; Cole et al., 2011). Phenomics is
extremely important in breeding programs in particular, as the
desired outcome is a change in a phenotype. As phenotypes
are formed by a complex process involving multiple genes, is
dependent on the environment, and dynamic overtime, collecting
multiple descriptive statistics can make relating genotype to
phenotype more feasible and, importantly, more meaningful.

Images are among the easiest to collect data and are
underutilized. Here we combine two of the state-of-the-art
image analysis tools, the supervised Mask R-CNN (He et al.,
2017) and unsupervised segmentation (Kanezaki, 2018) in order
to automatically extract phenotypic measurements accurately.
Not only can we create a precision mask but can cluster and
segment the underlying colors and automatically measure body
confirmation. Accurate image segmentation remains the most
challenging part of computer vision. The ability of DeepAPS to
separate the animal from multiple background types at the pixel
level out preforms, for our purposes, the available algorithms
currently published (Kanezaki, 2018; He et al., 2017).

The validity and speed of this method allows for multiple
quantitative morphological traits to be implemented in breeding
programs. Despite the success of ongoing dairy breeding
programs (Wiggans et al., 2017), including more and accurately
quantified measurements has the potential to result in further
improvements (Goddard, 2009; Gonzalez-Recio et al., 2014).
Furthermore, this method uses standard side-view stud images
which are inexpensive to generate and store. Our presented
method eliminates the high cost of phenotype collection while
maintaining quality and can contribute to lowering the cost of
conformational measurement collections.

Our analyses were performed on images scrubbed from
the internet. As such, we had no control over backgrounds,
lighting, image size, or quality. Despite the dynamic input data
on which we tested DeepAPS, we were able to produce high
quality masks and phenotypic measurements in most cases
(Figure 4). Furthermore, the heritability rates we calculated
from over 1,000 images of related individuals broadly agree with
published results, indicating that our method accurately captures

underlying information. Hayes et al., 2010) estimated heritability
of coat color percentage by manual quantification and reported a
heritability of h2 = 0.74 in N = 327 bulls; remarkably, we found
similar estimates (h2 = 0.81), even if our pedigree information
was quite incomplete. The reported heritability of back leg height
is nearly identical to previous reports (h2 = 0.22 vs. 0.21; Pritchard
et al., 2013). Nevertheless, estimates of two other reported
conformational heritabilities were somewhat lower: chest depth
h2 = 0.28 vs. 0.37 and height h2 = 0.27 vs. 0.42 (Pritchard et al.,
2013); perhaps because actual metrics analyzed here are not
exactly those used in previous studies and because we cannot
obtain absolute values (e.g., height in meters), since there is not a
common scale across images. In all, this proof of concept shows
how genetic parameters could be estimated using solely data
that are already available on the web. For practical applications,
more accurate estimates suitable for breeding programs could be
obtained, e.g., combining SNP genotyping data with automatic
image analyses from larger datasets.

While imaging data is fast and simple to collect as well as
inexpensive to store, the most burdensome stage of image analysis
is the generation of image annotations. We found that this
method is able to leverage the publicly available COCO database
and apply it to new and different problem sets. Allowing for the
creation of an accurate object mask based only on a training set of
50 instances (Figure 5), which is remarkably low for any machine
learning approach.

This method has the potential to allow for imaging data to
be easily and quickly applied to high-throughput studies, which
can be highly useful and improve extant breeding programs. We
provide a combined deep learning algorithm that results in highly
accurate segmentation of animal profiles, which is necessary
for further processing in applications related to conformational
measurements. Nevertheless, we are well aware that much
work remains to be done in the area. For instance, software
to accurately quantify a number of additional conformational
features, such as udder metrics or movement, using different
angle pictures or videos should be developed. Software should
also be optimized for speed and be able to analyze high-
resolution pictures.
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The beef cattle rumen is a heterogenous microbial ecosystem that is necessary for the

host to digest food and support growth. The importance of the rumen microbiota (RM) is

also widely recognized for its critical roles in metabolism and immunity. The level of health

is indicated by a dynamic RM distribution. We performed high-throughput sequencing

of the bacterial 16S rRNA gene to compare microbial populations between rumens

in beef cattle with or without doxycycline treatment to assess dynamic microbiotic

shifts following antibiotic administration. The results of the operational taxonomic unit

analysis and alpha and beta diversity calculations showed that doxycycline-treated beef

cattle had lower species richness and bacterial diversity than those without doxycycline.

Bacteroidetes was the predominant phylum in rumen samples without doxycycline,

while Proteobacteria was the governing phylum in the presence of doxycycline. On the

family level, the top three predominant populations in group qlqlwy (not treated with

doxycycline) were Prevotellaceae, Lachnospiraceae, and Ruminococcaceae, compared

to Xanthomonadaceae, Prevotellaceae, and Rikenellaceae in group qlhlwy (treated with

doxycycline). At the genus level, the top predominant population in group qlqlwy was

unidentified_Prevotellaceae. However, in group qlhlwy, the top predominant population

was Stenotrophomonas. The results revealed significant RM differences in beef cattle

with or without doxycycline. Oral doxycycline may induce RM composition differences,

and bacterial richness may also influence corresponding changes that could guide

antibiotic use in adult ruminants. This study is the first to assess microbiota distribution

in beef cattle rumen after doxycycline administration.

Keywords: beef cattle, rumen microbiota, doxycycline, MiSeq sequencing, dysbacteriosis, oral antibiotics,

bacterial richness
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HIGHLIGHTS

- This is the first study of cattle rumen microbiota after
doxycycline treatment.

- Doxycycline-treated beef cattle have lower species richness
and diversity.

- Bacteroidetes was the most dominant phylum in untreated
rumen samples.

- Proteobacteria was the governing phylum in the presence
of doxycycline.

INTRODUCTION

Ruminants convert human-inedible plant biomass into meat
and dairy products with high nutritional value. However, recent
studies reported that the gastrointestinal tract (GIT) microbiome
plays a major role in the health, physiology, and production
traits of ruminants. The rumen is an important digestive
organ in ruminants and home to one of the most complex
microbial communities, which has long attracted the interest
of microbiologists. This organ is rich in bacteria, fungi, and
ciliates that ferment forage grass to form volatile fatty acids
(VFAs) and microbial proteins (MPs) that provide nutrients
for the growth, development, and production of ruminants.
The main members of the rumen microbiota (RM) are now
well understood. Bacteria account for most species and are
geographically widespread in many ruminants and individual
animals (1). Ciliate protozoa, which account for up to half of
the biomass, are composed of species unique to the rumen
(2). The number of anaerobic fungi is relatively small but
seems to play an important role in digesting the cell walls
of plants that are difficult to break down (3). Archaea are
major contributors to methane emissions (4). The RM enhances
fiber digestibility, decreases methane emissions, improves the
efficiency of nitrogen usage, and also helps explain differences in
nutrient digestibility or feed efficiency among animals fed with
the same diet. Physiologists and nutritionists have described the
rumen’s key role in digesting fiber feed and providing nutrition
to host animals (5). The intestinal microbiota of beef cattle is
also a complex microecosystem. It plays important roles in host
material metabolism, immune regulation, biology barriers, and
host defense. The number of bacteria in the hindgut system is
similar to that in the rumen, and the dominant bacteria in several
RM also appear in the normal microbiota of the ruminant large
intestine. Characterizing, quantifying, and understanding the
role of the RM therefore have significant scientific, economic, and
environmental significance. Recent investigations using omics-
based approaches reported that RM differences in cattle are
associated with production efficacy and health traits. Most RM
studies have focused on the microecosystem (6–8). Some have
shown that season, animal species, age, diet structure, and other
factors can all affect RM (9, 10). However, there are fewer studies
on the effect of antibiotics on RM.

16S rRNA sequencing is a quick and easy way to explore the
relationship between RM characteristics and animal health (11,
12). It is a validated, rapid, cost-effective approach for analyzing
microbial communities and their relevance to environmental

factors (13, 14). This technology has been successfully applied to
analyze complex bacterial ecosystems in the gut (15).

The discovery and subsequent widespread use of antibiotics
controlled infection, saving countless lives, and it played an
important role in the prevention and treatment of animal
infectious diseases. However, the harm caused by abuse and
overuse has attracted wide concern. An imbalance between RM
and intestinal microbiota is one of the main adverse reactions,
with physiological bacteria greatly reduced and pathogenic
bacteria multiplying. Studies have shown that dysbacteriosis
(changes in bacterial composition) can lead to the development
of digestive, endocrine, psychiatric, systemic, autoimmune,
and some infectious diseases (16–20). Ruminants have been
recognized as a potential reservoir of antibiotic-resistance genes
(21). In addition, including antimicrobials in ruminant diets
can select for resistant organisms, potentially modifying the
autochthonous RM (22). Doxycycline is a member of the
tetracycline class with improved stability and pharmacological
efficacy compared to traditional tetracycline (23). This highly
effective antibacterial drug has a wide range of applications, good
bioavailability, and a few serious adverse events (24). It is mainly
used to treat respiratory, urinary, and biliary tract infections
caused by sensitive bacteria. Doxycycline is commonly employed
in dairy farming and has been used in human and veterinary
medicine to fight bacterial infections and promote the growth
of food-producing animals, improving feed efficiency and animal
performance (25).

Some farmers in China inappropriately give antibiotics to
ruminants by oral administration, which can lead to adverse
events such as anorexia, belching, regurgitation, severe diarrhea,
and even death. This study was conducted to explore the effects
of oral antibiotics on the RM. It was designed to assess the
distribution and richness of bacterial microbiota in the rumen
of beef cattle before and after taking doxycycline. The results
show significant RM differences in beef cattle depending on
doxycycline administration. Oral doxycycline may alter the RM
composition, and bacterial richness may influence corresponding
changes that could provide a theoretical basis for the rational and
correct use of antibiotics in adult ruminants.

METHODS

Ethics Statement
All the cows used in this study were treated according to relevant
national and international guidelines, and all efforts were made
to minimize suffering. The study protocol was approved by
the Animal Ethics Committee of Shandong Vocational Animal
Science and Veterinary College. No endangered or protected
species were involved.

Animals and Sample Collection
Six healthy, 20-month-old, male Simmental cattle were randomly
selected from a beef cattle farm in Shandong province. Animals
were kept according to standard beef cattle managementmethods
and fed under standard livestock management practices. The diet
feed formulations are shown in Table 1. Three heads were in
the experimental group, and three heads served as the control
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TABLE 1 | Beef cattle diet feed formulations.

Raw material Ratio (%)

Corn 25.6

Soybean meal 7.15

Bran 6.25

Palm meal 8.25

Corn husk 5.5

Vinasse 5.5

Hay meal 8.7

Silage from whole plants 30.5

Premix 1.25

Salt 0.6

Calcium carbonate 0.7

Total 100

Dietary nutrient content

Dry matter % 70.26

RND/kg 6.32

Crude protein % 12.27

Calcium % 0.67

Phosphorus % 0.34

RND (beef cattle energy unit) is the calculated value, other components are

measured values.

group. The experimental group was fed with doxycycline 20
mg/kg dissolved in 500ml of 0.9% sodium chloride solution
every morning for 6 days. The control group was given 0.9%
sodium chloride solution daily. Data show that the feed stays
in the rumen for 20–48 h, and the entire digestive process is
40–70 h. After continuous ingestion for 6 days and 2 h after
feeding, the rumen contents had undergone at least two cycles.
Samples were collected on the seventh day to better assess
the effect of doxycycline on multi-rumen microorganisms. On
the seventh day, 50-ml rumen fluid samples were collected
by inserting a gastric catheter orally after feeding 2 h; they
were transported to the laboratory on ice within 2 h and
stored at−80◦C.

DNA Extraction, Amplification, and
Sequencing
Genomic DNA was extracted with a TIANamp Genomic DNA
Kit (TIANGEN Bio-Tek Co. Ltd., Beijing, China) according to
the manufacturer’s instructions, and each sample extract was
purified with a GeneJETTM Gel Extraction Kit (Thermo Fisher
Scientific, Waltham, MA, USA). Generation sequencing library
preparation and Illumina MiSeq sequencing were subsequently
conducted at Novogene, Inc. (Beijing, China). The 16S rRNA
genes of distinct regions (16S V4/16S V3/16S V3-V4/16S
V4-V5) were amplified using a specific primer (16S V4:
515F-806R) with the barcode. All polymerase chain reaction
(PCR) experiments were performed in 30-µl volumes: 15 µl
of Phusion R© High-Fidelity PCR Master Mix (New England
Biolabs, Ipswich, MA, USA), 0.2µM of forward and reverse
primers, and 10-ng template DNA. Initial denaturation was
performed for 1min at 98◦C followed by 30 denaturation

cycles at 98◦C for 10 s, annealing at 50◦C for 30 s, and
elongation at 72◦C for 30 s. Then samples were held at 72◦C
for 5min. In addition to the 16S target-specific sequence,
we generated sequencing libraries with Ion Plus Fragment
Library Kit 48 rxns (Thermo Fisher Scientific) following the
manufacturer’s protocol. Library quality was assessed with
a Qubit@ 2.0 Fluorometer (Thermo Fisher Scientific). The
library was sequenced on an Ion S5 TM XL platform
that generated 400-/600-bp single-end reads. The V3, V4,
and V5 sequences were processed, spliced, and analyzed by
Novogene, Inc.

Bioinformatics and Statistical Analysis
Single-end reads were assigned based on their unique barcode
and truncated by removing the barcode and primer sequence.
Quality filtering on raw reads was done under specific filtering
conditions to generate high-quality clean reads according to the
Cutadapt (26) (V1.9.1, http://cutadapt.readthedocs.io/en/stable/)
quality-controlled process. The sample data were separated from
the reads obtained according to Barcode, and the Barcode and
primer sequences were cut to obtain the original data (raw reads).
The reads obtained with the above process still contained chimera
sequences. The reads sequence was compared with the species
annotation database (https://github.com/torognes/vsearch/) (27)
to detect the chimera sequence, which was then removed to
obtain the final valid data (clean reads) (28). These were
compared with the Silva reference database (https://www.arb-
silva.de/) (29) using the UCHIME algorithm (http://www.drive5.
com/usearch/manual/uchime_algo.html) (30) to detect chimeric
sequences, which were removed (31) to produce clean reads.
High-quality sequences were binned into operational taxonomic
units (OTUs) with Uparse software (Uparse v7.0.1001, http://
drive5.com/uparse/) (32) at a 97% sequence identity threshold.
The SSUrRNA of the Silva132 database (https://www.arb-silva.
de/) (29, 32) was used based on theMothur algorithm to annotate
taxonomic information for each representative sequence. To
study phylogenetic relationships of different OTUs and identify
dominant species in samples (groups), we conducted multiple
sequence alignment with MUSCLE software (Version 3.8.31,
http://www.drive5.com/muscle/) (33). Finally, the data of each
sample were homogenized, and those with the least amount
of data in the sample were homogenized using a process
provided in a script from Novogene, Inc. (there is no specific
software). The homogenization process is necessary due to
the inconsistency of sequencing depth and the number of
sequences between samples. To minimize experimental and
human statistical error, we need to set the sequence number
of each sample at the same depth level, especially for the
comparative analysis between samples. The homogenization
method is to set a threshold value (sample with the lowest
sequence number), then randomly selected sequence bars
set by the threshold value are chosen from the sample for
further analysis.

The total number of sequences used to compare each sample
is the same, so the relative abundances of species in each sample
can be compared. For example, in the following table in the
text, the total number of sequences Total_tag minus Uniq_tag
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is the final number of sequences used for species annotation
(Tax_tag+Unclassified_tag). Among them, sampled B1 had the
lowest number of sequences at 40,518.

#OTU_num qlqlwy1 qlqlwy2 qlqlwy3 qlhlwy1 qlhlwy2 qlhlwy3

#Total_tag 71551 80159 62353 70003 65758 66571

#Uniq_tag 28559 39641 21461 18986 16687 20805

#Tax_tag 42992 40518 40892 51017 49071 45766

#Unclassified_tag 0 0 0 0 0 0

#Tax_tag + #Unclassified_tag 42992 40518 40892 51017 49071 45766

Subsequent analyses of alpha and beta diversity were performed
based on these normalized output data. Alpha diversity analysis
included the Shannon index, the abundance-based coverage
estimator (ACE), and Chao1. Good’s coverage index is obtained
by adding the number of OTUs with only one sequence and
the total number of sequences appearing in the sample in
the calculation, so it relatively reflects the sequencing depth
of the sample. Beta diversity included both the weighted and
unweighted UniFrac values as calculated with QIIME software
(Version 1.7.0). Principal component analysis (PCA) was applied
to reduce the dimensions of the OTU counts original variables
using the FactoMineR and ggplot2 packages in R software
(Version 2.15.3). The difference matrixes of OTU abundance of
both groups of samples were visualized by principal coordinate
analysis (PCoA) to identify principal coordinates and visualize
complex, multidimensional data. The distance matrixes of
weighted or unweighted UniFrac values were transformed to a
new set of orthogonal axes, by which the maximum variation
factor is demonstrated by first principal coordinate, the second
maximum factor by the second principal coordinate, etc. The
PCoA results were displayed with the WGCNA, stat, and ggplot2
packages in R software (Version 2.15.3). To assess similarity
between two groups of samples, a tree was constructed by
clustering. In environmental biology, UPGMA (Unweighted
Pair-group Method with Arithmetic Mean) is a commonly
used cluster analysis method that was first used to solve the
classification problem. The basic concept of UPGMA is as
follows. Identify the two samples with the smallest distance and
form a new node (new sample) with a branch point located at
half the distance between the two samples; then calculate the
new average distance between the “sample” and other samples,
and then find the smallest two samples for clustering. This
process is repeated until all the samples come together in a
complete clustering tree. UPGMA cluster analysis is performed
using weighted and unweighted UniFrac distance matrixes, and
the clustering results are integrated with the relative abundance
of species at the gate level for each sample. UPGMA clustering
was carried out as a form of hierarchical clustering to interpret
the distance matrix using average linkage in QIIME software
(Version 1.7.0). ANOSIM is the analysis of similarity; this
nonparametric test is used to examine whether the difference
between groups is significantly greater than the difference within
groups to determine if there is clear clustering from the analysis
of the distance matrix (34).

The size of the intragroup differences can be used to determine
whether the grouping is meaningful and to test inter- and
intragroup differences between two groups or among more

groups. ANOSIM uses the R vegan package (ANOSIM function)
based on the Bray–Curtis distance value. The ANOSIM results
showed that the R-value was between−1 and 1.

R =
rb − rw

1
4 [n(n− 1)]

where rb is the mean rank of between group dissimilarities,
rw is the mean rank of within group dissimilarities, and n is the
number of samples.

An R > 0 indicates that the similarity within groups is
lower than the similarity between groups. An R < 0 indicates
that the similarity between groups is lower than that within
groups. Significance testing was performed to identify differences
between groups, which were considered significant at P < 0.05.
Data are given as mean ± standard deviation (SD) and were
analyzed with SPSS 17.0 software (SPSS Inc., Chicago, IL, USA).

RESULTS AND DISCUSSION

Microbial Diversity Index Analysis of
Rumens With or Without Doxycycline
Rumen contents were collected for high-throughput sequencing
to assess bacterial community composition in rumens of beef
cattle with or without oral doxycycline. To study the species
composition of each sample, we included OTUs with 97%
identity on the valid labels of all samples, clustered the OTUs, and
then annotated the OTU sequences. The 97% identity value refers
to the comparison between the read and reference sequences.
An OTU is defined as a read with 97% nucleotide sequence
identity. Based on 97% species similarity, 1,047 and 590 OTUs
were obtained from samples from the qlqlwy and qlhlwy groups,
respectively. Among all samples, there were 1,073OTUs, of which
564 in both groups were defined as core OTUs (52.56% of all
OTUs, Figure 1G). The representative sequence was selected by
removing the effective tags, and the singletons were arranged
according to the abundance and clustered according to 97%
similarity. The representative sequence is the one with the highest
frequency. In addition, 26 OTUs were uniquely identified only in
group qlhlwy.

Bacterial diversity and richness (alpha diversity
measurements) were assessed with the Shannon index, Chao1,
ACE, and Good’s coverage. Good’s coverage for each sample
was >99.75% (Figure 1B), demonstrating that the 16SrDNA
sequences in these samples represent most bacteria present.
The highest microbial richness was in the rumens without
doxycycline; the average Chao1 index was 899.17 (Figure 1D),
and the average ACE index was 862.011 (Figure 1A). The
richness of rumens from cattle treated with doxycycline was
lower than in those without doxycycline, and the average Chao1
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FIGURE 1 | Collation results of DNA sequence data and microbial diversity index analyses. (A) ACE index, (B) Good’s coverage index, (C) observed species index,

(D) PD whole tree, (E) Chao1 index, (F) Shannon index, (G) Venn diagram. The numbers represent the unique or common OTUs of each group. (H) ANOSIM analysis.

“Between” represents the difference between groups; an R-value closer to 1 indicates greater difference. “qlqlwy” and “qlhlwy” represent the two groups.

and ACE indexes were 436.38 and 441.65 (Figures 1A,D),
respectively. Similarly, the Shannon indexes in rumen samples
from untreated and treated cattle were 7.312 and 4.437,
respectively (Figure 1F). Moreover, the observed species and
phylogenetic diversity (PD) whole tree of rumens were more
abundant in the untreated group (Figures 1C,E). Consistently,
the rumen of doxycycline-treated cattle had lower Simpson
diversity index values. Furthermore, ANOSIM results showed
that between-group differences were greater than those within
groups (R = 1, P = 0.1; Figure 1H). For community richness
comparisons, both ACE and Chao1 showed that the rumens
of untreated cattle contained significantly more observed and
estimated OTUs than doxycycline-treated cows. This result
demonstrates that doxycycline reduces bacterial diversity and
abundance in the rumen of beef cattle.

Beta-Diversity Analysis of the Microbial
Communities of Rumens With or Without
Doxycycline
The relationships between the community structures of beef
cattle RM were examined using PCoA. The UniFrac distance
matrix revealed clear differences among all individual samples
and groups. The microbiota in each group were clustered.
Figures 2A,B depict the weighted and unweighted UniFrac
distances of PCoA analyses, respectively, and show that the RMof
doxycycline-treated cattle were distinct from untreated samples.
The relationships among community structures as revealed
by PCoA were further examined by assessing between-group

weighted UniFrac distances and the UPGMA tree. Consistent
with the PCoA plot, the UPGMA tree showed significantly
different microbial community structures between groups qlqlwy
and qlhlwy for weighted UniFrac distance (Figure 2C) but not
unweighted Unifrac distance (Figure 2D).

A rank abundance curve was generated to further
demonstrate species abundance and evenness. In group
qlqlwy RM samples, the OTU ranks were ∼800 more than
those of group qlhlwy, which were close to 400 (Figure 3B),
indicating less abundant species compositions in group qlhlwy
samples. All curves were relatively flat, indicating relative
uniform species compositions for all samples (Figure 3A).
These curves tend to be flat when the number of effective
sequences reaches 30,000. The number of valid sequences
of each sample was >40,000, which indicated sufficient
sequencing data.

Bacterial Community Composition at
Different Taxonomical Levels
We next analyzed rumen bacterial community composition
and structure by taxonomical level. According to the phylum
assignment result, Bacteroidetes was the predominant phylum in
group qlqlwy samples, whereas Proteobacteria was the governing
phylum in group qlhlwy. Firmicutes and Bacteroidetes were
the secondary phyla for groups qlqlwy and qlhlwy, respectively
(Figure 4A). Bacterial abundance was also analyzed for
family (Figure 4B) and genus (Figure 4C). On the family
level, there were significant between-group differences. The

Frontiers in Veterinary Science | www.frontiersin.org 5 June 2020 | Volume 7 | Article 25169

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Microbiota Analyzed After Antibiotic Administration

FIGURE 2 | Differences in bacterial community structures and relationships among all samples. (A,B) PCoA of bacterial community structures of the RM in the three

sample groups. Each blue point represents a sample. The distance between two points represents the difference of RM. PCoA shows distinct bacterial communities

between different samples. (C) The UPGMA tree analysis of samples in evolution in weighted unifrac distance. (D) The UPGMA tree analysis of samples in evolution in

unweighted unifrac distance.

top three predominant populations in group qlqlwy were
Prevotellaceae, Lachnospiraceae, and Ruminococcaceae,
compared to Xanthomonadaceae, Prevotellaceae, and
Rikenellaceae for group qlhlwy (Figure 4B). At the genus

level, there were also significant differences among three samples
from two groups. The top predominant population in group
qlqlwy was unidentified_Prevotellaceae. However, in group
qlhlwy, the most common genus was Stenotrophomonas

Frontiers in Veterinary Science | www.frontiersin.org 6 June 2020 | Volume 7 | Article 25170

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Microbiota Analyzed After Antibiotic Administration

FIGURE 3 | Sample feasibility analysis. Each curve represents a sample. (A) Rarefaction curves depicting the effect of sequences on the number of identified OTUs in

the rank abundance curve. (B) The abscissa indicates the OTU (species) abundance order, and the ordinate corresponds to the relative abundance ratio of OTU

(species).

FIGURE 4 | Microbial composition of different samples. Each bar represents the average relative abundance of each bacterial taxon within a group. The top 11

abundant taxa are shown. (A) Taxa assignments at Phylum level. (B) Taxa assignments at Family level. (C) Taxa assignments at Genus level.

(Figure 4C). The most important factor is that there
were obvious changes between unidentified_Prevotellaceae
and Stenotrophomonas with treatment. The proportion
of unidentified_Prevotellaceae gradually decreased with

doxycycline, while Stenotrophomonas increased (Figure 4C).
This finding demonstrates that doxycycline treatment clearly
affects the bacterial community composition of the rumen in
beef cattle.
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FIGURE 5 | Bacterial taxa significantly differentiated rumens samples of cows with or without doxycycline identified by LEfSe using the default parameters. (A)

Histogram of LDA scores computed for bacterial taxa differentially abundant between groups. (B) Bacterial taxa that were differentially abundant visualized using a

cladogram.

Differences in Bacterial Communities
Between Rumens With or Without
Doxycycline
Linear discriminant analysis (LDA) effect size (LEfSe) was
applied to the top 18 taxa (average relative abundance
>0.00001) to determine which were significantly different
between groups (Figure 5A). The bacterial taxa of rumens
differentially represented the groups qlqlwy and qlhlwy. Eight
and three bacterial taxa were significantly more abundant in
qlqlwy and qlhlwy, respectively (Figure 5B). The RM in group
qlqlwy was significantly more diverse in both species and relative
abundance. Bacteroides was the most abundant taxa in group
qlqlwy, whereas Xanthomonadaceae was the most common in
group qlhlwy. These are consistent with the bacterial community
compositions of the rumen samples described above.

Correlation of RM in Beef Cattle With or
Without Doxycycline
There were significant differences in the diversity and
abundance of intestinal microbiota following doxycycline
treatment. To investigate the effect of doxycycline on RM,
we performed a statistical analysis of metagenomic profiles
(STAMP, Figure 6). There were no significant differences in
other RM between the two groups except for Bacteroidetes
(P = 0.04) and Proteobacteria (P = 0.008). Bacteroidetes
was previously determined to have a high abundance in beef
cattle without doxycycline, indicating that these are necessary
for normal animals (Figure 4A). In addition, Proteobacteria
had high abundance in doxycycline-treated animals, but
the proportion of Bacteroidetes decreased, suggesting that
doxycycline can promote Proteobacteria growth, and inhibit

Bacteroidetes survival. Tenericutes, Planctomycetes, and
Melainabacteria in group qlhwly also showed decreasing
trends. Despite their low abundance, these changes should not
be ignored.

The gastrointestinal microbiota is called the “second genome”
and plays an important role in animal growth and health,
especially in ruminants. Previous studies have shown that
gastrointestinal microbes can influence body weight and
digestion and decrease the risks of infection and autoimmune
diseases. The intestinal microbiota has been linked to several
conditions including diabetes and inflammatory bowel disease
(35, 36). It was also reported that there was a significant difference
in the bacterial composition of BALBcmice receiving comparable
immune programs in specific pathogen-free units of different
centers, which supported the role of intestinal microbiota in
regulating the induction response (37). Over time, the RM
has been investigated in sheep, cattle, and other ruminants.
Mammalian gastrointestinal studies have examined the effects
of the microbiota on metabolism, physiology, and immunology
(38, 39), but there are a few reports of RM differences in cattle
following antibiotic administration. Here, we analyzed bacterial
diversity and abundance in the contents of cattle RM after
doxycycline treatment. The results showed that the abundance
and diversity of bacteria in the RM of cattle on doxycycline were
lower than in untreated cattle.

The RM of dairy beef cattle is not present at birth, but as the
animals are in constant contact with the external environment,
it gradually colonizes, survives, and reproduces after adapting to
the environment. Cattle RM reportedly increase in diversity and
tend to be composed of mature bacteria as animals age (40).

The present results demonstrate significant differences in
the RM after doxycycline treatment. Prior to antibiotic
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FIGURE 6 | Differences in bacterial abundance between the groups qlqlwy and qlhlwy. Left, abundance ratios of different strains in two samples. Middle, difference in

bacterial abundance within the 95% confidence interval. Right, P-values of significance testing.

administration, Bacteroidetes and Firmicutes were the most
common phyla in the rumen samples of group qlqlwy, which
is consistent with a previous report (40). After doxycycline
administration, Proteobacteria became the most abundant
phylum in group qlhlwy. The proportion of Bacteroides
was small. The dominant bacteria in the RM are mainly
composed of Bacteroides, Proteobacteria, and Firmicutes, but
their proportions vary greatly.

Gene functions in the intestinal microbiota of healthy humans
may be more diverse than previously hypothesized, and the
main axis of taxonomic variation in the microbiome may
not capture the largest functional variation (41). Bacteroides
are beneficial intestinal microbiota because they break down
polysaccharides and improve nutrient utilization (42), degrade
carbohydrates and proteins, and promote the development
of the gastrointestinal immune system (43). All these events
strengthen the host’s immune system (44). In ruminants,
Firmicutes is involved in degrading fiber and cellulose (45)
and maintaining an appropriate intestinal micro-ecological
balance (46).

Since intestinal microbiota imbalance is usually caused by
a continuously increased abundance of Proteobacteria, the
physiological human intestinal microbiota contains only a small
proportion of that phylum. Increased prevalence of Proteus could
be a useful diagnostic marker for dysbiosis and disease risk
(47). In support of the proposed relationship between metabolic
disorder and Proteobacteria expansion, a mono-association
study of germ-free mice revealed an obesogenic potential
of Proteobacteria (48). In fact, a growing body of evidence
suggests that an abundance of Proteobacteria members may
be a pathogenetic feature. This feature has known associations
with metabolic disorders and inflammatory bowel diseases, but
it may also play a role in lung diseases including asthma and

chronic obstructive pulmonary disease. All of these conditions
have varying degrees of inflammation.

Many studies have confirmed that the use of antibiotics
and some drugs can alter the RM of dairy beef cattle. Li
et al. (49) fed pasteurized antibiotic milk, antibiotic milk, or
fresh milk to 2-, 3-, and 6-month-old calves. Antibiotic milk
gradually increased Firmicutes abundance, while Bacteroides
gradually decreased. There were also significant proteobacteria
differences in each group. Shen et al. (50) demonstrated that
monensin and nisin both reduced the numbers of bacteria, fungi,
and methanogens. It is undeniable that antibiotics have strong
effects against dangerous pathogens, but they also damage the
beneficial bacteria colonized in the rumen and change the steady
state of rumen microorganisms, especially when taken orally.
Therefore, it is necessary to judiciously use antibiotics in dairy
cow production. When there is no choice, injection is preferred
over oral administration to minimize damage to the RM.

The number of animals selected for this study was limited due
to the research cost. Our results should therefore be confirmed in
a larger sample of animals.
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The animal’s reaction to human handling (i.e., temperament) is critical for work safety,

productivity, and welfare. Subjective phenotyping methods have been traditionally used

in beef cattle production. Even so, subjective scales rely on the evaluator’s knowledge

and interpretation of temperament, which may require substantial experience. Selection

based on such subjective scores may not precisely change temperament preferences

in cattle. The objectives of this study were to investigate the underlying genetic

interrelationships among temperament measurements using genetic factor analytic

modeling and validate a movement-based objective method (four-platform standing

scale, FPSS) as a measure of temperament. Relationships among subjective methods of

docility score (DS), temperament score (TS), 12 qualitative behavior assessment (QBA)

attributes and objective FPSS including the standard deviation of total weight on FPSS

over time (SSD) and coefficient of variation of SSD (CVSSD) were investigated using

1,528 calves at weaning age. An exploratory factor analysis (EFA) identified two latent

variables account for TS and 12 QBA attributes, termed difficult and easy from their

characteristics. Inclusion of DS in EFA was not a good fit because it was evaluated

under restraint and other measures were not. A Bayesian confirmatory factor analysis

inferred the difficult and easy scores discovered in EFA. This was followed by fitting a

pedigree-based Bayesian multi-trait model to characterize the genetic interrelationships

among difficult, easy, DS, SSD, and CVSSD. Estimates of heritability ranged from 0.18 to

0.4 with the posterior standard deviation averaging 0.06. The factors of difficult and easy

exhibited a large negative genetic correlation of−0.92. Moderate genetic correlation was

found between DS and difficult (0.36), easy (−0.31), SSD (0.42), and CVSSD (0.34) as

well as FPSS with difficult (CVSSD: 0.35; SSD: 0.42) and easy (CVSSD: −0.35; SSD:

−0.4). Correlation coefficients indicate selection could be performed with either and

have similar outcomes. We contend that genetic factor analytic modeling provided a

new approach to unravel the complexity of animal behaviors and FPSS-like measures

could increase the efficiency of genetic selection by providing automatic, objective, and

consistent phenotyping measures that could be an alternative of DS, which has been

widely used in beef production.
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1. INTRODUCTION

Temperament in cattle traditionally refers to the animal’s
behavior in the bail (Tulloh, 1961) or the reaction of animal to
human handling (Burrow and Dillon, 1997). Previous studies
have revealed cattle temperament has a significant relationship
with production, reproduction, immunity, and carcass traits
(King et al., 2006; Burdick et al., 2011; Haskell et al., 2014).
Additionally, temperament is usually evaluated at an earlier stage
of cattle than some production traits. Therefore, temperament
could be considered as an indicator of production traits in
genetic selection, where selection on temperament can provide
an opportunity to improve production and efficiency in the beef
industry. Temperament is a complex trait that comprises various
behavioral characteristics such as shyness-boldness, exploration
avoidance, activity, sociability, and aggressiveness (Réale et al.,
2007). Several subjective methods were proposed to score
temperament, including temperament scoring of cattle handled
in a crush with head bail (Tulloh, 1961), flight distance (Fordyce
et al., 1982), docility test (Le Neindre et al., 1995), chute test
(Tier et al., 2001), race score (Turner et al., 2011), and qualitative
behavior assessment (QBA) (Sant-Anna and da Costa, 2013).
These subjective methods are able to integrate various levels
of temperament attributes (e.g., calmness, agitation, flightiness,
aggressiveness) into a single score and create a standardized
test by taking advantage of the experience and interpretation of
the human evaluator on cattle. This is advantageous for typical
production operations due to ease of capturing data compared
to objective methods that require specialized equipment (e.g.,
exit velocity). Even so, closely working with cattle may cause
potential danger for evaluators during scoring. Furthermore,
there is a concern with evaluation bias in subjective methods,
which makes comparison of temperament scoring methods
across experiments difficult. Due to this, measurements without
human interpretation, such as exit velocity (Burrow et al., 1988),
movement-measuring-devices (Stookey et al., 1994; Sebastian
et al., 2011), strain gauges (Schwartzkopf-Genswein et al.,
1997), and objective chute score (Bruno et al., 2018), have
been tested to provide objective and quantifiable temperament
measurements. Understanding how these objective measures
relate to behavioral attributes is of interest, where most
studies have only compared a few common subjective methods
with objective methods using a standard multi-trait model
(Burrow et al., 1988; Stookey et al., 1994; Sebastian et al.,
2011; Bruno et al., 2018). Computational limitations have
also hindered further research in understanding relationship
between objective and subjective methods of temperament.
Therefore, this study introduces a novel, potentially cost effective
objectivemethod using a four-platform standing scale (FPSS) and
investigates its relationship with subjective methods of docility
score (DS), temperament score (TS), and qualitative behavior
assessment (QBA) attributes. The objectives of this study
were to apply genetic factor analytic modeling to characterize
the underlying genetic interrelationships among temperament
measures and validate FPSS as an objective measurement of
cattle temperament. We employed new statistical approaches,
explanatory factor analysis (EFA) and confirmatory factor

analysis (CFA), to overcome the computational challenges due to
a large number of correlated subjective measurements. To our
knowledge, this is the first study to investigate the novel objective
measurement FPSS using EFA and CFA for the genetic analysis
of cattle temperament.

2. MATERIALS AND METHODS

2.1. Animals
From 2014 to 2017, data were collected at weaning time (late
September to late October) at North Dakota State University
Central Grasslands Research Extension Center (CGREC) near
Streeter, North Dakota. Calves (n = 1, 528), including 749 heifers
and 779 steers, were scored at the weaning age (average age was
161.0± 17.0 d) and included for analysis. Calves were either sired
by Angus bulls (all 4 yr) or by Hereford bulls (3 yr) and were from
Angus-influenced (all 4 yr) or Hereford by Angus-influenced
(2 yr) dams. Calves were assigned to one of two primary
breeds (50% or greater) based on known breed percentages,
which resulted in 1,340 Angus- (666 heifers, 674 steers) and
188 Hereford-based (83 heifers, 105 steers) calves. A pedigree
including 109,703 animals was formed using the information
of dams and records of complete ancestry for registered bulls
provided by the American Angus Association and American
Hereford Association. All procedures involved in data collection
were reviewed and approved by the Institutional Animal Care
and Use Committee of North Dakota State University.

2.2. Experiment Procedure
The details of temperament evaluation procedure during the
first year of data collection was previously described by
Hulsman Hanna et al. (2019) and was repeated the remaining
3 years of the study except for collection of the blood draw
effect. Briefly, calves were moved through the working pens to
the evaluation areas and then sorted to different holding pens
for management. In a given year, four evaluators were randomly
assigned two of three subjective scoring methods (DS, TS, and
QBA) prior to evaluation. A total of 11 evaluators were presented
over the 4 yr period as some evaluators were not able to return
for all years of the study. Averages per animal for each subjective
method that had at least three evaluator scores were used in this
study since the focus of this study was not evaluator variation.
Basic means and standard deviations are presented in Table S1.
The first method scored was DS, which is a six point scale
where one and six refer to calm and aggressive, respectively
(Beef Improvement Federation, 2018). The evaluation of DS was
done at the silencer chute with the head of the calf caught and
each calf was evaluated <1 min. Following the evaluation of
DS, weaning weight of the calf was recorded when its body
was squeezed. Upon released from silencer chute, the calf then
entered the FPSS (Pacific Industrial Scale, British Columbia,
Canada) to collect the weight shifts on each quadrant (see next
section for further details). Following FPSS, TS and 12 QBA
attributes were evaluated in the outside testing area, while a single
human handler calmly interacted with the calf. The presence of
this human handler was intended to facilitate evaluation of the
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different aspects of these subjective methods. Following Sant-
Anna and da Costa (2013), TS is a five point scale, with the neutral
value (3) removed, where one indicates calm and five indicates
wild or aggressive. The 12 attributes of QBA consist of active,
agitated, apathetic, attentive, calm, curious, distressed, fearful,
happy, irritated, positively occupied, and relaxed (Sant-Anna and
da Costa, 2013), which can be grouped into positive and negative
behaviors. Each attribute was scored on a 136 mm line indicating
the extent of expression, where the far left and far right refer to no
expression and complete expression of the attribute, respectively.
Evaluators were given a list of QBA in a specific order, however
evaluators scored calves as the attributes were able to be assessed
(i.e., based on calf behaviors), therefore a specific order of scoring
QBA was never consistent across calves or evaluators. Each calf
was measured < 3 min and then sorted into a holding pen for
management purposes.

2.3. FPSS Measurements
The FPSS provides a novel method of quantifying cattle
temperament while also weighing the animal (Figure S1). The
FPSS has scales in each quadrant and connects to a computer
controlled by a worker. Prior to the calf entering the scale, the
worker first enters the tag number of the calf. Once the calf is
on the scale, the worker starts recording weights on the four-
platform for at least 45 s by starting the recording software.
The FPSS computer software is able to record approximately
15 records per second. The worker also keeps a log of any
issues encountered with the calf, large movements, and where
those issues fall in the records, however these do not influence
the selection of records used. Following data collection, FPSS
records of each animal were reviewed for quality before used
in subsequent analyses. To do this, the ideal start point for a
given animal’s scale records (i.e., when the animal is considered
as completely standing on the scale) was identified following the
protocol in Figure 1. Once the start point was identified, that
point and 499 subsequent records were used to calculate the
mean and standard deviation of the total weight. The standard
deviation of FPSS measurements (SSD) and the coefficient of
variation of the SSD (CVSSD = SSD divided by mean) were
used as temperament scores for subsequent analyses. The basis
of SSD is that animals that are more temperamental will move
more often and have larger standard deviations. The CVSSD was
calculated as there was concern the actual weight of the animal
would bias the SSD as larger animals may naturally have larger
standard deviations in records.

2.4. Exploratory Factor Analysis
We fitted EFA using subjective measurements including TS and
12 QBA attributes (t = 13). The logic of using EFA is to
discover the underlying latent variables or factors (q) to represent
observed measurements. Thereby, a network structure between
latent variables and phenotypes was first explored and further
used for downstream analysis. An EFA model is given as a
function of latent factor scores

T = 3F+ ǫ, (1)

FIGURE 1 | A flow of criteria to identify the start point of four-platform standing

scale measurement. The abs and pairwise refer to the absolute difference and

pairwise absolute difference, respectively. WWssp denotes the weaning weight

at current suspected start point (ssp) and WWssp+i is the weaning weight at

the following ith point of ssp, where i = 1 to 5. WWr is weaning weight

recorded in chute system.

where T is a t × n phenotypic matrix, 3 is the t × q
factor loading matrix, F is the q × n latent factor scores,
and ǫ is the t × n matrix of specific effects. The matrix 3

includes the factor loading coefficients, which can be considered
as regression coefficients reflecting the relationships between
observed phenotypes and underlying latent variables. The
variance-covariance structure of T is

var(T) = 383′ + 9 , (2)

where 8 is the variance of factor scores and 9 is the variance
of specific effects. With the assumption of F ∼ N (0, I), a vector

of phenotypes follows a multivariate Gaussian distribution ti
iid
∼

N (0,6), where i refers to ith individual and 6 = 33′ + 9 . The
log-likelihood of the factor analysis model is

L(3,9|T) = −
nq

2
log2π −

n

2
log(6)−

n

2
log(T′6−1T).

The number of underlying latent variables q was determined
using a parallel analysis (Horn, 1965). In brief, the eigenvalues
of the observed data and simulated data conditioned on the
observed data were computed to extract latent variables until
the observed data had a smaller eigenvalue than the simulated
data. Parameters3 and9 were estimated by maximizing the log-
likelihood of L(3,9|T) using an iteration method. We used the
R package psych (Revelle, 2018) to fit EFA. We posited that DS
may not align with other subjective measures since it is collected
in a confined setting, whereas other subjective measures used in
this study were in a pen with free movement. An additional EFA
was fitted including DS to confirm this assumption.
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2.5. Bayesian Confirmatory Factor Analysis
Using results from the EFA as a prior, a confirmatory factor
analysis (CFA) under the Bayesian framework was fitted
following the procedure described in Yu et al. (2019) to obtain
factor scores. We assigned the following priors for Equations (1)
and (2).

3 ∼ N (0, 0.01)

8 ∼ W
−1(I22, 3)

9 ∼ Ŵ
−1(1, 0.5).

The blavaan R package (Merkle and Rosseel, 2018) coupled with
the rstan R package (Carpenter et al., 2017) were applied to
solve the Bayesian CFA model. A Markov chain Monte Carlo
(MCMC) with 6,000 samples and 3,000 burn-in was adapted to
infer the model parameters and in total three MCMC chains
were sampled. The model convergence was validated using
the combination of trace plots and a potential scale reduction
factor (PSRF) less than 1.2 (Brooks and Gelman, 1998). A
PSRF compares the estimated variances across chains and within
the chain, where a large difference indicates additional Gibbs
samplings may be required. This was followed by calculating
the factor scores (F) of latent variables using the Gibbs samples.
When factor scores are consideredmissing, the F is sampled from
a conditional distribution of p(F|θ ,T) (Lee and Song, 2012) using
a data augmentation (Tanner and Wong, 1987), where θ refers
to the unknown parameters 3, 8, and 9 . The factor scores of
latent variables were summarized from the posterior mean of F
and considered as new phenotypes in the downstream analysis.

2.6. Bayesian Multivariate Best Linear
Unbiased Prediction
We used a pedigree-based Bayesian multivariate best linear
unbiased prediction model to perform genetic analysis of SSD,
CVSSD, DS, and latent variables.

Y = µ + Xb+ Zu+ ǫ,

where Y is a vector of factor scores with individuals ordered
within traits, X is the incidence matrix of fixed effects, Z is
the incidence matrix relating individuals with additive genetic
effects, µ is the vector of intercept, b is the vector of fixed
effects, u is the vector of additive genetic effects, and ǫ is the
vector of residuals. The incidence matrix X included birth year
by date of collection (n = 2 per year), primary breed, and sex
following recommendations by (Burrow, 2001; Hulsman Hanna
et al., 2019). The joint distribution of u and ǫ follows a
multivariate normal

(

u

ǫ

)

∼ N

[(

0

0

)

,

(

6u ⊗ A 0

0 6ǫ ⊗ I

)]

,

where A refers to the numerator relationship matrix, I is an
identity matrix, 6u and 6ǫ are genetic and residual variance-
covariance matrices, respectively. Flat priors were assigned to
µ and b. Inverse Wishart distributions with identity scale
matrix and 5 degrees of freedom were assigned for 6u and 6e.

The MTM R package (https://github.com/QuantGen/MTM) was
employed to infer the parameters in the Bayesian multi-trait
linear mixed model and obtain the posterior distribution of these
parameters. This was followed by estimating genetic correlations
and heritabilities using posterior mean estimates from 10,000
Gibbs samples with 3,000 burn-in and a thinning rate of 5. The
model convergence was checked using the trace plots.

3. RESULTS

3.1. Phenotypic Correlation
The phenotypic correlations between all subjective and objective
measurements are displayed in Figure 2. The subjective
measurement TS showed a positive correlation with active,
fearful, agitated, irritated, and distressed, whereas, a negative
correlation with relaxed, calm, and apathetic was found. Among
12 QBA attributes, we observed positive correlations between
similar attributes of temperament (e.g., relaxed and calm) and
negative correlations for opposite aspects of temperament (e.g.,
fearful and calm), which supports the use of EFA for this dataset.

3.2. Latent Structure
The parallel analysis scree plot discovered the first two factors
as latent groups (Figure S2). The EFA loadings in Figure 3

further identified these two latent groups can be interpreted as
difficult (factor 1) and easy (factor 2) due to loading values.
According to Figure 4, the descriptors difficult and easy were
identified because we observed factor 1 has higher loadings for
negative temperament attributes (i.e., TS, active, fearful, agitated,
irritated, and distressed) and factor 2 has higher loadings for
positive temperament attributes (i.e., relaxed, calm, attentive,
positively occupied, curious, apathetic, and happy). The EFA
factor loadings including DS is displayed in Figure S3. As
expected, we found that both factors 1 and 2 have low loadings
for DS.

The standardized factor loading coefficients and their
posterior standard deviations from CFA assuming latent
structure shown in Figure 4 are presented in Table 1. The
standardized factor loading coefficients can be interpreted as
regression coefficients. Overall, we found two factors have strong
contributions to 13 subjective measurements. The factor difficult
presented a strong positive loading to TS (0.861), active (0.820),
fearful (0.840), agitated (0.937), irritated (0.844), and distressed
(0.607), suggesting difficult is a comprehensive representation of
undesirable aspects of temperament. The factor easy showed a
positive strong loading to relaxed (0.968), calm (0.982), positively
occupied (0.636), curious (0.514), apathetic (0.761), and happy
(0.730), indicating an increase of easy can result in more
desirable temperament.

3.3. Genetic Relationships Among
Temperament Measurements
The inclusion of birth year by date of collection, breed,
and sex fixed effects in multivariate analyses of this study
follow previous literature. In this study, birth year by date
of collection was significant, breed was not significant, and
sex was only significant for CVSSD and easy based on 95%
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FIGURE 2 | Phenotypic Pearson correlation coefficients between temperament measurements including temperament score (TS), docility score (DS), 12 qualitative

behavior assessment attributes, and movement-based scores using four-platform standing scale standard deviation (SSD) and its coefficient of variation (CVSSD).

highest posterior density intervals. The heifers were found to
act more temperamental than steers. Effect of sex for these
two traits follow trends seen in other literature (Gauly et al.,
2001). The estimates of heritability (diagonals) and genetic
correlation coefficients (off-diagonals) among SSD, CVSSD,
DS, and easy and difficult factors are shown in Figure 5.
The largest negative genetic correlation was observed between
difficult and easy with a posterior standard deviation of 0.02.
In reference to DS, SSD, and CVSSD, difficult and easy
had moderate genetic correlations with a posterior standard
deviation of 0.16. Intuitively, difficult had positive genetic
correlations (Figure 5) with DS, SSD, and CVSSD indicating
difficulty of handling increased with increasing values of those
variables, respectively. Likewise, easy had negative genetic
correlations with all three variables. The subjective measure
of DS showed a positive genetic correlation with objective
measures SSD and CVSSD, along with a posterior standard
deviation of 0.16 and 0.17, respectively. Thus, a selection
on cattle with lower DS measurement may also result in
lower SSD and CVSSD measurements. The two objective
measurements SSD and CVSSD showed the largest positive

genetic correlation with a posterior standard deviation of 0.06.
Among all five measurements, we found difficult and easy
showed the largest heritability estimates. The subjective measure
DS showed larger heritability estimates than SSD and CVSSD.
Heritability estimates of SSD and CVSSD were similar. All
heritability estimates had a posterior standard deviation of
about 0.06.

4. DISCUSSION

4.1. Factor Analytic Model
Phenotypes are often correlated at the genetic level due to
the pleiotropic effect or the linkage disequilibrium among
quantitative trait loci. The multivariate modeling has been widely
used to model correlated structure by taking the advantage of
the genetic or environmental covariance between phenotypes
(Henderson and Quaas, 1976; Campbell et al., 2019). The
standard multi-trait approach has been proven to be useful for
a trait with low heritability or having scarce records (Mrode,
2014). However, it faces a computational challenge when the
number of phenotypes included is large. Thus, dimensional
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FIGURE 3 | Factor loadings between factors and phenotypes derived from the explanatory factor analysis using temperament score (TS) and 12 qualitative behavior

assessment attributes. Positive and negative relationships are denoted as pink and blue, respectively. Factors 1 and 2 are labeled as Difficult and Easy because of

positive loadings on negative and positive temperament attributes, respectively. The degree of shading corresponds to the intensity of the relationships.

reduction methods play an important role in handling high-
dimensional phenotypes.

One commonly used approach to study temperament
measures is principal component analysis (PCA). This approach
calculates principal components (PCs) from a linear combination
of observed phenotypes by maximizing the total variance.
Napolitano et al. (2012) and Fleming et al. (2013) applied
PCA to analyze QBA with the aim of studying dairy buffalo
behavior and horse behavior during endurance ride, respectively.
Sant-Anna and da Costa (2013) extracted the first principal
component from QBA and used it as a new phenotype to study
cattle temperament. These studies all suggested traits associated
with calm and agitated have a large contribution to the first
principal component, which are two extreme characteristics of
temperament. The validity of PCs derived from PCA in capturing
animal behaviors of both calm and agitated have been supported
by the significant correlations with other temperament methods
in several studies (Petherick et al., 2002; Sant-Anna and da Costa,
2013). One of the favorable features of QBA is its comprehensive
description of temperament by measuring different behaviors.
However, the integration of all QBA attributes using PCs with
extremely opposite measures (e.g., calm and agitated) may not
be desirable because PCA maximizes the total variance, not
the variance due to the common signal among measurements.

Consequently, selection for temperament based on PCs may
be accompanied by substantial risk. Thus, we employed factor
analytic modeling for the first time to study temperament
measures, which provides a novel approach to investigate
multi-phenotypes. The idea behind factor analytic modeling is
to represent the observed phenotypes using the unobserved
latent variables or factors by maximizing the common variance
between correlated phenotypes. When the number of underlying
factors are unknown, it is possible to estimate from the data.
For instance, de Los Campos and Gianola (2007) performed
multi-trait analysis using a factor structure under the Bayesian
framework. Alternatively, we can apply a CFA model, when
the latent structure is assumed to be known. Peñagaricano
et al. (2015) investigated the interrelationships of five latent
variables extracted from 19 traits in swine using CFA. Similarly, a
Bayesian CFA combined with Bayesian Network was employed
to characterize the wide spectrum of 48 rice phenotypes in
Yu et al. (2019). These studies determined the latent structure
by leveraging the prior biological knowledge between factors
and phenotypes. Although the factor analytic model has been
applied in animal and plant breeding, there is still paucity of its
application to a temperament research.

In this study, we leveraged the combination of EFA and
CFA models to identify the mapping between underlying factors
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FIGURE 4 | The latent structure between two factors and 12 qualitative behavior assessment attributes. The two factors were defined based on their relationships

with negative and positive temperament attributes, respectively.

TABLE 1 | Standardized factor loading and corresponding posterior standard

deviation from the Bayesian confirmatory factor analysis.

Latent variable Observed phenotype Loading Posterior standard

deviation

Difficult TS 0.861 0.007

Difficult Active 0.820 0.010

Difficult Fearful 0.840 0.008

Difficult Agitated 0.937 0.004

Difficult Irritated 0.844 0.009

Difficult Distressed 0.607 0.016

Easy Relaxed 0.968 0.002

Easy Calm 0.982 0.002

Easy Attentive 0.079 0.025

Easy Positively occupied 0.636 0.015

Easy Curious 0.514 0.019

Easy Apathetic 0.761 0.011

Easy Happy 0.730 0.012

and temperament measures, and performed genetic analysis of
inferred factors scores. The EFA model aims at estimating the
degree of the contributions of factor to phenotypes, while cross-
loading (multiple factors contribute to the same phenotype) is
allowed. Using the factor loading coefficients, we inferred the
latent structure by removing cross-loading. The combination
of EFA and CFA modeling relied on a data-driven method to
detect the mapping between factors and phenotypes, which is

FIGURE 5 | Genetic correlation estimates between latent variables (Difficult

and Easy) and temperament measurements including docility score (DS),

standard deviation of total weight on scale over time (SSD), and coefficient of

variation of SSD (CVSSD). Difficult and Easy were defined based on their

relationships with negative and positive temperament attributes, respectively.

The diagonal elements are the heritability estimates.

a common case in practice when prior biological knowledge is
not available. In this study, we identified two factors difficult and
easy from TS and 12 QBA. This corroborates the findings from
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previous studies using PCA, where the first principal component
has been heavily influenced by both calm and agitated related
traits (Napolitano et al., 2012; Fleming et al., 2013; Sant-Anna and
da Costa, 2013).

4.2. Temperament Measurements
Previous studies reported the estimate of chute score heritability,
similar with DS in this study, ranged from 0.11 to 0.34
(Le Neindre et al., 1995; Kadel et al., 2006; Beckman et al.,
2007; Hoppe et al., 2010). Burrow and Corbet (2000) suggested
objective methods have higher heritabilities than subjective
methods of scoring temperament. However, our findings show
FPSS measures have slightly lower heritabilities than subjective
methods (Figure 5). Haskell et al. (2014) reviewed studies using
the objective method of flight speed (exit velocity) and found
heritability ranged from 0.05 to 0.70. As suggested by many
previous studies, heritability estimates vary in studies based on
the population’s phenotypic variation. For temperament studies,
this is typically due to differences in experimental design across
experiments (e.g., how evaluators interpret and score the animal
behavior), different measurement protocols (e.g., the coding of
temperament measurements), and breed differences.

Most subjective measures have positive genetic correlations
to other subjective measures in previous studies. For example,
Grandin (1993) reported a positive correlation between docility
test and chute test using Limousin cattle. A positive genetic
correlation between race score and crush score (0.530) was
detected by Turner et al. (2011) in Bos taurus cattle. Sant-Anna
and da Costa (2013) discovered a positive genetic correlation
between flight speed and temperament index (0.49), which is
the first principal component derived from QBA attributes in
principal component analysis. An analogous correlation has been
detected in this study, where DS showed a positive genetic
correlation with difficult (0.36), and a negative genetic correlation
with easy (−0.31) as shown in Figure 5. Difficult and easy
exhibited a large negative genetic correlation (−0.92) which is
expected based on the pattern of the temperament measures
they loaded to. In this study, subjective methods of DS and
difficult displayed a moderate positive genetic correlation with
objective measurements of SSD (0.42 and 0.42) and CVSSD (0.34
and 0.35). Turner et al. (2011) reported the flight speed has a
positive genetic correlation with race score (0.210) and crush
score (0.321). Parham et al. (2019) found the exit score and
exit velocity capture the same temperament behavior based on
a high genetic correlation (0.81). A moderate genetic correlation
between flight speed and chute test score has been reported by
previous studies (Hoppe et al., 2010; Cafe et al., 2011). These
genetic correlations may vary with the differences in breeds,
beef production system, evaluator design (e.g., the number of
evaluator presented in the study and how evaluator was selected),
and/or the number of traits included in a multi-trait analysis.
However, genetic correlations found in this study are consistent
with previous studies.

DS used in this study, which is also known as chute score
(Grandin, 1993), has been widely used in the cattle industry
due to its convenience. However, the application of DS is
still relying on the human evaluator, which suggests a lack

of automation and consistency across populations evaluated
(Hieber, 2016; Celestino et al., 2019). Furthermore, DS is the
only measurement of temperament with the animal under a
restrained condition in contrast with other measurements, which
is supported by poor factor loading scores relative to other
measures in Figure S3. Therefore, we did not combine DS with
other subjective methods for EFA. Furthermore, because DS
and the two FPSS measures showed similar correlations with
difficult and easy latent variables, the use of FPSS over DS is
preferred. This is because the FPSS measures provide automatic,
objective, accurate, and consistent measures of temperament
rather than relying on evaluator experience and reporting that
is needed for DS. It is unlikely, however, that replacement
of current scales in cattle production will occur soon due to
this. However, the theory of using movement-based scores for
temperament has been supported by Sebastian et al. (2011) and
Bruno et al. (2018), indicating that replacement of DS with a
cost-effective movement-based measure is feasible for genetic
selection purposes. Even though DS and FPSS measures identify
similar selection on difficult and easy attributes based on pedigree
and correlation coefficients, it is unclear if similar biological
pathways or systems are being selected on. Expanding this work
to include molecular data to identify genomic relationships
among animals and their temperament scores is needed to clarify
if selection usingmovement-basedmethods can really replace the
use of DS in the cattle industry.

5. CONCLUSIONS

Temperament in cattle is a complex trait that is currently being
collected in the cattle industry using the subjective DS method.
Our study proves that (1) DS (a restrained score) does not
align with temperament attributes that are not restrained and
(2) measures captured using the FPSS (objectives measures)
have similar genetic correlations to DS. This provides support
that movement-measuring devices such as the FPSS can be a
feasible replacement for DS and mirror more non-restrained
attributes of cattle temperament. Furthermore, our study is the
first to implement EFA, Bayesian CFA, and multivariate factor
analytic modeling approaches to identify and confirm suspected
relationships among multiple traits captured on the same set of
animals. We contend that the multivariate factor analytic model
applied to the current cattle temperament study provides a new
avenue to unravel the complexity of animal behaviors.
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Feed efficiency (FE) traits in pigs are of utmost economic importance. Genetic
improvement of FE related traits in pigs might significantly reduce production cost
and energy consumption. Hence, our study aimed at identifying SNPs and candidate
genes associated with FE related traits, including feed conversion ratio (FCR), average
daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI).
A genome-wide association study (GWAS) was performed for the four FE related traits
in 296 Landrace pigs genotyped with PorcineSNP50 BeadChip. Two different single-
trait methods, single SNP linear model GWAS (LM-GWAS) and single-step GWAS
(ssGWAS), were implemented. Our results showed that the two methods showed
high consistency with respect to SNP identification. A total of 32 common significant
SNPs associated with the four FE related traits were identified. Bioinformatics analysis
revealed eight common QTL regions, of which three QTL regions related to ADFI and RFI
traits were overlapped. Gene ontology analysis revealed six common candidate genes
(PRELID2, GPER1, PDX1, TEX2, PLCL2, ICAM2) relevant for the four FE related traits.
These genes are involved in the processes of fat synthesis and decomposition, lipid
transport process, insulin metabolism, among others. Our results provide, new insights
into the genetic mechanisms and candidate function genes of FE related traits in pigs.
However, further investigations to validate these results are warranted.

Keywords: genome-wide association study, feed efficiency, feed conversion ratio, average daily gain, average
daily feed intake, residual feed intake

INTRODUCTION

Feed accounts for about 65% of the total cost in modern pig production and feed efficiency (FE)
traits in pigs are critical (Sanchez et al., 2017). Better FE dramatically reduces production costs,
thus contributes to a reduction of the final cost of products and decreases farming expenses and
energy consumption (Ding et al., 2018). Breeding programs to improve FE have been undertaken
for many years, but FE related traits, such as average daily feed intake (ADFI) and residual feed
intake (RFI), are still difficult to be improved because they can neither be selected nor directly
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measured (Silva et al., 2019). Usually, FE is evaluated by
four traits: feed conversion ratio (FCR), average daily gain
(ADG), ADFI, and RFI (Onteru et al., 2013). The phenotypic
measurements of FCR, ADFI, and RFI are difficult and costly
which need an automatic feeding system. Besides, the selection
of single FE related traits may affect other traits that are valuable
for pig production, such as growth rate (Horodyska et al.,
2017). This conundrum makes the genetic investigation of
FE very important.

Therefore, it is essential to understand the molecular
mechanism and genetic basis underlying FE related traits for the
improvement of FE. In past decades, hundreds of quantitative
trait loci (QTLs) affecting complex traits in pigs, including FE
related traits, have been detected. Among these, 346, 618, 96, and
96 QTLs for FCR, ADG, ADFI, and RFI have been identified in
different pig populations,1 respectively. However, their molecular
regulation mechanism remains largely unknown.

In recent years, with the development of dense genomic
markers and significant reduction in cost, genome-wide
association study (GWAS) has become increasingly popular
for detecting genetic variants associated with economic traits
(Do et al., 2014b; Ding et al., 2018). Studies have revealed many
potential candidate genes for FE related traits in pigs. For FCR,
several researchers reported that significant SNPs and QTLs
were mainly located on chromosomes (SSC) 4, 6, 7, 8, 17, and
18 (Sahana et al., 2013; Horodyska et al., 2017). Another study
identified three QTLs for ADG, which were located on SSC 4,
14, and 15 (Ji et al., 2019). Compared to FCR and ADG, only
few studies on RFI were carried out in pigs. Onteru et al. (2013)
reported several QTLs on chromosomes 7 and 14 that are related
to RFI in Yorkshire pigs. Recently, Silva et al. (2019) identified
three QTL regions located on SSC1 that are associated with
ADFI. Although high density chips and GWAS had detected
more and more genetic variants in pig economic traits, FE
related traits (ADFI and RFI) still progress slowly because of the
difficultly in phenotype measuring and recording. In addition,
most of these studies, mainly focus on Duroc and Yorkshire
breeds, and FE related traits studies on Landrace have been rarely
reported. So far, according to PigQTLdb,1 four FE related traits
(FCR, ADG, ADFI, and RFI) have been reported 371 QTLs in
Duroc, 185 in Yorkshire and only 46 in Landrace pigs. Therefore,
further investigation is needed to better understand FE related
traits in Landrace population.

In this study, we performed a GWAS in a Landrace population
to identify genomic regions and genes associated with four FE
related traits: FCR, ADG, ADFI, and RFI.

MATERIALS AND METHODS

Ethics Statement
The whole recording procedure of ear tissue samples was
carried out in strict accordance with the protocol approved
by the Institutional Animal Care and Use Committee
(IACUC) at the China Agricultural University. The IACUC

1http://www.animalgenome.org/cgi-bin/QTLdb/SS/index

of the China Agricultural University approved this study
(permit number DK996).

Animals and Phenotypes
In this study 296 Landrace pigs were sampled. Phenotypic
information of two batches comprising 156 and 140 pigs was
recorded from April to July, and July to August in 2018,
respectively. The first batch of 156 pigs was obtained from 46
litters born in April (one to nine individuals from each litter with
an average of three), and the 140 pigs in the second batch born
in July were obtained from 41 L (one to eight individuals from
each litter with an average of three). The original feeding records
were automatically generated by the pig automatic feeding system
(ACEMO128 Feeding station, France). The phenotypic data
comprised individual ID, starting weight, daily feed intake, daily
weight gain, final weight, feeding period, and feed conversion
rate. Data were collected from each pig during the feeding period
(approximately 11 weeks old), from 25 to 100 kg body weight
(BW). The piglets were group-housed in half-open cement-floor
pens (10–12 animals in each pen, with an average space of two
m2 per pig). Each animal was labeled with a unique electronic
identification tag on the ear and detected by the automatic
feeding system. Once a pig visited the feeder, the date and
exact start and stop feeding time, the animal number, and feed
consumption of each visit were recorded.

The traits (ADFI, FCR, and ADG) for each pig were calculated
throughout the testing periods according to the information
provided by the automatic feeding system. ADFI was calculated
by the total amount of recorded feed intake divided by the length
of the fattening period. ADG was calculated by total weight
gain (final weight minus initial weight) during measure periods
divided by the corresponding feeding days. FCR was calculated
as the ratio of total feed intake to total weight gain. Finally, RFI
was calculated following the formula (Do et al., 2013).

RFI = ADFI− (β0 + β1BW+ β2 ∗ ADG+ e)

where β0 is the intercept, β1 represents the partial regression
coefficient of ADFI on BW, β2 is the partial regression coefficient
of ADFI on ADG, and e is the residual error.

The phenotype values of four FE related traits were calculated,
and their corresponding descriptive statistics were performed
(Table 1). The average FCR was 2.47 with a standard deviation of
0.52, whereas ADG and ADFI were 0.79 and 1.93 kg per day on

TABLE 1 | The descriptive statistics of four feed efficiency traits.

Traita N-1b N-2c Mean SDd Min Max p_valuee

FCR 156 140 2.47 0.52 1.05 4.75 1.02E-09

ADG (kg/day) 156 140 0.79 0.12 0.38 1.18 0.89

ADFI (kg/day) 156 140 1.93 0.38 0.68 2.91 2.63E-10

RFI (kg) 156 140 0.01 0.32 −1.00 0.83 1.76E-14

aFCR, feed conversion ratio; ADG, average daily gain; ADFI, average daily feed
intake; RFI, residual feed intake. bN-1 = number of individuals for each trait in
the first batch. cN-2 = number of individuals for each trait in the second batch.
dSD = standard deviation. ep_value = p-value of Student’s test for two batches
data at significance level 0.05.
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average with a standard deviation of 0.12 and 0.38, respectively.
RFI ranged from -1.00 to 0.83 kg with an average of 0.01 and a
standard deviation of 0.32. The Student’s t-test showed that the
data from the two batches of pigs were significantly different for
FCR, ADFI, and RFI. The genetic correlations of FE related traits
were calculated using ASREML software (Gilmour et al., 2015)
four traits were analyzed together. The model fitted for FCR,
ADG, ADFI, and RFI was:

y = µ+ Xb+ Z1a+ Z2t+ e

with

E


y
a
t
e

 =


Xb
0
0
0

 , Var


a
t
e

 =


Aσ2
a 0 0

0 Iσ2
t 0

0 0 Iσ2
e


where, y is the vector of phenotypic values of four trait; µ is
the population mean; b is the fixed effect of the batch; a is
the vector of additive genetic effects; t is the vector of litter
effects; e is a vector of residual error effects. X, Z1, and Z2 are
incidence matrices of y related to b, a, and t, respectively. A
is the genetic relationship matrix, five generations of pedigree
were traced back to construct A, and σa

2 is the additive genetic
variance. I is the identity matrix of appropriate dimension, σt2 is
the variance of litter effect and σe

2 is the residual variance.
Subsequently, genetic correlations were calculated based on

the variance components as follows:

rA =
cov(a1, a2)

σa1σa2

where, rA is the genetic correlation between trait 1 and trait 2, a1
and a2 represent the additive genetic values of trait 1 and trait 2
for same individuals, cov(a1,a2) and σa1, σa2 refer to the genetic
covariance of two traits and genetic standard deviation of trait 1
and trait 2, respectively.

Genotyping and Quality Control
Genomic DNA was extracted from ear samples using a TIANamp
Blood DNA Kit (catalog number DP348; Tiangen, Beijing).
Genotyping was performed on 50697 SNPs across the entire pig
genome using a PorcineSNP50 BeadChip (Illumina, San Diego,
CA, United States). Quality control was performed using PLINK
1.9 software (Chang et al., 2015). Individuals with call rates (CR)
less than 95% were removed and then SNP with CR less than 95%,
minor allele frequencies (MAF) < 5%, or significant deviation
from the Hardy–Weinberg equilibrium (HWE; P < 10 × 10−6)
were removed. After genotype quality control, no individuals
were removed, and 41272 SNPs remained for further analysis.

Genome-Wide Association Study
In this study, two different single-trait methods, single SNP linear
model GWAS (LM-GWAS) and single-step GWAS (ssGWAS)
were implemented to identify significant SNPs associated with
FE related traits.

Linear Model GWAS (LM-GWAS)
A single SNP marker linear regression model was performed
using the following single-trait animal model to detect the
association of SNP with the four FE related traits, respectively.
In order to control population stratification and to account for
shared genetic effects of related individuals, a random polygenic
effect was included in this model (Sanchez et al., 2014):

y = µ+ batch+ bx+ g+ e

where, batch is the fixed effect of the batch; b is the average
effect of the gene substitution of a particular SNP; x is a vector
of the SNP genotype (coded as 0, 1, or 2); g is a vector of
random polygenic effects with a normal distribution g∼N(0,
Gσ2), in which σ2 is the additive polygenic variance, and G is
the genomic relationship matrix constructed using all markers
following Yang et al. (2011) e is a vector of residual effects with
a normal distribution e∼N(0, Iσe2), where I is the identity matrix
of appropriate dimension and σe

2 is the residual variance. For
each SNP marker, the estimation of b and its sampling variance
σb

2 can be obtained through the mixed model equations.

Single-Step GWAS (ssGWAS)
Compared to LM-GWAS, the following single-trait animal model
in ssGWAS proposed by Wang et al. (2012) can simultaneously
use all the SNP information:

y = Xb+ Zu+ e

where b is the fixed effect of batch; u is the vector of additive
genetic effects with a normal distribution µ∼N(0, Gσµ

2), σu
2 is

the additive genetic variance, and G is same as in LM-GWAS. X
and Z are incidence matrices of y related to b and u, respectively.

The effect of each SNP can be estimated by ssGWAS, following
Aguilar et al. (2019) the P-value of each SNP was calculated:

pi = Pt

 ûi√
σ̂2

i /n
, n− 1


where Pt is the distribution function of t distribution, ui is ith SNP
effect, σ̂i

2 is the genetic variance of ith SNP, n is the number of
animals with ith SNP.

The software GCTA (Yang et al., 2011) was used for the
LM-GWAS method. The genetic variance of each SNP was
also provided. For ssGWAS, blupf90 was to estimate genomic
breeding values that were used to further estimate SNP effects and
P-values via postGSf90 (Aguilar et al., 2018).

In order to control false positives, the False Discovery Rate
(FDR) method for multiple testing was used (Benjamin and
Hochberg, 1995; Weller et al., 1998). FDR was calculated as:

FDR =
m× PMax

n

where m is the number of times to be tested, n is the number
of significant SNPs at assigned FDR level, e.g., 0.01. PMax is
the genome-wide significance level empirical P-value of FDR
adjusted. Based on the P-values of SNPs obtained by two different
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methods, the empirical P-value of FDR adjusted at the genome-
wide significance level of 0.01 was calculated on each trait for two
methods in this study.

Population Stratification
In order to assess the influence of population stratification on
the GWAS, A quantile-quantile (Q-Q) plot was generated using
PLINK 1.9 software.

Identification of Candidate Genes
After identifying significant SNPs by GWAS, the genes located in
or overlapping between the 0.25 Mb downstream and 0.25 Mb
upstream region of the significant SNPs were determined using
the Ensembl (Sus scrofa 11.1 genome version).2 QTLdb3 was used
to annotate significant SNPs located in previously mapped QTLs
in pigs. To identify the related pathways and function annotation,
KEGG4 and Gene Ontology analyses5 were performed.

RESULTS

Genetic Correlations of FE Related Traits
The genetic correlations of FE related traits ranged from 0.12
to 0.90, while the standard errors of all genetic correlations
were high. Among the four FE related traits, FCR had the
highest genetic correlations of 0.90 with ADFI, while it had the
lowest genetic correlation of 0.12 with ADG. The corresponding
standard errors were 0.17 and 0.59. The genetic correlation
between FCR and RFI was 0.72 with standard error of 0.18.
Similarly, the genetic correlation of RFI with ADFI was 0.71 with
standard error of 0.14. The genetic correlations of ADG with
ADFI and RFI were 0.51 and 0.38 with standard errors of 0.34
and 0.44, respectively.

Population Stratification
False-positive results for significant SNPs are the most critical
problem in GWAS. Therefore, it is essential to control population
stratification and reduce the occurrence of false-positive results.
The quantile-quantile plots (Q-Q plots) show that the influence of
population stratification was negligible (Figure 1). Moreover, the
average genomic inflation factors (λ) for the four FE related traits
were close to 1 (range 1.02–1.09). The QQ plots and λ suggest that
there were little or no residual population structure effects on the
test statistic inflation. Despite the small sample size, the results of
GWAS were reasonable and worth further investigation.

Identification of Significant SNPs and
QTL Regions Associated With FE
Related Traits
All significant SNPs associated with the four FE related
traits (FCR, ADG, ADFI, and RFI) identified by GWAS are

2http://www.ensembl.org/Sus_scrofa/Info/Index/
3http://www.animalgenome.org/cgi-bin/QTLdb/SS/download?file=gbpSS_11.1
4http://www.kegg.jp/kegg/pathway.html/
5http://www.pantherdb.org/

illustrated in Supplementary Tables 1, 2 and Figures 2, 3.
In LM-GWAS and ssGWAS methods, the empirical P-values
of a multiple testing based on FDR adjusted at the genome-
wide significance level of 0.01 for FCR were 7.48 × 10−4

and 7.17 × 10−4, respectively. For ADG, ADFI and RFI, the
genome-wide empirical P-values obtained by LM-GWAS
were 5.64 × 10−4, 6.53 × 10−4 and 7.58 × 10−4, and
ssGWAS were 5.24 × 10−4, 6.16 × 10−4 and 5.89 × 10−4,
respectively. A total of 55 and 50 genome-wide significant
SNPs were found by LM-GWAS and ssGWAS methods, 32
SNPs out of them were common (Figure 4). Among the
55 significant SNPs identified by the LM-GWAS method,
15, 11, 13, and 16 SNPs were related to FCR, ADG, ADFI,
and RFI, and correspondingly explained 2.66, 1.33, 1.64,
and 1.80% additive genetic variance, respectively. These
SNPs were mainly located on all autosomes except SSC15
(Supplementary Table 1). Among them, two significant
SNPs (WU_10.2_6_122065838, WU_10.2_4_116973174) were
associated with both ADFI and RFI. The ssGWAS method
identified 9, 13, 17, and 11 significant SNPs associated with
FCR, ADG, ADFI and RFI, which were mainly located
on SSC3, 4, 8, 9, and 17, respectively (Supplementary
Table 2), and explained 1.20, 1.79, 2.07, and 1.29% additive
genetic variance. Among the 50 SNPs, three common SNPs
(WU_10.2_6_122065838, ALGA0049005 and ALGA0019602)
were all significant in both ADFI and RFI. In addition,
the SNP WU_10.2_6_122065838 was also identified in
the LM-GWAS method.

Meanwhile, 13 regions were identified by two methods,
as shown in Table 2. Among them, eight common regions
were found by two different methods. Three regions for
FCR were found located on SSC7, SSC17, and SSC18,
respectively. Four regions for ADG were identified on SSC2,
SSC3, SSC4, and SSC5. Four regions for ADFI and five
regions for RFI were also identified. Among them, one
region for ADG and ADFI, and two regions for ADFI and
RFI overlapped. According to Pig QTLdb,1 eight regions
identified in our study overlapped or were close to the
reported QTLs related to FCR, ADG, ADFI, and RFI. Among
them, four regions overlapped and four regions were nearby
the reported QTLs.

Identification of Candidate Genes
All the significant SNPs identified by the two methods were
annotated within the 0.25 Mb downstream and upstream region
with reference to the Sus scrofa 11.1 genome assembly. GO
analysis separately revealed 12 candidate genes for LM-GWAS
and 7 candidate genes for ssGWAS (Table 3). Combined these
two methods, 13 positional candidate genes were detected
for the four FE related traits. Among them, six genes had
function related to FCR, two genes for ADG, four genes
for ADFI, and two for RFI. These 13 candidate genes have
a highlight biology function with FE, which involved in
biological processes such as lipid metabolism, carbohydrate
metabolism, lipid transport, and regulation of insulin secretion.
Among them, six genes were identified in both LM-GWAS
and ssGWAS methods.
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FIGURE 1 | Quantile–quantile plots of GWAS for four feed efficiency traits in a Landrace population. FCR, Feed conversion ratio; ADG, Average daily gain; ADFI,
Average daily feed intake; RFI, Residual feed intake. The x-axis and the y-axis represent the expected and observed -log10(P-value). (A) FCR. (B) ADG. (C) ADFI.
(D) RFI.

DISCUSSION

Sample Size for GWAS
Sample size is a key factor for the efficiency of GWAS; one
drawback of this study is that only 296 Landrace pigs were used to
detect the genetic variants related to FE related traits. Compared
to other traits, the measurements of FE related traits are usually
difficult. Besides, it is not easy to acquire a large sample size. For
instance, Ding et al. (2017) used a comparable population size of
338 Duroc boars to detect feeding behavior and eating efficiency
by GWAS. Ramayo-Caldas et al. (2019) integrated GWAS and

gene expression to identify putative regulators and predictors of
FE using 350 Duroc pigs. To minimize the effect of the small
sample size on GWAS, the phenotypes were strictly measured in
this study, and two different methods were implemented, which
adopted a single-marker only or multiple SNPs simultaneously to
take into account the genetic correlations among relevant traits.

Genetic Correlations and Significant
SNPs With Pleiotropy
GWAS performed in pigs revealed significant associations
for economically-relevant traits. In recent years, researches
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FIGURE 2 | Manhattan plot of the genome-wide association analysis on four feed efficiency traits by using linear model GWAS (LM-GWAS) method. FCR, Feed
conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. In the Manhattan plots, negative log10 P-values of the
quantified SNPs were plotted against their genomic positions. The x-axis and the y-axis represent the number of chromosome and the observed -log10(P-value),
respectively. Different colors indicate various chromosomes. The blue lines indicate the genome-wide significant thresholds of FDR adjusted, respectively. For
(A) FCR, it was 7.48 × 10−4. Similarly, (B) ADG was 5.64 × 10−4, (C) ADFI was 6.53 × 10−4, and (D) RFI was 7.58 × 10−4.

performed GWAS on FE related traits, unveiling high genetic
correlations. For instance, Godinho et al. (2018) found that in
purebred pig ADFI highly genetically correlates with FCR (0.71)
and RFI (0.73), respectively. FCR had a high correlation with
RFI (0.82). Do et al. (2013) also found high genetic correlations
between FE related traits in Landrace. They found the genetic
correlation of ADG and ADFI was 0.72. RFI had highly genetic
correlations with FCR (0.91) and ADFI (0.84). Similar results
were also found in our study (Table 2). Furthermore, our
results showed that some significant SNPs with pleiotropic
effects were identified. Four SNPs were significantly associated

with both ADFI and RFI. Moreover, significant SNPs identified
in GWAS overlap between some extent for these two traits.
Based on the regions of merging neighbored significant SNPs,
significant SNPs for ADFI (4 SNPs) and RFI (2 SNPs) were
located in a region of 105.57–106.83 Mb on SSC4. Similarly,
the regions of 102.88–105.56 Mb on SSC8 correlated with both
RFI and ADFI. We speculate that due to the pleiotropy of
the SNPs associated with one trait (ADFI/ RFI), these traits
tend to affect multiple additional phenotypes. Likewise, in cattle,
many concordant QTLs between RFIp (calculated from linear
phenotypic regression) and RFIg (calculated from linear genetic
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FIGURE 3 | Manhattan plot of the genome-wide association analysis on four feed efficiency traits by using single-step GWAS (ssGWAS) method. FCR, Feed
conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. In the Manhattan plots, negative log10 P-values of the
quantified SNPs were plotted against their genomic positions. The x-axis and the y-axis represent the number of chromosome and the observed -log10(P-value),
respectively. Different colors indicate various chromosomes. The blue lines indicate the genome-wide significant thresholds of FDR adjusted, respectively. For
(A) FCR, it was 7.17 × 10−4. Similarly, (B) ADG was 5.52 × 10−4, (C) ADFI was 6.16 × 10−4, and (D) RFI was 5.89 × 10−4.

regression) were reported by Nkrumah et al. (2007) 14 common
and 3 distinct QTLs were identified for the two RFI measures.

The Comparison of Different Methods
Single SNP regression model is widely used in GWAS to
identify the association of SNP with traits of interest, whereas
it usually yields a high false-positive rate due to ignoring the
linkage disequilibrium between adjacent SNPs. Some researchers
investigated a haplotype-based sliding window strategy to reduce
the false-positive by using multiple SNPs simultaneously. Some
studies indicated that sliding window could result in different

QTL regions, genes and SNPs with a single SNP method
(Guo Y. et al., 2008; Braz et al., 2019) while some results
showed that sliding window for GWAS could be complementary
to single SNP analysis (Lorenz et al., 2010; Guerra et al.,
2019). The controversy may perhaps depend on the different
genetic architecture of the target trait. Recently, ssGWAS, which
enables simultaneous analysis of an extensive array of SNPs,
demonstrated its superiority in the reduction of false-positive
rates (Wang et al., 2012). Therefore, ssGWAS and LM-GWAS
were both used in our study to reduce false-positive rates and
identified the correctness of our results. Our results reinforce the
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FIGURE 4 | Venn plot of significant SNPs in two methods. Significant SNPs
by linear model GWAS (LM-GWAS) and single-step GWAS (ssGWAS) for four
traits.

high consistency of these two methods, in which 32 common
significant SNPs were identified by both methods (Figure 4).
Meanwhile, Wang et al. (2014) reported that ssGWAS and a
single-marker model had similar results in broiler chickens. So
all these two methods could improve the power of GWAS and
the accuracy of significant SNPs selected.

QTLs Related to FE Related Traits
Alignment of the genetic and physical maps on the Sus scrofa
11.1 genome assembly (Pig QTLdatabase) enabled comparison of
the QTLs detected in our study with previously described QTL
regions, and several of QTLs were selected for further analysis.
The most prominent common regions for FCR were identified
on SSC17, and 18. A QTL from this study located at 20.48–20.96
Mb on SSC18 coincides with a QTL identified for ADG in a
Duroc sire population mapped across the region of 21.47–21.47
Mb (Wang et al., 2015). For ADFI, the most promising QTLs were
detected on porcine SSC9. A QTL located at 128.77–129.09 Mb
on SSC9 overlapped with a QTL for ADFI in a pig line (Reyer
et al., 2017). In addition, other QTLs located in 1.15–2.69 Mb
(SSC17) for FCR and 0.35–0.54 Mb (SSC3) for ADG were all also
consistent with QTLs for BW (Guo Y. M. et al., 2008; Fan et al.,
2009). Two interesting regions containing all 6 significant SNPs
for both ADFI and RFI were detected in the regions of 105.57–
106.83 Mb on SSC4 and 102.88–105.56 Mb on SSC8. Among
them, the QTL located in 105.57–106.83 Mb overlapped with two
identified QTLs for FCR in the regions of 105.64–105.64 Mb and
106.51–124.31 Mb (Wang et al., 2015). Thus, this QTL has been
independently discovered in different populations for ADFI/RFI
and FCR, which further supports the biological relevance of
common genetic variation on FE related traits (Becker et al.,
2013). Another QTL for ADFI/RFI traits located at 102.88–105.56
Mb on SSC8 found in this study was in close proximity to a
QTL (107.04–113.33 Mb) for ADG reported by Haggman and
Uimari (2017). The remaining QTL regions for ADG identified
in this study on SSC2 and 5 were close to regions affecting FE

related traits and growth rate according to literature reports (Fan
et al., 2009; Rothammer et al., 2014). Gregersen et al. (2012)
reported a limited overlap of QTL for a particular trait between
breeds. Although the sample size was limited, our result also had
a large number of overlapping and coinciding QTL regions is in
accordance with others’ GWAS results, and it suggests that our
present study is reliable and accurate in a certain extent, and
worth of further research for verifying candidate genes.

Potential Candidate Genes
Potential Candidate Genes for FCR
Growth rate and feed intake were major influencing factors
of FCR. One candidate gene Phospholipase A2 Group IB
(PLA2G1B), which can encode a secreted member of the
phospholipase A2 (PLA2), is crucial for the biological functions
of lipid metabolic and catabolic processes. Hollie and Hui (2011)
found that PLA2G1B affects the inhibition of lysophospholipid
absorption, and limits lipid catabolic process. Additionally,
PLA2G1B also produces lysophospholipids that limit hepatic
fat catabolism and reduce energy consumption (Labonte et al.,
2010). In previous studies on pigs, lipid metabolism pathway
and energy pathway closely associated with RFI in muscle and
adipose tissues (Lkhagvadorj et al., 2010; Vincent et al., 2015;
Gondret et al., 2016). The PLA2G1B gene can have an effect on
lipid metabolism in pigs and thus, on FCR, the ratio between feed
intake and BW gain. Another candidate gene, Sirtuin 4 (SIRT4),
has a vital role in glutamine metabolism and negative regulation
of insulin secretion. Some researchers found that this gene is
a regulator of insulin secretion, and it can reduce pancreatic
insulin secretion (Anderson et al., 2017; Zaganjor et al., 2017;
Huynh et al., 2018). Insulin sensitivity modulation and glucose
handling influence energy metabolism and FE related traits
(Fontanesi et al., 2012). Moreover, Do et al. (2014b) reported that
insulin secretion affects the metabolic process of carbonization,
which drives feed intake and FCR. In a previous study, lower
insulin secretion led to a decrease in RFI, which triggered fat
deposition (Hoque et al., 2009). The other four candidate genes
(PLCL2, phospholipase C like 2; SPAM1, Sus scrofa sperm adhesion
molecule 1; HYAL4, hyaluronidase 4; ENSSSCG00000016602)
which were reportedly related to FE traits in pigs, are similarly
involved in fat synthesis and decomposition processes, as well as
insulin and lipid metabolism, and lipid transport.

Potential Candidate Genes for ADG
An important FE related trait is ADG, and many animal
nutritionists consider this trait to be a major ethological concern.
The most significant locus, ASGA0036538, was closest to the G
Protein-coupled Estrogen Receptor 1 (GPER1) gene. GPER1 is
associated with positive regulation of insulin secretion, inhibition
of fat cell differentiation (Williams, 2012) and insulin signal
pathway (Kumar et al., 2011). Hayes et al. (2011) reported that the
GPER1 gene could stimulate the release of insulin and prevent the
apoptosis of pancreatic beta cells. Although GPER1 has not been
reported in pigs, it was associated with activate estrogen receptors
involved in the hypothalamic control of multiple homeostatic
functions in mice, such as energy metabolism (Hadjimarkou
and Vasudevan, 2018). Do et al. (2014a) found that genes
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TABLE 2 | Quantitative traits loci (QTLs) related to four feed efficiency traits.

Traita Methodb Chromosome Region (Mb)c Nd QTL region (Mb)e Traits related with QTL

FCR a 7 45.83–45.86 2 45.10–53.98 Average daily gain (Quintanilla et al., 2002)

a&b 17 1.15–2.69 7 0.44–20.053 Body weight (Guo Y. M. et al., 2008b)

a&b 18 20.48–20.96 2 21.47–21.47 Average daily gain (Wang et al., 2015)

ADG a&b 2 147.07–147.11 2 148.27–148.27 Body depth/width (Fan et al., 2009)

a&b 3 0.35–0.54 3 1.79–4.20 Body weight (Fan et al., 2009)

a&b 5 8.85–8.87 3 9.29–9.29 Average daily gain (Rothammer et al., 2014)

ADG\ADFI b 4 120.99–121.96 5 120.51–134.90 Body weight (Bartenschlager and Geldermann, 2003)

ADFI a&b 9 128.77–129.09 2 128.00–128.99 Daily feed intake (Reyer et al., 2017)

128.99–147.51 Body weight (10 weeks) (Yoo et al., 2014)

ADFI\RFI a&b 4 105.57–106.83 6 105.64–105.64 Feed conversion ratio (Wang et al., 2015)

106.51–124.31 Average daily gain (Malek et al., 2001)

a&b 8 102.88–105.56 6 107.04–113.33 Feed intake per feeding (Ding et al., 2017)

RFI b 9 112.25–112.31 3 114.32–123.52 Lipid accretion rate (Duthie et al., 2008)

a 11 5.38–6.37 2 6.01–6.99 Residual feed intake (Jiao et al., 2014)

16.03–16.08 3 15.85–15.85 Feed conversion ratio (Horodyska et al., 2017)

aFCR, Feed conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. ba = linear model GWAS (LM-GWAS), b = single-step
GWAS (ssGWAS). cRegion (Mb) = the merging of neighbored significant SNPs. dN = Number of significant SNPs in the region. eQTL region (Mb) = The QTL regions
reported in Pig QTLdb. Values in bold had an overlap region with QTLs for FE related traits in Pig QTLdb.

TABLE 3 | Significant SNPs and related genes for four feed efficiency traits.

Traita Methodb SNP name Chromosome Position (bp) Genec Distanced Gene function

FCR a&b WU_10.2_13_3842462 13 3,655,526 PLCL2 -150,373 Lipid catabolic process

a ASGA0062927 14 40,507,969 SIRT4 +204,081 Negative regulation of insulin
secretion

PLA2G1B +185,650 Lipid metabolic process

a ASGA0062929 14 40,548,521 PLA2G1B +226,202 Lipid metabolic process

a ALGA0097485 18 23,538,749 SPAM1 -51,203 Carbohydrate metabolic process

HYAL4 -85,477

ENSSSCG00000016602 -88,233

ADG a&b ASGA0100941 2 147,068,762 PRELID2 -40,819 Phospholipid transport process

a&b WU_10.2_2_153522747 2 147,112,980 PRELID2 Within Phospholipid transport process

a&b WU_10.2_3_329436 3 537,968 GPER1 -174,192 Positive regulation of insulin secretion;
negative regulation of lipid
biosynthetic process

ADFI a ASGA0005581 1 203,367,107 ACER2 -19,714 Lipid metabolic process

b ALGA0019602 3 68,298,863 HK2 +67,248 Glucose metabolic process; glycolytic
process

a&b ALGA0065251 12 14,839,808 TEX2 Within Lipid transport process

ICAM2 -42115 Insulin metabolic process

RFI b ALGA0019602 3 68,298,863 HK2 +67,248 Glucose metabolic process; glycolytic
process

b WU_10.2_11_4727497 11 50,92,611 PDX1 -211,028 Glucose metabolic process; insulin
secretion

a&b ALGA0060467 11 53,79,554 PDX1 +68,711 Glucose metabolic process; insulin
secretion

aFCR, Feed conversion ratio; ADG, Average daily gain; ADFI, Average daily feed intake; RFI, Residual feed intake. ba , linear model GWAS (LM-GWAS); b, single-step GWAS
(ssGWAS). cPLCL2, Phospholipase C Like 2; SIRT4, Sirtuin 4; PLA2G1B, Phospholipase A2 Group IB; SPAM1, Sperm Adhesion Molecule 1; HYAL4, Hyaluronidase 4;
PRELID2, PRELI Domain Containing 2; GPER1, G Protein-coupled Estrogen Receptor 1; ACER2, Alkaline Ceramidase 2; HK2, Hexokinase 2; TEX2, Testis Expressed 2;
ICAM2, Hexokinase 2; PDX1, Pancreatic and Duodenal Homeobox 1. d

+/-: The SNP located in the upstream/downstream region of the nearest gene.

which are involved in insulin signaling and energy metabolism
pathway played an important function in the regulation of
FE related traits, such as RFI. Our study confirmed previous
investigations. As to PRELI Domain Containing 2 (PRELID2),

which is associated with phospholipid transport process and
related pathway. In previous GWAS studies on pigs, the PRELID2
gene has been reported to be associated with reproduction traits
in Yorkshire pigs (Wang et al., 2018). Its relation to ADG, to
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the best of our knowledge, this genetic association was reported
in pigs for the first time. Auqui et al. (2019) found that fatter
pigs had higher cholesterol levels, suggesting a link between
cholesterol levels and body weight. Their results demonstrated
that PRELID2 could significantly regulate body weight through
cholesterol levels. The three genes above were found by both
LM-GWAS and ssGWAS methods.

Potential Candidate Genes for ADFI
Some breeders are concerned about ADFI because this trait is
highly associated with FE and growth rate (Do et al., 2013).
Both LM-GWAS and ssGWAS methods identified a significant
locus, ALGA0065251. According to the annotation, Intercellular
adhesion molecule 2 (ICAM2) and Testis expressed 2 (TEX2)
are associated with ADFI. ICAM2 has a key function in glucose
stimulus and insulin metabolic process (Qiu et al., 2008). The
relation between insulin signaling pathway and RFI has been
shown in pigs (Do et al., 2014b) and cattle (Chen et al., 2012;
Rolf et al., 2012). In pigs, ICAM2 gene is reported a meat
quality traits involved in lipid metabolism and intramuscular fat
deposition (Jeong et al., 2015). Researchers suggested that ICAM2
was closely related to glucose stimulus and insulin metabolic
processes, which are important for FE. Grefhorst et al. (2019)
reported that TEX2 promotes the transfer of cholesterol and
other lipids in different cyclic lipoprotein. Our results show that
TEX2 is associated with the ADFI trait in Landrace pigs for
the first time. Of note, a strong association between TEX2 and
FE, and growth rate in broilers was reported (Willson et al.,
2017). Another candidate gene Alkaline Ceramidase 2 (ACER2),
is closely associated with lipid metabolism (Zhang et al., 2019).
This gene was identified by the LM-GWAS method. Several
studies also support the notion that lipid metabolism is associated
with RFI in pigs (Lkhagvadorj et al., 2010) and cattle (Herd and
Arthur, 2009). Lkhagvadorj et al. (2010) found many genes in
fat and liver that were differently expressed in low and high
RFI pigs in response to caloric restriction and indicated that
lipid metabolic pathways were important for regulation of RFI.
Nevertheless, the lipid metabolic process is a very broad term, and
therefore it might be worthy of further investigation to identify
the exact sub-process that are involved in ADFI metabolism.
Besides, one candidate gene (HK2, Hexokinase 2) was identified
by the ssGWAS method. This gene was reportedly associated with
glucose metabolism, insulin secretion, and glycolytic regulation
(Wei et al., 2016; Miller et al., 2019). Our findings support a better
understanding of the ADFI trait in pig lipid metabolism.

Potential Candidate Genes for RFI
RFI is an essential trait for animal husbandry and many studies
have been conducted to investigate the genetic architecture
underlying this trait. A variety of pathways may mediate RFI,
such as hormones and growth factors that act through receptor
tyrosine kinases [e.g., epidermal growth factor (EGF), insulin]
(Hayes et al., 2011). Only one common locus ALGA0060467 was
found significantly associated with RFI in the current study and
it is located the upstream of the Pancreatic Duodenal Homeobox
1 (PDX1). SNP, WU_10.2_11_4727497, associated with RFI was
identified by ssGWAS method, it is also close to PDX1. Notably,

the direct link between PDX1 and FE related traits has not been
reported previously in pigs. Interestingly, PDX1 is associated
with some classical pathways such as glucose/energy metabolism
and insulin secretion pathway. In the adult endocrine pancreas,
PDX1 is a pivotal factor for the up-regulation of insulin gene
transcription that, in turn, regulates somatostatin, the expression
of glucokinase, glucose transporter protein-2, and islet amyloid
peptide (Park et al., 2008). Do et al. (2014b) reported that insulin
signaling pathway plays important roles in controlling RFI in
Duroc pigs, and it has been shown that insulin also affects
feed intake and feed behavior in chickens (Shiraishi et al., 2008,
2011). Moreover, many reports showed that PDX1 was closely
related to porcine pancreas development (Choi et al., 2009) and
diabetes (Matsunari et al., 2014). Pancreas and diabetes are closely
related to feed intake, digestion, absorption, and metabolism.
Hence, PDX1 might exert a vital function on feed intake and feed
behavior. Another gene HK2, was found significantly associated
with both RFI and ADFI by using the ssGWAS method as
mentioned before.

CONCLUSION

In summary, the present study indicated that the result of LM-
GWAS and ssGWAS methods are highly consistent. Combining
LM-GWAS and ssGWAS improved not only the power of GWAS
in a small population but also allowed screening of candidate
genes with high reliability (such as PLA2G1B and PRELID2).
This study provides a better understanding of the genetic
mechanisms underlying feed efficiency related traits, which offers
an opportunity for increased feed efficiency using marker-assisted
selection or genomic selection in pigs.
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Development of Genomic Resources
and Identification of Genetic
Diversity and Genetic Structure of
the Domestic Bactrian Camel in
China by RAD Sequencing
Chenmiao Liu, Huiling Chen, Zhanjun Ren* , Xuejiao Yang and Chengdong Zhang

College of Animal Science and Technology, Northwest A&F University, Xianyang, China

The domestic Bactrian camel is indispensable to agricultural production in the
desertification area of China owning to its endurance to hunger and thirst, cold
resistance, drought resistance, and good long-distance transportation. Therefore, it
is necessary to investigate the genetic diversity, genetic structure, and genes with
important roles in the evolution of this species. In this study, 1,568,087 SNPs were
identified in 47 domestic Bactrian camels inhabiting four regions of China, namely Inner
Mongolia, Gansu, Qinghai, and Xinjiang, by restriction site associated DNA sequencing
(RAD-seq). The SNP data were used for nucleotide diversity analysis (π) and linkage
disequilibrium (LD) attenuation analysis to elucidate the genetic diversity of the domestic
Bactrian camel in the four regions studied. Results showed that Xinjiang camels had
the highest nucleotide diversity and the fastest decay rate of the LD coefficient;
therefore, Xinjiang camels had the highest genetic diversity. Structure analysis, principal
component analysis (PCA), and phylogenetic tree construction by the neighbor-joining
(NJ) method showed that Qinghai camels clustered separately, at a larger phylogenetic
distance from camels in the other regions. Through analyses of selection signals, it was
found that the number of selected genes shared by Inner Mongolia camels, Qinghai
camels, Xinjiang camels, and Gansu camels was 7, 24, 25, and 113, respectively.
The shared selected genes of the domestic Bactrian camel in the four regions were
further analyzed, and three shared genes (GRIA3, XIAP, and THOC2) of the domestic
Bactrian camel in China were identified. Gene Ontology (GO) classification and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on
the shared selected genes of the domestic Bactrian camel in all four regions studied.
Across all regions, genes involved in the cellular process were the most abundant
subcategory under biological process. Cell and cell part represented the main proportion
of genes under cellular component. Binding represented the main molecular function. In
addition, the shared selected genes of the domestic Bactrian camel in the four regions
of China were significantly enriched in the long-term depression pathway. The research
should enable further study of the genetic resources of the domestic Bactrian camel, as
well as the conservation of these resources.

Keywords: RAD sequencing, Bactrian camel, single nucleotide polymorphisms, genomic resource,
genetic analysis
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INTRODUCTION

The domestic Bactrian camel plays an important role in economic
activities and trade, as well as in national defense, and has
cultural significance; therefore, this animal represents one of
the most valuable livestock resources in China (Chen et al.,
2018). With the impact of modern civilization, such as the
growth of the automobile transportation industry and the
destruction of the natural environment, the number of domestic
Bactrian camels has been greatly reduced, from 618,600 in
1981 to 380,000 in present-day China. Therefore, it is essential
to study the genetic diversity of the domestic Bactrian camel
and conserve its germplasm resources (Ming et al., 2017). To
date, a variety of studies have been conducted on the origin,
domestication, and genetic diversity of the domestic Bactrian
camel worldwide. Molecular clock analysis based on the complete
mitochondrial genome sequences shows that the wild camel
was not the direct ancestor of the domestic Bactrian camel.
The domestic Bactrian camel is considered to be monophyletic
in terms of its evolutionary origin, and to originate from a
single wild population (Ji et al., 2009). The earliest evidence
on the domestication of Bactrian camels is mainly derived
from the northeast of Ilang and the south of neighboring
Turkmenistan, especially in the Kopet Daghmountain region.
Bactrian camel skeletons were found in the second cultural
layer of the Anau ruins on the northern edge of the mountain
range, dating back to 3500–3000 BC (Meadow and Zeder,
1978). Studies of the genetic diversity of the domestic Bactrian
camel through analysis of mitochondrial sequence variation
found that there were no significant genetic differences between
populations in China, Russia, and Mongolia, indicating that
a strong gene flow occurred due to the extensive movement
of the domestic Bactrian camel (Ming et al., 2017). However,
the use of RAD-seq to identify whole-genome single nucleotide
polymorphisms (SNPs) for genetic analysis of the domestic
Bactrian camel in the four regions of China has not been
reported to date.

In the past few decades, the use of SNPs for studying
species genetic diversity and population structure has become
widespread (Ren et al., 2019). The rapid development of
high-throughput sequencing technology has led to the use
of restriction site-associated DNA sequencing (RAD-seq)
as a relatively cost-effective way to identify a large number
of SNPs throughout the genome (Miller et al., 2007; Davey
et al., 2011). So far, RAD-seq has been widely applied to
population genetics studies of a variety of species (Zhang
et al., 2016). For instance, Díaz-Arce et al. (2016) used
RAD-seq data to infer the phylogeny of tuna based on
whole-genome nuclear markers. Ren et al. (2019) used
the RAD-seq method to identify genome-wide SNPs, and
studied the genetic diversity and population structure of four
Chinese rabbit breeds.

In this study, we discovered genome-wide SNPs in the
domestic Bactrian camel using the RAD-seq method. We
then investigated the genetic diversity, genetic structure,
and genes with important roles in the evolution of this
species in four regions of China (Inner Mongolia, Gansu,

Qinghai, and Xinjiang). The study clarified the phylogenetic
relationship of the domestic Bactrian camel in China and
explored the genomic resources of this species. And the
SNP resources generated in this study offer a valuable
tool for future genetics and genomics research of the
domestic Bactrian camel.

MATERIALS AND METHODS

Sample Collection and DNA Extraction
Forty-seven venous blood samples were obtained from seven
populations of domestic Bactrian agricultural camels from four
regions of China (Inner Mongolia, Gansu, Qinghai, and Xinjiang)
(Table 1) to ensure that each sample was derived from a
different family, and there was no kinship between individuals.
All methods and experimental protocols of this study were
performed in accordance with guidelines and regulations of
the animal ethics committee of Northwest A and F University
(China) and the National Natural Science Foundation of
China (31172178) Animal Care and Use Committee. DNA
samples were extracted following a standard phenol-chloroform
extraction procedure (Sambrook and Russell, 2002) and were
diluted to 20 ng/µ L.

Construction and Sequencing of RAD
Libraries
RAD-seq libraries were constructed in accordance with the
modified protocol (Baird et al., 2008). In short, EcoRI (New
England Biolabs) was used to digest genomic DNA (0.1–1 µg;
from a single sample or pooled samples), and P1 adaptors
were connected at the cutting site. Then, the samples were
pooled, randomly sheared, and size-selected in sequential steps.
After the second adaptors (P2) were added, the sequencing
libraries were constructed using DNA fragments of 300–700 bp
in length. Finally, the constructed libraries were sequenced
using the Illumina HiSeq3000 platform, and 100 bp paired-end
reads were generated.

Quality Control, Read Mapping, and SNP
Calling
Quality trimming generated using fastp is an indispensable step
to ensure high confidence of variant calling (Chen et al., 2018).
Applying three strict filtering criteria, raw reads were processed
to obtain high-quality clean reads: (i) removing reads with ≥10%
unidentified nucleotides (N); (ii) removing reads with >50%
bases having phred quality scores of ≤20; and (iii) removing reads
aligned to the barcode adapter.

The Burrows-Wheeler Aligner (BWA) was used to align the
clean reads of each sample with the reference genome1 with the
settings “mem 4 -k 32 -M”, where -k is the minimum seed length,
and -M being an option used to mark shorter split alignment hits
as secondary alignments (Li and Durbin, 2009). GATK’s Unified
Genotyper was used to conduct variant calling on all samples

1https://www.ncbi.nlm.nih.gov/genome/10741
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TABLE 1 | Information for domestic Bactrian camels in the four sampled regions of China.

Number Group Population Sampling site Sample size

1 Xinjiang camel Nanjiang camel Wensu county, Xinjiang 7

Beijiang camel Qinghe county, Xinjiang 7

Dongjiang camel Mulei county, Xinjiang 7

2 Gansu camel Hexi camel Yongchang county, Gansu 5

3 Qinghai camel Qinghai camel Mohe, Qinghai 7

4 Inner Mongolia camel Alashan camel Alashan Left Banner, Inner Mongolia 7

Sunite camel Sunite Right Banner, Inner Mongolia 7

Total 47

(DePristo et al., 2011). GATK’s Variant Filtration with proper
standards was used to filter SNPs (-Window 4, -filter “QD < 2.0
| | FS > 60.0 | | MQ < 40.0”,-G_filter “GQ < 20”).

Genetics Analyses
First, we used the VCFtools software suite to study the overall
read depth and chromosome distribution of all SNPs (Danecek
et al., 2011). The minimum read coverage for a SNP to be
called is 3×, and all non-completely missing polymorphic loci
(-max-missing 1e-06-non-ref-af 1e-06) were used for counting.
The nucleotide diversity (π) of the domestic Bactrian camel
in four regions of China was calculated using the PopGenome
software package2 (Pfeifer et al., 2014). In addition, we used the
1,568,087 identified SNPs to estimate the linkage disequilibrium
(LD) attenuation trend by calculating the LD coefficient (r2)
between two points in a range of sequence (typically <5 Mb).
The more rapid the decay of r2, the higher the genetic diversity
of population is; r2 values in the range of 0,1 represent the
correlation between two points: if r2 is 0, there is no correlation
between the two loci, whereas if r2 is 1, the two loci are completely
correlated. “LD attenuation distance” was used to evaluate the
speed of LD attenuation (Guo, 2012).

Analyses of Population Structure
The genetic structure was studied by phylogenetic tree
construction, principal component analysis, and analysis of
population structure. Following the identification of SNPs,
1,568,087 SNPs were used to calculate the phylogenetic distance
between populations. The phylogenetic tree was constructed
using a neighbor-joining (NJ) method with the software Treebest
(version 1.9.2) to determine the evolutionary relationship
between populations. Bootstrap values were generated from
1,000 replications. After removing sites with a missing rate of
50% or more, the remaining 865,774 loci were used for PCA,
which was carried out using the GCTA software in R to further
study the population genetic structure between regions (Yang
et al., 2011). The STRUCTURE program3 (in order to ensure the
independence of SNP marks, we used PLINK software to filter
865,774 SNPs according to LD intensity, the remaining 12,046
loci were used for structure analysis, -indep-pairwise 250 10 0.1,

2https://cran.r-project.org/web/packages/PopGenome/vignettes/Whole_
genome_analyses_using_VCF_files.pdf?tdsourcetag=s_pctim_aiomsg
3http://web.stanford.edu/group/pritchardlab/structure.html

250 kb window, the step size of 10 SNPs, r2 is <1) was used for
analysis of population structure. We predefined the number of
genetic clusters from K = 2 to K = 6 (BURNIN = 5,000 times,
NUMREPS = 100,000), and repeated each K-value three times
(Liu et al., 2019). Next, we used the POPHELPER software4 to
calculate the value of 1K; then, we used the CLUMPP software5

to combine the results of three repetitions (Schraiber and Akey,
2015). The fixation index (Fst) was calculated according to the
statistical function of Fst in the PopGenome software package
to study the genetic diversity between different regions (Pfeifer
et al., 2014). Fst can also be used to infer the genetic distance
between different regions. After removing the site with a missing
rate of 50% or more, the remaining 865,774 loci were used for
Fst analysis. PLINK 1.9 was used to calculate the inbreeding
coefficient (Fis) of the domestic Bactrian camel in four regions6.
After obtaining the Fis value for each sample, the average value
in the region was determined.

Analyses of Selection Signals
The top 5% region was selected based on the interception of two
different parameters, namely nucleotide diversity (π) (Nei and Li,
1979) and population differentiation index (FST) (Danecek et al.,
2011). Using the 50 kb sliding window method with a step size of
25 kb, the −log10 transform of Nei’s π was used to select the lower
end of diversity windows, and these parameters were quantified
by internal PERL Scripts. All related graphs were drawn using R
scripts (R Core Team, 2013). With Gansu camels as the control
group and Inner Mongolia camels as the selection group, the
genes of Inner Mongolia camels under selection pressure were
identified. With Qinghai camels as the control group and Inner
Mongolia camels as the selection group, the genes of Inner
Mongolia camels under selection pressure were identified. With
Xinjiang camels as the control group and Inner Mongolia camels
as the selection group, the genes of Inner Mongolia camels under
selection pressure were identified. Venn diagrams were then used
to determine the common genes under selection pressure in
Inner Mongolia camels; these genes played a crucial role in the
evolution of this group. Using the same comparison method, the
common genes under selection pressure were identified in Gansu
camels, Qinghai camels, and Xinjiang camels.

4https://www.ncbi.nlm.nih.gov/pubmed/26850166
5https://www.ncbi.nlm.nih.gov/pubmed/17485429
6http://zzz.bwh.harvard.edu/plink/
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Sequence Annotation and Enrichment
Analyses
In order to further systematically elucidate the complex biological
functions of the genes, the common genes of the domestic
Bactrian camel under selection pressure, in the four regions of
China investigated in this study, were mapped against both GO
and KEGG databases. GO enrichment analysis was performed
with WEGO software, and gene numbers were calculated for
every term (Ye et al., 2006). KEGG enrichment analysis using
the KEGG database7 and KOBAS software were performed to
determine the statistical enrichment in KEGG pathways of the
common genes of the domestic Bactrian camel under selection
pressure in the four regions (Mao et al., 2005). The calculated
p-value was subject to false discovery rate (FDR) correction,
applying FDR ≤ 0.05 as the threshold. Pathways meeting this
condition were defined as significantly enriched pathways in the
abovementioned genes.

RESULTS

RAD-Tag Sequencing and Data Filtering
RAD sequencing produced a total of 131.13G of raw data for
47 normal sequenced individuals prior to quality filtering, with
an average of 2.79G per sample, ranging from 1.36 to 4.57G.
After quality filtering of the sequence data, 129.24G of clean
data (1.34G to 4.30G for each sample, with an average of
2.75G) were retained, representing an average effective mapping
rate of 98.57%. We mapped 1,568,087 regions, and the average
spacing of RAD regions on the draft camel genome assembly
was 1201.39 bp. The percentage of high-quality clean reads was
above 97.73%, and the number of reads on the alignment was
mostly above 97.39%. Of the clean reads retained, an average
of 19.01 million reads were retained for each sample. In short,
our sequencing data showed a high phred quality (Q20 > 94%,
Q30 > 87%), and the GC content was stable, at between 40.71
and 45.13% (Supplementary Tables S1–S4).

Genetics Analyses
In this study, 1,568,087 SNPs were generated by RAD-seq. There
were 548,830 loci (35%) in the transversion and 1,019,257 loci
(65%) in the transition. The ratio of transition to transversion
was close to 2:1. There were differences in the number of
SNPs of the domestic Bactrian camel between the four regions,
and the number of SNPs was in the following order: Xinjiang
camels > Inner Mongolia camels > Qinghai camels > Gansu
camels. The LD attenuation analysis of the domestic Bactrian
camels from the four regions showed that the attenuation rate
of the LD coefficient differed between the four regions, and
that the attenuation rate was Xinjiang camels > Inner Mongolia
camels > Qinghai camels > Gansu camels (Figure 1). Genome-
wide nucleotide diversity was estimated from the SNP data.
Because nucleotide diversity represents genetic diversity to an
extent, it can be concluded from the data in Table 2 that the
nucleotide diversity (π) of Xinjiang camels was the highest.

7http://www.genome.jp/kegg/

Population Structure Analyses
Genetic analysis of population structure using STRUCTURE
software and PCA showed similar patterns. Cross-validation
with K = 5 was the most suitable for the true differentiation
history of the domestic Bactrian camel. At K = 5, the ancestral
background of Qinghai camels was relatively pure, with a major
genetic ancestor. Although the Inner Mongolia camels, Xinjiang
camels, and Gansu camels had multiple genetic ancestors, a
major genetic ancestor was evident. At K = 2, Qinghai camels
were obviously separated from the camels in other regions,
indicating that this group was phylogenetically distant from the
camels in other regions. The PCA map showed that the Qinghai
camels clustered together separately, and were phylogenetically
distant from the camels in other regions. Inner Mongolia
camels and Xinjiang camels gathered together, indicating that
their genetic relationship was relatively close. The phylogenetic
tree constructed by the NJ method showed that the domestic
Bactrian camels of the four regions gathered together, and the
branches of the tree were obvious. Xinjiang camels and Inner
Mongolia camels gathered together (Figure 1). The Fst values
were calculated to study the genetic distance between different
regions. As shown in Table 2, it can be concluded that the average
Fst between the Qinghai camels and the domestic Bactrian
camels in other regions was 0.1185, second only to Gansu camels
(0.1201), indicating a large genetic distance between Qinghai
camels and other domestic Bactrian camels. It should be noted
that the farther the kinship, the smaller the inbreeding coefficient.
The average Fis between Qinghai camels and domestic Bactrian
camels in other regions was the lowest, indicating a large genetic
distance from camels in the other regions; these findings were
consistent with the results of PCA and structure analysis.

Analyses of Selection Signals
The top 5% regions were selected by combining the π and the
FST . With Gansu camels as the control group and Inner Mongolia
camels as the selection group, 238 selected genes were obtained.
With Qinghai camels as the control group and Inner Mongolia
camels as the selection group, 365 selected genes were obtained.
With Xinjiang camels as the control group and Inner Mongolia
camels as the selection group, 287 selected genes were obtained.
Among them, 7 selected genes shared by Inner Mongolia camels
were identified between all three comparisons (Figure 2 and
Supplementary Tables S5–S7). Using the same comparison
method, it was found that the number of selected genes shared
by Qinghai camels, Xinjiang camels, and Gansu camels was 24,
25, and 113, respectively (Supplementary Figures S1–S3 and
Supplementary Tables S8–S16). Venn diagrams were used to
further analyze the shared selected genes of the domestic Bactrian
camel between the four regions in China, and three shared genes
(GRIA3, XIAP, THOC2) were identified in the domestic Bactrian
camel across all four regions (Figure 7).

Sequence Annotation and Enrichment
Analyses
GO classification was carried out on the shared selected genes
of the domestic Bactrian camel in the four regions. For Inner
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FIGURE 1 | Structure analyses of the domestic Bactrian camel in four regions of China. (A) Phylogenetic tree construction with the neighbor-joining (NJ) method.
(B) Groups structure clustering figure of the domestic Bactrian camel in four regions of China. (C) LD attenuation map of the domestic Bactrian camel in four regions
of China. (D) Principal components analysis of the domestic Bactrian camel in four regions of China.

TABLE 2 | Fst, π, and Fis values for domestic Bactrian camels in the four
regions of China.

Number Group Average_Fst π Average_Fis

1 Xinjiang camel 0.07737 0.0001249 0.4473

2 Gansu camel 0.1201 0.0001091 0.4193

3 Qinghai camel 0.1185 0.0001088 0.3782

4 Inner Mongolia camel 0.08036 0.0001223 0.4434

Mongolia camels, the genes involved in the single-organism
process (GO: 0044699) were the most abundant under biological
process. Cell (GO: 0005623), cell part (GO: 0044464), and
organelle (GO: 0043226) represented the main proportion of
the cellular component. Binding (GO: 0005488) accounted
for a high proportion of the molecular functional category
(Figure 3 and Supplementary Table S17). For Qinghai camels
and Gansu camels, the most abundant subcategory under
biological process was cellular process (GO: 0009987). Under the
category of cellular component, the most abundantly expressed
genes were cell (GO: 0005623) and cell part (GO: 0044464).
Binding (GO: 0005488) represented the main molecular function

(Figures 4, 6 and Supplementary Tables S18, S20). For
Xinjiang camels, the genes involved in the cellular process
(GO: 0009987) were the most abundant subcategory in
biological process. Organelle (GO: 0043226) accounted for
a high proportion under cellular component. Binding (GO:
0005488) represented the main molecular function (Figure 5 and
Supplementary Table S19).

KEGG enrichment analysis of the shared selected genes of
the domestic Bactrian camel in the four regions was performed.
Among the Inner Mongolia camels, the shared selected genes
were significantly enriched in eight pathways, including long-
term depression and circadian entrainment (Figure 3 and
Supplementary Table S21). Among the Qinghai camels, the
shared selected genes were mainly enriched in focal adhesion
pathway (Figure 4 and Supplementary Table S22). Among
Xinjiang camels, the shared selected genes were mainly enriched
in neuroactive ligand-receptor interaction pathway (Figure 5 and
Supplementary Table S23). Among the Gansu camels, the shared
selected genes were significantly enriched in ubiquitin mediated
proteolysis and renin-angiotensin system pathway (Figure 6
and Supplementary Table S24).
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FIGURE 2 | The number of selected genes shared by the Inner Mongolia group of camels. (A) Gansu camels were the control group and Inner Mongolia camels
were the selection group; 238 selected genes were obtained. (B) Qinghai camels were the control group and Inner Mongolia camels were the selection group; 365
selected genes were obtained. (C) Xinjiang camels were the control group and Inner Mongolia camels were the selection group; 287 selected genes were obtained.
(D) Seven selected genes were shared by Inner Mongolia camels.

DISCUSSION

We reported the identification of 1,568,087 SNP loci in the
domestic Bactrian camel in four regions of China, using RAD-
seq. When read mapping, we used higher “k”-values, and
the parameter settings are within the reasonable range of the
software default (Cao et al., 2019; Shibuya and Comin, 2019;

Liu et al., 2020). The filtered SNPs were subjected to LD
attenuation analysis and nucleotide diversity analysis (π). The
results indicated that Xinjiang camels had the largest number
of SNPs, the fastest decay of the LD coefficient, the highest
nucleotide diversity, and the highest genetic diversity: these
features may be attributable to the preservation of the genetic
diversity of this group’s ancestors (Abdulla et al., 2009).
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FIGURE 3 | Go classification and KEGG enrichment of the shared selected genes of Inner Mongolia camels. (A) Go classification of the shared selected genes of
Inner Mongolia camels. (B) KEGG enrichment of the shared selected genes of Inner Mongolia camels.

Population structural analysis, PCA, and Fis results suggested
that Qinghai camels were phylogenetically distant from camels in
other regions; this may be due to the geographical distribution
of the Qinghai camels. The Mohe camel farm is located at

an altitude of 3000 meters, which is far more elevated than
the location of the domestic Bactrian camels in other regions,
resulting in less genetic communication between Qinghai camels
and domestic Bactrian camels in other regions. Phylogenetic
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FIGURE 4 | Go classification and KEGG enrichment of the shared selected genes of Qinghai camels. (A) Go classification of the shared selected genes of Qinghai
camels. (B) KEGG enrichment of the shared selected genes of Qinghai camels.

trees constructed using the NJ method as well as PCA data
revealed that the genetic relationship between Xinjiang camels
and Inner Mongolia camels was relatively close. According to

historical records, Inner Mongolia camels were extensively used
to transport military supplies to Xinjiang in the Qing Dynasty,
which may have promoted the genetic communication between
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FIGURE 5 | Go classification and KEGG enrichment of the shared selected genes of Xinjiang camels. (A) Go classification of the shared selected genes of Xinjiang
camels. (B) KEGG enrichment of the shared selected genes of Xinjiang camels.

Inner Mongolia camels and Xinjiang camels (Tong, 2018). The
average Fst between Gansu camels and domestic Bactrian camels
in other regions was the largest, and were phylogenetically distant

from the camels in other regions. This may be related to the
geographical location of Gansu camels. Yongchang County is
located at the northern foot of the Qilian Mountain, close to
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FIGURE 6 | Go classification and KEGG enrichment of the shared selected genes of Gansu camels. (A) Go classification of the shared selected genes of Gansu
camels. (B) KEGG enrichment of the shared selected genes of Gansu camels.

the Badain Jaran desert, resulting in less genetic communication
between Gansu camels and other domestic Bactrian camels.
Analyses of selection signals showed that the number of

selected genes shared by Inner Mongolia camels, Qinghai camels,
Xinjiang camels and Gansu camels was 7, 24, 25, and 113,
respectively. GO classification and KEGG enrichment analysis
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FIGURE 7 | The shared selected genes of the domestic Bactrian camel in China.

were performed on the shared selected genes. The results
showed that the most abundant subcategory under biological
process was cellular process (GO: 0009987). Cell (GO: 0005623),
and cell part (GO: 0044464) accounted for a high proportion
of the subcategories under cellular component. Binding (GO:
0005488) represented the main molecular function. The shared
selected genes of domestic Bactrian camel populations in the
four regions were all significantly enriched in the long-term
depression pathway. This finding fills the gap in the genome
study of the domestic bactrian camel in China (He et al., 2009;
Ming et al., 2019).

The shared selected genes of the domestic Bactrian camel
between the four regions in China were further analyzed
to identify three shared genes (GRIA3, XIAP, THOC2) in
the domestic Bactrian camel across all four regions. To our
knowledge, this is the first study to identify genes of importance
in the evolution of the domestic Bactrian camel in China. GRIA3
(glutamate receptor 3) is the main excitatory neurotransmitter
receptor in the mammalian brain, and is activated in many
normal neurophysiologic processes. GRIA3 regulates the activity
of AMPA glutamate receptor and the NMDA receptor (Kato
et al., 2010). Both AMPA receptors and NMDA receptors are
classes of vital receptors in learning and memory (Brechet
et al., 2017; Wang et al., 2018). According to the report of
global human geography, the camel’s memory is second to none
in all animals, and the ability of camels to remember routes

gives these animals the capacity to navigate journeys accurately
during sandstorms. GRIA3 is therefore an interesting target
for future research on the genome of the domestic bactrian
camel in China. XIAP (E3 ubiquitin-protein ligase XIAP) is a
multifunctional protein involved in the cellular response to DNA
damage, and can also regulate inflammatory signal transduction
and immunity (Deveraux et al., 1997; Damgaard and Gyrd-
Hansen, 2011). The harsh environmental conditions of the
habitat of the domestic Bactrian camel may promote apoptosis,
DNA damage, and inflammatory reactions (Yuan et al., 2017).
It can therefore be concluded that XIAP is an interesting target
for future research on the genome of the domestic bactrian
camel in China. THOC2 (THO complex subunit 2) is a protein-
coding gene that is involved in neuronal generation and neuronal
development (Straesser et al., 2002). Mutations in this gene
can cause hypotonia, gait disturbance, and tremors (Kumar
et al., 2015). This gene is also an interesting target for future
research on the genome of the domestic bactrian camel in
China. A PPI network of the products of the three shared genes,
constructed with STRING8, showed that there was interaction
between the three encoded proteins (Supplementary Figure S4).
Interestingly, the shared selected genes of the domestic Bactrian
camel in the four regions were significantly enriched in the
long-term depression (LTD) pathway. LTD has previously been

8https://string-db.org/
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assigned an assistant role in signal-to-noise adjustment or
“forgetting”. However, LTD also contributes directly to the
storage of hippocampal information (Collingridge et al., 2010).
Furthermore, LTD plays a dominant role in the processing of
precise spatial features. Increasing evidence supports the notion
that LTD enables distinct and separate forms of information
storage, which together promote the generation of a spatial
cognitive map (Kemp and Manahan-Vaughan, 2007).

In brief, we identified the SNPs present in the domestic
Bactrian camel genome on a whole-genome basis, and
systematically studied the genetic diversity, genetic structure,
and genes of importance in the evolution of the domestic
Bactrian camel in four regions of China. The results should
enable further study of the genetic resources of this mammal,
as well as the conservation of these resources. In future studies,
we aim to collaborate internationally to collect blood samples
from camel populations inhabiting other regions along the Silk
Road in order to further explore the available genome resources
of this species.
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Genomic breeding programs have been paramount in improving the rates of genetic
progress of productive efficiency traits in livestock. Such improvement has been
accompanied by the intensification of production systems, use of a wider range
of precision technologies in routine management practices, and high-throughput
phenotyping. Simultaneously, a greater public awareness of animal welfare has
influenced livestock producers to place more emphasis on welfare relative to production
traits. Therefore, management practices and breeding technologies in livestock have
been developed in recent years to enhance animal welfare. In particular, genomic
selection can be used to improve livestock social behavior, resilience to disease and
other stress factors, and ease habituation to production system changes. The main
requirements for including novel behavioral and welfare traits in genomic breeding
schemes are: (1) to identify traits that represent the biological mechanisms of the
industry breeding goals; (2) the availability of individual phenotypic records measured
on a large number of animals (ideally with genomic information); (3) the derived traits
are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with
other traits already included in the selection indexes; and (4) genomic information
is available for a large number of individuals (or genetically close individuals) with
phenotypic records. In this review, we (1) describe a potential route for development
of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic
selection schemes; (2) summarize key indicator variables of livestock behavior and
welfare, including a detailed assessment of thermal stress in livestock; (3) describe
the primary statistical and bioinformatic methods available for large-scale data analyses
of animal welfare; and (4) identify major advancements, challenges, and opportunities
to generate high-throughput and large-scale datasets to enable genetic and genomic
selection for improved welfare in livestock. A wide variety of novel welfare indicator traits
can be derived from information captured by modern technology such as sensors,
automatic feeding systems, milking robots, activity monitors, video cameras, and
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indirect biomarkers at the cellular and physiological levels. The development of novel
traits coupled with genomic selection schemes for improved welfare in livestock can
be feasible and optimized based on recently developed (or developing) technologies.
Efficient implementation of genetic and genomic selection for improved animal welfare
also requires the integration of a multitude of scientific fields such as cell and molecular
biology, neuroscience, immunology, stress physiology, computer science, engineering,
quantitative genomics, and bioinformatics.

Keywords: behavioral genomics, big data, digital agriculture, phenomics, genomic information, genomic
selection, novel phenotypes, precision livestock

INTRODUCTION

Animal welfare has increasingly relevant ethical, legal, and
economic implications in livestock production around the world
(Rushen et al., 2011; Koknaroglu and Akunal, 2013; Marchant-
Forde, 2015; Grethe, 2017). Animal product consumers, and
public in general, are becoming more interested in ensuring good
welfare practices at all stages of the animal production chain,
which has direct implications for the whole industry. In addition,
poor welfare is associated with reduced animal productivity,
longevity, poor meat quality, low reproductive performance,
and high prevalence of diseases in herds or flocks (Cockram,
2002; Moberg, 2009; Miranda-de la Lama et al., 2013; Grethe,
2017; Croney et al., 2018a,b; Gonzalez-Rivas et al., 2020). This
global importance of animal welfare is indicated by the inclusion
of increasing numbers of species-specific and situation-specific
animal welfare chapters in the OIE Terrestrial Animal Health
Code (World Organization for Animal Health – OIE, 2019).

Historically, animal welfare has been defined under one of
three over-arching, and intersecting themes or approaches
(Fraser, 2008). These welfare approaches are biological
functioning, natural behavior, and affective states. These
three approaches overlap to provide a holistic overview of the
welfare of the individual, and indicators of the three approaches
should be taken into account in welfare assessments (Fraser
et al., 1997). Nonetheless, defining measurable parameters that
incorporate the underlying processes of all three approaches for
multiple individuals under commercial conditions is challenging.
This task is particularly difficult due to the context-dependent
and conditional nature of the behavioral response and the
affective state of the animals. However, the expression of natural
behaviors is paramount to improve welfare due to species-specific
behavioral needs (Duncan, 1998; Olsson et al., 2011). Specific
behaviors (e.g., motivated behaviors) have an intrinsic value for
animals, and the performance of these behaviors is necessary
to achieve acceptable animal welfare (Duncan, 1998). Non-met
behavioral needs and motivated behaviors results in frustration
and can develop in distress and other emotional disorders
(Mason, 2006; Keeling et al., 2011). Animals are sentience beings,
and this implies that livestock can experience positive and
negative affective states. For this reason, animal emotions are
essential in welfare assessments, and improvements in animal
welfare should promote positive affective states and reduce the
negative ones (Broom, 2011; Mellor, 2016).

An often used approach in animal welfare assessment is based
on the Five Freedoms (Brambell, 1965; McCulloch, 2013), which
consists of the absence of negative welfare (thirst, hunger, and
malnutrition; physical and thermal discomfort; pain, injury, and
disease; fear; and distress) as well as the presence of positive
welfare (e.g., freedom to engage in motivated behaviors; Broom,
1991; De Goede et al., 2013). These have been applied mostly
in terms of housing and husbandry (Mellor, 2016). However,
welfare assessments using the Five Freedoms examine on-farm
environment by looking mostly at input or resource-based
measures that usually describe the physical environment rather
than at outcome or animal-based measures that directly refer
to animal status (Butterworth et al., 2017). More recent focus
has been on the development of animal-based indicators and
expert opinion states that “animal-based measures are the most
appropriate indicators of animal welfare and a carefully selected
combination of animal-based measures can be used to assess
the welfare of a target population in a valid and robust way”
(European Food Safety Authority [EFSA], 2012).

Despite the fact that various countries have implemented
regulations and legislation to ensure ethical animal treatment
from birth to slaughter (Rushen et al., 2011), completely
eliminating welfare issues (e.g., incidence of diseases, thermal,
and metabolic stress) is still very challenging or impossible due to
multiple factors, including: climate change, especially in outdoor
systems (Cole et al., 2017); growing intensification of commercial
production systems; group-housed animals in inadequate
systems (negative interactions, e.g., due to aggressive behaviors,
feather pecking, and cannibalism); antibiotic resistance (Mathew
et al., 2007; Woolhouse et al., 2015); high disease prevalence
(Zessin, 2006); and, to a lesser extent, genetic selection based on a
limited number of production traits in some breeding programs
or indirect genetic responses (Rauw et al., 1998, 2017). In this
context, the implementation of selective breeding schemes to
genetically modify the animals’ biological mechanisms and/or
behaviors in ways that improve welfare in commercial systems
is a promising route (Jensen et al., 2008; Turner, 2011; Croney
et al., 2018b). This is likely to be achieved through selection and
breeding of more resilient animals.

Genetic selection for improved welfare has been investigated
and implemented in livestock species over the past few decades
(Rodenburg and Turner, 2012; Canario et al., 2013). Several traits
associated with animal welfare have been shown to be heritable
(the majority of the estimates are in the range of 0.15 to 0.40;
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TABLE 1 | Heritability estimates for indicators of heat tolerance based on direct or
indirect traits in pigs.

Indicator trait Breed Heritability References

Feeding behavior Crossbred animals
(grow-finish)

0.02 to 0.21 Cross et al., 2018

Thermoregulation Crossbred animals 0.39 to 0.83 Kim K. S. et al.,
2018

Lactation
performance

Large White
(Lactating sows)

0.20 to 0.31 Gourdine et al.,
2017

Thermoregulation Large White
(Lactating sows)

0.34 to 0.39 Gourdine et al.,
2017

Body weight Duroc (grow-finish) 0.23 to 0.26 Fragomeni et al.,
2016

Hot Carcass weight Crossbred animals
(grow-finish)

0.17 to 0.18 Fragomeni et al.,
2016

Farrowing rate Large White and
crossbred sows

0.02 to 0.08 Bloemhof et al.,
2012

Carcass weight Terminal crossbred
(grow-finish)

0.14 to 0.51 Zumbach et al.,
2008

Tables 1–4), including: feather pecking (Buitenhuis et al., 2004;
Muir et al., 2014; Grams et al., 2015), cannibalism (Rodenburg
et al., 2008; Bennewitz et al., 2014), animal robustness (Muir
et al., 2014; Rauw and Gomez-Raya, 2015; Friggens et al., 2017),
overall mortality (Knol et al., 2002; Grandinson, 2005; Bolhuis
et al., 2009), leg health (McLaren et al., 2016; Vargas et al.,
2017), bone strength (Kapell et al., 2017; Oviedo-Rondón et al.,
2017; Siegel et al., 2019), and immune response and disease
resistance (Bishop and MacKenzie, 2003; Stear et al., 2012;
Mallard et al., 2015; Schultz et al., 2020). Genetic and genomic
selection for welfare traits, itself, is unlikely to solve all the welfare
issues in commercial livestock operations. However, selective
breeding is a complementary approach to other strategies (e.g.,
management, nutrition, housing, and biosecurity), which should
result in permanent and cumulative gains in welfare (resilience)
over generations.

In brief, genomic selection (Meuwissen et al., 2001) refers to
the use of a large number of markers distributed across the whole
genome to estimate the breeding values (and future performance)
of breeding individuals for traits of interest (e.g., temperament,
feather pecking). Genomics provides a great venue for genetically
improving animal welfare, as it permits increasing the accuracy
of breeding values for selection candidates or close relatives, even
if they are not exposed to additional stressors. In this regard,
data collection can be performed in chosen herds or flocks (e.g.,
nucleus or phenotyping herds) that are genetically connected
to the potential breeding animals. This creates an opportunity
to measure a large number of traits (deep phenotyping) in the
same group of animals and use this information to genetically
select non-phenotyped animals in commercial farms. As long
as there is a sufficiently large training population (individuals
with both phenotypes and genotypes) genetically related to the
selection candidates, the accuracy of genomic breeding values
can be moderate to high. Therefore, genomic tools facilitates
selection for complex behavioral and welfare traits in commercial
farms (Rodenburg and Turner, 2012). This is very advantageous,

especially in the case of disease resilience, where a disease
challenge might be required and cannot be performed in the
nucleus farms (Putz et al., 2019).

A limited number of livestock breeding programs have
included welfare indicator traits in their selection schemes
(Miglior et al., 2017; Preisinger, 2018; Turner et al., 2018; Chang
et al., 2020). A major challenge for the implementation of genetic
evaluation for welfare traits has been the difficulty in collecting
individual measurements on a large number of animals (Houle
et al., 2010; Turner et al., 2018). As welfare is a multifactorial
state, there is a need for simultaneously measuring multiple
variables over time (repeated records). This requirement can be
a major constraint in commercial breeding programs due to the
infrastructure needed to collect the data, economic feasibility,
standardization of data collection protocols, and lack (or reduced
availability) of equipment and procedures that maximize the
welfare of the animals during the measurements.

More recently, precision livestock farming (PLF) technologies
(Friggens and Thorup, 2015; Berckmans, 2017), also termed
digital agriculture (Liakos et al., 2018), have been presented
as an alternative to individually assessing welfare indicator
traits on commercial farms. These technologies rely on
continuous automatic real-time monitoring and controlling of
animal activities and environmental conditions (Berckmans,
2014). This is usually done using sensors (e.g., accelerometers,
ruminal boluses, biosensors, and radio-frequency identification –
RFID-enabled ear tags), imaging (e.g., cameras), sounds (e.g.,
microphones), and recording of movements (Lohölter et al.,
2013; Andriamandroso et al., 2016; Terrasson et al., 2016;
Neethirajan, 2017; Vranken and Berckmans, 2017; Rufener et al.,
2018; Ellen et al., 2019; Halachmi et al., 2019). However, many
of these technologies measure phenotypes at flock or herd
level, down to pen level, with individual-level data options only
more widespread for large livestock species kept in smaller
numbers. In addition to PLF technologies, variables based on
simpler equipment and protocols can also be collected in large
scale and used to assess animal welfare (e.g., lesion scoring,
hoof health scoring, docility scoring, and milking temperament
assessed by animal handlers). Furthermore, computational and
data science fields (e.g., machine learning, computer vision,
and cyber-physical systems) are quickly advancing (Nayeri
et al., 2019; Tomisław et al., 2019; Verma et al., 2020). Thus,
datasets generated from PLF technologies coupled with data
science developments are paramount to translate animal welfare
indicators into accurate genomic breeding values to be used for
selective breeding aiming to enhance animal welfare.

Previous reviews have focused on the use of precision
technologies for a variety of purposes, especially on-farm
management (Neethirajan, 2017; Neethirajan et al., 2017;
Vranken and Berckmans, 2017; Croney et al., 2018b; Benjamin
and Yik, 2019; Halachmi et al., 2019). The current review,
expands this scope by focusing on the use of precision
technologies for selective breeding to enhance animal welfare
in commercial livestock production, with a focus on terrestrial
species. In this context, our main objectives are to: (1)
describe ways to develop novel welfare indicator traits (using
ideal phenotypes) for both genetic and genomic selection
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schemes; (2) summarize key indicator variables of livestock
behavior and welfare, including a detailed assessment of thermal
stress in livestock; (3) describe the primary statistical and
bioinformatic methods available for large-scale data analyses of
animal welfare; and (4) identify major advancements, challenges,
and opportunities to generate high-throughput and large-scale
datasets to enable genetic or genomic selection for enhanced
welfare in livestock.

MAIN REQUIREMENTS FOR
IDENTIFYING WELFARE TRAITS FOR
SELECTIVE BREEDING PURPOSES

Animal welfare science is a relatively new field that is quickly
evolving in an interdisciplinary manner (Carenzi and Verga,
2009; Broom, 2011; Marchant-Forde, 2015). The longitudinal
measurement or quantification of multiple welfare indicators
is the main requirement for selective breeding to enhance
animal welfare. In this section we present some ideas toward
the identification and description of ideal phenotypes for
selective breeding.

A phenotype, or phenotypic trait, is defined here as a variable
that can be measured on a continuous (e.g., cortisol level,
body temperature), or categorical (e.g., docility and longevity
scores) scale in individual animals and represents a biological
mechanism at a certain time point (or life stage). Animal welfare
is a multidimensional concept comprising physical, behavioral,
physiological, and emotional aspects (Broom, 1991; Rushen
et al., 2011), and thus, its objective measurement [automated
assessment with no bias or dependence on the device used (or
technician doing the assessment)] is a challenging task.

Firstly, continuous monitoring of the animal welfare state
from birth to slaughter (or involuntary culling) is needed because
animals can be more or less prone to certain welfare issues
at specific life stages [e.g., food allergies and gut inflammation
after weaning in piglets (Jayaraman and Nyachoti, 2017; Radcliffe
et al., 2019), tail biting and aggressive behaviors after mixing
pigs in larger groups (Camerlink et al., 2013; Shen et al., 2019),
feather pecking in laying hens (Ellen et al., 2019), and age-specific
disease occurrences such as mastitis in dairy species (Barkema
et al., 2015)]. Therefore, longitudinal phenotypes need to be
collected and analyzed (Rauw and Gomez-Raya, 2015; Berghof
et al., 2019; Oliveira et al., 2019a). Resilience, defined as the
capacity of an animal to be minimally affected by disturbances
or to rapidly return to the state attained before exposure to
a disturbance (Berghof et al., 2019), can also indicate welfare.
Based on longitudinal measurements, resilience indicators may
be derived based on deviations from expected production levels
over a period of time (Berghof et al., 2019), or variations
in automatically recorded feed intake (Putz et al., 2019). For
instance, Putz et al. (2019) proposed various novel phenotypes
related to disease resilience using daily feed intake data from
growing pigs under a multifactorial natural disease challenge
that was designed to mimic a commercial environment with
high disease burden. The novel resilience phenotypes proposed
by the authors were heritable and genetically correlated with

mortality and treatment rate (Putz et al., 2019). In the context
of longitudinal measurements, it is worth noting that stress
responses can be beneficial in helping the animals to cope
with their environment and challenging situations. However,
overstimulated stress response (too frequent or for too long)
can detrimentally affect biological functions such as production,
immune response, and coping abilities (Moberg, 2009; Palme,
2012; Rauw et al., 2017).

Secondly, a large number of variables need to be accurately
measured in individual animals as biological indicators of the
Five Freedoms (Brambell, 1965; McCulloch, 2013), including
physiological, behavioral, emotional state, and physical and
health characteristics. A single stressor can impact biological
functions of the animal in different ways [e.g., feed deprivation
can cause weight loss, hunger and frustration, behavioral
changes, altered metabolic rate (Ketterson and King, 1977),
and immune suppression; thermal stress can cause altered feed
intake, digestion, discomfort, uneven growth and body weight,
and altered metabolic function leading to distress and increased
mortality (Johnson, 2018); and social isolation, group mixing
and restraint can result in altered heart rate, elevated cortisol
levels, frustration, aggressive behavior, and weaker immune
systems (Ruis et al., 2001; Shen et al., 2019)]. Interestingly, the
stress response to possible threatening stimuli varies among
individuals dependent on how the stress is perceived (i.e.,
individual susceptibility), resulting in different individual welfare
outcomes. Animals are capable of experiencing positive and
negative emotions, and welfare indicators should not only focus
on physical conditions but on their emotional states as well
(Reimert et al., 2013; Wemelsfelder and Mullan, 2014; Jirkof
et al., 2019; Lawrence et al., 2019). In addition to physiological
indicators of stress, recording the prevalence of behavioral
signs associated with negative welfare such as arousal and
hyperactivity, frustration, distress, and depression can provide
important clues about how animals are coping with their
environment as well as their welfare (Keeling et al., 2011).

Thirdly, data collection should be based on non-invasive
methods that do not result in additional stress or discomfort
to the animals or alter their routine or circadian rhythms. For
instance, handling animals for measuring blood parameters could
cause stress hormone release (Stewart et al., 2005; Cook, 2012).
This could be an issue for assessing the undisturbed welfare
status of the animal in commercial production settings. Please
note that the effect of handling-induced cortisol release can be
minimized by recording the time from start of handling to end
of blood collection and including it as a covariate in the models;
or alternatively, training the animals to habituate to the blood
collection procedure, depending on the study goals. Similarly,
phenotyping animals during a stressful event intrinsic to their
management environment has been suggested to be preferred
than exposing animals to an experimentally imposed stressful
situation (Colditz and Hine, 2016).

The derived phenotypes need to be collected at a low
cost to enable measurement of a large number of animals,
which is a requirement for successful implementation of
genetic and genomic evaluations (Goddard et al., 2010), as
previously discussed. Obtaining phenotypic measurements that
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are accurate, biologically meaningful, repeatable, and comparable
among laboratories, countries, or companies, is critical for
genomic studies and its applications (Hocquette et al., 2012).
Therefore, standardizing measurement protocols or defining
phenotypes that can be easily standardized is needed because
traits recorded in different ways might reflect different biological
mechanisms, which may lead to difficulty in the implementation
of genetic and genomic evaluations based on datasets from
multiple phenotyping centers (or farms, countries, etc.). This
is still challenging as there are not enough welfare studies to
support differences in such protocols. The lack of available
datasets and optimal protocols indicates a need for worldwide
funding agencies (private and public) to increase financial
support for phenotyping animal welfare indicators for breeding
purposes. This has been recently included as a key priority
in some agricultural funding agencies as outlined in the latest
USDA Blueprint for Animal Genome Research 2018–2027
(Rexroad et al., 2019).

Lastly and critically important, the phenotypes identified
need to be heritable and repeatable. Low heritability might only
indicate high phenotypic variability in comparison to the total
additive genetic variance. Therefore, when necessary, it is crucial
to identify alternative variables that can better capture the genetic
variability for the trait(s) of interest (i.e., higher heritability;
König and May, 2019). The rate of genetic progress for a certain
trait also depends on the generation interval (Falconer and
Mackay, 1996), and therefore, traits that are measured earlier
in life, but reflect the welfare status of the animal in its whole
life (or at a later stage), are desirable. In this context, genomic
selection is a very powerful tool, as it enables the calculation of
genomic breeding values for young animals with no phenotypic
measurements (i.e., reduce generation interval). The genetic
correlation between welfare and commonly selected traits also
need to be investigated and appropriately weighted in selection
indexes to avoid detrimental effects in other important traits
(Phocas et al., 2016a,b).

The greater availability of high-throughput phenotyping
technologies (e.g., automated monitoring systems) in nucleus
and commercial farms, better communication and data
sharing among data recording organizations (e.g., Dairy Herd
Improvement, breed associations, veterinary clinics, and
slaughter facilities), and greater integration of complementary
disciplines will contribute to overcoming some of the challenges
associated with time and cost of welfare data collection
(Wemelsfelder and Mullan, 2014). In addition, PLF tools enable
the collection of continuous and real-time phenotypes as well
as environmental conditions (e.g., thermal stress, humidity, air
quality; Laberge and Rousseau, 2017), that are of great use for
assessing animal welfare.

WELFARE ASSESSMENT IN LIVESTOCK
PRODUCTION

The welfare of animals is determined by the interaction
between intrinsic animal characteristics and the environments
in which they are raised. The definition of welfare indicators

is largely dependent on a clear understanding of the biological
and emotional mechanisms behind the phenotypic variability
observed in the animal’s response to different stimuli. Novel
indicators are being proposed as the animal welfare science
moves forward. As discussed by Marchant-Forde (2015), accurate
welfare assessment should be comprised of components that
describe or quantify cellular, physical, physiological/biochemical,
and psychological states, and may include scoring scales
for additional health and behavior indicators such as body
weight, respiration rate, ocular discharge, feces condition, and
provoked behavioral response (Marchant-Forde, 2015). Vertical
phenotyping is therefore of great importance because several
variables can be related to a family of phenotypic traits
(Hocquette et al., 2012).

The aggregation of multiple indicators to produce an
overall assessment of animal welfare is of great relevance
(Botreau et al., 2007a,b). One can expect that genomic
selection for improved welfare will continue to be a very
interdisciplinary field, integrating animal welfare, cell and
molecular biology, neuroscience, immunology, stress physiology,
computer science, engineering, quantitative genomics, and
bioinformatics. This section will succinctly review biological
mechanisms behind animal welfare and how this knowledge can
be used for the identification of novel welfare indicators for
breeding purposes.

Biological Mechanisms Related to
Animal Welfare
Livestock in commercial production systems are constantly
exposed to a variety of environmental stressors or management
practices (e.g., human presence, noise, strange objects, restricted
space, heat, cold, humidity, and feed restriction). Therefore, the
animals’ welfare, productivity, and environmental fitness will rely
on their ability to cope with and react to these challenges (Broom,
1991; Guy et al., 2012; Colditz and Hine, 2016; Berghof et al.,
2019; Hu et al., 2019). At any point in time in which an animal
is exposed to a variety of potential challenges or stressors, it
will counteract using behavioral and physiological processes or
sub-systems, linked through a network of neural and hormonal
communication. The stressors may vary in magnitude and
duration – being short-term (acute) or longer-term (chronic) –
and if the animal’s processes counteract and adjust successfully,
the animal copes with the stressor and habituates (Moberg
and Mench, 2000). This ability to cope and habituate is the
cornerstone of resilience – the ability to use these biological sub-
systems to bounce back to “normal functioning” after disturbance
(Scheffer et al., 2018). An animal with high resilience is able
to recover quickly from larger disturbances and there is low
temporal autocorrelation in the fluctuations of any given sub-
system working to counteract disturbances (Scheffer et al., 2018;
Berghof et al., 2019). There is also the ability of the sub-systems to
work more independently in animals with high resilience and to
return the animal to the baseline state, before its interconnected
sub-systems are also activated. With low resilience, the opposite
is true. A small disturbance may show a slow recovery, high
temporal autocorrelation, and high inter-dependence among
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sub-systems, with the worst-case scenario resulting in a cascade
of sub-system failure (Scheffer et al., 2018).

Within animal agriculture, the main causes of stress include
environmental, immunological, metabolic, and social factors.
Some may be acute, for example, a single aggressive interaction
after mixing which is quickly resolved; some may be chronic,
for example, periods of sustained heat during summer months;
and some may even be permanent. A stress response is activated
when the central nervous system perceives a potential threat to
homeostasis. From the central nervous system, electrochemical
impulses are transmitted to the effector organs of the body
(muscles and glands) to initiate appropriate responses to the
stimuli (Cheng, 2010). The defense response consists of a
combination of four general biological responses (Moberg
and Mench, 2000): the autonomic nervous system response,
the neuroendocrine response, the immune response, and the
behavioral responses. Under extensive conditions, behavior can
often be adapted to mitigate the stress quickly. If confronted
by aggression, an individual can retreat and end the encounter
if given enough space. If hot, the animal can seek shade or
wallow. In farming systems, the behavioral processes may be
more constrained, and lack of space or thermal zones can mean
that an immediate behavioral response is not possible, as in these
two examples. The individual’s response to external stressors can
be influenced by numerous factors including prior experience,
genetics, age, sex, physiological status, emotional state, and
cognitive ability (Colditz and Hine, 2016).

The intricate details of stress system activation are available
elsewhere (Godoy et al., 2018), but generally, both physical
and psychological stressors interact through different pathways
to activate the hypothalamic-pituitary-adrenal (HPA), and
sympathetic-adrenal medullary (SAM) systems, which activate
together multiple sub-systems to maintain homeostasis. The
SAM axis results in the release of catecholamines, such as
epinephrine (E) and norepinephrine (NE), from the adrenal
medulla. The concentrations of E and NE are increased due to
a variety of stressors (Dalin et al., 1993) and activation is rapid,
within one to two seconds, since E and NE half-lives are short.
Simultaneous to the activation of the SAM axis, the hypothalamus
also activates the HPA axis releasing corticotropin-releasing
factor from the paraventricular nucleus of the hypothalamus.
Corticotropin-releasing factor stimulates the anterior pituitary to
release adrenocorticotropic hormone which activates the adrenal
gland to secrete glucocorticoids (i.e., cortisol, corticosterone) into
the blood. Therefore, cortisol concentrations have been used as
an indicator of stress (Ott et al., 2014), but not without debate
as to the appropriateness and need for refinement (Ralph and
Tilbrook, 2016). Glucocorticoid release is much slower than the
release of catecholamines, in most species beginning around
2 min after the stressor. However, there is also a circadian pattern
to glucocorticoid release due to their priming effect and thus,
there are limitations in relying on single time-point samples.
The glucocorticoids act collectively with the catecholamines to
increase blood glucose (Dallman and Hellhammer, 2011), thus
ensuring that there are enough energy reserves needed to mitigate
the stressors. Furthermore, the release of cortisol elicits a negative
feedback response to the HPA axis to return to basal levels and

homeostasis (Manteuffel, 2002; Stephens and Wand, 2012). There
is large variation in the response of the various components of the
HPA axis (Mormède et al., 2011), indicating a clear potential to
genetically select for biological changes in the stress response.

Indicators of Animal Welfare
There is large variability in animal’s response to stress factors
(Turner, 2011; Koknaroglu and Akunal, 2013; Turner et al.,
2018). Therefore, welfare assessment is needed in order to
identify the most resilient and healthiest animals for breeding
purposes as well as to develop mitigation strategies to minimize
or eliminate welfare issues. The evaluation of animal welfare
involves a complete assessment of the animal’s physiological,
behavioral, physical, and emotional state. Some of these
indicators can even be quantified prior to clinical signs of poor
welfare (e.g., milk somatic cell count and clinical mastitis).
This complete assessment relies on some key principles, such
as those developed in the Welfare Quality Project (described
in Rushen et al., 2011): good feeding, proper housing, good
health conditions, and appropriate behavior. These conditions
can be assessed based on various parameters, including aggressive
behavior when mixing or regrouping animals [especially in pigs
(Wurtz et al., 2017; Shen et al., 2019)], approach or avoidance
behaviors (Smulders et al., 2006), blood parameters (König and
May, 2019), body condition score (Roche et al., 2009), body
mutilations [e.g., tail damage (Keeling et al., 1996; Heinonen
et al., 2010)], body temperature (Weschenfelder et al., 2012),
cannibalism (Lambton et al., 2015), feather pecking (Buitenhuis
et al., 2003), feeding behavior [e.g., active chewing time,
rumination time, standing and lying time (Ding et al., 2018)],
proportion of time active and its posture (Vasseur et al., 2012),
immune response (Kovács et al., 2014), response to infection
(Nyman et al., 2014), inflammation (Heinonen et al., 2010), heart
and respiration rates (von Borell et al., 2007), glucocorticoids
(corticosterone and cortisol; Mormède et al., 2011; König and
May, 2019), lameness and gait problems (Chapinal et al., 2013),
panting frequency (Sullivan et al., 2011), poor maternal care
[e.g., savaging in pigs (Hellbrügge et al., 2008b)], ruminal pH
(indicator of digestive issues, such as ruminal acidosis; Abdela,
2016), shivering (Liu et al., 2017), social interactions (Rault et al.,
2013), abnormal repetitive behaviors (Mason, 2006; Olsson et al.,
2011), frustration behaviors (Duncan, 1998; Keeling et al., 2011),
variations in daily feed intake (Putz et al., 2019), and water intake
(Kume et al., 2010). As previously mentioned, this large number
of variables indicates that overall animal welfare needs to be
assessed based on a combination of multiple traits.

An Example of Welfare Assessment:
Quantifying Thermal Stress in Livestock
Body temperature measurements facilitate determination
of the animal’s thermoregulatory ability under varying
environmental conditions. These phenotypic records may
be valuable in selecting breeding stock with improved
welfare under environmental conditions that cause heat
stress (Carabaño et al., 2017, 2019). Heat tolerance is heritable
(Table 1; Ansari-Mahyari et al., 2019; Carabaño et al., 2019;
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Osei-Amponsah et al., 2019) and causes major welfare and
economic losses to the livestock industry (Mayorga et al., 2020);
however, the ability to appropriately analyze and understand
phenotypic indicators is necessary for the development of new
breeding programs to select for heat tolerant animals. Absolute
body temperature (TB) measures may be used to assess an
animal’s heat stress response whereby greater TB can indicate
increased heat sensitivity and reduced TB can indicate greater
heat tolerance (Johnson, 2018). For the simplest analyses,
either daily average TB or TB during certain time periods (e.g.,
morning, afternoon, and night-time) may be calculated to
compare between animals under differing environmental heat
loads. As an assessment of TB responsiveness, the TB change
rate as a function of increasing heat load (Figure 1A) can be
used to determine heat stress sensitivity. In addition, these data
can be used to determine the ability of animals to acclimate or
adapt if compared across heat stress exposure days, whereby a
greater decrease in TB responsiveness over exposure days can
indicate improved acclimation ability and these data may be
important markers for selecting animals with better heat stress
coping abilities.

Although these analyses are valuable in initial thermal
sensitivity assessments, these data alone cannot explain the
underlying cause of thermal sensitivity or tolerance. This
is important when trying to balance heat tolerance with
maintained productivity because heat tolerance may be an
outcome of decreased metabolic rate resulting from decreased
performance (Brown-Brandl et al., 2014), which is not a desirable
outcome under commercial production conditions. Therefore,
understanding how animals dissipate excess body heat and how
heat dissipation interacts with heat tolerance and productivity
is an important factor to consider in breeding programs. When
obtaining phenotypic thermoregulatory data, it is important
that measures of heat dissipation (e.g., respiration rate – RR,
skin temperature – TS, and sweating rate – SR) are taken in
combination with TB to ascertain information about an animal’s
capacity to maintain euthermia as heat dissipation influences
TB, and TB influences heat dissipation (Blatteis, 1998). Balancing
heat production with heat loss is essential under environmental
conditions that cause heat stress in animals. Animals with
improved performance (e.g., milk production, growth rate, and
egg production) generate greater metabolic heat when compared
to their lower producing counterparts (Brown-Brandl et al.,
2014; Cabezón et al., 2017). In turn, the heat sensitivity of high
producing animals may be increased if heat dissipation capacity
is not sufficient.

Several analyses may be used to assess relationships between
heat dissipation mechanisms and TB. To determine heat
dissipation efficiency through the skin, the relationship between
TS and TB can be calculated. As heat dissipation through the
skin is reliant on core TB, an increased ratio may indicate
greater heat dissipation. However, this ratio may be influenced
by the external environment (e.g., cooler temperatures cause
vasoconstriction and warmer temperatures cause vasodilation;
Blatteis, 1998) and thus ambient temperature can be used in
the analysis. In this case, the thermal circulation index may be
calculated using TS, ambient temperature, and TB as described

FIGURE 1 | Relationships between (A) body temperature (TB) and ambient
temperature (TA), (B) TB and respiration rate (RR), and (C) milk production
and the TB vs. RR slope.

by Curtis (1983): thermal circulation index = (TS – ambient
temperature)/(TB – TS). The thermal circulation index can
be used to determine the capacity of an animal to dissipate
heat from the core to the skin and subsequently to the
surroundings under steady state thermal conditions (Kpodo
et al., 2019). In addition to TS, the assessment of TB as a
function of RR may be used to assess RR efficiency whereby
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a greater TB slope with increasing RR indicates reduced RR
efficiency and a decreased slope indicates increased efficiency
(Figure 1B). This is an important factor to consider outside
of absolute RR values because an increase in RR may not
necessarily indicate greater heat sensitivity if the end result is
a euthermic TB. Alternatively, comparing RR as a function of
TB may explain heat sensitivity in which a lower RR rise with
increasing TB can explain heat sensitivity if the RR increase
is not sufficient to dissipate excess body heat. These methods
may also be applied to the assessment of SR. Finally, results
from these thermoregulation analyses may also be compared with
performance parameters to determine their influence on growth
rate, reproductive success, milk output, and egg production
(Figure 1C). These data can enable balancing improved welfare
under heat stress conditions with performance measures and
evaluate which thermoregulatory measure is most important in
a particular system.

There are multiple strategies for increasing heat tolerance,
such as within-breed genetic or genomic selection (Nguyen
et al., 2017; Carabaño et al., 2019), crossbreeding or the use
of more climatic adapted genetic resources such as Zebu cattle
(Bos taurus indicus), and slow growing or less-feathered birds
(Singh et al., 2001; N’dri et al., 2007; Fathi et al., 2013).
Furthermore, gene editing might also be an important tool
for introgressing certain gene alleles that confer greater heat
tolerance (Hansen, 2020), such as the “slick hair” gene in cattle
(Littlejohn et al., 2014), and “naked neck” and “frizzle” genes in
chicken (Fathi et al., 2013).

Phenotyping Technologies Used to Assess
Thermal Stress
Body temperature measures are commonly used to assess the
thermoregulatory capacity of animals. These measures often
include RR, SR, TS, and TB, and these phenotypic traits
are most commonly used as a determination of heat stress.
Traditionally, these measures were obtained through labor
intensive and invasive practices. However, in recent years, several
non-invasive and/or automated methods to collect these data
have been developed.

Skin temperature
During heat stress, blood flow to the skin increases to facilitate
heat dissipation, which may be measured by an increase in
TS (Yahav et al., 2005; Katiyatiya et al., 2017). However,
environmental factors such as wind speed, humidity, and direct
sunlight exposure (Church et al., 2014), or physical factors
such as hair thickness, hair length, and hair and skin color
(Gebremedhin et al., 2008) can impact the efficiency of heat
loss through the skin or directly alter the TS independent of
changes in TB (i.e., direct sunlight exposure, exposure to heating
elements, etc.). Interpreting TS values requires additional inputs
and considerations. For animals housed outdoors without shade
(i.e., cattle on pasture or in feedlots) or under heating elements
(i.e., pigs or chickens under heat lamps), it is difficult to separate
the effects of the environment on changing TS compared to
the influence of TB on increasing/decreasing TS due to heat
dissipation through the skin. It is important to consider that

TS measures greater than TB should not be interpreted as heat
dissipation as it is impossible to dissipate a greater amount
of heat than is produced within the body and it is likely that
these values are indicative of environmental influences on the
TS rather than changing TB. In cases where radiant heat is not
a factor (i.e., environmental chambers, in the shade, etc.) TS
measures (on shaved or hairless skin) may be helpful in the
assessment of heat dissipation for the selection of more heat
tolerant animals and a common, non-invasive method to assess
TS is through infrared thermography (Ferreira et al., 2011; Nääs
et al., 2014; Lees et al., 2018). Taken together, researchers must
consider these factors when making determinations about the
significance of changing TS in relation to heat dissipation vs.
radiant heat load.

Infrared thermography measures the infrared radiation
emitted from an animal and this radiation depends on
the temperature, emissivity, and conductivity of the animal
(Knízková et al., 2007). There are two types of infrared systems
to measure temperature on animals: infrared thermometers and
thermal cameras. Infrared cameras are more software intensive
than infrared thermometers and can be used for monitoring
large areas (Sellier et al., 2014), which allow for a greater
representation of the TS of the entire animal or at specific
sites as desired by the researcher. An alternative to infrared
technology that may be more invasive are contact sensors affixed
to the skin (Teunissen et al., 2011; Mostaço et al., 2015).
Contact sensors are more accurate than infrared technology
and provide continuous automated measurements, but potential
issues precluding their use may include battery life and long-term
adhesion to the skin (Mostaço et al., 2015), and destruction or loss
of the devices in group-housed animals. Therefore, researchers
should assess both types of technology and determine which
one best fits their requirements in a particular environment or
research setting.

Respiration rate
In general, animals cope with heat stress by increasing RR
to reduce the extra heat load via evaporative heat loss.
However, it is important to mention that during extreme
heat strain when heat loss cannot be balanced with heat
gain, animals will switch from increased RR to deep slow
respirations (López Armengol et al., 2017). One way to measure
RR is visually by counting flank movements at the flank
region (Mostaço et al., 2015). While this traditional method
is regularly used, it is labor-intensive and time consuming.
As an alternative to this method, researchers have developed
technologies that assess RR through changes in air temperature
near the nostrils of animals using infrared thermography (Lowe
et al., 2019), or direct measures of air temperature near the
nostrils using a mounted device (Milan et al., 2016). The
use of sensors to detect nasal exhalation pressure has been
proposed to evaluate RR in cattle (Strutzke et al., 2019). Finally,
researchers have also used an externally-mounted bioharness
designed for humans, that measures chest expansion (Briefer
et al., 2015). Unfortunately, many of the automated methods
to assess RR are in development and there are currently
no known commercially-available and validated options for
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researchers to automatically (and non-invasively) assess RR in
livestock animals.

Sweating rate
Cattle increase SR to dissipate excess body heat through
evaporative heat loss from the skin surface. Heat loss via
sweating may be influenced by wind velocity, air temperature,
relative humidity, and thermal and solar radiation (Collier and
Gebremedhin, 2015). The SR can be determined using a digital
moisture sensor on the dorsal areas of animals to determine
trans-epidermal water loss (Nuutinen et al., 2003; Gebremedhin
et al., 2008). The digital moisture sensor is a closed system, free of
ambient airflow, and allows for monitoring of water loss (Scharf
et al., 2008). Another method to measure SR is applying a cobalt
chloride disk to the skin and recording the length of time the
cobalt chloride disk changes color in order to calculate SR (Moser
et al., 2012; Nursita and Cholis, 2019). However, a potential
drawback to this method in animals is the ability to maintain
the disk on the skin for the length of time required for the color
change to occur.

Body temperature
Heat stress causes an increase in TB implying that the
animal has lost the ability to maintain homeostasis. In pigs,
infrared (Mostaço et al., 2015), and digital clinical thermometers
(Gebremedhin et al., 2008; Mostaço et al., 2015) are commonly
used to measure TB rectally. However, when using a clinical
thermometer, restraint is often required, which can stress the
animal and potentially increase TB. Other reliable and accurate
TB measurement devices include surgically implanted telemetry
devices (Lacey et al., 2000) and intramuscularly implanted
microchips (Iyasere et al., 2017). Both devices are good for
automatically collecting data at pre-set intervals, but have the
risk of infection after surgery and a greater recovery time
prior to data collection. In cattle, less invasive studies have
used automatic measurements of reticule-rumen boluses (Timsit
et al., 2011; Liang et al., 2013), which give continuous rumen
temperature measurements in real time (Lohölter et al., 2013;
Lees et al., 2018). In pigs, gastrointestinal temperature can be
measured using orally administered temperature sensors (or
boluses, as commonly defined in similar sensors used in cattle
studies) monitored with a wireless core body temperature data
recorder (Johnson et al., 2016). Although the boluses allow
measurement without disturbing the animal, they have short
communication distances between the bolus and reader thus
requiring manual data collection, the boluses are costly, and
TB fluctuations may exist depending on the temperature of
feed and water consumed (Lee et al., 2016b). Alternatively,
vaginal implantation of wireless sensors can accurately determine
TB using a radio-telemetric system (Kyle et al., 1998; Johnson
and Shade, 2017) or a temperature logger (Gebremedhin
et al., 2008). Specifically, in pigs (Johnson et al., 2016),
beef cattle (Burdick et al., 2012), and dairy cattle (Garner
et al., 2016), vaginal temperature can be measured with a
thermochron temperature recorder attached to a plastic device
controlled internal drug releasing device. However, this is
only effective in females. Finally, temperature sensing with

an ear canal radiotelemetry system can be used on cattle
due to its long-distance wireless communication and simple
attachment similar to ear tagging (Lee et al., 2016b), which
provides temperature stability but has the risk of the tagged
device to fall off.

HIGH-THROUGHPUT PHENOTYPING
TECHNOLOGIES

The rapid development of integrated biological (e.g., -omics
technologies) and engineering systems and the Internet of Things
(IoT) is enabling the development of affordable monitoring
devices and high-throughput technologies (Neethirajan et al.,
2017). These tools can be used for individually monitoring
large numbers of animals in commercial settings and are
advantageous to quantify biological indicators through rapid,
repeatable, and automated measurements. This is crucial because
the ideal welfare assessment indicators should be as objective
as possible, robust (can be applied under a wide range of on-
and off-farm situations), relevant and valid (reveal aspects of the
animal’s affective or physiological state that is important to their
welfare), reliable (can be repeated with confidence in the results),
cost-effective, and well accepted by all industry’s stakeholders
(Fleming et al., 2016).

The technological devices used include sensors such as
cameras, microphones to capture vocalizations, thermometers,
automated feeding and milking systems, automatic scales to
measure body weight and lean-fat ratios, milk spectral data,
electrodes to detect skin conductivity and heart rate, and
accelerometers (Vranken and Berckmans, 2017; Benjamin and
Yik, 2019; Halachmi et al., 2019). In this section, we describe
phenotyping technologies that can be (or have been) used to
assess animal welfare and potentially incorporated in genetic or
genomic evaluation schemes in commercial livestock systems. It
is important to note that some of these technologies are still under
development and validation stages. In some cases, there could
exist disagreements on their ability to assess welfare (de Rosa
et al., 2019). We have highlighted examples from multiple species,
but it is worth noting that the technologies and indicator traits
described in this study can be easily translated or extrapolated
from one species to another.

Biomarkers
As previously indicated, various endocrine and behavioral
mechanisms are involved in coping with stressors (e.g.,
aggression, hunger, and disease challenge). Glucocorticoids,
secreted by the adrenal glands, are the most evident indicators
of a stress response (Cook, 2012; Palme, 2012). They are usually
measured in plasma samples; however, blood collection itself can
cause additional stress as a result of handling and restraint (Cook,
2012). Palme (2012) discussed various non-invasive methods
for the determination of glucocorticoids or their metabolites
in saliva, urine, excreta, milk, hair/feathers, and eggs. Fecal
and hair (or feather) samples are promising alternatives as
circulating hormone levels are integrated over a certain period
of time and are less affected by short fluctuations (Palme, 2012;
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Pawluski et al., 2017). The frequency of sample collection will
depend on whether the impact of acute or chronic stress factors
is being evaluated.

In addition to cortisol, various blood-based biomarkers have
been associated with aggression in pigs, including plasma
triiodothyronine (T3), 5-hydroxytryptamine, and tryptophan
(Shen et al., 2019). Furthermore, disease challenge is another
great welfare impairment. Huzzey et al. (2011) evaluated the
potential of using pre-partum analytes associated with stress
(cortisol) or inflammation (haptoglobin), and NEFA (non-
esterified fatty acids) as indicators of increased risk for health
complications after calving. The authors reported that NEFA was
a more suitable post-partum health indicator compared to fecal
or plasma cortisol metabolites, and plasma haptoglobin.

In some species (e.g., dairy cattle, dairy sheep, and dairy
goats), additional biomarkers can be identified in body fluids
measured routinely, such as milk. For instance, in milk, mid-
infrared spectrometry (MIR) has been used to monitor potential
metabolic issues and diseases such as mastitis, ketosis, fat–protein
ratio, NEFA or phospholipids, glucose, and insulin growth factor
1 (Egger-Danner et al., 2014; Tetens et al., 2015; König and
May, 2019), usually associated with negative welfare implications
in production systems. In this regard, fat–protein from routine
milk recording data has been indicated as a selection criterion
to improve metabolic stability (Koeck et al., 2014). As such,
various research projects have investigated the use of milk
MIR data for prediction of novel indicator traits for selection
purposes [e.g., RobustMilk, Opti-MIR, PhenoFinlait, and GplusE
(Egger-Danner et al., 2014)].

Mastitis is a disease with major welfare implications in
dairy species (Martin et al., 2018). Test-day somatic cell count
(transformed to somatic cell score) is a routinely collected
phenotype that has already been included in commercial
breeding programs to improve udder health (Miglior et al., 2017;
Martin et al., 2018). Minerals (e.g., Ca, K, Mg, Zn, Se, and
P) or mineral content measured via milk MIR has also been
suggested as potential biomarkers to improve mastitis resistance
(Egger-Danner et al., 2014), and milk protein fractions as suitable
biomarkers for heat tolerance (Carabaño et al., 2017).

Animals raised in extensive production systems (e.g.,
beef cattle, sheep) can suffer substantially from endoparasite
infections caused by gastrointestinal nematodes (Papadopoulos
et al., 2012). Various biomarkers have been proposed to
genetically select for host resistance (i.e., ability to control
pathogen burden) or tolerance (i.e., ability to limit the impact
of a given pathogen burden on performance), but serum
or milk antibodies (different isotypes of immunoglobulins),
and fecal egg count are the most commonly used indicators
(Bishop and Morris, 2007; König and May, 2019).

In ruminant species, measuring rumen pH can indicate
metabolic and nutritional dysfunctions associated with negative
welfare implications such as acidosis (Leek, 1983; Hamilton et al.,
2019). There are various sensors available to measure H-ion
concentration in the rumen by electrical means. These sensors (or
boluses) are usually coupled with radio-frequency transmitters
for continuous real-time data acquisition and there are already
various commercially available devices (Mottram et al., 2008;

Kim H. et al., 2018; Hamilton et al., 2019). Technology prices
are decreasing over time and its quality is improving (e.g.,
robustness, battery life). Such devices can generate a large amount
of data to be used for identifying disease resilient animals for
breeding purposes.

There is also a potential to use biosensors for breath analysis
aiming to identify disease indicators (bovine respiratory disease,
tuberculosis, brucellosis, and ketoacidosis), especially volatile
organic compounds (Fend et al., 2005; Burciaga-Robles et al.,
2009; Neethirajan et al., 2017). Biosensors to analyze metabolites
in sweat [e.g., lactate levels; indicator of physical stress (Jia et al.,
2013)] have also been developed and converted to portable
formats [e.g., belts, adhesive RFID sensor patch (Neethirajan
et al., 2017)]. A large number of alternative compounds
have been investigated over time, including adrenaline,
noradrenaline, corticotropin-releasing factor, prolactin, glucose,
lactic acid, blood leukocyte levels, and cellular immune response
(Neethirajan et al., 2017). There are various bioanalytical devices
and wearable technologies that can be implanted on the animals
to analyze sweat composition [e.g., sodium and lactate content
(Garcia et al., 2016; Glennon et al., 2016; Heikenfeld, 2016)],
and assess body temperature (Sellier et al., 2014) such as wireless
temperature sensor nodes that can be appressed to the base
of calf ’s tail (Nogami et al., 2014), detection of analytes and
pathogens (Mungroo and Neethirajan, 2014; Vidic et al., 2017),
and many others (Neethirajan, 2017).

The development of biosensors is rapidly advancing in human
research (Metkar and Girigoswami, 2019), and one can expect
that these technologies will soon be adapted to the livestock
industry. High-throughput phenotyping of physiological and
metabolic changes combined with large-scale genomic (and other
-omic) datasets will be paramount on implementing genomic
selection for improved animal welfare in commercial farms. It
is important to highlight that it is very unlikely that a single or
few biomarkers could be used for a holistic assessment of animal
welfare. However, welfare biomarkers can be complementary to
other data sources.

Machine Vision (Cameras)
Machine vision has been used for several purposes in animal
sciences, including determination of body weight (Tscharke and
Banhazi, 2013; Kongsro, 2014), body condition score (Azzaro
et al., 2011; Halachmi et al., 2013), detection of aggressive
behavior (Lee et al., 2016a; Chen et al., 2017; Nasirahmadi et al.,
2017), walking patterns and lameness (Stavrakakis et al., 2015),
and posture and behavior during lactation (Lao et al., 2016).
Often, video recordings are used to manually assess animal
behavior (Oczak et al., 2013), but the manual analysis of these
videos is time-consuming, and may introduce human error
(Catarinucci et al., 2014).

A wide variety of cameras are available (e.g., RGB, infrared
thermography cameras, 3D cameras), and more recently, there
is an increasing number of research projects investigating the
automation of machine vision and data analytics (Ventura
et al., 2020). Therefore, machine vision is expected to play
an important role in the design of large-scale data collection
for breeding schemes to improve animal welfare. For instance,
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3D cameras [e.g., Microsoft Kinect (Microsoft, Redmond, and
Washington) and Intel RealSense (Intel, Portland, and Oregon)]
are usually equipped with a high-definition camera, an infrared
illuminator, and time-of-flight (ToF) depth sensor that produces
color (Benjamin and Yik, 2019). These cameras are reasonably
cost-effective, can handle large amounts of data, have low power
requirements, do not require any contact with the animal (remote
measuring), and are adaptable to variable light and background
conditions (Benjamin and Yik, 2019).

Infrared thermography or thermal imaging is increasingly
being used as a non-invasive method to assess animals’
physiological and emotional state, including skin temperature,
inflammation in certain areas of the body (e.g., udder –
mastitis), locomotion disorders, and respiratory diseases (Stewart
et al., 2005; Alsaaod et al., 2014; Harris-Bridge et al., 2018;
Jorquera-Chavez et al., 2019). Boileau et al. (2019) used infrared
thermography taken from pigs in a controlled test environment
and indicated that the obtained peripheral temperature provided
useful information about the physiological and welfare outcomes
of aggressive behavior in pigs. Moreover, image motion feature
extraction was used for recognition of aggressive behaviors
among group-housed pigs, with an accuracy of 95.82 and 97.04%
for medium and high aggression, respectively (Chen et al., 2017).
Infrared thermo-imaging has also been investigated as a potential
tool to quantify the number of ticks in the body surface of
Brangus cattle, which causes major health and welfare issues,
especially in tropical countries (Barbedo et al., 2017).

In the swine industry, farrowing is a challenging stage
for both the sow (transition from gestation to farrowing and
lactation), and the piglets (susceptibility to crushing, chilling,
and malnutrition; Marchant et al., 2001; Johnson and Marchant-
Forde, 2009). Aiming to identify solutions to these issues,
Leonard et al. (2019) monitored behavioral activities of sows and
piglets in a commercial setting utilizing an autonomous machine
vision system. A digital and ToF depth imaging system was
implemented and a process with minimal user input to analyze
the collected images was developed to calculate the hourly and
daily posture and behavior activities of sows housed in individual
farrowing crates. Depth sensors were placed on top of each stall
in three farrowing rooms and controlled by mini-computers.
Algorithms were able to accurately classify sow behavior (sitting:
99.4%, standing: 99.2%, kneeling: 99.7%, and lying: 99.9%). This
autonomous system enables acquisition of a large amount of
replicated data, and this research is a great example of integrated
technology into on-farm environments that can potentially
generate phenotypic records for genomic selection purposes.
Lao et al. (2016) also used a machine vision-based system that
automatically recognizes sow behavioral activities (e.g., lying,
sitting, standing, kneeling, feeding, drinking, and shifting) in
farrowing crates. The system consists of a low-cost 3D camera
that simultaneously acquires digital and depth images and a
software program that detects and identifies sow behaviors.
This algorithm achieved an accuracy of 99.9% for lying, 96.4%
for sitting, 99.2% for standing, 78.1% for kneeling, 97.4% for
feeding, 92.7% for drinking, and 63.9% for transitioning between
behaviors. As sows are individually housed in farrowing crates,
these systems will likely be very useful for selective breeding

for maternal ability [e.g., maternal behavior, piglet survival
(Hellbrügge et al., 2008a)], and other alternative breeding goals
(Baxter et al., 2011; Muns et al., 2016).

Another use of machine vision is analyzing the overall posture
of the animal to detect lameness (and genetically select for
improved hoof health). Blackie et al. (2013) evaluated kinematic
gait analysis to assess stride characteristics, joint flexion and spine
posture in dairy cows with different lameness status. The dairy
cows were video-recorded walking along an alley (1.6 m wide),
with colorful markers placed in specific parts of their bodies. In
this case, the need for markers is a limitation for measuring large
numbers of animals. Under farm conditions, body movement
pattern recognition was applied to identify lameness in dairy
cattle with an accuracy of 76% (Viazzi et al., 2013). Abdul Jabbar
et al. (2017) used three-dimensional (3D) video data to analyze
gait asymmetry by simultaneously tracking the movements of
the spine and hind limbs of dairy cows and precisely identified
95.7% of lame cows. Body condition score is another variable
that can be automatically recorded, including through the use of
a Kinect camera (Microsoft Corp., Redmond, WA, United States)
triggered by passive infrared motion detectors (Spoliansky et al.,
2016), or by modeling cow body shape from digital images
(Azzaro et al., 2011).

Tail biting is a major welfare issue in the swine industry and
is a heritable trait [i.e., can be reduced through selective breeding
(Breuer et al., 2005)]. Brünger et al. (2019) used neural networks
to identify tail lesions in pictures from 13,124 pig carcasses and
was able to correctly identify 74% of tail lesions and 95% of
tail losses. Also in pigs, the behavioral and clinical alterations of
growing pigs infected with two common strains of Salmonella
spp. were investigated using a video-recording system (Ahmed
et al., 2014). Recordings were able to detect clear changes in
pigs’ movement, feeding and drinking behavior in response to
Salmonella spp. infection. Additionally, Porto et al. (2015) used
a multi-camera video-recording system to detect cow feeding
behavior with an accuracy of 88% for feeding and 86% for
standing behavior. Furthermore, Vetters et al. (2013) used an
infrared sensor to determine the flight speed, to cross a fixed
distance of 1.83 m, when exiting the squeeze chute as an indicator
of cattle temperament.

Heart rate and heart rate variability are indicators of
cardiovascular system functioning and cardiac autonomic
modulation that are used to estimate physiological and
psychological stress in animals (von Borell et al., 2007).
In recent years, optical methods for measuring heart rate
have received increased interest and technical development
(Halachmi et al., 2019). Beiderman et al. (2014) proposed
a photonic remote sensing system assembled on a robotic
platform to measure important biological indicators such as
heart beating, breathing and chewing activity. In this research,
the algorithm development used image processing and image
pattern recognition techniques. This promising technology can
be used in livestock breeding farms to generate useful and
practical information about animal welfare and stress resilience
to incorporate into breeding programs.

Machine vision can generate a large amount of data
in individual animals with high precision and through
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remote sensing (non-invasive method), but there is still a
need to optimize accurate data collection and individual
identification/recognition (connecting images to animal ID is
still a challenging process). Kashiha et al. (2013) investigated the
feasibility of an automated machine vision method to identify
marked pigs in a pen and achieved an accuracy of 88.7%.
However, more efficient alternatives are still needed. Major and
on-going advancements are happening in this area. For instance,
facial recognition to identify individual animals is currently
being investigated (Hansen et al., 2018).

Wurtz et al. (2019) performed a comprehensive systematic
review of studies that used machine vision technology to
assess behavior of indoor-housed farm animals. The authors
highlighted the need to build upon existing knowledge, instead of
developing devices from scratch, and validate these devices under
commercial settings (in large scale). Some equipment cannot
be used for measuring large numbers of animals, which is a
constraint for generation of data for breeding purposes.

Activity Sensors (Accelerometers,
Activity Monitors)
Activity sensor or accelerometer devices are becoming popular
in commercial livestock operations and, therefore, have great
potential to generate large-scale datasets for breeding purposes.
In general, accelerometers contain several sensors that record
location and transmit velocity and acceleration data in one or all
three dimensions (Benjamin and Yik, 2019). This includes static
forces (e.g., animal is lying down), as well as movements (e.g.,
walking; Benjamin and Yik, 2019). These devices can be attached
to different parts of the animal body (e.g., ear, neck, back, feet, and
legs) and classify a variety of activities such as feeding, gait (and
lameness), lying, panting, ruminating, standing, walking, nest-
building (pigs), and grazing behavior (Cornou and Lundbye-
Christensen, 2008; Escalante et al., 2013; Oczak et al., 2015;
Thompson et al., 2016; Traulsen et al., 2018; Alsaaod et al., 2019;
Benaissa et al., 2019; Halachmi et al., 2019). These metrics can
be used as indicators of welfare (including health status) and for
detection of positive or negative welfare status (Alsaaod et al.,
2019; Benaissa et al., 2019). For instance, day-to-day variation
in activity has been successfully used for lameness detection in
dairy cattle (De Mol et al., 2013; Alsaaod et al., 2019), which is a
heritable trait (Chapinal et al., 2013). Accelerometers and activity
loggers have been also used in poultry to record the development
of space use in layers housed in multi-tiers aviaries (Kozak et al.,
2016a,b) and gait in grower and finisher turkeys (Dalton et al.,
2016). Results reported in de Haas et al. (2017) suggest that
activity patterns recorded by accelerometers can help to detect
the onset of feather pecking. Therefore, recording devices such
as accelerometers and activity monitors are sensitive to detect the
development of behavioral and health problems in livestock.

In this section, we describe some studies using activity sensors
that generated data feasible for inclusion in selective breeding
schemes. The pedometer is a commonly used activity-monitoring
device in dairy cattle, and there are multiple types available in
the market. For instance, Shepley et al. (2017) and Mattachini
et al. (2013) reported the successful application of pedometers

for calculating activity and detecting lying behavior in dairy
cows, respectively. Oczak et al. (2015) used accelerometer data
(ear tag with a 3-axis accelerometer sensor) to determine nest-
building behaviors of non-crated farrowing sows with more
than 85% accuracy. This could aid in the generation of data
to improve genetic selection for maternal behavior and piglet
survival. Borchers et al. (2016) evaluated six different triaxial
accelerometer technologies that provided accurate assessment of
cow behavior, including feeding time, lying time, and rumination
pattern. Along the same lines, Benaissa et al. (2019) used leg- and
neck-mounted accelerometers combined with machine learning
algorithms to automatically record dairy cow behavior (i.e., lying,
standing, and feeding behavior) with high precision (80–99%)
and sensitivity (87–99%).

Activity sensors can also be useful in outdoor production
systems. For instance, González et al. (2015) performed
unsupervised behavioral classification of electronic data collected
at high frequency from collar-mounted motion and GPS sensors
in grazing cattle. The behaviors assessed included foraging,
ruminating, walking, resting, and “other active behaviors”
(which included scratching against objects, head shaking, and
grooming). Similar results have also been presented in other
studies (e.g., Williams et al., 2016; Manning et al., 2017). As
wireless data transfer in real time from collar transmitters to
data analysis stations is possible and feasible, the large datasets
generated are another great source of potential welfare indicators
to include in pasture-based breeding schemes. In free-stall-
housed dairy cattle, Bikker et al. (2014) indicated the potential use
of a 3-D accelerometer that can be attached to ear identification
tags and used to classify behaviors (e.g., resting, ruminating)
based on ear movements.

In summary, accelerometers are small and low-cost devices
that can be embedded into wearable sensors used in wireless
sensor networks to generate and transfer real-time data to
databases (data center stations). They are usually used for
tracking animals’ positions and recording locomotion and
activity/inactivity patterns in general (Benjamin and Yik, 2019),
but a large number of traits can be derived from the data collected
(Williams et al., 2016). In addition to using all the data generated
for management (e.g., reproduction, disease detection) purposes,
there is still a greater need to investigate the usefulness of such
datasets for breeding more resilient animals with a better welfare.
We expect that the recent availability of large-scale datasets
generated by such devices in herds/flocks of animals with both
pedigree and genomic information has great potential to redirect
livestock breeding goals.

Acoustic Sensing (e.g., Vocalization)
Livestock vocalizations can be a good source of information
about animal welfare status and social interactions (Exadaktylos
et al., 2014; Neethirajan, 2017). Acoustic sensing is a non-invasive
method, inexpensive, and less dependent on lighting or the
specific position of the animal (Mcloughlin et al., 2019). Some
studies have investigated the relationship between vocalization
and health (Exadaktylos et al., 2008; Silva et al., 2009; Ferrari
et al., 2010), poultry welfare (Zimmerman and Koene, 1998),
stress events [e.g., piglet crushing (Manteuffel et al., 2017), pain
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during husbandry procedures (Marchant-Forde et al., 2009)], and
feeding behavior based on pecking sound (Aydin et al., 2014).
Various devices have been developed over time. For instance,
a microphone can be installed in rumination neck collars
to record rumination time based on sounds of regurgitation
(Ambriz-Vilchis et al., 2015).

Despite the wealth of information that can be captured by
sounds, acoustic devices are a more challenging source of data
collection for livestock breeding purposes. Most commercial
breeding programs are of medium to large size and intensive
systems (i.e., many animals are housed together at high stocking
density). Various sounds are therefore produced at the same
time, and sound analysis or sound recognition becomes difficult
due to background noise (Du et al., 2018). Identifying the focal
animal emitting the vocalization is also challenging, especially
under on-farm conditions (e.g., noise background due to feeding
and ventilation equipment, other animals). There are automatic
measurement techniques and software being developed that
could focus on specific vocalizations at specific time points (e.g.,
transport, handling; Moura et al., 2008; Halachmi et al., 2019).
There might also be an opportunity to combine technologies such
as machine vision, machine learning, and acoustic sensors.

Automatic Milking Systems (Milking
Robots)
With the intensification of dairy cattle production, automated
milking systems (AMS; milking robots) are becoming more
popular around the world. Labor cost savings in AMS have been
estimated to range from 18 to 46% (Rotz et al., 2003; Mathijs,
2004; Bijl et al., 2007). In addition, the benefits of AMS include
higher milk production per cow as a result of greater milking
frequency (Tremblay et al., 2016; Tse et al., 2017), improved
cow welfare (Jacobs and Siegford, 2012), earlier and easier
disease detection (Tse et al., 2017), more interesting/fewer routine
activities for the dairy producers (Woodford et al., 2015), and
more flexible lifestyle to the farmers compared to conventional
milking systems. The proportion of dairy farms using AMS is
expected to increase substantially over the next years. Moreover,
AMS generate a large amount of data that can be used to
derive phenotypes that can be helpful for breeding purposes [e.g.,
disease disorders (King and DeVries, 2018)].

Several variables influence the welfare, performance, and
efficiency of milk production in AMS. These traits include: (1)
the willingness of the cow to voluntarily enter the milking robots.
Therefore, milking interval and frequency are largely influenced
by individual cow motivation. In this regard, cow training has
been identified as a key challenge by producers (Tse et al.,
2018). Thus, genetically selecting cows that are easier to train
(or other motivation traits to enter the milking robot, such as
low neophobic cows) is highly desirable; (2) cow ability to stay
calm during cleaning/disinfection and attachment of milking
equipment, especially in the presence of sounds and mechanical
movements. Cows with a proactive temperament kick-off the
milking equipment and prolong preparation and teat attachment
times (Wethal and Heringstad, 2019); (3) inter-milking interval;
(4) udder and individual quarter milk production (as more

heterogeneous production among quarters will result in longer
retention in the milking box); (5) udder conformation and teat
size/placement, which is associated with teat cup attachment
success rate; (6) milking time and length of the milking procedure
(milking box time), which is directly associated with milking
speed; (7) milk flow rate (milking speed). It is worth noting that
milking speed is unfavorably correlated with udder health, and
consequently, both traits need to be considered simultaneously
(Sewalen et al., 2011). In addition, (8) cow dominance behavior,
as more submissive cows are forced to wait for a longer period
of time and forced to adjust their feeding behavior and milking
times; and, (9) ability to quickly leave the milking robots after the
last teat cup is removed. Despite the importance of all these traits,
relatively few studies have investigated how they can be quantified
based on data generated in AMS, their genomic predictive ability,
and the degree to which these traits are associated with longevity,
health (e.g., mastitis), and other economically and welfare
important traits. This is a great source of data that can be used
to genetically improve various resilience and performance traits
in dairy cattle. More recently, some studies have investigated
the genetic background of AMS-derived traits, indicating that it
generates various variables that are heritable (Table 2).

Individual Feed Intake Recording
Systems
Individual feed intake recording systems are usually used for
collecting data to enable precision management as well as
genetic and genomic selection for improved feed efficiency
(Hoque and Suzuki, 2009; Egger-Danner et al., 2014; Hadinia
et al., 2019). However, there are additional variables that can
be used as proxies of animal resilience and feeding behavior
(Maselyne et al., 2015; Putz et al., 2019). For instance, voluntary
variations in feed intake can indicate disease resilience, feeding
competition, or negative agonistic interactions (Ahmed et al.,
2014; Munsterhjelm et al., 2015; Matthews et al., 2016; Putz et al.,
2019). In some cases these changes might not differ with regards
to the total consumption but rather the frequency and duration
of feeding activities (Tolkamp et al., 2011).

There is a large number of automated feeding systems
commercially available that can be used to measure feed intake,
feeding behavior, and other related variables (Hoque and Suzuki,
2009; Chen et al., 2010; Maselyne et al., 2015; Johnston et al.,
2016; Matthews et al., 2016). Most systems use specially-designed
single-space feeders (Maselyne et al., 2015). In general, there is
a RFID (radio-frequency identification) antenna to identify the
focal animals feeding and traits of their feeding bout. In addition
to consumption rate (i.e., feed intake per unit of time), various
other variables can be extracted such as the frequency of meals,
meal duration, feeding duration, feeding pattern (e.g., time of the
day; Maselyne et al., 2015), agonistic behaviors, and dominance
relationships among dairy cows (Foris et al., 2019). Automatically
recorded datasets have been used to understand the genomic
background (including GWAS) of feeding behavior traits such as
daily number of feeder visits, feeding time and duration per visit,
and total daily duration at feeder (Do et al., 2013). Predictors or
early indicators of tail biting outbreaks have been identified using
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TABLE 2 | Heritability estimates for traits derived from Automated Milking Systems (AMS; milking robots) in Holstein (HO), Norwegian Red (NR), and Swedish
Red (SR) cattle.

Trait Measurement protocol or trait definition Breed Heritability (SE) References

Attachment failures (%) Proportion of milkings with at least one
attachment failure

HO, SR 0.21 (0.07)–0.31 (0.07) Carlström et al., 2016

Average flow rate (kg/min) Average of the milk flows measured for each
quarter within 1 milking

HO, SR 0.37 (0.06)–0.48 (0.08) Carlström et al., 2013

Average milk flow Average milk flow in kg/min HO 0.25 (0.07) Viviana Santos et al., 2018

Box time Time from when a cow enters the AMS to when
it exits the milking unit

NR 0.27 (0.03) Wethal and Heringstad, 2019

Box time (min) Difference between begin and end time HO, SR 0.21 (0.05)–0.44 (0.07) Carlström et al., 2013

Distance front-rear (mm) Average distance between the front and rear
teat ends

HO 0.56 (0.02)–0.61 (0.02) Poppe et al., 2019

Electrical conductivity from all
four quarters

Electrical conductivity was used as an indicator
reflecting the udder health status

HO 0.53 (0.09) Viviana Santos et al., 2018

Electrical conductivity Electrical conductivity (EC) measured as
maximum (ECmax) and mean (ECmean)

HO 0.23–0.35 (0.03) Wethal et al., 2020

Elevated mastitis risk Please see the formula in the reference HO 0.09 (0.04) Wethal et al., 2020

Flow rate Average kg of milk/min of milking time NR 0.48 (0.04) Wethal and Heringstad, 2019

Front teat distance (mm) Distance between left and right front teat ends HO 0.53 (0.03)–0.60 (0.02) Poppe et al., 2019

Handling time Difference between box time and milking time
and sums the time before the milk starts flowing
and the time from when the last teat cup was
removed to the time the cow leaves the system

NR 0.05 (0.01) Wethal and Heringstad, 2019

Handling time (min) Difference between box time and milking time HO, SR 0.05 (0.02)–0.15 (0.03) Carlström et al., 2016

Incomplete milking (%) Proportion of incomplete milkings out of all
milkings throughout the lactation

HO, SR 0.02 (0.03)–0.06 (0.05) Carlström et al., 2016

Incomplete milkings Number of daily milkings with a minimum of one
teat registered as incompletely milked

NR 0.01 (0.01) Wethal and Heringstad, 2019

Interval between two
consecutive milkings

Time span between two consecutive milkings HO 0.07 (0.03) Viviana Santos et al., 2018

Kick-offs Daily number of milkings with at least one teat
cup kick-off

NR 0.06 (0.01) Wethal and Heringstad, 2019

Log-transformed handling time Log of handling time NR 0.07 (0.02) Wethal and Heringstad, 2019

Log-transformed online cell
count

Udder health indicator HO 0.09 (0.03) Wethal et al., 2020

Milk yield at a quarter basis:
front left

Milk yield measured by the AMS HO 0.19 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
front right

Milk yield measured by the AMS HO 0.05 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
rear left

Milk yield measured by the AMS HO 0.11 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
rear right

Milk yield measured by the AMS HO 0.08 (0.05) Viviana Santos et al., 2018

Milking efficiency Ratio of milk yield (kg) and box time (min) NR 0.22 (0.03) Wethal and Heringstad, 2019

Milking frequency Recorded by the AMS HO 0.14 (0.01) Nixon et al., 2009

Milking frequency Number of milkings per day NR 0.05 (0.01) Wethal and Heringstad, 2019

Milking interval Difference between the begin time for the
present milking and the begin time for the
previous milking

SR 0.09 (0.03)–0.23 (0.05) Carlström et al., 2013

Milking interval Time between milking sessions NR 0.02 (<0.01) Wethal and Heringstad, 2019

Milking interval (hours) Difference between the begin time for the
present milking and the begin time for the
previous milking

HO 0.17 (0.05)–0.26 (0.05) Carlström et al., 2013

Number of milkings Number of milkings per cow per 24 h HO, SR 0.02 (0.01)–0.07 (0.01) Carlström et al., 2013

Rear teat distance Distance between left and right rear teat ends in
mm

HO 0.37 (0.03)–0.47 (0.02) Poppe et al., 2019

Rejected milkings Number of visits for cows in the AMS without
being milked

NR 0.02 (<0.01) Wethal and Heringstad, 2019

(Continued)
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TABLE 2 | Continued

Trait Measurement protocol or trait definition Breed Heritability (SE) References

Teat not found Defined as the number of daily milkings in
which the AMS was unable to find at least one
of the teats for milking

NR 0.002 (0.004) Wethal and Heringstad, 2019

Total milk yield per day Milk yield measured by the AMS HO 0.18 (0.06) Viviana Santos et al., 2018

Udder balance (mm) Average difference in distance to the floor
between the front and rear teat ends

HO 0.38 (0.03)–0.40 (0.02) Poppe et al., 2019

Udder depth (mm) Average distance of teat ends to the floor HO 0.65 (0.02)–0.69 (0.02) Poppe et al., 2019

data from electronic feeders (Wallenbeck and Keeling, 2013),
suggesting another potential source of data for selective breeding
against damaging and aggressive behaviors in pigs.

Automated calf feeders are becoming more common as
well (Johnston et al., 2016). These systems deliver milk via a
nipple at volumes and frequencies that resemble natural calf
feeding behavior, support faster growth (De Paula Vieira et al.,
2008), and promote calf health such as reduced sickness events
(Godden et al., 2005; Barkema et al., 2015). The data generated
(e.g., individual milk intake rate, frequency of feeding events)
can also be used to derive proxies for genomic selection for
improved calf health and overall resilience variables for genomic
selection purposes.

In the case of poultry, precision feeding stations in
broiler breeders can provide individual information about their
performance in terms of growth rate and feed intake during
rearing and lay (Hadinia et al., 2019). This information allows
individual and automatic management of the feed restriction
level and improve body weight uniformity in the flock (Zuidhof,
2018). For breeding selection purposes, individual performance
records with precision feeding enable selection for feed efficiency.
Feed efficiency in addition to other traits in the pedigree lines
facilitates the selection of a parent stock with high welfare and
performance that need low feed intake for the same growth rate.

In summary, automated feeding systems are becoming
popular in livestock production and the large amount of data
generated can also be used to derive welfare and resilience
indicators for genetic and genomic selection (Howie et al., 2009,
2011). Studies investigating the genetic background of traits
measured by automated feed intake recording systems are shown
in Table 3.

Microbiota Profiling
The gut microbiome can influence various host biological
processes including immunity, growth, metabolism, brain
development and functioning, behavioral stress (both acute
and chronic), neurophysiological disorders, and emotional well-
being such as anxiety and depression (Mu et al., 2016; Karsas
et al., 2018; Kraimi et al., 2019). Therefore, an alternative
(and complementary route) approach for minimizing welfare
issues might be by altering the gut microbiota through
selection (i.e., host-microbiome interactions), dietary changes
(Parois et al., 2020), and management processes (Kurilshikov
et al., 2017; Kraimi et al., 2019). There is evidence of
a bidirectional interaction between the host and the gut

microbiome in which changes in the microbial community
affect host behavior and perturbations in behavior alter the
composition of the gut microbiota (Collins and Bercik, 2009;
Mu et al., 2016).

In pigs, the interplay between gastrointestinal tract
microbiota, host genetics, and complex traits (mainly related
to growth and feed efficiency) was investigated using extensive
quantitative-genetic methods and they found that the bacteria
genera had a significant narrow sense host heritability ranging
from 0.32 to 0.57 (Camarinha-Silva et al., 2017). Another study
compared the gut microbiota of two chicken lines raised under
the same husbandry and dietary conditions and reported that
68 (out of 190) microbiome species were affected by genotype
(line), gender and genotype by gender interactions (Zhao et al.,
2013). In addition, the genetic relationships between behavior
and digestive efficiency was investigated in 860 chickens from
a cross between two lines divergently selected on digestive
efficiency (Mignon-Grasteau et al., 2017). The authors detected
common genomic regions for the presence of bacteria such as
Lactobacillus and L. crispatus and traits such as feeding behavior
(Mignon-Grasteau et al., 2017). A pilot study investigated
the effects of early-life microbiota transplantation on feather
pecking, and behavioral and physiological traits related to feather
pecking (van der Eijk et al., 2020). The researchers reported that
chicken lines with divergent genetic merit for feather pecking
had different microbiota composition. Furthermore, early-life
microbiota transplantation had immediate and long-term effects
on behavioral responses and long-term effects on immune
characteristics and peripheral serotonin; however, the effects
were dependent on the host genotype (van der Eijk et al., 2020).

Targeted sequencing and metagenome shotgun sequencing are
the two main approaches for generating microbiome profiling.
Recently, a low-cost and high-throughput approach based on
Restriction-Enzyme Reduced Representation Sequencing (RE-
RRS) has been proposed as an alternative to capture the
diversity of the rumen microbiome (Hess et al., 2020). As
the costs to generate sequencing datasets decrease, microbiome
profiling might be an additional relevant phenotype for
further investigations and potential applications for selection to
improved welfare in livestock species.

Qualitative/Subjective Scores of
Behavioral/Welfare Indicator Traits
Qualitative and subjective scoring are additional approaches to
assess animal welfare. Many of these indicators can be collected
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TABLE 3 | Heritability estimates for traits derived from automated feeding systems in sheep, swine and cattle.

Trait Measurement protocol or trait definition
(general observations)

Species Heritability (SE) References

Feed intake at the visit Feed intake recorded by the automatic feeder Sheep 0.38 (0.07) Marie-Etancelin et al., 2019

Feeding duration at the visit Time recorded by the automatic feeder Sheep 0.28 (0.06) Marie-Etancelin et al., 2019

Between−visit time Between−visit time interval Sheep 0.38 (0.07) Marie-Etancelin et al., 2019

Feeding rate Defined as the ratio between feed intake and
feeding duration

Sheep 0.37 (0.06) Marie-Etancelin et al., 2019

Number of meals per day A minimum of two consecutive data points
were required to constitute a meal

Swine 0.315 (0.075) Rohrer et al., 2013

Average meal length (s) Meal length was calculated as number of
consecutive data points times 20 s

Swine 0.604 (0.087) Rohrer et al., 2013

Daily meal time (m) Recorded by the feeder – no details presented Swine 0.37 (0.079) Rohrer et al., 2013

Percentage of meals alone Recorded by the feeder – no details presented Swine 0.391 (0.076) Rohrer et al., 2013

Average number of pigs at feeder Recorded by the feeder – no details presented Swine 0.514 (0.081) Rohrer et al., 2013

Percentage of meals at gate-side Recorded by the feeder – no details presented Swine 0.157 (0.056) Rohrer et al., 2013

Percentage of meals at open-side Recorded by the feeder – no details presented Swine 0.213 (0.070) Rohrer et al., 2013

Feeding duration, min·d-1 Recorded by the feeder – no details presented Cattle 0.25 (0.16) Durunna et al., 2011

Head-down time, min·d-1 Recorded by the feeder – no details presented Cattle 0.14 (0.15) Durunna et al., 2011

Feeding rate, kg·h-1 Recorded by the feeder – no details presented Cattle 0.35 (0.16) Durunna et al., 2011

Feeding frequency, visits·d-1 Recorded by the feeder – no details presented Cattle 0.56 (0.19) Durunna et al., 2011

Feeding duration, min·d-1 Recorded by the feeder – no details presented Cattle 0.14 (0.11) Durunna et al., 2011

Head-down time, min·d-1 Recorded by the feeder – no details presented Cattle 0.09 (0.1) Durunna et al., 2011

Feeding rate, kg·h-1 Recorded by the feeder – no details presented Cattle 0.67 (0.19) Durunna et al., 2011

Feeding frequency, visits·d-1 Recorded by the feeder – no details presented Cattle 0.59 (0.18) Durunna et al., 2011

on a large scale and incorporated into livestock breeding schemes
to enhance animal welfare and overall resilience. For instance,
Hessing et al. (1993) suggested using the back-test as a stress
indicator in pigs. In brief, pigs are manually restrained on their
backs for a certain period of time (e.g., 1 min) and are scored
based on their behavioral responses to assess reactivity and
proactivity. For example, Rohrer et al. (2013) used the back-
test to determine the effects of early-life handling in pigs. In
addition to the back-test, Løvendahl et al. (2005) estimated
variance components for aggressive behavior of sows at mixing
by counting the number of mild or severe aggressive behaviors
performed or received during 30 min after grouping and
determined maternal ability by recording the sows’ responses to
piglet vocalization during handling.

Additional subjective scoring systems of temperament
include: docility score in cattle (Adamczyk et al., 2013; Haskell
et al., 2014; Schmidt et al., 2014), milking temperament in dairy
cattle (Chang et al., 2020), maternal behavior and reactivity
in mobile chute in Zebu cattle (Peixoto et al., 2011), and tests
involving novelty, emotional reactivity, human contact and social
isolation (Boissy et al., 2005; Mignon-Grasteau et al., 2017; Larsen
et al., 2018). Furthermore, health scoring systems have also been
proposed: lung scoring (as an indicator of pneumonia resistance,
McRae et al., 2016), FAMACHA eye color chart scoring in sheep
and goats [as an indicator of internal parasite resilience (Kaplan
et al., 2004)], and body condition scoring (Köck et al., 2018).
In addition to the objective indicators of climatic resilience
presented before, some examples of qualitative scores of climatic
resilience are: hair length in cattle (Piccoli et al., 2020), drooling
score, respiration rate, and panting score (Gaughan et al., 2008;

Schütz et al., 2014). Lameness scoring systems are widely used
across livestock species (Thomsen et al., 2008; Reader et al., 2011;
Nalon et al., 2013; Granquist et al., 2019). In cattle raised in
extensive production systems, important adaptation traits have
been genetically and genomically evaluated, including prepuce
(navel) score, hair length score, and ocular pigmentation score,
in addition to tick resistance (based on tick count; Piccoli et al.,
2020). There are various methods available to aggregate multiple
indicators to produce an overall assessment of animal welfare
(Botreau et al., 2007a,b).

Despite the usefulness of qualitative scoring systems, it is
important to note that observer bias and experience can influence
subjective scores of animal behavior and welfare (Tuyttens et al.,
2014). Fleming et al. (2016) presents a detailed description
on the contributions of qualitative behavioral assessments in
livestock welfare.

LARGE-SCALE DATA ANALYSIS:
STATISTICAL AND COMPUTATIONAL
METHODS

Major technological advancements in large-scale data analyses
have been mainly driven by the availability and use of PLF
technologies (Rutten et al., 2013). The advancements in data
collection have been accompanied by the development and
refinement of sophisticated statistical and data analysis methods.
In this regard, a plethora of machine learning approaches have
been applied (and is currently in expansion) in livestock breeding
programs (Nayeri et al., 2019).
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TABLE 4 | Heritability estimates for traits derived from various technologies and biomarkers in chicken and cattle.

Technology (summary) Trait Measurement protocol or trait
definition (general observations)

Species Heritability (SE) References

Camera Frequency of feeding Determined by the focal sampling
on each individual (a meal was
defined as a sequence during
which birds were continuously
feeding and which was separated
from another feeding event by more
than 3 s)

Chicken 0.06 (0.02) Mignon-Grasteau et al.,
2017

Camera Frequency of moving Recorded by camera – no details
presented

Chicken 0.09 (0.07) Mignon-Grasteau et al.,
2017

Camera Frequency of lying Recorded by camera – no details
presented

Chicken 0.10 (0.06) Mignon-Grasteau et al.,
2017

Infrared sensors Flight speed (m/s) Infrared sensors were used to
trigger the start and stop of the
timing system

Cattle 0.49 (0.18) Nkrumah et al., 2007

Milk infrared spectra Blood β-hydroxybutyrate at
11 to 30 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.248 (0.005) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
31 to 60 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.274 (0.004) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
61 to 90 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.322 (0.005) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
91 to 120 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.360 (0.005) Belay et al., 2017

Transponder Daily feeding duration
(min/d)

Daily feeding duration was
computed as the sum of the
difference between feeding event
end-times and start times per day
for each animal

Cattle 0.28 (0.12) Nkrumah et al., 2007

Transponder Daily feeding head down
time (min/d)

Sum of the number of times the
electronic identification
(transponder) of the animal was
detected by the Growsafe system
during a feeding event multiplied by
the scanning time of the system

Cattle 0.33 (0.12) Nkrumah et al., 2007

Transponder Daily feeding frequency
(events/d)

Number of independent feeding
events for a particular animal in a
day (recorded by the transponder)

Cattle 0.38 (0.13) Nkrumah et al., 2007

The development of prediction equations for welfare indicator
traits is expected to increase. In the case of dairy species, milk
MIR has a great potential to be used as indirect predictor of many
traits that are expensive or difficult to measure directly, including
health status indicators (De Marchi et al., 2014; Bastin et al., 2016;
Dórea et al., 2018).

The wide availability of large-scale and high-throughput
phenotypes requires adequate computational capacity and
powerful software to store, manage, and rapidly (or real time)
transfer data from farms (or other data recording stations)
to central databases. High-throughput data extraction can be
performed using software such as Pig1, MapReduce2, and
Hadoop3 (Koltes et al., 2019). The definition of the methods to
convert the stored phenotypes into useful information for real-
time management decisions in the farm or breeding purposes
is still a challenging task (Koltes et al., 2019). Therefore, the

1https://pig.apache.org/
2https://en.wikipedia.org/wiki/MapReduce
3https://hadoop.apache.org/

development of statistical methods such as machine learning and
neural artificial intelligence are of great relevance.

Phenotypic quality control is one of the first steps in the data
analysis process and consists of removing noise and outliers. Data
standardization or transformation can also be needed depending
on the statistical model assumptions, when merging datasets
from different populations, or when using different equipment,
calibration methods, or data collection protocols (Norton and
Berckmans, 2018). Big data handling and manipulation requires
good computational infrastructure and efficient programming
methods (Nayeri et al., 2019). Furthermore, most PLF devices
generate repeated records for each individual [i.e., longitudinal
traits (Oliveira et al., 2019a)], which are highly desirable for
monitoring livestock welfare. However, the covariance structure
among records needs to be considered in the statistical models
(Oliveira et al., 2019a).

Defining the appropriate statistical methods and models to
be used for data analyses is paramount for the accuracy of the
results obtained. However, this can be challenging when there is
a large number of variables extracted from the high-throughput
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phenotypic datasets (Koltes et al., 2019; Nayeri et al., 2019). In
the case of predictive modeling, feature selection can improve
model performance and avoid or reduce model overfitting (Saeys
et al., 2007), as well as improving the model interpretability
(Butterworth, 2018).

One approach to analyze high-throughput phenotypic data
consists of statistically evaluating differences between the
averages of groups (Norton and Berckmans, 2018), considering
all together or within specific time points. Thus, the research
question needs to be clearly described, which is directly related
to the final goal of using the monitoring algorithm (Nayeri
et al., 2019). Common examples of welfare-related objectives are
recognizing cow gait score or footpad lesion scores in chickens
(Norton and Berckmans, 2018). The next step consists of defining
the reference points that can be used to draw a conclusion related
to the final algorithm-use goal (Butterworth, 2018).

When fitting longitudinal records, many popular statistical
methods will frequently overfit the data, due to its high
dimensionality and rank deficiency (Butterworth, 2018). In this
context, machine learning is viewed as a key method to deal
with big data, and it has proven to be useful in classifying
individuals through supervised learning algorithms (Nayeri
et al., 2019). The classification methods based on supervised
learning algorithms can use class labels previously defined by
the researcher, or by permitting the unsupervised learning
(Saeys et al., 2007). However, other methods such as neural
networks, support vector machines, linear and non-linear density
based classifiers, decision trees, naive Bayes, wavelet analysis,
k-nearest neighbor, and k-means have also being reported in
the literature in terms of classification analysis (Butterworth,
2018; Koltes et al., 2019; Nayeri et al., 2019). For instance,
Bakoev et al. (2020), evaluated the prediction accuracy of nine
machine learning classification algorithms and reported that
Random Forest and K-Nearest Neighbors better predicted pig leg
weakness based on measurements taken at an early stage of the
animal development.

GENETIC AND GENOMIC SELECTION
TO ENHANCE ANIMAL WELFARE AND
OVERALL RESILIENCE

There are two main options to evaluate animal welfare (based
on resilience indicators) in a breeding program (Knap, 2008):
(1) using reaction norm analysis, which enable the estimation
of breeding values for production performance considering
different environmental gradients (indirect approach), or, (2)
directly including the measurable welfare traits in the breeding
goal and in the selection indexes (direct approach), as mentioned
in the previous sections in this review. However, usually reaction
norms have been used for genetic evaluations of livestock animals
due to the arduousness of using the direct approach and correctly
defining the measurable trait (Rauw and Gomez-Raya, 2015).

Reaction norm has been defined as the expression pattern
of a trait along a continuous environmental gradient (de Jong,
1995; Knap, 2005). Several variables can be used as environmental
gradients in the reaction norms, such as disease exposure, social

stress, temperature, and nutrient quality (Rauw and Gomez-
Raya, 2015). Thus, animals maintaining production, health, and
coping well across the environmental gradient are suggested to be
more resilient (Rauw and Gomez-Raya, 2015). Although reaction
norms are mostly described as linear relationships, they can take
more complex shapes. Thus, the first derivative of the function
in that environment is defined as plasticity, i.e., the difference in
trait measurements between environments (de Jong, 1995).

Reaction norm models have been mainly applied to beef
and dairy cattle, due to the wide use of artificial insemination
and consequently dispersion of semen into several different
environments. Therefore, this wide range of environments
facilitate the investigation of changes in the expression of traits
through a continuous descriptor of environments (Rauw and
Gomez-Raya, 2015). In this context, Ravagnolo and Misztal
(2002) estimated the genetic component of heat tolerance for
non-return rate in Holstein cattle using a random regression
animal model (Oliveira et al., 2019a) and temperature humidity
index (THI). THI was calculated using temperature and humidity
data provided by public weather stations, which can be obtained
from on-line sources in various countries. For instance, this
has been done in beef cattle for birth weight, weaning weight,
post-weaning weight gain, and yearling scrotal circumference
by using reaction norms and the contemporary groups as the
environmental descriptor (Santana et al., 2013).

Another interesting application of reaction norms is for
genomic prediction of breeding values. Few studies have reported
the estimation of breeding values for animals in different
environments using either a multiple-step (Silva et al., 2014) or
single-step (Mota et al., 2016; Oliveira et al., 2018) approach.
In this context, Silva et al. (2014) concluded that reaction
norms should be used for proper genomic evaluation of total
number of piglets born. Moreover, Oliveira et al. (2019b) showed
that random regression models can be used to estimate Single
Nucleotide Polymorphism (SNP) effects over time in genome-
wide association studies.

Despite the great potential of reaction norm models for
genetic and genomic evaluation of livestock animals, they
have not been used to model welfare indicators yet. However,
Sih et al. (2004) proposed that behavior can be included in
reaction norms models. Similarly, Dingemanse et al. (2010)
indicated that animal behavior can be described as a function
of environmental variation. In this context, Dingemanse et al.
(2012) used reaction norms to estimate genetic parameters for
exploration behavior in an open-field test of wild-caught three-
spined stickleback fish. Similar analysis can potentially be applied
to social interactions, feeding behavior, and activity patterns in
livestock production systems (Rauw and Gomez-Raya, 2015).
In addition to using climatic variables from public weather
stations, there is a growing interest on recording additional and
more precise climatic variables within production operations
(Laberge and Rousseau, 2017).

As reviewed by Egger-Danner et al. (2014), some countries
have well established health recording systems (e.g., Austria,
Canada, France, Germany, and Nordic countries), including the
use of veterinary diagnoses, whereas others focus on producer-
recorded data. Combined use of health data from farmers and
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diagnosis documented by veterinarians may be an option to
improve coverage of direct health data (Egger-Danner et al.,
2014). Data recorded in slaughter facilities (e.g., tail lesions in
pigs; skin lesions in poultry) might also be a useful source of data
for breeding purposes.

Modifying animals’ environments by eliminating all stressors
and other causes of poor welfare through management
approaches (e.g., housing, management practices, nutrition,
biosecurity) can be thought of as the soundest alternative to
improve welfare in livestock operations. However, this is very
difficult (or impossible) to achieve in commercial farms due to
economic and practical constraints and additional factors such
as climate change and antibiotic resistance. Therefore, genetically
selecting animals that are more resilient to different stressors
and better suited for that environment, while also developing
strategies to minimize the stress sources and causes of impaired
welfare, is likely to be the more successful alternative in the
long-term (Rodenburg and Turner, 2012).

There is clear within-population genetic variation to response
to stress and overall resilience (Tables 1–4), indicating that
genetic progress for enhanced animal welfare can be successfully
achieved. Direct selection for reduced stress responsiveness can
impact other relevant traits (e.g., performance, reproduction)
due to pleiotropic or linkage effects. Therefore, the practical
application of selective breeding to enhance welfare and
overall resilience will require the use of selection indexes to
enable simultaneous genetic progress on all relevant traits in
individual populations. Ignoring genetic correlations among
traits can result in undesirable effects, such as reduced welfare,
coping mechanisms, and overall resilience due to primary
selection for performance traits (Rauw et al., 1998; Rauw and
Gomez-Raya, 2015). Furthermore, ignoring direct selection for
welfare indicators could increase competition and agonistic
interactions, which would reduce welfare, and consequently,
overall productivity (Cheng, 2010; Rodenburg and Turner, 2012;
Muir et al., 2014).

Genetic and genomic selection to enhance animal welfare and
overall resilience can be achieved through multi-trait selection
and selection indexes (Muir et al., 2014), combining various
indicators of welfare and resilience, as described in this review.
These traits include both direct and indirect indicators of welfare
and resilience. Genomic selection has become the gold standard
approach for genetically evaluating and selecting breeding
animals (Meuwissen et al., 2016). This is especially advantageous
for welfare traits because genomic breeding values can be
predicted for selection candidates that have not been challenged
by a certain stressor (e.g., pathogens, heat stress). This can be
done by using data from a large training population (animals
with both phenotypes and genotypes) of individuals genetically
related that are raised under those stress conditions (e.g., tropical
regions in the case of heat stress). Genomics also provides an
opportunity to better understand the biological mechanisms
associated with each trait through genome-wide association
studies and functional analyses. In addition to genomic and
phenotypic datasets, alternative “-omic” approaches can be of
great value to unravel biological mechanisms underlying animal
welfare and to improve the accuracy of genomic predictions.

This includes multiple phenotypic layers, such as gene expression
(transcriptomics), epigenomics (e.g., DNA methylation), proteins
(proteomics), metabolites (metabolomics), lipids (lipidomics),
and microbiota (microbiomics). The integration of multi-
omic data and joint modeling and analyses are very powerful
techniques to understand the systems biology of healthy and
sustainable production of animals (Suravajhala et al., 2016).
Despite the usefulness of such approaches, there are still
many challenges and further developments to be addressed
(Suravajhala et al., 2016).

Welfare is predicted to play an important role in livestock
breeding goals (Rodenburg and Turner, 2012; Croney et al.,
2018a). This is mainly due to the clear benefits of improved
welfare in farm production efficiency and sustainability [e.g.,
reduced mortality, improved animal health, and product quality
(Dawkins, 2017)], but in certain cases can have detrimental
effects in overall production efficiency. In this context, various
livestock breeding programs have started to incorporate welfare
and resilience indicators in their breeding programs. Examples
of welfare indicators that have been investigated or included in
selection schemes in livestock breeding programs around the
world are: aggression (Løvendahl et al., 2005); behavior (Rohrer
et al., 2013); boar taint (to avoid castration; Tajet et al., 2006;
Zadinová et al., 2016), calf wellness (Gonzalez-Peña et al., 2019),
calving ease (Jamrozik and Miller, 2014; Vanderick et al., 2014;
Li and Brown, 2016), cortisol levels (Mormède et al., 2011);
docility (Norris et al., 2014); feather pecking (Dawkins and
Layton, 2012), feet and leg health (Kapell et al., 2012, 2017);
fertility disorders (Guarini et al., 2018; Fleming et al., 2019),
hoof health [in cattle (Chapinal et al., 2013; Häggman and Juga,
2013; Heringstad et al., 2018), sheep (Conington et al., 2008),
and pigs (Quintanilla et al., 2006)]; lesion scores (Wurtz et al.,
2017; Angarita et al., 2019), longevity (Serenius and Stalder,
2006; Ramos et al., 2020), mastitis (Martin et al., 2018); maternal
behavior and progeny survival (Gäde et al., 2008; Hellbrügge
et al., 2008a,b), metabolic diseases (Egger-Danner et al., 2014;
Jamrozik et al., 2016; Pryce et al., 2016), nematode resistance
(Doeschl-Wilson et al., 2008), overall resilience (Berghof et al.,
2019), paratuberculosis (Brito et al., 2018; Mallikarjunappa et al.,
2020); pre-weaning survival (Su et al., 2007; Nielsen et al., 2013);
social dominance (Tong et al., 2020); tail or ear biting (Breuer
et al., 2005), and thermal tolerance (Fragomeni et al., 2016;
Misztal, 2017; Nguyen et al., 2017; Xu et al., 2017). Genetic
selection and modern genomic techniques (e.g., gene editing)
might also be an alternative to eliminate the need for stressful
procedures in commercial applications such as cattle dehorning
(Van Eenennaam and Young, 2018).

Since domestication, artificial selection has altered coping
mechanisms of livestock animals. For instance, there is evidence
that chronic stressors have made modern laying hens more
fearful of humans than their ancestors (Jones et al., 1988; El-
Lethey et al., 2000; Jensen et al., 2006), and increased feather
pecking and cannibalism in a larger range of environmental
conditions (Canario et al., 2013; Decina et al., 2019). Also,
pigs selected for high lean growth, show increased anxiety
in the presence of humans (Scott et al., 2000) and leaner
pigs are more stressed by transport and harder to handle
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than fatter pigs (Grandin, 1998). In general, livestock breeding
programs focus primarily on direct breeding values (selection for
individual production; Rodenburg and Turner, 2012). However,
most livestock species are group-housed, and therefore, genetic
selection for associative effects (social breeding values) has
been proposed (Muir, 2003). Associative effects represent the
social impacts of one animal on the performance of another.
For instance, genetic selection based on group rather than
individual performance can reduce mortality due to aggressive
behaviors in poultry and pigs (Muir, 1996, 2005; Rodenburg
et al., 2010; Angarita et al., 2019). The incorporation of
indirect genetic effects in livestock breeding programs has the
potential to substantially increase responses to selection in traits
affected by social interactions [e.g., feather pecking, cannibalism;
(Rodenburg et al., 2010; Rodenburg and Turner, 2012)]. There
are three main methods to improve associative effects (Ellen
et al., 2014): (1) direct selection to reduce aggressiveness; (2)
multi-level selection (Bijma and Wade, 2008; Muir et al., 2013);
and (3) multi-trait selection where the direct and associative
effects of each animal are estimated and directly selected for in
a selection index (Muir, 2005; Bijma et al., 2007a,b; Muir et al.,
2014). Some factors that can impact the estimates of indirect
genetic effects are: level of competition for resources (e.g., feed,
water), stocking density, age, and body weight variation when
animals are mixed.

As previously indicated, selective breeding for enhanced
welfare may require breeding animals to be exposed to the
stressor on which the animals will be genetically evaluated
for (e.g., pathogens, thermal stress). However, breeding
nucleus animals are usually raised under high health and
biosecurity standards, in low stocking densities, and low level of
environmental stressors. Therefore, there might be genotype-
by-environment (GxE) interactions if selection is based entirely
on phenotypic records obtained in nucleus farms. Genomics
can facilitate this process, as a training population can be
developed based on animals raised in commercial farms (with
all common stressors). Therefore, GxE should be considered
when performing genomic selection for improved animal welfare
and overall resilience. For example, behavior expression might
differ based on animal group size (even at the same stocking
density), resource availability, housing system, and use of PLF
technologies (e.g., milking robot).

Practical implementation of selection to enhance animal
welfare will require the development of appropriate selection
indexes for combining indicators of welfare and overall resilience.
However, this is challenging due to the difficulty of determining
the economic value or importance of each welfare indicator
trait (Nielsen et al., 2008; Croney et al., 2018a). In this context,
the main challenges associated with the incorporation of animal
welfare in livestock breeding goals are (Nielsen et al., 2008):
(1) defining the social and economic value of improved animal
welfare; (2) the perspectives of all stakeholders (e.g., farmers,
consumers, citizens, and governmental authorities) need to
be considered when defining the breeding goals, in which a
consensus can be difficult to be achieved; and, (3) potential
antagonist relationships with performance (or other conventional
traits; Nielsen et al., 2008).

The wealth of data generated by PLF, data recording
organizations, and genotyping schemes require the availability
of good computational infrastructure, efficient software and
well-trained professionals (Morota et al., 2018; Koltes et al.,
2019). In addition to management practices, using these datasets
for breeding purposes is expected to motivate farmers to
further invest in phenotyping and genotyping tools. More
efficient use of PLF datasets include international modeling
and data-sharing initiatives and by adopting a collaboration
model between industry, researchers, farmers, and stakeholders
(Halachmi et al., 2019).

Most studies and applications of breeding for animal
welfare have focused on intensive production systems, whilst
extensive conditions (infrequent handling or reduced contact
with humans) have largely been ignored (Turner and Dwyer,
2007; Rodenburg and Turner, 2012; Turner et al., 2018). There are
welfare issues in extensive production systems (e.g., heat stress;
temperament; and disease challenge), and genetic selection for
improved welfare under those conditions should also be a priority
for breeding companies and organizations.

Agroecological and organic production systems are expected
to become more common over the next decades (Dumont et al.,
2014; Phocas et al., 2016a,b). Therefore, breeding goals will also
need to be refined for improved welfare and resilience under
those conditions (as reviewed by Phocas et al., 2016a,b). As noted
by Phocas et al. (2016a), breeding objectives for smallholder
production systems in developing countries tend to differ from
those in developed countries, especially due to environmental,
economic and socio-cultural differences. Therefore, it is clear that
welfare concerns are present across production systems, but in
different levels, and alternative approaches will need to be taken
to optimize welfare while increasing food production to meet the
demands of a growing human population.

FINAL REMARKS

Quantifying welfare is paramount for breeding more resilient
animals. Some of the main requirements for defining ideal
welfare indicators are: (1) variables should be continuously
recorded throughout the animals’ life; (2) a large number
of variables need to be accurately measured in individual
animals as biological indicators of the five freedoms, including
physiological, behavioral, and emotional state, and physical and
health characteristics; (3) data collection should be based on
non-invasive methods that do not result in additional stress or
discomfort to the animals or alter their routine or circadian
rhythms; (4) the derived phenotypes need to be collected at a
low cost to enable measurement of a large number of animals,
which is a requirement for successful implementation of genetic
and genomic evaluations; (5) phenotypic measurements that are
accurate, valid, repeatable, and comparable among laboratories,
countries, or companies is critical; and (6) the phenotypes
identified need to be heritable and repeatable.

The definition of welfare indicators is largely dependent
on a clear understanding of the biological and emotional
mechanisms behind the phenotypic variability observed in the
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animal’s response to different stimuli. Therefore, the evaluation
of animal welfare involves a complete assessment of the animal’s
physiological, behavioral, physical, and emotional state. Some of
these indicators can even be quantified prior to clinical signs of
poor welfare (e.g., clinical mastitis).

The rapid development of integrated biological (e.g., -
omics technologies) and engineering systems and the IoT is
enabling the development of affordable monitoring devices
and high-throughput technologies (Neethirajan et al., 2017).
These tools can be used to individually monitor large numbers
of animals in commercial settings and are advantageous
to quantify biological indicators through rapid, repeatable,
and automated measurements. The technological devices used
include sensors such as cameras, microphones to capture
vocalizations, thermometers, automated feeding and milking
systems, automatic scales to measure lean-fat ratios, milk spectral
data, electrodes to detect skin conductivity and heart rate,
and accelerometers. Qualitative scoring systems can also be
used to assess some aspects of animal welfare as well as data
routinely collected in commercial farms. As Animal Welfare
science evolves, novel indicators will emerge and improve our
understanding of animal welfare. Further improvements in
precision technologies, integration of data from multiple systems
and, in particular, increased training of farmers, their personnel,
and advisors to use sensor derived data will play a major role
in modern livestock production (Barkema et al., 2015). The
greater availability of high-throughput phenotyping technologies
(e.g., automated monitoring systems) in nucleus and commercial
farms, better communication and data sharing among data
recording organizations (e.g., Dairy Herd Improvement, breed
associations, veterinary clinics, and slaughter facilities), and
greater integration of complementary disciplines will contribute
to overcoming some of the challenges associated with time and
cost of welfare data collection (Wemelsfelder and Mullan, 2014).
In addition, PLF tools enable the collection of continuous and
real-time phenotypes as well as environmental conditions (e.g.,
thermal stress, humidity, and air quality; Laberge and Rousseau,
2017), that are of great use for assessing animal welfare.

Genetic and genomic selection to enhance animal welfare
and overall resilience can be achieved through multi-trait
selection and selection indexes (Muir et al., 2014), combining
various indicators of welfare and resilience. Genomic selection
is especially advantageous for welfare traits because genomic
breeding values can be predicted for selection candidates that
have not been challenged by a certain stressor (e.g., pathogens,
heat stress). Genomic selection for welfare traits, itself, is unlikely

to solve all the welfare issues in commercial livestock operations.
However, selective breeding is a complementary approach to
other strategies (e.g., management, nutrition, housing, and
biosecurity), which will result in permanent and cumulative gains
in welfare (resilience) over generations.

Genetic and genomic selection for improved animal welfare
require a multidisciplinary approach, including the integration
of a multitude of scientific field such as cell and molecular
biology, neuroscience, immunology, stress physiology, computer
science, engineering, quantitative genomics, and bioinformatics.
In this context, it is paramount to train the next generation of
researchers in multi-disciplinary teams and develop collaborative
research projects.

High welfare standards will continue to be a priority in
livestock production systems. We expect that this review provides
a comprehensive description of welfare phenotyping techniques
coupled with the use of genetic and genomic selection to enhance
animal welfare in commercial production systems.
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High-throughput phenotyping technologies are growing in importance in livestock
systems due to their ability to generate real-time, non-invasive, and accurate animal-level
information. Collecting such individual-level information can generate novel traits and
potentially improve animal selection and management decisions in livestock operations.
One of the most relevant tools used in the dairy and beef industry to predict complex
traits is infrared spectrometry, which is based on the analysis of the interaction between
electromagnetic radiation and matter. The infrared electromagnetic radiation spans
an enormous range of wavelengths and frequencies known as the electromagnetic
spectrum. The spectrum is divided into different regions, with near- and mid-infrared
regions being the main spectral regions used in livestock applications. The advantage
of using infrared spectrometry includes speed, non-destructive measurement, and great
potential for on-line analysis. This paper aims to review the use of mid- and near-infrared
spectrometry techniques as tools to predict complex dairy and beef phenotypes,
such as milk composition, feed efficiency, methane emission, fertility, energy balance,
health status, and meat quality traits. Although several research studies have used
these technologies to predict a wide range of phenotypes, most of them are based
on Partial Least Squares (PLS) and did not considered other machine learning (ML)
techniques to improve prediction quality. Therefore, we will discuss the role of analytical
methods employed on spectral data to improve the predictive ability for complex traits in
livestock operations. Furthermore, we will discuss different approaches to reduce data
dimensionality and the impact of validation strategies on predictive quality.

Keywords: beef cattle, dairy cattle, near-infrared, novel phenotypes, mid-infrared, spectral information

INTRODUCTION

For many years dairy and beef cattle breeding have focused on improving the production and
profitability of animals through genetics, nutrition, and management, often at the expense of other
relevant traits. To remain competitive and meet the world population increase and global climate
changes, farmers need to balance production, profitability, and sustainability. There is an extensive
list of key phenotypes that must be measured to achieve the emerging breeding goals for the advance
of genomic selection (Boichard and Brochard, 2012) and management decisions in the context of
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precision agriculture. However, recording such phenotypes
in large-scale or across different herds and countries is a
challenge (Gengler et al., 2016). High-throughput phenotyping
technologies have grown in importance in livestock systems
because of their ability to generate real-time and accurate animal-
level information. Several technologies (e.g., sensors, infrared
spectrometry, and image analysis, among others) have been
used to generate novel complex traits in dairy and beef cattle,
with infrared spectrometry being one of the most relevant
tools used in livestock to date (De Marchi et al., 2014; Dixit
et al., 2017; Bell and Tzimiropoulos, 2018). Infrared spectrometry
is based on the interaction between electromagnetic radiation
(infrared light) and matter. The modern Fourier transform
infrared spectrometers spans an enormous range of infrared
spectrum, which is divided into three main regions: NIR, near-
infrared (800–2,500 nm or 4,000–12,500 cm−1); MIR, mid-
infrared (2,500–25,000 nm or 400–4,000 cm−1); and FAR, far-
infrared (25,000–1,000,000 nm or 10–400 cm−1). NIR and MIR
are the main regions used in livestock applications (Griffiths and
de Hasenth, 2007). This technology is fast, non-invasive, non-
destructive, and has great potential for on-line measurement (De
Marchi et al., 2014; Dixit et al., 2017).

Infrared spectrometry, mainly MIR, has been widely used
worldwide to predict the concentration of protein, casein, fat,
lactose, and urea of milk through regular recording schemes
(De Marchi et al., 2014). When cows are milked 2–3 times
daily, this biological sample can be more deeply interrogated
to generate novel complex traits, which are usually expensive
and difficult to be measure on a large scale (e.g., individual
milk fatty acids, proteins, feed intake, methane emission, fertility,
energy balance, health status, and others). The majority of milk
constituents synthesized in the mammary gland are based on
the by-products from the digestion of the nutrients ingested in
a given day (McParland and Berry, 2016). Therefore, changes in
milk composition profile on that day or in the following days
can be used as a biomarker for complex phenotypes related
to metabolism. Within the beef industry, NIR technology has
been shown to be a valuable and cost-effective technology to
assess several meat quality attributes (e.g., tenderness, fat content,
color, among others) at the same time without any or minimal
sample preparation and pretreatment (Prieto et al., 2009a; Dixit
et al., 2017; Chapman et al., 2019). Therefore, the NIR technique
can be applied directly to the samples, which is an advantage
compared to reference methods, and it is also important for
the slaughterhouses that can reduce losses with carcass sample
assessment and sample preparation. Both technologies (NIR
and MIR) have great potential to assess different milk or meat
attributes using in-line systems, which could lend deep insights
and added efficiencies for both the dairy and beef industries.

Several authors have successfully used infrared spectrometry
to predict a range number of traits as reported in previous reviews
papers (Prevolnik et al., 2004; Prieto et al., 2009a, 2017; De
Marchi et al., 2014; McParland and Berry, 2016; Dixit et al., 2017;
Chapman et al., 2019). Although the aforementioned reviews
discussed the use of MIR and NIR spectrometry as a tool
to predict milk and meat traits, very little attention has been
given to analytical methods and validation strategies employed

in analyzing such spectral data. Thus, complementary to the
previous reviews, the objectives of this review are: to provide a
recent update on the use of MIR and NIR techniques as tools
to predict several novel complex traits in livestock system, with
an emphasis in dairy and beef cattle; and review and discuss
the analytical methods employed on spectral data to improve
predictive ability, the different approaches used to reduce data
dimensionality, and the impact of validation strategies on the
prediction quality.

METHODOLOGY

For this review, research articles published in peer-reviewed
journals were retrieved from Web of Science using the keywords
or the random combination of keywords presented in Table 1.
Initially, a total of 348 papers published until May 2020 was
found. The papers using NIR or MIR were selected based on
the phenotype of interest (e.g., milk composition, feed intake,
energy balance, methane emission, fertility, health status, and
meat quality traits), and from the 348 studies, only 113 were
included in this review. Studies using pre-calibrated or pre-
trained models, provided by a company or third party, were not
considered in this review. The coefficient of determination (R2)
was used as an indicator of prediction quality for continuous
variables. Some authors used the correlation coefficient as one of
the metrics to report the model prediction quality. As such, the
correlation coefficients were converted to R2 in order to have a
single statistical metric for model evaluation. Although we have
adopted R2 as metric to evaluate prediction quality in this review,
due to the number of phenotypes and studies, we also recognize
that other important metrics, such as Root Mean Squared Error
and Mean Absolute Error, must be considered to better evaluate
prediction quality, once R2 could be inflated by one sample or
it could be very sensitive to the range of the variable of interest.
For discrete distributed traits, the metric for prediction quality,
reviewed in the published papers, was the overall accuracy.
Thus, only the R2 or accuracy reported by the author in the
validation set (internal or external) were considered in this review
paper. The validation strategy employed by each author (i.e.,
data-splitting, leave-one-out cross, or k-folds cross-validation)
was reviewed and it is presented in the tables, along with the
information of prediction quality for each respective phenotype.
However, some papers reviewed here did not completely describe
the validation strategy adopted; therefore, it was not reported
in the tables of this review. More information related to

TABLE 1 | Keywords used to retrieve published papers from Web of Science*.

Cattle Mid or Near-infrared

Dairy Milk compounds, milk fatty acids, protein, minerals, metabolic status,
energy balance, feed efficiency, feed intake, energy intake, methane
emission, reproduction, fertility, lameness, blood metabolites

Beef Meat quality, feed efficiency, feed intake, energy intake, methane
emission, metabolic status, energy balance, reproduction, fertility

*Random combination of mid or near-infrared with the target phenotypes for beef
and dairy cattle.
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the compiled validation strategies is presented in the section
“Validation Strategies.”

COMPLEX TRAITS PREDICTED BY
INFRARED SPECTROMETRY DATA

Over the past several years, many studies have investigated
the effectiveness of NIR and MIR to predict novel complex
phenotypes in dairy and beef cattle, as shown in Figure 1. Since
De Marchi et al. (2014) wrote a review paper on milk MIR
spectrometry, there has been an exponential increase in the
number of studies using milk MIR spectral data to predict a
range of complex traits. Overall, these studies include the direct
quantification of compounds present in milk (e.g., milk fatty acids
and protein profile) as well as the prediction of traits linked to
milk spectra (e.g., health status, feed intake, methane emission,
fertility, and energy balance). The use of NIR spectrometry to
assess meat chemical composition and quality traits was reviewed
for different species including beef, chicken, and pork by many
authors (Prevolnik et al., 2004; Prieto et al., 2009a, 2017; Dixit
et al., 2017; Chapman et al., 2019). The authors have stated that
NIR is capable of measuring meat chemical composition and
quality associated traits in different species, including beef cattle.
However, the interest in using NIR technology as an alternative
to predict novel traits in beef cattle since the first review paper
(Prevolnik et al., 2004) has been lower than for using MIR
spectrometry, based on the amount of paper using each method
compiled for this current review (Figure 1). The number of
studies developed in the last years using MIR and NIR techniques
highlights the growing interest by the scientific community and

livestock industry in this topic. Indeed, several novel phenotypes
have been recently generated using both MIR and NIR techniques
in dairy and beef cattle and they will be covered throughout
this review section.

Milk Composition
Beyond the nutritional meaningful for human, milk composition
(e.g., protein, fat, lactose, and minerals) has direct implications on
the sensory and technological properties of milk products as well
as on the economic value of the milk and milk products (Soyeurt
et al., 2009; Bastin et al., 2011; Bonfatti et al., 2011; Gengler et al.,
2016; Fleming et al., 2017). Thus, over the last few years, efforts
have been made by scientists and the dairy industry to quantify
milk composition using modern high-throughput phenotyping
techniques such as MIR spectrometry. Indeed, milk recording
schemes worldwide have used MIR technique to measure total
fat, protein, casein, lactose, and urea contents, which is quick
and inexpensive when compared with gold standard methods (De
Marchi et al., 2014). Given the promising and availability of milk
spectra per cow per milking, several studies have reported that
the major milk fatty acids (FA) can also be predicted using spectra
data (Tables 2, 3).

For FA with less than 16 carbons (C4:0; C6:0; C8:0; C10:0;
C12:0; and C14:0) the R2 reported varied from 0.37 to 0.97
in the validation set (Table 2). The feasibility of milk MIR
spectra to predict FA with 16 carbons (C16:0 and C16:1) was
investigated by several authors. The R2 observed in the validation
sets were between the range of 0.33 and 0.95 (Table 2). For
the FA with more than 16 carbons (C17:0; C18:0; C18:1 cis-9;
C18:2 cis-9, trans-11; C18:2 cis-9, cis-12; and C18:3 cis-9, cis-12,
cis-15) the R2 reported in the validation set varied from 0.07

FIGURE 1 | Published papers retrieved from Web of Science based on the combination of keywords presented in Table 1. Scientific papers published up to May
2020.
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TABLE 2 | Number of samples (N) and coefficient of determination in the validation set for the milk fatty acids predicted from mid-infrared spectrometry using partial least
square methodology in dairy cattle.

References N Breed Validation* C4:0 C6:0 C8:0 C10:0 C12:0 C14:0 C16:0 C16:1

Soyeurt et al. (2006) 49 Mul CV 0.51 0.52 0.59 0.64 0.74 0.82 0.82 –

Soyeurt et al. (2008) 78 Mul LOOCV – – – – – 0.90 0.84 –

Rutten et al. (2009) 3,622 – R-Tr/Te 0.91 0.96 0.94 0.92 0.85 0.94 0.94 –

Afseth et al. (2010) 224 Nor 20-F CV 0.72 0.83 0.88 0.89 0.90 0.82 0.65 –

Coppa et al. (2010) 468 – Tr/Teb 0.66 0.88 0.90 0.91 0.89 0.88 0.91 –

De Marchi et al. (2011)a 267 Bro LOOCV – – 0.48 0.52 0.52 0.56 0.49 –

Soyeurt et al. (2011) 517 Mul Tr/Teb 0.89 0.95 0.93 0.92 0.92 0.95 0.93 –

Ferrand et al. (2011) 250 Mul Tr/Te 0.85 0.96 0.96 0.91 0.91 0.93 0.88 –

Eijndhoven et al. (2013) 1,236 Mul Tr/Teb 0.92 0.93 0.92 0.93 0.85 0.95 0.93 –

Ferrand-Calmels et al. (2014) 345 Mul R-Tr/Te 0.93 0.96 0.97 0.95 0.96 0.95 0.94 –

Lopez-Villalobos et al. (2014) 850 Cro R-Tr/Te 0.73 0.78 0.81 0.81 0.86 0.77 0.74 0.33

Eskildsen et al. (2014) 890 Mul 10-F CV – 0.88 0.89 0.91 0.91 0.90 0.91 0.63

Martin et al. (2015)a 422 – 20-F CV 0.82 – – – – 0.82 0.66 –

Ferragina et al. (2015)b 1,264 Bro R-Tr/Teb – – – 0.67 – – 0.60 –

Gottardo et al. (2016) 112 Mul LOOCV 0.92 0.94 0.94 – 0.93 0.93 0.92 –

Bonfatti et al. (2016) 1,040 Sim 10-F CV – – – 0.88 0.90 0.90 0.92 –

Fleming et al. (2017) 1,911 Mul 10-F CV 0.66 0.38 0.37 0.66 0.71 0.80 0.86 0.62

Ho et al. (2020) 240 Hol 10-F CV 0.94 0.94 0.90 0.89 0.90 0.93 0.95 –

aCorrelation coefficient (r) transformed to coefficient of determination (R2). bBayes B methodology employed; multibreed (Mul); Norwegian Red (Nor); Brown Swiss (Bro);
Crossbreed (Cro); Simmental (Sim); Holstein (Hol); number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and test cross-validation
defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te), external or independent validation. *The validation strategy defined as “CV” was assigned for the reviewed
paper that did not completely describe the validation method adopted or the authors defined that cross-validation was employed.

TABLE 3 | Coefficient of determination in the validation set for the milk fatty acids predicted from mid-infrared in dairy cattle*.

References C17:0 C18:0 C18:1a C18:2b C18:2c C18:3d SFA MUFA PUFA

Soyeurt et al. (2006) – 0.69 – 0.07 0.62 0.14 0.94 0.85 0.39

Soyeurt et al. (2008) – 0.85 – – – – – 0.93

Rutten et al. (2009) – 0.82 0.92 0.58 0.36 0.45 – – –

Afseth et al. (2010) – 0.48 0.92 0.53 0.49 0.29 0.92 0.94 0.52

Coppa et al. (2010) 0.65 0.80 0.93 0.73 0.34 – 0.95 0.91 0.75

De Marchi et al. (2011)1 0.56 0.42 0.50 0.21 – – – – –

Soyeurt et al. (2011) 0.61 0.88 0.95 0.63 0.71 0.60 0.99 0.97 0.81

Ferrand et al. (2011) – 0.77 0.91 0.70 0.65 – 0.98 0.92 0.38

Eijndhoven et al. (2013) – 0.72 – – – – 0.99

Ferrand-Calmels et al. (2014) – 0.85 0.97 0.83 0.78 – 1.00 0.98 0.78

Lopez-Villalobos et al. (2014) 0.43 0.60 0.87 0.64 0.66 0.51 0.93 – 0.73

Eskildsen et al. (2014) 0.54 0.82 0.82 0.37 0.65 – – – –

Martin et al. (2015)1 – 0.62 0.84 – – – 0.77 0.86 –

Ferragina et al. (2015)2 – 0.49 – – – – – – –

Gottardo et al. (2016) – 0.80 – – – – 0.99 0.95 0.71

Bonfatti et al. (2016) – 0.78 0.90 0.65 – – 0.97 0.93 0.75

Fleming et al. (2017) 0.53 0.73 0.79 – 0.65 – 0.94 0.84 0.66

Ho et al. (2020) 0.82 0.81 0.72 – – – – – –

1Correlation coefficient (r) transformed to coefficient of determination (R2). 2Bayes B methodology employed. aC18:1 cis9. bC18:2 cis9, trans 11. cC18:2 cis9, cis12.
dC18:3 cis9, cis12, cis15. SFA, saturate fatty acids; MUFA, monounsaturated fatty acids; PUFA, and polyunsaturated fatty acids. *The number of samples, breed, and
validation strategy are described in Table 2.

to 0.95 (Table 3). The sums of saturated and monounsaturated
FA were predicted with precision (R2) higher than 0.80, whereas
for the polyunsaturated FA, the R2 varied from 0.38 to 0.81
in the validation set (Table 3). In general, FA with larger
proportion (% of total FA) in the milk (e.g., C14:0, C16:0, and

C18:1) presented greater R2 (e.g., C14:0, C16:0, and C18:1),
when compared to milk FA of small individual proportion in
milk (e.g., C17:0).

Studies have also investigated the effectiveness of using milk
spectra data as a potential predictor of total protein, casein,
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and whey, as well as the individual caseins and whey proteins
(Table 4). The R2 in the validation set for total protein and casein
were greater than 0.70, except Sørensen et al. (2003); De Marchi
et al. (2009), Rutten et al. (2011), and McDermott et al. (2016)
that observed R2 in a range of 0.25–0.58. The R2 for total whey
varied from 0.42 (McDermott et al., 2016) to 0.69 (Niero et al.,
2016) in the validation set. For the individual caseins αS1-CN,
αS2-CN, β-CN, and κ-CN R2 in a range of 0.18 (β-CN; Rutten
et al., 2011) to 0.78 (αS1-CN; Ferrand et al., 2012) were reported
in the validation set. The α-LA whey protein fraction presented
the lowest predictionR2, varying from 0.06 (Eskildsen et al., 2016)
to 0.48 (Ferrand et al., 2012), compared with β-LG where the
prediction R2 were in a range of 0.34 (Eskildsen et al., 2016) to
0.64 (Bonfatti et al., 2011) in the validation set.

The effectiveness of milk spectra data to predict mineral
composition in dairy cattle has also been investigated. The
prediction quality reported in the validation set for Ca, Mg,
Na, and P is presented in Table 5. Model performances were
satisfactory to predict Ca and P (R2 > 0.67) in Soyeurt et al.
(2009); Toffanin et al. (2015), Visentin et al. (2016), and Franzoi
et al. (2019). But the same minerals were poorly predicted
(R2 < 0.55) by Gottardo et al. (2015); Bonfatti et al. (2016),
Malacarne et al. (2018), and Fleming et al. (2019). For K, Mg, and
Na the R2 reported by the authors varied from 0.25 (Malacarne
et al., 2018) to 0.75 (Franzoi et al., 2019) in the validation set.

Divergences in the predictability reported might be related to
the different gold standard methodologies used in the reference
data, population studied, and the sample size (De Marchi et al.,
2014). Overall, the R2 observed in the published papers reviewed
here highlight the potential of milk spectra data as a predictor
of milk FA, proteins, and minerals. These studies also underline
the need for future work using robust analytical data mining
techniques and large datasets as a way to improve the model
performance for phenotypes that have been inaccurate predicted.
The possibility of more frequent predictions of such phenotypes
could potentially create discoveries in different areas of animal
science, such as genetics/genomics, nutrition, physiology, and
reproduction. For example, some authors have demonstrated that
milk fatty acids can be good predictors of plasma non-esterified

fatty acids concentration (Mann et al., 2016; Dórea et al., 2017),
which is an important phenotype associated with negative energy
balance in lactating dairy cows. Additionally, such predictions
can be used as a powerful tool to improve management decisions
on livestock operations.

Feed Intake
Given the economic impact of animal feed costs on farmer’s
profitability, feed efficiency has been widely discussed as a
key phenotype to be included in the selection indexes and
for management decisions on livestock operations (Berry
and Crowley, 2013; Berry, 2015; Seymour et al., 2019).
Selecting animal for feed efficiency is highly attractive, but
the practical implementation might be challenging, primarily
because individual feed intake records on a large-scale are
unavailable to date, and secondly some aspect of production,
such as milk output or body weight, and energy sinks including
maintenance, need to be accounted to determine individual feed
efficiency (Berry and Crowley, 2013; Connor, 2015). Therefore,
the use of NIR and MIR spectrometry has been explored as a
potential tool to predict traits related to feed efficiency in beef
and dairy cattle, as shown in Tables 6, 7. Seven studies evaluated
the use of fecal NIR on fecal samples to predict organic or dry
matter intake, reporting R2 ranging from 0.44 (Huntington et al.,
2011) to 0.98 (Decruyenaere et al., 2004) in the validation set
(Table 6). From the studies reviewed, only one study reported
the use of feed (grass NIR) to predict dry matter intake, in which
the R2 reported in the validation set was 0.71. It is important
to point out that the results have not always been consistent,
and few studies have compiled data sets of sufficient size to
generate robust and accurate prediction equations. Furthermore,
the use of NIR spectrometry on grab fecal and grass samples
requires preparation and pretreatment, which is laborious, time-
consuming, and may not be applicable on a large-scale.

Due to the difficulties in utilizing fecal or grass samples with
NIR to predict intake, the value of milk MIR spectrometry for
prediction of feed efficiency has also been evaluated (Table 7).
As many milk recording schemes globally already use MIR
spectrometry to predict protein, fat, casein, lactose, and urea

TABLE 4 | Number of samples (N) and coefficient of determination in the validation set for the major protein content predicted from milk spectra using partial least square
methodology in dairy cattle.

References N Breed Validation Prot Cas Whey αS1-CN αS2-CN β-CN κ-CN α-LA β-LG

Luginbühl (2002) 74 – Tr/Te* – 0.90 – – – – – – –

Sørensen et al. (2003)a 86 Multibreed – – 0.53 – – – – – – –

De Marchi et al. (2009)a 1,336 Simmental 20-F CV 0.58 0.58 0.53 0.50 0.35 0.32 0.43 0.29 0.55

Bonfatti et al. (2011) 1,517 Simmental 4-F CV 0.78 0.77 0.61 0.66 0.49 0.53 0.49 0.31 0.64

Rutten et al. (2011) 1,800 Holstein R-Tr/Te - 0.25 0.53 0.18 0.26 0.19 0.28 0.20 0.56

Ferrand et al. (2012) 193 Multibreed Tr/Te 0.99 0.88 0.58 0.65 0.71 0.78 0.54 0.48 0.45

Bonfatti et al. (2016) 1,137 Simmental 10-F CV 0.81 0.80 0.53 0.74 0.49 0.58 0.39 0.24 0.48

Eskildsen et al. (2016) 832 Multibreed Tr/Te – – – 0.66 0.36 0.25 0.71 0.06 0.34

McDermott et al. (2016)a 730 Multibreed 4-F CV* – 0.55 0.42 0.43 0.43 0.45 0.31 0.29 0.48

Niero et al. (2016) 114 Multibreed LOOCV 0.88 0.88 0.69 – – 0.60 0.74 0.37 0.47

Total protein (Prot), total casein (Cas), number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and test cross-validation defined by
splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aCorrelation coefficient (r) transformed to coefficient of determination (R2), and *external or independent validation.
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TABLE 5 | Number of samples (N) and coefficient of determination in the validation set for mineral contents using partial least square methodology.

References N Breed Validation* Ca K Mg Na P

Soyeurt et al. (2009) 92 Multibreed LOOCV 0.87 0.36 0.65 0.65 0.85

Gottardo et al. (2015) 208 – 10-F CVb 0.55 – – – –

Toffanin et al. (2015) 208 Holstein LOOCV 0.53c – – – 0.70c

Bonfatti et al. (2016) 689 Simental 10-F CV 0.48 0.41 0.46 – 0.43

Visentin et al. (2016) 923 Multibreed R-Tr/Teb 0.67 0.69 0.65 0.40 0.68

Malacarne et al. (2018)a 153 Holstein Tr/Teb 0.25 0.34 0.26 0.25 0.53

Franzoi et al. (2019)b 93 Holstein CV 0.79 0.55 0.68 0.75 0.87

Fleming et al. (2019) 986 Multibreed 10- FCV 0.25 – – – –

aBulk milk samples. bBackward interval partial least squares (BiPLS), number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and
test cross-validation defined by splitting the data set randomly (R-Tr/Te), external or independent validation. cCorrelation coefficient (r) transformed to coefficient of
determination (R2). *The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe the validation method adopted or the
authors defined that cross-validation was employed.

contents (De Marchi et al., 2014), they can be a useful source
of information on large-scale operations. The majority of
researchers have aimed to predict dry matter intake, though
some have also evaluated predictions for residual feed intake,
net energy intake, and effective energy intake. For dry matter
intake, the R2 in the validation set was in a range of 0.29
(Wallén et al., 2018) to 0.77 (Shetty et al., 2017b). The studies
evaluating the use of milk spectra to predict effective energy
intake reported R2 varying from 0.49 (McParland et al., 2014) to
0.74 (McParland et al., 2011). McParland et al. (2015) observed
R2 of 0.56 for energy intake in the validation set. McParland
et al. (2014) and Shetty et al. (2017b) reported R2 of 0.36 and
0.46, respectively, to predicted residual feed intake from MIR data
in the validation set. The majority of the studies observed that
combining MIR data with other animal-level variables, such as
milk yield, body weight, and feeding behavior resulted in greater
prediction precision and accuracy compared to predictions based
only on MIR data. The reviewed studies suggest that milk MIR
spectra data is a promising tool to predict indicator traits for feed
efficiency in dairy cattle. Such a novel source of information has

TABLE 6 | Number of samples (N), and coefficient of determination in the
validation set (R2) for the prediction of dry matter intake (DMI) and organic matter
intake (OMI) traits using grass near-infrared (G-NIR) and fecal near-infrared (F-NIR)
spectrometry §.

References N Breed Spectra Trait Validation R2

Agnewa et al. (2004) 203 dairy G-NIR DMI 7-F CV 0.71

Boval et al. (2004) 88 beef F-NIR OMI 3-F CV 0.52

Decruyenaere et al. (2004) 139 dairy F-NIR DMI CV 0.98

Garnsworthy and Unalt (2004) 91 dairy F-NIR DMI R-Tr/Tea 0.97

Tran et al. (2010) 1,322 dairy F-NIR DMI Tr/Tea 0.58

Huntington et al. (2011) 406 beef F-NIR DMI CV 0.44

Landau et al. (2016) 125 beef F-NIR DMI 6-F CV 0.75

Johnson et al. (2017) 408 beef F-NIR DMI CV 0.73

Number of folds (n-F) in the cross-validation (CV), train and test cross-validation
defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aExternal or
independent validation. *The validation strategy defined as “CV” was assigned for
the reviewed paper that did not completely describe the validation method adopted
or the authors defined that cross-validation was employed. § All the studies applied
partial least square statistical methodology.

the potential to bring new insights into management decisions
and breeding programs.

Energy Balance
Dairy cows in early lactation are under high energy demand to
meet their requirements for lactation and often energy intake
is unable to meet a cow’s requirements, leading animals to
enter in a period of negative energy balance (Collard et al.,
2000; de Vries and Veerkamp, 2000; McParland et al., 2012).
Effective and accurate early assessment of a cow’s energy balance

TABLE 7 | Number of samples (N) and coefficient of determination (R2) for dry
matter intake (DMI), residual feed efficiency (RFI), effective energy intake (EEI), net
energy intake (NEI), and energy intake (EI) traits using milk mid-infrared
spectrometry in dairy cattle.

References N Breed Trait Method Validation R2

McParland et al.
(2011)

5,469 Holstein EEI PLS 4-F CV* 0.74a

McParland et al.
(2012)

4,109 Holstein EEI PLS 4-F CV* 0.64a

McParland et al.
(2014)

1,335 Holstein RFI PLS Tr/Te* 0.36a

McParland et al.
(2014)

1,335 Holstein EEI PLS Tr/Te* 0.49a

McParland et al.
(2015)

1,270 Holstein EI PLS 20-F CV 0.56a

Shetty et al.
(2017b)

1,044 Multibreed DMI PLS R-Tr/Te* 0.77

Shetty et al.
(2017b)

1,044 Multibreed RFI PLS R-Tr/Te* 0.46

Dórea et al. (2018) 1,279 Holstein DMI ANN LOOCV* 0.70

Wallén et al. (2018) 857 Norwegian red DMI PLS 5-F CV* 0.29a

Wallén et al. (2018) 857 Norwegian red NEI PLS 5-F CV* 0.42a

Lahart et al. (2019) 1,074 Multibreed DMI PLS LOOCV* 0.64

Smith et al. (2019) 11,941 Holstein EEI PLS 4-F CV* 0.52

Grelet et al. (2020) 1,034 Holstein DMI SVM R-Tr/Te 0.66

Number of folds (n-F) in the cross-validation, leave-one-out cross-validation
(LOOCV), partial least square (PLS), artificial neural network (ANN), Support Vector
Machine (SVM) train and test cross-validation defined by splitting the data set
randomly (R-Tr/Te) or not (Tr/Te). *External or independent validation. aCorrelation
coefficient (r) transformed to coefficient of determination R2.
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could be useful for management strategies, mitigating the costs
associated with detrimental effects of negative energy balance,
and future genetic selection (McParland et al., 2012; Grelet et al.,
2019). Energy balance has been estimated in dairy cows through
alternative methods that are mostly based on the difference
between energy intake and energy output or considering the
change in body reserves (Coffey et al., 2001; Friggens et al., 2007;
Banos and Coffey, 2010). The drawback to these methods is
that they require regular measurements of energy intake, body
condition score, and body weight, which are expensive to collect
on a sufficiently large number of animals, not well suited to
assess short-term changes, and vary with intake respectively
(McParland et al., 2012). Moving forward to high throughput
phenotyping, milk spectra have been used as a potential tool
to predict energy balance (Table 8). McParland et al. (2011;
2012; 2014; 2015) reported R2 in a range of 0.29–0.56 in the
validation set using evening milk spectra data. A moderate R2

(0.60) was reported by Smith et al. (2019) to predict energy
balance in the validation set, whereas Ho et al. (2020) observed
low R2 (0.48), which according to the authors could be due to
the small dataset used when compared with the previous studies.
The predictive ability observed by the authors highlights the
potential of milk spectra data to predict herd or individual energy
status level; however, more efforts are needed to improve the
prediction quality. Furthermore, the models used only require
milk spectra and yield, which are both routinely generated during
milk recording. Therefore, farmers could have access to the
individual animal energy status at the time of milking without
additional cost.

Methane Emission
Strategies to predict enteric methane emission (CH4) have been
widely explored by different research groups worldwide. Such
interest is usually driven by concerns regarding the carbon
footprint and lower feed efficiency due to energy losses in CH4
(Johnson and Johnson, 1995). Mitigating CH4 emissions may
improve the livestock systems’ sustainability and profitability
(Knapp et al., 2014). However, the majority of the classical
methods used to quantify CH4 in the papers reviewed here
(i.e., respiration chamber, sulfur hexafluoride tracer, and sniffer

TABLE 8 | Number of samples (N) and coefficient of determination (R2) in the
validation for energy balance trait using milk mid-infrared spectrometry in dairy
cattle§.

References N Breed Validation R2

McParland et al. (2011) 5,469 Holstein 4-F CV* 0.56a

McParland et al. (2012) 4,109 Holstein 4-F CV* 0.29a

McParland et al. (2014) 1,335 Holstein Tr/Te* 0.46a

McParland et al. (2015) 1,270 Holstein 20-F CV 0.53a

Ho et al. (2019) 240 Holstein 10-F CV 0.48

Smith et al. (2019) 11,941 Holstein 4-F CV* 0.60

Number of folds (n-F) in the cross-validation, train and test cross-validation defined
by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). *External or independent
validation. aCorrelation coefficient (r) transformed to coefficient of determination
(R2). §All studies used partial least square methodology.

systems) are difficult, expensive, or not feasible to carry out
on large scale operations (Hammond et al., 2016; Patra, 2016;
Negussie et al., 2017). Several indirect measurements (e.g., feed
intake, volatile fatty acids, milk FA, body weight, hindgut,
feces, among others) have been proposed as a predictor of
CH4 emission, in which milk FA have been stated as a
promising CH4 proxy in dairy cattle (Negussie et al., 2017).
Many studies have investigated the correlation between different
milk FA, quantified using gas chromatography, and enteric CH4
production (Chilliard et al., 2009; Dijkstra et al., 2011; van Lingen
et al., 2014; Rico et al., 2016). Based on the moderate to high
correlations (0.50–0.80) observed by these authors, milk FA can
be considered a potential indicator of individual animal enteric
CH4 emissions. Since milk FA can be predicted from milk spectra,
as previously discussed in section “Milk Composition,” several
researchers have investigated the feasibility of using milk spectra
data to predict the volume of CH4 eructed daily by a dairy
cow (Table 9). Overall, the R2 reported by the papers reviewed
here varied from 0.01 (Wang and Bovenhuis, 2019) to 0.79
(Dehareng et al., 2012) in the validation set. The variation in
the predictive ability across studies can be partially explained
by the different methods used to determine CH4 emission
(e.g., respiration chambers, sulfur hexafluoride tracer, and sniffer
method). Based on the prediction quality presented by some of
the authors in experimental settings, milk spectra data has the
potential to predict enteric CH4 emissions (Vanlierde et al., 2015).
The validity of spectra data to predict CH4 emissions under
conditions more similar to a commercial herd was only partly
confirmed only by Shetty et al. (2017a). In beef cattle, the majority
of studies have measured methane emission using classical direct
methods, but to the best of our knowledge, no studies have
attempted to predict methane emission indirectly using infrared
spectrometry data.

Fertility
Although fertility is a non-yield trait, it is the key to overall
profitability in cattle farming as poor fertility increases the

TABLE 9 | Number of samples (N) and coefficient of determination in validation set
(R2) for methane emission trait predicted from milk mid-infrared spectra data.

References N Breed Method Validation R2

Dehareng et al. (2012) 60 Holstein PLS LOOCV 0.79

Vanlierde et al. (2015) 446 Multibreed PLS Tr/Te* 0.23a

Vanlierde et al. (2016) 532 Multibreed PLS 5-F CV 0.70

Shetty et al. (2017a) 2,202 Holstein PLS R-Tr/Te* 0.39

Bittante and Cipolat-Gotet
(2018)

1,150 Brown Swiss Bayes B R-Tr/Te 0.57

Vanlierde et al. (2018) 584 Multibreed PLS 5-F CV 0.57

van Gastelen et al. (2018) 218 Holstein PLS 10-F CV 0.49

Wang and Bovenhuis
(2019)

801 Holstein PLS LOOCV* 0.01

Partial least square (PLS), multivariate linear regression (MLR), number of folds (n-
F) in the cross-validation (CV), leave-one-out cross-validation (LOOCV), train and
test cross-validation defined by splitting the data set randomly (R-Tr/Te) or not
(Tr/Te). *External validation. aCorrelation coefficient (r) transformed to coefficient of
determination (R2).
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replacement rate due to involuntary culling, costs related to
fertility treatments, and multiple inseminations, which directly
affect animal production (Boichard, 1990; Dekkers, 1991;
González-Recio et al., 2004; Berry et al., 2014; Pravia et al., 2014;
Kaniyamattam et al., 2016). Since fertility traits are difficult and
expensive to measure, early indicator or associated traits (e.g.,
body condition score, body weight, metabolic and endocrine
blood traits, and milk composition) can be used either to enhance
indirect genetic improvement of fertility or for reproductive
management decisions (Berry et al., 2003; Moraes et al., 2007;
Friggens et al., 2008; Diskin and Kenny, 2014). Hempstalk et al.
(2015) developed a biological-based ML model to predict the
likelihood of conception success given the herd- and cow-specific
attributes, with particular attention to the use of milk spectral
data. The area under the curve reported by the authors in the
external validation set varied from 0.49 to 0.60 across different
ML algorithms. However, the inclusion of milk spectra, compared
with the same model using only non-MIR data (e.g., days in milk,
milk yield, number of inseminations, breeding values, among
others) in the ML models, did not improve the accuracy of
predicting the likelihood of conception to an insemination. The
prediction accuracies of pregnancy status using milk spectra data
were also assessed by Toledo-Alvarado et al. (2018). The area
under the curve across breed had similar patterns averaging
0.61 for Holsteins and 0.64 for Alpine Grey cows in the cross-
validation. The authors concluded that pregnant versus open
cows post insemination could be discriminated with promising
accuracy using milk spectra, parity, and days in milk. Ho
et al. (2019) reported that milk spectra from early lactation
cow together with other on-farm data (e.g., days in milk, days
from calving to insemination, calving age, milk yield, genotypes,
among others) could be used to classify cows that conceived
at first insemination or did not conceive within the breading
season with reasonable accuracy, based on the area under the
curve (0.75), in herd-by-herd external validation. Delhez et al.
(2020) observed that milk spectra recorded after 150 days of
pregnancy was promising to predict the pregnancy status in
Holstein, with the area under the curve around 0.76 in cow-
independent external validation. More efforts need to be made
to investigate the reliability of milk spectra to predict fertility
traits since the accuracies observed to date are not high and the
number of studies is very low, although recent. Nevertheless,
these studies provide new insights into novel phenotypes that
can be used indirectly to improve fertility, especially in dairy
cattle, which could become an important tool for management
decisions on dairy farms.

Health Status
Several metabolic disorders and diseases, such as ketosis,
mastitis, milk fever, lameness, displaced abomasum, metritis,
retained placenta, and cystic ovaries have important impacts on
profitability and animal welfare (Kelton et al., 1998; Friggens
et al., 2007; McArt et al., 2015; Jamrozik et al., 2016). To
mitigate herd losses, producer-recorded events have been used
for management decisions at farmer-level and genetic selection
(Jamrozik et al., 2013; Miglior et al., 2014; Luke et al., 2019).
However, the bottleneck relies on the difficulty of routinely

collecting high-quality direct phenotypes on farms (Egger-
Danner et al., 2015). Subclinical hyperketonemia or ketosis is
one of the most frequent diseases in dairy cattle and it is
characterized by increased concentrations of the ketone bodies
acetoacetate, β-hydroxybutyrate (BHB), and acetone in blood,
milk, and urine (Hansen, 1999). Additionally, blood metabolites
such as glucose, non-esterified fatty acids (NEFA), blood urea
nitrogen (BUN), and insulin-like growth factor 1 (IGF-1), and
glutamic oxaloacetic transaminase (GOT) might also be used
as indicators of metabolic status in dairy cows (Fenwick et al.,
2008; Benedet et al., 2019; Grelet et al., 2019). Blood metabolic
profile testing is the gold standard for diagnosis, however, it is
invasive, logistically challenging, and costly (Luke et al., 2019).
MIR spectrometry has been explored as possible high-throughput
phenotyping technology to predict BHB concentration in blood
or milk, and acetone in milk (Table 10). Within the published
papers de Roos et al. (2007) and Grelet et al. (2016) predicted the
concentration of BHB in milk and the R2 reported by the authors
in the validation was 0.62 and 0.63, respectively. Seven published
papers evaluated the use of milk spectra as a predictor of BHB
in serum and the R2 varied from 0.40 (Belay et al., 2017) to 0.70
(Grelet et al., 2019) in the validation set. Although few studies
have focused on predicting acetone in milk from milk spectra,
the R2 observed by Hansen (1999) and de Roos et al. (2007) were
higher than 0.70, except Grelet et al. (2016) which observed R2 of
0.67 in the validation set. Heuer et al. (2001) observed a standard
error of cross-validation, the prediction quality metric used by the
authors, of 0.24 to predict acetone in milk. Likewise, the feasibility
of using spectral data to predict glucose, NEFA, BUN, and IGF-1
were also investigated in this review (Table 10). The R2 reported
by the authors varied between 0.20 (glucose; Benedet et al., 2019)
to 0.61 (IGF-1; Grelet et al., 2019) in the validation set.

Mastitis is the most common and costly contagious disease in
dairy cattle characterized as an inflammation of the mammary
gland and udder tissue. To the best of our knowledge, only
Rienesl et al. (2019) investigated the possibility of using milk
spectra to predict mastitis, which reported satisfactory accuracy
(0.68) in the validation data set (Table 11). Mineur et al. (2017)
and Bonfatti et al. (2020) investigated the ability of milk spectra
data as a predictor of lameness and the predictions were poor
to be employed as an on-farm tool to detect lameness in cows
(Table 11). Based on the results presented by the reviewed papers,
milk spectra might be useful to predict the concentration of BHB
in serum or milk, acetone on milk, and mastitis occurrence in
dairy cattle. However, more studies using larger and more diverse
calibration data sets are needed, especially across countries, to
improve the prediction quality before models can be used for
on-farm management or genetic selection purposes.

Meat Traits
Meat quality is a complex concept that involves many attributes
such as tenderness, juiciness, flavor, marbling, color, and shelf
life (Williams, 2008). Meat tenderness is one of the most
important attributes affecting consumers’ acceptability, followed
by fat content and visual attributes (Shackelford et al., 2001;
Liu et al., 2003; Williams, 2008). Considering the increasing
demands for meat and consumers willing to pay higher prices for
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TABLE 10 | Number of samples (N) and coefficient of determination (R2) in the validation set for β-hydroxybutyrate (BHB), acetone (Ac), non-esterified fatty acids (NEFA),
blood urea nitrogen (BUN), glucose (Glu), glutamic oxaloacetic transaminase (GOT), and insuline-like growth factor 1 (IGF-1) using milk mid-infrared spectrometry
in dairy cattle.

References N Breed Sample Trait Method Validation* R2

Hansen (1999) 310 – Milk Ac PLS Tr/Te 0.81

Heuer et al. (2001) 180 – Milk Ac PLS LOOCV 0.24b

de Roos et al. (2007) 1,080 Holstein Milk Ac PLS CV 0.72c

de Roos et al. (2007) 1,080 Holstein Milk BHB PLS CV 0.62c

Grelet et al. (2016) 224 Holstein Milk Ac PLS R-Tr/Tea 0.67

Grelet et al. (2016) 434 Holstein Milk BHB PLS R-Tr/Tea 0.63

Belay et al. (2017) 1,914 Holstein Blood BHB PLS R-Tr/Tea 0.40

Pralle et al. (2018) 3,629 Holstein Blood BHB ANN R-Tr/Tea 0.56

Bonfatti et al. (2019) 1,910 Multibreed Blood BHB PLS R-Tr/Tea 0.52

Benedet et al. (2019) 295 Multibreed Blood BHB PLS 3-F CV 0.63

Benedet et al. (2019) 294 Multibreed Blood NEFA PLS 3-F CV 0.52

Benedet et al. (2019) 294 Multibreed Blood BUN PLS 3-F CV 0.58

Benedet et al. (2019) 294 Multibreed Blood Glu PLS 3-F CV 0.20

Benedet et al. (2019) 294 Multibreed Blood GOT PLS 3-F CV 0.24

Grelet et al. (2019) 205 Holstein Blood BHB PLS 4-F CV 0.70

Grelet et al. (2019) 234 Holstein Blood NEFA PLS 4-F CV 0.39

Grelet et al. (2019) 387 Holstein Blood IGF-1 PLS 4-F CV 0.61

Grelet et al. (2019) 380 Holstein Blood Glu PLS 4-F CV 0.44

Luke et al. (2019) 878 Holstein Blood BHB PLS R-Tr/Tea 0.60

Luke et al. (2019) 878 Holstein Blood NEFA PLS R-Tr/Tea 0.45

Luke et al. (2019) 878 Holstein Blood BUN PLS R-Tr/Tea 0.35

Müller et al. (2019) 585 Holstein Blood BHB PLS CV 0.42

Partial least square (PLS), artificial neural network (ANN), train and test cross-validation defined by splitting the data set randomly (R-Tr/Te), number of folds (n-F) in the
cross-validation (CV), leave-one-out cross-validation (LOOCV). aExternal or independent validation. bStandard error in the cross-validation as accuracy metric. cCorrelation
coefficient (r) transformed to coefficient of determination (R2). *The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe
the validation method adopted or the authors defined that cross-validation was employed.

TABLE 11 | Number of samples (N), accuracy (Acc), sensitive (Sen), and specificity (Spe) in the validation set for mastitis (Mas) and lameness (Lam) traits using milk
mid-infrared spectrometry using partial least square in dairy cattle.

Reference N Breed Trait Validation Acc (%) Sen (%) Spe (%)

Mineur et al. (2017) 9,811 Multibreed Lam R-Tr/Te – 60 62

Rienesl et al. (2019) 2,340 Multibreed Mas R-Tr/Te* 68 57 79

Bonfatti et al. (2020) 3,771 Multibreed Lam 10-F CV 62 57 62

Train and test cross-validation defined by splitting the data set randomly (R-Tr/Te), number of folds (n-F) in the cross-validation (CV), and *external or independent validation.

certified, high-quality meat products, there is a growing interest
by the beef meat chain to accurately assess meat quality traits
(Andrés et al., 2008; Prieto et al., 2008). To date, meat quality
traits have been measured using physical methods, which are
time-consuming, expensive, destructive (depreciating the value
of the carcass), and unsuitable to perform individually in large-
scale (Su et al., 2018; Chapman et al., 2019). To satisfy the
requirements of the modern meat industry, NIR spectrometry
has been stated as an alternative tool for high throughput
phenotyping meat quality traits because it is considered an
accurate, fast, non-invasive and non-destructive technique with
great potential for in-line application (Prevolnik et al., 2004;
Prieto et al., 2009a; Chapman et al., 2019). The feasibility and
robustness of NIR technique to predict meat quality traits in cattle
have been investigated by several researchers (Tables 12–14).
Here our focus will be on meat tenderness, intramuscular

fat content, meat color, and cooking loss traits, since such
attributes impact consumers’ satisfaction. Meat quality traits can
be measured using different methodologies, but in our review,
such traits were summarized regardless of the methodology
applied. The R2 observed in the reviewed papers for meat
tenderness varied from 0.12 (De Marchi et al., 2007) to 0.81
(Prieto et al., 2014) in the validation set (Table 12). The R2 for
intramuscular fat content varied from 0.02 (Magalhães et al.,
2018) to 0.99 (Su et al., 2014) in the validation set (Table 13). For
color traits (L∗, a∗, and b∗), the R2 in the validation set (Table 14)
were in a range of 0.16 (Magalhães et al., 2018) to 0.93 (Zhang
et al., 2015). The R2 observed for cooking losses varied from 0.001
(Prieto et al., 2008) to 0.61 (Zhang et al., 2015) in the validation set
(Table 14). Overall, NIR spectrometry has shown great potential
to assess meat quality traits within different breeds. Furthermore,
meat quality traits can be generated directly on the raw beef under
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TABLE 12 | Number of samples (N) and coefficient of determination (R2) in the
validation set for meat tenderness trait predicted from near-infrared
spectrometry in cattle.

References N Breed Method Validation∗ R2

Mitsumoto et al.
(1991)

11 Japanese Black MLR – 0.67b

Hildrum et al.
(1994)

10 Norwegian PCR CV 0.29b

Byrne et al. (1998) 70 – PLS CV 0.37b

Park et al. (1998) 119 – PLS Tr/Te 0.63

Rødbotten et al.
(2000)

79 Norwegian Red PLS LOOCV 0.36b

Rødbotten et al.
(2001)

48 Norwegian PLS CV 0.72b

Venel et al. (2001) 67 – PLS LOOCV 0.31b

Leroy et al. (2003) 189 Belgian White Blue PLS CV 0.25

Liu et al. (2003) 22 Multibreed PLS LOOCV 0.48

Shackelford et al.
(2005)

146 Multibreed MLR Tr/Te 0.22

De Marchi et al.
(2007)

148 Piamontese PLS 4-FCV 0.12

Andrés et al. (2008) 112 Maronesa PLS LOOCV 0.53

Ripoll et al. (2008) 190 Multibreed PLS R-Tr/Te 0.74

Prieto et al. (2008) 67 - PLS LOOCV 0.17

Prieto et al. (2009b) 194 Crossbred PLS LOOCV 0.31

Rosenvold et al.
(2009)

381 Hereford PLS R-Tr/Te 0.58

Cecchinato et al.
(2009)

1,298 Piamontese PLS Tr/Te 0.50

Yancey et al. (2010) 40 Multibreed PLS LOOCV 0.28b

Cecchinato et al.
(2011)

1,208 Piamontese PLS R-Tr/Te 0.21

De Marchi et al.
(2013)

336 Multibreed PLS 8-FCV 0.34

De Marchi (2013) 81 Crossbred PLS LOOCV 0.13

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.81

Zhang et al. (2015) 162 Yak PLS R-Tr/Te 0.43

Magalhães et al.
(2018)

644 Nelore PLS LOOCV 0.40

Su et al. (2018) 442 Multibreed PLS R-Tr/Tea 0.60

Qiao et al. (2015) 234 - SVM Tr/Te 0.20

Wyrwisz et al.
(2019)

89 Holstein PLS TR/Te 0.62

Savoia et al. (2020) 1,166 Piamontese Bayes B LOOCVa 0.16

Cafferky et al.
(2020)

595 Multibreed PLS LOOCV 0.22

Mulitple linear regression (MLR), principal components regression (PCR), partial
least square (PLS), support vector machine (SVM), number of folds (n-F) in the
cross-validation (CV), leave-one-out cross-validation (LOOCV), train and test cross-
validation defined by splitting the data set randomly (R-Tr/Te) or not (Tr/Te). aExternal
or independent validation. bCorrelation coefficient (r) transformed to coefficient of
determination (R2). *The validation strategy defined as “CV” was assigned for the
reviewed paper that did not completely describe the validation method adopted or
the authors defined that cross-validation was employed.

slaughterhouses conditions as the NIR technique may not require
sample pre-preparation. Nevertheless, further research needs to
be conducted to validate the models across breeds and use
modern data mining approaches to improve prediction quality.

TABLE 13 | Number of samples (N) and coefficient of determination (R2) in the
validation set for intramuscular fat content predicted from near-infrared
spectrometry in cattle.

References N Breed Method Validation* R2

Mitsumoto et al. (1991) 11 Japanese Black MLR – 0.922

Sanderson et al. (1997) 72 British Friesian PLS 4-FCV 0.95

Rødbotten et al. (2000) 79 Norwegian Red PLS LOOCV 0.58b

Cozzolino and Murray
(2002)

100 – PLS 4-FCV 0.86

Cozzolino et al. (2002) 78 Hereford PLS 4-FCV 0.92

Prevolnik et al. (2005) 34 Multibreed PLS CV 0.93

Ripoll et al. (2008) 190 Multibreed PLS R-Tr/Tea 0.76

Prieto et al. (2011) 194 Multibreed PLS LOOCV 0.43

Cecchinato et al. (2012) 148 Piamontese PLS 4-FCV 0.82

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.86

Su et al. (2014) 182 Multibreed PLS R-Tr/Tea 0.99

Dixit et al. (2016) 108 – PLS Tr/Te 0.82

Magalhães et al. (2018) 644 Nelore PLS LOOCV 0.02

Mulitple linear regression (MLR), partial least square (PLS), number of folds (n-
F) in the cross-validation (CV), leave-one-out cross-validation (LOOCV), train and
test cross-validation set defined by splitting the data randomly (R-Tr/Te) or not
(Tr/Te). aExternal or independent validation. bCorrelation coefficient (r) transformed
to coefficient of determination (R2). *The validation strategy defined as “CV” was
assigned for the reviewed paper that did not completely describe the validation
method adopted or the authors defined that cross-validation was employed.

DATA MINING

Frequently, the main goal of using infrared spectrometry
technology in the livestock industry is the development
of predictive models to determine the content of specific
compounds present in products such as milk, meat, and
feedstuffs. However, many compounds present in such products
are highly correlated with phenotypes that are difficult to measure
in commercial and research settings, such as feed intake, methane
emission, energy balance, methane emission, fertility, metabolic
diseases, and meat quality traits, as previously discussed. In
this context, several research studies have attempted to develop
predictive models to predict such complex phenotypes for
management decisions or breeding purposes. However, we have
noted that factors such as the analytical method chosen to develop
the predictive models and the cross-validation strategy used
to evaluate the analytical approaches are not deeply discussed
in the research studies involving livestock data. If not utilized
properly, those two factors can result in (a) poor predictions
due to the lack of ability of certain models to capture complex
relationships between explanatory and response variables and (b)
overoptimistic prediction quality due to high data dependency
occurring between training and validation dataset. To developed
robust predictive models using spectral data the following three
steps should be followed: (1) spectra pretreatment, to remove
noise or non-informative wavenumbers, (2) model training (or
algorithm training), in which analytical techniques are used
to assess the set of coefficients, number of latent variables,
or hyperparameters, and (3) model validation, in which an
independent dataset is used to evaluate the predictive ability of
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TABLE 14 | Number of samples (N) and coefficient of determination (R2) in the validation set for L∗ (R2
L∗ ), a∗ (R2

a∗ ), and b∗ (R2
b∗ ) meat color, and cooking losses (R2

CL)
traits predicted from near-infrared spectrometry in cattle.

References N Breed Method Validation§ R2
L∗ R2

a∗ R2
b∗ R2

CL

Mitsumoto et al. (1991) 11 Japanese black MLR CV – – – 0.59b

Leroy et al. (2003) 189 Belgian White Blue PLS CV 0.83 0.39 0.75 0.25

Liu et al. (2003) 113 Multibreed PLS LOOCV 0.55 0.90 0.78 –

De Marchi et al. (2007) 148 Piamontese PLS 4-FCV – – – 0.15

Andrés et al. (2008) 109 Maronesa PLS LOOCV 0.80 0.23 0.27 0.02

Prieto et al. (2008) 67 – PLS LOOCV 0.87 0.71 0.90 0.001

Prieto et al. (2009b) 194 Crossbred PLS LOOCV 0.83 0.76 0.84 0.23

Cecchinato et al. (2009) 1,298 Piamontese PLS CV 0.65 0.69 0.81 0.50

Cecchinato et al. (2011) 1,208 Piamontese PLS R-Tr/Te 0.64 0.68 0.44 0.04

De Marchi et al. (2013) 336 Multibreed PLS 8-FCV 0.70 0.73 0.60 0.38

De Marchi (2013) 81 Crossbred PLS LOOCV 0.41 0.58 0.57 0.31

Prieto et al. (2014) 63 Crossbred PLS LOOCV 0.80 0.71 0.77 –

Zhang et al. (2015) 162 Yak PLS R-Tr/Te 0.74 0.81 0.93 0.61

Qiao et al. (2015) 234 – SVM Tr/Te 0.80 0.64 0.54 –

Magalhães et al. (2018) 644 Nelore PLS LOOCV 0.16 0.17 0.45 –

Su et al. (2018) 442 Multibreed PLS R-Tr/Tea 0.61 0.64 0.38 0.56

Wyrwisz et al. (2019) 89 Holstein PLS Tr/Te 0.33 0.57 0.61 0.47

Savoia et al. (2020) 1,166 Piamontese Bayes B LOOCVa 0.84 0.55 0.63 0.16

Mulitple linear regression (MLR), partial least square (PLS), support vector machine (SVM), number of folds (n-F) in the cross-validation (CV), leave-one-out cross-validation
(LOOCV), train and test cross-validation set defined by splitting the data randomly (R-Tr/Te) or not (Tr/Te). aExternal or independent validation. 2Correlation coefficient
(r) transformed to coefficient of determination (R2). §The validation strategy defined as “CV” was assigned for the reviewed paper that did not completely describe the
validation method adopted or the authors defined that cross-validation was employed.

the model developed using the training dataset. These three main
steps will be discussed throughout this review section.

Spectra Preprocessing
Infrared spectra data comprise signals related to compounds
present in the biological sample as well as non-informative
signals coming from background, high-frequency noise, baseline
shift, and overlapping bands (Rinnan et al., 2009a). Therefore,
preprocessing spectral data is a common and crucial strategy
that helps to mitigate such undesirable signals present in the raw
data, maximizing the relationship between the infrared spectrum
and the target phenotype (Rinnan et al., 2009a; De Marchi et al.,
2014; McParland and Berry, 2016). Furthermore, preprocessing
the spectra data prior to fit the calibration model is used in
attempting to obtain robust prediction models and to restrict the
insertion of bias into the model. However, applying unsuitable
or a high stringent preprocessing strategy might remove
important information from the biological sample (Rinnan
et al., 2009a). Spectra preprocessing are commonly performed
using mathematical pretreatment techniques or variable selection
approach. The main mathematical pretreatment techniques used
in the reviewed papers to mitigate signal noise can be divided
into two groups, scatter-correction methods (e.g., multiplicative
scatter correction, standard normal variate, and orthogonal
scatter correction) and spectral derivatives (e.g., Savitzky-Golay
polynomial derivative). Multiplicative scatter correction (MSC)
is used to remove physical effects including particle size and
surface blaze from the spectra, which do not carry any chemical
or physical information, by correcting differences in the baseline
and the trend (Martens et al., 1983). Standard normal variate

(SNV) aims to remove the multiplicative effects of scatter and
particle size, giving the sample a unit standard deviation (Barnes
et al., 1989). Orthogonal scatter correction (OSC) eliminates the
parts linearly unrelated (orthogonal) to the response variable
(Wold et al., 1998). Savitzky-Golay (SG) first derivative is
used to improve the spectra resolution by eliminating constant
baseline, whereas the second derivative eliminates both baseline
and linear trend (Savitzky and Golay, 1964). More details and
theory overview about the mathematical pretreatment techniques
employed on NIR and MIR spectra can be found in Rinnan
et al. (2009a,b). From the 113 published papers reviewed here,
researchers have used spectra data without pretreatment (50), SG
first derivative (28), SG second derivative (10), MSC (7), SNV (5),
and OSC (2). Eleven authors did not report if some mathematical
pretreatment was applied to the spectra data. Several authors also
used the combination of more than one pretreatment strategy
(e.g., SG first derivative + MSC; SG second derivative + SNV;
and SG first derivative + SG second derivative + MSC). Some
authors have reported an increase in the prediction quality using
pretreated spectra data (Heuer et al., 2001; Rødbotten et al., 2001;
Soyeurt et al., 2011; De Marchi et al., 2011), whereas others
have observed that the pretreatment failed to improve prediction
accuracies (McParland et al., 2011; Cecchinato et al., 2012;
Dehareng et al., 2012; Shetty et al., 2017a; Cafferky et al., 2020).

Analytical methods commonly employed on spectra data
are suitable to reduce the full-spectrum to a few latent
variables or perform some type of regularization (e.g., ridge and
lasso). However, even performing such dimensionality reduction,
they may also be penalized by noise or non-informative
wavenumbers. Furthermore, the number of wavenumbers in
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infrared spectrometry datasets usually outnumbers the sample
size. For example, a dataset containing 30 samples with their
respective spectra data (1,060 wavenumbers). Note that the
number of parameters p (1,060 wavenumbers) is greater than
the number of observations n (30 samples). In such situations,
the use of least squares is not appropriate since it will yield
a set of coefficient estimates that result in a perfect fit to the
data and the residuals will be zero (James et al., 2013). This
phenomenon is a concern in data analysis because such perfect
fit will potentially lead to overfitting the data (Hastie et al., 2009).
Variable selection, therefore, is an important strategy used prior
to the model calibration to reduce the data dimensionality by
selecting a subset of relevant features from the original space to
improve the model robustness and reduce the model complexity
(Koljonen et al., 2008; Rinnan et al., 2009a). Although several
authors removed the water noise wavenumbers, here we are only
taking into account studies that performed variable selection
based on a mathematical or statistical approach. Thus, only nine
out of 113 published papers reviewed here performed variable
selection prior to the calibration model. Variable selection was
employed using a genetic algorithm (GA), uninformative variable
elimination (UVE), variable importance for projection (VIP),
and coefficient of variation (CV) combined with Markov Blanket
(MB) techniques by 4, 3, 2, and 1 studies, respectively. Briefly,
GA is an algorithm based on the biological evolution theory and
natural selection and the main idea is to find within the set of
predictor variables the ones that best fitted the model. The best
predictor variables need to show high “fitness” and probability to
“survive” to be included in the subsequent variable sets used for
model refit. An iterative process is performed until the GA has
selected the best predictor variable set or the best combination
of them (Leardi et al., 1992). UVE approach adds artificial noise
predictor variables, multiplied by a constant close to zero in
order to eliminate any possible interaction with the original
variables, to the reference dataset before fitting the model. The
wavenumbers (original variables) that play a less important role
in the model (based on the root mean square error, for example)
than the random variables are considered uninformative and
eliminated from the dataset before the procedure is repeated.
The iterative process is performed until the stop criterion is
reached (Centner and Massart, 1996). Using the VIP technique,
one calculates a coefficient v that represents the importance or
influence of each predictor variable on the response variable.
Thus, predictor variables with a v < user-defined threshold u
(v < 1, for example) are less relevant to fit the model and
can be eliminated (Wold et al., 1993). CV is a well-known
standardized measure of dispersion and it is used to eliminate
wavenumbers that lack variability between samples. The MB
notion is widely used in Bayesian Network and is defined as: for
a node (target variable), its MB is the minimal set of parents,
children, and spouses (wavenumbers) that best represents the
node (Pearl, 1988). Studies that performed variable selection
prior to the calibration step have reported an improvement in the
quality of the predictions for different phenotypes and analytical
approaches (Wu et al., 2009, 2012; Gottardo et al., 2015, 2016;
Niero et al., 2016; Dórea et al., 2018). Although the authors
have observed that spectra pretreatment and variable selection

improved the predictions accuracies, there is no consensus in
the literature regarding which situations such techniques will
effectively result in better prediction ability, especially using
larger datasets. Therefore, the effect of spectra data pretreatment
and variable selection on the prediction quality should be more
deeply investigated. Furthermore, as pointed out by De Marchi
et al. (2014) and observed in the published papers reviewed here,
the authors usually report only the precision and accuracy for
the best model, while information regarding other models is not
shown and discussed for full comparison.

Calibration Models
From the 113 published papers retrieved from Web of Science,
Partial Least Squares (PLS) was the most used statistical approach
(101 papers) for the development of predictive equations,
when compared to other machine learning (ML) methods.
The simple implementation makes PLS a well-established and
widely used methodology to generate novel complex traits
from infrared spectrometry data in different fields. PLS is a
dimension reduction technique suitable when the number of
predictors is greater than the number of observations (e.g.,
infrared spectra data) as well as when strong collinearity exists
between predictor variables, i.e., some wavenumbers can be
rewritten as a linear function of others (Martens and Naes,
1987). Briefly, PLS maximizes the covariance between the
predictor variables and the response variable resulting in a
small set of components (latent variables), commonly called
factors, that are used to predict target phenotypes in a new
dataset (Martens and Jensen, 1982; Martens and Naes, 1987).
Multiple linear regression (MLR) has also been used (Mitsumoto
et al., 1991; Shackelford et al., 2005) or compared to other
methodology (Pralle et al., 2018; Müller et al., 2019) to predict
complex phenotypes using spectra data. MLR solves a number
of simultaneous equations exploring the linear relationship
between several explanatory variables (i.e., wavenumbers) and
the continuous response variable (Hastie et al., 2009). Despite
the power of such statistical method, Pralle et al. (2018) did
not observe improvement in the prediction quality. In contrast,
Müller et al. (2019) reported improvement when MLR was
implemented compared with other methodologies such as PLS.
In addition, the bottleneck of MLR methodology is that its
implementation will often face the problem that the number of
parameters is greater than the number of samples (Hastie et al.,
2009). The PLS method to date has succeeded in predicting some
complex traits with high accuracies, whereas for other traits, the
prediction quality was poor, as previously reported in section
“Complex Traits Predicted by Infrared Spectrometry Data.” This
fact highlights the need for more research studies evaluating
other analytical strategies able to deal with missing data, non-
linear relationships between response and explanatory variables,
and high-dimensional data to improve the prediction quality of
complex phenotypes. Recently, Bayesian and ML techniques have
been implemented to predict a range of phenotypes in livestock;
however, it is at a small proportion compared with the number of
studies using PLS. Bayesian models have been developed for high-
dimensional regression and they are widely used in the context
of genomic prediction (Meuwissen et al., 2001). In addition to
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the possibility of assigning prior information for the marker
effects, here substituted by the wavenumbers’ effects, Bayesian
methods are also able to perform estimate shrinkage and variable
selection. For genomic prediction, Bayesian methods may have
greater predictive power than dimension-reduction methods
(Meuwissen et al., 2001; de los Campos et al., 2013). Ferragina
et al. (2015) reported that Bayes B approach, which is one of the
many Bayesian methods available, outperformed PLS methods
for predicting milk components and technological properties
using infrared spectral data and Bayes B was able to select a
small subset of important wavenumbers. Based on Ferragina
et al. (2015) finds, Bittante and Cipolat-Gotet (2018); Toledo-
Alvarado et al. (2018), and Savoia et al. (2020) also used Bayes
B methodology to predict complex phenotypes using spectra
data. ML techniques such as Support Vector Machine (SVM)
and Artificial Neural Networks (ANN) have been tested as an
alternative to the traditional PLS method, because of their ability
to search in a high-dimensional space of predictor variables for
features that best describe the response variable, with the ability
to self-learn. Additionally, such methods can better model the
complex relationships (e.g., non-linear and interactions) between
the input variables and the response outcome, which could
improve the prediction quality (Gianola et al., 2011). Indeed,
the authors that used SVM or ANN approaches have reported
an increase in prediction quality compared with PLS method
(Hempstalk et al., 2015; Qiao et al., 2015; Dórea et al., 2018; Pralle
et al., 2018; Grelet et al., 2020). Although ML methodologies
are suitable to be implemented in the high-dimensional space
of predictor variables, this approach tends to easily overfit, in
general because of small datasets and noisy data (Hempstalk et al.,
2015). Overfitting is a recurrent issue in ML methods, such as
in ANN, and it is clearly identified by high prediction accuracy
in the training dataset but very poor in the validation dataset.
For such methods, it is very important to perform unbiased
validation strategy, therefore ensuring maximum possible data
independency between training and validation would be ideal
to unbiased predictions (Roberts et al., 2017). Additionally, ML
techniques often require an extensive search for hyperparameters
(e.g., number of neurons, number of layers, learning rate,
among others) before training the algorithms to perform final
prediction (Bengio, 2012). Such search is critical in order to
define the network architecture, which may detrimentally affect
prediction quality if not appropriate (Bengio, 2012). Based on the
comparisons between traditional (PLS) and advanced analytical
methods (Bayesian and ML) found in the reviewed papers, the use
of advanced techniques resulted in improved prediction accuracy
for some complex phenotypes. However, the prediction quality
is influenced by many factors, including the trait to be predicted
(e.g., qualitative or quantitative), the quality of the reference data
(observed data) set, the spectra quality, the spectra preprocessing,
the sample size used to develop the prediction equations, and the
validation strategies used for model development and validation
(Karoui et al., 2010; Rutten et al., 2010; Ferragina et al., 2015;
Bonfatti et al., 2017; Dórea et al., 2018). In addition, directly
predicted traits (e.g., milk fat) usually has a significant signal
in the spectra data, whereas indirectly predicted traits (e.g.,
feed efficiency and methane emission) the signal in the spectra

is associated to complex traits through compounds found in
the scanned products (milk or meat, for example) (Ferragina
et al., 2015). The number of research studies implementing
alternative methods to predict complex traits in livestock systems
is small and, therefore, more investigation using a different
analytical approach, sample size, data pretreatment, and variable
selection, is important to shed light on the predictive analytics of
complex phenotypes.

Validation Strategies
Infrared spectrometry data (MIR and NIR) have been stated
as an important source of information to generate many novel
complex phenotypes in dairy and beef cattle (Prevolnik et al.,
2004; De Marchi et al., 2014; McParland and Berry, 2016;
Gengler et al., 2016; Chapman et al., 2019). To predict such
phenotypes, robust models or equations must be developed using
a training dataset that represents the population variability. The
approval that ensures prediction quality of the developed models
is given through their performance when implemented in a
validation dataset, ideally, an external dataset not previously
utilized for model development. However, defining the external
validation dataset is a non-trivial task in some cases, since the
dependency between training and validation sets needs to be
reduced as much as possible. The main reason for reducing
such dependence between training and validation sets is the
need to approximate prediction quality from model validation
to real-life implementation, in which very little dependency
between training and validation set will occur. In this review,
we considered as an external validation set, all datasets in which
some level of dependency between training and validation set was
broken. For example, research trials using multiple herds where
one herd or trial was removed from the dataset to validate the
model. Although this is the desired validation strategy, in some
situations, it is difficult to define an external validation set due
to the hierarchical structure of the dataset. In such case or when
datasets are small, internal validation is usually performed, which
was the most used strategy in the papers reviewed here (67 out of
113). In this review, we considered internal validation the studies
in which hierarchical structure in the dataset (e.g., country, herd,
dietary effect, etc.) was not considered for data split strategies
(holdout, leave-one-out, k-fold). Therefore, to create the training
and internal validation datasets the reviewed studies used one
of the data-splitting techniques: holdout (22 studies), leave-one-
out cross-validation (20 studies), and k-fold cross-validation (25
studies). An example of each validation strategy technique used
for model validation is depicted in Figure 2.

Briefly, in the holdout strategy (Figure 2A), given that animals
are sourced in different herds, about 80% of the dataset is
randomly used in the model training and the remaining 20%
is used for model validation (Stone, 1974; Picard and Berk,
1990). When holdout is adopted, the test error rate can be
highly variable depending on which sample is assigned in the
training and validation set (Hastie et al., 2009). Leave-one-out
cross-validation is an alternative to the holdout approach and
involves splitting the dataset into two parts in which N – 1
observations are used to train the model and a single sample N is
used to validate the model (Figure 2B). The splitting is iterated
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FIGURE 2 | Example of validation strategies employed in the publish papers retrieved from Web of Science. (A) split-data or k-fold cross-validation, (B)
leave-one-out cross-validations, and (C) leave-one-group-out cross-validation. Colors represent animals from different herds.

N times until all the observations were used in the validation
and the model performance is averaged across the N validation
sets. Thus, the test error in leave-one-out cross-validation is
highly variable compared to holdout, because the training dataset
contains almost the same number of observations (N – 1) as the
entire dataset (Hastie et al., 2009). Leave-one-out is commonly
used when the sample size is small and there is concern about
the limited size of the calibration set (Gianola and Schön, 2016).
The idea of leave-one-out cross-validation technique can also be
adapted to perform leave-one-herd-out (e.g., group, farm, trial,
year, among others), which can be a good strategy to reduce data
dependence between training and validation dataset (Figure 2C).
The k-fold cross-validation is performed by dividing the entire
dataset into k disjoint sets of approximately equal size, usually
randomly, in which k – 1 sets are used in the training and
one set is used to validate the model. Such process is repeated
k times until all k sets were used in the validation and the
model performance is averaged across all k validation sets (Stone,
1974; Hastie et al., 2009). This process can be repeated many
times, wherein each iteration different samples are assigned in
both training and validation sets. Due to the larger validation
dataset assigned in k-fold cross-validation as well as the test
error averaged across the k different subsets, the test error is less
sensitive to the partition of the dataset than in the leave-one-out
cross-validation (Hastie et al., 2009). The drawback of the three

procedures adopted to split the dataset, except for the leave-one-
herd-out strategy, is that animals from the same herd or multiple
records from the same animal will be present on the training and
validation set, creating dependence between them.

Studies comparing different validation strategies using spectra
data confirmed the hypothesis that prediction quality was inflated
according to the split-data strategy employed to externally
validate the model (Shetty et al., 2017b; Dórea et al., 2018;
Lahart et al., 2019; Luke et al., 2019; Smith et al., 2019;
Wang and Bovenhuis, 2019). Therefore, evaluating the fitted
model using only internal validation is not recommended.
The performance of the model fitting will be better than it
should be, resulting in greater model precision and accuracy
than if a true external validation is used, but the prediction
accuracies in the external validation set are more realistic
and quite often observed in practice. Several authors (32
out of the 112 papers reviewed here) reported that an
independent dataset was used to externally validate the model’s
performance. However, by reviewing the papers from the
32 studies only seventeen fully performed external model
validation. In those studies, the authors validated the models’
performance using an external/independent dataset, which an
entire farm, herd, trial, year, study, region, dataset, or batch
was removed from the training dataset. The remaining studies
(15) only assigned records by animal, individual records,
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or lactations either randomly or not from the entire dataset
to external validate the model. Such strategy does not produce
a good independent dataset to test the model against real-life
implementation because animals from the same herd or group
can be present on the training and validation set. Fourteen out of
112 papers did not report if model performance was evaluated,
only stated that cross-validation was employed, or the procedure
was not clearly described. Therefore, it is a good practice to use
external validation (if large sample size is available), based on data
from a different farm, herd, trial, year, region, or batch, before full
deployment of such predictive models.

CONCLUDING REMARKS

Important advances have been made in the nutrition,
reproduction, management, and molecular breeding techniques
of beef and dairy cattle in recent years. However, efficient and
precise phenotyping remains a bottleneck and, therefore, modern
high-throughput techniques should be developed, improved, and
applied to take full advantage of the advancements performed
in the different animal knowledge fields. Of the techniques
currently available, this review summarized the applications
of MIR and NIR spectrometry as a novel high-throughput
phenotyping technique to generate complex phenotypes in dairy
and beef cattle. Furthermore, it presented an overview, status
update, and insights into the use of such techniques and the

data mining strategies employed to predict the phenotypes of
interest. The majority of studies compiled have demonstrated
the capability and power of MIR and NIR technique to
generate complex traits such as feed efficiency, methane
emissions, energy balance, health, and meat quality from different
biological samples routinely accessed, without additional cost
and at the animal-level. Therefore, these phenotypes would be
widely explored in dairy and beef cattle for on-farm decision-
making, management, and breeding purpose. MIR and NIR
spectrometry has important advantages compared to gold
standard methods such as speed, low cost, non-invasive, non-
destructive, and potential for in-line application; however, for
the implementation of these high-throughput techniques into
livestock operations, numerous issues regarding the modeling
methodology must be considered. Few studies have used a large
dataset as well as machine learning or Bayesian techniques
to develop the calibrations models. Therefore, larger datasets
and modern data mining approaches should be investigated
to improve predictive ability and to confirm the existing
calibration models.
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TABLE 5 | Number of samples (N) and coefficient of determination in the validation set for mineral contents using partial least square methodology.

References N Breed Validation* Ca K Mg Na P

Soyeurt et al. (2009) 92 Multibreed LOOCV 0.87 0.36 0.65 0.65 0.85

Gottardo et al. (2015) 208 – 10-F CVb 0.55 – – – –

Toffanin et al. (2015) 208 Holstein LOOCV 0.53c – – – 0.70c

Bonfatti et al. (2016) 689 Simental 10-F CV 0.48 0.41 0.46 – 0.43

Visentin et al. (2016) 923 Multibreed R-Tr/Teb 0.67 0.69 0.65 0.40 0.68

Malacarne et al. (2018)a 153 Holstein Tr/Teb 0.25 0.34 0.26 0.25 0.53

Franzoi et al. (2019)b 93 Holstein CV 0.79 0.55 0.68 0.75 0.87

Fleming et al. (2019) 986 Multibreed 10- FCV 0.25 – – – –

aBulk milk samples. bBackward interval partial least squares (BiPLS), number of folds (n-F) in the cross-validation, leave-one-out cross-validation (LOOCV), train and test cross-validation

defined by splitting the data set randomly (R-Tr/Te), external or independent validation. cCorrelation coefficient (r) transformed to coefficient of determination (R2). *The validation strategy

defined as “CV” was assigned for the reviewed paper that did not completely describe the validation method adopted or the authors defined that cross-validation was employed.
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to Improve Difficult-to-Measure
Traits in Dairy Cattle Populations
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Enrico Santus3, Christian Maltecca4, Giovanni Bittante1 and Francesco Tiezzi4
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The objective of this study was to evaluate the contribution of Fourier-transformed
infrared spectroscopy (FTIR) data for dairy cattle breeding through two different
approaches: (i) estimating the genetic parameters for 30 measured milk traits and their
FTIR predictions and investigating the additive genetic correlation between them and
(ii) evaluating the effectiveness of FTIR-derived phenotyping to replicate a candidate
bull’s progeny testing or breeding value prediction at birth. Records were available
from 1,123 cows phenotyped using gold standard laboratory methodologies (LAB
data). This included phenotypes related to fine milk composition and milk technological
characteristics, milk acidity, and milk protein fractions. The dataset used to generate
FTIR predictions comprised 729,202 test-day records from 51,059 Brown Swiss
cows (FIELD data). A first approach consisted of estimating genetic parameters for
phenotypes available from LAB and FIELD datasets. To do so, a set of bivariate
animal models were run, and genetic correlations between LAB and FIELD phenotypes
were estimated using FIELD information obtained at the population level. Heritability
estimates were generally higher for FIELD predictions than for the corresponding LAB
measures. The additive genetic correlations (ra) between LAB and FIELD phenotypes
had different magnitudes across traits but were generally strong. Overall, these results
demonstrated the potential of using FIELD information as indicator traits for the indirect
genetic improvement of LAB measures. In the second approach, we included genotype
information for 1,011 cows from the LAB dataset, 1,493 cows from the FIELD dataset,
181 sires with daughters in both LAB and FIELD datasets, and 540 sires with daughters
in the FIELD dataset only. Predictions were obtained using the single-step GBLUP
method. A four fold cross-validation was used to assess the predictive ability of
the different models, assessed as the ability to predict masked LAB records from
daughters of progeny testing bulls. The correlation between observed and predicted
LAB measures in validation was averaged over the four training-validation sets. Different
sets of phenotypic information were used sequentially in cross-validation schemes: (i)
LAB cows from the training set; (ii) FIELD cows from the training set; and (iii) FIELD cows
from the validation set. Models that included FIELD records showed an improvement for

Frontiers in Genetics | www.frontiersin.org 1 September 2020 | Volume 11 | Article 563393166

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.563393
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.563393
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.563393&domain=pdf&date_stamp=2020-09-29
https://www.frontiersin.org/articles/10.3389/fgene.2020.563393/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-563393 September 28, 2020 Time: 13:33 # 2

Cecchinato et al. Infrared Milk Spectra and Genetic Improvement

the majority of traits. This study suggests that breeding programs for difficult-to-measure
traits could be implemented using FTIR information. While these programs should use
progeny testing, acceptable values of accuracy can be achieved also for bulls without
phenotyped progeny. Robust calibration equations are, deemed as essential.

Keywords: high-throughput phenotyping, Fourier-transformed infrared spectroscopy, genetic parameters,
genomic predictions, dairy cattle, single-step GBLUP

INTRODUCTION

In the omics- era, an emerging field of research is represented by
phenomics, which is the study of phenotypes on a genome-wide
scale (Bilder et al., 2009; Houle et al., 2010). In animal breeding,
the advance in high-throughput genomics has increased the
need for simple, fast, accurate, and high-throughput phenotyping
technologies. Fourier-transformed infrared spectroscopy (FTIR),
including part of near- and mid-infrared (NIR and MIR)
electromagnetic radiations, is a versatile and cost-effective
analytical tool to collect individual data for monitoring
traditional and novel milk traits in dairy cattle (Boichard
and Brochard, 2012). For many years, milk composition traits
such as fat and protein content, as well as lactose, urea,
and casein content, have been routinely estimated by FTIR
spectroscopy (Barbano and Clark, 1989). More recently, infrared
technology has also been proposed as an alternative method
for the quantification of difficult- or expensive-to-measure milk
phenotypes including protein fractions, fatty acids, and minerals
as well as milk coagulation properties (MCP), cheese yield, and
curd nutrient recoveries (Soyeurt et al., 2006a,b, 2011; Ferragina
et al., 2013; Cecchinato et al., 2015; Sanchez et al., 2018). In
addition, FTIR data has been shown to be a potentially valuable
tool for predicting health and reproductive phenotypes (Belay
et al., 2017; Toledo-Alvarado et al., 2018), as well as residual feed
intake, dry matter intake (DMI), and methane emissions (Bittante
and Cipolat-Gotet, 2018; Dórea et al., 2018).

Within the animal breeding context, studies have shown
the potential for using FTIR predictions as indicator traits
of novel phenotypes like MPC, fatty acid profiles, and other
milk components (Cecchinato et al., 2009; Rutten et al., 2011;
Bonfatti et al., 2017). Multi-trait prediction allows simultaneous
use of information from relatives and from different traits
(Henderson and Quaas, 1976). It has been demonstrated that,
using different databases, breeds, and traits, the effectiveness of
FTIR calibrations to provide novel phenotypes exploitable in
indirect selective breeding relies on the magnitude of heritability
of FTIR predictions, and the additive genetic correlation between
predictions and the measured traits (i.e., gold standard/breeding
targets). Although the predictive ability of FTIR data is moderate
for some traits, the genetic response achievable using FTIR
predictions as indicator traits may be equal to or slightly lower
than the response achievable from direct measurements of traits
are utilized (Cecchinato et al., 2009; Rutten et al., 2010).

Besides the infrared technology, genome-wide prediction
using the single-step approach has also been recognized as an
important tool to predict phenotypes (Lee et al., 2008; Aguilar
et al., 2010). The key principle for all these applications is

the simultaneous estimation of all genome-wide marker effects
based on a reference population with known phenotypes. Within
this framework, the accuracy of prediction might also benefit
from the added value of including genomic information in
multi-trait prediction models, which have been shown to have
better performances compared to single-trait models (Calus
and Veerkamp, 2011; Guo et al., 2014; Karaman et al., 2018).
While dairy cattle genetic improvement has historically hinged
on progeny testing, genomic selection has made available high-
accuracy breeding value predictions for candidate bulls at birth.
This could mean that the traditional progeny testing is no longer
required, provided that these early breeding value predictions
are reliable. In this context, we hypothesized that multi-trait
genomic prediction models applied to indicator traits estimated
from routinely collected FTIR data, and their corresponding
gold-standard measured traits could represent a viable option to
evaluate the contribution of FTIR data collection for dairy cattle
breeding. Cross-validation could be used to test the predictive
ability of models that include or do not include FTIR-predicted
phenotypes, to replicate a candidate bulls’ progeny testing or
prediction of breeding value at birth.

Therefore, the overall objective of this study was to test the
value of FTIR predictions from field data (FIELD) for the genetic
improvement of difficult-to-measure traits in dairy cattle. Steps to
address this objective were (i) to infer (co)variance components,
heritabilities, and additive genetic correlations between 30 LAB-
measured and FIELD-predicted phenotypes, divergent in terms
of biological meaning, variability, and heritability, related to
fine milk composition and milk technological characteristics
[traditional MCP, curd firming (CF) traits, cheese yields and
recoveries of nutrients, milk acidity and milk protein fractions]
and (ii) to use bivariate single-step GBLUP for evaluating the
predictive ability of FTIR-derived phenotyping for these traits by
using different phenotyping and genotyping strategies.

MATERIALS AND METHODS

Ethics Statement
This study did not require any specific ethics permit. The
cows sampled belonged to commercial private herds and were
not experimentally manipulated. Milk samples were collected
during routine milk recording coordinated by technicians from
the Breeders Federations of Trento Province (FPA, Trento,
Italy) and of Alto Adige/Südtirol (Associazione Provinciale
delle Organizzazioni Zootecniche Altotesine/Vereinigung der
Südtiroler Tierzuchtverbände, Bolzano/Bozen, Italy).
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Data Structure
In this study, we used two sets of data collected on Brown
Swiss cows: (i) a LAB dataset in which laboratory measurements
and spectra data for phenotypes related to milk quality and
cheese-making were available to develop calibration equations
and (ii) a FIELD-FTIR dataset for testing field prediction at
the population level. A subset of the FIELD-FTIR dataset
including only first lactation records was used for estimating
(co)variance components (FIELDlact1); the whole database was
instead used for the genomic analyses (FIELD). The data
structure is summarized in Table 1.

LAB Dataset
The LAB data were part of the Cowability/Cowplus projects.
Individual milk samples from 1,200 Brown Swiss cows from
85 herds located in the Alpine province of Trento (Italy)
were collected. Details of the animals used in this study and
characteristics of the area are reported in Mele et al. (2016). Data
on the cows, herds, and single test-day milk yield were provided
by the Superbrown Consortium of Bolzano and Trento (Italy),
and pedigree information was supplied by the Italian Brown
Swiss Cattle Breeders Association (Verona, Italy).

FTIR Spectra Data
Individual milk samples were analyzed using a MilkoScan
FT6000 (Foss Electric, Hillerød, Denmark). The spectrum covers
from the short-wavelength infrared (SWIR, also known as NIR
or IR-B), through the medium-wavelength infrared (MWIR,
also known as MIR), to the long-wavelength infrared (LWIR,
or LIR) regions with 1,060 spectral points from wavenumber
5,010 to 925 cm−1, which correspond to wavelengths ranging
from 1.99 to 10.81 µm and frequencies ranging from 150.19 to
27.73 THz. Spectra were expressed as absorbance calculated as
log(1/transmittance). Two spectral acquisitions were carried out
for each sample (collected during the evening milking), and the
results were averaged before data analysis (Ferragina et al., 2015).

Phenotypes
Traditional Milk Coagulation Properties
Measures of MCP were obtained using two different instruments:
a Formagraph (Foss Electric A/S) and an Optigraph (Ysebaert SA,

TABLE 1 | Summary of data structure for laboratory (LAB) measures, after editing,
and Fourier transform infrared predictions (FIELD).

Item LAB FIELDlact1
1 FIELD2

Animals 1,123 39,833 51,059

Records 1,123 235,372 729,202

Herds 83 2,494 2,607

Animals in the pedigree 6,526 97,933 136,332

Number of generations 5 5 13

Sires 266 1,210 1,835

Dams 1,044 29,716 38,449

1FIELDlact1 = dataset limited to cows belonging to first lactation.
2FIELD = whole dataset.

Frépillon, France) according to Cecchinato et al. (2013). Briefly,
milk samples (10 mL) were heated to 35◦C and 200 µL of a
rennet solution (Hansen Standard 160, with 80 ± 5% chymosin
and 20 ± 5% pepsin; 160 international milk clotting units/mL;
Pacovis Amrein AG, Bern, Switzerland), diluted to 1.6% (wt/vol)
in distilled water, was added at the beginning of the analysis. The
time of analysis was extended up to 90 min after rennet addition.
Rennet coagulation time (RCT) was defined as the time (min)
from the addition of enzyme to the beginning of coagulation, k20
(min) was defined as the interval from RCT to the time at which a
curd firmness of 20 mm was obtained, and a30 and a45 (mm) were
measurements of curd firmness at 30 and 45 min after rennet
addition, respectively.

Modeling the Curd Firmness
A set of parameters of CF at time t (CFt) was estimated,
and details are described in Bittante et al. (2015). Estimated
parameters included rennet coagulation time (RCTeq, min),
estimated from the CFt equation; potential asymptotical curd
firmness (CFP, mm), representing the maximum potential curd
firmness after infinite time in the absence of syneresis; curd-
firming rate constant (kCF , %/min), which is a measure of the
rate of CF; syneresis rate constant (kSR, %/min); maximum curd
firmness (CFmax, mm); and time to CFmax (tmax, min).

Milk Acidity
The milk pH was measured using a Crison Basic 25 electrode
(Crison, Barcelona, Spain).

Cheese Yields and Curd Nutrient Recoveries
To assess cheese-making properties, milk samples were processed
according to all the steps of the cheese-making practice used in
artisanal commercial dairies for producing a traditional whole
milk cheese described by Bittante et al. (2014). Briefly, 1,500 mL
of milk was heated to 35◦C in a stainless steel microvat,
supplemented with thermophilic starter culture, and mixed with
rennet. The resulting curd from each vat was double-cut and
heated for 30 min to 55◦C, drained, shaped in wheels, pressed,
salted, and weighed. The whey was drained from the curd,
weighted, and analyzed for fat, protein, lactose, and total solid
content using FT2 (Foss Electric A/S, Hillerød, Denmark). Three
cheese yield (CY) traits were calculated expressing the weight (wt)
of fresh curd (%CYCURD), of curd DM (%CYSOLIDS), and of water
retained in the curd (%CYWATER) as a percentage of the weight
of milk processed. Four recovery (REC) traits were calculated
as proportions of nutrients and energy of the milk retained in
the curd (RECSOLIDS, RECFAT , RECPROTEIN , and RECENERGY
calculated as the % ratio between the nutrient in curd and the
corresponding nutrient in processed milk). The energy within the
curd was calculated as the difference between energy in the milk
and in the whey (NRC, 2001).

Milk Proteins
Concentrations of the major casein (CN) fractions (αS1−CN,
αS2−CN, β-CN, and κ-CN) and whey proteins, β-lactoglobulin
(β-LG), and alpha-lactalbumin (α-LA) were determined
using a validated reversed phase high-performance liquid
chromatography (RP-HPLC) method (Bonfatti et al., 2008). Each
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protein fraction was expressed as a percentage of the milk total
nitrogen (N) content.

Data Editing
Only records with spectra and measured phenotypes available
were kept. After data editing and removing observations outside
three standard deviations, the final number of records and

phenotypes used in subsequent analyses varied from 770 to 1,120
depending on the trait as reported in Table 2.

Field Data
Spectra Data
The FIELD data for our study were provided by the Breeders
Federations of Trento Province (FPA, Trento, Italy) and

TABLE 2 | Descriptive statistics for laboratory (LAB) measures and Fourier transform infrared predictions (FIELD) for the investigated traits.

Trait1 LAB FIELDlact1
2 FIELD3

N Mean SD N Mean SD N Mean SD

Traditional MCP

RCT, min 1,096 19.8 5.38 232,660 20.47 4.76 712,420 19.98 4.81

k20, min 1,073 5.34 2.43 232,775 5.59 1.68 710,826 5.59 1.66

a30, mm 1,051 29.29 10.97 232,702 27.3 8.53 713,759 27.92 8.59

a45, mm 1,096 33.28 8.00 232,869 33.31 4.06 714,254 32.78 4.03

Curd firming

RCTeq, min 1,093 20.62 5.41 233,828 21.23 5.17 718,385 20.86 5.18

CFp, mm 1,105 49.89 9.43 234,065 49.21 5.95 723,632 49.37 6.14

kCF , % × min−1 1,104 12.83 3.91 233,641 12.12 2.61 721,173 12.84 2.70

kSR, % × min−1 1,102 1.21 0.43 233,568 1.14 0.23 721,261 1.21 0.25

Cmax , mm 1,105 37.23 7.03 234,106 37.04 4.53 723,364 36.80 4.68

tmax , min 1,071 40.34 9.85 233,779 42.76 8.74 720,164 41.17 8.88

Optigraph

RCT, min 787 18.88 4.11 232,856 18.77 3.29 712,568 18.80 3.35

k20, min 770 8.04 2.62 232,628 8.09 2.15 709,025 8.41 2.09

a30, mm 782 26.6 10.6 232,561 25.91 8.34 713,482 25.54 8.31

a45, mm 786 41.03 11.04 232,783 40 8.67 713,992 39.65 8.63

Acidity

pH 1,112 6.64 0.08 232,772 6.63 0.07 715,433 6.65 0.06

Cheese yields, %

CYCURD 1,120 15.04 1.9 234,247 14.92 1.64 722,328 14.95 1.65

CYSOLIDS 1,101 7.19 0.9 233,860 7.11 0.84 719,915 7.13 0.86

CYWATER 1,112 7.80 1.29 234,317 7.9 1.03 724,431 7.77 1.04

Recoveries, %

RECPROTEIN 1,112 78.09 2.44 233,940 78.81 2.18 720,358 78.25 2.28

RECFAT 1,083 89.97 3.27 233,818 89.39 2.92 716,200 89.48 2.95

RECSOLIDS 1,115 52.00 3.55 233,973 51.21 3.07 721,441 51.66 3.18

RECENERGY 1,101 67.25 3.28 233,630 66.58 2.89 719,822 67.05 3.00

N fractions, % total N

Caseins 1,097 77.97 1.2 233,395 78.25 1.41 700,206 77.88 1.36

β-CN 1,098 32.12 2.42 233,861 32.86 1.60 721,345 32.22 1.69

κ-CN 1,087 9.53 1.33 234,358 9.26 1.50 713,219 9.44 1.49

αS1-CN 1,096 25.71 1.69 235,058 25.80 0.71 724,579 25.72 0.75

αS2-CN 1,091 9.17 1.05 234,457 9.12 0.58 723,390 9.15 0.59

Whey proteins 1,094 11.06 1.61 234,276 11.08 1.16 722,788 10.99 1.18

β-LG 1,091 8.70 1.47 234,252 8.71 1.33 721,472 8.63 1.36

α-LA 1,097 2.37 0.49 232,535 2.38 0.46 713,999 2.34 0.46

1RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet
coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant;
CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax ; %CYCURD = weight of fresh curd as percentage of weight of milk
processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed; %CYWATER = weight of water curd as percentage of weight of milk processed;
RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; RECFAT = fat of the curd as percentage of the fat of the milk processed;
RECSOLIDS = solids of the curd as percentage of the solids of the milk processed; RECENERGY = energy of the curd as percentage of energy of the milk processed;
true protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2- CN (αs2-casein);
caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin), whey proteins: 6(β-LG+ α-LA). 2FIELDlact1 = dataset limited to cows belonging
to first lactation. 3FIELD = whole dataset.
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of Alto Adige/Südtirol (Associazione Provinciale delle
Organizzazioni Zootecniche Altotesine/Vereinigung der
Südtiroler Tierzuchtverbände, Bolzano/Bozen, Italy) as part of
the Cowability/Cowplus projects. All milk samples were analyzed
using a MilkoScan FT6000 (Foss Electric, Hillerød, Denmark).
Spectra characteristics, in terms of wavelengths and way of
expression (absorbance), were the same as for the LAB data.
Spectra were collected between 2010 and 2017.

Spectra Editing
A preliminary analysis was carried out to identify the outlier
spectra based on the Mahalanobis distance from the first five
principal component scores. The probability level for the chi-
squared distribution of a sample’s Mahalanobis distance was
calculated from the incomplete gamma function with five
degrees of freedom (Toledo-Alvarado et al., 2018). Samples with
P < 0.01 were removed from the dataset. To overcome spectral
variations, the absorbance values for every wavelength were
centered to a null mean and standardized to a unit sample
variance within year periods. Records without parity number,
date of calving, animal ID, or pedigree information were also
removed. If a cow had predictions from both LAB and FIELD
datasets, the FIELD prediction records of that specific cow
were deleted. This latter editing step was performed for the
following reasons: (i) to avoid an overestimation of additive
genetic correlations; (ii) to force the connection between LAB
and FIELD data only through the additive genetic effect; and
(iii) to avoid EBV inflation for cows with both LAB and
FIELD records.

To detect outliers among the predicted phenotypes, a mixed
model was fitted for each trait including the fixed non-genetic
effects of (i) the stage of lactation (12 monthly classes), (ii) the
combined effect of herd (∼2,460 levels), year of the test day
(2010–2017), and two seasons of calving (April to September
and October to March) (∼22,200 levels). The permanent
environmental effects (∼39,600) and animal additive genetic
effects were included as random terms.

The residuals of phenotypes outside 3 standard deviations
were considered as outliers.

Genotypes
The pool of genotyped individuals consisted of (i) 1,011
LAB cows genotyped with the Illumina BovineSNP50 v.2
BeadChip (Illumina, Inc., San Diego, CA, United States;
54,000 SNPs); (ii) 1,463 FIELD cows which were genotyped
with the BovineLD v2.0 BeadChip (Illumina, Inc., San Diego,
CA, United States; 7,931 SNPs); (iii) 181 sires with both
LAB and FIELD daughters genotyped with the Illumina
BovineSNP50 v.2 BeadChip or the Illumina Bovine HD
BeadChip (Illumina, Inc., San Diego, CA, United States;
777,000 SNPs); and (iv) 540 sires with FIELD daughters only
genotyped as (v). The software FImpute (Sargolzaei et al.,
2014) was used for imputation and all individuals were
imputed to the BovineSNP50 v.2 BeadChip panel. A total
number of 3,195 genotyped individuals were available for
this study.

Marker editing was performed using the preGSf90
software (Misztal et al., 2002). Markers were excluded
where the call rate was below 95%, the minor allele
frequency was below 5%, and/or there was significant
deviation from the Hardy–Weinberg equilibrium (P < 10−6).
SNPs mapped to the sex chromosomes or with unknown
position on the genome were also removed. After
editing, the number of markers available for analyses
was 37,093.

Statistical Analyses
Calibration Equations
Separate models were fitted for each trait considered. We used a
Bayesian model (BayesB model) implemented in BGLR (de los
Campos and Perez-Rodriguez, 2014), as previously described by
Ferragina et al. (2015). Phenotypes in LAB (i.e., the calibration
dataset) were regressed on standardized spectra covariates using
the linear model:

yi = β0 +

1,060∑
j=1

xijβj + εi,

where β0 is an intercept, {xij} are standardized FTIR spectra-
derived wavelength data(j = 1, · · ·1, 060), βj are the effects of
each of the wavelengths, and εi are model residuals assumed to be
independent and identically distributed, with normal distribution
centered at zero and variance σ2

ε . Models were applied with
100,000 iterations and 20,000 chains discarded as burn in. The
editing and analysis were conducted using R software (R Core
Team, 2018). To evaluate predictive performance, the coefficient
of correlation for the calibration model developed on LAB
measures and used for FIELD predictions was calculated for
each trait (rC_LAB). The calibration equations obtained with
this procedure in LAB data were then applied to the spectral
population data (FIELD) in order to obtain FIELD predictions
for all traits of concerns.

Genetic Analyses: (Co)Variance Components
Estimation Between Measured (LAB) and Predicted
(FIELD) Phenotypes
The (co)variance components were estimated using REMLF90
and AIREMLF90 (Misztal et al., 2002), considering LAB
measures and FIELD predictions as distinct traits. The
connection between the two datasets was guaranteed by
266 sires, 1,044 dams, 94 sires of sires, and 372 sires of dams in
common between LAB and FIELD datasets (Table 1). To save
time and improve convergence of models, for this first approach,
the FIELD dataset has been limited to cows belonging to first
lactation (FIELDlact1).

The program was run until a convergence criterion of
1e−10 was reached.

The model for LAB-measures was

y = Xb+ Zaa+ e, (1)

where y is the vector of observations for traits of concern; b,
a, and e correspond to the vector of fixed non-genetic effects,
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random animal additive genetic effects, and random residual
effects, respectively; X and Za are the incidence matrices relating
each observation in y to b and a. The non-genetic fixed effects
included in the model were (i) the DIM of each cow within parity
(60 levels) and (ii) herd-test day (83 levels). The random terms
were animal additive genetic effects and residual effects. The
pedigree file included all phenotyped animals and their ancestors
(∼6,500 animals).

Heritability was computed as h2
=

σ2
a

σ2
a + σ2

e

where σ2
a and σ2

e are the additive genetic and residual
variances, respectively.

The model for FIELDlact1 records was

y = Xb+ Zaa+ Zpepe+ e, (2)

where y is the vector of observations for the traits of concern;
b, a, pe, and e correspond to the vector of fixed non-
genetic effects, random animal additive genetic effects, random
permanent environmental effects, and random residuals effects,
respectively; X, Za, and Zpe are the incidence matrices relating
each observation in y, a, b, and pe, respectively. The fixed non-
genetic effects were (i) the stage of lactation (12 monthly classes)
and (ii) the combined effect of herd (∼2,460 levels), year of the
test-day (2010–2017), and season of calving (April to September
and October to March) (∼22,200 levels). The random terms were
permanent environmental effects (∼39,600), animal additive
genetic effects, and residual effects. The pedigree file included
all phenotyped animals and their ancestors (∼97,900 animals).
Only first lactation records were utilized to avoid convergence
problems. The residuals were considered uncorrelated across the
two traits (LAB and FIELDlact1 predictions).

Heritability was computed as
h2=

σ2
a

σ2
a+σ2

pe+σ2
e

where σ2
a, σ2

pe , and σ2
e are the additive genetic, permanent

environmental, and residual variances, respectively.
For each trait, the additive genetic correlation between LAB

and FIELDlact1 was estimated from the variance–covariance
matrix of the random additive genetic effect as ra =

σa1,a2
σa1×σa2

where σa1,a2 is the additive genetic covariance between two traits,
and σa1 and σa2 are the additive genetic standard deviations for
traits 1 and 2, respectively.

Predictive Ability Estimated Using Genomic and
Infrared Information
In order to assess the ability of FIELD data to predict LAB records
as phenotypes of interest, a fourfold cross-validation was used.
In this setting, the LAB phenotype is considered as the breeding
goal while the FIELD record is its correlated trait. The models
employed for both LAB and FIELD data were the same as for the
variance component estimation, except for the stage of lactation
effect in the FIELD dataset that was replaced with a stage of
lactation by parity effect (5 parity classes, 72 levels in total), since

the whole FIELD dataset was used (not restricting the records to
first lactation).

Sires with both LAB and FIELD daughters were randomly
assigned to four groups, evenly sized based on the number
of LAB cows for each sire. Details on the number of records
and cows in each set are reported in Supplementary Table S1.
Cross-validation was performed using alternatively 3 groups for
training (denoted with the suffix “t”) and one group for validation
(denoted with the suffix “v”), for the scenarios that only included
the training sets.

The cross-validation considered different training sets, either
using LAB or FIELD data alone or combined: (i) model “LAB.t”
included phenotypes available are from LAB cows that were
daughters of the sires in the training set; (ii) model “FIELD.t”
included phenotypes available from FIELD cows that were
daughters of the sires in the training set; (iii) model “LAB.t
+ FIELD.t” included phenotypes from LAB and FIELD cows
that were daughters of the sires in the training set; (iv) model
“FIELD.t + FIELD.v” included phenotypes available are from all
FIELD cows (no alternate masking of phenotypes was performed
here); and (v) model “LAB.t + FIELD.t + FIELD.v” included
phenotypes available from LAB cows that were daughters of
the sires from the training set and all FIELD cows. Model
“LAB.t” assesses the predictive ability when FIELD records
are not collected, i.e., no use of FTIR data. Model “FIELD.t”
evaluates the impact of FIELD phenotyping the daughters of
the bulls in the reference population, with no LAB phenotypes
included in the genetic evaluation. Model “LAB.t + FIELD.t”
evaluates the impact of including FIELD phenotypes for the
daughters of the bulls in the progeny test. In model “FIELD.t
+ FIELD.v,” progeny testing bulls have daughters phenotyped
with FTIR data while in model “LAB.t + FIELD.t + FIELD.v,”
the progeny testing bulls have daughters phenotyped with
LAB data as well.

Accuracy of prediction was quantified as

accx = cor(yLABval,x,(G)EBVLAB
val,x)

where accx is the accuracy in the validation set x (x = 1,2,3,4),
yLABval,x are the masked LAB records from cows in validation set
x, (G)EBVLAB

val,x is the estimated genomic breeding value for LAB
cows in validation set x, and cor refers to the Pearson correlation.
Estimated genomic breeding values were calculated using the
program BLUPf90 (Misztal et al., 2002) that combines pedigree-
derived and SNP-derived genomic relationship matrices (Legarra
et al., 2009). All 3,195 genotypes available for this study were
included in the analysis.

For this part of the study, we did not use the variance
components estimated in the previous step, but we tested
different genetic correlation (covariance) values in order to
find those that better maximized prediction accuracy. Firstly,
estimates of variance components were obtained from single-
trait models (Supplementary Table S2). Single-trait models were
used in order to remove the inflation in the estimates due to
genetic covariances. Then, different values of genetic correlation
between LAB and FIELD phenotypes ranging from 0.1 to 1,
with 0.1 step increases, were generated. Each prediction run
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was then repeated for the values of covariance generated by
each value of assumed genetic correlation. This allowed the
exploration of the predictive ability over all the potential values
of genetic correlation.

RESULTS AND DISCUSSION

Descriptive Statistics
Descriptive statistics for all investigated LAB-measured and
FIELD-predicted traits are summarized in Table 2. Extensive
description and discussion of the results for the LAB dataset
have been reported in previous works, including the differences
between MCP measured with FRM and OPT (Cecchinato et al.,
2013; Bittante et al., 2015; Pegolo et al., 2018). Generally,
we observed consistency between the mean values from LAB,
FIELDlact1, and FIELD datasets for all the investigated traits. We
only observed a slight loss of variability for all the FTIR-predicted
phenotypes as demonstrated by the lower standard deviations,
compared to for the observed traits.

Variance Components and Heritability of
Measured and Predicted Traits
Coagulation Traits and Milk Acidity
Variance components and heritability estimates from LAB and
FIELDlact1 datasets for coagulation traits and milk acidity are
reported in Table 3 and Figure 1. The coefficient of correlation

for the calibration models developed on LAB measures (rC_LAB)
and used for FIELD predictions, and the additive genetic
correlation (ra) between LAB and FIELD traits are reported
in Table 3 and Figure 2. As previously reported, in order to
guarantee convergence of animal models, these analyses have
been restricted to a dataset with only first lactation records of
FIELD data. Generally, a decrease in both genetic and residual
variances was observed in FIELDlact1 with respect to LAB data.
A similar pattern was reported in other studies (Bonfatti et al.,
2017). In particular, residual variances for LAB traits were 1.3–
6 times greater than residual plus permanent environmental
variances in FIELDlact1. In the case of LAB parameters obtained
from mechanical lacto-dynamographs (traditional MCP and
Curd firming model), this difference increases particularly for
traits recorded at increasing time intervals from milk gelation.
This is caused by the decreasing repeatability of the measures
recorded by the instrument with the progress of the textural
test. Therefore, heritability estimates were comparable between
datasets for traits recorded earlier (e.g., RCT, kCF), whereas
heritability estimates decreased for later measured LAB traits,
but not for FTIR predicted FIELDlact1 traits (a30, a45, CFP,
CFmax). Optigraph, yielding an optical prediction and not a
mechanical measurement, does not show the same decrease in
repeatability and heritability, for traits describing the later part
of CF pattern. Generally, heritability estimates of measured and
predicted traits were comparable to other studies (Cecchinato
et al., 2009; Bonfatti et al., 2017).

TABLE 3 | Estimates of variance components and heritability of measured LAB traits, coefficient of correlation of the calibration model used for infrared prediction
(rC_LAB) developed on LAB measures and used for FIELD predictions, estimates of variance components and heritability of Fourier transform infrared FIELDlact1

predictions, and additive genetic correlation (ra) between LAB and FIELD traits for the coagulation and acidity traits.

Traits1 LAB rC_LAB FIELDlact1
2 ra

σ2
a σ2

e σ2
p h2 SE σ2

a σ2
pe σ2

e σ2
p h2 SE Est SE

Traditional MCP

RCT, min 7.155 14.967 22.122 0.323 0.098 0.858 5.911 2.091 8.901 16.904 0.350 0.003 0.892 0.081

k20, min 1.160 4.552 5.712 0.203 0.089 0.682 0.751 0.303 1.095 2.149 0.350 0.010 0.780 0.031

a30, mm 15.998 93.280 109.278 0.146 0.080 0.722 21.905 8.288 28.067 58.260 0.376 0.011 0.836 0.026

a45, mm 4.592 47.238 51.830 0.089 0.067 0.586 3.499 1.480 6.158 11.137 0.314 0.010 0.787 0.042

Curd firming

RCTeq, min 6.648 15.588 22.236 0.299 0.098 0.853 6.057 2.301 10.469 18.827 0.322 0.010 0.863 0.018

CFp, mm 10.389 58.367 68.756 0.151 0.076 0.742 8.010 2.681 14.418 25.110 0.319 0.010 0.835 0.027

kCF , % × min−1 3.678 8.720 12.398 0.297 0.095 0.656 1.676 0.702 2.974 5.352 0.313 0.010 0.683 0.038

kSR, % × min−1 0.035 0.115 0.150 0.233 0.088 0.571 0.012 0.005 0.027 0.044 0.270 0.009 0.602 0.052

Cmax , mm 5.786 32.505 38.291 0.151 0.076 0.742 4.888 1.852 7.733 14.474 0.338 0.011 0.847 0.025

tmax , min 21.794 54.064 75.858 0.287 0.097 0.774 18.862 7.647 29.049 55.558 0.340 0.011 0.783 0.028

Optigraph

RCT, min 3.426 9.261 12.687 0.270 0.111 0.837 2.783 0.978 4.095 7.856 0.354 0.010 0.904 0.134

k20, min 1.629 4.441 6.070 0.268 0.119 0.809 1.426 0.466 1.567 3.460 0.412 0.011 0.919 0.012

a30, mm 26.076 76.993 103.069 0.253 0.115 0.760 20.611 8.158 28.236 57.005 0.362 0.003 0.802 0.016

a45, mm 47.194 64.650 111.844 0.422 0.131 0.743 19.957 7.373 28.803 56.133 0.356 0.010 0.799 0.024

Acidity

pH 0.001 0.002 0.003 0.201 0.081 0.752 0.001 0.000 0.002 0.003 0.205 0.007 0.756 0.035

1RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet
coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant;
CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax . 2FIELDlact1 = dataset limited to cows belonging to first lactation.
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FIGURE 1 | Estimates of heritability for LAB measures and FTIR predictions of the investigated traits using LAB and FIELDlact1 data. MCP = milk coagulation
properties; RCT = rennet coagulation time; k20 = curd firming (CF) rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet
addition; RCTeq = rennet coagulation time estimated using the equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant;
kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at achievement of CFmax ; OPT = Optigraph;
CY = cheese yield; %CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk
processed; %CYWATER = weight of water curd as percentage of weight of milk processed; REC = recoveries; RECPROTEIN = protein of the curd as percentage of the
protein of the milk processed; RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of
the milk processed; RECENERGY = energy of the curd as percentage of energy of the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as
percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins (CN): 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG
(β-lactoglobulin), α-LA (α-lactalbumin), whey proteins (WP): 6(β-LG+ α-LA).

Cheese-making traits. Variance components and heritability
estimates of LAB and FIELDlact1 for cheese yield and recovery
traits are reported in Table 4 and Figure 1. In addition, the rC_LAB
developed on LAB data and the ra between LAB and FIELD
traits are reported in Table 4 and Figure 2. For CY traits, genetic
variances were larger in FIELDlact1 for CYCURD (∼1.2-fold)
and CYSOLIDS (∼1.6-fold) and smaller for CYWATER (∼1.2-fold).

For all these traits, a ∼1.5-fold reduction was observed in
residual plus permanent environmental variances. For CYCURD
and CYWATER, heritability estimates were comparable between
the two datasets, while the heritability estimate of CYSOLIDS was
almost double in FIELDlact1 (0.358), compared to LAB (0.192).
Variance components for REC traits had different behaviors:
RECPROTEIN and RECFAT had smaller genetic variances for
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FIGURE 2 | Coefficient of correlation of the calibration models used for infrared prediction (rC_LAB) and additive genetic correlations (ra) between LAB measures and
FTIR predictions of the investigated traits using LAB and FIELDlact1 data. MCP = milk coagulation properties; RCT = rennet coagulation time; k20 = curd firming (CF)
rate as the time to a curd firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet coagulation time estimated using the
equation; CFP = asymptotic potential curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness
achieved within 45 min; tmax = time at achievement of CFmax ; OPT = Optigraph; CY = cheese yield; %CYCURD = weight of fresh curd as percentage of weight of milk
processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed; %CYWATER = weight of water curd as percentage of weight of milk
processed; REC = recoveries; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed; RECFAT = fat of the curd as percentage of the fat
of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed; RECENERGY = energy of the curd as percentage of energy of
the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN
(αs1-casein), αs2- CN (αs2-casein); caseins (CN): 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin), whey proteins (WP): 6(β-LG+ α-LA).

FIELDlact1 compared to LAB traits (∼1.6- and 1.2-fold,
respectively), while RECSOLIDS and RECENERGY had larger
genetic variances in FIELDlact1, compared to LAB (∼1.3-fold).
On the other hand, we observed a reduction in residual variance
for all traits except RECPROTEIN which had a slightly higher
value in FIELDlact1, compared to the LAB trait. Accordingly,
heritability estimates for REC traits were comparable or higher in
FIELDlact1, with the exception of RECPROTEIN which had a lower
value in FIELDlact1 (0.247 vs. 0.563).

Milk Protein Fractions
Genetic parameters of milk protein fractions are also presented
in Table 4 and Figure 1. In the case of milk proteins, heritability
estimates of LAB traits were comparable to previous studies
(Schopen et al., 2009). FTIR-predicted milk proteins showed a
marked decrease in genetic variance, compared to LAB measures
(especially αS1-CN, from 0.873 to 0.065), while residual variances
were larger for total CN, κ-CN, total whey, β-LG, and α-LA,
smaller for αS1-CN and αS2-CN, and comparable for β-CN.
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TABLE 4 | Estimates (Est, with standard error reported as SE) of variance components and heritability of measured LAB traits, coefficient of correlation of the calibration
model used for infrared prediction (rC_LAB) developed on LAB measures and used for predictions using FIELD spectra, estimates of variance components and heritability
of Fourier transform infrared FIELDlact1 predictions, and additive genetic correlation (ra) between LAB and FIELD for the cheese yield, curd nutrient recovery traits, and
protein fractions.

Traits1 LAB rC_LAB FIELDlact1
2 ra

σ2
a σ2

e σ2
p h2 SE σ2

a σ2
pe σ2

e σ2
p h2 SE Est SE

Cheese yields, %

%CYCURD 0.408 1.687 2.094 0.195 0.079 0.899 0.495 0.218 1.075 1.788 0.277 0.010 0.814 0.028

%CYSOLIDS 0.105 0.443 0.548 0.192 0.080 0.905 0.170 0.066 0.240 0.477 0.358 0.011 0.754 0.034

%CYWATER 0.192 0.681 0.874 0.220 0.086 0.773 0.158 0.093 0.480 0.731 0.216 0.009 0.900 0.017

Recoveries, %

RECPROTEIN 2.302 1.783 4.084 0.563 0.116 0.897 1.437 0.507 2.203 4.147 0.347 0.010 0.901 0.010

RECFAT 1.633 5.718 7.351 0.222 0.088 0.655 1.395 0.538 4.212 6.145 0.227 0.009 0.810 0.030

RECSOLIDS 1.707 7.071 8.778 0.194 0.081 0.861 2.283 0.792 3.124 6.200 0.368 0.011 0.868 0.019

RECENERGY 1.539 6.933 8.472 0.182 0.081 0.814 2.027 0.703 3.963 6.693 0.303 0.004 0.902 0.010

N fractions, % total N

Caseins 0.133 0.589 0.722 0.182 0.086 0.953 0.174 0.031 1.211 1.416 0.123 0.006 0.665 0.059

β-CN 3.199 1.492 4.690 0.678 0.104 0.656 0.519 0.180 1.450 2.148 0.242 0.009 0.782 0.020

κ-CN 0.765 0.752 1.516 0.501 0.106 0.687 0.300 0.170 1.145 1.615 0.186 0.008 0.760 0.029

αs1-CN 0.873 0.901 1.774 0.492 0.108 0.598 0.065 0.028 0.259 0.352 0.186 0.008 0.396 0.058

αs2-CN 0.240 0.466 0.706 0.337 0.104 0.623 0.056 0.033 0.187 0.276 0.203 0.009 0.535 0.058

Whey proteins 0.852 0.631 1.482 0.571 0.852 0.686 0.295 0.124 0.701 1.120 0.264 0.090 0.603 0.112

β-LG 0.635 0.537 1.712 0.538 0.103 0.722 0.289 0.117 0.976 1.382 0.209 0.008 0.656 0.034

α-LA 0.026 0.069 0.095 0.270 0.099 0.743 0.006 0.002 0.120 0.127 0.051 0.002 0.733 0.037

1%CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk processed;
%CYWATER = weight of water curd as percentage of weight of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk processed;
RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed;
RECENERGY = energy of the curd as percentage of energy of the milk processed; true protein nitrogen (N) and milk N fractions are expressed as percentage of total milk N;
β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin),
whey proteins: 6(β-LG+ α-LA). 2FIELDlact1 = dataset limited to cows belonging to first lactation.

Heritability estimates were lower in FIELDlact1 for all protein
traits, ranging from high-moderate (ranging from 0.182 to 0.678)
to moderate-low (ranging from 0.051 to 0.264; Figure 1). These
results were in accordance with previous studies, showing a
decrease in the estimated genetic variance and heritabilities for
predicted milk proteins compared to measured traits (Rutten
et al., 2011; Bonfatti et al., 2017), and are essentially due to the
low rC_LAB values obtained for these traits.

Reliability of Calibrations and Genetic
Correlation Between Measured and
Predicted Traits
To assess the reliability of calibration equations in the animal
breeding context, we estimated, besides the rC_LAB, the ra between
LAB and FIELDlact1 traits as an indicator of the potential of FTIR
calibrations to provide novel phenotypes for indirect selective
breeding. Results are displayed in Figure 2. The rC_LAB ranged
from 0.571 (kSR) to 0.953 (total CN). In general, estimates of ra
for milk coagulation and cheese-making traits were high (>0.75),
except for kCF and kSR which displayed moderate-high estimates
(>0.60). On the other hand, only two milk proteins showed
ra smaller than 0.6: αS1-CN (0.396) and αS2-CN (0.535). These
two traits were those with the lowest rC_LAB among all traits
tested (Table 4: 0.598 and 0.623, respectively). This means that

expected genetic gain using these two predicted milk proteins
would be moderately lower, compared to that achievable for the
other traits. These results were in accordance with Bonfatti et al.
(2017) which found high ra for milk protein content but lower
ra for percentage traits (0.58, on average). On the other hand,
Rutten et al. (2011) reported greater ra values compared to those
in our study (0.62–0.97), which might be ascribed to differences
in population (breed, size) and/or in the analytical technique
used for milk protein investigation (capillary electrophoresis vs.
HPLC). The reliability of calibration rC_LAB was associated with
the decrease in genetic variance between LAB and FIELDlact1
traits (R2 = 0.45). In particular, lower rC_LAB corresponded
to larger decrease in genetic variance (Figure 3A). A weaker
relationship was observed between rC_LAB and the decrease in
residual variance (R2 = 0.09, data not reported in Figures).
A positive relationship (R2 = 0.26) was observed between rC_LAB
and ra: a higher reliability of the calibration model corresponded
to a higher additive genetic correlation between the LAB-
measures and FIELDlact1 predictions (Figure 3B). Beyond this
correlation, it is worth noting from Figure 2 that 22 out of 30
investigated traits presented genetic correlations greater than the
reliability of calibration (ra > rC_LAB). So, even calibrations with
a relatively small predictive ability could be exploited in selective
breeding, if their ra between measured and predicted traits is
sufficiently high.
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FIGURE 3 | Relationships between the coefficient of correlation of calibration
models (rC_LAB) used for infrared prediction and (A) the change in additive
genetic variance (1σ2

a ) and (B) the additive genetic correlation (ra) between
LAB measures and FTIR predictions.

Single-Step GBLUP Prediction Accuracy
by Cross-Validation
Table 5 and Supplementary Figure S1 report the results for
the cross-validation performed in order to compare different
phenotyping strategies. The cross-validation mimicked the
progeny testing scheme, where the LAB phenotypes of testing
sires were predicted based on LAB phenotypes from daughters of
proven bulls and FIELD information from daughters of proven
and progeny testing bulls. Results are presented as the average of
the prediction accuracy for the fourfold of sires. For the scenarios
that included FIELD information, results in Table 5 show the
largest predictive ability obtained within the range of genetic
correlation values tested, which is also reported in Table 5. The
change in prediction accuracy for each trait over the values of
genetic correlation is reported in Supplementary Figure S1.

Prediction With LAB Information
In the LAB.t scenario, daughters of progeny testing bulls are
not phenotyped and FIELD information is not included and
the genetic evaluation is based on a single-trait model. The
predictive ability for the different traits followed, to a large
extent, the trait heritability (Figure 1). Among MCP traits,
RCT showed the highest accuracy (0.118), with the other traits
showing almost null values. For CF traits, only RCTeq, kCF ,
and tmax showed values of accuracy above 0.10. CFp and Cmax
showed null values, which is in agreement with the low (∼0.1)
heritability estimates. Optigraph traits showed a different trend,

with RCT reporting the strongest prediction accuracy (0.168)
but not the largest heritability. Prediction accuracies were below
0.1 for all CY traits, for which heritability estimates barely
reached the value of 0.2. Prediction accuracy was largest for
RECPROTEIN among recovery traits, and its heritability estimate
was the largest in the group (∼0.55). A similar scenario was found
among casein fractions, where whey proteins, β-LG, and β-CN
showed one of the strongest prediction accuracies (0.208, 0.187,
and 0.153, respectively) and the largest heritability (above 0.50).
Surprisingly, αS1-CN showed a strong predictive ability (0.165),
yet not the largest heritability estimate (∼0.50). Prediction with
only LAB information can be considered unreliable from a
genetic evaluation standpoint, given the limited size of the dataset
and the relative cost needed to acquire each single record.
However, this scenario was included as a reference for the other,
more reliable, models.

Prediction When LAB and FIELD Information Is
Included
The LAB.t+FIELD.t scenario mimics a genetic evaluation where
both LAB and FIELD information of proven bulls is included.
The comparison with the LAB.t scenario proves the value of
including FIELD.t information, which highlights the importance
of the construction of FTIR calibration equations and the
collection of data at the population level on daughters of proven
bulls. Still, the genetic merit of bulls can be predicted at birth
under this scenario. The genetic evaluation leverages a bivariate
model. Overall, prediction accuracy showed a strong increase,
compared to the previous scenario. The largest increases in
prediction accuracy were observed for curd firming traits, with
MCP k20, a30, and a45 having prediction accuracies of 0.208,
0.190, and 0.181, respectively (compared to null accuracies in
LAB.t); Optigraph a30 prediction accuracy increased from 0.037
to 0.242; and CFp increased from 0.038 to 0.235. Among protein
composition traits, κ-CN increased from 0.051 to 0.330, while
αS1-CN did not increase (being the only trait not showing any
increase). For all the abovementioned traits that showed an
increase, the optimal value of genetic correlation appeared to
be 0.9, which corroborates the relevance of FIELD information
for accurately predicting LAB breeding values and phenotypes.
The values of correlation for the calibration model used for
infrared prediction (rC_LAB) and additive genetic correlations
(ra) estimated from the data were large for these traits but not
the largest found.

The LAB.t+FIELD.t+FIELD.v scenario mimicked a genetic
evaluation based on a progeny testing scheme, which implies
the collection of FTIR spectra information on the daughters of
progeny testing bulls (FIELD.v). Here, genetic merit of bulls
cannot be estimated at birth but collection of FIELD phenotypes
is needed as in traditional progeny testing. As compared to a
previously discussed scenario, the advantage of the FIELD.v data
seemed marginal, showing a maximum of 1.2-fold increase and
often a decrease in prediction accuracy. Traits that benefited the
most were OPT k20 (from 0.250 to 0.302), CYWATER (from 0.203
to 0.242), and casein proportion (from 0.198 to 0.230). Traits
that did not show an increase were αS2-CN, whey proteins, α-LA,
and β-LG.
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TABLE 5 | Best-performing model in terms of accuracy (acc) for each of the scenarios studied. The values in bold indicate the best performing scenario (in terms of
accuracy) for each trait.

Trait2 LAB.t1 LAB.t + FIELD.t LAB.t + FIELD.t + FIELD.v FIELD.t FIELD.t + FIELD.v

acc ra acc ra Acc ra acc ra acc

Traditional MCP

RCT, min 0.118 0.9 0.285 0.9 0.322 0.9 0.285 0.9 0.321

k20, min 0.016 0.9 0.208 1.0 0.227 0.9 0.212 0.4 0.233

a30, mm 0.032 0.9 0.190 0.9 0.212 0.8 0.193 0.9 0.215

a45, mm 0.027 0.9 0.181 0.9 0.192 0.9 0.184 0.9 0.196

Curd firming

RCTeq, min 0.102 0.9 0.286 0.9 0.319 0.9 0.286 0.9 0.312

CFp, mm 0.038 0.9 0.235 0.9 0.258 0.9 0.236 0.9 0.262

kCF , % × min−1 0.104 0.7 0.217 0.8 0.236 0.1 0.200 1.0 0.249

kSR, % × min−1 0.093 0.6 0.189 0.6 0.204 0.2 0.176 0.2 0.216

Cmax , mm 0.038 0.9 0.224 0.9 0.249 0.9 0.225 0.9 0.258

tmax , min 0.112 0.9 0.233 0.9 0.269 0.9 0.223 0.9 0.265

Optigraph

RCT, min 0.168 0.9 0.283 0.9 0.315 0.8 0.283 0.8 0.316

k20, min 0.053 1 0.250 1.0 0.302 0.9 0.248 1.0 0.296

a30, mm 0.037 0.9 0.242 0.9 0.262 0.9 0.257 0.9 0.274

a45, mm 0.060 0.9 0.331 0.9 0.350 0.9 0.325 0.9 0.346

Acidity

pH 0.113 0.7 0.221 0.6 0.225 0.3 0.227 0.3 0.236

Cheese yields, %

CYCURD 0.070 0.9 0.296 0.9 0.317 0.8 0.298 0.9 0.315

CYSOLIDS 0.088 0.9 0.348 0.9 0.362 0.9 0.343 0.9 0.331

CYWATER 0.076 0.9 0.203 0.9 0.242 0.9 0.198 0.9 0.249

Recoveries, %

RECPROTEIN 0.147 1 0.340 1 0.365 1 0.329 1 0.362

RECFAT 0.078 0.9 0.192 0.9 0.193 0.9 0.192 0.9 0.182

RECSOLIDS 0.071 0.9 0.376 0.9 0.377 0.8 0.376 0.9 0.345

RECENERGY 0.103 0.9 0.343 0.9 0.358 0.9 0.343 0.9 0.334

N fractions, % total milk N

Caseins 0.036 0.9 0.198 1 0.230 0.9 0.200 1 0.204

β-CN 0.153 0.9 0.297 0.9 0.308 0.2 0.287 0.9 0.284

κ-CN 0.051 1 0.307 1 0.330 1 0.296 0.9 0.280

αS1-CN 0.165 0.1 0.164 0.1 0.165 0.8 0.055 0.8 0.061

αS2-CN 0.099 0.6 0.170 0.6 0.159 0.5 0.146 0.6 0.123

Whey proteins 0.208 0.7 0.243 0.5 0.238 0.9 0.206 0.9 0.244

β-LG 0.187 0.5 0.224 0.5 0.224 0.9 0.206 0.9 0.254

α-LA 0.054 0.9 0.140 0.9 0.137 0.5 0.133 1 0.154

1The value of genetic correlation was implicitly considered equal to 0 in the LAB.t scenario. 2RCT = rennet coagulation time; k20 = curd firming rate as the time to a curd
firmness of 20 mm; a30(45) = curd firmness at 30 (45) min from rennet addition; RCTeq = rennet coagulation time estimated using the equation; CFP = asymptotic potential
curd firmness; kCF = curd firming instant rate constant; kSR = syneresis instant rate constant; CFmax = maximum curd firmness achieved within 45 min; tmax = time at
achievement of CFmax ; %CYCURD = weight of fresh curd as percentage of weight of milk processed; %CYSOLIDS = weight of curd solids as percentage of weight of milk
processed; %CYWATER = weight of water curd as percentage of weight of milk processed; RECPROTEIN = protein of the curd as percentage of the protein of the milk
processed; RECFAT = fat of the curd as percentage of the fat of the milk processed; RECSOLIDS = solids of the curd as percentage of the solids of the milk processed;
RECENERGY = energy of the curd as percentage of energy of the milk processed. 1True protein nitrogen (N) and milk N fractions are expressed as percentage of total milk
N; β-CN (β-casein), κ-CN (κ-casein), αs1-CN (αs1-casein), αs2-CN (αs2-casein); caseins: 6(β-CN+κ-CN+ αs1-CN+αs2-CN); β-LG (β-lactoglobulin), α-LA (α-lactalbumin),
and whey proteins: 6(β-LG+ α-LA).

Prediction When LAB Information Is Not Included
Scenarios FIELD.t and FIELD.t+FIELD.v mimic a breeding
scheme where LAB information is not included in the genetic
evaluations. Still, LAB information is used to obtain FTIR
phenotype prediction equations. The underlying model is a

bivariate model that produces LAB breeding values, although
LAB records are not included. Comparing the LAB.t+FIELD.t
scenario to the FIELD.t scenario allows the evaluation of the
contribution of LAB information when FIELD information is
recorded on the daughters of proven bulls. Here, differences were
negligible, except for αS1-CN that showed a dramatic decrease
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from 0.165 to 0.055 when LAB information was removed. This
is due to the low quality of the calibration model used for FTIR
predictions (rC_LAB = 0.60 and ra = 0.40). The comparison of
the LAB.t+FIELD.t+FIELD.v scenario to the FIELD.t+FIELD.v
allows us to further prove the value of LAB phenotypes when
FIELD information is also recorded in daughters of progeny
testing bulls. Again, changes were negligible for most traits,
confirming the low relevance of LAB information when solid
FTIR calibration equations are used. The relevance of FIELD.v
information is assessed in the comparison of FIELD.t and
FIELD.t+FIELD.v, when LAB information is absent. While the
increase was negligible in the presence of LAB information
(maximum of 1.2-fold increase in accuracy), in this case the fold
increase reached 1.25 with several traits being about 1.1. This
supports the hypothesis that progeny testing could be beneficial
for most traits, but probably the gain in accuracy would not
match the cost of delaying the candidate bull’s evaluation. It
should be considered that generation interval can be dramatically
reduced when FIELD.v information is omitted, compromising
prediction accuracy, but probably not sufficiently to justify
progeny testing cost.

Best Performing Scenario in Terms of Prediction
Accuracy
With the exception of αS1-CN, which showed a poor FTIR
calibration equation, all traits showed an advantage in the
inclusion of FIELD information, supporting the need for
well-constructed calibration equations that allow us to obtain
predicted phenotypes at the population level. Furthermore, an
increase in prediction accuracy was found with the inclusion
of FIELD.v information rather than just FIELD.t, either with
or without the presence of LAB.t phenotypes. Scenarios that
included all FIELD information outperformed scenarios that just
included FIELD.t, with the exception of αS2-CN. This would lead
to further speculation on the need for conducting progeny testing
for new bulls, but the gain in accuracy of prediction is probably
not translated into gain in genetic progress due to increased
generation interval. It should also be noted that for some traits,
i.e., k20, kCF , kSR, βCN, pH, αS1-CN, and α-LA (not necessarily
those with low FTIR prediction accuracy), the trend of prediction
accuracy over the values of assumed genetic correlation was
sometimes null if not negative.

Despite the large number of traits involved, this study does
not allow us to declare a breakeven value for any genetic
parameter that would serve to predict the value of FIELD vs.
LAB information. The only trait that did not benefit from FIELD
information happened to be αS1-CN, for which the quality of
the FTIR calibration equation was particularly low, followed
by the low FIELD heritability and low genetic correlation with
LAB measures. All other traits benefited from the inclusion
of FIELD information and the accuracy gained with FIELD
information greatly depended on the genetic correlation between
LAB and FIELD traits. Nonetheless, it was not possible to declare
a breakeven value of genetic correlation which deemed the use
of FIELD information advantageous. Breakeven values of genetic
correlations for indicator traits were found to be 0.5 by Calus and
Veerkamp (2011), who studied genomic selection performance

under multi-trait scenarios, and 0.7–0.8 by Mulder and Bijma
(2007) who studied the impact of genotype by environment
interactions in breeding programs. Given that this study based
on field data, there could be more factors affecting the value of
indicator traits in genomic prediction. Further research is needed
in order to explore all potential contributions.

CONCLUSION

The present study reported two approaches for assessing the
contribution of FTIR calibration equations at the population level
for dairy cattle breeding. With the first approach, results indicate
that FIELD predictions can be used in breeding programs for
the genetic improvement of difficult-to-measure traits and that
indirect selection for FIELD predictions will provide satisfactory
responses. With the second approach, for the first time we
highlighted the utility of FTIR predictions for breeding purposes
using real data to simulate different genetic evaluation scenarios,
where FTIR-derived phenotypic information is dosed into
(single-step) GBLUP to predict wet-lab measured performance
of daughters of progeny testing bulls. Collection of FIELD
measures for progeny testing bulls appears to be advantageous for
increasing the predictive ability for most of the traits studied, but
the increase in generation interval due to progeny testing does
not justify the increase in prediction accuracy. LAB information
from proven bulls’ daughters could be included in the genetic
evaluations without a detrimental effect. As there is no evidence
of a clear advantage to including FIELD information for progeny
testing bulls, progeny testing schemes could be replaced by the
construction of robust calibration equations together with more
vast collection of FIELD measures on daughters of proven bulls.

In general, the increase in predictive ability observed with the
inclusion of FIELD information is very favorable and reaches
moderate values for 12 traits. While further research is needed in
the modeling of FTIR-predicted data, results are promising. Once
calibration equations are developed, the cost of collecting FIELD
is virtually null, provided that routine spectra acquisition within
milk recording schemes is performed and available for breeders.
Yet, the cost of developing robust calibration equations should be
factored into the total cost of implementing (genomic) selection
that includes FIELD data. Thus, an economic analysis should be
performed before progressing its use in breeding programs for
difficult-to-measure traits.
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Computer Vision, Digital Image Processing, and Digital Image Analysis can be viewed

as an amalgam of terms that very often are used to describe similar processes. Most

of this confusion arises because these are interconnected fields that emerged with

the development of digital image acquisition. Thus, there is a need to understand the

connection between these fields, how a digital image is formed, and the differences

regarding the many sensors available, each best suited for different applications. From

the advent of the charge-coupled devices demarking the birth of digital imaging, the field

has advanced quite fast. Sensors have evolved from grayscale to color with increasingly

higher resolution and better performance. Also, many other sensors have appeared, such

as infrared cameras, stereo imaging, time of flight sensors, satellite, and hyperspectral

imaging. There are also images generated by other signals, such as sound (ultrasound

scanners and sonars) and radiation (standard x-ray and computed tomography), which

are widely used to produce medical images. In animal and veterinary sciences, these

sensors have been used in many applications, mostly under experimental conditions and

with just some applications yet developed on commercial farms. Such applications can

range from the assessment of beef cuts composition to live animal identification, tracking,

behavior monitoring, and measurement of phenotypes of interest, such as body weight,

condition score, and gait. Computer vision systems (CVS) have the potential to be used

in precision livestock farming and high-throughput phenotyping applications. We believe

that the constant measurement of traits through CVS can reduce management costs and

optimize decision-making in livestock operations, in addition to opening new possibilities

in selective breeding. Applications of CSV are currently a growing research area and

there are already commercial products available. However, there are still challenges that

demand research for the successful development of autonomous solutions capable of

delivering critical information. This review intends to present significant developments that

have been made in CVS applications in animal and veterinary sciences and to highlight

areas in which further research is still needed before full deployment of CVS in breeding

programs and commercial farms.

Keywords: computer vision, sensors, imaging, phenotyping, automation, livestock, precision livestock, high-

throughput phenotyping
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INTRODUCTION

Sighted animals, including humans, experience vision in a way
that seems natural and automatic. Early in life, and quite often
from the moment of birth, animals use their vision system to
navigate the world around them, and to identify and interact
with other animals, as well as their surrounding environment.
Therefore, the vision system of an animal is constantly being
trained and adapted so that it can be used for several tasks.
For instance, in humans, this system works with the luminous
signal being captured by the eye and transferred via the optic
nerve to the brain, where it is processed and interpreted
(1). This complex vision system can adapt to different light
conditions autonomously while allowing us to focus on objects
and to have a 3-dimensional representation of the world. But
what would be vision for a computer and how can computer
vision impact animal breeding and production? This review is
divided into three sections. The first section provides a brief
introduction to image analysis and computer vision, describing
current developments and algorithms of interest. The second
section describes common types of sensors available and their
functionality. The third presents a historical view on applications
in animal sciences, followed by examples and areas of current
interest. The review closes with a discussion on areas that are
currently of great importance for the improvement of computer
vision system (CVS) applications in livestock improvement
and production.

OVERVIEW OF STRATEGIES TO WORK

WITH DIGITAL IMAGES

What Is Digital Image Processing, Image

Analysis, and Computer Vision?
Digital Image Processing, Digital Image Analysis, and Computer
Vision can be viewed as an amalgam of terms that very often are
used to describe similar processes and applications, generating
confusion regarding their meaning. Most of the confusion arises
because these are interconnected fields that emerged with the
development of technologies for digital image acquisition. For
the sake of clarity, we can divide and define these three areas
as follows.

Digital Image Processing
Digital Image Processing deals with capturing and translating
a visual signal into a digital image. As such, it can be viewed
as the area that studies the process of obtaining a visual
signal of the world and transforming it in order to make it
interpretable. It spans from the study of image formation, as a
result of the acquisition of light signals by specifically designed
sensors, to the interpretation of the image as an array of
connected values. Therefore, digital image processing involves
the conception, design, development, and enhancement of digital
imaging algorithms and programs (2). As such, it is a discipline
heavily based on physics and mathematics. The term can also be
used to directly address the applications or techniques used for
digital image manipulation, ranging from noise reduction, image
equalization, image filtering, and other transformations used for

preparing images for subsequent steps in an analysis pipeline
or for enhancing images aesthetically. A group of techniques of
great importance in digital image processing is edge and contour
detection. Although there are several methods for edge detection,
they all rely on the fact that edges are regions in an image where
there is a drastic change in color/intensity along with a particular
orientation (2, 3). These techniques are, in general, useful in
many applications in image processing, such as image correction
and sharpening (i.e., highlight of the edges) and in image analysis,
such as identification of complex structures and matching of
objects in an image with specific templates.

Digital Image Analysis
Digital image analysis, or just digital imaging, on the other
hand, corresponds to the process of extracting meaningful
information from an image (2). This information can be
descriptive statistics from the image, ranging from global image
metrics, such as color/brightness histograms and distribution,
block statistics from regions/windows across the images, such
as intensity, moments (mean, variance), and integral images,
to the identification of more complex structures in the image.
Such information extracted from the image analysis can be
used then as input for imaging processing techniques, such
as image sharpening (4), thresholding (5), smoothing and
edge/contour enhancement (6). On the other hand, image
processing techniques can also be applied prior to image analysis
techniques. An example is the use of edge detection techniques
in the process of identification of structures, such as lines and
circles in an image (3). Another is for image segmentation, i.e.,
to divide an image into different regions, which can be simple
image binarization (a division of the image into two regions,
such as background and foreground) or multiple regions, such as
different objects present in an image. There are several methods
of image segmentation, but basically, they can be classified
into methods that perform a global clustering of image pixels
according to some criteria independent of spatial information
(e.g., k-means clustering), and methods that account for more
information, such as spatial, texture, color, edges, and shape, such
as energy-based (graph-cuts) methods (7, 8).

Computer Vision
Computer Vision can be defined as the field that aims to describe
the world through images by interpreting, reconstructing, and
extracting properties from images, such as shapes, textures,
densities, and distances (9). CVSs are also known as machine
vision systems, visual image systems, or just image systems.
Therefore, Computer Vision is essentially the development of
artificial systems to handle visual problems of interest, and for
such, it uses image processing and analysis techniques. Along
with image analysis and processing, other areas such as Machine
Learning and Pattern Recognition are also highly interconnected
with Computer Vision.

Pattern Recognition is a field that studies not only images
but also other signals, such as sound and texts. As the name
suggests, it is an area dedicated to the study of patterns that
may appear in any given signal. In the context of imaging,
pattern recognition is generally studied within image analysis as
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FIGURE 1 | Example of a computer vision system framework. (A) Image acquisition; (B) Image Processing; (C) Image Analysis; (D) Data Analysis.

the development of mathematical methods for the identification
of simple geometrical structures such as lines and circles (3,
10) or key-point features that can be jointly used to identify
more complex objects or patterns (11, 12). Machine Learning
is also a broader field that is concerned with the development
and application of algorithms for extracting information from
the most diverse data sets (13), and several machine learning
algorithms have been developed or adapted specifically for
solving computer vision problems.

An example of CVS is presented in Figure 1, where a
3D camera is used to capture images from pigs [adapted
from (14)]. In a standard pipeline, after these images have
been captured, they are processed (Figure 1B) using common
imaging processing techniques such as image thresholding and
binarization. Using the processed image, features of interest
are identified, such as the pig head and tail (Figure 1C), and
are removed together with the image background. From the
resultant image of the pigs back, several measures were taken
(e.g., volume, area, height, and length). These measures leverage
important information from the images evaluated and can be
used then for the development and evaluation of predictive
models (Figure 1D), such as prediction of body weight.

Image Formation
An important aspect of digital imaging is how the image itself
is acquired since there are sensors better suited for different
applications. Before images could be processed and analyzed
in computers, there was the need to develop sensors able to
recognize, measure, and digitalize luminous signals. It was in
the 1970s, with the advent of the charge-coupled devices (CCD)
sensors (15), that digital imaging was developed, and the interest
in CVS appeared. Basically, in digital image formation, luminous
signals are captured by the sensor, coded, and stored in arrays of
data that can be interpreted and manipulated in computational
algorithms (9). Thus, for a computer, an image is nothing more

than numerical values in a structured array of data that codifies
light and colors for each point in the image (Figure 2). This
array can be a single matrix, where the values inside the matrix
correspond to black or white (binary image) or different shades
of gray (grayscale image). Also, it can be an array of 3 matrices in
the case of color images (i.e., intensities of red, green, and blue, on
the RGB color space) or even multiple matrices for hyperspectral
images. Therefore, mathematical manipulations and statistics of
an image were among the first studies developed in digital image
analysis and processing.

Another turning point in the history of computer vision
was the advent of personal digital cameras in the 1990s,
reducing the costs and popularizing the process of capturing and
analyzing digital images (16, 17). Since then, several applications
of digital photography have appeared. This popularization of
digital cameras is directly connected to the increasing volume
of data (photos and videos) generated over the last few years in
many fields due to the increasing number of computer vision
applications to solve the most diverse problems. This increased
interest in computer vision and related areas can be illustrated
by the increasing number of publications in the last decade
(Figure 3).

Some areas of recent interest in computer vision are object
sensing, mapping, recognition, motion tracking, navigation,
image segmentation, and scene interpretation. However, while
humans and animals do most of these actions intuitively, the
majority of the vision tasks are considered as difficult problems
in computer science, and the algorithms available are prone
to errors (9). Thus, many successful CVSs are the result of
multidisciplinary approaches tailored for specific cases, for
example, interactive segmentation (8), face detection based on
image features (18), and machine learning methods for object
detection and recognition, such as optical recognition (19) and
image classification, such as classification of regions and cells of
histopathological images (20).
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FIGURE 2 | Digital image representation. (A) Logical image with values 1 for white and 0 for black; (B) Grayscale image in the 24-bits depth format (values ranging

from 0 to 255); (C) Color image on the RGB color space where each matrix is a 24-bits depth image, one for each color layer.

Among the machine learning techniques used in computer
vision, it is worth mentioning deep learning algorithms,
which have recently been successfully used in diverse
computer vision applications. These algorithms are an
extension of traditional artificial neural networks (ANN),
and they achieve great power and flexibility by learning
more abstract representations of the inputs as a nested
hierarchy of concepts (21). These nested concepts, or hidden
layers, generate very complex models with many parameters
that were possible to be trained only with the advent of
very large datasets, data augmentation techniques, and
advancements in ANN, such as the development of learning
optimization via stochastic gradient descent, new activation
functions such as rectified linear unit (ReLU), regularization

techniques, and efficient use of graphics processing unit
(GPU) (21, 22).

Metrics for Model Comparison and

Assessing Predictive Ability
As there are CVS developed for many different tasks and using a
wide range of methods and models, there will be also many ways
to compare competing approaches for different applications. In
the following, we discuss some of these comparison methods
by splitting them according to the class of the variable being
predicted. For the scope of this study, we will split the
predicted variable into two classes: (1) a variable that we deem
associated/correlated to the image, and (2) the image per see (or
even parts of the image).
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FIGURE 3 | Count of publications hits in “Web of Science” for computer vision, image analysis, image processing, machine learning and pattern recognition.

In some applications, the interest will be to predict a variable
by using information extracted from the images. These variables
of interest can be a categorical variable such as animal species,
behavior classes, and scores (e.g., leg score, body conditioning

score), or a continuous variable such as body area, height,

and weight.
For categorical variables, the simplest case assumes only two

states (e.g., health/disease, moving/standing, among others), and

the general scenario allows for multiple classes to be evaluated
at the same time (e.g., behaviors such as laying, drinking,
eating, walking, etc.). The metrics used to evaluate the predictive

methods, in this case, are going to assess the frequency of

two types of error: false positive (a.k.a. nuisance alarm) and
false negative (a.k.a. missing alarm) errors and the most basic

assessment tools are via tables of errors, or confusion matrix
as below:

y = 0 y = 1

ŷ = 0 TP FP

ŷ = 1 FN TN

Here, y corresponds to the true category or ground truth (e.g., y
= 1 for disease and y = 0 for healthy), which can be a manual
measurement or derived from a gold standard method, and ŷ
corresponds to the predicted class. The combination of each value
of y and ŷ gives either a true positive (TP), true negative (TN),

false negative (FN), or false positive (FP). From the confusion
matrix and the TP, TN, FN, and FP counts for any given
experiment, several metrics can be derived, such as: sensitivity
(recall or true positive ratio) = TP

TP+FN ; false positive rate (FPR),

also known as, false discovery rate (FDR) = FP
TP+FP ; precision

= TP
TP+FP ; specificity = TN

TN+FP ; and accuracy = TP+TN
TP+FP+TN+FN .

However, when evaluating classification methods sometimes it
is interesting to evaluate many threshold values used to classify
ŷ as one class or another. This evaluation is often done using
receiver operating characteristic (ROC) curves, which measures
the tradeoff between sensitivity and FDR, or 1- specificity (which
yields the same value). Anothermetric is the precision-recall (PR)
curve which is useful to evaluate the trade-off between precision
and recall as the threshold value varies, i.e., the trade-off between
the fraction of the detection that is actually true positives (i.e.,
precision) and the fraction of true positives that are detected (i.e.,
sensitivity) (13). Also, PR curves are especially interesting when
we have situations with unbalanced data. In these situations, a
ROC curve may present a misleading high area under the curve
(AUC), for a model that is only predicting every data point as
from the class that has more true values (Figure 4). For both
curves, the quality of competing methods is often summarized
by the AUC for which higher area means better fitting, with an
area of one meaning a perfect fit.

For applications where the variable of interest is continuous,
the predictive ability is typically evaluated using the Pearson
product-moment correlation coefficient (r) between the input (y)
and the predicted output (ŷ):
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FIGURE 4 | Comparison of receiver operator curves (ROC) and precision-recall curves for a balanced [with 500 positive (P) and 500 negative (N) labels] and

unbalanced (with 100 P and 1102 900N) datasets.

r ==
cov(y, ŷ)

σyσŷ

where cov(y, ŷ) is the covariance, and σy and σŷ are the square
root of the input and output variances. Alternatively, instead of
the predictive correlation r, its square is often reported. Both
r and r2 measure the linear relationship between y and ŷ, and
the closer to 1 the better. However, they are not measurements
of prediction accuracy, as they do not take prediction bias into
account. In this context, another measure often reported is the
predictive error, or rather, the mean absolute predictive error
(MAE or MAPE), which is a direct measure of how much the
predictions deviate from the true values and can be defined as:

MAE = mean(
∣

∣y− ŷ
∣

∣)

Because MAE can be influenced by the scale, when comparing
between different studies it is often better to use a scale

independentmeasure (23), such as themean absolute scaled error
(MASE), which can be defined as:

MASE = mean(

∣

∣

∣

∣

y− ŷ

mean(y)

∣

∣

∣

∣

)

In applications where the variable of interest can be the whole
images or parts of the image, such as identification of objects
within the image, the predictive ability can be evaluated via the
pixel-wise accuracy, i.e., the ratio of pixels correctly predicted vs.
the total number of pixels. However, this measure of prediction
quality will tend to be high for most of the applications as
the majority of the pixels within large objects will be correctly
predicted. Another interesting measure in this scenario is the
Jaccard index, a.k.a. Intersection over Union (IoU), which is the
ratio of the intersection between the ground truth (A) and the
predicted area (Â) by the union of these areas:
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IoU(A, Â) =

∣

∣

∣
A ∩ Â

∣

∣

∣

∣

∣

∣
A ∪ Â

∣

∣

∣

Thus, IoU is a measure of similarity between the two areas, and
values closer to 1 indicate more similarity, meaning a better fit of
the predictive method (24).

As a final note on this topic, it is important to evaluate
the generalization performance of the candidate methods, in
other words, their predictive capability on independent data set.
This evaluation will provide insight into the variability of the
predictive error as well as potential overfitting (a situation when a
method performs very well on the training data but not so on the
independent dataset). This independent dataset, or validation set,
is ideally a dataset collected in another moment from different
animals. But most of the time if the data is large enough it can
be a reserved portion of the original data. Another interesting
technique is cross-validation, where the data is divided into
multiple subsets, and each time one of the subsets is reserved
for validation while the others are used for training. Thus, in a
k-fold cross-validation, the dataset is divided into k subsets, and
if k = n (number of data points) the approach is called a leave-
one-out cross-validation. For a more in-depth reading on model
assessment and selection, the reader can refer to Chapter 7 of
Hastie et al. (25).

SENSORS USED FOR IMAGING IN ANIMAL

AND VETERINARY SCIENCES

Currently, the most used image sensor devices are standard
digital cameras and/or surveillance cameras that capture
electromagnetic waves within the visible light spectra to generate
digital images (color or grayscale). However, there are also
other technologies that have been used for more specific
applications, such as devices that are based on infra-red,
ultrasound, and ionizing radiation. Moreover, some technologies
can generate more complex arrays of images such as three-
dimensional (3D) and hyperspectral images. They are, however,
in general, more expensive than standard digital cameras.
Nonetheless, each different imaging technology can be used for
specific applications.

Images on the Visible Light Spectrum
Cameras for standard digital imaging work with signals within
the visible light range, and they generally have a CCD or
a complementary metal-oxide-semiconductor (CMOS) sensor.
Both sensors have a similar function, which is to capture light
and convert it into a digital image, however, they have some
important differences. On one hand, CCD sensors are charged
passively by the light source, and the information captured in
each pixel is processed sequentially. CMOS sensors, on the other
hand, have active pixels with a transistor for each pixel so
that the information from each pixel is translated to the image
independently and generally asynchronously to the digital image
(26). These differences in sensor architecture lead to differences
in sensor prices and capabilities. Even though the industry is in
constant development, CCD sensors, in general, have a higher

dynamic range and produce more uniform images, while CMOS
sensors are cheaper, energy efficient, and more responsive.

Infrared Radiation
Infrared radiation (IR) has a wavelength longer than the visible
light, and according to the International Organization for
Standardization (ISO) it can be divided into near-infrared (NIR),
mid-infrared (MIR), and far-infrared (FIR). This division has
been based on the specific wavelength thresholds of 0.78–3, 3–50,
and 50–1,000µm for NIR, MIR, and FIR, respectively. There are
many different applications of IR in imaging, and for the purpose
of this review, the most significant ones are in 3D imaging,
spectroscopy, night vision, and thermal imaging (also known as
Thermography). For all these applications, there are different
IR sensors specific to capture radiation within NIR, MIR, or
FIR ranges. In most of the night vision cameras, the sensors
rely on an emitter, which emits IR on the NIR wavelength to
actively illuminate the scene. On the other hand, thermal imaging
uses the principle that all objects produce radiant heat (emitted,
transmitted, and/or reflected), thus there is no need for an emitter
since the sensors are capable of capturing the heat signal in the
MIR or FIR range (27). The sensors for thermal imaging can be
divided into two groups, cooled or uncooled focal plane array.
The main difference is that the cooled sensors generally produce
better images and less variable measurements, at the cost of being
heavier, less portable, and expensive.

In animal, veterinary, and wildlife applications, both night
vision and thermal cameras have been used mostly for
monitoring animals (livestock or wildlife) at night or dim light
situations, either alone or in association with standard digital
image sensors (28). Such applications can be dated to the use of
military night vision scopes for observation of nighttime animal
behavior in the 70s (29). However, thermal cameras also have
applications in diagnostic imaging to detect small changes in the
body’s surface temperature (30), which can be due to stress, fever,
inflammation, and ischemia. Nevertheless, proper use of thermal
imaging for diagnostic purposes still requires correct calibration
of the device, adequate location, and correct positioning of the
animal and camera (27, 30).

3D Imaging
Many different sensors and techniques are used for measurement
of the distance of objects to the camera, acquisition, and
formation of 3D images. In livestock, these sensors can be
used, for example, for measurement of animal volume, surface,
and gait, among other traits. From the several technologies
developed for 3D imaging, we will focus on optical applications
(i.e., applications that use radiation on visible and near-visible
light) used in 3D cameras, also known as depth sensors. These
techniques can be further divided into passive, such as stereo
imaging and structure from motion, or active, such as structured
light and time of flight (31).

In stereo imaging, two or more cameras are used, and
principles of epipolar geometry are applied in order to calculate
the distance (z) of a point P to the cameras (32). In a simplified
stereoscopic triangulation (Figure 5) using two similar cameras
with the same focal length f , the differences of the projections
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FIGURE 5 | Epipolar triangulation used on a rectified stereo imaging system with two similar cameras. P is the point of interest; xL and xR its projection on the camera

planes pL and pR; f is the camera focal length and B the baseline plane.

(xLand xR) of point P on the planes of the cameras is the disparity
between the images. That disparity can be used then to calculate
the distance of point P to the baseline plane, where B is the
distance between cameras.

Similarly, in structure from motion, a disparity map can be
created between the images from a single moving camera, in
which case the distance between the points where each image
was captured by the camera can be used as the distance between
“cameras.” The main difficulty of such a strategy is that it needs
the object of interest to be practically motionless.

Structured light, also known as coded light refers to the
use of active emission of known light patterns for which the
illuminated surface will present structural distortions in the
shade/light patterns according to irregularities in the surface,
angle, and distance to the emitter (Figure 6). Therefore, similarly
to stereo imaging, the distortions in the emitted patterns provide
unique correspondence for triangulation with the camera. The
emitter can vary from a punctual laser, a blade scanner, multiple
shadow patterns that split the scene into areas of interest, or
even the use of complex multi-laser patterns that create a spatial
neighborhood (31, 32).

Time of flight (ToF) and Light Detection and Ranging
(LiDAR) cameras are based on signal modulation and ranging,
similar to other technologies such as Sound Navigation Ranging
(SONAR) and Radio Detection and Ranging (RADAR) (32).
These techniques measure the distance between the sensor and

a target object by detecting the time difference from the signal
emitted by a transmitter, reflected on a target object, and captured
back by a receiver (Figure 7). Even though the principle is
simple, there is a great implementation challenge due to the
speed of light, interference with natural light, dispersion, and
absorption of the light. Modern ToF cameras generally consist
of a transmitter array that emits a modulated IR or NIR light
(to reduce environmental interference) and a receiver array that
captures the reflected signal and calculates the signal phase/time
lag for each pixel (31). Recently, in order to improve the
transmitter performance, devices equipped with micro-electro-
mechanical system (MEMS) mirrors have received great interest
from the scientific and industry community (33).

Lastly, there are also hybrid 3D cameras that combine RGB
sensors with depth sensors based on one or more of the
technologies described above. Examples include cameras based
on active stereoscopy, which combine stereo imaging from
multiple cameras with structured light to improve the depth
estimation. Table 1 shows some of the current 3D cameras
available and their technical specifications.

Other Imaging Technologies of Importance
There are many other imaging related technologies of
importance in animal and veterinary sciences, such as spectral
and hyperspectral imaging, ultrasound, x-ray, computed
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FIGURE 6 | Example of a structured light system based on linear shadow

pattern. (A) The scene with natural illumination. (B) The same scene now

under the structured light projected by the emitter.

tomography, and satellite images. In the following, we briefly
describe some of these technologies.

Spectroscopy, spectral imaging, and more recently
hyperspectral imaging have been adopted extensively for
evaluation of meat attributes and chemical characteristics
as well for quantification of milk protein and fat content
(34, 35). These technologies are mostly composed of sensors
equipped with a NIR emitter, and are based on the principle
that different compounds will absorb the radiation differently
in each wavelength, thus generating a “signature” (36). In
Spectroscopy, for each wavelength measured inside the range, a
punctual value of absorbance is generated. Meanwhile, a spectral
image is a matrix with a value of absorbance for each pixel,
and a hyperspectral image corresponds to a cube of several
matrices (one for each wavelength) providing both spectral and
spatial information.

Several medical diagnostic imaging technologies have also
been employed for many applications with animals such
as evaluation of muscle and fat composition, and bone
mineralization in live animals and carcasses (37–39). Some worth
noting technologies include ultrasound (US), dual-energy x-
ray absorptiometry (DXA), computed tomography (CT), and
magnetic resonance (MR). All these technologies are appealing

since they make possible the generation of images for the
evaluation of the body composition. From these technologies,
only US is currently used in farm conditions due to many
factors such as price, portability, and no anesthesia required.
Nonetheless, it still requires a trained operator.

APPLICATIONS OF COMPUTER VISION

SYSTEMS IN ANIMAL AND VETERINARY

SCIENCES

Before the advent of CVS, many applications required the
use of the trained eye for visual classification of traits in live
animals, such as animal behavior, body condition score, carcass
fat deposition, meat marbling, or classification of eggshell quality.
There are also methods that use the aid of lenses, such as
microscopes, for evaluation of cell morphology in a blood smear
or spermatozoid motility and defects. Moreover, other signals
such as ultrasound, infrared, and x-rays are widely used to
produce images for diagnostic purposes. However, most of the
methods currently used for the measurement of traits of interest
need expert personnel requiring the training of evaluators from
time to time to maintain good measurement quality. Also, most
of such measuring processes are time demanding, stressful to
the animals, and costly for the farmer, making it prohibitive
due to animal welfare and economic reasons. Therefore, there
is an interest in developing automatic, indirect methods for
monitoring livestock and measuring traits of interest. For such
tasks, CVS generally uses algorithms and principles of pattern
recognition, image analysis, and processing in order to tackle
the most diverse problems. The framework presented in Figure 1

can be seen as a CVS pipeline, with a fixed sensor capturing
the information that is presented by the world or actively
exploring the world and adjusting its perception (field of view,
exposure, among others). The development of automated CVS
can enable high-throughput phenotyping in livestock, and the
data generated by such systems can be then used for many
different applications, from the development of smart farm
management tools to advancing breeding programs.

In the following, we present selected applications of CVS
as an answer to the need for such automated, non-invasive
methods for the measurement of carcass and meat traits, live
animals’ identification, tracking, monitoring, and phenotyping
using different sensors.

Carcass and Meat Traits
Probably one of the first applications of a CVS was in meat
sciences, with the earliest reported studies found in the 1980s
(40–42). In these studies, the system was composed of a camera,
light source, digitizer, and computer unit. The CVS needed an
operator to position beef meat cuts on a surface at a known
distance and angle from the camera, and to trigger the image
acquisition. Thus, the meat cuts were all positioned in the same
manner with constant background and illumination. At that
time, the interest was to predict the cut content of lean meat
and fat, and to compare the results from the CVS to trained
United States Department of Agriculture (USDA) meat graders.
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FIGURE 7 | Principle of time of flight (ToF) 3D cameras (depth sensors).

TABLE 1 | Comparison of 3D cameras and their technical specifications.

Device Manufacturer Sensors Technology Range (m) Environment FPS FOV (V×H) Resolution

(pixels)

Kinect V1a Microsoft 3D (IR emitter + IR camera)

Color

Structured Light 0.8– 4 Indoor 30

30

45◦ × 58◦ 480× 640

Kinect V2a Microsoft 3D (IR emitter + IR camera)

Color

Time of flight 0.5–4.5 Indoor 30

30

60◦ × 70◦

54◦ × 84◦
424× 515

1080× 1920

Kinect Azure Microsoft 3D-N (IR emitter + IR camera)

3D-W (IR emitter + IR camera)

Color

Time of flight

Time of flight

0.5–5.5

0.3–2.8

Indoor 30

30

65◦ × 75◦

120◦ × 120◦

59◦ × 90◦

576× 640

1024 × 1024

2160× 3840

Xtiona Asus 3D Time of flight 0.8–3.5 Indoor 30 45◦ × 58◦ 480× 640

Xtion Pro Live Asus 3D

Color

Time of flight 0.8–3.5 Indoor 30

30

45◦ × 58◦ 480× 640

1024× 1280

Xtion 2 Asus 3D

Color

Time of flight 0.8–3.5 Indoor 30

15

52◦ × 74◦

60◦ × 75◦
480× 640

1944× 2592

Intel SR305 Intel 3D (IR emitter + IR camera)

Color

Structured light 0.2–1.5 Indoor 60

30

54◦ × 70◦

42◦ × 68◦
480× 640

1080× 1920

Intel D415 Intel 3D (IR emitter + IR camera)

Color

Active Stereo 0.2–10 indoor/outdoor 90

30

40◦ × 65◦

43◦ × 70◦
720× 1280

1080× 1920

Intel D435 Intel 3D (IR emitter + IR camera)

Color

Active Stereo 0.1–10 indoor/outdoor 90

30

58◦ × 87◦

43◦ × 70◦
720× 1280

1080× 1920

Intel L515 Intel 3D (IR emitter + MEMSb )

Color

LIDAR 0.2–9.0 Indoor 30

30

55◦ × 70◦

43◦ × 70◦
768× 1024

1080× 1920

Structurea Occipital 3D (IR emitter + IR camera) Structured Light 0.8–4.0 Indoor 30 43◦ × 57◦ 480× 640

Structure II Occipital 3D (IR emitter + IR camera)

Ultra-wide monochrome

Active Stereo 0.3–5.0 indoor/outdoor 54

100

46◦ × 59◦

160◦Diag

960× 1280

480× 640

Structure Core Occipital 3D (IR emitter + IR camera)

Color

Active Stereo 0.3–10 indoor/outdoor 54

100

46◦ × 59◦

85◦Diag

960× 1280

480× 640

aOut of production/Discontinued; bMicro-electro-mechanical system mirror.

In these studies, multiple linear regressions fitting variables
extracted from the CVS were compared to models that included
manual measurements and USDA graded variables. Even though
the system was not fully automated, the prediction equations

developed with the variables measured by the system presented
slightly better results than the prediction equations developed
with variables measured by trained graders. The best linearmodel
for prediction of lean meat weight developed with the variables
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TABLE 2 | Examples of computer vision applications in meat sciences (studies

highlighted in bold were with live animals).

Applications Image signal References

Cattle and Small

Ruminants

Carcass 3D; US; VL (41, 43, 44)

Fat (kg and%) US, VL (41, 43, 45)

Lean meat (kg and %) VL (41, 42, 45)

Tenderness VL (45, 46)

Fishery Fat

Pigmentation

IR; VL (47)

Sorting HS (48)

Freshness VL; HS; 3D (49, 50)

Poultry Classification HS; VL (51)

Brest weight 3D (52)

Egg shell classification VL (53)

Pork Carcass US; VL; CT; 3D (37, 39, 54–56)

Classification HS; VL (51)

Quality HS; IR; VL (57)

CT, Computed Tomography; 3D, 3-dimensional; HS, Hyperspectral; IR, Infrared; US,

Ultrasound; VL, Visible Light.

extracted from the CVS achieved R2 from 0.93 to 0.95 against
0.84–0.94 from the model that included USDA graded covariates
(41, 42).

Since these earlier studies, there has been an increasing
interest in the use of computer vision for prediction of the
most diverse meat quality traits, not only for beef but also for
fish, poultry, and pork (Table 2). There are applications focused
on imaging technologies for determination of not only meat
crude protein and fat content but also more refined chemical
characteristics like fatty acids profile, freshness (50, 57), as well
as prediction of meat quality, palatability, tenderness, and other
traits normally evaluated by a panel of trained experts (45, 46, 51)
or even automatic sorting and weighing cuts and viscera which is
normally performed manually (48, 52). Again, different devices
and imaging technologies have been used, with several predictive
approaches evaluated. However, independently of the imaging
device used, such applications pipelines generally involve several
steps such as: (1) Sample preparation with standardization of
meat cut used, presentation, background and light conditions;
(2) Device calibration (when needed), collection and processing
of the images; (3) Direct measurement of attributes of interest
using a gold standard methodology (i.e., chemical analysis);
and (4) Model fitting, which corresponds to the prediction of
the gold standard using the image features as predictors. It is
interesting to note that the image processing in step 2 can involve
several sub-steps such as histogram equalization, background
removal, and image smoothing. Also, in the case of hyperspectral
images the processing involves selection of wavelengths and/or
reduction of dimensionality using techniques such as Fourier
transformation (58) and principal components, for an in-depth
review of applications of hyperspectral imaging see Xiong et al.
(34). It is also worth noting, that there is no standard model
of choice for step 4 since in the literature several predictive
approaches have been evaluated. These predictive approaches

could be statistical models such as linear and partial least square
regression to machine learning methods, such as support vector
machines, random forests, and artificial neural networks.

Monitoring and Phenotyping of Live

Animals
Differently from carcass and meat cuts that can be easily
positioned for image acquisition under a well-controlled light
source and even background, several obstacles arise when
working with live animals. As an example, in farm conditions, the
illumination can change throughout the day even inside a barn
due to sun position, clouds, and seasons. Moreover, there will be
differences between artificial light sources from one farm/barn to
another, as they may use different types of lamps with different
voltage and positioning. The background is also going to be
different in each location, and it is prone to changes over time
for a given location. Examples of differences in the background
are floor surface material for animals in a barn and vegetation
for free-range animals. Therefore, the diversity of situations is
probably one of the biggest challenges in implementing a CVS
that are robust enough to perform satisfactorily across different
farm conditions.

Nevertheless, many efforts have been made over the years
to develop CVS for monitoring and phenotyping livestock,
poultry, and fish as well. In the current study, we do not
intend to deliver an extensive review on the matter as there are
already reviews on technology applications for poultry (59, 60),
machine vision for detection of cattle and pig behavior (61), and
computer vision applications for fisheries (62). Nonetheless, in
the following, a broader view is presented regarding applications
developed for traits of interest in animal and veterinary sciences,
providing examples from earlier works to the current trends
while highlighting challenges, advances that have been made, and
areas of current interest. Table 3 shows a summary of selected
applications, presenting the traits of interest and the kind of
imaging sensor used.

Evaluation of Body Composition, Meat, and Carcass

Traits in Live Animals
In section Carcass and Meat Traits we saw that CVS had been
successfully used for prediction of traits such as lean meat and
fat content from carcass and meat cuts. Nevertheless, the same
predictive performance has not been observed initially for the
evaluation of meat and carcass traits in live animals.

Initial attempts for the prediction of carcass composition
on swine have been performed by Doeschl-Wilson et al. (54)
where a CVS achieved a predictive R2 of 0.31 and 0.19 for
fat and of 0.04 and 0.18 for lean meat on the foreloin and
hindloin regions, respectively. In the search for improvement
of performance on the prediction of carcass and meat traits on
live animals, researchers have focused on the use of medical
imaging devices for such tasks. In recent studies using medical
imaging devices, ultrasound measurements presented positive
and moderate correlations of 0.6 and 0.56 with the carcass
measurements of lean meat and fat depths, while CT presented
low to moderate correlations of 0.48–0.67 for fat and high
correlations of 0.91–0.94 for lean meat (37, 39). Moreover, these
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TABLE 3 | Examples of computer vision applications in live animals.

Applications Image signal References

Cattle and small

ruminants

Mastitis IR (63–66)

Digital dermatitis IR (67, 68)

Body temperature TR (69–71)

Gait and body

measurements

3D (44, 72)

Weight 3D (44, 73)

Coat and

conformation

VL (74)

Body condition VL; TR; 3D (75–78)

Fishery Tracking 3D (79)

Shape VL (80)

Weight VL (81)

Poultry Behavior VL; 3D (82–84)

Shape 3D (84)

Dog Behavior 3D (85)

Pork Tracking VL; 3D (86–90)

Behavior VL; 3D (91–94)

Weight VL; 3D (14, 95–97)

Gait and body

measurements

3D (14, 97–99)

3D, 3-dimensional; TR, Thermography; VL, Visible Light.

technologies have several drawbacks regarding animal handling
and cost, as explained previously. In order to tackle these
limitations, some recent works developed CVS based on 3D
cameras for non-contact automated estimation of muscle score
(55) and of fat and lean muscle content (56) on live pigs. Alsahaf
et al. (55) developed a system that extracted morphometric
features from the images of moving pigs for prediction of muscle
scores between 1 and 5. With a gradient boosted classifier,
they achieved classification accuracy between 0.3 and 0.58, and
MAE of 0.65, showing that most of the errors where between
neighboring classes. Meanwhile, Fernandes et al. (56) evaluated
not only features extracted from the images, but also deep
learning methods that do not require image processing, with
the deep learning approaches achieving better results. Their
results present an improvement over previous studies with cross-
validation predictive MAE, and R2 for lean muscle depth of
3.33mm and 0.50, respectively, and of 0.84mm and 0.45 for fat
depth. Nevertheless, these R2 presented are still low showing and
there is room for improvement on the predictions of lean muscle
and fat.

Animal Tracking and Behavior Analysis Using CCD or

CMOS Cameras
Some of the most desired applications of CVS for live animals
correspond to animal identification, tracking, and monitoring,
ultimately identifying changes in their daily behavior. Animal
identification can refer to the identification of an animal when
there is only one animal in the image to more complex
scenarios where there are multiple animals in the image or
the identification of different individual animals in a single

or multiple images matching their identification. Meanwhile,
tracking involves the continuous identification of the animal
across frames in a video feed or across images from different
locations as the animals are moved from one location to the
other. Regarding behavior, animals tend to synchronize their
behavior within a group, and conspicuous deviations may
be caused by environmental stress, management problems, or
disease, although individual behavioral differences need to be
taken into account. Therefore, there is a constant effort to
understand behavioral changes and their relationship with other
traits of interests, such as animal health status and growth.
Closer evaluations of animal behavior and health are normally
conducted by trained evaluators at specific time points, such as
the time of transferring animals from one location to another
(e.g., from nursery to grow-out farms) or around vaccinations.
This is because managers and workers have limited time to spend
in observing a group of animals. Also, with the current trend of an
increasing size of livestock operations, there is also an increase in
the animal/manager ratio. Thus, a basic use of CVS for evaluation
of animal behavior can be the acquisition and storage of images
and videos that can be assessed later or remotely by the farmers.
This improves animal management since there is no need for
the evaluator to be physically present, which otherwise can cause
behavioral changes on the animals. Also, the evaluator can loop
across images, and replay them, improving the quality of the
evaluation. Nonetheless, this kind of system is not optimum since
the evaluator would still need to check all the images. Therefore,
there are efforts in the literature that attempt to develop CVS that
can automatically classify animal behavior and alert the manager
in real time regarding important changes.

Initial works with pigs demonstrated the applicability of a CVS
to identify the animal position and to track its movement (86,
87). These works showed that the image processing algorithms
available at the time could segment a single pig from the
background under specific conditions. The conditions were: (1)
camera positioned to get the top view of the animal, and (2) dark
background for a white pig. The method developed by Tillett
et al. (86) estimated a point distribution of landmarks on the
pig contour for a sequence of frames (13–30 frames) and was
able to model small changes in the animal’s posture. However,
only seven sequences where evaluated and it was prone to miss
the animal if the changes in position were abrupt from one
frame to another. On the other hand, Lind et al. (87) used a
more robust segmentation approach based on the generation of
a background matrix for image subtraction and consequently
animal segmentation. Even though this method cannot identify
animal posture, it was efficient for use in a real-time application
and efficiently tracked differences in animal activity. In their
study, the developed CVS was able to track the distance traveled
and the walking behavior (path) identifying differences between
a pig that received apomorphine or not. Similar approaches
based on traditional imaging thresholding and frame by frame
comparisons were also used with broilers for the identification of
flock behavior over time (82) and at different feeders (83).

Animal tracking and activity-related traits are still of great
interest, with the identification and tracking of multiple animals
and their interactions as one of the biggest issues. In order
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to overcome this challenge, a successful approach in pigs was
to identify the animals by ellipsis fitting on the animal area
and recognition of patterns printed on their backs (88). By
using this simple approach, researchers were able to track and
identify multiple animals with an accuracy of 88.7%, enabling
the characterization and evaluation of simple activity status as
active or non-active with high correlation (mean of 0.9) with
evaluations made by a human observer (88, 100). However, this
identification and tracking approach cannot be used for animals
with darker skin or in commercial farms that have animals
with different skin colors since the method was developed for
white pigs on a dark floor background and using a surveillance
camera. Another challenge in the use of patterns printed on
the animal’s skin for identification in commercial settings is the
higher stocking density and pen size. In an attempt to solve the
issue of multiple animal tracking, Matthews et al. (89) developed
an approach using multiple 3D cameras to track multiple pigs
in a pen and record their behavior, achieving an overall tracking
accuracy of 0.89. In amore recent study, a deep learning approach
has been tested for identification and tracking of multiple pigs
using standard digital cameras, achieving a precision of 0.91 and
recall rate of 0.67 on a test data set of pigs under challenging floor
and lightening conditions (90). Even though these are promising
results, these systems are prone to lose animal tracking over time,
without a current solution on how to get back to the correct
tracking of each animal. Thus, there is still the need for a reliable
CVS capable of identification and tracking of individual animals
in farm conditions.

In order to identify more behaviors, like feeding and drinking,
manual segmentation of the captured image in regions of interest
(ROI) have proved effective (91). The basic concept is to identify
not only the animals but also objects, such as the water source
and feeders, and track how animals interact with those objects.
Using this technique associated with a transfer function model,
with a single input and single output, Kashiha et al. (91) were
able to identify pig drinking behavior with an R2 of 0.92 on a
single dataset with 40 pigs divided in 4 pens. Machine learning
techniques have proven efficient for the identification of animal
posture such as standing, lying, or sitting (85, 93). In their study,
Barnard et al. (85) achieved a mean accuracy of 0.91 when using
a structural support vector machine to classify dog postures
from depth images. In another study, Lao et al. (93) defined a
classification tree for identification of several sow behaviors using
videos from 3D cameras with high (99%) accuracy for lying,
sitting, and drinking behaviors and lower for kneeling (78%) and
shifting (64%). Machine learning techniques have also shown to
be powerful for the identification of social interactions among
animals, such as mounting and aggressive behavior (92, 94).
Viazzi et al. (92) achieved a mean accuracy of 0.88 when using
linear discriminant analysis for classifying aggressive behavior in
pigs, while Chen et al. (94) achieved an accuracy of 0.97 on the
validation set using a convolution neural network and long short-
term memory approach. Even though there was an improvement
in accuracy in the latter study, it did not include an automated
strategy for the identification of individual animals. Thus, current
methods can be used for the identification of behavior changes
on group level, but not on individual level. Another aspect that

must be highlighted here is that the methods discussed above
are supervised learning approaches, and as such, they need a
dataset of labeled images (ground truth) for the training step. In
order to produce those training datasets, manual classification of
the images by a human observer is needed, thus the model will
be at most as good as the human observer who evaluated the
images in the first place. One way to improve the gold standard
used in such methods is by the development and adoption of
well-defined methodologies for the measurement and record of
traits of interest, followed by regular training and testing of the
human evaluators to increase intra and inter-evaluator reliability.
Another approach that can also be used is crowdsourcing the
development of the dataset. With crowdsourcing, the manual
classification of the images can be done by several evaluators
and using majority vote, so reducing the impact of individual
evaluators’ subjectivity (101). Another approach that has shown
improvement of the predictive accuracy is the use of multi-
model prediction, also known as model assemble methods. One
of the most basic assemble would be the use of the average
predicted value from multiple models (102). The combination
of crowdsourcing the dataset development with the use of
multiple model classifiers has allowed an increase in accuracy
for applications in medical image analysis, with an artificial
intelligence system outperforming trained evaluators (103).

Identification of Mastitis and Digital Dermatitis by

Thermography
So far, most of the computer vision applications presented have
used standard CCD or CMOS cameras. As previously discussed
in section Images on the Visible Light Spectrum, there are also
other sensors of interest, such as thermal and depth cameras.
Thermal imaging cameras are commonly used in veterinary
sciences as a diagnostic tool in clinical examination. The images
can be used to identify differences in external/skin temperature
that can be related to inflammatory process, infection, necrosis,
stress, and overall health. In research, infrared thermography
(IRT) has been used to identify mastitis in dairy cattle and
sheep (63, 64), and for digital dermatitis in sheep (68), showing
the capability to classify healthy and clinically sick animals.
Moreover, in a controlled study Metzner et al. (65) observed that
IRT was capable of detecting an increase in udder temperature
∼10 h after inoculation with E. coli. Nevertheless, these were
clinical trial studies with a limited number of animals, thus
there is still the need to evaluate IRT under more general farm
conditions. Zaninelli et al. (66) evaluated the use of IRT for
udder health using data from more than 300 cows from three
farms. In their study, even though the images were collected
manually, the imaging processing was automated using a classical
image threshold for measurement of udder temperature. In this
initial step toward automation of udder health evaluation, a
threshold model was developed for the classification of udder
health in two categories, achieving an area under the curve
(AUC) around 0.8. In another study, 149 cows from eight farms
were clinically evaluated for digital dermatitis, and IRT was
evaluated as a non-invasive field diagnostic tool for dairy cattle
(67). In their study, an AUC of 0.84 for the receiver operating
characteristic (ROC) curve was observed for classification on the
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temperature difference from the front and rear feet, showing
promises of IRT as an on-farm tool. However, the authors pointed
out that images were collected manually and that in 11% of
the cows’ data had to be removed due to excessive dirt. Also,
there are still many complications related to IRT measurement
variation and repeatability. In some studies, it was observed that
animal skin/surface temperature can vary according to external
factors, such as environmental temperature, wind speed, or other
factors, such as operator and camera positioning, and body
region evaluated (69–71). Thus, IRT applications have been
challenging, and they are still generally based on semi-automated
CVS, so that additional effort should be placed on developing
methods for automation and improvement of measurements for
on farm conditions.

Evaluation of Animal Surface and Related Traits

Using 3D Cameras
The interest in the use of 3D cameras is due to the capability
of measuring traits in the 3-dimensional space such as animal,
body position, gait, and volume. Also, for some applications,
there is an improvement of image processing since, within 3D
images, there is less noise due to light and background conditions
and it is easier to use the distance to the camera as a threshold.
Regarding the uses of depth sensors, there are many examples
of successful applications including tracking of fish within a
tank (79), identification of landmarks on animal shape with
consecutive modeling of gait (72, 99), body condition score (78),
sickness detection (84), and the estimation of many other body
measurements that will be discussed below.

Studies in gait analysis usually demanded intense manual
labeling of video frames by a human observer and/or an
expensive system of plate markers to be positioned on the animal
body and multiple cameras (98). However, with the introduction
of time of flight technology and more accessible 3D cameras,
CVS with a single or two sensors were capable of efficiently
estimate walking kinematics in pigs in a cost-effective framework
with prediction accuracy comparable to the state of the art of
kinematics systems (R2 = 0.99) (99).

Spoliansky et al. (78) developed an automated CVS based on
3D cameras for the evaluation of dairy cows’ body condition
score (BCS). In this study, top view images were collected from
cows at the moment they were leaving the milking parlor.
These images were then automatically processed with removal of
background, rotation, and centralization of the cow, holes filled,
and normalization. Several image features were extracted from
the processed images and used for the development of multiple
linear regression models via stepwise regression. Even though
the variables extracted did not present a high correlation with
BCS, the developed model achieved an average R2 of 0.68, which
is comparable or better than previous studies based on manual
processing of the images using either standard digital images
(75, 76) or thermal cameras (77).

In chickens, 3D sensors have also been used to identify
small modifications in the animal surface that is related to head
and tail positioning (84). In this study, in which animals were
challenged with the Newcastle disease virus, it was possible to

identify alterations in the animal shape and behavior 6 days after
the inoculation.

Other applications in which depth sensors are showing
promising results are for estimation of animal body
measurements (heights, widths, area, and volume as examples)
and body weight (44, 96, 97). In one study, a CVS based on
depth image could extract additional information on the animal
volume, achieving an R2 of 0.99 (96) under experimental
conditions. In another study (97), depth cameras were evaluated
for estimation of body measurements on pigs in farm conditions,
achieving high R2 (0.77–0.93) between the manual measurement
and the measures estimated from the images. Nevertheless,
these previous studies used some level of manual handling of
the images and they did not evaluate model performance using
an independent set of animals or a cross-validation approach.
This hampers the evaluation of how generalizable the prediction
models are, that is, how these CVS based on 3D cameras would
perform in practice. Another drawback of these previous studies
is the lack of automation for application in farm conditions,
where it would be extremely difficult to manually process
the images.

Automated Prediction of Individual Body

Measurements
Automated non-contact prediction of body weight and body
measurements is a long-desired application for many animal
production systems. Kashiha et al. (95) developed a CVS
for automated prediction of BW in pigs under experimental
conditions achieving good prediction (R2 = 0.97) for body weight
using surveillance cameras. However, as stated by the authors,
this previous method was still restricted by background and light
conditions, along with animal coat color. Recently, Fernandes
et al. (14) developed an automated CVS based on depth camera
for real-time video processing and prediction of body weight
in live pigs. They worked with videos collected under farm
conditions using multiple linear regression models with features
extracted from the images as predictor variables, achieving high
predictive accuracy evaluated with cross-validation (R2 = 0.92).
An adaptation of their CVS was also evaluated for prediction
of body weight in beef cattle from depth images (73) achieving
high R2 (0.79–0.91) with an artificial neural network approach.
In both works, the images were collected from animals partially
restrained and there was only one animal in the camera field
of view so that future developments with the CVS on barn
conditions would be necessary for better evaluation.

There are also many attempts to develop CVS for automated
prediction of body weight and body measurements in fish,
where the main challenges are related to fish body positioning
and segmentation, and external factors such as light and
background conditions. To tackle these issues, one study in
halibut developed a CVS based on multi-scale body contour
matching and completion using a double local threshold model
with body shape priors (80). The final model developed was able
to estimate the fish body with an average intersection over union
(IoU) of 95.6%. In another study in Nile tilapia, Fernandes et al.
(81) used a deep learning approach for fish body segmentation
from images under different lighting and background conditions.
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The approach was able to distinguish fish from the background
with a validation IoU of 99%, and for the fish body from
fins and background of 0.91%. In their study, the final fish
body area was then used for prediction of fish body weight,
achieving a predictive R2 of 0.96. Nevertheless, in this study,
the fish were removed from the water, while in the previous
one images from the top view of fish in a shallow water area
were used. Hence, it is still necessary to develop CVSs that can
evaluate fish underwater inside production cages. This adds more
challenges, such as interference and occlusion due to different
water transparency.

Perspectives of CVS for High-Throughput

Phenotyping
CVS together with other sensor technologies are at the forefront
of precision livestock farming, with some systems already been
implemented in farm applications (104). Such systems have the
potential to enable high-throughput phenotyping (HTP), which
can be defined as the measurement of a single or many different
traits of interest at multiple times during the animal life. HTP
applications promise the generation of large amounts of data that
will improve the accuracy of current methods and open a myriad
of opportunities to advance breeding programs and livestock
production (105). Nevertheless, for their implementation on
breeding programs, there is the need to develop automated and
robust CVS that are capable of collecting, processing, analyzing,
and transmitting individual animal data. For this to happen,
several key resources and tools must be developed such as
improvement of rural broadbands, data integration, data mining,
and novel predictive tools among others (106). A specific strategy
used to circumvent the issue of individual animal identification
is by using other technologies such as RFID tags, associated
with the CVS (72). Nevertheless, there is still room for more
progress in the use of image analysis for animal identification.
Recent developments in machine learning algorithms for
image analysis such as deep learning have shown promising
results in other areas such as human face recognition, disease
detection, and classification, among others (22). Generally, these
algorithms demand very large datasets to be trained such as
the Microsoft Common Objects in Context (COCO) (107).
Nonetheless, with techniques such as transfer learning of pre-
trained models, we expect that deep learning may play an
important role in the future development of CVS applications for
animal production.

Animal phenotyping, or rather, the measurement of traits of
interest, has long been a constant and important practice in
animal management and also for the development of breeding
programs for different animal production systems. In this
manuscript, we discussed CVS as an interesting tool for the
collection of such phenotypes without direct interaction with
the animals. Thus, in the last decade, several efforts have
been made toward the measurement of group-level traits,
such as group growth, activity, drinking and feeding behavior,
and animal spatial distribution among others with most of
the successful applications based on standard digital cameras
implementing classic image analysis and machine learning

algorithms. Nevertheless, most of the works in the literature deals
with a small group of animals, with just a few works evaluating
CVS in farm environments (14, 66, 67, 97) or under challenging
light and background conditions (80, 81, 90) with the application
of more sophisticated machine learning algorithms.

Nevertheless, there are already some examples of how CVS
can be leveraged by breeding programs. In a study byMoore et al.
(108), data from 17,765 image carcass records of prime cuts and
carcass weight of commercial beef slaughter was used to predict
genetic parameters in beef cattle. The authors concluded that by
leveraging the information from the CVS it was possible to yield
more accurate genetic parameters due to the higher volume of
data. In another study, Nye et al. (74) developed a web scraper
and an image segmentation algorithm to extract images and
information from breeding programs catalogs. The information
retrieved was used in a subsequent step to predict genetic
parameters related to coat pigmentation and conformation traits
in dairy cattle. The authors demonstrated that, for dairy cattle,
approximately only 50 images were required to train their semi-
supervised machine learning approach.

CONCLUDING REMARKS

The idea of developing CVSs for automatic monitoring and
measuring traits of interest in animals is not new. Early
developments in digital image analysis and computer vision have
shown the potential of the use of images to evaluate animal
behavior, gait, body weight, and other traits in experimental
conditions, with some more recent studies evaluating also
on-farm applications. Also, there are studies showing that
different imaging technologies can be better suited for specific
applications, such as IRT for identification of mastitis and digital
dermatitis in dairy cattle, or spectral and hyperspectral imaging
in food sciences. However, there is also a great number of
attempts to develop CVS based on more accessible technologies
such as standard digital cameras and 3D cameras.

Applications of CVS in animal and veterinary sciences are
currently a growing research area. Even though there are
already some commercial products for monitoring groups of
live animals, or slaughtered animals at the abattoir, there are
still several challenges that demand intense research for the
successful development and deployment of practical solutions.
Current challenges involve the development and implementation
of reliable CVS for the autonomous acquisition of data regarding
single or multiple traits in farm conditions, as there are still
few studies that evaluated these CVS using validation data
sets, including different animals in the same farm or across
multiple farms. Another area of importance is individual animal
identification and tracking since most of the currently developed
methods are still prone to error. There is also the need for
the development of methods to connect the increasing number
of devices used for different applications. This may enable
the implementation of more sophisticated predictive algorithms
based on multiple inputs and multiple outputs (joint prediction
of multiple traits). Finally, there is the need for the development
of applications for the delivery of the information generated
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by the CVS to connected systems thus generating valuable
information to farmers and managers. This is the focus of areas
such as big data and internet of things which, even though are not
the focus of this review, these areas are going to be indispensable
for the further development of CVS animal breeding programs
and production systems.
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Losses due to infectious diseases are one of the main factors affecting productivity in the
swine industry, motivating the investigation of disease resilience-related traits for genetic
selection. However, these traits are not expected to be expressed in the nucleus herds,
where selection is performed. One alternative is to use information from the commercial
level to identify and select nucleus animals genetically superior for coping with pathogen
challenges. In this study, we analyzed the genetic basis of antibody (Ab) response to
common infectious pathogens in health-challenged commercial swine herds as potential
indicator traits for disease resilience, including Ab response to influenza A virus of swine
(IAV), Mycoplasma hyopneumoniae (MH), porcine circovirus (PCV2), and Actinobacillus
pleuropneumoniae (APP; different serotypes). Ab response was measured in blood at
entry into gilt rearing, post-acclimation (∼40 days after entering the commercial herd),
and parities 1 and 2. Heritability estimates for Ab response to IAV, MH, and PCV2 ranged
from 0 to 0.76. Ab response to APP ranged from 0 to 0.40. The genetic correlation (rG)
of Ab response to IAV with MH, PCV2, PRRSV, and APPmean (average Ab responses for
all serotypes of APP) were positive (>0.29) at entry. APPmean was negatively correlated
with PCV2 and MH at entry and parity 2 but positively correlated with MH at post-
acclimation and parity 1. Genomic regions associated with Ab response to different
APP serotypes were identified on 13 chromosomes. The region on chromosome 14
(2 Mb) was associated with several serotypes of APP, explaining up to 4.3% of the
genetic variance of Ab to APP7 at entry. In general, genomic prediction accuracies for Ab
response were low to moderate, except average Ab response to all infectious pathogens
evaluated. These results suggest that genetic selection of Ab response in commercial
sows is possible, but with variable success depending on the trait and the time-point of
collection. Future work is needed to determine genetic correlations of Ab response with
disease resilience, reproductive performance, and other production traits.
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INTRODUCTION

Infectious diseases are well known to cause productivity losses
in the swine industry (Lee et al., 2012; Lewis et al., 2007),
motivating the investigation of traits related to disease resilience
for genetic selection. It has been shown that there is genetic
variation in total antibody (Ab) response to swine pathogens,
such as porcine reproductive and respiratory syndrome (PRRS)
virus (PRRSV) (Serão et al., 2014; Hess et al., 2018; Abella
et al., 2019). Selection of more resilient animals could decrease
the losses caused by the decreased performance of animals
exposed to pathogens.

A common limitation for genetic selection of improved host
response to infectious pathogens is that these traits are not
expected to be expressed in the nucleus, where selection is
performed, because of high biosecurity (Faust et al., 1993).
Disease traits are usually expressed at the commercial level, such
as during the acclimation or introduction period of gilts into a
commercial herd, when they are exposed to several pathogens
(Serão et al., 2016). Therefore, one alternative would be to
identify genetically superior animals in their ability to overcome
the pathogen challenge at the commercial level and use this
information to select animals at the nucleus level.

The interest for improved performance in the presence of
a wide range of infectious pathogens has led to several studies
showing genetic variation for resilience-related traits in livestock
(Clapperton et al., 2009; Engle et al., 2014; Serão et al., 2014).
More specifically, it has been shown that host genetics plays a
role in differences in Ab response in swine (Flori et al., 2011).
For instance, pigs selected for a higher immune response after
8 generations presented higher Ab response to various antigens
and grew faster than pigs with a lower immune response (Mallard
et al., 1998). For PRRSV, the major viral pathogen impacting
swine production, moderate to high heritability (h2 = 0.38–0.46)
has been reported for Ab response to this disease in commercial
gilts (Serão et al., 2016; Sanglard et al., 2020). Dunkelberger et al.
(2017) reported a high h2 for PRRS viral load (0.61) but not for
porcine circovirus type 2 (PCV2; 0.09). In their study, pigs were
vaccinated to PRRSV and co-infected with field strains of both
viruses. However, other common pathogens, such as influenza
A virus of swine (IAV), Mycoplasma hyopneumoniae (MH),
and Actinobacillus pleuropneumoniae (APP) are also involved in
the porcine respiratory disease complex (Thacker et al., 1999,
2001; Bates et al., 2009), which is one of the main causes
of economic losses in the swine industry. Nonetheless, host-
genomic studies of animals exposed to these pathogens are not
available in the literature.

Studies have shown that genomic selection using estimates
of marker effects on crossbred animals from the commercial

Abbreviations: Ab, antibody; AGP, accuracy of genomic prediction; APP,
Actinobacillus pleuropneumoniae; CG, contemporary groups; GC, gene call;
GRM, genomic relationship matrix; GWAS, genome-wide association studies; h2,
heritability; IAV, influenza A virus of swine; MH, Mycoplasma hyopneumoniae; P1,
parity 1; P2, parity 2; PCV2, porcine circovirus type 2; PRRS, porcine reproductive
and respiratory syndrome; PRRSV, PRRS virus; QTL, quantitative trait loci; rg,
genetic correlation; SCD, seroconverted datasets; SSC, chromosomes; TGVM, total
genetic variance explained by the markers.

level is a good alternative to increase response to selection and,
consequently, the performance of commercial animals (Dekkers,
2007). Serão et al. (2016) and Sanglard et al. (2020) showed
that Ab response to PRRSV associated with genomic information
collected at the commercial level can be used to predict breeding
values for Ab response to PRRSV with moderate to high accuracy
in crossbred sows. Moderate accuracy of prediction of breeding
values for Ab response has also been reported for Newcastle
disease and avian influenza virus in chickens (Liu et al., 2014).
These results support the possibility of using Ab response for
selection for resilience in commercial animals. However, genomic
analyses of many common infectious pathogens in pigs are
lacking in the literature. Therefore, the objective of this study
was to investigate the genetic basis of Ab response to common
infectious pathogens in swine production in replacement gilts
during acclimation raised in commercial farms [same population
as described in Serão et al. (2016)] by (1) estimation of
co-variance components of Ab response; (2) identification of
quantitative trait loci (QTL) for Ab response; and (3) assessment
of the genomic prediction accuracies for Ab response. In order
to maximize the robustness and relevance of results to the field,
the data collected in this study was by design highly variable,
representing data from 23 commercial farms across Canada, with
different gilt acclimation and vaccination protocols.

MATERIALS AND METHODS

All procedures for the experiment were performed according to
the Canadian Council on Animal Care (2020) base on the Guide
to the Care and Use of Experimental Animals, vol. 1, Olfert ED,
Cross BM (Ottawa, ON, Canada).

Animals
The datasets used in this study were provided by a consortium
of pig breeding companies (genetic suppliers) that operate in
Canada (PigGen Canada)1. The data included 2,848 commercial
F1 (Landrace × Large White) replacement gilts sourced from
17 high-health multipliers from seven breeding companies, all
members of PigGen Canada. Replacement gilts were introduced
to 23 commercial farms with historical occurrences of natural
disease challenges, following the standard acclimation procedures
of each farm, including each farm’s routine vaccination protocols,
in contemporary groups (CG) of 10 to 63 animals (27 ± 15
animals per CG), with a total of 107 CG. The summarized
information of the vaccination protocols provided by each farm
is provided in Table 1. Time of vaccination differed between
farms and occurred during entry to the commercial level, during
quarantine, during acclimation, in mid-lactation, after weaning,
or at alternate parities. Records on administration and dates
of vaccination were not available. There were also no records
on whether animals were naturally infected with any of those
pathogens. A full description of the dataset can be found in
Serão et al. (2016).

1http://www.piggencanada.org/
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TABLE 1 | Counts and reported vaccination protocols1 for contemporary groups
(CG) by genetic supplier (GS).

GS MH CH CG (n) N Qt PRRSV Vx IAV Vx MH Vx

1 1 1 4 134 Yes Yes Yes Yes

2 3 99 Yes Yes Yes No

2 3 6 121 Yes No No Yes

3 4 5 110 Yes Yes Yes Yes

2 4 5 9 120 No Yes No Yes

5 6 5 90 No Yes Yes Yes

7 4 47 Yes No No No

6 8 4 83 Yes No No Yes

3 7 9 9 417 Yes Yes Yes Yes

8 10 3 120 Yes No Yes Yes

4 9 11 4 133 Yes No Yes Yes

12 5 92 Yes No No Yes

10 13 5 150 Yes No Yes Yes

5 11 14 3 101 Yes Yes Yes Yes

15 4 97 No No No Yes

12 16 5 131 No Yes Yes Yes

13 17 4 120 Yes Yes Yes Yes

6 14 18 7 174 No Yes Yes Yes

19 2 50 No Yes Yes No

15 20 3 75 No Yes Yes Yes

21 3 74 Yes Yes Yes Yes

7 16 22 4 159 Yes No No No

17 23 4 151 Yes No No Yes

1Pathogens potentially vaccinated for at each CG; GS, recoded ID for genetic
supplier; MH, recoded ID for multiplier herd; CH, recoded ID for commercial
herd; CG (n), number of contemporary groups; N, number of gilts per CG;
Qt, quarantine, PRRSV Vx, CG vaccinated to Porcine Reproductive Respiratory
Syndrome Virus; IAV Vx, CG vaccinated to Influenza A Virus; MH Vx, CG vaccinated
to Mycoplasma hyopneumoniae.

Phenotypic Data
Blood samples were collected from all replacement gilts at four
time-points: when entering the commercial herd (Entry), after
the acclimation period (Post-acclimation), and during parity
1 (P1), and parity 2 (P2). The average time (± standard
deviation) between Entry and Post-acclimation sampling was
40.8 ± 16.3 days, ranging from 29 to 88 days. Sample collection
for P1 and P2 occurred between farrowing and weaning, but
the exact date of collection was not available. Animals were not
deliberately infected with any of the pathogens in the study;
therefore, the level of exposure (if present) to these antigens
was unknown and was likely variable, which further supports
this study as a model for evaluating the overall genetic basis of
response to pathogens in commercial swine populations.

Antibody response to PRRSV, IAV, MH, PCV2, and 8
serotypes of APP (APP1, 2, 3, 5, 7, 10, 12, and 13) were
measured as sample-to-positive (S/P; PRRSV, MH, PCV2, and
APP) or sample-to-negative (S/N; for IAV only) ratios. Antibody
measurements were performed using ELISA (IDEXX PRRS X3,
IDEXX Laboratories Inc., Westbrook, United States) for PRRSV,
LC-LPS ELISA, developed by the Groupe de Recherche sur
les Maladies Infectieuses en Production Animale (GREMIP;
Université de Montréal, Montreal, Canada) for all serotypes

of APP, IDEXX ELISA for MH; IDEXX Influenza A virus Ab
test kit R© for IAV, and INgezim CIRCO IgG R© for PCV2. All
analyses were performed at GREMIP. Since antibody response to
IAV was the only pathogen measured in the opposite direction
(S/N instead of S/P), we recalculate this measurement as S/P
for analyses to facilitate the interpretation of the results. Two
summaries of Ab response traits were also created: (1) APPmean,
as the mean of S/P for all APP serotype; and (2) MEAN, as
the mean of standardized Ab response (S/P ratio divided by the
standard deviation) to all infectious pathogens, to summarize the
overall Ab response.

Following Serão et al. (2016), five seroconverted datasets
(SCD) were created for each time point (Entry, Post-acclimation,
P1, and P2) and each pathogen (IAV, MH, PCV2, and APP)
based on≥0,≥25,≥50,≥75, and 100% of seroconverted animals
within a CG. For seroconversion, the following diagnostic
thresholds were used: S/P ≥ 0.4 (MH, APP, and PRRSV),
S/N≤ 0.6 (IAV), and S/P > 0 (PCV2). Each pathogen at each time
with a proportion of positive animals was considered a separate
trait. The numbers of animals and mean Ab responses for each
dataset are presented in Table 2. Datasets with less than 500
animals were not analyzed.

Genotypic Data
A total of 316 animals were genotyped with the Illumina
PorcineSNP BeadChip (Illumina Inc., San Diego, United States)
at Delta Genomics (Livestock Gentec, Edmonton, Canada), of
which 48, 1710, and 1857 were genotyped using versions 60 K
v.2, 60 K v.2B, and 80 K, respectively (Illumina Inc., San Diego,
United States). These versions include 62163, 61565, and 68528
single-nucleotide polymorphisms (SNP), respectively. A total of
42145 SNP was common to all three versions, and 38191 SNP
that passed quality controls were used for the genomic analyses,
based on gene call (GC) score >0.5, animal call rate of 80%, and
genotype call rate of 99.48%. GC scores measure the quality of
the genotyping call for each genotyped SNP within an animal.
Of the 3516 genotyped animals, 668 were parents of the gilts
and did not have Ab response phenotypes. Still, we kept their
genotype information in the dataset to make use of their genomic
relationships. A full description of the genotypic data can be
found in Serão et al. (2016).

Genetic Parameters
An animal model with a genomic relationship matrix (GRM)
from the first method described by VanRaden (2008) was used
to estimate co-variance parameters using the following model:

yij = µ+ CGi + uij + eij

where yij is the phenotype of the jth individual of the ith CG;
µis the intercept; CGiis the effect of the ith level of the fixed
effect of CG; uijis the breeding value of the jth individual of the
ith CG, withu ∼ N(0, GRMσ2

u), where GRM is the genomic
relationships matrix based on 38191 SNP and 3516 individuals,
with SNP genotypes coded as 0/1/2 and averaged and centered
within multiplier herd; and eij is the random residual effect,
withe ∼ N(0, Iσ2

e ), where I is the identity matrix. The GRM
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TABLE 2 | Number of individuals and mean of antibody response across pathogens1, time points, and seropositive (%) datasets.

Traits2 %3,4 Entry Post-acclimation Parity 1 Parity 2

N4 (positive) Mean (SD) N5 (positive) Mean (SD) N5 (positive) Mean (SD) N5 (positive) Mean (SD)

IAV 0 2478 (0.49) 0.65 (0.34) 2354 (0.68) 0.51 (0.32) 1968 (0.82) 0.37 (0.29) 1280 (0.88) 0.30 (0.24)

25 1537 (0.76) 0.47 (0.28) 1907 (0.83) 0.41 (0.26) 1814 (0.88) 0.33 (0.24) 1220 (0.92) 0.27 (0.2)

50 1351 (0.82) 0.43 (0.26) 1786 (0.86) 0.40 (0.25) 1693 (0.92) 0.30 (0.21) 1220 (0.92) 0.27 (0.2)

75 877 (0.90) 0.37 (0.22) 1463 (0.90) 0.37 (0.24) 1543 (0.94) 0.28 (0.2) 1132 (0.94) 0.26 (0.19)

MH 0 2479 (0.37) 0.50 (0.62) 2355 (0.65) 0.87 (0.73) 1969 (0.78) 0.97 (0.65) 1280 (0.77) 1.02 (0.67)

25 1147 (0.76) 0.95 (0.64) 1927 (0.78) 1.04 (0.70) 1684 (0.90) 1.12 (0.58) 1081 (0.90) 1.18 (0.60)

50 935 (0.84) 1.07 (0.63) 1643 (0.85) 1.15 (0.69) 1637 (0.92) 1.14 (0.57) 1023 (0.93) 1.22 (0.58)

75 656 (0.94) 1.29 (0.59) 1074 (0.96) 1.41 (0.64) 1410 (0.95) 1.22 (0.55) 946 (0.95) 1.26 (0.56)

100 – 564 (1.00) 1.73 (0.56) 622 (1.00) 1.49 (0.52) 503 (1.00) 1.48 (0.51)

PCV2 0 2387 (0.84) 2967 (7823) 2329 (0.94) 9121 (26210) 1912 (0.94) 5239 (22556) 1257 (0.97) 2461 (9776)

25 2346 (0.85) 3017 (7881) 2292 (0.95) 9268 (26395) 1912 (0.94) 5239 (22556) 1257 (0.97) 2461 (9776)

50 2052 (0.91) 3403 (8347) 2202 (0.97) 9636 (26865) 1861 (0.96) 5374 (22847) 1257 (0.97) 2461 (9776)

75 1782 (0.95) 3847 (8866) 2094 (0.99) 10056 (27458) 1772 (0.97) 5619 (23387) 1239 (0.98) 2492 (9843)

100 955 (1.00) 5471 (11596) 1760 (1.00) 11703 (29639) 1221 (1.00) 7592 (27725) 908 (1.00) 3140 (11375)

PRRS 0 2454 (0.03) 0.07 (0.24) 2342 (0.81) 1.19 (0.72) 2022 (0.61) 0.94 (0.9) 1378 (0.56) 0.78 (0.79)

25 – – 2053 (0.93) 1.36 (0.61) 1713 (0.69) 1.05 (0.9) 984 (0.72) 0.98 (0.8)

50 – – 1886 (0.95) 1.4 (0.57) 1020 (0.80) 1.25 (0.93) 549 (0.84) 1.18 (0.81)

75 – – 808 (0.98) 1.45 (0.53) – – – –
APP1 0 2478 (0.06) 0.25 (0.17) 2354 (0.08) 0.29 (0.17) 1969 (0.05) 0.26 (0.08) 1280 (0.03) 0.25 (0.06)

APP2 0 2479 (0.04) 0.23 (0.08) 2354 (0.09) 0.27 (0.09) 1968 (0.11) 0.26 (0.11) 1280 (0.13) 0.25 (0.12)

APP3 0 2478 (0.01) 0.26 (0.05) 2354 (0.03) 0.28 (0.06) 1968 (0.14) 0.32 (0.15) 1280 (0.15) 0.31 (0.16)

APP5 0 2477 (0.02) 0.22 (0.06) 2354 (0.02) 0.24 (0.06) 1968 (0.04) 0.24 (0.08) 1280 (0.04) 0.23 (0.08)

APP7 0 2479 (0.01) 0.16 (0.04) 2354 (0.01) 0.17 (0.05) 1968 (0.10) 0.23 (0.16) 1280 (0.12) 0.24 (0.18)

APP10 0 2478 ( < 0.01) 0.19 (0.05) 2354 ( < 0.01) 0.2 (0.05) 1968 (0.02) 0.23 (0.08) 1280 (0.03) 0.22 (0.07)

APP12 0 2478 (0.03) 0.21 (0.08) 2354 (0.03) 0.24 (0.09) 1968 (0.21) 0.32 (0.19) 1280 (0.18) 0.31 (0.19)

APP13 0 2478 (0.01) 0.23 (0.05) 2354 (0.01) 0.24 (0.05) 1967 (0.04) 0.25 (0.09) 1281 (0.04) 0.26 (0.08)

APPmean 0 2479 (0.04) 0.22 (0.04) 2354 (0.04) 0.24 (0.05) 1969 (0.12) 0.26 (0.07) 1281 (0.05) 0.26 (0.09)

MEAN 0 2505 2.57 (0.59) 2364 2.68 (0.49) 2020 1.96 (0.52) 2048 2.49 (1.05)

1Antibody response to Porcine Reproductive and Respiratory Syndrome is not being shown as it has been previously published by Serão et al. (2016). 2Traits: IAV,
antibody response to influenza A virus; MH, antibody response to Mycoplasma hyopneumoniae; PCV2, antibody response to porcine circovirus type 2; APP, antibody
response to Actinobacillus pleuropneumoniae from different serotypes (represented by the different numbers; APPmean, mean of antibody response to all serotypes
of APP; MEAN, mean of standardized antibody response to all infectious pathogens. 3Minimum percentage of seropositive animals within a contemporary group (%
seroconverted data). 4% seroconverted data were used when the total number of animals were >500. 5N, Total number of animals (proportion of positive animals based
on the diagnostic thresholds of: SIV ≤ 0.6; MH, APP, and PRRS ≥ 0.4; PCV2 > 0).

was created separately for pigs from each breeding company,
and relationships between breeding companies were assumed to
be zero. The fixed effect of CG was included in the model to
account for environmental effects due to the farms and other
possible environmental effects confounded within the farms
(i.e., the timing of PRRSV exposure, if occurred), and not for
comparisons between CG.

Bivariate analyses were performed between Ab response to
two pathogens within a time-point, and between two time-points
for the same pathogen. Co-variance components were estimated
for each of the %SCD and were used to estimate heritabilities
(h2) and genetic correlations(rG). The same fixed and random
effects as used for the univariate model were also used for the
bivariate analyses.

Genome-Wide Association Studies
(GWAS)
Genome-wide association studies (GWAS) were performed using
Bayesian variable selection methods (Habier et al., 2011) using
GenSel 4.4 (Fernando and Garrick, 2009). The model used in
these analyses included an intercept, the fixed effect of CG, and

the random allele substitution effects of SNP. First, a BayesC0
analysis, a method that fits all SNPs simultaneously in the
model, assuming each variance across SNPs, was performed to
estimate the variance components for subsequent analyses. Then,
BayesCπ was used to estimate the proportion of SNP with zero
effect (π). The estimate of π was 0.99 for all datasets. The
final GWAS were based on the BayesB method, with π equal
to 0.99. One-Mb SNP windows that explained at least 1% of
total genetic variance explained by the markers (TGVM) and
that had a posterior probability of inclusion (PPI) greater than
0.7 (Garrick and Fernando, 2013) were considered significantly
associated with the trait analyzed. The order of the SNP was
based on the Sus scrofa 11.1 assembly. Candidate genes within 1-
Mb in each direction of the identified SNP were identified using
Ensembl BioMart (Kinsella et al., 2011).

Genomic Prediction
Genomic prediction was performed using BayesC0, BayesB,
and BayesC (Habier et al., 2011). Analyses were performed
for each trait and for each %SCD using the same models as
described for GWAS in GenSel 4.4 (Fernando and Garrick, 2009).
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Seven-fold cross-validation was used, in which data from six
breeding companies were used for training and data from the
remaining breeding company for validation. This was repeated
seven times until all breeding companies were used once for
validation. Thus, the relationships between folds (i.e., between
genetic backgrounds) were decreased and those within folds
were increased. These analyses were performed for each dataset.
Accuracy of genomic prediction (AGP) was defined as the
correlation between genomic estimated breeding values and
phenotypes adjusted for estimates of fixed effects divided by the
square root of the estimate of h2 using the whole dataset. For
the seven-fold cross-validation, the accuracy was weighted by the
number of individuals in the validation dataset.

RESULTS

Phenotypic Data
The proportion of positive animals in each dataset is shown in
Table 2. For IAV, MH, and PRRSV, most (i.e., >50%) of the
CG had at least one seropositive animal after Post-acclimation
and during P1 and P2, while for PCV2, most of the CG were
seropositive at entry. Animals came from a high-biosecurity
level (multiplier herd) and entered commercial farms where
they were mixed with other pigs on the farm and had contact
with diverse pathogens. Therefore, the lower proportion of
seropositive animals at entry was expected. However, while for
PRRSV the higher proportion of CG with at least one seropositive
animal occurred at Post-acclimation, for IAV, MH, and PCV2,
the proportion of CG with at least one seropositive animal was
higher at P1 and P2. For APP, the proportion of CG with at
least one seropositive animal was low at all time-points (0 to
21% of CG). There is little information on the actual prevalence
of APP infection in the literature; however, a prevalence of 11%
for pigs showing pleuritis in Canada has been reported (Amory
et al., 2007), which may reflect the low incidence of this pathogen
across these farms. There was also evidence of co-exposure
during different time-points of the study (Figure 1). At entry,
co-exposure (natural infection or vaccination) with IAV, MH,
and PCV2 was the most common (47.9%). After the acclimation
period, PRRSV became more prevalent in the co-exposure and
71.8% of CG were seropositive for IAV, MH, PCV2, and PRRSV.
This co-exposure persisted to P1 (76.0%) and P2 (64.9%). If we
consider only the CG with all the animals seroconverted (i.e.,
100% SCD), PCV2 only or co-exposure with PCV2 and PRRSV
were the most common (≥16.8%) at all time-points.

Genetic Parameters
Heritability estimates (h2) for each trait for each dataset are
presented in Table 3. For IAV, MH, and PCV2, h2 estimates for
these traits were low to moderate, ranging from <0.01 ± 0.05
(PCV2 at P1) to 0.76 ± 0.07 (PCV2 at entry, 100% SCD). In
general, h2 estimates numerically increased for datasets with a
higher proportion of seropositive animals. This trend was more
evident at entry. In contrast, APP serotypes had overall greater
h2 estimates; APP10 showed the highest average h2 estimate
(∼0.25), peaking at P2 (h2 = 0.38± 0.08), while APP2 had overall

the lowest estimate (∼0.06). Among all traits analyzed, APPmean
had the highest average h2 estimate, ranging from 0.29 ± 0.06
at P1 to 0.55 ± 0.07 at P2. For overall Ab response (MEAN),
h2 estimates ranged from low (0.08 ± 0.05; P2) to moderate
(0.39 ± 0.5; post-acclimation). Overall, results indicate that
selection for Ab response to some of these infectious pathogens
is possible, depending on the time of collection.

Estimates of additive genetic variance (σ2
u) are presented

in Figure 2. Similar to the h2 estimates for IAV, MH, and
PCV2, estimates of σ2

u numerically increased as the proportion
of positive animals increased in the dataset (Figure 2A). For
APP, the estimate of σ2

u was numerically higher during P2. On
average, APP2 had the lowest estimates of σ2

u and APPmean, the
highest (Figure 2B).

Estimates of phenotypic and genetic correlations are shown in
Figure 3. For all time-points, phenotypic correlations (Figure 3;
upper diagonal) were generally low. The low phenotypic
correlation associated with a low genetic correlation may indicate
a low environmental correlation as well. Cases of low phenotypic
correlation associated with a moderate to high genetic correlation
may indicate a negative environmental correlation. Due to the
low h2 of Ab response to the pathogens studied, we are reporting
rG estimates for the %SCD that had the highest h2 within each
time-point and for APPmean. Estimates for each serotype of
APP are available in Supplementary Figure 1. In summary,
among APP, estimates of rG were positive and moderate to high,
ranging from 0.20 ± 0.19 to 0.99 ± 0.05. Between IAV and
APP, estimates of rG were negative at entry and post-acclimation.
For the %SCD (Figure 3; lower diagonal), estimates of rG of
IAV with MH, PCV2, and PRRSV were consistently moderate
to high and positive at all time-points, except for IAV and
PCV2 at entry. Between IAV and APPmean, the estimate of rG
was moderate and negative at entry and post-acclimation but
not at P2 (positive and low). Between PCV2 and PRRSV, the
estimate of rG was low to moderate and negative at all time-
points. The estimate of rG between APPmean and PRRSV was
positive at all time-points. Overall, rGestimates of APPmean with
all pathogens were consistent across time-points but among
the other pathogens they were more variable, suggesting that
genetic changes in one Ab trait may result in complex correlated
responses to selection.

Estimates of rG between time-points for a given pathogen are
presented in Table 4. All estimates were positive and generally
moderate to high for all traits, especially between consecutive
time-points. APP1 showed the highest estimates of rG between
time points, ranging from 0.71 ± 0.17 between entry and P1 to
0.99 ± 0.08 between P1 and P2. On average, APPmean had the
highest estimate of rG (0.77) compared to IAV (0.60), MH (0.62),
PCV2 (0.51), and MEAN (0.61). Overall, these results indicate
that selection for increased Ab response at one time-point would
increase Ab response at all time-points.

Genome-Wide Association Studies
(GWAS)
Genomic regions that explained at least 1% of TGVM and
that had a PPI > 0.7 are presented in Table 5. Within each
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FIGURE 1 | Proportion (y-axis) of contemporary group (CG) considered seropositive when a minimum percentage of individuals within this CG is positive (x-axis) for
each time point: (A) Entry; (B) post-acclimation; (C) at Parity 1, and (D) at Parity 2. The colors represent the status of the individuals: clean, when free of any
infectious diseases; IAV, influenza A virus; MH, Mycoplasma hyopneumoniae; PCV2, porcine circovirus type 2; and PRRS, Porcine Reproductive and Respiratory
Syndrome; and all possible combinations of these infectious diseases.

analysis window, we selected the SNP that explained most
of the TGVM and fitted the SNP individually in a total
of 1-Mb window to estimate the genetic variance explained
by that specific SNP (Supplementary Table 1). Several QTL
were identified for APP serotypes, with most of them at
entry and post-acclimation. Many of the identified regions
described below included several candidate genes. For APP3
at entry, we identified 4 QTL on Sus scrofa chromosomes
(SSC) 8, 9, 12, and 14 (2 Mb). The same QTL on SSC
14 was identified at post-acclimation. For APP5 at entry, 6
QTL on SSC 1, 4, 6, 9, and 13 and for at post-acclimation
5 QTL were located on SSC 2, 14, 6, and 8. For APP7 at
post-acclimation, 2 QTL were identified on SSC 6 and 14.
For APP 10 at entry, 1 QTL was identified on SSC 16. For
APP13 at entry, there were 2 QTL on SSC 1 and 9; at post-
acclimation, 2 QTL on SSC 14 and 16; and at P2, 2 QTL on
SSC 6 and 7. For APPmean, there was 1 QTL on SSC 6 at
entry; 3 QTL on SSC 7, 11, and 19 at post-acclimation; and
2 QTL at P2 on SSC 6 and 12. No QTL was identified for
the other traits. The region on SSC14 (2 Mb) was associated
with four different serotypes at entry and post-acclimation,

suggesting that this is a key pleiotropic region associated with Ab
response to APP.

Genomic Prediction Accuracies
Genomic prediction results are presented in Figure 4 for MH,
IAV, and PCV2, using BayesB. AGP for IAV were low at all
time points and all %SCD, except for 0% SCD at P1, ranging
from −0.16 (post-acclimation) to 0.42 (P1). For MH, AGP were
also low, ranging from −0.09 (post-acclimation) to 0.28 (P2).
In contrast, PCV2 had the highest AGP among all pathogens at
entry and post-acclimation, reaching 0.60 and 0.64, respectively.
For PCV2 at P2, AGP were very low and negative, ranging
from −0.55 (0% SCD) to −0.40 (100% SCD). Among methods
evaluated, BayesB and BayesC had slightly higher accuracy than
BayesC0. All results are compiled in Supplementary Table 2.

For all APP, AGP were low at all time-points (Figure 5). At
each point, average AGP for APP using BayesB were 0.04 at
entry, and 0.10 at post-acclimation, P1, and P2. Among the APP,
APP7 showed the highest AGP (up to 0.31 at post-acclimation)
and APP10, the lowest (up to −0.09 at entry). For APPmean,
AGP ranged from 0.10 (P1 and P2) to 0.16 (post-acclimation).
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TABLE 3 | Heritability estimates1 of antibody response to common infectious
pathogens2 in pigs by time-point.

Traits3 %4 Entry Post-accl5 Parity 1 Parity 2

IAV 0 0.07 (0.04) 0.05 (0.04) 0.02 (0.04) 0.15 (0.07)

25 0.11 (0.06) 0.08 (0.05) < 0.01 (0.04) 0.14 (0.07)

50 0.18 (0.07) 0.10 (0.05) 0.05 (0.05) 0.14 (0.07)

75 0.46 (0.10) 0.09 (0.05) 0.07 (0.05) 0.01 (0.05)

MH 0 0.19 (0.05) 0.15 (0.04) 0.17 (0.05) 0.10 (0.06)

25 0.27 (0.08) 0.18 (0.05) 0.19 (0.05) 0.12 (0.07)

50 0.27 (0.09) 0.19 (0.06) 0.21 (0.06) 0.11 (0.07)

75 0.31 (0.11) 0.20 (0.07) 0.19 (0.06) 0.13 (0.07)

100 0.31 (0.17) 0.21 (0.10) 0.12 (0.10) 0.14 (0.11)

PCV2 0 0.10 (0.04) 0.13 (0.05) < 0.01 (0.04) 0.02 (0.03)

25 0.10 (0.04) 0.13 (0.05) < 0.01 (0.04) 0.02 (0.03)

50 0.11 (0.05) 0.13 (0.05) < 0.01 (0.04) 0.02 (0.03)

75 0.15 (0.06) 0.13 (0.05) < 0.01 (0.04) 0.02 (0.03)

100 0.76 (0.07) 0.02 (0.04) < 0.01 (0.05) 0.02 (0.04)

APP1 0 0.29 (0.05) 0.16 (0.04) 0.14 (0.05) 0.30 (0.07)

APP2 0 0.13 (0.04) 0.11 (0.04) < 0.01 (0.04) 0.01 (0.05)

APP3 0 0.25 (0.04) 0.27 (0.05) 0.10 (0.04) 0.14 (0.06)

APP5 0 0.22 (0.04) 0.30 (0.05) 0.03 (0.04) 0.10 (0.06)

APP7 0 0.10 (0.04) 0.40 (0.05) < 0.01 (0.01) 0.25 (0.07)

APP10 0 0.21 (0.04) 0.24 (0.05) 0.17 (0.05) 0.38 (0.08)

APP12 0 0.22 (0.04) 0.27 (0.05) 0.22 (0.05) 0.19 (0.07)

APP13 0 0.25 (0.04) 0.24 (0.05) 0.15 (0.05) 0.31 (0.07)

APPmean 0 0.37 (0.05) 0.38 (0.05) 0.29 (0.06) 0.55 (0.07)

MEAN 0 0.32 (0.05) 0.39 (0.05) 0.14 (0.05) 0.08 (0.05)

1Standard error (SE) within parenthesis. 2Antibody response to Porcine
Reproductive and Respiratory Syndrome is not being showed as it has been
previously published by Serão et al. (2016). 3Traits: IAV, antibody response to
influenza A virus; M, antibody response to Mycoplasma hyopneumoniae; PCV2,
antibody response to porcine circovirus type 2; APP, antibody response to
Actinobacillus pleuropneumoniae from different serotypes (represented by the
different numbers; APPmean, mean of antibody response to all serotypes of APP;
MEAN, mean of standardized antibody response to all infectious pathogens.
4Minimum percentage of seropositive animals within a contemporary group.
5Post-accl, post-acclimation.

When analyzing all serology traits together, the AGP for MEAN
were moderate to high (Figure 5), ranging from 0.45 (post-
acclimation) to 1.05 (P1). Overall, these results indicate that
genomic prediction for Ab response is possible, but results vary
among traits and time-points.

DISCUSSION

In this study, we performed genetic and genomic analyses of
Ab response to common infectious pathogens in pigs (IAV,
MH, PCV2, and APP) that, along with PRRSV, have been
identified as the main agents causing porcine respiratory disease
complex, which causes considerable economic losses in the swine
industry (Thacker et al., 2001). Few studies are available in the
literature regarding the genetic basis of Ab response to these
pathogens, especially for IAV and APP. Genetic parameters,
GWAS, and genomic prediction accuracies for PRRSV using the
same population from this study have been previously reported
(Serão et al., 2016). Therefore, in this study, we focused on the

relationship between Ab response to PRRSV with Ab response
to all other pathogens. It is important to notice that none of the
animals in this experiment were artificially inoculated with any
of these pathogens. Also, different types of vaccination were used
in some of the farms included in this study. However, limited
information was available for these, including confirmation
on whether these protocols were used for the animals in
this study. However, using modified live vaccines is expected
to generate similar humoral immune responses to wild-type
infection [example for PRRSV (Montaner-Tarbes et al., 2019)].
For the %SCD, the increase in the proportion of seroconverted
animals was confounded with a decrease in sample size, and
the latter has been previously shown to result in decreased AGP
for Ab response to PRRSV in this population (Serão et al.,
2016). Moreover, the exact day of blood sample collection for
Ab response measurement is uncertain but was confounded
with CG. Therefore, the effect of CG should adjust for this
effect in this dataset. Other factors, such as diet, management,
season, and others, were also confounded in the study. However,
differences in diets are not expected to affect Ab response to
pathogens and most likely would not affect the conclusions
(Pujols et al., 2016; Schweer et al., 2018; Colpoys et al., 2020).
Nonetheless, these potential effects were captured by including
the fixed effect of CG in the model. Despite these limitations
of this study, this work provides genomic analyses, including
estimates of h2 and rG, and identified regions with the potential
to be used for genomic selection for an improved immune
response to pathogens in commercial gilts and sows. With the
increased pressure by society for animal welfare, the industry has
been motivated to investigate resilience traits. Antibody response
to specific diseases could reflect the overall immune status of
the individual, and although not all pathogens stimulate the
similar humoral immune response, it is an important trait to be
investigated. Our hypothesis is that selection for an improved Ab
response to pathogens is followed by selection for better immune
defense of the organism when the animal is facing diseases and,
consequently, lesser disturbance of the performance in healthy
challenging environments (i.e., more resilience).

Summarizing, although there were some limitations on the
study, such as the lack of confirmation of whether animals were
vaccinated and/or naturally infected, the existence of several
confounding factors (e.g., diet, management, and others), and
the lack of information on how long after the exposure the Ab
was collected, the advantages prevailed over the disadvantages.
The applicability of these results in commercial settings,
the possibility of using crossbred performance for selection,
identifying novel traits for selection of resilience in pigs, and the
use of relevant pathogens common in the swine production are
valuable to the pig industry.

Genetic Parameters
To the best of our knowledge, this is the first study reporting
genetic parameters for Ab response to MH, PCV2, and APP
in gilts and sows. Estimates of h2 were low to moderate for
all Ab responses analyzed. Estimates of h2 for Ab response
to IAV were, in general, low, except at entry (0.46), when
75% of the animals within a CG were positive. Previously,
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FIGURE 2 | (A) Genetic variances for the seroconverted data for influenza A virus (IAV), Mycoplasma hyopneumoniae (MH), porcine circovirus type 2 (PCV2), and
Porcine Reproductive and Respiratory Syndrome (PRRS); and (B) for Actinobacillus pleuropneumoniae (APP). The y-axis represents the genetic variances, and the
x-axis represents the minimum % of positive animals within a contemporary group (A) or APP (B). APPmean represents the average of all serotypes of APP analyzed
as the phenotype. The colors represent the different time-points of antibody response collection.

an estimate of h2 for Ab response to IAV of 0.37 has been
reported in F1 (Landrace × Large White) piglets (∼76 days
old) after vaccination (two doses) to IAV (Zanella et al., 2015).
It is important to note, however, that our data were collected
across multiple CGs. Thus, multiple confounding effects could
explain the lower estimates in our study, such as the fact that
not all animals in our study were positive to IAV. Our data is
further complicated by the uncertain exposure of the animals, i.e.,
whether they were naturally infected or vaccinated, the number of
vaccination doses received, and the age of the animals when Ab
response was measured.

Among all individual pathogens evaluated in our study, MH,
in general, presented the highest h2 of Ab response. Okamura
et al. (2012) reported an h2 estimate of 0.23 for lesion score
of mycoplasma pneumonia measured in slaughtered pigs that
were experimentally inoculated with MH. In their study, 59%
of the animals were considered positive based on lung lesions
(Okamura et al., 2012). Their results are similar to ours, where
we obtained an average estimate of h2 of 0.20 for the 50%
seroconverted dataset. In another study, also analyzing the score
of mycoplasma pneumonia of swine based on lung lesions in
slaughtered pigs after vaccination at 6 and 8 weeks of age, the
estimate of h2 was 0.09 (Sato et al., 2016). These two results
are not directly comparable with ours since the animals were

experimentally infected and the phenotype analyzed was not
the same. However, these are, to the best of our knowledge,
the only reports on the genetic basis of MH in pigs available
in the literature.

For PCV2, h2 estimates were low at all time-points, except for
CG for which all animals were seropositive at entry. Although
not analyzing the same trait, Dunkelberger et al. (2017) reported
an h2 estimate of 0.09 for viral load of PCV2 after co-
natural infection and vaccination to PRRSV, where 100% was
experimentally infected with both pathogens. On the other hand,
Walker et al. (2018) reported a high h2 of 0.64 for PCV2 viral
load, with a major QTL located on the MHC class II region.
In addition, Bates et al. (2009) reported an estimate of 0.16 for
clinical score for PCV2. Although we obtained a very high h2

estimate for PCV2 Ab response at entry including CG where all
animals had seroconverted for PCV2, these results suggested that
response to PCV2 is highly influenced by the environment and
less determined by host genetics. Thus, in order to use PCV2 Ab
response for genetic selection, all animals must be seroconverted
when Ab response data is collected.

For APP, estimates of h2 were low to moderate, ranging from
<0.01 (APP2 and APP7 at P2) to 0.40 (APP7 at post-acclimation).
In general, APP13 showed higher h2 estimates (average of 0.25).
Although all APP serotypes can cause the same disease, some
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FIGURE 3 | Genetic (lower triangular) and phenotypic (upper triangular) correlation between all the traits influenza A virus (IAV), porcine circovirus type 2 (PCV2),
Mycoplasma hyopneumoniae (MH), porcine respiratory and reproductive syndrome (PRRS), average of all Actinobacillus pleuropneumoniae (APPmean), and overall
mean of antibody response for all diseases (MEAN) at entry (A), post-acclimation (B), Parity 1 (C), and Parity 2 (D). The seroconverted dataset with higher heritability
within each time-point was used for these analyses. The blue color corresponds to positive correlation, the red color to negative correlation, and the gray color when
the model did not converge.

TABLE 4 | Estimates1 of genetic correlations within antibody response to common infectious pathogens in pigs between time-points2.

Traits3 Entry vs. Post-accl2 Entry vs. P12 Entry vs. P22 Post-accl vs. P12 Post-accl vs. P22 P1 vs. P22

IAV 0.75 (0.29) 0.94 (0.94) <0.01 (0.44) 0.73 (0.36) 0.65 (0.45) 0.82 (0.43)

MH 0.68 (0.14) 0.48 (0.18) 0.19 (0.30) 0.55 (0.18) 0.63 (0.28) 1 (0.14)

PCV2 0.04 (0.28) NC4 NC4 0.79 (0.49) 0.92 (0.5) 0.96 (1.91)

APP1 0.96 (0.07) 0.71 (0.17) 0.82 (0.13) 0.91 (0.17) 0.99 (0.12) 0.99 (0.08)

APP2 0.90 (0.22) NC4 NC4 NC4 NC4 NC4

APP3 0.95 (0.06) 0.55 (0.20) 0.54 (0.19) 0.61 (0.19) 0.64 (0.16) 0.85 (0.25)

APP5 0.74 (0.08) 0.86 (0.20) 0.87 (0.20) 0.8 (0.22) 0.93 (0.15) 0.69 (0.50)

APP7 0.97 (0.08) 0.67 (0.39) 0.62 (0.26) 0.95 (0.31) 0.33 (0.16) 0.84 (0.34)

APP10 1.00 (0.07) 0.53 (0.16) 0.64 (0.14) 0.63 (0.14) 0.85 (0.11) 0.92 (0.11)

APP12 0.97 (0.05) 0.66 (0.17) 0.08 (0.23) 0.44 (0.16) 0.29 (0.2) 0.81 (0.17)

APP13 0.96 (0.07) 0.16 (0.18) 0.59 (0.14) 0.46 (0.17) 0.81 (0.12) 0.95 (0.12)

APPmean 0.99 (0.04) 0.57 (0.11) 0.64 (0.09) 0.70 (0.10) 0.77 (0.07) 0.97 (0.05)

MEAN 0.91 (0.05) 0.73 (0.15) 0.52 (0.23) 0.77 (0.13) 0.32 (0.22) 0.41 (0.30)

1Standard error (SE) within parenthesis. 2Post-accl, post-acclimation; P1, Parity 1; P2, Parity 2. 3Traits: IAV, antibody response to influenza A virus; M, antibody response
to Mycoplasma hyopneumoniae; PCV2, antibody response to porcine circovirus type 2; APP, antibody response to Actinobacillus pleuropneumoniae from different
serotypes (represented by the different numbers; APPmean, mean of antibody response to all serotypes of APP; MEAN, mean of standardized antibody response to all
infectious pathogens. 4NC, model did not converge.
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TABLE 5 | Percentage of total genetic variance explained for by markers (%
TGVM) within a 1-Mb window for Ab response traits with significant QTLs using a
threshold of 1% TGVM and posterior probability of inclusion (PPI) of 0.70.

Traits1 Time-point SSC2 Position
(Mb)

Number of
SNPs

%
TGVM

PPI

APP3 Entry 8 32 19 2.5 0.86

14 2 12 1.9 0.88

9 121 14 1.9 0.82

12 47 11 1.2 0.72

APP3 Post-acclimation 14 2 12 3.9 0.96

APP5 Entry 9 6 37 1.7 0.93

13 30 13 1.6 0.74

1 58 24 1.5 0.72

6 97 26 1.5 0.82

4 63 21 1.3 0.75

1 108 14 1.3 0.70

APP5 Post-acclimation 2 129 21 2.0 0.84

14 2 12 1.9 0.86

6 137 15 1.5 0.82

8 125 15 1.4 0.86

8 11 26 1.4 0.72

APP7 Post-acclimation 6 157 8 8.8 0.94

14 2 12 4.3 0.95

APP10 Entry 16 68 23 3.1 0.77

APP13 Entry 1 58 24 5.7 0.89

9 121 14 3.5 0.92

APP13 Post-acclimation 14 2 12 2.0 0.74

16 73 22 1.7 0.70

APP13 Parity 2 6 81 23 1.8 0.74

7 92 26 1.6 0.77

APPmean Entry 6 79 20 3.5 0.84

APPmean Post-acclimation X 113 12 6.2 0.99

11 61 20 4.6 0.95

7 74 16 3.0 0.72

APPmean Parity 2 6 93 13 2.7 0.80

12 2 20 2.2 0.77

1Traits, antibody response to APP, Actinobacillus pleuropneumoniae from different
serotypes (represented by the different numbers); APPmean, mean of antibody
response to all serotypes of APP. 2SSC, Sus scrofa chromosome.

serotypes may be more virulent than others (Bossé et al., 2002)
and cross-protection between serotypes is limited (Haesebrouck
et al., 1997). The incidence of APP seroconversion was very low
for all APP serotypes, which may explain the low h2 of APP
Ab response. Averaging the Ab response, overall APP serotypes
resulted in a substantial increase in estimates of σ2

u and h2, which
may occur because of the variation in Ab response from each
individual to each serotype. Similar to APPmean, the h2 estimate
for overall MEAN was also higher than estimates of h2 for Ab
response to individual pathogens, especially at entry and post-
acclimation. The higher h2 for the overall Ab response across
pathogens (MEAN) indicates that selection for this trait in sows
under healthy challenge may be more successful than selection
for Ab response for specific pathogens.

In general, an increase in the proportion of positive
individuals in the dataset for IAV, MH, and PCV2 increased

the estimate of σ2
u for Ab response, as expected (Bishop and

Woolliams, 2010), and in an increase in the estimate of h2.
Similarly, the estimate of σ2

u of Ab response to APP was higher
at P1 and P2 (except for APP2 and APP5), which were also the
time-points with higher proportions of positive animals. Similar
results were previously reported for PRRSV using samples from
this same study (Serão et al., 2016). The low to high h2

estimates indicate a great variation in the practicability of the
use of Ab response traits in commercial swine populations for
genetic selection purposes. Altogether, these results indicate that,
in order to obtain high genetic variation for Ab response to
common infectious pathogens in commercial sows, exposure
to these pathogens must happen, via either vaccination and/or
natural infection.

It is well known that the infection of an individual by
immunosuppressive pathogens, such as PPRSV, weakens its
immune system, favoring the entry or multiplication of a second
pathogen. For instance, studies have shown that co-infection
between some of these agents frequently intensifies the clinical
signs of the diseases (Thacker et al., 2001; Dunkelberger et al.,
2017). In this study, Ab response to IAV had positive moderate
to high estimates of rG with Ab response to MH and PRRSV
at entry, when the proportion of positives for IAV, PCV2, and
MH was higher. At post-acclimation, this relationship became
negative, coinciding with the increase in the number of positives
for PRRSV. A previous study has shown low interactions between
MH and IAV (Thacker et al., 2001) such that co-infection with
these two pathogens did not intensify the clinical signs from
the other. IAV seems to be easily eliminated from the organism
by neutralizing antibodies, and there is little or no interference
with the activation of the immune system to fight against other
pathogens (Holzer et al., 2019). However, the introduction of
PRRSV caused a change in the direction of the rG between
Ab response to MH and PRRSV. Conversely, the estimate of
the rG between PRRSV and PCV2 was consistently negative.
In commercial settings, co-infection with these two pathogens
is common (Engle et al., 2014). Dunkelberger et al. (2017)
reported a rGof 0.27 (0.08) between PRRSV and PCV2 viral
load in pigs that were PRRSV-vaccinated and co-infected with
both pathogens, but a near-zero rG in non-PRRSV vaccinated
pigs [rG = 0.04 (0.09)]. However, our estimates for rG for Ab
response to PCV2 and PRRSV were negative, suggesting that
the immune response to one pathogen is compromised by co-
infection with the other pathogen. PCV2 natural infection tends
to inhibit innate immune response, which is the initial response
to fight against PRRSV infection (Montaner-Tarbes et al., 2019).
If infection by one pathogen weakens the immune response to
another pathogen, this may cause a negative rG of Ab responses to
both pathogens. These results indicate that selecting for increased
Ab response to PCV2 could result in a small reduction in Ab
response to PRRSV.

At entry, the estimate of rG of APPmean was moderate
to high positive with IAV and moderate negative with MH.
To the best of our knowledge, no reports have shown
an association between APP infection and predisposition
of viral or bacterial infections, although an increase in
the incidence of pleuropneumonia has been associated with
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FIGURE 4 | Genomic prediction accuracies (y-axis) for the seroconverted data for influenza A virus (IAV), Mycoplasma hyopneumoniae (MH), and porcine circovirus
type 2 (PCV2) using BayesB. The x-axis represents the different time-points of data collection. The colors correspond to the minimum % of seropositive animals
within a contemporary group.

FIGURE 5 | Genomic prediction accuracies (y-axis) for Actinobacillus pleuropneumoniae (APP1, 2, 3, 5, 7, 10, 12, and 13), average of all serotypes of
APP (APPmean), and average of antibody responses for all diseases (MEAN). The x-axis represents the different time-points of data collection. The colors correspond
to the Bayesian method used. Note the different scales of y-axis for each time-point to enhance visualization.

increased environmental stress (Bossé et al., 2002). APP is rapidly
eliminated by the innate immune response with little interference
in the response to other pathogens (Sato et al., 2016), which
may explain the positive rG between APPmean and MH found
in our study. The rG estimate of MEAN with APPmean was
positive and high at all time points, which may be because the
serotypes of APP composed most of the Ab responses used to
calculate MEAN, in addition to Ab responses to different APP
serotypes showing high positive rG with each other. This rG was
also positive (although sometimes low) with IAV and PCV2. The
rG of MEAN with PRRSV at entry, and with MH at P1 and P2
were negative, indicating that selection for MEAN is possible
but should be done with care. Genetic selection over total Ab
response is expected to have a correlated response with antibody
response to individual pathogens. Thus, it can affect the genetic
capacity of the organism to deal with these pathogens, which
should be taken in consideration when selecting for immune
response-related traits.

The results discussed above were obtained using the 100%
SCD for MH, IAV, and PCV2, which had the highest h2 estimates
for Ab response to each pathogen within a time-point. We also
evaluated the rG and rP for the 0% SCD, which had low h2 and
rG and obtained an overall similar direction, but lower estimates
and greater SE (Supplementary Figure 1).

Altogether, these results suggest that genetic progress for
direct selection on Ab response traits depends on several
factors, such as timing, level of co-exposure, and the number
of seroconverted animals. The different extent in innate vs.
humoral immune response may also have an effect on the genetic
parameters of this traits (Flori et al., 2011; Mangino et al., 2017) as
they are related to each other, and one can limit or stimulate the
action of the other. Nonetheless, we observed substantial genetic
variation for Ab response in this dataset, indicating that the use
of specific time-points with a high proportion of seroconverted
animals could be an efficient strategy to improve Ab response in
commercial sows.
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Genome-Wide Association Studies
(GWAS)
Several QTL were identified for Ab response to APP at different
time-points but not for other infectious pathogens in pigs. APP is
highly contagious and can cause pleuropneumonia in pigs. The
existence of many APP serotypes can limit its prevention and
effective cure (Liu et al., 2017). The difference in virulence of
different serotypes is caused mainly by the presence of different
toxins and amounts of lipopolysaccharides (LPS) on the surface
of the microorganism (Bossé et al., 2002). Therefore, identifying
genomic regions associated with Ab response to serotypes of
APP could help the use of this trait in selection purposes and
a better understanding of the genetic component. Although it
has been reported that cross-protection between the APP is
limited, the QTL on SSC 14 for 4 of the serotypes suggests
the presence of a pleotropic gene in this region. This QTL on
SSC 14 at 2 Mb was found to be associated with Ab response
to serotypes 3, 5, 7, and 13, especially at post-acclimation,
mainly by two SNP, ALGA0074334 and H3GA0038333. This
region contains the spleen associated tyrosine kinase (SYK) gene
which has been associated with surface immunoglobulin (Ig)M
complexes and appears to stimulate the signaling cascade in B
lymphocytes via an antigen receptor (Müller et al., 1994; Seow
et al., 2002). APP antigen stimulates the Ab-mediated immune
response, which is produced by B lymphocytes (Appleyard et al.,
2002). Interestingly, this same region has also been associated
with total number of piglets born in Yorkshire (Do et al.,
2018), indicating that selection for Ab response to APP may be
associated with indirect selection for resilience in sows, measured
as the capacity of maintaining reproductive performance in a
disease-challenge environment.

For APP3 at entry, another 3 QTL were identified on SSC 8
(32 Mb), 9 (121 Mb), and 12 (47 Mb). On SSC 8, the ubiquitin
C-terminal hydrolase L1 (UCHL1) gene has been reported to
affect the ovulation rate in the pig (He et al., 2017). A potential
candidate gene in the region on SSC 9 (121 Mb) is sterol
O-acyltransferase 1 (SOAT1), which has been shown to be
upregulated in pigs infected with APP7 in comparison to healthy
animals (Reiner et al., 2014a). The QTL identified for APP3 at
entry in the region on SSC 12 (47 Mb) has previously been
associated with survival and clinical signs after challenge with
APP7 in an F2 swine population (Reiner et al., 2014b). This region
harbors the vitronectin (VTN) and fucosyltransferase 2 (FUT2)
genes, which were less expressed in the liver of healthy animals
compared to pigs infected with APP (Skovgaard et al., 2010).

For APP5 at entry, the regions on SSC 9 (6 Mb), 13 (30 Mb),
and 4 (63 Mb) include genes that were previously found to be
down- (tripartite motif-containing 55, TRIM55) and upregulated
(diacylglycerol O-acyltransferase 2, DGAT2; and uroplakin 1B,
UPK1B) in pigs infected with APP7 (Reiner et al., 2014a). In
addition, UPK1B is part of the innate immune system and has
been associated with urinary tract infection by gram-negative
bacteria in humans (Ertan et al., 2010). Furthermore, the region
on SSC 13 (30 Mb) includes several immune genes associated
with chemokines, such as the c–c motif chemokine receptor 9
(CCR9), c–x–c motif chemokine receptor 6 (CXCR6), c–c motif

chemokine receptor 2 (CCR2) and 5 (CCR5), and c–c motif
chemokine receptor-like 2 (CCRL2). These genes are most related
to cytokine–cytokine receptor interactions. Of those, CCRL2
has recently been implicated in the regulation of reproductive
functions in pigs (Gudelska et al., 2020). The region on SSC
4 (63 Mb) has also previously been associated with number
of piglets mummified in a large White population (Wu et al.,
2019). The region on SSC 8 (125 Mb) contains the secreted
phosphoprotein 1 (SPP1) gene, which was less expressed in the
liver of healthy animals compared to pigs infected with APP
(Skovgaard et al., 2010).

For APP5 at post-acclimation, besides the region on SSC 14
(2 Mb), the region on SSC 2 (129 Mb) has been previously
associated with APP natural infection in swine (Tsai et al.,
2011). This region includes the CD molecule (CD14) gene,
which along with lymphocyte antigen 96 (MD2) and toll-like
receptor 4 (TLR4), mediates the innate immune response to
bacterial LPS, leading to NF-κB activation, cytokine secretion,
and the inflammatory response (Tsai et al., 2011). LPS is one
of the main virulence factors of APP, making CD14 a potential
candidate gene (Reiner et al., 2014b). Besides the QTL for APP7
at post-acclimation on SSC 14 (2 Mb), another QTL on SSC 6
(157 Mb) was identified, where the transmembrane protein 59
(TMEM59) is located. This gene encodes for a protein that has
been shown to regulate autophagy in response to Staphylococcus
aureus infection.

For APP13 at P2, the region on SSC 6 (81 Mb) contains
several complement genes, such as the complement C1q (C1Q)
A chain (C1QA), C1Q B chain (C1QB), and C1Q C chain
(C1QC). Complement activation is one of the mechanisms of
defense stimulated by APP (Bossé et al., 2002), making these
genes potential candidates associated with Ab response to this
pathogen. The region on SSC 7 (92 Mb) has also been associated
with teat number in swine, an important reproductive trait in
pigs (Ding et al., 2009). For APPmean, 2 of the QTL identified
at post-acclimation, on SSC X (113 Mb) and 11 (61 Mb), have
previously been associated with IgG2 and eosinophil counts,
respectively, in Meishan vs. Pietrain pigs infected with Sarcocystis
sp. (Reiner et al., 2007). The region on SSC 12 (2 Mb) has
previously been associated with the sonographic score (based on
reflections of high-frequency sound waves) of APP in Hampshire
vs. Landrace pigs after challenge with APP7 (Reiner et al.,
2014b). The region on SSC 7 (74 Mb) harbors the T-cell receptor
alpha locus (TCRA), interferon-stimulated transcription factor
3 gamma (IRF9), and ribonuclease RNase A family 4 (ANG)
genes, which have previously been associated with APP natural
infection (Skovgaard et al., 2010). Summarizing, most of the
candidate genes associated with APP seems to be associated with
NF-Kb activation and the complement system. Interestingly, NF-
Kb is increased during PRRSV infection (Guo et al., 2017), which
can be an important factor during co-infection with these two
pathogens. Furthermore, the complement system is part of the
innate immune response that influences an acquired immune
response (Dempsey et al., 1996), and thus, genes regulating this
system may be involved in the genetic control of the antibody
response to APP.
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Interestingly, several of the regions identified for APP are
associated with reproductive traits in pigs, such as number of
pigs born, ovulation rate, and number of teats, indicating that
the identified QTL for APP could be used for the improvement
of resilience in commercial sows. The lack of QTL for the trait
MEAN can be due to the dilution effect of some traits having
major QTL and others not. Nonetheless, our results suggest that a
larger part of the genetic variation for most infectious pathogens
explained by several QTL with small effects.

Genomic Prediction Accuracies
Several studies have exploited the use of immune-related traits,
such as viral load, level of cytokines, and clinical signs to
infectious diseases, for the selection of individuals with a better
immune response (Wieland et al., 2004; Kaiser et al., 2005;
Thompson-Crispi et al., 2014). However, few studies have focused
on the acquired immune response. Serão et al. (2016), using
part of the data used in the current study, suggested that Ab
response to PRRSV after acclimation can be predicted across
populations using SNP. They reported greater AGP when using
SNP within the two major QTL for Ab response to PRRSV on
SSC7 (30 and 130 Mb) compared to the rest of the genome.
Sanglard et al. (2020) observed greater AGP for Ab response to
PRRSV than in Serão et al. (2016) in PRRSV-vaccinated gilts
from the same population. Ab response to Newcastle disease and
avian influenza in chickens was studied by Liu et al. (2014), who
reported moderate prediction accuracy for these traits. In our
study, AGP ranged from very low to high, depending on the
pathogen and time-point.

In general, BayesB is expected to have higher accuracy than
BayesC0 in the presence major QTL since BayesB gives more
emphasis to QTL with higher effect and shrinks the effect
of the other SNP toward zero (Fernando and Garrick, 2013).
This pattern was observed for some traits in our study, as we
observed a higher accuracy with BayesB for APP10 at entry
and APP3 at post-acclimation, both with identified major QTL.
Nonetheless, not all traits followed this pattern. For example, we
observed cases where no QTL was identified but still, BayesB
performed better (such as for IAV, MH, PCV2, and MEAN) or
a QTL was identified but BayesC0 performed better (such as
APPmean). The performance of BayesC and BayesC0 relative to
other methods depends on the actual distribution of the marker
effects (Fernando and Garrick, 2013), which is unknown for the
novel traits evaluated in this study.

For Ab response to IAV, the low AGP are in accordance
with the fact that no QTL were identified for this trait across
all time-points, and its low h2 estimates. For Ab response to
MH at entry and post-acclimation, AGP were higher when
using 100% SCD. This is in contrast to results by Serão et al.
(2016) for Ab response to PRRSV, where lower AGP were
observed with increasing %SCD. However, Serão et al. (2016)
indicated that this may have been caused by a major reduction
in the dataset analyzed with 100% SCD compared to 0%
SCD (when AGP was the highest). In our study, however, the
major reduction in the size of the dataset from 0% (2,355)
to 100% SCD (564) did not seem to negatively impact the
results. At P2, the AGP decreased as the %SCD increased (and

the number of animals decreased), more similar to what was
observed by Serão et al. (2016). For Ab response to PCV2,
the AGP were moderate to high. This must have happened
because of the very low h2 estimates for these traits since
the division of the correlation between GEBV and adjusted
phenotypes by the square root of the h2 is part of the calculation
of AGP. In fact, the average correlations were quite low for
PCV2, ranging from −0.04 (75% SCD) to −0.05 (0% SCD).
Therefore, the high AGP found for PCV2 has little implication
for selection purposes.

For all APP, although some QTL were identified for most
serotypes, the AGP were low, including for APPmean, indicating
a limitation for the use of this trait for selection purposes.
Similar to h2, the low number of positive animals for APP
may limit the genetic expression of these traits among the
animals in this dataset; therefore, studies involving Ab response
to vaccination or natural infection to APP should not be excluded
from future works.

The AGP for MEAN were higher than for the other traits,
especially at entry and post-acclimation. Although no major QTL
was identified for these traits, the overall sum of small QTL
effects captured by the markers suggests that genomic prediction
can be used to identify animals with overall better acquired
immune response to the pathogens included in this study. This
may happen because the SNPs spread along the genome are
capturing QTLs with small effects, resulting in overall greater
accuracy, even in the absence of major QTLs. This corroborates
that selection on the overall mean of Ab response to common
pathogens may be more efficient than selection on Ab response
to individual pathogens. These results suggest that the genomic
predictive ability of most of these traits is limited, but some of
them (i.e., MEAN) have the potential to be further explored.

CONCLUSION

For the first time, the genetic basis of Ab response to a
range of pathogens in pigs was explored in commercial sows.
Differences in the Ab response exist for different pathogens;
however, this trait may be still a proxy for resilience in
commercial sows. Our results revealed that these traits have
low intermediate heritabilities, with exception of APPmean and
MEAN. In addition, important genomic regions were identified
for some APP serotypes. Most of the Ab response traits had
low to moderate genomic predictive ability, especially when no
QTL were identified. However, MEAN had moderate to high
genomic prediction accuracies. These results suggest that genetic
progress by selection on Ab response to these pathogens is
possible but may be slow and that selection on the average Ab
response to common pathogens in pigs may be an alternative
strategy. The use of specific sample collection time-points can
result in higher heritabilities, as well as datasets with a higher
proportion of seroconverted animals, to increase the genetic
variance. Some disadvantages such as the lack of confirmation
of whether animals were vaccinated and/or infected with these
pathogens, the existence of several confounding factors (e.g., diet,
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management, and others), and the lack of information on how
long after the exposure the blood was collected and the course the
pathogen could limit the interpretation of the results obtained.
However, this variability is a strength for the application of
these results in commercial settings, as the ability to test for
infection with all of these pathogens may not be realistic. Other
advantages of this study include the possibility of using crossbred
performance for selection, the identification of novel traits for
selection of resilience in pigs, the use of commercial populations
reared in true commercial conditions, and the use of relevant
pathogens that are easy to be measured. New studies including
commercial performance, such as reproductive performance,
are needed to better understand the relationship between Ab
response to these pathogens and commercially important traits
in the swine production.
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Supplementary Figure 1 | Genetic (lower triangular) and phenotypic (upper
triangular) correlation between all traits: influenza A virus (IAV), porcine circovirus
type 2 (PCV2), Mycoplasma hyopneumoniae (MH), Actinobacillus
pleuropneumoniae (APP), and porcine respiratory and reproductive syndrome
(PRRS) at Entry (A), Post-acclimation (B), Parity 1 (C), and Parity 2 (D). The values
between parenthesis correspond to the standard error of the correlation. The blue
color corresponds to positive correlation, the red to negative correlation, and the
gray indicate the lack of convergence of the model.

Supplementary Table 1 | Percentage of total genetic variance explained for by
markers (% TGVM) within a 1-Mb window for traits with significant QTLs using a
threshold of 1% TGVM and posterior probability of inclusion (PPI) of 0.70 (before
SNP selection). The SNP explaining most of the TGVM within a window was
selected and the % TGVM explained by the SNP (% TGVM-SNP) was also
estimated (after SNP selection).

Supplementary Table 2 | Accuracies of genomic prediction.
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