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The formalism of Holographic Space-time (HST) is a translation of the principles

of Lorentzian geometry into the language of quantum information. Intervals

along time-like trajectories, and their associated causal diamonds, completely

characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-’t

Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates

the logarithm of the dimension of the Hilbert space associated with a diamond to one

quarter of the area of the diamond’s holographic screen, measured in Planck units.

The most convincing argument for this principle is Jacobson’s derivation of Einstein’s

equations as the hydrodynamic expression of this entropy law. In that context, the null

energy condition (NEC) is seen to be the analog of the local law of entropy increase.

The quantum version of Einstein’s relativity principle is a set of constraints on the mutual

quantum information shared by causal diamonds along different time-like trajectories.

The implementation of this constraint for trajectories in relative motion is the greatest

unsolved problem in HST. The other key feature of HST is its claim that, for non-negative

cosmological constant or causal diamonds much smaller than the asymptotic radius of

curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond

are constrained states of variables defined on the holographic screen. This principle

gives a simple explanation of otherwise puzzling features of BH entropy formulae, and

resolves the firewall problem for black holes in Minkowski space. It motivates a covariant

version of the CKN [1] bound on the regime of validity of quantum field theory (QFT)

and a detailed picture of the way in which QFT emerges as an approximation to the

exact theory.

Keywords: spacetime and information, holographic spacetime, quantum gravity, covariant entropy principle,

tensor network

1. INTRODUCTION

Every known human or computer language has the notion of time hard wired into every sentence.
One of Einstein’s great insights was that this notion is relative. Every information gathering system
has its own proper time, and part of every physical theory must be a prescription for understanding
the relations between the proper times of different systems. His second great insight, that “the speed
of light is finite,” can be thought of as the definition of what we mean by space and space-time. The
region of space accessible to a system grows at a finite rate as a function of the proper time interval.
The region of space-time accessible in a given time interval is called a causal diamond. One can
view time evolution along a time-like trajectory/set of nested causal diamonds as a foliation of the
space-time manifold into space-like leaves. The variety of such trajectories means that this can be
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done in many different ways. This led Einstein to formulate his
theory of gravitation as a theory of the Lorentzian geometry of
the space-time manifold.

Lorentzian geometry can be recast as a theory of timelike
trajectories and causal diamonds in a differentiable manifold. A
timelike trajectory is a one parameter choice of negative norm
tangent vectors, and defines a positive number, the proper time
interval, between any two points along the trajectory. The causal
diamond of a proper time interval is the set of all points that can
be connected to both the past and future tips of the interval by
timelike trajectories. The boundary of any finite area1 diamond
can be parametrized by two patches, with metrics

ds2± = du±A±
i (x, u

±)+ g±ij (x, u
±) dxidxj. (1)

The absolute maximum volume of the two Euclidean metrics g±ij ,

as a function of the null coordinates u± is called “the volume of
the holographic screen of the diamond,” which we will distort to
“the area of the diamond” as a shorthand.

Although Jacobson did not use the language of causal
diamonds, his seminal paper [2] showed that Einstein’s
gravitational equations follow as the hydrodynamics of a law
that equates the “entropy” of a diamond to a linear function
of its area. The null energy condition (NEC) then follows from
increase of entropy and is seen to be a thermodynamic statement,
which will have fluctuation corrections. Jacobson’s derivation of
Einstein’s equations uses the frame of reference of a maximally
accelerated trajectory to define energy. Such a system has infinite
temperature, which is the strongest argument that the entropy in
the covariant entropy bound [3] refers to the log of the dimension
of the Hilbert space of the diamond [4].

The essence of Jacobson’s argument, in the language of causal
diamonds, is that the holographic screen [4] of the diamond
is, by its definition, a maximum of the area on the boundary.
Therefore, if we consider a pencil of null geodesics on the
boundary of the diamond, approaching the holographic screen,
then the Raychauduri equation can be linearized in the vicinity
of the screen, and the increase of area can be written as

dA = Rµνk
µkνdλ, (2)

where λ is the affine parameter along the center of the pencil and
kµ is the null tangent vector. By appropriate choice of diamond,
kµ can be any null vector in space-time. The pair of future
directed null trajectories following the boundary of the diamond
past the holographic screen is the limit of a uniformly accelerated
Unruh trajectory, with infinite Unruh temperature. Defining
energy to be the limit of kµkνTµν , where T is a covariantly
conserved stress tensor, the equation dE = TdS, with S =

GNA/4, gives us exactly (in 4 dimensions)

kµkν(Rµν −
1

2
gµνR− 8πGNTµν) = 0. (3)

1Here we’re anticipating the definition of area that we are about to give. In the limit
of infinite area, the past and future halves of the diamond’s boundary do not have
to be joined differentiably. We also, by abuse of language, use the term area for the
d−2 volume of a space-like slice of boundary of a causal diamond in d dimensions.

This is the content of Einstein’s equation without the
cosmological constant (c.c.). We’ve thus derived the gravitational
field equations as the hydrodynamic equations of the area law,
and simultaneously shown that the c.c. is not a hydrodynamic
energy density.

The area law for entropy is the clue for understanding
locality/causality in a quantum theory of space-time. Given a
time-like trajectory, the causal diamonds of a nested series of
proper time intervals partition the interior of the largest diamond
into a sequence of quantum subsystems whose maximal entropy
is non-decreasing as a function of the length of proper time.
Causality is the statement that the smaller subsystems remain
unentangled with the rest of the degrees of freedom during the
relevant proper time intervals. This implies that time evolution
is naturally viewed trajectory by trajectory2 and that the natural
time slices inside a diamond must remain inside the diamond.
The Hamiltonian is perforce time dependent. This can be viewed
either as the quantum requirement of gradual entanglement of
subsystems or, macroscopically, as the geometric requirement
that time slices remain within a diamond. As Milne [5] first
appreciated, this kind of time slicing induces a redshifting of the
“energies” of distant objects3.

From a more philosophical point of view, what a formalism
based on these ideas is saying, is that time is fundamental, but
relative (trajectory dependent, many fingered), while space is
an emergent concept describing a measure of the amount of
quantum information required to describe a certain time interval.
The quantum analog of Einstein’s principle of relativity then
becomes apparent. Consider a pair of causal diamonds along
two different trajectories. There is a maximal causal diamond
in their intersection. The Covariant Entropy Principle (CEP)
assigns this diamond a Hilbert space of fixed dimension, which
will always be smaller (geometry) than the dimensions of either
intersecting diamond. Each parent diamond is a quantum system
with time dependent Hamiltonian and, given a choice of initial
pure state, will assign a sequence of density matrices to the
subsystem describing the intersection. The Quantum Principle of
Relativity (QPR) asserts that the two density matrices assigned by
the parent diamonds have the same entanglement spectra. This
constrains the choice of both the Hamiltonian and the initial state
in each diamond. We’ll outline below the utility of this principle
for trajectories at relative rest.We have not yet found amodel that
implements the QPR for pairs of trajectories in relative motion.

While the CEP allows us to localize quantum information
on the holographic screens of nested or intersecting diamonds,
it does not give us a clear definition of a traditional localized
excitation in the bulk of a given diamond. The clue to bulk
localization comes from two formulae in black hole physics. The
first is the entropy formula for Schwarzschild-de Sitter black
holes. The metric is

ds2 = −f (r)dt2 + dr2/f (r)+ r2d�2, (4)

2Jacobson’s derivation of Einstein’s equations from the first law of (local)
thermodynamics uses the energy along a particular maximally accelerated
trajectory and thus also points to a trajectory by trajectory view of time evolution.
3Milne was of course incorrect in assuming that the observed cosmological redshift
could be attributed entirely to this kinematic effect.
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where

rf (r) = −(r − R+)(r − R−)(r + R+ + R−), (5)

R2 = R2+ + R2− + R+R−, 2MR2 = R+R−(R+ + R−). (6)

R is the dS radius, andM is the parameter that becomes the black
hole mass in the R → ∞ limit. Everything is written in Planck
units. This formula shows that the introduction of any object with
a long range Schwarzschild field, at rest on a timelike geodesic
of dS space, creates an entropy deficit. The CEP identifies this,
when M is small compared to the maximal black hole mass in
dS space, as the deficit expected in a thermal ensemble with
temperature T = (2πR)−1, the Gibbons-Hawking temperature
[6]. In fact one can demonstrate a similar entropy deficit effect in
Minkowski space [7], which suggests that theMinkowski vacuum
is an infinite entropy ensemble.

The second hint that localized objects are constrained states of
holographic variables comes from the ordinary formula for the
entropy of a Minkowski black hole of massM when an additional
small mass m is dropped into it. Despite the fact that the small
mass is a very low entropy object, the final equilibrium state is a
state of much higher entropy

1S = 2πRSm. (7)

This indicates that before equilibration, the combined system
lived in a much larger Hilbert space than that of the original
black hole, but that the initial state had 2πRSm frozen degrees
of freedom. Inverting this process (by unitarity), we have a
derivation of theHawking temperature for emission of the system
of massm.

If the Hamiltonian that equilibrates the system has a natural
time scale RS and is a “fast scrambler” [8, 9], then the infalling
subsystem will remain isolated for a time of order RSln RS, and
this is the basis for the resolution of the “firewall paradox” [10–
12]. Again, the principle operating here is that a localized state
in the causal diamond formed by the horizon of the black hole of
massm+M is a constrained state of theHilbert space of that black
hole. Another important feature we learn from this discussion
is that the constraints must have the property that they isolate
the degrees of freedom of the small system, from that of the
black hole. This immediately suggests that the degrees of freedom
should form matrices, with a single trace Hamiltonian, and the
constraints implying that off diagonal matrices connecting the
“m-block” to the “M-block,” vanish.

Constraints can “propagate through a nested sequence of
causal diamonds,” giving a holographic interpretation of particle
trajectories. More properly we’ll see that these should be thought
of as jets of particles, including many soft gravitons whose
number changes with time. Indeed, we’ll see that “particle” is
a perturbative concept and jets are the fundamental scattering
states in models of quantum gravity in Minkowski space. The
trajectory of a jet, a quantum system with many states for fixed
momentum, is a much more robust semi-classical object than a
particle trajectory in quantum field theory.

We’ll see that the CEP, the QRP, the identification of particle
jets as constraints, and the fast scrambling properties of black

hole horizons give us a number of vital clues to the nature of a
general theory of quantum gravity. For example, the QRP enables
us to tie together jet interactions (some number of jets enter the
past boundary of a diamond and a possibly different number exit
its future boundary) in different causal diamonds, obtaining a
manifestly local, Feynman diagram like, description of transition
amplitudes. The same formalism can describe the production
and decay of high entropy meta-stable excitations with all of the
qualitative properties of black holes.

2. THE HOLOGRAPHIC VARIABLES OF
QUANTUM GRAVITY

The CEP implies that a finite area diamond corresponds to a finite
dimensional Hilbert space. The fact that the U(D) GellMann
matrices, which are closed under both commutation and anti-
commutation, form a basis for all complex matrices shows us
that this space is the fundamental representation of the super-
algebra SU(P|Q) for any integers P,Q such that P + Q = D.
That is to say, fermionic variables are inevitable in any finite
dimensional quantum system. This remark ignores the constraint
of spatial locality. A discrete, spatially local system can be defined
on the tensor product of finite dimensional Hilbert spaces sitting
at the points of some graph, whose links define what we mean
by nearest neighbor, next to nearest neighbor, etc. couplings.
Fermionic operators on the full Hilbert space will be non-local
functions of the bosonic site variables. In some cases [13–15]
a local theory of mutually commuting site variables, with a Z2
gauge invariance, can be rewritten as a local theory of fermions,
but this is not always the case.

The fast scrambling property of black holes [8, 9] implies
that the correct quantum theory cannot be local on the
holographic screen of a diamond4. Instead we will suggest that
the Hamiltonian should be invariant under a finite dimensional
approximation to the group of area preserving maps on the
sphere. The theory of fuzzy approximations to Euclidean
geometries has a long history. Traditionally it is viewed as the
replacement of the algebra of smooth, or continuous, functions
on the manifold by a finite dimensional non-abelian matrix
algebra. This can be developed in a systematic way for any
manifold with a Kahler or symplectic structure. In Banks
and Kehayias [16] we proposed a different approach, inspired
by Connes’ insight about the connection between the Dirac
operator and Riemannian geometry. The Dirac operator on
any spin manifold is an unbounded operator with spectrum
symmetric around 0 and compact inverse on the space of spinor
sections orthogonal to its discrete zero modes. Its eigenvalues
are invariant under any symmetries of the manifold, and its zero
mode spectrum encodes some of the topological properties. The
space of spinor bilinears is the space of all differential forms
on the manifold, so appropriate products of spinor bilinears
are proportional to its volume form and a Hamiltonian given

4In AdS space, for black holes larger than the radius of curvature, scrambling is

ballistic on length scales larger than the AdS radius. This is a consequence of the
AdS/CFT correspondence.
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by the integral over such products is invariant under area
preserving maps.

We fuzzify the geometry by putting a symmetric eigenvalue
cutoff P > 0 on the Dirac operator. For large P, the eigenvalue
degeneracy goes like Pd−2 where d is the space-time dimension,
so if each eigensection is quantized in a finite dimensional Hilbert
space of fixed dimension, then we get an area law for the maximal
entropy. On the d − 2 sphere, the counting of spinor spherical
harmonics is exactly that of anti-symmetric d − 2 tensors with
indices ranging from 1 to o(P) [16]. We can think of these as

little area elements. The matrix M
j
i ≡ ψi,a1...ad−3ψ† j,a1...ad−3 can

be viewed as a d − 3 sphere “band” on the surface of a d − 2
sphere and the trace of a product of these matrices is a “line
bundle” construction of the d−2 sphere from a succession of such
bands. In plainer language, it’s the picture of the d− 2 sphere as a
succession of “thick” d − 3 spheres along a polar coordinate

ds2 = dθ2 + sin2 θd�2
d−3. (8)

The bilinears in spinors are differential forms of varying degrees
and the trace is the integral over d − 2 forms formed as wedge
products of these elementary forms. Any action constructed from
sums of such single traces is invariant, in the formal continuous
limit, under area preserving maps. If we write

Hin(t) =
1

t
Tr P(

Mt× t

td−3
), (9)

where t is the proper time in a diamond, and P is a polynomial
of finite order whose coefficients are t independent in the large
t limit, then the leading term in the energy scales like Pd−3 as
t → ∞. The gaps between an infinite number of low lying
states and the ground state are o(1/t) in this limit. The CEP
indicates that P ∼ t should be proportional to the radius
of the sphere, in Planck units. The relation between the short
wavelength cutoff on the sphere, and the proper time/area of
the holographic screen, is a UV/IR correspondence, generalizing
Maldacena’s scale radius duality.

The full Hamiltonian of HST is more complicated than this in
constrained subspaces, which make the matrices block diagonal.
If we have a number of isolated blocks in a causal diamond of size
t5, then for each block of size nb we add

H
nb
in (t) = knd−3

b
+

1

nb
Tr P(

Mnb× nb

nd−3
b

), (10)

where k is a constant, which will be determined by the correct
normalization of energies in the limits discussed below. The
first term is the “asymptotically conserved energy of the jet
represented by the block,” while the second term represents
fragmentation of the jet into subjets constituents. The block
COULD also represent an isolated black hole in the diamond
and then the second term represents interactions on the black
hole horizon. Note that Hnb

in (t) is t independent. This is because

5At this point the reader should be prepared to understand “causal diamond” as
“tensor factor of the Hilbert space which interacts only with itself over the time
interval [−t, t].”

it represents excitations localized near the trajectory, which have
order 1 energies in “Milne” coordinates. There is also, of course,
an Hout(t) describing interactions of degrees of freedom outside
the diamond. We’ll see below that this is determined by the QRP.

The commutation relations for these variables that are
invariant under SO(d − 1) are

[ψA,ψ
B]+ = δBA. (11)

Here A,B are d − 2 dimensional antisymmetrized multi-indices
and the right hand side is the appropriately antisymmetrized
Kronecker symbol. These, and the Hamiltonian are invariant
under the largerU(t) group of unitaries, which can be interpreted
as a fuzzy approximation to the group of area preserving maps.
It has many SO(d − 1) subgroups under which the variables
transform as a sum of spherical harmonics up to some maximal
angular momentum (simply conjugate one SO(d − 1) subgroup
by a general element of U(t)).

If the ψ variables have another index A, apart from their
SO(d−1) spinor label we can try to view them as fuzzy spinors on
a higher dimensional manifold, of the form K ⊗M

1,d−1because
the spinor bundle on a product manifold is a tensor product of
spinors on the lower dimensional manifolds. More research is
needed to find restrictions on the commutation relations as a
function of the A label, which approach geometrically sensible
rules, where the anti-commutator of two spinor generators
involves forms integrated over closed cycles on a manifold, in the
limit that the number of A labels gets large.

Given the generators ψa1...ad−3 , we can define mutually
commuting Pauli operators by multiplying each fermion by
(−1)N−n whereN is the total number operator and n the number
operator of that particular species. The bilinear

ψA
a ψ

† b
A ,

becomes

σA
− aσ

A
3 aσ

b
3 Aσ

b
+ A.

Here A is a d − 3 component index, representing an interface
between two bands on the d − 2 sphere. So we can “bosonize”
these fermions without introducing any more non-locality than
was present in the original Hamiltonian. For models invariant
under the fuzzy version of area preserving maps, fermionic
variables are natural, invariant, and as local as a bosonic
presentation of the same Hamiltonian.

An alternative view of the fermionic variables of HST comes
from a proposal for generalized scattering theory for models
of quantum gravity in Minkowski space [17–19]. Ordinary
scattering theory for quantum field theories with a mass gap is
based on the infinite set of asymptotically conserved LSZ currents

j
f
µ = i(f±∂µφ − f±∂µφ). (12)

Here φ is an interacting Hermitian Heisenberg field and
f± normalizable positive or negative energy solutions of the
Klein-Gordon equation with the physical particle mass. Matrix
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elements of these currents in physical states are assumed to
be conserved near the conformal boundary of Minkowski
space, and this is true up to exponential corrections, to all
orders in perturbation theory. The physical Fock space is the
representation space of the algebra of these currents and the
Scattering operator intertwines been the past and future bases.
This formalism breaks down for massless particles.

However, all particles that are massless for an entire range of
couplings are associated with conserved currents. For Goldstone
bosons, where we can turn on a mass continuously, violating the
current conservation law, the almost conserved current plays the
role of the field ∂µφ in massive scattering theory and it’s plausible
that the asymptotic Hilbert space is simply the representation
space of the conserved current in the limit. Similarly gauge and
gravitational fields all have asymptotically conserved currents
associated with them [17–19]. The stress tensor in gravitational
models plays a special role because the joint spectrum of its
asymptotically conserved currents is the momentum null cone,
the Fourier dual of the conformal boundary. All other conserved
currents can be viewed as generalized functions on this cone.
That is, they are “quantized fields” on the momentum null cone.
We’ll see that the reason for the scare quotes is that these
operator valued generalized functions are not the conventional
tempered distributions of axiomatic QFT. The null cone is a
singular manifold and conventional Wightman fields would not
be well-defined there.

More importantly, the behavior of black hole and
cosmological quasi-normal modes indicates that the quantum
systems living on horizons cannot have the approximate locality
in angle that one would expect from even a lattice approximation
to a conventional QFT, where the rigorous theorem of Lieb and
Robinson proves that information transport over large distances
is ballistic. Instead one expects all of the degrees of freedom
to be coupled together, without regard to metrical distance.
Correspondingly the fields are not expected to satisfy differential
equations. The Hamiltonians we have written are not local, and
are fast scramblers, because every fermionic variable is coupled
to every other one by some term in the Hamiltonian.

The purpose of currents on the conformal boundary is
to describe the flow of quantum numbers other than the
momentum, at infinity. Helicity or spin must be one of those
quantum numbers, so we expect operators H±

i (P) carrying
helicity out of/into the future/past null boundary and H̃±

i (P)
describing flows along the boundary. The two kinds of operators
are related by space reflection, and only the tilde-free operators
are needed to describe massless particles.

When we retreat from the conformal boundary to a finite area
causal diamond, P must become a discrete label6 and the CEP
implies that the Hilbert space on which the generators H±

i (P)
and H̃±

i (P) act must be finite dimensional, in which case we can
always view the same space as generated by fermionic operators
as above. If we want the formalism to obey the spin-statistics
theorem, then those fermions must carry half integer helicity and
must, in the conformal boundary limit, take the form QI

α(P),

6We’ll see later that it is an emergent label.

Q̃I
α(P), where γ

aPaQ
J(P) = γ aP̃aQ̃(P) = 0. Here P̃ is the space

reflected null vector. Note that these kinematic arguments do not
imply that the model must be supersymmetric. If all fermionic
generators come in parity symmetric pairs, then the spin 3/2
particles that must accompany the graviton will be massive.

The algebra of the left or right handed spinor generators
is completely determined [20] by Lorentz invariance, cluster
decomposition, and the absence of tensor charges in an
interacting theory of particles. It is

[QI
α(P),Q

J
β (P

′)]+ = δIJδ(P · P′)γ µαβMµ(P, P
′). (13)

Mµ is the smaller of the two parallel null vectors. Note that
the P = 0 generators anticommute with all the others. There’s
a similar equation for the space-reflected generators. The anti-
commutation relations between the two sets of generators are
not universal, and encode information about the masses of stable
particles corresponding to branes wrapped around non-trivial
cycles of a compact manifold. As noted above, the detailed
mathematics of the connection between finite dimensional super-
algebras and the notion of smooth compactmanifolds, has not yet
been worked out.

3. TIME DEPENDENT HAMILTONIANS AND
ERROR CORRECTING CODES

The basic principles of HST imply that causality is implemented
by gradually entangling new degrees of freedom in a larger causal
diamond with the subset describing a smaller diamond contained
in the original one. We can ask where on the holographic
screen of the larger diamond, the information about the smaller
diamond is stored. As long as the dynamics is invariant under
(fuzzy) area preserving maps, this question has no meaning.
However, the constraints are a partial breaking of this symmetry.
The variables are labeled by spinor harmonic quantum numbers
on the sphere, but there are an infinite number of ways of doing
this, corresponding to the embeddings of SO(d− 1) in the group
of area preserving maps. The constraints are interpreted in a way
that mirrors a metric geometry on the sphere.

For simplicity, let’s work on four dimensions. In a large causal
diamond with proper time T, we say that the physical state
contains a localized jet on the past or future boundary if of
order ET, with E ≪ T, of the variables ψ J

i vanish on that state.
Given the single trace nature of the interactions, this means that
interactions between the variables ψ[ij] and the rest vanish on
this state. Here the small letters form an antisymmetric matrix
with indices from 1 to E, which can be organized into fuzzily
localized spinor sections around some point �. We can think
of the constraints as the vanishing of variables in an annulus
surrounding a spherical cap, whose opening angle is determined
by E. More generally there will be multiple isolated subsets of
degrees of freedom, which form Ei × Ei anti-symmetric matrices
and are interpreted as belonging to spherical caps localized
around different angles �i. It can be shown [21] that

∑
Ei is an

asymptotically conserved quantumnumber if the time dependent
Hamiltonian has energy differences of order 1/T. Asymptotically,
for large T, there will be a unique choice of rotation subgroup
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for which all of the jets form spherical caps localized around
different points.

To see this, note that we can always choose the Ei ×

(Ei − 1) components of a single jet’s degrees of freedom to be
localized functions around some particular point on the sphere,
with localization radius ∼1/Ei, by choosing a particular linear
combination of spherical harmonics. We can do the same for
all the other jets, keeping them separated in angle, as long as∑

Ei≪T, so that there are plenty of variables available to describe
the empty angular regions with no jets. In the limit T≫

∑
Ei with

Ei → ∞ we can accommodate an arbitrary number of localized
jets. Note that the rotation subgroup we choose should also be
used to organize the addition of degrees of freedom each time we
increase the proper time by one Planck unit. This corresponds to
adding exactly one angular momentum multiplet of the chosen
subgroup to the “in” Hilbert space for every Planck size tick of
the clock. It’s also important to emphasize that the action of the
rotations on the decoupled (T−

∑
Ei)× (T−

∑
Ei) block of the

matrix is, in a sense, trivial since the interactions of these variables
are invariant under area preserving maps that leave invariant the
spherical caps at which the jets are located. The ratio of the areas
of those caps to the area of the sphere goes to zero in the limit.
Since the Hamiltonian of this large set of degrees of freedom
goes to zero in the limit, they become topological degrees of
freedom, sensitive only to the punctures on the sphere. This is the
HST description of the infinite dimensional space of arbitrarily
soft massless particles that are present in any quantum theory of
gravity in Minkowski space.

Thus, both rotation and time translation are asymptotic
symmetries, as expected in a theory of gravity. Note that the
magnitude of the null momentum is an emergent quantity,
proportional to

∑
Ei. To get a Lorentz invariant scattering

operator we must take all Ei to infinity at fixed ratio, keeping∑
i Ei ≪ T.
As a consequence, the error correcting code [22–34]7

generated by the expansion of Hin(t) to include more degrees
of freedom, contains information that allows us to localize
information about the constrained variables at angles. Now
however, consider the full evolution in the interval from [−T,T].
The initial state satisfies constraints corresponding to incoming
jets with energies Ei. At some later negative time −t with t < T
there are two possibilities. Either we inevitably reach a point
where

∑
Ei ∼ t or some of the constraints and decoupled

degrees of freedom are not contained in the Hilbert space on
which Hin(t) acts. In the former case the fast scrambling nature
of the Hamiltonian implies that the constraints will be erased
by the time one gets to the end of the time interval [−t, t].
The entire Hilbert space will be in equilibrium and we have a

7The connection between quantum error correction and bulk (AdS scale) locality
was pointed out in the second paper of this reference, but was anticipated by the
tensor network construction of Swingle. The general idea of error correction is
to entangle the desired quantum information, with widely distributed degrees of
freedom of a much larger system, so that erasing the part entangled with a few
q-bits does not degrade the information. The particular use of error correction in
the AdS/CFT correspondence exploits/is limited by the locality of the boundary
theory. It is not appropriate for discussing horizons whose dynamics is invariant
under area preserving maps. HST claims to remedy this.

FIGURE 1 | The left figure shows a system with a number of constraints much

smaller than the total number of degrees of freedom while the right one is what

happens when the constrained subspace has entropy that is an order one

fraction of the total. Red lines denote jet degrees of freedom, each of which is

surrounded on the past/future boundary of the diamond, by frozen degrees of

freedom,indicated by erasure of the boundary. The diamonds in these figures

are finite, and the right hand picture does not include black hole evaporation.

causal diamond with energy proportional to
∑

Ei filled with an
isotropic system on its boundary, in equilibrium with entropy
(
∑

Ei)2. This system has all of the qualitative properties of a black
hole. Figure 1 shows cartoons of the two possibilities.

There are two different kinds of amplitudes where no black
hole production occurs. In the first, the total energy coming into
the past boundary of the causal diamond [−T,T] is so small that
E2 is not a large entropy, and all of those constraints propagate
into smaller diamonds along the same trajectory. Then the future
boundary of a diamond of proper time t > E has a small number
of constraints, which can be interpreted as jets of particles exiting
that boundary. On scales t = E the amplitude looks like a vertex
in a Feynman diagram.

Another possibility is that the constraints proportional to the
total incoming energy, which might be large, do not all propagate
into small diamonds along the trajectory. Here is where the
overlap constraints of HST demonstrate the emergence of the
concept of space in the HST formalism. At time t≪T, constraints
that are not imposed on the Hilbert space of the [−t, t] diamond,
are imposed on its tensor complement in the [−T,T] Hilbert
space, which is acted upon by the Hamiltonian Hout(t). The
structure of Hout(t) is determined by the HST compatibility
conditions, the QPR. That is, given an assumed global structure
of space-time, which is a dS space with R ≫ T ≫ 1 we can
impose boundary conditions on causal diamonds with proper
time [−T,T] corresponding to ∼ET constraints, with E ≪ T,
along time-like geodesics “at different spatial points in their
common rest frame.” These are identical quantum systems, with
the same sequence of time dependent Hamiltonians.

Now consider, for a given initial state, the Hilbert spaces
of these individual systems over time intervals [−t + ti, ti +
t]. Let us first assume that the dynamics is such that in the
large T limit the proportionality constant E in the number of
constraints ET + k is conserved. Call it the energy. This is true
for every individual trajectory. When E ∼ t or greater, these
cannot all be constraints on the “in” Hilbert spaces of the small
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FIGURE 2 | Exchange diagram involving multiple jets.

causal diamonds. Therefore, the energy must be divided between
the in and out spaces. The QPR implies that at any time, the
“out” Hilbert space of a given diamond can be viewed as a
tensor product of small Hilbert spaces corresponding to spatially
separated diamonds. If we take all of the ti equal, the translation
of this statement into space-time language is that the energy
E is the sum of energies Ei in each of the disjoint diamonds,
with Ei ≪ t if we want to study a process in which no black
holes are created. The QPR implies that the “out” dynamics of
any one diamond generates the same entanglement spectrum for
the density matrices in each of the external diamonds, that is
generated by the “in” dynamics of each of those diamonds. Since
we’re studying geodesics in Minkowski space, the Hamiltonians
are all assumed equal to each other, so the QPR is a constraint on
initial states.

Now consider unequal ti. The final state constraints on the
earliest diamond, can become part of the initial constraints
on later diamonds, so we can draw a space-time picture of
the amplitude that resembles a time ordered Feynman diagram
(Figure 2). Thus, these models reproduce the clustering structure
of field theory amplitudes, which we usually derive from the
postulates of QFT. However, theHST formalism can also describe
black hole formation and evaporation in a manner consistent
with unitarity and causality. So far, we have not found a model
that gives Lorentz invariant scattering amplitudes.

We can close this circle by using QPR to finish the proof that
the coefficient of T in the number of asymptotic constraints is a
conserved quantity. If all of the asymptotic energy remains visible
along a single time-like trajectory, conservation is a consequence
of two facts. The Hamiltonian in a causal diamond of proper time
t that is capable of removing constraints that prevent interaction
between bulk and boundary DOF has eigenvalue differences
of order 1/t and can only act to remove o(1) constraints.
Furthermore, inside a causal diamondmuch of the “in” evolution
over time t acts on only a small part of the DOF. For amplitudes
in which the asymptotic energy divides into clusters localized in

space-like separated diamonds, the QPR guarantees that the “out”
Hamiltonian along a trajectory that currently sees only part of the
energy, has the same effect as an “in” Hamiltonian acting on the
individual energies Ei.

3.1. Asymptotic Symmetries of HST
We have just seen that time translation symmetry in HST
arises as an asymptotic symmetry. This is to be expected in
a theory of gravity, but it’s satisfying to see it arising from
the quantum dynamics of an explicit model. We’ve also shown
that rotation symmetry arises asymptotically, acting only on the
decoupled jet degrees of freedom. It is asymptotic both because
the organization of the DOF into spherical harmonics of a fixed
rotation subgroup of the fuzzy volume preserving group depends
on the asymptotic nesting of causal diamonds, and because
rotations only act on the decoupled jets, which become truly
independent of the rest of the system only in the limit of infinite
proper time.

Spatial translation is more complicated. Part of it is
programmed into the construction of the model, by using the
same sequence of time dependent Hamiltonians along each
time-like geodesic of Minkowski space. But the argument that
scattering amplitudes are translation invariant comes from
a combination of the QPR applied to asymptotically large
diamonds along different geodesics, and the fact that jets
decouple from “soft radiation” in the asymptotic limit. Note
that the QPR alone is insufficient because the overlap between
two spacelike separated diamonds has parametrically smaller
entropy than either of the diamonds in the infinite T limit. Thus,
the QPR says only that the density matrix on the overlap is
maximally uncertain, subject to the constraints. The QPR also
says that the angular location of the constraints seen along one
trajectory, should look like a spatial translation of the angular
locations as seen from the second. Since the bulk of the variables
decouple and freeze in the large T limit, this suggests there is
an identical Hilbert space, consisting of jets only, along the two
relatively translated trajectories, and that the density matrices in
that Hilbert space are related by a unitary transformation. Thus,
spatial translation is an asymptotic symmetry as well.

4. CONCLUSIONS

The basic principles of the HST formalism are the CEP and
the implementation of causality by the unfolding entanglement
of degrees of freedom in a nested set of causal diamonds.
The unitarity of the entangling map implies that this has
the properties of an error correcting code. The fact that the
fundamental variables are the fermionic generators in the
fundamental representation of SU(K|L)8 follows from the finite
dimension of the Hilbert space and the fact that dynamics is
invariant under fuzzy area preserving maps of the holographic
screen. Area preserving invariance is valid for non-negative c.c.
and for proper times sufficiently small compared to the AdS
radius for negative c.c., as seen from the behavior of black hole
quasi-normal modes. The fact that the fermionic operators must

8Equivalently, they are canonical fermions with constraints.
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transform like asymptotic spinors, follows from the presumed
Lorentz or AdS invariance of the boundary amplitudes, and the
usual connection between spin and statistics.

For negative c.c. and proper times of order the AdS radius
and larger, quasi-normal mode analysis suggests and AdS/CFT
dictates, that propagation is ballistic on the screen, on distance
scales in the bulk larger than the AdS radius. In order to make
this compatible with the CEP for finite area causal diamonds
with proper time approaching the AdS radius, we have to make
a lattice field theory out of the fermionic variables and invoke
the Lieb-Robinson bound. The unfolding entanglement map that
implements propagation in proper time is then the inverse of
a Tensor Network Renormalization Group map in the sense of
Evenbly and Vidal [35].

Quantum information about small regions in the bulk is
spread non-locally on the holographic screen, in a manner
similar to that found in Error Correcting Codes. Omission of
the information in a small area region of a big screen does not
destroy the data about the small causal diamond, because the
entanglement of the small diamond’s variables with those of the
large screen is shared uniformly among the large screen variables.
The rate of spread over the area (which by the CEP is essentially
the number of q-bits on the screen) undergoes a sort of phase
transition in asymptotically AdS spaces, when the proper time
in the diamond approaches the critical value (of order the AdS
radius) at which the area of the diamond goes to infinity. Prior
to that regime, the scrambling is “fast” and the information is
homogenized on the sphere in a time of order the radius of
the sphere times the logarithm of the total number of q-bits.
As the proper time approaches the critical value, information
scrambling is “fast” only over an area of order the d − 2 power
of the AdS radius. If we imagine a collection of local probes,
separated by distances on the holographic screen which are of
order the AdS radius, communication between those probes is
ballistic. The system thus behaves like a lattice approximation to
a quantum field theory.

In Banks and Fischler [36, 37] the authors conjectured that
in the regime of the transition the HST Hamiltonian was the
inverse of a Tensor Network Renormalization Group (TNRG)
transformation [35]. TNRG transformations disentangle the
degrees of freedom of a fine grained lattice field theory at
its critical point, producing a Hamiltonian on a more coarse
grained lattice. It’s been shown by numerical analysis of
simple one dimensional critical systems that the coarse grained
Hamiltonians have a spectrum equal to that of the low lying
levels of the radial quantization Hamiltonian of the CFT that
describes the critical point. Radial quantization always picks out
a particular element of the conformal group as the Hamiltonian,
and this is tied to a particular timelike geodesic, making an
explicit connection with HST. This is a direct implementation of
the scale/radius duality of Maldacena. The TNRG can probably
be improved via the technology of Pastawski et al. [24], which
constructs tensor networks invariant under discrete subgroups of
the conformal group.

The HST formalism adds an extra element to the TNRG
formulation of asymptotically AdS dynamics. The TNRG
Hamiltonian corresponding to some fixed proper time is

conventionally defined to act as the unit operator on the tensor
complement of the small Hilbert space corresponding to that
causal diamond. In HST language, it is Hin(t) + 1 for the last
time slice in that diamond. In HST, we have a Hamiltonian
Hin(t) + Hout(t) where Hout(t) acts on the tensor complement.
In HST Hout(t) is supposed to be determined by the consistency
conditions with time evolution along other timelike trajectories.
In AdS space, all time-like geodesics are related by elements of the
conformal group, so at least some of these consistency conditions
are guaranteed asymptotically by the restoration of conformal
symmetry implicit in any RG transformation at a fixed point. It’s
possible that the conditions for finite diamonds and accelerated
trajectories add further constraints.

This implementation of HST has implications for the CFT
description of diamonds of size much smaller than the AdS
radius. The work of Evenbly and Vidal shows that the finite
dimensional Hamiltonians of the TNRG can be chosen to
have the same spectrum as the low lying part of the exact
CFT spectrum. This is a very explicit implementation of
Maldacena’s scale-radius duality. However, in the HST model,
this correspondence breaks down as the proper time in the
diamond is taken smaller than the AdS radius. Instead of a lattice
field theory we have a highly degenerate Hamiltonian with area
preserving map invariance and fast scrambling.

One can argue that this disturbing disconnection must be a
property of the AdS/CFT correspondence without any reference
to HST. Consider the causal diamond along a particular timelike
geodesic in AdS space with proper time interval much smaller
than the AdS radius. Now consider the Witten diagrams for a
correlation function of a finite number of operators on R ×

Sd−2. The vertices of the diagrams are integrated over the entire
AdS space, whose spatial volume on global time slices is all
concentrated near the boundary. Thus, the contribution to that
correlation function from the causal diamond is very small, but
non-zero. The probability that the interactions take place within
that diamond is small and is dominated by contributions from
the boundary of the diamond. As a consequence, if there is a
notion of measurements localized in the diamond, they must
register a state that is close to “empty Minkowski space,” with
deviations concentrated near the boundary of the diamond. This
is consistent with the fact that the “energy” of such boundary
states, in any coordinate system with spacelike slices localized in
the diamond, will be very small. This is an AdS/CFT argument
that the “vacuum” of the approximately Minkowski region is a
nearly degenerate ensemble rather than a single pure state.

The standard derivation [38–41] of Minkowski amplitudes
from CFT correlators illustrates the same principle. All of
the work on this subject has concentrated on showing that
specially prepared 4-point functions converge to tree level
4 point scattering amplitudes9. But now consider a 4 + n
point function with n operators not constrained to focus on a
particular “arena” causal diamond. This gives a slightly different
amplitude in Witten diagrams, but causes only small changes

9There are all sorts of caveats to this statement, particularly to its extension to
higher point amplitudes which require us to study states localized in the large
compact directions of AdSd ×K, but they’ve been discussed elsewhere.
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to the contribution from the bulk of the arena. The obvious
interpretation of these correlators is as a superposition of
amplitudes for “n gravitons” and other soft massless particles to
be injected into or emitted from the arena. The full Minkowski
scattering operator for “2 to 2” scattering includes all of
these processes.

Note that in the discussion above there was no particular
restriction to which n operators were inserted. We used only
the fact that in connected diagrams involving all 4 + n particles,
most of the vertices were integrated over all of AdS space. Thus,
the precise definition of the limiting Hilbert space on which the
Minkowski scattering operator acts requires us to find a basis
of states that can reproduce all of these amplitudes. This is an
unsolved problem in AdS/CFT.

If we accept the CEP for finite area diamonds in AdS space,
Page’s theorem [42] implies that the empty Minkowski vacuum is
a maximally uncertain density matrix. In the large radius limit,
the ensemble consists of all states on the boundary of the arena
that can be created by Witten diagrams with little weight in
the arena causal diamond. It is maximally uncertain because the
number of possible Witten diagram states is much larger than the
number of states that the CEP allows in the diamond. States that
correspond to scattering in the arena must then be constrained
states of this ensemble. That is, we’ve recovered the picture of
localized excitations as constrained states of an ensemble of low
energy excitations on the horizon.

In summary, HST treats time as fundamental, discrete and
relative. Space-time is an emergent phenomenon, measuring the
amount of quantum information accessible to an information
gathering system on a given timelike trajectory in fixed intervals
of proper time. This gives us a quantum definition of causal
diamonds. Causal propagation is an error correcting code by
which quantum information about events in a small diamond is
entangled with the states of a larger diamond containing it. The
information is spread rapidly over the holoscreen of the larger
diamond, homogeneously for non-negative c.c., or for holoscreen
sizes≪ the AdS radius for negative c.c. On proper time scales of
order the AdS radius, information is concentrated in the nodes of
a tensor network and spreads ballistically over the network. The
spatial size of the nodes is of order AdS radius, as is the spacing
between them.

The principle, valid for small enough diamonds with any
c.c. and any diamond with non-negative c.c., that bulk localized
states are constrained states of boundary DOF, with bulk energy
proportional to the number of constrained q-bits, explains
most of the qualitative features of black hole and cosmological
horizons and eliminates the firewall paradox. The HST model
gives a very explicit picture of the transition between an ordinary
scattering event and black hole formation. Black holes formwhen
the energy, the number of constraints, entering into the past
boundary of a causal diamond, creates a state so atypical that the

fast scrambling Hamiltonian eliminates those constraints before
the energy exits the diamond. Thus, the boundary of validity
of effective field theory ideas is an entropy bound. The bulk
localized entropy must be less that S3/4 in four dimensions in
order to avoid black hole formation. This is a covariant version of
a bound conjectured by Cohen et al. [1]. Their bound was based
on trying to understand the failure of field theory to compute the
cosmological constant. InHST, the c.c. is an input, but it is correct
that the expectation value of the Hamiltonian in dS space does
scale like the integral of the c.c. over the spatial volume of the
static patch.

The resolution of the firewall paradox for non-negative c.c.
is also completely entropic and can be understood without any
of the details of the HST formalism. The fact that black holes
in these space-times have negative specific heat implies that the
state just prior to the event we call “dropping a low entropy
system onto a black hole,” has a huge entropy deficit relative to
the equilibrated black hole of slightly higher mass. If there is any
notion at all of a finite dimensional Hilbert space associated with
the equilibrated system, then the pre-equilibrium state must be a
low entropy constrained state in that Hilbert space. Combining
this with the fact that dynamics on the horizon has a natural time
scale of order the black hole radius, and the natural conjecture
that the frozen degrees of freedom mediate the interactions
between the low entropy system and the original black hole
horizon10, we find that there will be a time of order RSln RS
during which the infalling system behaves as if the black hole
were not there. This is the “temporary” definition of “the smooth
part of the black hole interior.” After the scrambling time the
last phrase in scare quotes has no meaning, but a new infalling
system will create its own interior. Firewalls are a consequence of
insisting on an invalid quantum field theory picture of quantum
states near the horizon.
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There have been various claims that the Equivalence Principle, as originally formulated

by Einstein, presents several difficulties when extended to the quantum domain, even in

the regime of weak gravity. Here we point out that by following the same approach as

used for other classical principles, e.g., the principle of conservation of energy, one can,

for weak fields, obtain a straightforward quantum formulation of the principle. We draw

attention to a recently performed test that confirms the Equivalence Principle in this form

and discuss its implications.

Keywords: quantum gravity, quantum phase estimation, equivalence principle, interferometry, quantum

information
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The principle of equivalence is a pillar of Einstein’s theory of relativity; as such, it was originally
formulated within a classical theory, where all observables of a point particle, in particular its
position, energy and mass, are sharp in any state of the particle. This is true of other principles,
such as the principle of conservation of energy, whose expression and validity in quantum theory
are nonetheless widely accepted. Yet, there has been a great degree of controversy about the
formulation of the Equivalence Principle for quantum systems: this is because a quantum system
can exist in a spatial superposition; and the Equivalence Principle as classically formulated does not
cover directly such cases. Consequently, there have been proposals to extend it to quantum systems
[1–3]; there also have been claims that the principle is violated by quantum systems (see e.g., the
introduction in Anastopoulos and Hu [4] and references herein); some have also claimed that this
should be a reason for gravitational state reduction [5]. The main point of discussion here is the fact
that the Equivalence Principle implies that different masses should fall at the same rate in the same
gravitational field. However, the quantum de Broglie wavelength is a function of the particle’s mass
and therefore different masses would interfere differently in the same gravitational field; this would
seem to violate the prescription, from the Principle of Equivalence, that the behavior of different
masses in the same field cannot be distinguished. As we will see below, in our formulation of the
quantum Equivalence Principle, this is not a relevant issue. The same we believe is true for other
aspects of the controversy, such as those mentioned in Anastopoulos and Hu [4].

Here we would like to extend the Equivalence Principle to the quantum domain via a similar
approach to that applied to the energy conservation. Namely, to extend the principle to the
quantum domain, we will assume that for any branch of a quantum superposition the principle
holds true. Specifically, we will assume that for each branch of a spatial superposition, sharp at
location x, the Equivalence Principle holds in one of its currently accepted forms: the state of motion
of a point particle at rest in a uniform gravitational field g is empirically indistinguishable, by local
operations at x, from the state of motion of a point particle that undergoes an acceleration −g in

14
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a gravity-free region. To the best of our knowledge, this
formulation of the Equivalence Principle is original; however,
there are other recent proposals that are similar in spirit [1].
In the limit of weak gravity this is a good approximation; the
ultimate formulation of the Equivalence Principle will have to
lift this assumption and it should not rely on the idea of a
fixed spacetime background. For present purposes, however, it is
possible to confine attention to this regime, as even in this regime
problems with the quantum formulation of the Equivalence
Principle have been claimed to exist. This regime is also very
interesting, as it does not involve general-relativistic effects, but
it can be used to probe the quantum nature of gravity [6, 7].
We will now derive a number of well-known consequences of
the principle formulated in this way and point out a recent
experimental confirmation of its validity.

THE PHASES INDUCED BY THE
EQUIVALENCE PRINCIPLE

Assuming the Equivalence Principle, in classical mechanics the
transformation between a system in a gravitational field and the
one in the equivalent accelerated frame is a gauge transformation.
Assuming, with the Equivalence Principle, that the inertial and
gravitational mass are the same constant m, the Lagrangian for
a particle with mass m moving in an accelerated frame with the
acceleration rate given by g is:

LF =
1

2
m(ẋ+ gt)2 ,

whereas for a particle moving in the gravitational potentialmggx,
the Lagrangian is

LG =
1

2
m(ẋ)2 −mgx = LF +

d

dt
3(x, t)

where

3 = −mgxt −
1

6
mg2t3

is the gauge transformation. For simplicity we only consider a
one-dimensional motion, but this results in no loss of generality.

Following the Equivalence Principle, as formulated above, the
wavefunctions of the particle described in the two coordinate
systems (the freely falling and the g frame), as expressed in the
position basis, are related in the following way [8, 9]:

|9(x, t)〉G = e
− i

h̄
3(x,t)

|9(x, t)〉F .

This can easily be verified by applying the Equivalence Principle
in the above form to the corresponding Schrödinger equations:
one, where the particle is freely falling; the other, where the
particle is in a uniform gravitational field. The above relation
holds for all the solutions of the Schrödinger Equation [9].
Now, as expected, the gauge transformation between the two
coordinate systems (the freely falling and the one in the
uniform gravitational field) is quantum mechanically reflected

in the appearance of the extra phase factor between the
two corresponding quantum states. This can be seen as a
consequence of the fact that, upon quantization, the classical
Lagrangian becomes the phase factor which constitutes the basis
of the path-integral formulation of quantum physics. It may
at first be surprising that the gauge transformation is not just
−mgxt and that there is an additional term proportional to t3.
Mathematically, it is of course clear that this term is needed since
the freely falling Lagrangian has a t2 term which, in order for
the Equivalence Principle to hold, needs to be canceled by the
additional term in the gauge.

We note in passing that General Relativity would introduce
corrections to this phase. One way of thinking about it is that
time simply flows at different rates at the two different heights.
The difference between the two flows is given by

1t =

(√

1−
2GM

c2x
−

√

1−
2GM

c2(x+ 1h)

)

τ (1)

=

(
GM

c2x2
1h+

1

2

(
GM

c2x2
1h

)2

+ ...

)

τ (2)

The phase difference can now be calculated by multiplying this
by ω = mc2/h̄ and so

1φ = mg1hτ/h̄+mg2
12h

c2
τ/h̄+ ... (3)

The first term in the gauge transformation was observed
in the Colella-Overhauser-Werner (COW) experiment [10],
implementing the interference of a single neutron superposed
across two different heights, each experiencing different Earth
gravitational fields. The potential difference between the paths
mg1h leads to the phase difference 1φ = mg1ht/h̄ between
the two neutron states. In a variant of the COW experiment,
a neutron interferometry was also performed in a uniformly
accelerated interferometer, confirming the same results as the
original COW experiment and thus, indirectly, the validity of
the Equivalence Principle in the above form [11]. The second
term in this expression is the GR correction and it is clearly
much smaller than the Newtonian one, therefore harder to
access experimentally. As far as we can tell, it has never been
observed experimentally.

Here we want to focus on the following interesting question:
is the t3 term observable? We are used to hearing that gauge
transformations are unobservable, so an immediate response
would be “no.” However, as we will explain, it is still possible
to observe the t3 as a relative phase between the branches of a
quantum superposition of two distinct reference frames.

THE T3 PHASE IS OBSERVABLE

To observe the t3 term, we need to perform an experiment
that effectively superposes the freely falling and the gravitational
field states of motion for a single particle. This is the main
point of our paper. The COW experiment can certainly be
analyzed from the perspective of both reference frames and the
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two treatments ought to give the same predictions due to the
Equivalence Principle. But the COWexperiment does not involve
the superposition of two frames, it involves the neutron being in
a superposition of different spatial paths (in Earth’s frame).

We discuss here a thought experiment where a single particle
is in a superposition of two states, one where it is freely falling
in a gravitational field and the other where it is static in the
same gravitational field. Conceptually, this experiment could in
principle be achieved as follows.

Consider a quantum system of massm superposed across two
different locations, e.g., in the state 1√

2
(|0〉 + |1〉) , and placed

horizontally in an ideal, uniform gravitational field, as in the
COW experiment [10]. Suppose the two branches |0〉 and |1〉
are a distance d apart. As confirmed by the COW experiment,
the contribution to the phase due to this field is equal on the
two arms, therefore amounting to no phase difference. The
interferometer can now be tilted to the vertical position (see
Figure 1), so that the potential on the arm labeled as |0〉 differs
from that on the branch |1〉 by the amount mgd. At that point,
the mass on say the branch |0〉 is dropped, and let interfere with
the branch |1〉.

The phase difference between the two paths, assuming the
Equivalence Principle to hold in every branch of the wave-
function, and that x(t) = d − 1

2gt
2, reads:

1

h̄

∫ t

0
mgx(τ )dτ =

mg

h̄
(dt −

1

6
gt3)

The freely-falling branch of the mass interferes with the
stationary branch and the resulting shift of the interference
fringes contains the t3 term, which can therefore in principle be
detected. Whether we think of this experiment as a particle in a
superposition of two different states of motion, or we think of the
particle as an observer and therefore in a superposition of two
reference frames, is irrelevant. The result ought to be the same,
and the experiment would confirm the Equivalence Principle
if the t3 term were to be observed, at least in this quantum
weak-field regime.

In order to observe the phase of course no decoherence should
occur. This includes any entanglement of the interfering mass to
another system that does not participate in the final interference.

This other system could be another simple physical system (such
as a colliding atom or the electromagnetic field), or it could be an
internal degree of freedom [4]. More subtly, no observer should
measure which of the two reference frames the mass is in, as this
too would cause decoherence.

We note that an experiment to detect the t3 phase
was proposed and performed very recently, with a Bose-
Einstein condensate undergoing interference in a Stern-Gerlach
interferometer, subject to a state-dependent force [12]. The
experiment we have discussed is conceptually equivalent.
Measuring the t3 in this experiment has confirmed the
predictions of the Equivalence Principle expressed as above in the
quantum domain.

DISCUSSION

We have deployed the relation between the freely-falling and
the gravitational coordinate systems, which is based on the
Equivalence Principle in the weak-field limit, to discuss an
experiment that could detect the t3 phase that relates a mass
in free fall in a gravitational field, and the same mass being
stationary in the same field. We have derived this relation
using a formulation of the Equivalence Principle that holds
for each branch of a spatial superposition. This expression of
the Equivalence Principle harmonizes with the existing ways
of extending other principles, originally formulated for classical
systems (e.g., energy conservation), to the quantum world. We
would also like to point out that the transformation we applied
to change the freely falling into the gravitational one is the weak-
field limit of the Rindler coordinate transformation [13]. In this
limit, it is clearly legitimate to neglect the effects, such as Unruh-
Davies [5, 14], because only very weak fields are considered.
Moreover, in the Rindler setting, the time coordinate between
the inertial and the accelerated observer (with acceleration a)
transforms as t′ = c

a arcsinh
a
c t, where c is the speed of light.

Now, the second term in the Taylor expansion of this expression

is equal to a2

6c2
t3 which, when multiplied by mc2 gives us the

exact t3 phase term above. Therefore, the low acceleration limit
of Rindler’s coordinate transformation is perfectly consistent with
our analysis. We conclude by pointing out that even though our

FIGURE 1 | Schematics of the interferometry to measure the t3 phase. On the left, the particle is superposed across two paths (M is a mirror; g the gravitational field).

On the right, after tilting the interferometer in the vertical direction, the interferometry is closed by dropping the particle if it is on the upper branch.
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discussions are in the Newtonian, weak-field quantum regime,
the rest energy of the particle still somehow needs to be taken into
account. This is best seen from the perspective of the relativistic
action. The difference between the actions in the falling and
the stationary coordinate systems can be expressed as: mc2(t −
T), where t and T are the proper times of the two coordinate
systems. In the lowest two orders of expansion, this difference
reads: −mgxt − 1

6mg2t3. The phase difference between two
branches is then, just like in the COW experiment, the difference
between the time flows in those two branches (multiplied by
ω = mc2/h̄).

Our guiding philosophy here has been to take quantum
physics seriously and assume that it applies to all systems and
all degrees of freedom. This means, in particular, that if any two
states of motion of a particle are possible, such as an inertial and
an accelerated state of a mass, then their superposition is also
possible. Our paper indeed has been exploring the consequences
for the relative phase between two such states, which we claim to
be observable (and which the experiment in Amit et al. [12] has
indeed observed).

One could also think of the measuring system being in a
superposition of two different states of motion. For instance, a
detector could be in a superposition of being inertial and being
accelerated, while measuring another physical system in a sharp
state of motion. None of this is a problem to handle quantum
mechanically (as far as we can tell), but one has to be careful
not to make some unwarranted assumptions. For instance, a
particle being in a superposition of different motions while the
detector is inertial, will in general yield different results to the
detector being in different states of motion while the particle is
inertial. If quantum mechanics is assumed to hold universally,
none of these situations presents a difficulty: the physical systems

involved will have well-defined behaviors that perfectly comply
with the quantum postulates.

In summary, given the observability of the t3 term, it seems
to us that at least in the regime of weak-field there should be
no qualms about considering the Equivalence Principle to be
extended into the quantum domain in the same way as all other
classical principles are. However, there are still many interesting
other open issues to be investigated both theoretically, e.g.,
references [1, 2], as well as experimentally.
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The Bose-Marletto-Vedral (BMV) experiment tests a quantum gravitational effect

predicted by low energy perturbative quantum gravity. It has received attention because

it may soon be within observational reach in the lab. We point out that: (i) in relativistic

language, the experiment tests an interference effect between proper-time intervals;

(ii) the feasibility study by Bose et al. suggests that current technology could allow to

probe differences of such proper-time intervals of the order of 10−38 seconds, about

twenty orders of magnitude beyond the current resolution of the best atomic clocks;

(iii) the difference of proper times approaches Planck time (10−44 s) if the masses of the

particles in the experiment approach the Planck mass (∼micrograms). This implies that

the experiment might open a window on the structure of time at the Planck scale. We

show that if time differences are discrete at the Planck scale—as research in quantum

gravity may suggest—the Planckian discreteness of time would appear as quantum

levels of an in principle measurable entanglement entropy.

Keywords: quantum gravity, time discreteness, entanglement, non perturbative effects, quantum gravity

phenomenology

1. INTRODUCTION

Bose et al. [1] and Marletto and Vedral [2, 3] have proposed an ingenious idea to amplify and
observe minuscule quantum gravitational effects in a table-top experiment. The idea has received
considerable attention [4–14]. In the version proposed in Bose et al. [1] the observable signal is
given by Bell–like correlations among the spins of two particles. The correlations are produced by a
gravitational interaction. If we assume the identification of gravity with spacetime geometry which
is at the basis of general relativity, the observation of these correlations implies that spacetime
geometry can be in a quantum superposition (in a non-semiclassical state), and therefore can be
taken as evidence for quantum behavior of the geometry [10].

The Bose-Marletto-Vedral (BMV) effect is predicted by low energy perturbative quantum
gravity, and hence by any approach to quantum gravity consistent with this low energy expansion,
including string theory and loop quantum gravity. It is therefore plausibly real. If detected, it would
provide indirect empirical evidence that spacetime geometry does obey quantum mechanics.

On the other hand, the BMV effect is insensitive to the limit c → ∞, hence the gravitational
interaction involved can be described in a non–relativistic language. For this reason, it does not test
the full relativistic quantum gravitational regime. In fact, the effect can be accounted for purely
in terms of the scalar non-radiative modes of the gravitational field, hence it does not test the
quantum dynamics of gravity. If we do not fold in the relativistic information provided by classical

18
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general relativity, the effect can be interpreted in terms
of Newton’s action at a distance, leading to objections on
the relevance of the effect for the quantum properties of
spacetime [4].

Here, we point out that a refinement of the BMV effect could
open a window on a quantum gravitational effect that would
definitely not be accounted for by non-relativistic quantum
physics: time discreteness. The reason this is possible is that from
the point of view of general relativity the BMV set up is a delicate
interference apparatus that picks up a tiny difference δτ in proper
time between two quantum branches, due to gravitationally-
induced time dilatation. As derived below, the phase difference
δφ responsible for the gravity-mediated entanglement, and giving
rise to the effect, can be written in a particularly simple form

δφ =
m

mPl

δτ

tPl
, (1)

where the experiment is performed with particles of massm,mPl

is the Planck mass and tPl the Planck time. This expression shows
that the time scales probed are extremely small. With current
technology, the BMV effect might be detected in the lab by
probing relevant entanglement (generated when δφ ∼ 1) using
mesoscopic particles, with masses of the order of a millionth of a
Planck mass (m ∼ 10−6mP ∼ 10−14kg) [1]. The corresponding
time dilation is of the order of a million Planck times, δτ ∼

106tP ∼ 10−38s. This is about twenty orders of magnitude above
current capabilities of direct time measurements with atomic
clocks [15].

Now, it is often pointed out in quantum gravity research that
the Planck time tPl could be a minimal observable time; this
follows from relativity plus the fact that many approaches to
quantum gravity predict a minimal length [16]. In loop quantum
gravity for instance, there is indirect evidence of discretization of
time coming from loop quantum cosmology [17, 18] and other
arguments [19, 20]. The simplest possibility is to assume that
a measurement of a time lapse can only yield multiples of the
Planck time. If this holds for the time difference δτ , namely if
δτ = n tPl, with integer n, then

δφ = n
m

mPl
. (2)

That is, a discontinuity in δτ could be detected as a discontinuity
in δφ. As discussed below, such a discretization of the phase
could be detected by the Bell–like correlations among the
particles’ spins, which would acquire a characteristic quantum
band structure.

The extremely small time intervals probed by the current
proposal to implement the BMV experiment are still too large
to see time discreteness. But if the experiment can be pushed
to work with more massive particles, further approaching the
Planck mass, δτ will approach the Planck time [see (1)].
While the Planck time tP is at the—so far—deeply inaccessible
scale tP ∼ 10−44s, the Planck mass is an easily accessible
scale (∼ micrograms). Thus, by directly manipulating quantum
superpositions of Planck mass particles, interference as a result of

gravitational attraction we can indirectly probe time at the Planck
scale. This is the key theoretical observation of this paper.

The analysis that follows is rough and the effect might be
questioned by a more detailed investigation. It may turn out
that the BMV apparatus does not measure eigenvalues but rather
expectation values, or, that the scale of discreteness for differences
in duration is actually smaller that Planckian. Nevertheless, a
prospect of experimental access to the scale of the Planck time
is so interesting to deserve full attention.

2. THE BMV EXPERIMENT

Let us start by describing the version of the BMV experiment
of Bose et al. [1] in relativistic language, as in Christodoulou
et al. [10]. Two mesoscopic particles (a and b) of mass m and
embedded [21] spin 1

2 are quantum split (say with a Stern-
Gerlach-like apparatus) and each is set in a superposition of
two distinct states, say with spins + and − in some basis, with
different positions in space. This gives rise to four different
branches, which we denote | + +〉, | + −〉, | − +〉, and | − −〉

and a tensor state

|ψ〉 =
|+〉a + |−〉a

√
2

⊗
|+〉b + |−〉b

√
2

=
|++〉 + |+−〉 + |−+〉 + |−−〉

2
. (3)

After a time t the two components of each particle are
recombined. The relative positions of the particles differ in the
distinct branches during the time t, giving rise to different
gravitational fields, namely different spacetime geometries.
Therefore, during the interval t the quantum state of the
geometry is in a superposition of four (semiclassical) spacetimes,
each corresponding to a classical metric. In particular, the proper
time τ along the worldline of one particle is affected by the
presence of the other by relativistic time dilation. This effect is
obviously very small, but, as we shall see, it may be picked up
by interference.

For simplicity, consider the case in which the two particles are
kept at a small distance d only in a single branch, say | − −〉,
while in the other three branches the time dilation is negligible.
According to general relativity, the gravitational time dilation
is [10]

δτ =
Gm

dc2
t. (4)

where G is the Newton constant and c the speed of light. The
phase of the quantum state of a particle of massm evolves in time

as eiφ = eimc2τ/h̄. Therefore, after a (laboratory frame) time t the
| − −〉 branch picks up a phase difference

δφ =
mc2

h̄
δτ (5)

with respect to the other branches. This equation is equivalent
to Equation (1).
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After the time t the state of the two particles has become

|ψ〉 =
|++〉 + |+−〉 + |−+〉 + eiδφ |−−〉

2
. (6)

This is an entangled state. The amount of entanglement is
measured by the entanglement entropy

I = Tr[ρ ln ρ] (7)

where

ρ = Trb |ψ〉 〈ψ | (8)

the trace being on the spin states of one of the two particles.
A quick calculation gives

ρ =
1

2

(

|+〉 〈+| + |−〉 〈−|

)

+
e−iδφ + 1

4
|+〉 〈−| +

eiδφ + 1

4
|−〉 〈+| . (9)

This is correctly a hermitian matrix of unit trace. To compute the
entropy we need to diagonalize ρ. A straightforward calculation
gives the eigenvalues

ρ± =
1

2
±

√
1+ cos δφ

2
√
2

(10)

When δφ = 0, the eigenvalues are ρ+ = 1 and ρ− = 0,
thus giving vanishing entanglement entropy, i.e., there is no
interference in the output. When δφ = π , we have ρ+ = 1/2 and
ρ− = 1/2; the state is maximally entangled and I = log 2, i.e.,
we observe the BMV effect. For a general δφ, the entanglement
entropy is

I = −ρ+ ln ρ+ − ρ− ln ρ− (11)

= −

(
1

2
+

√
1+ cos δφ

2
√
2

)

ln

(
1

2
+

√
1+ cos δφ

2
√
2

)

−

(
1

2
−

√
1+ cos δφ

2
√
2

)

ln

(
1

2
−

√
1+ cos δφ

2
√
2

)

.

See Figure 1. In the lab, for a givenmassm and distance d, δφ can
be controlled by modulating t via

δφ =
Gm2

dh̄
t. (12)

that follows from (4) and (5). The entanglement entropy can be
measured by repeated spin measurements on the recombined
particles. A specific method would be the following: for a given
t, and thus for a given δφ through (12), one of the particles
is discarded and state tomography is performed on the second
particle. This would give a density matrix ρ′ of the form of
Equation (9), where the cross terms would be some real numbers.
Diagonalizing this matrix, an entanglement entropy I′ can be
computed. Assuming all noise has been accounted for, I′ can be

FIGURE 1 | The entanglement entropy for δφ ∈ {0, 2π}.

FIGURE 2 | The entanglement entropy for δφ ∈ {0, 2π} under the assumption

that δt/tPl ∈ N
+, for particles with mass one fifth of the Planck mass.

plotted against δφ(t) and compared with I as given by (11) and
(12). Any deviation of I′ from I could be a signal of a quantum
gravity effect, and in particular the presence of plateaus in I′

would be a signal of time discreteness.
Consider now the hypothesis that time is discrete at the Planck

scale. We consider here the simplest possible ansatz: that

δτ = n tP (13)

with a non negative integer n. Writing m = αmP with α a
dimensionless positive real parameter, we have that the only
values of φ that are actually realized are

δφ = α n, (14)

that is, the phase ends up taking only discrete quantized values,
when t is varied continuously. It follows that the entropy is not
anymore given by a continuous curve as in Figure 1, but has
characteristic quantum steps. As long as α≪ 1 the steps are too
fine to be resolved, but if α approaches unit the steps become
visible, as in Figure 2, where α = .2.
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For particles with masses larger that the Planck mass
interference is likely to disappear altogether, as is common in
interference experiments when the wave frequency is much
higher than the relevant scale of the apparatus. In this case wave
theory goes to the Eikonal approximation. Wave mechanics goes
to classical mechanics. The Compton frequency

νc =
mc2

h̄
=

m

mPl

νP

2π
(15)

of objects withmass larger than the Planckmass is formally larger
than the Planck frequency νPl =

2π
tPl

and probably meaningless.

Notice that in this case an apparatus capable of detecting
δφ ∼ 1 is going to be affected by genuine dynamical effects since
we can also write

δφ =
m2

m2
Pl

ct

d
(16)

and if the left hand side and the first fraction are of order unit,
so must be the second, with the consequence that the duration t
of the interaction must be of the same order than the light travel
time d/c between the particles. This would take us outside the
static approximation used in the analysis (see also [22]).

3. DISCUSSION

The current hope is to realize the BMV experiment in the lab
with masses m ∼ 10−6mP in the next few years [1]. Our
key observation is that with masses at this scale, the BMV
experiment is testing time differences of the order of δτ ∼

10−38s ∼ 106tPl. This is already an extraordinarily small time.
For comparison, the most accurate direct measurements of
time at our disposal make use of the frequencies corresponding
to energy differences in atomic states, atomic clocks, with an
accuracy corresponding at best to a period of the order ∼

10−19s [15]. It is this extraordinary sensitivity to small time
intervals in the BMV interference that makes this experiment
so interesting.

A relativistic language is not needed to derive the correlations
that the BMV experiment is expected to detect. In the non-
relativistic language no small time intervals are in play: instead
of δφ = mc2δτ/h̄, the phase reads δφ = t δE/h̄, and the c2 makes
all the difference, where the relevant time t at play is that of the
laboratory frame.

But, if time discreteness is detected, the non-relativistic
language becomes insufficient to describe the relevant physics.
Time discreteness, according to current tentative theories, is a
genuine relativistic effect arising from quantum gravity. On the
other hand, this study does not go beyond the observation that
the scales probed are possibly close to the relevant scale for such
(naïve) models. Here we do not justify or discuss in depth a
possible discretization of time and its implications. The effect
discussed here however is a relativistic effect, and we do not

think it could be relevant for systems in Newtonian gravity. In
contrast for instance to Muller et al. [23], here the relativistic
interpretation is used to discuss signatures of possible new
physics associated with the discretization of time at the Planck-
scale. These effects, if real, require the relativistic interpretation
to be described. For completeness, although we are not aware
of any such indication, let it be noted that as this is a yet
unexplored time regime, there remains the logical possibility
that there is time discreteness in this regime independently from
quantum gravity.

As mentioned in the introduction, the analysis given here
assumes the discreteness of δτ in Planck time multiples.
It is possible, but it is not certain that this is implied
by quantum gravity. Two reasons that could question this
assumption are the following. First, the spectrum of τ

could be less trivial and, as a consequence, differences of
proper time could be much smaller. For instance, if the
spacing between eigenvalues decreases when the eigenvalues
are large, their differences may become small. Second, a more
careful analysis might show that the interference depends on
averages, or expectation values of time durations, and these
may be continuous even if direct duration measurements
are quantized. This issue in particular requires a more
detailed quantum treatment of the phenomenon that will be
developed elsewhere.

Even with these caveats, the possibility that quantum
interference effects could depend on time differences of the order
of Planck time, a scale so far considered totally out of reach,
definitely deserves attention.
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With Rindler Observers
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Realization of indefinite causal order (ICO), a theoretical possibility that even causal
relations between physical events can be subjected to quantum superposition, apart
from its general significance for the fundamental physics research, would also enable
quantum information processing that outperforms protocols in which the underlying causal
structure is definite. In this paper, we start with a proposition that an observer in a state of
quantum superposition of being at two different relative distances from the event horizon of
a black hole, effectively resides in ICO space-time generated by the black hole. By invoking
the fact that the near-horizon geometry of a Schwarzschild black hole is that of a Rindler
space-time, we propose a way to simulate an observer in ICO space-time by a Rindler
observer in a state of superposition of having two different proper accelerations. By
extension, a pair of Rindler observers with entangled proper accelerations simulates a pair
of entangled ICO observers. Moreover, these Rindler-systems might have a plausible
experimental realization by means of optomechanical resonators.

Keywords: Rindler observer, quantum switch, indefinite causal order, equivalence principle, causality

1. INTRODUCTION

The principle of causality is an implicit assumption of every physical theory and it is universally
supported by our experience of nature. From an operational point of view, causality can be
understood as a system of signaling or communication relations between physical systems; an
information flow whose properties are intimately related to the nature of space and time. One may
even say that the very essence of the classical structure of space and time is to impose a physical
constraint on information processing.

In the old Newtonian picture of the World, space and time are two generically different entities,
universal for all observers. There is a single, three-dimensional flat Euclidean space and a single
global time that enable us to unambiguously distinguish between past, present and future. Together,
they constitute an absolute, independent background structure relative to which every physical event
takes place. Signals can propagate in space with unlimited speed (action at a distance) and,
consequently, each event can be caused by any other in its present or past. The special theory of
relativity (SR) changed this paradigm: space and time became united into the (3 + 1)-dimensional
space-time continuum—Minkowski space - in which signals cannot travel faster than the speed of
light, enforcing them to stay within the local light cone. Nevertheless, the structure of Minkowski
space adhered to the character of an independent, fixed background on which dynamical matter
fields propagate.
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The radical change came with Einstein’s general theory of
relativity (GR). The gravitational field came to be understood as
the curved space-time itself, gravity being encoded in a metric
tensor coupled to dynamical matter fields. There is no fixed,
independent metric structure, no absolute background stage
relative to which locations of physical events are to be defined,
there are just dynamical fields, the metric being one of them, and
physical events can only be located relative to each other. The
possibility of communication between different observers, i.e. the
causal order, is entirely determined by the dynamical
configuration of light cones, and so, although dynamical,
space-time, as a landscape of physical events, has definite
causal order (DCO). Thinking about Quantum Mechanics
(QM) of gravitating objects, the question arises whether there
is a way to relax the restrictions of classical space-time structure
and enable processes that do not obey definite causal relations,
i.e., can there be a quantum superposition of different causal
orders—an indefinite causal order (ICO)?

It is generally expected that unification of QM and
gravitational physics will provide us with some deeper insights
concerning the nature of space and time and their relationship
with matter. However, the standard methods of quantization of
matter fields employed in Quantum Field Theory (QFT) do not
seem to work for Einstein’s gravity; it holds a status of a non-
renormalizable effective theory with undetermined high-energy
degrees of freedom. In order to surpass the traditional concepts of
GR and QFT, various ways of “quantizing” gravity were proposed
so far, such as String Theory, Quantum Loop Gravity,
Noncommutative Geometry, Supergravity, etc. However, to
date, there has been no conclusive empirical evidence that
would support or disprove any of the proposed “high-energy
theories.” This state of affairs motivates us to reconsider in which
sense and to what extent can the seemingly contradictory
principles of QM and GR be reconciled, while adhering to the
tenets of both theories [1, 2].

There are two main incentives for this paper. The first came
from the work of Oreshkov, Costa and Brukner [3], where it was
found that it is possible to formulate quantummechanics without
any reference to a global causal structure, i.e. without predefined
space-time. The resulting framework - the process matrix
formalism - allows for processes incompatible with any
definite causal order between operations performed on
quantum systems. These abstract indefinite causal structures
are shown to be advantageous for quantum computing [4, 5]
and quantum communication [6–8]. One particular example that
has an experimental demonstration is the so called “quantum
switch” [4, 9–14], where the main idea is to use an auxiliary
quantum system that can coherently control the order in which
certain operations are applied. In the case of the so-called
gravitational quantum switch (GQS) [15] the role of the
control system is played by a gravitating object prepared in a
state of quantum superposition of being at two different spatial
locations. The second incentive comes from the intriguing idea of
quantum reference frames (QRF) [16, 17] where one regards
reference frames not as abstract systems of coordinates, but as
actual physical objects subjected to the laws of quantum
mechanics and describes the world from their perspective.

In this paper, we propose a way to simulate ICO processes by
considering the fact that the near-horizon geometry of a
Schwarzschild black hole (BH) is that of a Rindler space-time.
Namely, a Rindler observer in a state of superposition of having two
different proper accelerations corresponds to a near-horizon
Schwarzschild observer in a state of superposition of being at
two different locations along a single radial direction. From the
viewpoint of such an observer the geometry of space-time is
indefinite. This correspondence can be extended to a pair of
Rindler observers with entangled proper accelerations simulating
a pair of entangled ICO observers, as we illustrate by means of a
simple example. Although they represent idealizations, these
Rindler-systems could become a valuable resource for studying
ICO processes in laboratory conditions, with plausible experimental
realization in the form of opto-mechanical oscillators [18–21].

2. RINDLER OBSERVERS

In order to set the stage, consider the (1 + 1)-dimensional
Minkowski space M2 and a central light cone defined by
t � ± x (we set c � 1). In these globally inertial coordinates
(t, x) the Minkowski metric is given by ds2M2

� −dt2 + dx2. If we
introduce Rindler coordinates (η, ρ) defined by t � ρsinh(η) and
x � ρcosh(η), the metric becomes ds2M2

� −ρ2dη2 + dρ2. However,
these new coordinates do not cover the wholeMinkowski space, only
the patch given by x ≥ 0 and |t|≤ x. This region is called the right
Rindler wedge or simply the R-wedge [see Figure 1 (left panel)]. The
family of coordinate lines of constant ρ are the branches of
hyperbolas x2 − t2 � ρ2 embedded in the R-wedge (the other set
of branches belongs to the L-wedge, defined by x ≤ 0 and |t|≤ − x)
asymptotically approaching the Rindler horizon t � ± x (ρ � 0 and
η→ ± ∞). They correspond to the worldlines of physical systems
that have constant proper acceleration of magnitude
α(ρ) � 1/ρ—Rindler observers. The proper time of a Rindler
observer, with a given ρ � const., is dτ � ρdη. Therefore, we can

FIGURE 1 | Rindler observers. (Left panel): Coordinate lines in the right
(R) Rindler wedge of the Minkowski space. Coordinate lines of constant ρ are
hyperbolas and they correspond to worldlines of Rindler observers. Regions L
and R, called the left and the right Rindler wedge, respectively, are
causally disconnected due to the presence of the Rindler horizon t � ± x.
(Right panel): Photon’s worldline intersects the Rindlers. A pair of Rindler
observers in the R-wedge with different proper accelerations α1 and α2,
α1 < α2. A photon sent from the source S, located at ts � 0 and xs � x0 > 0,
intersects the worldlines of the Rindler observers at their respective proper
times τ1 and τ2. One can arrange things so that τ1 � τ2.
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Dimić et al. Simulating ICO With Rindler Observers

24

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


define a worldline of a Rindler observer in the R-wedge with proper
acceleration α by a pair of parametric equations:

t(τ) � 1
α
sinh(ατ), x(τ) � 1

α
cosh(ατ). (1)

Rindler observer with greater proper acceleration has a more
curved worldline (closer to the Rindler horizon). Note also that,
due to the presence of the Rindler horizon, Rindler observers in the
R-wedge are causally disconnected from the ones in the L-wedge,
meaning that they are unable to communicate with each other.

Consider now a pair of Rindler observers in the R-wedge, with
different proper accelerations α1 and α2. Let the worldline of the second
one be more curved. That is, let α1 < α2. A photon sent to the left from
the source S, located at ts � 0 and xs � x0 > 0, intersects worldlines of
the Rindler observers at proper times τ1 and τ2, respectively [see
Figure 1 (right panel)]. At t � 0 both observers are closer to the origin
than S, implying that α2x0 > α1x0 > 1. This configuration has an
interesting feature that will turn out to be important. Namely, given
the values of x0 and α1, there exists a unique value of α2, defined as the
non trivial solution (α2 ≠ α1) of the equation

α2x0 � (α1x0)
α2
α1 , (2)

for which τ1 � τ2 (for details, see Supplementary Material).

3. INDEFINITE CAUSAL ORDER VIA
RINDLER OBSERVERS

Let us assume that we have a pair of Rindler observers in the
R-wedge, Rindler-Amber (AR) and Rindler-Blue (BR). Amber and

Blue are the colors by which we distinguish the two observers, see
Figure 2. Note, however, that these “observers” need not be actual
macroscopic measuring devices of any sort, nor sentient beings;
they could be microscopic physical systems with some internal
degrees of freedom (like spin). On the other hand, they have definite
worldlines since they are confined within accelerating laboratories
(imagine well-enough localized classical “boxes” each carrying an
atom). We assume that these internal degrees of freedom are such
that they donot get affected by the acceleratedmotion of the Rindler
laboratory, which we also assume to be completely isolated. Source S
emits a photon whose worldline intersects the worldlines of AR and
BR. The photon starts in some polarization state |Ψ〉 and the Rindler
observers can perform instantaneous unitary transformations on it.

When their worldlines intersect, AR performs a unitary
transformation UA on the photon’s polarization state. This
constitutes event a. In general, UA is a function of AR’s proper
time. We can abstractly think of AR as a Rindler “clock” whose
worldline and the ticking rate are defined by the proper
acceleration αA. The state of AR will therefore be denoted by∣∣∣∣ταA;A〉, without getting into details of what AR’s actual degrees of
freedom are and what kind of Hamiltonian governs the dynamics
thereof. And the same protocol applies to BR. Its meeting with the
photon and application of a unitary transformationUB constitutes
event b. By choosing a suitable values of the proper accelerations
αA and αB, we can arrange that meetings of the Rindler observers
with the photon (events a and b) occur at the same proper times
τa � τb � τ* (see the discussion at the end of Section 2).

Here we want to stress that physical events are not regarded as
pure geometrical points that constitute space-time manifold
(modulo diffeomorphisms) with some definite set of causal
relations defined by the metric. Rather they are defined
operationally, through application of a specific unitary
transformation, or more generally a specific completely positive
trace-preserving (CPTP) map. Taking quantum mechanics into
account, we consider the possibility that the same physical event
can be in a superposition of occurring at different space-time
locations. This would enable the realization of indefinite causal
order between pairs of events, such as a and b in the above
discussion. One example of this situation is the already
mentioned quantum switch [9–14].

On the left panel of Figure 2, the proper acceleration ofAR (α2)
is greater than the proper acceleration of BR (α1) and on the right
panel, the values are interchanged, AR has the smaller proper
acceleration (α1) and BR has the greater proper acceleration (α2).
In the reference frame of the inertial observer sitting at x � 0 the
initial state (at t � 0) of the whole system (Rindlers ⊗ photon) in
the former case is the separable state

∣∣∣∣τα2(0),A〉∣∣∣∣τα1(0),B〉∣∣∣∣Ψ〉; the
photon first meets BR and then AR. In the latter case, when the
initial state of the system is

∣∣∣∣τα1(0),A〉∣∣∣∣τα2(0),B〉∣∣∣∣Ψ〉, the photon
first meets AR and then BR. If the Rindler observers are prepared
in the entangled state that is a superposition of the two previous
ones, at t � 0 we have

1�
2

√ (∣∣∣∣τα2(0),A〉∣∣∣∣τα1(0),B〉
+ ∣∣∣∣τα1(0),A〉∣∣∣∣τα2(0),B〉)|Ψ〉.

(3)

FIGURE 2 | Entangled Rindler observers. Worldline of a photon emitted
by the source S intersects worldlines of the two Rindler observers, AR and BR,
that have entangled proper accelerations. On the left panel, AR has greater
proper acceleration (α2) than BR (α1), and on the right panel the
accelerations are “switched”. By choosing a suitable pair of values for the
proper accelerations, thesemeetings (events a and b) occur at the same proper
time τ*. Rindler observers act on the polarization of the photon according to
their “color”, amber (A) or blue (B), that distinguishes them. Observer AR

performs a unitary transformation UA at τ* and observer BR performs a unitary
transformation UB at τ* . When Rindler observers meet the photon, they come
to rest and remain that way until some particular moment tm at which a
projective measurement is performed in order to disentangle the state of the
photon from that of the Rindler observers. The photon is observed at C.
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It is important to realize that the event a has to be one and the
same in both “branches” of the superposition. The meeting of the
photon with AR in the case when AR has greater proper
acceleration than BR and the meeting of the photon with AR

when AR has smaller proper acceleration than BR, have to be
locally indistinguishable events in every respect. That is why we
demand that the event occurs at the same proper time, τ*, in both
situations. In principle, the state of the photon could be affected
by the kinematic state of a Rinldler laboratory, which might give
rise to entanglement between proper accelerations of the Rindler
laboratories and photon’|’s polarization state. To avoid this
possibility, we put them to rest just before they meet the
photon, thus making them inertial from that point on.
Conditional deacceleration of the laboratories along the
Rindler trajectories can be performed sufficiently fast, yet
gradually, not to produce the Unruh radiation.

For t < t1 (where t1 is the time coordinate of the intersection of
the photon’s worldline with the less curved Rindler worldline) the
state is

1�
2

√ (∣∣∣∣τα2(t),A〉∣∣∣∣τα1(t),B〉
+ ∣∣∣∣τα1(t),A〉∣∣∣∣τα2(t),B〉)|Ψ〉.

(4)

By the time the photon went through the laboratories, unitary
transformations, UA(τ*) and UB(τ*), have been applied on it. At
some instant t > t2 (where t2 is the time coordinate of the
intersection of the photon’|’s worldline with the more curved
Rindler worldline) the state of the whole system is given by

1�
2

√ (∣∣∣∣τ* + t − t2,A〉
∣∣∣∣τ* + t − t1,B〉UA(τ*)UB(τ*)

+ ∣∣∣∣τ* + t − t1,A〉
∣∣∣∣τ* + t − t2,B〉UB(τ*)UA(τ*))|Ψ〉,

(5)

where t − t1 and t − t2 are the time intervals during which the
respective Rindler laboratories were at rest.

Finally, we need to disentangle the state of the photon from the
state of the Rindler observers. To this end, at some moment tm, a
projective measurement (postselection on the internal state of the
Rindlers) is performed in the superposition basis
{|mi〉,|m⊥

i 〉
∣∣∣∣ i � 1, 2}, separately for each laboratory. The basis

states are given by

|mi〉 � 1�
2

√ (∣∣∣∣τ* + tm − ti,A〉 +
∣∣∣∣τ* + tm − ti,B〉),

|m⊥
i 〉 � 1�

2
√ (∣∣∣∣τ* + tm − ti,A〉 −

∣∣∣∣τ* + tm − ti,B〉).
(6)

Postselection on any pair of possible measurement results
leads to the final state of the photon

1�
2

√ (UA(τ*)UB(τ*) ± UB(τ*)UA(τ*))∣∣∣∣∣∣∣Ψ〉 (7)

Subsequently, the photon may be observed at C. However,
being in the state 7, there is no way to distinguish, given the
photon alone, which of the two events (a and b) lies in the causal
future of the other, and the information about the causal order
is lost.

4. GRAVITATIONAL SCENARIO

Imagine now that we have a system that involves a Schwarzschild
BH and an observer (outside the horizon) in a state of
superposition of being at two different relative proper
distances from the horizon. The observer is well-enough
localized and has a negligible effect on the gravitational field.
Also, we do not assume the existence of a fixed background
geometry with reference to which we could define positions; only
the relative distance between the BH (its horizon) and the
observer has physical meaning.

In Schwarzchild coordinates (t, r, θ, ϕ), the metric of the BH
exterior is

ds2 � −f (r)dt2 + dr2

f (r) + r2dΩ2
2, (8)

with f (r) � 1 − RS
r and Ω2

2 � dθ2 + sin2θdϕ2. We are only
interested in a single radial direction, so we can ignore the
angular part of the metric. The proper radial distance between
the stationary observer at rlab and the event horizon at RS � 2MG
(M being the mass of the BH) is

ρ � ∫riab

Rs

dr����
f (r)√ . (9)

Therefore, our bipartite system can be interpreted as a
situation where we have an observer in the state 1�

2
√ (∣∣∣∣ρ1〉+∣∣∣∣ρ2〉)

with indefinite proper distance from the horizon in definite
Schwarzchild geometry. On the other hand, from the
viewpoint of the observer (quantum reference frame), the
gravitational field appears to be indefinite, as if the BH is in
the state of superposition of being at two different places relative
to the observer.

The idea that a gravitating object in a state of quantum
superposition of being at two different locations somehow
“induces” a quantum superposition of different geometries,
dates back to Feynman [22] and it has been successfully
promoted recently [15, 23–26]. Although this seems as a
natural way to combine GR and the linearity of QM, it
remains unclear in which sense can a gravitational field
(i.e., space-time geometry) be in a state of quantum
superposition, see for example [27]. Here, we propose a way
of looking at this situation based on the relational character of
quantum superposition [28].

Einstein’s equivalence principle states that a gravitational field
is locally equivalent to an accelerating reference frame in flat
space-time. As a consequence, for every well-enough localized
stationary (r � const.) observer in Schwarzschild geometry there
is an equivalent uniformly accelerating observer in Minkowski
space. Moreover, the near-horizon geometry of a Schwarzschild
BH is that of a Rindler space-time, and therefore a Schwarzschild
observer whose proper distance from the horizon is ρ corresponds
to the Rindler observer whose proper acceleration is 1/ρ (see
Supplementary Material for details).

By extending this reasoning, we propose a “quantum” version
of Einstein’s equivalence principle by stating that ICO space-time
is locally equivalent to a non-inertial reference frame with
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superposed proper accelerations. In particular, we can relate a
Schwarzschild observer in the state 1�

2
√ (∣∣∣∣ρ1〉+∣∣∣∣ρ2〉) of being at two

different relative distances from the horizon, to the Rindler
observer in the state of superposition of having proper
accelerations 1/ρ1 and 1/ρ2, respectively. The similar principle
has been invoked and derived within quantum reference frames
formalism [16] in the Newtonian limit.

Consider now a pair of observers in the near-horizon region of
a Schwarzschild BH, Schwarzschild-Amber (AS) and
Schwarzschild-Blue (BS). Let the observers have entangled
proper distances from the horizon (along a single radial ray)
and fixed relative distance between each other. From the reference
frame of the BH, space-time has a definite geometry and the state
of this tripartite system is 1�

2
√

∣∣∣∣0〉BH(∣∣∣∣ρ1〉A∣∣∣∣ρ2〉B + ∣∣∣∣ρ2〉A∣∣∣∣ρ1〉B),
where |0〉BH is the position state of the black hole. Observers
AS and BS correspond to a pair of Rindler observers, AR and BR,
both in the R-wedge, with entangled proper accelerations. On the
other hand, from the point of view of the pair of observers, we
have a BH in a state of superposition of being “at two different
sides” of the observers, symmetrically. These states of the BH are
denoted by |L〉 and |R〉, see Figure 3. The middle point between
AS and BS is well defined in relative terms. From the reference
frame associated to this point [29] the joint state of the system is
1�
2

√ (|L〉+|R〉)|−ρ〉A|ρ〉B, where ρ � ρ2−ρ1
2 is the half-distance

between the two observers.
We can perform a photon experiment, similar to the one

described in Section 3, that involves the observersAS and BS and a
source S that emits a photon in the direction that depends on the
position of the BH relative to the observers. The position of the
BH plays the role of a quantum control for the whole process
(gravitational quantum switch). Due to the gravitational time
dilation, we can arrange things so that the photon passes through
both laboratories at the same moment of their local proper time
(see SupplementaryMaterial for details). This is analogous to the
case of the Rindler quantum switch from Section 2. When the
photon gets inside the laboratory, a unitary transformation,UA or
UB, depending on the laboratory, is applied instantaneously on its
polarization state. The meeting of the photon and the laboratory
AS and the application of the unitary UA is the event a, and
likewise, the meeting of the photon and the laboratory BS and the
application of the unitary UB is the event b. After performing a
projective measurement in the superposition basis
1/

�
2

√ (|L〉 ± |R〉) of the BH (to disentangle its state from the

photon’|’s state, as described in [15]), the final state of the photon
implies the two events do not possess definite causal order.

5. CONCLUSION

In this paper, we proposed a way to characterize ICO space-time as
a space-time associated with the reference frame of a quantum
observer - quantum observer perceives ICO space-time. As an
illustration, we considered a bipartite system that involves a
Schwarzschild BH and an observer outside the horizon, in a
state of quantum superposition of being at two different relative
distances. By invoking the fact that near-horizon geometry is that
of a Rindler space-time, we can relate this ICO observer to the
Rindler observer in a state of superposition of having two different
proper accelerations. By extension, a pair of ICO observers with
entangled proper distances from the BH horizon corresponds to a
pair of Rindler observers with entangled proper accelerations. As
an example, we analyzed Rindler quantum switch and the related
gravitational quantum switch.

Furthermore, a Bell’s inequality for temporal order of events
was found in [15]. The same kind of inequality can be derived by
using two pairs of Rindler observers, one in the left and the other
in the right Rindler wedge. In the corresponding gravitational
scenario we would have to take into account the Kruskal
extension of the Schwarzschild solution. In this case, the
gravitational quantum switch would involve two pairs of
observers residing in conformally flat space-times connected
by Einstein-Rosen bridge. We postpone this interesting
analysis for future work.

On a more practical side, there is a growing effort in
demonstrating quantum features of nano-to-mesoscale
optomechanical systems. This may provide a challenging, yet
feasible experimental realizations for the proposed Rindler systems
[18]. Recently, mesoscopic mechanical resonators were considered as
quantum non-inertial reference frames [19, 20] and entanglement of
two massive mechanical oscillators is achieved [21]. It has been
proposed to utilize quantum optical fields in order to prepare and
measure the quantum states of mechanical resonators, conceivably
opening the possibility to quantum-mechanically control the
acceleration of such quantum non-inertial reference frames [18].

In an actual experiment, potential decoherance effects can
compromise the predicted result [30]. Moreover, QFT effects
could also be taken into account. In this context, our Rindler
observers could be viewed as Unruh-DeWitt detectors, where an
increase of the thermal noise, due to the Unruh effect, may affect the
evolution of the system, such that it can no longer be considered as a
coherent superposition, but rather a (convex) classical mixture.
However, since we can choose proper accelerations of the Rindler
observers to be arbitrarily small by putting the photon source at
suitable position, the Unruh effect can always be made negligible.
Just to put some numbers, if we set x0 � 1m, the accelerations
would be of order 1017 m/s2, which corresponds to the Unruh
temperature of order 10− 4 K, and this is far too small for the Unruh
effect to be detectable. Correspondingly, for a solar mass black hole
with Rs � 3 km, we have a Schwarzschild observer at 1m proper
distance from the horizon, which is a good near-horizon

FIGURE 3 |Gravitational quantum switch. The system involves a photon
source S, two observers, AS and BS, and a BH in a state of superposition of
being at two different positions relative to them, |L〉 or |R〉. The direction in
which the photon is emitted depends on the position of the BH and
therefore the BH plays the role of a quantum control for the whole process. As
a result, the photon is in a superposition of traveling in two opposite directions.
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approximation. Furthermore, depending on the parameters of the
objects involved, e.g., masses of the laboratories, these Rindler
systems could be used to test hypotheses such as the Ghirardi-
Rimini-Weber (GRW) model of objective collapse [31]. Namely, a
failure to maintain a coherent macroscopic superposition even after
screening off the system from decoherence effects, might be taken as
an indication of a spontaneous GRW-type collapses. However, as
we noted in the text, the systems involved in our setting need not be
macroscopic systems (they can bemicroscopic ones, such as atoms).
Moreover, the issues concerning macroscopic systems may still be
avoided by performing the experiment ”sufficiently fast” (before the
alleged GRW-type of collapse should take place). This kind of
assessment was provided in [15] for gravitational quantum switch.
Finally, we should also mention that there is a relativistic version of
the GRW model [32]. Our relativistic Rindler systems could
perhaps be used for studying and testing such models.

Finally, and perhaps most importantly, we would like to
establish a more rigorous framework that would allow us to
formally define an ICO space-time related to a general quantum
reference frame. This could be an important step towards a better
understanding of the quantum nature of space-time.
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In a recent note [1], I argued that the holographic origin of ordinary gravitational attraction

is the quantum mechanical tendency for operators to grow under time evolution. In

a follow-up [2] the claim was tested in the context of the SYK theory and its bulk

dual—the theory of near-extremal black holes. In this paper I give an improved version

of the size-momentum correspondence of [2], and show that Newton’s laws of motion

are a consequence. Operator size is closely related to complexity. Therefore, one may

say that gravitational attraction is a manifestation of the tendency for complexity to

increase. The improved version of the size-momentum correspondence can be justified

by the arguments of Lin et al. [3] constructing symmetry generators for the approximate

symmetries of the SYK model.

Keywords: gravitation, quantum complexity, holographic principle, SYK model, AdS spacetime

1. PRELIMINARY REMARKS

What is it that takes place in the holographic representation of a theory when an object in the bulk
is gravitationally attracted to a massive body? Consider a holographic theory representing a region
of empty space. By operating with a simple boundary operator ψ , a particle can be introduced into
the bulk. As the particle moves away from the boundary the operator ψ evolves with time,

ψ(t) = e−iHtψeiHt , (1.1)

and becomes increasingly complex. If expanded in simple boundary operators the average number
of such operators will increase and one says the size of the operator grows [4]. A closely related fact
is that the complexity of ψ(t) grows. We might expect that the complexity is a good holographic
indicator of how far from the boundary the particle is located. However, there is more to the particle
than just its location; we may want to know how its momentum or velocity is encoded in the
evolving operator ψ(t). The size or complexity is not enough to determine both its distance from
the boundary and its momentum.

Let’s say that the particle is moving away from the boundary so that the size is increasing. It
seems plausible that velocity is related to the rate of change of size. This is oversimplified but it
roughly captures the idea that size, and its rate of change, holographically encode the motion of
the particle.

Now suppose there is a heavy mass at the center of the bulk region. The gravitational pull
of the heavy mass will accelerate the particle away from the boundary. We may expect that the
growth of ψ—both its size and complexity—will be accelerated relative to the empty case. Thus,
it is plausible that the holographic representation of gravitational attraction has something to
do with the tendency for operators to grow and become more complex [1]. Gravity accelerates
that tendency.

In [2], the SYK model and its bulk dual, which in many ways resembles the theory of near-
extremal Reissner-Nordstrom (NERN) black holes, provided a testing ground for this hypothesis.
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Susskind Complexity and Newton’s Laws

In this paper I will continue the line of reasoning of [2]. A
connection between the evolution of complexity and Newton’s
second and third laws of motion, as well as Newton’s law of
attraction, will be derived:

• Newton’s second law is summarized by the familiar equation,

F = ma (1.2)

or its generalization,

F =
dP

dt
. (1.3)

• Newton’s third law—the law of action and reaction—says that
the force exerted by A on B is equal and opposite to the force
exerted by B on A.

• Newton’s law of attraction,

F =
mMG

r2
(1.4)

My arguments are a heuristic mix of quantum information and
gravitation and involve some guesswork, but a more formal basis
has been found by Lin et al. [3]. In section 7, I’ll briefly explain
the connection insofar as I understand it.

Note on Size and Complexity
The size of an operator is roughly the average number of
elementary constituent degrees of freedom that appear in the
expansion of the operator. While in general it is a somewhat
imprecisely defined notion, in the SYK context in which we
will be working it can be very precisely defined in terms of
the average number of fermions in the operator [4]. Some care
is needed in order to define size at finite temperature. The
concept of temperature-dependent size that I will use in this
paper is due to Qi and Streicher [5]. Size and complexity are
logically different concepts but for reasons that will become
clear, over the time period relevant for this paper the two are
essentially indistinguishable. In order to minimize notation, and
to avoid confusing size with entropy, I will use the symbol
C to represent both. The quantitative equivalence of size and
complexity continues for times of order the scrambling time,
but by then the connection between size and the motion of
an infalling particle breaks down as the particle reaches the
stretched horizon.

If the considerations of this paper are to be useful, it will be
necessary to generalize the concept of size to more general cases,
in particular to higher dimensional gauge-gravity dualities. At the
present time I do not know of any precise definition of size in
strongly coupled CFTs. This is a serious hole in our knowledge
that I hope will be filled.

Numerical Coefficients
Many of the equations in this paper are correct up to numerical
factors relating SYK quantities to NERN quantities. These factors

are in-principle computable using numerical SYK techniques,
and depend on the locality parameter q. I will use the
symbol ≈ to indicate that an equation is correct up to such
numerical factors.

2. NEAR-EXTREMAL BLACK HOLES

The bulk dual of the SYK model is usually taken to be a version
of the (1 + 1)-dimensional Jackiw-Teitelboim dilaton-gravity
system. But that description (of a system with no local degrees
of freedom) does not do justice to the spectrum of excitations
of the SYK system. In many ways SYK is similar to the long
throat of a near-extremal charged black hole whose geometry is
approximately AdS2 × S2. Unlike pure JT gravity SYK contains
matter that can propagate in the throat as it would in the NERN
geometry, and the properties of quantum-complexity are not
well described by the simple dilaton-gravity system [6]. For these
reasons I prefer the language of NERN black holes although no
exact SYK/NERN correspondence is known.

To keep the paper self-contained, in this section I will review
near-extremal black holes, and then in section 3, the dictionary
relating SYK and near-extremal black holes will be explained. I
will closely follow the discussion of NERN black holes in [2].

The metric of the (3 + 1)-dimensional Reissner-Nordstrom
black hole is,

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2d�2

f (r) =

(
1−

r+

r

) (
1−

r−

r

)
. (2.1)

The inner (−) and outer (+) horizons are located at,

r± ≡ GM ±
√
G2M2 − GQ2.

Define

(r+ − r−) = δr. (2.2)

The temperature is given by,

T =
1

β
=

1

4π

(
r+ − r−

r2+

)

. (2.3)

or

T =
1

β
=

δr

4πr2+
(2.4)

The extremal limit is defined by Q2 = GM2 at which point the
horizon radii are equal, r+ = r−. Our interest will be in near-
extremal Reissner-Nordstrom (NERN) black holes, for which
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Susskind Complexity and Newton’s Laws

FIGURE 1 | The three regions outside a near-extremal charged black hole. Unlike for uncharged black holes, there is now a “throat” separating the Rindler and

far regions.

δr << r+.

In the NERN limit the temperature is small (β ≫ r+) and the
near-horizon region develops a “throat” whose length is much
longer than r+. The throat is an almost-homogeneous cylinder-
like region in which the gravitational field is uniform over a
long distance.

2.1. The Geometry of the Throat
The exterior geometry consists of three regions shown in
Figure 1.

• The Rindler region is closest to the horizon where the geometry
closely resembles the Schwarzschild black hole with the same
entropy. It is defined by,

r+ < r <∼ 2r+ − r− (2.5)

The Rindler region has proper length ∼ r+ which means that
it’s about as long as it is wide.

The gravitational field (i.e., the proper acceleration α =

∂r
√
f (r) required to remain static at fixed r) grows rapidly near

the horizon. While the quantity (1− r+
r ) varies significantly in

the Rindler region, (1− r−
r ) is essentially constant.

• Proceeding outward, the next region is the throat defined by

2r+ − r− <
∼ r <∼ 2r+ (2.6)

The throat is long and of almost constant width. The geometry
in the throat region is approximately AdS2 × S2, and the
gravitational field is almost constant. The throat ends at r =

2r+, which we will soon see is the location of a potential
barrier which separates the throat from the far region. The
throat is a feature of charged black holes and is absent from
the Schwarzschild black hole.

For most purposes the geometry in the throat can be
approximated by the extremal geometry with r+ = r−.

The proper length of the throat is,

1ρ

∫ 2r+

2r+−r−

dr
√
f

giving

1ρ = r+ log

(
2πβ

r+

)

. (2.7)

We will assume that log
(
2πβ
r+

)
>> 1 which means that the

throat is much longer than it is wide.
• Next is the far region where

(1−
r−

r
) ∼ (1−

r+

r
) ∼ 1.

The far region lies beyond r = 2r+. The far region will not
be of much interest to us. We will cut it off and replace it by a
boundary condition at r = 2r+.

2.2. The Black Hole Boundary
The black hole is effectively sealed off from the far region by a
potential barrier. Low energy quanta in the throat are reflected
back as they try to cross from the throat to the far region, or from
the far region to the throat. The barrier height for a NERN black
hole is much higher than the temperature and provides a natural
boundary of the black hole region. It may be thought of as the
holographic boundary in a quantum description. It is also the so-
called Schwarzian boundary that appears in current literature on
SYK theory [7–9]. The boundary will play an important role in
this paper.

The S-wave potential barrier has the form

V(r) =
∂r(f 2)

4r

and for a NERN black hole it is given by,

V(r) =
r+(r − r+)3

r6
. (2.8)

The width of the barrier in proper distance units is of order r+
and for near extremal RN it is much narrower than the length of
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the throat. It therefore forms a fairly sharp boundary separating
the black hole from the rest of space.

At the top of the barrier the potential is,

Vtop =

(
1

8r+

)2

≈ J
2 (2.9)

where J is the scale of energy in the SYK theory (see section
3). The units of V are energy-squared rather than energy. For
a particle to get over the barrier (without tunneling) its energy
must be at least

√
Vtop. This is much higher than the thermal scale

and for that reason the barrier is very effective at decoupling the
black hole, including its thermal atmosphere, from the far region.
Another relevant point is that a particle that starts at rest at the
top of the potential has energy of order 1

r+
≈ J .

The top of the potential barrier serves as an effective boundary
of the black hole. It occurs at,

r = 2r+ (2.10)

We may eliminate reference to the entire region beyond the
boundary and replace it by a suitable boundary condition1 on the
time-like surface at which r = 2r+. This is accomplished by the
introduction of a boundary term in the gravitational action.

We define a radial proper-length coordinate ρ measured from
the black hole boundary2,

ρ =

∫ rb

r

dr′
√
f (r′)

(2.11)

In the throat r and ρ are related by,

r − r+

r+
= e−ρ/r+ (2.12)

At the boundary ρ = 0, and at the beginning of the Rindler
region ρ = r+ log (β/r+). Note that ρ has a large variation over
the throat region whichmakes it amore suitable radial coordinate
than r which hardly varies at all.

The black hole boundary, defined as the place where r = 2r+,
is not a rigid immovable object. Fluctuations or dynamical back
reaction can change the metric so that the distance from the
horizon to the boundary varies. This can be taken into account
by allowing the boundary to move from its equilibrium position
at ρ = 0.

1In the SYK literature the corresponding boundary condition is placed on the
point where the dilaton achieves a certain value. In the correspondence between
the dilaton theory and the NERN black hole the dilaton is simply the area of the
local 2-sphere at a given radial location.
2Frequently a radial proper coordinate is defined as the distance to the horizon.
Note that in this paper ρ measures distance to the black hole boundary at r = 2r+,
not to the horizon.

FIGURE 2 | Penrose diagram for a NERN black hole. The curved lines

represent the trajectory of the black hole boundary at r = 2r+. On the left side

the boundary is shown in its equilibrium location while on the right it is moving

in reaction to some matter.

In Figure 2, a Penrose diagram for a two-sided NERN black
hole is shown along with the trajectories of the boundary and the
regions beyond the boundary. The left-side boundary is shown in
its static equilibrium position but on the right side the dynamical
nature of the boundary is illustrated.

The equation of motion of the boundary is generated
by the Hawking-Gibbons-York boundary term (Schwarzian
action in SYK literature) needed to supplement the Einstein-
Maxwell action in the presence of a boundary. For small slow
perturbations the boundarymotion is non-relativistic with a large
mass of order S/r+ (S is the black hole entropy). The mass of
the boundary is of order the mass of the black hole itself3. Using
the SYK-NERN dictionary in section 3 we see that the boundary
mass is,

MB ≈ JN. (2.13)

2.3. Particle Motion in the Throat
Consider a particle dropped at t = 0 from ρ = 0, i.e., from the
top of the potential as in Figure 3. The energy of the particle is
∼ 1/r+, which corresponds to an energyJ in the SYK theory [2].

Under the influence of a uniform gravitational field it
accelerates4 toward the horizon. Supplementary Material works
out the equation of motion for the particle, and one finds that
the force is constant throughout the throat. The momentum
increases linearly with time.

So far a small but important effect has been ignored. There is a
back reaction that occurs when the particle falls off the potential.

3The idea of the boundary as a very massive particle was suggested by Kitaev, who
developed this idea in [10]. It was further developed in [11].
4 In the sense that its momentum grows. Being relativistic the velocity is close to 1.
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FIGURE 3 | A particle is introduced at the top of the potential, and subsequently rolls down the potential.

FIGURE 4 | The boundary recoils when the particle is accelerated. At all times the particle and the boundary have equal and opposite momentum.

The potential exerts a force on the particle, which in turn exerts
an equal and opposite force on the boundary. The result is that
the boundary recoils with a small velocity. [With some effort this
can be seen in the Schwarzian analysis [9]]. This recoil, illustrated
in Figure 4, will be important later.

Once the particle falls off the potential it quickly becomes
relativistic. In the throat region its trajectory is given by

dt =
1
√
f
dρ

=
r+

(r − r+)
dρ

= eρ/r+dρ (2.14)

Thus, the particle trajectory satisfies,

t = r+(e
ρ/r+ − 1) (2.15)

or

ρ(t) = r+ log

(
t − r+

r+

)

(2.16)

The total time to fall from ρ = 0 to the beginning of the Rindler
region is β . During that time the distance traveled is

1ρ = r+ log

(
2πβ

r+

)

. (2.17)

2.4. Schwarzschild r in Terms of ρ
Let’s consider the relation between the Schwarzschild coordinate
r and the proper coordinate ρ. To a very good approximation, in
the throat we can assume r+ = r− and that r is constant. The
emblackening factor

(
r − r+

r

)(
r − r−

r

)

may be replaced by its extremal value

f (r) ≈

(
r − r+

r+

)2

(2.18)

Recall that ρ is the proper distance measured from the boundary
at r = 2r+,

dρ =
dr

√
f (r)

= r+
dr

r − r+

ρ = r+ log

(
r+

r − r+

)

(2.19)

or,

r − r+

r+
= e−ρ/r+ (2.20)
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2.5. Surface Gravity and β̃
The so-called surface gravity κ will play an important role in
what follows. At the horizon the surface gravity is related to the
temperature of the black hole by,

T =
1

2π
κhorizon. (2.21)

More generally it is defined at any radial position r by

κ̃(r) =
1

2

df

dr
=

r+(r − r−)+ r−(r − r+)

2r3
(2.22)

which in the throat is approximated by,

κ̃(r) =
r − r+

r2+
(2.23)

The purpose of the tilde notation is to indicate a local quantity,
i.e., one that may vary throughout the throat. Corresponding
variables without the tilde indicate the value of the quantity at
the horizon. We may also define T̃ and β̃ by,

T̃ =
1

2π
κ̃ =

1

2π

r − r+

r2+

β̃ =
1

T̃
= 2π

r2+
r − r+

(2.24)

(Except at the horizon the quantity T̃ is not a real temperature.
It is a useful quantity defined by 2.23 and 2.24 whose importance
will become clear.)

In the throat let’s express β̃ in terms of ρ. Using 2.16, 2.20,
and 2.24,

T̃(ρ) =
1

2πr+
e−ρ/r+

and,

β̃(ρ) = 2π r+e
ρ/r+ . (2.25)

At ρ = 0, β̃ is given by

β̃ = 2π r+ ≈ J
−1 (ρ = 0) (2.26)

At the Rindler end of the throat where ρ = r+ log (β/r+), β̃ is
given by

β̃ = β (ρ = β) (2.27)

By following the trajectory of the infalling particle 2.15, and using
2.25 we find that β̃ grows according to,

β̃(t) = 2π(t + r+) (2.28)

As the Rindler region is approached β̃ stops
increasing and remains at β until the horizon
is reached.

3. SYK/NERN DICTIONARY

We can only go so far in understanding the quantum
mechanics of NERN black holes without having a concrete
holographic system to analyze. That brings us to the well-
studied SYK model. In this section the SYK/NERN dictionary
is spelled out.

3.1. Qualitative Considerations
We’ll begin with qualitative aspects of the SYK/NERN
dictionary and then attempt to determine more
precise numerical coefficients in the next subsection.
The two-sided arrows in this subsection indicate
qualitative correspondences.

• The overall energy scale of the SYK model is called J .
Its inverse 1

J
is a length scale which corresponds to the

Schwarzschild radius r+. In the SYK model acting with a
fermion operator ψ adds an energy ≈ J . On the NERN side
dropping a particle from the top of the barrier adds energy ≈
1/r+. Thus it makes sense to identify the process of dropping a
particle from the black hole boundary, with acting with a single
fermion operator.

1/r+ ≈ J (3.1)

• A single boundary fermion operator in SYK has size 1
corresponding the assumption of [2] that the initial size of
the operator that creates the particle at the top of the barrier
is also 1.

size of 1 fermion ↔ size of initial particle. (3.2)

• Up to a numerical factor ≈ 1, the zero temperature
extremal entropy of SYK is the number of fermion
degrees of freedom N.

S0 ≈ N (3.3)

• The 4-dimensional Newton constant can be obtained from the
entropy formula,

S0 = πr2+/G

Using 3.1 and 3.3 gives,
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G ≈
1

J 2N
(3.4)

• The SYK theory does not have sub-AdS locality
(locality on scales smaller than r+). It is comparable
to a string theory in which the string scale is of
order r+ or 1/J .

• The black hole mass is r+/G. This
translates to,

M ≈ NJ . (3.5)

• Many of the detailed coefficients that appear in the subsequent
formulas are dependent on q, the SYK-locality parameter
that determines the number of fermion operators in each
term in the Hamiltonian. For the most part I will treat
q as a constant of order unity and not try to track the
q-dependent details.

The literature on the bulk dual of SYK theory [8, 9, 11] has its
own conventions and notations which are not the standard ones
used for NERN black holes. Here I’ll add to the dictionary the
translation between the two.

• The dynamical boundary of SYK (described by the
Schwarzian action) corresponds to the NERN black
hole boundary, i.e., the top of the barrier where the
throat meets the far region. The action governing the
motion of the boundary is the Gibbons-Hawking-York
boundary action.

GHY ↔ Schwarzian (3.6)

• The dilaton field φ in [8, 9, 11] is related to the area of the
transverse geometry at a given radial position,

φ = 4πr2. (3.7)

• The time coordinate used in the SYK literature is called u. It is
the proper time measured at the boundary. We may identify
it with the proper time at the top of the potential barrier
at r = 2r+.

The time coordinate t used in this paper is the asymptotic
Schwarzschild time coordinate for the NERN black hole. The
relation between u and t is,

f (r)|2r+ dt2 = du2. (3.8)

For NERN black holes f (r)|2r+ = 1/4, from which it
follows that,

t = 2u. (3.9)

3.2. Quantitative Considerations
In some cases the numerical coefficients appearing in the various
correspondences have been studied and allow more quantitative
correspondences. I’ll give some examples here, but I won’t keep
track of these coefficients in subsequent sections.

The specific heats of the SYK model and the NERN black
hole can both be computed. On the NERN side the calculation
is analytic and yields,

c =
dM

dT
=

4π2

G
r2+T (3.10)

For SYK the calculation was done in [7]. The result is,

c = 4π2αs(q)
N

J
T (3.11)

where αs(q) is a numerically computed function of the SYK
locality parameter q. For q = 4 αs = 0.007 and for large q it
decreases∼ 1/q2.

Setting 3.10 and 3.11 equal, we find the relation,

αs
N

J
=

r3+
G
. (3.12)

Let λ and p be dimensionless coefficients defined by,

G =
λ

J 2N
(3.13)

and

r+ =
p

J
. (3.14)

Plugging 3.13 and 3.14 into 3.12 gives one relation between p
and λ,

αs =
p3

λ
. (3.15)

Another relation can be found by considering the entropy of
SYK and the NERN black hole. On the NERN side we use the
Bekenstein-Hawking formula which gives,

S =
πr2+
G

. (3.16)

On the SYK side reference [7] Stanford andMaldacena computed
the near extremal entropy:

S = d(q)N. (3.17)
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where d(q) is another numerically computed function of q which
varies from d(4) = .23 to d(∞) = 0.35.

Combing 3.16 and 3.17 with 3.13 and 3.14 gives another
equation for p and λ,

πp2

λ
= d. (3.18)

The two relations 3.15 and 3.18 yield the following expressions
for λ and p,

λ =
π3α2s

d3

p =
παs

d
(3.19)

Thus, we find the following correspondences,

r+ =

(παs

d

) 1

J
(3.20)

G =

(
π3α2s

d3

)
1

NJ 2
. (3.21)

For q = 4 the numerical values of αs and d are,

αs = 0.007

d = 0.23 (3.22)

giving,

r+ =
.10

J
(3.23)

and

G =
.12

NJ 2
(3.24)

Now let’s return to the problem of a light particle dropped from
the top of the potential 2.9 and estimate its energy ǫ. The height
of the barrier is

√
Vtop = 1/8r+ ≈ J .

We may compare this energy with the energy added to the SYK
ground state by applying a single fermion operator ψ (In other
words it is the energy associated with a size 1 perturbation). This

energy is expected to be of order J and to have some smooth q
dependence. It is given by,

ǫ(q)J =

〈
1

Z(β)
TrH(2ψe−βHψ − e−βH)

〉

(3.25)

where the average 〈. . . 〉 indicates disorder average. (The factor
of 2 in the first term is present because of the SYK convention
that ψ2 = 1/2).

4. GROWTH OF SIZE

Consider applying a single fermion operator at time t = 0. The
operator evolves in time according to,

ψ(t) = e−iHtψeiHt . (4.1)

and becomes a superposition of many-fermion operators [4, 5].
The average number of Fermions at time t is the size. The
evolution is described by Feynman-like diagrams which, up to
the scrambling time, grow exponentially [4, 5]. At each stage
the average number of fermions increases by common factor.
The process resembles an exponentially expanding tree as shown
in Figure 5.

It is similar to the evolution of a quantum circuit and it is
natural to define a circuit depth. In general the circuit depth may
not unfold uniformly with time. For example, if for some reason
the computer runs at a variable time-dependent rate, the size will
grow exponentially with depth but not necessarily with time. The
time associated with a unit change in circuit depth is defined to be
1t and it may be time-dependent. This type of time-dependence
occurs in the evolution of size at low temperature [5].

We can express this in terms of a rate of growth R,

R(t) ≡
d log C(t)

dt

=
1

1t
(4.2)

The exponential growth as a function of circuit depth (for
time less than the scrambling time) is the reason that size and
complexity are proportional to each other. One may think of
the size at a given depth as the number of “leaves” of the tree,
and the complexity as the integrated number of vertices up to
that point. Because the tree grows exponentially, the number
of leaves and the number of vertices are proportional, and with
some normalization (of complexity) the size and complexity can
be set equal.

4.1. Infinite Temperature
Roberts et al. [4] have calculated the time dependence of size at
infinite temperature and find,

C(t) ∼ e2J t . (4.3)
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FIGURE 5 | Tree-like operator growth. The size at any circuit-depth is the final number of fermions while the complexity is the number of vertices in the diagram. In this

figure the size is 81 and the complexity is 40. The complexity at the next step would be 40+ 81 = 121. The time scale for a unit change in depth is 1t. In general 1t

may itself be time dependent.

Roberts, Stanford, and Streicher give a more detailed formula,

C(t) = 1+ 2 sinh2 (J t) (4.4)

Apart from a brief transient the size grows exponentially.
Dropping the 1 which is unimportant, the rate R(t) is

R(t) =
1

C(t)

dC(t)

dt

= J
coshJ t

sinhJ t
(4.5)

which after a short time J−1 tends to

R → J (4.6)

We may restate this in terms of1t,

1t ≈ J
−1 (T = ∞). (4.7)

4.2. Low Temperature, T << J

At very low temperatures the pattern is quantitatively different.
According to Qi and Streicher the size for low T is given by,

C(t) = 1+ 2
J

2β2

π2
sinh2

(
π t

β

)

(4.8)

Early on the rate is comparable to the infinite T case,

1

C

dC

dt
≈ J (J t ∼ 1) (4.9)

but after a time β/2π (at which the infalling particle has reached
the Rindler region) the rate has slowed to

1

C

dC

dt
=

2π

β
(β/2π < t < t∗) (4.10)

Our interest will lie in the throat region during time period
between t = 0 and t = 2πβ , where the rate is time-dependent,
varying from ≈ J to 2π/β . In fact the rate is not so much time-
dependent as it is position dependent. To understand the rate
in more detail [5] we consider a particle falling from the black
hole boundary. The particle falls along a trajectory ρ(t). The time
dependence of the growth rate is really ρ-dependence: the rate
depends on t only through the position ρ.

Let κ(ρ) be the surface gravity at position ρ,

κ(ρ) ≡
1

2
∂rf (r) (4.11)

and let β̃ be,

β̃(ρ) = 2π/κ(ρ). (4.12)

At the horizon the surface gravity is related to the temperature of
the black hole,

T =
1

2π
κhorizon. (4.13)

and β̃horizon to the inverse temperature,

β̃horizon = β (4.14)
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The obvious guess for the interpolation between 4.9 and 4.10 is,

1

C

dC

dt
=

2π

β̃
.

This is correct in the Rindler region but in the throat it is off by
a factor of 2. Consistency between the Qi-Streicher formula and
2.28 requires,

1

C

dC

dt
∼

4π

β̃
(4.15)

or in terms of1t,

1t =
β̃(ρ)

4π
. (4.16)

5. MOMENTUM-SIZE CORRESPONDENCE

5.1. Formulation
In [2], it was proposed that the holographic dual to the
momentum of an infalling particle is related to the size (or
complexity) of the operator that created the particle. By itself
this is not dimensionally consistent. One needs a quantity with
units of length to multiply the momentum in order to get a
dimensionless size. For a Schwarzschild black hole there is only
one length scale, the Schwarzschild radius, which is proportional
to β/2π . Thus,

C ≈
β

2π
P, (5.1)

(the factor of proportionality being q-dependent). However, in
the NERN case this cannot be the right relation. Pick a point
ρ0 a fixed distance from the boundary. If the temperature is
sufficiently low the geometry between ρ = 0 and ρ = ρ0 is
extremely insensitive to β and the growth up to that point should
also be insensitive to β . But equation 5.1 implies that C(ρ0) blows
up as T → 0.

The formula used in [2] was originally suggested by Ying
Zhao. It is obtained by replacing equation 5.1 by a local version,

β̃

4π
P ≈ C. (5.2)

From 5.2 one sees that complexity (or size) is not in one to one
relationship with either position (ρ) or momentum (P) but it is a
combination of both variables. For fixed position the complexity
is proportional to momentum, but for fixed momentum the
complexity increases the deeper the particle is into the throat. I
will not repeat the argument here but just remark that in [2] it
was shown that 5.2 gives an accurate account of the evolution of

size, reproducing a non-trivial result of [12]. As we’ll now see, it
is also agrees with the calculations of [5].

5.2. Qi-Streicher Formula
Qi and Streicher [5] have made a first-principles calculation of
the growth of a single fermion operator ψ at finite temperature
1/β in the SYK theory. As time evolves the complexity of ψ(t)
grows until the scrambling time t∗. Between t = 0 and t = t∗ Qi
and Streicher find5,

C(t) = 1+ 2
J

2β2

π2
sinh2

(
π t

β

)

(5.3)

Let us compare 2.28,

β̃(t) = 2π(t + r+)

with the SYK calculation of Qi-Streicher. We first note from 4.15
that for t > r+,

2π

β̃
∼

d log C(t)

dt
. (5.4)

The first term in the Qi-Streicher formula 5.3 is unimportant. We
may write,

C(t) = 2
J

2β2

π2
sinh2 π t/β .

and

d log C

dt
=

2π

β
tanh−1 π t/β . (5.5)

Using 5.4 we find,

β̃ ∼ β tanh (π t/β) (5.6)

For r+ < t < β/2π this gives β̃ ∼ 2π t in agreement with 2.28.
Actually this is accurate for almost the entire passage through

the throat. The ratio

β tanh (π t/β)

π t

is close to 1 as long as π t/β < 1. (Note
(
tanh .3
.3

)
= 0.97) In terms

of ρ this means until,

5Qi and Streicher calculate the size but for reasons I have explained size and
complexity are interchangeable for our purposes.
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ρ = r+ logβ/r+ − r+ log(π)

= 1ρ − r+ log(π) (5.7)

where 1ρ is the length of the throat (see Figure 1). In other
words there is very good agreement between the Qi-Streicher
formula, and the rate 4.15 conjectured in [2], over the entire
throat, right up to the start of the Rindler region. The agreement
continues to be qualitatively good into the Rindler region. The
discrepancy by the time the particle has reached a Planck distance
from the horizon is less than a factor of 2.

There is a striking similarity between 5.3 and the infinite
temperature formula 4.4 but quantitatively they are quite
different. From 4.4 we see that at T = ∞ the size quickly tends
to the exponential form eJ t . The quadratic growth only persists
for a very short time of order 1/J . This shows the lack of a
throat region.

By contrast, in the low T limit the quadratic growth last for a
time of order β which is much greater than 1/J , demonstrating
the existence of the long throat.

6. NEWTON’S EQUATIONS FOR
COMPLEXITY

6.1. Complexity and Momentum
Now we come to the main point, the relation between the
evolution of complexity and Newton’s equations of motion. Let
us compare 4.15,

dC ≈ C

(
4πdt

β̃(t)

)

and 5.2,

β̃

4π
P ≈ C.

Eliminating β̃ we find a relation6

P ≈
dC

dt
(6.1)

between a dynamical quantity P, and an information-theoretic
quantity, complexity:

The momentum of an infalling particle created by ψ is
proportional to the rate at which the complexity of the precursor
ψ(t) grows.

The numerical constant relating the two sides of 6.1 is
connected with the coefficient ǫ in the additional energy of

6This relation was derived by Lin et al. by different arguments. See section
7 and Lin et al. [3]. As in other formulas there is an implicit q-dependent
proportionality factor.

FIGURE 6 | Toy model involving a big and little ball. The big ball represents the

boundary and little ball represents the particle. The big ball remains

non-relativistic while the little ball quickly become relativistic.

applying a fermion operator the SYK low temperature state
ground state.

Equation (6.1) resembles the ordinary non-relativistic relation
betweenmomentum and velocity. Onemight be tempted to think
that dC

dt
is proportional to the spatial velocity of the infalling

particle, but the simple proportionality of momentum and
velocity is only valid for non-relativistic motion. The infalling
particle however quickly becomes relativistic.

Nevertheless let’s proceed to time-differentiate [6.1],

dP

dt
≈

d2C

dt2
. (6.2)

We next use the fact that the rate of change of momentum is the
applied force,

F ≈
d2C

dt2
. (6.3)

In Supplementary Material, the force F on an infalling particle
in the gravitational field of a NERN black hole is calculated using
the standard Lagrangian formulation of particle mechanics. It

is explicitly shown to agree with d2C
dt2

as calculated from the Qi-
Streicher formula—the formula being a pure SYK relation whose
derivation does not explicitly involve particle mechanics. This
and the interpretation of 6.3 as Newton’s equation of motion
(despite the comment just before Equation 6.2) are the principle
results of this paper.

6.2. Toy Model
Equation (6.3) looks temptingly like Newton’s equation F = ma
for a non-relativistic particle in a uniform gravitational field but
for the reason stated above, it does not make sense to identify that
particle with the relativistic infalling particle. To understand what
is going on consider a toy model. Two balls, B and b are shown
in Figure 6.

One—the big-ball B—is very heavy with mass MB and the
other—little-ball b—is very light with mass mb. Initially the two
are attached and the combined system is at rest. At t = 0 the
two balls are ejected from one another along the X axis with
equal and opposite momentum. We also assume the balls repel
each other with a constant force. The result is that b will quickly
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become relativistic while B remains non-relativistic. Throughout
the motion the momenta of the balls are equal and opposite.

It is evident from Newton’s third law that both balls satisfy
the equations,

dP/dt = F (6.4)

but only B satisfies the non-relativistic Newton equation.

F = MB
d2X

dt2
. (6.5)

The connection between the toy model and the NERN system is
clear: b is the light particle that was dropped from the black hole
boundary, and B is the boundary itself with massMB.

It is also worth noting that the heavy ball B serves as a
quantum frame of [13]. As Maldacena has noted, this is similar
to the way that the condensate of a superfluid or superconductor
serves as a frame of reference for a phase variable.

These considerations, along with equation 6.3, lead to the
conclusion that it is the nonrelativistic velocity of the heavy
boundary, not the particle, which is proportional to the rate
of change of the complexity of ψ(t), and that it satisfies the
Newtonian Equation (6.3).

Since P is conjugate to ρ, and the boundary is non-relativistic,
we can write,

P = MB
dρB

dt

=
dC

dt
. (6.6)

where ρB is the location of the boundary. If further follows that,

C = MB(ρB − ρ0) (6.7)

where ρ0 is constant. The obvious choice is for ρ0 to be the
horizon location in which case C is proportional to the distance of
the boundary from the horizon. In section 7, where the two-sided
case is discussed, the distance defining complexity is naturally
taken to be the distance separating the two boundaries.

6.3. Comparison With CV
There are a number of ways of estimating the boundary massMB.
One way is to directly analyze the Schwarzian boundary term in
the action. I will do something different making direct use of
the complexity-volume (CV) correspondence [14, 15]; volume
now referring to the length of the throat times its area. For this
subsection I will not bother keeping track of numerical factors.

The standard volume-complexity (CV) relation is,

C =
V

GlAdS
(6.8)

The volume is the area of the throat times the length ρ,

V = Aρ (6.9)

where A is the horizon area. Also observe that A/G is
proportional to the entropy of the black hole and the AdS radius
is proportional to r+. One finds

C ≈

(
S

r+

)

ρ (6.10)

or using the SYK/NERN dictionary,

C ≈ JNρ (6.11)

From 6.3 we may write,

F ≈ JN
d2ρ

dt2
. (6.12)

It follows that the mass of the boundary is,

MB ≈ JN. (6.13)

This is to be compared with the energy of the infalling particle
which is J . The big-ball, little-ball analogy is quite apt. Another
point worth noting is thatMB is of the same order as the mass of
the NERN black hole.

MBH =
r+

G
∼ JN. (6.14)

If we now combine 6.12 and 6.13 with Equation (A.14) from the
Supplementary Material we arrive at Newton’s equation,

mbMBG

r2
= MB

d2ρ

dt2
. (6.15)

for the motion of the boundary7.
The derivation in Supplementary Material of the left side of

6.15 was based on the bulk equation of motion for a particle in
a gravitational field. One may wonder whether it can be derived
from the holographic SYK quantum mechanics. The answer is
that up to factors of order unity, it can. Using the SYK/NERN
dictionary in section 3 we can write mbMBG

r2
in terms of SYK

variables (for q = 4),

7It should be kept in mind that the r that appears in the inverse square law is
not generally the distance of the test particle to the gravitating mass. According
to Gauss’ law it is the radius of the 2-sphere surrounding the mass at the test point.
Only in flat space is it the distance to gravitating mass.
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(mb)(MB)(G)

(
1

r2+

)

= (2J )(MB)

(
.12

NJ 2

)(
J

2

.01

)

(6.16)

On the other hand, the right side is just d2C/dt2 which can be
evaluated from the Qi-Streicher formula. In the throat region one
finds the QS formula gives

d2C/dt2 = 4J2. (6.17)

Equating the right side of 6.16 to the right side of 6.17 determines
the value ofMB,

MB ≈ 0.2NJ , (6.18)

consistent with 6.13.
There is also information in the Qi-Streicher formula about

the relativistic motion of the light particle. For example consider
the time that it takes, moving relativistically, for the particle
to travel the distance 1ρ = r+ logβ/r+ from the boundary
to the Rindler region. From 2.16 one sees that the time is β .
Once the particle is in the Rindler region the size begins to grow
exponentially with time. The Qi-Streicher formula 5.3 shows that
this is indeed the case.

7. FORMAL CONSIDERATIONS

7.1. Symmetries of AdS2
The basis for the derivation of Newton’s equations in section
6 was the relation between momentum and the time derivative
of complexity (Equation 6.1), which itself was based on the
momentum-size correspondence of [2]. The momentum-size
correspondence fit some non-trivial facts about scrambling
by NERN black holes [12], but it was never derived from
first principles. If we had an alternate route to 6.1 we could
turn the argument around and derive the momentum-size
correspondence. Lin et al. [3] described such a route which I will
briefly explain as far as I understand it8.

We begin by considering the approximate symmetries of
matter in the background of a fixed, almost infinite, AdS2 throat.
The Penrose diagram for the throat is shown in Figure 7.

The symmetry of infinite AdS2 is the non-compact group
SL(2,R). If β is finite the symmetry is approximate. Deep in the
throat the geometry is indistinguishable from AdS2 but the left
and right boundaries break the symmetry. As long as matter is
far from the boundaries the symmetry will be respected.

SL(2,R) has three generators called E0, P0,B0, satisfying
the algebra,

[B0,E0] = iP0

[B0, P0] = iE0

[P0,E0] = iB0 (7.1)

8I am grateful to Henry Lin and Ying Zhao for explaining the argument to me.

FIGURE 7 | Penrose diagram for a two-sided non-dynamical background in

the limit of low temperature and infinite throat length. Also shown are the

matter generators E,B,P that generate SL(2,R) motions of the matter fields.

The generators have been normalized so that the commutation relations are

[B,E] = iP, [B,P] = iE, [P,E] = iJ 2B.

It is convenient to rescale P and E in order to give them units of
energy. Thus define,

E = J E0

P = J P0

B = B0. (7.2)

The commutation relations become,

[B,E] = iP (7.3)

[B, P] = iE (7.4)

[P,E] = iJ 2B (7.5)

Let’s consider the generators one by one. The action of E is to
shift the Penrose diagram rigidly in the vertical direction. We can
introduce a time variable τ that is constant on horizontal slices,
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FIGURE 8 | Orbits of the three generators.

and which at the center of the diagram registers proper time. E
may be represented by the differential operator,

E = i
∂

∂τ
. (7.6)

The generator P shifts the diagram along spacelike directions. It
has fixed points at the asymptotic boundaries on the t = 0 slice.
It may be thought of as the translation generator with respect to
the proper coordinate ρ defined in 2.11,

P = −i
∂

∂ρ
(7.7)

Finally B is the boost generator that has the bifurcate horizon as
a fixed point. It is conjugate to the Rindler hyperbolic angle ω.

B = −i
∂

∂ω
. (7.8)

The Rindler time is related to t by,

ω =
2π t

β
(7.9)

so that B can be written,

B = −i
β

2π

∂

∂t
(7.10)

The orbits of the three generators are shown in Figure 8.
The two-sided Penrose diagrams 7 and 8 represents two

uncoupled but entangled SYK systems withHamiltoniansHR and
HL. The generator B is given in terms of the two Hamiltonians by

B =
β

2π
(HR −HL) (7.11)

7.2. Left-Right Interaction
One might think that the global energy E should be identified
with βJ [HL + HR]. However, there is no symmetry of AdS2
generated by (HL + HR). Without going into details, Maldacena
and Qi [16] argue that the generator E requires the introduction
of another term, Hint that couples the left and right sides,

E = βJ (HL +HR +Hint). (7.12)

Using

i[B,E] = P

and

B = iβ
d

dt

we can write
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P = iβJ [B,Hint]

= β2J
dHint

dt
(7.13)

In [5], an operator representing size was constructed in terms
of the two-sided degrees of freedom ψiL and ψiR. Using our
convention of calling size C,

C =
i

δβ

∑

i

ψiLψiR (7.14)

where δβ is a dimensionless normalization factor which
normalizes the size of a single fermion to unity. This same
operator appears in the interaction term Hint in [16],

Hint = iµ
∑

i

ψiLψiR.

= µδβ C (7.15)

Combining 7.15 with 7.13 we find,

P = µδββ
2
J

dC

dt
(7.16)

Thus, apart from the factor µδββ2J the matter momentum P is
indeed proportional to the time derivative of the size. However,
consistency with 6.1 requires a relation between the parameters
µ, δβ ,β , and J ,

µδββ
2
J ≈ 1. (7.17)

Again, the meaning of ≈ in 7.17 is: equals up to a numerical
constant which may depend on q. This is a significant constraint
since the parameters µ and δβ have an intricate mixed
dependence [16] on q and the dimensionless quantity βJ .

7.3. Determining the Prefactor
It is known that the quantity µ is not independent of the other
three parameters and that there is a relation between them. Zhao9

has suggested that the coefficient µδββ2J can be determined by
comparing the calculation of P(t) using the equation of motion
in Supplementary Material, with the Qi-Streicher formula 5.3.
From the Supplementary Material the force on the infalling
particle is constant during passage through the throat and given
by F ≈ J

2. It follows that,

P(t) ≈ J
2t. (7.18)

9Unpublished communication.

Differentiating the Qi-Streicher formula also gives,

dC

dt
= 4J 2t. (7.19)

(In Supplementary Material, a more complete comparison
between the particle orbit and the Qi-Streicher formula is carried
out for the entire range of ρ from the boundary at r = 2r+ to the
horizon at r = r+.)

It follows that the coefficient µmust satisfy,

µδββ
2
J ≈ 1 (7.20)

so that 6.1 is satisfied. Equation (7.20) is non-trivial. On
dimensional grounds the q can appear in any combination with
the product βJ , but 7.20 allows only a multiplicative dependence
by a function of q alone.

That the product in 7.20 only depends on q is non-trivial and is
confirmed in the analysis of [16] where it appears in a somewhat
hidden form in Equations [4.25], [4.29], and [4.50].

The formal considerations of this section did not involve the
momentum-size correspondence 5.2 postulated in [1, 2] but they
would allow us to work backward from 6.1 and derive it.

We are almost where we want to be, but not quite because
we have assumed the throat is infinite. If we make the throat
finite by allowing T to be small but not zero, the symmetry of the
matter systemwill be broken by the interaction of the matter with
the boundary. In a sense that’s not surprising since the matter
will interact with the dynamical boundary (through the potential
barrier) so that the momentum of the matter will not, by itself,
be conserved.

There is a formal way to restore the symmetry as a gauge
symmetry [3, 8, 11]. Although the finite throat does not have
SL(2,R) symmetry it can be embedded in AdS2 as illustrated in
Figure 9.

The curved boundary separating the blue regions from rest of
the diagram represents the Schwarzian boundary. The Penrose
diagram can be conveniently parameterized by dimensionless
coordinates −∞ < T < ∞ and 0 < X < π . The embedding is
not unique due to the SL(2,R) invariance ofAdS2. This invariance
allows us to move the geometry in various ways. In other words
the representation of the finite throat in AdS2 is redundant; the
symmetry is a gauge symmetry. As such its generators should be
set to zero. Denoting the gauge generators by tilde-symbols,

Ẽ = B̃ = P̃ = 0 (7.21)

But the tilde generators are no longer the matter charges; they
now include the charges of the boundary. In particular the spatial
charge P̃ is,

P̃ = P + Pboundary. (7.22)

Therefore, the gauge condition
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FIGURE 9 | Embedding a finite throated geometry in AdS2. Also shown are

the three SL(2,R) gauge generators. The blue regions are part of the

embedding space but not part of the actual finite temperature spacetime. The

inner boundaries of the blue region are the dynamical boundaries governed by

the Schwarzian action.

P̃ = 0 (7.23)

is the Newtons third law of action and reaction, which tells us
that the boundary recoils when the matter particle is emitted
into the throat. Keeping track of the action=reaction condition
seems to be the main point of the gauge symmetry. The un-tilded
operators are the physical matter generators and their negatives
are the generators that act on the boundary degrees of freedom.

7.4. Fixing a Gauge
There are a number of ways of insuring gauge invariance. One
way is to construct manifestly gauge invariant objects and work
with them. Lin et al. [3] does this. The other way is to completely
fix the gauge so that there is no residual gauge freedom. I’ll
illustrate such a gauge-fixing here.

The embedding is not unique due to the SL(2,R) invariance of
AdS2. This invariance allows us to move the entire geometry—
matter and boundary—in various ways by applying the three
gauge generators.

The action of P̃ moves the bifurcate horizon as well as the
excised (blue) regions. Such a transformation can shift the NERN
geometry from Figure 9 to Figure 10.

We can use the gauge symmetries them to fix a
convenient gauge:

• The left black hole has a bifucate horizon. Using the Ẽ
symmetry we can shift it to the t = 0 slice.

FIGURE 10 | Fixing a gauge.

• Next we can use P̃ to shift the position of the right boundary
so that it passes through the spatial midpoint of the diagram
on the t = 0 slice. More generally we can choose a point X0 in
along the t = 0 surface and have the boundary pass through it.
This defines a one parameter family of gauges parameterized
by X0.

• Finally we can fix the boost symmetry by assuming a particle
is dropped from the right boundary at t = 0.

That completely fixes the gauge. The resulting Penrose diagram
is shown in 11.

Notice that in the limit that the temperature goes to zero that
the bifurcate horizon moves all the way to the left boundary.
The right Rindler patch becomes the Poincare patch, and the
boosts become Poincare time translations. Again there is a one
parameter family parameterized by X0. The boost operator B̃may
now be used to boost the t = 0 surface forward in time to as
illustrated by the green line in Figure 11.

The transformations generated by P̃ are shifts of the X0

parameter that move the right boundary. The momentum of the
infalling particle that we called P(t) is the proper momentum on
that slice.

Dropping the particle from the right-side boundary causes the
boundary to recoil and move outward. That is indicated by the
small separation shown as light blue. The effect is to change the
right-side horizon (not shown) so that its bifurcate point is no
longer on the t = 0 surface but is slightly below it. The bifurcate
point on the left horizon is unchanged.
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FIGURE 11 | The gauge fixed Penrose diagram with the right boundary

intersecting the t = 0 surface at a fixed location half way between boundaries.

The red curve is the world line of a particle dropped at t = 0 from the right

boundary. The green surface is boosted from the t = 0 surface. The boost

time t is the time variable that corresponds to the earlier discussion.

The time-slice shown as green is anchored on the boundaries
at “boost time” t. The holographic quantum system—two copies
of SYK—has a quantum state associated with the time slice
and if the particle had not been thrown in, the state would be
independent of the time t. But the insertion of ψR at t = 0 breaks
the boost symmetry and the state evolves with t. Since ψR is a
purely right-side operator it evolves according to,

ψ(t) = e−i(HR−HL)tψei(HR−HL)t

= e−iHRtψeiHRt . (7.24)

Under this evolution ψR(t) grows in the way I described earlier.
The complexity of the evolving state can be determined from

CV duality. Apart from some constant factors it is just the length
of the geodesic connecting the left and right boundaries at time t.
If the particle had not been thrown in, the boost symmetry would
imply that the length/complexity would be constant, but the small
kick causes the length/complexity to grow after the particle is
dropped in.

Lin-Maldacena-Zhao argue that the generators can be
decomposed into bulk matter, and gravitational (boundary)
contributions. The bulk matter contribution to P̃ is the
momentum P. In the case in which a particle has been
dropped into the geometry, P is the particle’s momentum. The
gravitational part on the other hand is the momentum of the
heavy non-relativistic boundary, which by the gauge condition
is −P. (In the case at hand only the right boundary recoils. The
momentum of the left boundary stays zero.) The fact that the
sum of the particle and boundary momentum must be zero is
Newton’s third law of action and reaction.

The low energy SL(2R) symmetry of SYK dictates a particular
form for the action governing the motion of the boundary.
Known as the Schwarzian action, it is equivalent to the Gibbons-
Hawking-York extrinsic curvature that has to be added to the
Einstein Maxwell action in the presence of boundaries. It’s rather
complicated but in the non-relativistic limit when the boundary
moves slowly, the kinetic term in the Schwarzian action must
reduce to the action for a non-relativistic particle10 of massMB =

NJ , or in NERN terms,MB = S/r+.

I ≈
1

2
MB ρ̇

2. (7.25)

This agrees with the analysis in the previous section and provides
a formal justification for it.

In addition there is a coupling between the matter and the
boundary which has the form of a repulsive potential energy.
As long as the particle is in the throat region the potential
is linear in the distance between the infalling particle and the
boundary. As shown in the Supplementary Material this leads
to a constant Newtonian force which accelerates both the particle
and the boundary in opposite directions, so as to keep the total
momentum zero. The result is that the particle is effectively
attracted toward the horizon, and as it falls the complexity grows
according to the pattern described in earlier sections and in
Supplementary Material.

8. FALLING THROUGH EMPTY ADS2

Susskind [1] and Brown et al. [2], and the present paper up to this
point, deal with the gravitational attraction of a black hole. If the
tendency for complexity to increase is the general holographic
mechanism behind gravitation it is important to demonstrate it
outside the black hole context. For example we would like to
know when a particle falls toward an ordinary cold mass with

10I am grateful to Herny Lin for a helpful discussion of this point.
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little or no entropy, does the holographic complexity grow?What
happens when a comet falls in a long elliptical orbit toward the
sun and then goes off into interstellar space. Does the complexity
increase and decrease periodically?

We could try modeling questions like this in AdS/CFT, but the
tools I’ve used in this paper are special to SYK. Fortunately there
is a simple case in which the question can be addressed. Anti de
Sitter space has a gravitational field even in the AdS vacuum. The
negative vacuum energy of AdS gravitates and attracts matter to
the center. One does not need an additional mass.

The metric of AdS is,

ds2 = −f (r)dt2 +
1

f (r)
dr2 + r2d�2

f (r) =

(

1+
r2

l2
AdS

)

(8.1)

Particles dropped from a distance experience an attractive
radial gravitational force which behaves similarly to a harmonic
oscillator force. A particle will move in a periodic orbit oscillating
about the origin. There is no black hole, no horizon, no entropy.

Two dimensional AdS is not an exception, but engineering
empty AdS2 is subtle in the SYK system. Maldacena and Qi [16]
arrange it by perturbing a two-sided black hole with a Left-Right
interaction. The resulting space is called a traversable wormhole;
in fact it is a cutoff version ofAdS2. The geometry does not extend
out to r = ∞, but instead is cut off at some large radial distance
by a Schwarzian boundary, or to be precise, two Schwarzian
boundaries11: one for the left side and one for the right side, as
in Figure 12. The geometry is AdS2 except that the blue regions
near the boundary have been excised.

In Figure 13, by applying a right-side fermion operator a
particle can be dropped in from the right boundary. The initial
state has the form

ψR|0〉

and subsequently evolves to

ψR(t)|0〉.

In this case there is no black hole and the particle endlessly
oscillates back and forth between the two boundaries.

The force on the particle is gravitational. From the bulk
GR viewpoint it is produced by the vacuum energy in the
region between the boundaries. The state without the particle
(Figure 12) is the ground state of the Hamiltonian and the
complexity—in this case represented by the distance between the
two boundaries—is constant in time.

When the particle is injected at t = 0 by applying the right-
side fermion operatorψR the additional complexity of the state is
initially very small. As the particle accelerates toward the center
of AdS its momentum increases. The right boundary recoils so

11AdS two is unique in having two disconnected boundaries.

FIGURE 12 | Traversable wormhole with two boundaries.

that the distance between the boundaries increases. According to
CV duality, the complexity also increases.

Because the boundary is very heavy it moves non-
relativistically which means its momentum and velocity are
proportional to one another, and once again,

P ≈
dC

dt
(8.2)

for both the boundary and for the particle.
The radial momentum reaches a maximum when the particle

reaches the center of the diagram. It then switches sign. At the
same time the complexity starts to decrease12. By the time the
particle reaches the left boundary the complexity has decreased
to its original value. The state at that point is

ψL|0〉.

The particle then gravitates back to the center and subsequently
returns to the right boundary. The oscillating behavior of
complexity may seem odd, but in fact it is generic for integrable

12This conclusion is based on the ability of the gravitational dressing to switch
from the right to the left side. Such switching would be impossible without left-
right coupling, but there is no obstruction to it when theMaldacena-Qi interaction
is included.
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FIGURE 13 | A particle has been added to the right side of the traversable

wormhole by acting with ψ . The subsequent motion is oscillatory with periodic

variation in the distance between the boundaries, thus indicating periodic

variation of complexity. The figure has been foliated with constant time slices

to help guide the eye. The oscillations of the boundary are very small and have

been greatly exaggerated.

systems. It is also characteristic of holographic systems below the
black hole threshold [17].

To reiterate, the connection between gravitational attraction
and complexity is not dependent on the presence of a black hole,
or on the presence of a system with a large entropy. However
without a black hole the system is integrable and the complexity
oscillates. It should be pointed out that the complexity never get’s
very large during the oscillating behavior. At the maximumwhen
the particle is at the center of the geometry the complexity is ∼
β2J2 which ismuch less thanN, i.e., the complexity at scrambling.

It would be interesting to confirm this behavior in the SYK
theory using the methods of Qi and Streicher.

9. CONCLUDING REMARKS

In this article, I have assembled further evidence that the
holographic avatar of gravitational attraction is the growth
of operator-size during the run-up to the scrambling time.
During this period, size and complexity are indistinguishable,
and one can say that gravitational attraction is an example of the
tendency for complexity to increase. The presence of a massive
object creates a kind of complexity-force, driving the system

toward greater complexity in the same way that an ordinary
force accelerates a particle toward lower potential energy. This
conclusion was based on three things: the CV correspondence
between complexity and volume; a duality between momentum
and the time-derivative of complexity,

P ≈
dC

dt
;

and the Qi-Streicher calculation of the time dependence of size at
low temperature.

To test the duality, on the left side we used the standard
relativistic classical theory of particle motion (in a gravitational
field) to compute P(t). On the other side the Qi-Streicher
calculation of C(t) (a pure quantum calculation that makes no
reference to particle motion) allows us to compute dC

dt
. The two

sides agree.
One can object to such a connection (between momentum

and complexity) on the grounds that it relates two fundamentally
different kinds of quantities. Momentum is a linear quantum
observable. Complexity is a nonlinear property of states; linear
superpositions of states with the same complexity may have
very different complexity. Thus, equating momentum and the
time-derivative of complexity is inappropriatelymixing concepts.

Similar things have been seen before. The Bekenstein formula
and more recently, the Ryu-Takyanagi formula, equate area—a
quantum observable—to entropy. This also seems inadmissible
for similar reasons. A number of authors have written about this
tension [see for example [18, 19] and references therein] and the
resolution seems to be that quantities like entropy may behave
like observables over a relatively small subspace of states—a
so called code subspace. Thus, for states near the ground state
of AdS, area and entanglement entropy can coincide, but the
relation does not hold for most states.

The same things should be true for complexity: in the small
subspace of states encountered while a particle is falling toward
the horizon of a black hole complexity and its derivative can
behave like an observable, but beyond the scrambling time or
when superpositions of classical states are considered the relation
between complexity and observables must break down13.

On another point, E. Verlinde has also emphasized the need
for a holographic explanation of gravitational attraction and has
proposed an entropic mechanism [20]. He argues that lowering
an object toward a horizon increases the thermodynamic entropy
an entropic force. What I find unclear is how an entropic
mechanism can explain the gravitational pull-to-the-center in
cold empty AdS, or to a conventional zero temperature massive
body in its (non-degenerate) ground state. How can an entropic
theory be compatible with the periodic oscillations of the distance
between the sun and a comet in an elongated orbit?

In contrast to coarse-grained thermal entropy, complexity and
operator size can oscillate, especially for non-chaotic or weakly
chaotic systems. By the complexity-volume correspondence, the
oscillating complexity may manifest itself as periodic motion.

13I am grateful to Daniel Harlow for discussions about this point.
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The motion of a particle in empty AdS2, discussed in section 8
is an example.

Returning to the case of a black hole, entropy approaches
its maximum value well before the scrambling time, but as
shown in [1] and [2], under the influence of gravity, the infalling
momentum increases exponentially until the scrambling time has
been reached. Again it is not obvious how an entropic theory
would deal with this.

It is quite possible that these remarks represent my own
misunderstanding of Verlinde’s theory.

Finally I would like to emphasize the importance of
generalizing the concept of size to a wider class of gauge-gravity
dualities. In a strongly coupled CFT it is not obvious what the
fundamental constituents are, that are counted when we speak of
size. I hope to come back to this issue in the future.
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Replacing the Notion of Spacetime
Distance by the Notion of Correlation
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Spacetime is conventionally viewed as a stage on which actors, in the form of massive

and massless matter, move. In this study, we explore what may lie beyond this picture.

The starting point is the observation that quantum field fluctuations are the more strongly

correlated the shorter their spacetime distance. The notion of spacetime distance can,

therefore, be replaced by the notion of correlation strength. This suggests a new picture

in which the abstract 2-point and multi-point correlations are the primary structure, a

picture which is essentially information-theoretic. In the low energy regime, the secondary

notions of spacetime and of matter would then emerge as approximate representations

of the abstract correlators, namely, in the form of Feynman rules on curved spacetime.

Keywords: quantum gravity, spectral geometry, shannon sampling theory, quantum information, general relativity

1. INTRODUCTION

The discoveries of general relativity and quantum theory, each, required the abandoning of major
misconceptions. Today, the fact that it has turned out to be extremely hard to unify quantum theory
and general relativity suggests that at least onemoremajormisconception will need to be overcome.
But what deeply held belief about the nature of spacetime and matter may need to be abandoned to
clear the path for the development of the theory of quantum gravity?

One belief regarding spacetime andmatter is that, while they do interact, they are fundamentally
different, with spacetime representing a stage, which is itself dynamical, on which actors, in the form
of massive or massless matter, move. The present study, which lays out ideas first presented orally
in [1], asks if the stage-and-actors picture could be a misconception that needs to be abandoned,
and it explores one possibility for what new picture lies beyond.

2. PROBING THE DESCRIPTION OF SPACETIME OF GENERAL
RELATIVITY

For inspiration, we can take hints from some of the currently most successful descriptions of
spacetime. One general relativistic description of a spacetime is as a pair, (M, g), where M is a
differentiable manifold and g is a Lorentzian metric. Equivalently, a spacetime is often described
as a manifold with Christoffel symbols, Ŵ, or a connection 1-form, ω. Also, equivalently, general
relativity describes a spacetime as a pair (M, σ ), where M is the differentiable manifold and
σ (x, x′) = 1

2 g̃(x, x
′) is the Synge world function. Here, g̃(x, x′) is the geodesic distance between the

events x and x′, as far as that distance is unique. The Synge function, σ , contains all information
about a spacetime since it allows one to recover its metric [2–4]:

gµν(x) = lim
x→x′

σ (x, x′);µν = − lim
x→x′

∂

∂xµ

∂

∂x′ν
σ (x, x′) (1)
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For later reference, notice that Equation (1) proves that knowing
the bi-scalar function g̃ in an infinitesimal neighborhood of its
diagonal is sufficient. Finally, we should add that, to complete
the general relativistic descriptions of spacetimes, Einstein
also provided an exact mapping between the mathematical
concepts and concrete physical measurements, based on rods and
clocks [5].

To search for hints at what may lie beyond general relativity,
let us now probe general relativity for curiosities or odd features
in the way that it describes spacetime. One curious feature
of the description of spacetime of general relativity is that
it utilizes two different notions of distance. One notion of
distance is that of coordinate distance. Finite coordinate distances
are not covariant, but infinitesimal coordinate distances are
used, covariantly, to define the topology (in the sense of open
neighborhoods) of the manifold, which in turn is used to define
the notions of continuity and differentiability of themanifold and
also to define the limit taking for derivatives and integrals. The
second notion of distance is the geodesic distance.

Further, this leads to the curious feature of general relativity
that the topology of a spacetime manifold (in the sense of open
sets) is ignorant of the drama of the light cone. Points that are
arbitrarily close neighbors with respect to the topology of the
manifold (in the sense of open sets) can be on either side of a
light cone, which is the difference between being fully causally
connected or not at all.

Underlying the presence of two notions of distance in general
relativity is another curious feature of general relativity. On the
one hand, general relativity describes space and time identically,
except for a minus sign in the metric. On the other hand,
space and time are to be measured using rods and clocks, but
rod-like and clock-like physical instruments appear to differ
by substantially more than a minus sign. It also appears odd
that rods and clocks should play a fundamental role in general
relativity, given that they each measure finite and, therefore, non-
covariant coordinate distances. Further, nature does not provide
rods or clocks in Einstein’s sense at sub-atomic scales.

For now, let us take away the hint that it is worth considering
to replace rods and clocks in general relativity in some way with
tools that are more canonical.

One may ask, for example, whether it is useful to replace
traditional clocks that define a notion of time by counting
periodic processes with clocks that measure a notion of time
that is based on the exponential decay of unstable particles.
Intuitively, this would amount to switching from clocks
describable by the oscillations of a complex exponential function
to a decay-based clock that measures time through a decay-
describing real exponential function, thereby possibly accounting
for the extra sign in the signature of the metric. Still, even such
decay-based, rather than oscillation-based, clocks would appear
to differ from rods in their physical appearance by more than a
minus sign. We will in the present study, therefore, not follow
these lines.

Instead, let us explore how both clocks, as well as rods, could
be replaced by tools that are more canonical in the sense that
they allow us to determine spacetime distances directly instead
of inferring them from measurements of spatial and temporal

distances which are themselves not covariant. This could provide
us not only with a more canonical method for measuring the
spacetime distance between two events. We should thereby also
obtain a new method to map a spacetime’s curvature. This
is because, as Equation (1) showed, knowledge of the (even
just infinitesimal) spacetime distances is sufficient to calculate
the metric.

3. MEASURING SPACETIME DISTANCES
BY MEANS OF CORRELATORS

There may exist multiple ways to replace rod-like and clock-like
tools by more canonical tools for measuring spacetime distances.
In the present study, the idea is to replace rods and clocks with
quantum field vacuum fluctuations. This is possible because the
quantum fluctuations of a field are correlated and the strength
of the correlation decays with the magnitude of the spacetime
distance. The strength of the correlation can, therefore, serve as a
measure of the spacetime distance.

For an example of a correlator of the fluctuations of a quantum
field, let us recall the Feynman propagator of a free massless
scalar. In flat spacetime, it reads:

GF(x, x
′) = 〈0|Tφ̂(x)φ̂(x′)|0〉 (2)

= −

∫
d4p

(2π)4
e−ipµ(xµ−x′µ)

pµpµ + iǫ
(3)

=
1

4iπ2

1

(xµ − x′µ)(x
µ − x′µ)− iǫ

. (4)

In this case, as well as in curved spacetime [3, 4, 6], the correlator
GF(x, x′) is finite both inside and outside the lightcone. On
the lightcone, it diverges and changes sign. Important to note
here is that as we move away from the lightcone, i.e., as we
increase the magnitude of the spacetime distance, the smaller
the absolute value of GF(x, x′) becomes, i.e., the weaker do the
correlations become. Let us review the reasons why the correlator
decays away from the lightcone into both the timelike and the
spacelike regions.

First, inside the lightcone, the correlations are caused by the
propagation of perturbations. In the course of the propagation,
the perturbation spreads out and, therefore, weakens1 at a rate
that depends on the spacetime dimension. Hence, inside the
lightcone, the correlator decays for increasing timelike distances.

Second, the correlations outside the lightcone exist because
the vacuum is a spatially entangled state. To see why the
correlations decay away from the lightcone, i.e., here for
increasing spacelike distances, let us recall the simple case of
a quantized, massive Klein Gordon field. It can be viewed as
consisting of one degree of freedom φ̂(x, t) at each position, x.
Holding a position x fixed, its degree of freedom, φ̂(x, t), would
obey an independent quantum harmonic oscillator equation

¨̂
φ(x, t) = −m2φ̂(x, t) (5)

1It weakens, at least, initially. For finite propagation distances in curved spacetime,
there can be, for example, lensing-type and echo effects (see, e.g., [7]).
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if it were not for the existence of the Laplacian term in the Klein
Gordon equation:

¨̂
φ(x, t)− 1φ̂(x, t) = −m2φ̂(x, t) (6)

The Laplacian term couples spatially neighboring harmonic
oscillators. Therefore, the ground state of these coupled harmonic
field oscillators is an entangled state, hence the correlations.
Since the Laplacian couples only neighboring field oscillators,
these correlations decay with the spacelike distance at a rate
that is dimension dependent. In 1+3 dimensions, the decay is
polynomial for massless fields and exponential for massive fields2

(see, e.g., [8–12] for early work, [13] for more recent work, and
[14] for a recent review of the related topic of holography and
quantum information).

So far, we have established that a correlator of quantum field
fluctuations, such as the Feynman propagator, GF(x, x′), can be
used as a measure of spacetime distances, or at least of small
spacetime distances. From Equation (1), we know that knowledge
of small spacetime distances, in the form of knowledge of the
Synge function σ (x, x′) near its diagonal, is sufficient to calculate
the metric. It was shown in [15] that, knowledge of GF(x, x′) near
its diagonal suffices to calculate the metric tensor:

gµν(x) = −
1

2

(
Ŵ(D/2− 1)

4πD/2

) 2
D−2

lim
x→y

∂

∂xµ

∂

∂yν

(
GF(x, y)

2
2−D

)

(7)
Here, D is the spacetime dimension3. The fact that the metric
tensor can be calculated from the Feynman propagator can
also be seen by this consideration: Knowledge of the Feynman
propagator implies knowledge of the lightcones because the
propagator diverges and changes sign on the lightcones. But
knowledge of the lightcones of a spacetime manifold determines
the metric tensor of the spacetime up to a conformal factor,
as shown in [16]. The propagator also provides the remaining
conformal factor through its finite decay near the lightcone.

For completeness, it is worth mentioning that the
reconstruction of the metric from the Feynman propagator
does not depend on the vacuum state. This is important
because different observers may identify different states as
their vacuum state. In the absence of a unique vacuum state,
Feynman propagators can differ by homogeneous solutions to
their equation of motion, such as the Klein Gordon equation
2GF = δ/

√
(g). The metric is calculated, as shown in Equation

(7), by differentiating a negative power of the Feynman
propagator, i.e., by differentiating a positive power of the wave
operator, 2. The matrix elements of 2 are independent of which
homogeneous solution one may choose to define a Feynman
propagator, i.e., a right inverse, GF of 2. Concretely, in Equation
(7), any choice of iǫ prescription for the propagator drops out
because iǫ prescriptions are in the denominator, but since the
propagator appears to a negative power, ǫ is in the numerator.
Hence, the limit ǫ → 0 can be taken before using Equation (7) to
calculate the metric.

2This is the case at least for small distances. At large distances, on curved
spacetimes, there may again occur, for example, analogs of lensing-type effects.
3The case D = 2 is special and has a different expression, see [15].

Our conclusion so far is that a classical spacetime, i.e., a
Lorentzian manifold, can be viewed as a pair (M,GF), where
GF is a Feynman propagator of a scalar field. A key difference
between describing a spacetime using a pair (M, σ ) or a pair
(M,GF) is that, in the former case, the traditional measurement
of a geodesic distance requires the use of rods and clocks along
the geodesic. In contrast, in the latter case, we replace rods and
clocks, which are non-canonical human artifacts, by the naturally
occurring fluctuations of a quantum field. The correlations in the
quantum fluctuations of a field are sufficiently modulated by the
underlying curvature of spacetime to enable the reconstruction
of the metric of the spacetime. Similarly, it should be possible
to use spinorial and tensorial Feynman propagators, after scalar
contractions, to determine the metric.

In practice, the measurement of a field correlator, such as a
Feynman propagator, would require, in principle, the detection
and counting of quantum field fluctuations, a difficult notion.
With present technology, quantum fluctuations of the vacuum of
the electromagnetic field can be measured with some accuracy
in table-top quantum homodyne detectors [17, 18]. Quantum
optical measurements of the correlations of spacelike or timelike
separated electromagnetic quantum vacuum fluctuations may
become feasible in table-top experiments. In principle, with
sufficient accuracy, such types of experiments could pick up
gravity-caused modulations of the functional form of a Feynman
propagator. From the Feynman propagator, themetric could then
be calculated. In principle, therefore, such experiments, if mobile
and sufficiently accurate, could be used to map the curvature of
spacetime. In a more indirect sense, particle accelerators, such
as the LHC, can be interpreted as devices that test Feynman
rules and to determine the functional form of Feynman rules,
including the Feynman propagators. With sufficient accuracy, a
mobile particle accelerator could, therefore, also be used to map
the curvature of a spacetime by determining a gravity-modulated
Feynman propagator.

To conclude, we arrived at the finding that, instead of using
rods and clocks to map the curvature of a spacetime manifold, as
Einstein envisaged, we could map the curvature of a spacetime
manifold by measuring GF(x, x′) close to its diagonal, i.e., by
measuring the local correlations of quantum field fluctuations.
This is because the Feynman propagator GF(x, x′) can then
be used to recover the traditional metric-based description of
a spacetime through Equation (7). Intuitively, this is possible
because the strength of the correlations of the quantum field
fluctuations that is encoded in the propagator is a proxy for the
covariant distance, the correlations being the stronger the smaller
the covariant distance.

4. REPLACING THE NOTION OF DISTANCE
BY THE NOTION OF CORRELATION

So far, we replaced one set of tools to map a spacetime’s curvature
with another set of tools to map a spacetime’s curvature, namely
by replacing rods and clocks with the correlator of quantum
field fluctuations. We, thereby, assumed that there exists an
underlying Lorentzian spacetime to be mapped. We now return
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to the main objective, which is to challenge the validity of the
picture of a spacetime-stage that hosts matter-actors.

To this end, we begin by asking what if the reasonable
assumption is true that, in nature, there is no spacetime in the
exact sense of a Lorentzian manifold? In this case, what we
described above as the reconstruction of a spacetime from a
Feynman propagator can only be approximate.

This suggests exploring the possibility that the primary
structure of nature is not that of a Lorentzian spacetime-stage
with matter-actors in the form of quantum fields but that the
primary structure of nature consists of abstract correlators.While
the abstract correlators would describe all regimes of nature, only
in some regime, which may be called the “low energy” regime,
the abstract correlators could be approximately represented in the
sense that they could be viewed, at least approximately, as arising
from quantum field fluctuations on a curved spacetime, as shown
in [19].

If the abstract 2-point and multi-point correlation functions
are the primary structure, nature would be information-theoretic
in nature. The notions of a spacetime and matter would then
be secondary in the sense that these notions only emerge in
the low energy regime as convenient notions for describing the
structure of the approximate mathematical representations of the
abstract correlators in terms of Quantum Field Theories (QFTs)
on a spacetime.

In the low energy regime, it would be the Feynman rules (to
tree level) and, ultimately, the full sums of Feynman graphs of the
standard model of particle physics on curved spacetime, which
would serve as a good approximate mathematical representation
of the abstract correlators. At high energies, the abstract
correlators would not possess a representation that makes them
appear to arise from the quantum fluctuations of fields on a
background Lorentzian spacetime. Not only would there be no
notion of spacetime but also no notion of matter belonging to
definite species of fields that could live on a spacetime. Instead,
the abstract correlators would need to be thought of as mere
structures that may be best described information theoretically.
In this study, we cannot answer the question of what determines
the structure of the abstract correlators, as this question is as
hard as asking what determines the dimension of spacetime, the
structure of the standard model field content and interactions,
and what lies beyond.

Let us now return to the aim of challenging the widely-
held picture of a spacetime-stage and matter-actors, in order
to perhaps get a glimpse of a possible new picture that
could lie beyond. To this end, let us consider how, in this
new picture, the derived notions of a spacetime stage and
matter actors would be seen as breaking down toward the
Planck scale, from the perspective of an experimenter who
approaches the Planck scale from low energies: correlators, such
as a propagators, should become less and less knowable at
high energies and small distances. For example, to measure a
correlator, such as a Feynman propagator, with some accuracy
requires, in principle, a large number of measurements since
statistics needs to be accumulated to obtain a reliable value
for a correlator. Repeated measurements can be spaced out in
small regions of spacetime, but, as these regions are chosen

smaller (speaking in the conventional picture), interactions
increase, significant renormalization is needed, and eventually
a natural ultraviolet cutoff may arise, limiting the knowability
of the statistics of the quantum fluctuations. If so, from the
perspective of the traditional picture of a spacetime-stage with
matter-actors, the Planck scale would not be a regime of exotic
phenomena or of wild quantum fluctuations of spacetime and
matter. Instead, the Planck scale might appear as a regime of
poor statistics. The statistics of the correlators, or Feynman
propagators, would be too poor to even approximately4 assign
a classical metric. From the information-theoretic perspective
of the abstract correlators, this phenomenon of inaccessibility
of information in the ultraviolet may appear, for example, as
a bandlimitation for matter fields, which in turn induces a
corresponding “bandlimitation” on the knowability, by means
of matter-based measurements, of spacetime curvature (see, e.g.,
[20–28]).

5. IDENTIFYING THE GEOMETRIC
DEGREES OF FREEDOM

We have arrived at a picture in which correlators, such as a
Feynman propagator, are primary, with a metric spacetime and
quantum fields emerging as derived, approximate concepts that
provide a useful language for the “low energy” regime. Let us for
now focus on this low energy regime, defined as the regime where
both the metric-based and the correlator-based descriptions
are valid.

In this low energy regime, we can now identify a problem
that persists when transitioning from the metric-based picture
to the new abstract correlator-based picture: the problem is
that a correlator, such as a Feynman propagator, GF(x, y), is
still a function of arbitrary parameters, much like the metric.
The propagator is, therefore, encoding its geometric information
highly redundantly. This is because, much like the metric, the
affine connection and the Synge function, the functional form
of a propagator changes under diffeomorphisms. This leaves us
with the task to mod out the diffeomorphism group if we wish
to isolate the geometric degrees of freedom, i.e., to identify the
Lorentzian structure.

For a first attempt at extracting the diffeomorphism invariant
information contained in a Feynman propagator, let us start by
recalling that, functional analytically, the Feynman propagator is
a right inverse

WGF = δ (8)

of its wave operator,W, such as

W : =
√
g(2+m2). (9)

The wave operator is a self-adjoint operator which, as we
discussed above with Equation (7), inherits all geometric

4Crudely, the notion of a classical spacetime arising approximately, in some
regime, from abstract correlators could be compared to the notion of a
classical path arising approximately, in some regime, from a quantum particle’s
wave function.
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information from the propagator. As a self-adjoint operator,
the wave operator possesses a real spectrum, spec(W), and this
spectrum at first sight appears to be what we are looking for,
namely a set of invariants under the diffeomorphism group. We
arrive at Lorentzian spectral geometry (see, e.g., [29–32]), the
discipline that asks: to what extent does the spectrum of a wave
operator determine a Lorentzian manifold?

In fact, spec(W) is not a large enough set of invariants
to identify the Lorentzian manifold. There are two basic
reasons. The first reason is that the spectra of the typically
hyperbolic wave operators tend to be continuous and therefore
particularly information poor. The spectra of hyperbolic wave
operators can be made discrete with suitable infrared cutoffs.
This necessitates choices of boundaries and boundary conditions.
These, however, are strongly affecting the resulting spectra and,
thereby, obscuring the extraction of geometric information from
the spectra. The second reason for why spec(W) is not a large
enough set of invariants to identify a Lorentzian manifold, even
if suitably discretized via an IR cutoff, is more fundamental. The
reason is that spec(W) is a set of invariants under the action of
the entire unitary group in the function space, which is a larger
group than the diffeomorphism group since it also contains, for
example, Fourier transforms. This means that spec(W) can be,
and generally is, smaller than the set of invariants under only the
diffeomorphism group.

As an aside, let us briefly discuss an approach [24, 33] to
overcoming this problem by introducing the tool of infinitesimal
spectral geometry. Conventional spectral geometry aims to solve
the highly non-linear problem of determining to what extent the
spectrum of an operator on a manifold determines the metric
of the manifold. Infinitesimal spectral geometry aims to solve
the simpler linear problem of determining to what extent an
infinitesimal change of the spectrum of an operator on amanifold
determines the corresponding infinitesimal change in the metric
of the manifold. Infinitesimal changes are then iterated to obtain
finite changes of the curvature of the manifold from finite
changes of the spectrum, as far as well defined. This approach
yields a new perspective for why the set of geometric invariants
spec(W) is generally incomplete: Only in two dimensions is the
metric essentially scalar. In higher dimensions, perturbations of
themetric are truly tensorial and, therefore, cannot be covariantly
expanded in the eigenbasis of a scalar wave operator. This
suggests, as a remedy, to work with the spectra, not of scalar
wave operators but, of wave operators of covariant symmetric
2-tensors, since this will guarantee that any small change in the
spacetime metric can be covariantly expanded in the eigenbasis
of the wave operator. To this end, Feynman propagators of spin-
2 particles that are composites could be used, as gravitons are the
only expected non-composite spin-2 particles.

We now propose a new approach to extracting the geometric,
diffeomeorphism invariant information from the abstract
correlators. To this end, let us retrace the steps below Equation
(9). We started with the knowledge that the Feynman propagator
GF and its wave operator W contain the complete information
about the metric if given in the position representation. Due to
diffeomorphism invariance, they do so in a highly redundant
way. We, therefore, considered the spectrum of the wave

operator, since it consists of diffeomorphism invariants that
carry geometric information, though not the complete set of
geometric information. In other words, we observed that, while
the wave operator contains all geometric information when given
in a position basis, it does not contain the complete geometric
information when given in its eigenbasis, i.e., when we only know
its spectrum.

This tells us that knowing the wave operator in its eigenbasis
(i.e., knowing nothing but its spectrum) and, in addition, also
knowing a unitary transformation from that eigenbasis to a
position basis is sufficient to calculate the metric. This is because
we can then transform the Feynman propagator or wave operator
from the eigenbasis of the wave operator into a position basis and,
from there, arrive at the metric using Equation (7).

The question is, therefore, if we can find such a unitary
transformation on the basis of knowing only the abstract
correlators. The answer is yes. To see this, recall that, so far, we
have only utilized the information contained in the abstract 2-
point correlators, i.e., in the Feynman propagators. The abstract
n-point correlators for n > 2, which we have not yet used,
happen to contain exactly the information that is needed to
calculate unitaries that map from the eigenbasis of the wave
operator of a propagator to a position bases. The reason is that
these multi-point correlators describe the vertices of interactions
and these vertices are local. This means that, from the abstract
correlators in an arbitrary basis, we can always calculate unitary
transformations to position bases, namely by diagonalizing these
vertices (as operators from a n-fold tensor product of the space of
fields into itself, with n depending on the valence of the vertex).
Only in the position basis are the vertices of the Feynman rules
of a local quantum field theory diagonal, i.e., only in a position
representation are the vertices proportional to products of Dirac
deltas. For example, the 3-vertex of λφ4 theory is usually given in
the momentum basis, but it can be expressed in any basis of the
space of fields, for example, in a Bargmann Fock basis [19]. In a
position basis, and only in a position basis, is the vertex diagonal
in the sense that it takes the form

V(w, x, y, z) = −iλδ(w− x)δ(y− z)δ(w− z) (10)

which expresses the locality of the interaction.
In conclusion, we have, therefore, arrived at a new method

to obtain the metric from correlation functions, namely, from
knowledge of a propagator and a vertex of a QFT. Crucially,
the new method can be used if the propagator and vertex are
given in any arbitrary basis in the function space or also if
they are given basis independently. Given the propagator and
vertex, the method consists in determining a basis in which the
vertex is diagonal (a position basis, therefore), then transforming
the propagator into that basis and finally deriving the metric
from the propagator. Unlike infinitesimal spectral geometry, the
new method, therefore, works straightforwardly for spacetimes
of any dimension and signature. As for the assumption of
the diagonalizability of the vertex, the vertices of all physical
theories are local and therefore diagonalizable (i.e., possess
representations as products of Dirac deltas), at least in the low
energy regime, which is where we are deriving a metric from the
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correlators. The dissolution of the notion of a spacetimemanifold
as one approaches the Planck scale can then manifest itself
mathematically as the non-diagonalizability of the vertex, i.e., in
the appearance of non-diagonal terms in the vertex correlators in
any basis.

We remark that it can now be seen from a new perspective
how, for example at the Planck scale, abstract n-point correlators
can fail to possess a representation in terms of a quantum field
theory whose interactions are local and which lives on a classical
curved spacetime. This happens in regimes where the n-point
correlators no longer admit even an approximate diagonalization.

The new approach to extracting the geometric information
from n-point correlators can be viewed as a generalization of
spectral geometry: conventional spectral geometry studies to
what extent the shape of a manifold can be inferred from
the spectrum of a wave operator of a free field that lives on
the manifold. The new approach is to consider not free but
interacting fields on the manifold, or even just one field that is
self-interacting, e.g., though a φ̂4 interaction. This yields non-
trivial n-point correlators for n ≥ 2. Independently of the
basis in which these Feynman rules are given, they contain
the basis-independent information of (a) the spectrum of the
propagator and (b) the changes of basis from the eigenbasis of
the propagators to the position bases, defined as those bases
in which the vertices are diagonal, i.e., local. Together, these
two sets of basis independent and, therefore, diffeomorphism
independent information form a complete set of invariants to
describe a metric manifold.

It should be interesting to see if, in acoustic spectral geometry,
this translates into the ability to hear the shape of a thin curved
vibrating object if drumming it weakly as well as strongly enough
to invoke non-linear oscillations.

6. OUTLOOK

There are, of course, open questions regarding the picture in
which abstract correlators are primary, with the conventional
picture of a spacetime stage that hosts matter actors only
emerging in certain regimes as useful but approximate
representations of the abstract correlators. For example,
one may ask whether there are new prospects for deriving the
dimensionality of spacetime and, regarding dimensionality, what
the relationship to holography could be. In this context, it is
worth considering the fact that any first quantized or suitably UV
and IR regularized second quantized theory formulated in one
number of spatial dimensions can be unitarily mapped into an
equivalent first or second quantized theory in any other chosen
number of spatial dimensions. The reason is that the Hilbert
spaces of first quantized theories with a finite number of degrees
of freedom are separable, i.e., they possess countable Hilbert
bases. Quantum field theories, after suitable UV and IR cutoffs,
also possess only a finite number of degrees of freedom and
their Hilbert spaces are, therefore, also separable. All separable
infinite-dimensional Hilbert spaces, however, are unitarily
equivalent. (We are assuming here that the regularizations are
not so drastic that they reduce the dimension of the Hilbert

spaces to finite numbers since finite-dimensional Hilbert spaces
are unitarily equivalent only if their finite dimensions match.)

For example, using Cantor’s diagonal counting, the countable
eigenbasis of a 1-dimensional harmonic oscillator can be
unitarily mapped into the also countable Hilbert basis of a
2-dimensional harmonic oscillator, or, e.g., into the countable
eigenbasis of a hydrogen atom in a three dimensional box. Of
course, what is local in one theory will generally not be local
in the unitarily equivalent theory. Similarly, the equivalence
of a regularized second quantized theory in one number of
spatial dimensions to a regularized second quantized (or first
quantized!) theory in an arbitrary different number of spatial
dimensions is guaranteed, i.e., it is not special per se. What can
make such an equivalence special is if the two equivalent theories
in question are each of interest in their own right.

From the perspective of the picture where abstract correlators
are primary, the determination in which regime the correlators
can be represented as arising, approximately, as the correlations
of quantum fluctuations of fields on a spacetime tells us in
effect what dimension of spacetime and what matter content
the given abstract correlators describe in some regime. In order
to investigate these questions, a technical challenge will be to
develop functional analytic methods to describe Feynman rules,
for example, those of a scalar φ̂4 theory, basis independently,
for example, in terms of the spectra of wave operators and the
unitaries that map the eigenbasis of a wave operators into bases in
which the vertices are (essentially) diagonal. This analysis should
help identify those functional analytic properties of the vertices,
i.e., of the n-point correlators, that determine the regime in which
they can be viewed as at least approximately diagonalizable.
Knowing those functional analytic properties could help explore
possible structures that determine the abstract correlators.

Presumably, the natural language to study such questions
about the abstract correlators is information theory. For example,
as we briefly discussed, the presence of a natural ultraviolet
cutoff could manifest itself in the abstract correlators as a
form of bandlimitation, in which case generalized Shannon
sampling theory [21–28, 34], which is related to minimum length
uncertainty principles [19, 35, 36], could provide useful tools.

Among the many open questions is also how to interpret
widely-separated entangled systems in the conventional picture.
In the new picture, where spacetime distance is, by definition,
inferred from correlations, such systems would appear to be
“close” by definition, i.e., they may be considered “close” without
needing an appeal, for example, to conventional wormholes [37].

From the new perspective where abstract correlators are
primary, it should also be interesting to explore possible links to
candidate quantum gravity theories, as shown in e.g., [38, 39] and
also in [40] which is based on the Synge function and quantum
indefinite causal structures, as shown in e.g., [41], as well as to
studies that aim to link the structure of the standard model to
algebraic structures and discrete spacetime models e.g., [42, 43].
Of relevance here could also be the in-depth investigations into
the relationship between the possible dynamics of matter and the
correspondingly possible dynamics of gravity, as shown in [44].
It will be interesting as well to explore possible connections to
the physics and formalisms of quantum reference frames and
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related studies of notions of distance via correlations between
observables [45–47].

Finally, the perspective where abstract correlators are primary
is philosophically close to various approaches, such as relational
quantum mechanics, [48] and, in particular, the approach stated
in [49]. The approach in [49] is not concerned with quantum
field theory or curved spacetime. However, its central observation
could be of interest to the approach proposed here: In [49],
Mermin showed that the set of correlators among any chosen
complete set of subsystems of a system provides a complete
tomography of the state of the system, hence the motivation
there to consider correlators as primary. It should be interesting
to explore how or to what extent this result can be applied to
quantum field theories, although limitations to localizability, as
e.g., described by Malament’s theorem, make the consideration
of localized subsystems difficult in quantum field theory, even
in the low energy regime. Worth mentioning are also attempts
at describing nature information theoretically based on the idea
of zeroth, first, and second quantizing the notion of a binary
alternative [50, 51].
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We show that a generalized version of the holographic principle can be derived from the
Hamiltonian description of information flow within a quantum system that maintains a
separable state. We then show that this generalized holographic principle entails a general
principle of gauge invariance. When this is realized in an ambient Lorentzian space-time,
gauge invariance under the Poincaré group is immediately achieved. We apply this
pathway to retrieve the action of gravity. The latter is cast à la Wilczek through a
similar formulation derived by MacDowell and Mansouri, which involves the
representation theory of the Lie groups SO(3, 2) and SO(4,1).
Keywords: Wilczek gravity, black hole information loss problem, emergent gravity, gauge invariance, holographic
principle

1 INTRODUCTION

Almost one hundred years of attempts to quantize gravity suggest that physical perspective may be
responsible for this failure (Garay, 1995). While continuing to seek an UV-complete theory of either
General Relativity (GR) or one of its possible extensions (Polchinski, 1998; Rovelli, 2004; Modesto,
2012; Modesto and Rachwal, 2014), an alternative option is to look at gravity as an emergent
phenomenon (Jacobson, 1995; Barcelo et al., 2005; Van Raamsdonk, 2010; Verlinde, 2011; Swingle
and Van Raamsdonk, 2014; Chiang et al., 2016; Oh et al., 2018). Among many possible instantiations
of this simple idea stands a paradigm of emergence that aims at recovering gravity via its analogical
similarity with Yang-Mills gauge theories. As remarked by Chen-Ning Yang, while electromagnetism
is evidently a gauge theory, and the fact that gravity can be seen as such a theory is universally
accepted, how this exactly happens to be the case must be still clarified. Notable explorations along
these lines have been provided in the past by Weyl (1918), and more recently by MacDowell and
Mansouri (1977), and Chamseddine et al. (1977), with subsequent improvements by Stelle and West
(1979).

At the same time, we heuristically note that gravity may naturally encode principles of
information theory. Such consideration naturally follows pondering that gravity is the field that
is involved in the very definition of both masses and spacetime distances, and that specifies the
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propagation velocities of point-like particles, and hence of
information, through the geodesic equations. Thus it is
reasonable to pursue a fundamental theory of gravity from
this perspective. Indeed, the underlying graph-structure of
information networks is a set of nodes and links—this is
reminiscent of the basis of the states in Loop Quantum
Gravity (Rovelli, 2004).

There have been huge achievements in the direction of a
quantum-information based theory of gravity, with several
different attempts developed so far—see e.g. Faulkner et al.
(2014). More generally, deep links between quantum
information theory and an “emergent” quantum theory of
observable physical systems have been developed by many
studies (Chiribella et al., 2016; Hamma and Markopoulou,
2011; Flammia et al., 2009). It is not within the present scope
to summarize this vast literature. Instead, we focus on a specific
alternative approach: we show that when the holographic
principle is reformulated from a semi-classical to a fully
general, quantum-theoretic principle, gravity emerges as a
gauge theory along the lines of the gauge formulation of
gravity, as proposed by Wilczek (1998).

We start by showing in Section 2 that a generalized
holographic principle (GHP) characterizes information transfer
within any finite quantum system in a separable state. The HP is
recovered from this more general, purely-quantum principle by
requiring covariance. We then show in Section 3 that compliance
with the GHP entails gauge invariance under the Poincaré group
in an ambient Lorentzian space-time. Hence the gauge principle
has purely quantum-theoretic roots and characterizes all finite
systems in separable states. We use this to retrieve the action of
gravity in Section 4. In Section 5, we provide, as an example, an
emergent theory of gravity, a theory of Yang-Mills gauge fields
and Higgs pentaplets that is cast à la Wilczek. This is a
formulation similar to a previous one envisaged by MacDowell
andMansouri, which involves the representation theory of the Lie
group SO(4, 1), but without explicit symmetry breaking. We
finally summarize some conclusions in Section 6, and suggest
that the AdS/CFT and dS/CFT correspondences may naturally
arise within this framework.

2 GENERALIZED HOLOGRAPHIC
PRINCIPLE FOR FINITE QUANTUM
SYSTEMS

2.1 Historical Remarks on the Genesis of the
Holographic Principle
Probably the most direct way to summarize the Holographic
Principle (HP) is via its original statement by ’t Hooft (1993):

“given any closed surface, we can represent all that
happens inside it by degrees of freedom on this surface
itself.”

The path that led to the formulation of the HP can be traced
from the Bekenstein’s area law (Bekenstein, 2004) for black
holes (BH),

S � A
4
, (2.1)

where S denotes the thermodynamic entropy of a BH and A its
horizon area in Planck units. Bekenstein conjectured the
existence of an upper bound, S itself, to the entropy of any
physical system contained within a bounded volume:

“the entropy contained in any spatial region will not
exceed the area of the region’s boundary.”

Historically, this conjecture was first instantiated by Susskind
(1995), who implemented a mapping from volume to surface
degrees of freedom for a general closed system. This was based on
the assumption that all light rays that are normal to any element
within the volume are also normal to the surface. Bousso (2002)
then showed that it is actually covariance that induces the
holographic limit on information transfer by light; he further
provided several counterexamples showing the failure of a
straightforward interpretation of the HP as a spacelike entropy
bound. Instead, Bousso formulated a covariant entropy bound:

S(L(Σ))≤A(Σ)
4

, (2.2)

withA(Σ) denoting the area in Planck units of a [typically but not
necessarily (Bousso, 2002)] closed surface Σ, and L(Σ) any light-
sheet of Σ, defined as any collection of converging light rays that
propagate from Σ toward some focal point away from Σ. The
bound (2.2) then refers to the entropy of the light-sheet L(Σ).
This covariant formulation of the HP holds for the light-sheets of
any surface Σ. BH emerge as special cases, for which the equality
in (2.2) holds.

We note that both (2.1) and (2.2) are semiclassical. The limits
on the entropy S that they impose are “quantum” only in their
reliance on Planck units and hence a finite value of Z. The entropy
itself is classical and of statistical origin, but the finite value of Z
restricts this thermodynamic entropy within the volume enclosed
by Σ. In the context of general relativity (GR), Σ is a continuous
classical manifold enclosing a continuous classical volume
characterized by a real-valued metric. As ’t Hooft (1993)
points out, the HP renders S(L(Σ)) independent of the metric
inside Σ:

“The inside metric could be so much curved that an
entire universe could be squeezed inside our closed
surface, regardless how small it is. Now we see that
this possibility will not add to the number of allowed
states at all.”

It bears emphasis that “allowed states” in this context are
thermodynamic states, i.e. states that can be counted by
measuring energy transfer between the system and its external
environment. As made fully explicit by Rovelli in the case of BH
(Rovelli, 2017; Rovelli, 2019), states that are effectively isolated
(e.g. isolated for some time interval much larger than relevant
interaction times) from the external environment do not
contribute to S(L(Σ)).
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While the demonstration by Maldacena (1998) of a formal
duality acting as an equivalence, at the level of the encoded
information, between string quantum gravity on d-dimensional
anti-de Sitter (AdS) spacetime and conformal quantum field
theory (CFT) on its d − 1-dimensional boundary has made the
HP a centerpiece of quantum gravity research, its physical
motivation remains that of ‘t Hooft’s conjecture, namely the
inaccessibility of the BH interior summarized by the Bekenstein
area law (2.1). The HP is conjectured to be fully general, although
it is quite mysterious why this should be the case. As Bousso
(2002) remarks, the HP retains a counterintuitive meaning:

“an apparent law of physics that stands by itself, both
uncontradicted and unexplained by existing theories
that may still prove incorrect or merely accidental,
signifying no deeper origin.”

Our goal in the next section is to place the HP on a much
deeper intuitive footing, by generalizing it from a semi-classical to
a fully quantum principle, one that is entirely independent of
geometric considerations.

2.2 Information Transfer in Finite, Separable
Systems
Let S � AB be a closed quantum system characterized by a Hilbert
space HS of finite dimension dim(HS), and suppose that over
some sufficiently long time interval τ, S maintains a separable
state, i.e. |S〉 � |AB〉 � |A〉|B〉 for all t ≤ τ, where t is a time
parameter characterizing S. We can then write a Hamiltonian:

HS � HA +HB + HAB (2.3)

whereHAB is the A-B interaction. Separability allowsHAB � 0 but
requires HA,HB ≠ 0.

We now assume HAB ≠ 0 and choose bases for A and B such
that, for all t ≤ τ:

HAB(t) � βkkBT
k∑

i

αk
i (t)Mk

i , (2.4)

where k � A or B, i � 1 . . .N for finiteN ≤ dim(HS), the αki (t) are
real functions with codomains [0, 1] such that:

∑
i

∫
Δt

dt αk
i (t) � Δt (2.5)

for every finite Δt, kB is Boltzmann’s constant, Tk is k’s
temperature, βk ≥ ln 2 is an inverse measure of k’s average per-
bit thermodynamic efficiency1 that depends on the internal
dynamics Hk, and the Mk

i are Hermitian operators with binary
eigenvalues. Given separability, we can interpret these Mk

i as
“measurement” operators that each transfer 1 bit between A and
B. Here the condition βk ≥ ln 2 assures compliance with
Landauer’s principle (Landauer, 1961): each bit transferred

from A to B by the action of some operator MA
i is paid for by

the transfer of an energy βBkBTB from B to A and vice-versa.
“Irreversible recording” of the transferred bits by A and B
corresponds2 to state changes:

|A〉|t → |A〉|t+Δt and |B〉|t → |B〉|t+Δt (2.6)

that maintain the separability of S. Given (2.5), the action
required for k to transfer N bits in time Δt is:

∫
Δt
dt({Z)lnP(t) � NβkkBT

kΔt (2.7)

where P(t) � exp(−({/Z)HABt). Informational symmetry clearly
requires βATA � βBTB during any finite Δt.

Let us now consider an interval τ≪ τ during which A and B
exchange exactly N bits. In any such interval, the thermodynamic
entropy S(B)|τ measured byA is clearlyN bits; the entropy S(A)|τ
measured by B is similarly N bits. Coarse-graining time to an
interval Δt � nτ≪ τ to allow n N-bit measurements, both
measured entropies remain N bits. Hence we have:

Theorem 1. Given any finite-dimensional quantum system
S � AB that maintains a separable state |AB〉 � |A〉|B〉 for t ≤ τ,
the information S(B) obtainable by A during any finite interval
Δt≪ τ is independent of HB.

Proof. The information S(B) obtainable by A during any finite
interval Δt≪ τ is just the information transferred byHAB, which is
specified entirely independently of HB. Indeed HB and hence HS

can be varied arbitrarily, provided that B has sufficient degrees of
freedom to maintain the separability of S, without affecting HAB.

Note that if the assumption of separability is dropped and two
subsystems cannot be distinguished, Eq. 2.6 fails, the von
Neumann entropy of |AB〉 remains zero, and no information
is transferred by HAB.

2.3 The HP Is a Special Case of the
Generalized Holographic Principle
Theorem 1 places a principled restriction on information transfer
within any separable quantum system; as noted above, the notion
of information transfer within a non-separable (i.e. entangled)
quantum system is meaningless. The HP is a principled
restriction on information transfer within a semiclassical
system that is separable by definition. Hence the two should
be related. This relation can be made explicit by stating:

Generalized Holographic Principle (GHP): Given any
finite-dimensional quantum system S � ABmeeting the
conditions of Theorem 1, the thermodynamic entropies
ofA and B over a coarse-grained time, over whichA and
B only interact through Eq. 2.4, are S(B) � S(A) � N
bits, where N is the number of operators in the
representation (2.4) of HAB.

We note that this GHP is formulated entirely independently of
geometric assumptions; in particular, it is prior to any assumption
of general covariance.

1Here the efficiency relates to the thermodynamic transformations triggering the
exchange of information bits among the two subsystems A and B. 2Notice that irreversibility is connected to the efficiency bound 1/βk < 1.
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To make the physical meaning of the GHP clear, let us
consider a specific example. Suppose A and B interact by
alternately preparing and measuring the states of N shared,
non-interacting qubits as shown in Figure 1. We can consider
that, in a time interval τ, A prepares the N qubits in her choice of
basis, i.e. using her MA

i and then B makes measurements in his
choice of basis, i.e. using hisMB

j . In the next interval τ’, B prepares
and A measures, and so forth. The prepared and measured bit
values will be preserved, i.e. A and B will employ the same
“language,” only if they share a basis, in this case a z axis,
which functions as a shared quantum reference frame (QRF)
(Bartlett et al., 2007; Fields and Marcianò, 2019). Clearly,
however, S(B) � S(A) � N bits in every interval of length at
least 2τ, independently of whether A and B share a QRF.

The qubit-mediated interaction shown in Figure 1 still
makes no geometric assumptions. If we now imagine,
however, that the array of qubits is embedded at maximal
density in an ancillary real 2-dimensional surface Σ, and
further require that the bit values generated by the actions of
theMA

i (respectively,MB
j ) must be transferred to a distant point

within A (respectively, B) by photons (or any other quantum
carrier consistent with the local symmetry/invariance that is
present), Eqs. (2.1) and (2.2), i.e. the usual covariant HP, results
by the reasoning of Bekenstein (2004), Bousso (2002). The
surface Σ can, in this case, naturally be interpreted as a
“boundary” between A and B at which they interact. The
self-interactions HA and HB are then naturally interpreted as
characterizing the “bulk” of A and B, respectively.

We note that the GHP provides, when HAB is assumed to act
across an A-B boundary, an immediate and intuitive explanation
of the decoherence of B relative to A and vice-versa (Fields and
Marcianò, 2019; Fields, 2019). Hence the GHP provides a natural

account of the “emergence of classicality” within separable
quantum systems: if |AB〉 is separable as |A〉|B〉, “classicality”
characterizes the bit values “encoded on” the A-B boundary, i.e.
the boundary at which HAB acts. There are, in other words, no
classical systems, just classical information.

Both Theorem 1 and the GHP above are formulated for fixed
N. Generalizing to the case of N varying slowly, i.e. remaining
piecewise constant in time for intervals τ≪Δt≪ τ, is
straightforward. Therefore, only the constant N case is needed
in what follows.

3 POINCARÉ SYMMETRIES AND GAUGE
INVARIANCE

3.1 The Generalized Holographic Principle
Requires Gauge Invariance for Finite,
Separable Systems
Theorem 1 and hence the GHP restricts access to information,
and so states an invariance: the information S(B) is invariant
under changes in HB (and vice-versa), provided HAB remains
fixed and separability is maintained. Gauge invariance for the
“bulk” Hamiltonians HA and HB clearly follows.

Theorem 2. In any S � AB compliant with the GHP, the bulk
interactions HA and HB are gauge invariant.

Proof. The situation is completely symmetrical, so considering
either HA or HB alone is sufficient. Gauge symmetry for HA can
only fail if a local coordinate change, i.e. a local change in basis
vectors for HA, is observable, i.e. has an effect on HAB. Any such
effect is ruled out by Theorem 1, which is satisfied by all systems
compliant with the GHP.

FIGURE 1 | Systems A and B exchange bits via an ancillary array of non-interacting qubits. Bit values are preserved if a quantum reference frame (here, a z axis) is
shared a priori. Adapted from Fields and Marcianò (2020); CC-BY license.
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Note that gauge invariance here depends explictly on
separability: if |AB〉≠ |A〉|B〉, i.e. S is in an entangled state, the
notion of a “bulk” Hamiltonian HA (or HB) is meaningless.

Theorem 2, like Theorem 1 and the GHP, involves no
assumptions about geometry. We introduce these below, with
QED as an initial example.

3.2 QED and the Consequences of the
Generalized Holographic Principle
As a specific example, consider a finite system AB, with A
comprising photons described by the usual electromagnetic
vector field Aμ(x) and B comprising fermionic particles, e.g.
electrons described by the Dirac field ψ(x), with x a real
space-time coordinate. Clearly A and B only interact via a
Hamiltonian HAB. The numbers of photons and electrons can
be arbitrarily large, so the usual approximation of infinite degrees
of freedom can be adopted for simplicity with no physical (i.e.
observable) consequences.

We can make the presentation more precise at the
mathematical level to illustrate the independence of observable
results from coordinate (i.e. basis) transformations, even in the
presence of the ancillary space-time geometry with points labelled
by x. The local gauge freedom for the choice of the vector field Aμ,
which generalizes for quantum fields, i.e. systems with infinite
degrees of freedom embedded in an ancillary space x, the
invariance with respect to the choice of basis we discussed
above, can be defined as in:

Aμ(x)→A′
μ(x) � Aμ(x) − zμλ(x), (3.1)

where λ(x) is a scalar function that is continuous with its first
derivatives. Stepping out of the redundancy contained in (3.1),
and denoting the components of the vector fields as Aμ � {ϕ,A},
the electric and the magnetic fields, invariant under (3.1), can be
defined respectively as E � _A − ∇ϕ and B � ∇∧A.

The quantization of the theory can be achieved following the
standard path integral procedure. The partition function for the
system A, namely the U(1) gauge sector, casts:

ZA[A] � ∫DAμ e
{S(A) (3.2)

in which DAμ denotes the path integral measure over the
copies of the gauge field, while S(A) denotes the classical
action. The expectation value in the path integral of the theory
of any functional observableO[A] is invariant under the gauge
transformation (3.1). It is straightforward to show this
fundamental property by comparing the expectation value
of O[A] for different choices of the gauge fixing. On the other
hand, different choices of the gauge fixing correspond to
different choices of (local) observers, namely bases. But
within these circumstances, the GHP implies that the path
integral of any O[A] must be gauge invariant: choosing an
observer is choosing a measurement basis, i.e. choosing a set
of operators Mk

i in (2.4), a choice that is independent of A by
Theorem 1. In simpler words, the GHP implies gauge
invariance.

The redundancy due to the gauge transformations, i.e. choices
of Mk

i , can be factored out by fixing the gauge functional G, and
then imposing gauge invariance. This is achieved by inserting in
the path integral (3.2) the resolution of the identity:

1 � ∫Dλδ(G(Aλ))
∣∣∣∣∣∣∣∣det

δG(Aλ)
δλ(x)

∣∣∣∣∣∣∣∣ (3.3)

where as customary Aλ
μ(x) � Aμ(x) + zμλ(x). The simplest

choice of gauge functional is provided by the Lorentz
functional G(A) � zμAμ, which implements the gauge
invariance of the path integral. Notice that under gauge
transformations, the Lorentz functional transforms as:

G(A) � zμA
μ →G(Aλ) � zμA

μ +□λ . (3.4)

Having all set up, we can easily show the invariance of the path-
integral:

ZA[A] � N ∫DAμ e
{SA(A) ∫Dλδ(G(Aλ))

∣∣∣∣∣∣∣∣det
δG(Aλ)
δλ(x)

∣∣∣∣∣∣∣∣
� N

∣∣∣∣∣∣det□
∣∣∣∣∣∣ ∫DAμ e

{SA(A)∫

Dλδ(G(Aλ))
� N ′ ∫DλDAμ e

{SA(A) δ(G(A))

� N ″ ∫DAμ e
{SA(A) δ(G(A)),

(3.5)

where the normalization functions N , N ′, and N ″ are not
relevant, and have been safely disregarded.

The perspective provided by the GHP allows us to place a
novel physical interpretation on the action of G(A) in removing
gauge redundancy, one that points toward a deeper
understanding of the role of the spatial coordinate x in QFT.
As noted above, from a GHP perspective, gauge redundancy is the
redundancy in the choice of measurement operatorsMk

i . This can
equally be interpreted as redundancy in the choice of observers k.
But k, in this case, is just a quantum system X that can be coupled
to the quantum field A while maintaining a separable joint state
|AX〉. The action of G(A) renders these different observers
redundant, effectively removing the dependence of
(observations of) A on X. Hence we can now see what X is
doing in QFT: it is enforcing separability. This is indeed an insight
of Einstein (1948):

Further, it appears to be essential for this arrangement
of the things introduced in physics that, at a specific
time, these things claim an existence independent of one
another, insofar as these things “lie in different parts of
space.”

“Claiming an existence independent of one another” obviously
requires separability.

It is well known that the gauge condition can be cast in a more
general form, employing an arbitrary function f. In this latter case,
the gauge functional:

Gf (A) � zμA
μ − f (3.6)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 5634505

Addazi et al. Generalized Holographic Principle

62

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


actually introduces a family of gauge-fixing terms. The
independence of the physical observables on the gauge fixing
is recovered through a process of average that is realized by
integrating over f the gauge fixing terms weighted with the factor

exp( − {
2ξ ∫ d4xf 2(x)), where ξ is a positive parameter. The path

integral in (3.5) then recasts as:

ZA[A] � N ∫Df DAμ e
{SA(A)− {

2ξ∫
d4x f 2(x)

� N ∫DAμ e
{SA(A)− {

2ξ∫ 
d4x(zμAμ(x))2

(3.7)

This invariance of the partition function under different choices
of the gauge fixing condition, i.e. different choices of f, percolates
into the gauge invariance of the expectation value of any
observable O. This manifests immediately, as one can
recognize from the easy passages

〈O[A]〉f � N ∫Df DAμ e
{SA(A)− {

2ξ ∫ d4x f 2(x) O[A]

� N ∫DAμ e
{SA(A)− {

2ξ ∫ d4x(zμA μ(x))2 O[A]

� N ∫DgDAμ e
{SA(A)− {

2ξ ∫ d4x g 2(x) O[A]
� 〈O[A]〉g

(3.8)

where f and g are two different gauge-fixings.
Wemay take into account now the other interaction partner in

QED, the system B composed by Dirac matter fields, for
simplicity electrons. The path integral formulation of the
system, composed by only one fermionic species ψ, then casts:

ZB[ψ,ψ] � ∫DψDψ e{SD(ψ,ψ) (3.9)

where

SD(ψ,ψ) � ∫ d4x ψ({cμzμ −m)ψ (3.10)

The observable quantities O[ψ,ψ] are bilinear operators in the
fermionic fields ψ and ψ, which can be generally cast as
O[ψ,ψ] � ψO(ΓI)ψ, where the matrix O, with suppressed
spinorial indices, depends on the elements of the Clifford
algebra ΓI , with I � 1 . . . 16.

As previously done for the bosonic system A, also for the
system B we can introduce a local gauge transformation having
the meaning of a transformation among observers. Of course, this
transformation cannot change the values of O, which lead us to
state the necessity of the symmetry

ψ(x)→ψ′(x) � e{qλ(x)ψ(x), ψ(x)→ψ′(x) � e−{qλ(x)ψ(x),
(3.11)

where q stands for the charge parameter. This is a U(1)
transformation, the generator of which commutes with the
matrix O, ensuring the gauge invariance of any observable O
under (3.11). By the Noether theorem, selecting λ(x) � α ∈ R to
individuate an infinitesimal global transformation, the conserved
charge is easily recovered

Q � ∫
Σ

d3x ψ†ψ,

where Σ is a spatial hypersurface. This allows to cast U(1)
transformations acting on the Hilbert space of the theory
as U � e{αQ.

3.3 Extension to Gravity and Local Lorentz
Invariance
So far we have first considered generic quantum systems with
finite number of degrees of freedom, and stated the GHP within
these simplified but completely general contexts, which do not
necessarily require geometric concepts. In this sense, these
notions shall be considered as pre-geometric. We have then
extended our focus to continuous systems with an infinite
number of degrees of freedom, focusing specifically on the
paradigmatic example of QED, which is embedded on a flat
Minkowski space-time. This embedding requires the addition of
ancillary coordinates x into the description of the system, which
are necessary to specify its evolution and fully capture the
dynamics as it is observed by spatially-separated observers.

Let us now include gravity in this construction, extending the
arguments previously exposed. Our joint system S � AB shall be
now composed by the gravitational degrees of freedom, described
by the gravitational field gμ](x), the configurational space of
which constitutes the system A, and by the matter degrees of
freedom, the fields3 ϕℵ(x), the configurational space of which
individuates the system B. The GHP then imposes the gauge
invariance of the gravitational field, once the ancillary spatial
coordinates have been introduced, in exactly the same way as
discussed above. The role of the spatial coordinates is, as in the
case of QED, labeling the manifold in which separable physical
(in this case, matter) systems, e.g. observers, that interact with the
field A are embedded. Symmetries fully depend in this picture on
the signature of the embedding space, which we assume to be
Lorentzian, so as to distinguish among time [required already by
(2.4)] and space (ancillary) coordinates. Thus the emergent
symmetry will impose the invariance under local SO (3, 1)
transformations: indeed, the underlying space structure we are
considering has Lorentzian signature. This is also consistent with
the fact that the tangent space to each point of the manifold is flat
and Minkowski, and thus the whole construction specifies how
the invariance under supertranslations in time and space emerges
in this framework.

Besides local SO (3, 1) Lorentz symmetries, the theory of
gravity also encodes symmetries under diffeomorphism. It is
customary to deal with these latter in the Hamiltonian
formulation of the theory. This requires considering
Lorentzian manifolds M4 that are diffeomorphic to R × Σ.
This property enables a slicing of M4 into space-like
hypersurfaces Σ at instants of time t ∈ R. This slicing is
arbitrary, since there exist several possible choices to pick a
diffeomorphism ϕ : M4 →R × Σ. Thus different time

3Here we denote with ϕℵ(x) any possible scalar, vectorial or spinorial matter fields.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2021 | Volume 8 | Article 5634506

Addazi et al. Generalized Holographic Principle

63

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


coordinates τ can be defined on M4, as the pullback of t that is
realized by ϕ, or in the mathematical jargon τ � ϕ p t. This
corresponds to different clocks for different observers (in the
language of §2.2, different “tick” intervals τ), which nevertheless
must not affect the definition of the physical observables, which
are gauge invariant and diffeomorphic invariant. The theory is
then recast on Cauchy surfaces, on which the gravitational field is
captured by the restriction of the gravitational field to the three-
metric on the slice Σ, namely 3g, and to its “time” derivative,
namely the extrinsic curvature K. These variables form the
Cauchy data of the problem, and open the pathway to access
the meaning of the ten components of the Einstein equations.
Indeed, four of the Einstein equations turn out to be constraint
equations that the Cauchy data must satisfy, while the other six
are evolutionary equations that dictate the dynamics in time of
the three-metric.

A time-like unit vector n must be then defined that is
orthogonal to any tangent vector v on Σ. Considering the
metric two-form g on M4, these two requirements amount
to write in formulas that g(n, n) � −1 and g(n, v) � 0. The
direction of the unit vector n is then defined to point towards
the future. A derivative of any generic vector v on Σ can be
then defined along any generic direction individuated by a
vector u on Σ. This is simply attained by projecting on Σ
and removing the component along the normal direction, i.e.
∇uv � −g(∇uv, n)n + [∇uv + g(∇uv, n)]. The first term identifies
the extrinsic curvature, K(u, v)n � −g(∇uv, n)n, which measures
the bending of the surface Σ in the ambient manifold M4, by
quantifying the failure of a generic vector ofM4 to be still tangent
to Σ after we parallel translate it using the Levi–Civita connection
on the ambient space M4. While considering the component
tangential on Σ, we can write 3∇uv � ∇uv + g(∇uv, n), since it
introduces the Levi–Civita connection on Σ that is associated to
the three metric 3g. One can show that this is a connection, and
satisfies the Leibnitz rule.

Given this framework, denoted as ADM (Arnowitt et al., 1959)
in the literature, we can now introduce a time coordinate τ � ϕ*t
onM4, which individuates a generic foliation {τ � s}. The vector
field zτ on M4 then admits the generic decomposition along a
tangential direction to Σ and its normal, respectively individuated
by the lapse function N and the shift vector N, i.e. zτNn +N. We
can finally move to consider the Einstein theory of gravity and its
Hamiltonian structure, which is a purely constrained system. We
can first move from the Einstein-Hilbert action, which we review
in Section 4, and cast it in terms of the ADM variables, using the
three-metric 3g, the Levi–Civita connection on Σ, namely 3Γ, the
associated Riemann tensor 3Ra

bcd and the Ricci scalar 3R on Σ.
Then the Lagrangian of the Einstein–Hilbert action reads,
modulo a boundary term:

L �
��
3g
√

N[3R + tr(K2) − (trK)2] (3.12)

which allows to define the symplectic structure of the system,
namely:

qij � 3gij pij � δL
δ _qij

� �
q

√ [Kij − (trK)qij] (3.13)

with vanishing momenta conjugated toN and N, respectively P �
0 and P � 0. In Eq. 3.13 the extrinsic curvature is expressed in
terms of the covariant derivatives on Σ, namely 3∇, and the ADM
variables, as:

Kij � 1
2N
( _qij − 3∇iNj − 3∇jNi) . (3.14)

The Hamiltonian density of the gravitational system, which can
be calculated by the usual Legendre transform
H(qij, pij) � pij _qij − L, finally provides the Hamiltonian of the
system H � ∫

Σ
Hd3x. This latter can be recognized to be a totally

constrained system:

H � �
q

√ (NC + NiCi) , (3.15)

with

C � − 3R + q−1(tr(p2) − (tr p)2), Ci � −2 3∇j(q− 1/2pij). (3.16)

For simplicity, we assumed the hyperspace Σ to be compact, so as
to neglect the contribution otherwise provided by total
divergences.

The first term of the Hamiltonian represents the Hamiltonian
constraint, which generalizes time reparametrization, while the
second term is the space-diffeomorphism constraint, respectively:

C(N) � ∫
Σ

NC �
q

√
d3x, C(N) � ∫

Σ

NiCi
�
q

√
d3x. (3.17)

Involving the continuous version of the Poisson brackets for the
phase-space variables of the system, namely:

{f , g} � ∫
Σ

⎧⎨⎩ zf
zpij(x)

zg
zqij(x) −

zf
zqij(x)

zg
zpij(x)

⎫⎬⎭ �
q

√
d3x,

we may recover the algebra of constraints for the gravitational
system, known as Dirac algebra, namely:

{C(N), C(N′)} � C([N,N′]) , (3.18)

{C(N), C(N)} � C(NN ′) , (3.19)

{C(N), C(N ′)} � C[(NziN ′ − N ′ziN)zi] . (3.20)

The scalar and the vector constraints entering the total
Hamiltonian can be cast in terms of the Einstein tensor
components, contracted with the normal nμ to the
hypersurface Σ, i.e.:

C � −2Gμ]n
μn], Ci � −2Gμin

μ,

while the spatial components Gij source the Hamilton equation of
the phase-space variable, which are also captured by the
Hamilton equation _qij � {H, qij} and _pij � {H, pij}.

4 EMERGENT POINCARÉ SYMMETRIES
FROM AN EMERGENT GAUGE THEORY

There is a deep similarity among gauge symmetries and
diffeomorphisms, which becomes manifest as soon as both the
gauge theories and gravity are formulated as principle bundle
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theories. This turns space-time symmetry into an emergent
concept, similarly to what has been discussed in the previous
section, while considering the consequences of the GHP. A
celebrated framework in which gravity, and thus the Poincaré
symmetries, are shown to be emergent from a gauge structure
was provided by MacDowell and Mansouri. Nonetheless, the
gauge symmetry is explicitly broken in this model. We briefly
review here this theoretical framework, as a propedeutic
element to the next section, where we review a model, due
by Wilczek, in which gravity is emergent from a fully gauge-
invariant theory.

4.1 Einstein–Hilbert Action
Before introducing MacDowell–Mansouri gravity, it is useful to
remind the Palatini formulation of gravity in the Einstein–Hilbert
action. This casts in terms of the metric gμ], its inverse gμ], and its
first and second derivatives, i.e.:

SEH � 1
16πG

∫ d4x
���−g√ (R − 2Λ) (4.1)

with R being the Ricci scalar. The Ricci scalar, encoding non-
linearly first order derivatives and linearly second order ones, is
defined as the contraction of the Riemann tensor, namely:

Rαβμ]g
α]gβμ � R , (4.2)

with the Riemann tensor expressed as:

Rα
βμ] � zμΓρ]σ − z]Γρμσ + Γαμλ Γλ]β − Γα]λ Γλμβ, (4.3)

with Γρμ] Christoffel symbols. These latter are torsionless in the
Einstein–Hilbert theory, namely Tρ

μ] � Γρμ] − Γρ]μ � 0. Varying
with respect to the Christoffel symbol, one obtains the
expression in terms of the metric and its derivatives:

Γρμ] �
1
2
gρσ(zμg]σ + z]gμσ − zσgμ]) . (4.4)

A first-order formulation of the Einstein–Hilbert action of gravity
is admitted in terms of the SO(3, 1)-connection ωab

μ and the tetrad
one-form (frame-field) eaμ, which is valued in the SO(3, 1) algebra
and carries an internal vector-index in the fundamental
representation of SO(3, 1). In terms of these fields, the action
now casts:

SEH � 1
64πG

∫ d4x ϵabcd (Rab
μ] e

c
ρ e

d
σ −

Λ
3
eaμ e

b
] e

c
ρ e

d
σ) ϵμ]ρσ (4.5)

with:

R ab
μ] � zμω

ab
] − z]ω

ab
μ + ω a

μ c ω
cb
] − ω a

] c ω
cb
μ ,

Ta
μ] � Dω

μ e
a
] −Dω

] e
a
μ ,

(4.6)

which can be recast as Rab � dωab + ωa
c ∧ω

cb and Ta � Dωea �
dea + ωa

c ∧ e
c.

A new topological invariant can be added to the action of
gravity, without affecting the classical equation of motions. The
Holst term can be added to the Einstein–Hilbert action, then
leading to the new action that involves a real (Barbero–Immirzi)
parameter γ, i.e.:

SEH � 1
64πG

∫ d4x(ϵcdab + 1
c
δcdab)Rab

μ] eρc eσ d ϵμ]ρσ

− Λ
3
ϵabcd eaμ eb] ecρ edσϵμ]ρσ (4.7)

the phase-space of which retains the symplectic form:

{cωa
i (x), E i

a(y)} � cδ(x − y)δjiδab (4.8)

where now a, b � 1, 2, 3, the connection reads
cωa

i � ω0a
i + c

2ϵ0abcωibc, the (Plebanski) two-form reads
Ei
a � 4

Gϵabcϵijk ebj eck, and as usual { , } denote the Poisson brackets.

4.2 BF Formulation of Gravity
The Einstein–Hilbert–Holst action admits a formulation within
the BF framework, as a deviation from the topological theory. The
BF theory is defined as a G-principle bundle on a D-dimensional
base manifold MD. The action is the Killing form contraction of
the g Lie algebra-valued (D-2)-form B and the field strength of
the G-connection A. The Lagrangian then reads:

LBF � tr(B∧ F[A]) , (4.9)

which specialized to the case of SO(3, 1) casts:
LSO(3,1)

BF � Bab ∧ Fab[A] , (4.10)

where here a, b � 1, . . . 4 are indices in the fundamental
representation of SO(3, 1). This automatically provides the
Einstein-Hilbert action, when the two-form is constrained to
appear as a bi-vector, i.e. Bab � ϵabcd ec ∧ ed . The Einstein-Hilbert
action for gravity, complemented with the Holst term, is then
instantiated by the imposition of the so-called simplicity
constraints on the B Lie algebra-valued two form, namely:

Bab � ± (ϵabcd + 1
c
δabcd) ec ∧ ed .

4.3 MacDowell–Mansouri Action
Switching now to the MacDowell–Mansouri action, we introduce an
extended (anti-de Sitter) group SO(3, 2). In the
MacDowell–Mansouri action, this is explicitly broken down to its
stabilizer, the Lorenz group SO(3, 1). The anti-de Sitter connections,
composed by ten internal components, are labelled by indices of the
fundamental representation of the extended group A, B � 1, 2, . . . 5
as AAB � AAB

μ dxμ. This decomposes into AAB
μ � (Aab

μ , A
a5
μ ), with

Aab
μ � ωab

μ and Aa5
μ � ℓ

−1 ea), given the identification:

Λ
3
� − 1

ℓ
2 .

Involving the SO(3, 2) algebra-valued connections, the
decomposition is recognized to encode both the generators of
the Lorentz transformations Mab and the space-time translation
Pa, i.e.:

Aμ � 1
2
ωab
μ Mab + 1

ℓ
eaμP

a � 1
2
AAB

μ MAB ,

having identified Ma5 � Pa.
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According to this decomposition, the connection casts as:

AAB � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωab 1

ℓ
ea

−1
ℓ
eb 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.11)

and correspondently the curvature 2-form, with indices
contracted with the structure constants of the SO(3, 2) group:

FAB � dAAB + AAC ∧AB
C ,

decomposes into the SO(3, 1) valued components:

FAB � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Rab + 1

ℓ
2e

a ∧ eb
1
ℓ
Ta

−1
ℓ
Tb 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.12)

The MacDowell–Mansouri action deploys this extended
formalism, but with the crucial underlying assumption of
(explicit) symmetry breaking:

FAB → F
AB � Fab. (4.13)

The Einstein–Hilbert action of gravity can then be encoded in a
general framework, moving from the action:

SMM[A] � ℓ
2

64πG
∫ tr(F ∧ +F) (4.14)

where + denotes the gravitational Hodge dual. Using the
curvature decomposition in Eq. 4.12, the action recasts as:

SMM[A] � ℓ
2

64πG
∫(Rab + 1

ℓ
2e

a ∧ eb)∧(Rcd + 1
ℓ
2e

c ∧ ed)ϵabcd
(4.15)

The action then entails the Einstein–Hilbert action, with the
cosmological term, and some 4D Euler characteristic:

32πGSMM[A] � SEH + 1
2ℓ2

∫ ϵabcd eaμ eb] ecρ edσ ϵμ]ρσ

+ ℓ
2

2
∫ ϵabcd R ab

μ] R cd
ρσ ϵμ]ρσ

The equations of motion read:

(Rab ∧ ec + 1
2ℓ2

ea ∧ eb ∧ ec)ϵabcd � 0, Ta � 0. (4.16)

The MacDowell–Mansouri theory admits a straightforward BF
formulation, involving so(2, 3)-valued B two-forms. The action
then reads:

S � ∫
M

tr(B∧ F − GΛ
6

B ∧ +B), (4.17)

the equations of motion of which imply that: i) varying in δAAB,
the local SO(2, 3) Gauss constraint holds; ii) varying in δBa5,
torsion vanishes, i.e. Fa5 � Ta

ℓ
−1 � 0; iii) varying in δBab, the

relations that provide the MacDowell–Mansouri in Eq. 4.14 is

recovered, namely Fab � GΛ/3ϵabcdBcd . This relation allows us to
write the MacDowell–Mansouri action as the deformation of a
topological gauge theory. The symmetry breaking, which is here
explicit, occurs as regulated by a coefficient that is
dimensionless, in natural units, and for current estimates of
the cosmological constant value reads GΛ ∼ 10− 68. This makes
General Relativity adapt to be described, with excellent
approximation, as the perturbative limit of a topological field
theory.

Without entering into further details, we notice that the
MacDowell–Mansouri theory can be cast in a similar fashion
in terms of an internal de Sitter group SO(4, 1), again explicitly
broken down to SO(3, 1). Within this latter case, the
SO(4, 1)-connection is decomposed into the generator of
translations and the generators of rotations, namely the tetrads
and the spin-connection AAB � (ωab, ℓ−1 ea).

5 WILCZEK GRAVITY

Frank Wilczek proposed in Wilczek (1998) a model that
is reminiscent of the theory formulated by MacDowell and
Mansouri, with internal SO(4, 1), or equivalently SO(3, 2),
gauge symmetry. The configuration variables are the gauge
symmetry connection AAB

α , and the internal scalar field ϕA, in
the fundamental representation of the group. The crucial
difference between the MacDowell–Mansouri model and
the Wilczek model lies in the spontaneous symmetry
breaking of the internal gauge group that is present in the
latter. This indeed directly enables us to recover the metric
structure of General Relativity from the principal bundle of
the model proposed by Wilczek.

The Lagrangian considered in Wilczek (1998) is:

LW � κ3 ϵαβcδϵABCDE FAB
αβ ∇cϕ

C ∇δϕ
D ϕE , (5.1)

in which ∇cϕ
C � zcϕ

C + AC
cFϕ

F denotes the SO(4, 1) gauge
covariant derivative. The field strength is defined as:

FAB
αβ � zαA

AB
β − zβA

AB
α + f ABCDEFA

CD
α AEF

β , (5.2)

in which f ABCDEF is the structure constant of SO(4,1), namely:

f AB LM PQ � ηBLηAPηMQ − ηALηBPηMQ

−ηBMηAPηLQ + ηAMηBPηLQ .
(5.3)

Two novel terms with respect to the MacDowell–Mansouri
action, were introduced in the Wilczek model:

1. The interaction potential of ϕA, namely:

L1 � κ1(ηABϕAϕB − v2)2.
By varying with respect to ϕA, this term is recognized to be
stationarized either for ϕA � 0 or when

∣∣∣∣ϕ∣∣∣∣ � v. In the latter case,
the choice ϕA � δA5 v implements the spontaneous symmetry
breaking.
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2. A term that constrains the determinant of the metric in the
spontaneous symmetry broken phase:

L2 � κ2(J − ω)2 ,
in which:

J � ϵαβcδϵABCDE ϕE∇αϕ
A∇βϕ

B∇cϕ
C∇δϕ

D. (5.4)

This term is stationarized when J � ω, implying the
unimodularity of gravity (Bufalo et al., 2015). The
spontaneous symmetry breaking induces in (5.4) a reduced
expression for J, namely:

J � v5ϵαβcδϵabcdAa5
α A

b5
β A

c5
c A

d5
δ , (5.5)

J denoting the determinant of the metric.
The total Lagrangian proposed by Wilczek then reads:

LW � κ2(J − ω)2 + κ1(ηABΦAΦB − v2)2
+ κ3 ϵαβcδϵABCDE FAB

αβ ∇cϕ
C ∇δϕ

D ϕE.

In order to unveil the emergence of the gravity, we may instantiate
the spontaneous symmetry breaking Eq. 4.13 directly on the
Lagrangian in Eq. 5.1, using the decompositions recovered in
Eqs. (4.11) and (4.12), and then finding:

LW � κ3 v
3 ϵαβcδϵabcd[(zαωab

β − zβω
ab
β + f abcdefω

cd
α ω

ef
β ) − Λ eaαe

b
β]eccedδ

� κ3 v
3 ϵαβcδϵabcd[Fab

αβ − Λ eaαe
b
β]eccedδ .

(5.6)

This equation corresponds to the Einstein–Hilbert action,
introduced in Eq. 4.5, plus the cosmological constant term.
The unimodular term is not essential for our arguments, and
we can neglect it here.

We can recast the main term of the Lagrangian density
proposed by Wilczek, rearranging as:

L � κ ϵαβcδFAB
αβ B

AB
cδ , (5.7)

where

BAB
cδ � ∇cΦC∇δΦD ΦE ϵABCDE

works as a simplicity constraint, which here drags the Wilczek
model away from its topological phase.

In the Higgs condensate phase, the B ∧ F term is (nothing
but) reduced to the Einstein-Hilbert term, and an emergent

diffeomorphism invariance is recovered starting from a
topological invariance, which is finally broken. In this way,
moving from a background independent theory, because of the
flatness of the connection, after the Higgs condensate phase an
emergent metric tensor is obtained.

6 CONCLUSIONS AND OUTLOOKS

We have shown here that a generalized version of the holographic
principle can be derived from fundamental considerations of
quantum information theory, in particular, the imposition of
separability on a joint state. This GHP entails gauge invariance.
We emphasized that as soon as this is instantiated in an ambient
Lorentzian space-time, gauge invariance under the Poincaré group
automatically follows. Indeed, following this pathway we can
recover the action of gravity. We summarize several gauge-
invariant models for gravity, including gravity cast à la Wilczek.
This is a formulation of the Einstein theory of gravity similar to the
one proposed by MacDowell and Mansouri, which involves the
representation theory of the Lie groups SO (3, 2) and SO (4, 1).

As the GHP provides a natural and completely general
distinction between “bulk” and “boundary” degrees of
freedom, one that is independent of geometry, it would be
worth to investigate whether the AdS/CFT and dS/CFT
correspondences could fit within this framework. This would
require complementing the GHP with the concept of the
renormalization group flow. Indeed, group renormalization
flow techniques might be actually considered to connect the
fully symmetric SO (3, 2) and SO (4, 1) theory with the
SO(3,1) broken symmetric phase.
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Prelude to Simulations of Loop
Quantum Gravity on Adiabatic
Quantum Computers
Jakub Mielczarek*

Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland

The article addresses the possibility of implementing spin network states, used in the loop
quantum gravity approach to Planck scale physics on an adiabatic quantum computer.
The discussion focuses on applying currently available technologies and analyzes a
concrete example of a D-Wave machine. It is introduced a class of simple spin
network states which can be implemented on the Chimera graph architecture of the
D-Wave quantum processor. However, extension beyond the currently available quantum
processor topologies is required to simulate more sophisticated spin network states. This
may inspire new generations of adiabatic quantum computers. A possibility of simulating
loop quantum gravity is discussed, and a method of solving a graph non-changing scalar
(Hamiltonian) constraint with the use of adiabatic quantum computations is proposed. The
presented results establish a basis for the future simulations of Planck scale physics,
specifically quantum cosmological configurations, on quantum annealers.

Keywords: quantum gravity, quantum computation, Planck scale, quantum annealing, adiabatic quantum algorithm

1 INTRODUCTION

One can distinguish two main applications of quantum computers. The first is data processing
associated with the implementation of quantum algorithms, e.g., quantum machine learning
protocols (Biamonte et al., 2017). The second concerns simulations of quantum systems.

Simulating quantum systems using quantum computers is fundamentally different from what
simulations performed at classical computers are. While classical simulations rely on either
discretization of a given physical system or an adequate algebraic analysis, the simulations
performed on quantum computers allow to imitate a given quantum system. This kind of exact
simulation of a quantum system has been a subject of discussion in the seminal Feynman’s article
(Feynman, 1982).

In order to understand better what we mean by exact simulations, let us consider the case of
Planck scale physics. Here, the relevant degrees of freedom are defined at length scales of the order of
the Planck length lPl ∼ 10− 35 m. Despite significant advances made in theoretical understanding and
experimental techniques, the Planck scale physics remains empirically directly inaccessible.

On the other hand, concrete examples of theories describing elementary quantum gravitational
degrees of freedom exist. One such approach is loop quantum gravity (LQG) (Rovelli, 1998; Ashtekar
and Lewandowski, 2004; Rovelli and Vidotto, 2014). In LQG, background-independent degrees of
freedom can be defined, and predictions can be made (Agullo et al., 2012; Barrau et al., 2014). Even if
the degrees of freedom under consideration are experimentally not directly accessible, one can
consider their projection onto another physical realization, which will imitate its quantum behavior
(see Figure 1). Under the assumption that quantum mechanics is valid at the Planck scale, the
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projected realization is quantum-mechanically equivalent to the
original system. The only difference is appropriately rescaled
couplings adjusted to the physical nature of the simulator (built,
e.g., with the use of superconducting qubits). Such projection of
one quantum system onto its equivalent imitation allows
performing what we previously called exact simulations. As it
has already been mentioned, the quantum simulations are very
different from what we usually consider as physical simulations,
where for instance, a given differential equation is discretized and
then implemented on a computer with the use of appropriate
algorithms. In contrast, in the case of exact simulations, one
actually performs experiments on a quantum system which is
defined as being equivalent (quantum mechanically) to a part (or
a whole) of the original quantum system.

The aim of this article is to investigate the possibility of
performing exact quantum simulations of the spin network
states, which are used to construct the Hilbert space in the
LQG approach to quantum gravity. Our interest is focused on
applying existing adiabatic quantum computers, a commercial
example of which is one provided by the D-Wave Systems
company.

We consider conceptual issues related to the possibility of
simulating Loop Quantum Gravity based on the considered fixed
graph case. Specifically, the implementation of the scalar
constraint is analyzed, and a toy model of such a procedure is
presented. We conclude with an outlook of the following steps to
be done in the research direction initiated in this article.

The idea of employing the spin network states in quantum
computations already appeared in the literature [see Refs
Marzuoli and Rasetti (2005), Kauffman and Lomonaco (2008),
Jordan (2010)]. However, the potential of applying spin networks

for universal quantum data processing was considered only. Up
to the best of our knowledge, the issue of relating spin networks
with adiabatic quantum computations was not considered before.
While this article was in the final stage of preparing a study in
which an LQG spin network is implemented on a molecular
quantum simulator appeared. A simulation of quantum
fluctuations of a 5-node spin network in the kinematical
regime was performed (Li et al., 2019). Here, we will consider
the same type of spin network in Section 4 in the context of
solving a prototype scalar constraint with the use of adiabatic
quantum computations.

2 ADIABATIC QUANTUM COMPUTING

The last years have brought significant progress in the
development of quantum computing technologies (Campbell
et al., 2017). First, quantum computers have been
commercialized and made available in a cloud or as
independent hardware units. In both cases, the currently most
advanced commercial technologies were possible to achieve
thanks to the development of superconducting quantum
circuits (You and Nori, 2005). In particular, the IBM Q
universal quantum computers built using 5 and 20
superconducting qubits have been developed. However, from
the point of view of exact simulations discussed in the
Introduction, another type of quantum computer seems to be
more suitable to use currently—namely the adiabatic quantum
computers (Kadowaki and Nishimori, 1998).

Adiabatic quantum computers, in contrast to the universal
ones, are designed to solve a specific problem of finding the

FIGURE 1 | Pictorial presentation of the relation between the original quantum system defined at the Planck scales and its exact simulation. The exact simulation is
performed with the use of projection of the original quantum system onto the architecture of a quantum computer. In contrast to the Planck scale system, measurements
of the quantum degrees of freedom can be performed at the level of the quantum simulation.
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minimum of a Hamiltonian HI of a coupled system of qubits
(spins). In the process of finding the minimum ofHI one employs
a time-dependent Hamiltonian in the form

H(λ) � (1 − λ)HB + λHI , (1)

where HB is the so-called base Hamiltonian, which is
characterized by a simple and easy to prepare ground state. In

practice, the base Hamiltonian is often equal toHB � ∑
i
σxi , so that

the ground state corresponds to the alignment of spins in the x
direction. Then, the value of λ is changed adiabatically from λ � 0
to λ � 1, so that while the system that is initially in a non-
degenerate ground state will remain in this state. Therefore, if the
process is done correctly, the system ends up in the minimum of
the HamiltonianHI . The process of transition from λ � 0 to λ � 1
involves quantum tunneling and is called quantum annealing.
The characteristic time scales which allow keeping the system
close to the adiabatic state are dependent on what kind of HI

Hamiltonian is considered. This issue is closely related to the
efficiency of the quantum annealing-based algorithms to the
classical ones [see Ref Biamonte et al. (2017)] for discussion of
this subject).

In practical implementations, the most considered form of HI

corresponds to the Ising problem:

HI � ∑
〈i,j〉

bijσ
z
i σ

z
j +∑

i

hiσ
z
i , (2)

where bij are coupling between spins and hi quantify
interactions of spins with external magnetic field. The
summation 〈i, j〉 is defined such that it does not repeat over
pairs. The values of couplings specify the problem to be solved
while readouts of z components of the spins in the final state
provide an outcome of the quantum computation (simulation).

From the mathematical viewpoint, the class of problems which
can be solved in that way is the so-called Quadratic
Unconstrained Binary Optimization (QUBO), which typically
is of the NP-hard type. This is because, when we look a the
problem from the classical perspective by measuring the
orientations of spins along the z-axis, the two values of
σzi → si ∈ {−1, 1} are allowed. In consequence, for the system of
N classical spins, there are 2N configurations to be explored.
Therefore, in general, finding a ground state requires exponential
growth of time with the number of spins (N), which is the case for
NP-hard problems.

The physical implementation of the QUBO problem using the
quantum annealing procedure is provided by the D-Wave
machine. In this realization, the spins (qubits) are created with
the use of superconducting circuits in the form of CC JJ RF-
SQUIDs (Harris et al., 2010) built with the use of Josephson
junctions composed of Niobium in the superconducting state.
The qubit basis states are defined employing two different
orientations of quantum of magnetic flux across the
superconducting circuit. SQUID (superconducting quantum
interference device) introduces interactions between the qubits
based circuits called couplers, which introduce the bijσzi σ

z
i factors

in the Hamiltonian (2). The values of parameters hi can be
controlled with the use of external magnetic fluxes. However,

not all values of bij and hi are allowed but only some fractional
values from the range [−1, 1]. The readout of the final quantum
states of qubits is performed with the use of sensitive
magnetometers built with the use of SQUIDs.

In the D-Wave quantum annealer, the superconducting qubits
qi are arranged into 8-qubit blocks forming the so-called Chimera
architecture. Each block consists of 16 couplings between 8 spins.
As a consequence, not all qubits are coupled. The topology of
couplings between qubits in a single block is presented in
Figure 2. In the so far most advanced version of the D-Wave
machine (the D-Wave 2000) the 8-qubit blocks form a 16 × 16
matrix (256 blocks in total), leading to 2048 qubits.

3 SPIN NETWORKS

Let us now proceed to discuss spin networks. We begin with a
brief overview of how spin networks appear in the loop quantum
gravity approach to quantum gravity. Then we introduce a class
of spin networks that is possible to implement on the Chimera
architecture of D-Wave quantum processors.

The fundamental elements of the LQG approach to quantum
gravity are holonomies of Ashtekar connection A ∈ su(2) along
a curve e(λ), with λ ∈ [0, 1]:

h[A, e] � Pe∫e
A
, (3)

where P denotes path ordering. Performing gauge
transformations, generated by the so-called Gauss constraint,
the Ashtekar connection transforms as A→Ag � g−1dg+
g−1Ag. The corresponding transformation of holonomy is
h[A, e]→ h[Ag , e] � g(e(0))h[A, e]g(e(1))− 1. The fact that the
transformations of holonomies contribute only at the boundaries
of e implies that gauge invariant objects are provided by theWilson
loops W[A, e] :� tr(h[A, e]).

The key idea behind LQG is to build a Hilbert space of the theory
out of Wilson loops. However, such a basis is, in general, over-
complete. A solution to the problem comes from the construction of
spin-networks which are a certain linear combination of products of
Wilson loops (Rovelli and Smolin, 1990). Such an approach
guarantees that both the Gauss constraint (ensuring local gauge
invariance) is satisfied by the base states, and the Hilbert space is
complete. By introducing an equivalence relation between
topologically equivalent spin networks, the so-called
diffeomorphism constraint can be satisfied. There is eventually a
scalar (Hamiltonian) constraint, which has to be satisfied by physical
states. In this section, we will focus on spin network states satisfying
both Gauss and diffeomorphism constraints. The issue of satisfying
the scalar constraint (with the use of adiabatic quantum computing)
will be discussed in the next section.

The spin network is formally a graph composed of edges E and
nodes N with spin labels at the edges and the so-called intertwiners at
the nodes. The spin labels correspond to irreducible representations of
the SU(2) group such that triangle inequalities (reflecting the Gauss
constraint) are satisfied at the nodes. The intertwiners correspond to
invariant subspaces at the nodes, which we will discuss in more
detail below.
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In Figure 3 we present an exemplary spin network composed
of 3-valent and 4-valent nodes. An essential feature of the nodes is
that 3-valent nodes do not carry a volume element while 4-valent
nodes and higher valent nodes are associated with 3-volume (in
the sense that eigenvalues of the volume operator in such a state
are non-vanishing).

The particular case is a 4-valent node that is dual to a
tetrahedron (3-simplex). One can imagine that the vertex is
located in the center of the tetrahedra, while each of the
associated links intersects with one of the surfaces (see block
b) in Figure 3).

In this article, we are considering the case of spin networks
composed of 4-valent vertices only and spin labels corresponding
to fundamental representations of the SU(2) group i.e. j � 1

2. The
reason for that is that in such a case, the Hilbert space at each
vertex is a tensor product of four 1/2 spins, which can be
decomposed into irreducible representations in the
following way:

H1
2
⊗ H1

2
⊗ H1

2
⊗ H1

2
� H0 ⊕ H0 ⊕ 3H1 ⊕ H2. (4)

There are, therefore, two possibilities in which the spins can
add up to zero. In consequence, the invariant subspace for such a
vertex is two dimensional:

dim Inv (H1
2
⊗ H1

2
⊗ H1

2
⊗ H1

2
) � 2. (5)

We associate the two dimensional invariant space with the
qubit space. The nature of the qubit associated with the 4-vertex
under consideration is graphically presented in Figure 4.

Worth mentioning here is that there is a freedom of choice of
channel in which recoupling of spin labels at the vertex is
performed. In particular, in the s channel the base states can
be expressed in terms of the four 1/2 spin base states (|↑〉 and ∣∣∣↓〉)
as follows (Feller and Livine, 2016):

|0s〉 � 1
2
(∣∣∣↑↓↑↓〉 + ∣∣∣↓↑↓↑〉 − ∣∣∣↑↓↓↑〉 − ∣∣∣↓↑↑↓〉)

|1s〉 � 1�
3

√ (∣∣∣↑↑↓↓〉 + ∣∣∣↓↓↑↑〉

−
∣∣∣↑↓↑↓〉 + ∣∣∣↓↑↓↑〉 + ∣∣∣↑↓↓↑〉 + ∣∣∣↓↑↑↓〉

2
). (6)

The above definitions of the basis states for a qubit have
recently been considered in the context of universal quantum
computations in Refs. Li et al. (2019), Mielczarek (2019), Czelusta
andMielczarek (2021). Alternatively, it is convenient to construct
our qubit states such that they are eigenvectors of the volume
operator [see e.g. Ref Feller and Livine (2016) for details]:

V̂ :�
�
2

√
3
l3Pl(8πc)32

����������������∣∣∣∣∣∣∣∣∣∣∣ Ĵ
→

1 ·⎛⎜⎝ Ĵ
→

2 × Ĵ
→

3
⎞⎟⎠
∣∣∣∣∣∣∣∣∣∣∣

√√
, (7)

FIGURE 2 | Three different representations of the structure of couplings between eight qi qubits forming an elementary block of the D-Wave processor: (A) The
physical representation of quibits as closed superconducting loops. The couplers between the qubits are represented by triangles. (B) The Chimera graph structure of
couplings between the eight qubits. (C) Representation of a single block which is useful when interconnections in the array of blocks are considered.

FIGURE 3 | A) An exemplary spin network. (B) In the geometric picture the 4-valent node is dual to a tetrahedron (3-simplex).
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where c is the Barbero-Immirzi parameter (Barbero G, 1995;
Immirzi, 1997) and the angular momentum operators Ĵ

→
i �

(Ĵ1i , Ĵ2i , Ĵ3i ) satisfy the su(2) algebra: [Ĵ ak, Ĵbl ] � iδklϵabc Ĵ
c
k, for

a, b, c ∈ {1, 2, 3}. This can be achieved by considering the
following superpositions of the states Eq. 6:

|1〉 � 1�
2

√ (|0s〉 − i|1s〉), (8)

|0〉 � 1�
2

√ (|0s〉 + i|1s〉), (9)

so that V̂ |1〉 � +V0|1〉 and V̂ |0〉 � −V0|0〉, where V0 :� l3Pl(8πc)
3
2���

6
�
3

√√
is the minimal eigenvalue of the volume operator (Rovelli and
Vidotto, 2014). The positive and negative signs of the eigenvalues
distinguish between the two allowed orientations of a 3-simplex.
Consequently, in LQG, the elementary volume can contribute
with both signs: positive (for |1〉) or negative (for |0〉). However,
it is expected that in the semiclassical limit, one of the
contributions will dominate over the other. The eigenstates |1〉
and |0〉 are the qubit base states that we refer to in the rest of this
article.

Having the definition of a qubit, one can consider different
spin network topologies that are possible to implement
directly with Chimera architecture. In Figure 5 we present
connected spin networks with the number of nodes equal to
N � 2, 3 and 4, which can be directly embedded into the
Chimera graph.

A single coupling between the qubits in the quantum
processor architecture can be associated with one or more

FIGURE 4 | The 4-valent node with spin labels equal to j � 1/2 corresponds to superposition of two graphs each with the different value of intertwiner. In this article,
the two dimensional intertwiner space is associated with the qubit Hilbert space.

FIGURE 5 | Connected spin networks compatible with the Chimera architecture: (A) N � 2, (B) N � 3, (C) N � 4, (D) N � 4.

FIGURE 6 | A chain qubit. If the b15 coupling is sufficiently negative then
the spins q1 and q5 will have tendency to align in the same direction.
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links in the corresponding spin network. The difference between
connections can be further encoded in the strength of the
couplers. In particular, in the case a) in Figure 5 there are two
possible 4-valent spin networks can be associated with two
coupled qubits. Relating a single coupler with a single link in
the spin network is generically not possible. In the case of 4-valent
nodes and a single block of D-Wave processor, the only
possibility is given by the configuration represented in blocks
b) and c) in Figure 2. The situation corresponds to a spin network
with N � 8 qubits and E � 16 edges forming the Chimera graph.

As one can notice, the structure of Chimera architecture
imposes significant restrictions on the possible associated spin
network topologies. In particular, it is not possible to implement a
“triangular” N � 3 spin network directly with the use of
elementary qubits. In order to go beyond the limitations of the
Chimera architecture, one can consider effective qubits (chain
qubits) composed of two or more spins. If the coupling between
the qubits is sufficiently negative, then the qubits will tend to align
in the same direction, which is preferred energetically. In such a
case, measurements can be performed on one of the elementary

qubits contributing to the chain, while the remaining qubits can
be considered ancilla qubits.

With the use of chain qubits (see Figure 6), the dictionary of
spin networks can be extended further. In particular, previously
inaccessible spin networks for N � 3 and N � 4 can now be
constructed (see Figure 7).

Worth stressing is that different types of effective qubits can be
considered and Figure 7 represents only a one of many possible
implementations of the spin networks under consideration.

A more extended example is a regular square lattice with the
nearest neighbor connections. Implementation of the regular
lattice spin network on the Chimera architecture of the
quantum processor is shown in Figure 8.

The regular lattice configuration enables simulation of a 2D
Ising spin networks discussed in Ref (Feller and Livine, 2016).
which provide a toy model of extended quantum spacetime.
The analysis of such configurations is especially interesting in
the context of phase transitions and domain formation, which
may reflect the emergence of semi-classical spacetime. We will
come back to this issue in the next section. Furthermore, in

FIGURE 7 | Connected spin networks compatible with Chimera architecture: (A) N � 3, (B) N � 4.

FIGURE 8 | Regular lattice spin network embedded with the use of chain qubits. Here, four 8 qubit blocks of the D-Wave processor are used.
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further studies, it would be interesting to investigate if the 3D
hexagonal type Ising spin network can also be embedded into
the architecture of the D-Wave processor.

4 SIMULATION OF LOOP QUANTUM
GRAVITY

The spin network states discussed in the previous sections satisfy
the Gauss constraint. Moreover, the diffeomorphism constraint
can be imposed by considering equivalence classes under the
action of spatial diffeomorphisms, whichmeans that we equate all
graphs with the same topology.

It remains the scalar (Hamiltonian) constraint, which is the
most difficult one to satisfy. Finding a solution to the
Hamiltonian constraint in the 3 + 1 D can be perceived as the
most difficult open problem in LQG (Thiemann, 2006).

The scalar constraint reflects the fact that the total energy of
the gravitational field is equal to zero. The scalar constraint is, in
general, a graph-changing operator, which makes implementation
of such a constraint a problematic task. However, the situation in
which the action of the constraint preserves the graph structure
may provide an intermediate step toward the solution of the full
problem. The question is whether adiabatic quantum computation
may be helpful here.

To address this question, let us observe that finding solutions
to the classical constraint:

C ≈ 0, (10)

can be mapped into a problem of minimizing some Hamiltonian.
Because the quantum annealing algorithm is just searching for the
minimum of the spin Hamiltonian (2), making use of adiabatic
computations requires association of the minimum of the
Hamiltonian with a solution of the constraint (10). The
simplest way to do it is to consider the Hamiltonian H in the
following form:

H∝C2. (11)

In this case, the Hamiltonian is bounded from below, and in
the classical ground state, the constrain (10) is naturally satisfied.

Solution of the constraint (10) allows to extract physical states
and construct a physical phase space Γphys (or physical Hilbert
space) being a subset of kinematical phase space Γkin1. It is
important to stress that the minimum energy states of the
Hamiltonian (11) are just the physical states of the theory and
they form Γphys. If there is no additional matter content, the states
represent also a vacuum gravitational field configuration,
described by the prototype scalar (Hamiltonian) constraint
under considerations. The auxiliary Hamiltonian (11) is a

simplified version of the Master Constraint introduced in
LQG, being a square function of constraints [see Ref
Thiemann (2006)].

There are, however, technical limitations in the
implementation of the procedure proposed above. This is
because, in the D-Wave annealer, only quadratic Hamiltonian
functions are allowed. This implies that the scalar constraint
cannot be higher than linear order in the spin variables. On the
other hand, scalar constraints being of the higher than linear
order in the spin variables is expected in the full LQG.

The most general type of the constraint that one consider in
the context of D-Wave quantum computer is

C � ∑N
i�1

aisi − c ≈ 0, (12)

with some parameters ai, c ∈ R
2 and where si ∈ {−1, 1} are

classical spin variables.
Here, for the sake of simplicity we will consider the case with

ai � 1∀i, such that the prototype scalar constraint (12) takes the
following form:

C � ∑N
i�1

si − c ≈ 0, (13)

with some parameter c ∈ { − N ,−N + 2, . . . ,N − 2,N}. By
squaring (13) we obtain:

C2 � 2⎛⎝∑
〈i,j〉

N

sisj +∑
i�1

N

(−c)si⎞⎠ + N + c2. (14)

From this one can propose that the Hamiltonian to be
considered is:

H � C2 − N − c2

2
� ∑N

〈i,j〉
sisj + h∑N

i�1
si, (15)

where h � −c. The obtained Hamiltonian corresponds to the
QUBO problem with a complete graph and equal couplers
between the qubits (bij � 1). In this model, the ground state
(which corresponds to C � 0) energy is:

H0 � −N + c2

2
. (16)

There is onemore important aspect illustrated by the model - a
degeneracy of the ground state. Namely, there are, in general,
multiple spin configurations which are minimizing the
Hamiltonian (15). In the model under consideration, the
vacuum degeneracy depends on both c and N. Given the c and
N, finding the order of degeneracy is a combinatorial problem
which can be reduced to determining the number of (N + c)/2

1Here, for simplicity, we define the kinematical phase space such that is obtained by
solving Gauss and diffeomorphism constraints. This corresponds to all possible
spin configurations at the nodes of a given 4-valent spin network. In the quantum
theory, the kinematical Hilbert space Hkin with respect to the scalar constraint
Ĉ
∣∣∣∣ϕ〉 ≈ 0 is a tensor product of qubit Hilbert spaces defined at N nodes of the spin

network.

2Alternatively, one can consider a complex constraint C � ∑N
i�1

zisi − c ≈ 0 with

zi , c ∈ C. Then, in order to obtain a real Hamiltonian on has to consider
H∝

∣∣∣∣C|2. This can be extended further to the case of multi-constraint model,
which is not discuss here.
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subset of a set composed of N elements, which is given by the
binomial coefficient:

⎛⎜⎜⎝ N
N + c
2

⎞⎟⎟⎠. (17)

Then, for a fixed N the maximal degeneracy is obtained for the
choices

c � 2⌊N/2⌋ − N ∨ c � 2⌈N/2⌉ − N , (18)

where ⌊x⌋ and ⌈x⌉ are floor and ceiling functions
respectively. Based on this, the corresponding maximal
degeneracy is equal to

( N
⌊N/2⌋ ) � ( N

⌈N/2⌉ ). (19)

The degeneracy is an essential quantity because it corresponds
to the number of physical states satisfying the constraint (13).

One can now make relation with the spin networks. For this
purpose, let us recall that the spin Hamiltonian (15)
corresponding to the constraint (13) describes a complete
graph. Associating a spin coupler with a single link of the spin
network, one can conclude that for the 4-valent nodes under
considerations, the only complete spin network must have
pentagram structure with N � 5 nodes (see block “a” in Figure 9)3.

Such spin network corresponds to the geometry of a three-
sphere. Furthermore, it turns out that introducing composite
(chain) spins the pentagram spin network can be implemented
using two neighbor blocks of the D-Wave processor. There are
various ways to do so. One of them is presented in block “b” in
Figure 9, where the shadowed regions correspond to the effective
qubits composed of the elementary ones.

Finally, let us take a look at the energy landscape of the model.
In Figure 10 we plot energies corresponding to all of the spin
configurations for c � −1.

The total number of spin configurations corresponds to
dimensionality of the kinematical space: dim Γkin � 25 � 32.
On the other hand, the degeneracy of the vacuum of (15)
gives us dimensionality of the physical space dim Γphys �
⎛⎜⎜⎝ 5

5 − 1
2

⎞⎟⎟⎠ � 10 (here we used Eq. 17). The physical space is a

subset of kinematical space Γphys ⊂ Γkin as expected.
In order to extract all the physical states with the use of adiabatic

quantum simulations, the quantum annealing procedure has to be
performed repeatedly. The outcome is a superposition of the ground
states, and the procedure of measurement should select the
particular ground states in the independent runs. However, as

FIGURE 9 | (A) Pentagram spin network withN � 5. Each link of the graph is labeled with j � 1/2. The qubits (here modeled by the classical bits si ) are defined at the
nodes. (B) An exemplary embedding of the pentagram spin network on the two neighbor blocks of the D-Wave processor. The shadowed regions represent collective
(chain) qubits which correspond to the nodes of the spin network.

FIGURE 10 | Energy landscape of the pentagram spin network with
N � 5 and c � −1. The ground state configurations satisfy the prototype scalar
constraint (13) and span physical phase space Γphys of the model.

3The restriction is because, in the considered case, all couplers have equal value.
Therefore, the couplers have to be associated with the same number of links in the
spin network. The simplest example is when a single coupler is associated with a
single link. However, extensions to the other cases are possible if the general form
of the constraint (12) is considered.
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discussed in Refs (Matsuda et al., 2009; Mandrà et al., 2017) the type
of quantum annealing procedure used in the D-Wave quantum
computersmay not be suited to identify all degenerate ground states.
The studies suggest that an extension beyond the currently
employed base Hamiltonians is needed to ensure that the ground
state manifold is adequately sampled. Otherwise, the probability of
finding some of the possible ground states may be suppressed.

Assuming that the physical states are selected, analysis of
fluctuations of various observables is possible to perform. In the
case under consideration, one of the interesting possibilities would be
to investigate volume fluctuations. As we already mentioned, the base
states corresponding to the 4-valent note qubits are eigenstates of the
volume operator describing the same absolute volume but with
different signs. It is, however, expected that in the classical limit,
only one type of contribution would dominate such that averaged
nonvanishing space volume will emerge. On the other hand, in a
strongly quantum state, the positive and negative contributions can
subtract one another, leading to the lack of the notion of classical
geometry. Analysis of correlations of the spins in the physical states
could, therefore, tell us whether domains of the same sign of volume
are formed. If yes, that would be a sign of the emergence of semi-
classical spacetime. Furthermore, the presence of long-range
correlation would unavoidably allow associating a notion of length
scale to the spin network configurations. Such observation would be a
significant step toward the reconstruction of classical spacetime
directly from the spin network states.

5 SUMMARY

The purpose of this article was to investigate the possibility of the
implementation of spin networks on the architecture of
commercially accessible adiabatic quantum computers (quantum
annealers). In the studies, we focused our attention on spin networks
with fixed spin labels (j � 1

2) corresponding to the fundamental
representation of the SU(2) group. In such a case, the 4-valent nodes
give rise to two-dimensional intertwiner space associated with the
qubit Hilbert space. In the geometric picture, the 4-valent nodes of a
spin network are dual to the 3D simplices, and the qubit bases states
represent different orientations of a 3-simplex.

We have shown that it is possible to define spin networks on
the architecture of the D-Wave quantum processor in the
considered case. However, due to topological restrictions of
the Chimera graph, not all spin networks are possible to
implement with the use of elementary qubits. However, some
obstacles can be overcome by introducing effective (chain) qubits
composed of two or more elementary qubits. Such effective qubits
allow implementing, e.g., regular 2D square lattice topology of the
nearest neighbor type of interaction Ising model.

Furthermore, we proposed a method of solving scalar
(Hamiltonian) constraints using quantum annealing. In the case
of D-Wave quantum annealers, we have shown that a prototype
constraint being a linear function of qubit variables, is possible to
solve. The solutions of the constraint (i.e., physical states) are
obtained as ground states of an appropriate Ising-type
Hamiltonian. The procedure has been theoretically demonstrated

for the pentagram spin network, which (as we have shown) can be
embedded onto the architecture of the D-Wave processor. This
opens a path to simulate simplified LQG models on available
quantum annealers. However, one has to keep in mind that
computational complexity of the approach not been addressed
yet. Consequently, it is not known whether quantum annealers
may provide the quantum speed-up for solving the LQG-related
scalar constraints.

Various generalizations of the investigated class of spin networks
are to be considered. In particular, the situation which is motivated by
the semi-classical limit is when all spin labels are equal to some j≫ 1

2,
instead of j � 1

2. In the case of arbitrary j, the dimension of the
intertwiner space of a single 4-vertex is

dim Inv(Hj ⊗ Hj ⊗ Hj ⊗ Hj) � 2j + 1. (20)

Generalization to the case of higher than 4-valence of nodes
can also be considered. In both cases, ancillary qubits have to be
introduced appropriately, which is a more difficult task or, in
some cases, perhaps even not possible to do. These and other
issues related to quantum simulations of spin networks,
especially in the context of LQG will be the subject of our
further studies.
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We have previously shown that three approaches to relational quantum dynamics—

relational Dirac observables, the Page-Wootters formalism and quantum

deparametrizations—are equivalent. Here we show that this “trinity” of relational

quantum dynamics holds in relativistic settings per frequency superselection sector.

Time according to a clock subsystem is defined via a positive operator-valued measure

(POVM) that is covariant with respect to the group generated by its (quadratic)

Hamiltonian. This differs from the usual choice of a self-adjoint clock observable

conjugate to the clock momentum. It also resolves Kuchař’s criticism that the Page-

Wootters formalism yields incorrect localization probabilities for the relativistic particle

when conditioning on a Minkowski time operator. We show that conditioning instead

on the covariant clock POVM results in a Newton-Wigner type localization probability

commonly used in relativistic quantum mechanics. By establishing the equivalence

mentioned above, we also assign a consistent conditional-probability interpretation to

relational observables and deparametrizations. Finally, we expand a recent method of

changing temporal reference frames, and show how to transform states and observables

frequency-sector-wise. We use this method to discuss an indirect clock self-reference

effect and explore the state and temporal frame-dependence of the task of comparing

and synchronizing different quantum clocks.

Keywords: relational quantum dynamics, problem of time, relational Dirac observables, Page-Wootters formalism,

quantum deparametrizations, quantum clocks, quantum reference frames, relativistic quantum clocks

1. INTRODUCTION

In general relativity, time plays a different role than in classical and quantum mechanics, or
quantum field theory on a Minkowski background. General covariance dispenses with a preferred
choice of time and introduces instead a dynamical notion of time which depends on solutions
to the Einstein field equations. In the canonical approach to quantum gravity this leads to the
infamous problem of time [1–3]. Its most well-known facet is that, due to the constraints of the
theory, quantum states of spacetime (and any matter contained in it) do not at first sight appear to
undergo any time evolution, in seeming contradiction with everyday experience.

The resolution comes from one of the key insights of general relativity: any physical notion of
time is relational, the degrees of freedom of the Universe evolve relative to one another [4–6]. This
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Höhn et al. Relational Dynamics in Relativistic Settings

insight has led to threemain relational approaches to the problem
of time, each of which seeks to extract a notion of time from
within the quantum degrees of freedom, relative to which the
others evolve:

(i) a Dirac quantization scheme, wherein relational observables
are constructed that encode correlations between evolving
and clock degrees of freedom [1, 2, 4, 7–38],

(ii) the Page-Wootters formalism, which defines a relational
dynamics in terms of conditional probabilities for clock and
evolving degrees of freedom [7, 25, 39–57], and

(iii) classical or quantum deparametrizations, which result in
a reduced quantum theory that only treats the evolving
degrees of freedom as quantum [1, 2, 7, 10, 30, 31, 58–65].

These three approaches have been pursued largely independently
with the relation between them previously unknown. They have
also not been without criticism, especially the Page-Wootters
formalism. For example, Kuchař [1] raised three fundamental
criticisms against this approach, namely that it:

(a) leads to wrong localization probabilities in relativistic
settings,

(b) is in conflict with the constraints of the theory, and
(c) yields wrong propagators.

Concern has also been voiced that there is an inherent ambiguity
in terms of which clock degrees of freedom one should choose,
also known as themultiple choice problem [1–3, 66, 67]. Indeed, in
generic general relativistic systems there is no preferred choice of
relational time variable and different choices may lead to a priori
different quantum theories.

In our recent work [7] we addressed the relation between
these three approaches (i)–(iii) to relational quantum dynamics,
demonstrating that they are, in fact, equivalent when the clock
Hamiltonian features a continuous and non-degenerate spectrum
and is decoupled from the system whose dynamics it is used to
describe. Specifically, we constructed the explicit transformations
mapping each formulation of relational quantum dynamics into
the others. These maps revealed the Page-Wootters formalism
(ii) and quantum deparametrizations (iii) as quantum symmetry
reductions of the manifestly gauge-invariant formulation (i). In
other words, the Page-Wootters formalism (ii) and quantum
deparametrizations (iii) can be regarded as quantum analogs
of gauge-fixed formulations of gauge-invariant quantities (i).
Conversely, the formulation in terms of relational Dirac
observables (i) constitutes the quantum analog of a gauge-
invariant extension of the gauge-fixed formulations (ii) and (iii).
More physically, these transformations establish (i) as a clock-
choice-neutral (in a sense explained below), (ii) as a relational
Schrödinger, and (iii) as a relational Heisenberg picture of
the dynamics. Constituting three faces of the same quantum
dynamics, we called the equivalence of (i)–(iii) the trinity of
relational quantum dynamics.

This equivalence not only provides relational Dirac
observables with a consistent conditional probability
interpretation, but also resolves Kuchař’s criticism (b) that
the Page-Wootters formalism would be in conflict with the

quantum constraints. Furthermore, the trinity resolves Kuchař’s
criticism (c) that the Page-Wootters formalism would yield
wrong propagators, by showing that the correct propagators
always follow from manifestly gauge-invariant conditional
probabilities on the physical Hilbert space [7]. This resolution
of criticism (c) differs from previous resolution proposals which
relied on ideal clocks [25, 43, 68] and auxiliary ancilla systems
[43] and can be viewed as an extension of [46].

The transformations between (i)–(iii) of the trinity also
allowed us to address the multiple choice problem in Höhn
et al. [7] by extending a previous method for changing temporal
reference frames, i.e., clocks, in the quantum theory [30, 31, 47]
(see also [32–34, 69]). The resolution to the problem lies in
part in realizing that a solution to the Wheeler-DeWitt equation
encodes the relations between all subsystems, including the
relations between subsystems employed as clocks to track the
dynamics of other subsystems; there are multiple choices of
clocks, each of which can be used to define dynamics. Our
proposal is thus to turn the multiple choice problem into a
feature by having a multitude of quantum time choices at
our disposal, which we are able to connect through quantum
temporal frame transformations. This is in line with developing
a genuine quantum implementation of general covariance [7, 30,
31, 38, 70–74]. This proposal is part of current efforts to develop a
general framework of quantum reference frame transformations
(and study their physical consequences [75–85]), and should be
contrasted with other attempts at resolving the multiple choice
problem by identifying a preferred choice of clock [53] (see [7]
for further discussion of this proposal).

We did not address Kuchař’s criticism (a) that the Page-
Wootters formalism yields the wrong localization probabilities
for relativistic models in Höhn et al. [7] as they feature
clock Hamiltonians which are quadratic in momenta and
thus generally have a degenerate spectrum, splitting into
positive and negative frequency sectors. This degeneracy is
not covered by our previous construction. While quadratic
clock Hamiltonians are standard in the literature on relational
observables [approach (i)] and deparametrizations [approach
(iii)], see e.g., [4, 10, 11, 19, 29, 31], relativistic particle
models have only recently been studied in the Page-
Wootters formalism [approach (ii)] [45, 49–51]. However,
Kuchař’s criticism (a) that the Page-Wootters approach
yields incorrect localization probabilities in relativistic
settings has yet to be addressed. Since the Page-Wootters
formalism encounters challenges in relativistic settings, given
the equivalence of relational approaches implied by the
trinity, one might worry about relational observables and
deparametrizations too.

In this article, we show that these challenges can be overcome,
and a consistent interpretation of the relational dynamics can be
provided. To this end, we extend the trinity to quadratic clock
Hamiltonians, thus encompassing many relativistic settings; we
show that all the results of Höhn et al. [7] hold per frequency
sector associated to the clock due to a superselection rule induced
by the Hamiltonian constraint. Frequency-sector-wise, the
relational dynamics encoded in (i) relational observables, (ii) the
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Page-Wootters formalism, and (iii) quantum deparametrizations
are thus also fully equivalent.

The key to our construction, as in Höhn et al. [7], is the
use of a Positive-Operator Valued Measure (POVM) which
here transforms covariantly with respect to the quadratic clock
Hamiltonian [86–89] as a time observable. This contrasts with
the usual approach of employing an operator conjugate to the
clock momentum (i.e., the Minkowski time operator in the
case of a relativistic particle). This covariant clock POVM is
instrumental in our resolution of Kuchař’s criticism (a) that the
Page-Wootters formalism yields wrong localization probabilities
for relativistic systems. We show that when conditioning on
this covariant clock POVM rather than Minkowski time, one
obtains a Newton-Wigner type localization probability [90, 91].
While a Newton-Wigner type localization is approximate and not
fully Lorentz covariant, due to the relativistic localization no-
go theorems of Perez-Wilde [92] and Malament [93] (see also
[94, 95]), it is generally accepted as the best possible localization
in relativistic quantum mechanics (In quantum field theory
localization is a different matter [90, 94]). This demonstrates
the advantage of using covariant clock POVMs in relational
quantum dynamics [7, 44, 45, 96, 97]. The trinity also extends
the probabilistic interpretation of relational observables: a Dirac
observable describing the relation between a position operator
and the covariant clock POVM corresponds to a Newton-Wigner
type localization in relativistic settings.

Finally, we again use the equivalence between (i) and (iii)
to construct temporal frame changes in the quantum theory.
On account of superselection rules across frequency sectors,
temporal frame changes can only map information contained in
the overlap of two frequency sectors, one associated to each clock,
from one clock “perspective” to another.We apply these temporal
frame change maps to explore an indirect clock self-reference
and the temporal frame and state dependence of comparing and
synchronizing readings of different quantum clocks.

While completing this manuscript, we became aware
of Chataignier [38], which independently extends some results
of Höhn et al. [7] on the conditional probability interpretation
of relational observables and their equivalence with the Page-
Wootters formalism into a more general setting. However, a
different formalism [37] is used in Chataignier [38], which does
not employ covariant clock POVMs and therefore the two works
complement one another.

Throughout this article we work in units where h̄ = 1.

2. CLOCK-NEUTRAL FORMULATION OF
CLASSICAL AND QUANTUM MECHANICS

Colloquially, general covariance posits that the laws of physics
are the same in every reference frame. This is usually interpreted
as implying that physical laws should take the form of tensor
equations. Tensors can be viewed as reference-frame-neutral
objects: they define a description of physics prior to choosing
a reference frame. They thereby encode the physics as “seen”
by all reference frames at once. If one wants to know the
numbers which a measurement of the tensor in a particular

reference frame would yield, one must contract the tensor with
the vectors corresponding to that choice of frame. In this way,
the description of the same tensor looks different relative to
different frames, but the tensor per se, as a multilinear map, is
reference-frame-neutral. It is this reference-frame-neutrality of
tensors which results in the frame-independence of physical laws.

The notion of reference frame as a vector frame is usually
taken to define the orientation of a local laboratory of some
observer. In practice, one often implicitly identifies the local lab
(i.e., the reference system relative to which the remaining physics
is described) with the reference frame. This is an idealization
which ignores the lab’s back-reaction on spacetime, interaction
with other physical systems and possible internal dynamics,
while at the same time assuming it to be sufficiently classical
so that superpositions of orientations can be ignored. Such an
idealization is appropriate in general relativity where the aim
is to describe the large-scale structure of spacetime. However,
in quantum gravity, where the goal is to describe the micro-
structure of spacetime, this may no longer be appropriate [98].
More generally, we may ask about the fate of general covariance
when we take seriously the fact that physically meaningful
reference frames are in practice always associated with physical
systems, and as such are comprised of dynamical degrees of
freedom that may couple with other systems, undergo their own
dynamics and will ultimately be subject to the laws of quantum
theory. What are then the reference-frame-neutral structures?

In regard to this question, we note that the classical notion
of general covariance for reference frames associated to idealized
local labs is deeply intertwined with invariance under general
coordinate transformations, i.e., passive diffeomorphisms. In
moving toward non-idealized reference frames (or rather
systems), we shift focus from coordinate descriptions to
dynamical reference degrees of freedom, relative to which the
remaining physics will be described. In line with this, we shift
the focus from passive to active diffeomorphisms, which directly
act on the dynamical degrees of freedom. This is advantageous
for quantum gravity, where classical spacetime coordinates are a
priori absent. A quantum version of general covariance should be
formulated in terms of dynamical reference degrees of freedom
[7, 30, 31, 38, 70–74].

The active symmetries imply a redundancy in the description
of the physics. A priori all degrees of freedom stand on an equal
footing, giving rise to a freedom in choosing which of them shall
be treated as the redundant ones. The key idea is to identify
this choice with the choice of reference degrees of freedom, i.e.,
those relative to which the remaining degrees of freedom will be
described1. Accordingly, choosing a dynamical reference system
amounts to removing redundancy from the description. As
such, we may interpret the redundancy-containing description
(in both the classical and quantum theory) as a perspective-
neutral description of physics, i.e., as a global description of

1Indeed, we do not want to describe the reference degrees of freedom directly
relative to themselves in order to avoid the self-reference problem [99, 100].
Nevertheless, through the perspective-neutral structure it is possible to construct
indirect self-reference effects of quantum clocks through temporal frame changes,
see Höhn et al. [7] and section 7.3.
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physics prior to having chosen a reference system, from whose
perspective the remaining degrees of freedom are to be described
[7, 30, 31, 71, 72]. This perspective-neutral structure is thus
proposed as the reference-frame-neutral structure for dynamical
(i.e., non-idealized) reference systems.

In this article we focus purely on temporal diffeomorphisms
and thus on temporal reference frames/systems, or simply clocks.
In this case, we refer to the perspective-neutral structure as
a clock-(choice-)neutral structure [7, 30, 31], which we briefly
review here in both the classical and quantum theory. It is a
description of the physics, prior to having chosen a temporal
reference system relative to which the dynamics of the remaining
degrees of freedom are to be described.

2.1. Clock-Neutral Classical Theory
Consider a classical theory described by an action
S =

∫
R
du L(qa, dqa/du), where qa denotes a collection

of configuration variables indexed by a. Such a theory
exhibits temporal diffeomorphism invariance if the action
S is reparametrization invariant; that is, L(qa, dqa/du) 7→

L(qa, dqa/du′)du′/du transforms as a scalar density under
u 7→ u′(u). The Hamiltonian of such a theory is of the form
H = N(u)CH , where N(u) is an arbitrary lapse function and

CH =
∑

a

dqa

du
pa − L ≈ 0, (1)

the so-called Hamiltonian constraint, is a consequence of the
temporal diffeomorphism symmetry. This equation defines the
constraint surface C inside the kinematical phase space Pkin,
which is parametrized by the canonical coordinates qa, pb. The
≈ denotes a weak equality, i.e., one which only holds on C

[101, 102].
The Hamiltonian generates a dynamical flow on C, which

transforms an arbitrary phase space function f according to

df

du
:= {f ,CH} (2)

and integrates to a finite transformation αuCH
· f , where for

simplicity the lapse function has been chosen to be unity,
N(u) = 1. Owing to the reparametrization invariance, this flow
should be interpreted as a gauge transformation rather than true
evolution [4, 11], and thus for an observable F to be physical, it
must be invariant under such a transformation, i.e.,

{F,CH} ≈ 0. (3)

Observables satisfying Equation (3) are known as (weak)
Dirac observables.

In order to obtain a gauge-invariant dynamics, we have
to choose a dynamical temporal reference system, i.e., a
clock function T(qa, pa), to parametrize the dynamical flow,
Equation (2), generated by the constraint. We can then describe
the evolution of the remaining degrees of freedom relative to
T(qa, pa). This gives rise to so-called relational Dirac observables
(a.k.a. evolving constants of motion) which encode the answer
to the question “what is the value of the function f along the flow

generated byCH on C when the clockT reads τ ?” [4, 7, 11–19, 19–
24, 26, 30, 31]. We will denote such an observable by Ff ,T(τ ). As
shown in Dittrich [21, 22] and Dittrich and Tambornino [23, 24],
these observables can be constructed by solving αuCH

· T = τ for
u yielding the solution u = uT(τ ) and defining

Ff ,T(τ ) := αuCH
· f
∣
∣
∣
u=uT (τ )

≈

∞∑

n=0

(τ − T)n

n!

{

f ,
CH

{T,CH}

}

n

, (4)

where {f , g}n := {{f , g}n−1, g} is the nth-nested Poisson bracket
subject to {f , g}0 := f . The Ff ,T(τ ) satisfy Equation (3) and thus
constitute a family of Dirac observables parametrized by τ . Such
relational observables are so-called gauge-invariant extensions of
gauge-fixed quantities [7, 21–24, 37, 102].

In generic models there is no preferred choice for the clock
function T among the degrees of freedom on Pkin, which is
sometimes referred to as the multiple choice problem [1, 2].
Different choices of T will lead to different relational Dirac
observables, as can be seen in Equation (4). All these different
choices are encoded in the constraint surface C and stand a priori
on an equal footing.

This gives rise to the interpretation of C as a clock-neutral
structure. The temporal diffeomorphism symmetry leads to a
redundancy in the description of C: thanks to the Hamiltonian
constraint the kinematical canonical degrees of freedom are
not independent and due to its gauge flow there will only
be dimPkin − 2 independent physical phase space degrees of
freedom. In particular, relative to any choice of clock function
T one can construct dimPkin − 2 independent relational Dirac
observables using Equation (4) [101, 102]. Hence, the relational
Dirac observables relative to any other clock choice T′ can
be constructed from them. Consequently, there is redundancy
among the relational Dirac observables relative to different
clock choices. Thus C yields a description of the physics prior
to choosing and fixing a clock relative to which the gauge-
invariant dynamics of the remaining degrees of freedom can be
described. Specifically, no choice has beenmade as to which of the
kinematical and physical degrees of freedom are to be considered
as redundant. In analogy to the tensor case, C still contains the
information about all clock choices and their associated relational
dynamics at once; it yields a clock-neutral description.

Being of odd dimension dimPkin − 1, C is also not a phase
space. A proper phase space description can be obtained, e.g.,
through phase space reduction by gauge-fixing [7, 30, 31, 38, 58].
Given a choice of clock function T, we may consider the gauge-
fixing condition T = const, which may be valid only locally on
C. Since Ff ,T(τ ) is constant along each orbit generated by CH

for each value of τ , we do not lose any information about the
relational dynamics by restricting to T = const and leaving τ
free. By restricting to the relational observables Ff ,T(τ ) relative to
clock T and by solving the two conditions T = const, CH = 0,
we remove the redundancy from among both the kinematical
and physical degrees of freedom. The surviving reduced phase
space description, which no longer contains the clock degrees
of freedom as dynamical variables, can be interpreted as the
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description of the dynamics relative to the temporal reference
system defined by the clock function T. But now we keep track
of time evolution not in terms of the dynamical T, but in terms of
the parameter τ representing its “clock readings.” In particular,
the temporal reference system is not described relative to itself,
e.g., one finds the tautology FT,T(τ ) ≈ τ . Accordingly, choosing
the “perspective” of a clock means choosing the corresponding
clock degrees of freedom as the redundant ones and removing
them. The theory is then deparametrized: it no longer contains
a gauge-parameter u, nor a constraint, nor dynamical clock
variables—only true evolving degrees of freedom.

2.2. Clock-Neutral Quantum Theory
Following the Dirac prescription for quantizing constrained
systems [10, 11, 101, 102], one first promotes the canonical
coordinates of Pkin to canonical position and momentum
operators q̂a and p̂a acting on a kinematical Hilbert space Hkin.
The Hamiltonian constraint in Equation (1) is then imposed
by demanding that physical states of the quantum theory are
annihilated by the quantization of the constraint function

ĈH |ψphys〉 = 0. (5)

Solutions to this Wheeler-DeWitt-like equation may be
constructed from kinematical states |ψkin〉 ∈ Hkin via a group
averaging operation [11, 103–107]2

|ψphys〉 = δ(ĈH) |ψkin〉 =
1

2π

∫

G
du e−iĈHu |ψkin〉 , (6)

where G is the group generated by ĈH . Physical states are
not normalizable in Hkin if they are improper eigenstates of
ĈH (i.e., if zero lies in the continuous part of its spectrum).
However, they are normalized with respect to the so-called
physical inner product

〈ψphys|φphys〉phys
:= 〈ψkin|δ(ĈH)|φkin〉kin (7)

where 〈·|·〉kin is the kinematical inner product and |ψkin〉, |φkin〉 ∈
Hkin reside in the equivalence class of states mapped to the
same |ψphys〉 , |φphys〉 under the projection in Equation (6).
Equipped with this inner product, the space of solutions to the
Wheeler-DeWitt equation in Equation (5) can usually be Cauchy
completed to form the so-called physical Hilbert space Hphys
[11, 103–107].

A gauge-invariant (i.e., physical) observable F̂ acting onHphys
must satisfy the quantization of Equation (2)

[
ĈH , F̂

]
|ψphys〉 = 0. (8)

Such an observable F̂ is a quantum Dirac observable.
Clearly, exp(−i u ĈH) |ψphys〉 = |ψphys〉, i.e., physical states

do not evolve under the dynamical flow generated by the

2In contrast to [11, 103–107] and for notational simplicity, we refrain from using
the more rigorous formulation in terms of Gel’fand triples and algebraic duals of
(dense subsets of) Hilbert spaces. However, the remainder of this article could be
put into such a more precise formulation.

Hamiltonian constraint. This is the basis of the so-called
problem of time in quantum gravity [1–3], and of statements
that a quantum theory defined by a Hamiltonian constraint
is timeless. However, such a theory is only “background-
timeless,” i.e., physical states do not evolve with respect to
the “external” gauge parameter u parametrizing the group
generated by the Hamiltonian constraint. Instead, it is more
appropriate to regard the quantum theory on Hphys as a
clock-neutral quantum theory: it is a global description of
the physics prior to choosing an internal clock relative to
which to describe the dynamics of the remaining degrees of
freedom (as argued in [7, 30, 31]). Just as in the classical case,
there will in general be many possible clock choices and the
“quantum constraint surface” Hphys contains the information
about all these choices at once; it is thus by no means
“internally timeless.”

The goal is to suitably quantize the relational Dirac
observables in Equation (4), promoting them to families of
operators F̂f ,T(τ ) on Hphys. This involves a quantization of
the temporal reference system T and it is clear that in the
quantum theory different choices of T will also lead to different
quantum relational Dirac observables. This will give rise to
a multitude of gauge-invariant, relational quantum dynamics,
each expressed with respect to the evolution parameter τ ,
which corresponds to the readings of the chosen quantum
clock (and is thus not a gauge parameter). The quantization
of relational observables is non-trivial, especially because
Equation (4) may not be globally defined on C, and depends
very much on the properties of the chosen clock. Steps toward
systematically quantizing relational Dirac observables have been
undertaken (e.g., in [7, 17, 20, 37, 38]) and part of this
article is devoted to further developing them for a class of
relativistic models.

In analogy to the classical case, the clock-neutral description
on the “quantum constraint surface” Hphys is redundant: since
the constraint is satisfied, not all the degrees of freedom
are independent. In particular, the sets of quantum relational
Dirac observables relative to different clock choices—and thus
different relational quantum dynamics—will be interdependent.
The proposal is once more to associate the choice of clock with
the choice of redundant degrees of freedom; moving to the
“perspective” of a given clock means considering the quantum
relational observables relative to it as the independent ones,
and removing the (now redundant) dynamical clock degrees of
freedom altogether. This works through a quantum symmetry
reduction procedure, i.e., the quantum analog of phase space
reduction, which is tantamount to a quantum deparametrization
and has been developed in Höhn and Vanrietvelde [30], Höhn
[31], and Höhn et al. [7] and will be further developed in
section 5. In particular, this procedure is at the heart of changing
from a description relative to one quantum clock to one relative
to another clock, which we elaborate on in section 7. As such,
quantum symmetry reduction is the key element of a proposal
for exploring a quantum version of general covariance [7, 30,
31, 47, 70–72] and thereby also addressing the multiple choice
problem in quantum gravity and cosmology [1, 2] (see also
[28, 32–34, 64, 65, 69, 77, 108]).
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3. QUADRATIC CLOCK HAMILTONIANS

Building upon the clock-neutral discussion, we now assume that
the kinematical degrees of freedom described by Pkin and Hkin
split into a clock C and an “evolving” system S, which do not
interact. This will permit us to choose a temporal reference
system in the next section, and thence define a relational
dynamics in both the classical and quantum theories.

3.1. Classical Theory
Suppose the classical theory describes a clock C associated with
the phase space PC ≃ T∗

R ≃ R
2, and some system of interest

S associated with a phase space PS, so that the kinematical
phase space decomposes as Pkin := PC × PS. We assume
PC to be parametrized by the canonical pair (t, pt), but will
not need to be specific about the structure of PS (other than
assuming it to be a finite dimensional symplectic manifold).
Further suppose that the clock and system are not coupled,
leading to a Hamiltonian constraint function that is a sum of their
respective Hamiltonians3

CH = HC +HS ≈ 0, (9)

where HC is a function on PC and HS is a function on PS.
This article concerns clock Hamiltonians that are quadratic in

the clock momentum, HC = s p2t /2, where s ∈ {−1,+1}, so that
the Hamiltonian constraint becomes

CH = s
p2t
2

+HS ≈ 0. (10)

This class of clock Hamiltonians appears in a wide number of
(special and general) relativistic and non-relativistic models—see
Table 1 for examples. They are doubly degenerate; every value of
HC has two solutions in terms of pt , except on the line defined by
pt = 0. Note that pt is a Dirac observable.

The constraint in Equation (10) can be factored into two
constraints, each linear in pt [30, 31, 33]:

CH = s C+ · C− , for Cσ :=
pt
√
2
+ σ

√
−s HS , (11)

where we have introduced the degeneracy label σ = ±1. Note
that Equation (10) forces s HS to take non-positive values on C.
In the s = −1 case, σ = +1 and σ = −1 define the positive and
negative frequency modes in the quantum theory, respectively.
For simplicity, we shall henceforth use this terminology for both
s = ±14. It follows that we can decompose the constraint surface
into a positive and a negative frequency sector [30, 31]

C = C+ ∪ C− , (12)

where Cσ is the set of solutions to Cσ = 0 in Pkin. The
intersection C+ ∩ C− is defined by pt = HS = 0 (see Figure 1
for an illustration).

3The assumption that clock and system do not interact does not hold in generic
general relativistic systems. However, it is satisfied in some commonly used
examples (see [7] for a discussion and Table 1 for some examples).
4Hence, positive and negative frequency modes are defined by pt < 0 and pt > 0,
respectively, which follows from setting Cσ = 0.

TABLE 1 | Examples of constraints of the form in Equation (10).

Non-relativistic particle and arbitrary system

CH =
p2

2m + HS

Relativistic particle in inertial coordinates

CH = −p2t + p2 +m2

Homogeneous isotropic cosmology with massless scalar field

CH = p2φ − p2α − 4k exp(4α)

Homogeneous cosmology (vacuum Bianchi models)

CH = − 1
2 p̄

2
0 + k0 exp(2

√
2β̄0)+ 1

2p
2
+ + k+ exp(−4

√
3β̄+ ) + k−

2 p
2
−

Some examples of constraints of the form of Equation (10), i.e., with clock Hamiltonians

quadratic in an appropriate canonical momentum. The last three (relativistic) examples

each contain both cases s = ±1, depending on which degree of freedom is used to

define the clock C. In the example of the Friedman-Lemaître-Robertson-Walker model

with homogeneous massless scalar field we have used α := ln a, where a is the scale

factor, and k is the spatial curvature constant [109–115] (here a choice of lapse function

N = e3α has beenmade and included in the definition of CH ). The shape of the Hamiltonian

constraint for vacuum Bianchi models can be found (e.g., in [116]), and holds for types I,

II, III, VIII, IX, and the Kantowski-Sachs models. Here β̄0, β̄+, β̄− are linear combinations

of the Misner anisotropy parameters and k0, k+, k− are constants, each of which may be

zero, depending on the model.

FIGURE 1 | Depicted are the surfaces C+ (red) and C− (green) defined by

C+ = 0 and C− = 0, respectively. The union of these surfaces is the constraint

surface C = C+ ∪ C− ⊂ Pkin, while their intersection C+ ∩ C− is characterized

by pt = HS = 0, and is depicted by the thick black line. We have assumed that

HS is not degenerate (see Figure 1 of [31] for a similar depiction when HS is

doubly degenerate).

3.2. Quantum Theory
The Dirac quantization of the kinematical phase space Pkin =

PC ×PS leads to the kinematical Hilbert spaceHkin ≃ HC ⊗HS

describing the clock and system, where HC ≃ L2(R) and HS

is the Hilbert space associated with S. We assume the system
Hamiltonian to be promoted to a self-adjoint operator ĤS onHS.
An element of Hkin may be expanded in the eigenstates of the
clock and system Hamiltonians as

|ψkin〉 =

∫
∑

E

∫

R

dpt ψkin(pt ,E) |pt〉C |E〉S ,
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where the integral-sum highlights that ĤS may either have a
continuous or discrete spectrum5.

Physical states of the theory satisfy Equation (5), which for the
Hamiltonian constraint in Equation (10) becomes

ĈH |ψphys〉 =

(

s
p̂2t
2

⊗ IS + IC ⊗ ĤS

)

|ψphys〉 = 0. (13)

We assume here that this constraint has zero-eigenvalues, i.e.,
that solutions to Equation (13) exist. Note that this requires the
spectrum of s ĤS to contain non-positive eigenvalues, in analogy
with the classical case.

Quantizing Cσ in Equation (11) yields [Ĉ+, Ĉ−] = 0, so that
the group averaging projector in Equation (6) can be expressed
as

δ(ĈH) = δ(s Ĉ+ Ĉ−) =
1

2(− s ĤS)
1
2

∑

σ

δ(Ĉσ ). (14)

The form of δ(ĈH) implies the decomposition of the physical
Hilbert space into a direct sum of positive and negative frequency
sectors Hphys ≃ H+ ⊕ H− (see also [31, 104]). Acting with the

projector δ(ĈH) on an arbitrary kinematical state yields a physical
state

|ψphys〉 = δ(ĈH) |ψkin〉

=
∑

σ

∫
∑

E∈σSC

ψσ (E)

(2|E|)1/4
|pt,σ (E) 〉C |E〉S , (15)

whereψσ (E) are Newton-Wigner-type wave functions associated
to the positive and negative frequency modes [90]6:

ψσ (E) :=
ψkin

(
pt,σ (E),E

)

(2|E|)1/4
, (16)

and we have defined the function pt,σ (E) := −σ
√
2|E| and

spectrum

σSC := Spec(ĤS) ∩ Spec(−ĤC)

=
{
E ∈ Spec(ĤS)

∣
∣ s E ≤ 0

}
. (17)

5The way we have written physical states implicitly assumes the non-positive part
of the spectrum of s ĤS to be non-degenerate. Were this not the case, additional
degeneracy labels would be necessary. However, this would not otherwise affect
the subsequent analysis. See Höhn [31] for an explicit construction of the flat
FLRW model with a massless scalar field, whose Hamiltonian constraint can also
be interpreted as a free relativistic particle, and thus features a 2-fold system
energy degeneracy.
6The fourth root comes about because the Newton-Wigner wave function is
usually defined for Klein-Gordon systems where what we call E is in fact the
square of the energy ωp :=

√
Ep2 +m2. Note also that for the Klein-Gordon case

one has a doubly degenerate system energy, which we are not considering here.
In that case, it is more convenient to use a momentum, rather than an energy
representation of physical states, and a distinct measure. Equation (16) can then
indeed be interpreted as the usual Newton-Wigner wave function, written in terms
of kinematical states. This will be discussed in more detail in section 6 (see also
[31]).

Physical states are normalized with respect to the physical inner
product introduced in Equation (7)

〈ψphys|φphys〉phys
:= 〈ψkin|δ(ĈH)|φkin〉kin (18)

=
∑

σ

∫
∑

E∈σSC

ψ∗
σ (E)φσ (E),

which takes the usual form of non-relativistic quantum
mechanics (σ -sector-wise), in line with the properties of Newton-
Wigner-type wave functions. This observation will be crucial
when discussing relativistic localization in section 6.

4. COVARIANT CLOCKS

4.1. Relational Dynamics With a Classical
Covariant Clock
Exploiting the splitting of the degrees of freedom into clock C
(our temporal reference system) and evolving system S, we now
choose a clock function T on PC relative to which we describe the
evolution of S in terms of relational observables, as discussed in
section 2.1.

We could simply choose the phase space coordinate T = t
as the clock function. It follows from Equation (2) that in the
s = −1 case t runs “forward” on the positive frequency sector
C+ and “backward” on the negative frequency sector C− along
the flow generated by CH ; for s = +1 the converse holds. Note
that every point in C+ ∩ C− corresponds to a static orbit of t
(since pt = 0 there), and t is therefore a maximally bad clock
function on C+ ∩ C−. This leads to challenges in describing
relational dynamics relative to t: inverse powers of pt appear in
the construction of relational observables encoding the evolution
of system degrees of freedom relative to t when canonical pairs
on PS are used [18, 23, 30, 31]7. One can solve this problem
and obtain a well-defined relational dynamics by using affine
(rather than canonical) pairs of evolving phase space coordinates
on PS in the construction of relational observables [31], or in
the quantum theory by carefully regularizing inverse powers of
pt [30].

However, in this article we shall sidestep these challenges and
provide an arguably more elegant solution. We choose a different
clock function according to the classical covariance condition:
that it be canonically conjugate to HC. This has the consequence
of incorporating the pathology at pt = 0 into the clock
function (which will nevertheless be meaningfully quantized in
section 4.2), and leads to relational observables which work
independently of the choice of phase space coordinates on PS.
Solving {T,HC} = 1, we find that a covariant clock function T
must be of the form T = s t/pt+g(pt) , where g(pt) is an arbitrary
function. Henceforth, we choose g(pt) = 0 for simplicity, so that
we have

T = s
t

pt
. (19)

7These challenges are related to those facing the definition of time-of-arrival
operators in quantum mechanics [18, 23, 30, 117–119].
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This clock function is well-defined everywhere, except on the
line pt = 0, where HC is non-degenerate. It is clear that T runs
“forward” everywhere on C for both s = ±1, except on C+ ∩ C−.

The covariance condition, combined with our assumption
that the clock does not interact with the system, implies that
{T,CH} = 1, which simplifies the form of the relational
Dirac observables in Equation (4). For example, the relational
observable corresponding to the question “what is the value of
the system observable fS when the clock T reads τ ?” now takes
the simple form [7, 21]

FfS ,T(τ ) ≈
∞∑

n=0

(τ − T)n

n!
{fS,HS}n. (20)

4.2. Covariant Quantum Time Observable
for Quadratic Hamiltonians
One might try to construct a time operator in the quantum
theory by directly quantizing the covariant clock function in
Equation (19) on the clock Hilbert space HC ≃ L2(R) [86, 120,
121]. Choosing a symmetric ordering, this yields

T̂ = s
1

2

(
t̂ p̂−1

t + p̂−1
t t̂

)
. (21)

Here, p̂−1
t is defined in terms of a spectral decomposition such

that T̂ |pt = 0〉 is undefined, analogous to the classical case.While
the operator T̂ is canonically conjugate to the clock Hamiltonian,
[T̂, ĤC] = i, it is a symmetric operator that does not admit a self-
adjoint extension [86, 88]. Since T̂ is not self-adjoint, its status
as an observable seems a priori unclear8. This is a manifestation
of Pauli’s objection against the construction of time observables
in quantum mechanics: For ĤC bounded below, there does
not exist a self-adjoint operator satisfying [T̂, ĤC] = i. Pauli’s
conclusion was that we are forced to treat time as a classical
parameter, different to the way other observables (e.g., position
and momentum) are treated [122].

However, it was later realized that by appealing to the
more general notion of an observable offered by a POVM, a
covariant time observable9 ET can be constructed whose first
moment corresponds to the operator T̂ [86, 87, 89]. Such a
time observable is defined by a set of effect operator densities
ET(dt) ≥ 0 normalized as

∫
R
ET(dt) = IC, and self-adjoint effect

operators ET(X) :=
∫
X ET(dt) associated with the probability

8Using the commutation relation [t̂, p̂−1
t ] = −ip̂−2

t , which follows from
multiplying [t̂, p̂t] = i from both sides with p̂−1

t , we can also write this operator
as

T̂ = s p̂−1
t

(

t̂ −
i

2
p̂−1
t

)

(22)

We note in passing that the operator t̂ − i
2 p̂

−1
t is precisely the “complex time

operator” derived in Bojowald et al. [32] (see also [33, 34, 77]) when constructing a
relational Schrödinger picture for Wheeler-DeWitt type equations for constraints
of the form Equation (13).
9We emphasize that the covariant time observable is a kinematical observable on
Hkin and not a gauge-invariant Dirac observable on Hphys, as by construction
its moments will not commute with the constraint. In particular, it is a partial

observable in the sense of [123].

〈ψC|ET(X)|ψC〉 that a measurement of ET yields an outcome
t ∈ X ⊂ R given that the clock was in the state |ψC〉 ∈ HC. In
order to be a good time observable, it should satisfy the so-called
covariance condition

ET(X + t) = UC(t)ET(X)U
†
C(t), (23)

relative to the unitary group action UC(t) := e−iĤCt generated
by the clock Hamiltonian. As we shall see shortly, this will
give rise to a generalization of canonical conjugacy of the
time observable and the clock Hamiltonian, and permit us to
extend the approach to relational quantum dynamics based on
covariant clock POVMs [7] to relativistic models. In particular,
we obtain a valid quantum time observable despite the classical
clock pathologies.

In the present case, such an observable can be constructed
purely from the self-adjoint quantization of the clock
Hamiltonian ĤC and its eigenstates. The effect densities
can be defined as a sum of “projections”

ET(dt) =
1

2π

∑

σ

dt |t, σ 〉〈t, σ | (24)

onto the clock states corresponding to the clock reading t∈ R in
the negative and positive frequency (i.e., positive and negative
clock momentum) sector10

|t, σ 〉 :=

∫

R

dpt
√
|pt| θ(−σ pt) e

−i t s p2t /2 |pt〉 . (25)

The covariance condition in Equation (23) is ensured by the fact
that the clock states transform as

|t + t′, σ 〉 = UC(t) |t
′, σ 〉 . (26)

Note that the clock states are orthogonal to the pathological state
|pt = 0〉, so that the covariant time observable does not have
support on it. The clock states are furthermore not mutually
orthogonal:

〈t′, σ ′|t, σ 〉 = δσσ ′

[

πδ
(
t − t′

)
− iP

1

t − t′

]

, (27)

where P denotes the Cauchy principal value. Hence ET(dt) is not
a true projector. Nevertheless, the following lemma demonstrates
that the clock states |t, σ 〉 form an over-complete basis for the
σ -frequency sector of HC, and in turn a properly normalized
covariant time observable ET onHkin.

10Compared to Braunstein et al. [89], we use a different definition of the
degeneracy label σ (here adapted to positive and negative frequency modes),
change the normalization slightly, fix the relative phase, keep the momentum
eigenstates as energy eigenstates and introduce s. For notational simplicity, we
also set an arbitrary function in Braunstein et al. [89] (accounting for a freedom
in choosing the clock states) to zero. This is the quantum analog of the classical
choice we made above, where we also set g(pt) in T = t/pt + g(pt) to zero (see also
Supplementary Material of [7]). It would, however, be straightforward to reinsert
this g(pt) in each of the following expressions.
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Lemma 1. The clock states |t, σ 〉 defined in Equation (25) integrate
to projectors θ(−σ p̂t) onto the positive/negative frequency sector
onHC

1

2π

∫

R

dt |t, σ 〉〈t, σ | = θ(−σ p̂t) (28)

and hence form a resolution of the identity as follows:

∫

R

E(dt) =
1

2π

∑

σ

∫

R

dt |t, σ 〉〈t, σ | = IC . (29)

Proof: The proof is given in Supplementary Material.

The nth-moment operator of the time observable ET is defined
as

T̂(n)
:=

∫

R

ET(dt) t
n =

1

2π

∑

σ

∫

R

dt tn |t, σ 〉〈t, σ | . (30)

While the effect operators of the clock POVM are self-adjoint, the
moment operators for n ≥ 1 are not due to the non-orthogonality
in Equation (27). Nevertheless, the latter are viable quantum
observables with a valid probability interpretation in terms of the
POVM; the only price to pay is that the different measurement
outcomes t are not perfectly distinguishable.

With this definition, we find that the first-moment operator
T̂(1) of ET is in fact equal to the operator T̂ in Equation (21).
This was previously noticed in Holevo [86] and Busch et al. [88]
(for the s = +1 case). This provides a concrete interpretation
of the time observable ET in terms of the classical theory—
the time operator T̂(1), namely the first moment of the time
observable ET , is the quantization of the classical clock function
T in Equation (19).

Lemma 2. The operator T̂ and the first moment operator T̂(1) of

the covariant time observable ET are equal, T̂ ≡ T̂(1).

Proof: The proof is given in Supplementary Material.

Equation (30) demonstrates that the time operator T̂
automatically splits into a positive and negative frequency part,
in contrast to t̂, the quantization of the phase space coordinate t.

Next, we find that while the clock states are not orthogonal,
they are “almost” eigenstates of the covariant time operator T̂ on
each σ -sector:

Lemma 3. The clock states |t, σ 〉 defined in Equation (25) are not
eigenstates of T̂ = T̂(1). However, for all |ψ〉 ∈ D(T̂), where D(T̂)
is the domain of T̂, they satisfy:

〈ψ | T̂ |t, σ 〉 = t 〈ψ |t, σ 〉 , ∀ t ∈ R , σ = ±1 .

Proof: The proof is given in Supplementary Material.

This leads to a another result, which underscores why the
covariance condition Equation (23) can be regarded as yielding
a generalization of canonical conjugacy:

Lemma 4. The nth-moment operator defined in Equation (30)

satisfies [T̂(n), ĤC] = i n T̂(n−1). Furthermore, ∀ |ψ〉 ∈ D(T̂n) we
have T̂(n) |ψ〉 = T̂n |ψ〉.

Proof: The proof is given in Supplementary Material.

We emphasize that the second statement of Lemma 4 does not
hold on all ofHC.

The effect density does not commute with the clock
Hamiltonian, [ET(dt), ĤC] 6= 0, which implies the time
indicated by the clock (i.e., a measurement outcome of ET)
and the clock energy cannot be determined simultaneously.
However, importantly, the following lemma shows that the clock
reading and the frequency sector, i.e., the value of σ can be
simultaneously determined.

Lemma 5. The effect density ET(dt) of the covariant clock
POVM and the projectors onto the σ -sectors commute:
[ET(dt), θ(−σ p̂t)] = 0.

Proof: The proof is given in Supplementary Material.

Corollary 1. Since the effect density integrates to the effect
and moment operators, this entails that [ET(X), θ(−σ p̂t)] =

[T̂(n), θ(−σ p̂t)] = 0, for all X ⊂ R and n ∈ N.

The significance of this lemma and corollary is that they
permit us to condition on the time indicated by the clock
and the frequency sector simultaneously. This will become
crucial when defining the quantum reduction maps below
that take us from the physical Hilbert space to the relational
Schrödinger and Heisenberg pictures which exist for each σ -
sector. This lemma is thus an important for extending the
quantum reduction procedures of Höhn et al. [7] to the class of
models considered here.

5. THE TRINITY OF RELATIONAL
QUANTUM DYNAMICS: QUADRATIC
CLOCK HAMILTONIANS

Having introduced the clock-neutral structure of the classical
and quantum theories in section 2, a natural partitioning of the
kinematical degrees of freedom into a clock C and system S in
section 3, and a covariant time observable ET in section 4, we are
now able to construct a relational quantum dynamics, describing
how S evolves relative to C.

As noted in the introduction, we showed in Höhn et al.
[7] that three formulations of relational quantum dynamics,
namely (i) quantum relational Dirac observables, (ii) the
relational Schrödinger picture of the Page-Wootters formalism,
and (iii) the relational Heisenberg picture obtained through
quantum deparametrization, are equivalent for models described
by the Hamiltonian constraint in Equation (9) when the
clock Hamiltonian has a continuous, non-degenerate spectrum;
the three formulations form a trinity of relational quantum
dynamics. Here we demonstrate that this equivalence extends to
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TABLE 2 | Summary of different Hilbert spaces.

Clock C and system S Hilbert spaces

HC and HS

Kinematical Hilbert space

Hkin ≃ HC ⊗HS

Physical Hilbert space

Hphys ≃ δ(ĈH )(Hkin) = H+ ⊕H−

Physical system Hilbert space

H
phys
S

= 5σSC (HS) ⊆ HS

The various Hilbert spaces appearing in the construction of the trinity. The physical system

Hilbert space is the subspace of HS spanned by the energy eigenstates permitted upon

solving the constraint. The σ -sector Hσ of Hphys is also defined through solutions to the

constraint Ĉσ . Finally,5σSC = θ (−s ĤS ) is a projector onto the system subspace permitted

upon solving the constraint in Equation (13).

constraints of the form in Equation (13), involving the doubly
degenerate clock Hamiltonian11.

Thanks to the direct sum structure of the physical Hilbert
space Hphys = H+ ⊕H− and the separation of the clock
moment operators (Equation 30), into non-degenerate positive
and negative frequency sectors, all the technical results needed
for establishing the equivalence in Höhn et al. [7] will hold per σ -
sector for the present class of models. We will thus state some
of the following results without proofs, referring the reader as
approriate to the proofs of the corresponding results in Höhn
et al. [7], which apply here per σ -sector. In particular, Corollary 1
implies that we are permitted to simultaneously condition on the
clock reading and the frequency sector.

Lastly, we also provide a discussion of the relational quantum
dynamics obtained through reduced phase space quantization.
In this case, one deparametrizes the model classically relative
to the clock function T, which amounts to a classical symmetry
reduction. While the relational quantum dynamics thus obtained
yields a relational Heisenberg picture resembling dynamics (iii)
of the trinity, it is not always equivalent and thus not necessarily
part of the trinity. For this reason, we have moved the exposition
of reduced phase space quantization to Supplementary Material.
It is however useful for understanding why the quantum
symmetry reduction explained below is the quantum analog
of classical phase space reduction through deparametrization.
We emphasize that symmetry reduction and quantization do
not commute in general [7, 124–129]. A related discussion for
relativistic constraints can also be found in Kaminski et al. [29].

To aid the reader, we summarize the various Hilbert spaces
appearing in the construction of the trinity in Table 2.

11We also refer the reader to the recent work [38], which we became aware of
while completing this manuscript. It extends some of the results of Höhn et al. [7]
as well, though using the different formalism developed in Chataignier [37]. It also
does not employ covariant clocks in the case of quadratic clock Hamiltonians.

5.1. The Three Faces of the Trinity
5.1.1. Dynamics (i): Quantum Relational Dirac

Observables
We now quantize the relational Dirac observables in
Equation (20), substantiating the discussion of relational
quantum dynamics in the clock-neutral picture in section 2.2
for Hamiltonian constraints of the form Equation (13).
Quantization of relational Dirac observables has been studied
when the quantization of the classical time function T results in a
self-adjoint time operator T̂ (see [4, 7, 11–20, 27–31, 35–38, 116]
and references therein); however, when T̂ fails to be self-adjoint,
such as in Equation (21), a more general quantization procedure
is needed.

Such a procedure was introduced in Höhn et al. [7] based
upon the quantization of Equation (20) using covariant time
observables. Applying this procedure to the present class of
models described by quadratic clock Hamiltonians, we quantize
the relational Dirac observables in Equation (20) using the nth-
moment operators defined in Equation (30):

F̂fS ,T(τ ) :=

∫

R

ET(dt)⊗
∞∑

n=0

in

n!
(t − τ )n

[
f̂S, ĤS

]
n

=
∑

σ

∫

R

dt

2π
UCS(t)

(
|τ , σ 〉〈τ , σ | ⊗ f̂S

)
U†
CS(t)

=:

∑

σ

G

(
|τ , σ 〉〈τ , σ | ⊗ f̂S

)
, (31)

where [f̂S, ĤS]n := [[f̂S, ĤS]n−1, ĤS] is the nth-order nested

commutator with the convention [f̂S, ĤS]0 := f̂S, UCS(t) :=

exp(−i t ĈH), and the second line follows upon a change of
integration variable and invoking the covariance condition in
Equation (26). The relational Dirac observable F̂fS ,T(τ ) is thus
revealed to be an incoherent average over the one-parameter
non-compact gauge groupG generated by the constraint operator

ĈH of the kinematical operator |τ , σ 〉〈τ , σ | ⊗ f̂S, which is the

system observable of interest f̂S paired with the projector onto
the clock reading τ and the σ -frequency sector. Such a group
averaging is known as the G-twirl operation and we denote it
G as in the last line of Equation (31). G-twirl operations have
previously been mostly studied in the context of spatial quantum
reference frames, e.g., see [130–132], but have also appeared in
some constructions of quantum Dirac observables (e.g., see [7,
11, 37, 38, 106])12. As discussed in Höhn et al. [7], this G-twirl
constitutes the quantum analog of a gauge-invariant extension of
a gauge-fixed quantity.

12The recent [37, 38] also develop a systematic quantization procedure for
relational Dirac observables, based on integral techniques rather than the sum
techniques used here and in Höhn et al. [7], and which too yields an expression
similar to the one in the second line of Equation (31). While the construction
procedure in Chataignier [37, 38] encompasses a more general class of models
(but implicitly assumes globally monotonic clocks too), it uses a more restrictive
choice of clock observables which, in contrast to the covariant clock POVMs
here and in Höhn et al. [7], are required to be self-adjoint. However, the two
quantization procedures of relational observables are compatible and it will be
fruitful to combine them.
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The relational Dirac observables F̂fS ,T(τ ) in Equation (31)
constitute a one-parameter family of strong Dirac observables
on Hphys (Theorem 1 of [7] whose proof applies here in each
σ -sector):

[F̂fS ,T(τ ), ĈH] = 0, ∀ τ ∈ R . (32)

We thus obtain a gauge-invariant relational quantum dynamics
by letting the evolution parameter τ in the physical expectation
values 〈ψphys|F̂fS ,T(τ ) |ψphys〉phys run.

The decomposition of F̂fS ,T(τ ) in Equation (31) into positive
and negative frequency sectors gives rise to a reducible
representation of the Dirac observable algebra on the physical
Hilbert space. More precisely, relational Dirac observables are
superselected across the σ -frequency sectors, and the σ -sum in
Equation (31) should thus be understood as a direct sum. To
see this, consider the operator Q̂ := θ(−p̂t) − θ(p̂t), where we
recall that θ(−σ p̂t) is a projector onto the corresponding σ -
sector. By construction [Q̂, ĈH] = 0, which means that Q̂ is
a strong Dirac observable. Its eigenspaces, with eigenvalues +1
and−1, correspond to the positive and negative frequency sector
subspaces H+ and H−. Furthermore, Q̂ commutes with any
relational Dirac observable FfS ,T(τ ) in Equation (31) on account
of Lemma 5, which implies that Q and any self-adjoint FfS ,T(τ )
can be diagonalized in the same eigenbasis. This in turn implies
the following superselection rule

F̂fS ,T(τ ) = F̂+
fS ,T

(τ )⊕ F̂−
fS ,T

(τ ), (33)

where F̂σ
fS ,T

(τ ) := G
(
|τ , σ 〉〈τ , σ | ⊗ f̂S) ∈ L(Hσ

)
13.

While there do exist states in the physical Hilbert space
that exhibit coherence across the σ -frequency sectors, for
example |ψphys〉 ∼ |ψ+〉 + |ψ−〉, where |ψσ 〉 ∈ Hσ , such
coherence is not physically accessible because it does not affect
the expectation value of any relational Dirac observable on
account of the decomposition in Equation (33). In other words,
superpositions and classical mixtures across the σ -frequency
sectors are indistinguishable. Hence, superpositions of physical
states across σ -sectors are mixed states and the pure physical
states are those of either H+ or H− (see also [103, 105] for a
discussion on superselection in group averaging).

13In particular, when the spectrum of ĤS does not contain zero, the G-twirl G can
on each σ -sector be weakly rewritten as a reduced G-twirl Gσ , i.e., one generated
by Ĉσ , rather than ĈH . Indeed, it is easy to see that the observables in Equation (31)
satisfy

F̂σfS ,T (τ ) = G
(
|τ , σ 〉〈τ , σ | ⊗ f̂S) ≈ δ(ĈH)(|τ , σ 〉 〈τ , σ | ⊗ f̂S),

where ≈ is the quantum weak equality introduced in Equation (34). Now use
Equation (14) and notice that δ(Ĉ−σ ) |τ , σ 〉 ⊗ |E〉S = 0 when zero does not lie
in the spectrum of ĤS. This observation yields

F̂σfS ,T (τ ) ≈
1

2(−sĤS)
1
2

δ(Ĉσ )(|τ , σ 〉 〈τ , σ | ⊗ f̂S),

≈
1

2(−sĤS)
1
2

Gσ (|τ , σ 〉 〈τ , σ | ⊗ f̂S) ,

where the last weak equality is restricted to Hσ . When zero does lie in the
spectrum of ĤS, the decomposition Equation (14) is not well-defined and one
needs to regularize.

For example, this superselection rule manifests as a
superselection across positive and negative frequency modes
in the case of the relativistic particle and across expanding
and contracting solutions in the case of the FLRW model
with a massless scalar field in Table 1 [31]. On account of the
reducibility of the representation, one usually restricts to one
frequency sector (e.g., see [113, 114, 116, 133]). One might
conjecture that the analogous superselection rule in a quantum
field theory would manifest as a superselection rule between
matter and anti-matter sectors.

Superselection rules induced by the G-twirl are often
interpreted as arising from the lack of knowledge about a
reference frame, and that if an appropriate reference frame is used
the superselection rule can be lifted [130]. This interpretation
seems unsuitable here. Firstly, lifting the superselection rule
would entail undoing the group averaging, in violation of gauge
invariance. Secondly, such an interpretation is usually tied
to an average over a given group action which parametrizes
one’s ignorance about relative reference frame orientations. By
contrast, the origin of the superselection of Dirac observables
here is not the group generated by the constraint, but is a
consequence of a property of the constraint, i.e., the group
generator. Indeed, the superselection rule above originates in the
factorizability of the constraint and the ensuing decomposition
of the projector onto the constraint (Equation 14). Both these
properties rely on the absence of a t̂-dependent term in the
constraint Equation (13); if such a term is introduced, one
generally finds [Ĉ+, Ĉ−] 6= 0, where the Ĉσ are the quantization
of the classical factors, but we emphasize that ĈH 6= s Ĉ+Ĉ−

in that case. While such a modified constraint may generate
the same group14, no superselection rule across the σ -sectors
would arise. The above superselection rule can thus not be
associated with the lack of a shared physical reference frame. This
resonates with the interpretation of the physical Hilbert space as
a clock-neutral, i.e., temporal-reference-frame-neutral structure
(see section 2.2).

Consider now the projector 5σSC = θ(−s ĤS) from HS to
its subspace spanned by all system energy eigenstates |E〉S with
E ∈ σSC; that is, those permitted upon solving the constraint
Equation (13). We shall henceforth denote this system Hilbert

subspace H
phys
S := 5σSC (HS) and call it the physical system

Hilbert space. We will obtain two copies of the physical system
Hilbert space, one for each frequency sector. In analogy to the
classical case, we introduce the quantum weak equality between
operators, signifying that they are equal on the “quantum
constraint surface”Hphys:

Ô1 ≈ Ô2 (34)

⇔ Ô1 |ψphys〉 = Ô2 |ψphys〉 , ∀ |ψphys〉 ∈ Hphys .

It follows from Lemma 1 of [7], whose proof applies here per
σ -sector, that

F̂fS ,T(τ ) ≈ F̂5σSC fS5σSC ,T(τ ) , (35)

14For example, when CH = p2t −H2(qi, pi, t) and H2 > 0 ∀ t ∈ R.
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are weakly equal relational Dirac observables. Hence, the
relational Dirac observables in Equation (31) form weak
equivalence classes on Hphys, where F̂fS ,T(τ ) ∼ F̂gS ,T(τ ) if

5σSC f̂S5σSC = 5σSC ĝS5σSC . These weak equivalence classes are
labeled by what we shall denote

f̂
phys
S

:= 5σSC f̂S5σSC ∈ L

(
H

phys
S

)
, (36)

for arbitrary f̂S ∈ L (HS), where L denotes the set of linear
operators. For later use, we note that the algebras of the physical

system observables f̂
phys
S on H

phys
S and the F̂

f
phys
S ,T

(τ ) on Hphys

are weakly homomorphic with respect to addition, multiplication
and commutator relations. More precisely,

F̂
f
phys
S +g

phys
S ·h

phys
S ,T

(τ ) ≈ F̂
f
phys
S ,T

(τ )

+ F̂
g
phys
S ,T

(τ ) · F̂
h
phys
S ,T

(τ )

∀fS, gS, hS ∈ L (HS). This is a consequence of Theorem 2 of
Höhn et al. [7] (whose proof again applies here per σ -sector).
Together with Höhn et al. [7], this translates the weak classical
algebra homomorphism defined through relational observables
in Dittrich [21] into the quantum theory.

5.1.2. Dynamics (ii): The Page-Wootters Formalism
Suppose we are given a quantum Hamiltonian constraint
Equation (5) which splits into a clock and system contribution
as in Equation (9), but for the moment not necessarily assuming
it to be of the quadratic form in Equation (13). Suppose further
we are given some (kinematical) time observable on the clock
Hilbert space, which need not necessarily be a clock POVM
which is covariant with respect to the group generated by the
clock Hamiltonian, but is taken to define the clock reading. Page
and Wootters [39, 40, 134, 135] proposed to extract a relational
quantum dynamics between the clock and system from physical
states in terms of conditional probabilities: what is the probability

of an observable f̂S associated with the system S giving a particular
outcome f , if the measurement of the clock’s time observable
yields the time τ ? If eC(τ ) and efS (f ) are the projectors onto the

clock reading τ and the system observable f̂S taking the value f ,
this conditional probability is postulated in the form

Prob
(
f when τ

)
=

Prob
(
f and τ

)

Prob (τ )
(37)

=
〈ψphys| eC(τ )⊗ efS (f ) |ψphys〉kin

〈ψphys| eC(τ )⊗ IS |ψphys〉kin

.

This expression appears at first glimpse to be in violation of the
constraints, as it acts with operators on physical states that are
not Dirac observables; this is the basis of Kuchař’s criticism (b)
that the conditional probabilities of the Page-Wootters formalism
are incompatible with the constraints [1]. However, for a class
of models we have shown in Höhn et al. [7] that the expression
Equation (37) is a quantum analog of a gauge-fixed expression
of a manifestly gauge-invariant quantity and thus consistent

with the constraint. In this section we extend this result to
relativistic settings.

Here we shall expand the Page-Wootters formalism to the
more general class of Hamiltonian constraints of the form
Equation (13) exploiting the covariant clock POVM ET of
section 4.215. On the one hand, this will permit us to prove full
equivalence of the so-obtained relational quantum dynamics with
the manifestly gauge-invariant formulation in terms of relational
Dirac observables onHphys of Dynamics (i). As an aside, this will
also resolve the normalization issue of physical states appearing
in Diaz et al. [50], where the kinematical rather than physical
inner product was used to normalize physical states, thus yielding
a divergence (when used for equal mass states). On the other
hand, the covariant clock POVM will allow us, in section 6, to
address the observation by Kuchař [1] that using the Minkowski
time observable leads to incorrect localization probabilities for
relativistic particles in the Page-Wootters formalism.

The Page-Wootters formalism produces the system state
at clock time τ by conditioning physical states on the clock
reading τ [39, 40, 134, 135]. Henceforth focusing on the class
of models defined by the constraint in Equation (13) and the
covariant clock POVM of section 4.2, and given the reducible
representation of Hphys, we may additionally condition on the
frequency sector thanks to Lemma 5. In extension of Höhn et al.
[7], we may use this conditioning to define two reduction maps

R
σ
S (τ ) :Hphys → H

phys
S,σ , one per σ -frequency sector,

R
σ
S (τ ) := 〈τ , σ | ⊗ IS, (38)

where H
phys
S,σ is a copy of H

phys
S = 5σSC (HS), i.e., the subspace of

the system Hilbert space permitted upon solving the constraint,
corresponding to the σ -frequency sector. As will become clear
shortly, the label S on the reduction map stands for “Schrödinger
picture” and to distinguish it from the italic S which stands
for the system, we henceforth write it in bold face. Due to the
decomposition Hphys = H+ ⊕ H−, we equip the two copies

H
phys
S,σ with the frequency label σ in order to remind ourselves

which reduced theory corresponds to which positive or negative
frequency mode.

The reduced states (whose normalization factor 1/
√
2 will be

explained later),

1
√
2
|ψσS (τ )〉 := R

σ
S (τ ) |ψphys〉 (39)

=

∫
∑

E∈σSC

ψσ (E) e
−i τ E |E〉S ,

where ψσ (E) is the Newton-Wigner type wave function defined
in Equation (16), satisfy the Schrödinger equation with respect to
ĤS:

i
d

dτ
|ψσS (τ )〉 = ĤS |ψσS (τ )〉 . (40)

15See also the recent [38] for a complementary approach. Note that it does not
employ covariant POVMs for quadratic Hamiltonians, and is thus subject to
Kuchař’s criticism (a) described in section 1.
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We interpret this as the dynamics of S relative to the temporal
reference frame C. In particular, this Schrödinger equation looks
the same for both the positive and negative frequency sectors
because the time defined by the covariant clock POVM ET runs
forward in both sectors. This is clear from Equation (26) and is
the quantum analog of the earlier classical observation that the
clock function T runs “forward” on both frequency sectors C+
and C− (in contrast to t)16.

Thanks to Equation (29), the decomposition of the physical
states into positive and negative frequency modes, Equation (15)
can also be written as follows:

|ψphys〉 =
1

2
√
2π

∑

σ

∫

R

dt |t, σ 〉 |ψσS (t)〉 . (41)

Together with Lemma 1, this implies that the σ -sector left inverse

H
phys
S,σ → Hσ of the reduction map defined in Equation (38) is

given by

(Rσ
S (τ ))

−1 =
1

2π

∫

R

dt |t, σ 〉 ⊗ US(t − τ )

= δ(ĈH)(|τ , σ 〉 ⊗ IS) , (42)

where US(t) = exp(−i ĤS t), so that

(Rσ
S (τ ))

−1
R
σ
S (τ ) = δ(ĈH)(|τ , σ 〉 〈τ , σ | ⊗ IS)

≈ θ(−σ p̂t)⊗ IS , (43)

where≈ is the quantum weak equality, and thus

∑

σ

(Rσ
S (τ ))

−1
R
σ
S (τ ) ≈ Iphys . (44)

Conversely, we can write the identity onH
phys
S,σ in the form

R
σ
S (τ ) (R

σ
S (τ ))

−1 = 〈τ , σ | δ(ĈH) |τ , σ 〉

= 5σSC .

The identity in the second line can be checked with the help of
Equation (27) (and also follows from the proof of Theorem 2 in
[7]). A summary of these maps can be found in Figure 2.

16Note that we could also define linear combinations of clock states |τ 〉 :=
∑
σ cσ |τ , σ 〉 . Clearly, then we would also find that

|ψS(τ )〉 := 〈τ |ψphys〉

=

(
∑

σ

c∗σ

∫
∑

E∈σSC

ψσ (E) e
−i τE

)

|E〉S

satisfies the same Schrödinger equation (40). However, it is straightforward to
check, using Lemma 1, that these new clock states do not give rise to a resolution
of the identity,

∫
dτ |τ 〉 〈τ | 6= IC and so |ψphys〉 6=

∫
dτ |τ 〉 |ψS(τ )〉. In fact,

if cσ 6= 0 for σ = +,−, then |ψS(τ )〉 will mix contributions from the positive
and negative frequency sectors such that it will become impossible to reconstruct
(either of the positive or negative frequency part of) the physical state from it.
That is, a reduction map 〈τ | ⊗ IS, which only conditions on the clock time,
would not be invertible. This is another consequence of the superselection rule
discussed above which entails that superpositions and mixtures across σ -sectors
are indistinguishable through Dirac observables. It is also another reason why
we condition also on the frequency sector when defining the reduction map in
Equation (38).

FIGURE 2 | A summary of the Page-Wootters reduction maps and their

inverses. The analogous state of affairs holds for the quantum symmetry

reduction maps and their inverses.

Using these reduction maps and their inverses, we can define

an encoding operation E
τ ,σ
S :L

(
H

phys
S,σ

)
→ L (Hσ ), mapping the

observables in Equation (36), acting on the physical system

Hilbert space H
phys
S,σ , into Dirac observables on the σ -sector of

Hphys:

E
τ ,σ
S

(
f̂
phys
S

)
:= (Rσ

S (τ ))
−1 f̂

phys
S R

σ
S (τ )

= δ(ĈH)
(
|τ , σ 〉〈τ , σ | ⊗ f̂

phys
S

)
. (45)

These encoded observables turn out to be the σ -sector part of the
relational Dirac observables in Equation (31), as articulated in the
following theorem.

Theorem 1. Let f̂S ∈ L (HS). The quantum relational Dirac
observable F̂fS ,T(τ ) acting on Hphys, Equation (31), reduces under

R
σ
S (τ ) to the corresponding projected observable onH

phys
S,σ ,

R
σ
S (τ ) F̂fS ,T(τ ) (R

σ
S (τ ))

−1 = 5σSC f̂S5σSC ≡ f̂
phys
S .

Conversely, let f̂
phys
S ∈ L

(
H

phys
S,σ

)
. The encoding operation in

Equation (45) of system observables coincides on the physical
Hilbert spaceHphys with the quantum relational Dirac observables
in Equation (31) projected into the σ -sector:

E
τ ,σ
S

(
f̂
phys
S

)
≈ F̂σ

f
phys
S ,T

(τ ) , (46)

where F̂σ
f
phys
S ,T

(τ ) = F̂
f
phys
S ,T

(τ ) (θ(−σ p̂t)⊗IS)—c.f. Equation (33).

Proof: The proof of Theorem 3 in Höhn et al. [7] applies here per
σ -sector.
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Note that the relational Dirac observables F̂fS ,T(τ ) commute
with the projectors θ(−σ p̂t) due to the reducible representation
in Equation (31).

Apart from providing the σ -sector-wise dictionary between
the observables on the physical Hilbert space and the physical
system Hilbert space, Theorem 1, in conjunction with the
weak equivalence in Equation (35), also implies an equivalence
between the full sets of relational Dirac observables F̂σ

f
phys
S ,T

(τ ) on

Hσ and system observables onH
phys
S,σ .

Crucially, the expectation values of the relational Dirac
observables Equation (31) in the physical inner product
Equation (18) coincide, σ -sector-wise, with the expectation

values of the physically permitted system observables f̂
phys
S in the

states solving the Schrödinger equation Equation (40) onH
phys
S,σ .

Theorem 2. Let f̂S ∈ L (HS), and denote its associated operator

onH
phys
S by f̂

phys
S = 5σSC f̂S5σSC . Then

〈ψphys|F̂
σ
fS ,T

(τ ) |φphys〉phys
=

1

2
〈ψσS (τ )| f̂

phys
S |φσS (τ )〉 ,

where |ψσS (τ )〉 =
√
2Rσ

S (τ ) |ψphys〉 as in Equation (39). Hence,

〈ψphys|F̂fS ,T(τ ) |φphys〉phys =
1

2

∑

σ

〈ψσS (τ )| f̂
phys
S |φσS (τ )〉 .

Proof: The proof of Theorem 4 in Höhn et al. [7] applies here per
σ -sector.

Hence, the expectation values in the relational Schrödinger
picture (i.e., the Page-Wootters formalism) are equivalent
to the gauge-invariant ones of the corresponding relational
Dirac observables on Hphys. Accordingly, equations, such as
Equation (37) (adapted to σ -sectors) are not in violation of the
constraint as claimed by Kuchař [1].

This immediately implies that the reduction maps R
σ
S (τ )

preserve inner products per σ -sector as follows.

Corollary 2. Setting f̂S = 5σSC in Theorem 2 yields

〈ψphys| θ(−σ p̂t)⊗ IS |φphys〉phys =
1

2
〈ψσS (τ )|φ

σ
S (τ )〉 ,

where |ψσS (τ )〉 =
√
2Rσ

S (τ ) |ψphys〉. Hence,

〈ψphys|φphys〉phys =
1

2

∑

σ

〈ψσS (τ )|φ
σ
S (τ )〉 (47)

=
∑

σ

〈ψphys|(|τ , σ 〉 〈τ , σ | ⊗ IS)|φphys〉kin .

The reason for introducing the normalization factor 1/
√
2 in

Equation (39) is now clear: it permits us to work with normalized
states 〈ψσS (τ )|ψ

σ
S (τ )〉 = 1 = 〈ψphys|ψphys〉phys in each reduced

σ -sector and in the physical Hilbert space simultaneously.
The above results show:

(1) Applying the Page-Wootters reduction map R
σ
S (τ ) to the

physical Hilbert space Hphys yields a relational Schrödinger
picture with respect to the clock C on the physical system

Hilbert space H
phys
S,σ corresponding to the σ -frequency

sector.
(2) σ -sector wise, the relational quantum dynamics encoded in

the relational Dirac observables on the physical Hilbert space
is equivalent to the dynamics in the relational Schrödinger
picture on the physical system Hilbert space of the Page-
Wootters formalism.

(3) Given the invertibility of the reduction map, Theorem 2

formally shows that if f̂
phys
S is self-adjoint on H

phys
S,σ , then so

is F̂σ
fS ,T

(τ ) onHσ .

We note that the expression in the second line of
Equation (47) also defines an inner product on the
space of solutions to the Wheeler-DeWitt-type constraint
Equation (13), which is equivalent to the physical inner
product in Equation (18) obtained through group averaging.
These two inner products thus define the same physical
Hilbert space Hphys. The expression in the second line
of Equation (47) is the adaptation of the Page-Wootters
inner product introduced in Smith and Ahmadi [44]
to the reducible representation of the physical Hilbert
space associated to Hamiltonian constraints with quadratic
clock Hamiltonians.

5.1.3. Dynamics (iii): Quantum Deparametrization
Classically, one can perform a symmetry reduction of the
clock-neutral constraint surface by gauge-fixing the flow of
the constraint. In this case, this yields two copies of a gauge-
fixed reduced phase space, one for each frequency sector,
each equipped with a standard Hamiltonian dynamics, hence
yielding a deparametrized theory (see Supplementary Material).
In contrast to the classical constraint surface, the “quantum
constraint surface” Hphys is automatically gauge-invariant

since the exponentiation of the symmetry generator ĈH acts
trivially on all physical states and Dirac observables. Hence,
there is no more gauge-fixing in the quantum theory after
solving the constraint. Nevertheless, following Höhn and
Vanrietvelde [30], Höhn [31], and Höhn et al. [7], we now
demonstrate the quantum analog of the classical symmetry
reduction procedure for the class of models considered in this
article. As such it is the quantum analog of deparametrization,
which we henceforth refer to as quantum deparametrization.
This quantum symmetry reduction maps the clock-neutral
Dirac quantization to a relational Heisenberg picture
relative to clock observable ET , and involves the following
two steps.

1. Constraint trivialization: A transformation of the constraint
such that it only acts on the chosen reference system (here
clock C), fixing its degrees of freedom. The classical analog is
a canonical transformation which turns the constraint into a
momentum variable and separates gauge-variant from gauge-
invariant degrees of freedom [7, 71].
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2. Condition on classical gauge fixing conditions: A “projection”
which removes the now redundant reference frame degrees of
freedom17.

We begin by defining the constraint trivialization map
TT,ǫ :Hphys → TT,ǫ(Hphys) relative to the covariant time
observable ET . This map will transform the physical Hilbert
space into a new Hilbert space, while preserving inner products
and algebraic properties of observables

TT,ǫ :=

∞∑

n=0

in

n!
T̂(n) ⊗

(

ĤS + s
ǫ2

2

)n

=
1

2π

∑

σ

∫

R

dt |t, σ 〉 〈t, σ | ⊗ ei t (ĤS+s ǫ2/2) . (48)

In analogy to Höhn and Vanrietvelde [30], Höhn [31], and Höhn
et al. [7], we introduce an arbitrary positive parameter ǫ > 0 so
that the map becomes invertible. Note that s ǫ2/2 ∈ Spec(ĤC).

Lemma 6. The left inverse of the trivialization TT,ǫ is given by

T
−1
T,ǫ =

1

2π

∑

σ

∫

R

dt |t, σ 〉 〈t, σ | ⊗ e−i t (ĤS+s ǫ2/2) ,

so that, for any ǫ > 0, T −1
T,ǫ : TT,ǫ(Hphys) → Hphys and

T
−1
T,ǫ ◦ TT,ǫ ≈ Iphys.

Proof: The proof of Lemma 2 in Höhn et al. [7] applies here
σ -sector wise.

The main property of the trivialization map is summarized in
the following lemma.

Lemma 7. Themap TT,ǫ trivializes the constraint in Equation (13)
to the clock degrees of freedom

TT,ǫ ĈH T
−1
T,ǫ

∗
≈

s

2
(p̂2t − ǫ

2)⊗ IS, (49)

where
∗
≈ is the quantum weak equality on the trivialized physical

Hilbert space TT,ǫ(Hphys), and transforms physical states into a
sum of two product states with a fixed and redundant clock factor

TT,ǫ |ψphys〉 =
1
√
ǫ

∑

σ

|pt = −σǫ〉C (50)

⊗

∫
∑

E∈σSC

ψσ (E) |E〉S .

Proof: The proof of Lemma 2 in Höhn et al. [7] applies here
σ -sector wise.

17We put projection in quotation marks because it is not a true projection
when applied to the physical Hilbert space as it only removes redundancy in the
description, i.e., degrees of freedom which are fixed through the constraint. No
physical information is lost, which is why this operation will be invertible. It would
however be a projection onHkin.

Hence, per σ -frequency sector, the trivialized physical
states are product states with respect to the tensor product
decomposition of the kinematical Hilbert space. Recalling the
discussion of the superselection rule across σ -sectors, the
physical state in Equation (50) is indistinguishable from a
separable mixed state when it contains both positive and negative
frequency modes. One can therefore also view the trivialization
as a σ -sector-wise disentangling operation, given that physical
states in Equation (15) appear to be entangled. However, we
emphasize that this notion of entanglement is kinematical and
not gauge-invariant (see [7] for a detailed discussion of this and
how the trivialization can also be used to clarify the role of
entanglement in the Page-Wootters formalism).

The clock factors in Equation (50) have become redundant,
apart from distinguishing between the positive and negative
frequency sector. Indeed, if we had ǫ = 0, then (disregarding
the diverging prefactor) both the negative and positive frequency
terms in Equation (50) would have a common redundant factor
|pt = 0〉C, so that one could no longer distinguish between them
at the level of the eigenbases of p̂t and ĤS in which the states have
been expanded. That illustrates why TT,ǫ=0 is not invertible when
acting on physical states. Indeed, T −1

T,ǫ=0 is undefined on states of

the form |pt = 0〉C |ψ〉S, since T̂
(n) is not defined on |pt = 0〉C.

This is similar to the construction of the trivialization maps in
Höhn and Vanrietvelde [30] and Höhn [31], except that here
the decomposition into positive and negative frequency sectors
proceeds somewhat differently. This concludes step 1. above.

In order to complete the reduction to the states of the
relational Heisenberg picture, and thus also complete step 2.
above, we “project” out the redundant clock factor of the
trivialized states by projecting onto the classical gauge-fixing
condition T = τ (see Supplementary Material for a discussion
of the classical gauge-fixing). That is, we now proceed as in the
Page-Wootters reduction and condition states in the trivialized
physical Hilbert space TT,ǫ(Hphys) on the clock reading τ ,
separating positive and negative frequency modes. Altogether,
the quantum symmetry reduction map takes the form

R
σ
H := e−i τ s ǫ2/2 (〈τ , σ | ⊗ IS) TT,ǫ . (51)

Using that

〈τ , σ |pt = −σ ′ǫ〉 = δσσ ′
√
ǫ ei τ s ǫ

2/2 , (52)

which is another reason why ǫ > 0 is chosen, in Equation (50)
one finds τ -independent system states

R
σ
H |ψphys〉 =

∫
∑

E∈σSC

ψσ (E) |E〉S

=:

1
√
2
|ψσS 〉 , (53)

as appropriate for a Heisenberg picture (compare with
Equation 39). This is also the reason why, in contrast to
the Page-Wootters reduction in Equation (38), we do not label
the quantum deparametrization map with a τ , despite the latter
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a priori appearing on the right hand side of Equation (51) and
why we equip it with an H label. The factor 1/

√
2 has again been

introduced for normalization purposes. Since the wave function

ψσS (E) ≡
√
2ψσ (E) , (54)

is square-integrable/summable, it is clear that |ψσS 〉 is an element

of the physical system Hilbert space H
phys
S,σ , corresponding to the

σ -sector. We therefore also haveRσ
H(τ ) :Hphys → H

phys
S,σ , just as

in Page-Wootters reduction. Using Lemmas 6 and 7, it is now also
clear how to invert the quantum symmetry reduction—at least
per σ -sector:

(Rσ
H)

−1
:= T

−1
T,ǫ

(
1
√
ǫ
|pt = −σǫ〉C ⊗ IS

)

defines a mapH
phys
S,σ → Hσ , so that18

(Rσ
H)

−1 |ψσS 〉 =
√
2 θ(−σ p̂t) |ψphys〉 . (55)

Hence, from the physical system Hilbert space of the
positive/negative frequency modes one can only recover
the positive/negative frequency sector of the physical Hilbert
space. Note that the inverse map is independent of τ in contrast
to the Page-Wottters case.

More precisely, the following holds.

Lemma 8. The quantum symmetry reduction map is weakly equal
to the Page-Wootters reduction map and an (inverse) system time
evolution

R
σ
H ≈ 〈τ , σ | ⊗ U†

S (τ ) ,

= U†
S (τ )R

σ
S (τ ).

Similarly, the inverse of the quantum symmetry reduction is equal
to a system time evolution and the inverse of the Page-Wootters
reduction:

(Rσ
H)

−1 = δ(ĈH)
(
|τ , σ 〉 ⊗ US(τ )

)

= (Rσ
S (τ ))

−1 US(τ ).

Hence

(Rσ
H)

−1
R
σ
H ≈ θ(−σ p̂t)⊗ IS

and

R
σ
H (Rσ

H)
−1 |ψσS 〉 = |ψσS 〉 .

18This is understood as appending the new clock tensor factor |pt = −σǫ〉C to the
reduced system state |ψσS 〉 and then applying the inverse of the trivialization (recall
that the conditioning of physical states on clock readings is not a true projection
and thus invertible, cf. previous footnote). Note that embedding the reduced
system states back into the physical Hilbert space is a priori highly ambiguous
since the system state alone no longer carries any information about the clock
state which had been projected out. However, here it is the physical interpretation
of the reduced state as being the description of the system S relative to the
temporal reference system C that singles out the embedding into the clock-neutral
(i.e., temporal-reference-system-neutral) Hphys. This physical interpretation is, of
course, added information, but it is crucial. For a more detailed discussion of this
topic, see Vanrietvelde et al. [71].

Proof: The proof of Lemma 3 in Höhn et al. [7] applies here
σ -sector wise.

Given the Heisenberg-type states in Equation (53), we may

consider evolving Heisenberg observables onH
phys
S,σ

f̂
phys
S (τ ) = U†

S (τ ) f̂
phys
S US(τ ). (56)

Indeed, the following theorem shows that these Heisenberg
observables are equivalent to the relational Dirac observables
on the σ -sector of the physical Hilbert space Hσ , thereby
demonstrating that the quantum symmetry reduction map yields
a relational Heisenberg picture. To this end, we employ these
reduction maps and their inverses to define another encoding

operation E
σ
H :L

(
H

phys
S,σ

)
→ L (Hσ ),

E
σ
H

(
f̂
phys
S (τ )

)
:= (Rσ

H)
−1 f̂

phys
S (τ )Rσ

H. (57)

Theorem 3. Let f̂S ∈ L (HS). The quantum relational Dirac
observable F̂fS ,T(τ ) acting on Hphys, Equation (31), reduces under
R
σ
H to the corresponding projected evolving observable in the

Heisenberg picture onH
phys
S,σ , Equation (56), i.e.,

R
σ
H F̂fS ,T(τ ) (R

σ
H)

−1 = 5σSC f̂S(τ )5σSC

≡ f̂
phys
S (τ ).

Conversely, let f̂
phys
S (τ ) ∈ L

(
H

phys
S,σ

)
be any evolving Heisenberg

observable. The encoding operation in Equation (57) of system
observables coincides on the physical Hilbert spaceHphys with the
quantum relational Dirac observables in Equation (31) projected
into the σ -sector:

E
σ
H

(
f̂
phys
S (τ )

)
≈ F̂σ

f
phys
S ,T

(τ ). (58)

Proof: The proof of Theorem 5 in Höhn et al. [7] applies here per
σ -sector.

Once more, the theorem establishes an equivalence between
the full sets of relational Dirac observables relative to clock ET on
Hσ and evolving Heisenberg observables on the physical system

Hilbert space of the σ -modes H
phys
S,σ . Hence, one can recover the

action of the relational Dirac observables only σ -sector wise from
the Heisenberg observables.

Lemma 8 and Theorem 2 directly imply that we again have
preservation of expectation values per σ -sector, as the following
theorem shows.

Theorem 4. Let f̂S ∈ L (HS) and f̂
phys
S (τ ) = U†

S (τ )5σSC f̂S
5σSCUS(τ ) be its associated evolving Heisenberg operator on

H
phys
S . Then

〈ψphys|F̂
σ
fS ,T

(τ ) |φphys〉phys
=

1

2
〈ψσS | f̂

phys
S (τ ) |φσS 〉 ,

where |ψσS 〉 =
√
2Rσ

H |ψphys〉.
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Proof: The proof of Theorem 6 in Höhn et al. [7] applies here per
σ -sector.

Therefore, the quantum symmetry reduction map RH is an
isometry, as we state in the following corollary.

Corollary 3. Setting f̂S = 5σSC in Theorem 4 yields

〈ψphys| θ(−σ p̂t)⊗ IS |φphys〉phys =
1

2
〈ψσS |φ

σ
S 〉 ,

where |ψσS 〉 =
√
2Rσ

H |ψphys〉. Hence,

〈ψphys|φphys〉phys =
1

2

∑

σ

〈ψσS |φ
σ
S 〉 .

Accordingly, we can work with normalized states in each reduced
σ -sector and in the physical Hilbert space simultaneously.

In conclusion:

(1) Applying the quantum symmetry reduction map R
σ
H to the

clock-neutral picture on the physical Hilbert space Hphys
yields a relational Heisenberg picturewith respect to the clock
C on the physical system Hilbert space of the σ -modes,

H
phys
S,σ .

(2) σ -sector wise, the relational quantum dynamics encoded in
the relational Dirac observables on the physical Hilbert space
is equivalent to the dynamics in the relational Heisenberg
picture on the physical system Hilbert space.

(3) Given the invertibility of the reduction map, Theorem 4

formally shows that if f̂
phys
S (τ ) is self-adjoint on H

phys
S,σ , then

so is F̂σ
fS ,T

(τ ) onHσ .

5.1.4. Equivalence of Dynamics (ii) and (iii)
The previous subsections establish a σ -sector wise equivalence
between the relational dynamics, on the one hand, in the
clock-neutral picture of Dirac quantization and, on the
other, the relational Schrödinger and Heisenberg pictures,
obtained through Page-Wootters reduction and quantum
deparametrization, respectively. It is thus evident that also
the relational Schrödinger and Heisenberg pictures are indeed
equivalent up to the unitary US(τ ) as they should. This is directly
implied by Lemma 8 which shows that the Page-Wotters and
quantum symmetry reduction maps are (weakly) related by
US(τ ).

5.2. Quantum Analogs of Gauge-Fixing and
Gauge-Invariant Extensions
In contrast to the classical constraint surface, the “quantum
constraint surface” Hphys is automatically gauge-invariant since

the exponentiation of the symmetry generator ĈH acts trivially
on all physical states and Dirac observables. Nevertheless,
extending the interpretation established in Höhn et al. [7], we
can understand the quantum symmetry reduction map RH

[and given their unitary relation, also R
σ
S (τ )] as the quantum

analog of a classical phase space reduction through gauge-
fixing. For completeness, the latter procedure is explained in

Supplementary Material for the class of models of this article.
In particular, we may think of the physical system Hilbert

space H
phys
S,σ for the σ -sector as the quantum analog of the

gauge-fixed reduced phase space obtained by imposing for
example the gauge T = 0 on the classical σ -frequency
sector Cσ 19. Also classically, one obtains two identically looking
gauge-fixed reduced phase spaces, one for each frequency
sector. Consequently, the relational Schrödinger and Heisenberg
pictures can both be understood as the quantum analog of a
gauge-fixed formulation of a manifestly gauge-invariant theory.

In this light, Theorems 1 and 3 imply that the encoding
operations of system observables in Equations (45) and (57)
can be understood as the quantum analog of gauge-invariantly
extending a gauge-fixed quantity (see also [7]). Similarly,
the alternative physical inner product in the second line of
Equation (47) is the quantum analog of a gauge-fixed version
of the manifestly gauge-invariant physical inner product
obtained through group averaging in Equation (18). Indeed,∑
σ 〈ψphys|(|τ , σ 〉〈τ , σ | ⊗ IS)|φphys〉kin is the (kinematical)

expectation value of the ‘projector’ onto clock time τ in
physical states. However, it is clear from the unitarity of the

Schrödinger dynamics on H
phys
S,σ and Equation (47) that this

inner product does not depend on τ (the “gauge”), in line with
the interpretation of it being the quantum analog of a gauge-fixed
version of a manifestly gauge-invariant quantity.

5.3. Interlude: Alternative Route
As an aside, we mention that there exists an alternative route
to establishing a trinity for clock Hamiltonians quadratic in
momenta. This again exploits the reducible representation on
the physical Hilbert space. The σ -sector of Hphys is defined

by the constraint Ĉσ = Ĥ′
C + Ĥ′

S, where Ĥ′
C :=

p̂t√
2

and

Ĥ′
S := σ

√

−s ĤS. Clearly, Ĥ′
C is now a non-degenerate clock

Hamiltonian. In Höhn et al. [7] we established the trinity for
non-degenerate clock Hamiltonians and the σ -sector defined by
Ĉσ = Ĥ′

C + Ĥ′
S yields a special case of that. This immediately

implies a trinity per σ -sector, however, now relative to a clock
POVM which is covariant with respect to Ĥ′

C. It is evident that
the covariant clock POVM is in this case defined through the
eigenstates of t̂ which (up to a factor of

√
2) is also the first

moment of the POVM. Indeed, the equivalence between the
clock-neutral Dirac quantization and the relational Heisenberg
picture has previously been established for models with quadratic
clock Hamiltonians precisely in this manner in Höhn and
Vanrietvelde [30] and Höhn [31] (for a related discussion see also
[29, 38]). However, as mentioned in section 4.1, one either has to
regularize the relational observables or write them as functions of
affine, rather than canonical pairs of evolving degrees of freedom.
This is a consequence of the square root nature of Ĥ′

S. None of
these extra steps were needed in the trinity construction of this

19However, note that the quantization of this classical reduced phase space will

in some cases, but not in general, coincide with the quantum theory on H
phys
S,σ

due to the generic inequivalence between Dirac and reduced quantization (see
Supplementary Material).
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article, which is based on a clock POVM which is covariant with

respect to s
p̂2t
2 , rather than p̂t/

√
2.

6. RELATIVISTIC LOCALIZATION:
ADDRESSING KUCHAŘ’S CRITICISM

In his seminal review on the problem of time, Kuchař raised
three criticisms against the Page-Wootters formalism [1]: the
Page-Wootters conditional probability in Equation (37) (a) yields
the wrong localization probabilities for a relativistic particle, (b)
violates the Hamiltonian constraint, and (c) produces incorrect
transition probabilities. As mentioned in the introduction,
criticisms (b) and (c) have been resolved in Höhn et al. [7]—see
Theorem 2which extends the resolution of (b) to the present class
of models.

Here, we shall now also address Kuchař’s first criticism (a)
on relativistic localization, which is more subtle to resolve. The
main reason, as is well-known from the theorems of Perez-
Wilde [92] and Malament [93] (see also the discussion in
[94, 95]), is that there is no relativistically covariant position-
operator-based notion of localization which is compatible with
relativistic causality and positivity of energy. This is a key
motivation for quantum field theory [90, 94]—and here a
challenge for specifying what the “right” localization probability
for a relativistic particle should be. Instead, one may resort
to an approximate and relativistically non-covariant notion
of localization proposed by Newton and Wigner [90, 91].
We will address criticism (a) by demonstrating that our
formulation of the Page-Wootters formalism, based on covariant
clocks for relativistic models, yields a localization in such an
approximate sense.

For the sake of an explicit argument, we shall, just like
Kuchař [1], focus solely on the free relativistic particle, whose
Hamiltonian constraint reads (cf. Table 1)

ĈH = −p̂2t + p̂2 +m2 ,

where p̂ denotes the spatial momentum vector. However, the
argument could be extended to the entire class of models
considered in this manuscript. It is straightforward to check
that the physical inner product Equation (18) reads in this case
[31, 104]20

〈φphys|ψphys〉phys =

∫

R3

d3p

2 εp

[
φ∗kin(εp, p)ψkin(εp, p)

+φ∗kin(−εp, p)ψkin(−εp, p)
]
, (59)

where εp =
√
p2 +m2 is the relativistic energy of the particle and

the first and second term in the integrand correspond to negative
and positive frequency modes, respectively. Fourier transforming
to solutions to the Klein-Gordon equation in Minkowski space

ψσphys(t, x) =
1

(2π)3/2

∫

R3

d3p

2 εp
ei(x·p−σ t εp) ψkin(−σ εp, p) ,

20Note that here we have a doubly degenerate system energy ĤS = p̂2 + m2 in
contrast to the expression in Equation (18) where we ignored degeneracy.

one may further check that [31, 104]

〈φphys|ψphys〉phys =

(
φ+phys,ψ

+
phys

)

KG
−

(
φ−phys,ψ

−
phys

)

KG
,

(60)

where

(
φσphys,ψ

σ
phys

)

KG
= i

∫

R3
d3x

[ (
φσphys(t, x)

)∗
∂t ψ

σ
phys(t, x)

−

(
∂t φ

σ
phys(t, x)

)∗
ψσphys(t, x)

]
, (61)

is the Klein-Gordon inner product in which positive frequency
modes are positive semi-definite, negative frequency modes
are negative semi-definite and positive and negative frequency
modes are mutually orthogonal. The physical inner product
is thus equivalent to the Klein-Gordon inner product (with
correctly inverted sign for the negative frequency modes), which
provides the correct and conserved normalization for the free
relativistic particle21. This raises hopes that the conditional
probabilities of the Page-Wootters formalism may yield the
correct localization probability for the relativistic particle. Note
that so far we have not yet made a choice of time operator.

Suppose now that the Minkowski time operator t̂, quantized
as a self-adjoint operator on Hkin, is used to define the projector
onto clock time t as eC(t) = |t〉〈t| and ex = |x〉〈x| is the projector
onto position x. This time operator is not covariant with respect
to the quadratic clock Hamiltonian. The conditional probability
Equation (37) then becomes

Prob
(
x when t

)
=

|ψphys(t, x)|
2

∫
R3 d3x′ |ψphys(t, x

′)|2
, (62)

where ψphys(t, x) = (〈t| ⊗ 〈x|) |ψphys〉 is a general solution to
the Klein-Gordon equation. As Kuchař pointed out [1], while this
would be the correct localization probability for a non-relativistic
particle, it is the wrong result for a relativistic particle. Indeed,
apart from not separating positive and negative frequency
modes, which is necessary for a probabilistic interpretation
e.g., if ψphys contains both positive and negative frequency
modes then the denominator in Equation 62 is not conserved),
Equation (62) neither coincides with the charge density of
the Klein-Gordon current in Equation (61), nor with the
Newton-Wigner approximate localization probability [90, 91].
In particular, one can not interpret a solution ψphys(t, x) to
the Klein-Gordon equation as a probability amplitude to find
the relativistic particle at position x at time t. The reason, as
explained in Haag [90], is that the conserved density is the one
in Equation (61) and ψphys and ∂tψphys inside it are not only
dependent, but related by a non-local convolution

∂tψphys(t, x) =

∫

R3
d3x′ ε(x− x′)ψphys(t, x

′) ,

21This also resolves the normalization issue appearing in Diaz et al. [50] where
physical states were normalized using the kinematical, rather than physical inner
product, thus yielding a divergent normalization (for equal mass states) in contrast
to here.
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where ε(x− x′) is the Fourier transform of−i εp.
By contrast, let us now exhibit what form of conditional

probabilities the covariant clock POVM ET of section 4.2 gives
rise to. We now insert eC(τ ) =

∑
σ |τ , σ 〉〈τ , σ | and, as before,

ex into the conditional probability Equation (37). The crucial
difference between the covariant clock POVM ET and the clock
operator t̂ (which is covariant with respect to Ĉσ , but not ĈH)
is that the denominator of Equation (37) is equal to the physical
inner product in the former case (see Corollary 2) but not in the
latter22. Supposing that we work with normalized physical system
states 〈ψσS (τ )|ψ

σ
S (τ )〉 = 1, Theorem 2 implies

Prob
(
x when τ

)
=

1

2

∑

σ

|ψσS (τ , x)|
2 (63)

= 〈ψphys|F̂ex ,T(τ )|ψphys〉phys ,

where ψσS (τ , x) :=
√
2(〈τ , σ | ⊗ 〈x|) |ψphys〉 and τ is now not

Minkowski time. For concreteness, let us now focus on positive
frequency modes. Using Equations (15) and (25), one obtains

ψ+
S (τ , x) =

1

(2π)3/2

∫

R3

d3p
√
2 εp

ei(x·p−τ ε
2
p) ψkin(−εp, p) .

(64)

This is almost the Newton-Wigner position space wave function
for positive frequency modes, which relative to Minkowski time
reads [90]

ψ+
NW(t, x) =

∫

R3
d3xK(x− x′)ψ+

phys(t, x
′) (65)

=
1

(2π)3/2

∫

R3

d3p
√
2 εp

ei(x·p−t εp) ψkin(−εp, p) ,

where K(x) is the Fourier transform of
√
2εp. The key property

of |ψ+
NW(t, x)|2 is that, while not relativistically covariant, it

does admit the interpretation of an approximate localization
probability, with accuracy of the order of the Compton wave
length, for finding the particle at position x at Minkowski time
t [90, 91]. In particular,

(
φ+phys,ψ

+
phys

)

KG
=

∫

R3
d3x

(
φ+NW(t, x)

)∗
ψ+
NW(t, x) ,

i.e., the Klein-Gordon inner product assumes the usual
Schrödinger form for the Newton-Wigner wave function.

Noting that due to Equation (19) we can heuristically view
τ as t/εp, and comparing with Equation (65) we can interpret

22It is instructive to see how this is linked to the (non-)covariance of the clock
observable with respect to ĈH . Let eC be either the covariant eC(τ ) or non-
covariant eC(t). The denominator of Equation (37) reads

〈ψphys| eC ⊗ IS |ψphys〉kin = 〈ψkin| δ(ĈH) (eC ⊗ IS) |ψphys〉kin .

Equation (44) implies that δ(ĈH)(eC(τ )⊗ IS) ≈ Iphys. This exploits the covariance
and immediately shows that the denominator coincides with the physical inner
product Equation (18). By contrast, the non-covariance entails δ(ĈH)(eC(t)⊗IS) 6=
Iphys, so that in this case the denominator differs from the physical inner product.

Equation (64) as a Newton-Wigner wave function as well, but
expressed relative to a different time coordinate τ . Indeed, in
line with this interpretation, we find that in this case too the
physical inner product, Equation (60), for the positive frequency
modes assumes the form of the standard Schrödinger theory
inner product

(
φ+phys,ψ

+
phys

)

KG
=

∫

R3
d3x

(
φ+S (τ , x)

)∗
ψ+
S (τ , x) .

The analogous statement is true for the negative frequency
modes. In that sense, Equation (63), in contrast to Equation (62),
does admit the interpretation as a valid, yet approximate
localization probability for the relativistic particle per frequency
sector, just like in the standard Newton-Wigner case23.

Accordingly, computing the conditional probabilities of the
Page-Wootters formalism relative to the covariant clock POVM,
rather than the non-covariant Minkowski time operator t̂,
leads to an acceptable localization probability for a relativistic
particle, thereby addressing also Kuchař’s first criticism (a).
Given the equivalence of the Page-Wootters formalism with the
clock-neutral and the relational Heisenberg pictures, established
through the trinity in section 5, this result also equips
the quantum relational Dirac observables F̂x,T(τ ) and the
evolving Heisenberg observables x(τ ) with the interpretation of
providing an approximate, Newton-Wigner type localization in
Minkowski space.

7. CHANGING QUANTUM CLOCKS

So far we have worked with a single choice of clock. Let us
now showcase how to change from the evolution relative to
one choice of clock to that relative to another. Our discussion
will apply to both the relational Schrödinger picture of the
Page-Wootters formalism and the relational Heisenberg picture
obtained through quantum deparametrization.

For concreteness, suppose we are given a Hamiltonian
constraint of the form

ĈH = s1
p̂21
2

+ s2
p̂22
2

+ ĤS , (66)

where si = ±1 and p̂i denotes the momentum of clock subsystem
Ci, i = 1, 2 and we have suppressed tensor products with identity
operators. In particular, suppose ĤS does not depend on either
of the clock degrees of freedom. We will work with the covariant
clock POVM of section 4.2 for both clock choices. For example,
the constraints of the relativistic particle, the flat (k = 0) FLRW
model with a massless scalar field and the Bianchi I and II models

23The physical inner product for the positive frequency solutions ψ+
phys(t, x) to the

Klein-Gordon equation takes, of course, the standard Klein-Gordon (and not the
Schrödinger) form Equation (61). Nevertheless, the kernel K(x − x′) in the non-
local convolution in the first line in Equation (65) decreases quickly as a function
ofm|x−x′| [90]. Hence, for massive particles, we can interpret even Equation (62)
as providing an approximate localization.
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from Table 1 are of the above form24. Our subsequent discussion
will thus directly apply to these models.

Since we will exploit the Page-Wootters and symmetry
reduction maps as “quantum coordinate maps” from the clock-
neutral picture to the given “clock perspective,” we will be able to
change from the description of the dynamics relative to one clock
to that relative to another in close analogy to coordinate changes
on amanifold. Due to the shape of the constraint in Equation (66)
we now have superselection of Dirac observables and the physical
Hilbert space across both the σ1-frequency sectors of clock C1

and the σ2-frequency sectors of clock C2. The physical Hilbert
space takes the form

Hphys =
⊕

σ1 ,σ2

Hσ1 ,σ2 , (67)

where Hσ1 ,σ2 := Hσ1 ∩ Hσ2 is the overlap of the σ1-sector of
clock C1 and the σ2-sector of clock C2. As we have seen the
reduction maps are only invertible per frequency sector. Hence,
we will only be able to change from a given σ1-sector to the part of
the σ2-frequency sector which is contained in it. In other words,
the “quantum coordinate changes” are restricted to each overlap
Hσ1 ,σ2 .

The method of changing temporal reference frames exhibited
below is a direct extension of several previous works: Höhn
and Vanrietvelde [30] and Höhn [31] developed the method σ -
sector-wise for states and observables in the relational Heisenberg
picture for Hamiltonians of the type in Equation (66) for two
example models, but used clock operators canonically conjugate
to the clock momenta p̂i (and thus not a clock POVM covariant
with respect to the full clock Hamiltonian). The method of
transforming relational observables from one clock description
to another was demonstrated in Höhn and Vanrietvelde [30] and
Höhn [31] for a subset of relational Dirac observables, paying,
however, detailed attention to regularization necessities arising
from time-of-arrival observables [18, 23, 117–119]. Our previous
article [7] developed the method comprehensively for both states
and observables for clock Hamiltonians with non-degenerate
and continuous spectrum in both the relational Schrödinger and
Heisenberg pictures; specifically, the transformation of arbitrary
relational observables corresponding to relations between S and
the clocks was developed for the corresponding class of models.
In Castro-Ruiz et al. [47] the clock change method was exhibited
for state transformations in the relational Schrödinger picture
for ideal clocks whose Hamiltonian coincides with the clock
momentum itself. Our discussion can also be viewed as a full
quantum extension of the semiclassical method in Bojowald et al.
[32, 33] and Höhn et al. [34] which is equivalent at semiclassical
order, however, also applies to clock functions which are non-
monotonic, i.e., have turning points, in contrast to the other
works mentioned (See [70–72, 74] for related spatial quantum
frame changes).

24Indeed, the Hamiltonian constraint of the vacuum Bianchi I and II models can
be written in the form [116]

ĈH = −
ˆ̄p20
2

+
ˆ̄p2−
2

+
ˆ̄p2+
2

+ k+ e−4
√
3 ˆ̄β+ .

In particular, owing to our focus on covariant clock POVMs,
all the results and proofs [7] apply σ -sector-wise to the present
case. However, we will also study novel effects, such as the
temporal frame dependence of comparing clock readings.

7.1. State Transformations
Denote by R

σi
I , where I ∈ {S,H}, the Page-Wootters or

quantum symmetry reduction map to the σi-sector of clock
Ci. For notational simplicity, we drop the dependence of the
Page-Wootters reduction on the clock reading τi of clock
Ci for the moment. The temporal frame change (TFC) map

3
σi→σj
I→J :H

phys
Cj ,σi

⊗H
phys
S,σi

→ H
phys
Ci ,σj

⊗H
phys
S,σj

from clockCi’s σi-sector

to clock Cj’s σj-sector then reads

3
σi→σj
I→J

:= R
σj
J ◦

(
R
σi
I

)−1
. (68)

Here H
phys
Cj ,σi

denotes the physical clock Cj Hilbert space

corresponding to the σi-sector of clock Ci, i.e., the subspace of
HCj compatible with solutions to the constraint Equation (66)
and similarly for the other Hilbert spaces. When I 6= J in
Equation (68), then the TFC map changes not only the temporal
reference frame, but also between the corresponding relational
Heisenberg and Schrödinger pictures. Let us write 3

σi→σj
I

:=

3
σi→σj
I→I when no relational picture change takes place.
More explicitly, the TFC map from the σ1-frequency sector of

clock C1 in the relational Schrödinger picture to the σ2-frequency
sector of clock C2 in the relational Schrödinger picture takes the
form

3
σ1→σ2
S =

(
〈τ2, σ2| ⊗ IC1S

)
δ(ĈH)

(
|τ1, σ1〉 ⊗ IC2S

)
.

Here we have made use of Equations (38) and (42) and the
covariant clock states Equation (25) for both clocks. The reduced
states transform under this map as follows:

(
θ(−σ1 p̂1)⊗ IS

)
|ψ

σ2
C1S|C2

(τ2)〉 = 3
σ1→σ2
S |ψ

σ1
C2S|C1

(τ1)〉 ,

(69)

where we made use of Equation (43) and |ψ
σi
CjS|Ci

(τi)〉 is the

relational Schrödinger picture state of clock Cj and system S
relative to clock Ci, which is chosen as the temporal reference
frame, in its σi-sector. In other words, the Heaviside-function
on the l.h.s. highlights that we can only map from the σ1-sector
of clock C1 to that part of the σ2-sector of clock C2 which is
contained in the σ1-sector of clock C1. This is clear, because any
reduction map is only invertible on its associated σ -sector: from
the σ1 relational Schrödinger picture one can only recover the
σ1-sector of the physical Hilbert space. Hence, the subsequent
Page-Wootters reduction map to the σ2-sector of clock C2 in
Equation (68) can then only yield information in the overlap
of the σ1- and σ2-sectors in the physical Hilbert space (see also
[30, 31] for explicit examples of this situation in the relational
Heisenberg picture). This is a manifestation of the superselection
across both the σ1- and the σ2-sectors.
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FIGURE 3 | Schematic representation of a temporal frame change, as defined

through Equation (68). The figure encompasses both the relational

Schrödinger picture of the Page-Wotters formalism and the relational

Heisenberg picture of the quantum deparametrization (as well as their

mixtures). Viewing the reduction maps R
+i

I as quantum coordinate maps, any

such temporal frame change takes the form of a quantum coordinate

transformation from the description relative to clock C1 to the one relative to

clock C2. Just as coordinate transformation pass through the

reference-frame-neutral manifold, the quantum coordinate transformations

pass through the clock-neutral physical Hilbert space in line with the general

discussion of the clock-neutral structure and quantum general covariance in

section 2. Due to the double superselection rule, the quantum coordinate

transformations have to preserve the overlaps of the frequency sectors of C1

and C2. Here we illustrate the example of the overlap of the positive frequency

sectors of both clocks, so that the corresponding frame transformation passes

through H+1 ,+2
(cf. Equation 67).

Similarly, the TFC map from the σ1-frequency sector of clock
C1 in the relational Heisenberg picture to the σ2-frequency sector
of clock C2 in the relational Heisenberg picture reads

3
σ1→σ2
H =

(
〈τ2, σ2| ⊗ U†

C1S
(τ2)

)
(70)

× δ(ĈH)
(
|τ1, σ1〉 ⊗ UC2S(τ1)

)
,

where we have made use of Lemma 8. Using the same lemma, the
reduced states transform under this map in complete analogy to
Equation (69)

[
θ(−σ1 p̂1)⊗ IS

]
|ψ

σ2
C1S|C2

〉 = 3
σ1→σ2
S |ψ

σ1
C2S|C1

〉 ,

with UCjS(τi) := exp

[

−i τi (sj
p̂2j
2 + ĤS)

]

the evolution operator

of the composite system of clock Cj and system S relative to
clock Ci.

Note that, interpreting the reduction maps as the “quantum
coordinate maps” taking one from the clock-neutral physical
Hilbert space to a specific “clock perspective,” any such TFC
map in Equation (68) takes the same compositional form as
coordinate changes on a manifold. In particular, any such
temporal frame change proceeds by mapping via the clock-
neutral physical Hilbert space in analogy to how coordinate
changes always proceed via the manifold (see Figure 3). This
observation lies at the heart of the perspective-neutral approach
to quantum reference frame changes [7, 30, 31, 71, 72]. It is also
the reason why we may interpret the physical Hilbert space as a

clock-neutral structure, providing a description of the dynamics
prior to having chosen a temporal reference frame relative to
which the other degrees of freedom evolve. In line with this,
in terms of different one-parameter families of relational Dirac
observables, the physical Hilbert space contains the complete
information about the dynamics relative to all the different
possible clock choices at once.

7.2. Observable Transformations
Just as we transformed reduced states from the perspective of
one clock to the perspective of another by passing through the
gauge-invariant physical Hilbert space (see Figure 3), we now
transform the description of observables relative to one clock
to that relative to the other by passing through the gauge-
invariant algebra of Dirac observables on the physical Hilbert
space. The observable transformations will thus be dual to
the state transformations. The idea is always that we describe
the same physics, encoded in the gauge-invariant states and
observables of the clock-neutral physical Hilbert space, but
relative to different temporal frames. Again, we have to pay
attention to the two superselection rules on the clock-neutral
physical Hilbert space and we will demonstrate the observable
transformations separately for the relational Schrödinger and
Heisenberg pictures.

7.2.1. Observable Transformations in the Relational

Schrödinger Picture

Suppose we are given an observable Ô
phys
C2S|C1

describing
certain properties of the composite system C2S in the
relational Schrödinger picture of clock C1 in either frequency
sector of the latter25. Owing to Theorem 1, we can write
this as a reduction of a corresponding relational Dirac
observable onHphys:

R
σ1
S (τ1) F̂OC2S|C1 ,T1

(τ1) (R
σ1
S (τ1))

−1 = Ô
phys
C2S|C1

.

We can now also map the same relational Dirac observable into
the σ2-sector of the relational Schrödinger picture of clock C2:

Ô
phys
C1S|C2

(τ1, τ2) := R
σ2
S (τ2) F̂OC2S|C1 ,T1

(τ1) (R
σ2
S (τ2))

−1 .

(71)

The result will be the image of the original observable Ô
phys
C2S|C1

,
describing properties of C2S relative to C1, in the “perspective”

of clock C2. Hence, if Ô
phys
C2S|C1

depends non-trivially on C2,
an indirect self-reference effect occurs in the last equation [7].
Notice that, while the original observable in the Schrödinger
picture of C1 is independent of the evolution parameter τ1, the

25Recall that the label “phys” highlights that the observable acts on the
physical C2S Hilbert space, i.e., on 5σC2SC1

(
HC2 ⊗HS

)
, where 5σC2SC1 =

θ

[
−s1

(
s2

p̂22
2 + ĤS

)]
is the projector onto the subspace corresponding to the

spectrum σC2SC1 := Spec
(
s2

p̂22
2 + ĤS

)
∩Spec

(
−s1

p̂21
2

)
permitted by the constraint

Equation (66) (cf. Equation 17). We can thus also understand this observable as

a projection Ô
phys
C2S|C1

:= 5σC2SC1 ÔC2S|C1 5σC2SC1 of some observable ÔC2S|C1 ∈

L(HC2 ⊗HS); cf. Equation (36).
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description of that same observable in the Schrödinger picture
relative to clock C1 will generally depend on both evolution
parameters τ1, τ2. The dependence on τ1 is a consequence of
it being the reduction of a relational Dirac observable with
evolution parameter τ1, but into the “perspective” of C2. The
possible τ2 dependence may arise as a consequence of said

indirect self-reference. For example, suppose Ô
phys
C2S|C1

= T̂2 ⊗

IS so that the relational Dirac observable is F̂OC2S|C1 ,T1
(τ1) =

F̂T2 ,T1 (τ1). The observable on the l.h.s. in Equation (71) then
describes how the first moment operator T̂2 associated with C2

evolves relative to C1 from the “perspective” of C2; this certainly
should yield a τ1 dependence. We will explain this in more
detail shortly.

Taking into account the two superselection rules across the
σ1- and σ2-sectors, these observations imply that observable
transformations from the relational Schrödinger picture of the
σ1-sector of clock C1 into the relational Schrödinger picture of
the σ2-sector of clock C2 read

3
σ1→σ2
S Ô

phys
C2S|C1

(
3
σ1→σ2
S

)−1
=
(
3
σ2→σ1
S

)−1
Ô
phys
C2S|C1

3
σ2→σ1
S

= R
σ2
S (τ2) ◦

(
R
σ1
S (τ1)

)−1
Ô
phys
C2S|C1

R
σ1
S (τ1) ◦

(
R
σ2
S (τ2)

)−1

= R
σ2
S (τ2) E

τ1 ,σ1
S

(
Ô
phys
C2S|C1

) (
R
σ2
S (τ2)

)−1
(72)

≈ R
σ2
S (τ2) F̂OC2S|C1 ,T1

(τ1)
(
θ(−σ1p̂1)⊗ IC2S

) (
R
σ2
S (τ2)

)−1

=
(
θ(−σ1p̂1)⊗ IS

)
Ô
phys
C1S|C2

(τ1, τ2) .

In the second line we made use of Equation (45), in the third of
Theorem 1, and in the fourth of Equation (71) and the fact that
θ(−σ1p̂1) commutes with the reduction map of the C2 clock and
with F̂OC2S|C1 ,T1

(τ1) (see Lemma 5).
Observe that the structure of this transformation shows that

reduced observables relative to one clock will transform always
via the gauge-invariant Dirac observable algebra to reduced
observables relative to another clock.

Using Equations (38), (42), and (45), we can write this
transformation as

(
θ(−σ1p̂1)⊗ IS

)
Ô
phys
C1S|C2

(τ1, τ2) = 〈τ2, σ2| δ(ĈH)
(
|τ1, σ1〉〈τ1, σ1| ⊗ Ô

phys
C2S|C1

)
δ(ĈH) |τ2, σ2〉 . (73)

This transformation reveals that expectation values are preserved
in the following manner:

〈ψ
σ2
C1S|C2

(τ2)|
(
θ(−σ1p̂1)⊗ IS

)
Ô
phys
C1S|C2

(τ1, τ2) |φ
σ2
C1S|C2

(τ2)〉

= 〈ψ
σ1
C2S|C1

(τ1)|
(
θ(−σ2p̂2)⊗ IS

)
Ô
phys
C2S|C1

(
θ(−σ2p̂2)⊗ IS

)
|φ
σ1
C2S|C1

(τ1)〉 .

(74)

The projectors onto the σ2-sector on the r.h.s. appears because
the C2 reduction map in Equation (72) induces such a projection
(compare this with the state transformations Equation (69) which
are dual). In other words, only the physical information in the
overlap of the σ1- and σ2-sector is preserved when changing from

the description relative to clock C1 to one relative to clock C2,
or vice versa. Once more, this is a direct consequence of the
double superselection rule induced by the shape of the constraint
Equation (66).

7.2.2. Observable Transformations in the Relational

Heisenberg Picture
The argumentation for the relational Heisenberg picture
proceeds in complete analogy. We thus just quote the results,
which immediately follow from those of the previous subsection
through use of Lemma 8. Of course, in this case, the reduced
observables have an explicit dependence on the evolution
parameter (Equation 56).

The observable transformations from the relational
Heisenberg picture of the σ1-sector of clock C1 into the
relational Heisenberg picture of the σ2-sector of clock C2 are
given by

3
σ1→σ2
H Ô

phys
C2S|C1

(τ1)
(
3
σ1→σ2
H

)−1

≈ R
σ2
H F̂OC2S|C1 ,T1

(τ1)
(
θ(−σ1p̂1)⊗ IC2S

) (
R
σ2
H

)−1

=
(
θ(−σ1p̂1)⊗ IS

)
U†
C1S

(τ2) Ô
phys
C1S|C2

(τ1, τ2)UC1S(τ2) (75)

=:
(
θ(−σ1p̂1)⊗ IS

)
ÔH
C1S|C2

(τ1, τ2) ,

where Ô
phys
C1S|C2

(τ1, τ2) is given by Equations (71) and (73). Thanks
to the double superselection rule, this transformation preserves
expectation values again per overlap of a σ1- with a σ2-sector, in
obvious analogy to Equation (74).

7.3. Occurrence of Indirect Clock
Self-Reference
Finally, let us now come back to the indirect self-reference
effect of clock C2 alluded to above. The following theorem,
which is adapted from Höhn et al. [7] and whose proof
applies here per pair of σ1- and σ2-sector, reveals the
necessary and sufficient conditions for this indirect self-reference
to occur:

Theorem 5. Consider an operator Ô
phys
C2S|C1

∈ L(H
phys
C2

⊗ H
phys
S )

of the composite system C2S described from the perspective of
clock C1. From the perspective of clock C2, this operator is

independent of τ2, so that Ô
phys
C1S|C2

(τ1, τ2) = Ô
phys
C1S|C2

(τ1) ∈

L(H
phys
C1

⊗H
phys
S ) if and only if

Ô
phys
C2S|C1

=
∑

i

(
Ô
phys
C2|C1

)

i
⊗

(
f̂
phys
S|C1

)

i
,

where (f̂
phys
S|C1

)i is an operator on H
phys
S and (Ô

phys
C2|C1

)i is a constant

of motion,
[
(Ô

phys
C2|C1

)i, s2
p̂22
2

]
= 0. Furthermore, in this case the
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transformed observable reads

[
θ(−σ1p̂1)⊗ IS

]
Ô
phys
C1S|C2

(τ1)

= 5σC1SC2

[
∑

i

GC1S

(
|τ1, σ1〉〈τ1, σ1| ⊗

(
f̂
phys
S|C1

)

i

)
(76)

〈t2, σ2|
(
Ô
phys
C2|C1

)

i
δ(ĈH)|t2, σ2〉

]

5σC1SC2 ,

where 5σC1SC2 = θ

[
−s2

(
s1

p̂21
2 + ĤS

)]
is the projector onto

the physical subspace of HC1 ⊗ HS, |t2, σ2〉 is an arbitrary σ2-
sector clock state of C2, and GC1S is the G-twirl over the group

generated by the evolution generator s1
p̂21
2 + ĤS of the composite

system C1S.

That is to say, the indirect self-reference effect and thus τ2-
dependence of Equation (72) is absent if and only if the relational
Dirac observable encoding how C2S properties evolve relative
to C1 does not contain any degrees of freedom of clock C2

that evolve.
When Ô

phys
C2S|C1

= IC2 ⊗ f̂
phys
S|C1

, i.e., only the evolution of system
degrees of freedom relative to C1 is described, Theorem 5 entails
that the transformation to the description relative to C2 simplifies
as follows:

(
θ(−σ1p̂1)⊗ IS

)
Ô
phys
C1S|C2

(τ1) =

5σC1SC2GC1S

(
|τ1, σ1〉〈τ1, σ1| ⊗ f̂

phys
S|C1

)
5σC1SC2 .

In particular, the transformed system observable is perspective
independent, i.e., its description relative to C1 and C2 coincide
if and only if it is a constant of motion (see [7] for the proof
of this statement, which again applies here per pair of σ1-
and σ2-sector):

Corollary 4. An operator of C2S relative to C1

Ô
phys
C2S|C1

= IC2 ⊗ f̂
phys
S|C1

.

transforms under a temporal frame change map to the perspective
of C2 as follows

Ô
phys
C1S|C2

= IC1 ⊗ f̂
phys
S|C2

,

where f̂
phys
S|C1

= f̂
phys
S|C2

if and only if f̂
phys
S|C1

is a constant of motion,

[f̂
phys
S|C1

, ĤS] = 0.

Theorem 5 translates as follows into the relational Heisenberg
picture (see [7] for the proof which applies here per pair of σ1-
and σ2-sector):

Corollary 5. Let Ô
phys
C2S|C1

(τ1) ∈ L(H
phys
C2

⊗ H
phys
S ) be an

operator describing the dynamics of properties of the composite
system C2S relative to C1 in the Heisenberg picture. Under a
temporal frame change Equation (75) to the perspective of C2, this

operator transforms to an operator ÔH
C1S|C2

(τ1, τ2) that satisfies the
Heisenberg equation of motion in clock C2 time τ2 without an
explicitly τ2 dependent term,

d

dτ2
ÔH
C1S|C2

(τ1, τ2) = i

[

s2
p̂22
2

+ ĤS, Ô
H
C1S|C2

(τ1, τ2)

]

,

if and only if

Ô
phys
C2S|C1

(τ1) =
∑

i

(
Ô
phys
C2|C1

)

i
⊗

(
f̂
phys
S|C1

(τ1)
)

i
,

and
(
Ô
phys
C2|C1

)

i
is a constant of motion, [s1

p̂21
2 , Ô

phys
C2|C1

] = 0.

The interpretation of the transformations is of course
completely analogous to the relational Schrödinger picture.

7.4. Application: Comparing Clock
Readings
One application of the temporal frame change method developed
above is comparing readings of different clocks. This is also a
prerequisite for developing a notion of clock synchronization.

For example, we may wish to compare the evolution of some

system property f̂S relative to clock C1 with f̂S relative to clock
C2. These two relational evolutions will be encoded in two one-
parameter families of Dirac observable of the form F̂IC2⊗fS ,T1 (τ1)

and F̂IC1⊗fS ,T2 (τ2). In order to relate these two dynamics, we
need a consistent method for relating the different clock readings
τ1, τ2. While classically, there is an unambiguous way to answer
the question “what is the value of the reading τ2 of clock C2,
when clock C1 reads τ1?” namely by setting τ2(τ1) := FT2 ,T1 (τ1),
this is not so in the quantum theory because both clocks are
now described in terms of quantum operators and their relation
depends on the quantum state. In fact, we shall argue shortly that
comparing clock readings is generally dependent on the choice of
temporal frame (here either C1 or C2) in the quantum theory.

7.4.1. Three Ways of Comparing Clock Readings
To address this conundrum in the quantum theory, let us recall
the conditional probabilities in Equation (37) and ask for the
probability thatC2 reads τ2 whenC1 reads τ1 (ignoring frequency
sectors for simplicity for the moment):

P(T2 = τ2|T1 = τ1)

= 〈ψphys| eC1 (τ1)⊗ eC2 (τ2)⊗ IS |ψphys〉kin

= P(T1 = τ1|T2 = τ2). (77)

Here we have assumed that the physical state is normalized such
that by Corollary 2 also the reduced states in the Schrödinger
picture of either clock are normalized.

Comparing clock readings. Given the conditional probabilities
Equation (77), we may consider the following three generally
distinct options for comparing clock readings.
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(A) The clock reading of C2 when C1 reads τ1 is defined to be the
value of τ2 that maximizes the conditional probability P(T2 =

τ2|T1 = τ1). This assumes the distribution to have a unique
maximal peak.

(B) The clock reading of C2 when C1 reads τ1 is defined to be the
expectation value

τ2(τ1) :=

∫

R

dτ ′ τ ′ P(T2 = τ ′|T1 = τ1) . (78)

(C) The clock reading of C2 when C1 reads τ1 is defined to be
(
τ
(n)
2 (τ1)

)1/n
for n > 1, where

τ
(n)
2 (τ1) :=

∫

R

dτ ′ (τ ′)n P(T2 = τ ′|T1 = τ1) (79)

is the nth-moment of the conditional probability distribution in
Equation (77).

Relating different clock readings in terms of expectation values, as
in (B), is arguably the most natural choice and has originally been
discussed in Höhn and Vanrietvelde [30], Höhn [31], Bojowald
et al. [32, 33], Höhn et al. [34], and Smith and Ahmadi [45]; we
expand on this here.

Clearly, the two definitions (A) and (B) only agree when
the conditional probability distribution is peaked on the
expectation value. Furthermore, all three definitions (A)–(C)
agree in the special case that P(T2 = τ ′|T1 = τ1) = δ(τ ′ − τ1),
i.e., when there are no fluctuations in the conditional probability
distribution.

7.4.2. Comparing Clock Readings for Quadratic

Clock Hamiltonians
Let us now explore these definitions in our present class ofmodels
defined by Equation (66), taking into account the different
frequency sectors again. Minding the double superselection rule,
we replace Equation (77) by

Pσ1,σ2 (T2 = τ2|T1 = τ1)

= 〈ψphys| e
σ1
C1
(τ1)⊗ eσ2C2

(τ2)⊗ IS |ψphys〉kin

= 〈ψσ1 ,σ2 | eC1(τ1)⊗ eC2 (τ2)⊗ IS |ψσ1 ,σ2〉kin , (80)

where |ψσ1 ,σ2〉 ∈ Hσ1 ,σ2 lies in the overlap of the σ1- and
σ2-sectors (see Equation 67) and e

σi
Ci
(τi) := 1

2π |τi, σi〉〈τi, σi|,

i = 1, 2. We can then write the nth-moment of the conditional
probability distribution in Equations (78) and (79) for n ∈ N,
thus considering both definitions (B) and (C), as follows:

τ
(n)
2 (τ1) =

∫

R

dτ ′ (τ ′)n Pσ1,σ2 (T2 = τ ′|T1 = τ1)

= 〈ψ
σ1
C2S|C1

(τ1) | T̂
(n)
2,σ2

⊗ IS |ψ
σ1
C2S|C1

(τ1)〉 (81)

= 〈ψσ1 ,σ2 | F̂T(n)
2 ⊗IS ,T1

(τ1) )|ψσ1 ,σ2〉
phys

,

where by Equation (30)

T̂
(n)
2,σ2

=
1

2π

∫

R

dt tn |t, σ2〉〈t, σ2|

= θ(−σ2p̂2) T̂
(n)
2 θ(−σ2p̂2)

is the σ2-sector nth-moment of the covariant clock POVM
corresponding to C2. In the second line of Equation (81) we have
made use of Equations (38) and (80), while in the third line we
invoked Theorem 2. Note that by Equation (74), the expression
in Equation (81) defines an expectation value which is preserved
during a temporal frame change between C1 and C2.

Thanks to Lemmas 3 and 4 we can write the nth-moment
in Equation (81) also in the form

τ
(n)
2 (τ1) = 〈ψ

σ1
C2S|C1

(τ1) | T̂
n
2,σ2 ⊗ IS |ψ

σ1
C2S|C1

(τ1)〉

= 〈ψσ1 ,σ2 | F̂Tn
2⊗IS ,T1 (τ1) )|ψσ1 ,σ2〉phys ,

as long as |ψ
σ1
C2S|C1

(τ1)〉 ∈

(
D(T̂n

2 ) ∩H
phys
C2

)
⊗ H

phys
S . Since

(
τ
(n)
2 (τ1)

)1/n
6= τ2(τ1) for n > 1 for general states,

definitions (B) and (C) will generically not be equivalent. In
the sequel, we shall mostly consider definition (B) in extension
of Höhn and Vanrietvelde [30], Höhn [31], Bojowald et al.
[32, 33], Höhn et al. [34], and Smith and Ahmadi [45]. This
seems to be the physically most appealing one, especially if an
ensemble interpretation could be developed for the models under
consideration. Definition (A) is only unambiguous when the
conditional probability distribution has a single maximal peak
and definition (C) is operationally unnatural and convoluted.
That is, we set for the value of the reading of clock C2 when C1

reads τ1:

τ2(τ1) := τ
(1)
2 (τ1) . (82)

The following discussion, however, qualitatively also applies to
definition (C).

7.4.3. Comparing Clock Readings Is Temporal Frame

Dependent
Notice that definitions (A)–(C) treat C2 as the fluctuating
subsystem. We can thus interpret them as providing a definition
of the clock reading of C2 relative to the temporal reference frame
C1. Conversely, we can of course switch the roles of C1 and C2

above and ask for the clock reading of C1 relative to C2. Resorting
to definition (B), this would yield

τ1(τ2) =

∫

R

dτ ′ τ ′ Pσ1,σ2 (T2 = τ2|T1 = τ ′) . (83)

Dropping the labels of the arguments in Equations (81) and (83),
both of which run over all of R, it is important to note that τ1(τ )
and τ2(τ ) will generally not be the same functions of τ . This is
because generally Pσ1,σ2 (T2 = τ ′|T1 = τ ) 6= Pσ1,σ2 (T2 = τ |T1 =

τ ′) in Equation (80). Said another way, the evolution of C2 from
the perspective of C1 according to definition (B) may differ from
the evolution of C1 relative to C2 (for the same physical state).

One might wonder whether the function τ1(τ2) in
Equation (83) is the inversion of τ2(τ1) in Equation (81),
i.e., obtained by solving τ2(τ1) for τ1. Classically, this is certainly
the case and it would entail that for a fixed clock reading τ ∗1
of C1 one finds τ1(τ2(τ ∗1 )) = τ ∗1 . Physically this would mean
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that both temporal reference frames C1 and C2 agree that when
C1 reads τ ∗1 , C2 reads the value τ2(τ ∗1 ). This does occur in a
special case when definitions (A)–(C) all coincide, namely when
Pσ1 ,σ2 (T2 = τ2(τ ∗1 )|T1 = τ ′) = δ(τ ′ − τ ∗1 ) in Equation (83)
in which case expectation value, most probable value and the
value defined through the nth-moment all agree. While this
does happen in simple models with a high degree of symmetry
between C1 and C2 [31], this will in more interesting cases not
be the case because the physical state will generically have a
different spread along the τ1 and τ2 axes [30, 32–34]. In our case
this means that the wave function

ψ
σ1 ,σ2
C2S|C1

(τ1, τ2) := (〈τ1, σ1| ⊗ 〈τ2, σ2| ⊗ 〈φS|) |ψphys〉 ,

for some physical system state |φS〉 ∈ H
phys
S , which can be viewed

as either a wave function in the C1 or C2 relational Schrödinger
picture, may have a different spread in τ1 than in τ2. In such a case
we will generally find τ1(τ2(τ ∗1 )) 6= τ ∗1 . This effect will occur in
the class of models considered here because physical states need
not have the samemomentum distribution in p1 and p2 (and thus
neither in τ1 or τ2) due to the presence of the system S. This
effect has also been demonstrated in a semiclassical approach in
various models in Bojowald et al. [32, 33] and Höhn et al. [34]
where one finds discrepancies of the order of h̄ between τ ∗1 and
τ1(τ ∗2 = τ2(τ ∗1 )).

In conclusion, this effect can be interpreted as a temporal
frame dependence of comparing clock readings according to
definition (B) [or (C)]: if from the perspective of the temporal
reference frame defined by C1 the clock C2 reads τ2(τ ∗1 )
(computed according to Equation 81) when C1 reads τ ∗1 , then
conversely from the perspective of the temporal reference frame
defined by C2 the clock C1 will not in general read τ ∗1 when C2

reads the value τ2(τ ∗1 ). That is, C1 and C2 will generally disagree
about the pairings of their clock readings.

Let us now also briefly comment on the notion of quantum
clock synchronization. Using the state dependent relation
Equation (82), we could ask for which state would yield τ2(τ ∗1 ) =
τ ∗1 so that C1 and C2 read the same value when C1 reads the value
τ ∗1 . Even stronger, we could ask whether there are states for which
τ2(τ1) = τ1 + const, for all τ1 ∈ R, so that, up to a constant
offset, C1 and C2 are always synchronized. Equation (81) tells us
that this is the case if Pσ1,σ2 (T2 = τ ′|T1 = τ1) = δ(τ ′ − τ1 −

const). Again, while this happens in simple models [31], this will
generically not happen for the models in the class which we are
studying on account of the above observations concerning the
frame dependence of comparing clock readings. Such a notion of
synchronization is therefore too strong and can generally not be
implemented. It will furthermore generally be frame dependent
too.

7.4.4. Comparing a System’s Evolution Relative to

Two Clocks
Returning to our original ambition, it is thus more useful to
employ the more general (frame dependent) clock comparison,
according to definition (B), in order to compare the evolutions
of S with respect to C1 and C2. Working in the relational
Schrödinger picture, if |ψσ1C2S|C1

(τ ∗1 )〉 is the initial state of C2S

from the perspective of C1, then according to Equation (69) the
corresponding initial state of C1S from the perspective of C2 is

(
θ(−σ1p̂1)⊗ IS

)
|ψ

σ2
C1S|C2

(τ2(τ
∗
1 ))〉

= R
σ2
S (τ2(τ

∗
1 )) ◦

(
R
σ1
S (τ ∗1 )

)−1
|ψ

σ1
C2S|C1

(τ ∗1 )〉 . (84)

We can then evaluate the ‘same’ reduced system observable

ICi ⊗ f̂
phys
S in the two states, where i = 1 when evaluated

relative to C2 and vice versa (cf. Corollary 4), in order to

compare the evolution of property f̂
phys
S relative to the two clocks

in different quantum states (which amount also to quantum
states of the clocks). To avoid confusion, we emphasize, that

ICi ⊗ f̂
phys
S , i = 1, 2, correspond to two different relational

Dirac observables F̂IC2⊗fS ,T1 (τ1) and F̂IC1⊗fS ,T2 (τ2) on the clock-
neutral physical Hilbert spaceHphys; in particular, the two are not
related by the TFC map 3σ1→σ2

S . Hence, by evaluating these two
reduced observables in the relational Schrödinger states related
via the TFC map 3σ1→σ2

S by Equation (84), we can compare two
genuinely distinct relational dynamics. The construction in the
relational Heisenberg picture is of course completely analogous.

In Höhn et al. [7] and Castro-Ruiz [47] a frame dependent
temporal non-locality effect was exhibited for idealized clocks
whose Hamiltonian is the unbounded momentum operator. For
example, when clock C2 is seen to be in a superposition of
two peaked states and in a product relation with S from the
perspective of C1, then C1S will generally be entangled as seen
from the perspective of C2 and undergo a superposition of time
evolutions. This effect applies here per overlap of the different
σ1- and σ2-sectors. It will be interesting to study how such a
frame dependent temporal locality affects the (potentially frame
dependent) comparison and synchronization of the clocks and
the comparison of the evolutions of S relative to C1 and C2

in different quantum states, corresponding to different choices
of the clock-neutral physical states. Such an exploration will
appear elsewhere.

Finally, these temporal frame changes and clock
synchronizations will be relevant in quantum cosmology.
For example, recently it was pointed out that singularity
resolution in quantum cosmology depends on the choice of clock
which one uses to define a relational dynamics [77]. The different
relational dynamics employed in Gielen and Menéndez-Pidal
[77] can be interpreted as different choices of reduced dynamics
in the sense of our relational Schrödinger/Heisenberg picture.
Temporal frame changes as developed here can in principle
be used to study the temporal frame dependence of the fate of
cosmological singularities more systematically.

8. CONCLUSIONS

In this work we demonstrated the equivalence of three
distinct approaches to relational quantum dynamics—relational
Dirac observables, the Page-Wootters formalism, and quantum
deparametrizations—for models described by a Hamiltonian
constraint in which themomentum of the system being employed
as a clock appears quadratically. Since this class of models
encompasses many relativistic settings, we have thereby extended
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our previous results of Höhn et al. [7] into a relativistic context.
A crucial ingredient in this extension has been a clock POVM
which is covariant with respect to the group generated by the
Hamiltonian constraint and is used to describe the temporal
reference frame defined by the clock. This choice differs from the
usual resort to self-adjoint clock operators in relativistic settings.

Owing to a superselection rule induced by the shape
of the Hamiltonian constraint across positive and negative
frequency modes, this equivalence, which we refer to as the
trinity of relational quantum dynamics, holds frequency sector
wise. Moreover, we further develop the method of temporal
quantum frame changes [7, 30–34, 47, 69] in this setting
to address the multiple choice problem. This method is
then used to explore an indirect self-reference phenomenon
that arises when transforming between clock perspectives
and to reveal the temporal frame and state dependence of
comparing or even synchronizing the readings of different
quantum clocks. This result adds to the growing list of
quantum reference frame dependent physical properties, such
as entanglement [70, 72, 74], spin [73], classicality [72] or
objectivity [79, 80] of a subsystem, superpositions [70, 72],
certain quantum resources [78], measurements [70, 76], causal
relations [47, 83], temporal locality [7, 47], and even spacetime
singularity resolution [77]. The temporal frame changes may
also be employed to extend recent proposals for studying time
dilation effects of quantum clocks [45, 136, 137] (see also
[137–140]). Furthermore, it would be interesting to expand
the temporal frame changes to cosmological perturbation
theory to study the temporal frame dependence of power
spectra [64, 65].

Importantly, the covariant clock POVM permitted us to
resolve Kuchař’s criticism that the Page-Wootters formalism
does not produce the correct localization probability for a
relativistic particle in Minkowski space [1]. Indeed, such
incorrect localization probabilities arise when conditioning on
times defined by the quantization of an inertial Minkwoski
time coordinate. We showed that conditioning instead on the
covariant clock POVM surprisingly produces a Newton-Wigner
type localization probability, which, while approximate and
not fully covariant, is usually regarded as the best possible
notion of localization in relativistic quantum mechanics [90,
94]. This result underscores the benefits of covariant clock
POVMs in defining a consistent relational quantum dynamics
[7, 44, 45, 96, 97].

In conjunction with our previous article [7], we have
thus resolved all three criticisms (a)–(c) (see Introduction)
that Kuchař raised against the Page-Wootters formalism in
Kuchař [1]. The Page-Wootters formalism is therefore a
viable approach to relational quantum dynamics. Through the
equivalence established by the trinity, it also equips the relational
observable formulation and deparametrizations with a consistent
conditional probability interpretation. In particular, relational
observables describing the evolution of a position operator
relative to a covariant clock POVM yield a Newton-Wigner type
localization in relativistic settings.
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83. Guérin PA, Brukner Č. Observer-dependent locality of quantum events.New
J Phys. (2018) 20:103031. doi: 10.1088/1367-2630/aae742

84. Zych M, Costa F, Ralph TC. Relativity of quantum superpositions. arXiv.
(2018) 180904999.

85. Barbado LC, Castro-Ruiz E, Apadula L, Brukner Č. Unruh effect for
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Functorial Evolution of QuantumFields
Stefano Gogioso*, Maria E. Stasinou and Bob Coecke

Department of Computer Science, University of Oxford, Oxford, United Kingdom

We present a compositional algebraic framework to describe the evolution of quantum
fields in discretised spacetimes.We show how familiar notions fromRelativity and quantum
causality can be recovered in a purely order-theoretic way from the causal order of events
in spacetime, with no direct mention of analysis or topology. We formulate theory-
independent notions of fields over causal orders in a compositional, functorial way. We
draw a strong connection to Algebraic Quantum Field Theory (AQFT), using a sheaf-
theoretical approach in our definition of spaces of states over regions of spacetime. We
introduce notions of symmetry and cellular automata, which we show to subsume existing
definitions of QuantumCellular Automata (QCA) from previous literature. Given the extreme
flexibility of our constructions, we propose that our framework be used as the starting point
for new developments in AQFT, QCA and more generally Quantum Field Theory.

Keywords: causality, quantum field theory, relativity, algebraic quantum field theory, quantum cellular automata

1 INTRODUCTION

Likemuch of classical physics, the study of Relativity and quantum field theory has deep roots in topology
and geometry. However, recent years have seen a steady shift from the traditional approaches to a more
abstract algebraic perspective, based on the identification of spacetime structure with causal order.

This new way of looking at causality finds its origin in a much-celebrated result by Malament [1],
itself based on previous work by Kronheimer, Penrose, Hawking, King and McCarthy [2, 3]. IfM is a
Lorentzian manifold, we say that M is future- (resp. past-) distinguishing iff two events x, y ∈ M
(i.e. two spacetime points) having the same exact causal future (resp. past) are necessarily identical1.
Given a Lorentzian manifold M, we can define a partial order ≤M between its events—the causal
order—by setting x ≤M y iff x causally precedes y in M, i.e. iff there exists a future-directed causal
curve—a smooth curve in M with everywhere future-directed time-like or light-like tangent
vector—from x to y. The 1977 result by Malament [1] can then be stated as follows.

Theorem 1: Let M and M′ be two Lorentzian manifolds, both manifolds being future-and-
past–distinguishing. The associated causal orders (M, ≤M) and (M′, ≤M′) are order-isomorphic if
and only if M and M′ are conformally equivalent.

While the result by Malament guarantees that future-and-past–distinguishing manifolds (up to
conformal equivalence) can be identified with their causal orders, it does not provide a
characterization of which partial orders arise as causal orders on manifolds (or restrictions
thereof to manifold subsets). This lack of exact correspondence between topology and order is
the motivation behind many past and current lines of enquiry. Notable mention in this regard is
deserved by the work of [4, 5], which aims to formulate causal order in terms of partial orders and
domain theory. Within that framework, a complete characterization of which partial orders arise as
the causal orders of Lorentzian manifolds is still an open question.
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A different approach to the order-theoretic study of
spacetime is given by the causal sets research program (cf [6,
7]). A causal set is a poset which is locally finite, i.e. such that for
every x, y ∈ C the subset {z ∈ C

∣∣∣∣x ≤ z ≤ y} is finite.2 Causal sets
arise as discrete subsets of Lorentzian manifolds (under the causal
order inherited by restriction) and a fundamental pursuit for the
community is a characterisation of the large-scale properties of
spacetime as emergent from a discrete small-scale structure. In
particular, the question whether a causal set can always be
(suitably) embedded as a discrete subset of a Lorentzian
manifold is central to the programme and—as far as we are
aware—one which is still to be completely answered [7].

When it comes to incorporating quantum fields into the
spacetimes, efforts have mostly been focused in three directions:
algebraic approaches, topological approaches and quantum
cellular automata.

The algebraic approaches take a functorial and sheaf-
theoretic view of quantum fields, studying the local structure
of fields through the algebras of observables—usually C*-algebras
or von Neumann algebras—over the regions of spacetime.
Prominent examples include Algebraic Quantum Field Theory
(AQFT) [9, 10] and the topos-theoretic programmes [11, 12].
Presheaves are special functors used to associate (field) data to
spacetime regions, in a way which is guaranteed to respects
causality and locality constraints imposed by space-time
topology.We will take a deeper look at this approach in Section 5.

The topological approaches focus instead on global aspects
of relativistic quantum fields, foregoing any possibility of
studying local structure by requiring that field theories be
topological, i.e. invariant under large scale deformations of
spacetime. The resulting Topological Quantum Field Theories
(TQFTs) [13–15] have achieved enormous success in fields such
as condensed matter theory and quantum error correction. Like
AQFT, TQFTs have a categorical formulation as functors from a
category of spacetime “pieces” to categories of Vector spaces and
algebras. The difference is in the nature of those “pieces”: in
AQFT a spacetime is given and the order structure of its regions is
considered; in TQFT, on the other hand, (equivalence classes of)
basic topological manifolds are given, which can be combined
together to form myriad different spacetimes.

The approaches based on Quantum Cellular Automata
(QCA) [16–18], finally, attempt to tame the issues with the
formulation of quantum field theory by positing that full-
fledged quantum fields in spacetime can be understood as the
continuous limit of much-more-manageable theories, dealing
with quantum fields living on discrete lattices and subject to
discrete time evolution (known as Quantum Cellular Automata).

In this work, we propose to use tools from category theory
to unify key aspects of the approaches above under a single
generalized framework. Specifically, our work is part of an effort
to gain an operational, process-theoretic understanding of the
relationship between quantum theory and Relativistic causality

[8, 19–21]. Our key contribution, across the next four sections,
will be the formulation of a functorial and theory-independent
notion of field theory based solely on the order-theoretic
structure of causality. To exemplify the flexibility of our
construction, in Section 5 we will build a strong connection to
Algebraic Quantum Field Theory, based on a sheaf-theoretic
formulation of states over regions. In Section 6, finally, we will
formulate a notion of cellular automaton which encompasses and
greatly generalizes notions of QCA from existing literature.

2 CAUSAL ORDERS

In this work, we will consider posets as an abstract model of
causally well-behaved spacetimes. This means that we will be
working in the category Pos of posets and monotone maps
between them, with Malament’s result [1] showing that future-
and-past–distinguishing conformal Lorentzian manifolds embed
into Pos. To highlight the intended relationship to spacetimes, we
will refer to partial orders as causal orders for the remainder of
this work.

Definition 2: By a causal order we mean a poset Ω � (|Ω|, ≤),
i.e. a set |Ω| equipped with a partial order ≤ on it. We refer to the
elements of Ω as events. Given two events x, y ∈ Ω we say that x
causally precedes y (equivalently that y causally follows x) iff x ≤ y.
We say that x and y are causally related iff x ≤ y or y ≤ x. A causal
sub-order Ω′ of a causal order Ω is a subset

∣∣∣∣Ω′∣∣∣∣4|Ω| endowed
with the structure of a poset by restriction.3

As we now proceed to demonstrate, several familiar
concepts from Relativity can be defined in a purely
combinatorial manner on partial orders.

2.1 Causal Paths
Definition 3: Let Ω be a causal order and let x, y ∈ Ω be two
events. A causal path from x to y is a maximal totally ordered
subset c4Ω such that x � min c and y � max c. Maximality of
the subset c4Ω here means that there is no total order c′4Ω
strictly containing gamma and such that x � min c′ and
y � max c′. We write c : x⇝ y to denote that γ is a causal
path from x to y.

The causal diamond from x to y in a causal order Ω is the
union of all causal paths x⇝ y inΩ. Furthermore, causal paths in
Ω can be naturally organized into a category as follows:

• The objects are the events x ∈ Ω;
• The morphisms from x to y are the paths x⇝ y;
• The identity morphism on x is the singleton path {x} : x⇝ x;
• Composition of two paths c : x⇝ y and ξ : y⇝ z is the set-
theoretic union of the subsets c, ξ4Ω:

ξ+c :� (ξ ∪ c) : x⇝ z. (1)

2The local finiteness condition for a causal set can equivalently be stated as the
requirement that the partial order arises as the reflexive-transitive closure of a non-
transitive directed graph, its Hasse diagram (see e.g. [8]). 3I.e. such that for all x, y ∈

∣∣∣∣Ω′∣∣∣∣ we have that x ≤ y in Ω′ if and only if x ≤ y in Ω.

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 5342652

Gogioso et al. Functorial Evolution of Quantum Fields

109

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Definition 4: LetΩ be a causal order and let x ∈ Ω be an event.
The causal future J+(x) of x is the set of all events y which causally
follow it:

J+(x) :� {y ∈ Ω
∣∣∣∣x ≤ y}. (2)

Similarly, the causal past J−(x) of x is the set of all events y which
causally precede it:

J−(x) :� {y ∈ Ω
∣∣∣∣y ≤ x}. (3)

We also define causal future and past for arbitrary subsets A4Ω
by union:

J+(A) :� ∪
x∈A

J+(x) J−(A) :� ∪
x∈A

J−(x). (4)

Remark 5: A causal order Ω is automatically future-and-
past–distinguishing. To see this, assume that J+(x) � J+(y) for
some x, y ∈ Ω: then both x ∈ J+(x) � J+(y), implying y ≤ x, and
y ∈ J+(y) � J+(x), implying x ≤ y, so that x � y by antisymmetry
of the partial order ≤. The assumption that J−(x) � J−(y)
analogously implies that x � y.

Definition 6: LetΩ be a causal order and let x ∈ Ω be an event.
By a causal path c : x⇝ +∞ (resp. c : −∞⇝ x) we denote a
maximal totally ordered subset c4Ω such that x � min c (resp.
x � max c). If Ω has a global maximum (resp. global minimum),
then we denote it by +∞ (resp. −∞) for consistency with our
previous definition of causal paths, otherwise the symbol +∞ (resp.
−∞) is never used to denote an actual element of C.

The causal future (resp. causal past) of an event x is the union
of all causal paths x⇝ +∞ (resp. −∞⇝ x).

2.2 Space-Like Slices
Definition 7: Let Ω be a causal order and let A4Ω be any subset.
The future domain of dependence D+(A) of A is the subset of all
events x ∈ Ω which “necessarily causally follow A,” in the sense
that every causal path −∞⇝ x intersects A:

D+(A) :� {x ∈ Ω |∀c : −∞⇝ x. c∩A≠ 0/}. (5)

The past domain of dependence D−(A) of A is the subset of all
events x ∈ Ω which “necessarily causally precede A”, in the sense
that every causal path x⇝ +∞ intersects A:

D−(A) :� {x ∈ Ω |∀c : x⇝ +∞. c∩A≠ 0/}. (6)

The domains of dependence of a subset A are related to its past
and future by the following two Propositions.

Proposition 8: Let Ω be a causal order and let A4Ω be any
subset. Then D+(A)4J+(A) and D−(A)4J−(A).

Proof: Let x ∈ D+(A) be any event in the future domain of
dependence of A. The set of causal paths −∞⇝ x is necessarily
non-empty, because there must be at least one such path
extending the singleton path {x} : x⇝ x. Let c : −∞⇝ x be
one such path. Because x ∈ D+(A), c must intersect A at some
point y ≤ x, and we define c′ :� c∩ J+({y})≠ 0/. By definition,
y � min c′. Because J+({y}) is upward-closed, x � max c′ and c′ :

y⇝ x is such that c′4J+({y})4J+(A), so we conclude that
x ∈ J+(A). The proof that D−(A)4J−(A) is analogous. □

Proposition 9: Let Ω be a causal order and let A4Ω be any
subset. If B4D+(A) then J+(B)4J+(A) and J−(B)4J−(A)∪ J+(A).
Dually, if B4D−(A) then J−(B)4J−(A) and J+(B)4J−(A)∪ J+(A).

Proof: Without loss of generality, assume B4D+(A)—the case
B4D−(A) is proven analogously. From Proposition 8 we have that
B4D+(A)4J+(A), so we conclude that J+(B)4J+(A) by upward-
closure of J+(A). Now consider x ∈ J−(B). Let c : x⇝ y be any path
with y ∈ B and let c′ : −∞⇝ y be any path extending c. Because
B4D+(A), the intersection c′ ∩A contains at least some point z.
Because c′ is totally ordered, we have two possible cases: z ≤ x and
z ≥ x. If z ≤ x, then c′ ∩ J+({z})∩ J−({x}) : z⇝ x shows that
x ∈ J+(A). If z ≥ x, then c′ ∩ J−({z})∩ J+({x}) : x⇝ z shows that
x ∈ J−(A). □

Definition 10: LetΩ be a causal order.We say that two events x, y
are space-like separated if they are not causally related, i.e. if neither
x ≤ y nor y ≤ x. Consequently, we define a (space-like) slice Σ inΩ to be
an antichain, i.e. a subset Σ4Ω such that (Σ, ≤) is a discrete partial
order (equivalently, any two distinct x, y ∈ Σ are space-like separated).

Definition 11: Let Ω be a causal order and let A4P(Ω) be a
collection of subsets ofΩ. We say that the subsets inA are space-like
separated if the following conditions holds for all distinct A,B ∈ A:

A∩(J+(B)∪ J−(B)) � 0/. (7)

In particular, a space-like slice is the union of a collection of
space-like separated singleton subsets. See Figure 1 for examples.

More than diamonds or paths, slices are the focus of this work.
Space-like slices are a generalization of space-like surfaces from
Relativity: the term “slice” is used here in place of “surface”
because the latter traditionally implies some topological
conditions.

Definition 12: LetΩ be a causal order. The category of all slices
on Ω, denoted by Slices(Ω), is the strict partially monoidal
category [22] defined as follows.

• Objects of Slices(Ω) are the slices of Ω.
• The category is a poset and the unique morphism from a
space-like slice Σ to another space-like slice Γ is denoted Σ9Γ
if it exists. Specifically, we say that Σ9Γ if and only if
Γ4D+(Σ), i.e. iff Γ lies entirely into the future domain of
dependence of Σ. See Figures 2, 3 for examples.

• The monoidal product on objects Σ⊗ Γ is only defined when Σ
and Γ are space-like separated, in which case it is the disjoint
union Σk Γ.

• The unit for the monoidal product is the empty space-like
slice 0/4Ω.

• The partial monoidal product on objects extends to morphisms
because whenever Σ′4D+(Σ) and Γ′4D+(Γ)—i.e. whenever
Σ9Σ′ and Γ9Γ′—we necessarily have:

Σ′k Γ′4D+(Σ)∪D+(Γ)4D+(Σk Γ), i.e. Σ⊗ Γ9Σ′⊗ Γ′.
(8)
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The partial monoidal product is strict, i.e. strictly associative and
unital4 when all products are defined. The partial monoidal product is
also commutative, i.e. it is symmetric (wherever defined) with an
identity Σ⊗ Γ � Γ⊗Σ as the symmetry isomorphism.

The order relation Σ9Γ on slices has been defined in such a way
as to ensure that the field state local to the codomain slice Γ will be
entirely determined by evolution and marginalization of the field
state on the domain slice Σ. In particular, the definition is such that
any sub-slice Σ′4Σ necessarily satisfies Σ9Σ′, since the field state
on Σ′ can be obtained from the field state on Σ by marginalization/
discarding. The connection to marginalisation will be discussed in
further detail in Section 4.3 below.

2.3 Diamonds and Regions
LetΩ be a causal order. If x, y are two events in Ω, the causal

diamond from x to y inΩ is the causal sub-order (◇x,y, ≤)-Ω
defined as follows:

◇x,y :� {z ∈ Ω
∣∣∣∣x ≤ z ≤ y} � ∪

c:x⇝y
c. (9)

Definition 14: LetΩ be a causal order. A region inΩ is a causal
sub-order (R, ≤) - Ω which is convex, i.e. one such that for all
events x, y ∈ R the causal diamond from x to y inΩ is a subset of R
(i.e. R contains all paths c : x⇝ y in Ω).

Definition 14 is the order-theoretic incarnation of the
requirement that causal diamonds generate the topology of
Lorentzian manifolds: we could have equivalently stated it as
saying that regions in Ω are all the possibly unions of causal
diamonds inΩ (including the empty one). A special case of region
of particular interest is the region between two slices Σ9Γ.

Definition 15: Let Ω be a causal order and consider two slices
Σ9Γ. We define the region between Σ and Γ as follows:

◇Σ,Γ :� ∪
x∈Σ
∪
y∈Γ

◇x,y (10)

In particular, a causal diamond◇x,y is the region between the slices
{x} and {y}. More generally, a region between slices Σ and Γ is the
intersection ◇Σ,Γ � J+(Σ)∩ J−(Γ) of their future and past respectively.

FIGURE 2 | (A): two slices Σ, Γ such that Σ9Γ. (B): two slices Σ, Γ such that Σ9&doublehyphen; 9pt/ Γ, highlighting a past-directed path γ starting from an event
of Γ and not intersecting Σ at any point.

FIGURE 1 | (A): the Hasse diagram for a causal order on six events {a,b, c,d, e, f}. (B): the maximal slices for the causal order highlighted (all other slices can be
obtained as subsets of the maximal slices).

4I.e. we have that Σ⊗∅ � Σ � ∅⊗Σ, for all slices Σ.
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The slices Σ and Γ bounding the region ◇Σ,Γ can be obtained
respectively as the sets of its minima Σ � min◇Σ,Γ and of its
maxima Γ � max◇Σ,Γ. As a special case, a slice Σ is the
region between Σ and Σ. Conversely, every closed bounded
region R—and in particular every finite region—is in the form
R � ◇minR,maxR. See Figure 4 for examples.

3 CATEGORIES OF SLICES

Because we didn’t impose any topological constraints on the slices, it
is possible that the category Slices(Ω)will, in practice, contain objects
which are too irregular or exotic for physical fields to be defined over
(such as fractal slices with low topological dimension). To obviate this
issue, we consider more general categories of slices on a given causal
order: this will allow us to restrict our attention to slices with any
properties we desire, as long as we retain enough slices to reconstruct
the structure of the causal order Ω, both 1) globally and 2) locally.

No requirement is made for all products that exist in Slices(Ω)
to also exist on members of a more general category of slices:
it is the case that certain properties desirable in practice may
not be closed under arbitrary union of space-like separated
slices themselves satisfying the property.5 However, we
impose the requirement 3) that these more general
categories of slices be partially monoidal sub-categories of
Slices(Ω).

Definition 16: Let Ω be a causal order. A category of slices on
Ω is the full sub-category C of Slices(Ω) defined by a given set

FIGURE 4 | (A): the region between two slices on the honeycomb lattice. (B): an unbounded (necessarily infinite) region on the honeycomb lattice.

FIGURE 3 | (A): the Hasse diagram for a causal order. (B): the maximal slices for the causal order highlighted. (C): the category of all slices for the causal order.

5An example of this phenomenon is given by constant-time partial Cauchy slices in
Minkowski spacetime: the union of two disjoint constant-time partial Cauchy slices
having the same time parameter yields another constant-time partial Cauchy slice,
but the union of two space-like separated constant-time partial Cauchy slices
having different time parameters does not yield a constant-time partial Cauchy
slice as a result.
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obj(C) of slices chosen in such a way that the following three
conditions hold.

(1) For any two events x, y ∈ Ω with x ≤ y, there exist slices
Σ, Γ ∈ obj(C) such that x ∈ Σ, y ∈ Γ and Σ9Γ.

(2) If Σ, Γ and Δ are three slices in C, then the restriction
(Δ∩◇Σ,Γ) of Δ to the region ◇Σ,Γ is also a slice in C.

(3) The category of slices C is a partially monoidal subcategory of
Slices(Ω). In particular, 0/ ∈ obj(C) and whenever Σ⊗ Γ exists
in C for some Σ, Γ ∈ obj(C) then Σ⊗ Γ also exists in Slices(Ω)
(Associativity and unitality of ⊗ are strict in C as they are in
Slices(Ω)).

In particular, Slices(Ω) is itself a category of slices on Ω.

Condition (2) in the definition above tells us that we can talk
about regions directly within a given category C of slices, without
first having to reconstruct the causal order Ω: this will form the
basis of the connection to AQFT in Section 5 below.

As an example of particularly well-behaved slices, we
define a notion of Cauchy slices—akin to that of Cauchy
surfaces from Relativity—and remark that any “foliation” of a
causal order in terms of such slices gives rise to what is
arguably the simplest non-trivial example of category of
slices.

Definition 17: A slice Σ on Ω is a Cauchy slice if every causal
path c : −∞⇝ +∞ in Ω intersects Σ at some (necessarily unique)
event. Cauchy slices are in particular maximal slices. A
category of Cauchy slices on Ω is a category C of slices on Ω
such that every slice Σ ∈ obj(C) is a subset Σ4Γ of some Cauchy
slice Γ ∈ obj(C).

Proposition 18: A foliation on a causal order Ω is a set F of
Cauchy slices on Ω such that:

(1) The slices in F are totally ordered according to 9;
(2) Every event x ∈ Ω is contained in some slice Σ ∈ F ;
(3) The slices in F are pairwise disjoint.

If F is a foliation, write CauchySlices(F ) for the full sub-
category of Slices(Ω) generated by all slices which are subsets of
some Cauchy slice in F . Then CauchySlices(F ) is a category of
Cauchy slices on Ω.

Proof: Let CauchySlices(F ) denote the full sub-category of
Slices(Ω) generated by all slices which are subsets of some
Cauchy slice.

For any two events x ≤ y in Ω, let
Σ, Γ ∈ obj(CauchySlices(F )) be two Cauchy slices such that
x ∈ Σ and y ∈ Γ, the existence of such slices guaranteed by
the definition of foliation. Because the foliation is totally
ordered, we have that Σ9Γ or Γ9Σ (or both, if Σ � Γ and
x � y). If x � y, either works, while if x < y then necessarily
Σ9Γ. Either way, condition (1) for CauchySlices(F ) to be a
category of slices is satisfied. □

Let Σ′, Γ′ and Δ′ be three slices, respectively contained in three
Cauchy slices Σ, Γ and Δ inside the foliation. Because of total
ordering and disjointness of slices in F , the only instance in
which Δ∩◇Σ,Γ ≠ 0/ is when Σ9Δ9Γ. In this case,

Δ∩◇Σ,Γ � Δ ∈ obj(Cauchy Slices(F )). Otherwise,
Δ∩◇Σ,Γ � 0/ ∈ obj(Cauchy Slices(F )). Either way, condition
(2) for Cauchy Slices(F ) to be a category of slices is satisfied
when Σ, Γ and Δ are Cauchy slices. This result immediately
generalises to Σ′, Γ′ and Δ′: we have that
Δ′ ∩◇Σ′,Γ′4Δ∩◇Σ,Γ4Δ, so that Δ′ ∈ obj(Cauchy Slices(F ))
and condition (2) for Cauchy Slices(F ) to be a category of slices
is satisfied.

Finally, if Σ, Γ are two slices such that Σ⊗ Γ is defined in
Cauchy Slices(F ), then Σ, Γ are necessarily disjoint subsets of the
same Cauchy sliceΔ. It is then immediate to conclude that condition
(3) for Cauchy Slices(F ) to be a category of slices is satisfied.

3.1 The category of Causal Orders
As objects, causal orders have been defined simply as posets.
However, causal orders are note simply posets, and this should be
reflected in the kind ofmorphisms that can be used to related them to
one another. Malament’s result [1] may seem at first to indicate that
order-preserving maps are the correct choice, but upon closer
inspection one realises that the result itself only talks about order-
preserving isomorphisms, giving no indication about other maps.

A prototypical example of the behavior we wish to avoid is
that where Ω′- Ω is a sub-poset such that x ≤ y in Ω for some
x, y ∈ Ω′ but x ≤/ y in Ω′. The issue above is the reason behind
the rather specific formulation of the notion of causal sub-order
in Definition 2, prompting us to choose a special subclass of
order-preserving maps as morphisms between causal orders.

Definition 19: The category CausOrd of causal orders is the
symmetric monoidal category defined as follows:

• Objects of CausOrd are causal orders, i.e. posets.
• Morphisms Ω→Θ in CausOrd are the order-preserving
functions f : Ω→Θ such that we have x < y in Ω
whenever we have f (x)< f (y) in Θ.

• The monoidal product on objects Ω⊗Θ is the (forcedly)
disjoint union ΩkΘ :� Ω × {0}∪Θ × {1}.

• The unit for the monoidal product is the empty causal order 0/.
• The monoidal product extends to the disjoint union of
morphisms. If f : Ω→Ω′ and g : Θ→Θ′, then the
monoidal product f ⊗ g : Ω⊗Θ→Ω′ ⊗ Θ′ is defined as
follows:

f ⊗ g :� f k g � (x, i)1{ (f (x), 0) ∈ Ω′ × {0} if i � 0
(g(x), 1) ∈ Θ′ × {1} if i � 1

.

(11)

The monoidal product is not strict nor commutative, but
symmetric under the symmetry isomorphisms s :
ΩkΘ→ΘkΩ defined by s(x, i) � (x, 1 − i).

It is easy to check that the causal sub-orders Ω′ of a causal
order Ω according to Definition 2 are all sub-objects Ω′- Ω in
the category CausOrd, so that the notion of causal sub-order is
consistent with the usual notion of categorical sub-object. As
discussed above, the regions in a causal order Ω are examples of
causal sub-orders, but not all sub-orders are regions: e.g. paths are
always sub-orders but not necessarily regions. In general, if we
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haveΩ′-Ω then it is not necessary forΩ′ to be convex, i.e. it is
not necessary for Ω′ to contain all paths x ⇝ y in Ω for any two
events x, y ∈ Ω′: in the sense, the causal sub-order Ω′ can
“coarsen” the causal order Ω by dropping events “in between”
events of the latter. As the following proposition shows, this
“coarsening” of causal orders is the only other case we need to
consider when talking about causal sub-orders.

Definition 20: LetΩ be a causal order and let the morphism i :
Ω′- Ω be a causal sub-order of Ω. We say that the morphism i :
Ω′-Ω is a region if the image i(Ω′)4Ω is a region inΩ. We say
that the morphism i : Ω′ - Ω is a coarsening if the image
i(Ω′)4Ω is such that for all x ≤ y ∈ Ω there exist x′, y′ ∈ Ω′ with
i(x′)≤ x ≤ y ≤ i(y′).

Proposition 21: LetΩ be a causal order and let i :Ω′-Ω be a
causal sub-order of Ω. Then i factors (essentially) uniquely as i �
r+f for some region r : Θ - Ω and some coarsening f : Ω′ - Θ.
Proof: Let Θ be the region of Ω obtained as the union of the

causal diamonds ◇x,y for all x, y ∈ i(Ω′). Let r : Θ - Ω be the
injection of Θ into Ω as a sub-poset and let f : Ω′ - Θ be the
restriction of the codomain of i to Θ: clearly i � r+f , r is a region
and f is a coarsening (because of how Θ was constructed).
Now let Θ′ be such that r′ : Θ′- Ω is a region and f ′ : Ω′ -

Θ′ is a coarsening with i � r′+f ′: to prove essential uniqueness,
we want to show that there is some isomorphism θ : Θ′→Θ
such that f � θ+f ′ and r′ � r+θ. Because r′+f ′ � i, the image
r′(Θ′) is the regionΘ itself, so that the restriction θ : Θ′→Θ of
the codomain of r′ to Θ is an isomorphism with r′ � r+θ. Now
we have r+f � i � r′+f ′ � r+(θ+f ′): but r is a monomorphism
(i.e. it is injective), so necessarily f � θ+f ′. □

The category CausOrd also has epi-mono factorization,
i.e. every morphism f : Ω′→Ω can be factorised

(essentially) uniquely as an epimorphism (i.e. a surjective
map) q : Ω′→Θ and a monomorphism (i.e. an injective
map) i : Θ - Ω. We have already adopted the
nomenclature of causal suborder for the latter form of
morphism, while we will henceforth use causal quotient to
refer to the former. Causal quotients are surjective
morphisms which “collapse” several events into one, in a
way which respects the causal order: as an example, a snippet
of the causal quotient q : H→D from the (infinite)
honeycomb lattice to the (infinite) diamond lattice is
shown in Figure 5.

If Σ is a slice in Ω, we can define its pullback f *(Σ) to be the
causal suborder of Θ generated by { x ∈ Θ

∣∣∣∣ f (x) ∈ Σ }, i.e.
largest causal sub-order of Θ mapped onto Σ. The pullback
of a slice Σ has a rather simple structure: the slices Γ in the
pullback f *(Σ) are exactly the disjoint unions Γ :� kx∈ΣΓx for
all possible choices (Γx)x∈Σ of slice sections of f over the
individual events x of Σ.

(Γx)x∈Σ ∈ ∐
x∈Σ

obj(Slices(f *({x}))) (12)

A depiction of the pullback under the causal quotient q : H→D
described above can be seen in Figure 6.
If C is a category of slices onΩ, we can define its pullback along

f to be the full sub-category f *(C) of Slices(Θ) spanned by all
slices Γ in Θ such that Γ ∈ obj(Slices(f *(Σ))) for some
Σ ∈ obj(C). The relationship 9 between slices in pullbacks is
a little complicated and its full characterization is left to
future work.

Remark 22: The two notions of pullback defined above—for
slices and for categories of slices—are related by the observation

FIGURE 5 | Causal quotient from the honeycomb lattice to the diamond lattice. The pre-images of three events from the diamond lattice are highlighted.
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that Slices(f *(Σ)) � f *(Slices(Σ)) for any slice Σ of Ω (which can
equivalently be seen as a causal sub-order Σ - Ω).

4 CASUAL FIELD THEORIES

In the previous Section, we have defined several commonplace
notions from Relativity in the more abstract context of causal
orders. In this Section, we endow our causal order with fields,
living in an appropriate symmetric monoidal category.

4.1 Categories for Quantum Fields
Depending on the specific applications, there are many
symmetric monoidal categories available to model quantum
fields.

• If the context is finite-dimensional, quantum fields can be
taken to live in the category CPM[fHilb] of finite-
dimensional Hilbert spaces and completely positive maps
between them.

• If the context is finite-dimensional and super-selected
systems are of interest, quantum fields can be taken to live
in the category CP*[fHilb] � fC*alg of finite-dimensional
C*-algebras and completely positive maps between them.

• If the context is finite-dimensional, an even richer
playground available for quantum fields is the category
Split[CPM[fHilb]]: this is the Karoubi envelope of the
category CPM[fHilb], containing CP*[fHilb] and a
number of other systems of operational interest (such as
fixed-state systems and constrained systems, see e.g. [23]).

• If the context is infinite-dimensional, e.g. in the case of
AQFT [10, 11], the categories usually considered for
quantum fields are the category Hilb of Hilbert spaces
and bounded linear maps, the category C*alg of C*-
algebras and its subcategories W*alg of W*-algebras
(sometimes known as “abstract” von Neumann algebras)
and vNA of (concrete) von Neumann algebras.

• The categories Hilb, C*alg, W*alg and vNA have some
annoying limitations, so in an infinite-dimensional
context one can alternatively work with hyperfinite
quantum systems [24], which incorporate infinities and
infinitesimals to offer additional features—such as duals,
traces and unital Frobenius algebras—over plain Hilbert
spaces and C*-algebras.

The framework we present here is agnostic to the specific choice
of process theory (aka symmetric monoidal category) for quantum
fields. In fact, it is agnostic to the specific physical theory considered
for the fields: any causal process theory can be considered.

4.2 Causal Field Theories
Let Ω be a causal order. A causal field theory Ψ on Ω is a

monoidal functor Ψ : C→D from a category C of slices on Ω to
some symmetric monoidal categoryD, which we refer to as the field
category.

Remark 24: It may sometimes be desirable to add a
requirement of injectivity on objects for the functor Ψ . This has
two main motivations, one of physical character and one of
mathematical character. Physically, injectivity means that the
field spaces corresponding to distinct events have distinct
identities (although they can be isomorphic). Mathematically,
injectivity means that the image of the functor is itself a sub-
category of D, matching the style used by other works on
compositional causality [8, 19, 20, 23]. While we do not require
this as part of our definition, we will take care for the constructions
hereafter to be sufficiently general to accommodate the possibility
that such a requirement be imposed.
We now ask ourselves: what physical information does the

functorΨ encode? On objects,Ψ associates each space-like slice Σ
to the space Ψ(Σ) of fields over that slice: every point in Ψ(Σ) is a
valid initial condition for field evolution in the future domain of
dependence for Σ.

Remark 25: If Σ is finite and the singleton slices {x} for the
individual events x ∈ Σ are all in the chosen category C of slices,

FIGURE 6 | A slice Σ on the diamond lattice and three maximal slices Γ, Γ′ and Γ′′ in its pullback qp(Σ) on the honeycomb lattice.
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then the action of Ψ on Σ always factorizes into the tensor product
of its action on the individual events:

Ψ(Σ) � ⊗
x∈Σ

Ψ({x}) (13)

On morphisms, Ψ associates Σ9Γ to a morphism Ψ(Σ)→Ψ(Γ):
this is a specification of how the field evolves from Σ to Γ, i.e. this
defines the map sending a field state

∣∣∣∣ϕ〉 over the initial sliceΨ(Σ)
to the evolved field state Ψ(Σ9Γ)∣∣∣∣ϕ〉 over the final slice Ψ(Γ).
This identification of functorial action with field evolution is the
core idea of our work. In particular, it explains our specific
definition of morphisms in Slices(Ω), and hence in all categories
of slices: Σ9Γ if and only if the field data on Σ is sufficient to
derive the field data on Γ, assuming causal field evolution.
Monoidality of the functor on objects says that the space of
fields on the union of disjoint slices is the monoidal
product—the tensor product, when working in the familiar
linear settings of Hilbert spaces, C*-algebras, von Neumann
algebras, etc.—of the spaces of fields on the individual slices.
Note that this requirement is stronger than the requirement
imposed by AQFT, where field algebras over space-like
separated diamonds are only required to commute as sub-
algebras of the global field algebra, not necessarily to take the
form of a tensor product sub-algebra.
Functoriality and monoidality on morphisms have some

interesting consequences, which we now discuss in detail. Let
Σ9Σ′ and Γ9Γ′ for a pair of space-like separated slices Σ and Γ
and another pair of space-like separated slices Σ′ and Γ′.
Consider the field evolution between the two disjoint unions
of slices:

Ψ((Σ⊗ Γ)9(Σ′ ⊗ Γ′)) : Ψ(Σ)⊗Ψ(Γ)→Ψ(Σ′)⊗Ψ(Γ′) (14)

Monoidality on morphisms implies that the field evolution above
factors as the product of the individual field evolutions
Ψ(Σ)→Ψ(Σ′) and Ψ(Γ)→Ψ(Γ′):

Ψ((Σ⊗ Γ)9(Σ′ ⊗ Γ′)) � Ψ(Σ9Σ′)⊗Ψ(Γ9Γ′) (15)

This may look surprising at first, but it becomes entirely natural
upon observing the following.

Proposition 26: Let Ω be a causal order. If Σ and Γ are space-
like separated slices inΩ and Σ9Σ′, then Σ′ and Γ are also space-
like separated slices.
Proof: If Σ and Γ are space-like separated, then

Γ∩ (J+(Σ)∪ J−(Σ)) � ϕ. Because Σ9Σ′, furthermore,
Proposition 9 tells us that J+(Σ′)∪ J−(Σ′)4J+(Σ)∪ J−(Σ). We
conclude that Γ∩(J+(Σ′)∪ J−(Σ′)) � 0/, i.e. that Σ′ and Γ are also
space-like separated. □

Proposition 26 above tells us that in our factorization scenario
the entire region between Σ and Σ′ on one side and the entire
region between Γ and Γ′ on the other side are space-like
separated. Thus any causal field evolution from Σ⊗ Γ to
Σ′ ⊗ Γ′ would physically be expected to factor: this can be seen
as a manifestation of the principle of locality for field theories,
sometimes also known as “clustering.”

Remark 27: Please note that the principle of locality obtained
above only implies that the evolution of fields must factorize over

space-like separated regions. This imposes no constraints on the
field state, which can be any state of the space of fields. In
particular, if the field category has entanglement (e.g., categories
of Hilbert spaces with the usual tensor product) then the field state
can entangle space-like separated regions, while field evolution
cannot.

4.3 Causality and No-Signalling
Because any category C of slices on a causal order Ω is a
partiallymonoidal subcategory of Slices(Ω), in particular it necessarily
contains the empty slice (the monoidal unit). We define the following
family of effects, indexed by all slices Σ ∈ obj(C):

By monoidality we have that is some scalar in the field category
D and that the family respects the partial monoidal structure:

By functoriality, furthermore, the family of effects above is
respected by the image of the functor:

This means that the family of effects defined above is
an environment structure and that—as long as injectivity of Ψ is
imposed—the image of the causal field theory Ψ is a causal
category [19, 20].6 Physically, this means that the field
evolution happens in a no-signalling way: if the
effects are used as discarding maps—generalizing
the partial traces of quantum theory—then the field state over
a given slice Σ does not depend on the field state over slices which
are in the future of Σ or are space-like separated from Σ.

This emergence of causality and no-signalling from
functoriality is in fact a consequence of a breaking of time
symmetry which happened in the very definition of the
ordering between slices. Indeed, consider the “time-reversed”
causal order Ωrev , obtained by reversing all causal relations in
Ω (i.e. y ≤ x inΩrev if and only if x ≤ y inΩ). The slices forΩrev are
exactly the slices for Ω, i.e. the categories of all slices Slices(Ωrev)
and Slices(Ω) have the same objects. If time symmetry were to
hold, we would expect the arrows in Slices(Ωrev) to be exactly the
reverse of the arrows in Slices(Ω). However, the conditions
defining the arrows in both categories are as follows:

• Σ9Γ in Slices(Ω) iff Γ4D+(Σ) in Ω;
• Γ9Σ in Slices(Ωrev) iff Σ4D+(Γ) in Ωrev ,
i.e. iff Σ4D−(Γ) in Ω.

The two conditions that Γ4D+(Σ) and Σ4D−(Γ), both in Ω,
are not in general equivalent: this shows that time symmetry is

6We have taken the liberty to extend the definition of environment structures to
partially monoidal categories, such as the image of a Ψ injective on objects under
the partial monoidal product induced by the partial monoidal product of the
domain category C.
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broken by our definition of the relationship between slices,
ultimately leading to the emergence of causality and no-
signalling constraints on functorial evolution of quantum fields.

5 CONNECTION WITH ALGEBRAIC
QUANTUM FIELD THEORY

The definition of causal field theories looks somewhat similar to
that of Topological Quantum Field Theories (TQFTs) as
functors from categories of cobordism to categories of vector
spaces. The big difference between the causal field theories we
defined above and TQFTs is that the latter take the basic
building blocks for field theories to be defined over arbitrary
topological spacetimes, while the former define the evolution
over a single given spacetime. This difference is an aspect of a
general abstract duality between compositionality and
decompositionality.

In compositionality, larger objects are created by composing
together given elementary building blocks in all possible ways:
this is the approach behind an ever growing zoo of process
theories (e.g., see [25] and references therein). In
decompositionality, on the other hand, larger objects are given
as a whole and subsequently decomposed into smaller
constituents, with composition of the latter constrained by the
context in which they live: this approach, based on partially
monoidal structure, was recently introduced by [22] as a way to
talk about compositionality in physical theories where a universe
is fixed beforehand. While TQFTs are compositional [13, 26],
causal field theories are more naturally understood from the
decompositional perspective.

In fact, decompositionality is the key ingredient in a
completely different family of approaches to quantum theory,
including Algebraic Quantum Field Theory (AQFT) [10] and the
topos-theoretic approaches [11, 12]. In AQFT, the relationship
between fields and the topology of spacetime is encapsulated into
the structure of a presheaf, having as its domain the poset formed
by causal diamonds in Minkowski space under inclusion and as
its codomain a category of C*-algebras and *-homomorphisms.
Specifically, each region (causal diamond) of Minkowski
spacetime is mapped to the C*-algebra of “local” quantum
observables (categorically: effects) on that region. From this
perspective, locality and causality are formulated as the
requirement that algebras of local observables over space-like
separated regions commute within the algebra of global
observables (that is, local effects cannot be entangling over
space-like separated regions).

To understand the decompositional character of causal field
theories, we draw inspiration from the AQFT approach and turn
our functors, defined on slices, into presheafs defined on
“regions” (generalising unions of causal diamonds in AQFT).
However, our approach differs from the AQFT approach in a
number of ways:

• We dispense of the algebras themselves: as mentioned
earlier in Section 4.1, our approach is independent of the
specific process theory chosen for the fields.

• Instead of looking at the space of local observables/effects,
we take the (equivalent) dual perspective and work with the
space of local states.

• Local states can be entangling, so the formulation of locality
and causality as “commutativity” is no longer applicable,
even in the case where the field category is a category of C*-
algebras. Instead, locality and causality arise as a
consequence of factorization of field evolution over
space-like separated slices.

We begin by showing that categories of slices can be restricted
to regions, as long as we take care to define regions in such a way
as to respect the restrictions imposed by a specific choice of
category of slices.

Definition 28: A bounded region in a category of slices C on a
causal order Ω is a region on Ω in the form ◇Σ,Γ for some
Σ, Γ ∈ obj(C). Bounded regions in C form a poset Regionsbnd(C)
under inclusion.

Definition 29: A region in a category of slices C is a region R on
Ω which can be obtained as a union R � ∪λ∈Λ◇Σλ ,Γλ of a family
(◇Σλ ,Γλ)λ∈Λ, closed under finite unions, of bounded regions in C.
Regions in C also form a poset Regions(C) under inclusion, with
Regionsbnd(C) as a sub-poset.

Note that if C � Slices(Ω) then the regions in C are exactly the
regions on Ω: by definition, a region R on Ω is the union of the
bounded regions ◇x,y for all x, y ∈ R.

Proposition 30: Let C be a category of slices and R be a region
in it. The restriction C|R of C to the region R, defined as the full sub-
category of C spanned by the slices Δ ∈ obj(C) such that Δ4R, is
itself a category of slices.
Proof: If R � ◇Σ,Γ is a bounded region in C, then the statement

is an immediate consequence of requirement (2) for categories of
slices. Now assume that R � ∪λ∈Λ◇Σλ ,Γλ is a union of bounded
regions in C.
If x ≤ y are two events in R, then it must be that x ∈ ◇Σλx ,Γλx and

y ∈ ◇Σλy ,Γλy for some λx, λy ∈ Λ: closure under union of the family
(◇Σλ ,Γλ)λ∈Λ then guarantees that there exists some λx,y ∈ Λ with
x, y ∈ ◇Σλx,y ,Γλx,y . Because C is a category of slices, we can find two
slices Δx9Δy in C such that x ∈ Δx and y ∈ Δy . Then the
restrictions (Δx ∩◇Σλx,y ,Γλx,y) and (Δy ∩◇Σλx,y ,Γλx,y) satisfy
requirement (1) for C|R to be a category of slices.

If Σ, Γ and Δ are three slices in C|R, then in particular the
diamond ◇Σ,Γ is a subset of R (the latter is a region) and so is the
intersection Δ∩◇Σ,Γ, which exists in C because the latter is a
category of slices. Hence requirement (2) for C|R to be a category
of slices is satisfied.

Requirement (3) for C|R to be a category of slices is satisfied,
because if Σ, Γ4R then also Σ⊗ Γ4R whenever the latter is
defined. □
Given a causal field theory Ψ : C→D, the restrictions Ψ|R :

C|R →D are again causal field theories. To match the spirit of
AQFT, we need two more ingredients: the definition of a space of
states StatesΨ(R) over a region R and the definition of restrictions
StatesΨ(R)→ StatesΨ(R′) between spaces of states associated
with inclusions R′4R of regions.

Definition 31: Given a region R in a category of slices C, the
space of states StatesΨ(R) over the region is defined to be the set
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comprising all families ρ of states over the slices in C|R which are
stable under the action of Ψ, i.e. comprising all the families

ρ ∈ ∏
Δ∈obj(C|R)

StatesD(Ψ(Δ)), (19)

such that for all Δ,Δ′ ∈ obj(C|R) with Δ9Δ′ the following
condition is satisfied:

Ψ(Δ9Δ′)+ρΔ � ρΔ′. (20)

By StatesD(Ψ(Δ))we have denoted the states on the objectΨ(Δ) of
the symmetric monoidal category D, i.e. the homset
HomD[I,Ψ(Δ)] where I is the monoidal unit of D.

Proposition 32: Given a causal field theory Ψ : C→D, we can
construct a presheaf StatesΨ : Regions(C)op → Set by associating
each region R ∈ obj(Regions(C)) to the space of states StatesΨ(R)
over the region, and each inclusion i : R′4R to the restriction
function StatesΨ(R)→ StatesΨ(R′) defined by sending a family
ρ ∈ StatesΨ(R) to the family StatesΨ(i)(ρ) ∈ StatesΨ(R′) given as
follows:

StatesΨ(i)(ρ)Δ′ � ρ
i(Δ′). (21)

We refer to StatesΨ as the presheaf of states over regions of C.
Proof: The only thing to show is functoriality of StatesΨ. If

i � idR : R4R is the identity on a region R, then we have:

StatesΨ(i)(ρ)Δ � ρi(Δ) � ρΔ, (22)

i.e. StatesΨ(i) � idStatesΨ(R) is the identity on the space of states
over the region. If now j : R″4R′ and i : R′4R, then i+j : R″4R
and we have:

StatesΨ(j)(StatesΨ(i)(ρ))Δ″ � StatesΨ(i)(ρ)j(Δ″) � ρi(j(Δ″))
� StatesΨ(i+j)(ρ)Δ″ . (23)

Hence StatesΨ is a presheaf StatesΨ : Regions(C)op → Set. □
Definition 33: A global state ρ for a causal field theory Ψ :

C→D is a global compatible family for StatesΨ , i.e. a family ρ �
(ρ(R))R∈Regions(C) such that StatesΨ(i)(ρ(R)) � ρ(R′) for all
inclusions i : R′4R in Regions(C). We refer to the set of all
global states as the space of global states.

Remark 34: IfΩ is a region in C, i.e. ifΩ ∈ Regions(C), then the
states in StatesΨ(Ω) (Ω as a region) are in bijection with the global
states as follows:

{ρ ∈ StatesΨ(Ω)1(StatesΨ(R4Ω)(ρ))R∈Regions(C)(ρ(R))R∈Regions(C)1ρ(Ω)
. (24)

Because of this, we consistently adopt the notation StatesΨ(Ω) to
denote the space of global states. If R is a region in C, we also adopt
the notation StatesΨ(R4Ω) for the map
StatesΨ(Ω)→ StatesΨ(R) sending a global state ρ �
(ρ(R))R∈Regions(C) to its component ρ(R) over the region R. To
unify notation, we will also adopt ρΣ to denote (ρ(R))Σ, taking
the same value for any region R containing Σ (e.g., for R � Σ).

Remark 35: If the field category D is suitably enriched (e.g.,
in a category with all limits), then a natural choice is for the
the space of states to be defined by a presheaf valued in the
enrichment category. For example, quantum theory is enriched
over positive cones, i.e. R+-modules, and the R+-linear
structure of states in quantum theory extends to a
R+-linear structure on the spaces of states of causal field
theories having quantum theory as their field category. We
will not consider such enrichment in this work, though all
constructions we present can be readily extended to such a
setting.
Spaces of states according to Definition 31 encode a lot of

redundant information, because we don’t want to look into
the specific structure of regions. However, there are certain
special cases in which an equivalent description of the space
of states over a region can be given.

To start with, consider two slices Σ9Γ and note that the
state on any slice Δ4◇Σ,Γ in a bounded region ◇Σ,Γ
is uniquely determined by applying Ψ(Σ9Δ) to the state
on Σ:

ρΔ � Ψ(Σ9Δ)(ρΣ). (25)

This is, for example, the case for all bounded regions between
Cauchy slices in a category of slices CauchySlices(F ) generated
by some foliation F . If the foliation F has a minimum Σ0—an
initial Cauchy slice—then any global state ρ ∈ StatesΨ(Ω) is
entirely determined by its component ρΣ0

over the initial slice Σ0:

ρΔ � Ψ(Σ09Δ)+ρΣ0, (26)

for any Δ ∈ F and any region R in CauchySlices(F ) such that
Δ4R. This extends to all slices in CauchySlices(F ) by
restriction.
Inspired by Relativity, we would like the state on any Cauchy

slice in the foliation to determine the global state, not only that on
an initial Cauchy slice (whichmay not exist). For this to happen, we
need to strengthen our requirements on the causal field theory,
which needs to be causally reversible.

Definition 36: Let Ω be any causal order. By the causal reverse
of Ω we mean the causal order Ωrev on the same events as Ω and
such that x ≤ y in Ωrev if and only if x ≥ y in Ω.

Definition 37: A category of slices C on a causal orderΩ is said
to be causally reversible if the full sub-category of Slices(Ωrev)
spanned by obj(C) is a category of slices on the causal reverse Ωrev.
If this is the case, we write Crev for said category of slices over Ωrev

and refer to it as the causal reverse of C. We write 9
rev

for the
morphisms of Crev.

Definition 38: Let Ψ : C→D be a causal field theory on a
causal orderΩ. If C is causally reversible, a causal reversal of Ψ is a
causal field theory Φ : Crev →D such that:

(1) The functors Ψ and Φ agree on objects, i.e. for all Σ ∈ obj(C)
we have that Ψ(Σ) � Φ(Σ);

(2) Whenever we have two chains of alternating morphisms in C and
Crev which start and end at the same slices Σ, Γ, say in the form
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Σ9Δ19
rev Δ29 . . .Δ2n9Γ,

Σ9Δ′
1
9
rev Δ′

2
9 . . .Δ′

3m
9Γ, (27)

for some n,m≥ 0, the composition of the images of the morphisms
under Ψ and Φ always yield the same morphism Ψ(Σ)→Ψ(Γ):

Ψ(Δ2n9Γ)+...+Φ(Δ19
rev Δ2)+Ψ(Σ9Δ1)

�Ψ(Δ′2m9Γ)+...+Φ(Δ′19rev Δ′2)+Ψ(Σ9Δ′1). (28)

We say that Ψ : C→D is causally reversible—or simply
reversible—if C is causally reversible and Ψ admits a causal
reversal.

Proposition 39: Let CauchySlices(F ) be the category of slices
on a causal order Ω generated by some foliation F . Then
CauchySlices(F ) is always causally reversible and for any two
Cauchy slices Δ,Σ we have that Δ9Σ if and only if Σ9revΔ.
Furthermore, if a causal field theory Ψ : CauchySlices(F )→D is
reversible, then a global state ρ is entirely determined by the state
ρΣ on any Cauchy slice Σ ∈ F as follows:

ρΔ � ⎧⎨⎩
Ψ(Σ9Δ)+ ρΣ if Σ9Δ
Φ(Σ9rev Δ)+ ρΣ if Δ9Σ , (29)

where Φ : CauchySlices(F )rev →D is any causal reversal of Ψ.
Proof: The main observation behind this result is as follows: if

Σ,Δ are two Cauchy slices, then the conditions Δ4D+(Σ) and
Σ4D−(Δ) are equivalent. Hence CauchySlices(F ) is always
causally reversible and Δ9Σ if and only if Σ9revΔ for any
two Cauchy slices Δ,Σ.
Now letΨ be causally reversible, let Σ ∈ F be a Cauchy slice in

the foliation and consider any global state ρ. If Σ9Δ for some
other Cauchy slice Δ ∈ F , then the definition of a global state
implies that ρΔ � Ψ(Σ9Δ)+ρΣ. If instead Δ9Σ, then Σ9revΔ
and the definition of a global state implies that ρΣ � Ψ(Δ9Σ)+ρΔ.
But the definition of a causal reverse also implies that:

Φ(Σ9rev Δ)+ ρΣ � Φ(Σ9rev Δ)+Ψ(Δ9Σ)+ ρΔ � Ψ(Σ9Σ)+ ρΔ

� idΨ(Σ) + ρΔ � ρΔ.

(30)

Hence the value ρΣ completely determines the global state ρ
(since the value on all other slices in Cauchy Slices(F ) is
determined by restriction from the value on a corresponding
Cauchy slice). □

It is an easy check that not only the global states ρ ∈ StatesΨ(Ω)
are determined—under the conditions of Proposition 39—by
their component ρΣ ∈ StatesD(Ψ(Σ)) over any Cauchy slice Σ in
the foliation, but also that Eq. 29 can be used—under the same
conditions—to construct a global state ρ ∈ StatesΨ(Ω) from a
state ρΣ ∈ StatesD(Ψ(Σ)) on any Cauchy slice Σ in the foliation.
Before concluding this Section, we would like to remark that a

succinct description of spaces of states over regions can be obtained
in settingsmuchmore general than those of foliations: for example,
in all those cases where the every region admits a suitable Cauchy

slice and the causal field theory is reversible. The careful
formulation of this more general setting is key to the further
development of the connection between causal field theory and
AQFT and it is left to future work.

6 CONNECTION TO QUANTUM CELLULAR
AUTOMATA

The idea of a cellular automaton was first introduced by von
Neumann, aimed at designing a self replicating machine [18].
A Cellular Automaton (CA) over some finite alphabet A has
its state stored as a d-dimensional lattice of values in A, i.e. as
a function ψ : Zd →A. The state is updated at discrete time
steps, each step updated as ψ(t+1) :� F(ψ(t)) according to some
fixed function F : (Zd →A)→ (Zd →A). The function F acts
locally and homogeneously: there is some fixed finite subset
N ⊂ Zd (typically a neighborhood of 0 ∈ Zd) and some
function f : N →A such that the value of each lattice site x at
time step t + 1 only depends on the finitely many values in the subset
x +N at time t:

F(ψ) :� x1 f(ψ∣∣∣∣x+N). (31)

A Quantum Cellular Automaton (QCA) is a generalization of
a CA where the lattice states ψ : Zd →A are replaces by (pure)
states in the tensor product of Hilbert spaces ⊗x∈ZdHx (all Hx

finite-dimensional and isomorphic) and the function F is replaced
by a unitary U : ⊗x∈ZdHx →⊗x∈ZdHx , with requirements of
locality and homogeneity.

Remark 40: There are several slightly different formulation of
the infinite tensor product above that can be used, each with its
own advantages and disadvantages: though it is not going to be a
concern for this work, the authors are partial to the construction by
von Neumann [27].
An early formulation of the notion of QCA is due to Richard

Feynman, in the context of simulations of physics using quantum
computers [28]. More recent work on quantum information and
quantum causality has shown that the evolution of certain free
quantum fields can be recovered as the continuous limit of certain
quantum cellular automata (cf [16, 17]. and references therein).
In the final section of this work, we show that our framework is
well-suited to capture notions of QCA such as those appearing in
the literature. Specifically, our construction encompasses and
greatly generalises that presented in [17].

6.1 Causal Cellular Automata
The first requirement in the definition of a QCA is that of
homogeneity—called “translation invariance” in [17]—i.e. the
requirement that the automaton act the same way at all points of
spacetime. Because presentations of QCAs are usually given in
terms of discrete updates of states on a lattice by means of a
unitary U, only the requirement of homogeneity in space is
usually mentioned. However, such presentations also have
homogeneity in time as an implicit requirement, namely in
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the assumption that the same unitary U be used to update the
state at all times.

Instead of updating the state time-step by time-step in a
compositional fashion, our formulation of quantum cellular
automata will see the entirety of spacetime at once, with states
over slices and regions recovered in a decompositional
approach. Nevertheless, the requirement of homogeneity for
a QCA can still be formulated as a requirement of invariance
under certain symmetries of spacetime, so we begin by
formulating such a notion of invariance for causal field
theories.

Definition 41:A symmetry on a causal orderΩ is an action of a
group G on Ω by automorphisms of causal orders, i.e. a group
homomorphism G→AutCausOrd[Ω]. If C is a category of slices on
Ω, a symmetry on C is a symmetry onΩwhich extends to an action
on C by partially monoidal functors, i.e. one such that the following
conditions are satisfied:

(1) for all g ∈ G, if Σ ∈ obj(C) then g(Σ) ∈ obj(C);
(2) for all g ∈ G and all Σ, Γ ∈ obj(C), if Σ9Γ then g(Σ)9g(Γ);
(3) for all g ∈ G and all Σ, Γ ∈ obj(C), if Σ⊗ Γ is defined in C then

g(Σ⊗ Γ) � g(Σ)⊗ g(Γ) is also defined in C.
Note, for all g ∈ G, that g(0/) � 0/ and that g(Σ) is
automatically a slice whenever Σ is a slice.

Definition 42: Let C be a category of slices with a symmetry
action of a group G. A G-invariant (or simply symmetry-invariant)
causal field theory on C is a causal field theoryΨ : C→D equipped
with a family of natural isomorphisms αg : Ψ0Ψ+g such that
αh·g � αhg+αg , where we have identified elements g ∈ G with their
action as partially monoidal functors g : C→ C.

Remark 43: The spirit behind the definition of symmetry-
invariant causal field theories is that the functors Ψ (sending
slices 1 fields) and Ψ+g (sending slices 1 g-translated slices
1 fields) should be the same. However, we have remarked when
first defining causal field theories that—be it for ease of physical
interpretation or for conformity with existing literature on
causal categories—it may sometimes be desirable that the
images Ψ(Σ) of different slices be different. Not being able to
impose the equality Ψ � Ψ+g in such a setting, the next best
thing is to ask for natural isomorphism Ψ � Ψ+g.

Because we are dealing with symmetries, however, it is
sensible to require for the natural isomorphisms αg
themselves to respect the group structure. Again, the first
instinct might be to require something in the form
αh·g � αh+αg , but this expressions does not type-check: we
have a natural transformation αh·g : Ψ0Ψ+h+g, a natural
transformation αg : Ψ0Ψ+g and a natural transformation
αh : Ψ0Ψ+h. In order to compose αh and αg we instead
have to take the action of αh translated to Ψ+g:

αhg : Ψ+ g0(Ψ+ h)+ g. (32)

Explicitly, the natural transformation αhg is defined by
(αhg)(Σ) :� αh(g(Σ)).

The second requirement in the definition of a QCA is that
of locality (or causality). When quantum cellular automata
are considered in a relativistic context—e.g. as discrete

models of quantum field theories—the requirement of
locality is meant to capture the idea that the action of the
automaton should respect the causal structure of spacetime (so
that the state on a point x at time t + Δt should not depend on the
state at the previous time t on points y which are “too far away”,
i.e. such that (x, t + Δt) and (y, t) are space-like separated).
In [17], the requirement of locality is formulated as the

requirement that the output state of the automaton over a point
x of the lattice at time t + 1 only depend on the state over a finite
neighborhood x +N at time t: this is both in terms of local state
(causality) and in the stronger sense that the field evolution should
factor into a product of local maps (localisability). In our
framework, on the other hand, causality and localisability are
both automatically enforced: the field evolution always factors
over space-like separated regions, as a consequence of
monoidality, and the local state over a slice never depends on
the state on any other slice which is space-like separated from it (as
a consequence of factorisation).

Remark 44: The causal order Ω which captures the causality
requirement from [17] with finite neighborhood N ⊂ Zd can be
constructed by endowing the set |Ω| :� Zd × Z with the reflexive-
transitive closure of the relation (y, t)≤ (x, t + 1) for all times
t ∈ Z, for all points of the lattice x ∈ Zd and for all points y ∈ x +
N in the neighborhood of x.
The third and final requirement in the definition of a QCA is

that of unitarity. In our framework, this is a problem for two
(mostly unrelated) reasons.

• Our formulation of causal field theories aims to be agnostic
to the choice of process theory. On the other hand, unitarity
is a strongly quantum-like feature, the formulation of which
would require a significant amount of additional structure
on the field category.

• The usual formulation of quantum cellular automata only
considers global evolution, never directly dealing with
restrictions—situations e.g., in which the state is evolved
unitarily but part of the output state is discarded as
environment. Our framework instead treats such
restrictions as an integral part of evolution.

Luckily, unitarity per se is not necessary from an abstract
foundational standpoint: the real feature of interest is reversibility,
a feature of causal field theories which we have already explored. For
the sake of generality, we will not include reversibility in the
definition below, leaving it as an explicit desideratum.

Remark 45: In categories of Hilbert spaces and completely
positive maps, it is legitimate to imagine that causality and
reversibility would jointly imply that the cellular automata also
be unitary. This is indeed the case under the conditions of
Proposition 39: because the state on any Cauchy slice
automatically determines the state on all the other slices—and
because that state on a single slice is arbitrary—evolution between
Cauchy slices must be unitary.

Definition 46: A Causal Cellular Automaton (CCA) consists of
the following ingredients.
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(1) A foliation F on a causal order Ω.
(2) A category of Cauchy slices C such that each slice in C is a

subset of some Cauchy slice in F .7

(3) A symmetry action of a group G on C, inducing—via the
G-action on Ω—a transitive action of G on the Cauchy slices
in the foliation F .

(4) A G-invariant causal field theory Ψ : CauchySlices(F )→D.

A reversible CCA is one where the causal field theory Ψ is
reversible.

Definition 46 is much more general than the definition of
QCA from [17] and hence captures more sophisticated
examples. However, its ingredients are directly analogous to
those appearing in that definition of a QCA.

• The foliation F on Ω generalizes the discrete time steps in
the definition of a QCA.

• The slices in C generalize the equal-time hyper-surfaces
which support the state of a QCA at fixed time.

• The symmetry action of G on CauchySlices(F ) and its
transitivity on the foliation F generalise homogeneity
in both space and time of the lattices supporting
a QCA.

• The G-invariance of the causal field theory Ψ generalizes
both the translation symmetry in space and the time-
translation symmetry of a QCA.
A different approach to QCAs in non-homogeneous space-

times appears in [29, 30], in terms of graph dynamics. The graph

dynamics models and the models described in this work present a
significant overlap—in the specific case of quantum theory—but
are ultimately incomparable: on the one end, graph dynamics impose
certain structural requirements on spacetime slices for the foliation,
requirements which are not necessary in this work; on the other end,
quantum graph dynamics allow a superposition of graphs at each slice
of the foliation, a possibility which is not considered in this work.

6.2 Partitioned Causal Cellular Automata
We now proceed to construct a large family of examples of CCAs
based on the partitioned QCAs of [17]. In doing so, we generalise
the scattering unitaries to arbitrary processes and allow for the
definition of state restriction to non-Cauchy equal-time surfaces.
We refer to the resulting CCA as partitioned CCA.

6.2.1 Causal Order
As our causal order Ω we consider the following subset of
(1 + d)-dimensional Minkowski spacetime (setting the
constant c for the speed of light to c � ��

d
√

):

Ω :� {(t, x) ∣∣∣∣∣ t ∈ Z, x ∈ (t, . . . , t) + 2Zd}. (33)

where (t, . . . , t) + 2Zd is the set of all x ∈ Zd such that
xi � t (mod 2). For d � 1 we get the (1 + 1)-dimensional
diamond lattice discussed before. In general, the immediate
causal predecessors of a point (t, x) are the following 2d points:

(t − 1, x −N ) � {(t − 1, x − δ)∣∣∣δ ∈ N }, (34)

where we defined the “neighborhood”N :� {±1}d . Similarly, the
immediate successors of (t, x) are the following 2d points:

FIGURE 7 | Action of a partitioned causal cellular automaton over a complicated morphism Σ9Γ in the (1 + 1)-dimensional example of the diamond lattice. Here
N � {±1}, so each event in the causal order is associated to a copy ofH⊗N � H⊗H. The restriction action of the CCA (Eq. 45) can be seen on the two events at the bottom left.
The pure evolution action of the CCA (Eq. 46) can be seen on the central pyramid of ten events, as the application ofUwithout discarding. The evolution +marginalisation action of
theCCA (Eq. 48) can be seen on the eight events at the sides of the central pyramid, as the application ofU followed by discarding of one of the two outputs. The input of the
morphism depicted consists of eight copies ofH⊗H, one for each event of Σ, while the output of themorphism depicted consists of two copies ofH⊗H, one for each event of Γ.

7Each Cauchy slice Σ in F is then automatically the union of all slices Δ ∈ obj(C)
such that Δ4Σ.
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(t + 1, x +N ) � {(t + 1, x + δ)∣∣∣δ ∈ N }. (35)

6.2.2 Foliation and Category of Slices
The causal order Ω admits a foliation F where each slice is a
constant-time Cauchy slice Σt for some t ∈ Z:

Σt :� {(t, x) ∣∣∣∣∣ x ∈ (t, . . . , t) + 2Zd}. (36)

A suitable category of slices C to associate to this foliation is
given by taking as slices all the finite sets Σt,X ⊂ Σt of events
having the same time coordinate t:

Σt,X � {(t, x)∣∣∣x ∈ X}, (37)

where X ⊂ (t, . . . , t) + 2Zd is some finite subset. The morphisms
9 of C are given as follows for k≥ 0:

Σt,X9Σt+k,Y if and only if ∪
y∈Y

((t, y +N (k)))4X , (38)

where the “iterated neighborhood” N (k) is defined as N + . . . +
N by adding together k≥ 0 copies ofN (and we setN (0)

:� {0}).
Explicitly we have:

N (k)
:� { {−k,−k + 2, . . . − 1,+1, . . . , k − 2, k} if k odd

{−k,−k + 2, . . . − 2, 0,+2, . . . , k − 2, k} if k even
.

(39)

It is easy to check (by a t1 −t symmetry argument) that C is
reversible.

6.2.3 Symmetry
The category C admits a symmetry action of the group
G :� ZN � Z2d . We index the coordinates of vectors in ZN by
the 2d points δ ∈ N � {±1}d . We denote by τδ the vector in ZN

which is 1 at the coordinate labeled by δ and 0 at all other
coordinates. The action is then specified by setting:

τδ(t, x) :� (t + 1, x − δ), (40)

that is, the 2d generators of ZN send a generic event (t, x) to each
of its 2d immediate causal successors in Ω, one for each possible
choice of sign ±1 along each of the d directions of the space
lattice Zd .8 Each generator τδ for the symmetry action sends a
Cauchy slice Σt in the foliation to the next Cauchy slice Σt+1, so
the action of G on the foliation is transitive.

6.2.4 Causal Field Theory—Field Over Slices
As our field category we consider a generic causal process theory D,
i.e. a symmetric monoidal category equipped with a family of
discarding maps for all objects H ∈ obj(D),
respecting the tensor product ⊗ and tensor unit I of
D: and . Discarding maps
generalize the partial trace of quantum theory: normalized states
ρ : I→H—generalizing density matrices—are defined to be those
such that and normalized morphisms

U : H→K—generalizing CPTP maps—are defined to be those
such that . See e.g. [20, 23, 25] for more information.

To create a G-invariant causal field theory Ψ, we consider
some object H ∈ obj(D) together with some endomorphism
U : H⊗2d →H⊗2d , which we will refer to as the scattering map.
For reasons that will soon become clear, it is more convenient to
index the factors ofH⊗2d by the 2d points in the neighborhoodN ,
hence writing U : H⊗N →H⊗N .

We define the action of Ψ on the slices in C as follows:

Ψ(Σt,X ) :� (H⊗N )⊗X � H⊗(N×X ). (41)

The tensor product is well-defined in all symmetric monoidal
categories, since X is always finite. Physically, the field takes
values in a copy ofH⊗N over each event (t, x) of spacetime, each
individualH factor ofH⊗N encoding the contribution to the field
state at (t, x) from the field state at each of its immediate causal
predecessors in (t − 1, x +N ).

6.2.5 Causal Field Theory - Restriction and Evolution
From their definition in Eq. 38, it is easy to see that
morphisms Σt,X 09Σt+k,X k on C can always be factored in the
following way:

Σt,X09Σt,Y09Σt+1,X19Σt+1,Y19 . . .9Σt+k,Xk, (42)

where Yi4X i for all i � 0, . . . , k − 1 and the following holds for
each i � 1, . . . , k:

Yi−1 � ∪
x∈X i

{(t + i − 1, x + δ)∣∣∣δ ∈ N }. (43)

This means that we only need to care about the action of Ψ on
two kinds of morphisms:

• The restrictions Σt,X9Σt,Y , where Y4X ;
• The 1-step evolutions Σt,Y9Σt+1,X , where Y �
∪
x∈X

{(t, x + δ)∣∣∣δ ∈ N }.
The existence of the factorisation above can be proven by

induction, observing that any morphism Σt,X09Σt+1,X 1 factors
into the product:

(Σt,Y09Σt+1,X1)⊗(Σt,X0\Y090/), (44)

where Y0 is defined as before so that Σt,Y0 is exactly the set of
immediate causal predecessors of the codomain Σt+1,X 1.

On restrictions Σt,X9Σt,Y , where Y4X , the functor Ψ is
defined to act by marginalization, discarding the field state over
all those events in the larger slice Σt,X which don’t belong to the
smaller slice Σt,Y :

(45)

On 1-step evolutions Σt,Y9Σt+1,X , where
Y � ∪x∈X {(t, x + δ)∣∣∣δ ∈ N }, the functor Ψ is defined to act by
a combination of evolution by U and marginalization. The
evolution component is simply an application of U to the state
at each event of Y:

8The reason for the negative sign in x − δ is thatN was originally defined to be the
neighborhood in the past.
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U⊗Y : H⊗(N×Y) →H⊗(N×Y). (46)

The marginalization component then needs to go from the
codomain H⊗(N×Y) of the map above to the desired codomain
H⊗(N×X). To do this, we recall that the H factor of H⊗(N×X )
corresponding to a given δ ∈ N and a given x ∈ X is intended
to encode the component of the state at (t + 1, x) coming from
(t, x + δ). Analogously, the H factor of H⊗(N×Y)

corresponding to a given δ ∈ N and a given y ∈ Y is
intended to encode the component of the evolved state
going to (t + 1, y − δ). Hence to go from H⊗(N×Y) to
H⊗(N×X) we need to discard all factors in H⊗(N×Y)

corresponding to components of the evolved state which
are not going to some (y − δ) ∈ X :

(47)
Putting the evolution and marginalization components

together we get the action of Ψ on 1-step evolutions:

Ψ(Σt,Y9Σt+1,X ) :� ⎛⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎝ ⊗(δ,y)∈N×Y
Fδ,y

⎞⎟⎟⎟⎟⎠+U⊗Y⎞⎟⎟⎟⎟⎠

: H⊗(N×Y) →H⊗(N×X ). (48)

By construction, the above is a G-invariant causal field theory,
completing the definition of our partitioned causal cellular
automaton. If U is an isomorphism, the same construction on
Crev using U−1 provides a causal reversal for Ψ, showing that the
partitioned causal cellular automaton above is reversible under
those circumstances. Finally, Figure 7 below depicts an example
of action on morphisms for a (1 + 1)-dimensional partitioned
causal cellular automaton.

6.3 Sketch of the Continuous Limit for the
Dirac Quantum Cellular Automata
To conclude, we note how in [17] it is argued that the Dirac
equation for free propagation of an electron can be recovered in
the continuous limit of a specific (1 + 1)-dimensional partitioned
QCA. The original argument could not be made fully rigorous,
because the QCAs defined therein were discrete and no setting
was available to the author in which to make proper sense of the
infinite tensor product arising from the limiting construction. A
rigorous analysis of the limit is presented in [31], but the limit
itself exists outside of the QCA framework.

Our definition of CCA, on the other hand, has no requirement
of discreteness. Furthermore, the freedom left in the choice of
field category for a CCA allows us to benefit from the full power of
the non-standard approach to categorical quantum mechanics
[24, 32]. As a consequence, we are able to sketch below a
formalization within our framework of the continuous limit
for the Dirac QCA, following the same lines as the
construction of a (1 + d)-dimensional partitioned CCA above.

The key to obtain a continuous limit for the Dirac QCA is to
rescale the discrete lattice Ω to one with infinitesimal mesh ε:

εΩ :� {ε(t, x) ∣∣∣∣ t ∈ +Z, x ∈ (t, . . . , t) + 2+Zd}, (49)

where +Z are the non-standard integer numbers. The slices are now
allowed to contain an infinite number of points and can be
used to approximate all equal-time partial Cauchy hyper-
surfaces in (1 + d)-dimensional Minkowski spacetime.
Unfortunately, the infinite number of points in our slices
now requires infinite tensor products to be taken: to deal with this,
we use as our field category the dagger compact category +Hilb of
non-standard hyperfinite-dimensional Hilbert spaces, where such
infinite products can be handled safely.

We set the scattering map to be the following non-standard
unitary

U � 1⊕ σXexp(−imεσX)⊕ 1, (50)

where σX is the X Pauli matrix: this is the same unitary used in the
Dirac QCA, but with the real parameter ε turned into an
infinitesimal. Each application of U only inches
infinitesimally further from the identity, but in the non-
standard setting we are allowed to consider the cumulative
effect across infinite sequences of infinitesimally close slices.
The first order approximations to the Dirac equation derived
in [17] turn into legitimate infinitesimal differentials,
connecting the state on each slice to the state on the
(infinitesimally close) next slice: once the standard part is
taken, the lattice εΩ ends up covering the entirety of
(1 + d)-dimensional Minkowski spacetime, the differentials
get integrated and Ψ turns into a continuous-time field
evolution following the Dirac equation.

Remark 47: The power to express limiting constructions
algebraically, without exiting the original framework, is one of
the most attractive aspects of non-standard analysis. The dagger
compact category +Hilb (and other categories derived from it) can
be used to make categorical sense of constructions from quantum
field theory [24, 32], including other cellular automata with field-
theoretic continuous limits. The formulation of such limits within
our framework is an point of great interest, but is left to
future work.

7 CONCLUSION AND FUTURE WORK

In this work, we have defined a functorial, theory-independent
notion of causal field theory founded solely on the order-theoretic
structure of causality. We have seen how the causality requirement
for such field theories is automatically satisfied as a consequence of
symmetry-breaking in the ordering on space-like slices. In an effort
to connect to Algebraic Quantum Field Theory (AQFT), we have
constructed complex spaces of states over regions of spacetime and
discussed how the associated information redundancy can be
reduced in selected cases. We have introduced symmetries in
our framework and shown that Quantum Cellular Automata
(QCA) can be modeled within it, both in their traditional
discrete formulation and in their continuous limit.

Despite our efforts, we feel we have barely scratched the surface on
the potential of this material. In the future, we envisage three lines of
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research stemming from this work. Firstly, we believe that the
connection with AQFT can be strengthened and honed to the
point that the framework will be a tool for the construction of
new models. This includes a thorough understanding of the
structure of spaces of states for categories of slices more general
than those induced by foliations. Secondly, we wish to further
explore and fully characterise the possibilities associated with
working in the continuous limit of QCAs, with an eye to
applications in perturbative quantum field theory. Finally, we
plan to extend the framework in a number of directions,
including indefinite causal order—already achieved for QCAs
by [30], at least in partial form—enrichment and the possibility
of working with restricted classes of causal paths (in temporal
analogy to categories of slices).
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