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Editorial on the Research Topic

Biological Control Systems and Disease Modeling

INTRODUCTION

The mammalian organism maintains stable, efficient, and “near-optimal” performance and
homeostasis in the face of external and internal perturbations via distinct biological systems ranging
from the large-scale physiological (nervous, endocrine, immune, circulatory, respiratory, etc.), to
the cellular (growth and proliferation regulation, DNA damage repair, etc.), and the sub-cellular
(gene expression, protein synthesis, metabolite regulation, etc). “Biological Control Systems,” the
application of control theory and practice to biological systems, arises from a control engineering
perspective of the function, organization, and coordination of these multi-scale biological systems
and the control mechanisms that enable them to carry out their functions effectively. A direct
consequence of this engineering perspective is that many diseases are seen as arising when one
(or more) of these biological control systems malfunctions or fails completely. For example,
hypertension results from a malfunctioning blood pressure control system, hypocalcemia from a
malfunctioning calcium homeostasis system, and Type 1 diabetes from a failure of the blood glucose
control system. A natural corollary therefore is that appropriate treatment regimens consist of
ways of restoring (for example via pharmaceutical drugs) the functions lost by the malfunctioning
components, or, where full functional restoration is not possible, the introduction of external
means of supplementing or replacing the malfunctioning biological component (for example, the
“artificial pancreas” for treating Type-I diabetes). Such a perspective places emphasis on a rigorous
quantitative approach to three tasks: (i) the analysis of biological systems for insight; (ii) the
identification of the root cause of pathologies and potential treatment targets; and (iii) the rational
design (and implementation) of effective interventions.

OVERVIEW

This collection of twenty papers seeks to provide—under a single cover—a broad spectrum
of research results showcasing this quantitative perspective of the physiological processes that
subtend life, the diseases that occur when these systems malfunction, and the design of effective
treatments for these diseases, specifically using mathematical modeling and principles of systems
engineering. For obvious reasons of space limitation, the collection is naturally representative
rather than exhaustive.

Nevertheless, the papers address a wide variety of diseases including non-alcoholic fatty liver
disease; hepatic steatosis; cancers of various types (liver, blood, breast, leukemia, papillary renal
cell carcinoma); immune system dysregulation; neurodegeneration diseases; and such “classics”
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as diabetes and HIV. Some of the papers focus on entire
physiological processes, such as the cardiovascular system,
or the specialized process of parturition—how babies are
delivered vaginally following pregnancy; others focus on cellular
and signaling sub-processes that subtend the physiological
manifestation of diseases. Viewed from another vantage point,
some papers are concerned with how the physiological control
systems function endogenously while others focus on how
to design effective external interventions, such as designing
optimal personalized treatments for blood cancer patients, or
the use of the engineering technique of model predictive control
(MPC) to control macrophage polarization. Also, the approaches
represented in this collection cover the entire length scale from
the genetic and cellular to the tissue and physiological. Also,
while some of the results are strictly theoretical, a significant
number of these results have been validated experimentally,
while some are entirely experimental in nature. On many levels,
therefore, the papers are sufficiently complementary to provide
a good representation of the broad and expanding landscape of
quantitative biomedicine viewed through the lens of biological
control systems.

UNIFYING THEME

While the diseases and physiological processes encountered here
are richly diverse, the common unifying thread holding the
20 papers together is the use of a mathematical model—of
one type or another—to quantify the phenomenon in question
and employing such a quantitative description to answer a
wide variety of questions for many different applications. For
example, in this collection: mathematical models are used for
disease diagnosis; for rational identification of treatment targets;
for design, analysis, and implementation of optimal treatment
regimens; for prognosis; and even as a surrogate for clinical
trials. In addition, the papers collectively illustrate the diversity
of mathematical models themselves and the versatility with
which they can be developed, validated, deployed, and utilized,
depending on the actual application in question. Consequently,
in addition to the standard ordinary differential equation (ODE)
models with which most readers will likely be familiar, one
will find in this collection, such exemplars of mechanistic
models as partial differential equation models used to capture
spatial variations when these are important, or steady state
metabolic flux models. At the other end of the spectrum,
one will also find models based entirely on data, employing
techniques such as support vector machines, data mining, and
machine learning to develop the appropriate data-based model
best suited to the problem at hand. Hybrid models, which
occupy the vast domain in between these two ends of the
modeling spectrum, are also represented here. This class of
models arise by combining mechanistic principles appropriately
with empirical data in proportions typically dictated by which
is more readily available in the desired amount—first principles
knowledge, or data. There are also in this collection a handful
of applications of other techniques with which the average
reader may not be familiar, such as fractals, or agent-based

models, presented here as systematic frameworks best suited
to studying complex and heterogenous systems (e.g., tumor
microenvironments and microbiomes) that would otherwise
be virtually impossible to study systematically. The variety of
mathematical model forms represented in this collection, when
overlaid onto the myriad applications and diseases to which
they have been applied, underscores the depth of penetration of
mathematical modeling into modern physiology and medicine,
and the effectiveness of quantitative techniques in providing
heretofore unimaginable solutions.

KEY IMPLICATIONS OF RESULTS

With the exception of the lone review/perspective paper
(on image-based computational modeling for non-invasive
acquisition of the crucial measurements required for
personalized cardiovascular medicine), every paper in this
collection by itself contributes important results that add to
the growing consensus of the role of quantitative analysis in
the understanding of biological systems at all length scales, the
rational deduction of the sources and emergence of diseases,
and the determination of optimal treatment regimens—how
best to intervene to treat these diseases while minimizing side
effects. Taken together as an ensemble, here are some of the most
significant implications of the results in this collection:

• Growing indispensability of mathematical modeling in
biomedicine: The importance and scope of mathematical
modeling in understanding diseases as complex systems, and
in designing rational treatment regimens, continues to grow,
underscored and exemplified by the novel implementation
of a virtual clinical trial in HER2-Negative Breast Cancer,
with major implications for personalized medicine at
reasonable cost.

• Novel extraction and utilization of germane actionable
information from data: Beyond the traditional role as the basis
for data-based model development, appropriately acquired
data sets and the judicious extraction of the information
contained therein have the potential to enable modern
biomedicine in unprecedented ways, ranging from early—and
reliable—diagnosis of liver cancer; more accurate prognosis
of papillary renal cell carcinoma; and the identification of
effective therapeutic targets based on gene networks deduced
from gene expression data.

• Effective disease treatment as a control problem: The
implementation of appropriate treatments for some diseases
can be formulated as an engineering control problem, which
then allows one to invoke principles and established results
from that engineering field and modify and/or extend them
appropriately for use in designing optimal treatment regimens
for diseases. The implementation of such an approach
is exemplified here with specific applications ranging from
theoretical analysis of drug resistance in cancer chemotherapy,
leading to à-priori design of patient specific optimal therapies;
controlling macrophage polarization using model predictive
control (MPC); or personalized optimization of blood
cancer treatment.
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In conclusion, we believe that the message in this collection
of papers is both relevant and timely. With attention currently
focused on precision (more appropriately personalized)
medicine, the approaches discussed and illustrated by these
papers should contribute significantly to how the grand
vision of personalizing disease diagnosis and treatment
will be realized in the future. Consequently, we are pleased
to present this collection to the community with the
belief that it will be useful to the beginner (to obtain
a broad overview of the evolving landscape) as well as
to the expert who might find therein a useful stepping
stone to the next contribution that will further extend
the frontier of knowledge in the subject of biological
control systems.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ogunnaike, Banga, Bogle and Parker. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 April 2021 | Volume 9 | Article 6779767

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Frontiers in Genetics | www.frontiersin.org

Edited by:
Julio R. Banga,

Spanish National Research Council
(CSIC), Spain

Reviewed by:
Zheng Xia,

Oregon Health & Science University,
United States
Yuriy L. Orlov,

First Moscow State Medical
University, Russia

*Correspondence:
Xianlin Xu

xianlinxu@njmu.edu.cn
Changchun Cao

caochangchun@njmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 25 August 2019
Accepted: 05 December 2019
Published: 29 January 2020

Citation:
Wu Z, Liu J, Sun R, Chen D, Wang K,

Cao C and Xu X (2020) A Novel
Prognostic Index Based on

Alternative Splicing in Papillary
Renal Cell Carcinoma.
Front. Genet. 10:1333.

doi: 10.3389/fgene.2019.01333

ORIGINAL RESEARCH
published: 29 January 2020

doi: 10.3389/fgene.2019.01333
A Novel Prognostic Index Based on
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Background: Papillary renal cell carcinoma (pRCC) is a heterogeneous multifocal or
isolated tumor with an invasive phenotype. Previous studies presented that alternative
splicing, as a crucial posttranscriptional regulator in gene expression, is associated with
tumorigenesis. However, the association between alternative splicing and pRCC has not
been clarified

Methods: The RNA sequencing data and clinical information were downloaded from The
Cancer Genome Atlas database and mRNA splicing profiles from TCGASpliceSeq. The
percent spliced in data of alternative splicing merged with survival information was firstly
calculated by univariate Cox regression analysis to screen for survival‐associated
alternative splicing events, and survival‐associated alternative splicing events were then
analyzed by Gene Ontology categories using Kyoto Encyclopedia of Genes and
Genomes. Meanwhile, the least absolute shrinkage and selection operator Cox analysis
and multivariate Cox analysis were performed to calculate the prognostic index for each
alternative splicing type. In addition, clinical factors were introduced to assess the
performance of prognostic index.

Results: A total of 4,084 candidate survival-associated alternative splicing events in 2,558
genes were screened out. Patients were divided into the low-risk group and the high-risk
group based on the median prognostic index value. The Kaplan-Meier survival analysis
(p < 0.05) and receiver operating characteristics curves (AUC>0.9) indicated that
prognostic index was effective and stable for predicting the prognosis of pRCC
patients. Furthermore, a regulatory network was constructed incorporating alternative
splicing events and survival-associated splicing factors.

Conclusion: Our study provides new insights into the mechanism of alternative splicing
events in tumorigenesis and their clinical potential for pRCC.

Keywords: alternative splicing, prognostic index, papillary renal cell carcinoma, splicing factor, The Cancer
Genome Atlas
January 2020 | Volume 10 | Article 133318

https://www.frontiersin.org/article/10.3389/fgene.2019.01333/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01333/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01333/full
https://loop.frontiersin.org/people/846911
https://loop.frontiersin.org/people/781679
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xianlinxu@njmu.edu.cn
mailto:caochangchun@njmu.edu.cn
https://doi.org/10.3389/fgene.2019.01333
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01333
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01333&domain=pdf&date_stamp=2020-01-29


Wu et al. A Prognostic Index of pRCC
INTRODUCTION

Papillary renal cell carcinoma (pRCC), which accounts for up to
15% of renal cell carcinoma, is the second most common
histological subtype of kidney cancer (Jonasch et al., 2014;
Malouf et al., 2016). PRCC emerges as either indolent localized
tumor or aggressive metastatic cancer (Delahunt and Eble, 1997),
but the biological basis for this difference remains unidentified.
Vascular endothelial growth factor (VEGF) pathway has been
proven to be involved in metastatic pRCC (Armstrong et al.,
2016), but we still speculate that multiple mechanisms lie behind
these pRCC with diverse presentations. Thus, we designed this
systematic and comprehensive analysis to drill into the
oncogenic mechanism of pRCC.

High-throughput sequencing has revolutionized human
genomics and the research in this field. The current number of
human genes is still controversial. Up to now, people’s statistics
on the number of genes are constantly changing (Pertea and
Salzberg, 2010; Pertea et al., 2018). The GENCODE (Frankish
et al., 2019) genome maintained by EBI currently counts 19,965
protein-coding genes, 17,910 long noncoding RNA genes, and
7,576 small noncoding genes in human (https://www.
gencodegenes.org/human/stats.html). The database RefSeq
(O'Leary et al., 2016), managed by the National Center for
Biotechnology Information, lists 20,203 protein-coding genes
and 17,871 noncoding genes. Regardless of the specific number
of genes, given the limited number of human genes, alternative
splicing (AS) serves as a key mechanism producing myriads of
proteins (Tang et al., 2013; Bowler et al., 2018). AS is regulated by
spliceosome, a large and highly dynamic protein complex
constructed by nearly 200 protein components and five small
nuclear ribonucleic acids (Agrawal et al., 2018). Dysregulation of
Frontiers in Genetics | www.frontiersin.org 29
splicing factors (SFs) can distort mRNA splicing programs,
which could result in cancer development and progression
(Grosso et al., 2008). Studies have also shown that aberrant AS
events during transcription, which are tissue-specific and sta
ge-specific, can evoke tumorigenesis (Wang et al., 2008; Kahles
et al., 2018; Wan et al., 2019).

In this study, to clarify the AS events and its clinical
implications in pRCC, AS events and complete clinical
information from the TCGA database were analyzed. A
prognostic model was formed to predict the prognosis of
pRCC according to the survival information. Meanwhile, a
regulatory network was constructed to evaluate the correlation
between AS events and SFs, and identify several key factors
which might exert important functions in occurrence and
development of pRCC.
MATERIALS AND METHODS

Data Collection of AS Events
RNA sequencing data (level 3) and clinical information of The
Cancer Genome Atlas (TCGA) KIRP cohorts were obtained
from the TCGA data portal (https://portal.gdc.cancer.gov/).
Analysis of mRNA splicing profiles in pRCC was conducted
with the aid of SpliceSeq (Ryan et al., 2016), java that explicitly
quantifies RNA-Seq reads and identifies its possible functional
changes as a consequence of AS in the context of transcript splice
graphs. AS events were divided into seven types including exon
skip (ES), mutually exclusive exons (ME), retained intron (RI),
alternate promoter (AP), alternate terminator (AT), alternate
donor site (AD), and alternate acceptor site (AA) (Figure 1).
Meanwhile, we downloaded the Percent Spliced In (PSI) value
FIGURE 1 | Representative model of seven types of alternative splicing.
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(>75%) for pRCC patients. The PSI value, ranging from zero to
one, was used in quantifying AS events.

Identification of Survival-Associated AS
Events
A total of 32 adjacent normal tissues and 289 pRCC tissues were
collected from TCGA. The number of AS events and genes
involved was showed by UpSet plot using “UpSetR” package in R
(Conway et al., 2017). Univariate Cox regression analysis was
used to screen out the candidate AS events (P < 0.05).

Functional Annotation
The parent genes of survival‐associated AS events were subjected
to functional enrichment analyses. Gene ontology (GO) term
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed using
“clusterProfiler” package in R (Yu et al., 2012). A p-value and
q-value both smaller than 0.05 in GO and KEGG was
considered significant.

Survival Analysis
The result of univariate Cox regression analysis in identifying
survival-associated AS events was shown by Volcano plot using
“ggplot2” in R (Figure 4A). Seven types of AS events were
revealed by Bubble chart respectively. Each chart contained the
top 20 significant survival-associated AS events of corresponding
types. LASSO method was then employed for the regression of
high-dimensional predictors. LASSO Cox regression model was
used to determine the ideal coefficient for each prognostic feature
and to estimate the deviance likelihood via 1-standard error (SE)
criteria. The coefficients and partial likelihood deviance were
calculated with the “glmnet” package in R (Friedman
et al., 2010).

Construction and Validation of a
Prognostic Model
The result of LASSO Cox regression was then submitted to
multivariate Cox analysis to evaluate the independent prognostic
value of each gene and construct an independent
prognosis model.

The risk score model for prediction based on survival-
associated AS events were calculated by multiplying the PSI
values of prognostic indictors and the regression coefficient
calculated by the multivariate Cox regression analysis.

Risk Score based on eventesðpatientÞ
=o

i
Coefficient mRNAið Þ � PSI value mRNAið Þ

The specific calculation formula was shown in Table 1.
Patients were then divided into two groups based on the
median levels of risk score. This prognostic model and patient
survival information were merged. Kaplan-Meier survival curves
were conducted to identify the prognostic ability of prediction
models. Area under the curve (AUC) value for the ROC curves of
each prognostic model was calculated by survivalROC package in
R. Besides, univariate and multivariate analysis were performed
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containing the risk score of prognostic models and important
clinical features for pRCC. Patients with incomplete clinical
information and less than 90 days of OS were excluded, and
only 129 samples were deemed qualified. Finally, a nomogram
was constructed using the “rms” package on R. The calibration of
this nomogram was assessed by calibration curves.

Correlation Network of SF and Survival-
Associated AS Events
The data of SFs was obtained from SpliceAid 2 (Piva et al., 2012).
SF files and patient survival information were merged and
calculated by univariate Cox regression analysis to get survival-
associated SFs. Correlation network was constructed using the
gene expression of SFs and PSI values of prognosis-related AS
events with the conditions of P value less than 0.001 and Pearson
correlation coefficient more than 0.7. The correlation network
was plotted by Cytoscape (version 3.6.1).

The risk score model based on survival-associated SFs was the
sum of each optimal prognostic mRNA expression level
multiplying relative regression coefficient weight calculated
from the multivariate Cox regression model.

Risk Score based on SFsðpatientÞ
=o

i
Coefficient mRNAið Þ � Expression mRNAið Þ
RESULTS

Overview of AS Events in pRCC
We collected 41,673 AS events from 10,026 genes in 32 adjacent
normal tissues and 289 pRCC tissues. The numbers of the genes
showing seven types of AS events were plotted by UpSet plot
(Figure 2A). Several genes only have one kind of AS event, ES
was found in 1,699 genes (the largest number) and ME in 36
genes (the smallest number). The plot also showed that one gene
might involve two or more AS events, leading to multiple
transcripts from one gene. AS data was merged with clinical
survival data and calculated by univariate Cox regression
analysis. As a result, 4,084 AS events in 2,558 genes were
deemed associated with the overall survival (OS) (p < 0.05).
The result was also shown by UpSet plot (Figure 2B).

Functional and Pathway Enrichment
Analysis
Based on survival-associated AS events, GO (Figure 3A), and
KEGG (Figure 3B) were conducted by “clusterProfiler” package
in R. The involved functions and pathways included “ciliary basal
body-plasma membrane docking,” “purine ribonucleotide
metabolic process,” and “organelle localization by membrane
tethering” in biological process (BP), “adherens junction,” “focal
adhesion,” and “cell-substrate adherens junction” in cellular
component (CC), “cadherin binding,” “cell cadherin molecule
binding,” and “retinoic acid receptor binding” in molecular
function (MF). Besides, these genes were mainly enriched in
“MAPK signaling pathway,” “thermogenesis,” and “human
January 2020 | Volume 10 | Article 1333
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cytomegalovirus infection” in KEGG. AS events generating from
these genes might influence the occurrence and development of
pRCC through interfering with the above BPs and pathways.

Prognostic Model for pRCC
Among the survival-associated AS events (Figure 4A), the top 20
significant AS events were shown by bubble chart (Figures 4B–H).
These AS events were further treated with LASSO Cox analysis
(Figures 5A–G). LASSO Cox analysis of all AS events (ALL) was
also shown (Figure 5H). Next, multivariate Cox analysis was
performed to construct an independent model with PI. The
formula was showed in Table 1. Patients were divided into the
low-risk group and the high-risk group based on the median risk
score. With the increasing risk score, the patient’s survival became
worse. The risk plot of ALL AS events was shown in Figure 6.
Figure 6C with high resolution were affiliated in the
Supplementary Figure 1. The separate risk plots of seven AS
event were affiliated in Supplementary Figure 2. The Kaplan-
Meier survival analysis suggested that a pRCC patient with a
higher risk score might show a worse survival (Figures 7A–H). An
AUC value of more than 0.9 was found in all the seven types of AS
in pRCC except AD (0.861), which validated the efficiency of these
signatures in predicting prognosis. To assess whether this model
was an independent predictor of pRCC, univariate analyses was
performed between clinical factors and risk score. The results
showed that this model could distinguish pRCC patients (p <
0.001) (Table 2). Furthermore, by using multivariate analyses, this
prognostic model was proved to serve as a moderate and
independent prognostic indicator in the AS events of AA, AD,
AP, AT, and RI. (Figures 8A–H). Finally, to provide a clinically
associated quantitative method, we tried to construct a nomogram
incorporating riskscore and clinical factors to predict the
probabilities of 3- and 5-year OS in pRCC. Since the predict
model based on AA event showed the best performance among AS
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events that proved to serve as a moderate and independent
prognostic indicator (AUC = 0.967), the nomogram was
constructed based on AA event (Figure 9A). The Harrel’s
concordance index (C-index) for OS prediction was 0.963,
which showed a fairly high prediction accuracy of this
nomogram. The calibration curves for the 3- (Figure 9B) OS
rates showed good agreement between the prediction and the
actual observation, but not so good in 5-year (Figure 9C).

A Survival-Associated Network
Incorporating SFs and AS Events
SFs play an important part in the occurrence and development of
AS events via changing exon selection and splicing site.
Therefore, it is necessary to uncover the correlation between
SFs and AS events. Survival analyses based on TCGA data was
performed to screen out potential SFs. And then, correlation
network was constructed using the expression value of SFs and
PSI values of prognosis-related AS events (Figure 10A). Figure
10A with high resolution were affiliated in the Supplementary
Figure 3. To highlight the key players in this network, we
performed LASSO Cox analysis on those SFs (Figure 10B).
CDK12, CDK10, SF3A2, SNRNP35, and SNRNA were
screened out by multivariate Cox regression analysis
(Figure 10C).

Risk score = the expression of CDK12 * 0.260889 + the
expression of CDK10 * (−0.06669) + the expression of SF3A2 *
0.041459 + the expression of SNRNP35 * (−0.21053) + the
expression of SNRPA * 0.087523

The model formed by these five SFs showed outstanding
prognostic efficiency as evidenced by the Kaplan-Meier survival
curves (Figure 10D) and ROC curve (Figure 10E). With clinical
information, we further analyzed the five key genes with
multivariate analyses (Figure 10F). In additionally, only
CDK12 and SF3A2 were deemed significant statistically
TABLE 1 | Prognostic signatures for papillary renal cell carcinoma.

Type Formula AUC

AA FKBP8|48446|AA*−8.261326216+ITGB1BP1|52617|AA*−3.645087449+FAM213A|12365|AA*−3.591154025+MYL6|22381|AA*−16.63167012+PILRB|
80930|AA*4.461677112+TRPT1|16579|AA*−28.05557115+RPS24|12297|AA*−2.123512398+ENTPD6|58863|AA*−4.538790703+SPATA20|42429|
AA3.809741969

0.967

AD TCEB1|84216|AD*−3.227392376+ATP5J|60266|AD*−6.409262477+IRF3|51027|AD*−5.374919151+CFL2|27169|AD*−4.984160824+ATP6V1H|83836|
AD*−14.79100606+AKT1S1|51111|AD*−6.962315249+PQBP1|89029|AD*−2.068032636

0.861

AP UNG|24277|AP*4.194935004+NHS|88586|AP*−2.822266615+DYNC1I2|55939|AP*−6.138633492+LIMA1|21688|AP*3.922489143+PMEPA1|59946|
AP*1.640017308+RNF220|2555|AP*−4.636337467

0.961

AT CLDN11|67616|AT*1.439647629+SLC25A48|73462|AT*-3.684109126+KIF4A|89373|AT*2.503402505+RBM39|59235|AT*−22.33853542+BCAM|
50347|AT*3.282115813+LARP1B|70567|AT*
−3.356001505

0.959

ES YIF1A|17008|ES*−20.56958015+RPS24|12295|ES*−1.999160275+C16orf13|265882|ES*−2.503302918+ARHGEF10|82562|ES*−2.479391656+PAX8|
55049|ES*−7.098738552+MUM1|46457|ES*2.479075665

0.928

ME AMT|64866|ME*−11.67288726+C14orf2|29528|ME*2.439891378+CBWD5|86504|ME*−9.123153517+MEF2A|32717|ME*−5.089591595+FAIM|67014|
ME*−3.726223934+CERS5|21668|ME*−2.23329899+STK36|57557|ME*−15.49762863+FBLN5|28892|ME*10.43894503+GLOD4|123198|ME*
−4.401329099

0.901

RI TMUB1|82347|RI*−4.817625749+ELP5|38889|RI*−5.149262596+ZSWIM7|39393|RI*−6.043747899+LRRC29|36982|RI*4.739092712+ZNF276|38138|
RI*6.294309106+SNX5|58749|RI*−4.792058193+TTLL3|63208|RI*4.305033369

0.963

All SEC31A|69730|ES*−3.130605352+RPS24|12295|ES*−2.37334211+FKBP8|48446|AA*−10.11459992+UNG|24277|AP*4.542255311+ARHGEF10|
82562|ES*−3.009037952

0.968
January 2020 | Volume 10 | Article
Example: “FKBP8|48446|AA*−8.261326216,” “FKBP8” is the gene name, “48446” is the AS id, “AA” is the type of AS event, “FKBP8|48446|AA”mean the PSI value of AA event in FKBP8,
and “−8.261326216” is the regression coefficient calculated by the multivariate Cox regression analysis.
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(p < 0.05). The HR values of CDK12 and SF3A2 in multivariate
analyses were all greater than 1, suggesting that CDK12 and
SF3A2 may associate with the poor survival of pRCC patients.
DISCUSSION

Previous studies have presented that AS is a crucial
posttranscriptional regulation leading to structural transcript
variation and proteome diversity (Zhang and Manley, 2013).
Abnormal AS is associated with tumorigenesis (Grosso et al.,
Frontiers in Genetics | www.frontiersin.org 512
2008). To the best of our knowledge, few systematic AS-related
research has been conducted. Prior to our research, Yang XJ et al.
identified pRCC into two classes using comparative genomic
microarray analysis, one associated with excellent survival and
the other with poor prognosis (Yang et al., 2005). Wach S et al.
classified pRCC subtypes using microRNA profiles (Wach et al.,
2013). Recently, machine learning models have been used to
classify stages of PRCC pRCC patients, showing a best
performance with area under Precision Recall curve of 0.804,
Matthews Correlation Coefficient of 0.711, and accuracy of 88%
with Shrunken Centroid classifier on a test dataset based on 80
FIGURE 2 | UpSet plots of alternative splicing (AS) events in papillary renal cell carcinoma (pRCC). (A) Summary of AS events in pRCC. (B) Survival‐associated AS
events from univariate Cox regression analysis. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES, exon skip; ME,
mutually exclusive exons; RI, retained intron.
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selected genes (Singh et al., 2018). Therefore, this study is the first
systematic analysis on pRCC-survival-associated AS events. The
analysis showed that 4,084 AS events in 2,558 genes were
associated with the overall survival (OS) of pRCC patients.

The parent genes of survival‐associated AS events were
subjected to functional enrichment analyses, and 18 potential
Frontiers in Genetics | www.frontiersin.org 613
pathways were enriched. Among which, MAPK signaling
pathway was the top 1 in the list (Figure 3B). Targeted
therapy against VEGF was a traditional medical treatment
for renal cell carcinoma. Zhang Y et al. reported RKTG to
inhibit angiogenesis by suppressing MAPK-mediated
autocrine VEGF signaling (Zhang et al., 2010), and MAPK
FIGURE 3 | Functional and pathway enrichment analysis. (A) Gene ontology analysis of genes with survival-associated alternative splicing events. (B) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of genes with survival-associated alternative splicing events.
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signaling pathway has also been reported to be involved in the
development of renal cell carcinoma by some other molecular
regulation (Huang et al., 2008; Huang et al., 2016; Li et al.,
2017). AS is closely related to tumor resistance to drugs (Wang
et al., 2017; Martinez-Montiel et al., 2018; Siegfried and Karni,
2018). In the pathway that genes enriched, “EGFR tyrosine
kinase inhibitor resistance” and “platium drug resistance”
were involved. EGFR (Wei et al., 2013; Robichaux et al.,
2018) and platium (Vaughn et al., 2009; Teo et al., 2017; Pal
Frontiers in Genetics | www.frontiersin.org 714
et al., 2018) have been reported to be involved in the treatment
of cancer, and through these enriched genes we may be able to
discover specific mechanisms of drug resistance.

In this paper, we formed prognostic models by these survival-
associated AS events. Before our research, Yang XJ et al
performed microarray-based microRNA (miRNA) expression
profiling of primary ccRCC and pRCC cases, and finally five
miRNAs (miR-145, -200c, -210, -502-3p, and let-7c) were
screened out to identify the samples with high accuracy (86.5%
FIGURE 4 | Top 20 most significant alternative splicing (AS) events in papillary renal cell carcinoma (pRCC). (A) Volcano plot demonstrating result of univariate Cox
regression analysis, red dots represent survival-associated genes and blue dots represent irrelevant genes. The top 20 AS events correlated with clinical outcome
based on alternate acceptor (AA) (B), alternate donor (AD) (C), alternate promoter (AP) (D), alternate terminator (AT) (E), exon skip (ES) (F), mutually exclusive exons
(ME) (G), and retained intron (RI) (H). The value in the x-axis z-score is the coefficients of univariate cox regression analysis.
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in tumor/normal classification, 77.6% in ccRCC/pRCC
classification, and 86.4% in pRCC type 1/2 classification);
Wach S et al. used machine learning models to classify stages
of PRCC pRCC patients, showing a good performance with area
under Precision Recall curve of 0.804, Matthews Correlation
Coefficient of 0.711 and accuracy of 88% with Shrunken
Centroid classifier on a test dataset based on 80 selected genes.
As for the prognostic models in our research, firstly, Kaplan-
Frontiers in Genetics | www.frontiersin.org 815
Meier survival curves suggested that these models were
appropriate methods to stratify pRCC patients into groups of
different survivals (p < 0.01). Secondly, either single AS event or
combined seven AS events performed well in predicting overall
survival of pRCC patients (AUC > 0.9) with an exception of
AUC = 0.861 in AD. Meanwhile, PI was proved to be
independent in AA, AD, AP, AT, and RI by univariate and
multivariate analyses. Compared with previous studies, using the
FIGURE 5 | LASSO Cox analysis of alternative splicing (AS) events. LASSO Cox regression model with 10‐fold cross‐validation was constructed using the top
significant survival‐associated AS events to screen the key AS features in AA (A), AD (B), AP (C), AT (D), ES (E), ME (F), RI (G) and all AS events (H).
January 2020 | Volume 10 | Article 1333
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PSI value of AS events to predict patient’s outcome is
theoretically more systematic and accurate. At the same time,
by searching for articles, we found that there were also related
studies based on AS events in other tumors like uteri corpus
endometrial carcinoma (Gao et al., 2019) and papillary thyroid
cancer (Lin et al., 2019). However, based on the value of AUC in
the prognostic model, it seems that the prognostic model based
on AS events is more suitable for pRCC. We also built a
nomogram for clinical application and validation.
Frontiers in Genetics | www.frontiersin.org 916
By searching scientific literature, we found that some genes
that make up PI have been reported to play an important role in
tumors. For example, in the PI model of AT AS events, CLDN11,
SLC25A48, KIF4A, RBM39, BCAM, and LARP1B were involved
(Table 1, AT). It was reported that inactivation of CLDN11
could promote cell migration in nasopharyngeal carcinoma (Li
et al., 2018). KIF4A were identified as prognostic gene or key
gene involved in the metastasis of renal cell carcinoma in recent
survey (Gu et al., 2017; Wei et al., 2019). Anticancer
FIGURE 6 | Development of the prognostic index. Risk plot of ALL alternative splicing (AS) event. (A) Rank of prognostic index and distribution of groups. Patients
with papillary renal cell carcinoma (pRCC) were divided into low- and high-risk subgroups based on the median value of the risk score calculated. (B) The survival
status and survival time of patients with pRCC ranked by risk score. In (A) and (B), green dots represent for patients with a low level of risk score and red dots
represent for patients with a high level of risk score. (C) Heatmap of included AS event in ALL. Patients were divided into two groups according to risk score. The
color from green to red means the Percent Spliced In (PSI) value from 0 to 1.
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FIGURE 7 | The prognostic value of PI presented by overall survival (OS) and ROC curves. Kaplan-Meier plot depicting the survival probability over time for
prognostic predictor of seven types of AS events (A–G) and all AS event (H) with high (red) and low (blue) risk group, respectively. The ROC curve to which the
respective model belongs is located to the right of the KM curve.
TABLE 2 | Univariate analysis between clinical parameters and alternative splicing (AS) events in The Cancer Genome Atlas (TCGA) cohort of papillary renal cell
carcinoma (pRCC) patients.

id HR HR.95L HR.95H pvalue

Age 1.8095854 0.8102357 4.041539 0.1479857
Gender 0.7549775 0.3182836 1.7908277 0.5236151
Stage 12.273306 5.4549378 27.614253 1.36E-09
T(Tumor) 5.3163151 2.4726062 11.430533 1.89E-05
M(Metastasis) 41.108075 12.143928 139.15381 2.33E-09
N (Lymph Node) 12.51509 5.7257522 27.354916 2.39E-10
Risk score based on AA 1.0053074 1.0032742 1.0073448 2.98E-07
Risk score based on AD 1.0162305 1.0078678 1.0246627 0.0001341
Risk score based on AP 1.0088837 1.0050934 1.0126883 4.12E-06
Risk score based on AT 1.0223319 1.0147675 1.0299526 5.58E-09
Risk score based on ES 1.0106936 1.0065517 1.0148524 3.84E-07
Risk score based on ME 1.0523824 1.0325915 1.0725527 1.36E-07
Risk score based on RI 1.0257308 1.0171857 1.0343477 2.65E-09
Risk score based on ALL 1.0076827 1.0039129 1.0114666 6.28E-05
Frontiers in Genetics | www.frontiersin.org
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FIGURE 8 | Multivariate Cox regression analysis of clinical parameters and different PI models constructed by AA (A), AD (B), AP (C), AT (D), ES (E), ME (F), RI (G)
and all AS events (H) in pRCC patients.
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sulfonamides functions by inducing RBM39 degradation
(Anticancer Sulfonamides Induce Splicing Factor RBM39
Degradation, 2017; Han et al., 2017). BCAM was reported to
mediate recognition between tumor cells and the endothelium in
KRAS-Mutant colorectal cancer. In the present study, the role of
SLC25A48 and LARP1B was still unclear, and our analysis may
guide the direction of future research on pRCC.

SFs are implicated in the process of alternative mRNA splicing
(Venables et al., 2009). Splicing abnormalities arise owing to
aberrant expression and/or mutations of SFs (Venables, 2006).
Hence, SFs have a tight link with AS events. In this paper, survival-
associated SFs were screened out by survival analyses. Correlation
network was then formed to describe the interactions between SFs
and AS events. Both positive and negative correlations were
observed between one SF and multiple survival-associated AS
events, or between one survival-associated AS event and multiple
SFs. By performing LASSO Cox analysis and multivariate Cox
regression analysis, CDK12, CDK10, SF3A2, and SNRNA were
screened out. However, only CDK12 and SF3A2 were deemed
significant statistically (p < 0.05) according to multivariate
analyses. CDK12 contains an arginine–serine-rich (RS) domain,
and can regulate the splicing of a minigene construct (Chen et al.,
2006). CDK12 may be inactivated in patients with metastatic
Frontiers in Genetics | www.frontiersin.org 1219
castration-resistant prostate cancer, and may make tumors more
responsive to PD-1 inhibitors (CDK12 Changes Telling in
Prostate Cancer, 2018). According to the regulatory network in
our research, we found a negative correlation between CDK12
and SP100-57896-AT. It has been reported that SP100 could
reduce malignancy of human glioma cells (Held-Feindt et al.,
2011). The HR value of SF3A2 was 1.051, and SF3A2 was also
reported to be associated with the metastasis and recurrence of
osteosarcoma (Zhang et al., 2019). These results indicated that
these altered SFs, as independent molecules, can construct a
regulatory network in the carcinogenesis and progression in
pRCC. However, this network may be optimized with more
molecules. Besides, only 129 pRCC patients were involved in
our analysis due to the restricted standard of OS time more than
90 days and requirement for complete clinical data. PI was proved
to be independent in AA, AD, AP, AT, and RI by univariate and
multivariate analyses in this paper, but when we brought all the
AS events together, p > 0.05 in multivariate analyses (Figure 8H)
which indicted that there were still some key factors that were not
considered in our analysis and certain errors were inevitable due
to the heterogeneity of patients.

In conclusion, our study created an efficient prognostic model
based on survival-associated AS events for pRCC, which may
FIGURE 9 | Establishment of the overall survival (OS) nomogram for papillary renal cell carcinoma (pRCC) patients based on alternate acceptor (AA) event. (A)
Nomogram for predicting OS of pRCC. There were seven factors containing age, gender, stage, T, N, M, and riskscore in the nomogram. Each of them generates
points according to the line drawn upward. And the total points of the seven components of an individual patient lie on “Total Points” axis which corresponds to the
probability of 3-year and 5-year OS rate plotted on the two axes below. (B–C) The calibration plots for predicting patient 3‐ or 5‐ year OS.
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help clinicians in selecting reliable prognostic indicators and
understanding the mechanism of pRCC.
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Inflammation is a complex biological response to injuries, metabolic disorders or
infections. In the brain, astrocytes play an important role in the inflammatory processes
during neurodegenerative diseases. Recent studies have shown that the increase of free
saturated fatty acids such as palmitic acid produces a metabolic inflammatory response
in astrocytes generally associated with damaging mechanisms such as oxidative stress,
endoplasmic reticulum stress, and autophagic defects. In this aspect, the synthetic
neurosteroid tibolone has shown to exert protective functions against inflammation
in neuronal experimental models without the tumorigenic effects exerted by sexual
hormones such as estradiol and progesterone. However, there is little information
regarding the specific mechanisms of tibolone in astrocytes during inflammatory
insults. In the present study, we performed a genome-scale metabolic reconstruction
of astrocytes that was used to study astrocytic response during an inflammatory
insult by palmitate through Flux Balance Analysis methods and data mining. In
this aspect, we assessed the metabolic fluxes of human astrocytes under three
different scenarios: healthy (normal conditions), induced inflammation by palmitate,
and tibolone treatment under palmitate inflammation. Our results suggest that tibolone
reduces the L-glutamate-mediated neurotoxicity in astrocytes through the modulation
of several metabolic pathways involved in glutamate uptake. We also identified a set of
reactions associated with the protective effects of tibolone, including the upregulation of
taurine metabolism, gluconeogenesis, cPPAR and the modulation of calcium signaling
pathways. In conclusion, the different scenarios studied in our model allowed us to
identify several metabolic fluxes perturbed under an inflammatory response and the
protective mechanisms exerted by tibolone.

Keywords: tibolone, astrocytes, inflammatory response, flux balance analysis, palmitic acid, genome-scale
reconstruction, systems biology

INTRODUCTION

Astrocytes are the most abundant cells in the human brain. In the last years, it has been shown
that they are of paramount importance for different essential functions in central nervous system
(CNS). For instance, the homeostatic regulation of the central nervous system (Takuma et al., 2004),
tissue repair, modulation of synaptic activity through the release of gliotransmitters and glycogen
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storage (Lange et al., 2012). Additionally, astrocytes protect
neurons against the glutamate-induced excitotoxicity through
the astrocyte-specific sodium-dependent glutamate transporters
such as GLT-1 and GLAST (Bélanger and Magistretti, 2009).
On the other hand, astrocytes are important modulators
of inflammation (Sofroniew, 2014). Their main response to
inflammation happens through the activation of the complex
process of reactive gliosis, which is an important process for CNS
during injuries and diseases (Dowell et al., 2009; Barreto et al.,
2011; Sofroniew, 2014). For these reasons, a great number of
studies have shown that the dysregulation of astrocytic functions
is highly correlated with the development of neurodegenerative
processes, (Takuma et al., 2004; Kumar Jha et al., 2016).

Different works have shown that astrocytes are key mediators
in the brain lipid homeostasis and B-oxidation of fatty acid
(Panov et al., 2014). Interestingly, saturated free fatty acids,
including stearic acid, lauric acid, and palmitic acid, are
closely associated with neurodegenerative processes such as
traumatic brain injury (TmBI), dementia, stroke, epilepsy,
spinal cord injury, Parkinson’s disease (PD) reactive gliosis,
neuroinflammation, and Alzheimer’s disease (AD) (Bruce-Keller
et al., 2001, 2009; White et al., 2009; Gupta et al., 2012;
Little et al., 2012; González-Giraldo et al., 2019). Additionally,
both palmitic acid and stearic acid were shown to increase
the secretion of Aβ amyloid peptide in an AD cellular model
(Amtul et al., 2011). Recent studies in human populations
also point an inverse correlation between clinical obesity and
neuroinflammation (Barnard et al., 2014; Reichelt et al., 2017;
Melo et al., 2019), suggesting that long-term consumption of
high fat diets is associated with pathological mechanisms in the
brain (Melo et al., 2019). Moreover, the increase of saturated
free fatty acids during metabolic inflammation activates IKKβ

kinase and its downstream effector NF-κβ, which in turn
impairs leptin and insulin hormonal signaling and triggers the
production and release of reactive oxygen species (ROS) and
pro-inflammatory cytokines like TNF-α and IL-6 from glial cells
(Purkayastha and Cai, 2013).

In this aspect, tibolone is a synthetic steroid (Kloosterboer,
2001), with estrogenic, progestogenic, and weak androgenic
actions (González-Giraldo et al., 2019). It has been used for the
treatment of climacteric symptoms and osteoporosis in post-
menopausal women (Rymer et al., 1994; Rymer, 1998) and
has also shown beneficial antidepressant effects in menopausal
women (Kulkarni et al., 2015). It has been shown that tibolone
exerts its neuroprotective effects through the activation of
the Akt/GSK3ß signaling pathway which in turns causes the
reduction of Tau phosphorylation in the hippocampus and
cerebellum of ovariectomized rats, the increase in antioxidant
activity in primary neuronal cultures and the increase in the
expression of the antiapoptotic protein Bcl-2 (Genazzani et al.,
2006; Belenichev et al., 2012; Pinto-Almazán et al, 2012; Avila-
Rodriguez et al., 2014). Nevertheless, there is little information
regarding the effects of tibolone in astrocytes or the metabolic
pathways related with its neuroprotective mechanisms (Avila-
Rodriguez et al., 2014; González-Giraldo et al., 2019).

In that sense, genome-scale metabolic reconstructions are a
compilation of all the stoichiometric reactions and pathways

that can describe the entire cellular metabolism of an organism
(Vodovotz et al., 2008; Thiele et al., 2013). In recent years,
they have become an indispensable tool for the understanding
of complex biological phenomena, including neurodegenerative
diseases and inflammation processes (Cakir et al., 2007;
Swainston et al., 2013; Sertbaş et al., 2014; Martín-Jiménez et al.,
2017). Moreover, genomic-scale reconstructions are builder from
a system biology approach that allows the integration of several
sources of information, such as biological data bases, high-
throughput omic data, and experimental evidence, in order to
improve the development of novel pharmacological treatments
(Najafi et al., 2014).

Having in account the importance of astrocytes for brain
inflammation, and the promising effects of tibolone for
astrocytic and neuronal protection (Crespo-Castrillo et al.,
2018), we developed a genomic-scale metabolic model of
astrocytes, with the purpose of enlighten the metabolic pathways
modulated by tibolone during an inflammatory response
caused by the increased uptake of palmitate. We focused or
attention, in the identification of metabolic changes related
with the modulation of cytokines, the release of gliotransmitters
and the neuroprotective effects mediated by tibolone in an
inflammatory scenario (Wojtal et al., 2006). Our results
suggest that tibolone exerts its neuroprotective effects through
the reduction of neurotoxicity mediated by L-glutamate in
astrocytes. We also found a tibolone-associated increase in
the biomass growth rate that is consistent with previous
reports concerning the side effects of neurosteroids in other
human cell types.

MATERIALS AND METHODS

Tissue Specific Model Construction
The tissue specific model construction process started with
the identification of all enzyme-coding genes expressed in
healthy human astrocytes indexed in the GEO database
(Swainston et al., 2013) as GSE73721. Gene identifier conversion
from GeneCards (Rebhan et al., 1997) to ENTREZ (Maglott
et al., 2011) was performed through “UniProt.ws” R Package.
Reactions associated with the identified genes were mapped
from the Human Genome-Scale Metabolic Reconstruction
RECON 2.04 (Thiele et al., 2013) as downloaded from the
VMH Lab (Swainston et al., 2016)1 and further enriched
with metabolic information obtained from KEGG (Kanehisa
and Goto, 2000). Additionally, we developed the R package
“g2f” available in CRAN (Hornik, 2012; Botero et al., 2016)
to identify and fill the gaps using all the reactions with
an uncorrelated gene expression included in RECON 2.04,
as well as to select and remove all blocked reactions from
our reconstruction.

All the reactions involved in the conversion of extracellular
glutamate, glycine, cysteine and glucose to extracellular
glutamine, glycine, serine-D, reduced glutathione, lactate, and
ATP were added, as they are essential for the normal astrocytic

1https://vmh.uni.lu
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metabolism (Barreto et al., 2011; Souza et al., 2019). Exchange
reactions were limited to components of the Dulbecco’s Modified
Eagle Medium (DMEM) as an input, and the gliotransmitters,
glutamine, D-serine, ATP and glutamate, reduced glutathione,
lactate, glucose, nitric oxide, prostaglandins and leukotrienes
as output, in accordance with previous experimental studies
from our group (Avila-Rodriguez et al., 2016; Cabezas et al.,
2018; González-Giraldo et al., 2019). Finally, we developed the
R Package “MinVal” to validate the syntax of the model, the
mass-charge and the creation of SBML files (Osorio et al., 2017).

Reaction limits (upper and lower bounds) were constrained
proportionally to the mean gene expression reported for
genes included in Gene-Protein-Reaction (GPR) (Thiele and
Palsson, 2010) associated to each reaction in samples of male
and female human patients from 47 to 63 years old, using
the “exp2flux” R package available in CRAN (Hornik, 2012;
Osorio et al., 2017). All Flux Balance Analysis (FBA) were
performed using the “sybil” (Gelius-Dietrich et al., 2013) R
Package running under R 3.3.1 (Gelius-Dietrich et al., 2013;
R Development Core Team, 2016).

Flux Balance Analysis
Flux balance analysis is a linear optimization method for
simulating the metabolic reactions of a cell or an organism that
allows the identification of the set of reactions involved in the
production of a biological response within the metabolic model
(Orth et al., 2010). The metabolic reactions are represented
internally as a stoichiometric matrix (S), of size m×n, where m
represents the metabolites and n the reactions. The entries in the
matrix are the stoichiometric coefficients of the metabolites that
take part in a reaction. The flux through all of the reactions in
a network is represented by the vector v, which has a length of
n. The concentrations of all metabolites are represented by the
vector x, with length m.

The systems of mass balance equations at steady state are
defined by:

dx

dt
= 0 or S × v = 0. FBA

This expression seeks to maximize or minimize an objective
function, which can be any linear combination of fluxes to obtain
a flux for each reaction, indicating how much each reaction
contributes to the objective function (Orth et al., 2010). The FBA
for the studied scenarios was resolved using GLPK 4.602, setting
the generic human biomass reaction included in RECON 2.04 as
default, and each one of the reactions described in Table 1 as
objective functions. Models for each scenario were analyzed by
comparing their specific fluxes, metabolite’s production rate and
a sensitivity analysis.

Identifying Flux Changes Between
Scenarios
The measurement of flux change for each reaction between
metabolic scenarios is a task generally carried out manually
and oriented directly toward the research objective. However,

2https://sourceforge.net/projects/winglpk/files/winglpk/GLPK-4.60/

TABLE 1 | Set of objective functions used to evaluate the protective effects of
tibolone in the inflammatory scenario.

ID Formula reaction Description

Glu2Gln 1 glu_L[e]→ 1 gln_L[e] Glutamate – Glutamine
cycle

Gly2SerD 1 gly[e]→ 1 ser_D[e] Glycine to D-serine
conversion

Glc2Lac 1 glc_D[e]→ 2 lac_L[e] Lactate production from
glucose

Glc2ATP 1 glc_D[e]→ 36 atp[e] ATP production from
glucose

Cys2GTHRD 1 cys_L[e] + 1
glu_L[c] + 1 gly[c]→ 1
gthrd[e]

Catch of cysteine to
produce reduced
glutathione

at system level this process can become laborious. The flux
Differences function calculates the fold change for each common
reaction between metabolic scenarios.

Fold change is a measure that describes how much a quantity
changes going from an initial to a final value. The implemented
algorithm in the flux Differences function is described in Eq. 1:

foldChange : R × R→ R

(rFluxModel1, rFluxModel2) 7→
rFluxModel2, rFlux Model1 = 0;
rFluxModel1− rFluxModel2∣∣rFluxModel1

∣∣ , Other cases

(1)

Here, the function takes as argument two valid models for the
“sybil” R package and a customizable threshold value to filter
functions to be reported.

In this aspect, we chose an arbitrary threshold value greater
or equal to 2-fold times for reactions with an absolute
change between the unconstrained and constrained metabolic
scenarios, as reported in previous models (Hausen et al., 2015;
Banos et al., 2017).

Metabolic Scenarios
To test the protective effects of tibolone during metabolic
inflammation in astrocytes we defined three different metabolic
scenarios: (1) A “healthy” scenario, where the rate of palmitate
uptake was set freely by the optimizer. This scenario emulates
the normal conditions of astrocytes metabolism (Supplementary
Data Sheet 1), without any inflammatory response (Seeger et al.,
2016). (2) An “induced inflammation by palmitate” scenario,
where the uptake rate of palmitate was forced to be stable in
the mean of the half maximal inhibitory concentration (IC50)
value for all the objective functions included in Table 1. In
this aspect, IC50 values were calculated through a robustness
analysis performed using uptake of palmitate (‘EXhdca(e)’ in
RECON 2.04) as control and 1000 points in the range from 0
to 1 mMgDW–1h–1 for each objective function. Uptake values
where each objective function reached IC50 was selected and
subsequently averaged. Moreover, the modeled inhibitory effects

Frontiers in Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 141025

https://sourceforge.net/projects/winglpk/files/winglpk/GLPK-4.60/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01410 January 30, 2020 Time: 17:1 # 4

Osorio et al. Pathways Involved in Palmitic Acid Toxicity

TABLE 2 | Set of reactions added to recreate the “Tibolone treatment” scenario
for the astrocytic model.

ID Formula reaction Description

T1 Tibolone[e]↔ Tibolone exchange reaction

T2 Tibolone[e]↔ a3OHtibolone[e] 3ahidroxytibolone interconvertion

T3 Tibolone[e]↔ b3OHtibolone[e] 3bhidroxytibolone interconvertion

T4 Tibolone[e]→ d4tibolone[e] D4tibolone isomer formation

T5 b3OHtibolone[e]→
d4tibolone[e]

D4tibolone isomer formation from
3b-hidroxytibolone

T6 a3OHtibolone[e]→ estradiol[c] Estradiol receptor agonist action
mechanism of 3a-hidroxytibolone

T7 b3OHtibolone[e]→ estradiol[c] Estradiol receptor agonist action
mechanism of 3b-hidroxytibolone

T8 d4tibolone[e]→
prgstrn[c] + tststerone[c]

Progesterone and androgen
receptor activation by tibolone D4

isomer

T9 a3OHtibolone[e]↔
a3SOtibolone[e]

3ahidroxytibolone interconvertion to
sulfated inactive compounds

T10 a3SOtibolone[e]→ Tibolone inactive form in blood

Tibolone reactions affecting the astrocytic metabolism were
based on Kloosterboer (2004).

are in congruence with the reported damaging effects of palmitate
in astrocytes (Gupta et al., 2012; González-Giraldo et al., 2019).
Finally, a “Tibolone treatment under inflammation” scenario
was defined as an “inflammatory scenario” which included
279 additional reactions associated with the metabolic effects
exerted by estradiol and derivates compounds obtained in KEGG
(Kanehisa et al., 2014), and ten specific reactions associated
with tibolone metabolism (Kloosterboer, 2004) not included in
RECON 2.04, which are described in Table 2.

Metabolic Changes
Flux differences for each reaction between optimized scenarios
were measured using the fold change as described in the
following equation:

foldChange =
valueModel2− valueModel1∣∣valueModel1

∣∣ (2)

Mechanisms of Associated Enzymes
With Pro-inflammatory,
Anti-inflammatory and Tibolone Effects
Enzymes involved in pro-inflammatory and anti-inflammatory
responses during palmitic acid damage and upon tibolone
treatment were identified through a sensitivity analysis as follows:
Pro-inflammatory enzymes are those that catalyze reactions
that allow the increase of the objective function value when
knocked out. Anti-inflammatory enzymes are those associated
with reactions that have a fold-change greater or equal to 2, and
that once being knocked out reduces the objective function value.
Tibolone associated enzymes are those that catalyze reactions that
produce a total inhibition of the metabolic effects of tibolone
when knocked out.

RESULTS AND DISCUSSION

Astrocytic Metabolic Model
We reconstructed an FBA based astrocytic tissue-specific model
composed by 1262 unique genes, 1956 metabolites and 2747
biochemical reactions of which 1607 were intracellular reactions,
60 were exchange reactions, and 1080 were transport reactions
(Figure 1A). Reactions were classified based on their enzymatic
activity according to their EC (Enzyme Commission) numbers
(Figure 1B), and sub-cellular localization (Figure 1C).

Based on the enzymatic classification (Figure 1B), 33.2% of
total reactions are catalyzed by a transferase enzyme, 15.8% by an
oxidoreductase, 14.4% by a hydrolase, 6.2% by a lyase, 2.3% by a
ligase, 1.9% by an isomerase and 25.3% of them are spontaneous
reactions without an associated enzyme or gene associated.
Regarding subcellular localization, cytosolic and mitochondrial
reactions contributed to 60% of the total reactions in the model.
The remaining 40% of reactions are distributed in six subcellular
compartments as follows: 8.7% in Golgi apparatus, 8.5% in
peroxisome, 6.9% in endoplasmic reticulum, 6.3% in lysosome,
4.2% in nucleus, and finally 5.5% are transport reactions from the
extracellular space (Figure 1C).

The reactions included in the model are associated with 113
metabolic pathways reported in the KEGG database (Kanehisa
and Goto, 2000). Almost 50% of reactions are associated
to 10 main metabolic pathways of paramount importance
for astrocytic metabolism and neuronal support such as
oxidative phosphorylation, purine metabolism, glycolysis and
gluconeogenesis, and pentose and glucuronate interconvensions.
The distribution of reactions in metabolic pathways is shown in
Figure 2. These results are similar to those previously reported
astrocytic models (Fitch and Silver, 1997; Ciccarelli et al., 2001;
Çakir et al., 2007; Giaume et al., 2010; Sertbaş et al., 2014;
Martín-Jiménez et al., 2017; Sá et al., 2017). For example,
Martín-Jiménez et al. (2017) developed a genome-scale metabolic
reconstruction of human astrocyte, comprising of 5.659 reactions
(237 exchange reactions and 1.948 transport reactions), 3.765
genes, 862 enzymes, 5.007 metabolites. Regarding the subcellular
distribution of reactions, cytosolic and mitochondrial reaction
accounted for 59% of the total reactions, while 23% belonged
to peroxisome, lysosome, endoplasmic reticulum, golgi apparatus
and nucleus. Finally, transport reactions represented 18% of the
total reactions, making them highly similar to our model.

Healthy Scenario (Basal Conditions)
Our metabolic simulation predicts a slow growth rate for
astrocytes (0.37 mMgWD-1h-1) under normal conditions using
DMEM medium as metabolic supply3. This result is in agreement
with the study of Das et al. (2010) which reported that
Human Normal Astrocyte cells (HNA) are able to grow in
DMEM culture medium supplemented with 2% FBS (Das
et al., 2010). Moreover, astrocytes activated 52% of model
reactions (Figure 3) and preferentially use a glucose-based
metabolism. Our model also shows that glucose is catabolized
and constitutively released by astrocytes as lactate without any

3http://himedialabs.com/TD/AT068.pdf
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FIGURE 1 | Distribution of enzymes included in the astrocyte metabolic model. Classification is based in (A) Type of reaction, (B) Catalytic activity and
(C) Associated compartment of the enzyme (subcellular location).

stimuli similar (Le Foll and Levin, 2016), in agreement with Cakir
et al. (2007) and Bhowmick et al. (2015) whom reported a
lactate release rate of 8.9% from the glucose flux in resting
conditions (Çakir et al., 2007; Bhowmick et al., 2015). As
previously stated, astrocytes in physiological conditions release
large amounts of lactate to the extracellular space (Mangia et al.,
2009), which can be used by neurons to supply their energetic
requirements (Kumar Jha et al., 2016). Moreover, our simulations
show that ATP and glutamate are synthesized and released
by astrocytes only under the metabolic alterations present in
the inflammatory and tibolone treatment scenarios which were
analyzed through the evaluated objective functions of our model
(Table 1). Metabolite release rate and biomass growth were used
as references for the comparative changes between the three
metabolic scenarios (Figures 3, 4).

Inflammatory Scenario
In this scenario, we simulated an inflammatory
microenvironment by increasing the cellular concentration
of palmitic acid in astrocytes (Liu et al., 2013; González-Giraldo
et al., 2019). The calculated IC50 for palmitic acid (Table 1)
was 0.208 ± 0.024 mMgDW−1h−1, similar to the study by Liu
et al. (2013) which used a concentration of 0.2 mM of palmitic
acid to induce astrogliosis in primary rat cortical astrocytes
(Liu et al., 2013). Upon palmitic acid, astrocytes increased the
uptake of L-asparagine, L-aspartate, iron, D-glucose, L-glutamate,
histidine and L-serine and the release of L-glutamine and lactate
(Figure 3). This response is usual in reactive astrocytes under
neuroinflammation, which leads to homeostatic disturbances,
including an increased uptake in iron in CNS cells (Kumar
Jha et al., 2016). Iron accumulation is present in several
neurodegenerative diseases such as AD, and PD, promoting
microglial pro-inflammatory activity, altering mitochondrial
function, and inducing ROS production (Williams et al., 2012).
An increase in histidine uptake was previously reported as a
biomarker for metabolic inflammation during obesity (Niu et al.,
2012). In this aspect, histidine acts as a free-radical scavenger
that might reduce IL-6, TNF-α, and CRP levels, and inhibit
the secretion of H2O−2 and TNF-α induced by IL-8 (Lee
et al., 2005; Son et al., 2005). Aspartate, present in the brain
as N-Acetyl-L-aspartate (NAA), is synthesized and stored in

neurons but is hydrolyzed in glial cells (Baslow, 2003). NAA act
as an anti-proliferative, antiangiogenic, and anti-inflammatory
molecule by inducing the decrease of prostaglandin E2 (PGE2)
in astrocytes (Rael et al., 2004). L-Asparagine, in turn, acts
as a regulator of ammonia toxicity through the increase of
Na+ intracellular concentration when is co-transported within
astrocytes (Chaudhry et al., 1999). Moreover, asparagine induces
a Ca2+ response comparable to GABA-induced Ca2+ transients
in a dose-dependent manner (Doengi et al., 2009).

L-serine and L-asparagine uptake increase may be related to a
cell survival process that switches cellular metabolism to be highly
dependent of non-essential amino acids available in extracellular
space such as glutamine, serine, glycine, arginine, and asparagine
(Green et al., 2014). Moreover, under the inflammatory scenario,
our astrocyte model released a limited amount of prostaglandin
D2 (<1e-6 mMgDW-1h-1), a mediator of inflammation. It has
been shown that reactive astrocytes express the DP1 receptor of
prostaglandin D2, and that the inhibition of this receptor resulted
in reactive gliosis suppression in mice (Mohri et al., 2006).

In the inflammatory scenario, astrocytes modified the flux
rate of 586 reactions when compared with the unstimulated
scenario. Main metabolic changes are present in oxidative
phosphorylation, histidine metabolism, and fatty acid
degradation pathways, as well as the inactivation of TCA
and glycolysis pathways (Figure 5). Inflammation affects all
metabolic objective functions evaluated (Table 1) except for the
release of D-serine. In this aspect, it was observed that there was
a decrease of 15.6% in the growth rate of astrocytes compared
with the normal scenario, a decrease of 59.3% in the intake of
cysteine related to reduced glutathione production, a decrease of
72% in glucose degradation to ATP 72%, and to lactate in 74.4%.
Finally, the conversion of extracellular glutamate to glutamine
was reduced by 67.7% (Figure 6).

Based on the sensibility analysis, we identified two pro-
inflammatory candidate reactions that were knocked out
(Table 3). These reactions are associated with the formimidoyl-
transferase cyclodeaminase (FTCD) and mitochondrial water
transport, which has been associated with aquaporin-9 (Potokar
et al., 2016). Following the inhibition of these reactions, it
was observed an increase of the objective function above
the maximum value set for the inflammatory scenario (11.45
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FIGURE 2 | Summary of pathways associated with biochemical reactions included in the genome-scale metabolic model for astrocytes. Pathway association was
assigned based in the metabolic categories used in the KEGG database.

and 5.14%, respectively). In this aspect, it has been shown
that FTCD is overexpressed in high-fat diets (Fernando
et al., 2013) and contributes with one-carbon units from
histidine degradation to the folate pool (Väremo et al., 2015)
and glutamate synthesis. Moreover, this enzyme has been
associated with working memory performance in young adults
(Greenwood et al., 2018). On the other hand, six isoforms
of aquaporins (AQP 1, 3, 4, 5, 8, 9) have been reported
in glial cells, performing important functions like water

transport, regulation of the cerebrospinal fluid (CSF), synaptic
remodeling, formation of brain edemas and inflammatory
processes (Saparov et al., 2007; Te Velde et al., 2008;
Albertini and Bianchi, 2010; Nagahara et al., 2010). Aquaporin
9 (AQP9) is highly expressed in the inner mitochondrial
membrane of astrocytes (Potokar et al., 2016). Different
studies have shown that AQP9 is permeable to many solutes
including glycerol, purines, pyrimidines and urea, suggesting its
importance for diffusion and energetic metabolism in astrocytes
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FIGURE 3 | Exchange rate of metabolites between the different metabolic scenarios using the generic biomass reaction included in RECON 2.04, as the objective
function.

FIGURE 4 | Robustness analysis to calculate palmitate-induced IC50 value for each objective function described in Table 1. The red line represents the calculated
IC50 value.

(Albertini and Bianchi, 2010; Badaut et al., 2012; Potokar et al.,
2016). Moreover, silencing of AQP9 in murine astrocytes
decreased glycerol uptake and increased glucose and oxidative
metabolism, suggesting its importance for astrocyte metabolism

(Badaut et al., 2012). Finally, a study by Nagahara et al. (2010)
showed that in synovial tissues from osteoarthritic patients (OA),
TNFα regulated AQP9 mRNA and protein expression, thus
suggesting that AQP9 could be a biomarker for inflammatory
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FIGURE 5 | Metabolic pathways affected during metabolic inflammation by palmitate. Percentage of activation and inactivation was calculated compared with genes
associated with each pathway in the KEGG database.

FIGURE 6 | The response of the main astrocytes metabolic capabilities to different modeled scenarios. (A) Biomass with DMEm medium, (B) Cystenine to reduced
glutathione conversion, (C) Glucose to ATP conversion, (D) Glucose to lactate conversion, (E) Glutamate to Glutamine conversion, and (F) Glycine to D-serine
conversion.

processes (Nagahara et al., 2010). It is possible that a similar
mechanism could be present in astrocytes under inflammation;
however, additional experimental studies are needed in order to
address this issue.

Finally, 8 anti-inflammatory reactions were found to have
a change equal or greater that 2-fold when knocked-out in
the model (Table 4). 6 of these reactions (r0639, r0653, r0714,
r0716, r0718, and r0720) are involved in fatty acid elongation in
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TABLE 3 | Set of reactions with pro-inflammatory potential, identified through a
sensibility analysis for the inflammatory scenario.

ID Reaction
description

H. Flux I. Flux Fold change

FTCD Formimidoyltransferase
cyclodeaminase

0.39 1.28 2.28

H2Otm H2O transport
mitochondrial

−0.26 2.44 10.44

Fluxes for healthy scenario (H. Flux) and inflammatory scenario (I.
Flux) are compared.

mitochondria through their association with acyl-CoA (Saparov
et al., 2007). This elongation system is responsible for the addition
of two carbon units to the carboxyl end of a fatty acid chain, and
plays an important role in the maintenance of membrane lipid
composition, and in the generation of cell signaling precursors
(such as eicosanoids and sphingosine-1 phosphate), energy
production, and other unknown pathways related with cancer
growth (Murphy et al., 1988; Te Velde et al., 2008).

Our data also showed that AKGMALtm (α-
ketoglutarate/malate transporter) experienced a fold change of
−6.85 when knocked out (Table 4). This transporter is important
for the glutamate/glutamine cycle in astrocytes, which prevents
the excessive accumulation of glutamate in the extracellular
space and the subsequent excitotoxicity (Hertz, 2013). Finally,
the mitochondrial NADH lactate dehydrogenase (LDH) allows
lactate use in ATP production in astrocytes during oxidative
phosphorylation (Lemire et al., 2008). Recently, it was shown
that LDH in murine lymphocyte T cells is important for the
T-cell effector functions by increasing histone acetylation and
the pro-inflammatory IFN-γ transcription, thus suggesting that
LDH could be a therapeutic target in autoinflammatory diseases
(Peng et al., 2016). Further in vivo and in vitro experiments are
needed in order to assess this mechanism in astrocytes.

Tibolone Treatment Scenario
In our “Tibolone treatment” scenario, tibolone affected the flux
rate of 948 reactions in comparison with the inflammatory
scenario. We found important metabolic changes associated with
the activation of several protective pathways in astrocytes
(Schuller-Levis and Park, 2003). These include taurine
metabolism, which has been shown to protect against oxidative

injury in different in vitro and in vivo models including lung cells,
leucocytes, rat macrophages and neuronal cells (Schuller-Levis
and Park, 2003), gluconeogenesis which facilitates the conversion
of fatty acids into ketone bodies under steroid-mediated effects
(Amen-Ra, 2006), calcium, and PPAR signaling path-ways
(Figure 7). Interestingly, PPAR gamma has been shown to
antagonize the actions of pro-inflammatory transcription
factors nuclear factor-κB (NF-κB) and activator protein 1
(AP-1) in human aortic smooth muscle cells and in primary
human hepatocytes (Delerive et al., 2000; Daynes and Jones,
2002). These results suggest that tibolone exerts a significative
modulation on inflammatory reactions through the activation of
several protective pathways, which is agreement with previous
experimental results from our group (Avila-Rodriguez et al.,
2014, 2016; González-Giraldo et al., 2019).

The “tibolone treatment” scenario also increased the demand
for L-aspartate and in turn, decreased the demand for L-
asparagine, L-glutamate and the release of L-glutamine when
compared with the inflammatory scenario (Figure 3). The
reduction on the L-glutamate and L-glutamine uptake/release
rate mediated by tibolone could be associated with a
neuroprotective effect through the reduction in neurotoxicity
mediated by L-glutamate in astrocytes (Petrelli and Bezzi,
2016). In this aspect, it has been shown that the excess in
L-glutamate is a contributing factor in neuronal damage induced
by inflammation in pathologies like TBI stroke, PD and AD
(Ahlemeyer et al., 2002). However, it is important to perform
additional simulations in our model to assess supplementary
metabolic mechanisms that are associated to the induced
inflammation in astrocytes (Shi et al., 2009). Against our
initial hypothesis, tibolone treatment did not show actions
over reactions affected by inflammation and associated with
neuronal support (Table 1). However, tibolone increased cellular
growth by 13.26% compared with basal conditions (Figure 6),
suggesting an increase either on cell viability or in astrocytic
proliferation (Feist and Palsson, 2010). Interestingly, this
proliferative potential was not observed in the inflammatory
scenario, suggesting that the observed proliferation in our model
could be important for cellular homeostasis (Heimann et al.,
2017). In this aspect, previous studies have shown that estrogen
stimulates the differentiation and proliferation of neural stem
cells into neurons, astrocytes, and oligodendrocytes (Okada
et al., 2010). There is no evidence of increased proliferation

TABLE 4 | Set of reactions with anti-inflammatory potential, identified through a sensibility analysis on the inflammatory scenario with palmitate.

ID Reaction description H. Flux I. Flux Fold change

AKGMALtm a-ketoglutarate/malate transporter −0.17 −1.3 −6.85

NADH2_u10 m NADH dehydrogenase mitochondrial 0.12 0.37 2.17

r0639 Lauroyl-CoA: acetyl-CoA C-acyltransferase 0.02 0.09 4.04

r0653 cMyristoyl-CoA: acetyl-CoA C-myristoyl transferase 0.02 0.09 4.04

r0714 (S)-3-Hydroxyhexadecanoyl-CoA: NAD+ oxidoreductase 0.02 0.09 4.04

r0716 (S)-3-Hydroxyhexadecanoyl-CoA hydrolyase 0.02 0.09 4.04

r0718 (S)-3-Hydroxytetradecanoyl-CoA: NAD+ oxidoreductase 0.02 0.09 4.04

r0720 (S)-3-Hydroxytetradecanoyl-CoA hydrolyase 0.02 0.09 4.04

Fluxes for healthy Scenario (H. Flux) and inflammatory scenario (I. Flux) are compared.
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FIGURE 7 | Metabolic pathways affected by tibolone over an inflammatory scenario. Activation and inactivation percentage was measured in comparison with genes
associated to each pathway in the KEGG database.

TABLE 5 | Set of reactions associated with tibolone, involved in the protective
effects of the drug.

ID Reaction description Genes in astrocyte data

r0739 Alcohol Dehydrogenase ADH4, ADH5, ADH7

r2518 ATP-binding Cassette (ABC) ABCD3

RE1804M Cholestanetriol 26-monooxygenase CYP27A1

RE1807M Cholestanetriol 26-monooxygenase CYP27A1

Reactions were identified through a sensibility analysis, carried out in the “Tibolone
treatment” scenario.

by tibolone under palmitate insult, probably due to the
experimental and technical challenges associated with an
accurate measurement of cell proliferation (Frago et al., 2017;
González-Giraldo et al., 2019).

Based on a sensibility analysis performed over 289
reactions associated with tibolone and estradiol-derived
compounds, we identified a set of four reactions that after
being individually knocked out, completely blocked tibolone
effects in our model (Table 5). The identified reactions
are catalyzed by an alcohol dehydrogenase (E.C. 1.1.1.1)
and cholestanetriol 26-monooxygenase associated with
cytochrome P450 and the PPAR signaling pathway (Mast
et al., 2017). Both enzymes were previously reported to be

associated with a reduction in ROS production through
redox reactions mediated by alcohol dehydrogenase (ADH)
and cytochrome P450 (Colditz et al., 1995; Pessayre
et al., 2001). Moreover, a recent study in knockout mice
showed that cholestanetriol 26-monooxygenase deficiency
is associated with early atherosclerosis, osteoporosis, and
progressive neurological deterioration associated with AD
(Mast et al., 2017). Altogether, these results suggest the
importance of tibolone in the regulation of multiple protective
mechanisms in the brain.

CONCLUSION

In this work, we developed a tissue-specific metabolic network
for human astrocytes that was simulated under three different
scenarios. The model allowed us to identify the metabolic changes
between a healthy, an inflammatory and a tibolone treatment
scenario. In our model, the adverse effects associated with the
increase of palmitic acid uptake in astrocytes were described
based on exchange fluxes, metabolite production, and metabolic
pathways perturbed under the inflammatory response. Moreover,
this model was consistent with previous experimental studies
showing that tibolone exerts multiple protective effects against
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inflammation, oxidative stress and metabolic dysregulation (Liu
et al., 2013; Avila-Rodriguez et al., 2014, 2016; González-
Giraldo et al., 2019. In this aspect, a “Tibolone treatment”
scenario was modeled, based on previous works describing
the neuroprotection induced by this synthetic compound on
astrocytes under a variety of anti-inflammatory stimuli.

Our results suggest that tibolone exerts its protective
effects through multiple mechanisms, including the reduction
of neurotoxicity mediated by L-glutamate in astrocytes,
the activation of inflammatory modulators like PPAR
gamma, and the increase in the metabolism of antioxidative
molecules like taurine. We also found a tibolone-associated
increase in biomass growth rate, which is similar to
previously reported studies of the tumorigenic effects
exerted by this compound in breast cancer (Colditz
et al., 1995). On the other hand, the identified enzymes
and reactions associated with tibolone mechanisms are
highly consistent with previous results from our lab
(Avila-Rodriguez et al., 2014, 2016).

Finally, a sensitivity analysis performed through constrained-
based modeling approaches and FBA allowed us to recognize two
possible reactions with their associated enzymes, susceptible to be
knocked out in order to reduce the inflammatory perturbations of
palmitic acid in astrocytes.

In summary, constraint-based models are valuable tools for
the study of the protective effects mediated by pharmacological
molecules in astrocytes, and provide a detailed insight
into high-throughput data analysis. Further experiments are
needed in to confirm the involvement of tibolone in the
regulation of inflammatory mediators in astrocytic animal and
cellular models.
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Cakir, T., Alsan, S., Saybaşili, H., Akin, A., and Ulgen, K. O. (2007). Reconstruction
and flux analysis of coupling between metabolic pathways of astrocytes and
neurons: application to cerebral hypoxia. Theor. Biol. Med. Model. 4:48. doi:
10.1186/1742-4682-4-48
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Potokar, M., Jorgačevski, J., and Zorec, R. (2016). Astrocyte aquaporin dynamics in
health and disease. Int. J. Mol. Sci. 17:1121. doi: 10.3390/ijms17071121

Purkayastha, S., and Cai, D. (2013). Neuroinflammatory basis of metabolic
syndrome. Mol. Metab. 2, 356–363. doi: 10.1016/j.molmet.2013.
09.005

R Development Core Team, (2016). R: A Language and Environment for Statistical
Computing. Vienna: R Development Core Team. doi: 10.1007/978-3-540-
74686-7

Rael, L. T., Thomas, G. W., Bar-Or, R., Craun, M. L., and Bar-Or, D. (2004). An
anti-inflammatory role for N-acetyl aspartate in stimulated human astroglial
cells. Biochem. Biophys. Res. Commun. 319, 847–853. doi: 10.1016/j.bbrc.2004.
04.200

Rebhan, M., Chalifa-Caspi, V., Prilusky, J., and Lancet, D. (1997). GeneCards:
integrating information about genes, proteins and diseases. Trends Genet.
13:163. doi: 10.1016/S0168-9525(97)01103-7

Reichelt, A. C., Westbrook, R. F., and Morris, M. J. (2017). Editorial: impact of
diet on learning, memory and cognition. Front. Behav. Neurosci. 11:96. doi:
10.3389/fnbeh.2017.00096

Rymer, J. M. (1998). The effects of tibolone. Gynecol. Endocrinol.12, 213–220.
doi: 10.3109/09513599809015548

Rymer, J., Chapman, M. G., and Fogelman, I. (1994). Effect of tibolone
on postmenopausal bone loss. Osteoporos. Int. 4, 314–319. doi: 10.1007/
BF01622189

Sá, J. V., Kleiderman, S., Brito, C., Sonnewald, U., Leist, M., Teixeira, A.P., and
Alves, P. M. (2017). Quantification of metabolic rearrangements during neural
stem cells differentiation into astrocytes by metabolic flux analysis. Neurochem.
Res. 42, 244–253. doi: 10.1007/s11064-016-1907-z

Saparov, S. M., Liu, K., Agre, P., and Pohl, P. (2007). Fast and selective ammonia
transport by aquaporin-8. J. Biol. Chem. 282, 5296–5301. doi: 10.1074/jbc.
M609343200

Schuller-Levis, G. B., and Park, E. (2003). Taurine: new implications for an old
amino acid. FEMS Microbiol. Lett. 226, 195–202. doi: 10.1016/S0378-1097(03)
00611-6

Seeger, D. R., Murphy, C. C., and Murphy, E. J. (2016). Astrocyte arachidonate
and palmitate uptake and metabolism is differentially modulated by dibutyryl-
cAMP treatment. Prostagland. Leukotr. Essential Fatty Acids 110, 16–26. doi:
10.1016/j.plefa.2016.05.003
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Spinocerebellar ataxia type 14 (SCA14) is an autosomal neurodegenerative disease
clinically characterized by progressive ataxia in the patient’s gait, accompanied by
slurred speech and abnormal eye movements. These symptoms are linked to the loss
of Purkinje cells (PCs), which leads to cerebellar neurodegeneration. PC observations
link the mutations in PRKCG gene encoding protein kinase C γ (PKCγ) to SCA14.
Observations also show that the link between PKCγ and SCA14 relies on a gain-
of-function mechanism, and, in fact, both positive and negative regulation of PKCγ

expression and activity may result in changes in cellular number, size, and complexity of
the dendritic arbors in PCs. Here, through a systems biology approach, we investigate
a key question relating to this system: why is PKCγ membrane residence time reduced
in SCA14 mutant PCs compared to wild-type (WT) PCs? In this study, we investigate
this question through two contrasting PKCγ signaling models in PCs. The first model
proposed in this study describes the mechanism through which PKCγ signaling activity
may be regulated in WT PCs. In contrast, the second model explores how mutations in
PKCγ signaling affect the state of SCA14 in PCs. Numerical simulations of both models
show that, in response to extracellular stimuli-induced depolarization of the membrane
compartment, PKCγ and diacylglycerol kinase γ (DGKγ) translocate to the membrane.
Results from our computational approach indicate that, for the same set of parameters,
PKCγ membrane residence time is shorter in the SCA14 mutant model compared to
the WT model. These results show how PKCγ membrane residence time is regulated
by diacylglycerol (DAG), causing translocated PKCγ to return to the cytosol as DAG
levels drop. This study shows that, when the strength of the extracellular signal is held
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constant, the membrane lifetime of mutant PKCγ is reduced. This reduction is due to
the presence of constitutively active mutant PKCγ in the cytosol. Cytosolic PKCγ, in
turn, leads to phosphorylation and activation of DGKγ while it is still residing in the
cytosol. This effect occurs even during the resting conditions. Thus, the SCA14 mutant
model explains that, when both DAG effector molecules are active in the cytosol, their
interactions in the membrane compartment are reduced, critically influencing PKCγ

membrane residence time.

Keywords: PKCγ translocation kinetics, dysregulated signaling, spinocerebellar ataxia, neurodegeneration,
mutant

INTRODUCTION

Clinically, the term “ataxia” describes abnormal limb movements
and poor limb coordination (Shimobayashi, 2016). The most
common form of ataxia is cerebellar ataxia, which can be linked
to dysfunction either within the cerebellum or the cerebellar
connecting pathways (Shimobayashi, 2016). Spinocerebellar
ataxia (SCA) is a disease that manifests as dysfunction in the
spinocerebellum, the part of the cerebellar cortex that receives
somatosensory input from the spinal cord (Soong and Paulson,
2007; Carlson et al., 2009; Paulson, 2009). SCA14 is a rare form
of SCA that can be inherited through autosomal dominance
(Duenas et al., 2006; Shimobayashi, 2016). SCA14 has been linked
to missense point mutations, deletions, or splice site mutations
in the PRKCG coding region of PKCγ (Yamashita et al., 2000).
Previous studies have linked almost 30 types of deletions or
missense mutations in the PRKCG gene to SCA14-related
symptoms (Shimobayashi, 2016). PKCγ is principally expressed
in the central nervous system (CNS) and predominantly found
in PCs (Saito et al., 1988; Saito and Shirai, 2002; Schrenk et al.,
2002; Yabe et al., 2003). PKCγ is considered one of the key factors
that control cerebellar development. SCA14 disease onset ranges
from childhood to late adulthood, and usually does not result
in a shorter lifespan. Generally, clinical symptoms of SCA14
include ataxia, dysarthria, oculomotor dysfunction, vertigo, facial
myokymia, and myoclonus (Shimobayashi, 2016). Post-mortem
neurohistological–pathological studies of patients with SCA14
have shown a pronounced reduction in the number of cerebellar
Purkinje cells (PCs), as well a reduction in cellular size and
complexity of the dendritic arbor (Brkanac et al., 2002).

An interesting possibility, supported by previous experimental
observations, is that SCA14 might be linked to increases in
PKCγ activity (Metzger and Kapfhammer, 2000; Adachi et al.,
2008; Shimobayashi, 2016; Wong et al., 2018). Studies have
shown that PMA-induced chronic PKCγ activation in cerebellar
slice cultures drastically inhibits the growth and development
of the PC dendritic tree (Metzger and Kapfhammer, 2000).
This result could indicate that degeneration of the PC dendritic
tree during SCA14 may be caused by increased PKCγ activity
(Verbeek et al., 2005). Furthermore, 19 out of 20 spontaneous
mutations found in the PKCγ gene of SCA14 patients showed
increased constitutive PKCγ activity (Adachi et al., 2008). How
constitutively active PKCγ may contribute to neurodegeneration
is not clear. However, there is evidence that, despite an enhanced

basal activity of the PKCγ isoform, there may be a deficit
recruitment or regulation of downstream targets linked to a loss
of specific cerebellar functions.

One possibility may be related to the membrane residence
duration of PKCγ (Adachi et al., 2008; Shuvaev et al., 2011;
Wong et al., 2018). In order to achieve precise regulation of
PKCγs’ downstream targets, its membrane residence time must
be exquisitely regulated (Adachi et al., 2008; Shuvaev et al.,
2011; Shimobayashi, 2016). If the amount of time PKCγ spends
in the membrane compartment is altered, this may lead to
aberrant regulation and/or recruitment of downstream signaling
molecules. Previous observations suggest that in PCs, the PKCγ

membrane residence time is controlled by the amplitude and
duration of DAG signaling. Experimental observation in Chinese
hamster ovary (CHO) cells indicate that DAG signaling could
contribute to a functional coupling of PKCγ and its regulator
DGKγ (Yamaguchi et al., 2006; Goto and Kondo, 1999; Mérida
et al., 2008). These results show (Yamaguchi et al., 2006) that
in the membrane compartment, DGKγ regulates the activity
of PKCγ through phosphorylating DAG, and thus inducing
its metabolism. Our previous work elucidated the role of this
functional coupling and showed how the timing of DGKγ and
PKCγ colocalization in the membrane compartment is important
for DAG signaling regulation in both CHO cells and PCs
(Aslam and Alvi, 2017, 2019).

In addition, previous data indicate that, compared to wild-
type, mutant PKCγ has higher basal level activity, but reduced
membrane compartment residence time (Shuvaev et al., 2011).
This may explain aberrant downstream signaling in mutant
models of PKCγ. For example, one study revealed a decrease
in PKCγ signaling, measured by canonical transient receptor
potential channel (TRPC3) phosphorylation, when a PKCγ

mutant remained at the membrane for significantly less time
than wild-type PKCγ (Adachi et al., 2008). Altered PKCγ

phosphorylation or recruitment may contribute to cerebellar
dysfunction and apoptosis in PCs.

The purinergic receptors belong to a class of plasma
membrane molecules that have been critically implicated in
the regulation of physiological and pathological responses
such as learning memory, inflammation, motor control, and
sleep. They are classified into P1 (adenosine-activated) and
P2 (ATP-activated) subfamilies. Among the P2 subfamily,
the P2X subgroup is ionotropic and the P2Y subgroup is
metabotropic nucleotide receptor. The P2Y subfamily has
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eight members and are expressed in cells of the nervous
system. Among this subgroup, P2Y1, P2Y2, P2Y4, P2Y6,
and P2Y11 receptors are coupled to Gq-protein (Weisman
et al., 2012; Guzman and Gerevich, 2016). The activation
of this group by general currency in energy conversion,
i.e., adenosine triphosphate (ATP) or nucleotide, uridine-5′-
triphosphate (UTP), induces the Gq-dependent activation of
phospholipase C (PLC), which promotes the hydrolysis of plasma
membrane phospholipid phosphatidylinositol 4,5, bisphosphate
(PIP2) to generate second messenger DAG and inositol 1,4,5
triphosphate (IP3). Both these second messengers are critical
for the release of intracellular Ca+2 from stores, exchange
of Ca+2 with extracellular pools, and activation of PKCγ

and DGKγ.
This work explores why PKCγ membrane residence time is

reduced in PCs in the mutant model, despite higher kinase
activity. The following experimental observations provide the
basis for this study: (1) Depolarization-induced activation
of mGluR1 pathways leads to the membrane translocation
of both mutant and wild-type PKCγ (Shuvaev et al., 2011;
Shimobayashi, 2016). (2) Mutant PKCγ is constitutively active
(Adachi et al., 2008; Shuvaev et al., 2011; Shimobayashi, 2016).
(3) During a depolarization-induced activation event, the wild-
type PKCγ membrane residence time is 19 s. The mutant PKCγ

membrane residence time is 6 s (Shuvaev et al., 2011). (4)
Depolarization-induced stimulation of both mutant and wild-
type PKCγ results in rapid membrane translocation followed
by a slow return to the cytosol (Adachi et al., 2008; Shuvaev
et al., 2011; Shimobayashi, 2016). (5) In response to ATP
stimulation, PKCγ and DGKγ form a subtype-specific functional
coupling, which regulates DAG signaling in the membrane
compartment in the CHO cell system (Yamaguchi et al.,
2006). (6) Observations in post-mortem SCA14 cerebellum and
human patient-derived induced pluripotent stem cells (iPSCs)
show that, when activated, wild-type PKCγ is distributed in
the membrane and cytosolic compartment, whereas mutant
PKCγ tends to localize in cytosol (Wong et al., 2018), thus
indicating that mutant PKCγ is impaired in its ability to
translocate, or be retained at, the plasma membrane. (7)
Additional observations from SCA14 iPSCs and SCA14 PCs
indicate that mutant PKCγ present in cytosol is in hyperactive
state (Wong et al., 2018). (8) Moreover, this molecule leads
to a robust increase in PKCγ substrate phosphorylations as
observed by increase in PKCγ substrate antibody and its
well-established target, i.e., myristoylated alanine-rich C-kinase
substrate (MARCKS) in SCA14 cerebellum (Wong et al., 2018).
In this work, we test the hypothesis that due to reduced
local signaling, the lifetime of mutant PKCγ is reduced in the
membrane compartment.

This work tests this hypothesis by constructing two
contrasting models (WT and mutant). The simulations
mimicking mutant model includes a constitutively active
PKCγ in the cytosol (Adachi et al., 2008; Shuvaev et al.,
2011; Shimobayashi, 2016; Wong et al., 2018), which, in
turn, phosphorylates and activates DGKγ even during basal
conditions. The simulations representing the wild-type model
includes inactive and dormant PKCγ and DGKγ in the

cytosol during basal conditions and models translocation
to the membrane compartment upon stimulation. The
wild-type model shows membrane activation of DGKγ

in a stimulation-dependent manner, whereas the mutant
model relies on stimulation-independent cytosolic DGKγ

activation. Both models are numerically perturbed by the
same stimulation strength levels. For both models, all kinetic
rate constants and translocation parameters are set at the
identical numerical values. The overall goal of this study is to
compare the effects on PKCγ membrane residence duration
in the mutant and wild-type models through numerical
experimentation, with all other parameters held constant.
Here, we show that, despite higher activity levels membrane
residence, duration for PKCγ in the mutant model is three
times shorter than the wild-type. We also show that, when a
stimulation pulse is applied to mimic depolarization-induced
activation of mGluR1, PKCγ translocation from the cytosol
to the membrane is induced. The manner and time scale of
this induction is consistent with experimental observations
(Shuvaev et al., 2011). Depolarization-induced local DAG
generation in the membrane compartment also induces DGKγ

translocation from the cytosol to the membrane, where the
molecule acts as a key negative regulator of DAG levels in the
membrane compartment.

Experimental results suggest that despite the constitutively
active nature of mutant molecule, the impaired translocation and
shorter membrane residence time result in lower PKCγ

concentrations in the membrane compartment of PCs
(Shuvaev et al., 2011; Wong et al., 2018). This observation
could be linked to the association of mutant PKCγ with
large EPSC amplitudes in PCs (Shuvaev et al., 2011).
Our simulations are consistent with these observations,
as the maximum membrane-to-cytosol (M/C) ratio in the
mutant model is half of the ratio in the wild-type model.
This indicates that reductions in PKCγ concentration in
the membrane compartment may be linked to impaired
PC functionality.

MATERIALS AND METHODS

Biochemical Reactions
The following model describes a mutant PKCγ signaling model
in PCs. This simulation models mutant and active PKCγ and
DGKγ molecules. These biochemical interactions describe how
local DAG generation leads to a signaling loop between PKCγ

and DGKγ in our mutant models of PCs. The simulated
interactions of molecules within the PKCγ and DKCγ loop
(Figure 1) are based on standard Michaelis–Menten kinetics.
The following sets of biochemical reactions are used to describe
the molecular interactions that occur within the PKCγ and
DKCγ loop. The dynamic variables are DAG, DGKγ, and
PKCγ. Subscript I represents the concentration in the first
compartment, the plasma membrane. Subscript II denotes the
concentration in the second compartment, which represents the
cytosol. The superscript Active represents the activated form of
a molecule and the subscript P represents the phosphorylated
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FIGURE 1 | A proposed regulatory model of mutant PKCγ, translocation in
the SCA14-associated Purkinje cells of the cerebellum. This is a
two-compartment model where one compartment is cytosol, whereas the
other compartment is plasma membrane. This model provides the
mechanistic basis of how the translocation of mutant PKCγ and DGKγ

molecules could be regulated in SCA14 disease. This model suggests that in
diseases associated with cPCs, the mutant PKCγ is constitutively active and
resides in the cytosol. In turn, this constitutively active molecule induces the
phosphorylation and activation of the cytosolic DGKγ molecule even during
the basal or unstimulated conditions. In contrast, to the wild-type model, the
current model suggests that both PKCγ and DGKγ are active and cytosolic
even during basal conditions. Depolarization-induced activation of purinergic
receptor leads to the local generation of DAG and, in turn, induces the
translocation of both mutant PKCγ and DGKγ from cytosol to membrane.
Once in the plasma membrane compartment, the already active DGKγ

molecule directly converts DAG to PA through DAG phosphorylation.

form of a molecule. The subscript Mutant represents the
mutant form of a molecule. The phosphatase P is approximated
as a fixed parameter. The parameter S1 denotes purinergic
receptor stimulation, which leads to the rapid generation of
DAG molecules.

PKCActive γII.Mutant
λ0
−→ PKCActive γIMutant (1)

PKCActive γIMutant
λ00
−→ PKCActive γII Mutant (2)

DGKγIIP
λ5
−→ DGK γ1P (3)

DGKγIP
λ55
−→ DGKγIIP (4)

S1
k1
−→ DAG (5)

DGKγII + PKCActiveγIIMutant

k2
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←−
k3
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k4
−→ DGKγIP + PKCActive γIIMutant (6)

DGKγIIp + P
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−→ DGKγII + P (7)
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←−
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C2
k8
−→ DGKγIP + DAGP (8)

DAGP
kg
−→ P.A (9)

PKCIIγ
Active mutant λ3

−→ [ ] (10)

The signaling described in the above model starts during
basal conditions. The constitutively active cytosolic mutant PKCγ

molecule leads to phosphorylation and activation of DGKγ in
the cytosol. This event is described by Equation (6). A pulse
stimulation that mimics depolarization-induced stimulation of
the pathway leads to DAG generation at the plasma membrane.
This local event, causing generation of a second messenger, is
described in Equation (5). DAG generation then stimulates the
migration of dormant and active mutant PKCγII and DGKγII
from the cytosol to the plasma membrane. These migration
events are described by Equations (1) and (3). Here, the
migration rates “λ0” and “λ5” are described through functions
that are directly proportional to DAG concentrations, but with
different slopes. Then, the active γ-molecules in the plasma
membrane compartment re-translocate to the cytosol with fixed
migration rates, “λ00” and “λ55,” as described by Equations
(2) and (4). Once at the plasma membrane, DGKγI causes
DAG metabolism through its phosphorylation, as described by
Equation (8). Phosphorylated DAG is converted to phosphatidic
acid (PA) as shown in Equation (9). PA is another key signaling
lipid that may function directly as a key regulatory molecule.
The dephosphorylation event of DGKIIγP is described by
Equation (7).

Induction
During simulations, the membrane depolarization-induced
activation of purinergic receptor is mimicked through the
application of a brief pulse. The local biosynthesis of second
messenger DAG is modulated through a 1.0-min pulse
stimulation. DAG generation in the membrane compartment
induces the translocation and activation of its effector molecules.

Temporal Dynamics
The differential equations resulting from the above interactions
[Equations (1) to (9)] were integrated through nonlinear solvers
using MATLAB (MathWorks). The dynamical coefficients’
values were estimated from limited experimental data (Shuvaev
et al., 2011). Unknown rate constants were scaled to obtain
dynamics that were comparable to experimental values (Shuvaev
et al., 2011). Unless otherwise stated, all of the molecular
concentrations in the model are expressed as pg/ml and time is
represented in seconds.
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RESULTS

Comparative Models Describing DAG
Signaling in Mutant and Wild-Type PCs
The DAG signaling model we propose for mutant PCs (Figure 1)
in cerebellar PCs is composed of two molecular components.
The first component is mutant PKCγ, which can be active
and cytosolic (PKCActiveγII-Mutant) or active and membrane
(PKCActiveγI-Mutant). The second component is DGKγ, which
can be cytosolic and inactive (DGKIIγ); cytosolic, active,
and phosphorylated (DGKIIγ

A
P ); or active and phosphorylated

in the membrane compartment (DGKIγP
A). In the mutant

signaling model, PKCγ is constitutively active and leads to
phosphorylation and activation of DGKγ in the cytosolic
compartment. This occurs even during basal conditions. In this
model, depolarization-induced stimulation leads to local DAG
generation in the membrane compartment. This leads to cytosol-
to-membrane translocation of active PKCγ and DGKγ. Once in
the membrane compartment, already active and phosphorylated
DGKγ stimulates DAG metabolism. DAG levels are quickly
reduced by the molecule’s conversion to PA. Once DAG levels in
the membrane drop, both molecules relocate back to the cytosol.

In contrast, Figure 2 shows that PKCγ can reside in
one of four states in the wild-type model (Supplementary
Material S2: Biochemical Reactions describing fast kinetics wild-
type model). The four states are cytosolic dormant (PKCγII),
inactive membrane (PKCγI), active membrane (PKCγI

A), and
active cytosolic (PKCγII

A). In the mutant cascade, PKCγ exists
in only two distinct forms. This is because PKCγ is inactive
in the wild-type model in its dormant cytosolic state, but
constitutively active in the mutant model while residing in the
cytosol. This difference leads to a reduced PKCγ cycle in the
mutant model (Figures 1, 2). Interestingly, cytosolic DGKγ

in the wild-type model is inactive, and only phosphorylated
and activated in the membrane compartment. In contrast, in
the mutant model, it is activated and phosphorylated in the
cytosol by constitutively active PKCγ. The two-state mutant
model and four-state wild-type model of PKCγ (Figure 2) are
only simplistic descriptions of a complex PKCγ cycling process.
A more realistic, complex PKCγ cycling model should account
for molecular events like translocation, binding, activation, and
re-translocation of active PKCγ to the cytosol. In addition, it
should include deactivation of PKCγ back to its dormant form
in the cytosol. While the processes modeled in this manuscript
are complex, this study approximates the processes using
simpler biochemical kinetic events that preserve key qualitative
features. Cytosol-to-membrane translocation of both PKCγ and
DGKγ in these mutant and wild-type simulations is described
through proportionality functions of DAG concentrations. In
addition, this study assumes non-negligible basal levels of
PKCActiveγII-Mutant (100 pg/ml) and DGKIIγ (100 pg/ml) in the
mutant and PKCγII (100 pg/ml) and DGKIIγ (100 pg/ml) in the
wild-type model. In contrast, the basal concentration of all other
forms of PKCγ and DGKγ is negligible. The biochemical reaction
and translocation rates of this molecular loop were obtained
by fitting the depolarization-induced temporal dynamics of

FIGURE 2 | The comparison of two-compartment, wild-type, and mutant
models of local DAG signaling in PCs. Depolarization-induced local generation
of DAG in PCs, in turn, leads to the functional coupling between PKCγ and
DGKγ molecules. The wild-type model is characterized by dormant and
inactive PKCγ molecule residing in cytosol, whereas the mutant model is
characterized by active PKCγ isoform in the cytosol. In the wild-type model,
the depolarization-induced activation of purinergic receptor and local
generation of DAG stimulates the translocation of PKCγ and DGKγ molecules
from cytosol to membrane compartments. Once in the membrane
compartment, the DAG binds with PKCγ and activates it, which, in turn,
activates DGKγ through phosphorylation. In the membrane compartment, the
phosphorylated and active DGKγ molecule stimulates the DAG metabolism,
thus restricting its own activation. Once DAG is converted to PA in membrane
compartment, both these molecules return to their dormant forms in cytosol.
In contrast, the signaling in the mutant model is reduced as in the mutant
model of PCs; the PKCγ is in constitutively active state and leads to the
phosphorylation and activation of DGKγ in the cytosol even during
unstimulated conditions. On stimulation, as DAG is generated in the
membrane compartment, both these molecules migrate to membrane where
the already activated DGKγ molecule converts DAG to PA. It seems that
signaling in the mutant model is reduced due to the constitutively active form
of PKCγ in cytosol.

PKCγ translocation and re-translocation obtained from PCs in
cerebellar slices as described in previously published studies
(Shuvaev et al., 2011).

In both the mutant and wild-type models, DGKγ inhibits its
own translocation and that of PKCγ by converting DAG into PA
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at the plasma membrane. Our models show that depolarization-
induced stimulation in the membrane compartment leads to
DAG generation. DAG generation, in turn, stimulates the
DGKγ and PKCγ translocation. In the mutant model, once
the already active DGKγ is at the plasma membrane, it
directly induces DAG metabolism. In contrast, in the wild-
type model, DGKγ undergoes an activation event before
becoming competent to metabolize DAG. These events restore
DAG homeostasis, thus reducing migration to the membrane
compartment. In both these models, local DAG generation
is counterbalanced by DGKγ-assisted metabolism in the
membrane compartment.

Regulation of depolarization-induced activation of G protein-
coupled receptor (GPCR) pathways is a complex process
(Shuvaev et al., 2011). GPCR agonist mGluR1 stimulates PLC-
mediated hydrolysis of phosphatidylinositol 4,5-biphosphate to
produce inositol triphosphate (IP3) and DAG (Shuvaev et al.,
2011). In this study, although we are primarily focusing on the
downstream signaling of the purinergic receptor pathway, we
modeled local DAG biosynthesis in both the mutant and wild-
type models by using a brief pulse of variable intensity. This
pulse is used to mimic the effects of GPCR agonist mGluR1. This
approach is simple in that it ignores the details of purinergic
receptor-induced DAG biosynthesis. Since our primary focus is
regulation of DAG homeostasis, and not DAG biosynthesis, this
study employs this simple approach.

Comparison of PKCγ and DGKγ

Translocation Characteristics in Mutant
and Wild-Type PC Models Through
Numerical Simulations
Next, the translocation characteristics of PKCγ and DGKγ in the
mutant and wild-type models were compared through numerical
simulations. Translocation characteristics were determined by
measuring two key properties. First, translocation kinetics from
cytosol to membrane were measured. Next, the membrane-to-
cytosol (M/C) ratio was measured. The kinetics of translocation
are determined by measuring the time that both DAG effector
molecules spend in the membrane compartment. During the
course of simulations, the M/C ratio is measured by computing
the total amount of DAG effector molecules in the membrane
and cytosolic compartment at every time step and then taking
the ratio. In simulations mimicking the post depolarization-
induced receptor activation, the speed of translocation response
is described using kinetic parameters. In contrast, during these
numerical experiments, the intensity of this response is described
using the M/C ratio of PKCγ and DGKγ in the membrane
and cytosolic compartments. In simulations mimicking both the
mutant and wild-type models, the mGluR1-induced activation of
GPCR and subsequent DAG generation were implemented using
a brief 1-min pulse, as described in the previous section. The
strength of pulse is described by an arbitrary parameter S1. S1 was
set at an arbitrary level of 20. In the absence of a pulse (Figure 3,
solid blue lines), there is no de novo DAG biosynthesis and the
system is fixed in its basal state. In the basal state, both molecules
reside in the cytosol with no possibility of translocation.

The stimulation-induced temporal dynamics of PKCγ in the
mutant (Figure 3A, dashed green line) and wild-type (Figure 3A,
dashed red line) models show two phases of translocation.
The first is an early phase, in which PKCγ migrates from the
cytosol to the membrane. The second phase that follows is a
resolution phase in which PKCγ relocates back to the cytosol.
These results show that, for the same level of stimulation pulse,
the translocation of PKCγ from the cytosol to the membrane is
faster in the mutant model compared to wild-type. In contrast,
the translocation intensity, measured by the M/C ratio of PKCγ,
is lower in the mutant model compared to wild-type (Figure 3A,
dashed green and red line). These results show that cytosolic-
to-membrane molecular migration in both models is dependent
on local DAG concentration at the plasma membrane and is
linked to de novo DAG biosynthesis. In both the mutant and
wild-type models, DAG concentration can be controlled through
the duration and amplitude of pulse stimulation at the plasma
membrane compartment.

In both models, the PKCγ translocation rate is a directly
proportional function of DAG concentration (Supplementary
Material S1: Table S1 and Supplementary Material S3:
Table S2). When the mutant model was perturbed with different
levels of stimulation, the results indicate that when stimulation
strength is set at moderate levels (Figure 4A, inset; pulse strength
parameter S1 = 20), only a small pool of DAG is generated at
the plasma membrane. This induces a low-intensity migration
event reflected by a maximal M/C ratio. The M/C ratio is
linked to pulse strength (Figure 4A). Higher levels of stimulation
generate (Figure 4A, inset; pulse strength parameter S1 = 40 and
60) much larger pools of DAG at the plasma membrane. This
induces migration of a large pool of PKCγ to the membrane.
Interestingly, perturbation of the wild-type model (Figure 4B)
also generates the same pattern with regard to the M/C ratio of
PKCγ. However, at higher stimulation strengths, the maximal
M/C ratio of PKCγ in the wild-type model is five-times more
than the ratio at moderate stimulation. In contrast, it is 10-times
more at even higher stimulation strength, showing the effects
of DAG generation on translocation of PKCγ from the cytosol
to the membrane.

In this study, DGKγ translocation is spatially similar, but
temporally distinct, from PKCγ. The migration of DGKγ

is also controlled by DAG concentrations at the plasma
membrane. The sensitivity of this migratory event is different
from that of PKCγ. DGKγ translocation is also described
by a proportionality function (Supplementary Material S1:
Table S1 and Supplementary Material S3: Table S2) of
DAG concentration at the plasma membrane. Compared to
PKCγ, however, the slope of this function is much smaller.
This means that DGKγ migration from the cytosol to the
plasma membrane requires a much larger increase in DAG
concentration at the plasma membrane. This approach was
adopted so that the proposed models align with previous
experimental observations showing different translocation
sensitivities of PKCγ and DGKγ to Ca+2 concentrations
(Yamaguchi et al., 2006). These observations suggest that
both PKCγ and DGKγ possess DAG-sensitive C1 and Ca+2-
sensitive C2 domain. Interestingly, nanomolar elevation in
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FIGURE 3 | The simulations mimicking the comparison of depolarization-induced translocation of PKCγ and DGKγ molecules in the mutant and wild-type models of
PCs. These results show the membrane-to-cytosol (M/C) ratio of PKCγ and DGKγ molecules in response to a brief 1-min pulse, which leads to the rapid generation
of DAG in the membrane compartment. Here, the strength of stimulation is controlled by setting the pulse parameter “S1” at 20. The generation of the second
messenger, in turn, stimulates the translocation of both PKCγ and DGKγ from cytosol to membrane. Here, the solid line represents the non-stimulation and the
dashed line represents the stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) The translocation characteristics of the PKCγ

molecule in both mutant and wild-type models. These results suggest that for identical strength and duration of stimulation, the cytosol-to-membrane migration
kinetics of PKCγ molecule are much faster in mutant models compared to wild-types. Compared to wild-types, the membrane residence time of PKCγ molecule is
shorter in mutant models, i.e., 7.2 s for mutant and 18 s for wild-type models. (B) The translocation characteristics of the DGKγ molecule in both mutant and
wild-type models. These results show that the membrane residence time of the DGKγ molecule is shorter in mutant models compared to models representing
wild-type PCs.

Ca+2 concentration was enough to warrant PKCγ translocation,
whereas DGKγ translocation required micromolar increase in
Ca+2concentration (Yamaguchi et al., 2006).

At the plasma membrane, the coupling between PKCγ and
DGKγ can be quantified by measuring colocalization time
between these two molecules. Colocalization time is defined as
the duration for which these molecules may interact with each
other. This time interval also determines the duration during
which a negative feedback loop is functional and effectively
facilitating DAG metabolism. Colocalization time depends on
DAG concentration in the plasma membrane, re-translocation
rates of the inactive molecules, the remigration rate of active
PKCγ, the activation rate and DAG binding activity of PKCγ, and
activation and phosphorylation of DGKγ.

In order to estimate the parameters of proposed PKCγ and
DGKγ interaction in PCs, we fixed the membrane residence
duration of PKCγ in both mutant and wild-type models well
within the experimentally reported ranges (Shuvaev et al., 2011)
and determined the unknown parameters of molecular loop as
well as the translocation and remigration rates of DGKγ. We also
assumed that, similar to the CHO cell model, the sensitivity of
PKCγ translocation to DAG concentration is higher than DGKγ

(Supplementary Material S1: Table S1 and Supplementary
Material S3: Table S2). We calibrated our models by matching
the ranges of membrane residence duration of PKCγ in mutant
and wild-type models of cPCs (Shuvaev et al., 2011). This
ad hoc approach could be questioned, but in the absence of
direct translocation data of DGKγ migration and remigration

in PCs, we believe that this is a reasonable approximation.
The assumption made here should be tested directly and the
translocation rate of DGKγ should be measured directly in PCs.
However, it is unlikely that the overall structure of this model
and the conclusion drawn from this model will be significantly
different based on these assumptions.

Simulations Mimicking the Effect of the
Rate of DAG Phosphorylation on the
Translocation Characteristics of PKCγ in
Mutant and Wild-Type Models of PCs
The residence time of PKCγ at the membrane is modulated
by DAG levels. DAG metabolism at the membrane is regulated
by active and phosphorylated DGKγ. DGKγ leads to DAG
phosphorylation, an essential step for the conversion of DAG
to PA. It is possible that the molecular events involved in DAG
phosphorylation may influence the residence time of PKCγ at the
membrane. This study addresses the question of how the DAG
phosphorylation rate, “k6” in the mutant model and “k8” in the
wild-type model, might influence the intensity and translocation
of PKCγ and DGKγ from the cytosol to the membrane. The
parameter “k6” in the mutant and “k8” in the wild-type model
describe the feed forward rate constant of DAG phosphorylation
by DGKγP. This study tested the hypothesis that how an increase
in parameters k6 and k8 could influence the translocation as
well as membrane residence duration of PKCγ. The simulations
compared three difference cases: (a) baseline k6 and k8 (k6 = 0.95

Frontiers in Neuroscience | www.frontiersin.org 7 January 2020 | Volume 13 | Article 139743

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01397 January 29, 2020 Time: 17:24 # 8

Aslam and Alvi PKCγ Signaling and Translocation Kinetics in SCA14

FIGURE 4 | The simulations mimicking the effect of stimulation strength on the comparative translocation kinetics of PKCγ isoform in the mutant and wild-type
models of PCs. Here, the strength of stimulation is controlled by setting the pulse parameter “S1” at different levels. The parameter S1 is set at arbitrary values of 20,
40, and 60 (inset). The duration of pulse for all these three cases is 1 min. Here, the solid line represents the non-stimulation and the dashed line represents the
stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) Translocation characteristics of PKCγ in the mutant model. Here, results show
that maximum levels of M/C ratio of PKCγ increases with increase in the strength of parameter “S1”; however, the residence time of mutant PKCγ first decreases
and then increases with pulse strength (S1 = 20, leads to maximum M/C levels of 5 and τPKCγ mutant = 7.2 s; S1 = 40, leads to maximum M/C levels of 11 and
τPKCγ mutant = 6.9 s; S1 = 60, leads to maximum M/C levels of 20 and τPKCγ mutant = 7.4 s). (B) Translocation characteristics of PKCγ in the wild-type models. Here,
results show that maximum levels of the M/C ratio of PKCγ increases with increase in the strength of parameter “S1,” and the residence time of wild-type PKCγ

decreases with pulse strength (S1 = 20, leads to maximum M/C levels of 10 and τPKCγ
= 18 s; S1 = 40, leads to maximum M/C levels of 64 and τPKCγ

= 9 s;
S1 = 60, leads to maximum M/C levels of 100 and τPKCγ

= 8.6 s).

pM−1 s−1 and k8 = 0.95 pM−1 s−1); (b) 25-times increase in
the k6 and k8; (c) 100-times increase in the k6 and k8. The
results show that increasing the parameter k6 not only reduces the
intensity of translocation but also the membrane residence time
of PKCγ in the mutant model (Figure 5A). A 25-fold increase in
k6 causes the maximum M/C ratio to decrease 10%. In contrast,
membrane residence time decreased 13% in the mutant model
(Figure 5A). Interestingly, increasing k6 from 25- to 100-fold had
no effect on translocation or membrane residence duration for
PKCγ in the mutant model (Figure 5A). The results from the
wild-type model show that a 25-fold increase in k8 reduces PKCγ

translocation intensity to almost 40%. In contrast, membrane
residence time is reduced by only 11% (Figure 5B). Furthermore,
an increase in k8 from 25- to 100-fold had an almost negligible
influence on membrane residence duration and the magnitude of
translocation (Figure 5B).

Next, this study investigated how blocking DAG
phosphorylation influences the magnitude of PKCγ translocation
as well as PKCγ membrane residence duration in both the
mutant and wild-type models. Our results indicate that blocking
parameter k6 in the mutant model increases both the magnitude
and membrane residence duration of PKCγ (Figure 6). Our
results show that 90 and 95% blocking of k6 in the mutant model

leads to maximum M/C ratios of 8.8 and 12.2, respectively. In
contrast, PKCγ membrane residence duration times are 10.5
and 14.5 s, respectively (Figure 6A). These results indicate that
95% blocking in the mutant model leads to an almost twofold
increase in the magnitude of translocation and membrane
residence duration of PKCγ (Figure 6A). Similarly, our results
indicate that blocking the DAG phosphorylation parameter, k8,
in wild-type models also increases translocation intensity and
membrane residence duration (Figure 6B). Our results show that
90 and 95% blocking of k8 in the wild-type model leads to 3 and
5-fold increases in the magnitude of translocation (Figure 6B;
measured as maximum in M/C ratio). In contrast, only 5 and
10% increases in membrane residence duration were observed
for the wild-type model of PKCγ in cPCs (Figure 6B).

Simulations Mimicking the Influence of
the DGKγ Activation Rate on the
Translocation Characteristics of PKCγ
DGKγ phosphorylation and activation play key roles in
regulating DAG homeostasis in the mutant and wild-type
models. In the mutant model, DGKγ activation takes place
in the cytosol. In contrast, activation takes place in the
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FIGURE 5 | The simulations mimicking the effect of feed forward rate constant of DAG phosphorylation by DGKγP on the comparative translocation kinetics of
PKCγ molecule in the mutant and wild-type models of PCs. Parameter k6 represent this rate constant in mutant models, whereas in wild-types, it is represented by
k8. Here, the strength of stimulation is controlled by setting the pulse parameter “S1” at 20. The duration of pulse is set for 1 min. Here, the solid line represents the
non-stimulation and the dashed line represents the stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) Translocation
characteristics of PKCγ in the mutant model. Here, results show that increasing the parameter k6 in the mutant model reduces the membrane residence time of
PKCγ (at baseline, k6, τPKCγ mutant = 7.2 s; and 25–100 times increase in k6 leads to τPKCγ mutant = 6.2 s). (B) Translocation characteristics of PKCγ in the wild-type
models. Here, results show that increasing the parameter k8 in the wild-type model reduces the membrane residence time of PKCγ (at baseline, k8, τPKCγ

= 18 s;
and 25–100 times increase in k8 leads to τPKCγ

= 16 s).

membrane compartment in the wild-type model. Next, through
numerical simulations, this study investigated how reducing
DGKγ activation and phosphorylation rates may influence
the magnitude of translocation and the membrane residence
duration of PKCγ in the mutant and wild-type models. Our
results show that blocking parameter k4 in the mutant model
reduces the magnitude of PKCγ translocation, but increases
membrane residence duration (Figure 7A). The results show
that 80% blocking results in a 70% reduction in translocation
magnitude and a near 2.5-fold increase in membrane residence
time (Figure 7B). Furthermore, 90% blocking results in an
80% reduction in the magnitude of translocation and an
almost threefold increase in membrane residence time of
PKCγ (Figure 7A). Interestingly, the results from the wild-type
model show that 80% blocking increases magnitude by fivefold
and reduces membrane residence time by 33% (Figure 7B).
Furthermore, 90% blocking increases magnitude by 12-fold and
reduces duration by 22% (Figure 7B) compared to the baseline
case of no blocking.

How Can the PKCγ-to-DGKγ Expression
Ratio Influence the Translocation
Characteristics of PKCγ?
The formulation of both models indicates that DAG levels, after
stimulation, are controlled through a net negative feedback loop
between its effector molecules PKCγ and DGKγ. One intriguing
and still-unanswered question is how the relative expression

of these molecules may influence negative feedback efficacy.
In this simulation, it was assumed that both DAG effector
molecules are equally expressed in the cytosol (choice of equal
expressions is empirical and is chosen here to have a balanced
effect on negative feedback loop). This study tested how changes
in the expression ratio of PKCγ and DGKγ may influence the
magnitude of PKCγ translocation, as well as its residence time, in
the membrane compartment. We selected three different ratios
to test. The ratios were PKCγ:DGKγ 1:1, PKCγ:DGKγ 1:0.5, and
PKCγ:DGKγ 1:0.3. In both models, the systems are perturbed
by a brief pulse (S1 = 7) which leads to rapid DAG generation
in the membrane compartment. Our results show that reducing
DGKγ expression in the mutant model increases the magnitude
of PKCγ translocation as well as the membrane residence time
(Figure 8A). It is possible that reducing DGKγ expression in
the mutant model reduces the efficacy of negative feedback.
Furthermore, our results indicate that reducing DGKγ expression
in the wild-type models also reduces the efficacy of negative
feedback. This results in increased translocation magnitude as
well as increased membrane residence time of PKCγ (Figure 8B).

DISCUSSION

Recent evidence links mutations in the C1 domain of PKCγ (Yabe
et al., 2003; Shimobayashi, 2016) to cerebellar neurodegeneration
in SCA14 disease. It is likely that a gain of function is the
mechanism causing the observed neuronal degeneration that
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FIGURE 6 | The simulations mimicking the effect of blocking of forward rate constant of DAG phosphorylation by DGKγP on the comparative translocation kinetics
of PKCγ molecule in the mutant and wild-type models of PCs. Parameter k6 represent this rate constant in mutant models, whereas in wild-types, it is represented
by k8. Here, the strength of stimulation is controlled by setting the pulse parameter “S1” at 20. The duration of pulse is set for 1 min. Here, the solid line represents
the non-stimulation and the dashed line represents the stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) Translocation
characteristics of PKCγ in the mutant model. Here, results show that blocking the parameter k6 in the mutant model increases the membrane residence time of
PKCγ (baseline, k6, τPKCγ mutant = 7.2 s; 90% blocking of k6 leads to τPKCγ mutant = 10.5 s; 95% blocking of k6 leads to τPKCγ mutant = 14.5 s). (B) Translocation
characteristics of PKCγ in the wild-type models. Here, results show that blocking the parameter k8 in the wild-type model enhances the membrane residence time of
PKCγ (baseline, k8, τPKCγ

= 18 s; 90% blocking leads to τPKCγ
= 19 s; 95% blocking leads to τPKCγ

= 19.8 s).

occurs during SCA14. It is likely because the PKCγ knock-
out failed to exhibit cerebellar degeneration and only showed
slight ataxia (Chen et al., 1995; Kano et al., 1995). This was
probably due to the loss of the pruning process at the PF-
PC synapses. Evidence also suggests that mutations in the C1
domain could alter the activation and translocation profiles of
PKCγ (Adachi et al., 2008; Shuvaev et al., 2011; Wong et al.,
2018). It could be that these alterations in the enzymological
properties of PKCγ and its regulator DGKγ are responsible for
the dysregulation of Ca+2 homeostasis during SCA14 disease
pathology. This disruption of Ca+2 equilibrium is probably
due to altered gating characteristics of TRPC3 channels. One
possible cause of TRPC3 gating dysregulation may be the inability
of mutant molecules to completely phosphorylate TRPC3
channels. In this case, the Ca+2 influx during disease-related
PCs was only partially blocked. Consequently, the intracellular
accumulation of Ca+2 in PCs is probably an underlying cause
of observed neurodegeneration in SCA14 patients (Shuvaev
et al., 2011). Thus, in order to understand the mechanisms of
SCA14 disease, it is essential to study the associated changes
in the enzymological properties of its key molecular players
(Yamaguchi et al., 2006).

This study focuses on analyzing the enzymological properties
of PKCγ and DGKγ in the context of SCA14 disease. Here,
through a computational approach, we compare the signaling
interactions of PKCγ and DGKγ in wild-type and mutant
cells. Experimental evidence shows that despite the increase in
activity, the membrane residence time of PKCγ is reduced in
mutant models of PCs compared to wild-type models (Adachi
et al., 2008; Shuvaev et al., 2011). Interestingly, another set
of observations indicate that despite constitutive activity in
cytosol, the activity of mutant PKCγ is reduced in the membrane
compartment (Verbeek et al., 2008). In turn, this reduction in
membrane residence duration or activity of PKCγ is believed
to be linked to insufficient phosphorylation of TRPC3. This
causes a disruption in Ca+2 homeostasis (Adachi et al., 2008;
Henning, 2011; Shuvaev et al., 2011). Here, we investigate the key
question of why membrane residence time of PKCγ decreases in
SCA14 disease. This study investigates this question by proposing
and numerically evaluating two contrasting signaling models of
depolarization-induced DAG generation and regulation in both
wild-type and mutant PCs. The models compare the possible
signaling cascades of DAG both in the SCA14 mutant and in
wild-type PCs through simulations.
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FIGURE 7 | The simulations mimicking the effect of blocking the rate constant of DGKγ phosphorylation to DGKγP on the comparative translocation kinetics of
PKCγ molecule in the mutant and wild-type models of PCs. Parameter k4 represents this rate constant in mutant models, whereas in wild-types, it is represented by
k6. Here, the strength of stimulation is controlled by setting the pulse parameter “S1” at 20. The duration of pulse is set for 1 min; the solid line represents the
non-stimulation and the dashed line represents the stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) Translocation
characteristics of PKCγ in the mutant model. Here, results show that blocking the parameter k4 in the mutant model increases the membrane residence time of
PKCγ (baseline, k4, τPKCγ mutant = 7.2 s; 80% blocking of k4 leads to τPKCγ mutant = 18 s; 90% blocking of k4 leads to τPKCγ mutant = 23 s). (B) Translocation
characteristics of PKCγ in the wild-type models. Here, results show that blocking the parameter k8 in the wild-type model reduces the membrane residence time of
PKCγ (baseline, k6, τPKCγ

= 18 s; 80% blocking leads to τPKCγ
= 12 s; 90% blocking leads to τPKCγ

= 14 s).

Precise modulation of TRPC3 gating is essential for the
viability of PCs and their characteristically dense dendritic tree
(Shuvaev et al., 2011; Henning, 2011). Evidence also suggests
that, in a single PC, the TRPC3 channels are by far the most
abundant molecule compared to the other members of the TRPC
family (Henning, 2011). TRPC3 proteins are mainly found in
the PC soma and dendrites (Henning, 2011). These channels are
regulated downstream of mGluR1 pathways and play a key role
in the maintenance of calcium homeostasis in cPCs (Henning,
2011). Furthermore, experimental evidence suggests that precise
gating of the TRPC3 channel is modulated by PKCγ in the
membrane compartment (Henning, 2011; Shuvaev et al., 2011;
Shimobayashi, 2016). Evidence also suggests that PKCγ may
modulate phosphorylation and hence inactivation of the TRPC3
channel. Thus, membrane residence duration of PKCγ may play
a critical role in regulating channel gating mechanisms. The
membrane residence time of PKCγ is regulated by DAG, and,
as DAG is converted to PA by DGKγ, membrane-bound PKC
returns to the cytosol (Shuvaev et al., 2011).

The simulations in this study focused on the key question
of how reduced membrane residence time of mutant PKCγ is
based on comparing mutant and wild-type models under the
same conditions. The wild-type model within this study is based
on stimulation-induced translocation and activation of PKCγ and
DGKγ. The mutant model, however, is based on constitutively

active PKCγ in the cytosol (Wong et al., 2018) and activation
and phosphorylation of DGKγ even during basal conditions.
In the mutant model, stimulation-induced translocation of both
active molecules from the cytosol to the plasma membrane
leads to quick and direct metabolism of DAG in the plasma
membrane compartment. Here, all the parameters in both models
are set at the same numerical values and both the models
are perturbed with a similar strength pulse. The goal of this
is to test what happens to the membrane residence duration
within two different signaling topologies. If all the kinetics,
translocation, and stimulation strength parameters are kept the
same, how does τPKCγ change in the wild-type and mutant
models of cPCs? Here, τPKCγ is the membrane residence time
of PKCγ and is defined as average residence duration during
which 50% of membrane PKCγ has re-translocated back to
cytosol. Interestingly, the results show that τPKCγ = 18 s for
the wild-type model and τPKCγ = 7.2 s for the mutant model.
Indeed, these results elucidate that alteration of topological
structure between two models could lead to differences in
membrane residence time. The results here indicate that PKCγ

residence time in the mutant model is approximately threefold
shorter than in the wild-type. These results are consistent with
previous experimental recordings in PCs from cerebellar slices
(τPKCγ = 19 s for wild-type cells and 6.0 s for mutant cells)
(Shuvaev et al., 2011). These results support the hypothesis
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FIGURE 8 | The simulations mimicking the effect of PKCγ to DGKγ expression ratio on the comparative translocation kinetics of PKCγ molecule in the mutant and
wild-type models of PCs. Three different levels of expression ratios are used (PKCγ:DGKγ: 1:1; PKCγ:DGKγ: 1:0.5; PKCγ:DGKγ: 1:0.3). Here, the strength of
stimulation is controlled by setting the pulse parameter “S1” at 20. The duration of pulse is set for 1 min; the solid line represents the non-stimulation and the dashed
line represents the stimulation condition (green dashed line, mutant; red dashed line, wild-type PCs). (A) Translocation characteristics of PKCγ in the mutant model.
Here, results indicate that reducing the PKCγ:DGKγ expression ratio increases the membrane residence time of mutant γ isoform (PKCγ:DGKγ: 1:1,
τPKCγ mutant = 7.2 s; PKCγ:DGKγ: 1:0.5, τPKCγ mutant = 9.1 s; PKCγ:DGKγ: 1:0.3, τPKCγ mutant = 12.1 s). (B) Translocation characteristics of PKCγ in the wild-type
model. Here, results indicate that reducing the PKCγ:DGKγ expression ratio first decreases and then increases the membrane residence time of γ isoform
(PKCγ:DGKγ: 1:1, τPKCγ

= 18 s; PKCγ:DGKγ: 1:0.5, τPKCγ mutant = 17 s; PKCγ:DGKγ: 1:0.3, τPKCγ mutant = 19.8 s).

that constitutively active PKCγ may have shorter membrane
residence duration in a mutant model of cPCs, despite higher
activity levels (Adachi et al., 2008; Shuvaev et al., 2011;
Wong et al., 2018).

In this study, we explore the mechanisms that might control
membrane residence time of PKCγ. Our results suggest that the
formation of a local signalosome in the membrane compartment
is key in regulating the membrane residence time of PKCγ

(Yamaguchi et al., 2006). Furthermore, our results show that,
in the case of the wild-type model, the local signalosome is
formed in the membrane compartment. In the case of the mutant
model, the signalosome is formed in the cytosol. It seems that
in the wild-type model, the depolarization-induced stimulation
leads to membrane translocation of inactive PKCγ and DGKγ.
Once in the membrane compartment, these molecules organize
themselves into a local signalosome, which, in turn, leads to
DAG metabolism and eventual disassembly of this local signaling
machine. It also leads to return of both DAG effector molecules
to the cytosol. Our results suggest that, in the mutant model,
the signalosome between PKCγ and DGKγ is formed in the

cytosol. This occurs independent of DAG and even under
basal conditions.

Our results propose that, in the case of the wild-type
model, the molecular processes involved in the assembly,
anchoring, and disassembly of the signalosome may provide
enough time for PKCγ to tightly modulate the activation,
inactivation, or recruitment of its key substrates, TRPC3
channels in PCs. In contrast, our simulations suggest that,
in the mutant model, signalosome is not assembled at
the membrane. Instead, the PKCγ and DGKγ molecular
pair interact with each other in the cytosol under basal
and DAG-independent conditions. Furthermore, the results
reflect that reduced residence time of PKCγ in the mutant
model could be due to the lack of signalosome assembly
at the membrane. This is because depolarization-induced
translocation of active DGKγ molecule from the cytosol to
the membrane could lead to direct metabolism of DAG into
PA, without undergoing the formation of a molecular complex
at the membrane. Consequently, this results in faster DAG
conversion to PA and quicker return of effector molecules
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to the cytosol. These results support the idea that reduced
membrane residence time of PKCγ is mainly linked to its
constitutive activity in the cytosol (Wong et al., 2018), which,
in turn, may result in differences in PKCγ and DGKγ

interaction in the cytosol.
A critical assumption of this study is based on the possibility

of a functional coupling between DAG effector molecules in PCs.
This assumption could be disputed, as we do not have a direct
evidence that such a coupling exists in PCs and is functional
during the depolarization-induced translocation and activation
events. We borrowed the idea of this functional interaction
between DAG effector molecules from a previous experimental
observation focusing on the PKCγ and DGKγ interactions in
CHO cells and our previous modeling work of this system
(Yamaguchi et al., 2006; Aslam and Alvi, 2019). We assumed
that a similar signaling cascade could be functional in PCs. This
similarity of CHO model cell and PCs could be disputed, as
there may be differences in translocation dynamics of DGKγ in
these cell systems. However, another set of direct observations
in PCs indicate the quick degradation of DAG, cyctosol-to-
membrane translocation kinetics of PKCγ, remigration dynamics
of PKCγ to cytosol after purinergic receptor activation, and
membrane residence duration in both mutant and wild-type
models (Shuvaev et al., 2011). Based on these observations,
we argue that during membrane depolarization-induced events
in PCs, a coupling between DAG effector molecules could be
present and functional. In the absence of a net negative feedback
effect generated through PKCγ and DGKγ interactions, DAG
might persist at membrane, leading to the prolonged membrane
residence duration of PKCγ, which at least is not the case, as
observed in some previous studies (Adachi et al., 2008; Shuvaev
et al., 2011; Wong et al., 2018). In fact, the mutant PKCγ molecule
is linked to shorter membrane residence duration (Adachi et al.,
2008; Shuvaev et al., 2011). Additional observations in the SCA14
mutant model (Wong et al., 2018) suggest the mislocalization
of PKCγ in cytosol with hyperactivity and the possibility of
phosphorylating/activating its substrates in the cytosol.

Besides exploring depolarization-induced translocation
characteristics of PKCγ and DGKγ molecules in mutant
and wild-type models of PCs, we have also studied the
influence of stimulation strength (amplitude of pulse mimicking
depolarization event) on the translocation characteristics
and membrane residence time of PKCγ (Figures 4A,B).
Our results indicate that, in mutant models, the maximum
M/C ratio of PKCγ increases fourfold with a threefold
increase in stimulation strength. In contrast, the increase
is 10-fold for the same increase in stimulation strength
for models representing wild-type PCs. Interestingly,
the membrane residence time of PKCγ in the mutant
model first decreases and then increases with increasing
stimulation strength. The corresponding residence and
translocation characteristics of DGKγ shows decreases in
membrane residence but increases in the maximum M/C
ratio for this molecule with increasing stimulation strength
(Supplementary Figure S1).

Furthermore, our results show that a 25- to 100-fold
increase in the DAG metabolism rate leads to a 1-s reduction

in membrane residence duration for the mutant and a 2-
s reduction for the wild-type model. The maximum M/C
ratio is reduced 10% in the mutant and 40% in the wild-
type model (Figure 5). This occurs because enhancing DAG
metabolism results in decreased membrane translocation and
faster remigration to the cytosol. Interestingly, blocking second
messenger metabolism has an opposite effect on membrane
residence duration, as well as the translocation characteristics
of PKCγ (Figure 6). This occurs because blocking metabolism
will result in DAG accumulation at the membrane compartment,
thus enhancing the membrane residence duration, as well as
the M/C ratio of PKCγ. Interestingly, our results show that
the effects of metabolism blocking are much more pronounced
on membrane residence duration in mutant PKCγ (95%
blocking of DAG metabolism results in a twofold increase
in residence time) compared to the wild-type model (95%
blocking results only in a 10% increase in residence time)
(Figure 6). However, in the case of a maximum M/C ratio,
95% blocking of second messenger metabolism in the wild-type
model results in a 5-fold increase. This increase is only 2-fold
in the mutant model (Figure 6). The corresponding residence
and translocation characteristics of DGKγ shows increase in
the maximum M/C ratio for this molecule in the wild-type
model with increase in blocking of DAG metabolism rate
(Supplementary Figure S2).

Our results also indicate a role for DGKγ expression on the
membrane residence duration and translocation characteristics
of PKCγ (Figure 8). Recent experimental results that use the
GFP-tagged PKCγ in CHKO cells indicate that the membrane
residence of PKCγ could be modulated by negative feedback
effects of DGKγ on the activity of PKCγ through regulating
DAG metabolism (Yamaguchi et al., 2006). However, these
results are based on a wild-type system. It is not understood
how this negative feedback loop is affected in mutant systems
when PKCγ is constitutively active. In addition, how might this
influence the membrane residence time, as well as the M/C ratio
of mutant PKCγ? These models assume equally proportional
DGKγ expression is necessary for its negative influence on PKCγ

activity. The results indicate that any changes in expression ratios
of PKCγ and DGKγ will have a strong influence on the membrane
residence time and M/C ratio of PKCγ and DGKγ (Figure 8
and Supplementary Figure S3). These results are consistent
with previous observations (Yamaguchi et al., 2006) showing a
fourfold increase in membrane residence time of PKCγ. However,
the key difference between the kinetics reported in previous
experimental findings and the results reported here is that the
current results are based on depolarization-induced stimulation
in PCs (Shuvaev et al., 2011) and experimental observations
mentioned above are based on ATP-induced stimulation in CHO
cells (Yamaguchi et al., 2006).

In our models, we did not attempt to simulate cytosol-to-
membrane translocation and re-translocation back to the cytosol
in a detailed manner (Imai et al., 2002, 2004; Luo et al., 2003a,b).
This study only represented the whole complex process by
introducing two first-order functions of DAG concentration.
These functions describe the cytosol-to-membrane migration
rates of PKCγ and DGKγ as a linear function of DAG
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concentration (Supplementary Material S1: Table S1 and
Supplementary Material S3: Table S2). The slope of the PKCγ

function is higher compared to DGKγ and adjusted to account
for differential sensitivity of these molecules to DAG and
calcium concentrations (Yamaguchi et al., 2006). We are not
aware if there is any model proposed to describe the PKCγ

and DGKγ translocation in PCs. Clearly, a complete model
should account for events like DAG and IP3 generation, DAG
binding, DAG-induced activation of TRPC3, and Ca+2 influx
due to TRPC3 opening. In addition, there is IP3 diffusion
into cytosol, Ca+2 diffusion from membrane to cytosol,
Ca+2 release from intracellular stores, binding of Ca+2 with
dormant PKCγ, and translocation of PKCγ and DGKγ from
the cytosol to the membrane (Nishizuka, 1988, 1992, 1995;
Newton, 2001, 2003; Oancea and Meyer, 1998). In addition,
diffusion in the membrane occurs. However, this is beyond
the scope of this study. Similarly, the models presented in this
study assume that the complex process of DAG generation in
response to depolarization-induced activation of the mGluR1
pathway can be simply represented by a brief pulse with certain
duration and amplitude. This study has not modeled the
complex processes involved in the generation of DAG and IP3
after the activation of the G-protein-coupled phospholipase.
Rather, we have used a simplistic approach to describe these
complex processes.

Some of the assumptions we made to construct these models
may be disputed. This study was not able to find data points
linking the effect of PKCγ mutations to the extent of its
activity. Do these mutations lead to maximal activation or only
partial activation of PKCγ in the cytosol? Here, we assume
that mutations in PKCγ lead to maximum basal activation,
which, in turn, leads to the maximum phosphorylation and
activation of DGKγ in the cytosol, even during resting conditions.
According to our mutant model, depolarization-induced local
generation of DAG in the membrane compartment stimulates
the translocation of its already-active effector molecules from
the cytosol to the membrane. Active and phosphorylated
DGKγ is in the membrane compartment and stimulates the
DAG metabolism. This assumption may be disputed, and
additional data should be generated to evaluate the DAG-binding
capacity of constitutively active mutant molecule. Here, this
study assumes that DAG metabolism in the mutant model is
fast, and as soon DAG levels drop, both molecules relocate
back to the cytosol.

Based on our wild-type and mutant models, it appears
that activation and phosphorylation of DGKγ could critically
influence the magnitude of translocation as well as the membrane
residence duration of PKCγ in both these models (Figure 7).
The blocking of DGKγ activation in the mutant model clearly
shows that the magnitude of translocation and the membrane
residence time of PKCγ are increased (Figure 7A). However,
the same blocking in the wild-type model shows that though
the translocation intensity increases, membrane residence time
decreases with increase in blocking levels (Figure 7B). This
is rather counterintuitive, as one would expect the increase
in membrane residence duration with blocking of DGKγ

activation in wild-type models too. Interestingly, as the parameter

k6 was further blocked, we noticed that 99 and 99.95%
blocking resulted in an increase not only in the magnitude
of translocation but also in membrane residence duration
(Supplementary Figure S4). Thus, these results indicate that
reducing the activation of DGKγ reduces the efficacy of
negative feedback loop.

CONCLUSION

Through a computational approach, we show that enhanced
PKCγ activity is linked to reduced membrane residence duration
in the SCA14 mutant model. This work provides the very first
simple mechanistic understanding and comparison of PKCγ

temporal dynamics in wild-type and mutant models. We propose
that SCA14 mutation causes the shift of PKCγ signaling from
membrane compartment to cytosol, thus resulting in reduced
membrane lifetime. The mechanistic nature of this work provides
possibilities to increase the membrane residence duration
of PKCγ through specific interventions, exquisitely targeting
biochemical interactions such as blocking the DAG metabolism
rate. An integrated model describing the calcium homeostasis
in PCs involving DAG effector molecules and TRPC3 channels
is under development and could further enhance the insights of
DAG signaling in PCs.
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The survival rate of patients with breast cancer has been improved by immune
checkpoint blockade therapies, and the efficacy of their combinations with epigenetic
modulators has shown promising results in preclinical studies. In this prospective
study, we propose an ordinary differential equation (ODE)-based quantitative systems
pharmacology (QSP) model to conduct an in silico virtual clinical trial and analyze
potential predictive biomarkers to improve the anti-tumor response in HER2-negative
breast cancer. The model is comprised of four compartments: central, peripheral, tumor,
and tumor-draining lymph node, and describes immune activation, suppression, T cell
trafficking, and pharmacokinetics and pharmacodynamics (PK/PD) of the therapeutic
agents. We implement theoretical mechanisms of action for checkpoint inhibitors and
the epigenetic modulator based on preclinical studies to investigate their effects on anti-
tumor response. According to model-based simulations, we confirm the synergistic
effect of the epigenetic modulator and that pre-treatment tumor mutational burden,
tumor-infiltrating effector T cell (Teff) density, and Teff to regulatory T cell (Treg) ratio are
significantly higher in responders, which can be potential biomarkers to be considered
in clinical trials. Overall, we present a readily reproducible modular model to conduct
in silico virtual clinical trials on patient cohorts of interest, which is a step toward
personalized medicine in cancer immunotherapy.

Keywords: immuno-oncology, immune checkpoint inhibitor, computational model, systems biology, epigenetic
modulator, quantitative systems pharmacology, virtual clinical trial
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INTRODUCTION

Although in clinical trials immunotherapies using anti-PD-1
and anti-PD-L1 antibodies and their combinations with other
types of therapies have improved the overall response rate and
progression-free survival rate in patients with breast cancer,
more than half of patients developed progressive disease (Emens,
2018). To improve the efficacy of checkpoint inhibitors, multiple
strategies are being developed to facilitate antigen release, T cell
activation and homing, and improve tumor microenvironment,
such as cancer vaccines and anti-OX40 antibody therapy (Hu-
Lieskovan and Ribas, 2017). In March 2019, the Food and
Drug Administration (FDA) granted an accelerated approval
for the immunotherapy anti-PD-L1 drug, atezolizumab, in
combination with chemotherapy drug, nanoparticle albumin–
bound paclitaxel (nab-paclitaxel), for the initial treatment
of some women with advanced triple-negative breast cancer
(TNBC). Among the ongoing clinical trials in breast cancer,
a phase I trial using a triple combination of anti-CTLA-
4 and anti-PD-1 antibodies, and a small-molecule epigenetic
modulator, entinostat, tests safety, efficacy and impact on the
ratio of tumor-specific effector T cell (Teff) to regulatory T cell
(Treg) (NCT02453620).

Entinostat, also called MS-275, was originally developed as
an antitumor agent, which inhibits histone deacetylases (HDAC)
and induces a shift of cell cycle from S phase to G1 phase
(Saito et al., 1999). There is emerging evidence that it can
alter the immune-suppressive microenvironment in the tumor
(Connolly et al., 2017; Christmas et al., 2018). Preclinical studies
also suggest that the alteration of the tumor microenvironment
can improve the efficacy of checkpoint blockade therapy (Kato
et al., 2014; Pili et al., 2017). In an in vivo experiment by
Kim et al., the addition of entinostat significantly reduced
tumor volume in 4T1 and CT26 mouse models under anti-
PD-1 and anti-CTLA-4 antibody treatment (Kim et al., 2014).
In a recent study, combining entinostat with anti-PD-1, anti-
CTLA-4, or both significantly improved tumor-free survival
in the HER-2/neu transgenic breast cancer mouse model
(Christmas et al., 2018).

The success of entinostat treatment in preclinical studies
has also drawn the attention to myeloid-derived suppressor
cells (MDSCs) in the breast tumor microenvironment. In
breast cancer patients, MDSC level is correlated to cancer
stages and metastasis (Gonda et al., 2017). As a major
contributor of the immune suppression in peripheral lymphoid
tissues, the inhibitory effect of MDSCs is also found to be
augmented in the tumor microenvironment, such as Treg
expansion and inhibition of Teff functions (Kumar et al.,
2016). Although a number of mechanisms are considered
to be the potential causes of their inhibitory effects, recent
studies suggest that Arginase I (Arg-I) and nitric oxide (NO)
are the major immune-suppressive molecules secreted by
MDSCs (Alotaibi et al., 2018; Park et al., 2018; Sheikhpour
et al., 2018). Due to their significant inhibition of adaptive
immune response in the tumor microenvironment, MDSCs
have been suggested as a target for breast cancer treatment
(Markowitz et al., 2013).

Besides the significant reduction of tumor volume, entinostat
is also suggested to alter MDSC levels both in blood and in
the tumor microenvironment; to change the proportions of T
cell subsets; and to increase tumor sensitivity to CTL-mediated
lysis (Kim et al., 2014; Gameiro et al., 2016; Orillion et al.,
2017; Christmas et al., 2018). Experiments detected a significant
reduction of tumor-infiltrating FoxP3+ Treg and granulocytic
MDSC (G-MDSCs) (vs. monocytic MDSC, M-MDSC) in mice
receiving entinostat treatment (Kim et al., 2014; Christmas
et al., 2018). A separate preclinical study also observed
the enhanced antitumor immune response with significantly
decreased FoxP3+ expression in circulating Tregs and increased
tumor-infiltrating G-MDSCs in syngeneic mouse cancer models
under entinostat and anti-PD-1 antibody treatment (Orillion
et al., 2017). Although preclinical studies have provided
somewhat controversial conclusions on how entinostat alters
the composition of T cell subsets and MDSCs in the tumor
microenvironment, they all suggest that entinostat reverses the
inhibitory effects of MDSCs (Kim et al., 2014; Orillion et al., 2017;
Christmas et al., 2018).

Due to the promising efficacy of entinostat treatment in
preclinical studies, the effects of entinostat were investigated with
exemestane/placebo in locally advanced or metastatic hormone
receptor-positive breast cancer (Yardley et al., 2013; Tomita et al.,
2016; Yeruva et al., 2018). In a phase II trial, both progression-
free survival and overall survival rates were significantly higher in
the entinostat-treated cohort. These results have led to a phase III
trial (E2112, NCT02115282) that aims to validate the preclinical
and clinical evidence supporting the role of HDAC inhibitors in
improving outcomes for patients with advanced breast cancer
(Yeruva et al., 2018). In addition, the synergistic effect of
entinostat in combination therapy with anti-PD-1 antibody,
nivolumab, has been reported in melanoma patients. Patients
who had stable or progressive disease in previous checkpoint
blockade therapy were converted to responders with entinostat
treatment (Agarwala et al., 2018).

Since the characteristics of patients who are likely to benefit
from epigenetic modulation are still unknown, we propose
an expanded quantitative systems pharmacology (QSP) model
based on our previous steps (Jafarnejad et al., 2019; Milberg
et al., 2019; Wang et al., 2019). It is built with a detailed
MDSC module and pharmacokinetics and pharmacodynamics
of entinostat, to investigate the effect of entinostat and its
combination with nivolumab and ipilimumab by conducting an
in silico virtual clinical trial. Virtual clinical trials aim to generate
virtual patient cohorts with physiologically plausible parameters
and predict efficacies of treatments of interest using in silico
simulations with a QSP model (Allen et al., 2016; Cheng et al.,
2017; Rieger et al., 2018). Due to the heterogeneity of patient
cohorts enrolled in clinical trials and wide range of treatment
strategies, in silico simulations using a virtual patient cohort that
resembles the desired clinical population can provide insights
into the potential therapeutic outcome even before the therapy
begins. In this study, we will conduct an in silico virtual clinical
trial to explore the effects of different factors and patients’
characteristics prospectively, ahead of the results of the ongoing
clinical trial (NCT02453620).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 February 2020 | Volume 8 | Article 14153

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00141 February 22, 2020 Time: 15:46 # 3

Wang et al. Virtual Clinical Trial in Cancer

MATERIALS AND METHODS

Model Overview
The proposed QSP model has a general structure similar to the
model introduced in our previous studies (Jafarnejad et al., 2019;
Wang et al., 2019). It comprises four compartments: central,
peripheral, tumor, and tumor-draining lymph node (TDLN).
The central and the peripheral compartments represent the total
volume of blood and peripheral tissues, respectively. The TDLN
compartment represents a lumped lymph node assuming that
the antibody and T cell activation is evenly distributed among
a number of TDLNs. The tumor compartment represents the
total tumor volume, which is calculated at each time step as the
addition of the total volume of proliferating and dead cancer cells,
T cells, and other cells and tumor interstitium. Tumor diameter is
calculated using total tumor volume assuming a spherical tumor,
which is an estimate of mean lesion size for each virtual patient.

The model comprises multiple modules, each of which
describes the dynamics of one of the major species (i.e., effector T
cells, regulatory T cells, MDSCs, cancer cells, antigen-presenting
cells (APCs), antigens, checkpoint ligands and receptors, and
therapeutic agents); each module is built separately using
MATLAB (MathWorks, Natick, MA, United States) scripts. The
modular structure of this model greatly facilitates modifications
and expansions for future applications. The model used in this
study comprises eight modules, 210 parameters, 120 ordinary
differential equations (ODEs) and 39 algebraic equations, which
are implemented using the SimBiology toolbox in MATLAB.
The dynamics of the major species in the model are illustrated
in Figure 1. Full lists of model parameters, reactions, algebraic
equations, and cellular and molecular species are included in the
Supplementary Tables S1–S6.

Pharmacokinetics and
Pharmacodynamics (PK/PD) of
Entinostat
Since there is no published population-based pharmacokinetic
model for entinostat, we propose a model structure for this oral-
administered drug based on four published clinical PK studies
of entinostat, and the PK parameters are optimized using data
reported in these studies (Ryan et al., 2005; Gojo et al., 2007;
Kummar et al., 2007; Gore et al., 2008). Parameter optimization
is performed using pattern search in the MATLAB Global
Optimization Toolbox. Multi-compartment PK model structures
are tested using similar methods from Gasthuys et al. (2018)
and the final diagram of our proposed PK model structure is
demonstrated in Figure 2A. As shown in the figure, a portion
of the dose is immediately absorbed by the patients via zero-
order buccal absorption over a time duration D0 into the
buccal compartment, and the rest of the dose is absorbed after
a time period Tlag via first-order gastrointestinal absorption
into the gastrointestinal compartment. The drug in buccal and
gastrointestinal compartments are then absorbed into the central
compartment via first-order absorption and diffuse into the
peripheral and the tumor compartments. For pharmacodynamics
of entinostat, it is known to induce cell cycle arrest in cancer

cells, reduce their viability, and significantly reduce the level of
immune-suppressive cytokines in the tumor (Lee et al., 2001;
Bouchain et al., 2003; Choo et al., 2010, 2013; Ryu et al., 2019).
In the current module, we assume that the major mechanisms of
action for entinostat are inhibitions of cancer cell proliferation
and production of monocyte chemoattractant protein-1 (MCP-
1/CCL2) and nitric oxide, by which entinostat has shown to
reverse the immune-suppressive effects of MDSCs (Kim et al.,
2014; Orillion et al., 2017; Christmas et al., 2018). The PD
parameters of entinostat are listed in Supplementary Table S7,
and its anti-proliferative effect on breast cancer cells is shown
in Supplementary Figure S1. Since the effect of entinostat on
MDSC level and T cell subsets are still under investigation, it
is assumed not to have direct impact on any species other than
cancer cells in the model (Kim et al., 2014; Orillion et al., 2017;
Christmas et al., 2018). In addition, the PK/PD of checkpoint
blockade antibodies are implemented using the same equations
as in our previous model based on published clinical data (Feng
et al., 2014; Bajaj et al., 2017; Wang et al., 2019).

MDSC Module
In addition to the mechanisms from our previous model
(Jafarnejad et al., 2019), a new MDSC module is implemented
to describe the immune-suppressive mechanisms of MDSC
including Treg expansion and inhibition of effector T cell
function. MDSCs are recruited into the tumor compartment
by CCL2 secreted by cancer cells in addition to a baseline
recruitment, and the predicted CCL2 expression and migration
indices are fitted to TNBC data (Supplementary Figure S3;
Huang et al., 2007; Dutta et al., 2018). The factors secreted
by MDSCs as the major contributors of their inhibitory effects
are assumed to be Arg-I and NO, whose expression rates are
estimated based on in vitro experiments on breast cancer cells
(Supplementary Figure S2; Serafini et al., 2008). Since only the
enzymatic activity of Arg-I is measured in enzyme unit, mU, we
use mU as a placeholder of Arg-I concentration in the model,
assuming that the protein concentration is proportional to the
enzymatic activity. The unit of its production rate is then set
to be mU∗(microliter)/cell/day to estimate the amount of Arg-
I produced by MDSCs per day. The unit of production rates of
NO and CCL2 is set to be nanomole/cell/day. While both Arg-
I and NO inhibit cytotoxic killing of cancer cells by effector T
cells, only Arg-I facilitates Treg expansion in the tumor (Serafini
et al., 2008). The effective concentrations are estimated based
on in vitro experiments and listed in Supplementary Table S7
with references.

Mechanisms of Anti-CTLA-4 Activity
Checkpoint Activity of CTLA-4
Dynamics of CTLA-4 related checkpoint molecules are modeled
based on the previously published model by Jansson et al.
(2005), and cross-arm binding of monoclonal anti-CTLA-4
antibody to CTLA-4 is incorporated similar to that of anti-
PD-1 antibody to PD-1 in our previous model (Harms et al.,
2014; Jafarnejad et al., 2019). Briefly, CD28 and CTLA-4 on
naïve T cells are assumed to bind CD80 and CD86 on APCs.
CD28 is a co-stimulatory signal that enhances the activation
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FIGURE 1 | Model diagram. The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which describe cycles of
immune activation in lymph nodes, T cell trafficking to the tumor, killing of cancer cells, immune evasion, and antigen release and lymphatic transport. Anti-CTLA-4
antibody blocks interaction between CD80/86 and CTLA-4 on mAPC and naïve T cell, respectively, in lymph nodes, and induces ADCC-mediated Treg depletion in
the tumor. Anti-PD-1 antibody blocks interaction between PD-1 and PD-L1/2 on Teff and cancer cell, respectively, in the tumor. nT, naïve T cell; aT, activated T cell;
NO, nitric oxide; Arg-I, arginase I; Treg, regulatory T cell; Teff, effector T cell; mAPC, mature antigen presenting cell. The figure is adapted from Jafarnejad et al. (2019).

of naïve T cells resulting in higher levels of proliferating T
cells. Higher affinity of CTLA-4 for CD80/CD86 results in the
depletion of CD28 ligands for T cell activation, and blockade
of CTLA-4 restores ligand availability for CD28 that leads to
enhanced T cell activation and proliferation. Furthermore, the
binding of CD80 on APC to PD-L1 on T cells was included
to compete with the interactions of PD-1 and CTLA-4 related
axes (Sugiura et al., 2019). All the reactions are assumed to
happen in the two-dimensional synapse compartment between
the respective cells and the details of the reactions are included
in the Supplementary Material. The biochemical parameters of
this module are mostly measured experimentally and reported in
the literature (Jansson et al., 2005).

Anti-CTLA4-Mediated Antibody-Dependent Cellular
Cytotoxicity (ADCC)
In addition to the checkpoint activity of CTLA-4, ADCC is
shown to be a potential mechanism of action for antibodies

targeting CTLA-4 (Arce Vargas et al., 2018). Regulatory T cells
express higher levels of CTLA-4 compared to effector T cells,
and anti-CTLA-4 antibodies enhance Treg depletion through
ADCC (Arce Vargas et al., 2018). It should be noted that the
importance of this mechanism in human has been questioned
by clinical observations (Sharma et al., 2019). In this model,
anti-CTLA4-mediated ADCC is incorporated as Treg depletion
through binding between the anti-CTLA-4 antibody and CTLA-
4 on Treg in the tumor. The maximal Treg depletion rate is
estimated based on in vitro experiments (Richards et al., 2008).

Simulation Settings
Although the model is used to simulate PK/PD for all
the immune checkpoint antibodies (i.e., anti-CTLA-4, anti-
PD-1, and anti-PD-L1) and entinostat in monotherapy and
combination therapies, we focus on the particular clinical
trial (NCT02453620), in which nivolumab and entinostat are
administered to 26 HER2-negative breast cancer patients with

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 February 2020 | Volume 8 | Article 14155

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00141 February 22, 2020 Time: 15:46 # 5

Wang et al. Virtual Clinical Trial in Cancer

FIGURE 2 | Diagram of pharmacokinetic/pharmacodynamic (PK/PD) module for entinostat (A) and simulated and measured plasma concentration at doses of 2, 4,
6 mg/m2 (B). A fraction of dose, F, is immediately absorbed by the patients via zero-order buccal absorption over a time duration D0 into the buccal compartment,
and the rest of the dose, 1-F, is absorbed after a time period Tlag via first-order gastrointestinal (GI) absorption into the gastrointestinal compartment. The drug in
buccal and gastrointestinal compartments are then absorbed into the central compartment via first-order absorption, and transported into the peripheral and the
tumor compartments via passive diffusion. For pharmacodynamics of entinostat, it inhibits nitric oxide (NO) and arginase I (Arg-I) production by myeloid-derived
suppressor cells (MDSCs), CCL2 production by cancer cells, Arg-I activity, and cancer cell proliferation.

or without ipilimumab. The breast cancer-specific parameters,
including cancer cell diameter, the number of tumor-draining
lymph nodes, tumor growth rate, volume fractions, and steady-
state MDSC and Treg levels are estimated based on literature
data. The baseline parameter values are estimated using TNBC
data, and the parameter ranges are estimated using both
TNBC and estrogen-positive/HER2-negative breast cancer data
to describe the heterogeneity of HER2-negative patients. Both
baseline parameter values and their ranges are listed with
references in Supplementary Tables S1–S6.

For each individual as a potential patient, a simulation is
performed starting from a single cancer cell with a plausible
characteristic parameter set of the patient drawn from our
assumed distributions. Due to the lack of patients’ information
of their initial tumor diameters at the beginning of the therapy
from the clinical trial, an initial tumor diameter is randomly
selected for the virtual patient based on our assumed distribution.
These preselected initial tumor diameters are then used to
calculate the initial tumor volume assuming a spherical tumor
as the pre-treatment tumor volume (i.e., preselected initial
tumor volume) for the virtual patient. Once the tumor reaches
the preselected initial tumor volume, the values of all the
species are saved and substituted into the model for further
simulations of the therapy of interest. If the tumor has not
been able to reach the preselected initial tumor volume, the
corresponding individual is considered to not develop a tumor,
possibly due to a strong immune response given by the plausible
parameter set. These individuals are not included in the post-
simulation analysis. The initial conditions and dynamic solutions
are calculated using the ode15s solver in MATLAB, and the
tumor growth is simulated for 400 days after therapy begins.
The absolute tolerance and relative tolerance are set to be
10−12 (day) and 10−6, respectively. In SimBiology, absolute
tolerance controls the largest absolute error allowed for the
ODE solver at any step in the simulation, while relative

tolerance controls the tolerable error relative to the state
vector at each step.

In silico Virtual Clinical Trial and
Sensitivity Analysis
For virtual clinical trials, a plausible characteristic parameter
set is selected for each potential patient to represent the inter-
individual variabilities, such as the cancer killing rate by effector
T cells, steady-state Treg and MDSC density in the tumor, antigen
binding affinity, cytokine expressions, and tumor mutational
burden (TMB), which is measured as the total number of
mutations per tumor genomic region and is defined in our model
as the number of tumor-specific T cell clones in TDLNs (Li et al.,
2016; Yarchoan et al., 2017). The values of selected parameters
are assigned using Latin Hypercube Sampling (LHS) based on
our estimated distribution and plugged in as input. Among all
the simulations, virtual patients who reach the preselected initial
tumor volumes are used to calculate the overall response rate
and the Partial Rank Correlation Coefficient (PRCC) between
post-treatment observations (e.g., end tumor volume, tumor-
infiltrating Treg and effector T cell density) and parameters
of interest for sensitivity analysis (e.g., cancer cell growth rate,
tumor antigen affinity, TMB) (Marino et al., 2008).

Statistical Analysis
The overall response rate is predicted as the proportion of
patients with complete response (CR) or partial response (PR)
based on RECIST v1.1, and the 95% Agresti-Coull confidence
interval (CI) is estimated based on normal approximation for
the binomial distribution. For comparison of model observations
between responders and non-responders and that among
virtual patients in various therapeutic regimens, Wilcoxon
test is performed using ggpubr package in RStudio v1.2
(Kassambara, 2019).
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RESULTS

Prediction of Entinostat Concentration in
Tumor
Figure 2B, demonstrates the simulated plasma concentration of
entinostat together with the clinical measurements at dose levels
of 2, 4, and 6 mg/m2 assuming a body surface area of 1.7 m2 (Gore
et al., 2008). The simulated peak concentrations are 15.4, 30.8,
and 46.3 ng/mL, and the areas under the curve are calculated to
be 105.5, 211.0, and 316.8 ng h/mL for doses of 2, 4, and 6 mg/m2,
respectively. The time tmax at the peak concentrations is estimated
to be 0.5 h for all doses. To further test the interindividual
variability of entinostat concentration, we varied the values of
absorption rates and clearance rates of entinostat in the sensitivity
analysis. The results are represented by a heatmap below with
other parameters of interest, and show that non-linear clearance
rate of entinostat has a significant inverse correlation with its
anti-proliferative effect on cancer cells.

Efficacy of Anti-PD-1 Monotherapy and
Its Combination With Entinostat
The model is first used to simulate the overall anti-tumor
response to anti-PD-1 monotherapy in breast cancer. Among
the 1500 simulations, 1196 virtual patients reach the preselected
initial tumor volume. It should be noted that the ratio 1196/1500
reflects our method of generating the initial conditions and does
not reflect the actual fraction of individuals who develop tumors.
Thus, it should be considered a methodological detail rather than
a reflection of a biological process. The parameter sets of the 1196
virtual patients are saved to simulate anti-tumor response to all
the following therapeutic regimens and statistical analysis. Once
the tumor diameter has reached its preselected value, 3 mg/kg
nivolumab is administered every 2 weeks. The time-dependent
percentage change of the tumor size (spider plot) is plotted in
Figure 3A, based on RECIST criteria (Eisenhauer et al., 2009).
Overall, 265 virtual patients have a partial or complete response
(22.2%), and 37 virtual patients have stable disease (3.1%);
the remaining 894 patients had progressive disease (74.8%).
A waterfall plot of changes from baseline in model-predicted
tumor diameter is shown in Figure 3B.

To further investigate the effect of entinostat on the overall
response rate and tumor microenvironment, we simulate the
overall anti-tumor response to a double combination therapy
using 3 mg/kg nivolumab every 2 weeks and weekly doses
of 5 mg entinostat. The parameter sets and initial conditions
of the same 1196 virtual patients who reached preselected
initial tumor volume are saved and used to perform a virtual
trial with combination of entinostat and nivolumab. Of the
1196 virtual patients, 320 have a partial or complete response
(26.8%), and 52 have stable disease (4.4%), the remaining 824
patients had progressive disease (68.9%). Thus, the predicted
increase of the response rate from 22.2% for nivolumab alone
to 26.8% for the combination of nivolumab and entinostat. The
time-dependent percentage change of the tumor size (spider
plot) and the waterfall plot are shown in Figures 3C,D.
We can now apply these simulation results to the actual

clinical trial in which each dose regimen involves less than
15 patients. By randomly sampling 15 virtual patients 100,000
times, we obtain a 95% percentile bootstrap confidence interval
of (6.67%, 46.7%) for our estimate of the overall response
rate in the double combination therapy. Thus, even though
these results are dependent of the space of parameters for
the virtual patients, we note that the predicted confidence
interval is very wide.

Model-Predicted Anti-tumoral Effect in
Triple Combination Therapy
Now that the efficacy of entinostat on improving anti-tumoral
effect of anti-PD-1 monotherapy has been simulated, the model
is used to investigate the effect of the addition of anti-CTLA-4
antibody. Four doses of 1 mg/kg ipilimumab are administered
every 6 weeks with weekly 5 mg entinostat and 3 mg/kg
nivolumab every 2 weeks. While the number of responders
remains the same, the mean post-treatment tumor volume
is lower than that in the double combination therapy. This
slight increase of anti-tumor response is due to the ADCC-
mediated Treg depletion by ipilimumab, which significantly
increase Teff to Treg ratio in the tumor. The total virtual
population is then divided into six subgroups based on their
pre-treatment tumor-infiltrating Teff, Treg, and MDSC density,
Teff to Treg ratio, TMB, and tumor-specific antigen binding
affinity by their medians. The response rates of all subgroups
with 95% confidence intervals are shown in Figure 4. The
confidence intervals for subgroups MDSC density, TMB, tumor-
infiltrating Teff density, and Teff to Treg ratio show significantly
different response rates in these subgroups, while those for other
subgroups overlap. The 95% percentile bootstrap confidence
interval for our estimate of the overall response rate in the triple
combination therapy is calculated to be (6.67%, 53.3%) for a
sample size of 15, using the same methods in the previous section.
100 out of the 1196 virtual patients are randomly selected to
illustrate their changes from baseline in model-predicted tumor
diameter with parameters of interest, as shown in Figures 5A–
D. While a large portion of responders correspond to patients
with high TMB and low PD-L1 expression on cancer cells, antigen
binding affinity and initial tumor diameter are evenly distributed
between responders and non-responders.

To further investigate the effect of combination therapy using
immune checkpoint inhibitors and the epigenetic modulator,
we plot the changes of Teff/Treg density and ratio, and tumor
volume as post- to pre-treatment ratio using the five therapeutic
regimens from the clinical trial as shown in Figure 6. The
significant increase of Teff to Treg ratio when higher doses of
nivolumab are administered in the double combination therapy
corresponds to the significant increase of tumor-infiltrating Teffs,
as nivolumab blocks inhibitory signals on cancer cells and
restores Teff functionality. On the other hand, the increases of
Teff to Treg ratio by addition of entinostat and ipilimumab
correspond more to the decrease of Tregs than to the increase of
tumor-infiltrating Teffs. This phenomenon is due to the immune
modulation by entinostat that inhibits Treg expansion, as well as
the Treg depletion effect by anti-CTLA-4 antibody.
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FIGURE 3 | Spider plots of 100 randomly selected virtual patients (A,C) and change from baseline in model-predicted tumor diameter assessed by RECIST v1.1
(B,D) in anti-PD-1 monotherapy (A,B) and its combination with entinostat (C,D). PD, progressive disease; SD, stable disease; PR, partial response; CR, complete
response.

Anti-tumor Response as Affected by
Parameters of Interest
In Figure 7, a heatmap of global uncertainty and sensitivity
analysis shows that among 32 parameters, tumor growth
rate, T cell exhaustion, cancer killing rate by T cells, TMB,
initial tumor diameter, steady-state MDSC density, PD-L1
expression on cancer cells, and inhibitory effect of Arg-I on
T cells are significantly correlated with end tumor volume.
The sensitivity of these responses to parameters is further
illustrated in Figure 8. In the above simulations based on
the reference values of model parameters, we predicted certain
response rate at 400 days, e.g., in a combination of nivolumab
and entinostat 26.8% have a partial or complete response,
4.4% have stable disease, and 68.9% have progressive disease.
However, these percentages are affected by the parameters of
the patient cohort, and results of a trial may be different
depending on the parameters of the patients within the cohort.
Figure 8, illustrates the effects of variation of parameters
on the patients’ response according to RECIST criteria for
9 parameters selected from the global sensitivity results.
TMB, tumor growth rate, steady-state MDSC density, the
number of PD-L1 molecules on cancer cell, and effective
concentration of Arg-I on Teff inhibition show strong impacts
on tumor size change, which corroborates their statistical
significance suggested by PRCC analysis and emphasizes
a need for accurate estimation of these parameters for
personalized simulations.

Identification and Performance of
Potential Predictive Biomarkers
From sensitivity analysis and overall response table presented
above, we identify several potential predictive biomarkers for
the triple combination therapy in this virtual clinical trial. As
shown in Figure 9, the distributions of pre-treatment tumor-
infiltrating Teff and Treg density, Teff to Treg ratio, and TMB
are significantly higher in responders when compared with those
in non-responders, while MDSC density is significantly higher in
non-responders, possibly due to its strong immune-suppressive
activity in the tumor microenvironment. We further investigate
the performance of these potential biomarkers on prediction of
anti-tumor response to the triple combination therapy through
binary classification. As shown in Figure 10, the Sensitivity and
1-Specificity values from each cutoff were plotted as ROC curves.
TMB, tumor-infiltrating Teff and Teff to Treg ratio have higher
AUCs (0.872, 0.766, and 0.740, respectively) than intra-tumoral
MDSC density (0.652), further implicating their potential to be
predictive biomarkers for this triple combination regimen.

DISCUSSION

Based on our previously published QSP model and our first
attempt to make personalized predictions of anti-tumor response
to immunotherapy using immune checkpoint inhibitors (Milberg
et al., 2019; Wang et al., 2019), a more recent model with

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 February 2020 | Volume 8 | Article 14158

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00141 February 22, 2020 Time: 15:46 # 8

Wang et al. Virtual Clinical Trial in Cancer

FIGURE 4 | Anti-tumor activity of triple combination therapy in virtual patient cohort. Total 1196 virtual patients in triple combination of entinostat, nivolumab, and
ipilimumab are divided into subgroups based on the population medians, and the objective response rates in each subgroup are calculated with 95% Agresti-Coull
confidence intervals. MDSC, myeloid-derived suppressor cell; Ag, tumor antigen; TMB, tumor mutational burden (tumor-specific T cell clones in lymph nodes); Teff,
effector T cell; Treg, regulatory T cell.

FIGURE 5 | Change from baseline in model-predicted tumor diameter assessed by RECIST v1.1 based on tumor mutational burden (A), initial tumor diameter (B),
tumor antigen binding affinity (C), and number of PD-L1 molecules on cancer cells (D).

reduced number of ODEs has been published by Jafarnejad
et al. (2019) through simplification of certain processes, such
as T cell trafficking and the kinetics of T cell priming

in the lymph nodes. In this study, we present a further
developed model to: modularize each species of interest and
individually calibrate the modules based on literature data;
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FIGURE 6 | Changes of cell density and tumor volume in dose escalation as post- to pre-treatment ratios, including Teff to Treg ratio (A) and their densities in tumor
(B,C), and tumor volume (D). p-values are calculated using Wilcoxon test.

FIGURE 7 | Global uncertainty and sensitivity analysis. Thirty two parameters are assigned using Latin Hypercube Sampling (LHS) based on our estimated
distribution, and the Partial Rank Correlation Coefficient (PRCC) between selected post-treatment observations and input parameters are presented as a heatmap.
Among 32 parameters, tumor growth rate, T cell exhaustion, cancer killing rate by T cells, TMB, initial tumor diameter, steady-state MDSC density, PD-L1 expression
on cancer cells, and inhibitory effect of Arg-I on T cells are significantly correlated with post-treatment tumor volume.

add a MDSC module; investigate the mechanisms of action
for the epigenetic modulator and checkpoint inhibitors with
limited and/or controversial preclinical results; and conduct
a virtual clinical trial of a combination therapy using anti-
PD-1, anti-CTLA-4 antibodies and an epigenetic modulator,
entinostat. The modularized model can be readily reproduced,
and additional modules can be added in future studies

if the dynamics of other molecular and cellular species
are of interest.

While T cell trafficking equations and the PK/PD module
of checkpoint inhibitors remained unchanged compared to our
previous models (Jafarnejad et al., 2019; Wang et al., 2019), we
adopted a new mechanism of T cell activation by mature APCs
(mAPCs) (Lever et al., 2014). Tumor antigens are released from
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FIGURE 8 | Effects of parameters on patients’ response. For each parameter of interest, virtual patients are sorted by their corresponding parameter values in
ascending order, and evenly divided into six subgroups. The response status of each subgroup is plotted against the median parameter values in each subgroup.
TMB and effective concentration of Arg-I on Teff inhibition show positive correlations with response rate, while tumor growth rate, steady-state MDSC density, and
the number of PD-L1 molecules on cancer cell show negative correlations (i.e., with a >15% increase/decrease of response rates in subgroups).

dying cancer cells and transported to TDLNs. Virtual patients
with higher TMB would generate higher levels of tumor antigens,
which can be recognized by higher levels of tumor-specific naïve
T cells in TDLNs. Activation of tumor-specific naïve T cells in
TDLNs is modeled by a kinetic proofreading module with limited
signaling based on TMB, binding affinity of tumor antigens
and concentration of mAPCs (Lever et al., 2014). The activated
T cells proliferate through a calculated number of generations
based on T cell receptor signaling, co-stimulatory signaling, and
cytokine signaling before returning to quiescence, while they
simultaneously differentiate into effector T cells (Marchingo et al.,
2014). In addition, simulations also start from a single cancer
cell to capture the initial conditions at the preselected initial
tumor volumes. This way, we take into account the virtual
patients whose adaptive immune response is strong enough to
eliminate the cancer cells before developing into a tumor. Using
this method, we no longer observe the strong correlation between
tumor volume and initial tumor diameter (Figure 8) as we did in
previous study (Wang et al., 2019). By starting model simulation
from a single cancer cell, larger initial tumor size is more likely

to acquire higher number of pre-treatment tumor-infiltrating T
cells, which results in a similar T cell density to smaller sizes.
Thus, anti-tumor response is less dependent on its initial size.

According to our model analysis, a positive correlation
between PD-L1 expression on cancer cell and end tumor volume
is observed. That is, patients with small number of PD-L1
molecule on cancer cell are likely to have strong anti-tumor
response. This is due to our assumption that Teff function
is not inhibited by cancer cells without PD-L1 expression,
opposite to our previous model, where we assume that Teffs
are inhibited by other inhibitory pathways if not by PD-L1
on cancer cells (Wang et al., 2019). Both of the assumptions
aim to explain the correlation between PD-L1 status and anti-
tumor response observed in clinical trials (Vikas et al., 2018).
To further investigate the implication of PD-L1 positivity in
patients with breast cancer, its expression on both cancer cells
and immune cells should be implemented in future studies with
appropriate assumptions of their functionality based on clinical
evidence (Marra et al., 2019; Matikas et al., 2019). For example,
PD-L1 expression on macrophages plays an important role
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FIGURE 9 | Distributions of Potential Biomarkers in Responders and Non-responders. The response in the 1196 simulations was divided into responders (R) and
non-responders (NR), and statistical comparisons are presented between the two groups for pre-treatment observations. Statistical significance is calculated by
Wilcoxon test. ∧p-values ≤ 0.05; ∧∧∧∧p-values ≤ 0.0001; non-significance (ns), p-values > 0.05.

in macrophage polarization and antitumor cytokine secretion
(Hartley et al., 2018). In addition, PD-L1 expression on cancer
cells shows correlations with tumor metastasis and suppression of
effector T cells, which is regulated by epithelial-to-mesenchymal
transition of cancer cells (Chen et al., 2014; Terry et al., 2017).
Therefore, a macrophage module can be added to investigate
the interactions between macrophages and cancer cells and the
resulting effects on the tumor microenvironment (Mahlbacher
et al., 2018; Li et al., 2019; Zhao et al., 2019).

In our previous model (Wang et al., 2019), we suggested that
the MDSC level in the tumor was significantly related to anti-
tumor response to combination checkpoint blockade therapy,
assuming that the inhibition of effector T cells by MDSCs
was mainly dependent on their checkpoint expression and that
intratumoral Treg level remained a constant fraction of MDSCs.
In the present model, we further expand the mechanisms of
MDSCs to include both the secretion of Arg-I and NO by MDSCs,
which inhibit Teff cytotoxicity and induce Treg expansion, and
CCL2 secretion by breast cancer cells, which facilitates MDSC
recruitment into the tumor. As shown in the sensitivity analysis
(Figure 7), the addition of detailed MDSC mechanisms does not
lead to an overestimated inhibition of the immune response, as
the efficacy of the combination therapy is significantly correlated
to not only MDSC-related parameters but also to other immune-
suppressive factors.

To study the efficacy of entinostat, we proposed a
pharmacokinetic model to estimate the transport parameters

based on the plasma concentration measured by Gore et al.
(2008). The simulated peak concentration and area under the
plasma concentration curve for different doses are compared
with other published PK analysis data of entinostat (Ryan et al.,
2005; Gojo et al., 2007; Kummar et al., 2007). Although most
of our simulated concentrations fall within the range of their
clinically measured values, the small sample sizes and the large
differences in means and ranges reported in all the four studies
suggest that additional clinical measurements are needed to
improve our prediction of entinostat concentration in patients
with breast cancer. For pharmacodynamics of entinostat, it is
assumed to inhibit proliferation of breast cancer cells and the
cytokine secretion by MDSCs, reversing their inhibitory effects
on T cell subsets. Interestingly, the effective concentrations
of entinostat on its anti-proliferative activity are dependent
on the subtypes (i.e., HS-578t, MCF-7, ZR-75, and SKBR3),
and it also reduces cell viability in some subtypes of breast
cancer, including MCF-7, ZR-75, and SKBR3 cells (Lee et al.,
2001). The discrepancy of the efficacy of combination therapy
using immune checkpoint inhibitors and epigenetic modulator
among different cancer types might result from this difference in
effective concentrations (Gallagher et al., 2017).

For mechanism of action of anti-CTLA-4 antibody, it was
assumed in our previous model that the efficacy of anti-
CTLA-4 therapy observed in clinical trials is mainly mediated
by blocking CTLA-4 and CD80/86 interactions and thus
restoring co-stimulatory signaling in T cell activation in TDLNs
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FIGURE 10 | ROC Analysis of Potential Predictive Biomarkers in Triple
Combination Therapy. Cutoff values are selected based on the range of
pre-treatment amounts of myeloid-derived suppressor cell (MDSC) density,
effector T cell (Teff) density, tumor mutational burden (TMB), and Teff to
regulatory T cell (Treg) ratio. For each cutoff value, response status (R vs. NR)
is predicted for each virtual patient by comparing the pre-treatment amount of
the potential biomarker to the cutoff value. Sensitivity (true positive rate) is
plotted against 1 – specificity (true negative rate) for each biomarker. R,
responders; NR, non-responders.

(Wei et al., 2018). In addition, recent studies suggest that Fc
domain of the anti-CLTA-4 antibody is required for efficacy in
mouse tumor models, which is critical to induce Fc-mediated
depletion of regulatory T-cells (Arce Vargas et al., 2018; Ingram
et al., 2018; Tang et al., 2018). However, this newly proposed
mechanism of anti-CTLA-4 antibody has shown controversial
results from clinical studies (Romano et al., 2015; Sharma et al.,
2019). While both mechanisms are implemented in the present
model to investigate their roles in anti-tumoral activity in breast
cancer, the major mechanism of action of anti-CTLA-4 antibody
that contributes to its efficacy has yet to be determined by future
studies, which might also be cancer type-dependent.

By conducting a prospective virtual clinical trial, we aim to
make predictions of the anti-tumor activities and biomarkers
for an ongoing trial that has not yet been completed. Starting
from the nivolumab monotherapy, we predict the response
rate of 1196 virtual patients with breast cancer. A 22.2%
response rate is predicted given our set of parameters of interest
with assumed distributions. Based on our assumptions on the
mechanisms of action, our predicted response rate falls within
the reported range of response rate of anti-PD-1 monotherapy
using pembrolizumab in patients with TNBC or estrogen-
positive/HER2-negative metastatic breast cancer (Emens, 2018;
Planes-Laine et al., 2019), which demonstrate the ability of
the present model to perform virtual clinical trials and make
reasonable qualitative predictions on anti-tumor response. When
combined with entinostat, the response rate of checkpoint
therapy increases to 26.8%. However, it is challenging to quantify

the improvement of anti-tumor response to checkpoint blockade
therapy by the addition of entinostat, since the PK parameters
and the effective concentrations are only roughly estimated for
entinostat. Although combination therapy of entinostat and anti-
PD-1 antibody has shown promising results in patients with
anti-PD-1-resistant melanoma and non-small cell lung cancer,
the effect of cancer type and patients’ characteristics on the
improved efficacy has yet to be determined (Agarwala et al.,
2018; Hellmann et al., 2018). Furthermore, the simulations
show that the addition of four doses of anti-CTLA-4 antibody
ipilimumab does not significantly improve the performance of
the combination therapy, even though Teff to Treg ratio is
significantly increased due to ADCC. This result is also suggested
by our previous model (Wang et al., 2019), and higher doses of
the ipilimumab might be required to improve the T cell activation
and thus anti-tumor response; however, in the clinic, higher doses
of ipilimumab are limited by toxicity. Overall, the model suggests
that TMB, tumor-infiltrating Teff density, and Teff to Treg ratio
can be predictive biomarkers in this triple combination therapy.
The efficacy of all the tested therapies shows strong correlation
with these model observations, which is also supported by their
clinical significance in anti-tumor response and overall survival
in breast cancer (Adams et al., 2014; Asano et al., 2016; Takada
et al., 2018; Thomas et al., 2018).

Notably, the predictions of anti-tumor response and predictive
biomarkers are strongly affected by our assumptions on
mechanism of action for all therapeutics and distribution of
physiological parameters for virtual patient cohort (Cassidy and
Craig, 2019). The expected response rate of the ongoing clinical
trial simulated in this study, as suggested by the 95% percentile
bootstrap confidence intervals, could fall into a wide range. Due
to the variations of selection criteria and settings in clinical trials,
the distribution of patient parameters can be largely different
and in fact only a few of the parameters that are necessary
as inputs for the model are clinically measured; most of the
parameters remain unknown for each particular patient or a
cohort that results in uncertainty of model predictions. For
example, the generally lower overall response rate reported in
previously treated TNBC patients might result from their changes
of physiological parameters in previous therapy when compared
with previously untreated patients (Adams et al., 2019a,b). In
this case, our model proposes to consider high TMB, tumor-
infiltrating Teff density, and Teff to Treg as potential biomarkers,
which might improve anti-tumor response in previously treated
patients (Alva et al., 2019). Importantly, ongoing clinical trials
may provide insights on the effect of entinostat and ipilimumab
on the immune system and resistance mechanism in breast
cancer development, which would allow us to make step-by-
step modification of the model and its parameters and improve
its predictive power (Pitt et al., 2016; Darvin et al., 2018;
Eladdadi et al., 2018; Mahlbacher et al., 2019). Our goal is to
understand the dynamic interactions between drugs and the
immune system in cancer as a whole, to update our assumptions
on drug/tumor-immune dynamics through comparison between
model predictions and clinical observations, and thereby to guide
drug development and clinical trial design (Cheng et al., 2017;
Nijsen et al., 2018; Bai et al., 2019; Bradshaw et al., 2019).
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Existing mathematical models for the glucose-insulin (G-I) dynamics often involve

variables that are not susceptible to direct measurement. Standard clinical tests for

measuring G-I levels for diagnosing potential diseases are simple and relatively cheap,

but seldom give enough information to allow the identification of model parameters

within the range in which they have a biological meaning, thus generating a gap

between mathematical modeling and any possible physiological explanation or clinical

interpretation. In the present work, we present a synthetic mathematical model to

represent the G-I dynamics in an Oral Glucose Tolerance Test (OGTT), which involves

for the first time for OGTT-related models, Delay Differential Equations. Our model

can represent the radically different behaviors observed in a studied cohort of 407

normoglycemic patients (the largest analyzed so far in parameter fitting experiments),

all masked under the current threshold-based normality criteria. We also propose a

novel approach to solve the parameter fitting inverse problem, involving the clustering

of different G-I profiles, a simulation-based exploration of the feasible set, and the

construction of an information function which reshapes it, based on the clinical

records, experimental uncertainties, and physiological criteria. This method allowed an

individual-wise recognition of the parameters of our model using small size OGTT data (5

measurements) directly, without modifying the routine procedures or requiring particular

clinical setups. Therefore, our methodology can be easily applied to gain parametric

insights to complement the existing tools for the diagnosis of G-I dysregulations. We

tested the parameter stability and sensitivity for individual subjects, and an empirical

relationship between such indexes and curve shapes was spotted. Since different G-I

profiles, under the light of our model, are related to different physiological mechanisms,

the present method offers a tool for personally-oriented diagnosis and treatment and to

better define new health criteria.

Keywords: mathematical modeling, glucose-insulin control, OGTT, inverse problems, personalized medicine
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INTRODUCTION

Disequilibriums in the glucose-insulin (G-I) dynamics, as in
diabetes, insulin resistance, glucose intolerance, among others,
are a widespread condition inmodern society (Cobelli et al., 2009;
Ajmera et al., 2013; Hu et al., 2015; Toniolo et al., 2018). For this
reason, the mathematical modeling of the G-I control system has
been frequently visited, as shown by the wide variety of models
presented in numerous reviews published to date (Bergman,
2005; Boutayeb and Chetouani, 2006; Makroglou et al., 2006;
Palumbo et al., 2013; Cobelli et al., 2014).

For modeling purposes, we may understand the G-I dynamics
as follows. The digestion of macronutrients generates glucose
(among others nutrients), which enterocytes absorb into the
bloodstream in the upper intestinal tract. The blood glucose
concentration increase caused by glucose absorption induces

pancreatic β-cells to secrete insulin in different timescales: early
insulin release, signaled by the incretin hormones (secreted from

intestinal enterocytes), is achieved by emptying the contents
of the vacuoles in the β-cells. After that source is depleted,

insulin production follows a saturable dynamics. Insulin signals
the uptake of glucose from peripheral tissues (mainly muscle

and adipose tissue), which metabolize it to obtain energy or to
synthesize storage macromolecules, and the decrease of glucose
release from the liver. If blood glucose levels are too low,
pancreatic glucagon-induced hepatic glucose release restores the
steady-state homeostatic level.

Some typical routine tests employed for the diagnosis of G-
I-related dysregulations are the Oral Glucose Tolerance Test
(OGTT) and the Meal Test (MT), which are widely used
given their clinical simplicity and low cost. In OGTT, a
fasting patient ingests a 75 g-controlled dose of liquid glucose
(Bartoli et al., 2011), while in MT a controlled meal with
known glycemic index (such as rice) is given to a patient. In
both tests, glycemia is measured at different times. Typically,
such measurements take place at time 0 (fasting) and 2 h
after the ingestion of glucose, but more temporal resolution
might be required, or other physiological variables measured,
depending on how strict clinical criteria are. Moreover, efforts
have been made to modify and standardize the temporal
resolution and duration of the tests (Bergman et al., 2018).
Besides the clinical interpretation of the OGTT and MT values,
some model-derived indexes can be obtained, as is the case of
the Insulin Sensitivity SI , derived from the very well known
Minimal Model (Bergman et al., 1979). The insulin sensitivity
SI quantifies the ability of insulin to increase the effect of
glucose on its own disappearance in a steady state. From
Bergman’s Minimal Model, mathematical models of the G-I
dynamics have evolved, increasing their complexity and aiming
to different objectives.

Stumvoll et al. (2000) presented an empirical approach based
on correlations to determine SI from OGTT curves. Mari et al.
(2001) proposed a parametric approach to obtain this index,
studying a population of 104 individuals with different clinical
classification. High correlations between results for SI calculated
from themodel vs. direct measurement for the full patient sample
suggested the applicability of the OGTT to obtain clinically

relevant parameters and perform large scale studies. Caumo et al.
(2000) and Dalla Man et al. (2002, 2004, 2006) focused their
efforts on modeling glucose absorption from the digestive system
into the bloodstream, making differences between OGTT and
MT. However, parametric identifiability in their models required
the a priori knowledge of average values of some parameters
of the sample, assumed equal and constant for all individuals.
The number of patients (88) in Dalla Man et al. (2004) allowed
to determine the non-Gaussian distributions of some of the
parameters. Later, Dalla Man et al. (2007) presented a nested
sub-systems model, fitting its parameters to a population of 204
clinically healthy individuals that underwent a MT. Reflecting on
its complexity, the authors suggested to use this model only as a
simulator. Following the trend of previous minimal models, this
model also leaves out equations for other regulatory hormones
such as glucagon, epinephrine, growth hormone, and incretins,
which regain importance in other works (Brubaker et al., 2007;
Silber et al., 2010; Mari et al., 2013).

Salinari et al. (2011) presented a model in which the
intestinal absorption of glucose is obtained as a solution
of a transport partial differential equation, where glucose is
progressively absorbed while passing through the intestine, and
stomach emptying is assumed to be exponential. Subsequently,
De Gaetano et al. (2013) presented an extension of the classic
minimal model, modeling the gastrointestinal tract as four
compartments, coupled with first-order kinetics. Besides, the
authors proposed fixed forms for hepatic glucose production
and incretin action, without clear physiological justification or
supporting background, and in disagreement with the state
of the art (Silber et al., 2010). The patient sample analyzed
in De Gaetano et al. (2013) comprised 78 patients with
different clinical classifications, and parameters were fitted to
whole groups of patients according to each clinical criterion,
reporting statistical differences for insulin sensitivity between
different groups.

The importance of the development of mathematical models
for the study of the G-I control system lies in the potential to
serve as support for clinical diagnostic tools in the detection of
type II diabetes, insulin resistance, glucose intolerance, among
other dysregulations of the G-I control system. However, at
present, these models do not manage to effectively capture the
differences that exist between patients in the way of achieving
glycemic control (reflected as morphological variations in OGTT
response curves), and do not represent it as a difference in
the involved parameters that can be interpreted according
to clinical criteria. Additionally, the more complex models
mentioned above have not been used to infer physiological
parameters for an individual patient from an OGTT, since
they have only been used to calculate average parameters in
a group of patients, or required special clinical setups to
obtain the data needed for fitting them. This is partly due
to the intrinsic complexity of the models and the number
of parameters involved, but also to the lack of a numerical
procedure for parameter fitting. Therefore, amathematical model
capable of accounting for different physiological states and
applicable as a tool for clinical diagnosis becomes necessary for
personalized medicine.
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In the present work, we present a synthetic mathematical
model to represent the G-I dynamics in OGTT using Delay
Differential Equations (DDE), in which each parameter describes
a single physiological phenomenon. To the best knowledge of
the authors, this is the first DDE model involved in describing
OGTT dynamics, including the mutual interrelation between
glucose and insulin. The structure of the model allowed for
representation of every observed qualitative dynamic behavior
in our cohort, regardless of the number, height or location of
the glucose and insulin peaks. Using a novel information-based
approach we achieved an individual-wise parameter fitting using
the five glycemia and insulinemia points of a routine OGTT
directly, for a cohort of 407 patients that underwent a 75-g
OGTT, which is the largest cohort analyzed so far for this
end. We also show that there are different controlling behaviors
within the clinical normality thresholds, accounting for different
physiological mechanisms to achieve glycemic control. Given
that parameter fitting is individual, it would be possible to classify
each patient within different groups, suggesting that different
dysregulated mechanisms require different corrections, thus
transforming the proposed model and fitting procedure into a
tool for preventive clinical diagnosis and personalized medicine.

MATERIALS AND METHODS

A cohort of 407 volunteers was used for testing the capabilities
of our model and our patient-wise parameter recognition
methodology. All volunteers gave their informed consent to use
their OGTT data in this study. All volunteers in this sample
were clinically healthy according to criteria used in Chile, in
strict clinical settings to characterize normoglycemic patients.
According to these criteria, a patient who has basal (stable
overnight) glycemia lower than 100 mg/dL, basal insulinemia
lower than 15 µU/mL, glycemia values not exceeding 160
mg/dL at any time and not persisting at values higher than
140 mg/dL over 2 h, and insulinemia not persisting at values
higher than 60 µU/mL for a continuous time period of 120
min, would be classified as normal. Approximately 80% of
the cohort corresponded to female patients, with ages ranging
between 18 and 65 years-old. Nevertheless, no statistical sex-
related difference was found within the cohort. Every patient
underwent an OGTT with five measurements for both glycemia
and insulinemia: fasting (basal state) and every 30 min, for
2 h. Further description of the data, as statistical properties,
histograms of the measurements at every time and of the age
distribution are presented in Supplementary Material (Table S1
and Figures S1, S2, respectively).

We identified many radically different G-I profiles among
the population. Examples of them are hypoglycemic individuals,
single/double peak patients, and those with practically invariant
G-I profiles, as shown in Figure 1. In Figure 1, the solid
lines correspond to a spline interpolation of the experimental
measurements, which are marked with solid diamonds of the
same color. These different OGTT profiles could account for
diverse physiological states related to gastric emptying, intestinal
absorption, or other components of the glycemic control system,

masking pre-disease conditions under the concept of normality.
Therefore, as currently defined, to identify the physiological
background behind a clinically healthy or unhealthy individual
seems to be an ill-posed inverse problem.

The implementation of the mathematical model and
resolution of the parameter-fitting inverse problem was
performed in Matlab version R2017a, using the Global
Optimization Toolbox. All scripts and routines for parameter
fitting were run on the Chilean National Laboratory for High-
Performance Computation (NLHPC) servers, using BASH-based
control scripts.

RESULTS

Synthetic OGTT Glycemia-Insulinemia

Model
The synthetic model proposed in this work considers five main
variables. Four of them represent the amount or concentration of
glucose in different compartments: in the stomach S, in the upper
intestinal tract J (jejunum) and L (ileum), and in the bloodstream
(glycemia) G. The last variable accounts for the insulinemia I.
These different variables interact as illustrated in the box diagram
of Figure 2, in ways that will be further detailed in this section.
We follow the notation of De Gaetano et al. (2013), but ourmodel
also considers the contributions of other works (Dalla Man et al.,
2007; Salinari et al., 2011; De Gaetano et al., 2013), together with
our own developments.

Figure 2 shows the interdependence of the different variables
of the model. The gastrointestinal sections are decoupled from
the blood G-I dynamics, which, as we will see, are connected in a
very non-linear fashion. To obtain the G-I profiles of a particular
individual, given all the parameters involved, it is necessary to
solve the system of differential equations that we propose to
model it. All the proposed constitutive equations may be found
in this section, together with their physiological background and
the reasons behind its mathematical formulation. A summary of
the model is presented in the last subsection and a detailed list of
its parameters and variables can be found in Tables S2, S3.

Gastrointestinal System
To mathematically represent the stomach emptying for a liquid

bolus, we assume its rate vs =
dS
dt

to be directly proportional to
the content of glucose at every time, S(t), as Equation (1) shows:

dS

dt
= −kjsS, S(0) = D, (1)

where kjs is a first-order kinetic constant, D the ingested glucose
bolus in an OGTT (75 g), and the minus sign accounts for the
disappearance of glucose, hence the emptying of the stomach.
The glucose that leaves the stomach appears in the jejunum J,
being a source term in the rate (Equation 2).

As absorption of glucose may take place in this section of
the small intestine, we may close the mass balance noting that
the glucose that is not absorbed will continue its way, being
transported to the ileum L.
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FIGURE 1 | Some of the different G-I profiles encompassed under the clinical normality criterion. Continuous curves are spline interpolations of the diamond marked

experimental trends. Note that similar glycemia curves are not necessarily associated with similar insulinemia curves, and a single-peak profile in glycemia is not

necessarily associated with a single-peak insulinemia profile. Upper clinical normality criteria are represented as red limits for the basal and last points and for the entire

OGTT time span.

FIGURE 2 | Box diagram of the proposed model and the interactions between the different compartments and variables. The gastrointestinal tract, namely variables

S, J, and L, are decoupled from the blood G-I dynamics.
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dJ

dt
= kjsS

︸︷︷︸

Stomach delivery

− kgjJ
︸︷︷︸

Absorption into the bloodstream

− kjlJ
︸︷︷︸

Delivery to L

, J(0) = 0 (2)

The structure of our model, from this point and further, is
significantly different from the one presented in De Gaetano
et al. (2013). De Gaetano et al. (2013) suggested that to
represent the effect of intestinal transit between jejunum
and ileum, a virtual compartment R can be added in
between, where absorption does not occur. Nevertheless,
the equations proposed to reach such objective are not
entirely appropriate for representing different curve shapes,
especially those curves with delayed 2-peak dynamics with
equal peak height and width or a higher second peak
(see Figure 1).

Here we decided to follow the formalism presented by
Salinari et al. (2011) to represent intestinal transit. Taking
into account the peristalsis-driven intestinal transit mechanism,
we can assume there is no mixing in the axial axis.
Hence, we model the flow through the intestine as a
plug-flow reactor with uniform velocity U. To represent
the distribution of glucose transporters along the small
intestine, we assume that absorption occurs in two separated
areas of the intestine, the jejunum and the ileum, located
at a distance l, so the time it takes for the ileum to
receive glucose transiting from the jejunum is τ := l/U.
Consequently, instead of having a spatial partial differential
equation for intestinal absorption, we have two ordinary
differential equations, one for the jejunum (Equation 2) and one
for the ileum, the last one having a τ−delayed forcing function
(Equation 3).

dL

dt
= kjlϕ(t)

︸ ︷︷ ︸

Delayed contribution from J

− kglL(t)
︸ ︷︷ ︸

Absorption into the bloodstream

, ϕ(t) =

{

0, if t < τ

J(t − τ ), if t ≥ τ
(3)

where kjl and kgl are first-order kinetic constants, respectively,
accounting for the rate of jejunal glucose delivery and the glucose
absorption into the bloodstream.

Blood Glucose Dynamics
To represent variations in glycemia, our model contemplates
the following control mechanisms. As source terms in the
glycemia equation, we considered the intestinal absorption
of glucose adjusted by glucose bioavailability (η), following
the form presented in Dalla Man et al. (2002), and the
hepatic contribution to glucose homeostasis (Gprod), which
indirectly accounts for the action of glucagon. The sink
terms in the equation represent glucose uptake by insulin-
insensitive tissues and renal excretion, which is proportional
to G, and insulin-driven consumption of glucose, taking
place in insulin-sensitive tissues, which is proportional to GI.
Equation (4) represents mathematically the glycemia dynamics.

dG

dt
= −kxgG

︸ ︷︷ ︸

Basal uptake

− kxgiGI
︸ ︷︷ ︸

Insulin-sensitive uptake

+ Gprod
︸ ︷︷ ︸

Hepatic delivery

+ η
(

kgjJ + kglL
)

︸ ︷︷ ︸

Intestinal absorption

, G(0) = Gb (4)

where kxg is the insulin-independent glucose uptake rate, kxgi is
the uptake rate of insulin-sensitive tissues, η is the bioavailability
of the intestinal absorbed glucose, and Gprod is the rate of hepatic
glucose production.

Hepatic Glucose Production Function
We implicitly incorporated the effect of glucagon into a
hepatic glucose production function, which is an always
positive term that contributes to the equation of blood
glucose dynamics. Previous works model this contribution with
exponential functions (De Gaetano et al., 2013; Erlandsen
et al., 2018), without a solid physiological background but
rather a mathematical convenience. However, when analyzing
the functional nature of such expressions, we realize that the
differential mechanism is not entirely clear since the function
derivative cannot be written as a function of itself. Therefore, no
reliable physiological mechanism supports the form of such rate
functions. We propose Gprod as the complement of a Monod-like
equation, which is typically used to model problems of saturable
growth, production, enzymatic reaction and receptor/ligand
interaction or transport:

Gprod =
kλ

k2 + G
, (5)

As defined above, Gprod is also the solution of the mechanism
given by Equation (6), which represents a logistic hyperbolic

production with an asymptotic maximum rate (see derivation in
Supplementary Material).

dGprod

dG
= −

Gprod

G

(

1−
k2

kλ

Gprod

)

, (6)

By imposing steady-state conditions Gprod(Gb) = G0
prod

,

k2 can be written as a function of the other variables,

resulting in Equation (7), i.e., a saturable Michaelis-
Menten-like kinetics much more representative of the

physiological background of cellular processes. Noticeably,
even though the rate Equation (6) does not include
any set point, the integrated steady-state hepatic glucose
production (Equation 7) explicitly depends on the difference
between glycemia and its base level (see derivation in
Supplementary Material).
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Gprod =
kλ

kλ

G0
prod

+ (G− Gb)

. (7)

Blood-Insulin Dynamics
For the blood-insulin system, following the model in De Gaetano
et al. (2013), we propose aHill’s dynamics for pancreatic secretion
(Goutelle et al., 2008), and an I-proportional degradation term.
Noteworthy, these dynamics exhibit a saturation behavior since it
is formulated exclusively for OGTT circumstances. However, we
corrected the mathematical form of the incretin action suggested
in De Gaetano et al. (2013). De Gaetano et al. (2013) assumed
that incretin secretion is proportional to glucose levels within
the intestinal lumen. Nonetheless, it has been shown that it
rather depends on the rate of absorption of glucose from the
intestinal lumen (Silber et al., 2010). Therefore, we corrected this
in Equation (8):

G̃ = G+ fgj(kgjJ + kglL). (8)

Equation (8) makes sense from a physiological point of view since
intestinal epithelial cells are not able to sense the absolute amount
of glucose in the intestine due to the lack of glucose sensor
proteins, but their internal metabolic rates are directly dependent
on the steady-state cytoplasmic concentration of glucose, which
is proportional to glucose membrane transport through the cell.
In this equation, fgj is a conversion factor that indirectly links
glucose absorption rate to insulin secretion rate through incretin
action, thus representing the relative power of incretin action vs.
direct glycemic action on the pancreas. Under these assumptions,
Equation (9) gives the final expression for the insulin dynamics:

dI

dt
= kxiIb






βγ + 1

βγ
(
Gb

G̃

)γ

+ 1
−

I

Ib




 (9)

where kxi is a first-order kinetic constant for the insulin
degradation in target tissues, β and γ are parameters for half
saturation and acceleration of the insulin production, which
account for first and second phase pancreatic secretion, G̃ the
apparent G, enhanced by incretin action, and Gb, Ib the steady-
state value of such variables.

Insulin Action on Glycemia and Insulin Sensitivity
Former mathematical models including insulin action were
divided in models that considered a direct action of blood
insulin on tissues to regulate glucose uptake and more complex
models that considered an additional intermediate compartment.
Such compartment represented the interstitial fluid in peripheral
tissues, into which insulin was absorbed from the bloodstream
following a first-order kinetics, and only then could exert its
action. Mathematically, the effect of this formulation in the
more complex models was the introduction of a small delay
and a proportionality constant between concentrations in the
bloodstream and the interstitial fluid, which caused a small
decrease in peak height and slight broadening of peak width
for insulin in the intermediate compartment compared to the

bloodstream. Application of these models to experimental data
demonstrated a minimal delay, in the range of a few minutes,
between concentrations in the bloodstream and the intermediate
active compartment. Taking into account that usual OGTT
experiments take measures every 30 min and the registered G-
I dynamics occur in the order of hours, this small delay was
not included in the formulation of our model, because the time
resolution might result too coarse to accurately calibrate such
parameters. In this way, we only consider a direct action of blood
insulin on target tissues. From amathematical and practical point
of view, this decision also resulted in a more compact model with
fewer parameters to fit experimental data.

Insulin sensitivity SI , formally introduced by Bergman et al.
(1979) and mathematically defined by Equation (10), accounts
for the quantitative influence of insulin to increase the effect of
glucose on its own disappearance, in steady state.

SI =
∂E

∂I
, E = −

∂
(

dG/dt
)

∂G
(10)

In our mathematical model, we adopted the term kxgiGI and
kxgG of De Gaetano et al. (2013) to represent the glucose-
mediated effect of insulin on glucose disappearance from the
bloodstream and glucose uptake by insulin-independent tissues,
respectively. However, contrary to the equations of De Gaetano
et al. (2013), in our model parameter kxgi is a true insulin
sensitivity value. This was achieved by the redefinition of Gprod,
resulting in such a way that no additional terms appeared in the
mathematical calculation of the insulin sensitivity according to
Equation (10).

Summary of the Model
Collecting the different expressions derived in the previous
sections for the constitutive compartments of our model, we can
summarize it in the following system of differential equations:

dS

dt
= −kjsS, S(0) = D

dJ

dt
= kjsS− kgjJ − kjlJ, J(0) = 0

dL

dt
= kjlϕ(t)− kglL(t), ϕ(t) =

{

0, if t < τ

J(t − τ ), if t ≥ τ

dG

dt
= −(kxg + kxgiI)G+ Gprod + η

(

kgjJ + kglL
)

, G(0) = Gb

dI

dt
= kxiIb






βγ + 1

βγ
(
Gb

G̃

)γ

+ 1
−

I

Ib






Parameter Fitting Strategy
During a 5-point OGTT, five experimental measures of both
glucose and insulin are captured, generating vectors Gexp and
Iexp. By protocol, measurements are taken at 0, 30, 60, 90, and
120 min after glucose ingestion, giving a time vector Texp =
[0 30 60 90 120 ]. The model detailed in the previous sections
was used to represent and interpolate these points continuously.
Let Gnum(Eθ), Inum(Eθ) be its solution for the G-I dynamics, with
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parameters Eθ . The traditional way of formulating the parametric
fitting problem is by minimization of a cost function Jexp
that accounts for the difference between the modeled curve
and experimental measurements. Generally, this function is
proportional to the mean squared errorMSE,

Jexp(Eθ ,α) =
1

5 (Gmax − Gmin)
2

5
∑

i=1

(

Gexp(i)− Gnum(Ti)
)2

+
α

5 (Imax − Imin)
2

5
∑

i=1

(

Iexp(i)− Inum(Ti)
)2
,

(11)

where α is a constant that connects the contribution of the
insulin curve to MSE and (Gmax − Gmin)

2 is a scaling factor.
This problem consists of finding the values of all 13 parameters
of the model from 10 experimental measures obtained during
a routine 5-point OGTT for a given patient, which is a
slightly underdetermined problem. However, we can exploit the
knowledge we have about the nature of the physiological G-I
response, accumulated in more than 40 years of routine testing
and modeling, to gain in robustness and identifiability of the
parameter set for each patient. We identified and used the
following strategies for improvement:

• Increasing data density through the use of interpolators, to
favor smoothness and regularity of the solutions, and to
penalize nonphysiological oscillations.

• Simulation-based regularization for clusters of similar curves.
• Nested sub-problems and sequential approximations to build

a robust initial guess.
• Incorporation of information in the cost function and the

delimitation of the feasible set.
• Algorithm choice for the parameter recognition problem and

final shaping of the feasible set.

Increasing Data Density
Given the nature of the equations presented in our model, non-
physiological high-frequency oscillatory solutions might appear.
Taking into account (a) the nature of the physiological G-
I control system, (b) the oscillations measured experimentally
in the literature, and (c) the 30-min apart measurements
taken during a 5-point OGTT, we know that high-frequency
oscillations –relative to the sampling time– should not be
observable in our solution. Therefore, we propose to favor those
solutions that only have low-frequency oscillations, somehow
forcing the it to resemble the experimental data in a smooth way.
For this, we propose to increase the density of putative measured
points using a soft interpolant to connect the experimental
measurement points. Without loss of generality, for G, the
interpolant Ĝ used to increase the data density is defined by
Equation (12):

Ĝ = φGspline + (1− φ)Gpol, (12)

that is a convex combination between a cubic spline and a low-
degree polynomial interpolator. We can define a new component
of the error function, Jspline, based on the MSE between Ĝ and

Gnum, following the structure of Equation (11). It is important
to point out that this contribution has no greater effect than
favoring those solutions that are smooth and regular. Introducing
this component into the curve fitting procedure adds information
because the optimizer would not only look for those solutions
whose numerical profiles match the experimental data points, but
for those whose profiles also do not drift considerably from the
expected trend.

Simulation-Based Regularization for Clusters of

Similar Curves
Taking into account the physiological andmolecular mechanisms
involved in the G-I dynamics and the experimental values
obtained in typical OGTT measurements, we determined
plausible lower and upper bounds (θi,min and θi,max, respectively)
for each parameter θi. In a first stage, we may define the feasible
set F0 considering such thresholds,

F0 =

13
⊗

i=1

[

θi,min, θi,max

]

, (13)

where the operator ⊗ represents the Cartesian product between
the intervals defined by the lower and upper thresholds of each
parameter. We performed a simulation stage to explore the

nature of F0, in which we simulated 108 values of Eθ∗ ∈ F0,

and studied the Gnum(Eθ
∗) and Inum(Eθ

∗) profiles obtained. If such
profiles fulfilled the clinical normality criteria, they were assigned
to groups of experimental profiles based on their similarities,
aiming to build a set of initial guesses for the parameters
corresponding to such individuals. Once we had enough Eθ∗

for each group of curves, a fourth component for the global
cost function (Equation 16) was added, accounting for the
contribution of local regularization near Eθ∗j characteristic of the

j’th group.

Nested Sub-problems and Sequential

Approximations
We followed a staged approach for the construction of
initial guesses for the inverse problem, summarized in the
following algorithm:

Steps one and two aim to build an appropriate initial guess for
the parameter fitting problem, solved in step three. This step does
not include further assumptions on the nature of the solutions,
but only the model equations.

Incorporation of Information in the Cost Function
Given that the a priori identifiability of the model is not
guaranteed (De Gaetano et al., 2013), we corrected the cost
function presented in the previous section to incorporate more
information. Without making any assumption concerning the
parameters, we incorporated information from clinical records
and from the test itself. In particular. we added terms that account
for: (i) experimental errors, associated with sampling time and
laboratory techniques, and (ii) expected extreme values (maxima
and minima), inferred from the experimental measurements and
based on clinical criteria.
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Algorithm 1: Sequential approximation to the initial guess

Data:
Eθ∗j : Initial guess, built from the simulation-based

parametric pool of group j;
Gnum, Inum : Model derived G-I profiles, with temporal
resolution tnum;

Ĝ, Î : Interpolation of the experimental G-I profiles at tnum;

Result: Initial guess Eθ0 for the parametric recognition
inverse problem of a particular patient

foreach individual in the cohort do

Find the most similar simulated curve, and set Eθ0 = Eθ∗j .

Fit the glycemia-related parameters, using I = Î
(Equation 12) as a known forcing function on
Equation (4), minimizing Jexp(Eθ , 0).;

Update the glycemia-related components of Eθ0.
Fit the insulinemia-related parameters, using G = Ĝ
(Equation 12) as a known forcing function on
Equation (4), minimizing Jexp(Eθ ,α), considering only
insulinemia (α → ∞).;

Update the insulinemia-related components of Eθ0.
Set Eθ0 as initial guess for the parameter fitting inverse
problem.

end

Regarding the first term, associated with experimental
errors in both time and measurement, such 2− D variability
transformed each data point into an ellipse in the (t,G) or (t, I)
space, centered on the experimentally determined value Gexp

or Iexp, at time Texp. We used a constant 1t = ±3min as a
scale for the temporal uncertainty (horizontal semi-axis of the
ellipse), meanwhile a proportional contribution (to the Gexp or
Iexp values) was chosen for the vertical axis. The weight of this
error source in the total cost function was calculated based on
a polar probability density of ρ(r, θ), as described in algorithm 2.
Note that when considering together Jexp and Jerror, the algorithm
can be significantly simplified, as the calculations for the case d =
0 may be skipped only giving a greater weight to the contribution
of Jexp.

Regarding the second term, its derivation was—in
a mathematical sense—more complicated. Given the
characteristics of the 5-point OGTT considered on this
work, it seems reasonable to expect that the maximum value of
the modeled glycemia curve should be of the same order of the
maximum of the experimental profile. Consequently, we will
have an idea of the time t∗ ∼ Texp(i) when our model reaches
such value. Furthermore, considering a sequence of experimental
measurements Hi recorded at times Ti, which approximate a C

1

function h(t). If for certain i0 it is fulfilled that

(

Hi0 −Hi0−1

) (

Hi0+1 −Hi0

)

< 0, (14)

there exists a time t∗ ∈
[

Ti0−1, Ti0+1

]

where h′(t∗) = 0. Note that
this can happen more than once for a sequence of experimental

Algorithm 2: Incorporation of experimental errors in the
cost function
Data:
xexp : experimental glycemia or insulinemia value at time
texp;
texp : sampling time, element from Texp;
λ : penalizing factor, λ > 1;
Result: Jerror
Set Jerror = 0;
foreach texp ∈ Texp, x = {G, I} do

Calculate E, ellipse centered in (texp, xexp(texp)), with
semi-axes a = 21t , b = 21x.;
Calculate c = xnum([texp − 1t , texp + 1t]), image of the
major semi-axe through function xnum.;
Calculate d, the distance between E and c.;
if d = 0 then

Calculate d′, the distance between c and the center of
E;
Find θ ′, angle of the point of minimum distance;
Calculate r(θ ′), ellipse radius at θ = θ ′;

Update Jerror = Jerror + λ

(
d′

r(θ ′)

)

;

else

Update Jerror = Jerror + λ(d + 1);
end

end

measurements so that we may have more equations of the form
h′(t∗j ) = 0. For our case, as the OGTT data consists of five

glucose and five insulin measurements, the maximum number of
additional equations we can have is 6.

The classical way of solving the direct problem of finding
maximum/minimum values of a function h(t) is finding a time
t∗ in which h′(t∗) = 0 and a sign change occurs in the same
point. Then, hopt = h(t∗). This same reasoning can be applied

to glycemia, using Equation (4) and imposing dG
dt

= 0 to obtain
Equation (15):

Gopt =
G∗
prod

+ η
(

kgjJ
∗ + kglL

∗
)

kxg + kxgiI∗
, (15)

where Gopt is the maximum glycemia, and I∗, G∗
prod

, J∗, L∗

are, respectively, the insulin concentration, hepatic glucose
production rate, and the amount of glucose in the jejunum and
ileum at time t∗ (whenGopt is reached). Note that the formulation
is general, and it serves for any point of derivative equal to
zero (which we can estimate from the clinical exam trends).
We can indeed follow and apply the same idea for the insulin
equation (Equation 9). If we do this for all critical points we
will have n linearly independent equations, since the times t∗

and optimal values of G, I will be different. We can think of
each equation as the i− th component of a function F(Eθ) =
∑n

i=1 fiEei. Note that around Eθ∗ where F(Eθ∗) = 0, the parameters
can be expressed as implicit functions of the known variables
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FIGURE 3 | Scatter plot of model-predicted glycemia and insulinemia vs. experimental measurements for the entire cohort of 407 patients. The data cloud lies in the

identity zone, without significant deviations from it, accounting for a good fit.

FIGURE 4 | Probability histograms of relative errors of the model predictions for the cohort of 407 patients and five data points per patient. Given the Gaussian nature

of the residues of both variables, we can safely discard the presence of bias.

(such as Gi,max and Ii,max). These equations will define different
loci for the fitted parameters. The problem that appears directly
after this definition is that known variables, in reality, are only
approximately known within a confidence interval Ic,i. Then,
when incorporating them, we will have manifolds (of loci). More
specifically, we say that Eθ satisfies the equation i, if there are
G∗
i,max, I

∗
i,max, t

∗ ∈ Ic,i such that fi(Eθ) = E0. We then build an
information function, which conditions the shape of the feasible

min
Eθ∈F0|F(Eθ)=E0
︸ ︷︷ ︸

Information function

λ1Jexp(Eθ ,α)
︸ ︷︷ ︸

Experimental data

+ λ2Jspline(Eθ ,α)
︸ ︷︷ ︸

Interpolator

+ λ3Jerror(Eθ ,α)
︸ ︷︷ ︸

Experimental errors

+ ǫ‖Eθ − Eθ∗j ‖
︸ ︷︷ ︸

Local regularization

, (16)

set, tagging as unfeasible the solutions Eθ such that F(Eθ) =
∑n

i=1 fi(
Eθ)Eei 6= E0. Thus, we will have a new feasible set for our

solutions and a new approach to the problem.

Settings of the Inverse Problem: Functions,

Algorithms, and Thresholds
Finally, including all the contributions mentioned above, the

parameter-fitting problem can be formulated as:
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FIGURE 5 | Sensitivity and stability analysis of fitted parameters for patient 180. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, even though some parameters have

a low slope over the studied interval, the variability of their values, expressed as the width of the 95% confidence interval, is almost negligible.

FIGURE 6 | Sensitivity and stability analysis of fitted parameters for patient 144. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, the variability of the kλ parameter is

considerably higher than in the case of Figure 5, probably because of differences in the experimental profiles.
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FIGURE 7 | Sensitivity and stability analysis of fitted parameters for patient 31. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, the variability of some parameter

values is not negligible.

with ǫ arbitrarily small, and which solution is the set of
parameters that characterize the glycemic-insulinemic control for
each patient. The resolution of the minimization problem 16 at
every stage was achieved by combining deterministic methods
(gradient search) and heuristic methods such as simulated
annealing and pattern search, available in the Matlab Global
Optimization Toolbox. Parameters were obtained for the whole
studied cohort.

DISCUSSION

Goodness of Fit
Applying the parameter recognition procedure presented in
previous sections, it was possible to fit our model to the
experimental OGTT glycemia and insulinemia profiles of
the whole studied cohort, thus obtaining the physiological
parameters that control the observed trends for each patient.

To evaluate the performance of our model and the proposed
parameter recognition procedure, we studied the quality of
their predictions for both glycemia and insulinemia. Figure 3
shows the scatter plots of experimental vs. predicted values
for glycemia and insulinemia for all 407 patients, where both
predicted variables follow the expected trend. The data point
cloud lies in the identity zone, without significant deviations, and
the variables show high correlation. The probability-normalized
residues histogram of both variables had a Gaussian nature, as
depicted in Figure 4, with low variance. In sum, prediction errors
are normally distributed and unbiased, while predictions are

highly correlated to experimental measures, which demonstrates
the goodness of fit of our model and method.

Sensitivity Analysis
Parameter sensitivity was evaluated for each patient by analyzing
how variations in parameter values affected the error between
predicted and experimental values (the cost function defined
by Equation 16). Some particular examples are shown by the
volcano plots in Figures 5–7. In these figures, the greater the
slope around the central point, the more sensitive the patient
is to variations of that parameter. Therefore, a more sensitive
parameter suggests higher confidence in its fitted value. We
also performed ten different parameter fitting experiments for
each patient, starting from different initial values and using
the deterministic and heuristic procedures described above.
With these results, we calculated a 95% confidence interval
for the parameters of each patient, as shown in Figures 5–7.
Following our former reasoning, all parameters with high slopes
around the central point in the volcano plot have very narrow
confidence intervals, but unexpectedly some parameters with low
sensitivity in volcano plots have also very narrow confidence
intervals in fitting experiments. This observation demonstrates
that parameter accuracy following our fitting method is higher
than expected from analyzing parameter sensitivity around a
central point.

Analyzing differences between patients, our results show that
this sensitivity analysis differs for each case, since different curve
shapes suggest different physiological ways to achieve glycemic
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FIGURE 8 | Parameter stability in response to small perturbations in the experimental glucose measurements. Random noise of at most 10% of the reported

measurement was added to the original values, and the inverse problem was solved. Results show that, even for the maximum percentage of variation, the difference

between the original and final values remained non significant.

control. Hence, the relative importance of each parameter on
the control mechanism, and the reliability of their values, can
be considered proportional to their sensitivity or the extension
of their confidence interval. As the most sensitive parameters
are those that determine the shape of the control profile,
understanding their individual and collective meaning may give
valuable information about the health status of each patient,
highlighting the physiological background of the observed trend.

We present some examples of these observations in
Figures 5–7, which feature a special kind of graph that we will
address as a volcano plot. In a volcano plot, we analyze the
impact that small variations in the parameters, relative to their
optimal value, have on the value of the error functional JT . The
x-axis represents the percent variation of the optimal value of the
parameter, and the y-axis, the variation of the error, normalized
by its minimum value, which is the optimal. Therefore, the point
(100, 100) is the center and global minimum of all curves in
the plot.

Figure 5 shows the sensitivity and stability analysis of the
parameters for patient 180. Out of the whole set, the parameter
kλ shows the more significant variability, which is very small and
almost negligible. On the other hand, Figure 6 shows the same
analysis for patient 144, which has a very similar glycemic profile,
but whose kλ is somehow unreliable. Despite sharing almost the
same glycemic profile, they have essential differences in their
insulinemic trends. The above demonstrates the importance of
analyzing both glycemia and insulinemia for having a reliable
indicator of the health status of an individual, given that glycemia
alone might not be enough. Furthermore, patient 31, who shares
little or no properties with the glycemic and insulinemic profile
of the other two patients studied above (see Figure 7), has a
different sensitivity footprint, proving the relationship between
curve shape and parameter reliability.

Stability of the Solutions in Response to

Experimental Errors
After obtaining final values for every parameter, we evaluated
their stability in response to small perturbations in the fitted

experimental measures. Starting from the experimental OGTT
points for a fixed individual (Gexp, Iexp), we simulated a
set of virtual patients with OGTT curves (Gsim, Isim) whose
measurements resulted of adding random noise to (Gexp, Iexp),
and solved the parameter fitting problem, considering as a
starting point the parameters fitted to the original patient.
Different amounts of noise were added to the experimental
points in all patients. The effects of these variations on all
parameter values are shown in Figure 8 for one patient example.
All parameters in all generated variations show no significant
differences in comparison to the original data, showing that the
model allows margins of error associated to both experimental
error or time lags at the moment of taking samples without
compromising the accuracy of the solution. This invariability is
related to the inclusion in the fitting procedure of a component
accounting for experimental error, acting as a mathematical
buffer, which demonstrates the utility of this approach for
individual parameter fitting.

CONCLUSIONS

We presented a new synthetic mathematical model for the G-
I dynamics in an Oral Glucose Tolerance Test. Our model
only includes parameters with a coherent physiological meaning
and, to the best knowledge of the authors, is the first approach
which involves Delay Differential Equations (DDE) presented in
the literature. The new model can represent radically different
G-I behaviors observed in the studied population, including
hypoglycemiant individuals, single/double peak patients, and
those with practically invariant G-I profiles. In this way,
we demonstrate that these unexpected G-I profiles are not
experimental errors, but are the result of particular combinations
of physiological processes.

We have proposed and numerically implemented a novel
strategy for the resolution of the curve-fitting problem, exploiting
existing knowledge about the function of the G-I control
system, leading to the correct recognition of the individual
parameters for the studied cohort of 407 individuals. Our
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methodology showed to be robust, as the dimensionality of
the problem can be dramatically decreased by reshaping the
feasible set with the incorporation of an information function
and splitting the problem into sequential approaches, thus
allowing a correct fitting of the model parameters for each
patient. As suggested by the simulations, and afterwards verified
by our results, we observed consistency between differences
in glycemic and insulinemic OGTT curves and differences
in parameter values. The parameters obtained for each and
every patient showed to be stable under small perturbations
of the experimental measurements, and their sensitivity varied
from one patient to another, giving physiological and patient-
wise insights of the mechanistic background of the observed
trends. This can be asserted particularly by the fact that
each parameter in the proposed model represents a unique
physiological phenomenon.

Finally, since our model can represent the different forms of
control observed so far, to characterize them through parameters
with a physiological meaning, and to identify those parameters
using a robust methodology for the inverse problem solving,
we propose it as a tool for patient evaluation, review of health
criteria, and re-definition of clinical normality. Understanding
that under the current clinical normality definition there are
different ways to achieve glycemic control, parametric analysis
of patients would allow the development of individual-oriented
treatments, contributing significantly to the preventive and
personalized diagnosis of relevant pathophysiological events in
the control system. In accordance to this, our future work
will include a thorough analysis of parameter values in normal
and pathological patients under current definitions and their
statistical distributions in broader patient samples, in order to
define clinical meaning, normality and pathological criteria for
each parameter, which falls out of the scope and length of the
present work.
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Acute lymphoblastic leukemia is the most common malignancy in childhood. Successful

treatment requires initial high-intensity chemotherapy, followed by low-intensity oral

maintenance therapy with oral 6-mercaptopurine (6MP) and methotrexate (MTX)

until 2–3 years after disease onset. However, intra- and inter-individual variability in

the pharmacokinetics (PK) and pharmacodynamics (PD) of 6MP and MTX make

it challenging to balance the desired antileukemic effects with undesired excessive

myelosuppression during maintenance therapy. A model to simulate the dynamics of

different cell types, especially neutrophils, would be a valuable contribution to improving

treatment protocols (6MP and MTX dosing regimens) and a further step to understanding

the heterogeneity in treatment efficacy and toxicity. We applied and modified a recently

developed semi-mechanistic PK/PD model to neutrophils and analyzed their behavior

using a non-linear mixed-effects modeling approach and clinical data obtained from

116 patients. The PK model of 6MP influenced the accuracy of absolute neutrophil

count (ANC) predictions, whereas the PD effect of MTX did not. Predictions based

on ANC were more accurate than those based on white blood cell counts. Using the

new cross-validated mathematical model, simulations of different treatment protocols

showed a linear dose-effect relationship and reduced ANC variability for constant

dosages. Advanced modeling allows the identification of optimized control criteria and

the weighting of specific influencing factors for protocol design and individually adapted

therapy to exploit the optimal effect of maintenance therapy on survival.

Keywords: childhood acute lymphoblastic leukemia, maintenance therapy, 6-mercaptopurine, methotrexate,

neutropenia, non-linear mixed-effects modeling, population pharmacokinetics/pharmacodynamics

1. INTRODUCTION

Acute lymphoblastic leukemia (ALL), characterized by malignant white blood cells (WBCs) and
displacement of normal hematopoiesis, is the most common childhood malignancy (Hoffbrand
et al., 2016). The treatment of childhood ALL is based on combination chemotherapy and begins
with intensive, high-dose treatment for approximately 6 months (the so-called induction and
consolidation therapy) followed by less-intensive, low-dose treatment [so-called maintenance
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therapy (MT)] that lasts for 2–3 years after disease onset. The goal
of induction and consolidation therapy is to achieve remission
via lymphoblast elimination below the limit of detection, and the
high intensity of these therapy elements limits further therapy
intensification using conventional chemotherapy. Subsequent
MT is essential to prevent disease relapse, and aims to
maintain prolonged antileukemic activity against residual
lymphoblasts, with minimal adverse events. MT includes daily
oral 6-mercaptopurine (6MP) and weekly oral methotrexate
(MTX). Both drugs cause myelosuppression through their
metabolized active forms (Schmiegelow et al., 2014). Blood count
tests are performed regularly to ensure adequate WBC and
absolute neutrophil count (ANC) suppression as a surrogate
marker for antileukemic activity, without unintended excessive
myelotoxicity. However, there exists no international consensus
for MT dosing strategies and target levels for WBC and
ANC suppression (i.e., what dose to start with, and when
and how to increase or decrease chemotherapy). Empirical
evaluation of different MT strategies using randomized clinical
trials would be extremely challenging, due to the probably
moderate effect size, the length of MT, the latency of clinically
relevant endpoints, and the risk of compromising the current
overall favorable outcome of childhood ALL. However, certain
levels of WBC and ANC are established factors for survival,
relapse or death, and other adverse events (e.g., infection),
respectively. Therefore, a simulation model of childhood ALL
MT could support the development of future MT strategies
by identifying those strategies that achieve established survival
factors best while avoiding established risk factors. Mathematical
models describing the pharmacokinetics (PK) of 6MP and
MTX and their pharmacodynamic (PD) effects on neutrophils
may help clarify the drug-exposure relationship, predict the
ANC dynamics, adapt subsequent dosing amounts, and stratify
patients into groups with different drug responses. Several PK
models for 6MP (Hawwa et al., 2008; Jayachandran et al., 2014,
2015) and MTX (Godfrey et al., 1998; Panetta et al., 2002, 2010;
Nagulu et al., 2010; Rühs et al., 2012; Korell et al., 2013; Hui et al.,
2019) have been published, but not all have been developed with
low-dosage treatments and validated in the pediatric population.
To the best of our knowledge, there are only three publications
(Jayachandran et al., 2014; Le et al., 2018; Karppinen et al., 2019)
in which some of the PK models or their simplifications were
linked to transient PD compartment models (Upton and Mould,
2014). The models were individually fitted to WBC counts and
different prediction and optimization studies were conducted.

Here, we developed a population PK/PD model for
maintenance treatment of ALL in children based on the
approach used by Le et al. (2018) with a modified underlying
PK model. As ANCs are the best established risk and survival
factors, we adapted the model to predict ANCs instead of WBCs.
The model was fitted to and validated on a dataset consisting of
weekly ANC measurements obtained from 116 patients treated
with daily oral 6MP and weekly oral MTX over an average
of 459 (range, 200–581) days. We started our investigations
with a PK/PD model considering 6MP and MTX but the
constant administration ratio hampered the identification of
separate PD effects. Further, the PK of MTX had no significant

impact on the improvement of the model fitting, similar to
the mathematical approach in Karppinen et al. (2019) and the
clinical findings of NUDT15 genetics conferring 6MP but no
MTX sensitivities (Tsujimoto et al., 2018). Thus, the final model
only contains the PK of 6MP. We come back to this issue in
the discussion. Then, for each patient, we simulated different
therapy protocols (6MP dosing regimens), and compared the
resulting predictions.

2. PATIENTS AND METHODS

2.1. Data
The data used in this study were obtained retrospectively from
116 children who were diagnosed with de novo ALL at university
hospitals in Erlangen and Dresden and treated according to the
AIEOP-BFM 2000 and 2009 protocols. A subset of this data
set (WBC counts from nine patients) was used and described
similarly in a previous study (Le et al., 2018). Patients were
eligible if they were diagnosed with precursor B-cell or T-cell
ALL, negative for the BCR-ABL- and MLL-AF4 translocations,
and started MT (i.e., did not experience relapse before the
end of consolidation therapy and did not undergo stem cell
transplantation). During MT administered according to the
AIEOP-BFM 2000 and 2009 protocols, patients received oral
chemotherapy with daily 6MP and once-weekly MTX until
2 years after ALL diagnosis. During MT, chemotherapy was
applied to achieve antileukemic activity against lymphoblasts
below the limit of detection. As a surrogate for antileukemic
activity, WBC and ANC were measured regularly, with ANC
<2 G/L, being correlated to a significantly better relapse-free
survival (Schmiegelow et al., 2014), and ANC <0.5 G/L being
an indicator of excessive myelosuppression. The target range
for the WBC count was 1.5–3 G/L. The chemotherapeutic
dose was reduced when cell counts fell below the lower limits
(WBC count <1.5 G/L, ANC <0.5 G/L, lymphocyte count
<0.3 G/L, and platelet count <0.05 G/L) or liver toxicity
was suspected. For each patient included in the analysis,
data regarding the following variables were recorded: gender,
age, weight, height, body surface area (BSA), prescribed 6MP
and MTX dosages (absolute and per BSA), WBC count,
platelet count, lymphocyte and neutrophil counts, and therapy
interruptions. In this study, we focused on 5897 ANCs and
6640 WBC counts, disregarding measurements of other cell
types. We used both WBC counts and ANC separately and
compared the accuracy of the resulting mathematical models.
In all, 1150 ANC and 1289 WBC count measurements were
excluded due to concurrent high C-reactive protein (CRP)
levels indicating periods in which patients probably suffered
from an infection. More precisely, we excluded measurements
in the interval from 2 weeks before until 2 weeks after CRP
levels of >5 mg/L were recorded. Among the remaining 4747
ANC measurements 56% were below the ANC threshold of
2 G/L, only 2% were below 0.5 G/L, and 54% were in the
ANC target range 0.5–2 G/L. The demographic and clinical
characteristics of the pediatric ALL population are shown
in Table 1.
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TABLE 1 | Characteristics (median and range) of the pediatric ALL population

consisting of 116 (64 male and 52 female) patients.

Characteristic Unit Median Range

Age Year 4.75 1.1–17.1

Weight kg 22 10–90

Height cm 112.45 80–182.7

Body surface area m2 0.82 0.47–1.98

6MP daily dose mg 40 5–150

MTX weekly dose mg 15 1.25–60

ANC G/L 1.8 0.0–19.9

The body surface area was calculated using the Mosteller formula.

2.2. Non-linear Mixed-Effects Modeling
and Parameter Estimation
The non-linear mixed-effects (NLME) modeling (Bonate and
Steimer, 2011) was based on the PK/PD model of Le et al.
(2018). It describes the absorption of both drugs, 6MP and
MTX, through the gastrointestinal (GI) tract into the plasma
after oral administration and their metabolization to their active
forms. The MTX metabolites MTXPG2 to MTXGP7 inhibit
several enzymes responsible for DNA synthesis (Panetta et al.,
2002). The active form of 6MP, 6-thioguanine nucleotides (6-
TGNs), is incorporated into the DNA (Hawwa et al., 2008). Thus,
both drugs negatively affect the hematopoiesis of neutrophils.
During the model development, we replaced the 6MP PK model
of Jayachandran et al. (2014) with the PK model described
by Hawwa et al. (2008) to obtain a better response to 6MP
dosage. The PKmodel of Jayachandran et al. (2014) was validated
on concentration data of eight patients (adults) from Hindorf
et al. (2006). However, the simulated 6-TGN concentrations
coincided with data from pediatric patients reported by Hawwa
et al. (2008); hence, it was a priori unclear which would give
better results. Both compartment models have a comparable
representation of the absorption and metabolic pathway of
6MP but the model of Hawwa et al. (2008) describes the
metabolic transformations by first order kinetics instead of
Michaelis–Menten kinetics. Further, the clearance is described by
a BSA-dependent term, thus providing individualized PK profiles
through patient characteristics. We also tested the influence of
weekly MTX administration by either ignoring or considering
the administrations and their resulting concentrations through
the MTX PK model with a second PD parameter during model
fitting. Additionally, we tested the myelosuppression model from
Jayachandran et al. (2014), which contained a different feedback
term for ANC recovery, but the accuracy decreased and this line
of research was not further investigated.

As a result, we identified one PK/PD model which described
the clinical data best. This model was formulated as a system of
ordinary differential equations (ODEs):

ẋ
gut
6mp(t) = −ka x

gut
6mp(t)+ F u(t),

ẋ6mp(t) = ka x
gut
6mp(t)− k20 x6mp(t),

ẋ6tgn(t) = FM3 kme x6mp(t)− CL6tgn(BSA) x6tgn(t)

ẋpr(t) = ktr xpr(t) (1− Edrug)

(
Base

xma(t)

)γ

− ktr xpr(t),

ẋtr1(t) = ktr (xpr(t)− xtr1(t)),

ẋtr2(t) = ktr (xtr1(t)− xtr2(t)),

ẋtr3(t) = ktr (xtr2(t)− xtr3(t)),

ẋma(t) = ktr xtr3(t)− kma xma(t) (1)

with the BSA-dependent clearance

CL6tgn(BSA) = 0.00914 (BSA)1.16, (2)

the linear pharmacodynamic effect

Edrug = slope x6tgn, (3)

and the patient-specific bioavailable 6MP amount F u(t) of 6MP
(implemented as point administration in NONMEM). The PK
of 6MP is described by a three compartment model altered from
Hawwa et al. (2008). A fraction of the orally administered 6MP
dosage enters the GI tract where bioavailable 6MP is absorbed to
the central compartment with the first order rate ka. In the central
compartment, 6MP is eliminated by k20. The elimination also
comprises metabolization of 6MP with the rate kme out of which
a fraction FM3 is metabolized to the active form 6-TGN. 6-TGN
is then cleared by the BSA-dependent clearance term CL6tgn.
The hematopoiesis of neutrophils is described via a chain of five
compartments with equivalent transition rates ktr representing
the mean maturation time of the neutrophils (De Souza et al.,
2018). The proliferation rate of hematopoietic stem cells kprol
is equivalent to the transition rate ktr guaranteeing homeostasis
(De Souza et al., 2018). Deviations from the neutrophil baseline
Base are compensated by the feedback regulation (Base/xma)

γ

reflecting the granulocyte colony-stimulating factor (GCSF)
controlled proliferation of neutrophils (Friberg et al., 2002;
Quartino et al., 2012; Henrich et al., 2017; Jost et al., 2019). As
the active forms of both drugs affect the proliferation process,
the PD effect is modeled via a linear term with one joint
parameter slope multiplied to the feedback-regulated first order
proliferation rate constant. Other modeling approaches for the
incorporation of the PD effect previously showed worst results
in model fitting such that we focused on the described term
which is additionally more plausible regarding the PD effect,
i.g. an impaired proliferation through the incorporation of the
metabolized drug into the DNA (Jost et al., 2019). Matured
neutrophils die by the process of apoptosis with the rate kma.
A schematic representation of the model is shown in Figure 1

and model constants are listed in Table 2. As no PK biomarkers
were measured in the examined dataset, we relied on published
PK models and individualized the PD models with respect to
individual sets of PD parameters.

In the following, we describe the NLME parameter estimation
approach. Therefore, we summarize model (1) for patient i as

ẋi(t) = f (xi(t), θi, ui(t))

with ui(t) the individual treatment schedule and θi =
(Basei, ktr,i, γi, slopei)

T the patient specific parameter values of
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FIGURE 1 | Visualization of the final compartment model used for the population PK/PD analysis. The underlying mathematical models for the PK of 6MP and the

myelosuppression were published by Hawwa et al. (2008), respectively (Le et al., 2018). The PK of orally administered 6MP is described as a three compartment

model. A fraction of the 6MP dosage (6MP dose multiplied with the bioavailability factor F) enters the gastrointestinal (GI) tract where bioavailable 6MP is absorbed into

the central compartment by the rate ka. In the central compartment, 6MP is eliminated with the first order kinetics k20. The elimination rate also comprises

metabolization of 6MP to its active form 6-thioguanine nucleotide (6-TGN) with the rate FM3 km. The hematopoiesis of neutrophils is described by a chain of five

compartments. The first compartment represents the hematopoietic stem cells proliferating with the rate kprol . The maturation process with equivalent transition rates

ktr is represented by three intermediate compartments after which matured cells enter the circulating blood (last compartment). Matured cells die by the process of

apoptosis with the rate kma. The neutrophil baseline Base is maintained by the feedback term (B/xma)
γ . As 6-TGN is incorporated into the DNA leading to cell

apoptosis, the proliferation process is negatively affected by a linear PD function E.

the steady state of neutrophils Base, the transition rate ktr , the
feedback term γ , and the PD effect slope. The vector θi contains
the fixed effect parameters Base, ktr , γ and slope for all patients
and the individual realizations ηi ∈ R

4, i = 1, . . . , 116 of the
random variable

η = (ηBase, ηktr , ηγ , ηslope)
T ∼ N (0,�) (4)

with themean 0∈ R
4 and the diagonal variancematrix� ∈ R

4×4

with the diagonal vector ω2 = (ω2
1 ,ω

2
2 ,ω

2
3 ,ω

2
4)

T . Interindividual
variability (IIV) was assumed as log-normally distributed for all
four parameters resulting in the following relation between fixed
and random effects:

Basei = Base exp(ηi,Base) (5)

ktr,i = ktr exp(ηi,ktr ) (6)

γi = γ exp(ηi,γ ) (7)

slopei = slope exp(ηi,slope) (8)

summarized as θi = g(θ , ηi) and for the description of the
residual variability a proportional error model was used

yij = xma(tij)+ xma(tij) ε i = 1, . . . , 116, j = 1, . . . , ni (9)

with a normally distributed measurement error ε ∼ N (0, σ 2)
and ANC count measurements yij.

The parameters were estimated using the first order
conditional estimation (FOCE) method with η-ε interaction.
This approximation method results in the parameter
estimation method

min
xi(t),θ ,ω2 ,σ 2 ,ηi

116
∑

i=1

L
FOCEi
i,outer (xi(t), ui(t), θ ,ω

2, σ 2, η∗1 , . . . , η
∗
N)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

s.t. η∗i = argminηi
= L

FOCEi
MAP (xi(t), ui(t), θ ,ω

2, σ 2, ηi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

s.t. ẋi(t) = f (t, xi(t), ui(t), θi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

xi(t0,i; θi) = x0,i(θi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116

θi = g(θ , ηi)

∀ t ∈ [0, tf
i], i = 1, . . . , 116 (10)

consisting of two nested optimization problems and tf
i being

the time point of patient i’s last ANC measurement. The two
parameter estimation problems (estimating θ ,ω2, σ 2 with fixed
ηi and vice versa) are iteratively solved until a convergence
criterion is fulfilled (Bae and Yim, 2016). For the detailed
derivation of the FOCE method with η-ε interaction and the
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TABLE 2 | Model constants of the pharmacokinetic model of 6MP and its

metabolite 6-TGN from Hawwa et al. (2008), death rate constant of matured

neutrophils, and initial conditions of the model (1).

Constant Value Unit Description/comment

F 0.22 Bioavailability factor

ka 31.2 1/day Absorption rate constant of 6MP

k20 12.72 1/day Elimination rate constant of 6MP

FM3 0.019 Fractional metabolic

transformation into 6TGN

kme 9.9216 1/day Metabolic transformation rate

constant of 6MP

into either 6TGN or 6MPN

CL6tgn(BSA) 0.219 (BSA)1.16 L/day Body surface area (BSA)

dependent clearance of

metabolite 6-TGN

kma 2.3765 1/day Death rate of matured

neutrophils/leukocytes

u(ti ) mg 6MP amount at time point ti

x
gut
6mp(0) 0 mg Same initial value for x6mp(0)

x6tgn(0) 0 mg/L

xpr (0) (Base kma)/ktr G/L Same initial value for

xtr1(0) = xtr2(0) = xtr3(0)

xma Base G/L

formulation of the resulting objective functions L
FOCEi
i,outer and

L
FOCEi
MAP we refer the interested reader to Wang (2007) and

Demidenko (2013) as we confine our analysis on the application
of the parameter estimation method.

2.3. Out-of-Sample Validation
The reliability of the final population PK/PD model was tested
via out-of-sample cross-validation. For each patient, the first 70%
of ANC measurements were used for parameter estimation and
the final 30% were used to evaluate the model predictions. Model
accuracy and predictability were evaluated using the root mean
squared error (RMSE) and the mean absolute error (MAE).

2.4. Simulation Study
We compared individual simulated minimal, median, and
maximal ANCs resulting from the application of different dosing
regimens (MT dosage over time). The choice of the different
doses described in Table 3was based on ALL treatment protocols
(AIEOP-BFM 2009 with EudraCT number 2007-004270-43,
NOPHO-ALL 2008-003235-20, andUKALL 2010-020924-22). In
particular, we sought to investigate the relationship between an
increased total amount of chemotherapy (higher dosage) and
plausibly reduced ANC in the in silico simulations. Throughout,
we used the fitted models (estimated model parameters) from
section 2.2 and only varied the chemotherapy dosage. The
simulated ANC values were obtained from the individual actual
measurement time points.

2.5. Software
The population PK/PD analysis was performed with the NLME
modeling program NONMEM 7.4 (ICON Plc., Dublin, Irland)
(Beal et al., 2009). There exist several other software packages

TABLE 3 | Different dosing protocols for our in silico simulation study.

Nr Description Short

1 Collected clinical data (ClinicalData)

2 Fitted model based on patient’s actual dosing (FittedModels)

3 Daily 6MP administration of 25 mg/m2

(50% of AIEOP dosis)

(25 mg/m2 )

4 Daily 6MP administration of 50 mg/m2

(AIEOP dosis)

(50 mg/m2 )

5 Daily 6MP administration of 75 mg/m2

(NOPHO/UK dosis)

(75 mg/m2 )

6 Daily 6MP administration of 100 mg/m2

(200% of AIEOP dosis)

(100 mg/m2 )

Identical protocols for the administration of 6MP for ClinicalData and FittedModels with a

median of the patient-individual average daily dosages of 43.15 ± 10.5 mg/m2 (minimum

15.8 mg/m2, maximum 72.9 mg/m2).

for parameter estimation of NLME models providing the same
or similar algorithms. A variety of algorithms are provided in R
Core Team (2019, version 3.6.1). The software Monolix (version
2019R1. Antony, France: Lixoft SAS, 2019) and Diffmem
(see https://bitbucket.org/tomhaber/diffmem/src/master/,
Melicher et al., 2017) are based on the stochastic approximation
expectation maximization algorithm and the recently published
package Pumas (based on Julia, see https://pumas.ai/) contains
several deterministic and stochastic algorithms. Standard errors
were computed with the $COVARIANCE step in NONMEM.
Pirana (Certara, Princeton, USA) was used for the generation of
the visual predictive check with auto_bin option. The simulations
in section out-of-sample validation and simulation study were
performed with the ODE integrator CVodes (Sundials, Lawrence
Livermore National Laboratory, Livermore) (Hindmarsh et al.,
2005) interfaced to CasADi (Optimization in Engineering Center
[OPTEC], K.U. Leuven) (Andersson et al., 2019).

3. RESULTS

3.1. Mathematical Model
Table 4 shows RMSEs, MAEs, and final objective function values
for four different parameter estimations. Here, we compared
the usage of different PK/PD models and parameter estimations
based on either WBC counts or ANCs. First, the explicit
consideration ofMTXwithin the PK/PDmodel of Le et al. (2018)
only had a minimal/non-significant effect on the model accuracy,
so we fixed it to the ratio 2.5:1 between 6MP and MTX and
neglected the PK of MTX in the following. Second, our results
showed that the use of the PK model of Hawwa et al. (2008)
increased the sensitivity of the PD effect and the model accuracy
compared to the 6MP PK model of Jayachandran et al. (2014).
Third, ANC measurements resulted in higher accuracy than did
WBC measurements.

3.2. Parameter Estimation
Figure 2 shows the comparisons of observed clinical and
simulated ANCs derived from the final PK/PD model (1)
after parameter estimation for three exemplary chosen patients
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TABLE 4 | Results of parameter estimations for different models.

Model 1 Model 2 Model 3 Model 3

Data ANC ANC ANC WBC

PK 6MP Jayachandra Jayachandra Hawwa Hawwa

PK MTX Panetta – – –

MAE 1.068 (1.65) 1.045 (1.92) 0.9571 (4.31) 1.315 (2.92)

RMSE 1.033 (0.492) 1.022 (0.539) 0.9783 (0.678) 1.147 (0.579)

FinalOBJ 7003 7094 6550 9746∗

Shown are model characteristics [data based on absolute neutrophil count (ANC) or

white blood cell (WBC) count and PK models for 6MP and MTX], median and standard

deviation in parentheses of individual root mean squared errors (RMSE), mean absolute

errors (MAE), and final objective function values (FinalOBJ). Medians and final objective

function values are rounded off to four and the standard deviations in parentheses to

three significant figures. *Objective value is not comparable to first three values due to

different dataset.

presented in rows 1,3 and 5. For each patient, the individual
6-mercaptopurine (6MP [mg]) dosing protocol is presented
in rows 2, 4 and 6, indicating dose changes for efficacy
adjustments. The model simulations represented the clinical
ANCs quite well in the average and captured trends toward
larger or smaller ANC values. However, they did not oscillate
as strongly as the measured values. Persistent oscillations of
neutrophils often occur in chemotherapy-treated hematopoietic
diseases inducing cyclic myelosuppression (see Knauer et al.,
2019 and references therein). Several othter reasons were
responsible for the observed ANC oscillations such as aberrant
hematopoiesis, chemotherapeutic dose adaptations, infections or
measurement errors. This exemplary behavior was representative
of the entire data set of 116 patients. The visual predictive
check plot in Figure 3 shows the good agreement of model
response and measurements for the median (solid line) and

FIGURE 2 | Comparisons of observed (black) and individually simulated (blue) absolute neutrophil counts (ANCs) [G/L] for three exemplary chosen patients presented

in rows 1,3 and 5. Simulations of the ANCs (xma) were performed with the newly proposed mathematical model (1) after nonlinear mixed-effects parameter estimation.

Based on a visual assessment, the model captures the trends of the chemotherapy induced myelosuppression (compared with the indicators in Table 4). For each

patient, the individual 6-mercaptopurine (6MP [mg]) dosing protocol is presented in rows 2, 4 and 6, indicating dose changes for efficacy adjustments. The daily oral

6MP administration, ranging from 10 to 60 mg for the three patients, are presented as filled areas and corresponds to the control function u(t) in model (1).
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FIGURE 3 | Visual predictive check (VPC), derived by 1,000 simulations with the final parameter estimates from the first column of Table 5, for circulating ANCs (G/L)

vs. time (days). Black dots are the measured ANCs. Black and blue lines show the median and 2.5th and 97.5th percentiles of measurements and model predictions,

respectively. The shaded areas represent the 95% confidence intervals around the 2.5, 50, and 97.5th percentiles of the model predictions. Two ANC outliers (19.9

and 17.8) at time points 285.42 and 340.42 days are not shown.

97.5th percentile (dashed line) with a slight underprediction
of the model for low ANC values. The 95% confidence
interval of the model simulation median was very thin,
indicative of high prediction accuracy. The fixed effect estimate
for the ANC steady state was slightly higher than the
target range limit of 2 G/L. The estimated transition rate
of 0.148 resulted in a mean maturation time (MMT =
ntr/ktr) of 487 h (20.3 days) (De Souza et al., 2018). The
interindividual variability and residual error were within
reasonable ranges.

The goodness-of-fit plot in Supplemental Data shows the
results of out-of-sample cross-validation. It reflected reasonable
model accuracy for fitted (blue) and predicted (red) ANC
measurements with spreading around the line of identity because
the model was not able (and not intended) to hit the lower
and upper peaks of the measurements. The values of estimated
model parameters both for the in-sample and out-of-sample
calculations are shown in Table 5. The parameter values for slope
and Base were reduced and the value of γ was slightly increased
for the estimates based on 70% of the ANC. The interindividual
variability (IIV) for the slope was significantly larger whereas
the IIV of ktr was smaller. To evaluate the model accuracy, we
calculated the median and standard deviation of the individual
MAEs and RMSEs, showing the expected decrease in accuracy
for out-of-sample predictions.

3.3. Simulation
Figure 4 shows boxplot results for an in silico simulation
study based on the 6 different treatment protocols (including
the real clinical data) from Table 3. We want to stress three
main observations.

First, a comparison of the first two entries of the three boxplots
confirmed an already known result. The personalized models
could reproduce the clinical ANC data on average quite well, with
the exception of extreme values quantitatively confirming the
observation made in Figure 2. Given the similarity of simulated
and observed median values, we continued with an objective
comparison only of the simulated results (protocols 2–6).

Second, a comparison of the protocols 3–6 (25, 50, 75, and
100 mg/m2 BSA 6MP) showed a significant and linear dosage-
effect relationship with respect to the total amount of 6MP
administered, which is, of course, proportional to the daily
dose. All (minimal, median and maximal) ANC values decreased
linearly, when daily dosing was increased linearly.

Third, a comparison of protocol 2 (the simulation of the
real treatment) and protocols 3 and 4 (which gave lower and
upper bounds on the total amount of administered 6MP in
protocol 2, respectively) showed that the median ANC value
of protocol 2 was indeed bounded by the two other values,
however, for significantly lower minimal and higher maximal
ANC values. Figure 5 shows an exemplary comparison of
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TABLE 5 | Results of parameter estimations of the final model using all (in-sample)

or 70% (out-of-sample) of the ANC values.

Data In-sample Out-of-sample

Fixed effect parameters

Base 2.34 (1) 2.06 (0.1)

ktr 0.148 (0.4) 0.146 (0.2)

slope 0.242 (0.2) 0.103 (0.2)

γ 0.769 (0.1) 0.866 (0.2)

Interindividual variability as coefficients of variation

Base 23.1 (20) 27.5 (10)

ktr 16.5 (30) 7.19 (3)

slope 44.9 (5) 67.8 (1)

γ 10.7 (0.5) 16.5 (0.4)

Proportional additive error 0.226 (2) 0.226 (FIXED)

Parameter estimation errors

Mean absolute error 0.957 (4) 1.47 (500)

Root mean squared error 0.978 (0.7) 1.21 (7)

Shown are parameter estimates of fixed effects, interindividual variability as coefficient

of variation, proportional additive error as variance, and median errors of the parameter

estimations rounded off to three significant figures. For the mean absolute and root mean

squared errors all ANC measurements are used. Relative standard errors are shown in

parentheses rounded off to one significant figure.

protocols 2–6 for one patient, highlighting lower peak values
and smaller drug-induced steady state values when the dosing
is linearly increased from 25 mg/m2 to 100 mg/m2. The actual
dosage administered to the patient (blue) ranged between the
25 mg/m2 and 50 mg/m2 protocols and resulted in similar ANC
dynamics. At approximately day 240, the actual dosing was
stopped for a short period, inducing stronger ANC oscillations
in the subsequent treatment period and revealing a significant
impact of the dosing regimen on the ANCs. This observation is
even stronger regarding the proliferating cells as well as cells in
the first transit compartment. Similar plots for all 116 patients
are provided in the Supplemental Data.

4. DISCUSSION

4.1. Mathematical Model
We developed and fitted a population PK/PD model to assess
the ANC dynamics during 6MP/MTX treatment, get a better
understanding of dose adjustments, and identify solutions
to the challenges that arise throughout MT. During the
model development process we also fitted the model to WBC
measurements. The resulting MAEs and RMSEs were worse
compared to the values resulting from ANC measurements.
This is probably due to the fact that WBCs comprise different
cell lineages, with additional physiological effects that are not
accounted for in the mathematical model. In future studies, the
current model might be extended to further cell lineages. The
models brought forth by Quartino et al. (2012) and Fornari et al.

(2019)might serve as a basis and drive themodeling process from
a semi-mechanistic approach toward a more mechanistic one.

In addition to using a population estimation approach and
applying it to ANC instead of WBC, two modifications brought
forth by Le et al. (2018) were shown to yield better results. First,
the 6MP PK model of Jayachandran et al. (2014) was replaced
by that of Hawwa et al. (2008). The first order kinetics in the
PK model of Hawwa et al. (2008) compared to the Michaelis–
Menten terms in the PK model of Jayachandran et al. (2014)
resulted in more significant concentration changes with altered
drug amounts consequently in amore sensitive PD effect. Second,
the MTX PK model was completely omitted as the constant
ratio of administered 6MP and MTX prevents a differentiation
of separate PD effects. Further studies with measurements of
drug concentrations, metabolites and clinical effects as cell counts
would push forward the development of a mathematical model
additionally including the PK of MTX to provide two distinct
PD effects and to account for varying ratios of 6MP to MTX.
For the currently available data, our new model, which indirectly
agglomerates the effects of 6MP and MTX, appears to be a good
choice (compare for Table 4).

4.2. Model Parameter Estimates
Looking at the resulting model parameter estimates listed in
Table 5, the question arises as to how these values relate to known
biological properties of hematopoiesis andmyelosuppression and
to other values from the literature. The estimated ANC steady
state value Base was below the normal ANC range for children,
but still higher than the desired ANC range of 0.5–2 G/L.
Without treatment, the model-based ANCs would increase to
normal patient-specific steady states. Thus, low ANC values were
induced via MT or some of the aforementioned external events.

The estimated fixed-effects parameter value of the transition
rate ktr = 0.148 was comparable with the published mean value
(k̄tr = 0.1431) obtained from eight pediatric ALL patients from
Riley Hospital for Children in Indianapolis (Jayachandran et al.,
2014). For better interpretability, the transition rate parameter
ktr can be transformed to the MMT (ntr/ktr) of the neutrophils.
The estimated MMT in our study, as well as the MMT from
Jayachandran et al., are extremely high and do not coincide with
biological findings of 3.9 days obtained by Hearn et al. (1998).
This mismatch is a large disadvantage of the model as it fails to
comply with biological properties, leading to falsely characterized
physiological mechanisms and thus reduced model reliability.
Jayachandran et al. did not discuss this issue, but a similar
observation was made by Craig et al. (2016) who determined an
estimated proliferation time of 26 days (Craig et al., 2016). In
their work, the authors further presented model modifications
to obtain a more realistic maturation time of 3.9 days. For this
value we performed two parameter estimations with either Base
as a parameter or fixed to 5 resulting in promising dynamics but
worse RMSEs andMAEs. In future studies, the falsely determined
MMT and possible model limitations for continuous low-dose
treatments should be further investigated.

The feedback parameter (γ ) is significantly higher compared
with published values (Friberg et al., 2002), indicating a stronger
feedback mechanism during the daily chemotherapy over a long
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FIGURE 4 | Boxplots of minimal, median, and maximal (from left to right) individual ANCs for all 116 patients. Shown are values for the 6 different protocols from

Table 3, observed for the first column and simulated for protocols 2–6. The target range (0.5–2.0 G/L) of the NOPHO/UK treatment protocol is shown as the gray

background. Horizontal lines within the boxes are the medians, the upper and lower box limits are the first and third quartiles of the data, respectively. The whiskers

indicate an even larger confidence region of these quartiles plus/minus 1.5-times the interquartile range. Beyond the whiskers, data are considered as outliers and are

plotted as individual points. For the columns representing 25 mg/m2 to 100 mg/m2, the total amount of 6MP administered is increasing. The median average

individual daily doses actually administered for protocols 1 and 2 were 43.15± 10.5 mg/m2.

period. This is the first time estimated slope values of the linear
PD function from the PK model of Hawwa et al. (2008) are
presented; thus there are no available comparisons.

4.3. Simulation Results
The newly developed mathematical model enables us to perform
a virtual comparison of different treatment protocols. The
boxplots in Figure 4 show several interesting results.

First, the median and standard deviation of actual ANC
measurements were very accurately matched by the simulation
using the estimated parameters (compare the first two entries
in the middle boxplot of Figure 4). Concerning the patientwise
observed and simulated minimal and maximal ANC values, the
model demonstrates a corresponding weakened chemotherapy-
induced myelosuppression, respectively overproduction of

ANCs compared to the high measured variability. This
variability is biologically and clinically very plausible due
to the aforementioned external events and uncertainties,
although periods of severe infections were already excluded.
The reproducibility of the median and avoidance of over-fitting
of the extreme values are in our opinion good properties of a
mathematical model. Given this good correspondence between
cross-validated data and simulations, we felt encouraged to
compare simulations of different treatment protocols as specified
in Table 3. Note, however, that generalizations of mathematical
models personalized for data from one protocol to another have
to be considered with extreme care (compare the discussion for
acute myeloid leukemia models by Jost et al., 2019). Further,
we want to highlight that the current model is not intended to
describe the ANC extrema such that the results of the simulation
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FIGURE 5 | (a) Simulated absolute neutrophil count (ANC) dynamics [equal to xma in Equation (1)], (b) concentration of the active form 6-TGN [equal to x6tgn in

Equation (1)], (c) 6MP dosing amount [control function u(t) in Equation (1)], (d) dynamics of proliferating cells [equal to xpr in Equation (1)] and (e) cells of the first

transition compartment [equal to xtr1 in Equation (1)] for 5 different protocols from Table 3 and an exemplary patient. Colors of the trajectories are identical to those

used in Figure 4. The linear increase in dosing from 25 to 100 mg/m2 forces the neutrophils (ANC) to lower peak values and a smaller drug-induced steady state

value at the end of treatment. The actual dosage administered to the patient (blue) ranged between the 25 mg/m2 and 50 mg/m2 protocols and resulted in similar

ANC dynamics. At approximately day 240, the actual dosing was stopped for a short period, inducing stronger ANC oscillations in the subsequent treatment period.

This observation is even stronger regarding the proliferating cells as well as cells in the first transit compartment. Interestingly, these oscillations also continued for

some time after the end of treatment. Due to the long simulation horizon, the 6-TGN dynamics are squeezed such that the concentrations between two

administrations are not visible.
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study have to be treated with caution. The results shall serve
as a preliminary assessment of the dose-effect relationship
which has to be confirmed in future studies. The relationship
might be stronger compared to the current model predictions
and demonstrated by the clinical data in Figure 5. The impact
of model variations on the outcome of simulation studies
is usually significant. We tested the value of fixing the ktr
parameter to represent a biologically plausible MMT of 3.9 days.
This decreased the model accuracy (which is why the results
are not included here), but still led qualitatively to the same
subsequent effects.

Second, an approximately linear decrease in minimal, median
and maximal values could be observed as the dosage increased
linearly from 25 to 100 mg/m2 with a slightly reduced decrease
of the maximal ANC values. Again, this linear dose-effect
relationship seems biologically plausible. For most of the
simulations such as those shown in Figure 5, the maximal
ANC value decreased. However, for other simulations (see
Supplementary Material) stronger myelosuppression led to
identical maximal ANC values. This effect is due to a feedback
mechanism that may lead to increased proliferation for reduced
ANC which leads to larger ANC values after some delay.

Third, a tendency for higher oscillations for treatments with
pauses and changes in dosage was seen in a comparison of
the simulated actual treatment protocol 2 and the constant
administrations of protocols 3 and 4, which used lower/higher
total amounts of 6MP. Again, an example of this can be seen in
Figure 5. We believe that in the future adapted dosing schedules
might take advantage of the chemotherapy-induced oscillations
for an optimized dosing regimen. In the consolidation therapy
of acute myeloid leukemia it was shown in silico that the timing
of the treatment start can have a beneficial influence on the
reduction of myelosuppression (Jost et al., 2019). However, high
dose chemotherapy administered every 3 to 4 weeks provokes
stronger periodic oscillations compared to the daily oral dosing
which makes it more challenging to identify and capture the
oscillations. For high dosage, previously a multi-compartment
hematopoietic model was analayzed regarding Hopf bifurcation
and an explicit analytical expression for the bifurcation point was
provided depending on model parameters (Knauer et al., 2019).
Oscillations of various blood cell populations have been observed
in clinical data and partly investigated for different hematological
disorders (Haurie et al., 1998; Colijn et al., 2006). The exact
mechanisms and interaction between (1) stem cell cycling, (2)
hematological disorder, and (3) drug exposure are still not fully
understood. In our case, for all 116 patients in silico simulations
showed that the oscillations were damped (in 84 cases into a
steady state) once the chemotherapy was stopped, albeit with
long time ranges of up to one year (see Supplemental Data

for examples). Therefore, we assume that the oscillations in
the ANCs observed in our simulations could be attributed
to the influence of chemotherapy on the nonlinear dynamics
of hematopoiesis. The connection between model-intrinsic and
chemotherapy-induced oscillations should be assessed in detail
in future studies. A stability analysis (Edelstein-Keshet, 2005)
of the steady state could be performed (e.g., similar to Stiehl,
2014; Tetschke et al., 2018) to assess the theoretical properties

of the model and relate them to the physiological behavior
of neutrophils.

5. CONCLUSION

Wepresented a novel NLMEmodel describingmyelosuppression
for ALL MT among children who received 6MP and MTX and
was cross-validated on a data set of 4747 ANC measurements
obtained from 116 patients. A comparison with alternative
modeling approaches and using WBC counts instead of ANCs
showed the benefit of this model. We could show a linear dose-
effect relationship superimposed with fluctuations of varying
magnitude. Mathematical simulations and more mechanistic
modeling approaches will allow to improve the understanding
of intrinsic and extrinsic influence factors on the aberrant
hematopoiesis and chemotherapy-induced myelosuppression of
pediatric ALL patients. Therefore, the monitoring of individual
PK profiles and a subsequent analysis of the PK/PD relationship
are mandatory next steps for a better dose-effect correlation.

In the future, based on the conduction of further PK and
PD experiments driving the development of more advanced
mathematical models together with the individual determination
of response-related genotyping (Tsujimoto et al., 2018), MT
protocols might be developed in silico, leading to individualized
treatment protocols with better clinical outcomes.
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Simulations of protocols 2–6 for all 116 patients, similar to
Figure 5 (see Supplemental Data 1).

Simulations of protocols 2 for all 116 patients to analyze the
steady state behavior (see Supplemental Data 2).

The individual parameter estimates of the final PK/PD model
are recorded in the file finalParameterEstimates191221.csv.

The individual 6-mercaptopurine (6MP) treatment schedules,
the observed and calculated absolute neutrophil counts (ANCs)
and the patient’s weight, height and body surface area are
recorded in the file NONMEMresultsALL191221.csv. The dataset
contains the columns ID, TIME, DV, CMT, AMT, MDV,
EVID, IPRED, WEIGHT, HEIGHT and BSA. ID serves as an
identifier for the appropriate patient. TIME [day] either specifies

the measurement times of ANCs or the time of oral 6MP
administrations. DV [G/L] is the dependent variable, in our case
the individual ANC measurements. The column CMT specifies
the compartment in which a dosing or observation event occurs.
AMT [mg] defines the amount of oral 6MP administration. The
column MDV allows the user to inform NONMEM whether
or not the value in the DV field is missing, but in our case
the datasets do not contain missing measurements. The column
EVID explicitly declares to NONMEM the type of the current
record. EVID=0 defines the record as an observation event and
EVID=1 defines the record as a dose event. The column IPRED
contains the calculated ANCs derived by the PK/PD model after
parameter estimation.
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Hepatocellular carcinoma (HCC) is a serious cancer which ranked the fourth in cancer-
related death worldwide. Hence, more accurate diagnostic models are urgently needed
to aid the early HCC diagnosis under clinical scenarios and thus improve HCC treatment
and survival. Several conventional methods have been used for discriminating HCC
from cirrhosis tissues in patients without HCC (CwoHCC). However, the recognition
successful rates are still far from satisfactory. In this study, we applied a computational
approach that based on machine learning method to a set of microarray data generated
from 1091 HCC samples and 242 CwoHCC samples. The within-sample relative
expression orderings (REOs) method was used to extract numerical descriptors from
gene expression profiles datasets. After removing the unrelated features by using
maximum redundancy minimum relevance (mRMR) with incremental feature selection,
we achieved “11-gene-pair” which could produce outstanding results. We further
investigated the discriminate capability of the “11-gene-pair” for HCC recognition on
several independent datasets. The wonderful results were obtained, demonstrating
that the selected gene pairs can be signature for HCC. The proposed computational
model can discriminate HCC and adjacent non-cancerous tissues from CwoHCC even
for minimum biopsy specimens and inaccurately sampled specimens, which can be
practical and effective for aiding the early HCC diagnosis at individual level.
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INTRODUCTION

Liver cancer is the fourth leading cause of death in patients with malignant cancerous (Indhumathy
et al., 2018; Villanueva, 2019). Hepatocellular carcinoma (HCC), which accounts for approximately
90% of all liver cancer cases, is frequently diagnosed at a late stage and has a poor prognosis. Thus,
the early HCC diagnosis is significant to improve the prognosis and survival of patients (Asia-
Pacific Working Party on Prevention of Hepatocellular Carcinoma, 2010). At present, diagnosis of
HCC is based on laboratory investigations and imaging techniques (El-Serag, 2011; Hartke et al.,
2017). Nevertheless, for HCC, especially for early HCC, current serum biomarkers and tools, such
as α-fetoprotein (AFP) and imaging techniques, displayed poor diagnostic sensitivity and specificity
(Sun et al., 2015). Liver biopsy is regarded as a good diagnostic choice in clinical practice only when

Abbreviations: CwHCC, cirrhosis tissues in patients with HCC; CwoHCC, cirrhosis tissues in patients without HCC; HCC,
hepatocellular carcinoma; IFS, incremental feature selection; mRMR, maximum redundancy minimum relevance; REOs,
relative expression orderings; SVM, support vector machine.
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imaging techniques cannot provide accurate identification of
HCC (Russo et al., 2018). However, the biopsy location is
usually inaccurate, which might result in inaccurately sampling
and thus decrease the diagnosis successful rate (Forner et al.,
2008). Therefore, it is necessary to design new methods or
discovery new diagnostic signatures to assist the pathologists in
the identification of early HCC using biopsy specimens, even
inaccurately sampled biopsy specimens. It is likely that the
adjacent non-cancerous tissues (cirrhosis tissues in patients with
HCC or normal tissues in patients with HCC) can be affected
by cancerous tissues, so that they may obtain some similar
molecular characteristics of cancerous tissues (Budhu et al., 2006;
Wei et al., 2014).

The existed diagnostic signatures are mainly on the basis
of risk scores obtained from signature genes’ expression
(Wurmbach et al., 2007; Archer et al., 2009; Zhou et al., 2015,
2017; Qu et al., 2019), which are highly sensitive to measurement
batch effects (Guan et al., 2018) and are hardly applied in clinical
settings. Luckily the relative expression orderings (REO)-based
strategy (Zhang et al., 2013; Zhou et al., 2013; Wang et al., 2015;
Li et al., 2016), which was firstly proposed by Eddy et al. (2010),
is highly robust against experimental batch effects (Cai et al.,
2015; Ao et al., 2016; Zhao et al., 2016) and platform differences
(Guan et al., 2016), partial RNA degradation (Chen et al., 2017;
Liao et al., 2017, 2018; Tang et al., 2018) and uncertain sampling
sites within the same cancer tissue (Cheng et al., 2017). And
thus the REOs have been used in the early diagnosis of HCC
(Ao et al., 2018), gastric cancer (Yan et al., 2019) and colorectal
cancer (Guan et al., 2019). In 2018, Ao et al. (2018) obtained
19 gene pairs by using the within-sample REOs. These genes
could improve early HCC diagnosis using biopsy specimens, even
inaccurately sampled biopsy specimens. However, the rule to
identify HCC based on REOs is so simply that some intrinsic
relationships among these genes are not revealed. Moreover, the
accuracy for HCC diagnosis should still be improved.

Machine learning method is a good choice to uncover
underlying patterns (Stephenson et al., 2019). It has been widely
employed in bioinformatics (Cao et al., 2017; Bao et al., 2019;
Conover et al., 2019; Moritz et al., 2019; Stephenson et al.,
2019; Zou and Ma, 2019; Sun et al., 2020). The current work
aims to develop a machine learning based method to diagnose
HCC within-sample REOs. By removing redundant REOs
using minimum redundancy maximum relevance (mRMR), a
diagnostic signature consisting of 11 gene pairs was obtained.
These signatures were also applied in some independent datasets
for examining the performance of these gene pairs for HCC
identification. High accuracies were obtained, suggesting that
the obtained 11-gene-pair signature based on mRMR is better
than the existed 19-gene-pair signature gained by Ao et al.
(Ao et al., 2018).

MATERIALS AND METHODS

Data Collection and Preprocessing
The gene expression profiles datasets were freely gained from
GEO (Barrett et al., 2005) and TCGA (Tomczak et al., 2015)

database. Firstly, according to the type and sampling method of
samples, the training datasets were derived from biopsy samples
of HCC (D1), surgery samples of HCC (D2), biopsy samples
of CwoHCC (D3), and surgery samples of CwoHCC (D4),
respectively. To objectively evaluate the model, we separated the
samples of each type (D1, D2, D3, and D4) mentioned above into
two data subsets: training (80% samples of each type) and testing
datasets (20% samples of each type). Finally, the training datasets
contained 1091 HCC samples (112 biopsy samples of HCC
and 979 surgery samples of HCC) and 242 CwoHCC samples
(70 biopsy samples of CwoHCC and 172 surgery samples of
CwoHCC). The testing datasets contained 73 biopsy samples (29
HCC samples and 44 CwoHCC samples) and 263 surgery samples
(245 HCC samples and 18 CwoHCC samples). The independent
datasets, which was comprised of surgical resection samples and
biopsy samples, was used to evaluate the performance signature.
We used the R package of TCGAbiolinks (Colaprico et al.,
2016) to download the gene expression data which including
371 HCC and 50 normal tissues in patients from TCGA data
resource1 (up to October 19, 2019). The details have been listed
in Supplementary Table S1.

For the raw data (.CEL files) detected by the Affymetrix
platform, the RMA (Robust Multi-array Average) algorithm
was used for background adjustment. If a gene was matched
to multiple probes, the arithmetic mean expression value was
used as the gene expression level. For the data sets detected
by the Illumina platforms, we directly used the processed
expression data.

The Within−Sample Relative Expression
Orderings
Within a sample, the REOs of two genes (a and b) is expressed as
Ea > Eb (or Ea < Eb) if gene a has higher (or lower) expression
level than gene b. The REOs pattern of a gene pair is regarded as
stable if the REOs kept in at least 95% of the samples. A reversal
gene pair is a gene pair with stable REOs in both cirrhosis tissues
in patients without HCC (CwoHCC) samples and HCC samples,
but the REOs patterns are reversed in the second group (Ea < Eb
or Ea > Eb in CwoHCC samples but Ea > Eb or Ea < Eb in
HCC samples). Here, the reversal gene pairs are selected as the
candidate REOs signature for the identification of HCC. Then
we obtained the common genes between training datasets and
validation datasets and its corresponding gene expression profile.
Subsequently, based on the gene expression profiles and reversal
gene pairs, we generate a new profile by using 1, 0, and −1 to
represent Ea > Eb, Ea < Eb, and other cases (Ea or Eb do not
exist), respectively.

Feature Selection Through mRMR and
IFS Methods
Based on the new profiles, mRMR (minimum Redundancy
Maximum Relevance) (Peng et al., 2005) was applied to ranking
the gene pairs based on the conditions of maximum relevance
with the disease type along with minimum redundancy with
other gene pairs.

1https://portal.gdc.cancer.gov/repository
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FIGURE 1 | Flowchart presenting the process of developing and validating the HCC diagnostic signature.
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Here, � represents all 857 gene pairs, gi is a gene pair from the
857 gene pairs and T is the disease type. The mutual information
(I) can be formulated as:

I(gi,T) =

∫
p(gi,T) ln (

p(gi,T)

p(gi)p(T)
)dgidT. (1)

The mRMR function:

mRMR =
1
|�|

∑
gi∈�

I(gi,T)−
1
|�|2

∑
gigj∈�

I(gi, gj) (2)

where I(gi, T) is mutual information between the gi gene pair and
disease type T, I(gi, gj) is mutual information between gi and gj.
Then we used incremental feature selection (IFS) (Tan et al., 2019;
Yang et al., 2019) method to select the optimal gene pairs from
857 mRMR gene pairs as diagnostic signature. The details about
IFS can be found in (Dao et al., 2019).

Classification Through SVM
Support Vector Machine (SVM) is a powerful classification
method which has been used extensively in the fields of biological
data mining (Cao et al., 2014; Manavalan and Lee, 2017;
Manavalan et al., 2017, 2018b, 2019c,d; Tang et al., 2017; Bu
et al., 2018; Zhang et al., 2018; Chao et al., 2019a,b; Wang et al.,
2019). Here, the free package LibSVM (version 3.23) (Chang and
Lin, 2011) was downloaded to implement SVM. Due to its good
performance on non-linear problem, RBF (radial basis function)
was utilized. The values of two parameters C and γ for SVM
are determined by the use of grid search with fivefold cross-
validation. In present work, the optimal values are C = 0.125 and
γ = 0.5, respectively.

Performance Metrics
The sensitivity, specificity and accuracy (Basith et al., 2019;
Manavalan et al., 2018a,c, 2019a,b) was applied to evaluating the
performance of prediction methods. Here, HCC samples were
regarded as positive samples; CwoHCC samples were negative
samples. Mathematical representation of the above mentioned
measures are calculated as:

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP

Accuracy = TP + TN
TP + FP + TN + FN

(3)

where TP, FN, TN, and FP denotes the number of true positives,
false negatives, true negatives, and false positives, respectively.
Additionally, the ROC curve and AUC are commonly used to test
the balance between true positive rate and false positive rate.

RESULTS

Identification of the Diagnostic Signature
The flow diagram for identifying and validating the diagnostic
signature is shown in Figure 1. Firstly, total of 13,586,043

stable gene pairs which have an identical REOs in at least 95%
of the 1091 HCC samples were recognized. Similarly, we also
identified 14,475,509 stable gene pairs which have an identical
REOs in at least 95% of the 242 CwoHCC samples. Then, we
obtained 857 reversal gene pairs between the HCC samples and
CwoHCC samples in the training data (see section “Materials
and Methods”). Based on the new profiles (see section “Materials
and Methods”), 11 gene pairs shown in Table 1 were picked
out by using mRMR with SVM and regarded as the diagnostic
signature. The 11-gene-pair could produce the accuracy of 100%
on training data for HCC identification. Figure 2 showed the IFS
process (blue curve).

Examination of the Diagnostic Signature
on Independent Datasets
Subsequently, we used biopsy and surgically resected samples to
estimate the performance of the 11-gene-pair (see Table 2). For
73 biopsy samples in the testing datasets, it yielded accuracy of
100%, sensitivity of 100%, specificity of 100%. For 263 surgically
resected samples in the testing datasets, its accuracy is 100%,
sensitivity 100%, specificity 100%. In the data set GSE121248,
all (100.0%) of the 70 HCC samples were correctly recognized
as HCC. For surgically resected samples, 79.79% of the 475
HCC samples from 3 datasets (GSE109211, GSE112790, and
GSE102079) were correctly classified. Moreover, the 11-gene-
pair based model could correctly identify the 371 HCC and
the 50 normal tissues in patients with HCC (NwHCC) samples
measured by RNA-seq, in which no RNA-seq information was
included (Table 2). These results demonstrated that the 11-
gene-pair signature could distinguish HCC from non-cancerous
liver tissues and the signature was robust to clinicopathological
variations. For the 1190 HCC samples and 62 CwoHCC samples,
the sensitivity, specificity, and AUC are 91.93%, 100%, and
0.9597 [95% CI (confidence intervals) is 0.9519–0.9674; see in
Figure 3], respectively.

For biopsy samples, all of 80 cirrhosis tissues in patients with
HCC (CwHCC) samples in GSE54236 and all of 97 NwHCC
biopsy tissues from 2 datasets (GSE64041 and GSE121248) were

TABLE 1 | The 11−gene−pair signature for early diagnosis of HCC.

Signature Gene a Gene b

pair1 TRMT112 SF3B1

pair2 MFSD5 COLEC10

pair3 FDXR APC2

pair4 LAMC1 CHST4

pair5 UBE4B HGF

pair6 NCAPH2 APC2

pair7 HSPH1 MTHFD2

pair8 TMEM38B AGO3

pair9 PLGRKT COLEC10

pair10 HNF1A APC2

pair11 ARPC2 SF3B1

Gene a has a higher expression level than Gene b in HCC patients compared with
CwoHCC patients.
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FIGURE 2 | A plot showing the IFS procedure for identifying HCC. When the top 857 features optimized by mRMR were used to perform prediction, the overall
success rate reaches an IFS peak of 100% in fivefold cross validation. The solid line represents the ROC curve. The dotted line represents the strategy of randomly
guess.

TABLE 2 | The performance of the signature in the validation datasets.

Datasets NSnHCC NSpCwoHCC

Testing datasets (biopsy) 100% (29/29) 100% (44/44)

Testing datasets (surgery) 100% (245/245) 100% (18/18)

GSE109211 31.43% (44/140) –

GSE112790 100% (183/183) –

GSE102079 100% (152/152) –

GSE121248 100% (70/70) –

TCGA 100% (371/371) –

NSnHCC, number (sensitivity) of HCC samples; NSpCwoHCC, number (specificity)
of CwoHCC samples.

correctly classified to HCC. The results proved again that, the
11-gene-pair still displayed good performance that most of HCC
adjacent non-cancerous patients (CwHCC and NwHCC) can
be correctly recognized, even for the inaccurate samples from
biopsy specimens. For surgically resected samples, 93.7% of the
254 CwHCC samples and 100% of the 644 NwHCC samples
can be accurately identified (see in Table 3). All above results
demonstrated again that the obtained 11-gene-pair could be
regarded as key biological signatures to diagnose HCC patients.

Comparison With Existing Methods
To further demonstrate the performance of our proposed
signatures, we compared our method with 19-gene-pair-based
models and recorded results in Table 3. An earlier work done
by Ao et al. (2018) found that 19-gene-pair can be regarded
as diagnostic signature to discriminate HCC and adjacent non-
cancerous tissues (cirrhosis or normal) from CwoHCC. Their
model could produce 99.69% of accuracy which is lower than that
of our 11-gene-pair based model.

For biopsy samples, our proposed model could correctly
identify the 70 HCC samples in GSE121248 and the 97 NwHCC
biopsy tissues from 2 datasets (GSE64041 and GSE121248) with

FIGURE 3 | Area under the receiver operating characteristic curve (AUC) of
the validation data from public databases of biopsy and surgically resected
HCC and CwoHCC samples. The solid line represents the ROC curve. The
dotted line represents the strategy of randomly guess.

the accuracy of 100%. Moreover, all 80 CwHCC samples in
GSE54236 can be predicted as HCC. Compared with the accuracy
(77.5%) of 19-gene-pair based model, the accuracy of 11-gene-
pare model could increase to 100%.

For surgically resected samples, based on the predictor of
11-gene-pair, 79.8% of the 475 HCC samples from 3 datasets
(GSE109211, GSE112790, and GSE102079) and 93.7% of the
254 CwHCC samples from 5 datasets (GSE6764, GSE17548,
GSE25097, GSE17967, and GSE63898) can be corrected as
HCC. Moreover, the model can accurately predict the 644
NwHCC biopsy tissues integrated from 7 datasets (GSE25097,
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TABLE 3 | Comparison of 11 gene pairs with existing methods on independent datasets.

Dataset 11-gene-pair 19-gene-pair

NSnHCC NACwHCC NANwHCC NSnHCC NACwHCC NANwHCC

Datasets from surgical resection

GSE6764 − 10/10 (100.0%) − − 10/10 (100.0%) −

GSE17548 − 18/20 (90.0%) − − 18/20 (90.0%) −

GSE17967 − 16/16 (100.0%) − − 8/16 (50.0%) −

GSE63898 − 168/168 (100.0%) − − 168/168 (100.0%) −

GSE25097 − 40/40 (100.0%) 243/243 (100.0%) − 40/40 (100.0%) 243/243 (100.0%)

GSE62232 − − 10/10 (100.0%) − − 10/10 (100.0%)

GSE36376 − − 193/193 (100.0%) − − 172/193 (89.1%)

GSE39791 − − 72/72 (100.0%) − − 71/72 (98.6%)

GSE41804 − − 20/20 (100.0%) − − 20/20 (100.0%)

GSE112790 183/183 (100.0%) − 15/15 (100.0%) 183/183 (100.0%) − 15/15 (100.0%)

GSE102079 152/152 (100.0%) − 91/91 (100.0%) 152/152 (100.0%) − 91/91 (100.0%)

GSE109211 44/140 (31.4%) − − 37/140 (26.4%) − −

Total 379/475 (79.8%) 238/254 (93.7%) 644/644 (100.0%) 372/475 (79.3%) 244/254 (96.1%) 622/644 (96.6%)

Datasets from biopsy

GSE121248 70/70 (100.0%) − 37/37 (100.0%) 70/70 (100.0%) − 37/37 (100.0%)

GSE64041 − − 60/60 (100.0%) − − 60/60 (100.0%)

GSE54236 − 80/80 (100.0%) − − 62/80 (77.5%) −

Total 70/70 (100.0%) 80/80 (100.0%) 97/97 (100.0%) 70/70 (100.0%) 62/80 (77.5%) 97/97 (100.0%)

NACwHCC, number (accuracy) of cirrhosis tissues in patients with HCC samples to HCC; NANwHCC, number (accuracy) of normal tissues in patients with
HCC samples to HCC.

GSE62232, GSE36376, GSE39791, GSE41804, GSE112790, and
GSE102079). Also, the sensitivity of HCC samples increases
to 79.8% (19-gene-pair: 79.3%) and the accuracy of NwHCC
samples to HCC increases to 100% (19-gene-pair: 96.6%). It
can be seen from Table 3 that in the identification of both
HCC and adjacent non-cancerous tissues (CwHCC and NwHCC)
from CwoHCC by surgically resected samples, the 11-gene-pair
based model displayed better performance than the 19-gene-
pair based model, demonstrating that the 11-gene-pair-based
model is quite promising in generating reliable results for the
early HCC diagnosis.

The above results showed that the proposed 11-gene-
pair-based model is powerful on both training datasets and
independent datasets. This achievement can be attribute to using
within-sample REOs and SVM.

DISCUSSION

Clinical practice has demonstrated that diagnosing the tumors in
early stages is key to improve the survival of patient. Although
pathology is used as a gold standard for HCC diagnosis, the
histological analysis of the HCC biopsy specimen is influenced
by the sampling location and tissue amount. In present work, a
set of diagnostic signature including 11-gene-pair consisting of
18 genes was identified, which can be used to discriminate HCC
and adjacent non-cancerous tissues (CwHCC and NwHCC) from
CwoHCC individuals for the early HCC diagnosis.

Ten genes in the signature set, including LAMC1, UBE4B,
HSPH1, HNF1A, SF3B1, APC2, CHST4, HGF, MTHFD2, and
AGO3, might have a vital role during the hepatocarcinogenesis

and are key genes for cancer. For instance, LAMC1 mRNA can
promote the development of HCC by competing with miR-124
and supporting the excretion of CD151 (Yang et al., 2017). UBE4B
can be used as a potential prognostic marker for HCC treatment
due to its carcinogenic effect in human primary HCC (Zhang
et al., 2016). Additionally, HNF1A is closely associated with HCC
because the number of HNF1A increase when non-cancerous
liver develops into high differentiate HCC (Wang et al., 1998).
SF3B1 is a highly conserved spliceosomal protein in evolution
(Eilbracht and Schmidt-Zachmann, 2001) and its expression
increases significantly in liver HCC tissues. Serum anti-SF3B1
autoantibody is a potential diagnostic marker for HCC patients
(Hwang et al., 2018). Reportedly, HSPH1 (Yang et al., 2015),
APC2 (Ghosh et al., 2016), CHST4 (Gao et al., 2015), HGF (Unic
et al., 2018), MTHFD2 (Liu et al., 2016), and AGO3 (Kitagawa
et al., 2013) are closely related to HCC.

Subsequently, the 18 genes (11-gene-pair) were used for
functional enrichment analysis by using Metascape2 (Tripathi
et al., 2015) on the KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways and GO (Gene Ontology) terms. In order to
determine the significant terms, p-value < 0.05 and the number
of enriched genes≥3 were used as the statistical standard. Finally,
18 genes were significantly enriched in the “ribonucleoprotein
complex biogenesis,” “positive regulation of cellular component
biogenesis,” “lymphocyte activation,” and “chemotaxis” terms
based on GO analysis, as well as “Pathways in cancer” according
to KEGG analysis. The above analysis showed that the genes of
the 11-gene-pair might have vital roles in the development and
progression of HCC.

2http://metascape.org
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In current study, we showed that 11 gen pairs can be applied
to accurately diagnose the tumors found in the liver. Further, we
shall try to establish a user-friendly web-server for the proposed
“11-gene-pair” model. In the future, we will apply other feature
selection techniques and algorithms to further improve the
diagnosis of cancers.
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Numerous materials have been developed to try and harness the antimicrobial
properties of nitric oxide (NO). However, the short half-life and reactivity of NO have
made precise, tunable delivery difficult. As such, conventional methodologies have
generally relied on donors that spontaneously release NO at different rates, and delivery
profiles have largely been constrained to decaying dynamics. In recent years, the
possibility of finely controlling NO release, for instance with light, has become achievable
and this raises the question of how delivery dynamics influence therapeutic potential.
Here we investigated this relationship using Escherichia coli as a model organism and
an approach that incorporated both experimentation and mathematical modeling. We
found that the best performing delivery mode was dependent on the NO payload, and
developed a mathematical model to quantitatively dissect those observations. Those
analyses suggested that the duration of respiratory inhibition was a major determinant
of NO-induced growth inhibition. Inspired by this, we constructed a delivery schedule
that leveraged that insight to extend the antimicrobial activity of NO far beyond what
was achievable by traditional delivery dynamics. Collectively, these data and analyses
suggest that the delivery dynamics of NO have a considerable impact on its ability to
achieve and maintain bacteriostasis.

Keywords: Escherichia coli, Hmp, flavohemoglobin, NO, respiration, bacteriostatic

INTRODUCTION

Nitric oxide (NO) is a diatomic, hydrophobic, free radical gas with a wide array of antimicrobial
properties (Fang, 2004; Thomas et al., 2008). When present at concentrations in the micromolar
(µM) range and above, NO can directly impair enzyme activity by irreversibly damaging iron-
sulfur cluster residues and inhibit cellular respiration by binding heme groups within cytochrome
oxidases (Wink and Mitchell, 1998; Thomas et al., 2008; Radi, 2018). Additionally, it is capable
of reacting with oxygen and superoxide spontaneously to generate even more deleterious species
that can cause protein damage, through thiol and tyrosine nitrosylation, DNA damage through base
deamination, and damage to membranes and lipid structures through lipid peroxidation (Hogg and
Kalyanaraman, 1999; O’Donnell and Freeman, 2001; Vázquez-Torres and Fang, 2005; Toledo and
Augusto, 2012). These diverse cytotoxic effects can ultimately impair bacterial metabolism, inhibit
growth, and cause cell death.

Within the context of innate immunity, phagocytic cells harness NO to combat and eliminate
invading pathogens (Fang, 2004; Flannagan et al., 2009; Henard and Vázquez-Torres, 2011).
The importance of NO to pathogen virulence has been demonstrated by the large number of
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bacteria that require NO detoxification systems for survival
(Poole and Hughes, 2000; Poole, 2005). For example, Salmonella
enterica lacking the flavohemoglobin Hmp were found to be more
susceptible to killing by macrophages (Stevanin et al., 2002; Bang
et al., 2006). Similarly, deletion of Hmp in uropathogenic E. coli
was found to significantly impair its ability to colonize the urinary
tract (Svensson et al., 2010). In addition, the inability to produce
NO in a murine model, through deletion of inducible nitric
oxide synthase (iNOS), has been linked to increased likelihood of
infection by Mycobacterium tuberculosis, Listeria monocytogenes,
and Leishmania spp. (MacMicking et al., 1995). Conversely,
increased iNOS expression has been associated with reduced
malaria symptoms, as well as the decreased possibility of relapse
(Kun et al., 2001; Hobbs et al., 2002).

The potent and broad-spectrum antimicrobial properties of
NO have led to the development of numerous NO therapeutics
(Kim et al., 2014; Yang et al., 2015). Many small chemical
compounds and functional moieties have been developed to
exogenously produce NO in response to heat, pH, and enzymatic
catalysis. Some of the most widely used and studied NO-
releasing moieties include diazeniumdiolates (NONOates) and
S-nitrosothiols (Riccio and Schoenfisch, 2012; Sadrearhami
et al., 2018). In recent years, different materials and delivery
vehicles have been designed to take advantage of the release
properties of these chemistries. Polymer scaffolds, gels, and
coatings represent one large class of such materials (Kim
et al., 2014; Liang et al., 2015). Examples include NO-releasing
polymer coatings (Ho et al., 2017), NO-releasing sol-gels
(Nablo et al., 2005), and NO-releasing chitosan oligosaccharides
(Lu et al., 2014). Ho and colleagues demonstrated that
exposure of P. aeruginosa or S. aureus to NONOate coatings
significantly reduce bacterial adhesion and biofilm formation
(Ho et al., 2017). Moreover, NONOate based sol-gels have
been evaluated as potential coatings for orthopedic devices,
where coated medical grade steel was effective at inhibiting
P. aeruginosa, S. aureus, and S. epidermidis adhesion (Nablo et al.,
2005). Lu and colleagues designed NONOate-based chitosan
oligosaccharides that were extremely effective at penetrating
biofilms and killing P. aeruginosa, while providing essentially
no toxicity to mouse fibroblast cells (Lu et al., 2014). Another
significant class of NO delivery vehicles are nanoparticles
(Quinn et al., 2015). Kafshgari and coworkers devised porous
silica-based nanoparticles conjugated to S-nitrosothiols and
S-nitrosogluthatione and showed that they have significant
antimicrobial activity against E. coli and S. aureus (Hasanzadeh
Kafshgari et al., 2016). Overall, there has been sustained, growing
interest in developing NO materials and delivery vehicles capable
of harnessing the antimicrobial properties of NO. The examples
mentioned above represent only a fraction of such compounds.

Despite the development of numerous NO materials, few
have been evaluated for therapeutic purposes or have translated
to clinical settings (Liang et al., 2015; Yang et al., 2015). One
of the issues is associated with poor control of NO release.
Low stability and rapid release of NO make it difficult to
deliver NO for extended periods of time, maintain concentrations
within desirable ranges, and provide tissue-specific activity.
Traditional materials are loaded with a payload of NO donor

that spontaneously dissociates when exposed to water or other
conditions. As such, NO dynamics have largely been constrained
to rapid accumulation of NO at the onset of delivery followed
by progressive decay. Not only are these dynamics restricted,
but they are in stark contrast to the way NO is delivered
naturally within phagosomes. During an immune response, NO
is delivered for extended periods of time, in which the rates of
NO delivery have been suggested to peak hours after phagocytosis
(Reichner et al., 1999; Vazquez-Torres et al., 2000; Pfeiffer et al.,
2001). Recently, our group established a relationship between
bolus payload and release kinetics, where at lower payloads faster
dissociation rates led to greater antimicrobial activity, while at
higher payloads slower dissociation rates were favored (Robinson
et al., 2014b). However, the restricted set of delivery dynamics
evaluated and their discordance with the way NO is delivered
in physiological environments, raises the question of how this
design criterion may impact the development of future NO-
based therapeutics.

In recent years, the possibility of finely controlling delivery
has become achievable with the development of light controlled,
photoactivated compounds (Sortino, 2010; Choi et al., 2016;
Sadrearhami et al., 2018). In particular, metal-nitrosyl complexes
have gained significant attention, as alternative NO releasing
moieties, because of their ability to induce NO release upon
exposure to specific wavelengths of light (Tfouni et al., 2012;
Xiang et al., 2017). The Mascharak group developed manganese-
nitrosyl sol-gel coatings that released NO upon exposure to
near infrared light (NIR) and led to significant reduction of
S. aureus, E. coli and A. baumannii bacterial loads (Heilman
and Mascharak, 2013). Similarly, Evans and colleagues developed
manganese-nitrosyl based polymer microparticles that release
NO upon exposure to NIR (Evans et al., 2018). Roveda and
coworkers designed polyamidoamine dendrimers modified with
ruthenium nitrosyl moieties, which could be activated upon
UV irradiation (Roveda et al., 2014). In addition to light-
activated compounds, enzymatic pro-drug systems represent
another methodology to finely tune delivery rates through the
control of enzymes or substrates. Jones and colleagues developed
a NO probiotic patch in which Lactobacilli fermentation of
glucose lead to NO production from nitrite (Jones et al.,
2010). The Zhao group generated a unique methylated galactose
NONOate conjugate that was only recognizable by a mutant
beta galactosidase enzyme from Thermus thermophilus (Hou
et al., 2019). NONOate release was restricted to environments
containing the selective beta galactosidase and by co-delivering
the enzyme and pro-drug, which allowed localization of NO
release to specific tissues and reduced systemic toxicity.

The capability of precisely controlling NO delivery raises
several interesting questions, such as, how delivery dynamics
influence the antimicrobial potency of NO; and what is the
best way to deliver a given payload of NO? To begin to
address these questions, we used an approach that integrated
experiments and computational modeling to assess, analyze, and
predict how NO delivery dynamics influence the duration of
nitrosative stress in E. coli cultures. Using fed-batch bioreactors,
we evaluated four basic modes of delivery, one of which was
a traditional bolus delivery, and observed that dosing outcome
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differed drastically depending on the payload administered. That
data was used to train a computational model of the E. coli
NO stress network, which was able to accurately predict the
NO concentration profiles and clearance times when larger
payloads were administered. Quantitative analysis of those results
suggested that maintaining respiratory inhibition was a major
driver of delivery outcome, which was a prediction confirmed
by further experimentation. Finally, with the model as a guide,
we constructed delivery regimes capable of maintaining steady
state NO concentrations at levels sufficient to inhibit cellular
respiration, and this led to dosing schedules that were far more
effective than any other tested delivery schemes. Collectively, the
data and analyses presented here demonstrate the importance of
dosing dynamics when designing NO-based treatments.

RESULTS

Bioreactor Configuration to Modulate
NONOate Delivery
In this study, we sought to investigate the impact of delivery
dynamics on the antimicrobial potency of NO. To do this, we
constructed a system capable of finely tuning delivery of NO
releasing compounds (NONOates) (Figure 1A). Specifically, our
system is composed of a fed-batch bioreactor, in which the input
flowrates of NONOate and its balance stream (NONOate solvent)
can be programmed and automated using a low flow control
system. We elected a drip system to eliminate the possibility
of back flow, which was a concern due to the low flowrates
we planned to use (as low as 10 µL/min). We are able to
measure and monitor several outputs, such as the concentration
of NO and O2 present in the bioreactor, as well as temperature
and culture turbidity.

We chose to begin our investigation by evaluating four
principle modes of delivery. In particular, we examined the
dynamics of linearly increasing (ramp up), linearly decreasing
(ramp down) and constant delivery regimes and compared them
to the traditional delivery method, which is a bolus (Figure 1B).
Delivery schemes were implemented over 1 h with a total payload
of 6 µmol PAPA NONOate delivered (Figure 1C). To maintain
identical volumes with the different schema as a function of time,
a secondary drip system delivered a balance stream, which was
10 mM NaOH (solvent for PAPA NONOate). In the control case
of bolus delivery, both reservoirs were programmed to deliver
10 mM NaOH over 1 h. Figure 1D depicts the differing NO
dynamics in cell-free systems for these four modes of delivery.

Type of Delivery Mode Influences the
Duration of NO Stress in a
Payload-Dependent Manner
To begin exploring NO detoxification under different delivery
schema, aerobic cultures of E. coli were grown to mid-exponential
phase and inoculated into a bioreactor at an optical density
at 600 nm (OD600) of 0.05 before being treated with 6 µmol
of PAPA NONOate, delivered using each of the four modes,
over 1 h, with the exception of bolus which was introduced

at the onset. Our metric of interest to evaluate different
delivery modes is NO clearance time (tclear), which is the time
during which the concentration of NO ([NO]) is greater than
or equal to 0.5 µM. This concentration was chosen because
NO at µM concentrations or above exerts nitrosative stress
(Thomas et al., 2008).

At a payload of 6 µmol PAPA NONOate, bolus delivery led
to an [NO] peak of 10.32 ± 0.37 µM (Figure 2A) and NO was
cleared from the culture by 0.686 ± 0.016 h. In contrast, the
other delivery schemes failed to reach 0.5 µM, and thus did not
result in nitrosative stress. Interestingly, dosing higher payloads
(18 µmol), led to strikingly different dynamics (Figure 2B). All
four delivery schema produced nitrosative stress, with constant
delivery being the most effective dosing scheme with an NO
clearance time of 1.411 ± 0.029 h, which was a thirty percent
increase in tclear compared to bolus delivery of the same payload.
This result suggested that the ability of NO to cause nitrosative
stress depends both on the payload and the dynamics of how
it is delivered.

Computational Modeling of NO Stress
To quantitatively explore the relationship between delivery
dynamics and antimicrobial efficacy, we trained a kinetic model
of NO stress in E. coli using the data obtained at 6 and 18
µmol. The model was developed in previous studies (Robinson
and Brynildsen, 2013, 2015, 2016a,b; Robinson et al., 2014a,b;
Sacco et al., 2017) and expanded upon here. Specifically, the
model was adjusted to comply with fed-batch systems and
cellular growth was incorporated and assumed to depend on
the availability of aerobic cytochrome oxidases for respiration.
Uncertain parameters were trained using a non-linear least
squared optimization algorithm, followed by a Markov Chain
Monte Carlo (MCMC) procedure. Parameter sets were accepted
based on Evidence Ratios (ER) and ensembles of models were
generated (section Materials and Methods). A complete list
of species, reactions, and kinetic parameters can be found in
Supplementary Tables S1–S3.

Model Adjustments for Fed-Batch Operation
To simulate our microfluidic drip system, continuous NONOate
delivery and extracellular species dilution were incorporated
into an existing kinetic model of NO metabolism (Robinson
and Brynildsen, 2016b). Specifically, an input term was added
to the rate equation for the NONOate species balance to
capture influx of NONOate. The input term had four functional
forms, depending on the delivery mode implemented (section
Materials and Methods and Supplementary Methods). A volume
dependent dilution term was also included to capture dilution of
extracellular species, as a result of volume expansion within the
bioreactor during operation (section Materials and Methods and
Supplementary Methods).

Incorporation of Cellular Growth
Previous iterations of the model used in this study did not
account for cellular growth but rather focused on the period
of NO stress. This was done because NO is bacteriostatic,
and thus under NO stress cells are non-growing. However, as
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FIGURE 1 | Control of NONOate delivery dynamics. (A) Schematic of a computer-controlled, fed-batch bioreactor used to deliver NONOate. Delivery schedules
were programmed using a computer-controlled low flow drip system. Once initiated, individual peristaltic pumps drew solutions from two reservoirs: PAPA NONOate
solution (dark blue) and 10 mM NaOH (light blue), which then dripped into a bioreactor containing 50 mL MOPS minimal media. [NO] was continuously measured in
the bioreactor using an electrochemical probe. (B,C) 6 µmol PAPA NONOate was delivered over an hour in four modes: bolus (blue), constant (red), ramp down
(green), ramp up (pink). (D) Measured [NO] dynamics, for each mode, during delivery of 6 µmol PAPA NONOate over an hour in the absence of cells. Solid lines
represent the mean of three replicates, whereas the lightly shaded areas represent the standard error of the mean.

depicted for three of the 6 µmol delivery modes (constant,
ramp up, ramp down) and one of the 18 µmol schemes (ramp
up), long periods of time without NO stress were present, and
OD600 measurements revealed that cells were growing during
those periods (Supplementary Figures S1B,D). Growth rate was
modeled as a 1st order Hill-type function.

µ = µmax ·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

] (1)

Where µmax is the maximum specific growth rate and
Kµ represents the concentration of cytochromes required to
reach half the maximum growth specific rate. Under aerobic
conditions, the majority of ATP production in E. coli is
accounted for by cellular respiration (Baron, 1996; Trotter
et al., 2011; Soria et al., 2013) and therefore we chose to
define the specific growth rate equation as a function of freely

available terminal cytochrome bo and bd-I oxidases. A set
of 16 uncertain respiratory parameters (section Materials and
Methods and Supplementary Table S5), were trained on [O2]
and OD600 data obtained from aerobic, mid-exponential phase
E. coli treated with three concentrations of KCN (0, 50, and
1000 µM) (Supplementary Figure S2). The ensemble of models
could accurately capture O2 consumption and cell density at all
three concentrations of KCN. Additionally, growth-dependent
dilution terms were incorporated into rate equations for cellular
species to capture the expansion of intracellular volume that
occurs with growth (section Materials and Methods). Further,
in previous iterations (Robinson and Brynildsen, 2016b) the
protein translation rate was modeled as a function of [O2],
a reflection of energy production through O2 consumption
by terminal cytochromes; however, here we adjusted that rate
expression so that translation was directly related to growth
(Materials & Methods).
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FIGURE 2 | Delivery outcome is payload dependent. E. coli cultures were grown to exponential phase and inoculated in a bioreactor at an OD600 of 0.05. Five
minutes after inoculation, PAPA NONOate was delivered over an hour in one of four ways (bolus-blue; constant-red; ramp down-green; ramp up-pink) at payloads of
(A) 6 µmol or (B) 18 µmol. [NO] was measured continuously using an ISO-NOP probe. Solid lines represent the mean of three independent experiments, whereas
the lightly shaded areas represent the standard error of the mean. (C) The duration of nitrosative stress (tclear) was measured at 6 µmol and 18 µmol for each
delivery scheme (calculated as the time for which [NO] ≥ 0.5 µM). Values represent the average value ± the standard error of the mean.

FIGURE 3 | Model training and optimization on NO dynamics observed at 6 µmol (A–D) and 18 µmol (E–H) for the four principle dosing modes (refer to
Supplementary Table S6 for a list of optimized parameters). Cultures of E. coli were grown to exponential phase and inoculated in a bioreactor at an OD600 of
0.05. Five minutes after inoculation, PAPA NONOate was delivered over an hour in one of four ways (bolus- blue; constant-red; ramp down-green; ramp up-pink).
Solid lines represent the mean of three independent experiments, whereas the lightly shaded areas represent the standard error of the mean. Dashed black lines
represent simulation results using the ensemble of parameter sets (ER < 10, 28 sets in total) trained on the data presented in this figure. Simulations from the
ensemble members greatly overlapped, thus resembling a single line.
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FIGURE 4 | Model extrapolation and predictions at 24 µmol payloads. Dashed black lines represent predicted [NO] dynamics using the ensemble of parameter sets
(ER < 10, 28 sets in total). Simulations from the ensemble members greatly overlapped, thus resembling a single line. Colored lines represent measured [NO]
dynamics (bolus- blue; constant-red; ramp down-green; ramp up-pink). The solid lines represent the mean of three independent experiments, whereas the lightly
shaded areas represent the standard error of the mean.

Model Training and Experimental Validation
We trained uncertain parameters related to cellular NO
consumption on all [NO] and [O2] data measured at 6 and
18 µmol (21 parameters in total, Supplementary Table S6).
Simulations for the ensembles of models did a good job of
capturing data at both 6 and 18 µmol for the different delivery
modes (Figure 3). To assess the utility of the model, we tested its
predictive power by simulating each delivery mode at 24 µmol.
The model predicted that bolus delivery should lead to a tclear of
0.957 h and that it would be outcompeted by ramp down and
constant modes, with tclear of 1.359 and 1.462 h, respectively,
whereas it should still be more effective than ramp up with a tclear
of 0.859 h. Experimental measurements agreed well with those
forward predictions from the model (Figure 4). This confirmed
that the model could accurately extrapolate to conditions outside
its training data, which gave confidence that it could be used to
quantitatively analyze NO stress in E. coli cultures.

Evaluating NO Clearance by Varying the
Delivery Time
We sought to evaluate the dynamics of three of the principle
dosing modes by varying an additional parameter, duration of
delivery. The analysis focused on 24 µmol payloads and the
total time to achieve that dosage. As depicted in Figures 5A–C,

extending the delivery period lengthened tclear for constant
(red trend line) and ramp-down (green trend line) delivery
modes to such an extent that their tclear exceeded that of bolus
delivery (tclear = 0.957 h) by more than twofold, whereas the most
effective delivery periods for ramp up (purple trend line) were
less than an hour. In addition, simulations revealed that each
delivery mode displayed distinct discontinuities when plotting
tclear against delivery period. Evaluation of the cumulative NO
consumption flux profiles (Figures 5D–F), suggested that the
discontinuities were associated with failures to inhibit cellular
respiration, which led to higher translation rates and ultimately
higher concentrations of Hmp (Supplementary Figures S3–S5),
which is the main NO detoxification enzyme under aerobic
conditions (Gardner and Gardner, 2002; Corker and Poole, 2003;
Robinson and Brynildsen, 2013, 2016b). Noticeably, the ramp-
up delivery mode contains two discontinuities, where the first
was due to an initial failure to inhibit cellular respiration which
allowed increased translation and Hmp protein expression. This
led to cellular NO consumption rates that balanced NO delivery
rates. However, near the end of the delivery period, the increasing
delivery rates began to exceed cellular consumption, which led
to a sudden rise in [NO]. While the second discontinuity, was
similarly due to a failure to inhibit cellular respiration, and
cellular consumption invariably balanced NO influx throughout
delivery. Experiments were performed to assess the accuracy
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FIGURE 5 | Relationship between tclear and delivery period. Model simulations using the ensemble of parameter sets (ER < 10, 28 sets in total) were performed by
delivering 24 µmol PAPA NONOate and varying the delivery period between 0 and 5 h and calculating tclear for each simulation. (A) Constant, (B) ramp down, (C)
ramp up. Solid lines represent predicted relationship between tclear and delivery period, while dashed lines represent discontinuities in the curves. Circles represent
mean tclear values from at least three experiments and error bars represent the standard error of the mean. Predicted NO cumulative distribution profiles using the
optimal parameter set (ER = 1, minimum SSR, 1 set) up to the end of the delivery period or when [NO] dropped below 0.5 µM, whichever was greater for constant
(D), ramp-down (E), and ramp-up (F) delivery schedules. The three major NO consumption pathways are autoxidation (blue), transport to gas phase (red), and
cellular consumption (yellow).

FIGURE 6 | Duration of respiratory inhibition is a strong predictor of tclear. (A) Model predictions using the ensemble of parameter sets (ER < 10, 28 sets in total) for
tclear as a function of delivery period when a 24 µmol PAPA NONOate payload is delivered. Solid lines represent the predicted relationship between tclear and delivery
period (bolus- blue; constant-red; ramp down-green; ramp up-pink), while the lightly shaded lines represent discontinuities in the curves. (B) Plot of duration for
respiratory inhibition vs. tclear. Duration of respiratory inhibition was defined as the length of time for which the percentage of NO bound cytochromes ≥ 99%.

of these predictions, and as depicted by the colored dots
in Figures 5A–C, data agreed well with model predictions,
including the approximate delivery times that corresponded to
the discontinuities.

Given the central role of respiratory inhibition in defining the
delivery periods at which the principle modes become ineffective
(or less effective for the first discontinuity of the ramp up mode),

we plotted tclear as a function of the duration during which
respiration is inhibited. We considered respiratory inhibition, as
the time for which 99% or more of terminal cytochrome oxidase
were NO bound. As depicted in Figure 6, all of the simulations,
regardless of delivery mode, fall onto a single line. This suggested
that the duration of NO stress is strongly associated with the
ability to achieve and maintain respiratory inhibition.
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FIGURE 7 | Designing and implementing delivery schemes to maintain steady state [NO]. (A) For a desired NO concentration α and payload ω, a bolus delivery was
introduced at t0 such that the [NO] profile (blue dashed line) peaked at [NO] = α at t1. At t1 a dosing regime was implemented to maintain d[NO]/dt = 0 and [NO] = α

up until tf (yellow dashed line), at which point the payload ω was exhausted. (B) Steady state dosing regimes were simulated at [NO] between 1 and 10 µM for a
payload of 24 µmol and tclear was measured (dark red dashed line). The light shaded solid red line represent the relationship between tclear and [NO] when
implementing a step function delivery approximation. All simulations were performed using the optimal parameter set (ER = 1, minimum SSR, 1 set).

Maintaining Respiratory Inhibition to
Maximize the Duration of NO Stress
We used the model to evaluate the relationship between [NO]
and respiratory inhibition and found that NO concentrations
slightly above 1 µM (∼1.2 µM) corresponded to 99% NO bound
cytochrome (Supplementary Figure S6). We hypothesized that,
for a given payload, a dosing regimen that could raise and
maintain NO at concentrations of 1.2 µM or greater, would
extend tclear beyond that which could be achieved with bolus
administration or any of the principal modes. Using the model,
we designed delivery schema capable of maintaining steady state
concentrations of NO. Specifically, this was accomplished by
constructing composite delivery schemes (Figure 7A). First, a
bolus was introduced to raise NO to the desired steady state
concentration. Then when [NO] had reached its peak value
a dosing scheme was solved for, using the remainder of the
payload, to deliver NO at a rate that balanced NO consumption,
as predicted by the model, and maintain d[NO]/dt equal to
zero. Composite delivery schemes were designed in this manner
for various concentrations of NO greater than or equal to 1
µM. The model predicted that the optimal composite dosing
regime was achieved by maintaining NO at approximately 2.2
µM. Model simulations suggested that a bolus payload of 0.8
µmol would lead to an NO profile that peaked at 2.2 µM and
that implementing a dosing schedule to maintain NO at 2.2
µM, with the remaining 23.2 µmol, could extend tclear to over
3.8 h. Experimental application of the composite dosing regimen
failed to recapitulate the predicted NO dynamic (Supplementary
Figure S7A), and severely underperformed (tclear = 0.2 h)
compared to the predicted tclear. A deeper analysis revealed
that this inaccurate prediction was due to physical limitations
of our experimental system. Specifically, the pumping system
required us to approximate dosing schedules with piecewise step
functions (Supplementary Figure S7B). Taking into account
this source of error, the model predicted that tclear was not

robust to these variations until the steady NO concentration
exceeded approximately 3 µM (Figure 7B). Therefore, we chose
to implement a delivery regime to maintain [NO] at 4 µM,
which is well within the regime where simulations with the
piece-wise step function agree well with the continuous delivery
function. Simulations revealed that a 4 µM [NO] peak was
achieved by a bolus payload of 1.7 µmol. The remaining 22.3
µmol were delivered to maintain [NO] at 4 µM (Figures 8A,B).
Simulations suggested that it was possible to extend tclear to over
3 h by delivering in this manner, which would be over threefold
higher than bolus administration of 24 µmol. The delivery
scheme was implemented experimentally and the measured [NO]
profile agreed well with simulations (Figure 8C). This dosing
schedule proved to be far more effective than any of the principle
delivery modes, and more specifically, it led to a threefold
increase in tclear when compared to a bolus delivery of the same
payload (Figure 8D).

DISCUSSION

Nitric oxide is a potent antibacterial harnessed by macrophages
of the innate immune response (Radtke and O’Riordan, 2006;
Haas, 2007; Bowman et al., 2011). The potential of NO as an
antimicrobial treatment has led to the development of numerous
materials capable of directly delivering NO to infection sites
(Seabra and Durán, 2010; Schairer et al., 2012a). For example,
Martinez and coworkers demonstrated that delivery of silica-
based nanoparticle into skin lesions of MRSA-infected mice, led
to significant reductions of bacterial burden when compared to
untreated infections (Martinez et al., 2009). Nablo and colleagues
developed silicone elastomer implants coated with NONOate sol-
gels that led to an 82% reduction in the number of S. aureus
infected implants when compared to uncoated implants in a rat
model (Nablo et al., 2005). Notably, these animal studies were
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FIGURE 8 | Implementation of a delivery schedule to maintain [NO] at 4 µM steady state with a payload of 24 µmol. Comparison of delivery rate (A) and cumulative
NONOate (B) profiles for a 4 µM steady state dosing schedule and the principle delivery modes over identical delivery periods. Comparison of the predicted and
measured [NO] profiles (C) and tclear values (D) for a 4 µM steady state dosing scheme compared to a bolus delivery. Dashed colored lines represent predicted [NO]
dynamics using the optimal parameter set (ER = 1, minimum SSR, 1 set). Solid colored lines represent the mean of three independent experiments, while lightly
shaded areas represent the standard error of the mean.

conducted with materials that would spontaneously release NO
with a decaying rate. The limited control over NO release has
led to restricted NO dynamics, in which NO profiles exhibit
high initial levels that decline as a function of time. Given the
advent of materials with increasingly tunable NO delivery, such
as photo controllable and enzyme pro-drug systems, the question
of whether other modalities of NO release could influence
therapeutic outcomes arises.

We began by constructing a system capable of tuning NO
delivery and measured how cultures of E. coli responded to
treatment. In particular, we explored three primary modes of
delivery (linearly increasing, decreasing, and constant modes)
and compared them to bolus. At lower payloads, we observed
that bolus delivery was the only effective method. While at
higher payloads delivery outcome was quite different with all four
delivery schedules providing periods of nitrosative stress (tclear)
and two of the four outcompeting bolus. With the observation
that the efficacies of delivery regimens were a function of payload,
we sought to develop a computational model that could predict

NO dynamics under different delivery scenarios. Using the data
obtained at both payloads (6 and 18 µmol), we trained a model
of the NO biochemical network and showed that the model
was effective at extrapolating to higher payloads (24 µmol) and
predicting the outcome.

We continued our analysis by exploring how delivery period,
as a variable, influenced antimicrobial activity. The model
predicted that by extending the delivery period it was possible
to extend tclear to be greater than twofold of a bolus of the
same payload. Moreover, the model predicted sudden changes
in tclear, for each principle mode, as the delivery period was
extended beyond specific thresholds. The model predicted that
these sudden changes were due to delivery rates that failed to
inhibit cellular respiration and thereby led to increased Hmp
protein expression in growing cells. Experiments confirmed the
trends predicted by the model, which led us to define a metric
representative of the length of time under respiratory inhibition.
A model-facilitated analysis revealed that the longer cells were
unable to respire, the longer it took cells to detoxify NO,
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and when tclear was plotted against the duration of respiratory
inhibition, all of the delivery modalities collapsed onto a single
line. This led us to hypothesize that dosing regimens that
maintained respiratory inhibiting concentrations of NO, for as
long as possible, would extend dose efficacy beyond what we
observed with the principal modes. To test this hypothesis, we
used the model to design dosing schedules capable of maintaining
NO concentrations at and above the threshold to inhibit cellular
respiration. When we tested predictions that maintained NO at
4 µM, we were able to extend dose efficacy to over threefold
what it would have been with a bolus administration of the same
payload. Further, that dosing schedule also outperformed all of
the other principal modes at that payload. Looking forward, it is
worth noting that future work to extend bacterial NO stress could
benefit from formulating the task as an optimization problem.
As a first pass at this, we considered delivery schedules that
conformed to third order polynomials and used an optimization
algorithm to identify coefficients that maximized the amount
of time cultures were exposed to NO concentrations that were
inhibitory to respiration (Materials and Methods). Although that
attempt at optimization did not yield solutions better than the
steady-state approach we presented, there are many different
ways to formulate an optimization problem and numerous
algorithms to identify best solutions. We believe that future
work on optimization frameworks with this application could
reveal novel strategies that outperform the methodologies used
in the present study.

The data presented in this study suggest that the dosing
method of NO can have a significant impact on its antibacterial
capabilities. Further, this work suggests that maintaining NO
concentrations at levels that inhibit cellular respiration is a critical
parameter for inhibiting the propagation of E. coli under aerobic
conditions, such as those found in the urinary tract (Svensson
et al., 2010; Spiro et al., 2015). Many microbes contain similar
detoxification networks, generate protein homologs similar to
Hmp, and thrive under oxygenated conditions (Gardner, 2005,
2012; Stern and Zhu, 2014). Therefore, inhibiting cytochrome
oxidase activity may be an important variable to maximize
dose efficacy of NO-releasing materials across a wide range of
bacteria. We envision that such knowledge could be employed
with feed-back control devices that maintain local NO levels
at infection sites, such as dermal wounds, at concentrations
that yield respiratory inhibition. Such delivery platforms could
be important for the eventual application of these materials
since NO is also deleterious to mammalian cells and there
is a restricted concentration window where it is antibacterial
and non-toxic to our cells, which argues against the use of
bolus delivery schemes (Hurford, 2005; Friedman et al., 2011;
Schairer et al., 2012a; Sun et al., 2012). However, it should be
noted that one limitation of this study is associated with its
time scales, which are on the order of several hours due to
constraints associated with our experimental system (Materials
and Methods). With an eye toward clinical applications, time
scales of 24 h or longer need to be tested in order to assess
whether what was found to be important at a few hours is also
important over a few days (Martinez et al., 2009; Jones et al., 2010;
Schairer et al., 2012b).

MATERIALS AND METHODS

Bacterial Strains
All experiments performed in this study were conducted with
E. coli K-12 MG1655 (Brynildsen et al., 2013).

Chemicals and Growth Media
Growth media used in all experiments was MOPS minimal media
with 10 mM glucose as the sole carbon source. The NO donor
used, (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-
ium-1,2-diolate (PAPA NONOate), was dissolved in 10 mM
NaOH and stored on ice during delivery. Potassium cyanide
(KCN) was dissolved in autoclaved Milli-Q water at a
concentration of 1 M. Luria-Bertani (LB) broth was made from
dissolving LB powder (40% Tryptone, 20% Yeast extract, 40%
Sodium Chloride per gram of solid) in Milli-Q water and
autoclaving the solution.

Fed-Batch Bioreactor
Sterile 250 mL conical tubes (Nunc) were used as batch
bioreactors for experiments. The bioreactor contained 50 mL
of MOPS media, as well as a 0.5′′ magnetic stir bar to
facilitate mixing. The bioreactor was suspended in a water
bath, maintained at 37◦C, using a magnetic stirrer hot plate
(Fisher Scientific). PAPA NONOate was delivered using a 2
channel, 8 roller, Ismatec REGLO ICC Digital Peristaltic Pump
(Cole Palmer). 30-gauge, regular bevel, stainless steel needles
(Covidien) were fastened into the ends of the tubing to create
a drip system to facilitate delivery into the bioreactor. Delivery
schedules were programmed using the associated software on
a Dell Latitude E7440 with an Intel Core i5 CPU processor at
2.50 GHz. One channel was programmed to deliver NONOate
and the second channel was programmed to deliver 10 mM
NaOH, to maintain a constant volume delivered per unit time
across delivery schema (5 mL/h). Prior to delivery, each channel
was run for 2 min at a flow rate of 50 µL/min, to ensure
that tubing had been primed and loaded with their respective
solutions (approximately 8 equivalent volumes of fluid through
the tubing). We note that experiments on this system were
performed for up to a few hours. When longer time periods were
assessed (e.g., 24 h), considerable volume loss due to evaporation
from bioreactor was observed (50% or more), and delivery of
10 mM NaOH solutions over those time periods resulted in much
higher media pH levels (e.g., above 9). These constraints limited
experiments that were performed to several hours.

[NO] and [O2] Measurements
NO concentrations were measured continuously using a
2 mm NO sensing probe (WPI). The probe was calibrated
daily using the manufacturer’s instructions. Briefly, this was
accomplished by delivering increasing doses of S-nitroso-N-
acetyl-d,l-penicillamine (SNAP) (Cayman Chemical) to a 10 mM
copper chloride (II) solution. A proportionality factor of 0.457
molecules of NO per molecule of SNAP (Chou and Brynildsen,
2019) was used to convert the raw signal generated (pico Amps)
to units of NO concentration (µM). For NO assays where

Frontiers in Physiology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 330113

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00330 April 16, 2020 Time: 18:1 # 11

Sivaloganathan and Brynildsen Modeling Improves NO Antibacterial Activity

pico Amp measurements following clearance fell slightly below
baseline, [NO] data were set to zero.

O2 concentration present in the bioreactor was continuously
monitored using OXROB10 robust O2 probe (Pyroscience)
attached to a FireStingO2 fiber-optic O2 meter (Pyroscience).
Temperature was continuously monitored using TDIP15
temperature sensor (Pyroscience) and the probe signal
automatically compensated for temperature fluctuations. The
probe was calibrated daily using the manufacturer’s instructions.

Absorbance Measurements (OD600,
NO2

− and NO3
−)

Cell density was measured during experiments by sampling
300 µL of solution from bioreactors and measuring absorbance
at 600 nm using a microplate reader.

NO2
− and NO3

− concentrations were measured using
a Nitrate/Nitrite Colorimetric Assay Kit (Cayman). Samples
consisted of biological triplicates that were each measured in
technical triplicates. The NO2

− concentration in samples was
estimated by adding Griess reagents to samples, which converted
them to Azo products. Following this, absorbance was measured
at 540 nm using a microplate reader. A calibration curve was
constructed using various concentrations of an NO2

− standard
solution. A similar process was used to measure total NO2

− and
NO3

− concentration in samples. However, an additional step,
involving the addition of nitrate reductase and cofactors, was
used to convert NO3

− to NO2
−. Similarly, a calibration curve was

constructed using various concentrations of an NO3
− standard

solution. NO3
− concentration was calculated by subtracting the

NO2
− concentration that was measured from the combined

NO2
− and NO3

− concentration measurement. For more details
on the procedure, refer to the manufacturer’s instructions.

NO Consumption Assays
E. coli were taken from a −80◦C stock, inoculated into a test
tube with 1 ml of LB broth and incubated for 4 h at 37◦C and
250 rpm. Following this, 10 µL were extracted from the test tube
and transferred to a second test tube containing 1 mL of MOPS
minimal media. The second test tube was incubated for 16 h at
37◦C and 250 rpm. After 16 h, the overnight culture was used to
inoculate a 250 mL baffled flask with 20 mL MOPS media at an
OD600 of 0.01. The flask culture was grown to mid-exponential
phase (OD600 = 0.2) and transferred to a pre-warmed (37◦C)
50 mL falcon tube. The falcon tube was centrifuged at 4000 rpm,
for 10 min at 37◦C. Following this, 16 mL of MOPS were removed
from the falcon tube, carefully avoiding the pellet of cells. The
pellet was re-suspended in the remaining 4 mL and 1 mL was
transferred to four separate pre-warmed (37◦C) microcentrifuge
tubes. The tubes were then centrifuged at 15,000 rpm for 3 min.
Nine hundred and eighty microliter of media was removed from
each microcentrifuge tube and the cell pellets were resuspended
in 1 mL of pre-warmed MOPS media. The resuspended culture
was used to inoculate a bioreactor with 50 mL MOPS media
at an OD600 of 0.05. Five minutes after inoculation, NONOate
delivery was initiated, either as bolus or through a delivery
scheme implemented using the digital peristaltic pump.

Mathematical Modeling
Model Construction
The model was constructed and used in previous studies
(Robinson and Brynildsen, 2013, 2015, 2016b; Robinson et al.,
2014b). In brief, the mathematical model is a system of ordinary
differential equations that describes the change in concentration
of numerous biochemical species, upon exposure to NO, within
the cell as well as the extracellular environment, as a function of
reaction rates and stoichiometric coefficients.

dEC
dt
= Ŝ · ErI − d · EC (2)

Where EC represents a vector of species concentrations. Ŝ is a
scaled reaction stoichiometry matrix and ErI is a vector of intensive
reaction rates, which itself is a function of species concentrations
and kinetic parameters. d represents a diagonal matrix of
species-specific dilution terms as a result of volume expansion
during NONOate delivery and cellular growth. The model was
partitioned into extracellular and intracellular compartments,
assuming rapid diffusion of NO and O2 across the cell membrane.
This was done to facilitate parameter optimization and model
validation. Initial species concentrations, reaction rates and
reaction structures were derived from the literature or trained
on experimental data. MATLAB 2017b was used to run all
simulations. For more information, on model construction and
the specific reactions and species relevant to the model, refer to
(Supplementary Methods and Supplementary Tables S1–S3).

Incorporation of NONOate Delivery Module
Delivery was incorporated into the differential equation for
[NONOate] by including a delivery function, capable of taking
one of four functional forms.

NNONOate|t=0 +

∫ tf

0
fdel dt = ω (3)

Where NNONOate|t=0 represents the number of moles of NONOate
introduced as a bolus at the onset of delivery. fdel is the NONOate
delivery function (µmol/h); tf represents the duration of delivery
(h); ω represents the total payload delivered (µmol). For more
details, refer to (Supplementary Methods).

Incorporation of Bacterial Growth
Bacterial growth was modeled as a function of cell density:

dX
dt
= µ · X (4)

Where µ represents the specific growth rate and X represents cell
density. X was assumed to vary linearly with optical density at
600 nm (OD600), such that k · X = OD600 (Myers et al., 2013). µ

was modeled as a 1st order Hill-type equation that depended on
the concentrations of available cytochromes bo and bd:

µ = µmax ·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

] (5)
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Incorporation of Growth-Dependent Translation Rate
Previously, we had chosen to model the rate of protein
production as a function of mRNA transcripts with the inclusion
of an [O2] dependency, such that increased [O2] led to
increased translation rate (Robinson and Brynildsen, 2016b).
The inspiration for this was that cells grew faster at higher O2
tensions, and translation is known to vary closely with specific
growth rate (Neidhardt and Magasanik, 1960; Roller et al., 2016;
Dai et al., 2017; Zhu and Dai, 2018).

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kact,O2 ·
[O2]

KO2 + [O2]

)
− kdeg · [Protein] (6)

Where “Protein” represents either Hmp, NorV, or NrfA. mRNA
represents the associated mRNA for each protein (mRNAHmp,
mRNAN orV , mRNAN rf A). However, with the addition of growth
to the model, we replaced the [O2] dependency term with a
growth dependency term, which more explicitly exemplifies the
connection between specific growth rate and translation rate.

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kgrowth ·
µ

µmax

)
− kdeg · [Protein] (7)

Where protein production is modeled with a growth dependency
term as opposed to an O2 dependency term. Substituting
Equation (5) into Equation (7), protein production can be re-
written as a function of terminal cytochrome oxidases.

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kgrowth

·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

])
− kdeg · [Protein] (8)

Where protein production in Equation (8) is a function of
terminal cytochrome oxidases bo and bd, as opposed to a function
of [O2]. This modified form represents a direct relationship
between translation and cellular respiration, where the larger the
concentration of uninhibited cytochromes, the greater the rates
of respiration, which leads to faster cellular growth rates and
accelerated rates of protein production.

Incorporation of Extracellular and Intracellular
Dilution
Previously, the model assumed a fixed volume in the
bioreactor during the course of experiments, and that
changes in concentration of individual species were only a
result of consumption and production. However, with the
implementation of the low flow drip system, the volume of
the bioreactor continuously changed during delivery. As a
result, species relevant to the extracellular environment were
continuously diluted. In a similar vein, with the addition of
growth, we could no longer assume a fixed cellular volume as a
function of time. As cells grow, so does the cellular volume in the
reactor, and species relevant to the intracellular environment are

diluted in growing cells. Therefore, in the rate equation for each
species, we incorporated a term to account for dilution:

d =
dVi
dt
Vi

(9)

Where Vi represents the volume compartment in
which the species exists, where i can be extracellular,
intracellular, or total. For more details, regarding model
compartmentalization and derivation of the dilution term refer
to (Supplementary Methods).

Parameter Optimization
Uncertain model parameters were fitted to experimental
data, using the MATLAB function lsqcurvefit. Specifically, the
algorithm involves a non-linear least squares optimization
algorithm that searched for optimal parameter sets by
minimizing the variance weighted sum of squared residuals
between experimental NO (and/or O2) curves and model
simulations. Due to the compartmentalization of the model,
different sets of unknown parameters were estimated
independently using specific experimental conditions. The
uncertain parameters fall into three categories: parameters
relevant to NO reactions in the extracellular environment,
parameters relevant to growth and cellular respiration, and
parameters relevant to NO reactions in the cellular environment.

Estimating Extracellular Parameters
The product of the O2 mass transfer coefficient and surface area
to volume ratio of the media in the bioreactor (kLO2

·
A
V ) was

estimated from O2 curves generated after purging O2 with N2
gas from bioreactors containing 50 and 55 mL MOPS media
(Supplementary Figure S8). The rate of autoxidation, PAPA
NONOate degradation rate, and rate of NO loss to the gas
phase were trained simultaneously on both [NO] and [O2]
curves generated from bolus delivery of 6 and 18 µmol of PAPA
NONOate in cell-free media (Supplementary Figure S9). For
more information on the parameters included in the optimization,
refer to (Supplementary Methods and Supplementary Table S4).

Estimating O2 Respiratory Parameters
Parameters relevant to cellular respiration, namely cellular
growth, ubiquinol-oxygen oxidoreduction, and ubiquinone
reduction (16 parameters in total), were trained on [O2] and
OD600 data generated from monitoring cells seeded at an
OD600 of 0.025 and treated with 0, 50 and 1000 µM KCN
(Supplementary Figure S2), which inhibits respiration and halt
growth. For more information on the parameters included in the
optimization, refer to (Supplementary Table S5).

Estimating NO Cellular Parameters
Uncertain cellular parameters related to NO detoxification (21
parameters in total) were optimized on 8 sets of [NO] and [O2]
data obtained for bolus, constant, ramp down, and ramp up
delivery regimens at 6 and 18 µmol. We note that a variety of
training protocols could have been employed. We elected to use
all four delivery dynamics at both 8 and 16 µmol for training
because of the distinct outcomes observed in different conditions
(e.g., immediate cessation of growth, lack of cessation of growth,

Frontiers in Physiology | www.frontiersin.org 12 April 2020 | Volume 11 | Article 330115

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00330 April 16, 2020 Time: 18:1 # 13

Sivaloganathan and Brynildsen Modeling Improves NO Antibacterial Activity

delayed cessation of growth). We considered this diversity to be
important for the ability of the model to extrapolate to conditions
that it was not trained on, such as the 24 µmol dataset. For more
information on the parameters included in the optimization, refer
to (Supplementary Table S6).

Model Discrimination
Parameter sets were compared using Evidence Ratios (ER), which
represent the likelihood of a given parameter set relative to the
best set identified. Parameter sets with ER > 10, representing
a less than 10% likelihood, were discarded. All parameters sets
with ER < 10 were retained and used as initial points for an
out-of-equilibrium adaptive Metropolis Markov Chain Monte
Carlo (MCMC) process to further explore parameter space. If the
MCMC algorithm generated a parameter set such that the initial
point had an ER > 10 relative to the new minimum, the process
was repeated using the best parameter set obtained from MCMC
as the initial point. For more information on the model selection
process, refer to (Robinson and Brynildsen, 2016b).

Algorithm to Identify Composite Dosing Schedules
For specified NO concentrations above 1 µM, the following
algorithm was applied to identify dosing schema to maintain
steady state levels, subject to the constraint of a total 24 µmol
payload. Initial boluses (α) were determined such that simulated
[NO] peaks equaled desired steady state concentrations. The
vectors of species concentrations at the time of those peaks
were used as initial conditions for secondary simulations where
at each time step the concentrations of NONOate were solved
to maintain d[NO]/dt = 0. The output of this simulation
was a vector of NONOate concentrations at each time point,
which was used to compute vectors of values corresponding to
d[NONOate]/dt, and the rates of loss of NONOate (through
decay and dilution) at each time point. These three vectors were
added together, which yielded a vector corresponding to the
NONOate delivery rate (fdel) required to maintain steady state.

fdel =
d [NONOate]

dt
+ kdeg · [NONOate]+ dNONOate (10)

Lastly, fdel was truncated at t = T, such that
∫ T

0 fdeldt = 24 − α.
In addition to determining dosing schedules to maintain

[NO] at specified steady state levels, we attempted to enhance
the antibacterial activity of NO by formulating the task as an
optimization problem. Specifically, we attempted to maximize the
amount of time [NO] was at or above the threshold to inhibit 99%
of cytochromes (∼1.2 µM) by using the MATLAB optimization
function fmincon. For this purpose, we considered dosing
schedules that could be captured by third order polynomials.
Parameters that were allowed to vary during the optimization
were the coefficients of the polynomial and the total delivery
time, and solutions were similarly constrained to cumulative
payloads of 24 µmol. We tried two different approaches for
initialization. In the first, the polynomial coefficients and delivery
time were obtained from a least-squares fitting to the 2.2 µM
steady state dosing scheme (best predicted scheme from steady
state approach). The optimization algorithm then used those
values and α from the steady state solution as a jumping off

point to maximize the amount of time at or above ∼1.2 µM
NO. This enabled a focused search around the best steady
state solution for better performing schedules. In the second
initialization approach, we used 100 sets of randomly selected
polynomial coefficients and values of α subject to a total payload
of 24 µmol, which effectively set the total delivery time for
each initialization. The optimization algorithm then used those
values as initial points to maximize the amount of time at or
above ∼1.2 µM NO. This allowed a broader swath of parameter
space to be searched for solutions better than the best steady
state solution. For both types of initialization, the optimization
procedure did not yield solutions that were better than the best
dosing schedule from the steady state approach. This could
have occurred due to the algorithm getting trapped in local
optima or third order polynomials giving insufficient flexibility
to reach globally optimal solutions. Given the depth and breadth
of potential algorithms and optimization formulations there
remains the possibility that better solutions than that provided
by the steady state approach could be found in future studies.
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Polycythemia vera (PV) is a slow-growing type of blood cancer, where the production of

red blood cells (RBCs) increase considerably. The principal treatment for targeting the

symptoms of PV is bloodletting (phlebotomy) at regular intervals based on data derived

from blood counts and physician assessments based on experience. Model-based

decision support can help to identify optimal and individualized phlebotomy schedules

to improve the treatment success and reduce the number of phlebotomies and thus

negative side effects of the therapy. We present an extension of a simple compartment

model of the production of RBCs in adults to capture patients suffering from PV.

We analyze the model’s properties to show the plausibility of its assumptions. We

complement this with numerical results using exemplary PV patient data. The model

is then used to simulate the dynamics of the disease and to compute optimal treatment

plans. We discuss heuristics and solution approaches for different settings, which include

constraints arising in real-world applications, where the scheduling of phlebotomies

depends on appointments between patients and treating physicians. We expect that

this research can support personalized clinical decisions in cases of PV.

Keywords: polycythemia vera, optimal control, modeling, numerical simulation, therapy scheduling, mixed-integer

non-linear optimization, cancer, decision support

1. INTRODUCTION

The disease polycythemia vera (PV) belongs to chronicmyeloproliferative neoplasms, meaning that
an excess of blood cells are produced. In particular, red blood cells (RBCs) are affected (Lichtman
et al., 2006). With an increasing number of RBCs in the human body, there is increased risk of
thromboembolic events (Marchioli, 2005). To prevent patients from suffering serious events, such
as strokes, heart attacks, or pulmonary embolisms, the density of the blood must be reduced. In
moderate cases of the disease, this can be achieved with blood-letting (phlebotomy) at regular
intervals (Tefferi et al., 2018).

In those cases, therapy schedules based on blood image data are proposed by physicians.
However, those schedules might not be optimal for each individual (Finazzi and Barbui, 2007).
These patients benefit considerably from a therapeutic strategy, that is able to predict the optimal
treatment time for the next phlebotomy. In this paper, therefore, the data-driven model for
erythropoiesis by Tetschke et al. (2018), verified for use on the data of healthy subjects, is extended
to include amplified cell production by PV. Model analysis is applied to derive properties that
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emphasize the model’s plausibility for this disease. Clinical
data from PV patients and in silico data derived from healthy
subjects are used to evaluate and compare different optimization
strategies for computing individual patient treatment schedules.
Such strategies are for the most part capable of including
constraints that appear in clinical applications, including
reasonable clinical treatment times.

Using our results, it might be possible to enable physicians
to schedule therapies individually based on a set of parameters
unique to each patient. Thus, on the one hand, the probability of
severe complications will decrease, when the time until the next
measurement is assumed to be too long. On the other hand, in
cases where the frequency of two consecutive measurements is
assumed to be too low, the patient will benefit from not needing
to go to a hematologist and the patient will be spared additional
blood withdrawals.

To our knowledge there is neither a published mathematical
model of erythropoiesis, that considers the disease PV, nor a
study discussing optimal treatment schedules for PV patients
by phlebotomy.

The paper is organized as follows: first, in chapter 2, we present
the materials and methods used for this research. In chapter
3 we display the results of the modeling and the optimization
approaches. Finally, we summarize and discuss our findings in
chapter 4. Given the interdisciplinary nature of this research
project, literature surveys are included in the corresponding
subsections of this paper.

2. MATERIALS AND METHODS

In this section, we present the concepts and methods for
modeling PV and for computing optimal treatment schedules.
First, biological properties necessary for the modeling process
are summarized. Then, a published compartment model for
erythropoiesis in healthy subjects is reviewed. Afterwards, the
acquisition of data from real and artificial patients is presented.
Finally, computational methods for verifying the proposedmodel
and for generating treatment schedules are discussed.

2.1. Biological Background
Understanding the relevant biological processes is crucial for
the following modeling process. To this end, basic information
about the physiological processes of erythropoiesis and of PV are
summarized in this section.

2.1.1. Summary of Erythropoiesis
The supply of oxygen from the lungs to tissues and the transport
of carbon dioxide back from tissues is central for themaintenance
of vital functions in the human body. This exchange of substances
is realized by erythrocytes (i.e., RBCs), which are biconcave
discoid cells in the blood stream containing the protein complex

Abbreviations: B&B, branch and bound; BFU-E, blast forming unit-

hematopoietic; CFU-E, colony forming unit-hematopoietic; DP, dynamic

programming; EPO, erythropoietin; Hct, hematocrit; MCH, mean corpuscular

hemoglobin; MIOCP, mixed-integer optimal control problem; OCP, optimal

control problem; PV, polycythemia vera; RBC, red blood cell; SUR, sum up

rounding; tHb, total hemoglobin mass.

hemoglobin. This protein complex binds the substances and
enables the RBCs to their part. At any given time, a healthy
adult human has a total of 2–3·1013 erythrocytes, with men and
women having about 5–6 million and 4–5 million erythrocytes
per microliter of blood, respectively.

Erythropoiesis is the process by which RBCs are produced
in the bone marrow. Beginning with stem cells, multi-potent
stem cells are matured through several levels of erythroid
progenitor cells, i.e., the Blast Forming Unit-Erythroid (BFU-
E) and Colony Forming Unit-Eryhroid (CFU-E), and several
levels of erythroblasts to bone marrow reticulocytes. These are
then released into the blood circulation as blood reticulocytes,
which then quickly grow into mature erythrocytes. During this
process, which takes ∼20 days, the cell undergoes major changes
including the removal of nuclei, organelles, and mitochondria to
provide more room for hemoglobin. This process is displayed in
Figure 1 in a simplified scheme. The mature RBC has no nucleus,
and it is incapable of cell division and regeneration of cell tissue.
Damaged cells are removed by phagocytes to prevent clogging.
This determines the mean life expectancy of RBCs in the blood
stream, which is ∼120 days in healthy adults (Jandl, 1987).
Sufficient iron concentration in the blood stream is necessary for
successful erythropoiesis.

The hormone erythropoietin (EPO) is mainly responsible for
the response of the body to changes in the amount of RBCs. It
acts like a negative feedback mechanism for erythropoiesis. The
EPO concentration in the blood circulation is inversely related
to the concentration of hemoglobin. High EPO concentrations
result in an increase to the RBC proliferation rate in the bone
marrow. Several precursor cell types are affected, especially CFU-
E production. This short summary can be complemented by
a more detailed overview of erythropoiesis in Lichtman et al.
(2006).

2.1.2. The Disease Polycythemia Vera
Polycythemia vera, also called primary polycythemia, is a
chronic myeloproliferative neoplasm. That is, the production of
blood cells increase to pathological levels. Most prominently,
erythrocytes (i.e., RBCs) are affected. This causes the main
symptoms of the patients: if the ratio of erythrocytes to the total
blood volume—which, in medical terms, is called the hematocrit
(Hct)—exceeds a certain threshold, the blood cells can clot. This
can cause thromboembolic events, which can lead to strokes,
myocardial infarctions, vein/arterial thrombosis, or pulmonary
embolisms. These events can also often be located in atypical
sides (Kiladjian et al., 2008; Dentali et al., 2014). While RBCs
are mainly responsible for the clotting, also leukocytes and
platelets as well as inflammatory mechanisms have an impact
on the thromboembolic events (Falanga and Marchetti, 2014;
Koschmieder et al., 2016).

If untreated, the mean life expectancy of patients suffering
from PV is only ∼18 months (Marchioli, 2005; Lichtman et al.,
2006). On the other hand, with treatment, a normal life span can
be assumed (c.f. Rozman et al., 1991).

Other symptoms of the disease are not fatal, but can strongly
reduce the quality of life of the patient. Most prominently,
aquagenic pruritus, a severe itching that patients experience from
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FIGURE 1 | Simplified schematic view of erythropoiesis. Certain cell stages over the age of the cell in days are displayed with a corresponding cell partition based on

the model by Tetschke et al. (2018).

contact with water, is observed in up to 70% of cases (Siegel et al.,
2013). Furthermore, patients suffer from headaches, hypertonia,
fatigue, weight loss, and night sweats (Policitemia, 1995; Scherber
et al., 2011). Also splenomegaly can be observed in PV patients.
As described in Marchioli (2005), PV patients have a higher risk
of developing other types of blood cancer over time, such as acute
myeloid leukemia or myelofibrosis. This risk is associated with
the age of the patient and the duration of the disease. After eight
years, the disease evolves into secondary post-polycythaemic
myelofibrosis in 15% of the cases (35% after 15 years, c.f. Alvarez-
Larrán et al., 2009). In 20% of these cases, the patients develop
acute myeloid leukemia (Mesa et al., 2005).

In low-risk cases, the basic therapy for PV is blood-letting
(phlebotomy):∼500 ml of blood on a regular basis (Tefferi et al.,

2018). As the body is compensating for blood loss through blood
plasma within a short amount of time yet requires several weeks

to produce new RBCs, the Hct can be temporarily reduced using

this treatment. In severe cases, this procedure is insufficient and
there is the need for cytoreductive therapy (or a combination of

both). It is currently unknown, how the frequency and volume

of phlebotomies should be calculated to give an optimal outcome

for the patient (Marchioli, 2005).
The most important clinical parameter for the planning of the

treatment ist Hct. Additionally, counts of leukocytes, platelets,
size of the spleen and other symptoms are taken into account
(Barbui et al., 2011, 2018). In clinical practice, a phlebotomy is
executed in a PV patient if the Hct is above 45% (Lichtman et al.,
2006). According to Finazzi and Barbui (2007), this threshold
might be inappropriate, because these findings were based on
retrospective studies with small sample sizes and methodological
shortcomings. They were unable to associate severe implications
withHct values between 40 and 55% in a larger prospective study.

Contrarily, in a more recent study (Marchioli et al., 2013) showed
that the rate of major thromboembolic events was significantly
higher, if a target Hct of 45–50% was used. They recommend
a target Hct of below 45%. Due to these conflicting results, the
complementation of the Hct treatment criterion by additional
information regarding individual patients might yield additional
insights. To the best of our knowledge, no such approach to doing
so exists.

The regulation of erythropoiesis no longer works in patients
suffering from PV. The underlying process has yet to be fully
understood, although there are plausible assumptions about it.
In the investigation by Eaves and Eaves (1978), it was observed
that in PV patients there is a partition in the CFU-E population.
In the first fraction of cells, EPO exerts a normal influence
when controlling the population, and in the second fraction,
the cells proliferate unbounded, even at extremely low levels
of EPO. In most (but not all) PV patients, a mutation of the
JAK2V617F gene is present (Pardanani et al., 2007). This is
associated with an uncontrolled proliferation of the progenitor
cells (Lichtman et al., 2006). However, the direct influence of the
mutation on erythropoiesis in PV is not fully understood. The
JAK2V617F allele burden, i.e., the fraction of genes affected by
that mutation, can be measured. More thorough understanding
of JAK mutations has recently led to an increasing influence on
therapy decisions in other hematopoietic diseases (Vainchenker
et al., 2008). However, it does not seem to have a direct impact on
Hct or the number of treatments (Silver et al., 2011).

2.2. Data-Driven Model for Erythropoiesis
in Healthy Subjects
A mathematical model of erythropoiesis in healthy adults was
developed in Tetschke et al. (2018). This simple compartment
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model focuses on the system dynamics after blood loss, and
it should be capable of capturing the relevant mechanisms in
the case of a phlebotomy in a PV patient. Using the model, a
suitable choice of model parameters was made such that the
model reflected the subjects individually. The simulation results
using this parameter set were verified using high-quality clinical
data. In addition, the identifiability of the model parameters was
positively investigated.

Basically, the model consists of three ordinary differential
equations, that characterize the maturation and differentiation of
a stem cell into an RBC until its death. Instead of incorporating
EPO directly, the model uses an indirect approach with the help
of the feedback function Fb(·). Thus, a decrease in the number of
RBCs in x3 results in an increased proliferation in x1.

The three compartment model for erythropoiesis by Tetschke
et al. (2018) is given by

ẋ1(t) = β ·
(

X0 − k1 · x1(t)
)

+ Fb(x3(t)) · x1(t)

ẋ2(t) = β ·
(

k1 · x1(t)− k2 · x2(t)
)

(1)

ẋ3(t) = β ·
(

k2 · x2(t)− α · x3(t)
)

Fb(x3(t)) = γ ·

(

1−
x3(t)

B

)

with the following model components:

• The compartments x1 [1] and x2 [1] reflect certain precursor
cells in the bonemarrow, that are committed to the erythrocyte
lineage. x1 includes CFU-E and early erythroblasts, which are
highly affected by EPO in the blood circulation. x2 denotes late
erythroblasts and reticulocytes, which are unaffected or only
slightly affected by EPO.

• The compartment x3 [g] contains the mass of mature
erythrocytes in the blood stream.

• X0 [d−1] denotes a constant inflow from the stem cell
compartment into the erythroid lineage.

• β [1] is a factor for EPO-independent proliferation. This is
assumed to be unique to the patient.

• γ [d−1] is a factor for EPO-dependent proliferation of early
precursor cells. This is also assumed to be unique to the
patient.

• k1 [d−1], k2 [d−1] and α [(gd)−1] are the transition and
apoptosis rates given by the literature (Tetschke et al., 2018). It
remains unclear whether these transition rates are dependent
on EPO. Here, they are assumed to be EPO-independent and
set to 1

8 ,
1
6 , and

1
120 , respectively, based on the literature values.

• In the case of healthy erythropoiesis, the existence of an
average normal erythrocyte level can be assumed, when
environmental conditions do not change drastically. The
average value is denoted by B [g].

• Fb(·) [1] is a negative feedback function based on the
fractional loss in x3 , meaning, that the function decreases
with increasing values of x3 and vice versa. This indirectly
incorporates the EPO dependency of the first compartment.
By only using this function as a feedback, it was implicitly
assumed that this is the only proliferation amplification factor
from blood loss. This assumption is reasonable, provided that
the blood loss is not too high, as, for example, in the case of

severe where anemia emergency reactions like the release of
stress reticulocytes (Lichtman et al., 2006) occur.

Blood removal of at most Vmax ml of blood can be realized
in a discrete way by removing u(t) · Vmax

Vpat
· x3 from the third

compartment or in a continuous way by modifying the equation
for ẋ3:

ẋ3(t) = β ·
(

k2 · x2(t)− α · x3(t)
)

− u(t) ·
Vmax

Vpat
· x3(t) (2)

Here, Vpat is the subject’s total blood volume in ml, and u(t) ∈
[0, 1] accounts for the application of (fractional) blood removal.
The unique steady state of (1) was shown to be

x̄ : = (x̄1, x̄2, x̄3) =

(
k1

α
,
k2

α
, 1

)

· B (3)

given that x1, x2 and x3 are positive and X0 : = α · B.
The model was verified using data from Pottgiesser et al.

(2008). There, blood loss of 500 ml in healthy adult subjects
with sufficient iron concentrations was taken into account. In
Tetschke et al. (2018), sufficient data from one re-saturation cycle
after a blood donation could personalize the variables β and γ of
themodel. The estimation of B further improves the quality of the
estimations, but in most cases this was not possible, as more data
was needed. Details regarding model assumptions, clinical data,
and numerical results can be found in Tetschke et al. (2018).

2.3. Data
The clinical parameterHct, which is used to determine necessary
treatment in clinical practice, suffers from serious drawbacks in
measurements. This is mainly from plasma volume deviations,
which can be significant in short amounts of time (Pottgiesser
et al., 2008; Otto et al., 2017). Further, Hct only reflects a relative
amount of solid blood particles. Rather, absolute values are
needed to compute the effect of phlebotomies.

Indeed, our models need to take into account the absolute
amount of erythrocytes in the body. As blood counts only provide
information relative to the withdrawn amount, the total blood
volume is needed for this computation. As described by Ertl
et al. (2007), most measurement techniques for blood volume
are invasive, and formulae for such estimations are imprecise.
Thus, in Tetschke et al. (2018) the total hemoglobin mass
(tHb) was used, which indirectly reflects the absolute amount of
erythrocytes. This is advantageous insofar as muchmore accurate
measurements can be made. In what follows, we use tHb, rather
than Hct or the number of erythrocytes.

2.3.1. Clinical Data
In cooperation with the Department of Hematology and
Oncology at the University Hospital Magdeburg, Germany,
we retrospectively collected data from patients suffering from
PV. The institutional ethics committee at the University of
Magdeburg endorsed the study procedures. Each subject gave
written informed consent before participation in this study.
Unfortunately, the data were gathered according to routine
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TABLE 1 | Details about three clinical patients used in 2.3.1.

ID Sex Age Time since

diagnosis (years)

Treatment

01 Male 45 6 Phlebotomy, chemotherapy since 5 years

02 Female 45 9 Phlebotomy only

03 Female 79 15 Phlebotomy, chemotherapy since 3 years

clinical practice, meaning the quality of the data for use in an
optimization study was poor: when treating patients, physicians
aim to see patients only when necessary. Thus, the density of
the data was quite low. Moreover, only standard blood counts
are regularly conducted. Such data suffers the effect of plasma
volume deviations and corresponding measurement errors,
as described above. Another problem arises with treatment.
Phlebotomy is the method of choice, as long as the disease
is not too severe. In severe cases, additional therapies with
drugs are adopted. For specific medication, a model of the
pharmacokinetics and pharmacodynamics of the drug would be
helpful. This is beyond the scope of this study, however.

Ultimately, we were able to identify three patient data sets
with a reasonable data density and quantity. In Table 1 details
about the three patients are displayed. Available data included
the relative number of erythrocytes (Ery in

[

Tpt/l
]

), the mean
corpuscular hemoglobin (MCH in

[

pg
]

), and covariates like the
height, weight, and sex of the patient. With the help of Nadler’s
formula (Nadler et al., 1962) an (error-prone) estimation of the
total blood volume in

[

l
]

was made. Then, tHb was computed
as the product of Ery, MCH, and the total blood volume. We
excluded data gathered in cases where the patient started a
complementary therapy with drugs.

As many patients are treated for several years, two of the three
data sets cover more than five years. One of the assumptions of
the model in Tetschke et al. (2018) was that subject-individual
parameters are only valid for a certain amount of time. Thus,
entire data sets should not be inspected. Instead, we identified
periods of time during which there were no drastic changes.
This was achieved with change-point analysis and the so-called
moving-sum approach by Cho et al. (2018).

2.3.2. Generation of in silico Test Data
Owing to the described problems arising from the collection
of clinical data, we used data from Pottgiesser et al. (2008)
and the resulting parameter sets β and γ obtained in Tetschke
et al. (2018), based on a prospective study with 29 healthy adult
male subjects using a measurement technique for obtaining tHb
measurements. Of the data, 28 data sets were used, as one set was
excluded in Tetschke et al. (2018).

For the artificial generation of parameters for PV patients
from those of healthy subjects, the rejection sampling method
(von Neumann, 1963) was used to obtain suitable λPV. These
λPV are suitable, if treatments are necessary and possible with
reasonable frequency. For that, a random λPV was drawn from
a uniform distribution on [0, 1]. With the heuristic approach
without constraints 2.4.2, a number of necessary treatments

TABLE 2 | Parameter sets of subjects from Tetschke et al. (2018) with five in silico

parameters λPV = λi for each subject as detailed in Section 2.3.2.

ID γ β B Vpat λ1 λ2 λ3 λ4 λ5

01 0.769 1.650 865.45 5530.04 0.405 0.418 0.512 0.513 0.521

02 0.388 0.867 885.42 4666.08 0.385 0.498 0.558 0.706 0.709

03 0.510 1.617 863.97 5265.93 0.326 0.393 0.413 0.480 0.549

04 0.323 0.424 854.15 5984.70 0.522 0.544 0.604 0.878 0.888

05 0.061 1.381 971.67 7734.16 0.192 0.321 0.334 0.367 0.419

06 0.590 2.615 1001.42 5096.65 0.290 0.331 0.343 0.354 0.415

07 0.262 1.518 964.59 7270.17 0.343 0.349 0.370 0.424 0.480

08 0.324 2.676 704.42 4091.19 0.216 0.243 0.340 0.371 0.433

09 0.356 0.891 958.55 9282.78 0.366 0.555 0.559 0.602 0.605

10 0.089 2.557 851.70 4588.62 0.199 0.207 0.298 0.391 0.396

11 0.243 0.925 1006.45 4610.27 0.384 0.385 0.533 0.615 0.652

12 1.003 1.409 932.51 6127.49 0.528 0.541 0.567 0.581 0.631

13 0.057 0.879 647.98 4017.69 0.198 0.369 0.428 0.506 0.583

14 0.762 0.460 1081.34 8260.98 0.639 0.743 0.767 0.787 0.845

15 0.344 2.132 939.61 6778.40 0.289 0.334 0.387 0.397 0.408

16 0.141 1.661 753.24 7102.67 0.226 0.339 0.349 0.350 0.379

17 0.470 0.544 900.53 5832.50 0.514 0.541 0.691 0.705 0.758

18 0.525 0.631 841.61 4872.18 0.529 0.661 0.689 0.695 0.847

19 0.423 1.525 786.47 5109.69 0.393 0.401 0.451 0.512 0.540

20 0.661 2.798 765.99 8486.20 0.328 0.334 0.341 0.342 0.360

21 0.686 1.943 908.60 5725.97 0.345 0.389 0.404 0.408 0.463

22 0.613 3.142 893.06 5438.46 0.278 0.303 0.305 0.337 0.342

23 0.421 1.528 695.05 4989.05 0.318 0.502 0.518 0.533 0.563

24 0.863 2.078 768.83 6182.47 0.435 0.454 0.469 0.476 0.479

25 0.414 1.172 687.85 5733.62 0.408 0.559 0.575 0.600 0.625

26 0.635 0.836 925.62 6168.52 0.659 0.681 0.682 0.708 0.746

27 0.952 1.596 869.00 6351.31 0.440 0.444 0.466 0.490 0.555

28 0.805 1.486 809.18 5987.13 0.472 0.497 0.507 0.527 0.551

Patient-specific parameters γ and β are given, along with the B value used in that study

and the calculated blood volume Vpat.

within 365 days is generated. A λPV where that number of
treatments is in [1, 26] is accepted. Otherwise, the value is
rejected. The interpretation is that the PV patient should be so
much affected by the disease that treatment with phlebotomy
at least once in a year is necessary. However, it should not be
needed more often than twice a month. For patients that are
even more sick, physicians proceed with chemotherapy anyway.
This process was repeated until, for each subject, five distinct λPV
were found.

This process yielded 140 artificially generated parameter sets
of PV patients. The generated values for the five λPV for each
subject were on average in the interval

[

0.34(±0.12), 0.6(±0.16)
]

with an overall average number of treatments of 15.56±6.56. The
subject parameters with generated λPV can be found in Table 2.

2.4. Computational Methods
In this section, the numerical methods and optimization
approaches are described. First, a parameter estimation problem
is solved on the available clinical data for proof-of-concept
simulations. Then, optimization approaches for the generation of
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treatment schedules for PV patients are presented and discussed.
The software used to evaluate the approach is stated in the
corresponding subsection. Themost relevant parts of the code are
available on GitHub (https://github.com/tetschke/PVschedule).

One main focus in this paper is the generation of optimal
treatment schedules for phlebotomies of PV patients. Important
properties of a suitable treatment schedule include the following:

1. Respecting an upper bound: the principle goal of treatment
is to decrease the density of RBCs in the blood (measured in
Hct) to reduce the symptoms of the disease and to reduce the
risk of fatal complications. For this purpose, with the help of
physicians, an upper limit for tHb (X3,up) is identified, which
should not be exceeded.

2. Minimizing the number of treatments: with a good choice
of dates for when treatments will be performed, one might
reduce the number of necessary treatments without violating
the proposed critical thresholds. This reduces the amount of
days in which the patient might have side effects because of
the treatment.

3. Incorporating restrictions of the physician: procedures in
hospitals or medical practices should be limited to regular
working hours. That is, weekends and night times should
not be regarded as feasible in an optimal schedule. Other
restrictions of the physicians can also be incorporated into
the schedule.

4. Varying the volume of a phlebotomy: in clinical practice, a
standard amount (500 ml) of blood is typically withdrawn in
a phlebotomy (Lichtman et al., 2006). This restriction can be
replaced with an interval of possible volumes, which can be
chosen individually for each patient.

5. Incorporating preferences of the patient: a patient suffering
from PV usually has a normal life span and can live a normal
live with all its obligations. Thus, it might be advantageous to
give the patient the means to prioritize possible time slots for
therapy. For instance, job-related appointments or a vacation
can be included in the planning with the help of a weighted
objective function.

The focus of this work lies on the first three properties. Properties
1 and 3 will be incorporated as constraints of the optimization
problem. The minimization of the number of treatments is
reflected in the objective function J. This can have the structure

J =

∫ T

0
u(t)dt (4)

in the case of a continuous problem formulation. In the integer
case it is

J =
∑

i∈T

Ui, (5)

where T is a subset of the used time discretization. A phlebotomy
is a continuous process in a very short amount of time compared
to the relevant time horizon for treatment planning. Therefore,
the interpretation as an integer control is physiologically sensible.

In contrast, the continuous objective function formulation
corresponds to a minimization of the removed blood volume.
Nevertheless, the latter one enables us to thoroughly analyze
the structure of the resulting optimal control and yields insights
into model properties. This justifies the use of these continuous
solutions for the generation of integer solutions with low
computational cost, as detailed in the next subsections.

For improved readability, the schedules generated by the
methods presented in the following sections are abbreviated
as follows:

• H-Schedule: Heuristic approach without constraints given by
the test case (section 2.4.2).

• HC-Schedule: Heuristic approach with constraints given by
the test case (section 2.4.2).

• C-Schedule: Solution of continuous optimal control problem
(OCP) (section 2.4.3).

• IP-Schedule: Integer programming approach (section 2.4.4).
• SUR-Schedule: Sum up rounding (SUR) (section 2.4.5).
• BB-Schedule: Rounding via branch and bound (B&B) (section

2.4.6).
• DP-Schedule: Dynamic programming (DP) (section 2.4.7).

The number of treatments for such a schedule is then abbreviated
by n∗, where ∗ is the one-, two-, or three-letter code of the
corresponding method. For example, nH describes the number
of treatments according to the heuristic approach without
constraints. This indexing with the respective letter code also
holds for other occurring variables.

As a general test setup for evaluating the optimization
methods, a time horizon of 365 days (October 1st to
September 30th) is considered. Treatments are possible
from Monday to Friday, where the first of October is
considered a Monday. In addition, restrictions of the clinic
are included as blocked times on days 81–95 and days
280–301. The interpretation of these blocked times is that,
around the winter and summer holidays, there are reduced
personnel in the clinic, such that routine treatments are not
performed. In Figure 2 an illustration of the restrictions can
be found.

The evaluations were performed on 140 in-silico-generated
PV patients, as described in section 2.3.2. All computations
were performed on a server with 8 cores (Intel Xeon E5-2640
v3, 2.6 GHz) and 64 GB of RAM, running Ubuntu 18.04.3
LTS. Time measurements were performed using the “clock()”
function from the Python package “time,” which, on Unix
systems, displays the used CPU time without interruptions by
other processes.

To present the following methods, it is sufficient to have a
model based on ordinary differential equations, that characterizes
PV. In section 3.1.1, themodel fPV is presented. For our purposes,
it here suffices to state that the model includes a fraction λPV
of affected progenitor cells, which influence the severity of the
disease. The model dynamics have the following structure:

ẋ(t) = fPV(t, x(t), λPV, u). (6)
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FIGURE 2 | Graphical view on the general test setup including restrictions of the clinic in red. Phlebotomies are only allowed during times denoted in white.

2.4.1. Proof-of-Concept Simulations
To get a first impression regarding the validity of the extended
model in 3.1.1, the data sets of PV patients presented in
2.3.1 were used to obtain patient specific parameter vectors
p. This parameter vector includes the formerly relevant model
parameters β and γ as well as the fraction λPV introduced by the
model extension.

The following parameter estimation problem with the least-
squares objective is formulated:

min
p

1

2

nη
∑

i=0

(

ηi − x3(ti)
)2

σ 2
i

+ φ(p) (7)

s.t. ẋ(t) = fPV(x(t), λPV, p, u(t)) (8)

x(0) =
(

x01, x
0
2, η0

)

(9)

where

• {t0 = 0, t1, . . . , tnη } are the time points where tHb
measurements were taken.

• ηi is the measurement value of tHb at time ti.
• x3(ti) is the corresponding model response at time ti.
• σi is the standard deviation of the measurement at time ti. As

all considered data were collected by the same method under
similar conditions, σ1 = 1 for all measurements.

• p is the chosen parameter vector with np entries (including x
0
1

and x02).

and the regularization φ is selected as

φ(p) =

np
∑

i=1

(

pi − p
prior
i

p
prior
i

)2

(10)

Here, φ(p) is a term that can be used to incorporate a priori
information. In our setting, regularization to known parameter
values for healthy subjects was taken from Tetschke et al. (2018).
The initial base value B was computed as the average over

all tHb measurements with a corresponding Hct value of 45%
or lower. This optimization problem is solved formulated as a
deterministic OCP using ampl_mintoc, a package for mixed-
integer optimal control problems (MIOCP), based on AMPL
(Fourer et al., 2002) and using IPOPT (3.12.10, Wächter and
Biegler, 2006).

2.4.2. Heuristic Approach
As displayed in 2.1.2 the aim of the treatment is to keep the
patient’s Hct level below 45%. To realize this, the standard
procedure in clinical practice is the following. The Hct value of
the patient is checked at regular intervals, selected in a fashion
that ensures the critical threshold is not exceeded. As soon as the
value becomes too high, a phlebotomy of constant volume takes
place. Transferring this idea into algorithmic notation yields
the following:

Algorithm 1: Heuristic approach

1: Set initial value X0 ⊲ (Initialization)
2: for i ∈ I \ {0} do
3: Xi = Xi−1 + F(Xi−1, fPV,1t) ⊲ (Integration)
4: if Xi,3 > X3,up: then ⊲ (Check for violation)
5: if i ∈ T : then ⊲ (Treatment if allowed)
6: Xi,3 = Xi,3 −

Vmax
Vpat

· Xi,3

7: else ⊲ (Shift treatment)
8: Find largest i∗ ∈ T with i∗ + idwell < i and
9: Set i = i∗

10: Xi,3 = Xi,3 −
Vmax
Vpat

· Xi,3

where

• I = {0, . . . ,N} is the index set corresponding to the
equidistant integration grid with step size 1t.

• T ⊂ I denotes the integration points in which a treatment
is possible.
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• F is the forward quadrature scheme (here, the Runge-Kutta-
scheme of order 4) with regard to Model (16).

• Vmax and Vpat are the constant blood volume per treatment
and total blood volume of the patient, respectively.

• idwell is the dwell time of the system, which represents the
minimal distance between two treatments.

For I = T , heuristic treatment schedules without test constraints
are generated (H-Schedules). Using T as in the general test
case described above, HC-Schedules are computed. One major
advantage to this approach is that both types of treatment plans
can be computed quickly (within a few seconds). However, the
treatment plans are not guaranteed to be optimal. Moreover,
this heuristic does not take the lower bound X3,lo into account.
Therefore, it is necessary to inspect other approaches.

2.4.3. Continuous Optimal Control Problem
Another point of view is to see the desired treatment schedule as a
solution to an OCP. To apply the solution in clinical practice, we
are interested in a mixed integer solution. The next two sections
deal with the generation of feasible and optimal integer solutions.
First, we showcase the relaxed OCP and generate continuous
treatment schedules (C-Schedules). An interpretation of these
schedules is that a phlebotomy can be done arbitrarily often with
arbitrarily withdrawn blood volumes. An exemplary illustration
of a continuous solution with the corresponding tHb trajectory
is displayed in Figure 3. Some of the rounding strategies in the
following sections are based on these relaxed solutions. Further,
the theoretical investigation of the solution structure can yield
insights into the underlying structure of the problem.

The continuous OCP for minimizing the number of
phlebotomies while allowing fractional treatments reads
as follows:

min
u(.)

∫ T

0
u(t)dt

s.t. ẋ(t) = fPV(x(t), λPV) t ∈ [0,T]
x(0) = x0
X3,lo ≤ x3(t) ≤ X3,up t ∈ [0,T]
u(t) ∈ [0, 1] t ∈ [0,T]

(11)

The objective function only indirectly accounts for the number
of necessary treatments. Actually, this formulation minimizes the
amount of withdrawn blood over the time horizon. A theoretical
analysis of the problem solution is given in Appendix A. This
analysis yields unique optimal control u∗ of the structure:

u∗(t) =

{

0 , x3(t) < X3,up

upath(t) , x3(t) = X3,up
(12)

This optimal control is intuitive in the sense that no treatment
is applied when unnecessary. Alternatively, phlebotomies are
reduced to a minimum, such that they approach the threshold
X3,up. The existence of this solution shows that, in general,
the OCP is solvable. Computationally, this problem is solved
with a non-linear programming formulation in CasADi (3.5.1)

(Andersson et al., 2019) using IPOPT (3.12.3, Wächter and
Biegler, 2006).

2.4.4. End Time Optimization Using Integer Approach

on Non-linear Program
Continuous blood withdrawal, as seen in the case of the relaxed
problem, can not be performed in clinical practice with currently
available tools. To find an approach that is closer to clinical
practice, an MIOCP with a discrete formulation is used. Let U =
{U1, ...,UN} and X = {X1, ...,XN}. Then the discrete formulation
is given by

min
U,X

∑

i∈T

Ui

s.t. Xi+1 =

(

1− Ui+1 ·
Vmax

Vpat

)

·
(

Xi + F(Xi, f (Xi),1t)
)

∀i ∈ I \ {N}
X3,lo ≤ Xi+1,3 ≤ X3,up ∀i ∈ I \ {N}
X0 = x0
Ui ∈ {0, 1} ∀i ∈ T

Ui = 0 ∀i ∈ I \ T

(13)

Here, I, T ,F ,Vmax, and Vpat are the same as in subsection 2.4.2.
Using this objective function, the system solution is not

unique. In fact, a solution with
∑

Ui = minU,X
∑

Ui does
not take into account when the next treatment will take place
after the end of the time horizon. A possible extension to avoid
this problem is to include the time point of the next necessary
treatment Tf after the end of the schedule. Although it is possible
to combine those two objectives, it is unclear how exactly the
individual components should be weighted. To circumvent this
problem, an iterative approach is proposed.

Using the heuristic approach with schedule constraints
T leads to a feasible treatment schedule, which gives an
upper bound uup for the necessary number of treatments.
Starting with uup, we fix the number of treatments in the
optimization problem and maximize Tf . We decrement the
number of treatments and repeat, until there are no more
feasible solutions. The optimization problem that needs iterative
solving is

min
U,X,XN+1 ,...,XNT

,Tf
−Tf

s.t. Xi+1 =

(

1− Ui+1 ·
Vmax

Vpat

)

·
(

Xk + F(Xi, f (Xi),1t)
)

∀i ∈ ITf \ {NTf }

X3,lo ≤ Xi+1,3 ≤ X3,up ∀i ∈ ITf \ {NTf }

X0 = x0
XNT = X3,up

Ui ∈ {0, 1} ∀i ∈ T
∑

i∈T

Ui = usum

Ui = 0 ∀i ∈ I \ T
(14)

Here, ITf = I ∪ {N + 1, . . . ,NTf } is an expansion of the former
integration index set I for additional integration points after
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FIGURE 3 | Exemplary result for an optimal relaxed treatment schedule. The continuous control function u (blue) is zero, as long as the tHb-value (black) is below the

upper bound (dashed, purple). As soon as the upper bound is reached, the control function increases exactly as much as necessary to keep the tHb-value at the

upper bound.

the times where controls are possible. Thus, T ⊂ I is selected
such that ∀i ∈ T : i ≤ N. The objective of minimizing −Tf

reflects the aim of postponing for as long as possible the first
phlebotomy after the end of the schedule with the given number
of treatments. The algorithm, then, is as follows:

Algorithm 2: Mixed Integer OCP with Tf

1: Solve the heuristic algorithm (1) and set uup to objective
2: usum = uup
3: Solve (14)
4: while feasible do
5: usum = usum − 1
6: Solve (14)

This problem is solved with BONMIN (Bonami et al.,
2008) using a non-linear programming formulation in CasADi.
Integer schedules (IP-Schedules) derived using this MIOCP
formulation have the advantage of being realizable in clinical
practice while still including the main ideas for optimal
treatment. However, this problem leads to an MIOCP, that is
computationally expensive. In general, MIOCP problems are
NP-hard. This already holds true for the linear, discretized
version of this problem class (Kannan and Monma, 1978). Thus,
for large |T | in particular, the problem is difficult to handle.
For rather small |T |, this approach can be investigated and
compared to the heuristic approach presented in subsection
2.4.2. In addition, using BONMIN on a non-linear problem
does not guarantee global optimality. The performance of
the software depends on the options used. In this paper, we
used the following options: variable_selection = most-fractional,
and tree_search_strategy = dive.

2.4.5. Sum-Up Rounding
Owing to the size of the MIOCP, as described in the previous
subsection, computations with standard solvers are only feasible
for a rather small number of possible integer control points.
Larger problem sizes might be more relevant. Indeed, more
control points per week or longer overall time horizons can be
included. Thus, it is worthwhile to inspect rounding strategies
and to compare them to the heuristic approach.

The SUR approach (Sager, 2005) exclusively uses the optimal
solution of the relaxed problem (11) to compute a binary
treatment schedule. Basically, the idea is to collect the relaxed
control in time and set the integer solution to one, as soon as a
certain threshold uT is reached. This collection is then reduced
by one, and, afterwards, the previous process is repeated.

We use the multiple shooting method on an equidistant time
grid for the computation of the relaxed solution u∗. The integer
solution at the discretization point ti using SUR can then be
computed as follows:

Ui =

{

1 , if
∑i

j=0 u
∗
j −

∑i−1
j=0 Uj ≥ uT

0 , else
(15)

In the standard SUR approach, uT is set to 1
2 . Owing to the

problem structure, we instead use uT = ε for SUR-Schedules,
where ε > 0 is close to zero. This is necessary because only the
relaxed solution is non-zero. If the upper bound X3,up is already
reached, treatment must be done immediately.

This approach has the advantage that it is easy to implement
and the computations are extremely fast, once the relaxed
problem is solved. Moreover, if the relaxed problem includes
blocked times tj, u

∗(tj) will be zero and Uj = 0 automatically.
The big disadvantage to SUR is that it is not obvious how to

include path constraints. The strategy only takes into account
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the relaxed solution. There is no guarantee that the upper bound
X3,up will be respected.

To summarize, although fast and intuitive to implement, SUR-
Schedules risk endangering the patient, owing to violations of the
treatment aim. Therefore, in clinical applications, the use of this
approach should be combined with safety strategies, such as the
use of a stricter upper bound X3,sumup, up < X3,up.

2.4.6. Rounding via Combinatorial Integral

Approximation
Another approach to generating integer solutions from the
relaxed solution is to adopt so-called combinatorial integral
approximation (Sager et al., 2011). For this, we used open-source
software called pycombina (Buerger et al., 2019). Here, a B&B
algorithm is implemented, that is able to include combinatorial
constraints with regard to binary controls. The standard B&B tree
is organized in a fashion, that branches forward in time.

Originally, the algorithmwas designed to approximate relaxed
controls with binary ones. For this purpose, it does not need to
take into account the actual states. Therefore, it is unable to deal
with path constraints and suffers from the same disadvantage as
the SUR approach.

This is why we adapted the algorithm to take into account
the states (and especially x3) in each iteration through forward
integration. If at time point ti one of the conditions X3,lo ≤
x3(ti) ≤ X3,up is violated, the corresponding branch of the
tree is no longer feasible and can be disregarded. This not only
helps to include path constraints, but also decreases the size of
the B&B tree.

This modified B&B version is able to generate feasible
solutions, if we also fix the control u to zero when no treatments
are possible. We used the prefixing option in pycombina to
include this into our problem formulation.

The overall quality of BB-Schedules generated by this
approach depends on the maximum number of iterations. As
the B&B tree tends to become very large, relatively few iterations
search through only part of that tree. This can lead to instances
where no solution can be determined, however, even though we
implemented the additional pruning of the tree for infeasible
solutions. Nevertheless, a large number of iterations leads to very
large run times. For our numerical results, we used the default of
five million iterations.

2.4.7. Dynamic Programming
A completely different algorithmic idea for the solution of (13) is
to generate treatment schedules by dynamic programming (DP-
Schedules). Here, discretization is done not only in time, but also
in the state space. This approach goes back to Bellman (1957).
Details can be found in Bertsekas (2012).

First, we introduce an equidistant grid x0 < x1 < · · · < xnx

with resolution 1x in state space and tabulate state transitions:
for each possible combination of a state value and a possible
control value, the corresponding result of an integration over the
next time interval must be stored. The result of the integration
usually does not match one of the grid points. This is why
rounding toward a valid grid point is necessary.

In our provided code this tabulation is stored with the help
of indices. Thus, the rounding is done in the following fashion:
Let i be a fractional value of a result of an integration. This value
is a convex combination of the two grid points closest to the
result. The value i is then rounded toward a valid grid point
i∗, if −0.5 · 1x ≤ i − i∗ − o · 1x ≤ 0.5 · 1x holds. For
the offset o = 0.0, rounding half up is applied, whereas for
o > 0, a more conservative rounding is applied. We test both
o = 0.0 and o = 0.4.

The tabulation is then used to compute a so-called cost-to-go
function. For each time point and state grid point this function
indicates the best possible choice from that state and that time
onwards. This is computed backwards in time. The last step is
the computation of the optimal control starting in suitable grid
points close to x0 with the help of the tabulation.

This approach is globally optimal with regard to the grid used,
as every possible combination of states and controls is evaluated.
However, this approach suffers from practical drawbacks, when
systems with many states are used, or when there are too many
grid points for each state. In the case of the MIOCP (13), only
three states have to be regarded and we consider only binary
control. For this reason, the algorithm might be a good choice.
We used 400 grid points for each of the three states.

After the initial tabulation, the algorithm has a linear
complexity in the time discretization. Therefore, this
approach is especially suited for schedule generation with
large time horizons. It is also easy to include constraints.
In our implementation, we worked with sparse matrix
structures to account for the exponential growth of the
state transition tabulation.

3. RESULTS

In this section, the results based on the previously introduced
methods are presented. The model proposed by Tetschke et al.
(2018) is extended, and we discuss necessary assumptions for the
biological process. The plausibility of this extended model is then
examined with both steady-state analysis and numerical proof-
of-concept simulations using clinical data from PV patients.
Then, the numerical results from heuristic generations of
treatment schedules are compared to those of other numerical
approaches on in silico patient configurations.

3.1. Mathematical Modeling of
Erythropoiesis in PV Patients
The three-compartment model by Tetschke et al. (2018) captures
the basic physiological processes of healthy erythropoiesis in
adults. We extend this model to capture PV as well. The small
number of free parameters in the original model also motivated
its suitability for this purpose: the amount of clinical data
describing PV patients is usually insufficient for large models.

In this section, we describe the proposedmodel for PV, analyze
its properties, and discuss simulation results using clinical data.
We generated suitable treatment plans using heuristic and
optimization-based approaches. The overall goal of treatment
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was to ensure the safety of the patient, while aiming to improve
quality of life.

3.1.1. Model Extension
Here, we discuss our extension of the model (1) to reflect
the relevant dynamics of erythropoiesis in PV patients. For
this, we follow the idea in Eaves and Eaves (1978) stated in
subsection 2.1.1. According to this study, a fraction of CFU-
E cells proliferates at a maximal rate, independent of EPO or
fractional blood loss. We introduce a parameter λPV, which
corresponds to this fraction and can take values between [0, 1].
Correspondingly, there is a fraction of cells 1−λPV that responds
in a normal way to EPO. A person not affected by PV will
correspond to λPV = 0, whereas higher values give means to
quantify the severeness of the disease. As the compartment x1
mainly consists of CFU-E cells, an intuitive model extension of
(1) is given as follows:

ẋ1 = β ·
(

X0 − k1 · x1
)

+ (1− λPV) · Fb(x3) · x1

+ λPV · γ ∗ · x1

ẋ2 = β ·
(

k1 · x1 − k2 · x2
)

(16)

ẋ3 = β ·
(

k2 · x2 − α · x3
)

Fb(x3) = γ ·
(

1−
x3

B

)

with γ ∗ denoting the growth rate of affected cells in x1. A
phlebotomy can be incorporated in the same way as Equation (2)
in section 2.2.

The model components are here discussed with respect to
their plausibility in the case of PV.

• β , k1, k2, γ : using this model extension by cell partition with
λPV leads to the assumption that cells affected by PV only
proliferate faster in x1, and otherwise behave like a healthy
cell. We note that there might be physiological processes not
covered by this model that affect other components, such as
the transition times between the compartments. However, we
assume that this is not the case and use the model variables
β , k1, k2, and γ as in Tetschke et al. (2018).

• α: there are conflicting studies regarding the average life span
of erythrocytes in PV patients. Depending on the investigation,
the average life span is either shortened or normal (see London
et al., 1949; Huff et al., 1950; Berlin et al., 1951). We will not
discuss this further here. We used α = 1

120 as in the healthy
case. We note that α might be different in PV patients and
might depend, for example, on progression of the disease,
reflected by λPV, or on patient-specific factors. This could be
inspected in a follow-up investigation, once suitable clinical
data are available.

• γ ∗: the model variable γ ∗ has a significant impact on
proliferation in PV patients, especially in those with a higher
number of affected cells described by high values of λPV.
To our knowledge, however, no study has investigated the
proliferation rate of CFU-E in PV patients based on the
fraction of affected cells. Therefore, an accurate guess for
the value of γ ∗ is not possible. In case of unknown model

variables, a numerical estimation based on suitable data is
optimal. However, there are many unknown patient-specific
variables, such as β , γ , λPV, and (in most cases) B. The
additional estimation of γ ∗ is unreasonable, given that data
of exceptional quality and quantity are unavailable. As the
available data do not often meet these criteria, one might opt
for a heuristic approach by assuming a dependency of γ ∗ on
other model variables, such as γ or β . By definition, γ reflects
a proliferation amplification of EPO-affected cells, such that
the use of the EPO-independent factor β seemsmore intuitive.
For our investigation, we used γ ∗ = β

10 .
• X0: the model variable X0 reflects the inflow from

hematopoietic stem cells to the erythrocyte lineage. As
the proliferation rate of PV-affected stem cells might also
be increased, one might assume X0 to be higher and to be
dependent on λPV. We assumed that a potentially enhanced
stem cell inflow is compensated by the proliferation rate γ ∗,
and we used X0 as in Tetschke et al. (2018).

3.1.2. Steady State Analysis
In most cases, the system’s steady state for the erythrocyte
mass x̄3 = BPV of PV patients should be at sufficiently
high levels such that long, before it is reached, treatment is
administered to prevent possibly fatal complications. However,
deriving information about the system’s steady states often yields
useful information about the system’s properties. In this case, we
inspected the relation between the new steady state erythrocyte
mass BPV and the steady state erythrocyte mass B without the
model extension.

Following the calculations in Appendix B, the steady state
erythrocyte mass BPV is given by

BPV(λPV) = B ·













− β·k1−(1−λPV)·γ−λPV·γ
∗

2·(1−λPV)γ
for λPV < 1

+

√
(

β·k1−(1−λPV)·γ−λPV·γ ∗

2·(1−λPV)γ

)2
+ β·k1
(1−λPV)·γ

,

β·k1
β·k1−γ ∗ , for λPV = 1

(17)

As described in the Appendix, we also found that this function
(using γ ∗ = β

10 ) is continuous for λPV ∈ [0, 1], such that only
the case where λPV = 1 must be thoroughly investigated. With
similar calculations, one can also show that BPV(λPV) increases
monotonously for λPV ∈ [0, 1].

To summarize the results, BPV is a continuous, monotonously
increasing function with BPV(λPV) ∈ [B, 5 · B] for λPV ∈ [0, 1].
This means that an increasing fraction of affected cells can
indeed lead to physiological complications, as the system tends to
reach critical erythrocyte levels. This is consistent with the main
physiological assumptions about the process.

3.2. Numerical Results
In this section, the numerical results using the proposed model
are presented. First, clinical data are evaluated in a proof-of-
concept simulation. Then, the computed treatment schedule
given by the heuristic method in section 2.4.2 is compared to
schedules computed by the other approaches given in 2.4.
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FIGURE 4 | Erythrocyte trajectories as a result of parameter estimation on three clinical data sets. The computed measurement values are given in red, and the

healthy base value B is displayed in purple.

In 22 of the available 140 test cases, no H-Schedules
could be generated, owing to the constraints. The remaining
118 H-Schedules were thus compared to the schedules from
other methods.

3.2.1. Proof of Concept Simulation
The three data sets of patients suffering from PV presented in
section 2.3.1 were used to assess the applicability of the model to
real-world data. The method described in section 2.4.1 was used
to obtain the patient-specific parameter vector p = (β , γ , λPV).
The results are displayed in Figure 4 and summarized in Table 3.

Taking into account all the problems with the collected data,
the fits of the trajectories appear satisfying from visual inspection.
Objectively, the R2 value of the three fits was 0.7. However, for
subjects 02 and 03, the parameters β and γ were both equal to
the lower bound set, owing to numerical restrictions. This might
be a sign of errors in the assumption of B, or in the calculation
of tHb values from Hct. More precise information about those
factors will drastically improve the numerical performance of
the method.

The good fit achieved by this method suggests that our
proposed model captures the essential dynamics of this
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TABLE 3 | Results of proof-of-concept simulation of clinical data from three

patients.

Patient ID β γ λPV B BPV R2

01 0.6 0.3 0.89 768.25 1314.20 0.89

02 0.2 0.1 0.62 501.04 607.02 0.76

03 0.2 0.1 0.61 540.17 650.21 0.45

TABLE 4 | Results of integer approach run time demonstration.

Days per week nH nHC nIP 1Tf[d] CPU time MIOCP (s)

1 4 5 5 0 954.8

2 4 5 5 0 17960.4

3 4 5 5 0 72239.5

4 4 5 5 0 195409.4

process. However, this must be verified using higher-quality
clinical data.

3.2.2. Evaluation of Integer Approach
In this section, we compare the HC-Schedules and the IP-
Schedules of the MIOCP approach in Algorithm 2. For
demonstration purposes, the IP-Schedule was compared to the
corresponding H-Schedule and HC-Schedule in one modified
test case. For this test case, subject 20 with λPV = λ2 was
used with a time horizon of T = 103 days. Per allowed day,
one time point for treatment was possible. Four sets of test
restrictions on weekdays were tested: treatments were exclusively
allowed on Monday (Mo), Monday and Wednesday (Mo, Wed),
Monday, Wednesday, and Friday (Mo, Wed, Fri), or Monday,
Wednesday, Friday, and Sunday (Mo,Wed, Fri, Sun)—beginning
the simulation with the first day being a Monday. An integrator
step size of 1

6 days was used. The results are displayed in Table 4.
Here, 1Tf[d] = TfHC − TfIP, where both TfHC and

TfIP are computed as the respective time points in which
the first treatment after the observed time horizon occurs. In
the documentation, we set 1Tf : = 0 when |1Tf| < 1

6 .
The interpretation is that a time deviation below this step
size is irrelevant, and small numerical differences should not
be incorporated.

In this test case, the results of the IP-Schedules and HC-
Schedules were without notable differences. However, whereas
the generation of HC-Schedules had a constant run time of only a
few seconds, the run time of IP-Schedules dramatically increased
(up to 2.3 days for the largest test case). This demonstrates that
the MIOCP approach is only suitable for very small test cases.
Therefore, applications for this approach to the general test case
in subsection 2.3.2 are unfeasible.

To compare the heuristic approach with theMIOCP approach
further, both algorithms were applied to a modified version of
the test case. It was modified with a smaller end time T = 103
permitting treatments only on 1 day per week (Mo) and only at
one time point per day.

In three cases, theMIOCP approach did not produce a feasible
solution. In all other cases, the number of treatments nIP and
nHC were equal. In those cases, differences only occurred with
different 1Tf. In two of the latter cases, the MIOCP schedules
were worse by |1Tf| = 3.62± 0.911 days. In five other treatment
schedules, the heuristic solution produced better results by
|1Tf| = 0.402 ± 0.1. Another six subjects were excluded, as no
treatment was necessary owing to the shortened time horizon. In
the other 124 cases, no significant differences between the two
approaches were found.

Exemplary results from three patient configurations are
displayed in Figure 5. Patient 01 with λPV = 0.51 is an example
of the general case, in which both generated treatment schedules
were identical. By contrast, for patient 02 with λPV = 0.56, the
IP-Schedule was worse, owing to a treatment at approximately
t = 84 days. As solutions generated using BONMIN can be
especially sensitive to the algorithmic options, this results could
likely be improved by testing more configurations. There are also
examples where the IP-Schedule was slightly better, such as the
case of patient 26 with λPV = 0.71.

The MIOCP optimization approach using BONMIN only
rarely yielded an improvement over the heuristic approach. The
original problem size (see subsection 2.3.2) had to be reduced
by a factor of 17 in terms of the number of integer variables,
to produce results in a reasonable amount of time. Nonetheless,
the run-times were long (920.22 ± 845.71 s). Therefore, the
use of standard integer optimization solvers seems inappropriate
for this problem. This motivated the investigation of other
heuristic approaches, such as rounding schemes, for generating
treatment plans.

3.2.3. Sum-Up Rounding
In this section, the HC-Schedules and the SUR-Schedules are
compared. One relevant property is the difference in the number
of treatments ndiff = nHC − nSUR of the schedules. The sum-up
method does not directly take into account the critical threshold
X3, up. Therefore, we evaluated the number of days in which the
threshold was violated (dviol).

In all 140 test cases, SUR-Schedules were successfully
computed. In 118 cases where the heuristic also found a feasible
solution, the sum-up approach on average had a lower objective
function value than the respective HC-Schedules, by an average
of n̄diff = 1.15 ± 3.92 treatments. However, using these 118
treatment SUR-Schedules, the patients tHb was above the critical
level for d̄viol = 58.93± 70.81 days of that year. This was also the
case for the 22 SUR-Schedules, with which the heuristic method
did not find a valid solution (d̄viol = 74.53 ± 38.4). There was
no case in which the SUR-Schedule was better (by having fewer
treatments or being the only approach that worked), with zero
days of violation.

We investigated the reduction in treatment ndiff by the sum-
up method and plotted it over the respective days of violation
dviol (see Figure 6). The data show that violations by the method
increased with further reduction in the number of treatments.
This was emphasized by a linear regression with a positive slope
(dviol, reg(ndiff) = 17.61 · ndiff + 30.04[days] with R2 = 0.42). The
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FIGURE 5 | Erythrocyte trajectories of three exemplary patients using IP-Schedules and HC-Schedules. The upper threshold (red, dashed) and the end of the time

horizon at T = 103 days (gray, dashed) are marked.

FIGURE 6 | Duration of constraint violation dviol over the difference in the number of treatments for each of the 140 test cases (blue). The purple dashed line shows a

linear regression over all instances with ndiff ≥ 0.
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TABLE 5 | Results of BB-Schedule in comparison to HC-Schedule.

Method # Successful n̄
*

Average CPU time (s)

HC 118 15.78± 7.34 7.3± 13.3

BB small 111 15.47± 7.21 26.9± 3.54

BB large 112 15.54± 7.21 7.3± 13.3

regression only considered the instances with a lower objective
function value in the SUR-Schedules.

In summary, the SUR-Schedules either had fewer treatments
than the respective HC-Schedules, with considerable
endangerment to the patient, or were similar or worse than
schedules with only slight endangerment in most cases. To
overcome these constraint violations, we can decrease the critical
threshold X3, up, although this would lead to more treatments.
Based on our investigation, the sum-up method performed
considerably worse, because it did not directly take the upper
bound into account.

3.2.4. Rounding via Branch and Bound
The BB-Schedule was considered as a rounding approach.
In contrast to the SUR-Schedule, the BB-Schedule respects
constraints. As a complete B&B tree grows exponentially in the
number of variables, the computations were run with a maximal
number of iterations. In Table 5 we present the default results of
pycombina (5 million iterations) and results from decreasing that
number to half a million iterations, which increased the speed of
the computations by a factor of nearly 10, omitting the time for
the solution of the C-Schedule (on average 26.48 s).

In comparison to the HC-Schedule, the results of the approach
are similar: 22 cases were not feasible with either approach.
Additionally, the BB-Schedule failed to find a feasible solution
with six patients in the version with a large iteration number (and
with seven patients in the faster version). In both cases, there
were 13 cases where the heuristic saved one phlebotomy, and two
cases where even two phlebotomies were saved in comparison to
the BB-schedule.

The results for the BB-Schedule can be improved by increasing
the permitted number of iterations even further, although this
would increase the average computation time.

3.2.5. Dynamic Programming
The DP approach generates treatment schedules by exploring
all possible schedules on a chosen grid. Those DP-Schedules
were compared to the corresponding HC-Schedules. Relevant
properties were the difference in the number of treatments
ndiff,0 = nHC − nDP,0 and ndiff,0.4 = nHC − nDP,0.4, and the
number of failed attempts for both rounding offsets. Moreover,
the computation time and the used RAM were documented. The
latter was the limiting factor of the approach.

Of all 140 patient data sets, the system memory was exceeded
in four configurations of subject 08 (λ1, λ2, λ4, and λ5) for both
offsets. Therefore, only the results for the other 136 data sets
were available. The system memory per configuration in most
cases was close to themaximum availablememory (∼50GB). The
results are presented in Figure 7.

Using the conservative rounding rule with offset o = 0.4,
in an additional 12 cases, no DP-Schedule could be produced.
The remaining 124 schedules on average were worse than the
heuristic schedules by n̄diff,0.4 = −3.06±1.71 treatments, with an

average violation of d̄viol = 0.2± 0.89 days. There was no case in
which a DP-Schedule needed fewer treatments than its respective
HC-Schedule.

For the commercial rounding rule with o = 0.0, in five
data sets, no feasible solution was produced by the DP method.
However, this approach was successful in four cases, in which
no HC-Schedule could be generated. For the 126 cases in
which both approaches succeeded, an average improvement of
the DP-Schedules by n̄diff,0.0 = 0.076 ± 1.69 treatments was

achieved with an average cost of d̄viol = 9.09 ± 8.52 days of
violation. For the four cases in which the heuristic rule did not
produce a schedule, the DP method had an average violation of
d̄viol = 5.08 ± 1.17 days.

There was no case in which an improvement from the DP
method had zero days of violation. However, in some cases, DP-
Schedules with only minor violations and a significant reduction
in the number of treatments were generated. For example, for
subject 02 with λ1, there was a violation of dviol = 32.33
days with very small offset from the upper bound, which then
reached its BPV, slightly below that threshold. As that threshold
would probably be selected with some safety region, this subject
might not need any treatment at all. Following the HC-Schedule,
three treatments were applied, because the upper bound must be
strictly respected. A similar case was inspected for subject 04 with
λ2, where the number of treatments was reduced by one when
dviol = 5.5 days of violation were tolerated. There were also some
cases in which the DP-Schedules were clearly sub-optimal (see
subject 25 with λ1).

Using DP with o = 0.4 often produced solutions, which were
feasible, but on average significantly worse than the heuristic
schedules. Using commercial rounding with o = 0.0 provided
the opportunity of finding better schedules, which only slightly
endangered the patient but increased the quality of life of the
patient. Therefore, this approach seems suitable for producing
alternative treatment schedules, which, in clinical practice, can
be compared to one another.

4. DISCUSSION

4.1. Model
To our knowledge, this is the first time that erythropoiesis
in PV patients has been described in a framework that
can simulate the dynamics of the disease. This is a first
step toward clinical decision support, with which medical
doctors can use simulation results to predict follow-up
treatments. Such a framework has the potential to improve
the treatment of PV patients significantly, while decreasing the
work-load of clinical personnel by reducing the number of
necessary appointments.

There are some drawbacks to the proposed model, however,
and these will be addressed in future work. First, the different
stages of erythropoiesis are simplified and summarized in few
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FIGURE 7 | Erythrocyte trajectories using DP-Schedules for both rounding approaches and HC-Schedules for three exemplary patients. X3,up is shown as the red

dashed line.

compartments. One can argue that too much information is lost
through the agglomeration of complex underlying phenomena.

Second, further investigation in this area is limited by the
data available. As PV is a rather rare disease, data sets are
difficult to come by. In addition, clinical measurements are
performed using Hct, rather than with more precise values, such
as tHb. The inclusion of tHbmeasurements in the clinical routine
would drastically improve the results provided by a modeling
framework, as discussed in Tetschke et al. (2018). Overall, the
use of more patient data with higher density and more precise
measurement techniques is necessary for the success of model-
based decision support.

Finally, PV is not yet fully understood. This makes the
modeling process difficult, as more black-box components must

be introduced. However, the modeling framework can support
medical research in this field. For example, investigations are
warranted regarding the shortened life span of RBCs which often
occurs in PV patients, and regarding the connection between
the fraction of affected cells λPV and the JAK2V617F allele
burden. Additional medical parameters might be introduced
into this model framework for this purpose, which can, in
combination with more clinical data, lead to new insights into
the disease.

4.2. Optimization
In the second part of this paper, we evaluated different methods
of generating treatment schedules for PV patients based on the
proposed model. An overview over the results is given in Table 6.
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TABLE 6 | Summary of relevant properties of the investigated methods for

generating treatment schedules.

Schedule H HC C IP SUR BB DP (0.0/0.4)

Integer solution X X x X X X X

No constraint violation X X X X x X x

Respecting restrictions of clinic x X X X X X X

Extension for weighted dates x x X X X (X) (X)

Run time practicable X X X x X (X) (X)

Memory practicable X X X X X X x

# Computed schedules (of 140) 140 118 140 0 140 112 136/136

# Feasible instances (of 140) 140 118 140 0 33 112 8/94

Fields with a Xshow that the respective method fulfills this property. In cases of a Xin

brackets, the method has this feature formally but with practical drawbacks. Unfulfilled

properties are marked with an “x”.

The heuristic method of generating schedules follows the
intuitive treatment design practiced by medical doctors. The
resulting H-Schedules and HC-Schedules can be derived quickly
and the schedules are integer solutions by design. Unfortunately,
the heuristic is less flexible with regard to the inclusion of new
features. As this method was sub-optimal in a formal sense, the
quality of this approach was evaluated in comparison to formally
derived optimization methods.

The investigated methods led to treatment schedules that
in most cases had an equal or higher number of treatments
in the observed time horizon, or included violations of safety
constraints. Both the I-Schedules and the BB-Schedules were
often similar to the respective HC-Schedules. The BB-Schedules
were in a few cases even slightly better than the HC-Schedules.
However, those approaches are difficult to realize, owing to high
run times. The generation of I-Schedules is only possible for
very limited time horizons and reduced treatment options. BB-
Schedules can be generated relatively quickly, but need a higher
run time for an increased rate of successful computation.

It is crucial to respect safety constraints to prevent
endangering patients. Therefore, the SUR-Schedules and the
DP-Schedules, which do not respect these safety constraints,
must be used carefully. The SUR-Schedules were in most
cases worse than the corresponding HC-Schedules, and often
had significant violations of the constraints. Any strategy
that uses this approach will require tighter safety constraints.
Consequently, this might lead to feasible treatment schedules,
but they would be significantly worse than the HC-Schedules.
Therefore, the sum-up approach is not recommended for
generating treatment schedules. By contrast, DP-Schedules in
many cases demonstrated comparable quality, without any
or with only minor constraint violations. There were even
cases in which the acceptance of a minor violation led to
considerably improved treatment plans. The major drawback
here is that the order of magnitude of the violations depends
on the selected discretization. This considerably influences
memory consumption. Although DP-Schedules can be used in
conjunction with the corresponding HC-Schedules, the high
demand for system memory renders the approach difficult
to realize.

Based on our investigation using a test configuration, the
heuristic method with its HC-Schedules seemed to be the
method of choice for generating treatment schedules. However,
the heuristic method is difficult to extend when the properties
of the treatments change. For example, as a quality-of-life
feature for the patient, day-based weights might be introduced,
assigning more weight to inconvenient days that are preferably
avoided. This would give the patient the opportunity to realize
treatment on more convenient days—offering more flexibility
than a strictly optimal treatment schedule. The patient can thus
avoid appointments that conflict with personal commitments.
Such day-based weights can be incorporated into all of the
other investigated methods. This would make BB-Schedules,
DP-Schedules, and (in smaller instances) IP-Schedules desirable
suggestions for patient treatment. In all cases, treatment
schedules can be used to support decision-making by medical
doctors when planning therapy.

Continuous treatment schedules were briefly discussed, but
only as a foundation for other approaches, such as the sum-up
method and the B&Bmethod. Currently, continuous phlebotomy
is technologically impractical in clinics, which makes C-
Schedules inapplicable. With increasing technological progress,
however, such a method might be derived in the future. Based
on the results of this paper, this would lead to superior treatment
compared to discrete approaches.

4.3. Conclusion
In this paper, a novel compartment model for PV patients was
derived from the data-driven model in Tetschke et al. (2018).
Theoretical model analysis and proof-of-concept simulations
on clinical data emphasize that this model delivers a plausible
description of changes in erythropoiesis from PV.

This gives the opportunity to simulate the disease patient
individually and to provide phlebotomy schedules based on this
information. Due to the model structure this can be achieved
using tools of mathematical optimization. Thus, in the future
many different further aspects of the clinical practice can be
included in the treatment design. For example, also a treatment
with chemotherapy could be included into the model to also
capture more severe cases of the disease. This is a first step toward
clinical decision support in the case of the disease PV.
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Computational models are most impactful when they explain and characterize biological

phenomena that are non-intuitive, unexpected, or difficult to study experimentally.

Countless equation-based models have been built for these purposes, but we have

yet to realize the extent to which rules-based models offer an intuitive framework

that encourages computational and experimental collaboration. We develop ARCADE,

a multi-scale agent-based model to interrogate emergent behavior of heterogeneous

cell agents within dynamic microenvironments and demonstrate how complexity of

intracellular metabolism and signaling modules impacts emergent dynamics. We perform

in silico case studies on context, competition, and heterogeneity to demonstrate the

utility of our model for gaining computational and experimental insight. Notably, there

exist (i) differences in emergent behavior between colony and tissue contexts, (ii) linear,

non-linear, and multimodal consequences of parameter variation on competition in

simulated co-cultures, and (iii) variable impact of cell and population heterogeneity on

emergent outcomes. Our extensible framework is easily modified to explore numerous

biological systems, from tumor microenvironments to microbiomes.

Keywords: agent-based model, cell population dynamics, computational modeling, emergent behavior,

microenvironment

1. INTRODUCTION

Computational models are in silico tools used to represent a system or phenomenon of interest,
with wide ranging applications in both experimental and clinical settings (Winslow et al., 2012;
Brodland, 2015). With increasingly high resolution and high throughput experimental techniques,
computational models become essential for summarizing, integrating, and exploring high
dimensional data sets. While reactive data-driven computational models are ubiquitous—from
simple, single equations fitting population level aggregate metrics to more complex differential
equation systems—we have yet to realize the full impact of proactive models to provide de novo
insights in cases where experimental techniques are inadequate or insufficient. Computational
modeling has the potential to overcome experimental limitations in three major areas: spatial and
temporal resolution, intra- and intercellular heterogeneity, and environmental context.
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First, biological systems exhibit spatial and temporal variation
as observed in cell fate commitment during development,
cell state commitment in pattern formation, and circadian-
regulated gene expression (Zernicka-Goetz, 2004; Zhang et al.,
2014; Manukyan et al., 2017). Models that are able to capture
such behavior with high temporal and spatial resolution allow
rigorous systems analysis and hypothesis testing that is often not
possible experimentally.

Second, biological systems are highly heterogeneous, both
between and within cell types. The immune system, for example,
is composed of a number of different cell types, each with its own
unique role. Studies have demonstrated remarkable phenotypic
variation within tumor cell populations (Dagogo-Jack and Shaw,
2017) and highly diverse species within microbial communities
(Eckburg, 2005). Homogeneous experimental systems fail to
account for this diversity and its role in shaping behavior. In
addition, heterogeneity within a computational model can be
measured and tuned precisely whereas the same quantification
and control in an experimental setting is much more difficult.

Finally, biological systems exist within diverse environmental
contexts. The tumor microenvironment, for instance, has
received significant attention as a major contributor to disease
prognosis (Balkwill et al., 2012; Quail and Joyce, 2013). Cells
cultured in 2D vs. 3D matrices display notable differences in
growth and behavior (Baker and Chen, 2012; Stock et al., 2016).
Studying cell population dynamics without the environmental
context may lead to inaccurate conclusions; computational
models provide a method for exploring cell behavior within
precisely controlled, dynamic environments.

Agent-based models (ABMs) are particularly well-suited for
addressing these areas to explore how complex, heterogeneous
interactions at the cellular level result in the emergence of spatial
and temporal dynamics at the cell population level (Thorne
et al., 2007; Yu and Bagheri, 2016). ABMs are a bottom-up
modeling technique in which autonomous agents follow a set of
rules that define their actions and interactions with each other
and their environment (Bonabeau, 2002). Specifically, ABMs
can readily incorporate agent heterogeneity and environmental
dynamics with high precision and resolution. Classically used
in the social sciences, ABMs have become increasingly popular
for studying emergent behavior in biological systems, including
bacterial biofilms and infection (Segovia-Juarez et al., 2004;
Gorochowski et al., 2012), tumor growth (Enderling et al., 2009;
Mehdizadeh et al., 2013; Walpole et al., 2015; Norton et al.,
2017), and immune interactions (Folcik et al., 2007; Pienaar et al.,
2015).

In this study, we introduce an extensible ABM framework
designed to interrogate heterogeneous cell systems within
dynamic environments with high spatial and temporal
resolution. A key feature of the model is flexibility in defining
agents and environments through interfaces and modular
intracellular components. We use the presented ABM to
investigate emergent dynamics in three relevant case studies: (i)
to compare cell population dynamics between colony and tissue
contexts, (ii) to explore competition between cell populations,
and (iii) to investigate the impact of heterogeneity on clonal
evolution and emergent dynamics.

2. RESULTS

ARCADE (Agent-based Representation of Cells And Dynamic
Environments) is built in Java, using the MASON library for
multi-agent scheduling and simulation (Luke et al., 2005) along
with a custom, extensible, interface-based framework for defining
agents and environments. At the start of a simulation, selected
agents and environments are added. MASON then runs the
simulation by stepping through agent rules at each time step
(representing 1 min, called ticks). A single simulation of 14 days
(20,160 ticks) requires 5–10min of CPU time on a computer with
Intel R© Core i7 Processor (8x 3.40 GHz) and 19.5 GB of RAM.

2.1. Interfaces Provide an Extensible
Modeling Approach
Java interfaces act as contracts between the underlying model
framework and the implementing classes, guaranteeing that a
certain set of methods are provided. By abstracting out how an
agent interacts with its environment, the model is agnostic to a
specific system and can be easily extended and customized.

Broadly, the model comprises three main packages—
simulation (sim), agents (agent), and environments (env)—
as well as visualization (vis) and utility (util) packages
(Figure 1A). The simulation package handles the processing of
inputs into simulation series, running the simulations, and saving
simulation results to output.

There are three types of agents. First, Cell agents represent
the physical cells within the system, such as tissue, immune,
or bacterial cells (Figure 1B). These agents are introduced into
the simulation and at each tick, they follow their rules defining
how they interact with their surroundings. Second, Module
agents are subcellular entities that represent a certain function
or behavior within a cell, such as metabolism, signaling, and
angiogenesis (Figure 1B). Finally, Helper agents provide a
mechanism for (i) outside perturbations to the system, such as the
introduction of new cell agents or a wound, and (ii) time delayed
behaviors by Cell agents, such as division or movement.

The environment is divided into three distinct layers, all of
which are integrated through a Location object. The Grid
is an abstract layer on which cell agents are contained and
can be defined in a variety of geometries (Figure 1B). Each
Lattice layer tracks nutrients or molecules of interest, such
as glucose or oxygen, and can also be defined in a variety of
geometries (Figure 1B). The geometry of the Lattice layers
does not necessarily need to match the geometry of the Grid,
allowing flexibility in how the environment is defined. Finally,
Component layers provide a mechanism for (i) changes in the
Lattice layers, such as diffusion or introduction of a drug, and
(ii) physical entities within the environment, such as a capillary
bed or matrix scaffolding.

2.2. Modeling Pipeline Emphasizes Flexible
Inputs and High-Resolution Outputs
The model can be run both in GUI form, for real-time
visualization of the simulation, or directly through command
line for rapid simulation (Figure 1C). Simulations are defined
using an XML (.xml) file describing one or more simulation
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FIGURE 1 | Overview of agent-based model framework. (A) Diagram of package structure and interfaces. Agents include Cell, Module, and Helper and

environments include Grid, Lattice, Component, and Location. By importing an interface, a class is guaranteed a certain set of methods with which it can

interact with objects of the imported interface. (B) Interfaces can be implemented into concrete classes in a variety of ways, depending on the system of interest.

Classes with solid border are implemented in our model. (C) Overview of the modeling pipeline. Inputs, defined with an XML (.xml) file, are parsed to create a

simulation series. Within the simulation series, for each random seed, a simulation instance is created. Environments and agents are added to the simulation instance.

The simulation is stepped, and data is output to a JSON (.json) file. Alternatively, the simulation can be run in GUI mode.

series (Supplementary Figure 1A). Simulations within a series
only differ in random seed, analogous to experimental replicates,
and multiple series can be defined within a single input file.

Each series is created by parsing the input file for three tags: (i)
simulation, which specifies model size as well as any profilers
for capturing simulation data, (ii) agents, which describes
the composition and parameters of cell agent populations, and
(iii) environment which defines environment parameters
(Figure 1C, Supplementary Figure 1A). For each seed, a
simulation instance is created. Environments and agents are
added into the simulation instance, and then the simulation is
run for the defined number of ticks. This process is repeated for
all random seeds in the series. Alternatively, if the GUI version
is selected, the simulation is run through the GUI interface once
environments and agents have been added.

Simulation outputs are saved as JSON (.json) files, a
common, lightweight file format that uses human-readable
text to store data (Supplementary Figure 1B). Each output file

includes a summary of the input file, full parameter lists for every
cell population, and location and cell information for all cells at
selected timepoints during the simulation.

2.3. Tissue Cell Implementation Exhibits
Representative Growth Dynamics
With the framework and pipeline in place, specific classes for
tissue cell agents are implemented within a hexagonal and
triangular environment (Supplementary Figure 2A). Each tissue
cell agent contains ametabolism and signalingmodule (described
in the following section) and can be in one of seven states:
apoptotic, necrotic, quiescent, migratory, proliferative, senescent,
and undecided (Methods). At each tick, each agent steps through
specific decisions based on its current state (Figure 2A). Briefly,
a cell agent increases in age and evaluates if its age is greater than
the defined lifespan. If so, it becomes apoptotic. The metabolism
module is simulated to update energy and volume of the cell.
If the cell is nutrient starved, it becomes necrotic; if there is
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FIGURE 2 | Tissue cell implementation. (A) Flowchart outlining tissue cell agent states and the rules governing transitions between them at each tick of the simulation.

(B) Diagram of the simulation environment structure comprising a hexagonal grid for cells and triangular lattices for molecules. Environment size is defined by radius R

from the center hexagon and a margin M between the cell grid and the molecule lattices. For 3D simulations, layers of 2D simulations are stacked at a height H from

the center layer. (C) Spatial distribution of cell states for colony (left) and tissue (right) growth for a single example replicate (random seed 0) at different timepoints

during the simulation. Scale bars represent 100µm. (D) Plot of total cell count for colony (top) and tissue (bottom) growth for each of n = 50 replicate simulations of

the model with default parameters and settings. Each line shows the trajectory for a single simulation. (E) Plot of average colony diameter for each of n = 50 replicate

simulations of the model with default parameters and settings. Each line shows the trajectory for a single simulation. Dashed and dotted lines indicate experimentally

observed diameters (Conger and Ziskin, 1983; Brú et al., 2003), respectively. (F) Violin plots of doubling times for the simulation (n = 50) calculated using (i) cell count

doublings at t = 7 days and (ii) exponential curve fit to the first 7 days of growth compared to doubling times of the cancer cell lines in the NCI-60 panel (Alley et al.,

1988), both aggregated and separated by pathology. Black circle indicates mean. (G) Scatter plot of colony diameter and number of cells in the colony for colonies

less than 160 µm in diameter across n = 50 replicate simulations. Solid lines show the relationship between colony diameter, number of cells in the colony, and

diameter of a colony cell using an equation fit to experimental data (Meyskens et al., 1984). Dotted lines show the same relationship for an equation of the same form

fit to the simulation results. Colors indicate the difference between the cell diameter calculated directly from the simulation data and the cell diameter predicted by the

experimental fit.
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insufficient energy, it becomes quiescent. The signaling module
is simulated to decide between migratory and proliferative states
for undecided cells. Cells who have reached their division limit
become senescent. This process repeats for all cell agents at the
current tick, and then for each tick of the simulation. Default cell
parameters are derived from literature (Supplementary Table 1).
In addition, we develop a null model for comparison in which
agents simulate their metabolism and signaling modules, but
instead randomly select a cell state (Supplementary Figure 2B).

The environment comprises a hexagonal grid containing
the cell agents and three triangular lattices in which glucose,
oxygen, and a signalingmolecule TGFα diffuse (Figure 2B). Each
hexagon is 30 µm in diameter (side-to-side) and contains, on
average, 2-3 cells depending on total cell volume. The grid is
R = 34 hexagons in radius with an M = 6 hexagon margin, for
a total environment diameter of approximately 2 mm, which is
consistent with experimental observations of the limiting radius
for non-vascularized tumors (Heymach et al., 2010). Because
the hexagonal grid and triangular lattices explicitly account for
volume, the 2D simulations are representative of a 3D cross
section. Simulations in 3D (H > 1) utilize layers of these 2D
simulations, with alternating cell grid offsets to prevent vertical
cell stacking. Default environmental parameters are derived from
literature (Supplementary Table 2).

With high temporal and spatial resolution, we monitor a
number of features over the course of the simulation. We ran
sample growth simulations of colony and tissue growth for 14
days with n = 50 replicates (i.e., different random seeds) and
timepoints taken every 12 h with default, untuned parameters
(Supplementary Table 3). The colony growth simulations are
initialized with a single cell agent, whereas the tissue growth
simulations are initialized with one agent in every location.

For a single simulation, we can capture the spatial distribution
of cell states (Figure 2C). For colony growth, as observed
experimentally, there is a rim of active cells—proliferative and
migratory—surrounding the inactive, quiescent core (Freyer and
Sutherland, 1986; Brú et al., 2003). The rim spans approximately
2 − 4 hexagonal locations (equivalent to 60 − 120 µm),
consistent with literature measurements, which span 25 − 100
µmacross a variety of glucose and oxygen concentrations (Freyer
and Sutherland, 1986). For tissue growth, there exists tissue
homeostasis with the majority of cells in a quiescent state.
Neither the distribution of the cell states nor the thickness of
the rim are specified in the model. Instead, these biologically
relevant behaviors emerge directly from agent and environment
interactions. In contrast, the null model, initialized with a single
cell agent as well as multiple cell agents, fails to show the observed
emergent spatial behavior (Supplementary Figure 2C). Instead,
the cells begin with an equal distribution of all cell states and
quickly fall into irreversible terminal states (necrotic, apoptotic,
and senescent) whereas the full rule set maintains active cell states
(Supplementary Figure 2D).

The total number of cells over time are shown in Figure 2D.
Fitting an exponential curve to the number of colony cells for
the first 7 days gives r2 = 0.98 ± 0.01 across the replicates,
indicating clear early exponential growth. The number of cells
in tissue growth quickly reaches a steady state, further indicating

tissue homeostasis. The diameter growth rate of the colony cells is
1.45 ± 0.09 µm · h−1, which falls well within the experimentally
reported range of 3.78 ± 3.14 µm · h−1 for 15 in vitro cell
lines (Brú et al., 2003) and 1.89 ± 1.09 µm · h−1 for 8 in vitro
tumor spheroids (Conger and Ziskin, 1983). The linear increase
in diameter and early exponential increase in cell number, both
experimentally observed behaviors (Brú et al., 2003; Talkington
and Durrett, 2015), emerge without explicitly defining these
growth dynamics in the model.

Finally, we consider emergent phenomena at the single cell
level. The average doubling time of cells in the simulation,
calculated at 7 days, is 34.6 ± 1.5 or 31.8 ± 1.4 h
depending on calculation method, is well within literature
values of doubling time for human cancer cell lines (Figure 2E)
(Alley et al., 1988). We also find that relationship between
colony diameter, cell number, and cell diameter match the
literature reported relationship between these features for
tumor populations (Figure 2F) (Meyskens et al., 1984). Again,
we note that the model was never trained to meet these
objectives; doubling time and the cell size relationships
emerge de novo.

For the following case studies, we consider temporal, spatial,
and parametric emergent phenomena quantified using three
metrics: growth rate, symmetry, and cell cycle length, respectively
(Methods). Note that cell cycle length is not equivalent to
doubling time; cycle length is the amount of time a cell takes to
complete its cell cycle and is tracked per cell while doubling time
is calculated based on change in population cell counts between
two timepoints. Model parameters are not specifically tuned or
derived to provide these specific emergent outcomes. In addition,
these metrics are not a function of initial state conditions, which
allows us to compare results between simulations.

2.4. Module Complexity and Model
Resolution Impact Emergent Population
Dynamics
To determine how the complexity of subcellular modules,
and thus model resolution, impacts emergent cell population
dynamics, we introduce metabolism and signaling modules with
complex, medium, simple, and random mechanistic detail. Here,
we consider simulations for every combination of metabolism
and signaling module. Note that for case study simulations, the
complex metabolism and complex signaling modules are used.

The metabolism module governs changes in cell energy and
volume as a function of external nutrient availability and internal
cell state (Figure 3A; Methods). Complex metabolism explicitly
accounts for both glycolysis and oxidative phosphorylation
pathways and produces an internal pyruvate intermediate.
Glucose uptake is based on cell surface area, which acts as a
proxy for the number of glucose receptors. Medium metabolism
implicitly accounts for glycolysis and oxidative phosphorylation
and glucose uptake is based on cell volume. Both complex and
medium metabolism use autophagy to regulate cell size. Simple
metabolism assumes constant glucose uptake, energy production,
and growth rate. Randommetabolism takes up a random fraction
of the external nutrients and uses a random fraction of internal
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FIGURE 3 | Metabolism and signaling module complexity. (A) Diagram summarizing the differences between complexities of the metabolism module. All modules

uptake glucose (G) and oxygen (O) from the environment through various mechanisms. Cell size regulation by autophagy is indicated by dotted ring. Only complex

metabolism explicitly accounts for a pyruvate (P) intermediate. Nutrient uptake can be variable (solid, black arrow), constant (solid, empty arrow), or random (dotted,

gray arrow). (B) Diagram summarizing the differences between complexities of the signaling module. The non-random modules interact with extracellular TGFα (T).

Number of rings indicate how many cellular compartments (i.e., membrane, cytoplasm, and/or nucleus) are explicitly included in the signaling network. Large dots

denote molecular species within the network and small dots denote regulatory interactions. (C) Time course of growth rate, symmetry, and cycle length for different

complexities of the metabolism and signaling modules, grouped by signaling module complexity. (D) Distribution of cell states as a function of distance from the center

of the colony at t = 2 weeks. Solid line, dotted line, and shaded area denote the mean, standard deviation, and range across n = 20 replicates. Light gray rectangle is

a visual reference for a distance of 0.3 mm from the center across all cell states.

glucose to produce cell mass. Metabolism module parameters are
derived from literature (Supplementary Table 4).

The signaling module governs the decision between
proliferative and migratory states as a function of the change in
concentration of active PLCγ (Figure 3B; Methods). Complex
signaling is a simplification of an established EGFR signaling
network (Zhang et al., 2007) consisting of 12 species and five
regulatory edges, spanning the nucleus, cytoplasm, and cell
membrane. Medium signaling does not explicitly include the
nuclear compartment, resulting in a network with seven species
and three regulatory edges. Simple signaling further removes the

cell membrane compartment for a network with four species
and three regulatory edges. Random signaling is uncoupled to
external TGFα and selects between the two states with a certain
probability. Signaling module parameters are derived from
literature (Supplementary Table 5).

We first consider the effect of these modules on the external
concentrations of glucose, oxygen, and TGFα, independent
of cell state and cell decision processes. Cell agents, fixed
in a quiescent state with no rules, are introduced into the
environment. When these agents contain only the metabolism
module, both glucose and oxygen consumption decrease with
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increasing metabolism complexity (Supplementary Figure 3A,
left). With random metabolism, glucose and oxygen
consumption are similar to complex metabolism given the
parameterization, suggesting that a correctly parameterized
simplification may be sufficient if only external nutrient
concentrations are of interest. There are no time dependent
effects; glucose and oxygen consumption quickly reach a
steady state.

However, when these fixed state agents contain only
the signaling module, TGFα shows time dependent effects
(Supplementary Figure 3A, right). Complex signaling exhibits
an early spike in TGFα before returning to equilibrium whereas
medium and simple signaling both exhibit a dip in TGFα
and establish new equilibriums. The major difference between
complex and simple/medium signaling modules is the number
of regulatory edges, emphasizing the importance of regulation
in biological systems. As expected, (i) TGFα is unaffected
when agents contain only the metabolism module and (ii)
glucose and oxygen are unaffected when agents contain only the
signaling module.

For agents fixed in a quiescent state with pairwise
combinations of modules, there are no significant
differences compared to simulating the modules in
isolation (Supplementary Figure 3B, left). When the
full rule set is added to cell agents, glucose and oxygen
consumption become more dependent on module complexities
(Supplementary Figure 3B, right).

We ran simulations for every combination of metabolism
and signaling module (Supplementary Table 3). Simulations
reflect 14 days of growth (timepoints taken every 12 h) and
reflect outcomes across 20 replicates. Growth rate increases
with higher non-random metabolism complexity, suggesting
more efficient utilization of nutrients to meet energetic and
growth requirements (Figure 3C). For a given metabolism
module complexity, signaling complexity changes early growth
rate dynamics (Supplementary Figure 3C), perhaps due to an
early compromise between the proliferation and migration
governed by PLCγ . The random metabolism module is
unable to meet energetic demands, resulting in negligible cell
growth. Symmetry increases slightly with increasing metabolism
complexity for a given signaling complexity or decreasing
signaling complexity for a given metabolism complexity
(Figure 3C; Supplementary Figure 3C). Overall, long term
symmetry is unaffected by module complexity, except in
simulations with random metabolism in which symmetry
is significantly lower. Cell cycle length ranges between 16
and 24 h. Higher metabolism complexity generally results in
shorter cell cycles; cells are able to more effectively utilize
nutrients to produce cell mass necessary for division (Figure 3C;
Supplementary Figure 3C). Within a given metabolism module,
higher complexity signaling results in a slightly shorter early cell
cycle (Supplementary Figure 3C).

All combinations of modules except those with random
metabolism produce cell colonies with a quiescent core
surrounded by a proliferative and migratory rim (Figure 3D).
There is a distribution of apoptotic cells for all cases except
for random metabolism, which results in a necrotic core

(Figure 3D; Supplementary Figure 3D). This difference further
highlights that the random metabolism module is unable
to regulate nutrient usage to produce sufficient energy for
the cell.

Overall, we observe key spatial and temporal behaviors that
only occur at certain levels of module complexity. For example,
extracellular TGFα concentration profiles are highly dependent
on the complexity of the signaling module and a necrotic
core emerges without a minimal complexity of the metabolism
module. Identifying such relationships offer guidelines on the
resolution of a computational model necessary to capture specific
behaviors in a given biological system.

2.5. Case Study 1: Cell Population
Dynamics Differ Between Colony and
Tissue Contexts
In vitro studies are ubiquitous in biological research, but they
remain limited in their ability to replicate the rich context
of the microenvironment (Kim et al., 2004; Hickman et al.,
2014). This limitation can result in misleading conclusions that
are not relevant or consistent in vivo (Fràter-Schröder et al.,
1987; Toledo and Wahl, 2006) or even in three-dimensional
in vitro culture (Wang et al., 1998). Our model can be used
to identify differences in emergent behavior as a function of
context. In doing so, we are able to (i) distinguish between
cases where the difference is irrelevant or negligible and assume
observations made in vitro hold in vivo, and vice versa, as
well as (ii) guide experimental design to avoid or compensate
in cases where the difference is significant. Here, we simulate
cells with variations in three parameters (crowding tolerance,
metabolic preference, and migratory threshold) in both colony
and tissue contexts, representing in vitro and in vivo experiments,
respectively (Figure 4A; Methods).

Growth rate is non-linearly sensitive to changes in crowding
tolerance and somewhat linearly sensitive to changes in
metabolic preference and migratory threshold (Figure 4B;
Supplementary Figure 4A). Large decreases in crowding
tolerance (< −40%) leads to a significant drop in growth rate as
cells are unable to successfully divide due to physical constraints.
No migratory threshold (−100%) also results in a drop in growth
rate as cells are unable to become proliferative. Symmetry
diminishes with both decreased crowding tolerance and
migratory threshold, but is essentially unaffected by metabolic
preference (Supplementary Figure 4A). Cell cycle length is
sensitive to crowding tolerance, and, to a lesser degree, migratory
threshold (Supplementary Figure 4A). Overall, the sensitivities
of different metrics to changes in parameter values are variable,
with crowding tolerance exhibiting highly non-linear trends.

We define the three representative cell populations based on
known cancerous phenotypes: A (crowding tolerance at +50%
of baseline), B (metabolic preference at +50% of baseline), and
C (migratory threshold at −50% of baseline). We also define
an unmodified cell population X (all parameters at baseline).
Each population exhibits distinct trends in population fraction
over time when simulated in combinations. The relative fraction
of population X generally decreases, confirming that all the
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of three metrics to variation in the three parameters calculated as (y − y0)x0/(x − x0)y0 where y is the metric value and x is the parameter value. Circle size indicates

relative fold change in sensitivity to the maximum for a given metric and parameter, circle color indicates absolute sensitivity, and inverse relationships are indicated by

a black border. (C) Relative change in population fraction for each of the four representative populations over time across all combinations under colony and tissue

contexts. Color indicates the other populations included in the simulation; black indicates all three other populations where included. (D) Time course of metric values

for the four representative populations under colony and tissue contexts. Violin plots show distribution of the metric value between contexts at time t = 2 weeks for all

population combinations (*) or for population combinations including the indicated population. (E) Heat map of the change in metric value between the (colony) −
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modified populations (A, B, and C) have growth advantages over
the unmodified population (Figure 4C). The relative fraction of
population A generally increases (Figure 4C). Populations B and

C show variable changes in fraction depending on which other
populations are present; they are able to outgrow population
X but not population A, and population C is able to outgrow
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population B (Figure 4C). These colony trends for populations
X, B, and C hold in the tissue context, but the early increase then
gradual return to the initial fraction for population A seen in the
colony context is not observed in the tissue context (Figure 4C).

With the addition of the generic background cell population
in the tissue simulations, increased tolerance for crowding
becomes a more valuable phenotype, resulting in a growth
rate comparable to that in the colony simulations (Figure 4D).
In the colony context, the advantage of increased crowding
tolerance (population A) becomes less important after the
initial burst of growth (Figure 4D). In the tissue context, there
is significantly lower symmetry for all populations (A, B, C,
and X) and higher cycle times for all populations, except A
(Figure 4D). While symmetry and cell cycle length show clear
separation in trajectories between the colony and tissue contexts,
growth rate exhibits overlap between contexts, suggesting that
growth rate is less sensitive overall to the addition of a generic
background population.

In general, when simulating combinations of the
four representative populations in a colony context, the
resulting overall population symmetry and cycle length
are near the average of the constituent populations
(Supplementary Figure 4B). However, growth rate tends to
be higher than the average of the constituent populations when
population A is included, even though population A alone has
the lowest growth rate. This behavior suggests a synergy in
cases where population A is grown with other populations.
In the tissue context, population growth rate and symmetry
are near the average of the constituent populations, but cycle
length is more likely to favor one of the constituent populations,
demonstrating that the addition of a generic background
population changes the emergent dynamics of the system such
that certain phenotypic modifications become more or less
advantageous (Supplementary Figure 4B).

Growth rate is generally higher in colony contexts, though the
increase depends on the constituent populations and decreases
over time (Figure 4E). Symmetry is consistently higher in colony
contexts. Cell cycle length is higher in tissue contexts, except
for combinations containing population A, where cycle length is
essentially equal between the two contexts during early growth
(Figure 4E).

Overall, we observe significant differences between the colony
and tissue simulation contexts across all three metrics of
emergent phenomena. The tissue context simulations generally
exhibit lower growth rates, decreased symmetry, and higher
cell cycle lengths, though population-dependent effects do exist.
These differences might help explain observations in cell culture
that are not consistent in animal models and highlights the
importance of context when designing both computational and
experimental models of biological systems.

2.6. Case Study 2: Cell and Module
Parameters Govern Competitive Fitness
Between Cell Populations
Biological systems rarely contain only a single population of cells;
they comprise complex cell-cell interactions that drive emergent

dynamics of the system. Cellular competition has been shown to
impact dynamics in a variety of contexts including development,
aging, and cancer (Gregorio et al., 2016; Merino et al., 2016).
Co-culture systems have been used to study such phenomena
(Kirkpatrick et al., 2011; Goers et al., 2014). Several variablesmust
be considered—cell composition, relative seeding and spatial
separation, culture dimensionality and local environment—all
of which affect temporal and spatial observations and present
challenges for data acquisition (Kirkpatrick et al., 2011; Goers
et al., 2014). Our model provides a platform for in silico co-
culture in which these variables can be easily and precisely tuned
and controlled. Here, we simulate a modified population along
with an unmodified, basal population to specifically interrogate
the how differences in cell phenotype and relative seeding affect
competitive fitness (Figure 5A; Methods).

The crowding tolerance parameter significantly impacts the
fraction and dominance of the modified population in co-culture
simulations (Figure 5B). Significant decreases in crowding
tolerance (−30, −40, and −50%) lead to a decrease in the
fraction of modified population relative to the initial fraction.
Any increase (+10,+20,+30,+40, and+50%) or, unexpectedly,
slight negative decrease (−10% and−20%) to crowding tolerance
leads to an increase in the fraction of the modified population.

Changes in the metabolic preference parameter result in
non-linear changes in the fraction of the modified population
(Figure 5B). Modifying the migratory threshold parameter
follows a linear trend; an increase or decrease in parameter values
results in a decrease or increase in the fraction of modified
population, respectively (Figure 5B). The non-linear trend of
metabolic preference indicates that the fraction of energy derived
from glycolysis has a complex relationship to population fitness
whereas the linear trend of migratory threshold suggests that a
cell more likely to commit to migration instead of proliferation
is a more competitive phenotype relative to the basal population.
For crowding tolerance, the multimodal responses indicate that
both an increased and decreased (to a certain limit) tolerance to
crowding can be advantageous.

The trends observed in changes in modified population
fraction as a function of modified parameter are reflected in
emergent behavior (Figure 5C). Differences in growth rate due
to changes in crowding tolerance are more prominent for
higher initial modified population (Supplementary Figure 5A).
Variations in the crowding tolerance parameter represent
different tolerances to mechanical stress during the competition
for space (Merino et al., 2016). The modified population with
an increased crowding tolerance is able to pack more densely
in the core of the cell colony whereas the population with a
slightly decreased tolerance is incentivized to grow outward;
both strategies are sufficient to outcompete the basal population
(Figure 5D; Supplementary Figure 5B).

Symmetry, a function of spatial distribution, is mostly
unaffected by competition, except with a decrease due to decrease
in crowding tolerance at high initial modified population
(Figure 5C; Supplementary Figure 5A). Cell colonies that look
spatially similar may have distinctly different composition at
the subcellular level (Supplementary Figure 5C). For example,
tumors may appear spatially homogeneous despite being
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composed of highly diverse subpopulations; a biopsy may only
represent a small fraction this diversity (Poleszczuk et al., 2015).
Similarly, microbial colonies, which are largely indistinguishable
spatially, may contain highly diverse mixtures of the component
cells in which competition is driven by cell morphology (Smith
et al., 2016).

Cell cycle length is also essentially unaffected for
metabolic preference and migratory threshold (Figure 5C).
However, increased and slightly decreased crowding
tolerance leads to increased cell cycle length (Figure 5C;
Supplementary Figure 5A). The increased tolerance for
crowding results in greater competition for nutrients, requiring
more time for cell growth before division. However, the benefit
of increased tolerance for mechanical stress outweighs the

disadvantage of a slower cell cycle; this tradeoff allows the
modified population to outcompete the basal population and
highlights the relative (and arguably non-intuitive) contributions
of different modes of competition.

Overall, we observe both linear (migratory threshold),
non-linear (metabolic preference) and multimodal (crowding
tolerance) relationships between the parameter values of the
modified population and the emergent behavior of the system.
The high temporal and spatial resolution of our simulations, in
combination with parametric sensitivity analysis, help identify
when, where, and how the modified population is able to
outcompete the basal population. In addition, identifying
the linearity and transition points of these relationships
provide insight into the mechanisms of the underlying cell-cell
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interactions. The multimodal relationship betweenmodifications
in crowding tolerance and growth dynamics, for example,
demonstrates that there exist two separate mechanisms by which
cells with an increased or decreased tolerance for mechanical
stress can successfully outcompete another population.

2.7. Case Study 3: Intra- and Intercellular
Heterogeneity Impact Clonal Evolution and
Emergent Dynamics
Cell heterogeneity is an intrinsic property of biological
systems, even within clonal populations (Raser, 2004; Lidstrom
and Konopka, 2010; Marusyk et al., 2012). Advancements
in experimental approaches have enabled observation and
quantification of heterogeneity at the single cell level (Schmid
et al., 2010; Walling and Shepard, 2011). However, while
heterogeneity can be measured, it cannot be systematically
varied. Given the ubiquitous nature of heterogeneity, it remains
important to distinguish between functional variation that
selectively arises to improve evolutionary fitness from intrinsic
variation that arises from random fluctuations (Altschuler and
Wu, 2010). Our model allows for explicit control of differences
between cell populations, variation in cell parameters, and
probabilities of stochastic processes. Here, we simulate growth
in both colony and tissue contexts to explore how heterogeneity
within and between cell populations impacts emergent responses
(Figure 6A; Methods).

Growth rate increases with increasing heterogeneity in colony
and tissue simulations (Figure 6B; Supplementary Figure 6A).
Higher background heterogeneity corresponds to lower
growth rate for all populations (A, B, C, and X)
(Supplementary Figure 6B). Symmetry generally decreases
for any increase in heterogeneity or background heterogeneity
(Figure 6B; Supplementary Figures 6A,B). Interestingly, the
change in growth rate and symmetry as heterogeneity increases
is not consistent across different background heterogeneities,
which suggests that background heterogeneity can mask
the effects of heterogeneity in the population of interest
(Figure 6B). Cell cycle length increases with increasing
heterogeneity for most populations; population A is minimally
affected (Figure 6B; Supplementary Figure 6A). Background
heterogeneity does not have a clear relationship to cycle
length; this emergent behavior appears to be less context-
dependent and more population-dependent, as previously noted
(Supplementary Figure 6B).

In general, regardless of context, population A increases
and population X decreases in fraction when simulated in
combination with other populations (Figure 6C). Population
A persists best in colony contexts at higher heterogeneity
(H ≥ 20) and persists best in tissue contexts at lower
heterogeneity (H < 20) (Figure 6C). Change in population
A fraction is unaffected by background heterogeneity
(Supplementary Figure 6C). Populations X, B, and C do
not have clear background heterogeneity trends, but generally
exhibit better population fraction outcomes in tissue contexts as
heterogeneity increases (Figure 6C).

The crowding tolerance parameter (Supplementary Table 1),
which is already higher in population A, is one of the
internal cell parameters now subject to heterogeneity in all
four representative populations. The increased heterogeneity in
the other populations, which are normally less competitive in
tissue contexts than population A, provides a mechanism by
which they can select for cells with a higher crowding tolerance.
This hypothesis is further supported by the observation that
populations B and C persist better in colony contexts, where
there is a weaker selective pressure for higher crowding tolerance
(Figure 6C). In addition, the distribution of the average value
of the crowding tolerance parameter across the replicates
shows a clear evolution toward a higher value (Figure 6D;
Supplementary Figure 6D).

The metabolic preference parameter (Supplementary

Table 4) shows a minor evolution toward a lower value in
the tissue context for population B, in which the parameter
was increased (Figure 6D). There is minimal evolution
of the metabolic preference parameter in the other cell
populations, suggesting that the basal value of metabolic
preference was optimal for the given environment conditions
in these simulations and that there exists a stronger selective
pressure in the tissue context (Supplementary Figure 6D). The
migratory threshold parameter (Supplementary Table 5) shows
a minor increase toward a larger value at very high heterogeneity
(Supplementary Figure 6D) for all populations. In almost all
cases, the variance of the distribution in average parameter
value across replicates increases from the initial distribution
(Supplementary Figure 6E).

The changes in metrics between simulated colony and tissue
contexts with the addition of heterogeneity generally match
trends seen without heterogeneity for symmetry and cycle length:
symmetry is higher and cycle length is lower in the colony context
(Figure 6E). Growth rate shows a significant dependence on
the degree of both heterogeneity and background heterogeneity.
There exist critical values of heterogeneity and background
heterogeneity for which growth rate in colony and tissue
contexts are comparable (Figure 6E). In this system, background
heterogeneity matters when growth rate and symmetry are of
interest, but is less important for cycle length (Altschuler andWu,
2010).

Overall, we observe heterogeneity-dependent emergent
behavior in both colony and tissue contexts. Higher heterogeneity
generally corresponds to higher growth rate, lower symmetry,
and longer cycle lengths, though there are population-dependent
effects as well. As a consequence of heterogeneity, cell
populations evolve toward certain parameter values such as
higher crowding tolerance. Exploring such trends identify how
heterogeneity within and between populations shapes emergent
population dynamics.

3. DISCUSSION

Computational models are critical for understanding biological
systems (Brodland, 2015; Yu and Bagheri, 2016). Agent-based
modeling in particular has seen increasing applications in biology
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(An et al., 2009; Gorochowski, 2016). A number of agent-based
modeling platforms exist, including Chaste (Mirams et al., 2013),
CompuCell3D (Swat et al., 2012), and FLAME (Holcombe et al.,
2012). We develop the first ABM that uses interfaces custom-
built to formalize the interactions within and among cells and
their environment.

We implemented a tissue cell system within the framework
and demonstrate that, with literature-derived parameters and
no additional parameter fitting, we produce biologically realistic
growth dynamics that are agnostic to a specific cell population.
Three case studies investigating cellular context, competition,
and heterogeneity demonstrate how our model provides unique
insight into biological systems in a manner that is infeasible to
probe experimentally.

First, we analyze the impact of specific cell parameters
and simulate representative populations in colony and tissue
contexts. Second, we systematically vary cell population
parameters and initial conditions of simulated co-culture
experiments to evaluate cellular competition. Finally,
we introduce tunable cell heterogeneity, both within the
representative populations and between the representative and
background populations. Tracking temporal, spatial, and single-
cell data of each simulation across multiple replicates identifies
non-linear trends and non-intuitive relationships. These
observations offer hypotheses on the underlying mechanisms
that could be validated experimentally.

Our framework is readily extensible across many biological
systems, with applications in a variety of areas including drug
development, personalized medicine, and synthetic biology.
The model can be tuned to a specific disease or patient
population context by varying cell parameters and altering the
simulation environment. For example, we could simulate a
highly glycolytic cancer growing in a patient with diabetes by
increasing the metabolic preference for glycolysis parameter and
setting a higher basal concentration of glucose in the simulation
environment. We can then test how various perturbations, such
as excision combined with radiation compared to excision alone,
affects the growth of the tumor. Here, the model acts as an
testbed with which to interrogate new strategies for drug design
and treatment.

This framework can also catalyze a new approach to
translational and personalized therapy by matching the model to
biopsy and imaging data from a patient. Here, the model acts as a
proxy with which to rapidly, inexpensively, and safely simulate a
wide variety of possible interventions to develop patient-specific
treatment regimes that offer more successful outcomes.

Finally, with the advent of engineered cell therapy (Kitada
et al., 2018), this framework can uniquely redirect efforts in
synthetic biology by predicting emergent outcomes. New agents,
representing engineered immune cells with modules specific
to their method of action, can be introduced to the model.
Varying parameters and rules of the these agents, such as receptor
density, binding strength, or target specificity, and observing the
emergent response of the system can identify key design targets
for effective cell therapy. Here, the model acts as a tool with
which to predict novel system response in order to generate
experimentally testable hypotheses.

In conclusion, our framework offers a new computational
approach to interrogate the complexity and emergence of cell
populations de novo. The intuitive nature of ABMs, in which
rules can be explained with natural language and parameters
are derived from literature values, helps bridge the gap between
computational theory and experimental application and provides
an opportunity for interdisciplinary collaboration (Cvijovic et al.,
2014). We do not present a “whole cell” model nor seek
to diminish the utility of reactive, equation-based approaches.
Rather, we acknowledge the inherently multi-scale nature of
biology and have designed a proactive, rule-based modeling
framework to encourage the development of constituent parts
by experts, and the investigation of their impact on emergent
behavior in a variety of systems. This framework can serve as
an invaluable resource that disrupts the status quo of current
research efforts.

4. METHODS

All source code for ARCADE is available on GitHub
at https://github.com/bagherilab/ARCADE.
MASON, a multi-agent simulation library required by
the model, is available at https://cs.gmu.edu/∼
eclab/projects/mason/.

4.1. Model Agents
For the tissue cell implementation, seven cell states were
defined: quiescent, migratory, proliferative, apoptotic, necrotic,
senescent, and undecided. The state defines which rules the
agent follows at each timepoint (Figure 2A). The undecided
state acts as a transition state; undecided cells decide between
migratory and proliferative states based on active PLCγ and
the migratory threshold (MIGRA_THRESHOLD) through the
signalingmodule (Zhang et al., 2007). Each cell agent is initialized
with a volume drawn from a normal distribution (mean =
CELL_VOL_AVG, standard deviation = CELL_VOL_RANGE)
and an age drawn from a uniform distribution (between 0 and
DEATH_AGE_RANGE).

4.1.1. Quiescent
Cells can enter quiescence through a variety of mechanisms
(Valcourt et al., 2012; Yao, 2014). Proliferating cells might become
quiescent without completing the cell cycle due to contact
inhibition (Gos et al., 2005), which occurs when (i) there are
no neighboring locations into which it can divide or (ii) cell
size exceeds the available space. Migratory cells might also
become quiescent through contact inhibition (Abercrombie and
Heaysman, 1953). Cells unable to meet energetic requirements
become quiescent (Valcourt et al., 2012). Tissue cell agents exit
quiescence through external growth signals, such as apoptosis of
a neighboring cell inducing compensatory proliferation or the
removal of contact inhibition (Valcourt et al., 2012; Yao, 2014).

4.1.2. Migratory
Cells that decide to migrate create a helper agent that is called
after a time delay corresponding to the distance the cells needs
to move (HEX_SIZE) and its movement speed (MIGRA_RATE).
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The cell identifies all neighboring locations, including its current
location, meeting the following criteria: (i) adding the new agent
does not increase the total cell volume over the volume of the
location (HEX_VOLUME), (ii) each agent, with the addition, exists
at a height lower than their tolerable height (MAX_HEIGHT),
and (iii) there are no more than 6 agents in the new location.
To enforce normal cell density, no more than one healthy (H)
cell agent is allowed in a location; the cancerous (C) and cancer
stem cell (S) subtypes do not follow this additional constraint.
To represent chemotactic movement (Zhang et al., 2007), each
location i is assigned a score S based on glucose concentration Gi:

S = α
R− ri + 1

2
+ (1− α)

[

β
Gi

G◦
+ (1− β)u

]

where α is affinity (AFFINITY), R is the distance from the center
of the migrating cell, r is the radial distance of location i from
the center of the environment, β is accuracy (ACCURACY), G◦

is the source concentration of glucose (CONC_GLUC), and u is
a random number drawn from a uniform distribution U([0, 1]).
If there are no locations that meet the criteria, the cell becomes
quiescent, representing contact inhibition (Abercrombie and
Heaysman, 1953).

4.1.3. Proliferative
Cells that decide to proliferate create a helper agent that is stepped
along with the rest of the agents until proliferation is complete
or the cell is no longer able to proliferate. At each tick, the
helper agent checks if (i) the cell is no longer proliferative, (ii)
the cell no longer exists at a tolerable height, or (iii) there are
no locations into which the cell can divide. For the latter two,
the cell becomes quiescent, representing contact inhibition (Gos
et al., 2005). Once (i) the cell has doubled in size, which is
controlled by the metabolism module, and (ii) sufficient time
for DNA synthesis has passed (SYNTHESIS_TIME), the helper
creates a new cell agent by dividing the parent cell volume and
module contents by 50%± 5%. The division count for both cells
is then incremented.

4.1.4. Apoptotic
Cells that reach an age above the average life span
(DEATH_AGE_AVG) have an increasingly high probability
of undergoing apoptosis (Elmore, 2007), defined by a cumulative
normal distribution (mean = DEATH_AGE_AVG, standard
deviation= DEATH_AGE_RANGE). Cells that become apoptotic
create a helper that is called after a time delay corresponding to
the duration of apoptosis (DEATH_TIME). The helper removes
the cell from the schedule and the grid—it is no longer stepped
and it no longer occupies space in the environment—which
represents the removal of cell debris and regulated nature
of apoptosis (Edinger and Thompson, 2004). Compensatory
proliferation is also mediated by the helper, which selects a
quiescent neighbor of the cell and sets it to proliferate (Fan and
Bergmann, 2008; Ryoo and Bergmann, 2012).

4.1.5. Necrotic
Cells under sustained energy deficits (ENERGY_THRESHOLD)
undergo necrosis (Edinger and Thompson, 2004; Zong, 2006).
These cells also have a probability of undergoing apoptosis

instead (NECRO_FRAC), to reflect themore continuous nature of
the decision between, and morphology of, necrosis and apoptosis
(Zong, 2006). Necrotic cells are removed from the schedule but
remain in the grid—it is no longer stepped, but continues to
occupy space—which represents the more disorganized nature of
necrosis (Edinger and Thompson, 2004).

4.1.6. Senescent
Cells that reach a replicative limit (DIVISION_POTENTIAL)
have a probability (SENES_FRAC) of becoming senescent or
apoptotic, due to uncertainty about what drives the decision
between the two states (Childs et al., 2014). Senescent cells remain
on the schedule and in the simulation, but are no longer able
to proliferate (Campisi and d’Adda di Fagagna, 2007). Senescent
cells might later become apoptotic/necrotic due to nutrient
deficiency (Wang et al., 2016), but will not apoptose due to age
(Campisi and d’Adda di Fagagna, 2007).

4.2. Model Environment
4.2.1. Coupled Hexagonal and Triangular Grids
Cell agents exist on a hexagonal grid of radius R using a
hexagonal coordinate system (u, v,w, z) such that (0, 0, 0, 0)
is the center of the environment (Figure 2B). For three
dimensional models (height H > 1), each hexagonal grid layer
(z = 1 − H, ...,H − 1) has alternating offsets: offset a in the
(−u,+w) and offset b in the (+u,−v) direction. The offsets
prevent the cell agents from stacking in columns when simulated
in 3D. Layer z = 0 always has no offset, offset a always has
offset b above, and offset b always has no offset above. Given a
location with coordinates (u, v,w, z), there are six equidistant
neighboring locations in the same layer: (0,+1,-1,0),
(0,-1,+1,0), (-1,+1,0,0), (+1,-1,0,0), (-1,0,+1,0),
(+1,0,-1,0); three equidistant locations above: (0,0,0,+1),
[(+1,0,-1,+1), (-1,+1,0,+1), (0,-1,+1,+1)],
[(0,+1,-1,+1), (-1,0,+1,+1), (+1,-1,0,+1)]; and three
equidistant locations below: (0,0,0,-1), [(-1,+1,0,-1),
(0,-1,+1,-1), (+1,0,-1,-1)], [(0,+1,-1,-1),
(-1,0,+1,-1), (+1,-1,0,-1)] where brackets indicate
the offset of the layer: [no offset, offset a, and offset b].

Each molecule (oxygen, glucose, and TGFα) diffuses on
triangular lattices using rectangular coordinate system (x, y, z)
associated with the main hexagonal grid (Figure 2B). Glucose
and oxygen are introduced from constant sources (CONC_GLUC
and CONC_OXY). Each hexagonal location corresponds to six
triangular lattice locations, indexed clockwise from the upper
center triangle by position p. When cell agents interact with
their local environment, average concentration across the six
triangular locations is used.

4.2.2. Molecule Diffusion
Diffusion of each molecule is calculated using a reaction-
diffusion equation:

∂C

∂t
= D∇2C + Ra + Rs

where C is the concentration, D is diffusivity of the molecule in
the environment (DIFF_GLUC, DIFF_OXY, or DIFF_TGF), Ra
is the rate of consumption/production of the molecule by the cell
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agents, andRs is the rate of production by the vasculature sources.
Consumption and production of molecules (Ra) and the source
production (Rs) are separately managed by cell agents and a sites
component, respectively, which leaves:

∂C

∂t
= D∇2C

A finite difference approximation for this equation in triangular
geometry (Huiskamp, 1991) is solved at each tick t to update the
lattice concentrations for the next tick t + 1t:

Ct+1t = Ct+
4D1t

31s2

(
3
∑

i=1

Ct
i − 3Ct

)

+δ
2D1t

1z2





2
∑

j=1

Ct
j − 2Ct





where 1t is the time step (1 s), 1s is the distance between
two adjacent triangular locations (half of HEX_SIZE), 1z is the
distance between layers (MAX_HEIGHT), i indexes across the
three triangular neighbors in a layer, j indexes across the two
neighbors above and below the layer, and δ is 0 if H = 1 and
1 otherwise.

To check stability of the finite difference approximation, we
perform a von Neumann stability analysis:

λ = 4D1t

(
1

1s2
+ δ

1

1z2

)

For stability, 0 ≤ λ < 1. If not satisfied, we use a pseudo-steady
state approximation:

Ct+1t =
1

3+ δ 31s2

1z2





3
∑

i=1

Ct
i + δ

31s2

21z2

2
∑

j=1

Ct
j





4.3. Metabolism Modules
All metabolism modules except for random metabolism
account for glycolysis and oxidative phosphorylation pathways
for producing energy (ATP) from glucose and oxygen with
a metabolic preference µ for glycolysis over oxidative
phosphorylation (META_PREF). The complex metabolism
module explicitly accounts for a pyruvate intermediate and
glucose/oxygen utilization is based on actual energy requirements
for the given tick. The medium metabolism module maintains
utilization based on actual energy requirements, but does not
use a pyruvate intermediate. The simple metabolism module
assumes utilization based on constant ATP production rate.
Default parameter values are given in Supplementary Table 4.

Several stoichiometric ratios are defined:

• Sglyc = ATP produced per glucose from glycolysis (2
ATP/glucose)

• Soxphos = ATP produced per pyruvate from oxidative
phosphorylation (15 ATP/pyruvate)

• SPG = pyruvate per glucose in glycolysis (2 pyruvate/glucose)
• SOP = oxygen per pyruvate in oxidative phosphorylation (3

oxygen/pyruvate)

4.3.1. Determine Nutrient Availability
At each tick (representing one minute), for each cell agent, the
external glucose Gext and oxygen Oext are calculated from the
environmental glucose G and oxygenO concentrations:

Gt
ext = G

t · V

Ot
ext = O

t · V · ρ

where V is the volume of the hexagonal location
(HEX_VOLUME) and ρ is the solubility of oxygen in tissue
(OXY_SOLU_TISSUE).

4.3.2. Consume Energy
Energy consumed Econs is given by:

Econs = v(E0 + Epr · xpr + Emi · xmi)

where E0 is basal energy consumption (BASAL_ENERGY),
Epr and Emi are additional energy consumed for proliferation
(PROLIF_ENERGY) and migration (MIGRA_ENERGY),
respectively, and xpr and xmi are cell state flags (mi = migratory,
pr = proliferative) which can be on (1) or off (0).

Energy requirement Ereq for the current timepoint includes
Econs and any additional energy E requirement remaining from
the previous time step:

Ereq = Econs + E
t−1

4.3.3. Uptake Glucose
Internal glucose Gint increases by glucose uptake:

Gt
int = Gt−1

int + Guptake

where glucose uptake Guptake varies by module complexity.
For random metabolism:

Guptake = Gt
ext · XGU

where XGU = random number drawn from a uniform
distribution U([0.005, 0.015]).

For simple metabolism:

Guptake = kU ·

(

Gt
ext

V
−

Gt−1
int

v

)

where kU = constant glucose uptake rate
(CONS_GLUC_UPTAKE).

For medium metabolism:

Guptake = kP · v ·

(

Gt
ext

V
−

Gt−1
int

v

)

·

(
1

Savg

)

where kP = ATP production rate (ATP_PRODUCTION_RATE)
and Savg = average ATP produced per glucose calculated as
µ · Sglyc + (1− µ) · Soxphos · SPG.
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For complex metabolism:

Guptake = kG · A ·

(

Gt
ext

V
−

Gt−1
int

v

)

where kG = glucose uptake rate (GLUC_UPTAKE_RATE) and
A = cell agent surface area based on the cell volume.

4.3.4. Calculate Nutrient Requirements
The amount of glucose required Greq, amount of pyruvate
required Preq (complex only), and oxygen uptake Ouptake, can be
calculated depending on module complexity.

For random metabolism:

G
glyc
req = XGR

Ouptake = Ot
ext · XOU

where XGR is a random number drawn from a uniform
distribution U([0.2, 0.4]) and XOU is a random number drawn
from a uniform distribution U([0.2, 0.5]).

For simple metabolism:

G
glyc
req =

µ · α

Sglyc

G
oxphos
req =

(1− µ) · α

Soxphos · SPG

Ouptake = min(Oext ,G
oxphos
req · SPG · SOP)

where α is the constant ATP production rate
(CONS_ATP_PRODUCTION).

For medium metabolism:

G
glyc
req =

µ · Ereq

Sglyc

G
oxphos
req =

(1− µ) · Ereq

Soxphos · SPG

Ouptake = min(Oext ,G
oxphos
req · SPG · SOP)

For complex metabolism:

Greq =
µ · Ereq

Sglyc

Preq =
(1− µ) · Ereq

Soxphos

Ouptake = min(Oext , Preq · SOP)

4.3.5. Generate Energy
Energy is generated through oxidative phosphorylation and
glycolysis based on internal glucose or pyruvate, depending on
the module complexity.

For oxidative phosphorylation with random, simple, and
medium metabolism, the amount of glucose needed in terms of
oxygen GO is calculated as GO = Ouptake/(SPG · SOP).

If Gint > GO:

E
oxphos
gen = GO · Soxphos · SPG

Gint = Gint − GO

If Gint ≤ GO:

E
oxphos
gen = Gint · Soxphos · SPG

Gint = 0

Ouptake = Gint · SPG · SOP

For oxidative phosphorylation with complex metabolism, the
amount of pyruvate needed in terms of oxygen PO is calculated
as PO = Ouptake/SOP.

If Pint > PO:

E
oxphos
gen = PO · Soxphos

Pint = Pint − PO

If Pint ≤ PO:

E
oxphos
gen = Pint · Soxphos

Pint = 0

Ouptake = Pint · SOP

For glycolysis with random, simple, and mediummetabolism:

If Gint > G
glyc
req :

E
glyc
gen = G

glyc
req · Sglyc

Gint = Gint − G
glyc
req

If Gint ≤ G
glyc
req :

E
glyc
gen = Gint · Sglyc

Gint = 0

For glycolysis with complex metabolism:

If Gint > Greq:

E
glyc
gen = Greq · Sglyc

Gint = Gint − Greq

Pint = Pint + Greq · SPG

If Gint ≤ Greq:

E
glyc
gen = Gint · Sglyc
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Gint = 0

Pint = Pint + Gint · SPG

Note that for complex and medium metabolism, between
oxidative phosphorylation and glycolysis, additional glucose can
be diverted through glycolysis to compensate for an energy deficit
(E < 0 and Gint > 0) in cases where there is not enough oxygen
for complete oxidative phosphorylation. The two pathways do
not occur sequentially in real systems so this step ensures that
the glycolysis pathway can be used to produce energy under
hypoxic conditions.

Greq = max

(

Greq,
−(E − Econs + E

oxphos
gen )

Sglyc

)

4.3.6. Update Energy
The final energy level, for all complexities, is given by:

E
t = E

t−1 + Egen − Econs

where Egen = E
oxphos
gen + E

glyc
gen for complex metabolism.

4.3.7. Generate Cell Mass
Cells will generate cell massm during (i) proliferation and (ii) size
maintenance, depending on module complexity, when not under
an energy deficit (E ≥ 0). Cells use a fraction of their internal
glucose and pyruvate fm (FRAC_MASS) to produce cell mass. The
cell aims to main a critical massmcrit .

For random metabolism where (xpr = 1 andm < 2mcrit):

1m = XU

[
Gint

φ

]

Gint = Gint − XU · Gint

where XU is a random number drawn from a uniform
distribution U([0, 1]) and φ is the glucose recovered from cell
mass (MASS_TO_GLUC).

For simple metabolism where (xpr = 1 and m < 2mcrit and
Gint > kM · ρ · φ):

1m = kM · ρ

Gint = Gint − kM · ρ · φ

where kM is a constant growth rate (CONS_GROWTH_RATE) and
ρ is cell density (CELL_DENSITY).

For medium metabolism where (xpr = 1 and m < 2mcrit) or
(m < 0.99mcrit):

1m = fm

[
Gint

φ

]

Gint = Gint · (1− fm)

For complex metabolism where (xpr = 1 and m < 2mcrit) or
(m < 0.99mcrit):

1m = fm

[
λ · Gint

φ
+

(1− λ) · Pint

SPG · φ

]

Gint = Gint · (1− fm · λ)

Pint = Pint · (1− fm · (1− λ))

where λ is the relative contribution of glucose and pyruvate to
cell mass (RATIO_GLUC_TO_PYRU).

4.3.8. Consume Cell Mass
For complex and medium metabolism, a cell consumes cell mass
through autophagy (Glick et al., 2010) when (i) it is under an
energy deficit and is larger than the minimum viable mass (E < 0
and m > mmin) or (ii) it is not under and energy deficit, is above
its desired size, and it not proliferating (E ≥ 0 andm > 1.01mcrit

and xpr = 1):

m = m− kA

Gint = Gint + kA · φ

where mmin is the minimum mass the cell agent tolerates
(MIN_MASS_FRAC) and kA is the rate of autophagy
(AUTOPHAGY_RATE). Simple and random metabolism do
not have a mechanism to consume mass.

4.3.9. Update Cell and Environment
Cell volume is updated from cell mass m using cell density ρ as
v = m/ρ. For complex metabolism, interval pyruvate is removed
through conversion to lactate at rate kL (LACTATE_RATE):

Pint = (1− kL) · Pint

The external glucose and oxygen environments are updated
based on final uptake by the cell:

G
t+1 = G

t ·

(

1−
Guptake

Gt
ext

)

O
t+1 = O

t ·

(

1−
Ouptake

Ot
ext

)

4.4. Signaling Modules
The complex signaling module is based on a published EGFR
gene-protein interaction network (Athale et al., 2005; Zhang
et al., 2007). The medium and simple signaling modules
are further simplifications of this network. For the random
signaling module, cells become migratory with a certain
probability (MIGRA_PROB). Default parameter values are given
in Supplementary Table 5.

At each tick (representing 1 min), for each agent, the external
TGFα concentration is determined from the lattice. The system
of equations is iteratively solved using a forward Euler method
with time steps of 1 s. The external TGFα concentration in the
lattice is then set to the new value. Cell agent state is defined by
the relative fold change 1 in active PLCγ :

1 =
max([PLCγ ]t , [PLCγ ]t−1)

min([PLCγ ]t , [PLCγ ]t−1)
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where t is the current tick. Cells in an undefined state with
1 greater than migratory threshold θ (MIGRA_THRESHOLD)
become migratory; otherwise they become proliferative:

{

1 > θ : xmi = 1 xpr = 0
1 ≤ θ : xmi = 0 xpr = 1

}

where x is the cell state flag (mi = migratory, pr = proliferative).

4.4.1. Regulatory Weighting
Regulatory interactions are simplified into weights w of the
following form:

wk = 1±
Xi

WK+ Xi

where i indicates the regulatory species, ± indicates an increase
(+) or decrease (−) in rate, and WK is the corresponding
weighting parameter given in Supplementary Table 5.

4.4.2. Uptake and Transport
For simple signaling, extracellular TGFα (X1) forms a complex
with EGFR and is internalized into cytoplasmic TGFα-EGFR
(X2). Membrane EGFR is not explicitly considered. Inactive
PLCγ (X3) converts to active PLCγ (X4) and vice versa (Athale
et al., 2005; Zhang et al., 2007).

dX1

dt
= k6 − k1X1wGwC − k3X1

dX2

dt
= k1X1wGwC − k2X2

dX3

dt
= k5X4 − k4(1− X4)wP

dX4

dt
= k4(1− X4)wP − k5X4

For medium signaling, extracellular TGFα (X1) and
membrane EGFR (X2) form a TGFα-EGFR complex (X3)
that autophosphorylates into p-TGFα-EGFR (X4) (Athale
et al., 2005; Zhang et al., 2007). Unlike complex signaling, the
translation of TGFα and EGFR are no longer explicitly included;
TGFα secretion and EGFR insertion occur at constant rates.
The complex is internalized into cytoplasmic TGFα-EGFR (X5),
which can then dissociate. Inactive PLCγ (X6) converts to active
PLCγ (X7) and vice versa (Athale et al., 2005; Zhang et al., 2007).

dX1

dt
= k−1X3 − k1X1X2 − k7X1 + k11

dX2

dt
= k−1X3 − k1X1X2 − k6X2 + k10

dX3

dt
= 2k1X1X2 − 2k−1X3 − k2X3wG + k−2X4wC − k3X3

dX4

dt
= k2X3wG − k−2X4wC − k4X4

dX5

dt
= k3X3 + k4X4 − k5X5

dX6

dt
= k9X7 − k8(1− X7)wP

dX7

dt
= k8(1− X7)wP − k9X7

For complex signaling, extracellular TGFα (X1) and
membrane EGFR (X2) form a TGFα-EGFR complex (X3)
that autophosphorylates into p-TGFα-EGFR (X4) (Athale et al.,
2005; Zhang et al., 2007). The complex is internalized into
cytoplasmic TGFα-EGFR (X5), which can then dissociate into
cytoplasmic EGFR (X6) and TGFα (X7). Both EGFR and TGFα
are translated from EGFR RNA (X8) and TGFα RNA (X9),
respectively (Athale et al., 2005; Zhang et al., 2007). Inactive
PLCγ (X10) converts to active PLCγ (X11) and vice versa (Athale
et al., 2005; Zhang et al., 2007). EGFR RNA and TGFα RNA
are generated from a nucleotide pool (X12) (Athale et al., 2005;
Zhang et al., 2007).

dX1

dt
= k−1X3 − k1X1X2 + k9X7 − k11X1

dX2

dt
= k−1X3 − k1X1X2 + k8X6 − k−8X2 − k10X2

dX3

dt
= 2k1X1X2 − 2k−1X3 − k2X3wG + k−2X4wC − k3X3

dX4

dt
= k2X3wG − k−2X4wC − k4X4

dX5

dt
= k3X3 + k4X4 + 2k−5X6X7 − 2k5X5

dX6

dt
= k5X5 − k−5X6X7 + k14X8 − k6X6 − k8X6 + k−8X2

dX7

dt
= k5X5 − k−5X6X7 + k15X9 − k7X7 − k9X7

dX8

dt
= k16X12wE − k18X8

dX9

dt
= k17X12wT − k19X9

dX10

dt
= k13X11 − k12(1− X11)wP

dX11

dt
= k12(1− X11)wP − k13X11

dX12

dt
= −k16X12wE − k17X12wT + k18X8 + k19X9

4.4.3. Initial Concentrations and Regulatory Species
For simple metabolism, initial concentrations (in nM) are
X6 = 0.333, and X7 = 0.667. Extracellular TGFα (X1) is given
by CONC_TGF. All other species are initially at 0. Regulatory
species are internal glucose (determined from the metabolism
module) for G, X4 for C, and X2 for P.

For medium metabolism, initial concentrations (in nM) are
X2 = 25, X6 = 0.333, and X7 = 0.667. Extracellular TGFα
(X1) is given by CONC_TGF. All other species are initially at
0. Regulatory species are internal glucose (determined from the
metabolism module) for G, X7 for C, and X4 for P.

For complex metabolism, initial concentrations (in nM) are
X2 = 25, X6 = X7 = 5, X8 = X9 = 2.5, X10 = 0.333,
X11 = 0.667, and X12 = 5. Extracellular TGFα (X1) is given by
CONC_TGF. All other species are initially at 0. Regulatory species
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are internal glucose (determined from the metabolism module)
for G, X11 for C, and X4 for E, T, and P.

4.5. Simulation Data Analysis
4.5.1. Doubling Time
Doubling time is given by (tb − ta) · ln 2/ ln (Nb/Na) where t is
time andN is the number of cells. Doubling time is calculated for
each seed at 7 days (a = 0 and b = 7) across n = 50 replicates.
Doubling time is also calculated by ln 2/r where r is obtained by
fitting an exponential curve N = N0 exp (t · r) to each seed for
the first 7 days across n = 50 replicates.

4.5.2. Colony Diameter
Colony diameter D is calculated as the average of the
diameter across the three hexagonal axes using D =
C
[

max(umax − umin + 1, 0) +max (vmax − vmin + 1, 0)
+max (wmax − wmin + 1, 0)

]

/3 where subscripts max and min
refer to the maximum and minimum, respectively, of the given
hexagonal coordinate across all cell locations at a given timepoint,
and C is a scaling factor of 30 µm · hex−1 (HEX_SIZE). Colony
diameter is calculated at each timepoint for n = 50 replicates.

4.5.3. Cell Diameter
Assuming a cylindrical cell whose volume v is calculated as v =
πr2h where r is radius and h is height, cell diameter d is given
by d = 2

√

v/πh using an average height of h = 4.35, which is
calculated as half the max cell height (MAX_HEIGHT).

4.5.4. Fraction Occupancy
At a given seed and timepoint, the fraction occupancy at a radius
r from the center is given by n/Nr where n is the number of agents
of the state or population of interest and Nr is the maximum
possible number of locations at radius r in a hexagonal grid. Note
that fraction occupancy can exceed 1 as there can be more than a
single agent per location.

4.5.5. Relative Fraction Change
For simulations in which there are multiple populations, the
relative change in the fraction of a given population is calculated
as (x − x0)/s where x is the fraction of the population, x0 is the
initial fraction of the population, and s is a scaling factor equal
to 1 − x0 or x0 if the change (x − x0) is positive or negative,
respectively. For simulations using the tissue context, the healthy
background population is not included in the calculation.

4.6. Emergent Behavior Metrics
4.6.1. Growth Rate
Growth rate quantifies the temporal emergence of colony
diameter over time, in units of µm · day−1. For each time index i
in [2, 2.5, ..., 14] days, a least squares linear fit between timepoints
[1, 1.5, ..., ti] and colony diameters [D1,D1.5, ...,Di] is performed
(Python, function polyfit from package numpy with degree
of 1). The growth rate is taken as the slope of this line.

4.6.2. Symmetry
Symmetry quantifies the spatial emergence of colony shape at a
given timepoint, ranging from 0 (not symmetric) to 1 (perfectly
symmetric). In hexagonal coordinates, the colony is perfectly

symmetric if for each location (u,v,w), the corresponding five
locations (-w,-u,-v), (v,w,u), (-u,-v,-w), (w,u,v), and
(-v,-w,-u) are all occupied. For a given seed and timepoint,
for each unique occupied location i, the number of unoccupied
corresponding locations ni is determined. Duplicate locations are
not counted. Symmetry is calculated as:

1−
1

N

N
∑

i

ni

5

where N is the number of unique occupied locations.

4.6.3. Cycle Length
Cycle length quantifies the parametric emergence of cell cycle
length, in units of hours. Each cell agent tracks the number of
ticks (minutes) between when it switches to a proliferative state
and when it successfully divides to create a daughter cell agent.
For a given seed and timepoint, cycle lengths are first averaged
per agent, then averaged across all agents.

4.7. Data Fitting
4.7.1. Colony Size
For Figure 2G, an equation relating number of cells n, cell
diameter d, and colony diameter D given by:

n = a
(

Db/dc
)

with parameters a, b, and c (Meyskens et al., 1984), was fit to
simulated data using non-linear least squares (Python, function
curve_fit from package scipy.optimize).

4.7.2. Parameter Statistics
The average value x of each cell parameter across all cells at each
timepoint is calculated for n = 20 replicates. The mean (µ) and
standard deviation (σ ) of these averages are estimated using:

µ =
1

n

n
∑

i=1

xi σ =

√
√
√
√n−1

n
∑

i=1

(xi − µ)2

The distribution of average parameter values across replicates
at a given timepoint is compared to the initial distribution
of averages at t = 0 using a t-test with paired samples
(Python, function ttest_rel from package scipy.stats).
The variance of average parameter values across replicates at
a given timepoint is compared to the variance of the initial
distribution at t = 0 using Levene’s test (Python, function
levene from package scipy.stats).

4.8. Case Study Simulations
First, we select three parameters to reflect common cancerous
cell phenotypes: (i) crowding tolerance (MAX_HEIGHT), which
captures a cell’s tolerance for crowding (Supplementary Table 1);
(ii) metabolic preference (META_PREF), which controls
a cell’s preference for using glycolysis over oxidative
phosphorylation to produce energy (Supplementary Table 4);
and (iii) migratory threshold (MIGRA_THRESHOLD), which
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governs a cell’s tendency to migrate instead of proliferate
(Supplementary Table 5). The crowding tolerance parameter
quantifies the sensitivity of cells to contact inhibition, a
phenomenon where cells stop growing even with sufficient
nutrients when they reach a certain level of confluency (Swat
et al., 2009). Cancerous cells exhibit reduced, or lack of, contact
inhibition (Hanahan and Weinberg, 2011). The Warburg effect,
in which cancerous cells predominantly produce energy through
glycolysis rather than oxidative phosphorylation even in the
presence of sufficient oxygen, is captured by the metabolic
preference parameter (Heiden et al., 2009; Hanahan and
Weinberg, 2011) Finally, cancer cell motility is an important
factor in metastasis. We use the migratory threshold parameter
to control the cell agent decision between migratory and
proliferative states (Zhang et al., 2007).

Input options used to run the simulations are summarized in
Supplementary Table 3.

4.8.1. Case Study 1: Context
We perform a sensitivity analysis on these parameters by varying
the parameter value +/− 100% in increments of 10%. For
each parameter and modification, cells were seeded in isolation
and simulated for 14 days with 20 replicates and timepoints
taken every 12 h. Four representative populations were selected:
A (crowding tolerance at +50% of baseline), B (metabolic
preference at+50% of baseline), C (migratory threshold at−50%
of baseline), X (all parameters at baseline). All four representative
populations have the ability to exit quiescence without external
stimulation; in contrast, the generic background population
used for tissue context simulations is unable to exit quiescence
without stimulation. These populations, and combinations
thereof, were simulated in isolation (colony, representing
an in vitro context) and in an environment containing a
generic background cell population (tissue, representing an
in vivo context). Simulations were run for 15 days with
the representative populations introduced at t = 1 day. All
simulations were run with 20 replicates with timepoints taken
every 12 h.

4.8.2. Case Study 2: Competition
A modified population is created by varying one of the
three parameters (crowding tolerance, metabolic preference, and
migratory threshold) between−50% and+50% in increments of
10%. This modified population is initialized into the simulation
alongwith an unmodified, basal population in different ratios and
simulated for 14 days. All simulations contain 20 replicates with
timepoints taken every 12 h.

Note that we specifically focus on interactions between
two populations, as is common with most co-culture studies
(Goers et al., 2014). Including additional populations in our
simulation is straightforward (one can introduce an additional
cell agent or modify the parameters of an existing cell agent).
However, including additional populations in an experimental
setting is more difficult and may not necessarily form a
more accurate representation of system; for example, a co-
culture model of the blood-brain barrier system performed

better than the mono- and tri-culture models (Hatherell et al.,
2011; Goers et al., 2014). This counter-intuitive observation
further motivates the need for a computational model with
which to interrogate population interactions. In this case,
our framework can be used to guide experimental design by
identifying the minimal number of populations necessary to
model a system.

4.8.3. Case Study 3: Heterogeneity
Within the model, certain cell parameters (such as initial cell
volume and age) are derived from a distribution. However,
the internal cell parameters are constant among cell agents
within a given population. To add heterogeneity to these
parameters, each cell agent was modified to draw its parameter
values from truncated normal distributions with means
equal to the defined parameter values and variances dictated
by a new heterogeneity parameter (HETEROGENEITY,
Supplementary Table 1). Daughter cells of the agent use the
parent parameter values as the mean of the truncated normal
distributions from which it draws its parameter values, enabling
clonal evolution in which population means can tend toward
more “fit” values.

We vary the heterogeneity within representative cell
populations and simulate their evolution in both colony and
tissue contexts. For the colony context, the generic background
population also contains heterogeneity H0, termed background
heterogeneity, whose value is not necessarily equal to that of
the representative populations. Simulations were run for 15
days with the representative populations introduced at t = 1
day. All simulations contain 20 replicates with timepoints taken
every 12 h.
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One of the most important factors limiting the success of chemotherapy in cancer

treatment is the phenomenon of drug resistance. We have recently introduced a

framework for quantifying the effects of induced and non-induced resistance to

cancer chemotherapy (Greene et al., 2018a, 2019). In this work, we expound on

the details relating to an optimal control problem outlined in Greene et al. (2018a).

The control structure is precisely characterized as a concatenation of bang-bang and

path-constrained arcs via the Pontryagin Maximum Principle and differential Lie algebraic

techniques. A structural identifiability analysis is also presented, demonstrating that

patient-specific parameters may be measured and thus utilized in the design of optimal

therapies prior to the commencement of therapy. For completeness, a detailed analysis

of existence results is also included.

Keywords: drug resistance, chemotherapy, phenotype, optimal control theory, singular controls

1. INTRODUCTION

The ability of cancer chemotherapies to successfully eradicate cancer populations is limited by
the presence of drug resistance. Cells may become resistant through a variety of cellular and
micro-environmental mechanisms (Gottesman, 2002). Thesemechanisms are exceedingly complex
and diverse, and remain to be completely understood. Equally complex is the manner in which
cancer cells obtain the resistant phenotype. Classically resistance was understood to be conferred
by random genetic mutations; more recently, the role of epigenetic phenotype switching was
discovered as another mediator of resistance (Pisco et al., 2013). Importantly, both of these
phenomena were seen as drug-independent, so that the generation of resistance is functionally
separate from the selection mechanism (e.g., the drug). However, experimental studies from the
past ten years suggest that drug resistance in cancer may actually be induced by the application of
chemotherapy (Sharma et al., 2010; Pisco et al., 2013; Goldman et al., 2015; Doherty et al., 2016;
Shaffer et al., 2017).

In view of the multitude of ways by which a cancer cell may become chemoresistant, we
have previously introduced a mathematical framework to differentiate drug-independent from
drug-dependent resistance (Greene et al., 2019). In that work, we demonstrated that induced
resistance may play a crucial role in therapy outcome, and also discussed methods by which a
treatment’s induction potential may be identified via biological assays. An extension of the work
was outlined in the conference paper (Greene et al., 2018a), where a formal optimal control
problem was introduced and an initial mathematical analysis was performed. The aim of this work
is to formalize the parameter identifiability properties of our theoretical model, to establish the
existence of the optimal control introduced in Greene et al. (2018a), and to precisely classify the

160

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00501
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00501&domain=pdf&date_stamp=2020-06-17
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sontag@sontaglab.org
https://doi.org/10.3389/fbioe.2020.00501
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00501/full
http://loop.frontiersin.org/people/891967/overview
http://loop.frontiersin.org/people/980201/overview
http://loop.frontiersin.org/people/569112/overview


Greene et al. Control of Cancer Resistance Model

FIGURE 1 | Visualization of interactions considered in system (1).

optimal control structure utilizing the Pontryagin Maximum
Principle and differential-geometric techniques. A numerical
investigation of both the control structure and corresponding
objective is also undertaken as a function of patient-specific
parameters, and clinical conclusions are emphasized.

The work is organized as follows. In section 2, we briefly
review the mathematical model together with the underlying
assumptions. Section 3 restates the optimal control problem,
and the Maximum Principle is analyzed in section 4. A
precise theoretical characterization of the optimal control
structure is summarized in section 5. In section 6, we compare
theoretical results with numerical computations, and investigate
the variation in control structure and objective as a function
of parameters. Conclusions are presented in section 8. We also
include additional properties, including details on structural
identifiability and existence of optimal controls, in Section 7.

2. MATHEMATICAL MODELING OF
INDUCED DRUG RESISTANCE

We briefly review the model presented in Greene et al.
(2019) and analyzed further in Greene et al. (2018a). In
that work, we have constructed a simple dynamical model
which describes the evolution of drug resistance through
both drug-independent (e.g., random point mutations, gene
amplification, stochastic state switching) and drug-dependent
(e.g., mutagenicity, epigeneticmodifications)mechanisms. Drug-
induced resistance, although experimentally observed, remains
poorly understood. It is our hope that a mathematical analysis
will provide mechanistic insight and produce a more complete
understanding of this process by which cancer cells inhibit
treatment efficacy.

A network diagram of the model under consideration is
provided in Figure 1. Specifically, we assume that the tumor
being studied is composed of two types of cells: sensitive (x1)
and resistant (x2). For simplicity, the drug is taken as completely
ineffective against the resistant population, while the log-kill
hypothesis (Traina and Norton, 2011) is assumed for the
sensitive cells. Complete resistance is of course unrealistic, but
can serve as a reasonable approximation, especially when toxicity
constraints may limit the total amount of drug that may be
administered. Furthermore, this assumption permits a natural

metric on treatment efficacy that may not exist otherwise (see
section 3). The effect of treatment is considered as a control agent
u(t), which we assume is a locally bounded Lebesgue measurable
function taking values in R+. Here u(t) is directly related to
the applied drug dosage D(t), and in the present work we
assume that we have explicit control over u(t). Later, during the
formulation of the optimal control problem (section 3), we will
make precise specifications on the control set U. Even though an
arbitrary dosage schedule is unrealistic as a treatment strategy,
our objective in this work is to understand the fundamental
mathematical questions associated with drug-induced resistance,
so we believe the simplification is justified. Furthermore, our
results in section 5 suggest that the applied optimal treatment
should take a relatively simple form, which may be approximated
with sufficient accuracy in a clinical setting. Sensitive and
resistant cells are assumed to compete for resources in the
tumor microenvironment; this is modeled via a joint carrying
capacity, which we have scaled to one. Furthermore, cells are
allowed to transition between the two phenotypes in both a
drug-independent and drug-dependent manner. All random
transitions to the resistant phenotype are modeled utilizing a
common term, ǫx1, which accounts for both genetic mutations
and epigenetic events occurring independently of the application
of treatment. Drug-induced deaths are assumed of the form
du(t)x1, where d is the drug cytotoxicity parameter relating to
the log-kill hypothesis. Drug-induced transitions are assumed
to be of the form αu(t)x1, which implies that the per-capita
drug-induced transition rate is directly proportional to the
dosage [as we assume full control on u(t), i.e. pharmacokinetics
are ignored]. Of course, other functional relationships may
exist, but since the problem is not well-studied, we consider it
reasonable to begin our analysis in this simple framework. The
above assumptions then yield the following system of ordinary
differential equations (ODEs):

dx1

dt
=
(

1− (x1 + x2)
)

x1 − (ǫ + αu(t))x1 − du(t)x1

dx2

dt
= pr

(

1− (x1 + x2)
)

x2 + (ǫ + αu(t))x1.

(1)

All parameters are taken as non-negative, and 0 ≤ pr < 1.
The restriction on pr emerges due to (1) already being non-
dimensionalized, as pr represents the relative growth rate of the
resistant population with respect to that of the sensitive cells.
The condition pr < 1 thus assumes that the resistant cells divide
more slowly than their sensitive counterparts, which is observed
experimentally (Shackney et al., 1978; Lee, 1993; Brimacombe
et al., 2009). As mentioned previously, many simplifying
assumptions are made in system (1). Specifically, both types
of resistance (random genetic and epigenetic) are modeled as
dynamically equivalent; both possess the same division rate
pr and spontaneous (i.e., drug-independent) transition rate ǫ.
Thus, the resistant compartment x2 denotes the total resistant
subpopulation.

The region

� = {(x1, x2) | 0 ≤ x1 + x2 ≤ 1, x1, x2 ≥ 0} (2)
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in the first quadrant is forward invariant for any locally bounded
Lebesgue measurable treatment function u(t) taking values in
R+. Furthermore, if ǫ > 0, the population of (1) becomes
asymptotically resistant:

(

x1(t)
x2(t)

)

t→∞
−−−→

(

0
1

)

. (3)

For a proof, see Theorem 2 in SI A in Greene et al. (2019). Thus
in our model, the phenomenon of drug resistance is inevitable.
However, we may still implement control strategies which, for
example, may increase patient survival time. Such aspects will
inform the objective introduced in section 3. For more details on
the formulation and dynamics of system (1), we refer the reader
to Greene et al. (2019).

3. OPTIMAL CONTROL FORMULATION

As discussed in section 2, all treatment strategies u(t) result in
an entirely resistant tumor: x̄ : = (x̄1, x̄2) = (0, 1) is globally
asymptotically stable for all initial conditions in region �. Thus,
any chemotherapeutic protocol will eventually fail, and a new
drug must be introduced (not modeled in this work, but the
subject of future study). Therefore, selecting an objective which
minimizes tumor volume (x1+x2) or resistant fraction [x2/(x1+
x2)] at a fixed time horizon would be specious for our modeling
framework. However, one can still combine therapeutic efficacy
and clonal competition to influence transient dynamics and
possibly prolong patient life, as has been shown clinically utilizing
real-time patient data (Gatenby et al., 2009).

Toxicity as well as pharmacokinetic constraints limit the
amount of drug to be applied at any given instant. Thus, we
assume that there exists some numberM > 0 such that u(t) ≤ M
for all t ≥ 0. Any Lebesgue measurable treatment regime u(t) is
considered, so that the control set is U = [0,M] and the set of
admissible controls U is

U = {u :[0,∞) → [0,M] | u is Lebesgue measurable}. (4)

Recall that all cellular populations have been normalized to
remain in [0, 1]. We assume that there is a critical tumor
volume Vc, at which treatment, by definition, has failed. Our
interpretation is that a tumor volume larger than Vc interferes
with normal biological function, while x1 + x2 ≤ Vc indicates a
clinically acceptable state. Different diseases will have differentVc

values. For technical reasons needed in section 5 we assume that
Vc < 1 − ǫ. This is a mild assumption, since genetic mutation
rates ǫ are generally small (Loeb et al., 1974), and our interest is
on the impact of induced resistance. Thus

Vc ∈ (0, 1− ǫ) . (5)

Define tc as the time at which the tumor increases above size Vc

for the first time. To be precise,

tc(u) : = max{T | x1(t)+ x2(t) ≤ Vc for all t ∈ [0,T]}. (6)

Since all treatments approach the state (0, 1), tc(u) is well-defined
for each treatment u(t). For simplicity, denote tc = tc(u) in
the remainder of the work. The time tc is then a measure of
treatment efficacy, and our goal is then to find those controls u∗
which maximize tc. Writing in standard form as a minimization
problem, we have the following objective:

min
u∈U

{J(u)} = min
u∈U

{

−

∫ tc

0
1 dt

}

. (7)

We are thus seeking a control u∗(t) ∈ U which maximizes tc,
i.e. solves the time-optimal minimization problem (7) restricted
to the dynamic state equations given by the system described
in (1) and the condition x1(t) + x2(t) ≤ Vc for all 0 ≤ t ≤ tc.
Note that the above is formulated (using the negative sign) as a
minimization problem to be consistent with previous literature
and results related to the Pontryagin Maximum Principle
(PMP) (Ledzewicz and Schättler, 2012). Note that maximization
is still utilized in section 7.2 and section 4.1, and we believe that
the objective will be clear from context. To be consistent with
notation utilized later, we denote the system (1) as

ẋ = f (x)+ u(t)g(x), (8)

where

f (x) =

(

(1− (x1 + x2))x1 − ǫx1
pr(1− (x1 + x2))x2 + ǫx1

)

, (9)

g(x) =

(

−(α + d)
α

)

x1 (10)

and x(t) = (x1(t), x2(t)). By continuity of solutions, the time tc
must satisfy the terminal condition (tc, x(tc)) ∈ N, where N is the
line x1 + x2 = Vc in�, i.e.,

N = ψ−1(0) ∩�, (11)

where

ψ(x1, x2) : = x1 + x2 − Vc. (12)

With this notation, the path-constraint

ψ(x1(t), x2(t)) ≤ 0 (13)

must also hold for 0 ≤ t ≤ tc. Equation (13) ensures that
the tumor remains below critical volume Vc for the duration of
treatment. Equivalently, the dynamics are restricted to lie in the
set�c ⊆ �, where

�c : = {(x1, x2) | 0 ≤ x1 + x2 ≤ Vc, x1, x2 ≥ 0}, (14)

for all times t such that t ∈ [0, tc]. The initial state

x0 = (x01, x
0
2) (15)

is also assumed to lie in �c. Except for section 7.1 where we
restrict to the case x02 = 0, the remainder of the work allows for
arbitrary x02 ∈ [0,Vc).
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4. MAXIMUM PRINCIPLE

We dedicate the present section to characterize the optimal
control utilizing the Pontryagin Maximum Principle (PMP). The
subsequent analysis is strongly influenced by the Lie-derivative
techniques introduced by Sussmann (1982, 1987a,b,c). For an
excellent source on both the general theory and applications to
cancer biology, see the textbooks by Ledzewicz and Schättler
(2012) and Schättler and Ledzewicz (2015).

Before starting our analysis of the behavior and response of
system (1) to applied treatment strategies u(t) utilizing geometric
methods, we would like to mention that we have not found
a reference for existence of optimal controls for a problem
such as this, due perhaps to the non-standard character of it
(maximization of time, path constraints). For this reason, we have
added a self-contained proof of regarding existence in section 7.2.

4.1. Elimination of Path Constraints
We begin our analysis by separating interior controls from
those determined by the path-constraint (13) (equivalently, x ∈
N). The following theorem implies that outside of the one-
dimensional manifold N, the optimal pair (x∗, u∗) solves the
same local optimization problem without the path and terminal
constraints. More precisely, the necessary conditions of the PMP
(see section 4.2) at states not on N are exactly the conditions
of the corresponding maximization problem with no path or
terminal constraints.

THEOREM 1. Suppose that x∗ is an optimal trajectory. Let t1
be the first time such that x∗(t) ∈ N. Fix δ > 0 such
that t1 − δ > 0, and

ξ = x∗(t1 − δ). (16)

Define z(t) : = x∗(t)|t∈[0,t1−δ]. Then the trajectory z is a local
solution of the corresponding time maximization problem tc with
boundary conditions x(0) = x0, x(tc) = ξ , and no additional
path constraints. Hence at all times t, the path z (together with the
corresponding control and adjoint) must satisfy the corresponding
unconstrained Pontryagin Maximum Principle.

Proof: We first claim that z satisfies the path-constrained
maximization problem with boundary conditions x(0) =
x0, x(tc) = ξ . This is a standard dynamic programming
argument: if there exists a trajectory z̄ such that z̄(τ ) = ξ , τ >
t1 − δ, concatenate z̄(t)|t∈[0,τ ] with x∗(t)|t∈[τ ,tc] at t = τ to obtain
a feasible trajectory satisfying all constraints. This trajectory then
has total time τ + δ + tc − t1 > tc, contradicting the global
optimality of x∗.

Recall that t1 was the first time such that x∗(t) ∈ N. Since z
is compact, we can find a neighborhood of z that lies entirely in
{x | x /∈ N}. As the Maximum Principle is a local condition with
respect to the state, this completes the proof.

Theorem 1 then tells us that for states x = (x1, x2) such
that x1 + x2 < Vc, the corresponding unconstrained PMP
must be satisfied by any extremal lift of the original problem.
(Recall that an extremal lift of an optimal trajectory is obtained

by adding the Lagrange multipliers, or adjoint variables, to the
control and state; see details in Definition 2.2.4, page 95, Chapter
2 of Ledzewicz and Schättler, 2012). We have now demonstrated
that the optimal control consists of concatenations of controls
obtained from the unconstrained necessary conditions and
controls of the form (18). In the next section, we analyze the
Maximum Principle in the region x1 + x2 < Vc. Furthermore,
the constraint (13) has generic order one. In other words,

Lgψ = ∇ψ · g 6= 0. (17)

Therefore, the feedback control (also known as the constrained
control) can be found by differentiating the function (12) to
insure that trajectories remain on the line N:

up(x1, x2) =
1

d

(1− (x1 + x2))(x1 + prx2)

x1
. (18)

Its existence however does not imply its feasibility, which is
discussed below. Specifically, up can be shown to be a decreasing
function of x1 which is feasible on the portion of N satisfying
x∗1 ≤ x1 ≤ Vc, where x∗1 is given in (20), and infeasible
elsewhere. This is proven in Proposition 3, and the geometric
structure is depicted in Figure 2. Propositions 4 and 5 provide
characterizations of the volume dynamics in certain regions of
phase space, and are included here for completeness.

Proposition 2. Suppose that the maximal dosage M satisfies

M >
(1− Vc)(1− pr)

d
. (19)

and the point x∗ = (x∗1 , x
∗
2) ∈ N with coordinates

x∗1 =
pr(1− Vc)Vc

dM − (1− Vc)(1− pr)
,

x∗2 = Vc

(

1−
pr(1− Vc)

dM − (1− Vc)(1− pr)

)

. (20)

Denote by Y(x) = f (x) + Mg(x) the vector field corresponding to
the maximal allowed dosage M [here, f and g are the functions
defined in (9), (10)]. The Lie derivative, for any x ∈ N, of the
volume function V(x) = x1 + x2 with respect to Y is

(a) positive if x1 < x∗1 ,
(b) zero at (x∗1 , x

∗
2), and

(c) negative if x1 > x∗1 .

Proof: We verify the above claims with a direct calculation. Let
LYV(x) denotes the Lie derivative ofV(x) with respect toY . Thus,
for x ∈ N,

LYV(x) = ∇V(x) · Y(x)

=

(

1

1

)

·






[1− Vc − ǫ − (α + d)M]x1

[ǫ + αM − pr(1− Vc)]x1 + pr(1− Vc)Vc
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FIGURE 2 | Region in �c where LYV (x) is guaranteed to be positive. That is, applying the maximal dosage M results in an increasing cancer population in the

yellow-shaded region of phase-space.

= [1− Vc − ǫ − (α + d)M]x1

+ [ǫ + αM − pr(1− Vc)]x1

+ pr(1− Vc)Vc

= [(1− Vc)(1− pr)− dM]x1 + pr(1− Vc)Vc.

Assuming M >
(1−Vc)(1−pr)

d
, the sign of LYV(x) is as in the

statement of the proposition.

Proposition 2 implies that if the allowable dosage is large enough
(Equation 9), treatment can at least decrease the tumor in certain
regions of phase space. If this condition was not met, then the
applied drug would generally be ineffective in reducing the tumor
volume V , and hence not be utilized in a clinical scenario.

Proposition 3. Let x be a point on the line N. The feedback control
up is unfeasible if x1 ∈ (0, x∗1), and is feasible if x1 ∈ (x∗1 ,Vc)

Proof: For x ∈ N we compute

up(x) =
(1− Vc)(1− pr)

d
+

(1− Vc)prVc

dx1
≥ 0.

It is straightforward to check that up > M if x1 < x∗1 . In
addition, the feedback control, when restricted to points in N,

is a decreasing function with respect to x1. Thus, it is feasible for
x ∈ N if x1 ∈ (x∗1 ,Vc).

Proposition 4. For x = (x1, x2) ∈ �c with

x2 >
dM − (1− Vc)

pr(1− Vc)
x1, (21)

the Lie derivative LYV(x) is positive.

Proof: As in Proposition 2, we compute LYV(x) directly:

LYV(x) = (1− (x1 + x2))(x1 + prx2)− dMx1

≥ (1− Vc)(x1 + prx2)− dMx1

= [(1− Vc)− dM]x1 + pr(1− Vc)x2

> [(1− Vc)− dM]x1 + pr(1− Vc)
dM − (1− Vc)

pr(1− Vc)
x1

= 0,

where the first inequality utilizes V ≤ Vc, and the second relies
on (21)
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Proposition 5. For

M >
1− ǫ

α + d
,

trajectories corresponding to the maximal dosage M have a
decreasing sensitive cellular population.

Proof: For u(t) ≡ M, the corresponding sensitive trajectory is
given by

ẋ1 = (1− (x1 + x2))x1 − ǫx1 − (α + d)Mx1

< (1− (x1 + x2))x1 − ǫx1 − (1− ǫ)x1

= −(x1 + x2)x2 ≤ 0

Note that we are assuming here that the maximal dosage M
satisfiesM > 1−ǫ

α+d
.

4.2. Maximum Principle and Necessary
Conditions at Interior Points
Necessary conditions for the optimization problem discussed
in section 3 without path or terminal constraints are derived
from the Pontryagin Maximum Principle (Pontryagin, 1987;
Ledzewicz and Schättler, 2012). The corresponding Hamiltonian
function H is defined as

H(λ0, λ, x, u) = −λ0 + 〈λ, f (x)〉 + u8(x, λ), (22)

where λ0 ≥ 0 and λ ∈ R2. Here 〈·, ·〉 denotes the standard inner
product onR2 and, since the dynamics are affine in the control u,
8(x, λ) is the switching function:

8(x, λ) = 〈λ, g(x)〉. (23)

The Maximum Principle then yields the following theorem:

THEOREM 6. If the extremal (x∗, u∗) is optimal, there exists λ0 ≥
0 and a covector (adjoint) λ :[0, tc] → (R2)∗, such that the
following hold:

1. (λ0, λ(t)) 6= 0 for all t ∈ [0, tc].
2. λ(t) = (λ1(t), λ2(t)) satisfies the second-order differential

equation

λ̇(t) =





2x1 + x2 + ǫ − 1 prx2 − ǫ

x1 pr(2x2 + x1 − 1)



 λ(t)

+ u(t)

(

α + d −α
0 0

)

λ(t)

(24)

3. u∗(t)minimizes H pointwise over the control set U:

H(λ0, λ, x∗(t), u∗(t)) = min
v∈U

H(λ0, λ, x∗(t), v).

Thus, the control u∗(t)must satisfy

u∗(t) =

{

0 8(t) > 0,

M 8(t) < 0.
(25)

where

8(t) : = 8(x∗(t), λ(t)). (26)

4. The Hamiltonian H is identically zero along the extremal lift
(x∗(t), u∗(t), λ(t)):

H(λ0, λ(t), x∗(t), u∗(t)) ≡ 0. (27)

Proof: Most statements of Theorem 6 follow directly from
the Maximum Principle, so proofs are omitted. In particular,
items (1), (2), and the first part of (3) are immediate
consequences (Ledzewicz and Schättler, 2012). Equation (25)
follows directly since we minimize the function H, which is
affine in u (see Equation 22). The Hamiltonian vanishes along
(x∗(t), u∗(t), λ(t)) since it is independent of an explicit time
t dependence and the final time tc is free, the latter being a
consequence of the transversality condition.

Proposition 7. For all t ∈ [0, tc], the adjoint λ(t) corresponding
to the extremal lift (x∗(t), u∗(t), λ(t)) is nonzero.

Proof: This is a general result relating to free end time
problems. We include a proof here for completeness. Suppose
that there exists a time t ∈ [0, tc] such that λ(t) =
0. By (22), the corresponding value of the Hamiltonian is
H(λ0, λ(t), x∗(t), u∗(t)) = −λ0. By item (4) in Theorem 6, H ≡
0, which implies that λ0 = 0. This contradicts item (1) in
Theorem 6. Hence, λ(t) 6= 0 on [0, tc].

4.3. Geometric Properties and Existence of
Singular Arcs
We now undertake a geometric analysis of the optimal control
problem utilizing the affine structure of system (8) for interior
states (i.e., controls which satisfy Theorem 6). We call such
controls interior extremals, and all extremals in this section are
assumed to be interior. The following results depend on the
independence of the vector fields f and g, which we use to
both classify the control structure for abnormal extremal lifts
(extremal lifts with λ0 = 0), as well as characterize the switching
function dynamics via the Lie bracket.

Proposition 8. For all x1 ∈ �, x1 > 0, the vector fields f (x) and
g(x) are linearly independent.

Proof: Define A(x) = A(x1, x2) to be the matrix

A(x) =
(

f (x) g(x)
)

=

(

(1− (x1 + x2)− ǫ)x1 −(α + d)x1
pr(1− (x1 + x2))x2 + ǫx1 αx1

)

.
(28)

The determinant of A can calculated as

detA(x) = αx21κ(x)+ pr(α + d)x2x1κ(x)+ ǫdx
2
1 (29)

where

κ(x) : = 1− (x1 + x2). (30)

As x1(t) + x2(t) ≤ 1 for all t ≥ 0, κ(x(t)) ≥ 0, and we see that
detA(x) = 0 in� if and only if x1 = 0, completing the proof.
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The line x1 = 0 is invariant in �, and furthermore
the dynamics in the set are independent of the control u(t).
Conversely, x01 > 0 implies that x1(t) > 0 for all t ≥ 0. We
concern our analysis only in this latter case, and so without loss of
generality, f(x) and g(x) are linearly independent in the region

of interest �c.
We begin by showing that abnormal extremal lifts are easily

characterized. We recall that an extremal lift is abnormal if λ0 =
0, i.e., if the Hamiltonian is independent of the objective.

THEOREM 9. Abnormal extremal lifts at interior points, i.e.,
extremal lifts corresponding to λ0 = 0, are constant and given by
the maximal (M) or minimal (0) dosage.

Proof: Assume that u∗ switches values at some time t. From (25),
we must have that 8(t) = 0. Since λ0 = 0 and 8(t) =
〈λ(t), g(x∗(t))〉, Equation (22) reduces to

H(t) = 〈λ(t), f (x∗(t))〉 = 0. (31)

Thus, λ(t) is orthogonal to both f (x∗(t)) and g(x∗(t)). Since f
and g are linearly independent (Proposition 8), this implies that
λ(t) = 0. But this contradicts Proposition 7. Hence, no such
time t exists, and u∗(t) is constant. The constant sign of 8 thus
corresponds to u = 0 or u = M (see Equation 25).

The control structure for abnormal extremal lifts is then
completely understood via Theorem 9. To analyze the
corresponding behavior for normal extremal lifts, without
loss of generality we assume that λ0 = 1. Indeed, λ(t) may be
rescaled by λ0 > 0 to yield an equivalent version of Theorem 6.
We thus assume that the Hamiltonian H(t) evaluated along
(λ(t), x∗(t), u∗(t)) is of the form

H(t) = −1+ 〈λ(t), f (x∗(t))〉 + u∗(t)8(t) ≡ 0. (32)

We recall the Lie bracket as the first-order differential operator
between two vector fields X1 and X2:

[X1,X2](z) = DX2(z)X1(z)− DX1(z)X2(z), (33)

where, for example, DX2(z) denotes the Jacobian of X2 evaluated
at z. As f and g are linearly independent in �, there exist γ ,β ∈
C∞(�) such that

[f , g](x) = γ (x)f (x)+ β(x)g(x), (34)

for all x ∈ �. Explicitly, we compute γ and β :

γ (x) = −
(α + d)x21
detA(x)

(

ax1 + bx2 − c
)

, (35)

β(x) =
x21

detA(x)

(

α(1− pr)κ(x)(κ(x)− ǫ)+ ǫd(x1 + prx2

+ κ(x)− ǫ)
)

, (36)

where

a = α

(

(1− pr)+
d

α + d

)

, (37)

b = α(1− pr)+ dpr , (38)

c = α(1− pr)+ ǫd. (39)

Clearly, for parameter values of interest (recall 0 < pr < 1),
a, b, c > 0. The assumption (5) guarantees that β(x) > 0 on
0 < x1 + x2 < Vc.

From (25), the sign of the switching function 8 determines
the value of the control u∗. As λ and x∗ are solutions of
differential equations,8 is differentiable. The dynamics of8 can
be understood in terms of the Lie bracket [f , g]:

8̇(t) =
d

dt
〈λ(t), g(x∗(t))〉 (40)

= γ (x∗(t))〈λ(t), f (x∗(t))〉 + β(x∗(t))8(t). (41)

The last lines of the above follow from (34) as well as the linearity
of the inner product. We are then able to derive an ODE system
for x∗ and8. Equation (32) allows us to solve for 〈λ(t), f (x∗(t))〉:

〈λ(t), f (x∗(t))〉 = 1− u∗(t)8(t). (42)

Substituting the above into (41) then yields the following ODE
for8(t), which we view as coupled to system (8) via (25):

8̇(t) = γ (x∗(t))+
(

β(x∗(t))− u∗(t)γ (x∗(t))
)

8(t). (43)

The structure of the optimal control at interior points may now
be characterized as a combination of bang-bang and singular arcs.
We recall that the control (or, more precisely, the extremal lift)
u∗ is singular on an open interval I ⊂ [0, tc] if the switching
function 8(t) and all its derivatives are identically zero on I.
On such intervals, Equation (25) does not determine the value
of u∗, and a more thorough analysis of the zero set of 8(t) is
necessary. Indeed, for a problem such as ours, aside from controls
determined by the path constraint ψ(x1(t), x2(t)) ≤ 0, singular
arcs are the only candidates for optimal controls that may take
values outside of the set {0,M}. Conversely, times t where8(t) =
0 but 8(n)(t) 6= 0 for some n ≥ 1 denote candidate bang-bang
junctions, where the control may switch between the vertices 0
and M of the control set U. Note that the parity of the smallest
such n determines whether a switch actually occurs: n odd implies
a switch, while for n even u∗ remains constant. Equation (43)
allows us to completely characterize the regions in the (x1, x2)
plane where singular arcs are attainable, as demonstrated in the
following proposition.

Proposition 10. Singular arcs are only possible in regions of the
(x1, x2) plane where γ (x) = 0. Furthermore, as x1(t) > 0 for all
t ≥ 0, the region

{

x ∈ R2 | γ (x) = 0
}

∩� is the line

ax1 + bx2 − c = 0, (44)

where a, b, c are defined in (37–39).

Proof: As discussed prior to the statement of Proposition 10, a
singular arc must occur on a region where both8(t) and 8̇(t) are
identically zero (as well as all higher-order derivatives). Denoting
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FIGURE 3 | Domain in (x1, x2) plane. (A) Region where γ changes sign. We see that inside the triangular region x1 + x2 ≤ 1 of the first quadrant, γ changes sign only

along the line ax1 + bx2 − c = 0. For this line to be interior to �c as depicted, we must be in the parameter regime indicated in (49). X and Y vector fields

corresponding to vertices of control set U. For singular controls to lie in U, X and Y must point to opposite sides along L. (B) Same as in (A), but with α = 0.

by x∗(t) the corresponding trajectory in the (x1, x2) phase plane,
we may calculate 8̇(t) from equation (43):

8̇(t) = γ (x∗(t)). (45)

Note we have substituted the assumption 8(t) = 0. Clearly we
must also have that γ (x∗(t)) = 0, thus implying that x∗(t) ∈
γ−1(0), as desired. The last statement of the proposition follows
immediately from Equation (35).

Proposition 10 implies that singular solutions can only occur
along the line ax1 + bx2 − c = 0. Thus, define regions in the first
quadrant as follows:

�+
c : =

{

x ∈ � | γ (x) > 0
}

, (46)

�−
c : =

{

x ∈ � | γ (x) < 0
}

, (47)

L =
{

x ∈ � | γ (x) = 0
}

. (48)

Recall that�c is simply the region in� prior to treatment failure,
i.e., 0 ≤ V ≤ Vc, x1, x2 ≥ 0. From (35), �c is partitioned as in
Figure 3B. From (35) and (37–39), L is a line with negative slope
−b/a. Furthermore, necessary and sufficient conditions for L to
lie interior to�c are

c
a ,

c
b
≤ Vc. From (37)–(39), this occurs if and

only if

ǫ ≤ min

{
α

α + d
−

1− Vc

d

(

α(1− pr)+
αd

α + d

)

,

pr −
1− Vc

d

(

α(1− pr)+ dpr

)
}

. (49)

As we have assumed that ǫ is small, and that Vc ≈ 1, this
inequality is not restrictive, and we assume it is satisfied for the
remainder of the work. We note an important exception below:
when α = 0 the inequality is never satisfied with ǫ > 0;
for such parameter values, line L is horizontal (Figure 3B). We
note that this does not change the qualitative results presented
below. Of course, other configurations of the line ax1 + bx2 = c

and hence precise optimal syntheses may exist, but we believe
the situation illustrated in Figure 3A is sufficiently generic for
present purposes.

With the existence of singular arcs restricted to the line γ = 0
by Proposition 10, we now investigate the feasibility of such
solutions. Recall that the treatment u(t) must lie in the control
set U = [0,M], for someM > 0 corresponding to the maximally
tolerated applied dosage. Defining the vector field X(x) and Y(x)
as the vector fields corresponding to the vertices of U,

X(x) : = f (x),

Y(x) : = f (x)+Mg(x),
(50)

a singular control takes values in U at x ∈ L if and only if X(x)
and Y(x) point in different directions along L. More precisely,
the corresponding Lie derivatives LXγ (x) and LYγ (x) must
have opposite signs (see Figure 3A). The following proposition
determines parameter values where this occurs.

Proposition 11. Suppose that α > 0, so that drug has the
potential to induce resistance. Also, let the maximally tolerated
dosage M satisfy

M >
α + d

α(α + d)+ αd

(

d

(
α

α + d
− ǫ

)

+ ǫd(pr − α)

− 2αd(1− pr)

)

. (51)

Then the following hold along L:

1. LXγ < 0,
2. LYγ < 0 as (x1, x2) →

(

0, c
b

)

in�,

3. LYγ > 0 at (x1, x2) =
(
c
a , 0
)

, and
4. LYγ is monotonically decreasing as a function of x1.

Thus, L contains a segment L̄ ⊂ L which is a singular arc. Note
that L̄ is precisely the region in L where LYγ is positive.
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FIGURE 4 | Geometry of vector fields X and Y with α > 0 and M

satisfying (51). As in Proposition 11, this can be understood via the

corresponding Lie derivatives of γ . Note that near x2 = 0, X, and Y point to

opposite sides of L, while at (x1, x2) =
(

0, c
b

)

, both X and Y point away from

γ > 0. The line L̄ is the unique singular arc in �c.

Proof: The proof is purely computational.

Note that if inequality (51) is not satisfied, then singular arcs
are not in the domain�c.

The geometry of Proposition 11 is illustrated in Figure 4.
Thus, assuming α > 0 andM as in (51), singular arcs exist along
the segment L̄ ⊂ L. Furthermore, the corresponding control
has a unique solution us, which may be computed explicitly.
Indeed, as the solutionmust remain on the lineL, or equivalently,
ax1 + bx2 = c, taking the time derivative of this equation yields
aẋ1 + bẋ2 = 0, and substituting the expressions (1) we compute
us as

us(t) =
(1− (x1(t)+ x2(t))

)
(

ax1(t)+ prbx2(t)
)

+ ǫ(b− a)x1(t)

2α(1− pr)dx2(t)
,

(52)

where a, b, c are given by (37–39) and x2 and x1 satisfy ax1+bx2 =
c. As discussed previously, x1(t) > 0 for x01 > 0, so this formula is
well-defined. Proposition 11 implies that it is possible to simplify
Equation (52) as a function of x1 (i.e. as a feedback law) for
x1 ∈

(

s̄, ca
)

, for some s̄ > 0, but since its value will not be needed,
we do not provide its explicit form. Note that the maximal dose
M is achieved precisely at x1 = s̄ where vector field Y is parallel
to L. Thus, at this s̄, the trajectory must leave the singular arc,
and enter the region �−

c . As ẋ2 ≥ 0, trajectories must follow L

in the direction of decreasing x1 (see Figure 4). We summarize
these results in the following theorem.

THEOREM 12. If α > 0, and M satisfies (51), a singular arc exists
in the (x1, x2) plane as a segment of the line L. Along this singular
arc, the control is given by Equation (52), where ax1 + bx2 = c.
Therefore, in this case the necessary minimum conditions on u∗

from (25) can be updated as follows:

u∗(t) =









0 8(t) > 0,

M 8(t) < 0,

us(t), 8(t) ≡ 0 for t ∈ I,

(53)

where I is an open interval. Recall again that this is the optimal
control at points interior to�c.

Proof: See the discussion immediately preceding Theorem 12.

In the case α = 0, the line L is horizontal, and as x2 is
increasing, no segment L̄ ⊆ L is admissible in phase space. Thus,
the interior controls in this case are bang-bang; for a visualization
(see Figure 3B).

THEOREM 13. If α = 0, there are no singular arcs for the optimal
time problem presented in section 3. Thus, the interior control
structure is bang-bang.

Outside of the singular arc L̄, the control structure is
completely determined by (25) and (43). The precise result,
utilized later for the optimal synthesis presented in section 5, is
stated in the following theorem. We first introduce a convenient
(and standard) notation. Let finite words on X and Y denote
the concatenation of controls corresponding to vector fields X
(u ≡ 0) and Y (u ≡ M), respectively. The order of application is
read left-to-right, and an arc appearing in a wordmay not actually
be applied (e.g. XY denotes an X arc followed by a Y arc or a Y
arc alone).

THEOREM 14. Consider an extremal lift Ŵ = ((x, u), λ).
Trajectories x remaining entirely in �+

c or �−
c can have at most

one switch point. Furthermore, if x ∈ �+
c , then the corresponding

control is of the form YX. Similarly, x ∈ �−
c implies that u = XY.

Hence multiple switch points must occur across the singular arc L̄.

Proof: If τ is a switching time, so that 8(τ ) = 0, Equation (43)
allows us to calculate 8̇(τ ) as

8̇(τ ) = γ (x(τ )). (54)

Thus, in�+
c where γ > 0, 8̇(τ ) > 0, and hence8must increase

through τ . The expression for the control (25) then implies that
a transition from a Y-arc to an X-arc occurs at τ (i.e., a YX
arc). Furthermore, another switching time cannot occur unless
x leaves �+

c , since otherwise there would exist a τ̄ > τ such that
8(τ̄ ) = 0, 8̇(τ̄ ) < 0 which is impossible in �+

c . Similarly, only
XY-arcs are possible in�−

c .

The structure implied by Theorem 14 is illustrated in Figure 4.
Note that inside the sets �+

c ,�
−
c , and L̄, extremal lifts are

precisely characterized. Furthermore, the results of section 4.1
(and particularly Equation 18) yield the characterization on the
boundary N. What remains is then to determine the synthesis of
these controls to the entire domain �c, as well as to determine
the local optimality of the singular arc L̄. The latter is addressed
in the following section.
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4.4. Optimality of Singular Arcs
We begin by proving that the singular arc is extremal, i.e. that it
satisfies the necessary conditions presented in section 4.2 (note
that it is interior by assumption). This is intuitively clear from
Figure 4, since X and Y point to opposite sides along L̄ by the
definition of L.

THEOREM 15. The line segment L̄ ⊂ L is a singular arc.

Proof: We find an expression for u = u(x) such that the vector
f (x)+u(x)g(x) is tangent to L̄ at x, i.e. we find the unique solution
to

Lf+ug(γ ) = 0 (55)

Note that we can invert (50):

f (x) = X(x)

g(x) =
1

M

(

Y(x)− X(x)
) (56)

so that f + ug =
(

1− u
M

)

X + u
MY . Thus,

Lf+ug(γ ) =
(

1−
u

M

)

LXγ +
u

M
LYγ

Setting the above equal to zero, and solving for u = u(x) yields

u(x) = M
LXγ (x)

LXγ (x)− LYγ (x)
(57)

As LXγ < 0 and LYγ > 0 on L̄ by Proposition 11, we see that
0 < u(x) < M. We must also verify that the associated controlled
trajectory (57) is extremal by constructing a corresponding lift.
Suppose that x(t) solves

ẋ = f (x)+ u(x)g(x),

x(0) = q,

for q ∈ L̄. Let φ ∈ (R2)∗ such that

〈φ, g(q)〉 = 0, 〈φ, f (q)〉 = 1.

Let λ(t) solve the corresponding adjoint Equation (24) with initial
condition λ(0) = φ. Then the extremal lift Ŵ = ((x, u), λ) is
singular if8(t) = 〈λ(t), g(x(t))〉 ≡ 0. By construction of u(x), the
trajectory remains on L̄ on some interval containing zero, and we
can compute 8̇ as [using (34)]

8̇(t) = 〈λ(t), [f , g](x(t))〉

= γ (x(t))〈λ(t), f (x(t)〉 + β(x(t))〈λ(t), g(x(t))〉

= β(x(t))8(t),

Note that we have used (43) and the fact that γ = 0 by our choice
of u. Since 8(0) = 0 by hypothesis, this implies that 8(t) ≡ 0,
as desired.

The above then verifies that L̄ is a singular arc. Note that an
explicit expression for u = u(x) was given in (52), which can
be shown to be equivalent to (57).

Having shown that the singular arc L̄ is extremal, we now
investigate whether it is locally optimal for our time-optimization
problem. The singular arc is of intrinsic order k if the first 2k− 1
derivatives of the switching function are independent of u and
vanish identically on an interval I, while the 2kth derivative
has a linear factor of u. We can compute [this is standard for
control-affine systems (8)] that

82k(t) = 〈λ(t), ad2kf (g)(x(t))〉 + u(t)〈λ(t), [g, ad2k−1
f (g)](x(t))〉,

(58)

where adZ is the adjoint endomorphism for a fixed vector field Z:

adZ(V) = [Z,V], (59)

and powers of this operator are defined as composition. Fix
an extremal lift Ŵ = ((x, u), λ) of a singular arc of order k.
The Generalized Legendre-Clebsch condition (also known as the
Kelley condition) (Ledzewicz and Schättler, 2012) states that a
necessary condition for Ŵ to satisfy a minimization problem with
corresponding Hamiltonian H is that

(−1)k
∂

∂u

d2k

dt2k
∂H

∂u
(λ0, λ(t), x(t), u(t)) ≥ 0 (60)

along the arc. Note that ∂H
∂u = 8, so that the above is simply

the u coefficient of the 2k-th time derivative of the switching
function (multiplied by (−1)k). The order of the arc, as well as
the Legendre-Clebsch condition, are addressed in Theorem 16.

THEOREM 16. The singular control is of order one. Furthermore,
for all times t such that x(t) ∈ L̄, 〈λ(t), [g, [f , g]](x(t))〉 > 0. Thus,
the Legendre-Clebsch condition is violated, and the singular arc L̄
is not optimal.

Proof: Along singular arcs we must have 8(t), 8̇(t), 8̈(t) ≡ 0,
and we can compute these derivatives using iterated Lie brackets
as follows:

8(t) = 〈λ(t), g(x(t))〉,

8̇(t) = 〈λ(t), [f , g](x(t))〉,

8̈(t) = 〈λ(t), [f + ug, [f , g]](x(t))〉.

(61)

The final of the above in (61) can be simplified as

8̈(t) = 〈λ(t), [f , [f , g]](x(t))〉 + u(t)〈λ(t), [g, [f , g]](x(t))〉 ≡ 0,
(62)

which is precisely (58) for k = 1. Order one is then
equivalent to being able to solve this equation for u(t). Thus,
〈λ(t), [g, [f , g]](x(t))〉 > 0 will imply that the arc is singular
of order one. We directly compute 〈λ(t), [g, [f , g]](x(t))〉 =
〈λ(t), [g, adf (g)](x(t))〉. Using Equation (34) and recalling
properties of the singular arc [γ = 0 and the remaining relations
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FIGURE 5 | Both XY and singular trajectories taking q1 to q2.

FIGURE 6 | XY (solid) and XYXY (dashed) trajectories taking q1 to q2 in the

region γ > 0. The time difference between the two trajectories can again be

related to the surface integral in the region R, where γ < 0. The XY trajectory

can then be seen to be slower in comparison.

in (61), as well as basic “product rule” properties of the Lie
bracket], we can show that

[g, [f , g]] = (Lgγ )f − γ [f , g]+ (Lgβ)g. (63)

Recall that for an extremal lift along the arc L̄,

〈λ(t), g(x(t))〉 ≡ 0,

〈λ(t), [f , g](x(t))〉 ≡ 0

〈λ(t), f (x(t))〉 ≡ 1.

(64)

The first two of the above follow from 8, 8̇ ≡ 0, and the third
is a consequence of H ≡ 0 [see (22)]. Equations (63) and (64)
together imply that

〈λ(t), [g, [f , g]](x(t))〉 = Lgγ 〈λ(t), f (x(t))〉 − γ 〈λ(t), [f , g](x(t))〉

+ Lgβ〈λ(t), g(x(t))〉

= Lgγ (x(t))

=
1

M

(

LYγ (x(t))− LXγ (x(t))
)

.

(65)

FIGURE 7 | Comparison of upYup arc and an arc that remains on N (hence

u ≡ up ) between the points [S(τ1),R(τ1)] and [S(τ2),R(τ2)], assuming that up
remains feasible (that is, up ∈ [0,M]). Note that γ < 0 in the area of interest,

and that a switching of a Y to an X arc is prohibited via the Maximum Principle.

Thus, the only possibility is the curve illustrated, which leaves the boundary N

for a Y arc before up becomes infeasible.

TABLE 1 | Parameter values and initial conditions used throughout section 6,

unless stated otherwise.

Parameters Interpretation Value

x01 Initial sensitive population 10−2

x02 Initial resistant population 0

α Induced resistance rate due to the presence of the drug 10−2

d Drug cytotoxicity parameter 1

ǫ Drug-independent resistance rate 10−6

pr Resistant growth fraction 0.2

t0 Initial time 0

M Maximum drug dosage 5

Vc Tumor volume defining treatment failure 0.9

The last equality follows from the representation in (56).
As LYγ > 0 and LXγ < 0 along L̄ (Proposition 11),
〈λ(t), [g, [f , g]](x(t))〉 > 0, as desired. Furthermore,

−〈λ(t), [g, [f , g]](x(t))〉 < 0, or equivalently (66)

(−1)1
∂

∂u

d2

dt2
∂H

∂u
< 0, (67)

showing that (60) is violated (substituting k = 1). Thus, L̄ is
not optimal.

Theorem 16 then implies that the singular arc is suboptimal, i.e.
that L̄ is “fast” with respect to the dynamics. In fact, we can
compare times along trajectories using the “clock form,” a one-
form on�. As one-forms correspond to linear functionals on the
tangent space, and f and g are linearly independent, there exists a
unique ω ∈ (T�)∗ such that

ωx(f (x)) ≡ 1, ωx(g(x)) ≡ 0. (68)
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FIGURE 8 | Numerical solution of the optimal control problem with d = 0.05, α = 0.005, and the remainder of parameters as in Table 1. (A) Sensitive (x1) and

resistant (x2) temporal dynamics. (B) Control structure of form YXupY . (C) Volume dynamics. Note that the trajectory remains on the line V = Vc for most times, with

corresponding control u = up.

In fact, we compute it explicitly:

ωx =
g2(x)dx

1 − g1(x)dx
2

det(f (x), g(x))
. (69)

Then, along any controlled trajectory (x, u) defined on [t0, t1], the
integral of ω computes the time t1 − t0:

∫

x
ω =

∫ t1

t0

ωx(t)(ẋ(t)) dt

=

∫ t1

t0

ωx(t)(f (x(t))+ u(t)g(x(t)))) dt

=

∫ t1

t0

ωx(t)(f (x(t)) dt +

∫ t1

t0

u(t)ωx(t)(g(x(t)))) dt

=

∫ t1

t0

dt

= t1 − t0.

(70)

We can then use ω and Stokes’ Theorem to compare bang-bang
trajectories with those on the singular arc. See Figure 5 below for
a visualization of a singular trajectory connecting q1, q2 ∈ L̄ and
the corresponding unique XY trajectory connecting these points
in �−

c (note that uniqueness is guaranteed as long as q1 and q2
are sufficiently close).

Let tS denote the time spent along the singular arc, tX the
time spent along the X arc, and tY the time spent along the Y
arc. Denote by 1 the closed curve traversing the X and Y arcs
positively and the singular arc negatively, with R as its interior. As
X and Y are positively oriented (they have the same orientation
as f and g), Stokes’ Theorem yields

tX + tY − tS =

∫

1

ω =

∫

R
dω (71)

Taking the exterior derivative yields the two-form dω see Chapter
2 of (Ledzewicz and Schättler, 2012):

dω = −
γ

det(f , g)
. (72)

As the determinant is everywhere positive (see the proof of
Proposition 8), and R lies entirely in γ < 0, the integral on the
right-hand side of (71) is positive, so that we have

tS < tX + tY (73)

Thus, time taken along the singular arc is shorter than that
along the XY trajectory, implying that the singular arc is locally
suboptimal for our problem (recall that we want to maximize
time). Since local optimality is necessary for global optimality,
trajectories should never remain on the singular arc for a
measurable set of time points. This reaffirms the results of
Theorem 16. A completely analogous statement holds for YX
trajectories in the region γ > 0. We can also demonstrate,
utilizing the same techniques, that increasing the number of
switchings at the singular arc speeds up the trajectory (see
Figure 6). This again reinforces Theorem 16, and implies that
trajectories should avoid the singular arc to maximize the time
spent in�c.

5. CHARACTERIZATION OF OPTIMAL
CONTROL

The results of sections 4.1, 4.2, 4.3, and 4.4 may now be combined
to synthesize the optimal control introduced in section 3.

THEOREM 17. For any α ≥ 0, the optimal control to maximize
the time to reach a critical time is a concatenation of bang-bang
and path-constraint controls. In fact, the general control structure
takes the form

(YX)nupY (74)

where (YX)n : = (YX)n−1YX for n ∈ N, and the order should be
interpreted as left to right. Here up is defined in (18).

Proof: Formula (74) is simply a combination of the results
presented previously. Note that singular arcs are never (locally)
optimal, and hence do not appear in the equation. We also
observe that X arcs are not admissible once the boundary N has
been obtained, as an X arc always increases V . A Y arc may bring
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the trajectory back into int(�c), but a YX trajectory is no longer
admissible, as the switching structure in�−

c is XY (Theorem 14).
The only aspect that remains is to show that onceN is reached,

the only possible trajectories are either up given by (18) or Y ,
with at most one switching occurring between the two. That is, a
local arc of the form upYup is either sub-optimal or non-feasible
(equivalently, outside of the control set U). Suppose that such
an arc is feasible, i.e., that for all such points in phase space,
0 ≤ up ≤ M [recall that up is defined via feedback in (18)].
Denote by τ1 and τ2 the times at which the switch onto and off
of Y occurs, respectively. Since up decreases with S, feasibility
implies that up(t) ≤ M for all t ∈ [τ1, τ2]. Thus, we can consider
the alternate feasible trajectory which remains on N between
the points (S(τ1),R(τ1)) and (S(τ2),R(τ2)); see Figure 7 for an

FIGURE 9 | Phase plane corresponding to Figure 8. Trajectory which optimal

control is of the form YXupY with parameter values as in Table 1 except for

α = 0.005 and d = 0.05. The yellow dot in the figure represents the (x∗1, x
∗
2)

point at which Y (x) is tangent to the sliding surface. Here,

(x∗1, x
∗
2) = (0.1059, 0.7941). As proven in Proposition 2, for points on the line N,

the tumor volume will decrease along the Y (x) direction if x1 > 0.1059 and will

increase for x1 < 0.1059.

illustration. Call τ the time for such a trajectory. Then, using
the clock-form ω and the positively-oriented curve 1 which
follows N first and Y (in the reverse direction) second, we obtain
similarly to (71),

τ − (τ2 − τ1) = −

∫

R

γ

det(f , g)
, (75)

where R : = int(1). Recalling that γ < 0 in R (see Figure 4), the
previous equation implies that

τ > τ1 − τ2, (76)

i.e., a longer amount of time is achieved by remaining on the
boundary N. Hence the arc upYup is sub-optimal if it is feasible,
as desired.

The previous argument has one subtle aspect, as we used
results from the Maximum Principle on the boundary set N,
where technically it does not apply. However, the above still
remains true, since we may approximate the boundary line
V = Vc with a curve interior to �c which remains feasible. By
continuity, the time along such a curve can be made arbitrarily
close to τ , and hence is still greater than τ2 − τ1, implying that
upYup is sub-optimal.

Note that in Theorem 17, the switchings must occur across the
singular arc L̄, if it exists (recall that it is not admissible if α = 0).
The control up is determined along the boundary of �c, and
provides the synthesis between interior and boundary controls.

TABLE 2 | Optimal time tc for each of the computed controls appearing in

Figure 11.

d α = 0.001 α = 0.01 α = 0.1

0.001 6.91 7.28 15.83

0.01 7.87 8.34 17.66

0.1 162.53 72.14 30.09

0.5 246.56 140.93 61.81

1 281.25 172.26 82.13

FIGURE 10 | Numerical solution of optimal control problem with d = 0.05, α = 0.1, and the remainder of parameters as in Table 1. (A) Sensitive (x1), resistant (x2),

and volume (x1 + x2) temporal dynamics. (B) Control structure of form Y , i.e., an entirely upper corner control. (C) Phase plane dynamics, plotted with relevant vector

fields.
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FIGURE 11 | Optimal control structures for different α and d values. The blue curve is the computed optimal control, while the red curve is the feedback control along

on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 12 | Variation in tc as a function of α. (A) Treatment success time tc for d = 0.001 with varying α values. (B) Functional dependence of tc on α for different d

parameters. Note that for small d, tc increases as a function of α, but that this trend is reversed if d is further increased.

We finally include a technical result, which eliminates
the optimality of the constrained (boundary) control up in
certain cases.

Proposition 18. Assume that the maximal dose M is as in
Proposition 2:

M >
(1− Vc)(1− pr)

d
(77)

If the optimal control becomes maximal in �−
c (i.e., u = M in

this region), then the control cannot take the boundary value up
(Equation 18) on an interval. Equivalently, an optimal control
cannot end in the form Yup.

Proof: Note that if u∗ = Y and reaches N at the point x, then the
Lie derivative LYV(x) must satisfy

LYV(x) ≥ 0 (78)

as V must be increasing along the Y vector field, since it reaches
N. But by Proposition 2, this implies that

x1 ≤ x∗1

Proposition 3 then implies that up is unfeasible in this region,
completing the proof.

6. NUMERICAL RESULTS

In this section, we provide numerical examples of the analytical
results obtained in previous sections. All figures in this section
were obtained using the GPOPS-II MATLAB software (Patterson
and Rao, 2014). Parameters and initial values are given in Table 1

shown below, unless stated otherwise.

Theorem 17 characterizes the qualitative form of the
optimal control:

u∗ = (YX)nupY , (79)

where n is the number of interior switches, up the sliding
control (18), and X and Y denote the lower and upper corner
controls u = 0 and u = M, respectively. We begin by
computing sample controls (see Figures 8, 10). Note that the
optimal control in Figure 8B takes the form YXupY , while
that of Figure 10B is an upper corner control Y . The phase
plane dynamics corresponding to Figure 8 are also provided in
Figure 9. In both cases the cytotoxic parameter was fixed at
d = 0.05, while the induced rate of resistance α varies between
α = 0.005 in Figure 8 and α = 0.1 in Figure 10. Note that for the
smaller value of α (Figure 8), a longer period of treatment success
is observed, as the time to treatment failure is approximately 70
time units; compare this with tc = 24.2 in Figure 10. This result
is intuitive, as the treatment less likely to induce resistance is able
to be more effective when optimally applied.

The generality of the previous statement is investigated in

Table 2 and Figures 11, 12. The computed optimal times tc
suggest that when the cytotoxicity of the drug (d) is small,

higher induction rates (α) actually increase treatment efficacy.

For example, for d = 0.001 treatment response increases as α

increases (Figure 12A). This could be explained from the fact

that sensitive cells have a higher growth rate than resistant cells

(assumption pr < 1). Thus, when the chemotherapeutic drug
has a low effectiveness (small d) a larger α value actually helps

to reduce the sensitive population size, and therefore extends the

time tc at which the tumor volume exceeds its critical value Vc.

The situation is reversed when we consider larger values of

d because in this case it would take more time for the tumor to

grow to its critical volume Vc if the drug effectiveness is large

enough; see for example the row d = 0.5 in Table 2, and the

corresponding purple curve in Figure 12B. Figure 12B provides

the critical time as a function of α for multiple cytotoxicities d;

note the qualitative change in tc as d increases.

Examining Figure 11 and Table 2 also suggests that as d

increases, the feedback control up becomes optimal on an interval
[t1, t2] with 0 < t1 < t2 < tc. More numerical results are
provided in section 7.3.
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FIGURE 13 | Computed optimal controls for α = 0.005 and (A) d = 0.0206, (B) d = 0.020624489795918, and (C) d = 0.207959. Note that the control in (A) takes

the form Y , while that in (B,C) is of the form YXup.

FIGURE 14 | Variation in tc as a function of d. (A) tc response for varying d values. Note that treatment efficacy generally increases with increasing d. (B) α = 0.1.

7. ADDITIONAL RESULTS

7.1. Structural Identifiability
For completeness, we discuss the identifiability of system (1).
As our focus in this work has been on control structures based
on the presence of drug-induced resistance, we rely on the
ability to determine whether, and to what degree, the specific
chemotherapeutic treatment is generating resistance.

Ideally, we envision a clinical scenario in which cancer cells
from a patient are cultured in an ex vivo assay (for example,
see Silva et al., 2017) prior to treatment. Parameter values are then
calculated from treatment response dynamics in the assay, and an
optimal therapy regime is implemented based on the theoretical
work described below. Thus, identifying patient-specific model
parameters, specially the induced-resistance rate α, is a necessary
step in determining the control structures to apply. In this
section, we address this issue, and prove that all parameters
are structurally identifiable, as well as demonstrate a specific
set of controls that may be utilized to determine α. A
self-contained discussion is presented; for more details on
theoretical aspects, see Sontag (2017) and the references
therein. Other recent works related to identifiability in the
biological sciences (as well as practical identifiability) can be

found in Eisenberg and Jain (2017) and Villaverde et al.
(2016).

We first formulate our dynamical system, and specify the

input and output variables. The treatment u(t) is the sole input.

Furthermore, we assume that the only clinically observable
output is the net tumor volume V(t):

V(t) : = x1(t)+ x2(t). (80)

That is, we do not assume real-time measurements of the
individual sensitive and resistant sub-populations. We note that
in some instances, such measurements may be possible; however
for a general chemotherapy, the precise resistance mechanism
may be unknown a priori, and hence no biomarker with the
ability to differentiate cell types may be available.

Treatment is initiated at time t = 0, at which we assume an
entirely sensitive population:

x1(0) = x01, x2(0) = 0. (81)

Here 0 < x01 < 1, so that (x1(t), x2(t)) ∈ � for all t ≥ 0. We
note that x2(0) = 0 is not restrictive, and similar results may
derived under the more general assumption 0 ≤ x2(0) < 1.
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The condition x2(0) = 0 is utilized both for computational
simplicity and since x2(0) is generally small (assuming a non-zero
detection time, and small drug-independent resistance parameter
ǫ; see Greene et al., 2019 for a discussion).

As formulated in section 7.2.1, the above then allows us to
formulate our system (1) in input/output form, where the input
u(t) appears affinely:

ẋ(t) = f (x(t))+ u(t)g(x(t)),

x(0) = x0,
(82)

where (as defined on Equations (9) and (10)) f and g are

f (x) =

(

(1− (x1 + x2))x1 − ǫx1
pr(1− (x1 + x2))x2 + ǫx1

)

, (83)

g(x) =

(

−(α + d)
α

)

x1, (84)

and x(t) = (x1(t), x2(t)). As is standard in control theory,
the output is denoted by the variable y, which in this work
corresponds to the total tumor volume:

y(t, p) : = h(x(t), u(t), p)

= x1(t)+ x2(t).
(85)

Note that x1(t), x2(t) depend on both the input u(t) and
parameters p. A system in form (82) is said to be uniquely
structurally identifiable if the map (u(t), p) 7→ (u(t), y(t, p)) is
injective almost everywhere (Meshkat and Seth, 2014; Eisenberg
and Jain, 2017), where p is the vector of parameters to be
identified. In this work,

p = (x01, d,α, ǫ, pr). (86)

Local identifiability and non-identifiability correspond to the
map being finite-to-one and infinite-to-one, respectively. Our
objective is then to demonstrate unique structural identifiability
for model system (82) [or equivalently (1)], and hence recover all
parameter values p from onlymeasurements of the tumor volume
y. We also note that the notion of identifiability is closely related
to that of observability; for details Anguelova (2004), Sontag
(1979) are good references.

To analyze identifiability, we utilize results appearing in,
for example (Hermann and Krener, 1977; Wang and Sontag,
1989; Sontag and Wang, 1991), and hence frame the issue from
a differential-geometric perspective. Our hypothesis is that
perfect (hence noise-free) input-output data is available and in
particular, for differentiable controls, that we can compute y and
its derivatives. We thus, for example, make measurements of

y(0) = h(x(0)),

ẏ(0) =
d

dt

∣
∣
∣
∣
t=0

h(x(t))
(87)

for appropriately chosen inputs, and relate their values to the
unknown parameter values p. If there exist inputs u(t) such that
the above system of equations may be solved for p, the system

is identifiable. The right-hand sides of (87) may be computed
in terms of the Lie derivatives of the vector fields f and g in
system (82). We recall the definition of Lie differentiation LXH
of a Cω function H by a Cω (i.e. real-analytic) vector field X:

LXH(x) : = ∇H(x) · X(x). (88)

Here the domain of both X and H is the first-quadrant
triangular region �, seen as a subset of the plane, and the vector
fields and output function are Cω on an open set containing �
(in fact, they are given by polynomials, so they extend as analytic
functions to the entire plane). Iterated Lie derivatives are well-
defined, and should be interpreted as function composition, so
that for example LYLXH = LY (LXH), and L2XH = LX(LXH).

More formally, let us introduce the observable
quantities corresponding to the zero-time derivatives of the
output y = h(x),

Y(x0,U) =
dk

dtk

∣
∣
∣
∣
∣
t=0

h(x(t)), (89)

where U ∈ Rk is the value of the control u(t) (without loss
of generality, a polynomial of degree k − 1) and its derivatives

evaluated at t = 0: U =
(

u(0), u
′
(0), ..., u(k−1)(0)

)

. Here k ≥ 0,

indicating that the kth-order derivative Y may expressed as a
polynomial in the components of U (Sontag and Wang, 1991).
The initial conditions x0 appear due to evaluation at t = 0. The
observation space is then defined as the span of the elements
Y(x0,U):

F1 : = span
R
{Y(x0,U) | U ∈ Rk, k ≥ 0}. (90)

Conversely, we also define span of iterated Lie derivatives with
respect to the output h and vector fields f (x) and g(x):

F2 : = span
R

{

Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f }k, k ≥ 0
}

.

(91)

Wang and Sontag (1989) proved that F1 = F2, so that the
set of “elementary observables” may be considered as the set
of all iterated Lie derivatives F2. Hence, identifiability may be
formulated in terms of the reconstruction of parameters p from
elements in F2. Parameters p are then identifiable if the map

p 7→
(

Li1 . . . Likh(x0) | (i1, . . . ik) ∈ {g, f }k, k ≥ 0
)

(92)

is one-to-one. For the remainder of this section, we investigate
the mapping defined in (92).
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Computing the Lie derivatives and recalling that x0 = (S0, 0)
we can recursively determine the parameters p:

x01 = h(x0),

d = −
Lgh(x0)

x01
,

α =
L2gh(x0)

dx01
− d,

ǫ =
Lf Lgh(x0)

dx01
+ 1− x01,

pr =
x01

1− x01
+

LgLf h(x0)

αx01(1− x01)
−

(

1+
d

α

)(

1−
x01

1− x01

)

.

(93)

Since F1 = F2, all of the above Lie derivatives are observable
via appropriate treatment protocols. For an explicit set of controls
and corresponding relations to measurable quantities [elements
of the form (89)], see Greene et al. (2019). Thus, we conclude that
all parameters in system (1) are identifiable, which allows us to
investigate optimal therapies dependent upon a priori knowledge
of the drug-induced resistance rate α.

7.2. Existence Results
For the problem presented in section 3, we are going to verify
that the supremum of times tc(u) for u ∈ U [with tc(u) as
defined in Equation (6)] is obtained by some u∗ ∈ U , i.e., that
an optimal control exists. This involves two distinct steps: (1)
proving that the supremum is finite, and (2) that it is obtained
by at least one admissible control. The following two subsections
verify these claims.

7.2.1. Finiteness of the Supremum
We prove that

sup
u∈U

tc(u) <∞ (94)

for the control system introduced in section 3. The result
depends crucially on (3), and the fact that the globally
asymptotically stable state (0, 1) is disjoint from the dynamic
constraint x ∈ �c (see Equation (13)). That is, Vc < 1
is necessary for the following subsequent result to hold, and
generally an optimal control will not exist if Vc = 1 or if the path
constraint (13) is removed.

Our control system has the form

ẋ = f (x)+ u(t)g(x), (95)

where x ∈ �, u ∈ U , and the vector fields f , g :� →
R2 are continuously differentiable. Note that the above vector
field is affine (and thus continuous) in the control u. Fix the
initial condition

x(0) = x0, (96)

with x0 ∈ �. Recall that all solutions of (95) and (96) approach
the fixed point x̄ : = (0, 1) ∈ �. That is, for all u ∈ U ,

xu(t)
t→∞
−−−→ x̄. (97)

Note that we explicitly denote the dependence of the trajectory
on the control u, and the above point x̄ is independent of the
control u.

For any compact subset E of � such that x0 ∈ E, x̄ /∈ E,
we associate to each control (and hence to its corresponding
trajectory) a time tE(u) such that

tE(u) = max{T | xu(t) ∈ E for all t ≤ T}. (98)

The above is well-defined (as a maximum) for each control u,
since by assumption x0 ∈ E and each trajectory asymptotically
approaches x̄ /∈ E, xu is continuous, and E is compact.

THEOREM 19. Define

T∗ = sup
u∈U

tE(u). (99)

With the above construction, T∗ is finite.

Proof: Consider the sets K,V ⊂ R2, with V being an open
neighborhood of the steady state x̄ = (0, 1) and K a compact set
in R2 such that

(0, 1) ∈ V ( K and K ∩ {(x1, x2) ∈ R2
: x1, x2 ≥ 0

and 0 ≤ x1 + x2 ≤ Vc} = ∅.

By contradiction, suppose that T∗ is not finite, so we can find a
sequence of controls {vk}

∞
k=1

in U satisfying

d∞

(

x(t, vk),K
)

≥ ǫ for all t ≤ tk, with tk → ∞. (100)

where d∞ denotes the supremum metric and, for each k ∈ N,
x(t, vk) is the solution of the IVP:

ẋ = f (x)+ vk(t)g(x),

x(0) = x0,
(101)

Our aim is to find a control u ∈ U such that x(t, u), solution
of system (101), does not enter K for any t > 0. Recall that by the
Banach-Alaoglu theorem, the ball

B
(

L∞
(

[0,∞)
))

= {u ∈ L∞
(

[0,∞)
)

: ‖u‖∞ ≤ M} (102)

is a compact set on the weak∗ topology and metrizable. Thus, the
sequence {vk}

∞
k=1

must have a weak∗−convergent subsequence

{uj}
∞
j=1 which converges to a control u ∈ L∞

(

[0,∞)
)

. In other

words, for every ψ ∈ L1
(

[0,∞)
)

lim
j→∞

∫

[0,∞)
ψujdµ =

∫

[0,∞)
ψudµ, (103)

where µ is the usual Lebesgue measure. This means that the
sequence {uj}

∞
j=1 converges to u with respect to the weak∗

topology on L∞
(

[0,∞)
)

as the dual of L1
(

[0,∞)
)

.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 June 2020 | Volume 8 | Article 501177

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Greene et al. Control of Cancer Resistance Model

We next prove that limj→∞ ‖x(t, u) − x(t, uj)‖∞ = 0 for all
t ∈ [tk−1, tk] and all k ∈ N. In order to do so define

xk−1 = x0 +

∫ tk−1

0
[f (x(s))+ u(s)g(x(s))]ds

for any tk−1 ∈ [0,∞), where x solves the IVP

ẋ = f (x)+ vk(t)g(x),

x(tk−1) = xk−1.
(104)

Notice that the fact that the equilibrium (0, 1) is globally
asymptotically stable on {(x1, x2) ∈ R2

: x1, x2 ≥ 0 and 0 <
x1 + x2 ≤ Vc} implies that xk−1 is well-defined for any k ∈ N.

The integral form of (104) is given by

F(t, x, vk) = xk−1 +

∫ t

tk−1

[f (x)+ vk(s)g(x)]ds. (105)

With the help of the tk’s from (100) and assuming (without
loss of generality) that tk increases as k goes to infinity, we write
the set [0,∞) as the countable union of finite closed intervals:

[0,∞) =
⋃

k∈N

[tk−1, tk] where t0 = 0.

Let wj,k and w denote the functions uj and u restricted to
the interval [tk−1, tk], respectively. Thus, the sequence {wj,k}

∞
j=1

converges weakly* to w on [tk−1, tk]:

lim
j→∞

‖x(t,w)− x(t,wj,k)‖∞

= lim
j→∞

‖F(t, x,w)− F(t, x,wj,k)‖∞ (106)

= lim
j→∞

∥
∥
∥
∥
∥

∫ t

tk−1

w(s)g(x)ds−

∫ t

tk−1

wj,k(s)g(x)ds

∥
∥
∥
∥
∥
∞

(107)

= lim
j→∞

∥
∥
∥
∥
∥

∫ t

tk−1

[wj,k(s)− w(s)]g(x)ds

∥
∥
∥
∥
∥
∞

(108)

= 0 for all t ∈ [tk−1, tk]. (109)

Since this result is independent of k, this implies that

d∞

(

x(t, u),K
)

= lim
j→∞

d∞

(

x(t, uj),K
)

≥ ǫ for all

t ∈ [tk−1, tk], independently of k ∈ N. (110)

The corresponding trajectory x(t, u) thus never enters K,
contradicting the the global stability of x̄. Hence, T∗ must be
finite, as desired.

For the system and control problem defined in sections 2
and 3, the above theorem implies that supu∈U tc(u) is finite by
taking E = �c.

7.2.2. Supremum as a Maximum
Here we provide a general proof for the existence of optimal
controls for systems of the form (95), assuming the set of
maximal times is bounded above, which we have proven
for our system in section 7.2.1. For convenience, we make
the proof as self-contained as possible (one well-known
result of Filippov will be cited), and state the results in
generality which we later apply to the model of induced
resistance. Arguments are adapted primarily from the textbook of
Bressan and Piccoli (2007).

Consider again general control systems as in section 7.2.1.
Solutions (or trajectories) of (95) will be defined as absolutely
continuous functions for which a control u ∈ U exists such that
(x(t), u(t)) satisfy (95) a.e., in their (common) domain [a, b].

It is easier and classical to formulate existence with respect to
differential inclusions. That is, define the multi-function

F(x) = {f (x)+ ωg(x) | ω ∈ U}. (111)

Thus, the control system (95) is clearly related to the inclusion

ẋ ∈ F(x). (112)

The following theorem (see Filippov, 1967 for a proof) makes this
relationship precise.

THEOREM 20. An absolutely continuous function x :[a, b] 7→
R2 is a solution of (95) if and only if it satisfies (112) almost

everywhere.

We first prove a lemma demonstrating that the set of trajectories
is closed with respect to the sup-norm || · ||∞ if all the sets of
velocities F(x) are convex.

LEMMA 21. Let xk be a sequence of solutions of (95) converging to
x uniformly on [0,T]. If the graph of (t, x(t)) is entirely contained
in �, and all the sets F(x) are convex, then x is also a solution
of (95).

Proof: By the assumptions on f , g, the sets F(x) are uniformly
bounded as (t, x) range in a compact domain, so that xk are
uniformly Lipschitz, and hence x is Lipschitz as the uniform limit.
Thus x is differentiable a.e., and by Theorem 20, it is enough to
show that

ẋ(t) ∈ F(x(t)) (113)

for all t such that the derivative exists.
Assume not, i.e., that the derivative exists at some τ , but ẋ(τ ) /∈

F(x(τ )). Since F(x(τ )) is compact and convex, and ẋ(τ ) is closed,
the Hyperplane Separation Theorem implies that there exists a
hyperplane separating F(x(τ )) and ẋ(τ ). That is, there exists an
ǫ > 0 and a (without loss of generality) unit-vector p ∈ R2

such that

〈p, y〉 ≤ 〈p, ẋ(τ )〉 − 3ǫ, (114)
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for all y ∈ F(x(τ )). By continuity, there exists δ > 0 such that for
|x′ − x(τ )| ≤ δ

〈p, y〉 ≤ 〈p, ẋ(τ )〉 − 2ǫ, (115)

for all y ∈ F(x′). Since x is differentiable at τ , we can choose
τ ′ > τ such that

∣
∣
∣
∣

x(τ ′)− x(τ )

τ ′ − τ
− ẋ(τ )

∣
∣
∣
∣
< ǫ,

∣
∣x(t)− x(τ )

∣
∣ < δ,

(116)

for all t ∈ [τ , τ ′]. Equation (116) and uniform convergence then
implies that, as p is a unit vector,

〈

p,
xk(τ

′)− xk(τ )

τ ′ − τ

〉

k→∞
−−−→

〈

p,
x(τ ′)− x(τ )

τ ′ − τ

〉

≥
〈

p, ẋ(τ )
〉

− ǫ.

(117)

On the other hand, since ẋ(t) ∈ F(x′) for t ∈ [τ , τ ′],
Equation (115) implies that for k sufficiently large,

〈

p,
xk(τ

′)− xk(τ )

τ ′ − τ

〉

=
1

τ ′ − τ

∫ τ ′

τ

〈

p, ẋ(t)
〉

dt ≤
〈

p, ẋ(τ )
〉

− 2ǫ.

(118)

Clearly, (117) and (118) contradict one another, so that (113)
must be true, as desired.

We now restate the optimal control problem associated
to (95). Let S denotes the set of admissible terminal conditions,
S ⊂ R×R2, and φ :R×R2 7→ R a cost function. We would like
to maximize φ(T, x(T)) over admissible controls with initial and
terminal constraints:

max
u∈U ,T≥0

φ(T, x(T, u)),

x(0) = x0, (T, x(T)) ∈ S.
(119)

We now state sufficient conditions for such an optimal control
to exist.

THEOREM 22. Consider the control system (95) and
corresponding optimal control problem (119). Assume the
following:

1. The objective φ is continuous.
2. The sets of velocities F(x) are convex.
3. The trajectories x remain uniformly bounded.
4. The target set S is closed.
5. A trajectory satisfying the constraints in (119) exists.
6. S is contained in some strip [0,T]×R2, i.e. the set of final times

(for free-endpoint problems) can be uniformly bounded.

If the above items are all satisfied, an optimal control exists.

Proof: By assumption, there is at least one admissible trajectory
reaching the target set S. Thus, we can construct a sequence
of controls uk :[0,Tk] 7→ U whose corresponding trajectories
xk satisfy

xk(0) = x0,

(Tk, xk(Tk)) ∈ S,

φ(Tk, x(Tk))
k→∞
−−−→ sup

u∈U ,T̄≥0

φ(T̄, x(T̄, u)).

(120)

Since S ⊂ [0,T] × Rn, we know that Tk ≤ T for all k. Each
function xk can then be extended to the entire interval [0,T] by
setting xk(t) = xk(Tk) for t ∈ [Tk,T].

The sequence xk is uniformly Lipschitz continuous, as f
is uniformly bounded on bounded sets. This then implies
equicontinuity of {xk}

∞
k=1

. By the Arzela-Ascoli Theorem, there
exists a subsequence xnk such that Tnk → T∗, T∗ ≤ T, and
xnk → x∗ uniformly on [0,T∗].

Lemma 21 implies that x∗ is admissible, so that there exists a
control u∗ :[0,T∗] 7→ U such that

ẋ∗(t) = f (t, x∗(t), u∗(t)) (121)

for almost all t ∈ [0,T∗]. Equations (120) imply that

x∗(0) = x0

(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk , xnk (Tnk )) ∈ S.
(122)

Note that the second of (122) relies on S being closed. Continuity
of φ and (120) implies that

φ(T∗, x∗(T∗)) = lim
nk→∞

φ(Tnk , xnk (Tnk )) = sup
u∈U ,T∗≥0

φ(T∗, x(T∗, u)).

(123)

Thus, u∗ is optimal, as desired.

For the model of drug-induced resistance, the control set U is
the compact set U = [0,M], and for such control-affine systems,
convexity of F(x) is implied by the convexity of U. Existence of
a trajectory satisfying the constraints is clear; for example, take
u(t) ≡ 0. Our objective is to maximize the time to not escape the
set N. Note that N is a closed subset of R2, and that

φ(T̄, x(T̄, u)) = T̄. (124)

is continuous. Lastly, we have seen that all solutions remain in
the closure �̄, so that |x(t)| ≤ 1 for all u ∈ U and hence solutions
are uniformly bounded. Existence is then reduced to Item 6 in
the previous theorem. Since the supremum of time t was shown
to be finite, Theorem 22 together with Theorem 19 imply that the
optimal control for the problem presented in section 3 exists.

7.3. Further Numerical Experiments
In this subsection, we present further numerical experiments
(see section 6). Specifically, we study how the values of the
relative resistant growth rate and critical volume influence
the control structure. We also consider a regularized
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FIGURE 15 | Optimal control structures for different Vc and pr values. The blue curve is the computed optimal control, while the red curve is the feedback control

along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 16 | Optimal control structures for Vc = 0.6, and different d and pr values. The blue curve is the computed optimal control, while the red curve is the

feedback control along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 17 | Optimal control structures for Vc = 0.3, and different d and pr values. The blue curve is the computed optimal control, while the red curve is the

feedback control along on the boundary of N, which may or may not be optimal or even feasible.
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FIGURE 18 | Different perturbed controls for α = 0.005 and d = 0.05. Here, from (A–H), the value of η is 0, 0.5, 0.7, 0.9, 0.95, 0.999, 0.99999, and 1, respectively.

The maximum relative error is of 4.0338× 10−7 for figure η = 0, the remaining figures have a maximum relative error of 5.5727× 10−7 or smaller.

FIGURE 19 | Visualization of model that includes a reverse phenotype transition from resistant to sensitive. x1 denotes the sensitive cancerous cell population, yi the

drug-induced resistant cancerous cell population, and ys the non-drug-induced resistant cell population.

objective, which suggests that our numerical methods
are converging to (at least local) solutions of the optimal
control problem.

We first investigate the control structure and treatment
outcome as a function of d for a fixed α; these results are
presented in Figures 13, 14. Here α = 0.005 is fixed and d
is varied on the interval [0.001, 0.1]. Figure 13 presents three
of these controls; although none of the controls is of the

form YXY , the figure suggests that there may exist a d∗ ∈
(0.02062, 0.0207959) where the solution trajectory may intersect
the boundary line N only at one point and subsequently
switches into a Y arc, thus providing the existence of a
YXY control. Figure 14 suggests that increasing d for a fixed
α increases the overall effectiveness of the treatment for all
values of α, and that decreasing the induction rate α allows
for longer tumor control. However, for small values of d,
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FIGURE 20 | (A) Example of an arc with feedback control with entry point [x1(t1), x2(t1)] an exit point [x1(t2), x2(t2)] the exit point (B) Example of an arc that does not

slides but reaches the boundary V = Vc at the contact point (x1(t∗), x2(t∗)).

increasing α may provide a better treatment outcome (see, for
example, the intersection of the yellow and purple curves in
Figure 14).

We also investigated how the shape of the optimal control
changes for different values of the resistant growth fraction
(pr) and/or the critical tumor volume (Vc). We run several
simulations for Vc ∈ {0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9}
and pr ∈ {0.2, 0.3, 0.5, 0.7, 0.85, 0.9, 0.95, 0.98, 0.99}. We found
that when the reproduction rate of resistant cells is close to
the reproduction rate of sensitive cells (pr near 1), the best
strategy is to not give any drug at the beginning of treatment.
This is perhaps to prolong the appearance of fast-growing
resistance cells which cannot be eliminated with treatment. A
representative set of the controls for these simulations are shown
in Figure 15.

We further simulated the following parameter sets:
Vc ∈ {0.3, 0.6}, d ∈ {0.01, 0.05, 0.1, 0.5, 0.75, 1} and
pr ∈ {0.2, 0.3, 0.5, 0.7, 0.85, 0.9, 0.95, 0.98, 0.99}. Figure 16

shows some of the controls for these simulations for the case
when Vc = 0.6, while Figure 17 shows some of the controls for
the case Vc = 0.3. In both figures, we observe that independently
of the value of resistant growth rate pr , if the chemotherapeutic
drug has a low effectiveness (d small) then the best strategy is
to give the maximum possible drug dosage during treatment.
However, when d increases past d = 0.1, the control structure
changes qualitatively. When Vc = 0.6 and the resistant
reproduction rate is close to the reproduction rate of sensitive
cells, the best strategy is to start with no drug treatment while for
case Vc = 0.3 (independently of the value of pr) the best strategy
is to give the maximum drug dosage from the start.

Before ending this section, we would like to mention that to
verify the performance of the numerical software, we approached
the original problem by a sequence of regularized problems,
which is done by adding a quadratic term to the Lagrangian.
More precisely, we considered the perturbed performance index:

Jη[u] = −

∫ tc

0

[

1−
(1− η)

2
u2(t)

]

dt for η ∈ [0, 1]. (125)

Notice that Equation (125) represents a family of performance
indexes parameterized by η. The original performance index
corresponds to η = 1. Furthermore, for η 6= 1 the optimal
control problem is regular and solvers such as GPOPS-II (used
here) or SNOPT should provide accurate solutions. Thus, to test
the accuracy to the case η = 1, we investigated the corresponding
control structure in the limit η → 1. An example of different
controls, for η values 0, 0.5, 0.7, 0.9, 0.95, 0.999, 0.99999, and 1,
are shown on Figure 18. For each case we obtained different
relative errors: the largest relative error of 4.0338 × 10−7 occurs
for η = 0, with the remaining values of η having smaller relative
errors. From the values η = 0.95, η = 0.999 and η = 0.99999
in Figure 18 we can see that as η → 1 the computed control
approaches the solution to the original problem (case η = 1).

8. CONCLUSIONS

In this work, we have provided a rigorous analysis of the
optimal control problem introduced in Greene et al. (2018a).
That is, we have formally applied optimal control theory
techniques to understand treatment strategies related to a
model of induced drug resistance in cancer chemotherapy
introduced in Greene et al. (2019). Although the model is
relatively simple, it has recently been found to be highly
successful in matching experimental data (Gevertz et al., 2019;
Johnson et al., 2020), which we believe justifies the careful
analysis presented here. An optimal control problem is then
presented which maximizes a specific treatments therapy
window. A formal analysis of the optimal control structure
is performed utilizing the Pontryagin Maximum Principle
and differential-geometric techniques. Optimal treatment
strategies are realized as a combination of bang-bang and
path-constrained arcs, and singular controls are proved to
be sub-optimal. Numerical results are presented which verify
our theoretical results, and demonstrate interesting and non-
intuitive treatment strategies. We have also shown that a drug’s
level of resistance induction is identifiable, thus allowing for
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the possibility of designing therapies based on individual
patient-drug interactions (see section 7.1).

Under the assumption that sensitive cells have a higher growth
rate than resistant cells, our results (section 6) indicate that
when using a chemotherapeutic drug with low cytotoxicity, the
time at which the tumor volume exceeds its critical value tc
would be larger when the transition rate of the drug is high
(see for example Table 2, on cases d = 0.001 and d = 0.01,
as α has larger values the end time tc becomes larger). The
situation is reversed when we consider larger values of drug
effectiveness because in this case it would take more time for
the tumor to grow to its critical volume whenever the drug
effectiveness is large enough. Also, our simulations indicate that
it is optimal to apply the maximal dosage M subsequent to
sliding along the boundary V = Vc (e.g., Figure 9), prior to
treatment failure.

Clearly, further analysis is required in order to understand
this phenomenon, and its implications for clinical scenarios.
Although our model considers only an idealized scenario
where resistance is unavoidable, we see that induced resistance
dramatically alters therapy outcome, which underscores the
importance of understanding its role in both cancer dynamics
and designing chemotherapy regimes.

Other questions remain open for future work:

♦ Several studies indicate that drug-tolerance is a phenotypic
property that appears transiently under the presence of the
drug (Goldman et al., 2015). A next step to this research is to
incorporate a reverse transition rate (from resistant to sensitive
cells) that represents this phenotype-switching (see Figure 19).

♦ For controls where the trajectory remains on the boundary
V = Vc (up), the feedback control is optimal during a
time interval [t1, t2] with 0 ≤ t1 < t2 < tc. It remains
to understand the point of entry [x1(t1), x2(t1)] and exit
[x1(t2), x2(t2)] (Figure 20A). What is the significance of the
times t1 and t2 with respect to parameter values?

♦ Do there exist conditions, once the trajectory reaches Vc,
under which the optimal trajectory no longer slides? Is it
possible that at the time t∗ the point [x1(t∗), x2(t∗)] is a contact
point (Figure 20B)? Some numerical results suggest that such

a contact point may exist and give rise to a YXY control
structure (Figure 13).

♦ We have shown that an optimal control can switch at most
once in each of the regions �+

c and �−
c . Numerically we

did not observe any bang-bang controls of the form YXY ,
although its existence was strongly suggested. The existence of
a bang-bang junction in�−

c is therefore of interest.
♦ For all examples plotted in Figure 11 with d ≥ 0.1, the entry

time occurs approximately at the same value t1 = 20.03. Is this
a coincidence?Wewould like to understand the dependence of
the entry time t1 and on parameters α, d, pr ,M, and/or ǫ.

♦ We would like to extend models to include multiple, possibly
non-cross resistant, cytotoxic agents. Indeed, clinical practice
generally includes multiple agents applied concurrently and
sequentially, and we plan on investigating strategies when
different types of drugs may be applied. For example,
what control strategies arise when a targeted therapy exists

which targets the resistant sub-population? What order
should the agents be applied, and for how long? Are
intermediate doses now optimal? Mathematically, all of
these questions may be studied, and the results may be
clinically relevant.
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Although combined anti-retroviral therapy (cART) suppresses plasma HIV viremia below

the limit of detection in a majority of HIV patients, evidence is emerging that the

distribution of the anti-retroviral drugs is heterogeneous in tissue. Clinical studies

measuring antiretroviral drug concentrations in lymph nodes (LNs) revealed lower

concentrations compared to peripheral blood levels suggesting poor drug penetration

properties. Our current study is an attempt to understand this poor anti-retroviral drug

penetration inside lymph node lobules through integrating known pharmacokinetic and

pharmacodynamic (PK/PD) parameters of the anti-retroviral drugs into a spatial model

of reaction and transport dynamics within a solid lymph node lobule. Simulated drug

penetration values were compared against experimental results whenever available or

matched with data that is available for other drugs in a similar class. Our integrated spatial

dynamics pharmacokinetic model reproduced the experimentally observed exclusion

of antivirals from lymphoid sites. The strongest predictor of drug exclusion from

the lymphoid lobule, independent of drug class, was lobule size; large lobules (high

inflammation) exhibited high levels of drug exclusion. PK/PD characteristics associated

with poor lymphoid penetration include high cellular uptake rates and low intracellular

half-lives. To determine whether this exclusion might lead to ongoing replication, target

CD4+ T cell, infected CD4+ T cell, free virus, and intracellular IC50 values of anti-retroviral

drugs were incorporated into the model. Notably, for median estimates of PK/PD

parameters and lobule diameters consistent with low to moderate inflammation, the

model predicts no ongoing viral replication, despite substantial exclusion of the drugs

from the lymphoid site. Monte-Carlo studies drawn from the prior distributions of the

PK/PD parameters predicts increases in site-specific HIV replication in a small fraction of

the patient population for lobule diameters greater than 0.2 mm; this fraction increases as

the site diameter/ inflammation level increases. The model shows that cART consisting

of two nRTIs and one PI is the most likely treatment combination to support formation of

a sanctuary site, a finding that is consistent with clinical observations.

Keywords: HIV, lymph node, PK/PD modeling, sanctuary sites, inflammation, combined anti-retroviral therapy

(cART)
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1. INTRODUCTION

Human Immunodeficiency Virus (HIV) is a retrovirus that
attacks the CD4 T lymphocytes (CD4 Cells) of the immune
system. Combination anti-retroviral (cART) therapy have
tremendously reduced HIV associated morbidity and mortality.
However, the virus will rebound during treatment interruptions
in almost all patients. This is understood to be primarily due to
the activation of long-lived, quiescent infected cells that persist
during therapy and intermittently activate producing virus.

Recent studies have shown that antiretroviral drugs distribute

heterogeneously in various tissues, which raises the possibility
that drug concentrations in some tissues may be low enough to
allow ongoing HIV replication even in treated patients, forming

sanctuary sites. Non-human primate experiments revealed high
concentrations of viral RNA and DNA in lymphoid tissues
(particularly the spleen, lymph nodes, and gut tissues) compared
to suppressed levels in plasma during treatment conditions

(North et al., 2009). Pharmacokinetic measurements using
positron emission tomography in rats revealed a two-fold
decrease in drug concentration in spleen and submandibular
lymph nodes, four-fold reduction in mesenteric lymph nodes
and the testes, 25-fold reduction in the brain compartment
compared to the blood compartment (Di Mascio et al., 2009).
Similarly anti-retroviral drug concentrations in human subjects
were studied (Fletcher et al., 2014) with multiple sampling
of drug concentrations from lymph node, ileum, rectum and
plasma compartments after initiation of cART; comparison of
the average concentrations in lymph nodes to peripheral blood
showed that Tenofovir-diphosphate (TVF-DP), Emtricitabine-
triphosphate (FTC-TP), Atazanavir (ATV), Darunavir (DRV),
and Efarivenz (EFV) were 80, 66, 100, 99, and 94% lower in
the lymph nodes, respectively. These drug distribution studies
in animal and human subjects reveal significantly lower drug
concentrations in the lymphoid tissues.

Treatment intensification schemes with integrase inhibitor
(Raltegravir) revealed a transient increase in 2-LTR circles
which are markers of a failed linear DNA integration during
viral replication in the host genome (Buzón et al., 2010).
Approximately 29% of the HIV positive patients who were
on cART with suppressed levels of viral load in peripheral
blood compartment observed a transient increase in CD4+ T
cells containing HIV 2-LTR following raltegravir intensification.
Mathematical modeling on the formation of 2-LTR circles during
treatment intensification studies explain that a rapid increase
followed by a decrease in 2-LTR circles is evidence of significant
levels of ongoing infection, rather than simple virus release from
reservoir cells (Luo et al., 2013). This implies the presence of
sanctuary sites in these patients.

In our previous work, we proposed a spatial dynamics
mathematical model that predicted conditions under which the
formation of a sanctuary site is possible inside a lymphoid lobule
(Cardozo et al., 2014). Our previous model demonstrated that
the 2-LTR dynamics under treatment intensification observed in
the INTEGRAL study (Buzón et al., 2010) were possible only if
inflammation had increased the size of, and consequently the
T cell residence time in, the lymphoid lobule. In the previous

study, reduced drug activity within the lobule was assumed,
but the mechanisms of drug exclusion were not explored. The
current study seeks to estimate the drug penetration for the
most commonly used anti-retroviral drugs and understand their
transport inside a lymphoid lobule. In order to understand
drug transport inside lymph nodes, a model incorporating both
reactive and transport mechanisms of cellular components and
drugs is developed. Published PK/PD models for representative
drugs from each class have been selected and integrated into
the spatial dynamic model to evaluate drug penetration inside
lymph nodes. Transport between extracellular and intracellular
compartments, together with metabolism and degradation rates
for each drug, use median published PK/PD parameters.
Extracellular drug diffusion rates inside the lymph nodes are
calculated using thermodynamic principles, and intracellular
transport rates are based on measured T-cell kinetics within
lymph nodes as described in our previous work.

2. BIOLOGICAL BACKGROUND

2.1. Transport Biology of the Lymph Node
Lymph nodes are surrounded by a fibrous capsule that is
contiguous with the afferent and efferent lymphatic ducts, which
connect the lymph node to the lymphatic capillary network.
Directly under the surface of the fibrous capsule is a network
of fluid lymph channels known as the lymphoid sinuses. The
sinuses are open fluid channels that form a contiguous fluid
path from the afferent lymphatic ducts to the efferent lymphatic
ducts, as shown in Figure 2A. These are separated from the
LN parenchyma by a fenestrated fibrous layer (Figure 2C).
The parenchyma is subdivided by these fibrous boundaries
and sinuses into several functional units called lobules. The
lobule interior is densely populated with lymphocytes, which
can move freely on a reticular fiber meshwork. The basal end
of each lobule extends into the lymph node medulla, where
it is adjacent to a large number of narrow sinus channels
called the medullary sinuses, which facilitate drainage of the
lobule into the sinus network and the efferent lymphatic duct
(Willard-Mack, 2006). The entire LN lobule is vascularized
by specialized post capillary venous channels called High
Endothelial Venules (HEV) illustrated in Figure 2B. The HEV,
as the name implies, have characteristically thick walls consisting
of cuboidal endothelial cells bound by tight junctions. Similar
in structure to the capillary walls of the blood-brain barrier, the
HEV facilitates highly selective transport between the blood and
the lymph node parenchyma.

Lymphocytes in the blood and peripheral tissue enter the
LN through one of the two ways: either through specialized
post capillary venous channels called High Endothelial Venules
(HEV) located in the paracortex region, or through the afferent
lymph vessel and the subcapsular sinus. HEV cells express
specific adhesion molecules that facilitate efficient transport of
the lymphocytes along the endothelial surface of the HEVs.
Approximately 2% of the T cells are recruited through HEVs
from the recirculating pool per day (Von Andrian and Mempel,
2003). The other cellular components of the lobule, such as
macrophages, antigen bearing dendritic cells (DCs) and some
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lymphocytes, enter from afferent lymphatic vessels, cross the
sinus boundaries into the lobule, pass into the medullary sinuses,
and eventually leave via the efferent lymphatic vessels.

T cells explore the LN lobule via random walk, and
generate an immune response if they encounter antigen
presenting cells (APCs) displaying their specific cognate antigen.
T cells spend roughly 6–18 h exploring a particular lymph
node in uninflamed conditions. However during inflammatory
conditions, lymphocyte accumulation is markedly increased and
their exit into the efferent lymphatics is transiently blocked
(Cahill et al., 1976). This effect increases the probability of
lymphocytes encountering presented antigen, by dramatically
increasing the time spent exploring the inflamed lymph node.
Those lymphocytes that do not encounter cognate antigen will
exit the lobule and eventually the LN through the cortical sinus
and the efferent lymph vessel (Von Andrian and Mempel, 2003).

2.1.1. Transport of Antiviral Drugs Within a Lymph

Node
All antiretroviral drugs used in cART are taken orally, and
rapidly transport across the intestinal walls to the bloodstream.
The small molecule nature of the drugs facilitate their rapid
transport into the lymphoid capillaries. The drugs are taken up
into cells via active and passive transport mechanisms, and some
of the drugs may undergo metabolic conversion from prodrug to
active form. Transport of the drugs and their various metabolites
into a lymphoid follicle can thereby occur through two major
channels: the blood, through the HEV network, and the fluid
lymph, through the sinus network. In both of these channels, the
drug may enter the lymph node either as free drug or carried
intracellularly by cells migrating into the lymphoid lobule.

2.1.2. cART Mechanisms of Action
HIV infects CD4+ T cells. Uninfected CD4+ T cells are infected
by HIV at a mass-action rate forming infected CD4+ T cells.
Intracellular HIV events result in the budding of new HIV
particles. These infect more CD4 + T cells, continuing the cycle.

Combined anti-retroviral therapy (cART) consists of a
combination of drugs that each block one or multiple stages of
the viral life-cycle, preventing viral replication. Currently there
are six different mechanistic classes of drugs.

HIV initially binds to the CD4 surface receptor and either the
CCR5 or CXCR4 co-receptor on the CD4+ T cell. Drugs known
as chemokine co-receptor antagonists (CCR5 antagonists) block
the virus from binding to the co-receptor and prevent the entry
of virus into the host cell (Danjuma, 2009).

After transfer of the viral RNA into the host cytoplasm, the
reverse transcriptase enzyme converts the viral RNA into DNA
in a process called reverse transcription. Nucleoside Reverse
Transcriptase Inhibitor (nRTI) are incorporated into viral DNA
instead of natural nucleotides during this stage, resulting in
termination of the reverse transcription (Pau and George, 2014).
Non-nucleoside Reverse Transcriptase Inhibitors (NNRTI) target
and bind to the active catalytic site of the reverse transcriptase
(RT) enzyme, preventing the reverse transcriptase enzyme from
converting the viral RNA into DNA at the reverse transcription
stage (Danjuma, 2009).

Successful reverse transcription produces viral DNA which is
transported into the host nucleus for integration into the host
genome by the viral integrase enzyme. Integrase strand transfer
inhibitors (INSTI) bind to a specific complex between the viral
DNA and integrase enzyme, blocking the integration of the
viral DNA into the host genome. This results in the formation
of episomal artifacts such as linear unintegrated DNA, 1-LTR,
and 2-LTR circles which have been investigated as markers for
ongoing viral replication (Arts and Hazuda, 2012).

After successful integration into the host genome,
transcription and translation results in the production of
non-functional polyproteins. The protease enzyme breaks
these long chain proteins into functional matrix, capsid and
nucleocapsid proteins. Protease Inhibitors (PI) bind to the
protease enzyme and prevent the proteolytic cleavage of
polyproteins, resulting in the formation of non-infectious viral
particles (Arts and Hazuda, 2012).

Three different treatment combinations are most commonly
prescribed to treatment-naive patients. Each combination
includes two nRTI’s which are referred as “backbone” drugs, plus
one drug from the PI, INSTI, or NNRTI classes (Eron et al., 2008;
Pau and George, 2014).

2.2. Integrated Pharmacokinetic-Spatial
Dynamics (PKSD) Compartmental Model
2.2.1. Previous Models
Several different groups have introduced lymph node models,
all focusing on lymphocyte circulation, migration between blood
and lymph, T cell motility inside lymph nodes, and HIV induced
immune response during inflammation (Kirschner et al., 2000;
Baldazzi et al., 2009; Mirsky et al., 2011; Marinho et al., 2012).
None of these focused on drug transport and exclusion or
ongoing HIV replication. A recent study modeling persistent
viral replication in HIV patients (Lorenzo-Redondo et al., 2016)
used a simple two-compartment model assuming heterogeneity
in the drug distribution between the two compartments to
investigate the possibility of ongoing replication in a drug-
privileged node; the simplicity of this model does not allow it to
explore mechanisms of drug exclusion from the lymph node.

Our previous work in modeling lymph node consists of a
spatial, N - compartmental model (N>2) of lymphoid lobules
as sanctuary sites explaining viral dynamics in the presence
of anti-retroviral drugs. We explored the behavior of these
sanctuary sites across a wide range of parameter values and
showed that the necessary conditions for low-level ongoing
replication is a sanctuary site with large size and low drug efficacy
inside it (Cardozo et al., 2014). This study assumed low drug
concentrations in the sanctuary sites and did not investigate the
mechanism of drug exclusion.

2.2.2. Model Description
In the current study we modified the previous spatial
compartmental model to incorporate pharmacokinetic
properties of frequently used anti-retroviral drugs. In this
work, we model HIV, cell, and drug dynamics in blood, lymphoid
sinuses, and lymphoid lobules, including the transport of
cells, anti-retroviral drugs and virus between them. Published
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pharmacokinetic parameters and experimental drug transport
values have been used in the model to reflect realistic behavior
behind drug transport and their efficacy inside the lobules.
Monte-Carlo studies sampling from the published or inferred
uncertainty in these parameters has been used to explore the
variance and robustness in the behavior. Our results indicate
that despite limited drug transport into the lymphoid lobule
and resulting low drug efficacy conditions inside the lymphoid
lobule, only a small subset of patients on cART will develop
the necessary conditions for sanctuary site formation with
ongoing HIV replication. The formation of sanctuary sites was
far more likely when patients were on nRTI/PI cART compared
to nRTI/INSTI or nRTI/NNRTIs cART, and the proportion of
patients with ongoing replication increases as the size of the
lobules increase.

The model developed in this paper is a reaction/diffusion
model. The reaction dynamics describing HIV infection are
adapted directly from the basic HIV model (Ho et al., 1995; Wei
et al., 1995; Perelson et al., 1997; Nowak and May, 2000; Perelson
and Ribeiro, 2013). Published pharmacokinetic studies have been
used for modeling the dynamics of anti-retroviral drugs in both
plasma and lymphoid lobule (Dixit and Perelson, 2004; Hurwitz
et al., 2007; Arab-Alameddine et al., 2012; Habtewold et al.,
2017). Modeling assumptions concerning transport of T cells and
antiretroviral drugs are as follows:

• Transport of T cells and anti-retroviral drugs between lobule
and blood/fluid lymph is assumed to be diffusion-like.

• Transport of T cells and anti-retroviral drugs inside the lobule
is assumed to be diffusion-like.

• Free HIV particles are assumed to be blocked from entry into
or exit from the lobule. Infected cells may carry HIV in or out.

• Transport between blood and lymphatic sinuses and
recirculation within these compartments is assumed to
be much faster than transport into and out of the lobule,
so blood and lymphatic sinuses are modeled as a single
well-stirred compartment.

• Transport between the blood/lymphatic sinus compartment
and the lobule occurs primarily at the outer boundary of the
lobule. Transport of drugs, lymphocytes and virus across HEV
in the lobule interior has been neglected, as most vasculature
is associated with the sinus boundaries, and transport of free
drugs is expected to be extremely limited across the HEV due
to their similarity to the blood-brain barrier (Engelhardt and
Wolburg, 2004; Pfeiffer et al., 2008).

• The rate of elimination of the drugs within the
lobule compartments is similar to the rate in the
blood/lymph compartment.

Based on the above assumptions, the reaction diffusion system
has been modeled into a set of compartmental diffusively-
coupled ODEs as described in our previous study (Cardozo
et al., 2014). The overall system consists of a main compartment
that includes blood and the lymphatic sinuses communicating
with N spherical domains representing all the lobules in the
human body. These lobules are all connected to the blood/lymph
compartment, but not to each other. Within each lobule the
method of lines have been used to spatially discretize the

reaction-diffusion PDE domain into n-1 concentric spherical
shells, where only the outermost shell is in contact with
the blood/lymph compartment. The total number of lobules
N = 20,000, and the distribution volume of the blood/lymph
compartment is 15 liters. Previous work in Cardozo et al. (2014)
showed negligible variation in results for compartment numbers
larger than 10, so n = 10 in this study. Each spherical shell has
been denoted by a subscript s.

The basic viral dynamic model in the presence of anti-
retroviral drugs has been previously described (Ho et al., 1995;
Wei et al., 1995; Perelson et al., 1997; Nowak and May, 2000;
Perelson and Ribeiro, 2013), and is summarized in Figure 1

and Equations (1–3). The states within each compartment s are
Uninfected/Target CD4+ T cells (xs), actively infected cells (ys),
and free virus vsYs). Other viral dynamic parameters include λ,
the regeneration rate of healthy T cells, d, the turnover rate of
healthy T cells, β , the mass-action infection rate of T cells by
HIV, a, the death rate of productively infected T cells, γ , the
production of HIV virus from infected cells, ω, the decay rate
of free virus, and ye, the rate at which productively infected
cells arise from the quiescent reservoir. These parameter values
and their uncertainties have been previously estimated from
treatment interruption trial data in Luo et al. (2012), and are
detailed in Table S1.

The application of the nRTIs, NNRTIs, INSTIs, and PIs
is represented as binary input variables un,unn,ui,and up,
respectively. As an example, un=1, unn=1, ui=1, up=0 indicates
a drug combination consisting of an nRTI,NNRTI and an INSTI
excluding PI. Since nRTIs, NNRTIs and INSTIs block the viral
replication before viral integration, they reduce infectivity β with
efficacies ǫn, ǫnn, and ǫi, respectively. Protease inhibitors reduce
the effective virus production rate γ with efficacy ǫp. Usually a
combination of drugs are used as treatment strategy for HIV
(cART) comprising a total of three drugs selecting two from
nRTIs and third one from either of the three class i.e., NNRTIs
or INSTIs or PIs. The pharmacodynamic values of the drug
efficacies are functions of the drug concentrations within the
compartment, explained in greater detail in the next section.

ẋ = λ− dx− βxv(1− unǫn)(1− unnǫnn)(1− uiǫi) (1)

ẏ = βxv(1− unǫn)(1− unnǫnn)(1− uiǫi)− ay+ ye (2)

v̇ = γ (1− upǫp)y− ωv (3)

The HIV infection dynamics are reaction dynamics occurring
between species in the same spatial compartment. Species also
migrate between compartments following diffusion principles.
The transport of lymphocytes, ARV drugs and HIV between
compartments is shown in Figure 2. Compartment (s = 1)
consisting of the blood and fluid lymph, is in contact with
only the outermost shell (s = 2) of the lymphoid lobules
which is further linked with other n−1 compartments in series
as shown in Figure 2. Transport of cellular and molecular
components between these compartments depends on their
diffusive properties and their concentration differences between
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FIGURE 1 | Schematic representation of HIV dynamics in the presence of ART.

any two compartments. Equations (4–9) are the ODE equations
resulting from the method of lines discretization of the reaction
diffusion equations, including spatial transport mechanisms
along with the HIV dynamics. Equations (4–6) represent
transport between the blood/lymph (s = 1) with the outermost
compartment (s = 2) of the lobule as discussed above. The
rate of diffusive flux is directly proportional to concentration
difference, surface area and inversely proportional to the volume
and length between any two adjacent compartments. The set of
indices for the compartments which are adjacent to compartment
s is the set ψs. A(i,s), represents the surface area between any two

adjacent compartments i and s in the lobule. Vs,
D(xi,s)

l
=

D(yi,s)

l
,

D(vi,s)

l
represents the volume, effective diffusivity of uninfected,

infected CD4 T cells and virions of the layer between the ith and
sth compartments. In this case, cART consisting of two NRTIs
and a PI is modeled. The efficacies of the two NRTIs and the
PI have been denoted as “ǫNRTI1,” “ǫNRTI2,” “ǫPI.” The actual
effectiveness is a function of the concentration of the drug within
the compartment and the pharmacodynamics of the drug, which
are discussed in the next section.

ẋ1 = λ− dx1 − βx1v1(1− ǫNRTI1,1)(1− ǫNRTI2,1)

+ N
Dx1,2

l

A1,2

V1
(x2 − x1) (4)

ẏ1 = βx1v1(1− ǫNRTI1,1)(1− ǫNRTI2,1)− ay1 + ye

+ N
Dy1,2

l

A1,2

V1
(y2 − y1) (5)

v̇1 = γ (1− ǫPI,1)y1 − ωv1

+ N
Dv1,2

l

A1,2

V1
(v2 − v1) (6)

Transport between adjacent compartments within the lobule is
described in Equations (7–9).

ẋs = λ− dxs − βxsvs(1− ǫNRTI1,s)(1− ǫNRTI2,s)

+
∑

i∈ψ s

Dxi,s

l

Ai,s

Vs
(xi − xs) (7)

ẏs = βxsvs(1− ǫNRTI1,s)(1− ǫNRTI2,s)− ays + ye

+
∑

i∈ψ s

Dyi,s

l

Ai,s

Vs
(yi − ys) (8)

v̇s = γ (1− ǫPI,s)ys − ωvs +
∑

i∈ψ s

Dvi,s

l

Ai,s

Vs
(vi − vs) (9)

2.2.3. Pharmacokinetic/Pharmacodynamic (PK/PD)

Models
Efficacy (pharmacodynamics) for each drug is assumed to follow
Hill dynamics as described in Equation (10). The terms IDC(t),
IC50 and “ndrug” in Equation (10) denote the effective drug
concentration (usually the intracellular concentration of the
active form) at any time “t,” amount of drug concentration
required to produce a 50% inhibitory effect and the Hill
coefficient for the drug, respectively. Drugs from each class were
chosen based on the availability of published PK/PD models and
their associated parameters. The following sub-sections describe
the PK/PD models for the drugs used in the current study.

ǫdrug = IDC(t)ndrug/(IC
ndrug
50 + IDC(t)ndrug ) (10)

2.2.3.1. NRTI: nucleoside reverse transcriptase inhibitor

(Tenofovir, Lamivudine)
The most commonly used nRTIs are tenofovir and abacavir,
both of which are used in combinations with emtricitabine or
lamivudine as the second nRTI. In our current simulations, we
chose to use tenofovir and lamivudine as the two nRTI drugs in
the antiretroviral repertoire. The intracellular pharmacokinetic
models for these drugs have been adopted from Baheti et al.
(2011), Dixit and Perelson (2004), and Hurwitz et al. (2007).

Tenofovir is usually administered in its monophosphorylated
analog Tenofovir Disoproxil Fumarate (TDF) in doses of
300 mg/day. The pharmacokinetics of tenofovir are shown
in Figure 3. After oral administration it is rapidly adsorbed
into the plasma at a rate kTa with a bioavailability FT and
eliminated from the plasma compartment(Tp) at a rate kTe.
TDF binds minimally with the proteins by a factor fBT in the
extracellular space and starts to accumulate in the intracellular
compartment at a rate kTacell across the cell boundary with
a partition coefficient HT. Once the monophosphate form
of the drug reaches the intracellular space, it undergoes
only two steps of phosphorylation to obtain the triphosphate
anabolite unlike other nRTIs that undergo three steps of
phosphorylation. The forward rate constants for the formation
of TDF monophosphate and TDF diphosphate are k1f and k2f
while the backward rate constants are k1b and k2b, respectively.
All the intracellular components of the drug are eliminated at a
rate kTecell from the cell. The intracellular concentrations of TDF,
TDF monophosphate and TDF diphosphate are represented as
Tc,Tcmp, and Tcdp, respectively.

The pharmacokinetic model for simulating lamivudine (3TC)
has been adopted from Hurwitz et al. (2007) as shown
in Figure 4. The extracellular pharmacokinetics have been
described by a two compartment model (Plasma and Deep
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FIGURE 2 | Spatial compartmental model. Lymph node diagram (A) highlights the vascular interface (B), and sinus interface (C).

FIGURE 3 | Tenofovir pharmacokinetic model (Dixit and Perelson, 2004).

tissue), where the drug absorption into plasma was assumed
to be a zero order process with input (F*D/T1) where “F”
is the bioavailability of the drug, “D” is the drug dosage
(150 mg twice daily) and “T1” is the time period (1 or 3
h) for the zero order absorption. The plasma concentration
(LP) is further distributed between the deep tissue (LDT) and
the intracellular compartments (LC). Drug elimination from
the plasma compartment takes place at a rate kEP. The inter-
compartmental clearance rates kPT and kTP describe the rate
at which the plasma concentration is transferred from plasma
to tissue and vice versa. Rapid equilibrium is assumed to be
achieved between the plasma concentration and intracellular
concentration of 3TC due to action of equilibrative nucleoside
transporters present on the cell membranes of lymphocytes as
assumed in Hurwitz et al. (2007). Intracellular 3TC undergoes
series of phosphorylation steps to form 3TC triphosphate (LCTP).
Formation of 3TC monophosphate (LCMP) was assumed to be
rate limiting and the conversion was modeled using Michaelis-
Menten reaction with maximum rate (Vm) and Michaelis-
Menten constant (KM). Rapid equilibrium is assumed in-between
phosphorylation steps with ratios RDP/MP and RTP/DP relating

the concentrations between the 3TC-diphosphate to 3TC-
monophosphate and 3TC-triphosphate to 3TC-diphosphate. Re-
circulation of 3TC-triphosphate to 3TC-monophosphate was also
considered with the formation of an intermediate metabolite (M)
with KCTP-M as the rate of formation and KM-CMP as the rate of
conversion of metabolite to 3TC-monophosphate.

2.2.3.2. NNRTI: non-nucleoside reverse transcriptase

inhibitor (Efarvirenz)
Currently five different NNRTIs have been approved by FDA
for antiretroviral therapy. For our current study we chose
to use efarivenz due to the availability of a previously
published intracellular pharmacokinetic model by Habtewold
et al. (2017) as shown in Figure 5. Efarivenz (EFV) is usually
prescribed once daily in doses of 600mg single pill. The
pharmacokinetic model was described by a two-compartmental
model with concentrations of EFV distributed between the
plasma and peripheral blood mono-nuclear cells (PBMC).
First order kinetics has been used to describe the transfer of
drug from gastrointestinal tract (E) to plasma (Ep) at a rate
kEa and from plasma (Ep) to the intracellular compartment
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FIGURE 4 | Lamivudine pharmacokinetic model (Hurwitz et al., 2007).

FIGURE 5 | Efarivenz pharmacokinetic model (Habtewold et al., 2017).

(Ec) at a rate kEin. Transport of drug from intracellular
compartment (Ec) to plasma (Ep) has been assumed to follow
a nonlinear saturating inter-compartmental clearance process
with VMe and KMe as the maximum rate and Michaelis-Menten
constant, respectively. EFV in plasma is further converted into
its metabolite 80HEFV (Hp) at a rate kEe and the inter-
compartmental clearance of 80HEFV was modeled with similar
kinetics for forward and backward transport of EFV between
plasma (Hp) and intracellular compartments (Hc). NNRTIs
do not require phosphorylation like NRTIs to inhibit reverse
transcriptase. Hence we used the concentration of EFV in the
intracellular compartment to evaluate the instantaneous drug
efficacy in Equation (10) for the viral dynamics in our reaction-
diffusion model.

2.2.3.3. INSTI: integrase inhibitor (Raltegravir)
We use the integrase inhibitor Raltegravir (RAL) in this study;
its pharmacokinetics were studied in both HIV-positive (HIV+)
and healthy individuals in Arab-Alameddine et al. (2012). A
basic two compartmental model with first order absorption rate
(kRa) from the gastrointestinal tract (R) to plasma (Rp) and
with an inter-compartmental clearance (Qi) between plasma
(Rp) and peripheral compartment (Rph) was described in their
study as shown in Figure 6. The other parameters that were

FIGURE 6 | Raltegravir pharmacokinetic model (Arab-Alameddine et al.,

2012).

estimated in this population pharmacokinetic model include the
apparent volumes of distribution for plasma (Vp) and peripheral
compartment (Vph) along with apparent clearance of drug from
the plasma compartment (Cli). The above pharmacokinetic study
did not evaluate the intracellular pharmacokinetics in their
model. However, other studies estimated the cellular penetration
values (ration of raltegravir concentration between intracellular
and plasma compartments) as between 5% (Fayet Mello et al.,
2011) to 11% (Wang et al., 2011). Using this range of penetration
values, we assumed steady state conditions between plasma (Rp)
and intracellular compartments (Rc) to estimate the forward
(kRin) and backward (kRout) drug transfer constants across the
cellular membrane for raltegravir. Recommended dosage of 400
mg twice daily for raltegravir has been used in our simulations.

2.2.3.4. PI: protease inhibitor (Ritonavir)
In order to obtain the intracellular drug concentrations for
PI we chose to adopt the pharmacokinetic model on ritonavir
used by Dixit and Perelson (2004) to evaluate its effect
as monotherapy in viral dynamics, shown in Figure 7. A
relatively simple model of drug transport from plasma (Rp) to
intracellular compartment (Rc) has been discussed with kpa, kpe,
kpacell, kpecell describing the rate of drug absorption from the
drug compartment (R), rate of drug elimination from plasma
compartment, rate of forward transport and backward transport
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FIGURE 7 | Ritonavir pharmacokinetic model (Dixit and Perelson, 2004).

across the cellular membrane, respectively. In vitro studies
suggest that the intracellular concentrations of ritonavir reach
steady state very quickly describing that the cell membrane
offers little resistance for ritonavir transport. However, the steady
state concentrations are different across the cellular membrane
which can be modeled using a non-unit partition coefficient.
The non-unit partition coefficient was established from in vitro
studies in Dixit and Perelson (2004) and included the protein
binding fraction to estimate the concentration of intracellular
ritonavir concentration as a ratio of the plasma concentration.
We modified this transfer coefficient (partition coefficient along
with protein binding effect) into a forward (kpacell) and backward
(kpecell) rate constants by adjusting the ratios such that they
give the same transfer coefficient as used in Dixit and Perelson
(2004). This method was adopted to evaluate the time evolution
of the intracellular ritonavir concentration for our simulations.
Six hundred milligrams of pill with twice daily as dosage regimen
has been chosen to evaluate the time evolution of the plasma and
intracellular concentrations as used in Dixit and Perelson (2004).

2.3. Parameter Values and Uncertainties
All the parameters used in this study have been obtained
from previously published works on HIV viral dynamics,
experimental studies on drug transport and T cell motion
inside the lymph node and population pharmacokinetic studies
on drug distribution and metabolism in HIV patients. These
parameters are known to have a significant degree of within-
patient drift and between-patient variability. To investigate the
range of behaviors consistent with the parameter heterogeneity,
we undertook a Monte-Carlo analysis drawing from prior
distributions for each uncertain parameter. For parameters that
were published with experimental uncertainty intervals, we have
used the published uncertainty values; for parameters without
published uncertainty, we have imputed an uncertainty interval
of ±20% of the published nominal value. The HIV dynamic
parameters are highly correlated, and drawing independently
from each parameter’s prior can result in non-physiological
behavior. Instead, we have drawn our HIV dynamic parameter
values from the multi-dimensional distributions obtained by
Bayesian model fits to interruption trial data from 12 HIV
patients previously published in Luo et al. (2012). The exact
parameter values used in this study, together with the uncertainty
intervals used in the Monte-Carlo studies, can be found in
Tables S1–S8.

2.3.1. Viral Dynamics
Parameters for viral dynamics have been obtained from
parameter identification studies for HIV sampled from
frequently sampled viral load data from ten patients enrolled in
the published AutoVac HAART interruption study (Ruiz et al.,
2000). The viral dynamic parameters have been estimated using
a Bayesian Markov-Chain Monte-Carlo method. The posterior
estimates on the parameters are based on the experimental data
of HIV patients who had 3–5 treatment interruption cycles (Luo
et al., 2012). The estimated parameters with confidence intervals
that were used in the current study can be found in Table S1.

2.3.2. Diffusion Parameters

2.3.2.1. Effective diffusivity of T cells and virus
The effective diffusivity for T cells across the boundary between
lymphoid lobule and the blood/lymph compartment is estimated
as described in our previous work (Cardozo et al., 2014). Previous
experimental studies have shown that lymph nodes with an
average diameter of 1 mm in a mouse recruit approximately 2%
of the circulating T cells in the absence of infection. Hence, the
effective diffusivity of T cells across the boundary i.e., between the
blood compartment and the outermost spherical compartment
of the lymphoid lobule Dxb,LN /l, Dyb,LN /l can be obtained from
the equation (Dxb,LN /l)(Ab,LN/Vb,LN)xb = 0.02xb where Ab,LN,
Vb,LN are the area and volume of the lymphoid lobule. The
effective diffusivity Dxb,LN /l equals 1/300mm/day when the lymph
node diameter is 1 mm. Since the target CD4 cells and infected
CD4 cells have similar effective diffusivity, the calculated values
for Dxb,LN /l= Dyb,LN /l.

The effective diffusivity within the lymphoid lobule (i.e.,
between any two concentric compartments in our model) is
equal to the average value of the experimentally observedmotility
coefficient of T-cells within lymphoid lobules which is 0.1
mm2/day (Von Andrian and Mempel, 2003; Beltman et al., 2007;
Mirsky et al., 2011; Girard et al., 2012) divided by the length of
each layer l = r/(n-1), where “r” is the radius of the lymphoid
lobule and “n” is the total number of compartments in the model.

2.3.2.2. Effective diffusivity of drugs
Effective diffusivity of the drugs inside the lymphoid lobule
has been calculated using the diffusion coefficients theoretically
obtained from the Einstein-Stokes equation and the viscosity
of fluid lymph. Effective viscosity within the lymph node will
be higher due to the high density of cells and extracellular
matrix components. Experiments tracking the motility of single-
molecule chemokine AF647-tagged CXCL13 using high speed
light microscopy system capable of millisecond sampling in
an ex vivo native mouse lymph node environment allow for
direct measurement of these values (Miller et al., 2018). The
experimentally observed values were 22.7 times less than the
values for fluid lymph; we adjusted our values by the same factor.
The adjusted drug diffusion coefficients used in our simulations
can be found in Table S2.

In order to evaluate the effective drug diffusivity across the
boundary i.e., between the blood/ fluid lymph and lymphoid
lobule, we calculate the ratio of effective diffusivity values for
T cells between the boundary and the inner lobule (values
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discussed in the previous section) and assume a similar ratio
for effective diffusivities across the boundary and inner lobule
for the antiretroviral drugs. Hence, we multiply this ratio
(boundary/inner lobule for T cells) with the adjusted drug
diffusivity inside the lymphoid lobule (obtained from Einstein
stokes equation) to obtain the effective diffusivity across the
boundary i.e., between blood/lymph and the lobule. For an
average lymphoid lobule with a diameter of 0.2 mm with 10 total
compartments, i.e., n = 10, the effective diffusivity (D/l) would
be 9 mm/day. The ratio of effective diffusivity at the boundary
to the inner lobule would be 1/2,700 which was used to estimate
the effective diffusivity for the drugs at the boundary (Table S3).
Recall that we are assuming that transport for most species is
dominated by transport from the subcapsular sinus, which is
separated from the lobule by a fibrous epithelial boundary—
this ratio can be interpreted as the fraction of total surface area
available for transport across this boundary.

2.3.3. Pharmacokinetic Parameters
All the reaction rate constants, elimination rate constants for
each individual drug have been obtained from the published
pharmacokinetic studies as mentioned above. Parameters for
evaluating the instantaneous efficacy of the drug such as IC50

and hill coefficient “n,” have been determined from the dose-
response curves on antiretroviral drugs studied by Shen et al.
(2008). Pharmacokinetic parameter estimates used in our current
study can be found in Tables S4–S8.

2.4. Monte-Carlo Simulations
Integrating the above discussed population pharmacokinetic
models along with the spatial compartmental model gives us
the integrated pharmacokinetic spatial compartmental model to
understand the drug transport and viral dynamics inside the
lymphoid lobule of a HIV patient. In order to investigate the
robustness of drug transport effects to parameter uncertainty and
inter-patient variability, we employed Monte Carlo simulations
by sampling random values from parameter distributions on viral
dynamics and pharmacokinetics. The 95% confidence intervals
from which we draw our Monte-Carlo samples are shown in the
Supplementary Tables. Simulations were carried out on varying
sizes of lymphoid lobule with diameters of 0.01, 0.05, 0.10, 0.20,
0.35, and 0.50 mm. Five thousand simulations were carried out
on each diameter of the lobule under each of three treatment
conditions, with cART consisting of two nRTIs as the backbone
drugs along with either a PI, INSTI or an NNRTI. Simulations
were carried out for a time period of 100 days, which was long
enough to reach steady state.

3. RESULTS

3.1. Drug Penetration vs. Lobule Diameter
Drug penetration for various anti-retroviral drugs in the
lymphoid lobules has been evaluated using our integrated
spatial dynamic pharmacokinetic model, following the Monte-
Carlo methods described above. The three cART regimens
simulated were NNN (tenofovir, lamivudine, efavirenz), NNP
(tenofovir, efavirenz, ritonavir), and NNI (tenofovir, lamivudine,

raltegravir). These three drug combinations were simulated on
lymphoid lobules with diameters of 0.01, 0.05, 0.10, 0.20, 0.35,
and 0.50 mm. For each combination of drug regimen and lobule
size, 5,000 sets of parameters were randomly drawn from the
parameter distributions described in Tables S1–S8. Intracellular
drug penetration ratios (DPR) between the lymphoid lobule and
the plasma were calculated for each drug. The intracellular drug
concentration inside the lobule is evaluated by averaging the
concentration over the entire volume of the lobule. Figures 8–
12 show histograms of the predicted drug concentration ratio
between lobule and plasma for the six different lobule sizes.
Vertical dashed lines show experimentally measured ratios for
drugs of the same class. The DPR consistently drops as the lobule
size increases, though the strength of this effect varies from drug
to drug. The posterior distributions depend on the uncertainty
in the PK parameters for the individual drugs; lamivudine,
in particular, has very broad posterior distributions due to a
high published uncertainty in its PK parameters (Figure 11).
The experimentally measured DPRs seem to correlate best with
lobule sizes of approximately 0.2 mm in diameter, though this
underestimates drug exclusion for efavirenz and ritonavir. A
lobule diameter of 0.2 mm would correspond to a moderate state
of inflammation consistent with treated HIV infection.

Assuming an average uninflamed lymphoid lobule to be of 0.2
mm in diameter, our model predicts median DPR between lobule
and plasma of 10% for PI (Ritonavir, RTV), 25.40% for NNRTI
(Efarivenz, EFV), 17.80% for nRTI (Tenofovir diphosphate, TFV-
DP), 30.70% for nRTI (Lamivudine, LMV) and 27.67% for INSTI
(Raltegravir, RAL). These results reproduce the experimentally
reported median intracellular tissue (Lymph node) to plasma
ratio values for nRTIs such as Tenofovir Diphosphate (TFV-DP)
and Emtricitabine (FTC-TP) at 20 and 34%, respectively, INSTI
such as Raltegravir (RAL) AT 17%, PI’s such as Atazanavir (ATV)
and Darunavir (DRV) at 0 and 1%, respectively and NNRTIs
such as Efavirenz (EFV) at 6% (Fletcher et al., 2014). Lobules
with diameters of 0.5 mm, which would correspond to extreme
levels of inflammation, predicted median DPRs under 10% for
all drugs. In the absence of inflammation (lobule diameter 0.1
mm or less), median predicted DPRs were over 50% for all drugs
except ritonovir.

3.2. Sanctuary Site Formation vs.
Treatment Combination
For each of the 5,000 simulations for each drug regimen and
lobule size combination described above, HIV dynamics were
also simulated in the blood/lymph compartment as well as in the
lobule. For each simulation, the fold increase in viral replication
inside the lobule relative to the blood lymph compartment was
measured once the dynamics reached steady-state. Figure 13
shows the percentage of the simulations with a fold increase of
viral replication in the lobule at each order of magnitude relative
to the blood, grouped by drug regimen. Our model predictions
suggest no ongoing viral replication occurs in lobules with
diameter 0.01, 0.05, and 0.10 mm during on treatment conditions
across all treatment combinations. Less than 5% of the population
showed a 10-fold increase in viral replication inside the sanctuary
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FIGURE 8 | Concentration ratio (lobule/plasma) of Tenofovir-diphosphate, TFV-DP (nRTI) with change in lobule diameter.

FIGURE 9 | Concentration ratio (lobule/plasma) of Ritonavir, RTV (PI) with change in lobule diameter.

site compared to plasma levels for patients on treatment with
NNP (Two nRTIs and a PI) and NNI (Two nRTIs and a
INSTI) for lobule size of 0.2 mm in diameter. The proportion
of population with ongoing viral replication inside the lobule
increases with increase in diameter of the lobule for both NNP
and NNI treatment conditions, with NNP always having a higher
percentage of population with ongoing replication compared
to NNI. Treatment combination with NNRTIs i.e., NNN (two
nRTIs with a NNRTI) did not show any sanctuary site formation

for lobule diameters less than 0.5 mm. However, the proportion
of population with ongoing replication under NNN combination
is still less than 2% for a lobule size as large as 0.5 mm.

Our simulations suggest that the chances of sanctuary
site formation are higher under NNP treatment combination
compared to the other combinations. This result is consistent
with the predicted drug penetration results because PIs are the
most excluded drugs compared to the other class of drugs.
Even though INSTIs and NNRTIs have similar penetration levels
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FIGURE 10 | Concentration ratio (lobule/plasma) of Raltegravir, RAL (INSTI) with change in lobule diameter.

FIGURE 11 | Concentration ratio (lobule/plasma) of Lamivudine, LMV (nRTI) with change in lobule diameter.

inside the lobules, the proportion of population with sanctuary
site formation is less in the case of NNRTI-containing regimens.
This is likely due to the superior pharmacodynamic profile of
NNRTIs, which have a low IC50 relative to their target dose and
a higher Hill coefficient compared to INSTIs.

Our model predicts that sanctuary site formation while on
cART is rare except under conditions where lymphoid lobules are
very large. However, the proportion of population with sanctuary
site formation increases with increase in lobule size, and NNP
regimens are the most like to lead to sanctuary site formation.

4. DISCUSSION

In our current study, we integrated our previously published HIV

dynamics spatial compartmental model with a pharmacokinetic

model to evaluate the drug penetration inside a lymphoid lobule.
Our predictions on antiviral drug concentrations inside the

lobule suggest that drug penetration decreases with increase in
lymphoid lobule size, with less than 50% of the drug reaching
the interior regions for lobule diameters greater than 0.10 mm.
PIs are the least penetrative drugs compared to INSTIs and
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FIGURE 12 | Concentration ratio (lobule/plasma) of Efarivenz, EFV (NNRTI) with change in lobule diameter.

FIGURE 13 | Percentage sanctuary site formation with varying treatment combinations and lymphoid lobule diameter.
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NNRTIs. Our model predictions on drug penetration were
matched against previously published experimental observations
for validation purposes (Fletcher et al., 2014). Drug penetration
results for an average lymphoid lobule diameter of 0.2 mm
match with the experimental drug penetration values. Our model
does tend to underestimate the exclusion of PIs and NNRTIs
compared to the experimental data. Our model incorporates
only the most basic pharmacokinetic properties of the drugs
in its transport model, and the two drugs in question have
chemical properties that could significantly affect their transport
rates across the lobule boundaries that are not captured in
our model. Efavirenz is known to be unusually lipophilic,
which will affect it transport rates across any plasma membrane
boundary, and ritonavir is known to have a very high protein-
bound fraction, which could significantly affect its transport
rates across both the HEV and the lymphoid sinus boundaries.
Future experiments could directly measure these transport
rates. Furthermore, none of the experimental results contain
information on the lobule size corresponding to their observed
results. Since the drug penetration values are size-dependent as
shown in our results, we suggest future experimental designs
include determination of size and location for evaluating the drug
penetration values experimentally.

The low drug penetration of PI results in a much
higher proportion of virtual patients on NNP treatment
regimens forming sanctuary sites compared to NNN and NNI
combinations. Most patients, however, do not form sanctuary
sites in our model. Formation of sanctuary sites (characterized
by elevated viral replication in a treated patient) depends on the
patient-specific drug transport dynamics, the PK/PD dynamics
of the individual patient, the virus dynamics of the individual
patient, and most strongly on the inflammation status of the
lymphoid lobule in question. The limit of detection for increased
viral activity in the lobule would probably be at least a 100-fold
increase compared to the blood, and median parameter values
never displayed this level of increase for any level of inflammation
up to lobule diameters of 0.5 mm. Monte-Carlo studies exploring
the range of parameter uncertainties revealed that sanctuary
site behavior at the level of 100-fold increase does begin to
emerge once lobules reach diameters of 0.2 mm, but only 3%
of the population on NNP regimens and 2% of patients on NNI
regimens would be expected to exhibit any sanctuary site activity
at this level of inflammation. Increasing inflammation beyond
this point does result in increased probability of sanctuary site
formation, but lobules with diameters of 0.5 mm or larger likely
represent pathological levels of lymphoid hyperplasia.

These predictions are broadly consistent with the clinical
observations. The amount of viral replication in mono-nuclear
cells inside lymph nodes is 10- to 100-fold greater, and the
frequency of cells containing HIV DNA is 5- to 10-fold greater,
than that in PBMC (Pantaleo et al., 1991, 1993). Furthermore, the
absence of measurable viral load in the blood compartment does
not rule out the possibility of ongoing low-level viral replication.
It has been well-established that transport between the lymphoid
sites and the blood is limited (Fletcher et al., 2014), which almost
certainly limits the transport of infected cells and virus. Similarly,
the lack of any observations on sequence evolution in HIV

through experiments (Anderson et al., 2011; Evering et al., 2012)
does not rule out the possibility of isolated ongoing replication;
the small numbers of infected cells produced in the site, coupled
with the limited transport between the site and the blood, mean
that this would have to persist for a very long time to measurably
influence the genetic distribution of the integrated HIV DNA in
circulating cells. Furthermore, the low population incidence rates
predicted by our model make it likely that this would be missed
by all except the largest studies.

There is also some evidence of a positive feedback mechanism
whereby viral activity in a lymphoid site causes physiological
changes to the site that promote sanctuary site activity. Since the
majority of the HIV infections are harbored in the paracortical
site of the LN, an increase in traffic of CD4+ T cells to mount an
immune response in the lymph node causes inflammation of the
lymphoid lobule. As HIV infection progresses the histopathology
of the LN changes toward hyperplasia in the beginning and
eventually leading to follicular involution (Paiva et al., 1996;
Cohen et al., 1997). As discussed above, increased lobule volume
decreases anti-retroviral transport into the lobule, increases
cell residence time, and enables localized viral replication.
Marked collagen deposition in the paracortical T-cell zone of
inguinal lymph nodes in HIV infected individuals has also been
observed (Schacker et al., 2002). These observed changes in
the architecture of the lymphatic tissue and the increase in
size of the lobule due to immune activation might affect the
penetration of anti-retroviral drugs during HIV infection. These
effects are not captured in this model, but represent an avenue of
future research.
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Macrophage activity is a major component of the healthy response to infection and

injury that consists of tightly regulated early pro-inflammatory activation followed by

anti-inflammatory and regenerative activity. In numerous diseases, however, macrophage

polarization becomes dysregulated and can not only impair recovery, but can promote

further injury and pathogenesis, e.g., after trauma or in diabetic ulcers. Dysregulated

macrophages may either fail to polarize or become chronically polarized, resulting in

increased production of cytotoxic factors, diminished capacity to clear pathogens,

or failure to promote tissue regeneration. In these cases, a method of predicting

and dynamically controlling macrophage polarization will enable a new strategy for

treating diverse inflammatory diseases. In this work, we developed a model-predictive

control framework to temporally regulate macrophage polarization. Using RAW 264.7

macrophages as a model system, we enabled temporal control by identifying

transfer function models relating the polarization marker iNOS to exogenous pro- and

anti-inflammatory stimuli. These stimuli-to-iNOS response models were identified using

linear autoregressive with exogenous input terms (ARX) equations and were coupled with

non-linear elements to account for experimentally identified supra-additive and hysteretic

effects. Using this model architecture, we were able to reproduce experimentally

observed temporal iNOS dynamics induced by lipopolysaccharides (LPS) and interferon

gamma (IFN-γ). Moreover, the identified model enabled the design of time-varying input

trajectories to experimentally sustain the duration and magnitude of iNOS expression.

By designing transfer function models with the intent to predict cell behavior, we were

able to predict and experimentally obtain temporal regulation of iNOS expression using

LPS and IFN-γ from both naïve and non-naïve initial states. Moreover, our data driven

models revealed decaying magnitude of iNOS response to LPS stimulation over time

that could be recovered using combined treatment with both LPS and IFN-γ. Given

the importance of dynamic tissue macrophage polarization and overall inflammatory

regulation to a broad number of diseases, the temporal control methodology presented

here will have numerous applications for regulating immune activity dynamics in chronic

inflammatory diseases.

Keywords: macrophages, dynamic systems and control, inflammation, trajectory planning, system identification,

predictive model
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INTRODUCTION

Healthy immune response during infection or injury is a
dynamic process consisting of initial acute pro-inflammatory
activation followed by anti-inflammatory/resolving activity,
which is mediated in large part by macrophages (Sica and
Mantovani, 2012; Decano and Aikawa, 2018). This temporally
regulated response promotes pathogen and debris clearance
followed by tissue regeneration and, ultimately, recovery of
homeostasis (Figure 1A; Sica and Mantovani, 2012; Decano and
Aikawa, 2018). Dysregulation can occur in several ways. First,
a strong initial pro-inflammatory response within the affected
tissue can lead to systemic inflammation that positively feeds
back to sustain local inflammation. Second, a compensatory
anti-inflammatory response (e.g., via regulatory T cells) can
lead to aberrant immunosuppression, which impairs pathogen
clearance and regeneration (Binkowska et al., 2015). Third,
long-term dysregulation of immune response during chronic
disease interferes with tissue regeneration and homeostasis, in
turn further sustaining immune dysregulation. Indeed, chronic
inflammatory dysfunction contributes to a breadth of diseases,
including impaired wound healing after major trauma and
multiple neurodegenerative diseases (Figure 1A; Ohashi et al.,
2015; Oishi and Manabe, 2016), and chronically impaired
immune response can lead to worsened outcomes after new
insults (Wynn et al., 2013). However, broad ablation of immune
response, e.g., via corticosteroids, can equally limit successful
regeneration, and recovery of tissue homeostasis (Guo and
Dipietro, 2010; Weekman et al., 2014; Oishi and Manabe, 2016;
Hamelin et al., 2018).

FIGURE 1 | Conceptual diagram of modeling immune response in health and disease. (A) Immune response as dynamically regulated in health (left) and dysfunctional

in chronic conditions (right). (B) Block diagram with macrophages as the “system” or “plant” that is being controlled. (C) Identification, validation, and prediction of

inflammatory response as a three-step process consisting of (1) design of an engineering model structure and fit of model parameters, (2) comparison of predicted

and experimental results, and (3) use of the predictive model to design input strategies to obtain a desired response.

Although the need for regulation of tissue immune response
is well-recognized, identification of new strategies to intervene
in tissue inflammation remains a major challenge. After
trauma for example, treatment selection, dosing, and timing
of administration are all crucial factors in determining patient
outcome (Becelli et al., 2000). There has recently been a
call for a better understanding of the complex and dynamic
immune response post-injury in order to identify new strategies
to regulate dynamic immune response and ultimately patient
outcome (Galbraith et al., 2016).

The dynamic activity of macrophages is integral to both the
early (<1 h) and continued (>1 month) response to infection
and injury (Wynn et al., 2013; Hu et al., 2015). Without
appropriate regulation of their activity, macrophages can drive
the initiation and progression of many diseases (Wynn et al.,
2013; Ohashi et al., 2015). In particular, loss of regulation can lead
to insufficient pro-inflammatory activity, leading to incomplete
clearance of pathogens and/or tissue debris, impaired pro-
regenerative response, chronic inflammation, and infection (Guo
and Dipietro, 2010; Oishi and Manabe, 2016). Recent efforts to
regulate dysfunctional macrophages have focused on cell-based
therapies, such as delivery of mesenchymal stem cells (MSCs)
or macrophages conditioned ex vivo toward anti-inflammatory
and pro-regenerative “M2” phenotypes. The underlying principal
behind immunomodulatory cell therapies is that these cells
will act as natural “controllers” of immune response through
beneficial immunomodulatory signaling in the local environment
(Pacini, 2014). However, these strategies are subject to a number
of limitations. For example, MSCs are subject to variable efficacy
between donors and batches (Wang et al., 2012; Pacini, 2014).
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Other approaches seek to deliver ex vivo modified macrophages,
but both mouse and human trials have had variable success and
still face many challenges (Lee et al., 2016; Spiller and Koh,
2017). A new approach that actively regulates resident tissue
macrophages would escape many challenges faced by current
cell-based therapies.

Exogenous control of macrophage activity would provide an
exciting new method to modulate immune response (Ohashi
et al., 2015; Decano and Aikawa, 2018) that would steer the
system through a desired trajectory of activity. Macrophages
are an attractive target for regulating immune response because
(i) they are involved in diverse immune functions essential
for tissue protection and repair and (ii) they are highly
plastic, with the ability to dynamically re-polarize for different
functions based on external cues (Wynn et al., 2013). Since
macrophage polarization is dynamic, a quantitative temporal
model will enable design of exogenous input sequences capable of
normalizing response (Figures 1A,B). The pathways governing
macrophage polarization in response to stimuli have been
comprehensively modeled, including receptor binding kinetics,
downstream kinase signaling, and gene transcription (Salim
et al., 2016). While mechanistically appealing, these models
possess dozens of equations and hundreds of parameters,
making it intractable to identify reliably predictive input-output
relationships between exogenous stimulation and polarization
in terms of these precise mechanistic models. Moreover,
it has recently been argued that identification of viable
strategies to intervene in immune activity will require rigorous
integration of experimental data with computational modeling
(Vodovotz et al., 2017). There is thus a need for an empirical
input/output model that relates macrophage response to
exogenous inputs in order to predict and control activation levels
over time.

In the current study, we formulated a data-driven modeling
approach, informed by an in vitro macrophage polarization
assay and system identification theory, to identify the temporal
dynamics of macrophage response to multiple exogenous pro-
inflammatory stimuli. Specifically, we conditioned RAW 264.7
macrophages with M1 polarizing stimuli (LPS and IFN-γ)
or an M2 polarizing stimulus (IL-4) and quantified response
in terms of iNOS expression for 1–72 h post-stimulation.
We then used least squares regression to fit a low-order
autoregressive with exogenous terms (ARX) model together
with non-linear elements to relate iNOS response to each input
(Figures 1C1,2). The identified model predicted the dynamics
of polarization in subsequent experiments in response to
different concentrations and temporal trajectories (simultaneous
vs. sequential) of each input (Figure 1C3). Finally, we used the
identified model as part of an open-loop control framework to
tailor input sequences to achieve desired temporal trajectories
of macrophage polarization in vitro. To our knowledge, this
is the first study to experimentally control immune cell
dynamics using a predictive control framework. Given the
importance of dynamic M1 and M2 polarization during
tissue regeneration, the control methodology presented here
defines a novel framework that will have diverse applications

for treating chronic inflammatory diseases and promoting
tissue regeneration.

RESULTS

Macrophage iNOS Expression Is Transient
and Refractory to Repeated Stimulations
We first aimed to determine the temporal dynamics of
macrophage response to single or repeated pro-inflammatory
stimuli. As a model system, we used expression of the
pro-inflammatory M1 marker inducible nitric oxide synthase
(iNOS) by RAW 264.7 macrophages in response to the
pro-inflammatory stimulus lipopolysaccharide (LPS). Using
quantitative Western blot, we found that a single administration
of 1µg/mL LPS, but not IL-4 (Supplementary Figure S1),
resulted in transient iNOS dynamics with a peak in iNOS
expression at 24 h followed by a decay to baseline over
the following 48 h (Figure 2A). Immunocytochemistry (ICC)
confirmed this response (Figures 2B,C) and revealed that this
temporal trajectory was (1) conserved given a range of lower
doses of LPS and (2) that the magnitude of the response
monotonically increased with the magnitude of the stimulation
(Supplementary Figure S2). Intriguingly, although LPS was not
removed from cultures, and thus represented a persistent step-
like stimulus, the dynamics of iNOS expression followed a first
order decay response (Figures 2B,C). In traditional engineered
systems, this type of system response is usually obtained by
stimulating the system with a finite impulse input (Ljung, 1999).

To test whether the observed decay in iNOS expression
was due to LPS depletion from the culture medium, we re-
administered 1µg/mL LPS every 24 h. However, iNOS expression
in response to repeated stimulation was comparable to that of
a single LPS stimulation (Figure 2D), indicating suppression
of response to continued stimulation, which is consistent with
known auto-inhibitory mechanisms of macrophage response to
LPS, such as induction of ATF3 (Lawrence and Natoli, 2011)
and kinase phosphatases (Zhao et al., 2006; Sun et al., 2017).
Although the dynamics of these auto-inhibitory processes have
not been fully delineated, we next wanted to determine if
we could identify a stimulation strategy that would increase
sustained iNOS expression over the course of our 72 h culture
experiments. Because we found an initial peak at 24 h in response
to 1µg/ml of LPS, we tested a recovery time period of 24 h
between the initial peak and a potential second peak within
the 72 h experimental treatment window. However, cycled re-
stimulation did not alter iNOS expression dynamics (Figure 2E),
suggesting that the dynamics of macrophage polarization to LPS
stimulation consist of an initial response that is not sustained
despite either continued or repeated LPS stimulation, during our
experimental time window, i.e., the system becomes refractory.
This refractory behavior resembles immune tolerance/fatigue
observed in chronic disease conditions, such as type 2 diabetes
and cancer (Geerlings and Hoepelman, 1999; Makkouk and
Weiner, 2015).
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FIGURE 2 | RAW264.7 macrophages transiently express iNOS in response to constant or repeated LPS stimulation. (A) Representative Western blot for iNOS (140

kDa) and α-tubulin (55 kDa) after LPS treatment. (B) Representative ICC images showing iNOS response after LPS stimulation. (C) ICC quantification matches

Western blot analysis of transient iNOS expression in response to a single administration of LPS. (D) Dynamics of iNOS expression are not modulated in response to

multiple administrations of LPS or (E) after 24 h in basal medium before LPS re-stimulation (mean ± SEM, N = 16 at 0, 24, 48, and 72 h; red curves; interpolation ±

RMS CV error).

Auto-Regressive Model With Exogenous
Inputs Fits iNOS Dynamic Response to LPS
Input
We next asked if a control systems engineering methodology
could be used to design a temporal sequence of LPS stimulation
that would enable us to recover or sustain iNOS expression, and,
by extension, pro-inflammatory activation of RAW 264.7 cells.
Control systems methodology requires a model that can be used
to predict future system response given a known stimulation
input. Diverse model structures are employed in engineering
fields, ranging from high-order mechanistic models to input-
output data-driven models. For this application, a mechanistic
model encoding all of the genetic and protein interactions
responsible for iNOS expression would suffer from reduced
predictive capacity due to uncertainty in fitted parameters.
Gray and black box models, which capture dominant response
dynamics without specifying mechanistic details, are thus
more appealing to relate iNOS dynamics to pro-inflammatory
stimulation (Shin et al., 2012). We therefore sought to identify
an optimized black box single input and single output (SISO)
model relating LPS input to iNOS output (Shin et al., 2012;
Rachad et al., 2015). A critical tradeoff must be considered when
choosing model structure: maximize flexibility to best capture
system dynamics while avoiding the need to have more model
parameters than can be reliably identified from the data (Van
den Hof et al., 1994). Autoregressive models with exogenous
inputs (ARX) models are frequently used for black-box system
identification because they can capture underlying system
dynamics in diverse applications and because parameterization
using the ARX (Materials andMethods, Equations 1–3) structure
guarantees uniqueness of solution and identification of the
global minimum of the error function (Liu and Allen, 2002;
Zurakowski and Teel, 2006; Shin et al., 2012; Deshpande et al.,
2014).

To identify the parameters of this model architecture,
extensive experimental characterization of macrophage
polarization dynamics with multiple input patterns and

magnitudes was performed to generate a rich dataset to train and
identify an input/output model of iNOS expression dynamics

(Figures 2C–E, Supplementary Figure S2). We experimentally
found that macrophages exhibited a monotonic LPS dose-to-
iNOS response relationship within a physiologically relevant

concentration range (Supplementary Figure S2), which is well-

described using the linear ARX model structure. Above a high
(1µg/mL) concentration of LPS, response tapers off, potentially
due to cell death or changes in intracellular signaling activity

(Ziegler-Heitbrock et al., 1994). As such, we set 1µg/mL LPS
as the maximum concentration used in this study. To capture

the post-LPS stimulation refractory period, we fit an ARX
model (orders na = 1, nb = 2, nk = 1, Materials and Methods,
Equations 1–3) to experimental time sequence input-output data

from numerous experimental runs consisting of constant high
input (N = 38), constant input for three lower concentrations

(10, 100, and 500 ng/mL, N = 4), cyclic high input (Figure 2E,
N = 8), and replenished high input (Figure 2D, N = 8) with
model parameters estimated using least squares (Materials and
Methods, Equation 4). The resulting model recapitulated this

refractory pattern for a step input (Figure 3A). The model

parameter estimates are given in Supplementary Table S1 (three
free coefficients) and returned a normalized Akaike’s Information

Criterion (AICc) model quality metric of 430.59 and minimized
mean squared error (Supplementary Table S3). This model
outperforms the related ARMAX (autoregressive-moving
average with exogenous terms) model structure with similar
numbers of parameters (na = 1, nb = 2, number of moving
average coefficients nc = 0; AICc = 501.96). By estimating this
input/output model (Supplementary Tables S1, S2), we can
achieve both high descriptive and predictive capacities.
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FIGURE 3 | SISO LPS/iNOS ARX model, controller design, and experimental MPC testing. (A) Identified ARX model of macrophage iNOS response to LPS has a

characteristic step response that follows the experimentally quantified trajectory. Control system design identifies input strategy (dashed line) for a step reference that

elicits a gradual increase in plant response (blue stems) using a (B) PI or (C) LQG controller. Model simulations given controller defined inputs but within experimental

input constraints predict sustained outputs for (D) PI and (E) LQG controllers. (F) A heuristically defined three-step increase input strategy predicts an output that

reaches a maximum at 72 h. Experimental implementation using cultured RAW 264.7 macrophages and (G) PI controller-, (H) LQG controller-, or (I) a heuristic

combination of designed LPS input schema (dashed line) modulates temporal iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV

error) but does not reach the unit reference nor sustain 72 h activity. Macrophage refractory response to repeated LPS input is captured (blue stems) by multiplying the

(J) PI predicted, (K) LQG predicted, or (L) heuristically defined input sequences against a time-dependent exponential decay term (dashed lines).

Model Predictive Controller Identifies LPS
Stimulation Sequence to Sustain iNOS
Expression
Using the identified ARX system model, we sought to tune a
controller (Control System Design Toolbox, MATLAB), placed
upstream of the plant (Figure 1B), that would predict a
temporally defined LPS input strategy to overcome the persistent

decay in iNOS expression. We used two controller structures
to design input strategies capable of achieving sustained
iNOS expression. First, since our system dynamics (Figure 2C)

indicated that the system model responds to the derivative

of the input, we attempted to compensate for the derivative

using a classical proportional-integral (PI) controller, which
is commonly applied in engineering applications to minimize
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steady-state error (Nise, 2015; Supplementary Table S4). Here,
we used the PI controller (Materials and Methods, Equation 8) to
control LPS-induced iNOS expression to the unit reference (1 a.u.
iNOS relative expression, Materials andMethods). The controller
predicted that a stair-wise delivery of LPS (Figure 3B, dashed
line) would give rise to a more gradual but prolonged output
response, y, that reached the reference by the control horizon
of 72 h (Figure 3B, blue stems). Importantly, the second step in
input exceeded the unit input value (corresponding in vitro to
1µg/mL LPS), which was the upper bound of LPS concentration
used in this study. When the controller was constrained to inputs
between 0 and 1 (1µg/mL LPS), no PI controller obtained by
adjusting controller gains Kp and Ki (Materials and Methods),
was capable of defining an input sequence that both maintained
a u≤1µg/mL and predicted y to reach the reference within the
control time horizon.

Due to the inability of the PI controller to identify an input
sequence capable of reaching or maintaining output levels at
72 h, we next decided to take advantage of our ARX system
model to re-design the input sequence using a linear-quadratic
Gaussian (LQG) controller (Materials and Methods, Equation
9; Supplementary Table S4), which can provide improved
performance over conventional PID controllers for minimizing
total error (Mohammadbagheri et al., 2011). This LQG controller
designed a reduced magnitude for the original input followed
by the unit max of LPS input (Figure 3C, dashed line) to
achieve 80% of the reference point prior to exceeding the
unit max stimulation input (Figure 3C, blue stems), which
the PI controller-defined input could not achieve within
LPS concentration constraints. However, this controller also
required u>1µg/mL to reach the reference. When the input
is constrained to 0≤u≤1µg/mL LPS, the model simulations
predicted that progressive step increases in LPS would prolong
the iNOS response but not sustain it at the unit reference
value (Figures 3D,E). Finally, when the initial magnitudes of the
LQG and PI predicted inputs were heuristically combined in a
three-step increase strategy, simulations predicted a maximum
response at 72 h (Figure 3F).

Experimental Implementation of Predicted
LPS Input Temporarily Sustains
Macrophage iNOS Activation
Each controller above defined a temporally increasing magnitude
of the stimulus u, or LPS concentration, where the input is
increased at each time step. Experimentally, the model predicted
input values represent a fraction of the normalized maximum
(high) LPS concentration, 1µg/mL. For example, 0.2 is 20% of
the maximum 1µg/mL, or 200 ng/mL, and 0.4 is 400 ng/mL as
in our data used for model fitting. To test the PI controller input
strategy, RAW 264.7 macrophages were treated with 40 ng/mL of
LPS for 24 h, followed by 1µg/mL from hour 24 until fixation
at 72 h (Figure 3G, dashed line). Despite the controller requiring
u of 1.2, biologically this would have led to excessive cell death,
likely changing the plant response. Thus, we tested the effect
of the unit max of LPS in this stair-wise input scheme. The
macrophage expression of iNOS peaked at approximately 70%

of normalized maximum iNOS (defined by the 24 h expression
level given 1µg/mL LPS) at 24 h (Figure 3G, red curve). The
subsequent increase in LPS concentration delivered did not
sustain this level of iNOS, which declines through the 48 and 72 h
time points, but does keep levels higher (∼50%max) at 48 h than
an initially high level of LPS (Figure 3G, red curve).

The LQG controller predicted input, 24 h of 200 ng/mL
followed by 48 h at 1µg/mL LPS (Figure 3H, dashed line),
realized an iNOS expression level ∼60% of the reference at 24 h
(Figure 3H, red curve). Intriguingly, here the cells sustained
this iNOS level through 48 h, but not through 72 h (Figure 3H,
red curve). We next heuristically combined the input strategies
defined by the PI and LQG controller to test whether iNOS
expression at 72 h could be sustained (Figure 3I, dashed line).
However, iNOS expression given this strategy reflected that of
the LQG controller and did not keep activation high at 72 h
(Figure 3I, red curve).

The refractory, or muted, iNOS response to either high,
continued, or step-wise increases in LPS stimulation suggested
a decaying efficacy of LPS regardless of input sequence. Reduced
response to LPS is consistent with time-dependent compensatory
downstream signaling (Kadelka et al., 2019), including increases
in phosphatases that down-regulate LPS-induced phospho-
protein signaling, e.g., MAP kinase phosphatase 1 and Protein
phosphatase 2A; inhibition of pro-inflammatory transcription
factors; or up-regulation of anti-inflammatory transcription
factors, e.g., STAT6 inhibition of NF-κB (Zhao et al., 2006;
Lawrence and Natoli, 2011; Ni et al., 2016; Sun et al., 2017).

Because prior work has shown that signaling proteins
downstream of LPS respond with exponentially decaying
dynamics (Kadelka et al., 2019), we next hypothesized that
an exponential decay term would improve agreement between
our dynamic model and experimental data. Indeed, when the
input sequence terms were multiplied by a time-dependent
exponential decay term (Figures 3J–L, dashed lines), the
response magnitudes (Figures 3J–L, blue stems) reflected
the experimentally obtained iNOS values for each input
strategy. Although this single input system was unable to
meet constant reference control specifications, the ability to
qualitatively maintain elevated pro-inflammatory macrophage
activation via our predictive control framework demonstrated
an exciting feasibility of the approach that may be extendable
to alternate strategies that can overcome the decaying efficacy of
LPS stimulation.

IFN-γ Stimulation Increases Reachable
iNOS Trajectories and Adds System
Non-linearity
We found above that single or repeated stimulation with LPS
was unable to indefinitely sustain iNOS expression and that
sustained expression was only partially recovered by temporally
modulating the input (Figures 3D–I), i.e., inflammatory activity
was modulated but could not be prolonged indefinitely. In
engineering systems, independent inputs increase the system
rank and thereby increase state achievability. That is to say,
adding a secondary stimulus that operates through separate,
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orthogonal means, expands the internal states, and reachable
output of a system (Hespanha, 2009). Therefore, we next
hypothesized that a second pro-inflammatory input would
improve controllability. To test this, we used IFN-γ, which
signals largely independently of LPS (Figure 4A) as the second,
orthogonal input because 100 ng/mL IFN-γ robustly increased
iNOS levels despite prior LPS input (Figures 4B–D). Although
we also considered TNF-α as the second pro-inflammatory
stimulus, we found the iNOS response is more sensitive to
IFN-γ within a physiologically relevant concentration range
(Supplementary Figure S3). Given these findings, the use of
multiple pro-inflammatory inputs is promising for toggling both
the magnitude and duration of macrophage activity with greater
reachability than can be achieved with a single input.

While IFN-γ recovered iNOS expression from LPS-induced

tolerance, it also introduced a non-linear element to the dynamic

response—supra-additivity. ARX and transfer function models
require that the output of the sum of two inputs equal the
sum of the output of each input. However, IFN-γ amplifies

LPS-induced iNOS expression, where expression is greater than
the sum of expression from each stimulus alone, whether
added concomitantly or in series. In fact, supra-additivity for
simultaneous conditioning is present across all time points and
for a range of LPS and IFN-γ concentrations through 72 h
of conditioning (Figures 5A,B, Supplementary Figure S4). The
supra-additivity also lead to iNOS expression that was greater
than the unit reference for 24 h of LPS (Figures 5A,B), so our
predictive model needs to account for these non-linearities to
avoid overshooting or behavior that does not settled to the
desired reference (Figure 4D).

RAW 264.7 Macrophages Exhibit State
Memory Based on Stimulation History
In disease, macrophages may exist in chronically activated or
other non-naïve states, driven by local and systemic changes
in signaling proteins, hormones, among other factors (Mosser
and Edwards, 2008; Ohashi et al., 2015). Thus, having shown
our ability to model macrophage pro-inflammatory dynamics

FIGURE 4 | Orthogonal stimuli maintained or magnified iNOS expression. (A) Signaling diagram for LPS and IFN-γ (created with BioRender). (B) 24 h of LPS

treatment and delayed subsequent IFN-γ (dashed lines) treatment modulates iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV

error), even at 72 h time point. (C) Representative ICC images showing cycled LPS and IFN-γ (input defined in B) induces iNOS expression comparable to 24 h of LPS

alone while cycling only LPS in that same pattern (Figure 2F) does not maintain expression. (D) 24 h of LPS treatment and immediately subsequent IFN-γ (dashed

lines) treatment modulates iNOS expression (red curves, mean ± SEM, N = 16; interpolated curve ± RMS CV error), even at 72 h time point.
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FIGURE 5 | RAW 264.7 macrophages are markedly affected by activation state-dependent hysteresis, which can be overcome using multiple pro-inflammatory

inputs. (A) LPS and IFN-γ added simultaneously cause time dependent supra-additive expression of iNOS (color represents mean, SEM displayed numerically, N = 2).

Data are normalized by 1µg/mL LPS-only condition for each time-point. (B) Selected non-normalized data from A (24 h, highest concentration per stimulus)

demonstrating that iNOS expression from combined conditions is greater than the linear addition of LPS or IFN-γ alone (mean ± SEM, N = 2). (C) Prior treatment with

IL-4 attenuates LPS induced iNOS expression (24 h post-LPS treatment) in an IL-4 concentration-dependent manner (mean ± SEM, N = 6). (D) Interpolated

attenuation factor gamma surface plot (top) and fit error (bottom). (E) Pretreating macrophages with 100 ng/mL IL-4 for 24 h prior to LPS stimulation reduced the

magnitude of pro-inflammatory polarization measured by iNOS expression normalized to DAPI (color represents mean, SEM displayed numerically, N = 4). Combining

4 ng/mL of IFN-γ with LPS stimulates iNOS expression, overcoming the hysteretic effect dependent on the dose of LPS (color represents mean, SEM displayed

numerically, N = 4). (F) Diagram of global plant, as implemented in control system (Figure 1B), of multiple input system with both linear and non-linear model

elements. System predicted inputs u1 (LPS) and u2 (IFN-γ) are fed into respective identified SISO ARX models and supra-additive interaction term λ elements. Terms

multiplied by weighting coefficients c (defined by multiple regression estimation; Equation 10) prior to summation (6) and hysteresis-dependent attenuation (γ). Note

that u3 accounts for IL-4 attenuation via γ .

and design input trajectories for naïve macrophages, we next
wanted to determine whether the macrophage response to pro-
inflammatory stimulation would be affected by pre-polarizing the
cells toward an anti-inflammatory state.

To model RAW 264.7 cells starting in a non-naïve state,
we pre-conditioned macrophages with IL-4 for 24 h prior
to pro-inflammatory stimulation. Upon stimulation with LPS,
we found that prior IL-4 conditioning attenuated expression
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of iNOS after 24 h of treatment with LPS, but that iNOS
still responded to LPS in a concentration dependent manner
(Figure 5C). M2 polarization was validated by increased
expression of Arg1 (data not shown). Further, an initial
polarization toward a pro-inflammatory phenotype increased the
magnitude of anti-inflammatory polarization that outweighed
the IL-4 concentration given (Supplementary Figure S5), which
is consistent with prior studies, including one study where AAV
delivery of IFN-γ in vivo increased M2 gene expression, as
well as M1 genes (Weekman et al., 2014). Together, these data
suggest that macrophages exhibit hysteresis in their response to
prior inputs, whereby prior M2 polarization attenuates future
M1 response and prior M1 polarization sensitizes future M2
response. The M2 driven attenuation of M1 response reflects one
aspect of how systemic immunosuppression poses a major risk
to post-traumatic or surgical injury patients (Kimura et al., 2010;
Islam et al., 2016).

Modeling Multi-Input Driven Hysteresis
and Supra-Additivity
Since the dynamics of iNOS expression in RAW 264.7 cells were
dependent on the polarization state history (i.e., hysteresis in
non-naïve cells) and demonstrated supra-additivity in response
to combinations of LPS and IFN-γ, we next sought to incorporate
these elements into our iNOS response model. In terms of
state history, quantification, andmathematical modeling of state-
history dependence has previously been reported for cancer cell
epithelial-mesenchymal transition (Celia-Terrassa et al., 2018;
Tripathi et al., 2020). Here, we accounted for the hysteretic
effects of prior treatment with IL-4 by defining an attenuation
factor to account for the reduction in magnitude of iNOS
expression in the next time step for the range of LPS and IL-
4 concentrations described in Figure 5C relative to expression
with no exposure to IL-4. Quantitatively, the attenuation factor γ

(Materials and Methods) is equal to 1 for non-hysteretic systems
and increases with higher prior concentrations of IL-4 such that
1
γ
multiplied by iNOS expression for a given LPS concentration

gives the iNOS response for that LPS concentration and an
IL-4 pre-treatment concentration. A response plane for γ was
fitted with 3rd order polynomials in [LPS] and [IL-4] to
define a smoothed continuous response surface from which
any attenuation due to anti-inflammatory induction is returned
(Figure 5D).

To account for supra-additive effects of multiple pro-
inflammatory inputs, as done for the hysteretic surface, we
populated time-dependent interaction term (λ) surface curves
for the defined ranges of co-addition of LPS and IFN-γ.
Excitingly, the supra-additivity of IFN-γ with LPS demonstrated
the ability to recover the attenuation effect induced by IL-
4. Indeed, greater iNOS expression was observed across lower
LPS concentrations and higher IL-4 concentrations when IFN-
γ co-stimulation was used compared with LPS stimulation alone
(Figure 5E, note that the scale of response is an order of
magnitude greater in the heat map with IFN-γ). This interaction
effect motivates the need for a system plant model that processes
both M2 and M1 inputs.

The global plant model was constructed and is
described schematically in Figure 5F. The system receives
the concentration of LPS (u1) and IFN-γ (u2) which
are passed into their respective identified ARX models
(Supplementary Table S2), the supra-additivity of LPS and
IFN-γ was accounted for using λ, the pro-inflammatory
contributions are summed and applied as inputs to the hysteresis
term γ, Finally, the output is the predicted iNOS output (ŷ) as a
function of time t (Figure 5F).

Design of LPS and IFN-γ Temporal Input
Trajectories With Global Plant Model
Achieves Sustained iNOS Expression
Transfer functions were linearly combined with coefficients for
supra-additivity (λ) and hysteresis (γ) acting as pre-processing
filters, i.e., the terms were multiplied with each model’s output,
then added. The global regression of the function has the final
form inMaterials andMethods, Equation 10 [R2 = 0.748; p-value
(vs. constant model) = 1.34e-38]. Simultaneous administration
of unit, high, inputs in vitro vastly overshot the unit value of
iNOS and did not settle over the course of the experiment
(Figure 6A), demonstrating that it is possible to obtain sustained
iNOS response, but that more carefully crafted input sequences
are needed to obtain constant, sustained expression of iNOS.
We therefore next used the global model (Figure 5F) together
with an MPC controller to design input trajectories for LPS
(u1) and IFN-γ (u2) needed to obtain sustained constant iNOS
expression over a 72 h control horizon (Figure 6B). Using these
trajectories, the simulated plant reached the reference value by
24 h with a minor overshoot that settled by 72 h (Figure 6C).
Including hysteresis in the plant controller estimation increases
the predicted inputs magnitude needed to obtain the unit step
reference (Figure 6D). Given the input sequence defined in
Figure 6D, a hysteretic system was predicted to respond with
relatively small overshoot and error (Figure 6E, red curve).
Importantly, the model captures the large overshoot that would
be expected from administering elevated input levels to a non-
hysteretic system (Figure 6E, blue curve).

Next, the relative input magnitudes defined for a hysteretic
plant (Figure 6D) were translated to concentrations of LPS
and IFN-γ, which were administered as temporally defined to
RAW 264.7 macrophages in culture. The macrophage iNOS
expression trajectories reflected the model predicted response
for both hysteretic, i.e., pretreatment with 100 ng/mL IL-
4 (Figure 6F, red curve and Figure 6G) and non-hysteretic
(Figure 6F, blue curve) cell conditions. Since this initial
model only accounted for a static supra-additivity term, we
next updated it to incorporate a dynamic supra-additivity λ

term that updated with time based on our response data in
Figure 5A. The updated model was simulated with inputs used
experimentally (Figure 6F) and defined by the original model
(Figure 6D). This 2nd generation model improved the predictive
performance with results that recapitulated the overshoot seen
in the hysteretic system (Figure 6H). Since we wanted to
ultimately achieve a unit reference system response, our last
step was to use the 2nd generation model to define new
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FIGURE 6 | Open-loop control of pro-inflammatory macrophage activity is experimentally achieved using a nested multiple regression. (A) RAW 264.7 macrophage

temporal response to 1µg/mL LPS and 100 ng/mL IFN-γ. (B) Model designed inputs u1 and u2 using hysteresis-free model, which reflects cells beginning in a naïve

state. (C) Hysteresis-free model response to inputs defined in (B). (D) Model designed inputs u1 and u2 using first generation model accounting for hysteresis, which

reflects cells starting from a non-naïve 24 h IL-4 primed state. (E) Hysteretic model (red) and non-hysteretic model (blue) responses to inputs defined in (D). (F)

Experimental delivery of designed inputs in (D) reflects predicted control output (E) for both hysteretic IL-4 primed (red curve, mean ± SEM, N = 16; interpolated

curve ± RMS CV error) and non-hysteretic (blue curve, mean ± SEM, N = 16; interpolated curve ± RMS CV error) RAW 264.7 macrophage cultures. (G)

Representative images of iNOS staining in model predictive control experiments using the inputs in (D). (H) Simulation of updated 2nd generation model with dynamic

supra-additivity term in response to designed inputs (D) captures experimental RAW 264.7 iNOS expression for both hysteretic (red curve) and non-hysteretic (blue

curve) systems. (I) Experimental validation of the second-generation global model. Delivery of inputs designed to maintain a constant unit output of iNOS in a

hysteretic system using the new model (inputs shown in Figure S6) improves control output for both hysteretic IL-4 primed (red curve, mean ± SEM, N = 8;

interpolated curve ± RMS CV error) and non-hysteretic (blue curve, mean ± SEM, N = 8; interpolated curve ± RMS CV error) macrophage cultures.

system inputs (Supplementary Figure S6) for the IL-4 pre-
treated hysteretic system using the MPC controller. We then
applied these temporal input sequences to both blank media

and IL-4 pre-treatedmacrophages. Excitingly, thisMPC designed
input sequence improved macrophage iNOS expression dynamic
response because the IL-4 pre-treated cells settled to the target
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reference with minimal overshoot (Figure 6I). We also found
that non-hysteretic (blank media pre-treated) cells overshot and
did not settle to the reference by the control horizon (Figure 6I),
as predicted by the model (Figure 6E).

In total, these experimental findings show that our global plant
model predicts the dynamics macrophage pro-inflammatory
response, including transient response to LPS, supra-additivity,
and hysteresis. Moreover, we showed that this model could be
used to define dual stimulation strategies that could prolong
RAW 264.7 cell polarization as quantified by iNOS.

DISCUSSION

In this work, we developed a novel paradigm for engineering
immune activity by defining predictive data-driven models of
macrophage polarization and using them to define the dynamic
delivery of pro-inflammatory factors to control the duration and
magnitude of macrophage polarization. Rather than identifying
detailed, highly parameterized mechanistic models, we applied
a control theory framework to globally describe the pro-
inflammatory activity of macrophages over time. Specifically,
using expression of the canonical pro-inflammatory (M1)marker
iNOS as an output, we defined a black-box transfer function to
capture the dynamic response of macrophages given a temporal
sequence of applied LPS and IFN-γ as system inputs. Our overall
modeling framework coupled linear ARX models, which are
uniquely identifiable, with non-linear elements that accounted
for state-history dependent hysteresis and supra-additivity from
multiple pro-inflammatory stimuli. Our global plant model
structure not only predicted responses to different input
sequences, but enabled design of new stimulation sequences
that yielded a desired temporal iNOS response overcoming
macrophage refractory behavior (Figure 6).

Immune dysregulation plays a central role in diverse diseases.
Dysregulated activity of macrophages in particular can both
hinder tissue repair and promote disease pathogenesis. However,
macrophage functional diversity and broad distribution
throughout the body also makes them excellent targets for
modulating immune function to treat an array of diseases (Salim
et al., 2016). Yet the vast majority of new immunomodulatory
strategies, including inflammatory inhibitors and cell-based
therapies, do not explicitly account for the temporal evolution of
macrophage response needed to resolve the response to injury.

The importance of a temporally dynamic immune response
has been highlighted by recent findings that long term resolution
of inflammation depends on a sufficiently pro-inflammatory
initial response followed by anti-inflammatory and resolving
activity. Early pro-inflammatory macrophage response enables
clearance of pathogens and damaged cells and subsequently
triggers the anti-inflammatory and pro-regenerative response
(Lee et al., 2016; Spiller and Koh, 2017; Ponzoni et al.,
2018). Thus, in the current study, we sought to model and
control macrophage pro-inflammatory activity, measured by
iNOS expression. Using an ARX model structure, which is
widely used for black-box system identification in engineering
(Rachad et al., 2015) and biological systems (Liu and Allen,

2002; Zurakowski and Teel, 2006; Shin et al., 2012; Deshpande
et al., 2014), we identified computational models able to predict
and control temporal iNOS expression. This black-box approach
enabled us to fit three parameters to model the dynamic LPS
response and three more to fit the IFN-γ response, in contrast
to dozens required in mechanistic differential equation models
of macrophage polarization (Salim et al., 2016). A key feature of
our black box modeling framework is that it is generalizable to
broad inputs, outputs, and disease cases. Indeed, relationships
between inputs and macrophage responses are quantitatively
linked by experimental data, which can be extended beyond
iNOS, LPS, and IFN-γ. This framework is therefore generalizable
to inputs and outputs relevant to other diseases and markers
of macrophage activity by experimentally tuning the model
parameters to the new system.

Interestingly, when implementing model-predicted LPS input
sequences, we observed that the time-dependent decay in the
efficacy of LPS persisted. In fact, when the designed input
magnitude was multiplied against a time-dependent decay term
(Figures 3J,L, dashed lines), we were able to simulate the
observed experimental response. This finding is consistent with
macrophage auto-regulatory processes that prevent runaway
inflammatory activity to LPS (Ziegler-Heitbrock et al., 1994).

The current work has some limitations that invite the need for
future studies. First, we used murine RAW 264.7 immortalized
macrophages, which is considered one of the best macrophage
cell lines, for development of the methodology in this study, due
to their high reproducibility between labs and studies (Taciak
et al., 2018; Kong et al., 2019), but future work is needed to
validate and tune the models for primary isolated macrophages.
Further, to extend the utility of themodel for disease therapeutics,
it will be necessary to identify similarities and differences between
primarymacrophages, either bone-marrow derived or peritoneal,
collected from wild type mice and mouse models of chronic
inflammatory diseases. For example, macrophages are known
to exhibit distinct inflammatory profiles from diabetic patients
than from healthy individuals (Li et al., 2019), which will be
reflected in the identified model parameters. Additionally, the
methodology developed here lays a foundation for dynamic
control of macrophage activation using a single polarization
marker, but a wider panel of pro- and anti-inflammatory markers
are needed to fully delineate macrophage activation state and
effector function. Ultimately, the use of this methodology in in
vivo models will be necessary to determine if it is possible to
control immune activity for translational applications.

Together, our dynamic experimental and computational
approach establishes a new way of conceptualizing and
modulating macrophage activity by using a temporal sequence
of input stimuli to shape the trajectory of inflammatory
response. We experimentally validated the computational model
predictions, extending previous theoretical work in model
predictive control for patient-specific therapeutics (Day et al.,
2010). We envision this framework having broad-reaching
applications both in vitro an in vivo. Moreover, our ability to
modulate macrophage activity suggests that design of temporally
varying inputs has therapeutic potential for broad chronic
inflammatory disorders.
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MATERIALS AND METHODS

RAW 264.7 Macrophage Cell Culture and
Conditioning
All studies in this work were performed using RAW 264.7
murine immortalized macrophages (ATCC TIB-71TM).
Macrophages were expanded, maintained, and cultured in
basal macrophage medium, which is comprised of DMEM
(Thermo Fisher Scientific; 12430062), 10% FBS (Thermo Fisher
Scientific; 26140079), and 1% antibiotic/antimycotic (Sigma-
Aldrich; A5955). Cells were cultured to 70% confluence before
conditioning began. Cells were conditioned by addition of
medium with lipopolysaccharide (LPS; Sigma-Aldrich; L2880
and Invitrogen; 00-4976-93), interferon gamma (IFN-γ; R&D
Systems; 485-MI), or interleukin (IL)-4 (PeproTech; 214-14)
as indicated. RAW 264.7 macrophages were conditioned
with LPS or IFN-γ alone to quantify individual stimulus
dynamic response, with LPS or IFN-γ sequentially to recover
iNOS expression via orthogonal input, or with LPS or IFN-γ
simultaneously to quantify supra-additivity and model predictive
control strategy response. Pre-treatment, 24 h of 100 ng/mL
IL-4 prior to addition of LPS or IFN-γ, was used to induce an
anti-inflammatory, non-naïve state for experiments involving
hysteretic effects.

Quantification of iNOS Expression via
Immunofluorescence and Western Blot
For immunocytochemistry (ICC) experiments, macrophages
were cultured in 96-well microplates. Macrophages were fixed
in 4% PFA solution for 15min and blocked with 5% BSA +
3% goat serum in PBS for 1 h. Cells were stained with α-iNOS
antibody (Cell Signaling Technology; Cat. No. 13120; 1:400)
and DAPI for normalization to nuclei count. Cells were imaged
at 10X magnification (Zeiss Observer Z1). Image fluorescence
was thresholded and total fluorescence above the threshold was
normalized to nuclei number.

For Western blot experiments, cells were cultured in 6-well
plates then lysed using RIPA buffer with PMSF (Sigma-Aldrich),
and cOmplete Mini (Sigma-Aldrich). Membranes were probed
for α-tubulin (Sigma-Aldrich, Cat. No. T6074; 1:4,000) and iNOS
(1:1,000). Membranes were imaged on a LiCor Odyssey CLx
machine and quantified in ImageStudio Lite. iNOS band intensity
was normalized to α-tubulin intensity to yield iNOS expression.

Data Normalization and Dynamic iNOS
Response Figure Generation
ICC andWestern blot data were aggregated and iNOS expression
for each independent experiment was normalized to the positive
control with RAW 264.7 cells treated with 1µg/mL LPS for 24 h.
iNOS dynamics plots were generated using the Gramm package
for MATLAB (Morel, 2018). Data at sampled time points (0, 24
48, and 72 h) were expressed as mean ± SEM for separated data
(N = 38 for LPS single input experiments;N = 8 for LPS repeated
input experiments; N = 8 for LPS cycled input experiments;
N = 32 for IFN-γ single input experiments; N = 16 for IFN-
γ repeated input experiments; N = 16 for IFN-γ cycled input
experiments per each time point. Sample sizes used for model fits

are indicated in figure legends). To generate interpolation curves,
data were smoothed using the Savitzky-Golay (sgolay) option in
the curve fitting toolbox. Shaded band on curve represents root
mean squared (RMS) cross validation error on smoothed data
(Morel, 2018).

SISO and MISO Linear ARX Model System
Identification
LPS response data were compiled into a time-domain
data object with experiments for all input concentrations
and unique input sequences. Dynamic models were fit
(Supplementary Table S1) to the autoregressive with exogenous
inputs (ARX) model structure

A
(

z−1
)
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z−1
)

u (t − nk) + ε (t) (1)

where u(t) is the LPS stimulation input, nk is the system dead
time, y(t) is the iNOS response, and the model coefficients
consist of
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with one pole (na), two zeros (nb), an input-output delay of
1 time step corresponding to 24 h, and zero initial conditions
(System Identification toolbox, MATLAB, 2018b). Parameters
were estimated by solving the least squares problem

(

WTW
)

θ =WTym (4)

whereW is the 4× 4 regressor matrix consisting of given inputs,
ym=[y (0) y (1) y (2) y (3)]T is the measured output vector, and
the uniquely identified solution to the least squares parameter
estimation is

θ = [a1 a2 . . . ana b0 b1 . . . bnb ]
T (5)

The sampling time step of the identified model was set to 24 h,
which was equal to the data acquisition time step.

Realized for control design and flow diagram integration, the
canonical state space equations for this ARX model are of the
form Equations (6) and (7) with matrix coefficients listed in
Supplementary Table S2.

x(t+ 1)= Ax(t)+ Bu(t) (6)

y(t)= Cx(t)+Du(t) (7)

where A is the 2 × 2 system matrix, B is the 2 × 1 input
matrix, C is the 1 × 2 output matrix, D is the 1 × 1
feedthrough matrix, and t is discrete time. Model order was
selected to minimize the small sample-size corrected Akaike’s
Information Criterion (AICc) (Ljung, 1999) and mean squared
error (Supplementary Table S3). This process was repeated for
a SISO IFN-γ model (na = 1, nb = 2) and a multi-input single
output (MISO) model with both LPS and IFN-γ inputs (na = 1,
nb = 2 for both inputs).
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LPS System Controller Design
Controller design was carried out in the Control SystemDesigner
application (MATLAB, Mathworks) to find an input strategy
capable of achieving the unit step response from a step reference.
Since our estimated system dynamics indicated a continuous
time zero at the origin, we selected a PI controller to compensate
because it adds a continuous time pole at the origin and is widely
used in engineered systems (Nise, 2015). A proportional-integral
(PI) controller (Equation 8; Bellman, 1961), was designed with
robust noise and quick response specifications (parameters given
in Supplementary Table S4). In discrete time, the PI control law
specifies the input in the current time step as a function of the
current and prior errors (Ogata, 1995; Nise, 2015):

u (t)= Kpe (t− 1) + Ki

∑t−1

0
e
(

t
)

(8)

where Kp is the proportional gain associated with the error in
the last time step and Ki is integral gain associated with the sum
of errors in the prior time step. Additionally, since our system
model (Equation 1), enabled state estimation, we implemented a
third order linear-quadratic Gaussian (LQG) controller, defined
to minimize J̃

J̃ =
∑N−1

t=0
(x(t)TQx(t )+ u(t)TRu(t)) + x (N)TQFx(N) (9)

The controller was tuned to be robust to noise and assuming
moderate measurement noise (zero/pole/gain parameters in
Supplementary Table S4). Where N is the time horizon, t is the
time step, Q is the state cost matrix, Qf is the final state cost
matrix, and R is the input cost matrix. Q, Qf, and R were defined
internally by the system designer application.

Surface Interpolation for Non-linear Model
Elements Parameterization
Supra-Additive Pro-Inflammatory Surface
Data matrices across concentration gradients of simultaneous
LPS and IFN-γ addition were divided by the iNOS expression
level given LPS only for each concentration to give the ratio
by which each IFN-γ concentration amplified iNOS expression.
The discrete matrix data were fit using cubic interpolation
(Curve Fitting Toolbox) for each sampled time point. The cubic
interpolation minimized the root mean square error between the
fitted and actual values while avoiding outliers from overfitting
for the supra-additivity matrix (Supplementary Figure S7; data
used for interpolation are provided in Supplementary Data 1).
Other curve fits sampled were linear interpolation, polynomial
models, spline interpolation, and local linear regression (Lowess)
but had greater error and were subject to overfitting. The
resulting scaling factor, λ, was queried for intermediary
concentrations of each input at each sampled time.

M2 Hysteresis Surface
For each LPS concentration, iNOS expression for non-M2
polarized LPS-only treated cells were divided by iNOS expression
values from cells treated with an array of IL-4 concentrations
for 24 h followed by 24 h of LPS. The matrix of LPS and IL-
4 concentrations was interpolated using 3rd order polynomial

linear regression, where parameters (Supplementary Table S6)
were estimated by the least-squares method, which provided
inverse of the continuous input concentration- dependent
attenuation factor γ. Other models were assessed as above,
considering overfitting via leave N out cross validation (with 10%
of samples left out) and root mean square error minimization
(Supplementary Figure S7).

Global System Model Architecture and
Formulation
For our first nested model, we used a multiple regression with
interaction terms to quantify the supra-additive effect of adding
both IFN-γ and LPS. Simulations were run using SISO models
for single- and double- stimuli experimental results to populate
a table with predicted output levels for varying magnitudes of
input. The linear dual-input (both IFN-γ and LPS for all time
points) model predictions were used as the regression output
y, and the single input (either IFN-γ or LPS) SISO model
predictions were given as regression inputs to fit a model of
relative contributions of time and input interactions (y′LPS and
y′IFNγ

). The terms that significantly predicted total iNOS output y
were time-dependent LPS concentration, time-dependent IFN-γ
concentration, and a combinatorial effect of both LPS and IFN-γ
inputs (Equation 10). Weighting coefficients, c, for each term are
given in Supplementary Table S5.

y = [c1ty
′
LPS + c2ty

′
IFNγ

] + c3y
′
LPSy

′
IFNγ

(10)

We next sought to construct a second global model structure
that handles time- and concentration-dependent supra-
additive interaction terms. Here, experimentally obtained iNOS
expression data given varying concentrations of LPS and IFN-γ
was fit to a response surface, as described above, for each time
point. This surface was used to define a table as above but with
time and input-dependent dual-input model output predictions.
A multiple linear regression on this prediction table similarly
fit coefficients for time and input interaction terms (Equation
10, Supplementary Table S5). We accounted for this temporally
shifting interaction term by implementing the multiple linear
regression model with the output from the identified SISO
transfer function models and time as inputs and the MISO
transfer function output as multiple regression model output,

Global System Model MPC Controller
Design and Prediction
The Model Predictive Control toolbox in MATLAB (2018b)
was used to create the controller and define manipulated input
sequences for the MISO “global” model. The SISO IFN-γ and
LPS transfer functions with weighting coefficients derived from
the multiple regression was given as the model object, referred
to as the plant (Equation 11, Figure 1B). The plant model was
defined with two manipulated variable inputs, one output, a
control horizon of 72 h, and a prediction horizon of 120 h.
Manipulated variables were constrained with a minimum of
0, a maximum of 1, and unconstrained rates of change. The
default state estimator (Kalman filter) settings were used for
the controller predictions (MATLAB). Closed loop simulations
generated the inputs, u, needed to obtain the set reference
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(unit step) over simulation time with the expected system
output y. Plant performance was evaluated by running open-
loop simulations given the predicted inputs from the closed-loop
simulation. Optimal predicted input and output trajectories were
validated using the mpcmove function.

G = [C1Y1, C2Y2]+ C3Y1Y2 (11)
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A model-based approach for the assessment of pathway dynamics is explored
to characterize metabolic and signaling pathway activity changes characteristic of
the dosing-dependent differences in response to methylprednisolone in muscle.
To consistently compare dosing-induced changes we extend the principles of
pharmacokinetics and pharmacodynamics and introduce a novel representation of
pathway-level dynamic models of activity regulation. We hypothesize the emergence
of dosing-dependent regulatory interactions is critical to understanding the mechanistic
implications of MPL dosing in muscle. Our results indicate that key pathways, including
amino acid and lipid metabolism, signal transduction, endocrine regulation, regulation
of cellular functions including growth, death, motility, transport, protein degradation,
and catabolism are dependent on dosing, exhibiting diverse dynamics depending on
whether the drug is administered acutely of continuously. Therefore, the dynamics of
drug presentation offer the possibility for the emergence of dosing-dependent models of
regulation. Finally, we compared acute and chronic MPL response in muscle with liver.
The comparison revealed systematic response differences between the two tissues,
notably that muscle appears more prone to adapt to MPL.

Keywords: omics, corticosteroids, pathway analysis, methylprednisolone, dose comparison, tissue comparison

INTRODUCTION

Methylprednisolone (MPL) is a synthetic glucocorticoid (GC) widely used to treat a multitude
of conditions including arthritis, blood disorders, severe allergic reactions, certain cancers, eye
conditions, skin/kidney/intestinal/lung diseases, and immune system disorders. MPL, a typical
corticosteroid, manages symptoms such as swelling, pain, and allergic-type reactions by decreasing
the immune system’s response (Swartz and Dluhy, 1978; Barnes, 1998). Mechanistic studies
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of GCs in inflammation have identified two main modes of
action: a direct consequence of glucocorticoid/glucocorticoid-
receptor complex binding to gene targets, as well as by
signaling through receptors in a manner independent of
transcription (Schaaf and Cidlowski, 2002; Freishtat et al.,
2010). Glucocorticoid effects are pervasive and involve multiple
molecular mechanisms. Corticosteroids, including MPL,
influence physiology at the regulatory level leading to systemic,
multifactorial consequences further complicated by the observed
differences in response dynamics to differing dosing regimens
of glucocorticoid administration (Almon et al., 2007b; Yao
et al., 2008). These changing dynamics are indicative of likely
differences in regulatory mechanisms, further revealing that
regulatory structures implied by acute administration are not
consistent with regulatory structures implied by chronic MPL
administration (Hazra et al., 2008; Yao et al., 2008; Nguyen
et al., 2010). Acute administration of the drug is generally
beneficial by reducing inflammation temporarily. However,
chronic administration of corticosteroids, though necessary for
chronic conditions, has deteriorative consequences including
hyperglycemia, negative nitrogen balance, and fat redistribution

leading to complications including diabetes, muscle wasting,
osteoporosis (Morand and Leech, 1999; Liu et al., 2017). These
consequences are notably observed in muscle where continuous
use of corticosteroids leads to muscle atrophy and insulin
resistance (Almon et al., 2005a; Schakman et al., 2013; Bodine
and Furlow, 2015).

Earlier work has explored in vivo high-throughput
transcriptomics to capture the tissue and dosing effects of
MPL (Sun et al., 1998, 1999; Ramakrishnan et al., 2002a,b;
Almon et al., 2005a,b, 2007a, 2008a; Hazra et al., 2007, 2008;
Yang et al., 2008, 2009; Yao et al., 2008; Nguyen et al., 2010). We
recently proposed a meta-analysis approach to further elaborate
our understanding of liver’s complex pharmacogenomic
effects following acute and chronic dosing of MPL (Acevedo
et al., 2019). The approach applies a pathway-based analysis,
mapping transcriptomic data onto tissue- and organism-relevant
pathways; characterizes the overall dynamic activity of the
pathway; and uses a model-based assessment of activity to infer
pathway dynamics. The approach was demonstrated using
liver-specific genome-wide pharmacological time-series obtained
from comparing alternative dosing regiments.

FIGURE 1 | Pathway activity analysis framework starts with the processing of the transcriptional data, maps differentially expressed AffyIDs to gene IDs, assigns
those to KEGG pathway gene sets, populates KEGG pathways, assesses fractional occupancy, performs pathway activity to identify significant PALs, and develops
dynamic models of regulatory controls of pathway activity.
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Given that musculature contributes significantly to adverse
glucocorticoid-induced effects, in the present study we employ
our established pathway approach to study the acute and
chronic MPL dosing effects in gastrocnemius muscle of male
adrenalectomized rats, and characterize the dosing-dependent
differences in the dynamic response of MPL-responsive
pathways. To consistently compare across dosing-induced
changes, a model-based approach for the assessment of
pathway dynamics is employed extending the principles
of pharmacokinetics and pharmacodynamics (PKPD) to
characterize pathway activity. We hypothesize the emergence
of dosing-dependent regulatory interactions to understand
the mechanistic implications of MPL dosing in muscle. Our
results indicate that key pathways including amino acid and
lipid metabolism, signal transduction, endocrine regulation,
regulation of cellular functions including growth, death,
motility, transport, protein degradation, and catabolism,
are all dependent on dosing. Finally, we compare acute and
chronic MPL response across muscle with liver and observe

systematic response differences between the two tissues. Notably,
we observe that muscle appears more prone to developing
tolerance to MPL.

MATERIALS AND METHODS

Animal Model and Experimental Data
The temporal transcriptomic data used for this analysis was
collected from extracted gastrocnemius muscle in two temporal
large rat studies presented here (Sun et al., 1999; Ramakrishnan
et al., 2002a). For the generation of acute MPL response data,
39 adrenalectomized male (ADX) Wistar rats were treated with
a bolus dose of 50 mg/kg MPL intravenously (Sun et al., 1999).
This dose was established previously for identifying biomarkers
for gene-mediated effects of glucocorticoids in liver tissue because
of its induction of strong, but not saturating, effects on gene
and protein expression and comparability with large doses in
human upon scale-up (Boudinot et al., 1986). The animals

FIGURE 2 | Time profiles of methylprednisolone (MPL) pharmacokinetics and receptor dynamics for (A) acute 50 mg/mL bolus MPL dose and (B) chronic infusion of
0.3 mg/(kg·h) MPL. Methylprednisolone influence over transcription within the liver is dosing dependent and receptor mediated.
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were sacrificed at 17 timepoints (n = 2–4) from 0 to 72 h
post dosing and isolated RNA were hybridized with Affymetrix
GeneChips Rat Genome U34A containing 8799 probes. Chronic
MPL administration response data in muscle tissue was obtained
from a longitudinal study in which 40 ADX male Wistar rats
were administered 0.3 mg/kg·hr of MPL intravenously for 7 days
(Nguyen et al., 2010). Animals were sacrificed at 11 time points
over this period. Isolated RNA from excised gastrocnemius
muscle tissue was hybridized with Affymetrix GeneChips Rat
Genome 230A) containing 15,967 probes. Both the acute and
chronic datasets have been submitted to GEO (acute: GSE490 and
chronic: GSE5101) and we have previously presented analyses of
the transcription responses (Sun et al., 1999; Almon et al., 2002,
2005a, 2008a,b; Ramakrishnan et al., 2002a; Yao et al., 2008; Fang
et al., 2013; Nguyen et al., 2014).

Pathway Activity Analysis
To reconcile the temporal response of muscle tissue to acute
and chronic MPL dosing, the datasets were processed using our
pathway activity analysis described in depth in our previous
publication analyzing dosing-dependent pathway activity in liver
(Acevedo et al., 2019). The approach consists of a series of
steps described briefly herein, moved beyond an individual gene-
centric analysis, which seeks to characterize muscle response at
the level of functional groups – at the level of pathways. For
this analysis, pathways are defined as networks of molecular
interactions and reactions designed to link genes in the genome
to gene products through biochemical action. The steps are
succinctly presented in Figure 1.

Microarray Data Preprocessing
Active genes are identified using differential expression analysis
using the Extraction and Analysis of Gene Expression (EDGE)
software (Storey et al., 2018). Differentially expressed profiles are
then z-scored with respect to the individual profile mean and
standard deviation.

Mapping Transcriptomic Data to Pathways
Differentially expressed genes are mapped onto pathways,
defined as networks of molecular interactions and reactions
designed to link genes in the genome to gene products. These
pathways express layered and complementary activities, meaning
pathways are groups of genes linked mechanistically that effect
a signaling or biochemical action. Numerous databases exist
defining pathways including the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Aoki and Kanehisa, 2005) and Reactome
(Fabregat et al., 2018). Without loss of generality, the present
analysis is based on KEGG. As of February 2019, this database
contains 326 pathways relevant to rat tissues and used for
our analysis. Only pathways relevant to muscle tissue are
analyzed resulting in 179 metabolic and signaling pathways for
consideration in our analysis (Supplementary Table A). For the
gene-to-pathway mapping, Affymetrix probe identifiers within
the microarray template and are converted into KEGG IDs
in order to be sorted into rat-relevant pathways from KEGG.
Affymetrix probe identifiers are translated into their NCBI
Entrez IDs and Gene Symbols using the Bioconductor packages

for each Affymetrix Platform: Package rae230a.db containing
the annotation data for Affymetrix Rat Expression Set 230A
used with the chronic data; and Package rgu34a.db containing
the annotation data for Affymetrix Rat Genome U34 Array
annotation data used with the acute data. Following the gene-
to-pathway assignment, the coverage of the KEGG pathways is
assessed by evaluating the fractional coverage (fc) of each pathway
(Acevedo et al., 2019). This statistic is the fraction of genes within
a pathway for which gene profiles are available. To assess the
confidence in the fractional coverage, an associated p-value (fc
p-value) is determined using the 1-tail Fisher’s Exact test such
that the total rat genome is the set of unique rat genes in all
KEGG’s rat-relevant pathways (Acevedo et al., 2019). Pathways
with low fractional occupancy yield inconclusive p-values as
an artifact of the Fisher’s Exact Test and were eliminated
from the analysis.

TABLE 1 | Pharmacokinetic parameters for acute and chronic MPL administration
(Ramakrishnan et al., 2002a).

Parameter Definition Acute Chronic

k0

(
mg
kg

h
)

Rate of drug infusion into central
plasma compartment

0 220

CL
(

L
h · kg

)
Clearance 3.48 5.61

Vp

(
L
kg

)
Central volume of drug distribution 0.73 0.82

k12

(
1
h

)
Drug distribution rate constant 0.98 0.32

k21

(
1
h

)
Drug distribution rate constant 1.78 0.68

TABLE 2 | Parameters for receptor-mediated effects of acute and chronic MPL
administration (Hazra et al., 2008).

Parameter Definition Acute Chronic

ksRm

(
fmol
g · h

)
Receptor mRNA
synthesis rate constant

3.15 0.45

kdRm

(
1
h

)
Receptor mRNA
degradation rate
constant

0.122

IC50Rm

(
nmol

L ·mgprotein

)
DRN required for 50%
inhibition of the
synthesis rate of Rm

123.7

ksR

(
nmol

L ·mgprotein · fmolRm · g · h

)
Receptor synthesis rate 0.84 3.63

kre

(
1
h

)
Loss rate for drug
receptor in the nucleus

0.402

kon

(
1

nmol · h

)
Association rate for
receptor-drug binding

0.019

kdR

(
1
h

)
Receptor
loss/degradation rate

0.0403

kT

(
1
h

)
Translocation of
receptor into the
nucleus

58.1

Rf Receptor recycling
factor from nucleus to
cytosol

0.69
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Pathway Activity Analysis
The presence of differentially expressed genes within a pathway
does not guarantee that the pathway exhibits a coherent
dynamic response (Kallio et al., 2011). In order to assess the
emergence of activity patterns within a pathway we capitalize
on our earlier work on pathway activity analysis (Ovacik
et al., 2010; Euling et al., 2011, 2013) recently expanded in
Acevedo et al. (2019). In brief, singular value decomposition
(SVD) on the temporal transcriptomic data associated with
each pathway, decomposes the overall pathway dynamics into
constitutive elements (singular vectors referred to herein as
pathway activity levels, PAL) reflecting coherence of expression
among the genes of the pathway. The singular value associated
with each singular vector expresses the fractional variability (fp)
captured by the corresponding PAL. In order to characterize
the actual significance of a corresponding PAL, an associated
fp p-value is evaluated using bootstrapping of the original gene

set (see Supplementary Note) (Acevedo et al., 2019). Finally, all
pathways yielding fractional coverage fc p-value ≤0.05 with at
least one significant PAL profile fp p-value ≤0.05 are defined as
significant. These significance criteria indicate that the pathway
is sufficiently represented by the transcriptomic data and that
at least one global, non-random, trend has emerged from the
pathway. It is important to emphasize that the activity analysis
does not make any assumptions as to the nature of the dynamics
of the activity across a pathway.

Evaluating Pathway Activity Dynamics
In order to capture the likely variability of the transcriptomic
data bootstrapping is used to generate pathway gene sets likely
to exist within the experimental variability. Each bootstrapped
gene set is assessed for pathway activity, thus revealing a
likely the range of activity a pathway in muscle tissue can
produce in response to MPL administration. Briefly, each

FIGURE 3 | Regulatory mechanism schematics for the (A) receptor-mediated regulation of PAL and (B) biosignal-mediated regulation of PAL. Methylprednisolone
regulates transcription via binding to glucocorticoid receptors within the cytosol, transporting into the nucleus, and binding to a GRE element – thus initiating
targeted transcription. (Receptor-mediated dynamics) Since the activity is driven by the levels of the active signal DRN, and this follows the PK of MPL, acute dosing
the response dynamics should exhibit a major event with a subsequent return to pre-administration levels (exemplified by Acute Rap 1 Signaling), as the PK of MPL
prescribes. Under chronic dosing, since the levels of DRN stabilize at a new steady state, the DRN effect should persist for as long as the levels of DRN are constant
(exemplified by acute Rap 1 signaling response). (Receptor-mediated and biosignal-mediated dynamics) If the drug induces the release of a secondary biosignal (BS)
this will induce a delayed secondary effect which, if competing with the effect of DRN, would lead to a “rebound”-type of response. As MPL clears, and both DRN
and BS deplete, the system returns to pre-MPL level (exemplified by Adipocytokine signaling). Chronic administration can generate two distinct types of dynamics
responses (the presence of the secondary biosignal BS can induce a secondary event, competing with that of DRN). BS can exercise its impact either in a delayed
manner leading to a “tolerance-like” behavior (exemplified by Fox-O Signaling response, A) or through an incomplete rebound effect with the system relaxing
eventually at a steady state other than the pre-MPL one (exemplified by Fox-O Signaling response, B). For each pathway, the significant bootstrapped PAL are
clustered such that common activity patterns group together. PAL profiles plotted herein are plots of the centroids of these clusters (represented by the data points),
fitted with models (represented by the fitted continuous profile). The error bars about the PAL central data points are defined by the standard deviation of all
bootstrapped PAL that are captured within the cluster.
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gene expression profile is bootstrapped assuming a normal
distribution about the gene expression profile’s mean. These
bootstrapped genes are assembled into pathway gene sets. Thus,
(N = 1000) bootstrapped pathway gene sets are generated
from the original pathway gene set. These bootstrapped sets
are decomposed with SVD, significant PAL profiles identified,
and their corresponding fp and fp p-value statistics retained for
each significant pathway. All PAL profiles extracted from these
bootstrapped gene sets are assumed likely system behavior that
would emerge if the rat experiments were repeated. Bootstrapped
PAL within a pathway are subsequently clustered for the
identification of common activity patterns. The MATLAB R©

function evalclusters.m is applied to assess optimal cluster
number using the gap statistic and applying kmeans clustering
(MATLAB, 2018) (see Supplementary Note). The finite set
of PAL centroids identified indicate a finite list of activity
patterns that emerge from each pathway, induced by MPL.
Pathway activity analysis identifies a pathway’s leading intrinsic
dynamics as a result of application of its decomposition
technique. We seek to compare pathway activities across non-
overlapping gene sets and identified from data with different
dosing regimens and time horizons. To this end, the dynamics
of each dominant PAL is approximated using PKPD-driven
models exploring alternative hypotheses for the mechanisms
of regulation of a pathway, herein referred to as pathway
pharmacodynamics.

Pharmacokinetics
The PK of MPL in both regimens was shown to be appropriately
described by a two-compartment model, Figure 2, equations
1 and 2 (Ramakrishnan et al., 2002a; Hazra et al., 2008). Ap
and At denote drug in the plasma and tissue compartments
respectively. Term k0 is the zero-order rate constant for drug
input into the plasma, CL indicates clearance, Vp indicates
plasma volume of distribution, and k12 and k21 are the
intercompartmental distribution rate constants. In the case
of acute MPL administration, k0 = 0 indicating a bolus
injection. Parameter values are adopted from Ramakrishnan
et al. and presented in Table 1 (Ramakrishnan et al., 2002a;
Hazra et al., 2008).

dAp

dt
= k0 + k21 · At −

(
k12 +

CL
Vp

)
· Ap (1)

dAt

dt
= k12 · Ap − k21 · At (2)

Receptor Dynamics
MPL action is receptor-mediated as described in equations 3
through 6 and depicted in Figure 2 (Ramakrishnan et al., 2002a;
Hazra et al., 2008). Parameter values are adopted from Hazra
et al. and presented in Table 2 (Hazra et al., 2008). These
parameter values are also used in previous analyses of dosing-
dependence in liver (Acevedo et al., 2019). Rm indicates mRNA
of the free cytosolic receptor, R indicates the free cytosolic
receptor, DR indicates the cytosolic drug-receptor complex,
and DRN indicates the drug-receptor complex in the nucleus
(Ramakrishnan et al., 2002a). The concentration at which the

synthesis rate of receptor mRNA drops to 50% of its baseline
value is indicated by IC50Rm, parameter kon denotes a second-
order rate constant for drug-receptor binding. Parameters kT
and kre are first-order rates of receptor translocation between
the nucleus and the cytosol (kre : to the nucleus; kre : recycling
back to the nucleus) (Ramakrishnan et al., 2002a). The fraction of
receptor recycled is indicated by parameter Rf. CMPL corresponds
to the concentration of free receptor in the cytosol and is given by
CMPL = 0.43 Ap

Vp
(Ramakrishnan et al., 2002a; Hazra et al., 2008).

dRm
dt
= ksRm ·

(
1−

DRN
IC50Rm + DRN

)
− kdRm · Rm (3)

dR
dt
= ksR · Rm+ Rf · kre · DRN − kon · CMPL · R− kdR · R (4)

dDR
dt
= kon · CMPL · R− kT · DR (5)

dDRN
dt
= kT · DR− kre · DRN (6)

TABLE 3 | Counts of pathways that emerged as significant in response to acute
and chronic MPL dosing in muscle.

Pathway subgroup Pathway group Significant
acute

response
pathways

Significant
chronic

response
pathways

Cell growth and death Cellular processes 5 3

Cell motility Cellular processes 1 1

Transport and catabolism Cellular processes 3 6

Signal transduction Environmental
information processing

17 15

Signaling molecules and
interaction

Environmental
information processing

1 0

Folding, sorting and
degradation

Genetic information
processing

1 4

Transcription Genetic information
processing

0 1

Translation Genetic information
processing

0 1

Amino acid metabolism Metabolism 2 6

Carbohydrate metabolism Metabolism 0 9

Energy metabolism Metabolism 0 2

Lipid metabolism Metabolism 4 2

Metabolism of cofactors
and vitamins

Metabolism 0 1

Metabolism of other amino
acids

Metabolism 1 1

Nucleotide metabolism Metabolism 1 0

Xenobiotics biodegradation
and metabolism

Metabolism 1 0

Endocrine system Organismal systems 12 8

Environmental adaptation Organismal systems 0 1

Total 49 61

See Supplementary Tables for complete list of significant pathways and all
calculated metrics.
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Pathway Pharmacodynamics
Pharmacogenomic models have been extensively used to
model complex transcriptional dynamics (Almon et al., 2002;
Ramakrishnan et al., 2002b; Jin et al., 2003; Yao et al., 2008;
Ayyar et al., 2018), whereas we recently extended the concept to
describe complex “pathways” pharmacodynamics (Acevedo et al.,
2019). We hypothesize that transcriptional events are induced
by the regulatory action of an MPL-receptor complex (DRN)
binding to a GRE element in the nucleus. In order to capture
more complex behaviors, such as tolerance and rebound, it has
been hypothesized that the receptor complex can likely induce
intermediate biosignal (BS) inducing complex responses (Sharma
et al., 1998; Sharma and Jusko, 1998). By decomposing the
pathway dynamics to its constitutive PALs, we aim to characterize
the dosing-dependent activity in muscle, by hypothesizing that
each PAL can be represented by an appropriate dynamic model.
We thus compare PAL dynamics across dosing, and tissues, in the
space of pathway pharmacodynamic models. PAL profiles were
captured by our “receptor-mediated” or “biosignal-mediated”
model types as previously discussed in the context of liver
(Acevedo et al., 2019) and developed as an extension of the
concepts presented in Hazra et al. (2008) and Yao et al. (2008).

The receptor-mediated model (Figure 3A, equation 7)
indicates a mode of pathway regulation which assumes a

saturable induction of the pathway activity driven primarily by
the active MPL-receptor complex (ks indicates the activation rate
of pathway activity; IC50PAL indicates the concentration of DRN
responsible for 50% inhibition of the pathway activity activation
rate; and kd indicates the deactivation rate of pathway activity).
This model captures the pathway activity response to intravenous
MPL administration for both acute and chronic dosing, reflecting
transient or persistent response types depending on dosing.
Receptor-mediated response is expected to taper-off under
acute administration since the dynamics of PAL should follow
the dynamics of DRN. Under chronic dosing, and as DRN
accumulates the influence should persist (Figure 3).

dPAL
dt
= ks

(
1±

DRN
IC50PAL + DRN

)
− kd · PAL (7)

MPL regulation can be also mediated via an intermediate
biosignal whose synthesis is directly related to DRN (Yao et al.,
2008), equations 8 and 9 (ke indicates the translation rate of
BS; S is the stimulation constant for pathway activity due to
DRN; IC50PAL indicates the BS responsible for 50% inhibition
of pathway activity activation rate; and γ indicates the factor
of amplification of the influence of BS on the activation of
pathway activity). Biosignal-mediated responses could either lead

FIGURE 4 | Illustrated table capturing the summarized responses of each of the 29 significant pathways common to the acute and chronic muscle analyses. The
consistent response types are indicative of likely common effects of MPL across metabolic and signaling pathways. The details of these dynamics are included in
Supplementary Table D.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 July 2020 | Volume 8 | Article 759223

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00759 July 10, 2020 Time: 18:40 # 8

Acevedo et al. Muscle Acute Chronic MPL

to “rebound” like behavior under acute dosing or, under chronic
dosing, could lead to “tolerance”-like response or “rebound”-like
eventually reaching a new steady state (Figure 3)

dBS
dt
= ke (DRN − BS) (8)

dPAL
dt
= ks(1± S · DRN)

(
1∓

BSγ

ICγ
50PAL + BSγ

)
− kd · PAL (9)

As previously discussed in Acevedo et al. (2019), the parameter
estimation was performed using MATLAB’s optimization toolkit
in a series of optimization stages. In all stages, we sought
to minimize the residual sum of squares between the model
prediction and the cluster centroid profile. In the first stage, it is
assumed that the system is non-linear and neither continuous nor
differentiable for the entire parameter solution space. Therefore,
as a rapid preliminary global search for a minimum, a stochastic
direct method (simulated annealing) with bound constraints is
employed. The result of this global search technique is taken as
the initial parameter values for the second optimization stage
using a direct pattern search method. In the final stage, a
gradient-based method is used to probe this more limited space
as the final optimization step. This stage uses the sequential
quadratic programming as implemented through MATLAB’s
fmincon. The model which results from this optimization process
is visually inspected.

RESULTS

Of the 179 pathways determined to be rat- and muscle- relevant,
fractional coverage analysis yielded 51 represented pathways
in the acute dataset and 61 in the chronic dataset. Pathway
activity analysis examined these pathways to determine whether
significant PALs emerged from each pathway. Pathways which
yielded at least one significant PAL (fp p-value ≤0.05) were
considered active. For the acute dosing, 49 pathways emerged
as significant while all 61 pathways emerged as significant
for the chronic dosing (Significant pathways counts are listed
by subgroup in Table 3, organized by subgroup. They are
also listed in long form name with KEGG identification
information in Supplementary Tables STB, STC), chronic
dosing appears to engage relatively more of the amino acid
and carbohydrate metabolism function of the tissue, whereas
acute dosing appears to drive lipid metabolism and induce
relatively more activity in endocrine and signaling functions.
A subset of 29 pathways were identified as significant in
both acute and chronic dosing (Table 3 and Figure 4)
comprising a collection of metabolic, signaling and endocrine
functions. The dynamic profiles of all 29 pathways, in acute and
chronic dosing, are presented in the Supplementary Figures
and the pathways are listed in the Supplementary Tables.
When compared against the list of significant pathways in
liver, we identified a subset of pathways that were also
significant in liver in response to acute and chronic MPL
administration, detailed further in the “Discussion” section.
Broadly, chronic dosing appears to engage relatively more

FIGURE 5 | AMPK signaling pathway response to (A) acute and (B) chronic
MPL administration.

amino acid and carbohydrate metabolism pathways compared
to acute dosing.

Overwhelmingly, muscle responds in a relatively direct way to
acute dosing. Except for a handful of pathways, muscle response
to acute dosing is receptor mediated. A transient response is
observed in pathway profiles shortly after MPL dosing. This
initial response is transient, and the pathway eventually resolves
to the pre-administration levels. Characteristic examples of this
response type are observed in AMPK, Fox-O, and PPAR signaling
pathways (Figures 5A, 6A, 7A). These results are generally
consistent with the observed PK of MPL since the drug clears
within about 10 h (Figure 2).

Based on our earlier studies which determined that acute and
chronic MPL exposure impact differentially liver (Acevedo et al.,
2019), we hypothesize the drug to induce dosing-dependent and
tissue-specific effects, as earlier transcriptomic analyses indicate
(Ballard et al., 1974; Sun et al., 1999; Yao et al., 2008; Nguyen
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FIGURE 6 | Fox-O signaling pathway response to (A, top) acute and (B,C, bottom) chronic MPL administration.

et al., 2014). When comparing liver and muscle effects, we
determine that acute dosing elicits comparable dynamics in liver
and muscle, as exemplified in Figure 8 for the peroxisome
signaling pathway for which the dominant regulatory structure
is receptor-mediated. However, chronic dosing appears to drive:
(1) substantially different response dynamics in the two tissues,
as exemplified with chronic administration of MPL impact to
the PPAR signaling pathway (Figure 9); (2) simple(r) muscle
dynamics but more complex liver dynamics, illustrated with
fatty acid degradation pathway (Figure 10); and (3) leading
dynamics manifested via tissue-specific regulation, or time
scales (Figure 11).

Chronic MPL administration elicits complex behaviors in
muscle. Despite a continuous infusion of the drug, the muscle-
specific pathway dynamic responses relax over the 170 h
experimental time course to either a new steady state or, via
some mechanism of tolerance, returns to the pre-exposure
condition. Examples of this tolerance behavior are described
Supplementary Table D and depicted in greater detail in the

Supplementary Figures. The new steady state is achieved via
multiple mechanism options: (1) by the equilibrating roles of
DRN and BS (AMPK, Figure 5B); (2) by a combination of
the previous mechanism and a “rebound” effect leading to
part of the pathway reaching a different steady state (Fox-O,
Figures 6B,C); (3) by a combination of equilibration of the
DRN and BS forces and the persistent regulatory driver toward
a new steady state (PPAR, Figures 7B,C). One of the most
striking observations of this analysis is that muscle appears
to better “tolerate” chronic MPL exposure with a variety of
mechanisms, enabling the tissue to recover to pre-exposure
features of pathway dynamics.

DISCUSSION

MPL is a widely used anti-inflammatory and immune-
suppressing drug. Like most drugs, its use can exhibit both
deleterious and beneficial effects. Specifically with respect to
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FIGURE 7 | PPAR signaling pathway response to (A, top) acute and (B,C, bottom) chronic MPL administration.

muscle, chronic use has been associated with muscle atrophy
and insulin resistance (Schakman et al., 2013; Bodine and
Furlow, 2015). Despite its continued use, the mechanistic details
are not entirely characterized. Multiple dosing studies aim at
probing the system differentially and as such hold promise
in terms deciphering some of those complexities. Reconciling
data from multiple studies that explore the influence of MPL is
not straightforward, as data can potentially be collected using
different experimental platforms, on different time scales, within
different tissues, and across different dosing regimens (Ghosh
et al., 2003; Ramasamy et al., 2008; Tseng et al., 2012).

Pathway activity analysis was explored to identify pathways
that are significantly active in response to MPL. We view a
(metabolic or signaling) pathway as a high-dimensional system
whose decomposition identifies intrinsic trends. Using singular
value decomposition (SVD), a pathway’s dynamic is decomposed
into constituent singular values and singular vectors. The

singular vectors are linear combinations of the longitudinal
transcriptional expression over time, thus capture trends in the
activity of the pathway, defined as Pathway Activity Level (PAL).
The fraction of variability of each PAL profile is calculated from
the singular values and is defined as the fraction of pathway
activity (fp). Alternatively, a PAL profile can be thought of as
the expression of a metagene over time, where the metagene
is a representation of common trends in gene expression
within a pathway. The emergence of multiple significant PALs
indicates a codominance of activity patterns, and complex
regulatory structures, within the pathway. To characterize these
activity dynamics consistently, we extended the PD concept to
describe the dynamics of a signaling or metabolic pathway’s
corticosteroid impact in muscle tissue. Models that describe
receptor and biosignal-mediated regulation by MPL were fitted
to PAL profiles. This step served to hypothesize likely modes of
pathway regulation and is essential to enable comparison of drug
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FIGURE 8 | Acute MPL administration in muscle (A) and liver (B). Receptor
mediated dynamics dominate acute administration in both tissues, as
illustrated here for the peroxisome pathway.

response across experimental platforms, animals, tissues, dosing
regimens, or time horizons. Overall, we observed strikingly
consistent response profiles across pathways and within the same
dosing regimen. We further observed that chronic administration
yielded more complex pathway dynamics for most pathways,
than did acute administration.

We first analyze the MPL response in each dosing regimen
independently in the context of functional groups, i.e., pathways,
and characterize this in the space of regulatory models. The
authors would like to acknowledge that the acute platform
is smaller than the microarray platform used to generate the
chronic dataset. This detail of our data is consistent with our
previous analysis in liver (Acevedo et al., 2019). The significant
chronic pathways generally yield higher fractional coverage than
the acute counterparts, and this is likely due to the difference in
platforms. As a result of this, it may be true that the differences in
gene content bias the pathway dynamics. However, the purpose
of the fc p-value is to identify whether a pathway is sufficiently
represented in our data and thus indicates whether we can trust a

pathway to be represented in our solution set. It is this analysis
step and statistic which enables us to retain as much data as
possible for both studies in order to assess pathway dynamics
without reducing one platform or the other to only a subset
of genes common between the platforms. Further, because both
acute and chronic studies capture the influence of MPL within
muscle tissue, a consistent set of pathways is anticipated to
emerge, and is observed (Table 4), when comparing these data,
further discussed later in this section.

Forty nine pathways (see Supplementary Table B) were
identified as active in the acute set. Interestingly, the dominant
regulatory structure is receptor-mediated to acute MPL
administration in muscle tissue with a consistent response of
an initial peak in activity due to DRN action between 5 and
15 h followed by a return to baseline between 20 and 40 h. This
response is consistent with the nature of the acute dosing–an
MPL half-life of 0.33 h in ADX rats with total drug clearance
observed after about 4.6 h (Hazra et al., 2007). Pathway families
represented in this subset include: amino acid metabolism
(Arginine and proline metabolism, Glutathione metabolism),
pathways related to cell motility, cell growth and death, cellular
events such folding, sorting, and degradation of genetic material
and proteins, transport, and catabolism (Regulation of actin
cytoskeleton, Apoptosis, Cellular senescence, Ferroptosis,
Proteasome, Autophagy, Peroxisome), endocrine regulation
(Signaling pathways for Glucagon, GnRH, Insulin, Oxytocin,
Prolactin, PPAR, and Thyroid hormone), signal transduction
(Signaling pathways for TGF-beta, AMPK, cGMP-PKG, ErbB,
Fox-O, HIF-1, PI3K-Akt, and Rap1), and lipid metabolism (Fatty
acid degradation and Fatty acid metabolism).

The chronic administration explored the Affymetrix
microarray platform 230A and yielded 61 pathways as
significantly active (Supplementary Table C). As in the acute
response analysis, response to chronic administration yielded
consistency in profile activity events across pathways. However,
pathways varied in their complexity of response to chronic
administration by exhibiting receptor and/or biosignal-mediated
dynamics, often leading to tolerance, defined herein as a return
to baseline despite continuous drug infusion. A tolerance profile
is characterized by the receptor-mediated effects of DRN and
the biosignal-mediated effects of BS regulating the activity
of the pathway in opposite directions. The AMPK signaling
pathway, Thyroid hormone signaling pathway, Autophagy,
ErbB signaling pathway, Ferroptosis, and Fatty acid metabolism
pathways yield strictly tolerance (biosignal-mediated) response
to chronic MPL. The HIF-1 signaling pathway, Regulation
of actin cytoskeleton, Oxytocin signaling pathway, PI3K-Akt
signaling pathway, Apoptosis, Cellular senescence, Peroxisome,
Insulin signaling pathway, Rap1 signaling pathway, Glucagon
signaling pathway, cGMP-PKG signaling pathway, Arginine and
Proline metabolism, Glutathione metabolism, PPAR signaling
pathways exhibit both receptor, as well as biosignal-mediated
responses to chronic MPL administration.

Chronic dosing appears to, disproportionately, impact
metabolic processes, as indicated in Table 3. While the fraction
of signaling pathways, whose activity is impacted by acute
or chronic dosing is high for both, chronic dosing appears

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 July 2020 | Volume 8 | Article 759227

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00759 July 10, 2020 Time: 18:40 # 12

Acevedo et al. Muscle Acute Chronic MPL

FIGURE 9 | Comparison of response to chronic MPL administration in muscle (A,B, top) and liver (C,D, bottom) for PPAR. Both tissues exhibit more complex
behavior exhibiting a combination of biosignal-mediated (A,C, left) and receptor-mediated effects (B,D, right).

to engage amino acid and carbohydrate metabolism more
actively. One of the most intriguing findings of the study is
that the chronic MPL administration does not induce persistent
effects on all pathways. This behavior is exemplified by the
AMPK signaling pathway (Figure 5), an energy metabolism
regulator responsible for inhibiting energy-consuming pathways
(anabolic functions) and activating ATP-generating catabolic
pathways. Activation of this pathway is unsurprising because
it is previously observed that corticosteroid treatment causes
mitochondrial dysfunction in muscle cells, which induces
a state of ATP deprivation and subsequent activation of
AMPK signaling to counteract this, ultimately leading to
muscle atrophy (Liu et al., 2015). What is surprising is that
in response to chronic MPL, the AMPK pathway yields
a biosignal-mediated response. This is indicative of the
development of tolerance to MPL because despite continuous
administration of MPL over the course of the experiment,
the pathway returns to baseline – at least for the duration
of the experiment.

However, chronic MPL administration has the potential
of yielding more complex behaviors. The Fox-O signaling
pathway consists of a series of transcription factors that regulate
multiple events within the cell including “apoptosis, cell-
cycle control, glucose metabolism, oxidative stress resistance,
and longevity (KEGG, 2019a).” Fox-O transcription factors
including Foxo1 and Foxo3a are upregulated in response to
the corticosteroid dexamethasone and are key regulators of
gene expression leading to muscle atrophy (Waddell et al.,
2008; Zhao et al., 2009; Schakman et al., 2013). In response to
chronic MPL administration, the Fox-O pathway (Figure 6A)
yields two formats of biosignal-mediated responses revealing
an increased complexity across dosing studies, as well as an
internal complexity to the pathway; subgroups of genes within
this pathway respond differently to the same chronic dosing
regimen. Part of the dominant pathway activity (Figure 6B)
indicates the development of tolerance to MPL, marked by the
observation that the system returns to baseline despite continued
administration of MPL. An additional pathway activity exhibits
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FIGURE 10 | Comparison of response to chronic MPL administration in muscle (A, top) and liver (B,C, bottom) of fatty acid degradation. The pathway analysis
reveals a biosignal-mediated tolerance in muscle.

a biphasic response, eventually settling to a new steady state
reflective of persistent MPL effects (Figure 6C). A different
combination of the biosignal-mediated tolerance response and
persistent receptor-mediated pathway activation is exemplified
by the PPAR signaling pathway (Figure 7). This pathway
assists in regulating lipid metabolism in liver and skeletal
muscle (Burri et al., 2010; KEGG, 2019b) and is implicated in
muscle atrophy in response to corticosteroid dexamethasone
treatment via the mechanism of PPAR upregulation of Fox-
O transcription factor expression in muscle (Castillero et al.,
2013). Like Fox-O, PPAR develops two modes of response to
chronic administration.

Liver and Muscle Response to MPL
Administration
Acute Dosing
The most striking characteristic of muscle, compared to liver,
pathway dynamics in response to acute MPL administration,

is that muscle was found to be driven primarily by receptor
mediated regulation, as opposed to liver which appears to reflect
a balance between receptor and biosignal-mediated regulation
(Acevedo et al., 2019). However, when the dynamics are driven
by receptor binding, the timescale of the response appears to be
comparable between the two tissues (Figure 8), likely due to the
nature of MPL administration (intravenous).

Chronic Dosing
In comparing the response of chronic MPL dosing between liver
and muscle, the most striking observation is that the tolerance
response observed as a major constituent of muscle tissue was
rarely observed in the liver (Acevedo et al., 2019). This suggests
that in response to chronic MPL administration, muscle tissue
can make functional adjustments to restore pre-administration
levels, whereas liver is less likely to adjust and settles to a new set
point, in most cases. However, intriguing responses do emerge.
Figure 9 depicts PPAR signaling dynamics, where a combination
of receptor and biosignal regulation, and tolerance is observed,
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FIGURE 11 | Comparison of response to chronic MPL administration for arginine biosynthesis (left: A,C) and valine, leucine, isoleucine degradation (right: B,D). The
top panels depict response in muscle while the bottom panels depict response in liver.

albeit through different mechanisms. In muscle, this biosignal-
mediated response manifests as the tolerance-like behavior,
whereas in liver a biphasic response emerges, as denoted by the
two characteristic peaks in opposite directions corresponding to
an initial receptor-mediated event primarily driven by DRN and
subsequent rebound-like, secondary, action due to BS. However,
both tissues appear to share a, common, second component of the
pathway activity leading to a receptor-mediated displacement to
a new steady state as MPL, and by extension DRN, equilibrates
to its new steady state (Figure 9, right panels). Fatty acid
degradation, depicted in Figure 10, is another characteristic
example of tissue-specific regulation. In muscle (Figure 10,
top) the dynamic response of the pathway under conditions of
chronic exposure to MPL indicate a combination of receptor-
and biosignal-regulation with a tolerance-like behavior. However,
the acute response indicates a strictly receptor-mediated response
(bottom left) in conjunction with a biosignal-mediated response
(right). Furthermore, liver appears to adapt to a long-term
response more gracefully, despite continuous presence of the

drug. Particularly interesting are pathways that exhibit a
single dominant dynamic in each tissue, which manifests in
different ways. Two characteristic examples are the arginine
biosynthesis and the valine, leucine, isoleucine degradation
pathways (Figure 11). Arginine biosynthesis (Figure 11, left
panels) reveals a biosignal mediated response in muscle (top)
given a sharp increase in activity early on followed by a sharp
decline at later times, whereas in liver (bottom) points to a
receptor-mediated impact of MPL on the activity of the pathway.
The valine, leucine, isoleucine degradation pathway (Figure 11,
right panels), critical for protein metabolism, reported in both
tissues (Nair et al., 1992; Holeček, 2002; Campos-Ferraz et al.,
2013), points to yet another interesting tissue-specificity: most
likely both tissues respond via a combination of receptor- and
biosignal-mediated regulation. However, muscle (top) exhibits a
more protracted response, whereas liver (right) indicates a much
faster, rebound-like, dynamic.

Tissue-specificity is a recognized yet underutilized resource
particularly in drug discovery (Yang et al., 2018; Yao et al., 2018;
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TABLE 4 | Significant pathways common to acute and chronic MPL administration in muscle.

Pathway rno ID Genes in
KEGG

pathway

Acute Chronic

Unique genes
in pathway

from dataset

Fractional
pathway

coverage (fc)

Total fraction
of pathway

activity
(total fp)

Acute MPL
response

Unique genes
in pathway

from dataset

Fractional
pathway

coverage (fc)

Total fraction
of pathway

activity
(total fp)

Chronic MPL response

Amino acid metabolism

Arginine and proline metabolism rno00330 52 9 17% 42% Receptor-mediated 17 33% 56% Receptor-mediated/tolerance

Glutathione metabolism rno00480 69 10 14% 69% Receptor-mediated 22 32% 72% Receptor-mediated/tolerance

Cell growth and death

Apoptosis rno04210 141 23 16% 61% Receptor-mediated 38 27% 55% Receptor-mediated/tolerance

Cellular senescence rno04218 189 24 13% 57% Receptor-mediated 44 23% 69% Receptor-mediated/tolerance

Ferroptosis rno04216 41 9 22% 49% Receptor-mediated 15 37% 72% Tolerance

Cell motility

Regulation of actin cytoskeleton rno04810 223 21 9% 47% Receptor-mediated 48 22% 71% Receptor-mediated/tolerance

Endocrine system

Adipocytokine signaling pathway rno04920 74 14 19% 57% Receptor-mediated/
biosignal-mediated

20 27% 55% Tolerance

Glucagon signaling pathway rno04922 103 11 11% 65% Receptor-mediated 32 31% 58% Receptor-mediated/tolerance

GnRH signaling pathway rno04912 94 12 13% 60% Receptor-mediated 29 31% 76% Biosignal-mediated/tolerance

Insulin signaling pathway rno04910 138 18 13% 50% Receptor-mediated 43 31% 73% Receptor-mediated/tolerance

Oxytocin signaling pathway rno04921 157 21 13% 58% Receptor-mediated 40 25% 57% Receptor-mediated/tolerance

PPAR signaling pathway rno03320 82 15 18% 61% Receptor-mediated 21 26% 61% Receptor-mediated/tolerance

Prolactin signaling pathway rno04917 74 13 18% 61% Receptor-mediated 18 24% 48% Biosignal-mediated/tolerance

Thyroid hormone signaling
pathway

rno04919 118 21 18% 41% Receptor-mediated 30 25% 55% Tolerance

Folding, sorting and degradation

Proteasome rno03050 48 14 29% 62% Biosignal-mediated 30 63% 87% Tolerance

Lipid metabolism

Fatty acid degradation rno00071 47 11 23% 44% Biosignal-mediated 18 38% 70% Tolerance

Fatty acid metabolism rno01212 59 12 20% 59% Receptor-mediated 19 32% 68% Tolerance

Signal transduction

AMPK signaling pathway rno04152 127 16 13% 50% Receptor-mediated 36 28% 58% Tolerance

cGMP-PKG signaling pathway rno04022 172 19 11% 54% Receptor-mediated 38 22% 53% Receptor-mediated/tolerance

ErbB signaling pathway rno04012 88 11 13% 70% Receptor-mediated 23 26% 61% Tolerance

FoxO signaling pathway rno04068 134 16 12% 61% Receptor-mediated 43 32% 68% Biosignal-mediated/tolerance

HIF-1 signaling pathway rno04066 107 16 15% 55% Receptor-mediated 35 33% 67% Receptor-mediated/tolerance

MAPK signaling pathway rno04010 300 39 13% 59% Receptor-mediated/
biosignal-mediated

68 23% 81% Receptor-mediated/tolerance
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Ryaboshapkina and Hammar, 2019). The lack of a detailed
understanding of the underlying gene regulation is clearly
a major roadblock (Sonawane et al., 2017). The problem is
easily stated: even though all tissues carry common genes not
all genes perform the same functions or respond the same
way. Our earlier studies have explored the co-expression –
co-regulation premise to describe regulatory similarities and
differences induced by MPL chronic and acute dosing in
liver (Nguyen et al., 2010) and muscle (Nguyen et al., 2014).
Interestingly, an emerging hypothesis posits that is that tissue-
specific regulation is driven by regulatory paths (connections
between target genes and transcription factors) rather than
activation of tissue-specific transcription factors (Sonawane et al.,
2017). Our results extend this concept to also account for
dosing, i.e., the dynamics of the external signal presentation
in the tissue. Even when considering genes at their functional
rather than individual level, it appears as if distinct regulatory
modes emerge. The interesting extension is that targeting a
single gene may only provide part of the story. If the aim is
to either modify or re-establish the functional characteristics
of the tissue, the emphasis needs to shift from genes to
functional groupings (metabolic and signaling pathways and/or
drug modes of action). The proposed work is, we believe, a step
in this direction.
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Non-alcohol fatty liver disease (NAFLD) is a common disorder that has increased in

prevalence 20-fold over the last three decades. It covers a spectrum of conditions

resulting from excess lipid accumulation in the liver without alcohol abuse. Among

all the risk factors, over-consumption of fructose has been repeatedly reported in

both clinical and experimental studies to be highly associated with the development

of NAFLD. However, studying in vivo systems is complicated, time consuming and

expensive. A detailed kinetic model of fructose metabolism was constructed to

investigate the metabolic mechanisms whereby fructose consumption can induce

dyslipidaemia associated with NAFLD and to explore whether the pathological conditions

can be reversed during the early stages of disease. The model contains biochemical

components and reactions identified from the literature, including ∼120 parameters, 25

variables, and 25 first order differential equations. Three scenarios were presented to

demonstrate the behavior of the model. Scenario one predicts the acute effects of a

change in carbohydrate input in lipid profiles. The results present progressive triglyceride

accumulations in the liver and plasma for three diets. The rate of accumulation was

greater in the fructose diet than that of the mixed or glucose only models. Scenario

two explores the variability of metabolic reaction rate within the general population.

Sensitivity analysis reveals that hepatic triglyceride concentration is most sensitive to the

rate constant of pyruvate kinase and fructokinase. Scenario three tests the effect of one

specific inhibitor that might be potentially administered. The simulations of fructokinase

suppression provide a good model for potentially reversing simple steatosis induced by

high fructose consumption, which can be corroborated by experimental studies. The

predictions in these three scenarios suggest that the model is robust and it has sufficient

detail to present the kinetic relationship between fructose and lipid in the liver.

Keywords: fructose metabolism, NAFLD, computational modeling, triglyceride, systems biology

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver dysfunction
worldwide (Miele et al., 2009). It covers a spectrum of conditions resulting from excess lipid
accumulation in the liver without excessive alcohol consumption. The pathologic manifestations
of NAFLD develop from simple steatosis (intrahepatic lipid deposition) to non-alcoholic
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steatohepatitis (NASH), an advanced stage that combines
steatosis with inflammation. NASH can then further progress
to fibrosis (excess fibrous connective tissues) and cirrhosis
(a late stage of scarring), and potentially to hepatocellular
carcinoma (Ouyang et al., 2008; Cohen et al., 2011). Among
these conditions, steatosis andNASH are reversible, while fibrosis
and cirrhosis are often considered irreversible (Maldonado et al.,
2018). Over the last three decades NAFLD has increased in its
prevalence 20-fold, mainly linked with obesity, diabetes, and
many other metabolic disorders. Currently it is globally affecting
20–30% of the general population (Nomura and Yamanouchi,
2012; Younossi et al., 2016). It has been estimated that between
2016 and 2030, NAFLD levels would continue to grow at a
steady rate of up to ∼30% (Estes et al., 2018). However, the
molecular mechanisms causing NAFLD are multifactorial and
remain poorly understood, which results in the absence of
effective therapeutic interventions.

Although overnutrition and a sedentary lifestyle have often
been blamed as the cause of NAFLD, recent clinical and
experimental studies repeatedly suggest that the climbing
consumption of fructose may also be an important factor (Jensen
et al., 2018). Fructose, along with glucose and galactose, is one of
three primary dietary monosaccharides. Between 1900 and 1950,
∼20 g fructose (5% of total energy) was consumed in the daily
meals, mainly from fruits and honey (Douard and Ferraris, 2008).
Nowadays, fructose has become a ubiquitous ingredient that
accounts for a large proportion of energy intake (approaching
15–25% of total energy) (Softic et al., 2016; Jensen et al., 2018).
A 30% increase in total fructose consumption has been observed
in recent decades (Ventura et al., 2011). The average fructose
intake for the whole population in America has been reported
as 49 g/day in 2004 (Douard and Ferraris, 2013) and 54.7 g/day
in 2008 (Vos and Lavine, 2013). For the age groups 15–18 and
19–22, a reported total of 75 g fructose is consumed per day
(Douard and Ferraris, 2013). Refined and processed fructose is
responsible for this dramatic rise. Sucrose and high fructose
corn syrup (HFCS) have become the main sources of fructose
consumption, with a fructose/glucose ratio of 50/50 and 55/45,
respectively (Ventura et al., 2011; Jensen et al., 2018). HFCS, a key
component of sugar sweetened beverages, has been considered
as an inexpensive substitute for other simple sugars in the food
industry, accounting for 40% of all added sugars (Bray et al.,
2004). Recently, this sweetener has been targeted by public health
campaigns (e.g., sugar reduction programme in UK) and with a
sugar tax levy in several countries (Jones, 2016; Briggs et al., 2017;
Hashem et al., 2019).

Despite the fact that historically fructose was proposed as a
beneficial sweetener and recommended for the obese and for
patients with diabetes, high-fructose intake has been reported
to be associated with a series of health issues such as metabolic
syndrome, obesity, type 2 diabetes, and NAFLD (Basaranoglu
et al., 2013). It is proposed that fructose is strongly associated
with these chronic health issues due to its unique and distinct
metabolic pathways which exclusively take place within the
liver. It is known that, in contrast to glucose, fructose initiates
its metabolism via the enzyme fructokinase after uptake by
liver cells (hepatocytes), bypassing the crucial rate-limiting step

of glycolysis and delivering abundant high energy substrates
for subsequent metabolism (Ouyang et al., 2008). Growing
evidence suggests that a high-fructose diet contributes to the
enhancement of de novo lipogenesis, decreasing β-oxidation
as well as increasing plasma levels of both triglyceride and
very-low-density lipoprotein (VLDL) (Koo et al., 2008; Lim
et al., 2010). Consequently, these metabolic effects would lead to
hepatic lipid accumulation, insulin resistance and an increased
inflammatory response which in turn contributes to NAFLD
(Duarte et al., 2019). However, it is still controversial as to
whether and how dietary fructose makes a unique contribution
to the development of NAFLD in humans. The primary purpose
of this paper is to investigate the effect of dietary fructose on
hepatic energy metabolism and the consequences of its over-
consumption in the development of NAFLD using models of
known metabolic functions.

Studying in vivo systems is complicated, time consuming
and expensive. A computational model based upon a systems
biology approach is an attractive option to acquire a more
comprehensive insight into the potential pathophysiological
mechanisms involved.

With the benefit of extensive studies in modeling human
metabolism over the last 20 years and with a systems biology
approach called human genome-scale metabolic networks
(GEMNs), reconstructions have been introduced. Three well-
known reconstructed human metabolic networks have been
established to incorporate complex metabolic pathways and
biochemical reactions in humans (Duarte et al., 2007; Ma et al.,
2007; Gille et al., 2010). Among these, the model “HepatoNet1”
developed by Gille et al. (2010) mainly examines liver function
at a system scale. It contains 777 components and over 2,500
reactions in order to explore ammonia detoxification rates and
the synthesis of bile acids under starvation conditions. However,
the major limitation of these stoichiometry-based reconstructed
models is that their static predictions failed to represent the
dynamic flows of metabolic reactions.

Applying a kinetic model to study liver energy metabolism has
been investigated since the 1970s. The first model of metabolic
regulation was introduced by Garfinkel (1971), which listed
34 dynamic chemical expressions to conduct the TCA cycle
simulation. In recent decades a majority of hepatic models are
focusing on the regulation of glucose homeostasis. Relevant
in silico simulations have been reported, including glucose
absorption and transportation, hormonal regulation, zonation
effects, and the relationship between glucose intake and high-
intensity exercise, lipid metabolism in addition to metabolic
diseases (Chalhoub et al., 2007a,b; Hetherington et al., 2012;
König et al., 2012; Sumner et al., 2012; Ashworth et al., 2016;
Naftalin, 2016; Noorman et al., 2019). Irrespective of the fact that
abundant studies have highlighted the important role fructose
metabolism plays in metabolic diseases, only a few models
have placed emphasis on the fructose metabolism and none of
these have reflected the potentially dynamic changes (Allen and
Musante, 2017, 2018; Maldonado et al., 2018).

Therefore, here we present a detailed kinetic model of fructose
metabolism to investigate the metabolic mechanism whereby
fructose consumption can induce changes to lipid metabolism
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associated with NAFLD, and to explore whether the pathological
conditions can be reversed during the early stages of disease.

METHODS

Model Description
A kinetic model of the fructose metabolism was developed
based on modified Michaelis-Menten and Hill equations. This

FIGURE 1 | Basic framework of the fructose metabolism modeling.

model comprises ∼120 parameters, 25 variables, and 25 first
order differential equations. As shown in Figure 1, variables
and equations were divided into three sections representing
hepatocytes (SH), hepatic bloodstream (SHB), and bloodstream
of the rest of the body (SBC). The model parameters were
determined and refined by comparison with values reported
in the literature (see Table S1). Hepatic fatty acids (FA) and
hepatic triglycerides (TG) are selected to be the major outputs
in this model as they are the most important indices reflecting
lipid accumulation in the liver. Plasma free fatty acids (FFA)
and plasma triglycerides are also predicted as they are the most
directly measurable matching indices recorded in clinical and
experimental data. The equations are reported in this section.

Hepatocytes–Fructose Metabolism
Since the metabolic activities of fructose mainly take place in the
liver parenchyma, hepatocyte metabolism is the primary focus in
this paper. As mentioned above, the most common assumption
is to link fructose with NAFLD due to its unique metabolic
processes. As fructokinase (also known as ketohexokinase, KHK),
aldolase B, and triokinase are three specialized enzymes for
fructose metabolism, the chemical reactions related to these three
enzymes were first included to initiate the model construction.
Substantial evidence leads to the proposition that high fructose
consumption is attributable to enhancing de novo lipogenesis,
suppressing β-oxidation and facilitating triglyceride synthesis
(Koo et al., 2008; Lim et al., 2010; Tappy and Lê, 2010;

FIGURE 2 | Hepatic fructose metabolism.
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Nomura and Yamanouchi, 2012). The model therefore was
developed to incorporate these pathways. However, not every
single component in the liver metabolism has been included.
Pyruvate, acetyl-CoA, fatty acids and triglycerides were selected
as they are identified as the most common intermediates and
ultimate metabolites within the carbohydrate metabolic process
associated with lipid deposition (Mayes, 1993; Sun and Empie,
2012; Laughlin, 2014). Also, they are considered to be the key
components and they are assessable in clinical experiments,
which allows the related parameters be tuned and validated
during model development. Indeed, the reactions between these
key metabolites in the human body are more complicated than
that which is presented in the model. However, rate-determining
enzymes among the biochemical processes were selected to
simplify the reactions yet provide adequate details to represent
realistic reaction rates.

As a result, Figure 2 summarizes the biochemical components
and reactions identified in the literature that are constructed
within the model, including fructolysis, de novo lipogenesis
(DNL), beta-oxidation, and triglyceride synthesis. Table 1

presents the rate equations for the hepatic variables used in
this section.

The Distinctive Fructose Metabolic Pathways
The most significant distinction between glucose metabolism
and fructose metabolism is their phosphorylation processes.
After entering the hepatocyte, dietary fructose is swiftly
phosphorylated by KHK to produce fructose-1-phosphate
which bypasses the key rate-controlling regulatory enzyme
(phosphofructokinase) of glycolysis in the glucose metabolism.
Fructose-1-phosphate is then converted to dihydroxyacetone-
phosphate (DHAP) and glyceraldehyde (GA) by aldolase
B, providing intermediates for further glycolysis processes.
Triokinase, the third essential enzyme, functions by
phosphorylating GA to form glyceraldehyde-3-phosphate
(GA3P), which also produces intermediates for subsequent
reactions. The pathways of glucose and fructose metabolism then
merge at the triose phosphate stage (as GA3P) and become the
same from this point on (Havel, 2005; Rutledge and Adeli, 2007;
Ouyang et al., 2008; Laughlin, 2014). Key enzymes and detailed
reactions were demonstrated as follows. The corresponding
metabolic functions are listed in Table 2.

(1) Hepatic fructokinase (KHK)

Fructose+ ATP
KHK
−→ Fructose− 1− phosphate+ ADP

Hepatic fructokinase (KHK, EC 2.7.1.3), one of the three
characteristic enzymes in human fructose metabolism, converts
fructose into fructose-1-phosphate (F1P) by transferring one
phosphate group from adenosine triphosphate (ATP). In contrast
to glucose phosphorylation, there is no feedback inhibition for
fructose which indicates that the activity of KHK is essentially free
of regulatory control. Consequently, when sufficient fructose is
available a significant amount of F1P enters subsequentmetabolic
reactions. Also, since the Michaelis constant (Km) of KHK is
lower than glucokinase, it has been shown that KHK is effectively

TABLE 1 | The rate equations for the hepatic variables in section Hepatocytes

(SH).

Hepatic variables Abbreviation Rate equations

Fructose Fru dFru
dt

= TFru − RKHK

Fructose-1-Phosphate F1P dF1P
dt

= RKHK − RaldB

Dihydroxyacetone

phosphate

DHAP dDHAP
dt

= RaldB − RTPIDHAP + RTPIGA3P

Glyceraldehyde GA dGA
dt

= RaldB − RTri

Glyceradehyde-3-

phosphate

GA3P dGA3P
dt

=

RTPIDHAP − RTPIGA3P + RTri − RPK + RPEPCK

Pyruvate/lactate Pyr dPyr
dt

= TLac+RPK − RPDC − RPEPCK

Acetyl-CoA ACoA dACoA
dt

= RPDC − 8 RFAS + 8 Rboxi

Fatty acids (palmitate) FA dFA
dt

= TFFA+RFAS − Rboxi − 3 RTGS +

3 RLply

Triglycerides TG dTG
dt

= TTG+RTGS − RLply

10-times faster than glucokinase in substrate phosphorylation
(Patel et al., 2015). In terms of energy transport, even though
guanosine triphosphate (GTP) can also be utilized in a similar
way to ATP for this initial phosphorylation reaction, it is only
responsible for a minor proportion of the total process and the
effect of GTP can be ignored in this equation.

(2) Aldolase B

Fructose− 1− phosphate
AldolaseB
−→ Dihydroxyacetone

phosphate+ Glyceraldehyde

After phosphorylation, fructose-1-phosphate (F1P) undergoes
further breakdown into two three-carbon components, namely
dihydroxyacetone phosphate (DHAP) and glyceraldehyde (GA)
by aldolase B. Aldolase B (E.C.4.1.2.13) is a liver-specific aldolase
which can be considered the rate-limiting enzyme of hepatic
fructose metabolism. Since little is known about the mechanism
of aldolase B regulation, no strong allosteric control has yet been
identified for this enzyme.

(3) Triose Phosphate Isomerase (TPI)

Dihydroxyacetone phosphate
TPI
⇐⇒GA3P

DHAP is isomerised to glyceradehyde-3-phosphate (GA3P)
by triose phosphate isomerase (TPI) (E.C.5.3.1.1) rapidly
and reversibly.

(4) Triokinase

Glyceraldehyde+ ATP
Triokinase
−→ GA3P + ADP

The primary pathway for the GA metabolism is through GA3P
catalyzed by triokinase (E.C.2.7.1.28). This reaction requires one
phosphate molecule from ATP, releasing adenosine diphosphate
(ADP). The activity of triokinase is allosterically activated by
ATP-Mg−2 and inhibited by both ATP and ADP, suggesting
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TABLE 2 | The processes of metabolic reactions and rate functions in the fructose model.

Key enzymes/reactions Abbreviation Rate functions

(1) Fructokinase KHK RKHK = VKHK *
FrunFru

KmKHK
nFru+FrunFru

* ATPnATP

KmATP
nATP+ATPnATP

(2) Aldolase B aldB RaldB = ValdB*
F1PnF1P

KmF1P
nF1P+F1PnF1P

(3) Triose phosphate isomerase TPI RTPI_DHAP = VTPI_DHAP*
DHAPnDHAP

KmDHAP
nDHAP+DHAPnDHAP

RTPI_GA3P = VTPI_GA3P*
GA3PnGA3P

KmTPIGA3P
nGA3P+GA3PnGA3P

(4) Triokinase Tri RTri =

VTri*
GAnGA

KmGA
nGA+GAnGA

*
ATP

Mg2−
nATP

Mg2−

KmATP
Mg2−

nATP
Mg2− +ATP

Mg2−
nATP

Mg2−
*

(

1− βATP
ATP

KATP
i

+ATP

)(

1− βADP
ADP

KADP
i

+ADP

)

(5) Pyruvate kinase PK RPK = VPK *
GA3PnGA3P

KmGA3P
nGA3P+GA3PnGA3P

* ADPnADPpk

KmADPpk
nADPpk+ADPnADPpk

*

(

1− βACoA−PK
ACoA

KACoA−PK
i

+ACoA

)

(6) Phosphoenolpyruvate carboxykinase PEPCK RPEPCK = VPEPCK *
Pyr

KPEPCKm +Pyr
* ATP

K
ATPpepck
m +ATP

* GTP

KGTPm +GTP

(7) Pyruvate oxidation PDC RPDC = VPDC*
Pyr

K
Pyr
m +Pyr

*

(

1− βACoA−PDC
ACoA

ACoA+k
CoA−pyr
i

)

(8) Fatty acid synthesis FAS RFAS= VFAS*
ACoA

KACoAm +ACoA
* ATP

KATPfasm +ATP
*

(

1− βFA
FA

FA+kFA−inhib
i

)

(9) Beta-oxidation boxi Rboxi= Vboxi*
FA

Kboxim +FA
* ATP

KATPboxim +ATP
*

(

1− βboxi
ACoA

ACoA+kCoA−boxi
i

)

*

(

1− βPPARα
F1P

F1P+kF1P−inhib
i

)

(10) Triglyceride synthesis TGS RTGS = VTGS*
FA

KFAm +FA
* GA3P

KTGSGA3Pm +GA3P

(11) Lipolysis Lply RLply = VLply*
TG

KTGm +TG

that this hepatic triokinase is regulated by the phosphorylation
potential in the cytoplasm. Under normal conditions triokinase
is fully activated.

(5) Pyruvate Kinase (PK)

GA3P + 2ADP + 2Pi
PK
−→ Pyruvate/Lactate+ 2ATP

As pyruvate can be converted to lactate swiftly and reversibly,
only one variable is used to denote this in the model. The
pathways for glucose and fructose metabolism merge at the
triose phosphate stage and become the same from this point
onwards. GA3P is broken down to pyruvate relying on a series
of enzyme reactions. The rate limiting enzyme in this process
is pyruvate kinase (PK; E.C.2.7.1.40). Here we simplify the
whole six-step conversion of GA3P to pyruvate by using PK.
The phosphate in the GA3P and an additional free inorganic
phosphate are combined with ADP molecules to produce two
ATP molecules in this process. It should be noted that there are
twoGA3Pmolecules generated from one fructosemolecule in the
previous metabolic step, four ATP and two pyruvate molecules
are therefore produced in the current reaction. Pyruvate kinase is
allosterically controlled by acetyl-CoA.

(6) Phosphoenolpyruvate carboxykinase (PEPCK)

Pyruvate/Lactate+ 2ATP + GTP
PEPCK
−→ GA3P + 2ADP

+GDP + 2Pi

Phosphoenolpyruvate carboxykinase (PEPCK) (E.C.4.1.1.32) is
rate limiting in the conversion from pyruvate to GA3P,
consuming two ATPs and one guanosine triphosphate (GTP).
There is no identified allosteric regulation for PEPCK while

numerous metabolites, such as insulin and fatty acids, are
able to stimulate its production. Over-expression of PEPCK is
believed to be associated with high production of glucose and the
development of type 2 diabetes (Beale et al., 2007).

(7) Pyruvate Dehydrogenase Complex (PDC)

Pyruvate/Lactate+ NAD+ PDC
−→Acetyl− CoA+ NADH

Pyruvate oxidation is regulated by the pyruvate dehydrogenase
complex (PDC). This complex contains three enzymes that
catalyze the conversion of pyruvate to acetyl-CoA. PDC is
allosterically inhibited in a feedback mechanism by acetyl-
CoA to prevent its over-production, which could result in
mitochondrial stress.

(8) Fatty acid synthesis

8 Acetyl− CoA+ 7 ATP
ACC&FAS
−→ Fatty acid

(

Palmitate
)

+7 ADP + 7Pi

Lipogenesis describes the process of fatty acid synthesis
and triglyceride synthesis. With the mediation of acetyl-
CoA carboxylase (ACC) (E.C.6.4.1.2) and fatty acid synthase
(FAS) (E.C.2.3.1.85), acetyl-CoA is converted into malonyl-CoA.
Malonyl-CoA provides the two-carbon structure for producing
both short and long chain fatty acids. There are two isoforms of
ACC found in the hepatic metabolism as ACC1 contributes to
lipogenesis and ACC2 to beta-oxidation. Palmitate (16:0), as the
most common saturated fatty acid, has been chosen to represent
fatty acids in this model for the purpose of simplification. Thus,
eight acetyl-CoA molecules are consumed to synthesize one
palmitate molecule. High concentrations of fatty acids are able
to suppress this process allosterically.
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(9) Beta-oxidation

Fatty acid
(

Palmitate
)

+ 2ATP
CPT−1(PPARα)
−−−−−−−−−→ 8Acetyl− CoA

+AMP + ADP + 3Pi

Hepatic carnitine palmitoyltransferase I (CPT-1) (E.C.2.3.1.21)
is the rate-controlling enzyme of beta-oxidation. The metabolic
process breaks down fatty acids to generate acetyl-CoA (Lim
et al., 2010). Since malonyl-CoA is the main inhibitor for
CPT-1, it supresses beta-oxidation allosterically. To simplify the
equation, the inhibitory effect of malonyl-CoA is substituted by
acetyl-CoA as the pathway of acetyl-CoA to produce malonyl-
CoA is unidirectional. By contrast, it has been discovered
recently that peroxisome proliferator-activated receptors
(PPARs) promote beta-oxidation by upregulating the expression
of CPT1 (Kersten, 2014). However, this regulation can be
prevented by the production of fructose-1-phosphate (Nomura
and Yamanouchi, 2012). Therefore, fructose-1-phosphate is
also considered to be an allosteric inhibitor in the process
of beta-oxidation.

(10) Triglyceride Synthesis

3 Fatty acids
(

Palmitate
)

+ 3 ATP
Glycerol−3−phosphate
−−−−−−−−−−−−→

Triglyceride+ 3AMP + 7Pi

During triglyceride synthesis, three fatty acid molecules and
one glycerol backbone from glycerol-3-phosphate are combined
to produce triglyceride under the influence of coenzyme A
(CoA) and several acyltransferases. Glycerol-3-phosphate is
denoted as GA3P due to the rapid exchange rate between these
two molecules. Triglyceride synthesis is regulated by insulin
and glucagon.

(11) Lipolysis

Triglyceride
Triacylglycerollipase
−−−−−−−−−−−→Glyceraldehyde+ 3Fatty acids

(

Palmitate
)

Three fatty acids are released when one triglyceride breaks
down. The rate-determining enzyme during this process
is triacylglycerol lipase (E.C.3.1.1.3). The concentration of
hepatic triglyceride is regulated by insulin and glucagon under
normal circumstances.

Hepatic Bloodstream: Cross-Membrane

Exchange
The hepatic blood flow is maintained by hepatic arteries, portal
veins, central veins, and bile ducts which allow hepatocytes
to be exposed to nutrients, hormones (insulin and glucagon),
and oxygen (Hijmans et al., 2014). As applied in König et al.
(2012) and Ashworth et al. (2016), an altered Michaelis–
Menten equation is employed for cross-membrane exchange.
For unidirectional transportation, the model considers the
components in the Hepatic Bloodstream as substrates and the

corresponding molecules in the hepatocytes as products. For
bidirectional exchange the equation for transport (T) is:

TSHB→SH =
Vmax(SSHB − SSH)

Km + SSHB + SSH

where the (section) Hepatic Bloodstream is denoted as SHB and
(section) Hepatocytes denoted as SH.

The transportation and exchange rates of fructose,
pyruvate/lactate, fatty acids, and triglyceride between SHB
and SH are summarized in Table 3. The constant RHE = 4 is
used to represent the ratio of the total number of hepatocytes to
the volume of the hepatic bloodstream as described in Ashworth
et al. (2016). The rate equations in SHB are listed in Table 5

combined with the rate equations for the section Bloodstream
Circulation: Rest of the Body.

Fructose is absorbed from the gut lumen and transported
across the brush border membrane into the hepatic portal vein
via an energy-dependent process involving glucose transporter 5
(GLUT5) and glucose transporter 2 (GLUT2), in which GLUT
5 has a high specificity to fructose (Douard and Ferraris, 2008).
After fructose uptake from the gut, plasma fructose is observed
experimentally to rise only by micromolar levels, implying that
hepatocytes have the capacity to uptake the majority of fructose
during the first-pass through the liver (Tappy and Lê, 2010).
Therefore, both GLUT2 and GLUT5 are included in the model
where the Michaelis–Menten constant of GLUT2 has a lower
value than that of GLUT5 as reported previously (Wright et al.,
2012). In addition, GLUT 8 has also been mentioned in terms of
hepatic fructose transportation (Manolescu et al., 2007; DeBosch
et al., 2014). However, as the expression of GLUT8 is relatively
low in mice in comparison to GLUT5 and GLUT2 even with
high-fructose exposure, and the fact that the exact mechanism of
this transporter in humans remains largely unknown, the effect
of GLUT8 is considered negligible in the current model (Ferraris
et al., 2018).

Bloodstream Circulation-Rest of the Body
Since circulation of the bloodstream around the body takes
∼1min to complete, the rate of blood flow circulation is set to be
RBS = 1/60 ≈ 0.167 s−1. Also, as the blood volume of the whole
body and the liver are considered to be∼5 and 0.8 L, respectively,
in an average person, the ratio of the rest of body to the liver RRL
is set as:

RRL =
5− 0.8

0.8
≈ 5.25

(Arias et al., 1994; Davy and Seals, 1994; Critchley and Critchley,
1999; Eipel et al., 2010; Ashworth et al., 2016).

The equation representing the blood circulation (C) from
(section) Hepatic Bloodstream (SHB) to (section) Bloodstream
Circulation (SBC) is in the following form:

CSBC→SHB =
RBS ∗ (CSBC−CSHB)

RRL
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TABLE 3 | The transport and exchange rates between Section Hepatic Bloodstream (SHB) and Section Hepatocytes (SH).

Transport variables Rate functions for cross-membrane transportation

Fructose TFru = V
pump

GLUT2*
FruSHB

K
GLUT2−pump
m +FruSHB

+ Vex
GLUT2*

FruSHB−FruSH
KGLUT2−exm +FruSHB+FruSH

+ V
pump

GLUT5*
FruSHB

K
GLUT5−pump
m +FruSHB

+

Vex
GLUT5*

FruSHB−FruSH
KGLUT5−exm +FruSHB+FruSH

Pyruvate/lactate [simplified from Ashworth et al. (2016)] TPyr = Vex
Pyr*

PyrSHB−PyrSH

K
Pyr−ex
m +PyrSHB+PyrSH

Fatty acids (palmitate) [simplified from Ashworth et al. (2016)] TFA = Vex
FA*

FASHB−FASH
KFA−exm +FASHB+FFASH

+ Vactive*
FASHB(

Kactivem +FASHB

)

(

1+ Ins

Insactive
ref

)

Triglyceride [simplified from Ashworth et al. (2016)] TTG = Vex
TG
*

(

TGSHB−
TGSH
TGref

)

KTG−exm +TGSHB+
TGSH
TGref

− Vout*
TGSH

(Koutm +TGSH)

FIGURE 3 | Hepatic fructose metabolism with glucose input.

Dietary Inputs
After feeding, carbohydrates are processed in the digestive

system and enter the hepatic portal system. According to
the Dietary Guideline for Americans (2015–2020) (Health and
Services, 2015), daily caloric intake of a healthy adult is in the

range of 1,600–3,000 kcal, of which, 45–65% are derived from
carbohydrates. Therefore, in this model, we set up the baseline
to reflect a midpoint caloric consumption of 2,400 kcal per day

and 50% of this energy source to be obtained from carbohydrates.
A total amount of 300 g/day carbohydrates (4 kcal/g) was set to

be taken up into the body from the diet. The remaining calorie

intake would be comprised of proteins and fats. However, as the

model has been set to examine the effects of carbohydrates in the

liver, protein and fat inputs are not considered in this study.
After a mixed meal, dietary disaccharides and polysaccharides

such as sucrose, HFCS and starches would be broken down into

the various proportions of monosaccharides; hence, fructose and
glucose as the principle simple sugars in the diet have been
selected as the dietary inputs for the model. Figure 3 shows that
glucose was added to the model as an alternative dietary input
to fructose and relevant equations are simplified from model
constructed by Ashworth et al. (2016), as presented in Table 4.

Periodic simulation of the carbohydrate intake (shown below)
is based on spiked inputs adapted from Ashworth et al. (2016),
which provides three meals a day with 4-h breaks.

Dietary Input = vinput ∗ sin6(
pi

4(hours)
)

Additional Settings
The settings for hormone regulation including insulin and
glucagon secretion into the bloodstream (SBC) are based on
the model constructed by Hetherington et al. (2012), while
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TABLE 4 | The relevant equations of glucose feeding [simplified from Ashworth

et al. (2016)].

Hepatic variables Rate equations

Glucose (Glu) dGlu
dt

= TGlu − RGK + RG6Pase

Glucose-6-phosphate

(G6P)

dG6P
dt

= RGK − RG6Pase + RFBP − RPFK

Key enzymes/reactions

TGlu – Glucose

transportation

TGlu = V
pump

GLUTG
* GluSHB

K
GLUTG−pump
m +GluSHB

+

Vex
GLUTG

* GluSHB−GluSH
KGLUTG−exm +GluSHB+GluSH

Glucokinase (GK) RGK =

VGK *
GlunGlu

KmGlu
nGlu+GlunGlu

* ATPnATP

KmATPgk
nATP+ATPnATP

*(1− G6P

G6P+kG6P
i

)

Glucose-6-phosphatase

(G6Pase)

RG6Pase = VG6Pase*
G6P

KG6Pasem +G6P

Fructose-bisphosphatase

(FBP)

RFBP = VFBP*
GA3P

KFBPm +GA3P

Phosphofructokinase

(PFK)

RPFK = VPFK *
G6P

KPFKm +G6P
* ATP
KmATPpfk+ATP

*
(

1− ATP

ATP+k
ATPfpk
i

* ADP

ADP+k
ADPfpk
i

)

*(1− βPFK
GA3P

GA3P+k
GA3Ppfk
i

)

the hormonal equations in the liver blood flow (SHB) are
simplified from the model built by Ashworth et al. (2016). In
addition to the liver, the amount of each key variable (fructose,
glucose, pyruvate/lactate, fatty acid, and triglyceride) generated
(USEvariable) and used (UPvariable) by other body sections such as
adipose tissues and muscle tissues are set to be the same as the
equations described by Ashworth et al. (2016).

Overall, the final rate equations in both SHB and SBC are
described in Table 5.

Model Simulations
Simulations were generated using MATLAB_R2019a (MATLAB,
RRID:SCR_001622). Function “ode45” was used to solve all the
ordinary differential equations in parallel. The units of metabolite
concentration and reaction rate are presented inmicromoles/liter
(µM/L) and micromoles/second (µM/s), respectively. The time
lengths of the simulations have been set to run over a 12-h
period incorporating three meals. The Matlab code is provided
in Table S2.

RESULTS AND DISCUSSION

To demonstrate the behavior of model, three scenario
simulations were conducted. The first predicts lipid
concentrations resulting from different dietary consumptions,
the second explores the variability of biochemical reaction
kinetics rate within the general population, and the third tests the
effect of one specific inhibitor of lipid metabolism contributing
to NAFLD that might be potentially administered.

Scenario One: The Effect of Changing

Carbohydrate Intake on Lipid

Accumulation
As described in section “Dietary Inputs,” a dietary setup was
created in which 100 g of carbohydrates were consumed by

TABLE 5 | The rate equations in both Section Hepatic Bloodstream (SHB) and

Section Bloodstream Circulation (SBC).

Exchanging variables Rate equations in Section Hepatic

Bloodstream (SHB)

Fructose dFruSHB
dt

= −TFru ∗ RHE + RBS ∗ (FruSBC − FruSHB)

Glucose [simplified

from Ashworth et al.

(2016)]

dGluSHB
dt

= −TGlu ∗ RHE + RBS ∗ (GluSBC −GluSHB)

Pyruvate/lactate

[simplified from

Ashworth et al. (2016)]

dPyrSHB
dt

= −TPyr ∗ RHE + RBS ∗ (PyrSBC − PyrSHB)

Fatty acids (palmitate)

[simplified from

Ashworth et al. (2016)]

dFASHB
dt

= −TFA ∗ RHE + RBS ∗ (FASBC − FASHB)

Triglyceride [simplified

from Ashworth et al.

(2016)]

dTGSHB

dt
= −TTG ∗ RHE + RBS ∗ (TGSBC − TGSHB)

Exchanging variables Rate equations in Section Bloodstream

Circulation (SBC)

Fructose dFruSBC
dt

= MealFru + CFru

Glucose [simplified

from Ashworth et al.

(2016)]

dGluSBC
dt

= MealGlu + CGlu − USEGlu − UPFA − UPTG

Pyruvate/lactate

(simplified from

Ashworth et al. (2016)]

dPyrSBC
dt

= CPyr

Fatty acids (palmitate)

[simplified from

Ashworth et al. (2016)]

dFASBC
dt

= CFA − USEFA + UPFA

Triglyceride [simplified

from Ashworth et al.

(2016)]

dTGSBC

dt
= CTG−USETG + UPTG

healthy subjects for each meal (3/day). Here we tested the effect
of three different diets on lipid deposition, including: a 100%
fructose meal, a mixed meal (50:50 fructose and glucose), and
a 100% glucose meal, representing two extreme conditions and
one more realistic setting. The results of these simulations are
presented in Figure 4. The levels of hepatic fatty acids (FA),
triglycerides (TG), plasma free fatty acids (FFA), triglycerides, as
well as blood glucose were predicted after three meals at 8:00,
12:00, and 16:00, respectively. The model takes approximately an
hour for the initial transient phrase before establishing a set of
consistent predictions.

As shown in Figure 4A, hepatic fatty acids started decreasing
after the first meal and reached a peak at around 13:00 in the
fructose feeding group and ∼13:30 in both glucose and the
mixed diet subjects. These decreasing patterns is because three
fatty acids are required to generate one triglyceride molecule
after meals during the triglyceride synthetic process. After the
second meal, the subsequent peak time of fatty acid levels
stimulated by all three diets was observed between 17:00 and
18:00, and again the fructose group took slightly less time
to achieve the peak value. Even though the consumption of
50% glucose and 50% fructose resulted in the highest level
of hepatic fatty acids for the first peak, a significantly higher
concentration was induced by the fructose diet after the second
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FIGURE 4 | The change of lipid accumulation after different dietary intakes. (A) Hepatic FA, (B) hepatic TG, (C) plasma FFA, (D) plasma TG, and (E) blood glucose.

meal. The glucose feeding group were found to have the
lowest levels of fatty acids over the observation period. The
concentration of hepatic FA in the mix-meal feeding group
displayed stronger periodic behavior than in the other two
extreme conditions. In terms of hepatic triglyceride (Figure 4B),
the curves of the glucose group and the mix-carbohydrate group

overlapped for several hours after breakfast. From around 13:00,
the mix group started accumulating larger amounts of hepatic
triglycerides than that of the glucose group. After consumption
of the fructose-only diet, triglyceride concentration showed
relatively dramatic increasing growth leading to the highest
levels observed.
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In addition to hepatic lipid concentrations, Figures 4C,D

show the plasma levels of free fatty acids and triglycerides
respectively. Similar to the periodic patterns of hepatic fatty
acids, free fatty acids in the plasma declined over several hours
before developing the first peak. For both mix-sugar feeding and
glucose only groups, the levels of free fatty acids then returned
to baseline after about 30 min. The second peaks of these two
groups generated slightly higher values than the first peaks before
again reducing to baseline. Regarding the 100% fructose model,
this showed a smaller fluctuation than the other two diets and
presented a flattened profile, and was not seen to drop back
to the baseline level. Consistent with hepatic FA observations,
plasma FFA peaked earlier in the fructose group than the
others. Considering plasma triglyceride levels (Figure 4D), the
fructose diet produced the highest concentrations throughout
the model simulation. After the first meal, the glucose group
contributed to greater triglyceride production than that induced
by the mix group. However, this phenomenon shifted over
during the 12:00–13:00 period where the mixed sugar group
outgrew the glucose meal and continued increasing plasma
triglyceride levels.

Blood glucose levels were also simulated after consuming
different proportions of monosaccharides. A baseline normal
blood glucose level was established within the model and the
effects of the meals examined in addition to this. As presented
in Figure 4E, the predicted peak values for each diet model
throughout the period were equal in magnitude since the three
meals were divided and induced equally. After pure fructose
meals, blood glucose stayed relatively constant along the time
period, while for the pure glucose group and the mix-sugar
group, both of them caused dynamic periodic oscillations. It
is apparent that blood glucose responded more strongly to
the pure glucose diet than the mixed diet. As the models
were considering healthy individuals, the effects of insulin in
mediating cellular glucose uptake from the blood became more
apparent once levels exceeded upper normal values (>1.2 mM),
which can be observed as a blunting of the peak glucose levels in
the figure.

Overall, it can be observed that it took ∼5 h on average
to digest dietary meals containing 100 g carbohydrates to
subsequently achieve peak values in lipid profiles. Compared to
fatty acids, triglycerides in the liver and plasma progressively
accumulated. The rate of accumulationwas greater in the fructose
diet than that of the mixed or glucose only models. For both
fatty acids and triglyceride concentrations, glucose meals were
observed to result in the lowest levels over the study period.
Additionally, for the 50/50 glucose/fructose model, the fatty acid
curves fluctuated more dramatically in comparison to the other
dietary inputs.

Clinical data from Abraha et al. (1998), Chong et al.
(2007), and Stanhope et al. (2008) were used to compare the
model predictions. The research carried out by Chong et al.
(2007) recruited 14 healthy individuals to have one test meal
either containing 0.75 g/kg body weight fructose or glucose.
Plasma composition was recorded over 6 h to investigate
the acute effect of high-carbohydrate diets. In the study by

Stanhope et al. (2008), a larger sample size and a larger time
scale were applied with more abundant dietary carbohydrate
forms. A total of 34 subjects were provided with three meals
with sucrose or HFCS drinks. For this study eight men also
participated in a sub-study that included pure glucose and pure
fructose consumption. Blood samples of all participants were
collected over 24-h. In contrast to these two studies, Abraha
et al. (1998) also included diabetic patients as subjects of an
investigation to explore the effect of fructose on post-prandial
lipid profiles. Six healthy individuals and six diabetic individuals
were provided a test meal with a fructose-enriched drink or
starch-enriched bread. Plasma metabolites for both groups were
recorded for 6 h. These data were chosen as they covered
varying dietary carbohydrate compositions in both healthy and
diabetic subjects, which were considerably suitable for testing
the compatibility of the constructed model. It should be noted
that since diabetic and NAFLD patients are considered to
have similar insulin responses when inducing high-carbohydrate
meals, the clinical values measured in these diabetic subjects were
regarded as reference indices. Also, as hepatic lipid levels are
difficult to measure in clinical studies, only plasma lipid profiles
were employed to make comparisons with the data from the
selected studies.

Our model concurred with the findings from these three
studies in the following ways. Model predictions and literature
data took roughly the same time to process fructose metabolism.
Specifically, the plasma FFA concentrations in the simulated data
dropped for roughly 90 min before they rose to reach a peak after
∼5 h. Also, consistent with results from these experimentally
measured data, in healthy subjects the incremental plasma
triglyceride concentration was higher after pure fructose meals
than the other meal plans. The simulated results show that
consumption of pure glucose can be attributed to the lowest
triglyceride levels for the various diets, which is in keeping
with the findings in Stanhope et al. (2008). Additionally, even
though it is relatively difficult for computational models to
make predictions matching the exact values of clinical measured
data, the plasma triglyceride concentrations the model simulated
here fitted within the range of 1,000–2,000 µmol for both
glucose and mix-sugar feeding groups in the healthy subjects.
Despite that pure fructose exposure produced values as high
as 3,000 µmol plasma TG in the model predictions, this level
was still lower than the plasma TG measured in the diabetic
individuals after a fructose test meal (around 3,800 µmol). This
result suggests that the model predictions are indicative of the
normal range of plasma TG levels in a healthy population,
even when considering two extreme conditions. Blood glucose
predictions were also in agreement with the literature findings
above. Furthermore, there are some discrepancies between the
experimental figures and simulated numbers. We note that the
peaks of plasma FFA induced by consumption of the mixed
diet were higher than that of pure fructose diet. However,
this inconsistency may be caused by the mechanism whereby
fructose is able to enhance hepatic glucose uptake, hence
indicating a synergistic effect of fructose and glucose in fatty
acid synthesis.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 July 2020 | Volume 8 | Article 762244

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liao et al. Fructose Metabolism Modeling and NAFLD

TABLE 6 | Results for sensitivity analysis of rate constants in Section Hepatocytes (SH).

Key enzymes/

reactions

Abbreviation 1 Hepatic fatty acids

(µM)

1 Hepatic triglyceride

(µM)

1 Plasma fatty acids

(µM)

1 Plasma triglyceride

(µM)

+10% −10% +10% −10% +10% −10% +10% −10%

(1) Fructokinase KHK 3.44 –5.07 281.15 –325.16 22.24 –25.85 42.43 –49.38

(2) Aldolase B aldB –18.87 17.80 152.01 –211.55 –6.23 1.98 13.24 –22.06

(3) Triose phosphate

isomerase

TPI 0.00 0.00 0.78 –0.94 0.00 –0.01 0.18 –0.19

(4) Triokinase Tri 0.00 0.00 0.03 –0.05 0.00 0.00 0.01 –0.01

(5) Pyruvate kinase PK 25.27 –25.88 320.09 –357.91 38.59 –37.67 74.51 –83.11

(6) Phosphoenolpyruvate

carboxykinase

PEPCK –16.05 18.33 –222.74 241.06 –22.97 27.00 –52.58 57.29

(7) Pyruvate oxidation PDC 15.61 –16.73 217.04 –244.18 22.66 –23.67 52.77 –58.74

(8) Fatty acid synthesis FAS 12.14 –13.14 168.42 –190.44 19.23 –20.28 38.78 –43.83

(9) Beta-oxidation boxi –0.45 0.47 –19.09 20.71 –0.64 0.68 –4.41 4.77

(10) Triglyceride synthesis TGS –7.18 7.36 96.77 –112.67 1.07 –1.90 –25.38 26.82

(11) Lipolysis Lply 0.37 –0.36 –0.88 0.87 0.13 –0.12 0.71 –0.71

Scenario Two: The Effect of Varying

Reaction Rate Constants on the Hepatic

Metabolic Process
Rate constants indicate the maximum capacity of the enzymes
in metabolic reactions, which are affected by numerous factors,
e.g., age, diet, life style, and genetic predisposition. To explore
the variability of these rate constants in the hepatic metabolic
processes, an OAT (one at a time) sensitivity analysis was
conducted by changing 11 key rate constants in the fructose
pathway within the hepatocytes (SH). Since the normal range for
healthy liver function can vary substantially between individuals,
possibly by as much as 25% according to dye clearance measures
designed to assess detoxification function (Vos et al., 2014),
a mid-point 10% variation was applied to each rate constant
to reflect the expected metabolic differences among healthy
subjects. It is reasonable to choose this value as it is large
enough to produce obvious changes on lipid levels that allow
us to recognize the relative importance of metabolic reactions,
but small enough to maintain within a healthy range. A 50/50
fructose/glucose diet was set as the standard input and the
simulations were run for 12 h for acute effect consideration. Both
hepatic and plasma concentrations of fatty acids and triglycerides
were recorded as the end points for the analysis. The results are
displayed in Table 6.

Hepatic TG levels were most sensitive to the reaction
rate associated with pyruvate kinase, the rate-limiting enzyme
that converts triose phosphate product GA3P to pyruvate for
both fructose and glucose. Increasing the enzymatic activity of
pyruvate kinase by 10% resulted in 320.09 µmol accumulation
of hepatic TG and 74.51 µmol of plasma TG’s while decreasing
this rate by 10% caused a decline of 357.91 and 83.11 µmol
in hepatic and plasma TG’s, respectively. Secondly, an increase
of 281.15 µmol in hepatic TG and 42.43 µmol in plasma TG
levels were observed as the result of increasing the activity
rate of KHK by 10%. A decrease of 325.16 µmol in hepatic
TG and 49.38 was found when KHK was inhibited by 10%.

The reason that the changes in hepatic TGs were greater than
that of plasma TGs is because there is around 5% of body
lipid stored in the liver under normal conditions, as such the
triglyceride level in the liver is ordinarily much higher than
that in the plasma. The two significant variations of pyruvate
kinase and KHK activity suggests that they are likely to be the
key determinants of individual responsiveness to the progression
of simple lipid deposition in the liver. However, as KHK is
exclusively contributing to the fructose metabolic pathway, it was
selected for further investigation in Scenario Three. Apart from
PK and KHK, PEPCK, PDC and FAS also expressed with high
sensitivity to lipid levels, especially hepatic TG concentrations.

Scenario Three: Effect on NAFLD Through

the Potential Interventional Target KHK
The early stages of NAFLD are identified by simple lipid
accumulation within hepatocytes. Potentially, fructose enables an
increase in hepatic de novo lipogenesis, thereby contributing to
this build up within cells. As demonstrated in Scenario Two, in
this process fructokinase (KHK) is of interest as a potential point
of intervention. KHK is not limited by adenosine triphosphate
(ATP) or citrate availability (as is the case of glucokinase in
the glycolytic pathway) as part of the fructose phosphorylation
process which potentially delivers a large amount of substrate for
lipogenesis. In this scenario, the fructose only diet introduced
in Scenario One (100 g/meal) was presented as a representation
of a healthy subject. A very high fructose diet (150 g/meal) was
employed to simulate the development of a simple pro-steatosis
condition, in which a 18.34% increase in hepatic triglycerides was
observed. This setting fitted in the criteria ofmild steatosis (Petäjä
and Yki-Järvinen, 2016). After feeding with the very high fructose
diet, three degrees of KHK inhibition were simulated including
50% suppression, 70% suppression, and a full suppression of the
enzyme. The results are presented in Figure 5. Inhibiting KHK
expression by 50% was able to effectively reduce the hepatic
lipid concentrations. Further suppression of KHK by 70% enables
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FIGURE 5 | The change of lipid accumulation after inhibiting KHK. (A) Hepatic FA, (B) hepatic TG, (C) plasma FFA, and (D) plasma TG.

lowering of plasma FFA concentration significantly (Figure 5C).
When KHKwas fully suppressed, hepatic FA, hepatic TG, plasma
FFA, and plasma were maintained at a reduced steady-state.
These complete inhibitory predictions are consistent with a
recent study byMiller et al. (2018) who showed that, after feeding
with a high fructose high fat diet, the plasma triglyceride level
decreases dramatically in KHK knockout mice when compared
to control wild-type animals.

Although we have confidence in the model, we recognize
that further validation work is necessary in order to improve
and expand the model. The simulations in three scenarios
above suggest that the model is robust and it has sufficient
detail to present the kinetic relationship between fructose and
lipid in the liver. However, the model has its own limitations.
Firstly, only acute effects of different carbohydrate diet could be
represented by the current model. As the development of NAFLD
is chronic and multifactorial, applying only one organ model
to investigate the pathological mechanism over a long period
may result in cumulative errors. Secondly, the actual dietary
intake is more complicated than introduced in this model. The
model is designed to give only the response to carbohydrate
input. The prediction robustness may be improved if protein and

fat consumptions were included for further model expansion.
Furthermore, the structure of the liver is complex and the current
simulations consider liver as a lumped model that neglects
zonation across the liver plate. More comprehensive insight and
more accurate information would be provided if the model could
be further refined and expanded to include zonated effects.

CONCLUSIONS AND FUTURE WORK

In this study we introduced a computational model of the
hepatic fructose metabolism. The model was validated
against experimental data and shown to predict major
trends, suggesting that fructose over-consumption leads
to dyslipidaemia associated with NAFLD. The model was
also used to identify and study a potential regulatory point
for novel therapeutic intervention based on the reaction
rate sensitivity. As fructokinase is recognized to be the
key determinant within the fructose pathway, the effect of
fructokinase activity suppression was simulated. When KHK
expression was inhibited by 50%, an effective reduction in
lipid deposition occurred alleviating simple steatosis while
fully inhibited KHK expression induced a notable decrease in
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lipid accumulation. These results match with experimental data
from knock-out animals and should be further corroborated
by cellular experimental studies, with the consideration that
modification of fructose mediated lipogenesis rather than
complete inhibition may be the preferred outcome. In addition,
more potential regulatory targets could be tested as candidates
for therapeutic treatment.

We believe that organ modeling in silico model systems will
have numerous applications in developing future therapeutic
strategies and represent a future growth area for diseasemodeling
using the quantitative approaches applied by engineers to
complex problems. These studies need to involve collaborations
between engineers and clinical colleagues.
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Fiber type composition, organization, and distribution are key elements in muscle

functioning. These properties can be modified by intrinsic and/or extrinsic factors, such

as undernutrition and injuries. Currently, there is no methodology to quantitatively analyze

such modifications. On one hand, we propose a fractal approach to determine fiber type

organization, using the fractal correlation method in software Fractalyse. On the other

hand, we applied the kernel methodology from machine learning to build radial-basis

functions for the spatial distribution of fibers (distribution functions), by dividing into

square cells a two-dimensional binary image for the spatial distribution of fibers from

a muscle fascicle and mounting on each cell a radial-basis function in such a way that

the sum of all cell functions creates a smooth version of the fiber histogram on the cell

grid. The distribution functions thus created belong in a reproducing kernel Hilbert space

which permits us to regard them as vectors and measure distances and angles between

them. In the present study, we analyze fiber type organization and distribution in fascicles

(F2, F3, F4, and F5) of the extensor digitorum longus muscle (EDLm) from control and

undernourished male rats. Fibers were classified according to the ATPase activity in

slow, intermediate, and fast. Then, (x, y) coordinates of fibers were used to build binary

images and distribution functions for each fiber type and both conditions. The fractal

organization analysis showed that fast and intermediate fibers, from both groups, had

a fractal organization within the four fascicles, i.e., the fiber assembly is distributed in

clusters. We also show that chronic undernutrition altered the organization of fast fibers

in the F3, although it still is considered a fractal organization. Distribution function analysis

showed that each fiber type (slow, intermediate, and fast) has a unique distribution

within the fascicles, in both conditions. However, chronic undernutrition modified the

intra-fascicular fiber type distributions, except in the F2. Altogether, these results showed
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that the methodology herein proposed allows for analyzing fiber type organization and

distribution modifications. On the other side, we show that chronic undernutrition alters

not only the fiber type composition but also the organization and distribution, which could

affect the muscle functioning, and ultimately, its behavior (e.g., locomotion).

Keywords: fiber type, chronic undernutrition, fractal analysis, distribution functions, machine learning, ATPase,

skeletal muscle

1. INTRODUCTION

Nature is ordered at all levels, from microscopic (atomic,
molecular, and cellular) to macroscopic (individual and
population levels), but when a disaster or disease occurs at
any level such order changes. The application of mathematics
and computer science in anatomical and/or physiological
problems has allowed a better and deeper understanding of the
fundamental processes of living beings. Cells, tissues, and organs
in vertebrates present an organization which is mathematically
similar to that observed in other biological systems (e.g.,
ecosystems) and manifests self-similarity (Mandelbrot, 1983). It
is now possible to study the organization of particular biological
systems (such as muscles) using fractal tools which have
become essential in the work of physicists, chemists, biologists,
physiologists, economists, among others. Such tools have allowed
researches to reformulate old problems into novel terms, and
address complex problems in simplified forms (Liebovitch et al.,
1987; Jelinek and Fernandez, 1998; Reese et al., 2012; Hernández
and Menéndez-Conde, 2013).

The skeletal muscle is a heterogeneous tissue composed
of various fiber types, which can be classified according to
their metabolic and contractile characteristics as glycolytic
and oxidative or slow, intermediate, and fast fibers,
respectively (Ariano et al., 1973). The organization of muscle
fibers is relevant to maintain the homeostasis and muscle
functioning. This organization can be altered by disease,
inadequate nutrition, exercise or injury, modifying their
contractile and structural properties. Yet we found practically
no studies oriented to investigate the organization of fiber types
in skeletal muscles and how natural or pathological conditions
can modify it, specifically in the case of the extensor digitorum
longus muscle (EDLm), which is composed in four fascicles (F2,
F3, F4, and F5) with different fiber composition, metabolism,
and size (Balice-Gordon and Thompson, 1988; Kissane et al.,
2016; Vázquez-Mendoza et al., 2017). This particular muscle
participates in the extension of toes (each fascicle extends a single
toe, the F2 extends toe 2, the F3 extends toe 3, and so on) and in
the dorsiflexion of the ankle in the rat.

Recently, it has been illustrated elsewhere that chronic
undernutrition exerts a differential effect on the relative fiber type
composition in the EDLm fascicles (Vázquez-Mendoza et al.,
2017). Particularly, it was observed that the third fascicle (F3)
was more affected than the others, being the sequential order
of effects as follows: F3>F5>F4=F2. In that study, the authors
suggested that those changes in the relative composition of fiber
types in the EDLm fascicles could induce modifications in the
intra-fascicle fibers organization. One way to analyze this is by

mathematical methods such as fractal estimation analysis, which
can determine whether a fiber phenotype group is organized in
clusters or spread randomly over the whole muscle or fascicle.

Besides the organization, fiber types distribution within a
muscle is crucial to its functioning (Burkholder et al., 1994).
The visualization method that we developed consists in the
application of the kernel methodology from machine learning to
build distribution functions for the spatial localization of fiber
types. In brief, on the reconstructed microphotograph of the
stained section, we superimposed a square grid of size N and
built a histogram for each fiber type. For each cell, we built a
Gaussian kernel function that is mainly supported therein, by
taking into account the number and localization of fiber types
within the cell. The individual cell functions are then linearly
superimposed to obtain a function whose graph resembles a
smoothing of the histogram of the fiber type under study, we call
it the distribution function (DF) of the fiber type shown in the
histological image. DFs obtained in this way belong in a (finite-
dimensional) reproducing kernel Hilbert space, which in effect
enables us to treat each one of them (and thus each image) as
vectors and thus measure distance and angle between any pair
of them. We then use distance and angle measurements (which
we call dissimilarity quantifiers) to differentiate data images from
one another and in turn quantify the effects of undernutrition in
EDLm fiber content.

In this study, we aimed to develop a methodology to evaluate
changes in fiber type organization and spatial distribution due
to alterations provoked by traumatic processes such as spinal
cord injury, motor nerve damage, multiparity, or by metabolic
diseases (undernutrition or obesity), among others. To this
end, we applied fractal estimation analysis to analyze fiber
type organization and we were able to make a quantitative
analysis of changes in the structure of muscle fibers due to
chronic undernutrition. On the other hand, we applied the
kernel methodology from machine learning to build distribution
functions for the spatial localization of fiber types and along
with the dissimilarity quantifiers we were able to assess how
chronic undernutrition alter the fiber type distribution within the
EDLm fascicles.

2. MATERIALS AND METHODS

All experiments were performed in accordance with the Guide
for the Care and Use of Laboratory Animals (National Research
Council, 2010; National Institutes of Health, Bethesda, MD, USA;
Animal Welfare Assurance #A5036-01). The animal protocols
were approved by the Institutional Bioethical Committee for
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the Care and Handling of Laboratory Animals (UPEAL-Protocol
013−02, CINVESTAV).

2.1. Animals
Chronic undernutrition protocol. We used nulliparous female
Wistar rats (257.4 ± 16.3 g body weight), which were randomly
allocated in two groups: control (C, n= 16) and undernourished
(U, n = 18). Control group had free access to commercial food
(Formulab 5008; LabDiet, Framingham, MA, USA); while the
undernourished group was fed with 50% of the mean food intake
given to control animals, both groups had access to water ad
libitum. Two weeks after, female rats of both groups (C and
U) were put together with a male for 1 week in the same cage
to ensure mating and the consecutive pregnancy. After that,
males were removed. The day females gave birth litters were
adjusted to nine pups: five males and four females. During
gestation, birth, and lactation all rats remained on the same
feeding protocol to which they were subjected from the beginning
(C or U). Each mother and her offspring were housed in large
acrylic cages (43 × 53 × 20 cm). After weaning (postnatal
day 21), pups remained on the same feeding protocol as their
mothers (C or U) until the experimental proceeding. Later,
male rats were housed individually in acrylic cages (32 × 47
× 20 cm) under the same conditions of light/dark cycle (12/12
h) and temperature (22–24◦C). No supplementary mineral,
trace elements or vitamins were added to the food supply of
undernourished animals. Further details of these protocols can be
found in Ruiz-Rosado et al. (2013) and Vázquez-Mendoza et al.
(2017).

At 35 postnatal days, we randomly selected 6 males coming
from each experimental group (C, n = 6; and U, n =
6), which weighed and anesthetized with urethane (1.6 g/kg
of body weight). The EDL muscles were quickly removed
and weighed (more details Vázquez-Mendoza et al., 2017).
Subsequently, the four fascicles of each muscle (F2 to F5)
were carefully separated and their length measured. After that,
fascicles were immersed in 2−methylbutane, cooled to near
freezing point with liquid nitrogen and stored at −80◦C until
their processing. At the end of tissue extraction, the animals
were euthanized using an overdose of anesthetic (urethane).
Subsequently, the middle segment of each fascicle was sectioned
and mounted on a specimen holder in a cryoprotectant
solution (Tissue−Tekr O.C.T Compound, Sakurar Finetek,
Torrance, Ca). Serial transverse sections (10 µm thick) of
each specimen tissue were obtained by means of a cryostat
at −25◦C (CM−1520; Leica Biosystems, Nussloch, Germany).
The sections were subsequently mounted on glass coverslips
for staining.

2.2. Histoenzymatic Analysis
EDLm fascicle sections were stained with the myofibrillar
alkaline ATPase activity technique (pH = 9.4, modified
from Guth and Samaha, 1970) to identify the fast, intermediate
and slow fiber types. In brief, themuscle sections were submerged
20 min in a pre-incubation solution (0.01 M Tris base and
0.018 M CaCl2, pH 10.3), then they were washed three times
for 5 min with deionized water and subsequently incubated

at 37◦C for 60 min in the incubation solution (1.5% w/v of
adenosine-5′-triphosphate in pre-incubation solution, pH 9.4).
After incubation, slides were washed for 3 min with 0.2 M
CaCl2 and transferred to 2% w/v CoCl2 solution for another 5
min. Subsequently, they were washed ten times with deionized
water and finally transferred to 10% v/v ammonium sulfide for 3
min. Stained sections were washed, dehydrated with ascending
alcohol solutions and mounted with glycerogel and coverslips.
Photomicrographs of each muscle fascicle were taken by a
digital camera (AxioCam MRc, Zeiss, Germany) mounted on a
microscope (Olympus CX31, NY, US). The whole muscle fascicle
was reconstructed with the photomicrographs using Photoshop
CS4. After that, the spatial position (x, y coordinates) of each
and the total number of the different fiber types was determined
in control and undernourished muscles using ImageJ (Rasband,
2011). According to the alkaline ATPase technique, the fibers
were identified as light = slow, Type I; gray = fast, Type IIb and
dark= intermediate, Type IIa/IId (see section 7).

2.3. Experiments With Synthetic Data
In order to determine if the dissimilarity quantifiers (distance
and angle) can differentiate between highly similar distribution,
we generated synthetic data which we considered to be
challenging to the quantifiers. Below is describe in detail how
these distribution were constructed. This was implemented in
a MatLab script available in https://github.com/GonzaloCin/
DistributionFunctions.

2.3.1. Data Generation
Our synthetic data consists of four collections of randomly
generated points and with very pronounced tendencies toward
spreading and/or clustering. Each set has a geometric shape
which we think should be challenging for the algorithm to
discern one set from the another. The shapes are: a ball
(uniform spread in all directions with no tendency toward
clustering), a ring (uniform spread in all directions, with
a pronounced tendency to cluster far from and uniformly
around the global centroid of the set), a set in the shape
of a sum sign (with pronounced spreading and clustering
tendencies along the coordinate axes), a cross-shaped data
set (same as the sum-shaped set but with a 45-degree
rotation angle).

To generate each data set we first generated Q points (x, y) on
a square [−L/2, L/2]×[−L/2, L/2], using a uniform distribution,
then points were selected according to the following criteria:

Ball: only points satisfying x2 + y2 ≤ L2/4 were chosen to form
part of the data set.
Ring: only points satisfying (L2/2 − δ)2 ≤ x2 + y2 ≤ L2/4 were
chosen.
Sum sign: only points satisfying −δ/2 ≤ x ≤ δ/2 or −δ/2 ≤ y ≤
δ/2.
Cross: only points (ξ , η) satisfying −δ/2 ≤ ξ ≤ δ/2 or −δ/2 ≤
η ≤ δ/2 were chosen and then rotated a 45-degree angle: x =
(ξ − η)/

√
2 and y = (ξ + η)/

√
2.

We chose δ = L/9, and Q = 500, 1,000, 2,000, 3,000, 4,000
(Figure 1). For each value Q a collection of four data sets was
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FIGURE 1 | Artificial data generated choosing δ =, L =, and Q = 500, 1,000, 2,000, 3,000, 4,000. For each value of Q a collection of four data sets was generated

(one for every shape: ball, ring, sum, cross) and for every one of them a distribution function was built. More details of experiments with synthetic data in section 2.3.

Note that by increasing the number of points (Q), the shape of figures is more defined and, in dissimilarity quantifiers, induce an increase of distance, although angle is

not affected, see text in section 7.2.

then generated (ball, ring, sum, cross) and for every one of
them a distribution function was built using the methodology
in 4. For every pair of distributions in each collection, distances
and angles were calculated using formulae (S19) and (S20) from
Supplementary Material, respectively. The results are reported
in 7.2.

3. FRACTAL CORRELATION INTEGRAL
METHOD

To determine the fractal structure of fiber types in fascicles
we used the Fractalyse software (Thomas et al., 2008) and
binary images constructed. This freeware program has been
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developed by Frankhauser and colleagues and can be downloaded
on the website http://www.fractalyse.org/. The original version
of this software has been developed in the frame of the
French research program “Ville émergente,” financed by the
PUCA (Plan Urbanisme Construction Architecture). Correlation
analysis turned out to be themost reliable method as it introduces
fewer artifacts compared to others, such as grid and dilation
analysis. In fractal “correlation analysis,” each fiber type pixel is
surrounded by a small square window of size ε. The number of
fibers pixels within each window is then counted. This allows
the mean number of pair correlations per window N(ε) to be
computed. This step is repeated for windows of increasing size. It
results in a series of points that can be represented on a Cartesian
graph where the X−axis refers to the size of the window ε = (2i+
1) (i being the iteration step), and the Y − axis refers to the mean
number of points per window. The next step consists in fitting
this empirical curve to a theoretical curve that corresponds to a
fractal law, i.e., a power law that links the number of correlations
N(ε) to the size of the window ε:

N = εD (1)

The exponent D is the fractal dimension, or in this case,
the correlation dimension. However, real-world patterns
cannot strictly follow a fractal law. Therefore, it is useful
to introduce a generalized fractal law, which contains two
additional parameters:

N = aεD + c (2)

The parameter a is called the “pre-form factor.” It is giving
a synthetic indication of local deviations from the estimated
fractal law (Frankhauser, 1993, 1998; Thomas et al., 2007). For
a mathematical fractal structure, is to be equal to 1 (Gouyet,
1996). Experience shows that when it goes 4 or less than 0.1,
a fractal pattern is not confirmed (see Thomas et al., 2007). In
real-world patterns, fractal behavior may change across scales.
Changes often occur within rather small values of ε, i.e., for small
distances, often corresponding to the clusters of fibers of the same
type. In order to avoid local effects and hence wrong estimations,
it is useful to introduce an additional parameter c that allows
the correct estimation of D and a (Frankhauser, 1998; Thomas
et al., 2008). The software Fractalyze was used to estimate the
parameters mentioned above; it is mainly dedicated in this paper
to the fractal analysis of fibers types and scaled in such a way
that the pixel size is really the counting unit for ε. This ensures
that the numbers N(ε) are correctly counted in spatial structures
like that illustrated further in this paper. Sensitivity analyses were
performed to explore the role and the physiological meaning of
a when estimating fractal dimensions for EDLm fibers under
different conditions. The results were compared with a simplified
version of the generalized law (2), where a is forced to one:

N = εD + c (3)

D is often estimated by using a double logarithmic representation
of the power law. Nonlinear regression was used to estimate
the parameters that best fit the empirical curve since this avoids
implicit assumptions about local deviations from the fractal law.
Noise is assumed to be an independent additional effect. The
fractal dimension D of fibers types can take any value between
0 and 2. When D = 2, the pattern of a fiber fiber type of EDLm
is uniform, following a one-scale logic (Euclidian forms); D = 0
corresponds to a pattern made up of a single point (e.g., one or
few muscle fibers); and finally, when D is between 1 and 2, the
elements distributed in clusters over the space. Fractal dimension
can be considered as a measure of an object’s ability to fill the
space in which it resides.
The quality of the estimation is measured by computing the ratio:

cov(N(est),N(obs))
√

var
(

N(est)
)

var(N(obs)
(4)

WhereN(est ) corresponds to the set of estimated values andN(obs)

to the observed values. We here call this ratio R2∗ by analogy with
the determination coefficient. For values close to 1, N(est)(ε) and
N(obs)(ε) curves tend to be equal, which means that the fractal
model fits well to the observed data. If the fit between the two
curves (empirical and estimated) is poor, we can conclude either
that the pattern is not fractal or that it is multifractal (e.g., Tannier
and Pumain, 2005). In our case, all analyzed patterns lead to R2∗

values >0.99.

4. CONSTRUCTION OF DISTRIBUTION
FUNCTIONS

4.1. Overview
The work discussed in this section is motivated by the old
problem of extracting information about an underlying
phenomenon from a collection of direct or indirect
measurements or observations of the phenomenon itself, in
order to estimate a functional dependency. Concrete examples of
this type of problem are, determining which gene is responsible
for a certain disease (microarray data classification; Cristianini
and Shawe-Taylor, 2000; Schölkopf et al., 2004), and face and
handwriting recognition (pattern classification; Duda et al., 2012;
Devroye et al., 2013). The theory developed around this type of
problems is nowadays known as Learning Theory (Vapnik, 1998;
Cucker and Zhou, 2007) and its application was boosted thanks
to the accessibility of modern computers capable of performing
fast calculations.

Put plainly, the exact problem we are concerned here with
is that of fitting a spatial distribution function to a finite set of
points on the plane. The reader can think that the coordinates
(x, y) of those points on the plane, give the location of muscle
fibers in the histological image of a transverse muscle section.
For distribution function, we will understand a smoothing of the
histogram on the plane for the centered data, built on a square
grid of given size N. N is a parameter specified by the user. If
8 : R

2 → R is the distribution function of a set of points, 8(z)
gives the approximate count of points per unit square length at
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the location z = (x, y) on the plane. Our distribution functions
will be linear superpositions of Gaussian kernel functions, one
kernel function per each square of the grid. This section we will
elaborate on it.

Gaussian kernel functions are a type of radial basis functions
(RBFs). Aside from their ample use in classification problems in
Bioinformatics, RBFs are also used in a variety of scenarios, such
as approximation and interpolation problems (cf. Buhmann,
2003), or in the construction of Lyapunov functions for the
determination of the stability of fixed points of certain dynamical
systems (cf. Giesl, 2007). The RBF construction method we
apply uses the so-called “kernel trick,” which consists in
taking advantage of properties of kernel functions to deal with
the computational problem that entails high-dimensional data
(which is not the case of our data), and to guarantee that
the distribution functions so built will belong in an inner-
product space which we denote by LN , and is the precursor
of a Reproducing-Kernel Hilbert Space (the latter being the
completion of the former under the norm induced by the inner
product (cf. Schölkopf et al., 2004; Wendland, 2005). Working
within an inner-product space will allow us to treat functions
as vectors and thus measure distance and angle between two
functions, we will then use these measurements to make a
quantitative assessment of how distinct distribution functions
associated to two fiber types are, which will directly translate
into a semi-quantitative assessment of how two fiber types with
distinct metabolic and myosin ATPase activities distribute across
a muscle section.

Below we limit ourselves to presenting the methodology by
which distribution functions are built for a single collection
of finitely many points. The set of points is thought of as
representing the spatial localization of fiber centroids in a given
histological image of a muscle fascicle. In order to measure
distance and angle between two functions (and thus between two
collections of points or images), it is necessary to construct all
distribution functions to be compared, simultaneously. The latter
can be done by slightly tweaking the construction we present first.

In the next subsection, we briefly describe the construction
of distribution functions. For a detail explanation on the
mathematical framework of the construction and in what sense
it is possible to speak of distance and angle between two
distribution functions (see Supplementary Material).

Figure 2 shows a schematic representation of how distribution
functions are constructed from the (x, y) coordinates of muscle
fiber type. This method has already been implemented in a
MatLab script for the construction of distribution function for a
single and for a batch of images, which can be downloaded from
https://github.com/GonzaloCin/DistributionFunctions.

4.2. Distribution Function for a Single
Image
Let {z̃1, . . . , z̃ν} ⊂ R

2, z̃j = (x̃j, ỹj), be a collection of finitely
many coordinate pairs of points within a sample image, each one
of which represents a muscle fiber of the same type as all other
fibers in the collection. Let z̄ = ν−1

∑ν
j=1 z̃j be the centroid of

the collection and S = {z1, . . . , zν} with zj = z̃j − z̄ = (xj, yj)

be the centered collection of coordinate pairs. S is our data set
and it is contained within a compact box B = [a,A] × [b,B],
where a = −ε + min xj and A = ε + max xj, with ε a small,
positive, chosen number (b and B defined similarly). B may as
well be determined by the dimensions of the sample image, thus
skipping the “cropping” just described.

Choose a fixed positive integer N and consider uniform
partitions P = {a0, . . . , aN} and Q = {b0, . . . , bN} of [a,A] and
[b,B], respectively. So ak = a+k(A−a)/N (bk defined similarly).
P and Q define a uniform rectangular grid over B, composed of
N2 cells, Cij = [ai−1, ai] × [bj−1, bj]. We next describe a method
to mount a bivariate Gaussian function on each cell Cij. Such
functions are then superimposed linearly so that the graph of
the combined function will look like a smoothed version of the
histogram defined on the grid.

Consider a cellCij and let Sij be the subcollection of data points
within it, Sij = {zk ∈ Cij} ⊆ S. Let |Sij| be the cardinality of Sij
and z̄ij = |Sij|

−1
∑

Sij
zk be the centroid of the points in Sij. The

sample covariance matrix of points in Cij is defined as (cf. Duda
et al., 2012, p. 90),

6ij = (|Sij| − 1)−1
∑

Sij

(zk − z̄ij)(zk − z̄ij)t . (5)

Assume for the moment 6ij is invertible (the case when 6ij is
singular is discussed at the end of this section). The bivariate
Gaussian function referred to above, also called Gaussian kernel
function (see next section), is defined as

φij(z) = exp
(

− 2−1(z − z̄ij)t6
−1
ij (z − z̄ij)

)

, (6)

We now associate to the collection S the following distribution
function, where Rij = |Sij|,

8(z) =
N

∑

i=1

N
∑

j=1

Rijφij(z) . (7)

8 is the main object of this section. We now mention three
situations that must be sorted out when constructing 8.

(i) If Cij is empty, we set φij = 0 (indentically zero function).
(ii) If Cij contains only one point zp = (xp, yp), we compute

its distance δ = max{aj − xp, bj − xp} to the boundary of
Cij, redefine 6ij = (δ/3)2Id2 where Id2 is the 2 × 2 identity
matrix, and construct φij as in Equation (6), that is φij(z) =
exp(−9 ·2−1δ−2‖z−zp‖2) (‖ ·‖ denotes Euclidean distance).
The unlikely case in which Cij contains only one point which
lies exactly on its boundary, can be treated in several ways.
One way is to associate that point to the adjacent cell of
shared boundary, assuming such cell has at least one other
point. Another way is to arbitrarily set δ equal to a very small
predefined positive number, so that the contribution of φij to
the sum 8 is highly localized for its double contribution to
the sum in Equation (7) to be significant. We never incurred
in this scenario in our experiments.
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FIGURE 2 | Schematic representation of the sequential steps used to create the muscle fiber type distribution and calculate dissimilarity quantifiers by using the

distribution method implemented in MatLab. More details of the construction of distribution functions are indicated in section 4.

(iii) If6ij is singular or nearly so (its determinant is smaller than a
pre-established number ε0 > 0), we apply the following four
steps:

(a) let λ1 = maxSij ‖zk − z̄ij‖2, and λ2 = λ1/9.

(b) pick any zk in Cij and define u1 = (zk − z̄ij)‖zk − z̄ij‖−1,
then if u1 = (v,w) let u2 = (−w, v) so that ut

1u2 = 0.

(c) Let M = [u1 u2] be a 2 × 2 matrix with columns u1 and u2,
in that order. and 3 = diag(λ1, λ2) be a diagonal matrix.
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(d) Redefine 6ij = M3Mt and construct φij as in (6).

In the next subsection, we establish that the function 8 in (7)
belongs in an inner-product space.

For more details on the method of construction (see
Supplementary Material).

4.3. Distribution Functions for a Batch of
Images
In the previous subsection, we described a methodology to fit one
distribution function to one single image. In this section, we show
that with a slight modification the methodology can be applied to
fit a distribution function for every image in a finite collection
of r distinct images, in tandem, for cross comparison. The
meaning of having a set of r images depends on the context. For
instance, if the points zk represent the location of muscle fibers,
every image could represent muscle fibers of one of r different
types. Once a distribution function has been obtained for every
image, we wish to calculate distance and angle between pairs of
them and assess if those measurements reflect the classification
independently established.

The trick now is tomake sure that the distribution functions of
the images we want to compare, belong in the same inner-product
space LN . In order to achieve that we only need to slightly change
our definition of the functions φij in (6). More precisely, we need
to modify the definition of the covariance matrix 6ij in (5) as we
now describe.

Similarly, as in the previous section, we divide every image
into N × N cells. Let Cb

ij denote cell (i, j) of image b and zb
k
the

kth point in that image. Let Sbij = {zb
k
∈ Cb

ij} (set of points of

image b in its cell Cb
ij), and let |S

b
ij| represent the number of points

in Cb
ij. We define the global sample covariance matrix for cell (i, j)

as follows:

6ij = (Sij − 1)−1
r

∑

b=1

∑

Sbij

(zbk − z̄ij)(zbk − z̄ij)t , (8)

where Sij =
∑r

b=1 |S
b
ij| and z̄ij is the global centroid for cell (i, j),

z̄ij = S
−1
ij

r
∑

b=1

∑

Sbij

zbk . (9)

Thus, if

φb
ij(z) = exp(2−1(z − z̄bij)

t6−1
ij (z − z̄bij)) , (10)

then

8b(z) =
N

∑

i=1

N
∑

j=1

Rbijφ
b
ij(z) (11)

is the distribution function for sample image b, with Rbij = |Sbij|.

The same observation as in equation (11) may be applied in this
case for an alternate choice for the coefficients Rij. We can also
adapt cases (i), (ii), and (iii) in the first section to deal with the
scenarios in which 6−1 is singular or nearly so.

5. DATA ANALYSIS

In this work, we used the data obtained in a previous study
from our group (Vázquez-Mendoza et al., 2017) corresponding
to slow, intermediate, and fast fibers in the EDLm fascicles of
control and undernourished young rats (35 days old).

5.1. Fiber Type Fractal Organization
In order to assess the fractal organization of the fiber types in
the fascicles of the EDLm, we constructed binary images using
the (x, y) coordinates of each fiber type with a MatLab program
developed in our laboratory. These images were then analyzed
using the fractal correlation method in Fractalyse, obtaining the
fractal dimension (D), pre-form factor (a), and parameter c. From
this analysis, we excluded the slow fibers because of their small
number in muscle sections.

5.2. Fiber Type Distribution Functions
Intra-fascicle distribution of fiber types was determined applying
the method described in the previous section (4), implemented
in a MatLab script. In brief, this method requires the (x, y)
coordinates of each fiber type, that are used to create a binary
image, which is divided into N × N cells. In our case, we used an
N = 11 because in a pilot study we observed that this number
of cells allowed us to have cells with a few, many and a large
number of fibers. This is relevant due to it lets us visualize the
distribution of fibers in an optimal resolution, showing how the
fibers form groups and how these groups are distributed within
the muscle. Then in each cell, the number of fibers is counted
in order to calculate the estimator covariance matrix and the
centroid. Subsequently, a Gaussian function is built for each cell.
Next, the distribution function of the fiber type is created by
the lineal superposition of all Gaussian functions. Finally, the
distribution function of each fiber type are merged to visualize
them in a single image (Figure 2). Also, the (x, y) coordinates are
used to calculate the dissimilarity quantifiers, distance (D), and
angle (θ), which allows to compare two distribution functions.
On one hand, the closer the distance to zero, the more similar
are the distributions. On the other hand, angles < 45◦ indicates
similar distributions, whereas angles > 45◦ indicates dissimilar
distributions (Figure 2).

In order to determine differences between experimental
condition (control and undernourished), we calculated the
dissimilarity quantifiers for each pair of distributions within a
fascicle (i.e., slow vs. fast, slow vs. intermediate, and intermediate
vs. fast), which we called intra-fascicular fiber type distributions.
Also, we calculated the dissimilarity quantifiers for synthetic data
comparing between shapes (ring vs. ball, ring vs. cross, ring vs.
sum, ball vs. cross, ball vs. sum, and cross vs. sum) and all
quantities of points (500, 1,000, 2,000, 3,000, and 4,000 points).

6. STATISTICAL ANALYSIS

Dissimilarity quantifiers of fiber types distribution, as well as
the fractal dimension (D), a, and c indexes between control
and undernourished EDLm fascicles, were analyzed performing
unpaired Student’s t-test or Mann–Whitney test, depending on
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its normality, evaluated with the Kolmogorov–Smirnov test.
Dissimilarity quantifiers of synthetic data comparisons were
analyzed using Person’s correlation. Data analysis was performed
in GraphPad Prism (v.6.00, GraphPad Sofware, Ca., USA).
Significant differences were considered at P ≤ 0.05. Data are
showed as mean± S.E.M.

7. RESULTS

The data obtained in this study was partially reported in
Vázquez-Mendoza et al. (2017), where we found that chronic
undernutrition reduces the percentage of intermediate fibers in
the F4, increases this fiber type in the F5 and reduces the fast
fibers in the F3 and F5, compared to control fascicles (Table 1).
According to the changes in the proportion of fiber types it
could be established the following sequence of fascicles affected
by chronic undernutrition (most to less): F3 > F5 > F4 = F2.
According to the later, Vázquez-Mendoza et al. (2017) proposed
that chronic undernutrition evokes a differential effect on the
relative proportion of fiber types in EDLm fascicles and suggested
that such condition may provoke changes in the intra-fascicle
distribution and organization of fiber types.

7.1. Fractal Analysis Results
In order to perform the fractal analysis, we first estimated the
a index, which needs to be > 0.1 and < 4.0 to treat them as
fractals. Fast and intermediate fibers in all fascicles (control and
undernourished) showed an a in the range of a fractal (Table 1;
only five values were excluded from the analysis because they
showed a < 0.1). Although intermediate fibers in the fascicle
F5 of the undernourished group showed a significant larger a
value than the control one (P < 0.01) these fibers are still in
range. With these results, we were able to treat the individual
binary images of fast and intermediate fibers from the control
and undernourished rats as fractals. In the case of slow fibers,
these were excluded from the analysis due to the lower number
of fibers.

Once established that the binary images can be treated as
fractal, we estimated the dimension parameter (D), which gives
us how the fibers are organized within the fascicles. The results
showed that fast and intermediate fiber in all EDLm fascicles,
of both conditions, had similar D values, varying between 1.5
and 1.84 (Table 1), indicating that both intermediate and fast
fibers are distributed in clusters over the transverse area of each
fascicle. Statistical analysis showed that chronic undernutrition
only reduced the fractal dimension of fast fibers in the F3, as
compared to control (C, 1.73± 0.03 vs. U, 1.50± 0.08; P < 0.05;
Table 1). Nonetheless, this value still represents a distribution in
clusters over the transverse area of the fascicle.

In real-world patterns, fractal behavior may change across
scales. Changes often occur within rather small values of ε, i.e.,
for small distances, often corresponding to the clusters of fibers
of the same type. In order to avoid local effects and hence wrong
estimations, it is useful to introduce an additional c parameter
that allows the correct estimation of D and a values (Table 1).
Similar to the a index, the c parameter of fast and intermediate
fibers in all fascicles was similar between the groups (P > 0.05;

TABLE 1 | Percentage fiber composition and fractal organization parameters [a

index, fractal dimension (D), and c index] corresponding to the intermediate and

fast fiber types present in the different EDLm fascicles (F2, F3, F4, and F5) of

control (C) and undernourished (U) rats.

Composition (%)

Intermediate Fast

C U C U

F2 57.6 ± 4.5 57.6 ± 5.2 31.7 ± 5.4 37.9 ± 5.4

F3 51.9 ± 5.4 67.2 ± 4.0 46.0 ± 5.5 29.7 ± 4.1*

F4 63.6 ± 2.3 53.6 ± 3.6* 33.3 ± 2.5 42.2 ± 4.0

F5 45.2 ± 2.0 54.4 ± 1.1* 53.7 ± 2.0 44.9 ± 1.1*

a index

C U C U

F2 0.18 ± 0.03 0.22 ± 0.01 0.15 ± 0.03 0.21 ± 0.04

F3 0.20 ± 0.03 0.26 ± 0.03 0.22 ± 0.03 0.43 ± 0.11

F4 0.35 ± 0.10 0.26 ± 0.04 0.27 ± 0.09 0.25 ± 0.07

F5 0.16 ± 0.01 0.24 ± 0.07** 0.25 ± 0.07 0.28 ± 0.02

Fractal dimension (D)

C U C U

F2 1.77 ± 0.05 1.80 ± 0.01 1.75 ± 0.03 1.70 ± 0.05

F3 1.78 ± 0.02 1.75 ± 0.03 1.73 ± 0.03 1.50 ± 0.08*

F4 1.75 ± 0.04 1.78 ± 0.02 1.68 ± 0.04 1.74 ± 0.02

F5 1.84 ± 0.01 1.81 ± 0.01 1.80 ± 0.01 1.81 ± 0.01

c index

C U C U

F2 6.54 ± 1.00 5.08 ± 1.01 7.48 ± 1.39 6.72 ± 0.54

F3 4.51 ± 2.18 0.30 ± 3.01 5.50 ± 1.22 6.62 ± 2.48

F4 −2.71 ± 4.87 2.02 ± 2.75 7.66 ± 3.07 4.98 ± 2.08

F5 6.65 ± 0.90 0.11 ± 1.42** −1.81 ± 1.66 0.75 ± 1.01

Mean± S.E.M. Significant differences between C and U were determined using Student’s

t-test or Mann–Whitney test. *P < 0.05, **P < 0.01. n = 6, except in Intermediate F2C,

F2U, F4U, and in Fast F3U, where n = 5, and in Fast F2 C, n = 4.

Table 1), except for the intermediate fibers in the undernourished
F5, which showed a significant reduced c value as compared to
control (C, 6.65 ± 0.90 vs. U, 0.11 ± 1.42; P < 0.01) that
could be related with the reduction of the muscle CSA due
to undernutrition.

Altogether, this analysis showed that intermediate and fast
fibers in the four EDLm fascicles (F2, F3, F4, and F5) of the
control rats present a fractal organization within the fascicle, i.e.,
the fiber assembly is distributed in clusters. Also, it showed that
this organization is preserved during chronic undernutrition,
except for the fast fibers in the F3, whose organization is reduced,
but still conserve the distribution in clusters. This probably
helps to preserve the optimal muscle functioning despite the
alimentary condition.

7.2. Distribution Functions Results
Although the fractal organization was preserved in all fascicles
of undernourished rats, the fiber types distributions could be
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modified, in order to determine changes in the fiber types
distribution we constructed the distribution function of slow,
intermediate, and fast fibers of control and undernourished rats.

Before analyzing the distribution function of fiber type,
we aimed to determine if our dissimilarity quantifiers could
differentiate between very similar distributions. To achieved this,
we calculated the dissimilarity quantifiers for synthetic data
(Figure 1) that present distributions that could be a challenge
to our quantifiers. Tables 2, 3 contain comparison results with
synthetic data, angle measurements are displayed in degrees.
In general, we observed an increase in distance values while
increasing the number of points (R2 = 0.99, P < 0.001, in
all comparisons, except Ring vs. Ball, where R2 = 0.67, P >

0.05), which did not happen with the angle values (Ring vs. Ball,
R2 = 0.72; Ring vs. Cross, R2 = 0.20; Ring vs. Sum, R2 = 0.37;
Ball vs. Cross, R2=0.75; Ball vs. Sum, R2=0.75; Cross vs. Sum,
R2=0.48; P > 0.05, in all cases), of the shapes being compared.
Our discussion of these results is given in section 8.2.

7.2.1. Intra-fascicle Distribution of Slow,

Intermediate, and Fast Fiber Types
To visualize the intra-fascicle distribution of fibers types, binary
density histograms from sections of EDLm fascicles of control
and undernourished rats stained with the alkaline ATPase
technique were constructed (Figure 3). Apparently, most of the
undernourished EDLm fascicles (F2, F4, and F5) showed a
similar distribution of fiber types as that of control fascicles

TABLE 2 | Distance (D) and angle (θ ) for artificial data.

Synthetic data Ring vs. Ball Ring vs. Cross Ring vs. Sum

Points D θ D θ D θ

500 44.44 75.59 27.51 83.19 29.32 84.46

1, 000 78.36 65.58 57.34 85.50 58.10 80.50

2, 000 144.88 64.10 101.98 85.42 107.54 82.27

3, 000 203.90 59.17 151.85 83.38 155.11 79.78

4, 000 273.52 60.36 193.62 82.81 210.09 80.88

Mean 149.02 64.96 106.460 84.06 112.03 81.58

S.E.M. 92.82 6.50 67.68 1.30 72.87 1.85

500, 1,000, 2,000, 3,000, and 4,000 points. Ring vs. ball, ring vs. cross, and ring vs. sum.

TABLE 3 | Distance (D) and angle (θ ) for artificial data.

Synthetic data Ball vs. Cross Ball vs. Sum Cross vs. Sum

Points D θ D θ D θ

500 42.91 73.19 44.89 77.61 27.77 83.37

1, 000 81.59 70.73 84.05 72.62 56.61 82.33

2, 000 145.53 65.04 145.22 64.35 99.69 83.08

3, 000 214.80 64.81 209.16 61.80 135.39 79.66

4, 000 285.31 65.06 283.28 63.85 192.16 82.63

Mean 154.03 67.77 153.32 68.05 102.32 83.01

S.E.M 98.23 3.93 95.69 6.76 64.84 2.78

500, 1,000, 2,000, 3,000 and 4,000 points. Ball vs. cross, ball vs. sum, cross vs. sum.

(Figures 3A,B,E–H). In contrast, the internal distribution of fiber
types in the F3 of undernourished rats (Figure 3D) completely
differs from that determined in the control group (Figure 3C).

Once established that the dissimilarity quantifiers are robust to
differentiate between distributions, we compared the fiber types
distribution between fascicles of control and undernourished
male rats, in order to obtain not just a qualitative comparison.
Considering that our fascicles sections did not have anatomical
orientation and in order to avoid misinterpretation of the results,
we compared the intra-fascicular distribution of fiber types and
then we compared this values between groups (Table 4).

F2 intra-fascicular distributions from the control animals
showed distances lower than 60, and angles greater than
45 degrees, suggesting that each fiber type has a distinctive
distribution within the fascicle (Table 4). And this was similar
to the undernourished animals, suggesting that chronic
undernutrition does not affect the fiber types distribution of
the F2.

In the case of F3, in the control group, we found that
distance was between 60 and 90, whereas angles were greater
than 45 degrees, indicating that, as with F2, each fiber type
distribution is dissimilar to the others (Table 4). In contrast, in
the undernourished group showed distances smaller than the
controls, particularly in the distribution between slow and fast
fibers (P < 0.001; Table 4). In the case of angles, they were also
greater than 45 degrees, but the angle between the distribution
of intermediate and fast fiber was greater than the control (P <

0.01). These results suggest that chronic undernutrition modified
the fiber type distribution in the F3, but maintaining differences
among them.

For the F4 in the control group, distances were between 50
and 120, but all angles were greater than 45 degrees, suggesting
that the fiber types distribution are dissimilar among them
(Table 4). On the other hand, chronic undernutrition reduced
the distances between the slow and intermediate fiber (P < 0.05;
Table 4) and between the fast and intermediate fiber (P < 0.05;
Table 4). Likewise, chronic undernutrition decreased the angles,
especially between the fast and intermediate fibers (P < 0.05;
Table 4). This suggests that chronic undernutrition affects the
fiber type distribution of the F4, making them more similar
among them.

Finally, the F5 of control animal showed distances
between 80 and 130, but the angles were grater than 45
degrees between the distribution of slow and intermediate
fibers and between slow and fast fibers (Table 4). In
contrast, the angles between intermediate and fast fibers
distribution were lower than 45 degrees, indicating that
fast and intermediate fibers distribution is more similar
between them than with the slow fiber distribution.
Contrary to F4, in F5, chronic undernutrition increased
the distance, especially between the slow and intermediate
fibers distributions (P < 0.01) and between the slow
and fast fibers distribution (P < 0.05; Table 4). Also,
increased the angle values, notably between the slow and
intermediate fibers distributions (P < 0.01; Table 4). This
indicates that chronic undernutrition, also modifies the intra-
fascicular fibers distribution in the F5, making the slow fiber
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FIGURE 3 | Representative distribution functions maps of slow (S), intermediate (I) and fast (F) fibers in the EDLm fascicles (F2, F3, F4, and F5) from control (A, C, E,

G) and undernourished (B, D, F, H) rats. The X-axis Y − axis represent the length and width of the cross-section of the fascicles, whereas the Z − axis represents the

number of fibers (n). Qualitatively, we can observe that each fascicle present a characteristic distribution pattern of each fiber type, which is modified by chronic

undernutrition, more evident in the F3. Quantitatively, dissimilarity quantifiers showed that, indeed, intra-fascicular distributions in F3, F4, and F5 are altered, becoming

both, more similar and more dissimilar, for details see text.
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TABLE 4 | Distance (D) and angle (θ ) of the intra-fascicular fiber type distributions (slow vs. intermediate, SvsI; slow vs. fast, SvsF; intermediate vs. fast, IvsF ) in the EDLm

fascicles (F2, F3, F4, and F5) of control (C) and undernourished (U) rats.

SvsI SvsF IvsF

D θ D θ D θ

F2 C 59.20 ± 5.39 68.39 ± 0.72 38.95 ± 3.49 72.84 ± 0.93 57.58 ± 3.75 63.98 ± 1.32

U 53.97 ± 1.97 71.46 ± 1.17 35.47 ± 1.32 75.38 ± 0.56 48.32 ± 137 55.05 ± 1.45

F3 C 82.20 ± 6.50 72.76 ± 1.39 68.09 ± 2.71 75.88 ± 0.68 71.75 ± 3.45 50.15 ± 1.16

U 60.00 ± 3.42 75.98 ± 1.23 27.12 ± 0.84 *** 80.71 ± 0.91 56.89 ± 3.28 65.53 ± 0.96**

F4 C 105.01 ± 3.86 80.81 ± 0.74 55.72 ± 2.19 79.62 ± 0.32 116.64 ± 3.91 58.41 ± 1.25

U 66.45 ± 4.03* 76.31 ± 1.80 53.57 ± 4.53 77.99 ± 1.09 49.60 ± 2.09 * 46.02 ± 1.61

F5 C 105.76 ± 4.87 74.07 ± 0.76 122.37 ± 2.31 78.67 ± 0.37 83.23 ± 2.65 40.27 ± 0.71

U 167.50 ± 3.10** 81.24 ± 0.26** 143.62 ± 2.61 * 81.71 ± 0.46 95.07 ± 2.78 34.13 ± 0.80

Mean ± S.E.M. Significant differences between C and U were determined using Student’s t-test or Mann–Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001. n = 6, except in F4U,

where n = 5.

distribution more dissimilar to the intermediate and fast
fibers distributions.

Altogether, these results suggest that chronic undernutrition
has a differential effect not just in the fiber type composition, but
also in the organization and distribution of the fiber types. And
these changes could affect the muscle function and ultimately the
behavior (e.g., locomotion).

8. DISCUSSION

Here, we have developed a methodology to compare fiber types
organization and distribution in the EDLm fascicles of control
and undernourished rats. On one hand, we determined that
intermediate and fast fibers in the EDLm fascicles present
a fractal organization, i.e., they are distributed in clusters
over the transverse area of each fascicle. Likewise, our results
showed that chronic undernutrition reduces significantly the
fractal organization of fast fibers in the F3, but preserving the
organization in clusters. On the other hand, the distribution
functions showed that each fiber phenotype has a unique spatial
distribution pattern, but chronic undernutrition modifies the
intra-fascicular fiber types distributions in the F3, F4, and F5.

8.1. Distribution Function Method
Before discussing the biological data, we make a detailed analysis
regarding the methods developed by other authors in previous
work on the spatial distribution, especially those based on the
calculation of Dirichlet tessellations and adjacency matrices (cf.
Venema, 1991, 1995; Grotmol et al., 2002) and correlation
dimension (cf. Arsos and Dimitriu, 1995).

Methods based on Dirichlet tessellations (and variations of
them) as well as adjacency matrices are particularly useful when
one wants to distinguish between two or more classes of points,
one of which is scarce in comparison to the others. Dirichlet
tessellations provide a strictly visual tool when one wishes to
establish clustering among two or more classes of points within
one single image, as well as to show a tendency or pattern in
the spread of those classes. However, this method is subjective
in the sense that it is the user who decides whether or not

there is clustering or spread, and in what direction. In other
words, there is no established criterion or numerical parameter
by which several users may all agree on the presence or absence
of clustering or a pattern within the data sets. Moreover, such
methods are mainly restricted to two-dimensional data.

On the other hand, calculation of the correlation dimension
is a quantitative task which is not constrained to points on the
plane. The concept of correlation dimension was introduced
in Grassberger and Procaccia (1983a) within the context of
dissipative dynamical systems whose phase space evolution is
driven by the presence of a strange attractor. This type of
attractors arise when the flow of the system is contracting in some
directions, expanding in others, and confined within a compact
region. This causes the volume element to fold on itself and
acquire a multi-sheeted shape with a Cantor-like (self-similar)
structure in certain directions, which is directly reflected on the
attractor. The latter structures are typically associated to fractal
sets (cf. Grassberger and Procaccia, 1983b).

To calculate the correlation dimension, one starts with a
sequence of points on the attractor, {zj : j = 1, . . . ,M}, which
ideally is a time series with fixed time increment time τ , i.e.,
zj = z(t + jτ ). A measure of the spatial correlation of the points
is the quantity (cf. Grassberger, 1983; Grassberger and Procaccia,
1983b):

C(ℓ) = lim
M→∞

1

M2
×

{

number of pairs (j, k) such that ‖zj − zk‖ < ℓ
}

.

(12)

For small values of ℓ, it was established in Grassberger and
Procaccia (1983b) that

C(ℓ) ∼ ℓν , (13)

where the constant ν is the correlation dimension or correlation
exponent (cf. Grassberger, 1983; Grassberger and Procaccia,
1983b). The correlation dimension ν is related to Kolmogorov’s
capacity D, also called box-counting dimension or even “fractal
dimension” after Mandelbrot (cf. Mandelbrot, 1977), but the
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latter terminology is misleading as there is more than one
way to define the dimension of a fractal set (cf. Grassberger,
1983). In Grassberger and Procaccia (1983b), D is identified as
the Hausdorff dimension, but the latter has a more involved
definition (cf. Farmer et al., 1983). Mandelbrot used the term
fractal dimension in reference to the Hausdorff dimension and
to the information dimension σ , as follows: ν ≤ σ ≤ D.
ν and D solely depend on the metric of the phase space for
their calculation, whereas σ also requires defining a probability
measure. ν should not exceed, for instance, the embedding
dimension of the attractor (i.e., if the zj’s are p-dimensional
vectors, then ν should not be greater than p).

In applications (e.g., measurements obtained from
observations carried out in a laboratory), however, only a finite
set of measurements will be available and thus considering the
limit in Equation (12) is not possible. In that case Equation (12)
is replaced by the following:

C(ℓ) =
2

M(M − 1)
×

{

number of pairs (j, k) such that ‖zj − zk‖ < ℓ
}

;

(14)

observe that the coefficient 2/M(M − 1) is the reciprocal of the
maximum number of different pairs of data points. When using
Equation (14) M is expected to be (sufficiently) large and the
relation Equation (13) is still assumed to hold approximately for
ℓ ∈ I, where I is an open interval contained in (δmin, δmax) with
δmin the minimum distance between two data points and δmax

the maximum distance (the diameter of the point set). In the
context of this work, which is the same as that of Arsos and
Dimitriu (1995), these two hypotheses are important. Eckmann
and Ruelle (1992) shows how to estimate the number of points
necessary in order for Equation (14) to yield a meaningful result.
Our method of construction of distribution functions does not
need those hypotheses.

We now discuss the meaning of the exponent ν in
Equation (13). Recall that Equation (13) is a law that is assumed
to hold approximately for the right-hand side of (Equation 14),
for ℓ values within a certain interval I. Even though the following
two cases will not be meaningful to us, they are nonetheless
convenient to discuss for the sake of clarity. If there is only one
pair of points at a distance δ from each other, that isM = 2, then
C(ℓ) = 0 for ℓ ≤ δ and C(ℓ) = 1 if ℓ > δ. In such case one can
consider that ν = 0 as ℓ0 = 1.When there is only one point in the
data set, ν is defined as zero. Now, in general, when the data set is
finite, but large (M large), it is customary to estimate ν by plotting
logC(ℓ) against log ℓ and adjusting a line over the range of values
of ℓ for which a linear tendency is observed, such tendency is
expected to be easily detected for M sufficiently large. This, thus
can be considered the criterion by which to consider that the
size of the data set is adequate for purposes of the study. In this
scenario, ν gives the growth rate of the number of data pairs at a
distance no greater than ℓ. When ν = 1, the growth is considered
“neutral,” that is, no clear tendency toward either spreading or
clustering among data points can be declared. When 0 < ν < 1,
this means a slower-than-linear growth in the number of pairs of
points at a distance at most ℓ, in other words, one can speak of

a tendency in the data toward clustering. On the contrary, when
ν > 1, it means an accelerated growth (greater than linear) in the
number of points at a distance at most ℓ that is, the data points
are spreading (no clustering). We think this interpretation is the
most honest conclusion one can derive from the calculation of the
correlation dimension alone, in the context of this work (and that
of Arsos and Dimitriu, 1995), that is, outside of the dynamical
systems context.

Pullen (1977a,b) uses a simple quantitative technique to
analyze fiber composition and distribution of the adult tibialis
anterior muscle in rats. The author considers complete cross-
sections of the muscle in different specimens and sets deep-
superficial and medial-lateral axes. Histological images are then
projected on a counting grid. Only those cells of the grid
along the axes are considered. The magnification of each image
is set so that fifty to one hundred fibers are shown in each
cell and their identification is possible. For each cell along
the axes the fiber ratio (fiber type over total number of fibers
in the cell) is determined for three different types of fibers
which the authors name IIA, I, and IIB, and correspond
to intermediate, slow and fast fibers, respectively, according
to their oxidative, phosphorylase, and ATPase histochemistry.
Then, for each cell, histograms are constructed to appreciate
fiber distribution and muscle composition. The variance among
histograms is then analyzed. The results obtained showed that,
not only distribution of fiber histochemical types varies across
an entire cross-section of the muscle, but also the histochemical
technique employed seems to affect the quantitative analysis.
Fiber cross-section area is also calculated, in an attempt to
verify disparities found among classification of fibers based on
different histochemical techniques. The author concludes with
a few important observations such as fiber classification based
on different histochemical techniques may produce different
distributions profiles.

The relevance of Pullen (1977a,b) to our study comes from
the fact that it considers a division of the cross-section of a
muscle, by the deep-superficial and medial-lateral axes. Along
these axes, cells of a counting grid are considered. Within each
cell of this grid, a relative count of fiber types is performed and
a profile of each fiber type distribution is revealed, by drawing
histograms put together with the counts of all cells along each
axis. The distribution profiles obtained by the author sweep along
the perpendicular directions of the axes, not across the entire
muscle. Our study is more focalized as it considers fascicles, but it
does so entirely. We also construct distribution functions which
we later use to be able to compare among fiber types and try
to establish parameters for their distinction (distance and angle
between pairs of them).

In another study, Henriksson-Larsén et al. (1983) focused on
the importance of defining the biopsy depth when analyzing
the distribution of different types of fibers of human skeletal
muscle (tibialis anterior). Two types of fibers were considered
based on enzyme histochemical classification criteria: type 1
(red, slow-twitch, and oxidative) and type 2 (white, fast-twitch,
and glycolytic). The authors report significant variations in
the relative number of fibers depending on the depth of the
muscle biopsy (human tibialis anterior). There are two main
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reasons why Henriksson-Larsén et al. (1983) seems relevant to
our study:

1. It brings about the question of whether biopsy depth should
be a factor to be taken into consideration. Given the size of the
specimens used in our work, this point does not seem relevant.

2. In Figure 2, the authors have a histogram of fibers type 2,
followed (Figure 2D) by a contour plot. For these figures, a
grid was drawn on every mounted section of a muscle. Each
cell of the grid drawn on the image had a side length of
1mm and was divided into nine sub-cells. The total number
of fibers for each type was determined for the central sub-
cell only (one-ninth of the whole cell). However, the authors
do not detail how they determine the size of the grid or the
method used to obtain the contour map (for the latter they
used a computer program, but they did not mention which
one). The authors use these contour plots to visually assess
the distribution of fibers on a cross-section of the muscle,
but they do not try to establish a method to compare two
distributions (as we did in our work), nor do they attempt to
give a more formal definition to the term distribution (as we
did in our work).

In Wang and Kernell (2001), advantage is taken of the match
between motoneuronal nerve endings and their muscle fibers, so
that studying the spatial distribution of the latter will translate
into properties of the spatial distribution of the former. To
that end, the authors devise two methods for determining the
position and the extent of muscle fibers within a muscle cross-
section: the “mass vector method” and the “sector method.” The
authors developed these methods in order to get on the subject of
degree and direction of what they call fiber type regionalization,
something that had been missed by previous studies which are
more focused on providing a detailed or pointwise description
of the muscle fiber distributions (Johnson et al., 1973; Pullen,
1977a,b; Armstrong and Phelps, 1984). The specific questions
that the methods developed by the authors address are: how
much does the center for a given fiber type population differ from
that for the muscle as a whole? (vector method) and, how much
of the available cross-section space of a muscle is utilized by a
given fiber type? (sector method). The vector method designed
by the authors allows two things. On one hand, it allows pointing
at a specific region within the muscle being observed, in which
certain type of fibers are distributed. This is done by constructing
the “mass vector,” which is a vector that points from the centroid
of the muscle section to the centroid of the fiber set. On the other
hand, by scaling themass vector by the diameter of a circle, whose
area is that of the cross-section of the muscle, one obtains the
“fiber target vector.” The latter can be compared in length and in
magnitude with other fiber target vectors from similar samples.
Both, themass and the fiber target vectors, account for the general
location of the set of fibers as a whole, within the muscle. To
account for the extent of the fiber set within the muscle cross-
section, the authors designed the sector method. As in the case
of the convex hull method, the section method determines what
percentage of the total cross-section area of the muscle is being
covered by the fibers under study. Unlike the convex hull method,
the sector method tends to exclude regions of the cross-section

that are not populated by fibers, and which would otherwise
be included in the convex hull method due to the irregularity
of the fiber set perimeter. However, the sector method has the
disadvantage of being semi-automatic. The number of sectors
to be considered must be determined by the experimenter. Too
many sectors will tend to produce a fragmented picture of the
occupied region, and too few sectors will cause that some fibers
will fall outside of their region.

The relevance of Wang and Kernell (2001) to our work is in
that, in essence, is the closest to the type of analysis we performed.
More precisely, it tries to quantify the spatial localization of
fibers and the region of the muscle cross-section they occupy.
Like in the case of the sector method, our method is semi-
automatic (the size of the counting grid must be determined
by the experimenter). However, our method does provide a
distribution function per se, which accounts for actual spatial
location and number of fibers. The vector method provides a
general direction in which fibers are located, but does not provide
a sense of how fibers are distributed around the head of the mass
vector. Our method specifically tells the experimenter where
fibers are located within the muscle cross-section.

8.2. Dissimilarity Quantifiers
It is evident from our results that distance measurements show
a tendency to increase as the number of points in the data
set increases. In contrast, angle measurements seem to stabilize
themselves as the number of data points increases, that is as more
information is known about the data sets. Moreover, based on
angle measurements alone we see that, as the data set increases
(and thus becomes more defined), the pair ring vs. ball became
the more similar pair among all, followed the ball vs. sum, and
the ball vs. cross. Nonetheless, for these three pairs of shapes
the angle between distributions is around or above 60 degrees
which is two thirds of 90 degrees (maximum transversality)
and four thirds of 45 degrees (halfway between colinearity and
perpendicularity), therefore we think this is still clear evidence
that the angle quantifier can serve as a tool to tell apart between
two images. Note also that from the start the angle quantifier was
able to distinguish the ring from the cross, the ring from the sum,
and the cross from the sum, returning angles closer to 90 degrees.

The above discussion suggests that the angle quantifier is
helpful in telling apart data sets which are uniformly distributed
in all directions and highly localized (the ring), from data sets
which are uniformly distributed and highly localized in specific
directions (the sum and the cross), and even two data sets
in the latter category so far as they are distributed along two
distinct directions.

Currently, our distance quantifier depends strongly on the
data size, but this can be fixed in the manner we suggest in
the next paragraph. Right now, we want to make our point that
angle and distance quantifiers are complementary dissimilarity
quantifiers, in other words, they must both be used by the
researcher who is trying to set apart two data sets based on the
geometry of their spatial distributions. The argument is rather
evident: based on Tables 1, 2, we see that the angle quantifier did
not perform so as well setting aside the ring from the ball, the
ball from the cross, and the ball from the sum, as it did setting
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apart the ring from the cross, the ring from the sum, and the cross
from the sum. For instance, the angle value in the ring vs ball
with 4,000 points is just above sixty degrees, whereas for a data
set of the same size, the angle value in the ring vs sum is about 81
degrees, this amounts to a roughly 20 degree difference, and we
perhaps “lose confidence” in the angle quantifier. But when we
look at those same cases, the distance measurement for the ring
vs. ball pair is 273, whereas for the ring vs. sum pair is 210, which
tells us that the distance quantifier is better at distinguishing one
data set from the other in the ring vs. ball pair, by a difference
of over 60 units, so we “gain confidence” in this quantifier. In
essence, when we think one quantifier is not performing to our
standards, the other may be doing a better job.

To fix the scaling effect of the data set on the distance
(larger data sets seem to yield larger values of the distance), we
propose to modify our definition of the distance quantifier in the
following way which completely eliminates that effect. Let

D = d/(1+ d) ,

where d is the distance as calculated by (Equation S19,
Supplementary Material). D is bounded below by zero and
above by one and it is well-known in functional analysis that
it also satisfies the properties of a metric. We are currently
testing this quantifier and our preliminary results suggest that it
is more subtle to appreciate differences in distance readings with
this quantifier.

These preliminary results on artificial data suggest that the
method of construction of distribution functions, as well as their
“measure of dissimilarity” (distance and angle), are adequate
tools to distinguish among trends of spread and clustering within
the data. The case presented here is that of two-dimensional data,
but of course the methodology lends itself to study the case of
higher-dimensional data, with straightforward modifications on
the sample covariance matrix.

Lastly, we must note that, whereas the sample covariance
matrix suffers from the effect of “high dimensionality of the
data” (it is a square matrix of size d, where d is the dimension
of the data vectors), distance and angle evaluations solely
depend on kernel evaluations which are convenient from a
computational standpoint.

8.3. Fiber Type Organization and
Distribution on the EDLm Fascicles
It is well known that skeletal muscles actively participate in the
extension and flexion of articular joints (Lindstedt, 2016) as
well as during changes in position (muscle length) or during
generation of force (muscle strength) (Schappacher-Tilp et al.,
2015). Such muscle properties allow vertebrate organisms to
perform changes in posture and locomotion (Frontera and
Ochala, 2015). It has been considered that each muscle is
constituted by a variable proportion of slow, intermediate, and
fast fibers. In the rat, the EDL muscle, an extensor muscle
involved in the extension of the toes (2nd to 5th) and dorsiflexion
of the ankle, is mostly conformed by fast-twitch fibers, meanwhile
the soleus muscle, one of the flexor muscles of the calf, mainly
contains slow-fiber twitch fibers (Armstrong and Phelps, 1984;

Soukup et al., 2002). In addition, it has been proposed that
contractile properties of each individual muscle are closely
related to the relative proportion of fibers types and to their
intra-muscle distribution in the cross-sectional area, mainly in
the medial part of the muscle (Myatt et al., 2011).

In this study, we analyzed the fractal organization of
fiber types in fascicles of the EDLm from well-nourished
and undernourished rats. Our previous results (Vázquez-
Mendoza et al., 2017) indicate that each fascicle in the EDLm,
from both well-nourished and undernourished rats, showed a
particular composition of fibers types. The relative proportion of
intermediate and fast fibers in undernourished fascicles F2 and
F4 had no significant differences with that of control fascicles,
while the relative proportion of fiber types in fascicles F3 and
F5 showed notorious differences with respect to controls (see
Table 1), being the sequential order of fascicles affected by
chronic undernutrition as follows: F3>F5>F4=F2. In the present
study, we found that the calculated values of a index, D and c
parameters corresponding to intermediate and fast fiber types
were practically similar between control and undernourished
fascicles (F2, F3, F4, and F5), indicating that fibers are organized
in clusters over the transverse area of each fascicle. Meanwhile,
only fast fibers in the undernourished F3 showed significant
differences in fractal parameter D, as compared to those of
control muscles, suggesting that fast fibers in the undernourished
F3 are slightly less organized in clusters than in control ones.
Because of the latter, it could be proposed that such fiber
type cluster-organization is used as a mechanism to increase
muscle efficiency (Myatt et al., 2011). Then, this change in the
organization of fast fiber in the F3 could imply a change in the
efficiency of the EDLm.

Although fiber organization was similar between
conditions, fiber type distribution analysis showed that
chronic undernutrition modifies the intra-fascicular fiber
type distribution in the fascicles F3, F4, and F5. As fiber
types distributions within a muscle are crucial to its
functioning (Burkholder et al., 1994), these changes could
induce alterations in muscle functioning. Thus, chronic
undernutrition could be changing the efficiency and functioning
of the EDLm fascicles.

Altogether, our observations indicate that chronic
undernutrition exerts a more complex effect that just on
the fiber type composition, finding a differential effect among
the EDLm fascicles. Also, there is a differential effect on the
distribution of intermediate and fast fibers in the EDLm fascicles
and only the fractal dimension or structure of fast fibers in
F3 seems to be modified by chronic undernutrition. All these
differential effects on the properties of EDLm fascicles could
be related to their anatomical position within the muscle and
the fiber type composition. The F2 is located in the anterior
part, followed by the F3, then the F4, and finally, the F5 is in
the posterior part (Balice-Gordon and Thompson, 1988). In
our previous work (Vázquez-Mendoza et al., 2017), the F3
was the most affected by chronic undernutrition, in the fiber
metabolism as well as in the fiber type, together with the F5
(in fiber type changes) in comparison with the F2 and F4. This
probably is related to the similarities of fiber type percentages
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composition (Vázquez-Mendoza et al., 2017). However, our data
do not allow us to explain why a chronic food deprivation evoked
such differential action on the EDLm fascicles, particularly on
fascicles F3 and F5. In addition, it remains to be elucidated how
the alterations provoked by undernutrition on the composition
and fractal organization of fiber types in F3 affect the extension
of the third toe and dorsiflexion of the ankle during a particular
motor act (e.g., during gait locomotion).

9. CONCLUSION AND FUTURE
APPLICATIONS

RBF distribution functions constitute not only a visual aid to,
for example, assess muscle structure and organization in the
form of fiber distribution, but they also provide quantitative
means by which to distinguish spatial distribution of fiber types.
Those means are our dissimilarity quantifiers, distance and angle,
defined between pairs of distribution functions. Themathematics
of these quantifiers rests soundly on learning theory, and
ultimately on functional analysis. Our results on artificial data
suggest that distance and angle are dissimilarity quantifiers that
complement one another. The angle quantifier is able to set
apart data sets that spread along definite linearly independent
directions in space or sets that spread along definite directions
from sets that are uniformly spread along all directions while
forming a single coherent cluster pattern (e.g., a ring). However,
the angle quantifier is less able to set apart sets that are uniformly
spread say, in the ring or in the ball type-of patterns, it is in these
circumstances when the distance quantifier may be a better tool
to distinguish between the two sets.

Other scenarios where the proposed method can be used
is in current research oriented to reveal possible structural
alterations of muscles provoked by traumatic processes, such
as spinal cord injury, motor nerve damage, multiparity, or
undernutrition/obesity. Of course, one may also use other
histochemical techniques.

Finally, we would like to mention that although the problem
that motivated this work comes from physiology, we hope that,
given the potential to use the distance and angle quantifiers with
high-dimensional data, the mathematical tools herein developed
can also serve in other fields of Computational Biology.
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Preterm birth (PTB) is the leading cause of morbidity and mortality in infants <1 year of
age. Intrauterine inflammation is a hallmark of preterm and term parturition; however, this
alone cannot fully explain the pathobiology of PTB. For example, the cervix undergoes
a prolonged series of biochemical and biomechanical events, including extracellular
matrix (ECM) remodeling and mechanochemical changes, culminating in ripening.
Vaginal progesterone (P4) prophylaxis demonstrates great promise in preventing PTB
in women with a short cervix (<25 mm). We used a primary culture model of
human cervical stromal fibroblasts to investigate gene expression signatures in cells
treated with interleukin-1β (IL-1β) in the presence or absence of P4 following 17β-
estradiol (17β-E2) priming for 7–10 days. Microarrays were used to measure global
gene expression in cells treated with cytokine or P4 alone or in combination, followed
by validation of select transcripts by semiquantitative polymerase chain reactions
(qRT-PCR). Primary/precursor (MIR) and mature microRNAs (miR) were quantified
by microarray and NanoString R© platforms, respectively, and validated by qRT-PCR.
Differential gene expression was computed after data normalization followed by pathway
analysis using Kyoto Encyclopedia Genes and Genomes (KEGG), Panther, Gene
Ontology (GO), and Ingenuity Pathway Analysis (IPA) upstream regulator algorithm tools.
Treatment of fibroblasts with IL-1β alone resulted in the differential expression of 1432
transcripts (protein coding and non-coding), while P4 alone led to the expression of
only 43 transcripts compared to untreated controls. Cytokines, chemokines, and their
cognate receptors and prostaglandin endoperoxide synthase-2 (PTGS-2) were among
the most highly upregulated transcripts following either IL-1β or IL-1β + P4. Other
prominent differentially expressed transcripts were those encoding ECM proteins, ECM-
degrading enzymes, and enzymes involved in glycosaminoglycan (GAG) biosynthesis.
We also detected differential expression of bradykinin receptor-1 and -2 transcripts,
suggesting (prominent in tissue injury/remodeling) a role for the kallikrein–kinin system
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in cervical responses to cytokine and/or P4 challenge. Collectively, this global gene
expression study provides a rich database to interrogate stromal fibroblasts in the setting
of a proinflammatory and endocrine milieu that is relevant to cervical remodeling/ripening
during preparation for parturition.

Keywords: cervix, inflammation, microRNA, preterm birth, transcriptomics

INTRODUCTION

Cervical integrity is crucial for a successful human pregnancy.
Throughout most of an uncomplicated gestation, the cervix
provides a physical and immune barrier between the interior
of the uterus and the vaginal microbiome (Word et al., 2007;
Akgul et al., 2014; Vink and Feltovich, 2016). The cervix prepares
for parturition by first slow and then rapid transition from an
elongated, closed, and rigid structure to an orifice sufficiently soft
and dilated to facilitate delivery of the fetus.

Human and animal studies have yielded a working model for
the biomolecular underpinnings of cervical remodeling/ripening
(Elovitz and Mrinalini, 2004; Word et al., 2007; Timmons et al.,
2010; Yellon, 2017). Broadly speaking, normal remodeling is
the product of changes in the organization and composition
of the extracellular matrix (ECM) during pregnancy, including
a decrease in cross-linked collagens I and III, changes in the
composition of glycosaminoglycans (GAGs), especially elevated
hyaluronan (HA) production, increased tissue hydration, and
leukocyte infiltration (Sakamoto et al., 2005; Myers et al., 2009;
Akgul et al., 2012; Dubicke et al., 2016).

Progesterone receptor (PR, NR3C3) signaling underpins
many of the physiological processes that oppose untimely
cervical dilation (Word et al., 2007). Two separate protein
isoforms, PR-A (90 kDa) and PR-B (130 kDa), are encoded
by a single gene differentially expressed via alternate promoter
usage (Kastner et al., 1990; Stjernholm-Vladic et al., 2004). In
rodents, pregnancy maintenance requires continued synthesis of
progesterone (P4) by the corpus luteum. Systemic withdrawal
of P4 during luteolysis in rodents evokes cervical ripening and
labor at term, while premature cervical ripening is prompted by
ovariectomy (Gonzalez et al., 2009). Additionally, pharmacologic
antagonism of the PR by mifepristone (RU-486) promotes
cervical ripening in animal models (Chwalisz et al., 1994).
Conversely, administration of vaginal P4 reduces the incidence
of preterm birth in women with a sonographically validated short
cervix (Hassan et al., 2011).

There is strong evidence of the therapeutic utility of P4 for the
prevention of untimely cervical ripening and preterm labor in
at-risk women (Conde-Agudelo and Romero, 2016). However,
unanswered questions persist regarding the mechanisms by
which P4 influences the expression of inflammation-related
genes, including cytokines and chemokines, extracellular matrix
(ECM)-modifying enzymes, and bioactive lipid-generating
enzymes (e.g., prostaglandin endoperoxidase synthase-2,
PTGS-2; microsomal prostaglandin E synthase-1, mPGES;
5-lipoxygenase, 5-LOX) (Kniss, 1999; Sato et al., 2001; Ackerman
et al., 2005) in gestational tissues, including the cervix. The
overarching goal of the present study was to evaluate gene

expression programs (including protein-coding and non-coding
RNAs) executed in response to proinflammatory cytokine and/or
PR:P4 stimulation in cervical fibroblasts. Our results revealed a
multifaceted profile of gene expression in the cervical stroma,
including (1) genes that are cytokine-responsive/P4-insensitive;
(2) genes that are P4-sensitive/cytokine-independent; (3) genes
that are cytokine-responsive and suppressed by P4; and (4)
genes that are augmented by both cytokines and progesterone.
These data provide a framework allowing us to construct gene
networks involved in the manner by which PR signaling may
prevent or delay inflammation-induced cervical ripening and
consequent preterm labor. The ultimate goal of this work is
that it allows us to identify and develop novel therapeutic
targets for prevention and/or management of preterm labor,
especially in at-risk women who manifest cervical insufficiency,
a major cause of PTB.

MATERIALS AND METHODS

Cervical Stromal Fibroblast Culture
With institutional review board approval (OSU Biomedical IRB
Protocol Number 2013H0046), de-identified cervical tissues were
obtained from premenopausal women undergoing hysterectomy
for benign gynecological conditions. Primary human cervical
stromal fibroblasts were isolated via outgrowth from explanted
cervical stromal tissues as previously described (Ackerman et al.,
2016b). For experiments, cells were grown to confluence in
complete Dulbecco’s modified Eagle’s medium (DMEM, high-
glucose, 4.5 g/l) supplemented with 10% fetal bovine serum
(FBS), 50 µg/ml gentamicin sulfate, and 0.5 µg/ml amphotericin
B (all from Invitrogen, Carlsbad, CA, United States). Next,
the cells were rinsed with Dulbecco’s phosphate-buffered saline
(DPBS) and then incubated in experimental medium containing
phenol red-free DMEM/F12 (1:1) with 0.5% charcoal-stripped
FBS (prepared in-house using charcoal-dextran extraction,
clarification by centrifugation, and sterilization through a 0.2-
µm filter) in the absence (0.001% ethanol vehicle control)
or presence of 17β-estradiol (17β-E2, 10−8 M; Sigma-Aldrich,
St. Louis, MO, United States) for 7–14 days to promote the
expression of nuclear progesterone receptors (PRs) (Ackerman
et al., 2016b). Finally, cells were incubated for 24 h in
the absence or presence of P4 (10−7 M; Sigma-Aldrich),
followed by challenge for 4 or 24 h with 0.2 ng/ml of
human recombinant interleukin-1β (IL-1β; R&D Systems,
Minneapolis, MN, United States) or an equivalent volume
of vehicle (PBS with 0.1% bovine serum albumin, BSA). All
experiments were performed between the 3rd and 7th passages
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after primary explant cultures were prepared. To validate
the expression patterns of select transcripts following high-
dimensional profiling studies, biological replicate experiments
were performed using treatment conditions identical to those
described above using a separate set of cell cultures. Cell
cultures were routinely tested for mycoplasma species using
an in-house PCR-based assay (MycoAlertTM, Lonza, Anaheim,
CA, United States).

RNA Extraction
Total RNA was extracted from harvested cells using TRIzol
(Invitrogen). Following the addition of chloroform and
centrifugation, the aqueous phase was mixed with an equal
volume of 100% ethanol, applied to a miRNeasy spin column
(Qiagen, Valencia, CA, United States) and processed according
to the manufacturer’s protocol. The extraction procedure
included on-column DNase I digestion using the RNase-Free
DNase Set (Qiagen) to remove contaminating genomic DNA.
RNA was quantified by absorbance at 260 and 280 nm using a
NanoDrop 2000 spectrophotometer (Thermo Fisher, Hudson,
NH, United States).

Microarray Analysis
Total RNA (250 ng per sample) was processed using the Ambion
WT expression kit (Austin, TX, United States) and labeled with
Affymetrix GeneChip (Santa Clara, CA, United States) whole-
transcript sense target labeling assay, followed by hybridization
to the Affymetrix Human Transcriptome 2.0 array according
to the manufacturer’s protocols. Following hybridization and
scanning, quality control and robust multichip averaging
were performed on the feature intensity files using the
Affymetrix Expression Console software version 1.4. Gene-
level differential expression analysis was subsequently performed
using the Affymetrix Transcriptome Analysis Console software
version 3.0 using the paired-sample analytical pipeline (one-
way repeated-measure ANOVA), and the Benjamini–Hochberg
false discovery rate (FDR)-controlling procedure (Reiner et al.,
2003). For the default differential gene expression analysis,
a linear fold-change threshold of ± 2 and an FDR of
10% was applied.

Mature MicroRNA Profiling
Multiplexed mature miRNAs were profiled using the Human v3
miRNA Expression Assay (NanoString R© Technologies, Seattle,
WA, United States). Total RNA (100 ng) was used as input for
the nCounter R© miRNA sample preparation reactions according
to the manufacturer’s instructions. Hybridization reactions
were performed at 64◦C for 18 h. Hybridized probes were
analyzed using the nCounter digital analyzer. For each assay,
a high-density scan (600 fields of view) was performed. The
nSolver R© Analysis Software version 3.0 was used for technical
normalization. Probes with low levels of expression (defined
as less than the mean 2 ± SD of counts assigned to negative
control probes, which was 33.04 in our data set) were omitted
from subsequent analyses. Differential expression analysis of
the NanoString R© data was performed using the edgeR (version
3.14.0) Bioconductor package (Robinson et al., 2010). The

trimmed mean of M-value normalization was used together
with the generalized linear model approach coupled with
a paired-sample design matrix. Differential expression was
determined using generalized linear model likelihood ratio tests.
For FDR control, the Benjamini–Hochberg procedure was used
(Reiner et al., 2003).

Quantitative Real-Time Polymerase
Chain Reaction (qRT-PCR)
To validate the expression of select mRNAs, 1 µg of total
RNA was reverse transcribed to complementary DNA
(cDNA) using oligo(dT)12−18 primers with SuperScript R©

III Reverse Transcriptase (Life Technologies, Grand Island, NY,
United States). Quantitative PCR was performed using an equal
amount of cDNA per sample on a LightCycler 480 II System
(Roche Applied Science, Indianapolis, IN, United States) using
the following TaqMan R© primer/probe sets (Applied Biosystems,
Foster City, CA, United States): BDKRB1 (Hs00664201_s1),
BDKRB2 (Hs00176121_m1), CXCL8 (Hs00174103_m1),
FKBP5 (Hs01561006_m1), HAS2 (Hs00193435_m1),
HSD11B1 (Hs00194153_m1), IL1B (Hs01555413_m1), IL6
(Hs00985639_m1), IRAK3 (Hs00936103_m1), MMP10
(Hs00233987_m1), PTGES (Hs00610420_m1), and PTGS2
(Hs00153133_m1). The expression of RPLP0 (4310879E) was
used as a reference.

For primary/precursor miRNAs (pri-miRNAs), reverse
transcription was performed using the high-capacity
complementary deoxyribonucleic acid reverse transcription
kit (Applied Biosystems), according to the manufacturer’s
instructions. Each reaction comprised 10 µl of master
mix (10 × reverse transcription buffer, deoxynucleotide
triphosphates, reverse transcription random primers,
MultiScribe R© reverse transcription enzyme (Thermo Fisher
Scientific), ribonuclease inhibitor, and nuclease-free water)
and 1 µg of RNA (in 10 µl reaction volume). For qRT-PCR,
TaqMan R© gene expression master mix and TaqMan Pri-miRNA
assays (Applied Biosystems) were used. The assays were
Hs03303259_pri (MIR146A) and Hs03303349_pri (MIR155).
For mature miRNAs, reverse transcription was performed with
total RNA using the TaqMan microRNA reverse transcription kit
(Applied Biosystems), per the manufacturer’s recommendations.
Each reaction received 7 µl of TaqMan gene expression master
mix, 5 µl of RNA (10 ng), and 3 µl of the reverse transcription
primer appropriate for each target miRNA. TaqMan microRNA
assays (Applied Biosystems) were used for qRT-PCR. The
following assays were used: 000468 (hsa-miR-146a-5p) and
002623 (hsa-miR-155-5p). The relative abundance of each
mRNA or miRNA was calculated by the comparative CT method
(Schmittgen and Livak, 2008).

Bioinformatics
Pathway Analysis
Pathway analysis for microarray data was performed using the
Gene Set Enrichment Analysis (GSEA) Java desktop application
(version 2.2.21) (Subramanian et al., 2005). For a given gene set,

1http://software.broadinstitute.org/gsea
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this algorithm calculates an enrichment score, which numerically
reflects the degree to which a given dataset is overrepresented
within a ranked list of gene expression data. The statistical
significance of a given enrichment score is estimated using an
empirical permutation test procedure, followed by correction
for multiple-hypothesis testing. This analysis method tends to
be more sensitive and robust than overrepresentation methods
relying solely on differential expression with arbitrary cutoffs
(Subramanian et al., 2005). Three databases of curated gene
sets were obtained from an online repository2 (Merico et al.,
2010) and queried: 1. Kyoto Encyclopedia of Genes and
Genomes (KEGG)3; 2. Panther4; and 3. Gene Ontology (GO)
molecular function5. All gene sets with 1–500 members were
evaluated using 1000 gene-set permutations (as recommended
when fewer than seven samples in any phenotype are available
for analysis) by applying the default weighted enrichment
statistic, the signal-to-noise ratio metric for ranking genes,
and the default method for enrichment score normalization.
Additionally, the Ingenuity Pathways Analysis (IPA) upstream
regulator algorithm (Qiagen) was employed to infer upstream
signaling events potentially contributing to observed gene
expression signatures.

Transcription Factor Binding Motif
Overrepresentation Analysis
The promoter regions (i.e., FASTA sequences ± 1000 bp
relative to each transcription start site) of differentially expressed
genes in select conditions were programmatically retrieved
from the University of California Santa Cruz hg38 human
genome assembly via the TogoWS SOAP API website6 (Katayama
et al., 2010). The “multiple DNA sequences” algorithm of
the Transcription Factor Affinity Prediction (Thomas-Chollier
et al., 2011) (TRAP) Web Tools suite7 was used to probe
these regulatory regions for transcription factor binding affinities
based on position-specific scoring matrices present in the non-
redundant JASPAR core vertebrate database (Mathelier et al.,
2014) using a background model of all human promoter regions.

Statistical Analysis
Statistical analyses were performed using the Kruskal–Wallis
statistical test with post hoc testing using Dunn’s multiple
comparison test when appropriate. A p-value < 0.05 was
considered significant. Microarray and qRT-PCR experiments
were replicated three times in duplicate (i.e., n = 6 samples per
treatment). The data were tested for Gaussian distribution, and,
if normally distributed, they were expressed as mean ± SEM
and evaluated by analysis of variance (ANOVA) followed by
post hoc testing by the method of Tukey using GraphPad Prism
8.0 software (San Diego, CA, United States).

2http://baderlab.org/GeneSets
3http://www.genome.jp/kegg/pathway.html
4http://www.pantherdb.org/pathway
5http://geneontology.org
6http://togows.org
7http://trap.molgen.mpg.de/cgi-bin/home.cgi

RESULTS

Common and Unique Features of IL-1β

and Progesterone Genomic Responses
The experimental design for the studies described throughout
this work is shown in Figure 1A. Importantly, cervical
stromal fibroblasts were stimulated to elicit the expression
of progesterone receptors (Figure 1B). After carrying out
experiments, total RNA from each study group was extracted
and purified, quantified, and subjected to microarray analysis of
differential gene (coding and non-coding RNAs) expression. To
confirm these results, we also conducted follow-up experiments
using the identical design with biological replicates (i.e., a
separate set of cell cultures not used for microarray analysis) to
measure by qRT-PCR transcripts induced by either IL-1β, P4, or
both agents incubated simultaneously. Extensive bioinformatics
analysis was conducted using several publicly available genomic
analytical tools (KEGG, Panther, and GO algorithms (Figure 2).

IL-1β Induces a Broad Array of
Transcripts
Cervical fibroblasts cultured as described (Ackerman et al.,
2016b) were pretreated for 7–14 days with 10−8 M 17β-E2
to induce nuclear PR expression. Relative to vehicle-treated
controls, microarray profiling of cells stimulated for 4 h
with IL-1β (0.2 ng/ml) revealed changes in gene expression,
with significant (minimum ≥two-fold change in expression
and FDR <0.1) upregulation of 913 and downregulation of
519 transcripts (Figure 2A and Supplementary Table S1).
As we observed previously in other intrauterine cell types,
e.g., amnion mesenchymal fibroblasts (Li et al., 2011) and
uterine decidual stromal cells (Ibrahim et al., 2016), highly
IL-1β-induced transcripts included those encoding a wide
array of cytokines and chemokines, enzymes involved in
prostaglandin synthesis, bradykinin receptors-1 and -2, and
matrix metalloproteinases, among others. Other prominent
differentially expressed mRNAs included acute phase reactants,
members of the complement family including tissue factor
pathway inhibitor 2, and other proteases and their inhibitors
(Supplementary Table S1). Intracellular signal transduction
pathways differentially expressed following IL-1β treatment
included the interferon (IFN), signal transducer and activator of
transcription 5 (STAT5), and mitogen-activated protein kinase
(MAP kinase)/phosphatase pathways (Supplementary Table S1).

Highly enriched pathways, as determined by the GSEA
algorithms (KEGG, Panther, and GO, respectively), included
those related to inflammatory signaling, apoptosis, blood
coagulation, cell adhesion, and arachidonic acid metabolism
(Figures 2B–D and Supplementary Table S2). Based on this
gene expression signature, the IPA upstream regulator algorithm
predicted activation of 65 and inhibition of 23 transcriptional
regulators. As expected, following proinflammatory cytokine
challenge, activation was inferred for nuclear factor-κB (NF-
κB), components of the JAK-STAT signaling pathway, interferon
regulatory factors (IRFs), activator protein-1 (AP-1) subunits,
and Forkhead box (FOX) transcription factors, among many
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FIGURE 1 | Experimental design and workflow. (A) Primary cultures of cervical fibroblasts were primed with 10−8 M 17β-estradiol (17β-E2) or 0.001% ethanol
vehicle for 7–14 days in F12/DMEM++0.5% charcoal-stripped FBS. Cells were then treated with 10−7 M progesterone (P4) or vehicle for 24 h followed by a 4-h
stimulation with 0.2 ng/ml interleukin-1β (IL-1 upbeta) or vehicle (PBS/0.1% BSA). Total RNA was extracted to enrich for small RNAs and subjected to microarray
analysis using the Affymetrix platform for long, coding transcripts and the NanoString R© platform for small, non-coding RNAs. After normalization, the data were
subjected to differential expression analysis was conducted using the Affymetrix Transcription Analysis Console. Downstream relationships were evaluated using
Gene Set Enrichment Analysis (GSEA), Transcription Factor Binding Motif (TFBM) analysis, and Ingenuity Pathway Analysis. The relative expression data are the
mean and FDR p-value from three separate sets of biological replicates. (B) depicts the expression of PR-A and PR-B using immunofluorescence (left panel) or
immunoblotting (right panel) following priming with 17β-E2.

others (Supplementary Table S3). Confirming these predictions,
a complementary promoter scanning analysis (TRAP analysis)
of the differentially regulated genes revealed overrepresentation
of canonical binding motifs corresponding to several of these
transcription factors, including NF-κB (i.e., the NF-kappaB,
NFKB1, REL, and RELA model matrices), FOX (i.e., the Foxq1,
FOXF2, FOXO3, FOXD1, Foxa2, and FOXI1 matrices), IRF (i.e.,
the IRF1 and IRF2 matrices), STAT (i.e., the STAT1 and STAT3
matrices), and AP1 (Supplementary Table S4).

Although not prominently represented in the pathway
analyses, given the importance of the ECM in cervical
remodeling, we surveyed IL-1β-responsive transcripts for
changes in genes responsible for ECM integrity, including
proteoglycans, fibrous proteins, and genes associated with
ECM biosynthesis and degradation. IL-1β induced the
expression of three proteoglycan-related proteins (hyaluronan
receptor/CD44, syndecan-4/SDC4, and serglycin/SRGN) and
attenuated the expression of an additional two (decorin/DCN
and structural maintenance of chromosome 3/chondroitin
sulfate proteoglycan-6/SMC3) proteins. IL-1β also induced
the expression of elastin (ELN), a basement membrane-
associated procollagen (collagen type IV, α1 chain/COL4A1),
and several genes involved in glycosaminoglycan (GAG)
biosynthesis (β-1,4-galactosyltransferase-1/B4GALT1,
carbohydrate sulfotransferase-11/CHST11, exostosin
glycosyltransferase-/EXT1, fucosyltransferase-8/FUT8,
hyaluronan synthase-2/HAS2, heparan sulfate-glucosamine

3-sulfotransferase-3B1/HS3ST3B1, and/ST3 β-galactosidase α-
2,3-sialytransferase 1/3GAL1), while decreasing the expression of
collagen type III, α1 chain/COL3A1, a major fibrillar procollagen
in the cervical ECM Supplementary Table S1.

Progesterone Regulates a Modest Set of
Genes
In contrast to the surfeit of differentially expressed genes
observed following IL-1β stimulation, the transcriptional
response to progesterone (10−7 M, a dose similar to the
maternal circulating levels late in human gestation) (Word
et al., 2007) was modest. Compared to cells receiving vehicle
alone, cervical fibroblasts incubated with P4 exhibited expression
changes in only 52 genes, 34 of which were upregulated and 18
downregulated (Figure 2E and Supplementary Table S5).

Top-ranking pathways (analyzed by KEGG, Panther, and
GO algorithms) associated with this gene expression signature
included those related to the amino acid metabolism, xenobiotics,
and fatty acid biosynthesis and catabolism, in addition to
cortisol biosynthesis, insulin-like growth factor (IGF) signaling,
and sodium reabsorption and the renin–angiotensin system
(RAS) (Figures 2F–H and Supplementary Table S6). Based on
this expression pattern, the IPA upstream regulator algorithm
correctly predicted activation of the PR and inferred inhibition
for a small number of inflammatory and growth regulators
(Supplementary Table S7). Promoter scanning analysis revealed

Frontiers in Genetics | www.frontiersin.org 5 September 2020 | Volume 11 | Article 883270

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00883 September 10, 2020 Time: 19:39 # 6

Kniss and Summerfield Progesterone Modulates Cytokine-Induced Transcripts

FIGURE 2 | Microarray and bioinformatics analysis of differentially expressed genes in cervical stromal fibroblasts stimulated with IL-1β (0.2 ng/ml) or P4 (10−7 M) for
hrs. Cells were primed with 17β-E2 (10−8 M) to induce progesterone receptors -A and -B and then challenged for 4 hrs with IL-1β (A–D) or P4 for 4 h (after a 24-h
preincubation with the steroid) (E–H), total RNA isolated and quantified and differential gene expression by microarray analysis. The normalized data are expressed
as mean signal intensity (log2) and are from three separate experiments carried out in duplicate (A,E). Bioinformatics analysis of differentially expressed transcripts
using KEGG (B,F), Panther (C,G) and GO (D,H) algorithms.

overrepresentation of the NR3C1 model matrix corresponding to
the consensus binding motif of the glucocorticoid receptor (GRE:
5’RGRACANNNTGTYC3’, where R = purine, Y = pyrimidine,
N = any nucleic acid) (Supplementary Table S8). This
was somewhat expected, inasmuch as the response elements
for the glucocorticoid and progesterone receptors are quite

similar (Lieberman et al., 1993; Nelson et al., 1999), and
a separate PR response element model was not included
in the non-redundant JASPAR vertebrate matrix database
used for this query.

Unexpectedly, however, these promoter regions were also
enriched for NF-κB-binding motifs. Given that we expected
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NF-κB-responsive genes to be induced following cytokine
challenge, we then compared the extent of overlap between
the genes differentially expressed following IL-1β and P4 co-
stimulation. We found that a considerable proportion (31%)
of the genes influenced by P4 were also IL-1β responsive;
specifically, nine genes were upregulated in both conditions.
In addition, eight genes were downregulated following either
treatment. Interestingly, most genes induced by either treatment
were found to have roles in mitigating inflammation based on
literature review (Table 1).

Progesterone Selectively Modulates
Global Cytokine-Elicited Transcription
Relative to control cells, the global cellular response to
IL-1β + P4, like that following IL-1β exposure alone, was
considerable: 889 genes exhibited induced expression, while

504 showed diminished expression (Figures 3A–C and
Supplementary Table S9). The Jaccard similarity indices
between these treatment groups were 0.79 and 0.62 for
upregulated and downregulated genes, respectively. A minority
(24 transcripts) of the genes differentially expressed by IL-
1β + P4 were also regulated by P4 alone. Among the 17 genes
responsive to both IL-1β and P4 mentioned previously were
ABI family member 3 binding protein/ABI3BP, collagen
type VIII α1 chain/COL8A1, estrogen receptor 1/ESR1,
osteomodulin/OMD, plexin domain containing 2/PLXDC2,
prolactin receptor/PRLR, and secreted protein acidic and
cysteine-rich-like 1/SPARCL1.

To assess the degree to which co-incubation with P4 modified
global IL-1β-inducible gene expression, we next compared
the IL-1β and IL-1β + P4 treatment groups. Of the 39
genes differentiating these two groups, 16 were downregulated
by combined IL-1β + P4 treatment relative to IL-1β alone

TABLE 1 | Characteristics of transcripts induced by both P4 and IL-1β based on microarray profiling.

Gene
symbol

Description IL-1β vs. vehicle
fold change

P4 vs. vehicle
fold change

P4 + IL-1β vs.
vehicle fold

change

Notes (references)

ALDH1A3 aldehyde
dehydrogenase 1
family, member A3

2.25 2.57 4.43 Androgen-responsive gene in human prostate cancer epithelial cells
(Trasino et al., 2007); participates in retinoic acid production and the
metabolism of acetaldehyde, some amino acids, lipid peroxidation
products, and exogenous chemicals (Duan et al., 2016).

CRISPLD2 cysteine-rich
secretory protein
LCCL domain
containing 2

7.12 3.56 10.7 Progesterone receptor target gene in uterine cells (Yoo et al., 2014);
blocks HMGB1-induced inflammation (Zhang et al., 2016); prevents
lipopolysaccharide binding to target cells (Wang et al., 2009);
responsive to both glucocorticoids and IL-1β in airway smooth
muscle cells and negatively regulates pro-inflammatory cytokine
function (Himes et al., 2014)

FKBP5 FK506 binding
protein 5

2.18 4.13 4.2 Induced by glucocorticoids and progestins via hormone response
elements (Hubler and Scammell, 2004); attenuates progestin
responsiveness in cell models (Hubler et al., 2003).

HSD11B1 hydroxysteroid
(11-beta)
dehydrogenase 1

30.41 2.57 93.12 Reversibly reduces inactive cortisone to the active glucocorticoid
receptor agonist cortisol (Oppermann et al., 1997); induced by
progesterone in human endometrial stromal cells (Kuroda et al.,
2013); responsive to IL-1α in human ovarian surface epithelium
(Yong et al., 2002).

IRAK3 interleukin-1
receptor-associated
kinase 3

6.77 2.5 19.75 Negative regulator of Toll/interleukin receptor signal transduction
(Kobayashi et al., 2002); prevents neutrophil-dependent lung injury
during influenza infection of the respiratory tract (Seki et al., 2010)

MMD monocyte to
macrophage
differentiation-
associated

5.42 2.48 9.64 Up-regulated during monocyte differentiation (Rehli et al., 1995);
induced by lipopolysaccharide in macrophages (Liu et al., 2012);
enhances cytokine and nitric oxide production in macrophages (Liu
et al., 2012); plays a critical role in heart morphogenesis (Huang
et al., 2012); inhibits growth of lung cancer cells (Li and He, 2014).

PLPP3 phospholipid
phosphatase 3

4.16 2.93 4.86 Promotes anti-inflammatory phenotype and maintains vascular
integrity of endothelial cells (Wu et al., 2015); promotes endothelial
barrier function and limits sensitivity to inflammation-induced
vascular leaks (Panchatcharam et al., 2014)

PPP4R4 protein phosphatase
4, regulatory
subunit 4

4.39 3.47 8.18 Regulatory subunit for phosphoprotein phosphatase 4 PPP4C,
modulates the latter’s role in microtubule dynamics, DNA damage
checkpoint recovery, apoptosis, and tumor necrosis factor alpha
signaling (Chen et al., 2008); induced by preovulatory LH surge in
ovarian steroidogenic cells (Christenson et al., 2013).

SLC39A8 solute carrier family
39 (zinc transporter),
member 8

36.2 2.28 47.64 Functions in the cellular import of zinc at the onset of inflammation
(Begum et al., 2002); NF-κB target gene that suppresses
inflammatory signaling in zinc-dependent fashion (Liu et al., 2013).
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FIGURE 3 | Differential gene expression in cervical stromal fibroblasts stimulated with either IL-1β (0.2 ng/ml), P4 (10−7 M) or both for 4 h followed by microarray
analysis and data normalization. (A) shows the scatter plot and Venn diagrams comparing upregulated (B) and downregulated transcripts (C) in response to IL-1β

+P4 or vehicle. (D) Scatter plot and (E) heat map of differentially expressed genes in response to IL-1β or IL-1β + P4. (F) Scatter plot and (G) heat map of
differentially expressed genes in response to P4 or IL-1β +P4.

(Figure 3B and Supplementary Table S10). Of these, 11 genes
were responsive when cells were incubated with IL-1β alone,
including two proinflammatory interleukins (IL1B, IL6), a matrix
metalloproteinase (MMP10), and the inhibin beta A subunit
(INHBA) (Figure 3E). Finally, to determine how cytokine

stimulation affected P4-induced gene expression, we compared
the P4 and IL-1β + P4 treatment groups (Figure 3F and
Supplementary Table S11). Among the 446 genes downregulated
by IL-1β under these conditions were 16 genes differentially
regulated by P4 alone. Among the 13 progestin-responsive
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genes exhibiting diminished expression when incubated in
the presence of IL-1β were those encoding the transcription
factor myocardin (MYOCD), alcohol dehydrogenase 1B beta
(ADH1B), the WNT signaling pathway inhibitor Dickkopf
Inhibitor 1 (DKK1), and the ECM scaffold glycoprotein fibrillin
2 (FBN2) (Figure 3G).

To validate the initial profiling results, we performed
qRT-PCR for select transcripts in experiments using separate
biological replicates. These transcripts were categorized into
three general expression patterns: (1) additive/synergistic
expression in response to IL-1β + P4 compared to either
treatment alone (e.g., IRAK3, HSD11B1, and FKBP5)
(Figure 4A); (2) induction by IL-1β with no significant
response to P4 in the absence or presence of IL-1β (e.g.,
BDKRB1, BDKRB2, PTGES, and CXCL2) (Figure 4B);
and (3) IL-1β-inducible expression attenuated when

co-incubated with P4 (e.g., HAS2, IL1B, IL6, MMP10, and
PTGS2) (Figure 4C).

Non-coding RNAs Are Induced by
Cytokine and Progestin
The microarray chip analysis included both coding and non-
coding RNA transcripts. We detected several miRNAs (host
genes, pri-/pre-miRNAs, and mature miRNAs) and long,
intergenic non-coding (LINC) RNAs in our microarray studies
that were selectively upregulated by IL-1β stimulation. In
addition, 12 non-coding RNAs, including five LINC RNAs, were
downregulated when cells were challenged with the cytokine
(Supplementary Table S1). In subsequent experiments, using
biological replicates (samples separate from those used in the
microarray studies), we used NanoString and qRT-PCR to further

FIGURE 4 | Quantitative RT-PCR of select differentially expressed transcripts in cervical stromal fibroblasts stimulated with vehicle, IL-1β, P4 or IL-1β+P4 for 4 h. (A)
Additive or synergistic relationship between P4 and IL-1 (B) No effect of P4 (C) Inhibitory effect of P4. After treatments, total RNA was isolated and quantified and
primer sets were used to analyze individual transcripts in three separate experiments carried out in duplicate. Data are expressed as mean ± SEM of relative signal
intensity (target/human acidic ribosomal protein).
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assess non-coding RNA expression. Given the modest differential
expression of LINC RNAs in our experiments, we did not pursue
these transcripts in follow-up analyses.

We surveyed the expression of 800 mature miRNAs
simultaneously using the non-amplification-based NanoString
platform. Overall, the expression of individual miRNAs spanned
five orders of magnitude, with 346 transcripts having average
normalized counts above the threshold for detection (Figure 5A).
The most highly expressed mature miRNAs under basal (vehicle
treatment only) conditions were let-7a-5p, let-7b-5p, miR-125b-
5p, miR-145-5p, and miR-4516. When subjected to differential
gene expression analysis, nine mature miRNAs were differentially
expressed under any treatment condition (Figure 5B and
Supplementary Table S12), with expression changes on the
order of two-fold or smaller. This was in striking contrast to
the rather large fold changes in expression estimated at the

level of miRNA host genes (i.e., immature pri-/pre-miRNA
transcripts). For example, our microarray data indicated that
the host gene for miR-155 changed by 20-fold in response to
IL-1β (Supplementary Table S1), yet the corresponding mature
miR-155-5p exhibited no discernible change in expression in
the NanoString dataset (not shown). Using qRT-PCR, we found
that the pri-/pre-miRNAs MIR146A and MIR155 exhibited large
changes in expression (166- and 32-fold, respectively) in response
to IL-1β, yet the corresponding mature species changed only
modestly (miR-146a-5p and miR-155-5p) (Figure 5).

In our studies of miRNA expression in response to IL-1β

and/or P4 exposure, we used the microarray platform to measure
pri-/pre-miRNA transcripts while NanoString profiling was used
to evaluate mature, fully processed miRNA species. We were
surprised to learn that, while many pri-/pre-non-coding RNA
host genes (including long non-coding and coding transcripts)

FIGURE 5 | Differential expression of microRNAs in cervical stromal fibroblasts stimulated with IL-1β, P4 or co-incubated with IL-1β + P4. (A) Basal (normalized
counts) levels of the most prominently expressed mature miRNAs above the detection limit in cervical stromal cells using the unamplified NanoString R© target
counting platform. (B) Heat map of differentially expressed mature miRNAs following treatment with vehicle, IL-1β, P4 or co-incubated with IL-1β + P4. Data are from
three separate experiments carried out in duplicate.
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were differentially expressed in cytokine-stimulated cells, far
fewer full-processed miRNAs were observed (Supplementary
Table S1 and Figure 5). This led us to postulate that
this was due, at least in part, to the fact that while
microarray analysis requires amplification of target transcripts,
NanoString does not utilize a pre-amplification step prior
to measurements.

To test this possibility, we compared directly two highly
expressed miRNA transcripts (miR-146a and miR-155) using
qRT-PCR of both immature and mature miRNAs. Figure 6A
demonstrated that IL-1β stimulated robust upregulation of
primary/precursors, MIR146a and MIR155, while co-incubation
of IL-1β-treated cells with P4 attenuated MIR146a and MIR155

expression. In contrast, when we used the same analytical
platform (qRT-PCR) to evaluate mature miRNAs, we found that,
while IL-1β induced miR-146a-5p and miR-155-5p, P4 had no
inhibitory effect on these two non-coding transcripts (Figure 6B).

DISCUSSION

Principal Findings
The current work investigated for the first time the modulation
of cytokine-induced gene expression by P4 using a simple,
clinically relevant in vitro model of human cervical stromal
fibroblasts. We chose to study the stroma based on the fact

FIGURE 6 | Quantitative RT-PCR measurement of select primary/precursor and mature miRNA transcripts in cervical stromal fibroblasts from vehicle-, IL-1β-, P4, or
IL-1β + P4-treated cells. Three separate experiments (carried out in duplicate) using biological replicates were incubated with the test agents listed above for 4 h, and
then total RNA was isolated, quantified and subjected to RT-PCR using primers specific for either the primary/precursor or mature miRNA transcripts.
(A) Primary/precursor miRNA transcripts. (B) Fully processed, mature miRNAs. Data are expressed as mean ± SEM of relative intensity (target/human acidic
ribosomal protein) and were analyzed by one-way ANOVA followed by Tukey’s test for differences (p < 0.05, considered significant).
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that the cervical stroma is the primary tissue that undergoes
biochemical and biophysical remodeling allowing the fetus to
descend the birth canal at the time of delivery (Malmstrom et al.,
2007; Dubicke et al., 2016; Yellon, 2017; Shukla et al., 2018).
Using a microarray platform and qRT-PCR-based validation,
we demonstrated that IL-1β stimulation of stromal cells elicited
changes in a panoply of genes encoding proinflammatory
mediators, including cytokines and chemokines, arachidonic
acid synthesizing enzymes, ECM-synthesizing enzymes, MMPs,
and other proteases, and intracellular signaling proteins and
transcription factors.

We also examined the regulation of genes in response to
incubation with physiological levels of progesterone that are
present at the end of pregnancy. In contrast to previous reports
by DeMayo and colleagues (Jeong et al., 2005; Rubel et al., 2012),
we detected relatively few genes that were directly controlled by
P4. With the exception of a few genes which were upregulated
>four-fold (i.e., the matricellular protein SPARC-like 1/hevin,
18.66-fold; osteomodulin, 7.3-fold; inositol monophosphatase 2,
6.39-fold; alcohol dehydrogenase 1B, 5.36-fold; FK506-binding
protein 5, 4.13-fold), most progestin-regulated genes were only
modestly upregulated or downregulated in stromal cells.

Three Patterns of Progesterone
Regulation of Cytokine-Driven Gene
Expression
In contrast to gene expression in the context of progestin
alone, co-incubation of cervical stromal cells with IL-1β and
P4 elicited three distinct patterns of regulation. One cohort of
transcripts was profoundly upregulated by treatment with IL-
1β but was unaffected by P4 treatment alone (Figure 4B).
A second set of transcripts exhibited IL-1β-stimulated
upregulation that was almost completely suppressed by co-
incubation with P4 (Figure 4C). Notably, this set of genes was
represented by proinflammatory cytokines (IL-1β and IL-6),
the enzyme responsible for hyaluronan synthesis (i.e., HAS-2)
(Garantziotis and Savani, 2019) and the rate-limiting enzyme
in proinflammatory prostaglandin biosynthesis (i.e., PTGS-2)
(Kniss, 1999). This can be interpreted as the subset of genes for
which progestins exert anti-inflammatory actions.

Interestingly, there was a third set of IL-1β upregulated
transcripts that was further elevated either additively or
synergistically when cervical stromal cells were co-incubated
with cytokine and progestin, including the steroid hormone
receptor chaperone FK506-binding protein 5 (FKBP5) (Storer
et al., 2011) and 11β-HSD1, the enzyme that converts biologically
inert cortisone into bioactive cortisol (Tomlinson et al., 2004;
Chapman K. et al., 2013; Figure 4A). Thus, the previously
undescribed finding of three different patterns of gene expression
exposed to cytokine and progestin in combination suggests
that P4 exerts complex regulatory control in the cervical
stromal compartment and that, strictly speaking, it is not
simply an anti-inflammatory steroid hormone. The suppression
of proinflammatory genes induced by IL-1β by physiological
concentrations of P4 was predicted from previous studies in
decidual stromal cells (Cakmak et al., 2005) and myometrial cells

(Mendelson, 2009; Shynlova et al., 2013; Georgiou et al., 2016;
Amini et al., 2019).

Regulation of Non-coding RNAs by
Cytokine and Progestin
Analysis of the global expression of non-coding RNAs in cervical
stromal cells treated with cytokine in the presence or absence of
progestin revealed that miRNAs represent a relative minority of
regulatory inputs to gene expression. Upregulated non-coding
transcripts measured by microarray included both miRNAs
encoded within host genes and LINC RNAs. The most highly
upregulated miRNA transcript in IL-1β-treated cells was miR-
155. MicroRNA-155 (hsa-mir155, coded within B-cell integration
cluster (BIC) of non-coding transcripts located on chromosome
21, TargetScan, Release 7.1, June 2106; miRbase, Release 22.1,
October 2018) (Madden et al., 2010; Kozomara and Griffiths-
Jones, 2014) has been reported by many investigators to be
induced in the setting of inflammation (O’Connell et al., 2007;
Tili et al., 2007; Ceppi et al., 2009; Quinn and O’Neill, 2011;
Xu et al., 2013) as a means to control tissue damage. We have
recently demonstrated in decidual stromal cells that IL-1β causes
the rapid and sustained upregulation of miR-155 (Ibrahim et al.,
2016), and this was further confirmed using tissues isolated
from patients who had a preterm delivery (Ackerman et al.,
2016a). Thus, cytokine induction of miR-155 can be interpreted
as a potential feedback loop to prevent tissue injury in the
face of unrestrained acute inflammation (Baltimore et al., 2008;
Contreras and Rao, 2012). One proposed mechanism by which
miR-155 thwarts unwanted inflammation is by inhibition of the
canonical inflammatory transcription factor NF-κB (Ma et al.,
2011; Boldin and Baltimore, 2012).

Interestingly, in the NanoString platform, which does not
amplify transcripts prior to their measurement, we were unable
to detect significant differential expression of miR-155 following
IL-1β stimulation, suggesting that, although induced by cytokine
treatment the absolute abundance of this miRNA is quite low.
When we analyzed miRNA expression using amplification-based
qRT-PCR, we noted that, while the primary/precursor transcripts
for miR-146a and miR-155 were substantially upregulated by
IL-1β incubation, there was no significant induction of the
corresponding mature miRNAs. These data further indicate that
the regulation of miRNAs and their modulation of cytokine-
induced gene expression can be quite modest (O’Neill et al., 2011;
Ibrahim et al., 2016).

One of the most significantly downregulated miRNAs in IL-
1β-treated cervical stromal cells was miR-143. This regulatory
RNA transcript has been shown to target the COX-2 mRNA,
suggesting that expression of this RNA in the basal state
may prevent COX-2-mediated inflammatory prostaglandin
biosynthesis (Kim et al., 2011; Pham et al., 2013).

Upregulation of BDKRs and HAS-2
Contributes to Cervical Remodeling
Among the transcripts that were upregulated by cytokine
but unaffected by progestin were the bradykinin receptors
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(BDKRB1 and BDKRB2). Bradykinin is a nonapeptide (H2N–
Arg–Pro–Pro–Gly–Phe–Ser–Pro–Phe–Arg–COOH) member of
the kallikrein–kinin system (Burch et al., 1989) that is
generated following the activation of plasma or tissue kallikrein
and subsequent cleavage of kininogen into several smaller
products (Moreau et al., 2005; Bryant and Shariat-Madar, 2009;
Bjorkqvist et al., 2013). Bradykinin is implicated in several
pathophysiological events, including coagulation (Del Rosso
et al., 2011; Wu, 2015; Weidmann et al., 2017) and thrombosis,
fibrinolysis (Del Rosso et al., 2008), and acute inflammation
(Kaplan and Joseph, 2014; Wu, 2015; Schmaier, 2016). Among
the physiological functions of bradykinin is vascular permeability
(Bjorkqvist et al., 2013; Couture et al., 2014) and smooth-
muscle contractility (Ricciardolo et al., 2018). It is possible that
bradykinin, acting via BDKR-B1 and/or -B2, mediates increased
tissue hydration in the cervix during ripening by altering
endothelial cell junctions (Couture et al., 2014). HAS-2, the
enzyme that catalyzes the synthesis of hyaluronan (hydrophilic
GAG) that accumulates in the stroma during ripening, is
upregulated by IL-1β, and the induction is attenuated by P4.
Thus, HAS-2- and BDKR-mediated functions of bradykinin
may act in concert to orchestrate the softening that occurs
during cervical ripening in preparation for parturition. To our
knowledge, the current work is the first report of cytokine-
induced bradykinin receptor expression in the cervical stroma.
While P4 had no effect on IL-1β induction of BDKR-B1 or -B2,
HAS-2 transcripts were nearly abolished when IL-1β-treated cells
were co-incubated with P4. This observation provides a means
by which progestins may prevent untimely hyaluronan synthesis
and enhanced tissue hydration in the cervical stroma.

ECM Proteins and ECM-Modifying
Enzymes
The regulation of ECM composition is a major determinant of
the biomechanical features of cervical ripening in preparation
for the onset of labor (Myers et al., 2008, 2009; House et al.,
2009). During the initial phases of cervical remodeling in early
pregnancy, collagens type I and III are highly organized and
cross-linked via lysyl oxidase and lysyl hydroxylase (Hassan
et al., 2009; Akins et al., 2011). This provides a rigid and closed
cervix that resists the gravitational and contractile forces that
would otherwise contribute to opening of the cervical os and
premature delivery of the fetus (Danforth, 1983; Hao et al.,
2018). Later in pregnancy, cross-linked collagens are replaced
by randomly oriented fibers, increased hyaluronan accumulation,
and tissue hydration (Garantziotis and Savani, 2019). Our
in vitro studies demonstrated that treatment of cells with IL-
1β downregulated collagen I and III and lysyl oxidase mRNA
expression (Supplementary Table S1). Moreover, cytokine
exposure of cervical stromal cells led to upregulated HAS-2
expression that was antagonized by simultaneous incubation with
P4. These results are consistent with previous findings by Elovitz’s
group that progestational agents act to maintain cervical integrity
in a murine model of parturition (Xu et al., 2008).

We also showed that IL-1β caused the upregulation of
several MMPs (i.e., MMP1/interstitial collagenase, 3/stromelysin
1, MMP10/stromelysin 2, and MMP12/macrophage elastase) by

≥five-fold. These data are consistent with previous reports using
human cervical fibroblasts (Yoshida et al., 2002). Combined
incubation of stromal cells with IL-1β and P4 resulted in ∼
60% reduction in MMP10 mRNA expression (see Figure 4 and
Supplementary Tables S1, S9). In contrast, co-incubation of cells
with cytokine and progestin led to less pronounced diminution
in MMP1 (∼15%) and MMP3 (∼42%) and no effect on MMP12
expression. These data suggest that P4 has minimal effects on the
key proteinases involved in tissue remodeling in the cervix.

We also detected the upregulation of several GAG synthases
(i.e., B4GALT1, CHST11, EXT1, 3GAL1, FUT8, HS3STB1, and
ST3) by IL-1β which was largely unaffected by P4. Importantly,
however, IL-1β-induced HAS-2 mRNA expression was strongly
inhibited by P4 co-incubation (see Figure 4), consistent with
a previous report by Uchiyama et al. (2005). Taken together,
these data indicate that, while inflammatory cytokines have
wide-ranging effects on molecules involved in ECM biosynthesis
and turnover, progestin treatment has a modest effect on
these functions.

Synergistic Induction of 11β-HSD1 by
Cytokine and Progestin
The expression of 11β-HSD1, the enzyme that converts
biologically inert cortisone into bioactive cortisol in several
tissues, was induced several folds in stromal cells incubated
with IL-1β. In addition, P4 treatment alone led to a 3-5-fold
increase in 11β-HSD1 mRNA abundance, while 11β-HSD2, the
enzyme that inactivates cortisol to cortisone, was unaffected
by either cytokine or progestin exposure (data not shown)
(Seckl, 2004). Surprisingly, when we combined exposure to IL-
1β and P4 in cervical stromal cells, we detected a very robust
synergistic upregulation of the 11β-HSD1 gene and no change
in 11β-HSD2 gene expression. Previous studies have reported
that proinflammatory cytokines can induce 11β-HSD1 leading to
local synthesis of cortisol (Chapman K. et al., 2013). Chapman
and Seckl have suggested that local expression of 11β-HSD1 and
conversion of cortisone to cortisol provides a means to dampen
acute inflammation that could lead to chronic tissue injury if left
unchecked (Seckl, 2004; Chapman et al., 2006; Chapman K.E.
et al., 2013). Ahasan et al. (2012) reported that IL-1β caused
upregulation of 11β-HSD1 as an anti-inflammatory response in
mesenchymal stromal cells. Similarly, Hardy et al. (2008, 2016)
demonstrated upregulation of 11β-HSD1 mRNA expression in
acute inflammation in skeletal muscle and in the context of
inflamed synovial tissue with patients with rheumatoid arthritis
(Hardy et al., 2008).

CONCLUSION AND FUTURE
DIRECTIONS

The current work has demonstrated that incubation of cervical
stromal fibroblasts with a proinflammatory cytokine leads to
a robust global gene expression profile that includes predicted
inflammatory and anti-inflammatory transcripts (e.g., cytokines,
chemokines, enzymes involved in bioactive lipid synthesis,
signaling proteins, and transcription factors). In addition, we
also demonstrated several other groups of genes expressed in
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response to IL-1β, including ECM proteins and ECM-modifying
enzymes (e.g., matricellular proteins, MMPs, other proteases,
and glycosyltransferases driving the biosynthesis of GAGs).
Finally, several non-coding RNAs were identified, including
miRNAs and LINCRNAs.

A major objective of the study was to examine the role played
by progesterone in governing cytokine-driven gene expression.
In this regard, we were somewhat surprised to observe that a
relatively modest cohort of stromal cell transcripts was regulated
either positively or negatively by progestin. P4 was found to
inhibit only a subset of stromal cell genes following IL-1β

treatment, suggesting that this hormone exerts only partial
anti-inflammatory activity, at least in the cervical stroma. For
example, while P4 completely abolished cytokine-mediated IL-
6 mRNA expression, it was ineffective at inhibiting CXCL8/IL-8
gene expression.

Finally, this work reported for the first time that IL-1β and
P4 conspired to upregulate a few genes, e.g., FKBP5, a steroid
receptor chaperone and 11β-HSD1, the enzyme that converts
inert cortisone into bioactive cortisol. In addition, we discovered
for the first time that IL-1β upregulated the expression of
bradykinin receptors B1 and B2 that mediate the actions of
kallikrein products in vascular permeability and other events in
the inflammatory cascade. These latter two observations open
a new avenue for future investigations into the interaction of
cytokines and progestins in governing the events leading to
cervical ripening in preparation for parturition.
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Cardiovascular diseases account for the number one cause of deaths in the world.
Part of the reason for such grim statistics is our limited understanding of the underlying
mechanisms causing these devastating pathologies, which is made difficult by the
invasiveness of the procedures associated with their diagnosis (e.g., inserting catheters
into the coronal artery to measure blood flow to the heart). Likewise, it is also difficult
to design and test assistive devices without implanting them in vivo. However, with
the recent advancements made in biomedical scanning technologies and computer
simulations, image-based modeling (IBM) has arisen as the next logical step in the
evolution of non-invasive patient-specific cardiovascular medicine. Yet, due to its novelty,
it is still relatively unknown outside of the niche field. Therefore, the goal of this
manuscript is to review the current state-of-the-art and the limitations of the methods
used in this area of research, as well as their applications to personalized cardiovascular
investigations and treatments. Specifically, the modeling of three different physics –
electrophysiology, biomechanics and hemodynamics – used in the cardiovascular IBM
is discussed in the context of the physiology that each one of them describes and
the mechanisms of the underlying cardiac diseases that they can provide insight into.
Only the “bare-bones” of the modeling approaches are discussed in order to make this
introductory material more accessible to an outside observer. Additionally, the imaging
methods, the aspects of the unique cardiac anatomy derived from them, and their
relation to the modeling algorithms are reviewed. Finally, conclusions are drawn about
the future evolution of these methods and their potential toward revolutionizing the non-
invasive diagnosis, virtual design of treatments/assistive devices, and increasing our
understanding of these lethal cardiovascular diseases.

Keywords: image-based modeling, personalized cardiovascular medicine, cardio electromechanics,
hemodynamics, thrombogenesis, simulation, biomechanics, heart
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INTRODUCTION: IMAGE-BASED
MODELING OF THE HEART

Heart disease is the leading cause of death in the U.S.,
with one person dying from it every 37 s, or about 647,000
each year (i.e., 1 in every 4 deaths), and amounting to a
$219 billion per year burden to the public health system
(CDC, 2019). Understanding it is very difficult, because it is
a complex interaction of biomechanics, electrophysiology and
non-Newtonian hemodynamics. This is further complicated
by the interaction with external medical devices (pacemakers,
pumps, etc.) that are commonly implanted in order to assist a
failing or dysfunctional heart. Moreover, the heart’s properties
(e.g., shape, structure, stiffness, electrical conductivity) that
play an important role in determining its pumping ability are
patient specific. Finally, it is difficult to extract information
about the physiological processes occurring in living hearts,
due to its constant motion, and the fact that invasive
probing can be life threatening. For these reasons, Image-
Based Modeling (IBM) – a patient-specific experimentally
constrained computational approach – is a lucrative way for
gaining novel insight into the cardiovascular diseases and
their treatments.

An illustrative example of the IBM’s usefulness is HeartFlow
Inc. – a company located in California, United States with
about 300 employees and backed by $467 million capital
investment (Craft, 2019). Their application is the diagnosis
of Coronary artery disease (CAD) – an impairment of blood
flow in the arteries that supply the heart, due to cholesterol
plaque buildup. The disease is one of the most misdiagnosed:
a recent study, which included data from more than 1,100
U.S. hospitals, found that over half of the more than 385,000
patients with suspected CAD underwent an invasive coronary
angiography (ICA) only to find out that they did not have
the disease (Patel et al., 2014). This is bad because ICA is
an invasive technique that in itself could lead to mortality,
because it uses catheters inserted into the femoral (groin) or
radial (wrist) arteries to measure pressure difference across a
coronary artery stenosis in order to check the likelihood of a
blockage’s presence.

Conversely, HeartFlow calculates pressure differences
virtually by simulating the blood flow through the patients’
own arteries, the structure of which is derived from a three-
dimensional (3D) computerized tomography (CT) scan. This
information is then used to calculate the fractional flow reserve
(FFR), which is a statistic used to assess the hemodynamic
significance of the stenosis by determining the ratio of the
pressures before and after the narrowing. Therefore, this
technology effectively serves as a non-invasive alternative to the
ICA (Figure 1) (HeartFlow, 2019).

The HeartFlow’s method has been evaluated in four
large prospective clinical trials, enrolling a total of more
than 1,100 patients at major medical centers worldwide. It
received the European Economic Area CE mark in 2011
and U.S. FDA clearance in August 2019 (i.e., it is currently
commercially available in the U.S.) (FDA, 2019). To date,
clinicians have used the HeartFlow approach for over 30,000

patients in the diagnosis of heart disease (Kim, 2019).
Therefore, it serves as the most mature IBM application
in the context of cardiovascular disease. Yet, it is also
one of the simplest in that it does not include the heart
itself, and the blood assumed a homogeneous (i.e., no cells)
fluid. At the same time, more advanced models are coming
online as well. Yet, they are relatively unknown outside of
this niche field.

Although many excellent reviews already exist in the image-
based heart-modeling area, most of them are focused on just
one or two specific aspects: for example, image acquisition
and processing (Weese et al., 2013; Lamata et al., 2014;
Wang et al., 2015; Watson et al., 2018), hemodynamic flow
simulations (Tang et al., 2010; Mittal et al., 2016; Quarteroni
et al., 2017; Zhong et al., 2018); electrical conduction and
stimulation modeling (Trayanova, 2011, 2012; Tobon-Gomez
et al., 2013; Lopez-Perez et al., 2015; Rodriguez et al., 2015;
Beheshti et al., 2016; Gray and Pathmanathan, 2018; Ni et al.,
2018); tissue mechanics computations (Trayanova, 2011, 2012;
Sun et al., 2014; Wang et al., 2015; Chabiniok et al., 2016;
Niederer et al., 2019a,b), ventricular thrombosis (Mittal et al.,
2016) and the use of models in diagnostic procedures (Tang
et al., 2010; Trayanova, 2012). Whereas, the goal of this
manuscript is to provide a brief introductory overview of
the entire cardiovascular IBM for a non-expert audience, in
order to increase the broader exposure of this exciting topic
and its numerous potential applications: CAD, Arrhythmias,
Heart Failure (HF), Left-Ventricular Assist Devices (LVAD) and
Pathogenic Thrombosis/Embolism.

To that end, this review is organized as follows: Section
“Methods: Literature Search” describes our literature search
methods; Section “Background: Cardio Electromechanics
and Hemodynamics” provides a brief background of the
relevant cardiovascular physiology that explains how the
tissue electromechanics and blood biology are interrelated
in vivo; Section “Geometry Module” reviews how the
model geometry is obtained using imaging, in order to
establish a connection with the individual’s unique anatomy;
Sections “Electrophysiology Module,” “Biomechanics Module,”
“Simplified Hemodynamics Module,” and “Hemodynamics
with Thrombogenesis Module” illustrate the mathematical
formulation of the simulation modules used by these
models, such as electrophysiology, biomechanics, simplified
hemodynamics with and without thrombogenesis, respectively.
Finally, Section “Summary and Conclusion” presents
our summary and conclusions regarding the inputs and
outputs of all cardiac modules as well as the directions
that the field of personalized cardiovascular IBM is
expected to go into.

METHODS: LITERATURE SEARCH

In order to provide a “big picture” snapshot overview of
the image-based cardiovascular modeling and its potential
penetration into the clinical sector, we gathered works from the
recent (i.e., approximately the last 5 years) proceedings of the
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FIGURE 1 | Process flow diagram outlining the image-based computational pipeline of the HeartFlow’s approach to calculating the fractional flow reserve
computerized tomography (FFRCT). (Reproduced with permission from Nick Curzen, Professor of Interventional Cardiology/Consultant Cardiologist, University
Hospital Southampton).

following meetings: Interagency Modeling and Analysis Group
Consortium Meetings, National Institute for Mathematical and
Biological Synthesis workshops, Personalized Medicine Coalition
resources, International Workshop on Cancer Systems Biology
meetings and conferences, Pacific Symposium on Biocomputing,
Biomedical Engineering Society, American Institute of Chemical
Engineers. Additionally, we performed manual searches with
key words and terms including “image-based modeling of
the heart,” “patient-specific cardiovascular modeling,” “cardio
electrophysiology/biomechanics/electromechanics/hemodynamics
image-based modeling” or “ventricular thrombosis modeling,”
etc. for both research and review articles on databases, such as
PubMed central, Web of Science, Research Gate, and Google
Scholar. Additionally, we relied on the corresponding author’s
own decade and a half long experience of working on biomedical
image-based simulations. The obtained publication database was
then screened by running citation reports to identify groups of
researchers (typically led by a senior professor, who is joined
by collaborators, postdocs, and students) that have established
a track-record of being active within the various sub-areas
of the cardiovascular modeling fields. Furthermore, to avoid
bias (and to keep the work manageable) we tried to limit the
literature sampling to just one most relevant publication from
each of the groups. However, this was not always possible,
because some of the researchers dominate their respective
niches; and have published more than one article critical to our
review.

BACKGROUND: CARDIO
ELECTROMECHANICS AND
HEMODYNAMICS

Macroscopic Overview of How the Three
Physics Are Coupled With Each Other
Before going into the details of the computational models, it is
first important to understand the three types of coupled physics
occurring in the heart: electrical signal conduction, biomechanics
of the contraction and hemodynamics (which could also include
clot formation and embolism).

Figure 2A illustrates the cardiac conduction system (CCS) –
a heterogeneous complex 3D network of highly specialized
conductive cells (SA node, AV node, bundle of His, bundle
branches, and Purkinje fibers) that transfer signals through the
heart and cause it to contract. The electrical activity is initiated
at the sinoatrial node (i.e., the natural pacemaker of the heart)
where voltage signals called “action potentials” are produced
periodically. Next the signals travel to the AV node, through
the Bundle of HIS, down its branches and through the Purkinje
Fibers. Ultimately, they are propagated to the myocardium
(i.e., the muscular tissue of the heart) through discrete sites
called Purkinje-Myocyte Junctions (not shown), causing the
left and the right ventricles to contract independently of each
other. This creates a double pumping action of the blood (see
Figure 2B).
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FIGURE 2 | Macroscopic overview of the three physics occurring in the heart. (A) Cardiac conduction system schematic. (B) Blood flow path (navy blue arrows) and
the fibrous structure defining the biomechanics of the heart wall (inset).

Specifically, oxygen-poor blood returns from the body to the
right side of the heart (i.e., atrium and ventricle), which then
sends it to the lungs for re-oxygenation. Oxygen-rich blood from
the lungs then enters the left side of the heart and is pumped
through the aorta back to the body. The blood can also carry
thrombi (or their embolized pieces) from other parts of the body,
and/or the clots could be generated within the heart itself via
activation of platelets (blood cells responsible for clot formation)
and the coagulation cascade (a series of biochemical reactions
that results in the formation of a polymer mesh that facilitates
the structural integrity of the clot). The presence of these objects
in the cardiovascular system can interfere with the mechanical
action of the heart by creating rigid obstructions. Furthermore,
the blood clots can also get stuck in the cardio-vasculature and
block the delivery of metabolites to the heart tissue. This leads
to necrosis of the latter, commonly referred to as an ischemia
or a heart attack.

Structural Importance of the
Myocardium
The organization of the cardiomyocyte fibers in the heart’s walls
is thought to be critical to both the conductive and to the
mechanical properties of the organ. Specifically, the contractile
myocytes cells that cause the heart ventricles to beat are arranged
in fibers (see inset of Figure 2B). These fibers make up the
walls of the heart, which are lined with collagen and elastin
extracellular matrix on the inside (i.e., endocardium) and the
outside (i.e., epicardium). Their thickness varies both spatially
and temporarily throughout the cardiac cycle.

If one were to take a representative sample from the left
ventricle (which pumps the most blood) as in Figure 3A, it
would be possible to see that the 3D layered organization
of the myocytes changes throughout the wall thickness from
the epicardium to the endocardium. In fact, Figure 3A shows
that the muscle fiber direction rotates from +50◦ to +70◦

(sub-epicardial region) to nearly 0◦ in the mid-wall region to
−50◦ to −70◦ (sub-endocardial region) with respect to the
circumferential direction of the left ventricle (Holzapfel and
Ogden, 2009). Finally, Figure 3B show that the myocyte fibers
(or myofibrils) are arranged into composite layers (or sheets),
which are interconnected by collagen fibers. Therefore, for
IBM to be physiologically representative, it must account for
how this intricate structure affects the complex physics that
occur in the heart.

GEOMETRY MODULE

The most common ways for obtaining a realistic macroscopic
morphology of the heart and its surrounding blood vessels
are computerized tomography (CT) and magnetic resonance
imaging (MRI). However, the typical MRI/CT machines provide
relatively coarse resolution datasets of the personalized cardiac
geometry, with large gaps between slices (Schulte et al., 2001;
Frangi et al., 2002; Appleton et al., 2005). This necessitates the use
of interpolation procedures. Hence, the microscopic details (e.g.,
blood vessels, trabeculations, the Purkinje Fibers, the location and
activity of the PMJs, the orientations of the myofibril sheets, etc.)
are harder to resolve due to their small size. Yet, they strongly
determine the electrophysiological and biomechanical properties
of cardiac tissue (Watson et al., 2018). Consequently, there are
three main methods for accounting for these fine details:

Rule-Based Heuristics
The most rudimentary approach is to generate these features
mathematically, based on observed trends (see Figure 4A)
(Streeter Daniel et al., 1969). Briefly, the longitudinal fiber
direction is assumed to rotate clockwise from the endocardium
to the epicardium. Specifically, it is made parallel to the long axis
of the papillary muscles, trabeculae at these regions and parallel
to the endocardial and epicardial surfaces at the ventricular
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FIGURE 3 | Schematic diagram of the heart tissue microstructure. (A) The transmural configuration of the muscle fibers and laminar sheets. (B) The layered
organization of myocytes and the collagen fibers between the sheets. f0, fiber axis; s0, sheet axis and n0, sheet-normal axis. (Adopted with permission from
Holzapfel and Ogden, 2009).

FIGURE 4 | Comparison between (A) rule-based method and (B) DTI-based estimation of the myocardial fiber orientation for a 3D model of canine ventricles.
(Reproduced with permission from Bayer et al., 2012).

walls. Lastly, the fiber orientation in the septum is assumed
to be running along the ventricular walls (Bayer et al., 2012).
A popular way to personalize the algorithm to a patient specific
structure of the heart is to use the minimal distance between the
imaged endocardial and the epicardial surfaces to approximate
orientation of the fibers. More stable and advanced rule based
approaches, such as the Laplace-Dirichlet method also exist

(Bayer et al., 2012). However, the heuristics are not guaranteed
to be physiologically accurate, nor are they fully patient specific.
Yet they remain the most common approach due to their low
cost and ease of implementation, as well as due to the difficulty
of imaging the microstructural details in a beating heart in vivo.
And, as Figure 4 shows, they yield results that are comparable
with the best of the imaging techniques (which typically require
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for the heart to be explanted and fixed in order to acquire
such fine details).

Histology/Optical Microscopy
The fiber orientation can also be approximated from histology
of explanted hearts (Vetter and McCulloch, 1998; Deng et al.,
2012), where the tissue is sliced into very thin 2D sections and
dyed using special agents that highlight the features of interest.
Although it is possible to create a 3D reconstruction based on the
2D slices using this approach, manual sectioning of the tissue may
result in uneven slice thicknesses and feature distortion (Burton
et al., 2006). Additionally, confocal microscopy has been used to
image the fine structure of the myocardium (Hooks et al., 2002,
2006). However, the light penetration depth into the sample is
typically limited to ∼100 mm. Hence, imaging a whole heart
using this technique is also impractical. Therefore, both histology
and confocal are typically used to provide localized information
on explanted samples only. However, this information is useful
for validating the rule-based methods, the in vivo imaging, and
the modeling results.

Diffusion-Tensor MRI, Micro-CT With
Contrast and 3D Ultrasound Backscatter
Tensor Imaging
Additional detail can be obtained from MRI images using a
Gadolinium contrast agent (Bishop et al., 2010) and a special
technique called Diffusion Tensor imaging (DTI) (see Figure 4B).
The latter maps the diffusion of water molecules in the biological
tissues, which is not free, but reflects the interactions with
obstacles like macromolecules, fibers and membranes. For the
cardiac DTI, it is well known that the direction of the primary
eigenvector corresponding to each voxel of the received images
matches the longitudinal axis of cardiac myocytes (Scollan
et al., 1998; Holmes et al., 2000). This information can then
be mapped onto the volumetric mesh of a 3D cardiac macro-
geometry to include the microscopic fiber orientation (Plank
et al., 2009; Vadakkumpadan et al., 2010). Likewise, micro-
computed tomography (mCT) with iodine staining has also
recently been used to assess the myocyte fiber orientation in the
heart tissue (Aslanidi et al., 2013). However, both techniques are
too slow to capture a beating heart in 3D without motion artifacts.
Luckily, advanced ultrasound-based imaging techniques are
coming online, which can map the myocardial fibers orientation
and its dynamics with a temporal resolution of 10 ms during a
single cardiac cycle, non-invasively and in-vivo in entire volumes
(Papadacci et al., 2017). However, given the novelty, complexity
and cost of these techniques, they are not yet widely available to
the majority of the cardiovascular IBM researchers.

Imaging-to-Modeling Pipeline
Perhaps the most difficult aspect of the in vivo scanning of
live hearts is the need to perform significant image alignment
using “registration” techniques. Furthermore, once the images
are aligned, they must be “segmented” to identify the various
tissue types and structural features of interest within the data.
The segmentation can be either based on contrast dyes and/or on

morphological feature detection (both manual and automated).
The images can also be enhanced using digital post-processing,
such as deconvolution (i.e., minimizing noise caused by objects
outside of the imaging plane) and structure tensor analysis
(e.g., enhancing visibility of the structural features for the fiber
orientation detection) (Burton et al., 2006; Zhao et al., 2013).
Numerical interpolation and machine learning techniques can
further enhance the apparent resolution of the images digitally.
Finally, the cardiovascular geometry must be “meshed” (i.e.,
broken up into pieces) to discretize the objects obtained from
the images as a set of finite elements for numerical analysis. The
latter is a simulation necessity that enables solving systems of
complex (e.g., partial differential) equations by recasting them
as algebraic approximations of the true solution. The trade-off
for the simplified math is that the solution accuracy must be
increased by making the mesh finer. This grows the number
of equations that must be solved simultaneously, and thus the
computational resource and time requirements. Overall, the
imaging pipeline procedures are often very complicated and
necessitate manual labor. This is both cumbersome (e.g., due
to the large size of the high-resolution images) and subjective
(e.g., due to the lack of contrast agents which necessitate user
input). Therefore, there is an on-going effort to automate the
imaging-to-modeling pipeline (Bishop et al., 2010).

ELECTROPHYSIOLOGY MODULE

The simplest types of the heart models tend to be focused on
cardiac arrhythmias. This is an “umbrella” term for irregularities
in the conduction or pacing of the electrical signals that
control the heartbeat rhythm. Given that some arrhythmias
can lead to mortality, it is important to understand the
underlying electrophysiological mechanisms of these disorders.
Yet, electrocardiograms of the heart provide only limited
information, which often fails to predict lethal outcomes
(Goldberger et al., 2011). Therefore, computational modeling
offers a better alternative for studying these diseases.

Most arrhythmia models focus on the electrophysiology of the
heart, while assuming that it is isolated from the biomechanics
of the contractions that lead to the pumping of the blood.
As mentioned in Section “Methods: Literature Search,” the
contraction of cardiomyocytes is initiated by electrical impulses
called “action potentials,” which travel through the cardiac
conduction system (see Figure 2A) into the myocardium. This
electrical potential travels from one cell to another in the form of
ions that pass through gap junctions between the cardiomyocytes
(see Figure 5).

The cardiomyocytes are polarized, meaning that there is an
electrical potential across the cell membrane: in the resting state
the cells are more negative on the inside and positive on the
outside, while the charge polarity is temporarily reversed as the
action potential passes through them. This reversal occurs via the
transport of Ca++ and Na+ ions from the outside of the cells to
their inside, and K+ ions in the reverse direction (see Figure 5).
The internalization of the Ca++ ion is especially important
to the contraction of the cardiomyocytes, because it triggers a
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FIGURE 5 | Electrical coupling of the neighboring cardiomyocytes via the gap-junctions between their membranes.

sub-cellular signaling cascade that generates tension inside of
the cells. Therefore, the electrophysiology models simulate the
propagation of the ionic currents through the myocardium.

However, given that there are many cells in the heart, and
each one of them has the ionic channels and transmembrane
potentials, the problem is an inherently multiscale one (see
Figure 6). On the subcellular scale (see Figure 6-LEFT),
differential equations are used to model the transport of ionic
species based on the Hodgkin–Huxley formulation (originally
developed for the propagation of action potentials in neurons)
(Hodgkin and Huxley, 1952). The subcellular models are then
combined into cell scale models that can account for up to
dozens of different ionic species and signaling intra-cellular
cascades (see Figure 6, CENTER). Among these, the leading
model is currently considered to be by O’Hara et al. (2011), which
is based on experimental data from >150 undiseased human
hearts. Finally, the individual ion currents are used to calculate
the overall transmembrane potential, and its transport across
the myocardium is treated as a diffusion across a homogenous
medium (i.e., no discrete cells are considered by these models).

There are two types of formulations for the organ-level
diffusion (which is related to the ionic conductivity) of the action
potential across the myocardium: (1) the bidomain formulation,
which considers different diffusivities inside and outside of the
cell (Quarteroni et al., 2017) (see Figure 6, RIGHT):

χCm(∂tv+ iion(v, w, c))−∇ · (Di∇vi) = χiiapp(t)
χCm(∂tv+ iion(v, w, c))−∇ · (De∇ve) = χieapp(t)

dw
dt
= mw(v, w, c)

dc
dt
= mc(v, w, c)

(1)

The bidomain formulation is used for simulating the action
potential propagation throughout the myocardium in the intra-

and the extra- domains separately. The myocardium is assumed
to be a continuum in which the potential is considered to
vary along the longitudinal direction of the conducting cells,
while it is constant in the transversal (or radial) directions
(Quarteroni et al., 2017). In this formulation, vi, ve and ‘v’
are intracellular, extracellular and transmembrane potentials,
respectively; iiapp and ieappstand for applied stimuli on the intra-
and extracellular spaces, respectively; iion are the ionic currents
following a Hodgkin–Huxley-type description for different ionic
species (Hodgkin and Huxley, 1952); w are gating variables taking
values in [0,1] that regulate the transmembrane currents and
have a mutual relation with the intracellular concentrations c of
different ionic species (which also vary depending on the values
of transmembrane potentials v) (Quarteroni et al., 2017); Cm is
the membrane capacitance; ‘χ’ is the ratio of membrane area per
tissue volume; Di and De are the conductivity tensors of the intra-
and extracellular media, respectively.

and (2) the monodomain formulation, which simplifies the
problem by considering only the transmembrane potential
(Quarteroni et al., 2017):

χ[Cm∂tv+ iion(v, w, c)− iapp(t)] =
1
J
∇ · (D0∇v) (2)

In this formulation, the cardiac tissue is also assumed to be a
continuum, but the current conservation is written in terms of the
transmembrane potential v only (i.e., not considering the intra-
and extracellular potentials) (Quarteroni et al., 2017). Instead,
the intracellular and extracellular diffusivities are assumed to be
proportional to each other, and therefore can be represented
by a single variable. Herein, D0 is the conductivity tensor in a
fixed reference state, J is the determinant of the deformation
gradient tensor, which represents the volume change of a
deformable object. The trade-off for the simplicity is that
the monodomain model is unable to describe cardiomyocyte
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FIGURE 6 | Components of a multiscale cardiac electrophysiology model. (Left) Equations and sample output for a Hodgkin-Huxley formulation of the rapid sodium
current through an ion channel. Multiple such sub-cellular models can be used to define a cell model. (Center) Schematic of sub-cellular processes included in a
hypothetical cell model, together with the differential equation governing the transmembrane voltage, and sample output. Cell models differ in their formulation of the
ionic current iion and can be made up of dozens of ordinary differential equations. (Right) Cell models can be incorporated into the bidomain equations and solved
on a computational mesh of the heart (top right: high-resolution rabbit biventricular mesh of Bishop et al., 2010), to simulate normal or arrhythmic cardiac activity
(bottom right). (Adopted with permission from Pathmanathan and Gray, 2018).

repolarization patterns. For this reason, the bidomain model is
more widely used (Bishop and Plank, 2011).

Module Personalization
Table 1 summarizes the most common electrophysiology module
personalization approaches encountered in the recent IBM
works, while Figure 7 maps the relationships between the
module’s inputs, outputs and applications. In this, and in the
subsequent modules, the heart’s macroscopic anatomy can be
personalized for a specific patient by acquiring its geometry
from the in vivo imaging (see “Geometry Module” section).
Furthermore, pathological tissue remodeling (e.g., locations and
extension of infarct scars, diffuse fibrosis, etc.) can be accounted
for via the imaging as well (Vadakkumpadan et al., 2009;
Mewton et al., 2011; Dass et al., 2012; Ashikaga et al., 2013;
Arevalo et al., 2016; Trayanova et al., 2017). However, there
are two important types of microscopic structural information
that cannot be completely personalized yet: the myocardial fiber
orientation and the CCS.

Both are, unfortunately, still too difficult to image in a moving
heart in vivo. Thus, typically an approximated personalization
is performed to include these microscopic features using
the rule-based algorithms (see “Geometry Module” section).
Additional CCS approximation methods are based on: early
activation points obtained from the literature (Durrer et al.,
1970); manual delineation of CCS on the endocardial surfaces
(Romero et al., 2010); ex vivo data obtained by means of
histological studies of animal hearts (Sebastian et al., 2013); from
in vivo electro-anatomical maps (EAMs) (Cardenes et al., 2014;

Palamara et al., 2014). The EAMs data can provide the location
of some of the PMJs, and can also be used to reconstruct
patient-specific electrical activation patterns (Cardenes et al.,
2014; Palamara et al., 2014).

Likewise, the conductivity values of different tissue zones
(normal and abnormal/damaged) are typically too difficult to
measure in living human patients, and are thus initialized based
on accepted literature values: 2–3 m/s in the His-Purkinje system
and 0.3–0.4 m/s in the conductive myocardial cells (Ideker et al.,
2009). They are then either further adjusted to match the human
myocardium conduction velocity (CV) (i.e., speed at which
action potentials are distributed throughout the tissue) measured
using explanted hearts (Arevalo et al., 2016; Trayanova et al.,
2017; Lopez-Perez et al., 2019), or are tuned to fit patient-specific
electrical activation patterns obtained from electrocardiograms
(ECG), body surface potential maps (BSPM) or EAM (Sermesant
et al., 2008; Lopez-Perez et al., 2015).

Unfortunately, at the cellular level, the patient-specific
transmembrane current dynamics (i.e., iion) cannot yet be
measured; and hence, the existing mathematical models are not
personalized at such detail. Similarly, the electrical heterogeneity
between the different regions (e.g., transmural heterogeneity
in the ventricular walls), the electrical remodeling and the
effects due to an individual’s genetic mutations on the cardiac
electrophysiology cannot yet be accounted for (Lopez-Perez et al.,
2015). However, a cellular level electrophysiology model that best
matches the patient’s pathology can instead be chosen from either
existing literature datasets that are representative of a patient-
group (Krueger et al., 2013a,b) or from patch-clamp studies
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TABLE 1 | A recent literature survey of how the Electrophysiology Module is typically personalized using image-based information.

Imaging method Personalized information from imaging Mapping of the personalized information from
imaging to the module’s inputs

Citation

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the conduction velocity (CV) in
human cardiac tissue.

Ashikaga et al., 2013

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Arevalo et al., 2016

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Trayanova et al., 2017

CT Geometry Geometry was personalized and tissue conductivities were
adjusted to fit local activation times, which were obtained
using electro-anatomical maps (EAMs).

Cardenes et al., 2014

CT and MRI Geometry with infarcted regions Geometry was personalized and tissue conductivities were
adjusted to fit patient-specific electrical activation using
EAMs.

Palamara et al., 2014

MRI Geometry Geometry was personalized; tissue conductivities were
adjusted to fit patient-specific electrical activation and ECG;
and ionic currents were also personalized (via blood
electrolyte concentrations measurement).

Krueger et al., 2013a

MRI Geometry with infarcted regions Geometry was personalized; tissue conductivities were
adjusted to fit a human cardiac tissue model; and ionic
currents were personalized via blood electrolyte
concentrations measurements.

Krueger et al., 2013b

Cardiac delayed
enhancement-MRI

Geometry with infarcted regions, papillary
muscles and main endocardial trabeculations

Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Lopez-Perez et al.,
2019

MRI Geometry Geometry was personalized and tissue conductivities were
adjusted to match clinically measured propagation times of
the patient using EAMs.

Sermesant et al., 2008

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Bruegmann et al., 2016

Cine MRI (with torso
geometries)

Geometry with orientation and position of heart Geometry was personalized and tissue conductivity values
were adjusted to match patient-specific ECG data.

Kayvanpour et al., 2015

MRI (with torso geometries) Geometry with orientation and position of heart Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Mincholé et al., 2019

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Deng et al., 2016

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Prakosa et al., 2018

Late gadolinium
enhancement MRI

Detailed geometry, including the atrial structure,
mitral and tricuspid valves, coronary sinus,
pulmonary veins, superior and inferior vena
cava.

Geometry was personalized and tissue conductivity values
were adjusted to match patient-specific activation mapping
data using EAMs.

Roney et al., 2018

Cardiac magnetic
resonance procedure

Detailed geometry, including the atrial structure,
aortic arch, caval veins, torso surface,
trabeculated myocardium between the wall and
the intracavitary blood.

Geometry was personalized and tissue conductivity values
were tuned to match patient-specific activation mapping
using EAMs and ECG data.

Potse et al., 2014

of cells harvested from pathologic zones of the patient (Cabo
and Boyden, 2003; Decker and Rudy, 2010). Additionally, the
extracellular ion concentrations can be estimated and set into
a model from personalized measurements of blood electrolyte
concentrations (Krueger et al., 2013a,b).

Module Outputs and Applications
Overall, the electrophysiology modeling studies the normal
conduction in the heart, as well as the pathological mechanisms
that arise and cause cardiac arrhythmias. It is typically used
to calculate physiological parameters (see Figure 7) like: the
Mean firing rate (i.e., the number of spikes during a cardiac

cycle divided by cycle duration, spike/s) (Behradfar et al.,
2014); Re-entrant arrhythmias propagation (Arevalo et al., 2016;
Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al.,
2018) (i.e., a propagation of an impulse that fails to die out
after normal activation of the heart and continues to re-excite
it after the refractory period has ended, Antzelevitch, 2001);
Phase singularities (Boyle et al., 2016; Pathmanathan and Gray,
2018; Roney et al., 2018) which represent the sites in which the
activation state cannot be determined, because the particular
location is surrounded by activation states ranging from fully
activated to fully recovered (Valderrabano et al., 2003); Activation
rate gradient which quantifies how fast the transmembrane
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FIGURE 7 | Summary of the Electrophysiology module’s inputs, outputs and applications. Superscripts in the figure correspond to the following references:
1Cardenes et al., 2014; Kayvanpour et al., 2015; Lopez-Perez et al., 2015; 2Cardenes et al., 2014; Palamara et al., 2014; 3Arevalo et al., 2016; Trayanova et al.,
2017; 4Lopez-Perez et al., 2015; 5Behradfar et al., 2014; 6Arevalo et al., 2016; Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al., 2018; 7Boyle et al.,
2016; Roney et al., 2018; 8Smith et al., 2011; Boyle et al., 2013; Potse et al., 2014; 9Trayanova, 2011; Behradfar et al., 2014; 10Arevalo et al., 2016; Trayanova
et al., 2017; Deng et al., 2019.

voltage Vm changes in different cardiac regions (Smith et al.,
2011; Boyle et al., 2013; Potse et al., 2014); Successful retrograde
propagation which measures whether conduction at a terminal
Purkinje node is successful or refractory (Trayanova, 2011;
Behradfar et al., 2014); and the organization of electrical wavelets
as they propagate through the myocardium (Starobin et al., 1996;
Keldermann et al., 2009; Trayanova, 2014). In our experience,
the majority of the electrophysiological modeling is used for
elucidating the mechanisms of cardiac arrhythmia, especially for
“reentrant propagation of complex waves” (e.g., effects of cardiac
microstructure, spiral wave breakup, early afterdepolarizations,
scroll-wave filaments, action potential duration, electrical
alternans, etc.) (Trayanova, 2011); as well as for prediction of
arrhythmia risks in specific patients. Furthermore, these models
are also used to examine the mechanisms of defibrillation
shock in the heart for terminating arrhythmia, as well as
for increasing the understanding of ablation targets in the
arrhythmia treatments (Trayanova et al., 2017).

Module Personalization Example
The following is a discussion of a representative example
of the personalized electrophysiology modeling applied to an
arrythmia risk assessment in post-infarcted hearts. Specifically,
personalized 3D computer models of the post-infarction hearts
was constructed based on clinical MRI of specific patients.
First, an individualized geometric model of the postinfarction

ventricles was reconstructed from late-gadolinium-enhanced-
MRI (Arevalo et al., 2016), with representations of both the
scar and the infarcted border zones. Due to the difficulty
imaging the myocardial fiber orientation from a moving heart
in vivo, an approximated personalization was performed using
a rule-based algorithm (Bayer et al., 2012). Region-specific
cell and tissue electrical properties were then assigned to the
electrophysiological model based on literature data. After that,
a virtual multi-site delivery of electrical stimuli from various bi-
ventricular locations was conducted, in order to computationally
determine all the ventricular tachycardia reentrant pathways
that the infarct-remodeled ventricular substrate can sustain.
This methodology was then validated in an arrhythmia risk
prediction clinical study including 41 patients and significantly
surpassed several existing clinical metrics in predicting upcoming
arrhythmic events (Arevalo et al., 2016).

BIOMECHANICS MODULE

The next level of complexity are the models of myocardial
abnormalities/heart failure (HF) and the blood pumping assist
devices such as the Left-Ventricular Assist Device (LVAD).
Since these models are interested in how the presence of
abnormalities or assist devices affects the blood circulation,
they must account for the contraction solid mechanics and the
blood hemodynamics. However, if they are not interested in clot
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formation, the models are simplified by homogenizing the blood
flow. Therefore, they are not as complicated as the ones that do
account for the thrombosis. Yet, they are still complex, because
they include solving multiple different types of coupled physics
(see Figure 8, LEFT) applied in different parts of the heart (see
Figure 8, RIGHT).

Since the electrophysiology in these models is treated similarly
to the arrhythmia models, the cardio biomechanics framework
will be discussed next. Central to this physics type is the
fact that the myocytes in the heart contain rod-like structures
called myofibrils, which are composed of repeating contractile
units called “sarcomeres” (see Figure 9, LEFT). Each sarcomere
contains thin and thick filaments, made from actin and myosin
proteins, respectively.

After depolarization, calcium enters the cardio-myocytes
through the ion channels in their membrane, and triggers the
release of cytosolic calcium stored in the sarcoplasmic reticulum
(a storage compartment) of the cells through a cascade of intra-
cellular signaling (see Figure 9, RIGHT). This release of the
internal calcium leads to the binding of myosin heads to the actin
filaments in the sarcomeres, which in turn causes the filaments to
slide against each other and contract the entire cell (see bottom
inset in Figure 9, LEFT). This process is called the “crossbridge
mechanism” and it corresponds to the active tension in the
biomechanical calculations of the heart.

The kinetics of this process have been modeled using
Monte Carlo (Walcott and Sun, 2009) and partial differential
equations (Huxley, 1957). However, both approaches are too
computationally expensive to be calculated at the organ
level. Consequently, the latter model has been simplified by
considering a single cross bridge representative of the whole
distribution (i.e., mean field theory) (Negroni and Lascano, 2008;
Rice et al., 2008; Washio et al., 2012) or by averaging the

distributions over a single cell (Bestel et al., 2001). Simpler yet
is the assumption that the active contraction of the individual
cells depends on the intracellular ionic concentrations and the
local deformation gradient (Quarteroni et al., 2017). Ultimately,
the microscopic sarcomere sliding velocity is related to the
macroscopic strain along the myocardial fibers via a constitutive
relationship (i.e., microscopic rate-of-strain depends on the
macroscopic strain), such as the Hill-Maxwell rheological model
which is a modification from Hill’s force-velocity relation (Sainte-
Marie et al., 2006). Herein, a specific choice of the attachment
and detachment rates was modified so that they were not only
dependent upon the sarcomere strain, but also on the strain rate.

The active contraction can be expressed by the following active
stress formulation from Rossi et al. (2014):

PA =

(
∂WA

∂IE
1
+

∂WA

∂IE
4,f

)
F̂A(c, I4,f )f0 ⊗ f0 +

∂WA

∂FA
(3)

And the active strain formulation can be derived from Quarteroni
et al. (2017):

∂tγf =
1
ηA

[(
∂WA

∂IE
1
+

∂WA

∂IE
4,f

)(
F̂A(c, I4,f )−

2I4,f

(1+ γf )3

)

−
∂WA

∂FA
: f0 ⊗ f0

]
(4)

Where, WA is the active component of the free energy, FA is the
active deformation, ‘c’ is the intracellular calcium concentration,
I4,f is the local deformation gradient invariant in the myofiber
direction, ∂IE

1 and ∂IE
4,f are elastic invariants (described in more

details in Rossi et al., 2014). The incorporation of the microscopic

FIGURE 8 | (A) Sketch of the cardiac electro-fluid–structure coupling. (B) The three computational domains (fluid domain �F, solid mechanics domain �S,
electrophysiology domain �E) considered in the cardiac multiphysics problem. In this example the electrophysiology physics are only considered in the ventricles,
whereas the solid mechanics physics applies to the atria also. Additionally pictured are the fluid–structure interface 0I inside the left ventricle, the epicardial surface
0S,epi, and the mitral valve inlet surface 0in. Lastly, the domains �E and �S overlap within the ventricular part of the heart. (Adopted with permission from Quarteroni
et al., 2017).
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FIGURE 9 | Sub-cellular tension generation mechanisms. (A) Organization of the cardiac muscle cell’s contraction mechanism (bottom inset shows the
contraction-relaxation cycle of a single sarcomere). (B) Diagram showing how calcium release from internal cytosol storage causes cardiomyocyte contraction in
response to the “outside-to-inside” calcium signaling.

active tension, F̂A, at the tissue level is a key aspect in the multi-
scale framework of the cardiac function (Quarteroni et al., 2017)
and can be derived by:

F̂A(c, I4,f ) = αf (c)RF−L(I4,f ) (5)

where RF−L(I4,f ) is a function that represents the force–length
relationship of the cardiac cells (defined in Ruiz-Baier et al.,
2014) which depends on I4,f ; f (c) specifies the amount of
force generated by the cross-bridges in response to intracellular
calcium release; and α is a positive parameter. Thus, the F̂A
represents the active tension generated within the sarcomeres,
which then drives the macroscopic muscular contractions.

In addition to the active tension generated by the cross-bridge
mechanism, the solid mechanics calculations must also account
for the passive stiffness of the myocardium (e.g., when it is
expanded by the blood flow entering the heart). This is modeled
by assuming that the myocardium is an isotropic linear elastic
tissue. The general formulation of passive stress (i.e., Cauchy
stress) can be expressed by Avazmohammadi et al. (2019):

σ = J−1FSFT (6)

Where, the second Piola–Kirchhoff stress tensor ‘S’ can be
described in terms of the stored energy density function ‘W’
through: S = 2∂W/∂C, and ‘W’ can be derived based on
Holzapfel–Ogden constitutive law which is divided into three
parts - the isotropic isochoric part, the isotropic volumetric part,
and the orthotropic part:

W(F) =
a

2b
exp(b[

−

I −3])+
κ

4
[(J − 1)2

+ (ln J)2
]

+

∑
i=f ,S

ai

2bi
[exp(bi <

−

I4,i−1 >2)− 1]

+
afs

2bfs
[exp(bfs

−

I2
8,fs)− 1] (7)

where

J = det(F), C = FTF, I1 = tr(C), Ī1 = J−2/3I1,

I4,f = Cf0 · f0, Ī4,f = J−2/3I4,f , I4,s = Cs0 · s0, I4,s = J−2/3I4,s,

I8,fs = cf0 · s0, Ī8,f ,s = Cf0 · s0, Ī8,f ,s = J−2/3I8,f ,s
(8)

and the material parameters a, af , as, afs, b, bf , bs, bfs are
experimentally fitted (Quarteroni et al., 2017). The parameter
‘κ’ is the bulk modulus that “penalizes” local volume changes to
enforce the incompressibility of the tissue.

Furthermore, since stretching a cell changes the distance
between the gap junctions and their neighbors, this leads
to changes in the ion channels, and consequently, in the
conductivity of the action potential from cell to cell. This
electromechanics coupling is typically included by modifying
the conductivity tensor in the original equation of the
electrophysiological propagation (see Equation 2). Specifically,
the fixed reference state conductivity tensor ‘D0’ is replaced with
the spatial configuration conductivity tensor ‘D’. Furthermore,
an explicit dependence on the solid deformation tensor ‘F’ is
included into the conductivity tensor in order to account for the
geometric feedback, due to deformation of the tissue structure
(Quarteroni et al., 2017):

χ[Cm∂tv+ iion(v, w, c)+ iSAC(v, F)− iapp(t)]

=
1
J
∇ · (JF−1DF−T

∇v) (9)

Moreover, an additional inward ionic current, induced by the
stretch-activated channels, also contributes to the depolarization.
This is commonly modeled as follows:

iSAC(v, F) = g
(√

I4,f (F)− 1
)

(v− E) (10)

Where, ‘E’ and ‘g’ are the reversal potential and the maximal
conductance of the channels.

Lastly, in vivo the heart is immersed in a pericardial fluid;
and it is also loosely supported by a flexible double-layered
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pericardium membrane. Therefore, spring-like external support
enforced by Robin-type boundary conditions (Moireau et al.,
2012) are typically tuned to mimic the global motion of the
modeled heart. An explicit solution of the pericardium–heart
contact problem has been proposed as well (Fritz et al., 2014).

Module Personalization
Table 2 summarizes the most common biomechanics module
personalization approaches encountered in the recent IBM
publications, while Figure 10 the relationships between the
module’s inputs, outputs and applications. Before personalizing
the modeling of the passive (i.e., resting) properties of the
myocardium, the parameters of the Holzapfel and Ogden
model (see Equations 7 and 8) are typically initialized using
experimental data from biaxial (Krishnamurthy et al., 2013) and
shear tests (Dokos et al., 2002; Sommer et al., 2015) of explanted
myocardial tissue. The passive mechanics parameters are then
further optimized to match the patient-specific end-diastolic
pressure and volume (EDPV) relations (Krishnamurthy et al.,
2013; Meoli et al., 2015; Finsberg et al., 2018; Palit et al., 2018).
The EDPV relation is a graphical representation of the pressure-
volume loop related to the passive filling of the left ventricle
during diastole (i.e., relaxation), and is a measure of the passive
ventricle stiffness. The chamber volume of the left ventricle at the
end of the diastole is defined as the end-diastolic volume (EDV),
which is used to estimate the preloading volume of the heart and
indicate the stiffness of the ventricle.

The active contraction modeling, on the other hand, is coupled
with the cardiac hemodynamics, so it is important to link it
with the patient-specific hemodynamic metrics corresponding
with the end-systolic condition. For example, the pumping
ability of the heart is represented by the end-systolic pressure
(ESP) and the end-systolic volume (ESV), which are the peak
values of pressure and ventricular volume at the end of systole
(i.e., contraction), respectively. The active contraction is also
associated with ejection fraction (EF), which is defined as a
measurement of the percentage of blood leaving out of the
left ventricle with each contraction. Therefore, the optimization
procedure is performed to find the patient-specific parameters
that best replicate the clinical hemodynamics of the patient
in terms of the mean, maximum and minimum values of the
pressures, flows and the cardiac volumes (such as the clinically
recorded values of the ESP, ESV, and EF).

Module Outputs and Applications
Overall, the biomechanics models tend to perform stress analysis,
which is used to evaluate the effects that a defective myocardium
structure has on the heart function, and design new therapies and
treatment devices for reducing the abnormal stress (Guccione
et al., 2003; Wall et al., 2006; Lee et al., 2013; Finsberg et al.,
2018) (see Figure 10). Additionally, they calculate the stiffness
of the heart, which strongly corresponds to its ability to function
normally and can be used as an indicator for HF (e.g., heart
attacks caused by a diastolic dysfunction that occurs when the
ventricle becomes too stiff or weak to pump blood effectively).
Ultimately, however, since the goal of these models is to obtain
the relationship between the biomechanics of the myocardium

tissue and the blood pumping ability of the heart, they also
include a simplified (i.e., no discrete blood cells) hemodynamics
module, which is discussed in the next section.

Module Personalization Example
The following is a discussion of a representative example of the
personalized Biomechanics module applied to five HF failure
patients from San Diego Veteran’s Affairs Medical Center.
Specifically, personalized 3D models of ventricular biomechanics
in their failing hearts were derived from cardiac CT imaging.
The human fiber orientation was modeled using DT-MRI data
from an isolated (i.e., fixed) human organ-donor heart, and
then transposed to the specific patient’s geometric model. The
biomechanics model was then developed for optimizing the
passive material properties to match previous experimental
results on cardiac tissues and patient-specific end-diastolic
pressure and volume relations. The material properties of
the active contraction were also optimized to match patient-
specific measured peak left ventricular pressures and end-systolic
volumes. These components were then integrated to generate
a multi-scale computational approach for the patient-specific
hearts. The simulation results in the patients demonstrated good
agreement with their measured echocardiographic and cardiac
output parameters, such as EF and peak cavity pressures. This
model was developed for stress analysis in HF patients and could
be further developed with the goal of predicting treatments for
heart disease under different interventions.

SIMPLIFIED HEMODYNAMICS MODULE

In the cardiovascular models where clot formation is not
considered, the blood flow is simulated using the incompressible
Navier-Stokes equations. This means they do not account for
discrete cells floating in the plasma. Instead the blood is treated
as a homogeneous weakly non-Newtonian fluid (Shibeshi and
Collins, 2005), which flows mostly in the laminar regime [though
the strong vortices can create transition to turbulence with
Reynolds numbers in the 1500–2500 range (Quarteroni et al.,
2017)]. The fluid-structure interaction between the blood and the
myocardium walls is typically modeled explicitly using moving
mesh approaches: for example, Arbitrary Lagrangian-Eulerian
(Cheng et al., 2005; Chnafa et al., 2014; Su et al., 2014), immersed
boundary (Kohl et al., 2001; Vigmond et al., 2008) and level-
set based methods (Mihalef et al., 2011). The heart valves, on
the other hand, are commonly approximated using the Bernoulli
equation for orifice flow (Flachskampf et al., 1990; Vandervoort
Pieter et al., 1995; Donati et al., 2017).

Additionally, the myocardium hemodynamics are typically
coupled to the rest of the body’s circulation via the Windkessel
circuit model, which mimics the arterial blood pressure’s
waveform. This is a relatively simple method used to obtain
the relationship between the blood flow and the pressure in a
modeled segment through the resistive ‘R’ and the capacitance
‘C’ properties of the arterial vasculature (see Figure 11) (Wall
et al., 2006). Specifically, the heart and the systemic arterial
system are treated as a closed hydraulic circuit, which, contains

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 September 2020 | Volume 8 | Article 529365295

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-529365 September 22, 2020 Time: 20:1 # 14

Nguyen et al. Image-Based Cardiovascular Modeling Overview

a pump connected to a chamber partially filled with a liquid.
As it is pumped, the latter compresses the air pocket in the
chamber, which in turn pushes the liquid back out (i.e., creating a
back-and-forth cycle). Consequently, the arterial compliance, the
peripheral resistance, and the inertia are modeled as a capacitor,
a resistor, and an inductor, respectively. In this model, the
physiological variables such as pressure ‘P’ and flow ‘Q’ only vary
as a function of time ‘t’ (Morris et al., 2016). The relationship
between the flow rate Q(t) and the pressure P(t) can be expressed
by:

Q(t) =
P(t)

R
+ C

dP(t)
dt

(11)

It essentially states that the volumetric flowrate must equal to
the sum of the volume stored in the capacitive element and the
volumetric outflow through the resistive element. During the
diastole there is no blood inflow (Q = 0), so the Windkessel
equation can be solved for the P(t):

P(t) = P(td)e
−(t−td)

(RC) (12)

where td is the time of the start of the diastole and P(td) is the
blood pressure at that time. Due to its simplicity, the Windkessel
equation is frequently used to approximate various components
and boundary conditions in the cardiovascular system (Morris
et al., 2016). However, this model is only a rough approximation

TABLE 2 | A recent literature survey of how the Biomechanics module is typically personalized using image-based information.

Imaging method Personalized Information from
Imaging

Mapping of the Personalized Information from
the Imaging to the Module’s Inputs

Citation

CT combined transthoracic 2D; and
continuous-wave Doppler
echocardiography

Geometry with Infarcted regions,
ventricular dimensions including early
diastolic volume, EDV, ESV and blood
flow velocities

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results on cardiac tissues and match
patient-specific EDPV relations; active mechanics
parameters were adjusted to match the
patient-specific measured peak left ventricular
pressures and ESV.

Krishnamurthy et al.,
2013

DT-MRI from explanted heart Fiber direction

Cine cardiac MRI Geometry with ventricular dimensions
and ejection fraction (EF).

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results and match the previous results
of EDPV relations (due to the unavailability of
subject-specific ventricular pressures that require
invasive measurements).

Palit et al., 2018

Cine cardiac MRI Geometry with ventricular dimensions
and regional strain-time

Geometry was personalized; passive mechanics
parameters were fitted to match patient-specific
EDPV relations; active mechanics parameters were
adjusted to match the patient-specific end-systolic
state.

Finsberg et al., 2018

MRI flow tracing and echocardiographic
Doppler velocity tracings

Geometry with ventricular dimensions
and blood flow velocities.

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results on cardiac tissues and match
patient-specific EDPV relations; active mechanics
parameters were adjusted to match the
patient-specific measured peak left ventricular
pressures.

Meoli et al., 2015

MRI Geometry with ventricular dimensions Geometry was personalized; passive parameters
were tuned so that the resultant EDV matched the
corresponding MRI-measured cavity volume; active
parameters were adjusted so that the resultant ESV
matched the corresponding MRI-measured cavity
volume.

Lee et al., 2013

Cine MRI and Echocardiography Geometry with ventricular dimensions
and EF

Geometry was personalized; passive and active
parameters were determined by minimizing the sum
of the squared differences between computed and
measured EF, stroke volume, EDV, ESV,
end-diastolic pressure and end-systolic pressure.

Kayvanpour et al., 2015

Cine MRI Geometry with ventricular volume
waveforms

Geometry was personalized; biomechanics
parameters were tuned along with hemodynamics
parameters; passive parameters were adjusted to
match the measured EDPV; active parameters were
adjusted to match patient-specific volume and
pressure waveforms.

Shavik et al., 2020

Phase-contrast MRI Luminal area waveforms
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FIGURE 10 | Summary of the Biomechanics module’s inputs, outputs and applications. Superscripts in the figure correspond to the following references:
1Krishnamurthy et al., 2013; Meoli et al., 2015; Finsberg et al., 2018; 2Krishnamurthy et al., 2013; Meoli et al., 2015; 3Krishnamurthy et al., 2013; Kayvanpour et al.,
2015; Meoli et al., 2015; Finsberg et al., 2018; Palit et al., 2018; Shavik et al., 2020; 4Krishnamurthy et al., 2013; 5Krishnamurthy et al., 2013; Palit et al., 2018; 6Lee
et al., 2013; Meoli et al., 2015; Finsberg et al., 2018.

of the arterial circulation. To that end, the next section covers the
approaches to more detailed hemodynamic formulations.

HEMODYNAMICS WITH
THROMBOGENESIS MODULE

The last class of the cardiovascular models is the one in which the
hydrodynamics of the discrete blood cells, and the biochemistry
associated with their physiological activity, are of interest.
For example, such simulations could be focused on studying
pathological clot formation inside of the heart (Choi et al., 2015;

FIGURE 11 | Two-element Windkessel circuit analogy illustrated.

Mittal et al., 2016; Seo et al., 2016; Harfi et al., 2017), or
embolism into it from other parts of the body. Therefore, these
types of models must simulate the blood as a suspension of
deformable cells (e.g., platelets and/or red blood cells), whose fate
is intertwined with the mechanical motion of the myocardium
(and by association with the electrophysiology of the heart).
This is typically done using Stokesian Dynamics methods,
Dissipative Particle Dynamics, Completed Double Layer
Boundary Integration Equation Method and Lattice Boltzmann
Method (Wang and King, 2012). These are mesoscopic off-
and on- lattice frameworks that calculate trajectories of the
cells under the influence of hydrodynamic and Brownian
forces; while the deformation of the structure is typically
simulated using continuum-based models that treat the cell
membrane and intracellular fluids as homogeneous materials:
some popular approaches are the Boundary Integral Method, the
Immersed Boundary Method, and the Fictitious Domain Method
(Li et al., 2017).

To make matters even more complicated, the mechanism
of the blood clot formation strongly depends on the following
three processes: Receptor-Ligand Binding, Platelet Activation and
the Coagulation Cascade. Specifically, the initiation of thrombus
development starts with tethering of circulating platelets onto
the exposed subendothelial layer where a blood vessel is injured.
This process involves bonding between the various receptors on
the platelet surfaces to the extravascular proteins, such as the
von Willebrand Factor. It is typically modeled using a Monte
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Carlo approach called Adhesive Dynamics, while the rate of the
receptor-ligand bond formation and breakage are determined
by the Bell Model that calculates the probability of dissociation
events occurring over a specific timespan.

Once the platelets have been recruited to the injury site,
they undergo a metamorphosis that is generally described
as “activation.” During this process, the membrane receptors
transmit signals to the inside of the cells, which results in the
dumping of chemical agonists stored in the internal vesicles called
lysosomes and granules (e.g., dense and alpha). The release of
these molecules then activates other neighboring platelets, which
ultimately leads them to becoming “stickier” and compacting into
the blood clot’s body. Unfortunately, the bottom-up description
of the process contains numerous unknowns (Dolan and
Diamond, 2014). For this reason, it has been instead described
via a top-down Neural Network approach, which was trained on
patient-specific experimental data (Flamm et al., 2012).

Lastly, the coagulation cascade is a system of coupled
biochemical reactions with two different initiation pathways,
which both ultimately lead to the polymerization of soluble
fibrinogen (a blood plasma protein) into an insoluble fibrin
mesh that holds the clot together. The kinetic portion of the
cascade involves 34 differential equations, with 42 rate constants,
that cumulatively account for 27 independent equilibrium
expressions and fates of 34 chemical species (Hockin et al.,
2002). Additionally, the mass transport of these species must

be tracked under the flow conditions experienced in the
cardiovascular system (which involves Knudsen diffusion within
the porous clot). Figure 12 summarizes the coupling of the
various hemodynamics submodules, as well as the methods
used to solve them.

Module Personalization
Table 3 summarizes the most common hemodynamics module
personalization approaches encountered in the recent IBM
works, while Figure 13 maps the relationships between the
module’s inputs, outputs and applications. Similarly to the
previous modules, the macroscopic geometry of the heart, and
that of the surrounding blood vessels, is commonly obtained
for use in the Hemodynamics modules via the in vivo imaging
techniques (such as MRI and CT). Additionally, for the body’s
circulation, the parameters values for the Windkessel model
(i.e. ‘R’ and ‘C’ elements) are typically chosen to match the
patient specific cardiac output, flow waveforms and pressure
pulses (Kim et al., 2009, 2010; Kung et al., 2014) obtained via
contrast-enhanced CT scans, Doppler ultrasound scanning and
invasive blood pressure measurements (IBPM). Particularly, the
Doppler ultrasonography allows the measurement of the cardiac
output and heart rate; and the IBPM allows to measure the
systolic and diastolic pressures (Bonfanti et al., 2019). Specifically,
they are first chosen based on literature data (Segers et al.,
2002; Kim et al., 2009) and are then iterated until the calculated

FIGURE 12 | Overview of the specific methods, modules and models commonly used in the state-of-the-art multiscale platelet hemodynamics and thrombus
development studies. (Adopted with permission from Wang and King, 2012).
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flow parameters match the subject’s unique physiological profile
(Kim et al., 2009).

Unfortunately, due to the enormous complexities and
computational costs of the heart modeling, oversimplifications
are common in the personalization of the blood properties within
the Hemodynamics modules. Given that it is typically assumed to
be a Newtonian (or weakly non-Newtonian) fluid, it effectively
does not contain discrete blood cells, such as the platelets or
the erythrocytes. This, in turn, means that only simple flow
properties, like fluid viscosity can be personalized to the subject.
Consequently, the patient-specific biology of these cells (e.g.,
thrombotic propensity, sickle cell anemia, etc.) are omitted. Yet,
in the non-cardio blood modeling, attempts at personalizing
such functionality and disorders have been made: for example,
the application of the Neural Networks trained on the patient-
specific experimental data in order to phenotype the platelet
activation (Flamm et al., 2012). However, we could not find
an example of such an extensive blood personalization in the
cardiovascular modeling literature.

Module Outputs and Applications
Figure 13 summarizes the inputs, outputs and applications of
the cardiac hemodynamics module. Overall, the models that use

the simplified hemodynamics formulation tend to calculate the
blood flow parameters, like the pressure-volume relationship of
the cardiac cycle. These, in turn, help to elucidate quantities that
are key to understanding the heart dysfunctions: such as the
end-diastolic and the end-systolic pressure volume relationships.
Additionally, Fractional Flow Reserve, which is defined as the
pressure difference across a coronary artery stenosis (e.g., a
narrowing due to atherosclerosis), can be calculated to determine
the likelihood that the latter would impede oxygen delivery to
the heart and lead to a myocardial ischemia. Furthermore, the
biomechanical models measure “compliance,” which is the ability
of the blood vessel walls to stretch in order to accommodate
an increasing amount of blood; and “resistance” (defined as
the ratio of the pressure drop and the flow change across the
segment) that the blood flow experiences due to viscous stresses
and constrictions by the blood vessels. Most importantly, the
biomechanics-hemodynamics modeling can be used to predict
the left ventricular ejection fraction (LVEF) - a main indicator
of HF, which is expressed as a percentage of how much blood
the left ventricle pumps out with each contraction. Lastly, such
models can be used to investigate the effects of the blood pumping
assist devices (e.g., LVAD) on the cardiac function, which may
otherwise be too difficult or costly to study experimentally.

TABLE 3 | A recent literature survey of how the Hemodynamics modules are typically personalized using image-based information.

Imaging method Personalized Information from Imaging Mapping of the Personalized Information from the
Imaging to the Module’s Inputs

Citation

CT Coronary arteries geometry Geometry was personalized; parameter values for coronary
model were obtained from literature; parameter values of
lumped heart model (for the inlet) and Windkessel models
(for the outlet) were adjusted to match subject-specific
cardiac output and pulse pressure.

Kim et al., 2010

MRI Coronary arteries geometry Geometry was personalized; parameter values of lumped
heart model (for the inlet) and Windkessel models (for the
outlet) were adjusted to match subject-specific flow
distribution and measured brachial artery pulse pressure.

Kim et al., 2009

CT angiogram Right coronary artery with aneurysmal
region

Geometry was personalized; Windkessel model’
parameters were adjusted to match subject-specific flow
distribution and pressure at outlet boundary of the coronary
artery.

Kung et al., 2014

Phase contrast MRI 3-component flow velocity at two slice
locations in the coronary aneurysm
geometry

Contrast-enhanced CT Aortic dissection geometry Geometry was personalized; inlet flowrate was obtained by
adjusting a typical ascending aorta blood flow waveform to
match the patient-specific hemodynamic data including
cardiac output, heat-rate and systolic-to-diastolic duration
ratio; for the outlet, Windkessel models parameters were
adjusted to achieve patient-specific physiological flow
distribution at each outlet, and to obtain the measured
systolic and diastolic pressures at the inlet.

Bonfanti et al., 2019

Doppler ultrasonography Cardiac output and heart rate

CT angiogram Coronary arteries geometry Geometry was personalized; parameter values of lumped
heart model (for the inlet) and Windkessel models (for the
outlet) were adjusted to match subject-specific flow
distribution and measured aortic pressure.

Grande Gutierrez et al.,
2017

4D cardiac CT images and
echocardiogram

Whole-heart geometry with kinematics of
left ventricle lumen: heart rate, EDV, ESV,
EF, stroke volume.

Geometry was personalized; the immersed
boundary-based method is used to match the
patient-specific kinematics of the left ventricular lumen
including heart rate, EDV, ESV, EF and stroke volume.

Harfi et al., 2017
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FIGURE 13 | Summary of the Hemodynamics modules’ inputs, outputs and applications. Superscripts in the figure correspond to the following references: 1Kim
et al., 2009, 2010; Kung et al., 2014; Bonfanti et al., 2019; 2Tang et al., 2010; Choi et al., 2015; 3Kung et al., 2014; Grande Gutierrez et al., 2017; 4Kim et al., 2010;
Bonfanti et al., 2019; 5Seo et al., 2016; Harfi et al., 2017; 6Koo et al., 2011; Zhang et al., 2014; Min et al., 2015.

Conversely, the models that use the thrombogenesis
hemodynamics module tend to try to assess the propensity of
clot formation at (or near) the heart, based on parameters that
are related to platelet activation: such as the Wall Shear Rate;
the blood Residence Time Near a Damaged Tissue; the Ejection
Fraction (i.e., the percentage of the blood leaving the left ventricle
each time it contracts); Washout Ratio (i.e., the ratio of delayed
ejection volume to the total ventricular blood at the beginning
of the cycle). Additionally, some of these models simulate how
drugs and clot breakup devices (e.g., Vena cava filters) help to
protect the heart from pathogenic events. Overall, this is the most
computationally expensive model type, due to the complexity of
the thrombogenesis/embolism processes (which are themselves
still being actively investigated) (Wang and King, 2012).

Module Personalization Example
The following is a discussion of a representative example of the
personalized hemodynamics modeling applied to predicting the
thrombosis risk in patients with Kawasaki disease (KD) (Grande
Gutierrez et al., 2019). Thrombosis is a major complication
associated with coronary artery aneurysms (CAAs) resulting
from the KD. In this research, the aneurysm hemodynamics
were investigated for thrombotic risk stratification in ten
KD patients, and were compared to the standard clinical
guidelines for anticoagulation therapy. The patient-specific
models were generated from MRI data by performing an

angiography of: the heart, the main coronary arteries (right,
left main, left anterior descending and circumflex), and the
aorta and its arch branches (the brachiocephalic artery, the
left common carotid artery and the left subclavian artery).
This was done via the injection of gadolinium-based contrast
with a cardiac and respiratory-gated 3D TrueFISP sequence.
Computational hemodynamic simulations were then performed
in the reconstructed anatomical model using SimVascular
software (Grande Gutierrez et al., 2019). The pulsatile flow,
deformable arterial walls and Windkessel parameters were tuned
to match the patient-specific arterial pressure and cardiac output.
Local hemodynamics variables were derived from the simulation
results, including the time-averaged wall shear stress, low wall
shear stress exposure and blood residence time. These variables
were then used to develop a framework for predicting the
thrombosis risk. Although platelet activation and aggregation are
typically associated with regions of higher fluid shear (Casa et al.,
2015) and longer blood stagnation (Hathcock James, 2006), this
study showed that a combination of low shear stress coupled
with a high residence time correlated to thrombus formation
in the KD CAAs patients. Furthermore, it was shown that
the prediction of the thrombotic risk using the hemodynamic
variables was validated with a higher sensitivity and specificity
in comparison with the standard clinical metrics. In conclusion,
this type of personalized computational modeling can be used
to provide a non-invasive thrombotic risk stratification that is
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FIGURE 14 | Summary of cardiovascular IBM’s modules and their respective inputs and outputs with corresponding references: 1Krishnamurthy et al., 2013;
Lopez-Perez et al., 2015; 2Krishnamurthy et al., 2013; Cardenes et al., 2014; Kayvanpour et al., 2015; Lopez-Perez et al., 2015; 3Krishnamurthy et al., 2013;
Grande Gutierrez et al., 2017; Finsberg et al., 2018; 4Meoli et al., 2015; Bonfanti et al., 2019; 5Arevalo et al., 2016; Trayanova et al., 2017; Lopez-Perez et al., 2019;
6Krishnamurthy et al., 2013; Finsberg et al., 2018; Palit et al., 2018; 7Kung et al., 2014; Grande Gutierrez et al., 2017; Bonfanti et al., 2019; 8Choi et al., 2015; Seo
et al., 2016; Harfi et al., 2017; 9Arevalo et al., 2016; Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al., 2018; 10Arevalo et al., 2016; Trayanova et al.,
2017; Deng et al., 2019; 11Voorhees and Han, 2015; Walmsley et al., 2017; Lee et al., 2018; 12Koo et al., 2011; Min et al., 2012, 2015; Zhang et al., 2014; Min
et al., 2015.

more accurate than the current clinical approaches. This, in
turn, can assist the long-term medical management of the KD
patients with the CAAs.

SUMMARY AND CONCLUSION

Most of the published cardiovascular modeling reviews are
typically oriented at an expert audience, which makes it difficult
for the outsiders to understand the full medical potential
of these methods. One of the barriers to penetrating the
field is that these works tend to focus on just one or two
specific aspects of the simulation approach at a time: such as
imaging (Weese et al., 2013; Lamata et al., 2014; Watson et al.,
2018), electrophysiology (Lopez-Perez et al., 2015; Rodriguez
et al., 2015; Beheshti et al., 2016; Gray and Pathmanathan,
2018; Ni et al., 2018), biomechanics (Wang et al., 2015;
Chabiniok et al., 2016), hemodynamics (Zhong et al., 2018),
electro-biomechanical coupling (Trayanova, 2011, 2012; Tobon-
Gomez et al., 2013; Niederer et al., 2019b), biomechanics-
hemodynamics coupling (Tang et al., 2010; Sun et al., 2014), etc.
In contrast, our manuscript provides a “big picture” overview
of the components that these models are built from; their
mechanisms, inputs, outputs and connecting pipelines; the

underlying physiological processes that they represent; their
image-based personalization to the individual patient’s unique
anatomy; and their applications to the different cardiovascular
disease understanding and treatments.

As a part of our review, it was found that although
this type of modeling holds a tremendous potential for
revolutionizing personalized cardiovascular medicine, it is still
in its infancy (with HeartFlow being the only commercially
available product). Furthermore, due to the slow speed of
high-resolution imaging, most of the IBM in academia still
rely on scans of dead hearts (as opposed to beating ones).
This, however, is expected to change, as the imaging speeds
of mCT and MRI are increased. As far as the physics being
modeled, the modules, their inputs and outputs are summarized
in Figure 14. The simplest application of the cardiovascular
IBM is to the study of arrythmias, which simulates the
propagation of electrical impulses through the myocardium,
while ignoring the biomechanics and hemodynamics. At the
subcellular level, these models calculate transfer of ions across
the cell membrane channels, while at the macro level the
transfer of potential between the cells is modeled as a diffusive
process. Conduction irregularities, ablation targets, and effects
of defibrillation are just some of the outputs provided by the
electrophysiological models.
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The more complex models account for the biomechanical
processes occurring in the myocardium. These models are
focused on how abnormalities in the tissue morphology and
stiffness affect the pumping efficiency of the heart. At the
subcellular level, they simulate how the electrically driven
calcium signaling governs the crossbridge mechanism of the
active tension generation via the actin-myosin interactions
in the cells’ sarcomeres. Additionally, the solid mechanics
calculation also involves the passive stress of the myocardium,
which represents the stress-strain relationship of the cardiac
fibers without the electrical stimulation. The resulting tissue
deformation is then backwards-coupled to the electrophysiology,
since the stretching of the cells can change the gap junction
distance to their neighbors (which results in changes to the
ionic conductivity).

Lastly, these models are coupled to the hemodynamics
calculations via fluid-structure interactions. If only the blood
flow without the clot formation is of interest, then the
structure of the fluid is approximated to be homogeneous
and Newtonian; while the rest of the body’s circulation is
introduced as an oscillating pressure boundary condition that
is assumed to behave like a simple RC circuit. This type
of model can provide insight into HF due to deformities
and obstructions, as well as allow for virtual design and
testing of assisted pumping devices. On the other hand, if
clotting information is necessary, the blood must be treated
as a suspension of deformable particles, with receptor ligand
interactions, intra-cellular signaling, and coupled biochemical
reactions representing the coagulation cascade. Although a
lot more involved, this type of model can be useful for
antithrombotic drug development and design of clot breakup
devices (e.g., Vena cava filters) meant to protect the heart.
However, for simplicity most cardiovascular IBM do not account
for the hydrodynamics and biomechanics of the individual blood
cells. Likewise, the coagulation cascade and the platelet activation,
both of which are central to thrombogenesis, are oversimplified
relative to the state-of-the-art within the non-cardiovascular
blood modeling field.

Overall, the cardiovascular IBM is expected to become more
mainstream as the computational and imaging technologies
advance. This could potentially revolutionize how cardiovascular
medicine is done in the future. Yet, significant improvements

are still required to personalize the models more. For example,
a common limitation across all of the modules is that the
myocardium (e.g., conductivity and tissue stiffness) and the blood
(e.g., hematocrit, coagulation cascade and platelet activation
kinetics and deficiencies) properties that they use are typically
estimated based on empirical measurements performed ex vivo
and using samples that are not derived from the same individual
(or even from the same species for that matter). Therefore,
better imaging methods need to be developed, such that these
properties could be estimated by scanning the individual patient.
Furthermore, a finer image resolution is needed to capture
the individualized variations in the conductive and contractile
fibers, and their junctions. Likewise, the computational methods
need to improve their modeling of the intra-cellular processes
(e.g., the crossbridge mechanism) for the cardiovascular IBM to
become more physiologically representative and adopted by the
mainstream clinical market. However, given the fast pace of the
technological progress, the near future impact of the IBM on the
cardiovascular medicine is imminent.
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GLOSSARY

Action Potential
A brief reversal (i.e., “depolarization” increase from a negative resting state followed by “repolarization” down to the original levels)
in the voltage polarity of cardiomyocytes, which is generated by ion (e.g., Ca++, Na+, and K+) exchange across specialized channels
in the cell membrane. The propagation of this electrical impulse through the heart tissue occurs via currents of the Ca++ and K+
ions moving through the gap junctions from the activated cells to their resting neighbors. This leads to the eventual contraction of the
cardiac fibers along the conduction pathway.

Activation Rate Gradient
An arrythmia measure indicating a difference in the speed with which cardiomyocytes in the epicardial and in the endocardial tissues
activate (i.e., depolarize/repolarize) in response to applied external stimuli (e.g., electrodes, needles, heat, blocking ion channels via
medications, etc.) during Ventricular Fibrillation studies.

Bidomain Formulation
A mathematical framework that is used in Electrophysiology modeling to simulate the propagation of the Action Potential (see
definition) through the myocardium. As opposed to the Monodomain Formulation (see definition), it considers both the intra- and
the extra- cellular domains of the ion exchange across the cardiomyocyte membrane separately.

Cauchy–Green (Left and Right) Tensors
Rotation-independent measures of the material (e.g., myocardium tissue) deformation, in a spatial reference and in the object’s
coordinate systems, respectively. They are often used when describing the passive properties of hyperelastic materials, such as the
diastolic cardiac dysfunction.

Conductivity Tensor
A mathematical quantity that describes the electrical conductivity of the myocardium. This property is highly dependent on the
orientation of the fibers that the conductive heart cells are arranged into within the tissue. For this reason, the effective conductivity of
the myocardium differs, depending on the direction of the current flow. Therefore, the tensor encompasses 9 total conductivity values:
three of them represent directions along each of the principle axes, while the other six express the correlation of the conductivity
between each pair of the principal directions.

Deformation Gradient Tensor
A mathematical quantity that describes a shape change (e.g., stretch), as well as overall rotation, relative to an initial state of a material
(e.g., cardiac fiber structure). It holds information about the difference in the current locations of neighboring cardiomyocytes and is
unity when they are displaced equally (i.e., for no deformation).

Diffusion Tensor
A mathematical quantity calculated in magnetic resonance imaging to visualize structural arrangements (e.g., fibers, sheets) of the
cardiomyocytes within the myocardium. It is based on at least 6 unique (plus one baseline) measurements of how the diffusion of
water molecules is restricted or biased in different directions by the structural obstructions that they encounter during their motion
in the tissues of the hearts. Therefore, the tensor encompasses three main elements that represent diffusion coefficients along each of
the principal axes, while the off-diagonal terms reflect the correlation of random motions between each pair of principal directions.

Determinant of the Deformation Gradient Tensor
A scalar value corresponding to the ratio of the deformed to the undeformed volume, which is computed from the elements of the
Deformation Gradient Tensor (see definition) in order to quantify the amount of transformation occurring in the cardiac geometry.

Invariant
A property of a mathematical quantity which remains unchanged after an application of an operation or a transformation. For
example, when calculating strain and stress of the cardiac fibers it is important that the resulting principal values remain the same,
regardless of the coordinate system chosen for their calculation or measurement.

Membrane Capacitance
A constant that describes the relationship between the voltage across the membrane of a cell and the ionic charge that builds up on its
interior and exterior surfaces. In cardiomyocytes it effectively determines how quickly the Action Potential (see definition) can travel
through the myocardium. It is therefore useful for both modeling and understanding their excitability and pathological conditions.
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Monodomain Formulation
A mathematical framework that is used in Electrophysiology modeling to simulate the propagation of the Action Potential through
the myocardium. As opposed to the Bidomain Formulation (see definition), it does not consider both the intra- and the extra- cellular
domains of the ion exchange across the cardiomyocyte membrane. Instead, the framework is expressed in terms of a transmembrane
potential, which assumes that the intracellular and extracellular ion diffusivities are proportional to each other.

Neural Network
A set of artificial intelligence algorithms, modeled loosely after how the human brain learns, that are designed to recognize patterns
within complex datasets. In cardiovascular modeling specifically, they are used to represent processes that are too difficult to describe
mathematically using first-principle methods: for example, platelet “activation” – a cascade of cell membrane surface receptor
activation, intracellular signaling, dumping of granules, etc. – in the context of thrombosis.

Stored (a.k.a., Strain) Energy Density Function
Energy per unit volume of a material temporarily deformed by an applied force, like a coiled spring or a stretched elastic band.
This quantity is commonly used to formulate constitutive force-deformation relationships that characterize the spatial and temporal
variations in the orthotropic (i.e., different in the axial, radial, and circumferential directions) properties of the myocardium. It is
largely dominated by the structural arrangements of the myocardial fibers in the heart tissue.
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Transcription and translation are at the heart of metabolism and signal transduction.

In this study, we developed an effective biophysical modeling approach to simulate

transcription and translation processes. The model, composed of coupled ordinary

differential equations, was tested by comparing simulations of two cell free synthetic

circuits with experimental measurements generated in this study. First, we considered

a simple circuit in which sigma factor 70 induced the expression of green fluorescent

protein. This relatively simple case was then followed by a more complex negative

feedback circuit in which two control genes were coupled to the expression of a third

reporter gene, green fluorescent protein. Many of the model parameters were estimated

from previous biophysical studies in the literature, while the remaining unknown model

parameters for each circuit were estimated by minimizing the difference between model

simulations and messenger RNA (mRNA) and protein measurements generated in this

study. In particular, either parameter estimates from published studies were used directly,

or characteristic values found in the literature were used to establish feasible ranges

for the parameter estimation problem. In order to perform a detailed analysis of the

influence of individual model parameters on the expression dynamics of each circuit,

global sensitivity analysis was used. Taken together, the effective biophysical modeling

approach captured the expression dynamics, including the transcription dynamics, for

the two synthetic cell free circuits. While, we considered only two circuits here, this

approach could potentially be extended to simulate other genetic circuits in both cell

free and whole cell biomolecular applications as the equations governing the regulatory

control functions are modular and easily modifiable. The model code, parameters, and

analysis scripts are available for download under an MIT software license from the

Varnerlab GitHub repository.

Keywords: systems biology, synthetic biological circuits, cell free, mathematical modeling, simulation

1. INTRODUCTION

Cell free systems are a widely used research tool in systems and synthetic biology and a promising
platform for the manufacturing of proteins and chemicals (Vilkhovoy et al., 2020). A distinctive
feature of cell free systems is the absence of cellular growth and maintenance, thereby allowing the
direct allocation of carbon and energy resources toward a product of interest. Cell free systems are
also more amenable than living systems to observation and manipulation, hence allowing rapid
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tuning of reaction conditions. Arguably, the most widely used
cell free technology is cell free protein synthesis (CFPS), an in
vitro platform for protein transcription (TX) and translation
(TL). Transcription and translation, the processes by which
information stored in DNA is converted to a working protein,
are at the center of metabolism and signal transduction programs
important to biotechnology and human health. For example,
evolutionarily conserved developmental programs such as the
epithelial to mesenchymal transition (EMT) (Thiery, 2003), or
retinoic acid induced differentiation (Nilsson, 1984), rely on
multiple rounds of highly coordinated gene expression. From the
perspective of biotechnology, even relatively simple industrially
important organisms such as Escherichia coli, have intricate
transcriptional regulatory networks which control the metabolic
state of the cell in response to changing nutrient conditions (Orth
et al., 2010; Vilkhovoy et al., 2016). Understanding the dynamics
of regulatory networks can be greatly facilitated by mathematical
models. A majority of these models fall into three categories:
logical, continuous, and stochastic models (Karlebach and
Shamir, 2008). Logical models such as Boolean networks (Glass
and Kauffman, 1973) developed using a variety of approaches and
data (Pratapa et al., 2020) represent the state of each network
entity as a discrete variable, provide a quick but qualitative
description of the behavior of the regulatory network. Linear and
non-linear ordinary differential equation (ODE) models fall into
the second category, and they generally provide a detailed picture
of the network dynamics, although they can be non-physical
models, e.g., relying on a gene signal perspective (Bonneau et al.,
2006). Lastly, stochastic models describe the interactions between
individual molecules, and discrete reaction events (McAdams
and Arkin, 1997; Mettetal et al., 2006; Kaufmann and van
Oudenaarden, 2007; Raj and van Oudenaarden, 2008). Model
choice depends on criteria such as speed, the level of detail
required and the quantity of experimental data available to
estimate the model parameters. While the end goal of the models
might be to accurately predict in vivo behavior, living systems
do not necessarily provide an ideal experimental platform. For
example, although there have been significant advancements in
metabolomics (e.g., Park et al., 2016), the rigorous quantification
of intracellular messenger RNA (mRNA) copy number or protein
abundance remains challenging. Toward this challenge, cell free
systems offer several advantages for the study of transcription and
translation processes.

Cell free biology has historically been an important tool to
study the fundamental biological mechanisms involved with
gene expression. In the 1950s, cell free systems were used to
explore the incorporation of amino acids into proteins (Borsook,
1950; Winnick, 1950a,b), and the role of adenosine triphosphate
(ATP) in protein production (Hoagland et al., 1956). Further,
E. coli extracts were used by Nirenberg and Matthaei in 1961
to demonstrate templated translation (Matthaei and Nirenberg,
1961; Nirenberg and Matthaei, 1961), leading to a Nobel Prize
in 1968 for deciphering the codon code. More recently, as
advancements in extract preparation and energy regeneration
have extended their durability, the usage of cell free systems has
also expanded to both small- and large-scale biotechnology and
biomanufacturing applications (Swartz, 2018; Silverman et al.,

2019). Today, cell free systems have been implemented for
therapeutic protein and vaccine production (Ng et al., 2012;
Jaroentomeechai et al., 2018; Stark et al., 2019), biosensing
(Soltani et al., 2018), genetic part prototyping (Moore et al.,
2017) and minimal cell systems (Yue et al., 2019). The versatility
of cell free systems offers a tremendous opportunity for the
systems-level experimental and computational study of biological
mechanism. For example, a number of ordinary differential
equation based cell free models have been developed (Stögbauer
et al., 2012; Mavelli et al., 2015; Matsuura et al., 2017; Doerr
et al., 2019; Marshall and Noireaux, 2019). However, despite the
obvious advantages offered by a cell free system, experimental
determination of the kinetic parameters for these models is often
challenging. For instance, the cell free modeling study of Horvath
and coworkers (which included a description of transcription
and translation, and the underlyingmetabolism supplying energy
and precursors for transcription and translation), had over 800
unknownmodel parameters (Horvath et al., 2020). Moreover, the
construction, identification and validation of the Horvath model
took well over a year to complete. Thus, constructing, identifying
and validating biophysically motivated cell free models, which
are simultaneously manageable, is a key challenge. Toward this
challenge, effective modeling approaches which coarse grain
biological details but remain firmly rooted in a biophysical
perspective, could be an important tool.

In this study, we developed an effective biophysical modeling
approach to simulate cell free transcription and translation
processes. The model used classical biophysical arguments to
formulate kinetic expressions for the rates of transcription and
translation. These rates were then used in material balance
equations (ordinary differential equations) to simulate themRNA
and protein concentration as a function of time for different
cell free genetic circuits. The model was effective as it neglected
potentially important mechanistic factors, and the integration of
transcription and translation with metabolism. For example, the
model did not consider how the transcription and translation
rate was influenced by the availability of metabolic resources,
e.g., energy or building block concentration. Nor did the model
consider potentially important biology, for example the role of
elongation factors or protein folding chaperones (among many
other potentially important factors). We tested this approach by
comparing simulations of two cell free synthetic circuits with
messenger RNA (mRNA) and protein measurements (deGFP)
generated in this study using the E. coli based myTXTL cell
free system. First, we considered a simple circuit (C1) in which
endogenous sigma factor 70 (σ70) induced the expression of a
fast maturing dual emission green fluorescent protein variant
(deGFP). This relatively simple case was then followed by a more
complex negative feedback circuit (C2) where two control genes
were coupled to the expression of deGFP. The second circuit is an
extension of the first, with the presence of additional regulatory
elements. Characteristic values for many of the model parameters
were estimated from published biophysical studies or took the
form of corrections to order of magnitude literature estimates,
while the remaining unknown model parameters for each circuit
were estimated by minimizing the difference between simulated
and measured mRNA and protein concentrations. In particular,
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either parameter estimates from published studies were used
directly, or characteristic values found in the literature were used
to establish feasible ranges for the parameter estimation problem.
Next, in order to provide a detailed insight into the influence
of individual model parameters on the expression dynamics of
each circuit, Morris sensitivity analysis was employed. For C1,
the sensitivity results were informative, but expected. However,
for C2, the analysis hierarchically stratified the parameters (and
associated model species) into local vs. global categories. For
example, parameters that controlled the abundance of lambda
phage repressor protein (cI-ssrA), a master circuit regulator
in C2, were globally important as they influenced all other
species. On the other hand, the parameters that influenced
deGFP levels (the endpoint of both circuits) were only locally
important to deGFP. Taken together, the effective biophysical
modeling approach captured the expression dynamics, including
the transcription dynamics, for two synthetic cell free circuits.
While, we considered only two circuits here, this approach could
potentially be extended to simulate other genetic circuits in both
cell free and whole cell biomolecular applications. The model
code, parameters, and analysis scripts are available under an MIT
software license from the Varnerlab GitHub repository1.

2. MATERIALS AND METHODS

2.1. Cell Free Protein Synthesis Reactions
The cell free protein synthesis (CFPS) reactions were carried out
using the myTXTL Sigma 70 Master Mix (Arbor Biosciences) in
1.5 mL Eppendorf tubes. The working volume of all the reactions
was 12 µL, composed of the Sigma 70 Master Mix (9 µL) and the
plasmids (3 µL total): P70a-deGFP (5 nM) for the single-gene
system; P70a-deGFP-ssrA (8 nM), P70a-S28 (1.5 nM), and P28a-
cI-ssrA (1 nM) for the negative feedback circuit. The plasmids
were bought in lyophilized form (Arbor Biosciences) and purified
using QIAprep Spin Miniprep Kit (Qiagen) using cell lines
DH5-Alpha (for P28a-cI-ssrA) or KL740 (for P70a-deGFP, P70a-
deGFP-ssrA, and P70a-S28). The CFPS reactions were incubated
at 29◦C.

2.2. mRNA and Protein Quantification
Following each CFPS run, the total RNA was extracted
from 1 µL of the reaction mixture using PureLink RNA
Mini Kit (Thermo Fisher Scientific) and stored at −80◦C.
The quantitative RT-PCR reactions were done using Applied
BiosystemsTM TaqManTM RNA-to-CTTM 1-Step Kit and Custom
TaqMan Gene Expression Assays (Thermo Fisher Scientific). An
mRNA standard curve was used to determine absolute mRNA
concentrations for each of the samples. The mRNA standards
were prepared as follows: separate CFPS reactions for 5 nM of
plasmids (P70a-S28, P70a-deGFP, and P70a-deGFP-ssrA) were
carried out for 2 h. Total RNA was extracted using the full
reaction volume. This was followed by the removal of 16S
and 23S rRNA using the MICROBExpressTM Bacterial mRNA
Enrichment Kit (Life Technologies Corporation). Lastly, the
MEGAclearTM Kit (Life Technologies Corporation) was used

1Varnerlab. Github reposistory for tx/tl model code. Available online at https://

github.com/varnerlab/Biophysical-TXTL-Model-Code.

to further purify the mRNA. The mRNA concentrations were
determined using the QubitTM RNA assay kit (ThermoFisher
Scientific). At least three technical replicates were performed
for each standard. The concentration of cI-ssrA mRNA was
quantified using the deGFP-ssrA mRNA standard. Green
fluorescent protein (deGFP) fluorescence wasmeasured using the
Varioskan Lux plate reader at 488 nm (excitation) and 535 nm
(emission). At the end of the CFPS run, 3 µL of the reaction
mixture was diluted in 33 µL phosphate buffered saline (PBS)
and stored at−80◦C. The fluorescence was measured in triplicate
with 10 µL each of this mixture. For all measurements, at least
three biological replicates were performed.

2.3. Synthetic Circuit Architecture
The two genetic circuits (C1 and C2) used in this study were based
upon the bacterial sigma factor regulatory system (Figure 1).
Sigma factor 70 (σ70), endogenously present in the extract,
was the primary driver of each circuit. In C1, σ70 induced
green fluorescent protein (deGFP) expression was explored in
the absence of additional regulators or protein degradation
(Figure 1A). In C2, σ70 induced the expression of sigma factor
28 (σ28) and deGFP-ssrA (Figure 1B). Sigma 28 induced the
expression of the lambda phage repressor protein cI-ssrA, which
was under the σ28 responsive P28 promoter. The cI-ssrA protein
repressed the P70a promoter, thereby down-regulating σ28
and deGFP-ssrA transcription (Marshall and Noireaux, 2018).
Simultaneously, the C-terminal ssrA degradation tags present on
the deGFP and cI proteins were recognized by the endogenous
ClpXP protease system in the cell free extract, thereby promoting
the degradation of these proteins into peptide fragments (Flynn
et al., 2003; Garamella et al., 2016). In addition, messenger RNAs
(mRNAs) were always subject to degradation due to the presence
of degradation enzymes in the extract (Karzbrun et al., 2011;
Garamella et al., 2016). Taken together, the interactions of the
components manifested in an accumulation of deGFP protein for
C1, and a pulse signal of deGFP-ssrA in C2. Studying C1 allowed
us to estimate parameters governing the interaction of σ70 with
the P70a promoter. Whereas, the C2 allowed us to characterize
the interaction of σ28 with the P28 promoter, the strength of
the transcriptional repression by cI-ssrA, and the kinetics of
protein degradation by the endogenous ClpXP protease system.
Finally, both circuits tested the effective model formulation for
the transcription and translation rates.

2.4. Formulation and Solution of Model
Equations
Consider a cell free synthetic circuit composed of the genes
G = 1, 2, . . . ,N . Each gene in the circuit is described by two
differential equations, one for mRNA (mj) and a second for the
corresponding protein (pj):

ṁj = rX,juj (. . .) − θm,jmj j = 1, 2, . . . ,N (1)

ṗj = rL,jwj (. . .) − θp,jpj (2)

The term rX,juj (. . .) in the mRNA balance, which denotes the
regulated rate of transcription for gene j, is the product of a
kinetic limit rX,j (nM h−1) and a transcription control function
0 ≤ uj (. . .) ≤ 1 (dimensionless). Similarly, the rate of translation
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FIGURE 1 | Schematic of the cell free gene expression circuits used in this study. (A): Sigma factor 70 (σ70) induced expression of deGFP. (B): The circuit components

encode for a negative feedback loop motif. Sigma factor 28 and deGFP-ssrA genes on the P70a promoters are expressed first because of the endogenous presence

of sigma 70 factor in the extract. Sigma factor 28, once expressed, induces the P28a promoter, turning on the expression of the cI-ssrA gene which represses the

P70a promoter. The circuit is modified from a previous study (Garamella et al., 2016) by including an ssrA degradation tag on the cI gene.

of mRNA j, denoted by rL,jwj, is also the product of the kinetic
limit of translation (nM h−1) and a translational control
term 0 ≤ wj (. . .) ≤ 1 (dimensionless). Lastly, θ⋆,j denotes
the first-order rate constant (h−1) governing degradation of
protein and mRNA. The model equations, encoded in the
Julia programming language (Bezanson et al., 2017), were
automatically generated using the JuGRN tool2. The model
equations were solved numerically using the Rosenbrock23
routine of the DifferentialEquations.jl package
(Rackauckas and Nie, 2017).

2.4.1. Transcription and Translation Kinetic Limits

The key idea behind the transcription and translation kinetic
limit expressions is that the polymerase (or ribosome) acts as a
pseudo-enzyme; it binds a gene (or message), reads the gene (or
message), and then dissociates. Thus, we used a strategy similar
to classical enzyme kinetics to derive expressions for rX,j (or
rL,j); we proposed a set of elementary reactions for transcription
and translation, one of which we assumed was rate limiting, and
then invoked the pseudo state assumption for each intermediate
complex to develop the overall rate expression. Following this
approach, the details of the derivation of rX,j (or rL,j) are given
in the Supplementary Materials. The transcription kinetic limit
rX,j is given by:

rX,j = Vmax
X,j

(

Gj

τX,jKX,j +
(

1+ τX,j
)

Gj +OX,j

)

(3)

2Varnerlab. Gene Regulatory Network Generator in Julia (JuGRN). Available

online at https://github.com/varnerlab/JuGRN-Generator.

where Vmax
X,j denotes the maximum transcription rate (nM/h)

of gene j, Gj denotes the concentration of gene j (nmol/L),
KX,j denotes the saturation constant for transcription of gene
j (nmol/L), τX,j denotes the time constant for transcription
(dimensionless) and:

OX,j =

N
∑

i= 1,j

KX,jτX,j

KX,iτX,i

(

1+ τX,i
)

Gi (4)

denotes the coupling of the transcription of gene j with the other
genes in the system through competition for RNA polymerase.

In a similar way, we developed an expression for the
translational kinetic limit:

rL,j = Vmax
L,j

(

mj

τL,jKL,j +
(

1+ τL,j
)

mj +OL,j

)

(5)

where Vmax
L,j denotes the maximum translation rate (nM/h), KL,j

denotes the saturation constant for translation of mRNAmessage
j (nmol/L), τL,j denotes the time constant for translation of
message j (dimensionless) and:

OL,j =

N
∑

i= 1,j

KL,jτL,j

KL,iτL,i

(

1+ τL,i
)

mi (6)

describes the coupling of the translation of mRNA j with
other messages in the system because of kinetic competition
for available ribosomes. The saturation and time constants for
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each case (which are unknown and must be estimated from
experimental data) are defined in the Supplementary Materials.
Lastly, in this study, the OX,j and OL,j terms were neglected as
both circuits had either only one, or a small number of genes.

The maximum transcription rate Vmax
X,j was formulated as:

Vmax
X,j ≡ RX,T

(
v̇X

lG,j

)

(7)

where RX,T denotes the total RNA polymerase concentration
(nM), v̇X denotes the RNA polymerase elongation rate (nt/h) and
lG,j denotes the length of gene j in nucleotides (nt). Similarly, the
maximum translation rate Vmax

L,j was formulated as:

Vmax
L,j ≡ KPRL,T

(
v̇L

lP,j

)

(8)

where RL,T denotes the total ribosome pool, KP denotes the
polysome amplification constant, v̇L denotes the ribosome
elongation rate (amino acids per hour), and lP,j denotes the length
of protein j (aa).

2.4.2. Control Functions u and w

Values of the control functions u (. . .) and w (. . .) describe
the regulation of transcription and translation. Ackers et al.,
borrowed from statistical mechanics to recast the u (. . .) function
as the probability that a system exists in a configuration which
leads to expression (Ackers et al., 1982). The idea of recasting
u (. . .) as the probability of expression was also developed
(apparently independently) by Bailey and coworkers in a series
of papers modeling the lac operon (see Lee and Bailey, 1984).
More recently, Moon and Voigt adapted a similar approach when
modeling the expression of synthetic circuits in E. coli (Moon
et al., 2012). The u (. . .) function is formulated as:

u (. . .)j =

∑

i∈{χ}

Wifi (. . .)

∑

j∈Cj

Wjfj (. . .)
(9)

where Wi (dimensionless) denotes the weight of configuration
i, while fi (· · · ) (dimensionless) is a binding function (taken
to be a hill-type function) describing the fraction of bound
activator/inhibitor for configuration i. The summation in the
numerator of Equation (9) is over the set of promoter
configurations leading to expression (denoted as χ), while the
summation in the numerator is over the set of all possible
configurations for gene j (denoted as Cj). Thus, u (. . .)j can be
thought of as the fraction of all possible configurations that lead
to expression. The weights Wi are related to the Gibbs energy of
configuration i: Wi = exp (−1Gi/RT) where 1Gi denotes the
molar Gibbs energy for configuration i (kJ/mol), R denotes the
ideal gas constant (kJ mol−1 K−1), and T denotes the system
temperature (Kelvin) (Ackers et al., 1982). The value of the
binding function depends on the concentrations of the different
transcriptional elements and their dissociation constants. The
temporal evolution of u, therefore, is tied to the dynamics of its

transcriptional elements, and its value lies between 0 and 1. In
the case of circuit C1, u did not vary during the course of the
reaction because the concentration of its activator, σ70, was fixed.
For this case, u approximately equalled 0.95. However, in the
second circuit, C2, u varied with time because of the change in
levels of σ28 and cI-ssrA proteins.

We accounted for the experimentally observed loss of
translational activity through the translational control function
w (. . .). Loss of translational activity could be a function of many
factors, including depletion of metabolic resources. However, in
this study, we modeled the loss of translational activity as an
exponential decay process with half-life τL,1/2:

ǫ̇ = −

(
0.693

τL,1/2

)

ǫ (10)

where ǫ denotes the fraction of remaining translational activity.
Initially we assumed translation to be fully active, ǫ(0) = 1.
Solving equation (10) yields ǫ(t) = exp

(

−0.693 · t/τL,1/2
)

. Over
time, as the cell free reaction progressed, the translational activity
decreased with a half-life τL,1/2 which was estimated from
experimental data. The translational control variable was then
given by wi = ǫ for all translation processes.

2.5. Estimation of Model Parameters
Model parameters were estimated from published studies, were
specified by experimental conditions (Table 1) or were estimated
byminimizing the squared difference betweenmodel simulations
and messenger RNA (mRNA), or protein measurements
generated in this study. For the P70-deGFP model (C1), 11
parameters were estimated, while 33 parameters were estimated
for the negative feedback model (C2).

The minimization problem to estimate the unknown model
parameters was structured as a multiobjective optimization
problem in which each measured mRNA or protein trajectory
was treated as a separate objective. The minimization problem
was solved using the Pareto Optimal Ensemble Technique
in the Julia programming language (JuPOETs) (Bassen et al.,
2017). JuPOETs is a multiobjective optimization approach which
integrates simulated annealing with Pareto optimality to estimate
parameter values on or near the optimal tradeoff surface between
N potentially competing objectives (squared difference between
model simulations and experimental measurements). JuPOETs
minimized a problem of the form:

min
k

Ej =

Tj
∑

i= 1

(

M̂ij − xij(k)

)2

j = 1, 2, . . . ,N (11)

subject to

ẋ = f
(

x, k
)

(12)

L ≤ k ≤ U (13)

x (to) = xo (14)

where Equation (12) denotes the model equations, Equation
(13) denotes the parameter bounds, and Equation (14) denotes
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TABLE 1 | Characteristic parameters for TX/TL model equations.

Description Parameter Value Units Reference

RNA polymerase concentration RX,T 0.06–0.075 µM a

Ribosome concentration RL,T < 2.3 µM a,b

σ70 concentration σ70 <35 nM a

initial σ28 concentration σ28 <20 nM a

Transcription elongation rate v̇X 12–30 nt/s a,d

Translation elongation rate v̇L 1–2 aa/s a,b

Transcription saturation coefficient KX 0.036 µM i

Polysome amplification constant KP 10.0 constant e

Transcription initiation time kXI 22 s i

Translation initiation time kLI 1.5 s e

Default mRNA degradation coefficient θm 3.75 h-1 a

Default protein degradation coefficient θp 0.462–1.89 h-1 f,g

Gene concentration σ28 1.5 nM c

Gene concentration cI-ssrA 1.0 nM c

Gene concentration deGFP-ssrA 8.0 nM c

Gene length σ28 811 nt h

Gene length cI-ssrA 850 nt h

Gene length deGFP-ssrA 782 nt h

Protein length σ28 240 aa h

Protein length cI-ssrA 248 aa h

Protein length deGFP-ssrA 237 aa h

Key to references used in the table: (a) Garamella et al. (2016), (b) Underwood et al. (2005), (c) set by experiment, (d) Kassavetis and Chamberlin (1981), (e) estimated in this study,

(f) Niederholtmeyer et al. (2015) and Vilkhovoy et al. (2018), (g) Grilly et al. (2007), (h) calculated from plasmid sequence, (i) McClure (1980).

the initial conditions. The objective function(s) Ej measured the
squared difference between model simulations and experiment j
(either a protein or mRNA trajectory). The symbol M̂ij denotes
an experimental observation at time index i from experiment
j, while the symbol xij denotes the model simulation output
at time index i from experiment j. The quantity i denotes the
sampled time-index and Tj denotes the number of time points for
experiment j. For the P70-deGFP model (C1), E1 corresponded
to mRNA deGFP, while E2 corresponded to the deGFP protein
concentration. On the other hand, for the negative feedback
model (C2), E1 corresponded tomRNA deGFP-ssrA, E2 tomRNA
σ28, E3 to mRNA cI-ssrA and E4 to the deGFP-ssrA protein
concentration. Lastly, we penalized accumulation of the cI-ssrA
protein (unmeasured) reaching unrealistically high levels with a
term of the form: E5 = C × max (0, xcI − UcI) where C denotes
a penalty parameter (C = 1×105), xcI denotes the maximum
simulated cI-ssrA protein concentration, and UcI denotes a
concentration upper bound (UcI = 100µM). This bound was
chosen to be approximately five-fold higher than the protein
levels observed in an uninhibited circuit (e.g., C1).

The lower and upper bounds for unknown model parameters
were established from previously published studies, or from
previous model analysis; parameter values estimated for the
P70-deGFP model were also used to establish ranges for the
negative feedback model. JuPOETs searched over 1Gi, KL, and
τL,1/2 values directly, while other unknown parameter values
took the form of corrections to order of magnitude characteristic
literature estimates. For example, we set the mRNA degradation

rate constant (θm) to a characteristic value taken from literature.
Then, the degradation constant for any particular mRNA was
represented as: θm,i = αiθm, where αi was an unknown (but
bounded) modifier. In this way, we guaranteed the parameter
search (and the resulting estimated parameters) were within a
specified range of literature values. We used this procedure for
all degradation constants (both mRNA and protein) and all time
constants (for both transcription and translation). The baseline
parameter values are given in Table 1. JuPOETs was run for 20
generations for both models, and all parameters sets with Pareto
rank less than or equal to two were collected for each generation.
The JuPOETs parameter estimation routine is encoded in the
sa_poets_estimate.jl script in the model repositories.

JuPOETs uses a simulated annealing approach to generate
candidate parameter solutions whose Pareto rank is then
evaluated; ranks below a threshold are kept while higher
rank solutions are discarded. Thus, all the advantages (and
disadvantages) associated with simulated annealing have been
inherited by JuPOETs; for example, the time required to generate
a family of low rank solutions will be significantly longer than
a derivative based approach. Beyond these specific performance
issues, a unique pathology of JuPOETs is the use of Pareto
rank as a surrogate for training error. JuPOETs attempts to
find low rank solutions, but rank is a relative measure of the
quality of a solution. Thus, during the early iterations, low rank
solutions often have large errors. As the iteration count increases
the approach tends to find low error solutions with low rank,
however, for complex models the rate of convergence to these
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FIGURE 2 | Model simulations vs. experimental measurements for σ70 induced deGFP expression. (A): Simulated and measured deGFP mRNA concentration vs.

time using the small circuit G20 ensemble (N = 140). (B): Simulated and measured deGFP protein concentration vs. time using the small circuit G20 ensemble (N =

140). (C): Global sensitivity analysis of the P70-deGFP circuit parameters. Morris sensitivity coefficients were calculated for the unknown model parameters, where the

range for each parameter was established from the ensemble. Uncertainty: Simulations and uncertainty quantification are shown for the generation 20 (G20) ensemble

which yielded N = 140 parameter sets that were rank two or below. The parameter ensemble was used to calculate the mean (dashed line) and the 95% confidence

estimate of the simulation (gray region). Additionally, the 99% confidence estimate of the mean simulation is shown in orange. Individual parameter set trajectories are

shown in blue. Points denote the mean experimental measurement while error bars denote the 95% confidence estimate of the experimental mean computed from at

least three replicates.

low rank low error solutions is slow. To address this concern, we
periodically switch to single objective mode where we minimize
the total training error (summation of all objective functions)
instead of finding low rank solutions. The best solutions from
single objective mode can then be used to restart the multi-
objective calculation. This hybrid approach, which was used in
this study, has previously been shown to increase the rate of
finding low rank and low error solutions (see Bassen et al., 2017).

2.6. Morris Sensitivity Analysis
Morris sensitivity analysis was used to understand which model
parameters were sensitive (Morris, 1991). The Morris method
is a global method that computes an elementary effect value
for each parameter by sampling a model performance function,
in this case the area under the curve for each model species
in their respective timeplots, over a range of values for each
parameter; the mean of elementary effects measures the direct
effect of a particular parameter on the performance function,
while the variance of each elementary effect indicates whether
the effects are non-linear or the result of interactions with
other parameters (large variance suggests connectedness or non-
linearity). The Morris sensitivity coefficients were computed
using the DiffEqSensitivity.jl package (Rackauckas
and Nie, 2017). The parameter ranges were established by
calculating the minimum and the maximum value for each
parameter in the parameter ensemble generated by JuPOETs.
Each range was then subdivided into 10,000 samples for
the sensitivity calculation. Elementary effect values were then
calculated one at a time by measuring the perturbation in the
AUC on changing one parameter, where the AUC was calculated
by solving the set of ODEs for each change. In order to calculate
the mean and variance, the top 1000 perturbations with the

highest spread in parameter values were used. In total, the model
was evaluated 10000n times, where n is the number of parameters
varied. TheMorris sensitivity coefficients are calculated using the
compute_sensitivity_coefficients.jl script in the
model repositories.

3. RESULTS

3.1. Modeling and Analysis of the C1 Circuit
The effective biophysical transcription and translation model
captured σ70 induced deGFP expression at the mRNA and
protein level within the experimental error for C1 (Figure 2).
JuPOETs produced an ensemble (N = 140) of the 11 unknown
model parameters which captured the transcription of mRNA
(Figure 2A) and the translation of deGFP protein (Figure 2B).
The mean and standard deviation of key parameters is given in
Table 2. The deGFPmRNA reached its steady state concentration
of approximately 580 nM within 2 h, and stayed at this level
for the remainder of the reaction. Thus, the cell free reaction
maintained continuous transcriptional activity with an average
mRNA lifetime of 27 min; Garamella et al. (2016) reported a
similar lifetime of 17–18 min. On the other hand, deGFP protein
concentration increased more slowly, and began to saturate
between 8 and 10 h at approximately 15 µM. Given there was
negligible protein degradation (the mean deGFP half-life was
estimated to be∼11 days, which was similar to the value of 6 days
estimated by Horvath et al., albeit in a different cell free system,
Horvath et al., 2020). The saturating protein concentration
suggested that the translational capacity of the cell free system
decreased over the course of the reaction. The decrease in
translational capacity, which could stem from several sources,
was captured in the simulations using amonotonically decreasing
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TABLE 2 | Estimated parameter values for the P70-deGFP model (C1).

Description Parameter Value (µ ± σ ) Units

Translation saturation coefficient KL 483.13 ± 10.10 µM

Half-life translation τL,1/2 4.03 ± 0.031 h-1

Time constants

deGFP transcription τX,GFP 0.61 ± 0.04 dimensionless

deGFP translation τ L,GFP 0.16 ± 0.003 dimensionless

mRNA and protein half-life

mRNA deGFP ln(2)/θm,GFP 13.5 ± 2.47 min

Protein deGFP ln(2)/θp,GFP 10.86 ± 0.78 days

Protein σ70 ln(2)/θp,σ70 3.65 ± 0.17 days

Free energies

RNAP + deGFP gene 1GGFP,RX 28.82 ± 1.75 kJ mol-1

RNAP + σ70 + deGFP gene 1GGFP,σ70 –20.38 ± 1.91 kJ mol-1

Binding parameters

Hill coefficient deGFP gene + σ70 nGFP,σ70 1.12 ± 0.06 dimensionless

Dissociation constant deGFP gene + σ70 KGFP,σ70 24.19 ± 2.18 µM

The mean and standard deviation of each parameter value was calculated over the ensemble of parameter sets meeting the rank selection criteria (N = 139).

translation capacity state variable ǫ, and the translational control
variable w (. . .). In particular, the mean half-life of translational
capacity was estimated to be τL,1/2 ∼ 4 h in the C1 experiments.
Taken together, JuPOETs produced an ensemble of model
parameters that captured the experimental training data. Next,
we considered which C1 model parameters were important to
the model performance using Morris sensitivity analysis, a global
sensitivity analysis method.

The importance of C1 model parameters was quantified
using Morris sensitivity analysis (Figure 2B). The Morris
method computes the influence of each parameter, known
as the elementary effect, on a model performance function.
The mean of elementary effects measures the direct effect of
a particular parameter, while the variance indicates whether
the effects are non-linear or the result of interactions with
other parameters (large variance suggests non-linearity). The
performance function was defined as the integrated area under
the curve (AUC) for each mRNA and protein species in their
respective timeplots, calculated for each parameter value range.
The Morris sensitivity measures (mean and variance) were
binned into categories based upon their relative magnitudes,
from no influence (white) to high influence (black). Only four
parameters (translation saturation coefficient KL, translational
capacity half-life τL,1/2, translation time constant, and protein
degradation constant) influenced the protein level. On the
other hand, six parameters influenced both mRNA and protein
abundance; all six of these parameters were either directly or
indirectly associated with transcription. Thus, these parameters
influenced the production or stability of mRNA which in turn
influenced the protein level. In particular, the mRNA degradation
constant and the cooperativity of σ70 in the P70a promoter
function had the largest direct effect and variance. Surprisingly,
the 1G of σ70/RNAP/promoter configuration was the least
influential of the six parameters and had a small elementary
effect variance. Taken together, Morris sensitivity analysis of

the C1 model parameters highlighted the hierarchical structure
of the transcriptional and translational model, suggesting
experimentally tunable parameters such as mRNA stability
were globally important. Next, we used the ensemble of P70a,
time constant and degradation parameters estimated for C1 to
constrain the analysis of C2.

3.2. Modeling and Analysis of the C2 Circuit
The effective biophysical transcription and translation model
captured the deGFP-ssrA expression dynamics in the negative
feedback circuit C2 (Figure 3A). JuPOETs produced an ensemble
(N = 498) of the 33 unknown model parameters which captured
transcription and translation dynamics for σ28, cI-ssrA and
deGFP-ssrA. Themean and standard deviation of key parameters
is given in Table 3. Compared with the estimated parameters for
C1, the C2 model had almost a two fold change in the half life of
translation and the translation saturation coefficient. Similarly,
there were variations in the values of the transcription and
translation time constants for the two systems. However, for both
circuits, the small values of the transcription and translation time
constants qualitatively suggested elongation limited reactions;
the exception was σ28 translation which was closer to initiation
limited. Unlike C1, the mRNA expression pattern for σ28 and
deGFP-ssrA both showed an initial spike, to a concentration
similar with the previous pseudo steady state, before the cI-
ssrA regulator protein could be expressed. However, once cI-
ssrA began to accumulate, the concentrations of the regulated
mRNAs dropped by approximately an order of magnitude
compared with the unregulated case. Again, as shown with C1,
the regulated mRNA concentrations reached an approximate
steady-state. This further confirmed continuous transcription
and mRNA degradation throughout the cell free reaction. The
mean estimated mRNA lifetime for cI-ssrA and deGFP were
similar (approximately 16 min), while the degradation of σ28
mRNA was predicted to be slower (mean mRNA lifetime
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FIGURE 3 | Model simulations vs. experimental measurements for the negative feedback deGFP-ssrA circuit. (A): Model simulations of the negative feedback

deGFP-ssrA circuit using the G20 ensemble (N = 498). Uncertainty: Simulations and uncertainty quantification are shown for the generation 20 (G20) ensemble which

yielded N = 489 parameter sets (rank two or below). The parameter ensemble was used to calculate the mean (dashed line) and the 99% confidence estimate of the

simulation (gray region). Additionally, the 99% confidence estimate of the mean simulation is shown in orange. Individual parameter set trajectories are also shown in

blue. Points denote the mean experimental measurement while error bars denote the 95% confidence estimate of the experimental mean computed from at least

three replicates. (B): Global sensitivity analysis of the negative feedback deGFP-ssrA circuit parameters. Morris sensitivity coefficients were calculated for the unknown

model parameters, where the range for each parameter was established from the ensemble.

was estimated to be approximately 30 min). Lastly, the mean
peak degradation rate for GFP was approximately 47 nM/min,
while the mean peak cI-ssrA degradation rate was predicted to
be approximately 63 nM/min; both of these degradation rate
estimates were consistent with the previously reported range of
15–150 nM/min measured by Garamella et al. (2016).

The secondary effect of cI-ssrA repression was visible in the
cI-ssrA mRNA expression pattern. The expression of cI-ssrA was
induced by σ28, however, σ28 expression was repressed by cI-ssrA,
thereby completing a negative feedback loop. Initially, before
appreciable levels of cI-ssrA had been translated, the cI-ssrA
transcription rate was maximum (approximately 200 nM/h).
However, the transcription rate decreased to approximately
12 nM/h after 2 h and remained constant for the remainder
of the cell free reaction. Similarly, transcription rates for σ28
(approximately 1,200 nM/h) and deGFP-ssrA (approximately
750 nM/h) were initially at a maximum due to the presence
of endogenous σ70, but then quickly dropped as cI protein
accumulated. Protein synthesis followed a similar trend, with
the translation rates for σ28 and deGFP-ssrA initially present
at their maximum values before quickly dropping. After 1 h,
deGFP levels reached a peak and decayed due to the ClpXP-
mediated degradation, whereas σ28 protein levels continued to
slowly rise at a steady rate (approximately 15 nM/h). The C2

model also predicted the expected lag present during the initial
phase of cI-ssrA protein synthesis due to the need for σ28
protein to reach appreciable levels. Moreover, the combination
of high cI-ssrA mRNA abundance (expressed because σ28 does
not have a degradation tag) and ClpXP-mediated degradation
led to the saturation of the cI-ssrA protein concentration.
However, the cI-ssrA protein concentration could not be verified
because we did not have an experimental measurement for this
species. Taken together, the effective model simulated cell free
expression dynamics for C2. Next, we considered which C2model
parameters were important using Morris sensitivity analysis.

Morris sensitivity analysis of the negative feedback circuit
C2 stratified the parameters into locally and globally important
groups (Figure 3B). The influence of 33 parameters was
computed using the AUC of each mRNA and protein species as
the performance function. The Morris sensitivity metrics (mean
and variance) were binned into categories based upon their
relative magnitudes, from no influence (white) to high influence
(black). Some parameters affected only their respective mRNA
or protein target, whereas others had widespread effects. For
example, the time constant (tc) modifiers, stability of deGFP-
ssrA protein and mRNA, and the binding dissociation constant
(K) and cooperativity parameter (n) of cI-ssrA and σ70 for the
deGFP-ssrA promoter affected only the values of deGFP-ssrA
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TABLE 3 | Estimated parameter values for the negative feedback circuit (C2).

Description Parameter Value (µ ± σ ) Units

Translation saturation coefficient KL 253.75 ± 14.12 µM

Half-life translation τL,1/2 8.86 ± 0.85 h-1

Time constants

cI-ssrA transcription τX,cI < 0.001 dimensionless

deGFP transcription τX,GFP 0.045 ± 0.003 dimensionless

σ28 transcription τX,σ28 0.0018 ± 0.0003 dimensionless

cI-ssrA translation τ L,cI 0.054 ± 0.004 dimensionless

deGFP translation τ L,GFP 0.058 ± 0.007 dimensionless

σ28 translation τ L,σ28 1.1 ± 0.13 dimensionless

mRNA and protein half-life

mRNA cI-ssrA ln(2)/θm,cI 8.1 ± 0.60 min

mRNA deGFP ln(2)/θm,GFP 7.74 ± 1.13 min

mRNA σ28 ln(2)/θm,σ28 14.96 ± 1.60 min

Protein cI-ssrA ln(2)/θp,cI 0.46 ± 0.043 days

Protein deGFP-ssrA ln(2)/θp,GFP 0.051 ± 0.002 days

Protein σ28 ln(2)/θp,σ28 7.65 ± 0.91 days

Protein σ70 ln(2)/θp,σ70 14.86 ± 2.30 days

Free energies

RNAP + cI gene 1GcI,RX 46.57 ± 4.28 kJ mol-1

RNAP + σ28 + cI gene 1GcI,σ28 −1.10 ± 0.04 J mol-1

RNAP + deGFP gene 1GGFP,RX 41.94 ± 1.80 kJ mol-1

RNAP + σ70 + deGFP gene 1GGFP,σ70 −27.67 ± 1.79 kJ mol-1

RNAP + cI + deGFP gene 1GGFP,cI −7.21 ± 1.14 kJ mol-1

RNAP + σ28 gene 1Gσ28 ,RX 46.67 ± 3.18 kJ mol-1

RNAP + σ70 + σ28 gene 1Gσ28 ,σ70 −10.46 ± 1.15 kJ mol-1

RNAP + cI + σ28 gene 1Gσ28 ,cI −12.89 ± 1.44 kJ mol-1

Hill coefficients

cI gene + σ28 ncI,σ28 1.88 ± 0.28 dimensionless

deGFP gene + σ70 nGFP,σ70 1.53 ± 0.14 dimensionless

deGFP gene + cI nGFP,cI 0.698 ± 0.133 dimensionless

σ28 gene + σ70 nσ28 ,σ70 1.10 ± 0.10 dimensionless

σ28 gene + cI nσ28 ,cI 1.51 ± 0.25 dimensionless

Dissociation constants

cI gene + σ28 KcI,σ28 1.09 ± 0.088 µM

deGFP gene + σ70 KGFP,σ70 86.87 ± 7.13 µM

deGFP gene + cI KGFP,cI 3.83 ± 0.41 µM

σ28 gene + σ70 Kσ28 ,σ70 1.35 ± 0.26 µM

σ28 gene + cI Kσ28 ,cI 0.0389 ± 0.0068 µM

The mean and standard deviation for each parameter was calculated over the ensemble of parameter sets (N = 498).

protein and mRNA. On the other hand, the tc, stability, K and n
parameters for σ70, σ28, or cI-ssrA influenced mRNA and protein
expression globally. The σ70 and σ28 proteins acted as inducers
or repressors for more than one gene product: σ70 induced both
deGFP-ssrA and σ28, and cI-ssrA protein repressed both of these
genes. Degradation constants (denoted as stability) affected the
half-lives of the transcribedmessages or the translated proteins in
the mixture, while the time constant modifiers changed the time
required to form the open gene complex (or translationally active
complex). Dissociation and cooperativity constants affected the
binding interactions of the inducer (or repressor in the case
of cI-ssrA) in the promoter control function. Varying these
parameters, therefore, had a strong effect on their respective
targets. Similarly, the translation saturation and its half-life,

which captured the depletion in the translation activity over the
course of the reaction, not only affected protein levels but also
mRNA levels. This is because these parameters tuned the rate of
formation of cI-ssrA, which in turn affected the mRNA levels
of its gene targets. Given that cI-ssrA was the main regulator
(repressor) of the circuit, the parameters that dictated the levels of
cI-ssrA mRNA and protein had a global effect. We also observed
high sensitivity variance for several parameters, in particular
involving cI-ssrA. For example, the time constant modifiers for
cI-ssrA mRNA and protein had a two-pronged effect. On the
one hand, they positively influenced the transcription/translation
rates of the gene and mRNA products, directly increasing the cI-
ssrA protein. On the other hand, increased cI-ssrA expression
reduced the level of σ28, in turn reducing the cI-ssrA levels
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over time. Taken together, Morris sensitivity analysis of the C2
model stratified that parameters into local and globally important
groups, with the parameters governing the synthesis rates of
the cI-ssrA mRNA and protein being globally important. The
sensitivity analysis also gave insight into the organization of the
circuit, suggesting cI to be highly connected within the circuit.

4. DISCUSSION

In this study, we developed an effective biophysical modeling
approach to simulate transcription (TX) and translation (TL)
processes occurring in a cell free system. We tested this approach
by simulating the dynamics of two cell free synthetic circuits (C1
and C2).

The model formulation, and parameter values were
mechanistic and largely derived from literature. For example,
characteristic values for τX and KX , the time and saturation
constants for transcription, were approximated from in vitro
experiments using an abortive initiation assay (McClure, 1980).
The RNAP and ribosome elongation rates were taken from
Garamella et al. (2016), while other parameters were estimated
from BioNumbers (Milo et al., 2010). Similarly, the weights
appearing in the transcription control function u(. . . ) were
based upon the Gibbs energies of the respective promoter
configurations, while the form of the transcriptional control
functions was derived from a statistical mechanical treatment
of promoter activity (Ackers et al., 1982; Lee and Bailey, 1984;
Moon et al., 2012). However, there were parameters that were
not available from literature; in these cases multiobjective
optimization was used to estimate these parameters from
mRNA and protein measurements. For C1, sigma factor 70
(σ70) induced expression of green fluorescent protein (deGFP),
the time constants, degradation rates, and other parameters
governing deGFP expression were estimated frommeasurements
of deGFP mRNA and protein. These estimates were then
used to constrain the parameter search for C2, which involved
deGFP expression subject to negative feedback and programmed
protein degradation. We estimated which model parameters
were important to the performance of C1 and C2 using Morris
sensitivity analysis. Sensitivity analysis results for C1 were
expected; the time constant for transcription, the stability of the
deGFP message and the cooperativity of σ70 were all important
parameters. On the other hand, the sensitivity analysis results for
C2 were more nuanced, with parameters (and associated species)
being stratified into locally and globally important groups;
the performance of C2 was most sensitive to the parameters
controlling the cI-ssrA mRNA and protein abundance.

The effective TX/TL modeling approach described here has
several potential applications. For example, a challenge of in vivo
constraint based modeling is the description of gene expression
(Covert and Palsson, 2002). Boolean and probabilistic approaches
(Covert et al., 2001, 2004; Chandrasekaran and Price, 2010)
have been developed to address this challenge. However, the
transcriptional state of a boolean gene is either on or off
based on the state of its regulators, thus, gene expression is
coarse-grained. The current modeling approach could be an
interestingmechanistic alternative to the boolean framework that
utilizes a continuous description of gene expression dynamics

and transcriptional regulation. In particular, the rules encoding
typical boolean gene expression networks are easily translatable
into the rational promoter functions described here, however,
the estimation of the parameters appearing in these promoter
functions, especially in an in vivo context, remains an open
question. Another application could be the extension of the
current model to other prokaryotic or eukaryotic systems with
a few changes. For example, in order to adopt it for an in vivo
system, the dilution of resources due to growth (proportional
to the cellular doubling time) would be added as a first order
term to the mRNA and protein balance equations. Additionally,
the competition for RNAP and ribosomes, denoted respectively
as OX,j and OL,j in the study, and assumed to be negligible
due to the presence of only three genes in the system, would
need to be taken into account; this term would serve to change
the rates of transcription and translation of the added genes
because of the presence of a large amount of endogenous
genes in the in vivo system. Moreover, characteristic literature-
based parameter values would be different for cellular processes
compared to the in vitro ones used in this study, and they
would thus need to be adjusted accordingly. For the case of
a mammalian or a yeast in vivo system, a few more changes
to the current model are necessary because the mechanistic
processes of gene expression and regulation are different in these
two types of systems. For example, a key difference present in
eukaryotes is the addition of an intron splicing step during the
synthesis of a mature mRNA from a pre-mRNA. In addition,
the gene regulation mechanisms are vast and composed of
numerous elements in eukaryotes. Finally, especially in in vivo
systems, addition of exogenous genes often leads to a tug-of-
war of carbon and energy resources between cellular growth
processes and the expression of these genes, driving cellular
resources away from the latter. Synthetic biology studies often
neglect the role that metabolism plays in the expression of
synthetic circuits. Ultimately, metabolism is centrally important
to the operation of any synthetic circuit; gene expression is
strongly dependent upon the metabolic resources provided
by catabolic processes. It is imperative that this metabolic
burden by the addition of exogenous genes be incorporated
in the in vivo model description to accurately capture the
expression behavior. We have recently started to explore this
question by integrating effective transcription and translation
models with metabolic networks in cell free reactions e.g.,
Vilkhovoy et al., 2018; Horvath et al., 2020, and also developing
experimental tools to measure metabolite concentrations in cell
free systems (Vilkhovoy et al., 2019). However, these previous
transcriptional and translational models (and similar precursor
models simulating eukaryotic processes, Gould et al., 2016;
Tasseff et al., 2017) were less developed than those presented here.
Taken together, the effective modeling approach described here
can potentially be used to simulate transcription and translation
processes in a variety of applications.

There have been many studies looking into oscillatory and
other dynamic behavior of synthetic circuits (see Prangemeier
et al., 2020). A negative feedback loop, such as the one explored
here, has the potential to give rise to oscillations. Yelleswarapu
et al. carried out TX/TL reactions, with a circuit similar to C2, in
both batch and continuous conditions (Yelleswarapu et al., 2018).
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Similar to our study, no oscillations were observed in the batch
reaction. However, oscillations were observed in the continuous
reaction. There are several possible reasons why no oscillations
were seen in our (or the Yelleswarapu et al.) batch study; as it was
carried out in batch, dilution of the expressed protein or mRNA
species due to an inlet feed was not possible. Thus, mRNA species
reached a pseudo steady state (after approximately 2 h) because
of ribonuclease degradation (Garenne et al., 2019). On the other
hand, in general protein species were not at steady-state; only
proteins tagged with a ssrA tag were able to be degraded by the
ClpXP system, thereby allowing a steady-state. Thus, the batch
system likely evolved dynamically through a set of concentration
profiles that were not consistent with oscillations.

The effective TX/TLmodel described the experimental mRNA
and protein training data. However, there were several important
questions to be addressed by future studies. First, the model
formulation described the data, but did not predict dynamics
outside of the training set. If this approach is to be useful to
the synthetic biology community, or more broadly as an effective
biophysical technique to model in vivo gene expression dynamics
for applications such as regulatory flux balance analysis, we need
to have confidence that the modeling approach is predictive.
Thus, while we have established a descriptive model, we have yet
to establish a predictive model. Next, there were several technical
or mechanistic questions that should be explored further. For
example, cI-ssrA represses the activity of the P70a promoter via
interaction with its OR2 and OR1 operator sites; in this study
we considered only a single operator site suggesting that we
potentially underestimated the potency of cI repression in the
deGFP and σ28 promoter functions, see the multiplication rule
(Lucks et al., 2011). Further, we used a first order approximation
of ClpXP mediated protein degradation, while Garamella et al.
(2016) described this degradation as zero order. Similarly, we did
not establish the concentration of ClpXP in the commercially
available cell free reaction mixture. The levels of this protein
complex could be an important factor controlling protein
degradation. Next, we should compare the current modeling
approach, and the values estimated for the model parameters,
with the study of Marshall and Noireaux (2019). For example,
one of the potential limitations of the current study (that was
addressed by Marshall and Noireaux, 2019) is that we did not
consider a separate species for dark GFP. In our previous RNA
circuit modeling (Hu et al., 2015), we did include this term,
but failed to do so here. We expect inclusion of a dark vs.
light GFP species could influence the values for the estimated
parameters, particularly the translation time constants. However,
previous reports suggested the in vitromaturation time of deGFP
was approximately 8 min (Shin and Noireaux, 2010), much
faster than the typical maturation times for GFP of 1 h in vivo
(Sniegowski et al., 2005; Iizuka et al., 2011). Thus, the impact
of including a dark vs. light GFP species may not be worth the
increased model complexity. Lastly, we should validate the values
estimated for the binding function parameters and the promoter
configuration free energies. Maeda et al. measured the binding
affinities of the seven E. coli σ factors with RNAP (Maeda et al.,
2000); while not directly comparable, these measurements give
an order of magnitude characteristic value for the dissociation

constants appearing in the promoter binding functions. Further,
there have been several studies that have quantified the binding
energies of promoter configurations (e.g., Ackers et al., 1982;
Brewster et al., 2012; Tapia-Rojo et al., 2012, 2014). A perfunctory
inspection of the values estimated in this study suggested our
estimated free energy values, while the same order of magnitude
as previous studies in many cases, did have values that were off by
a factor of up to an order of magnitude compared with literature
(albeit for different promoters). In particular, the positive Gibbs
energy estimated for free RNAP binding leading to transcription
was likely too large, while the magnitude of other values such
as the energy of cI repression of σ28 expression was likely
too small. Thus, these other studies could serve as a basis to
validate our estimates, and perhaps more importantly constrain
the parameter search space for future studies.
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Temporal multi-omics data can provide information about the dynamics of disease

development and therapeutic response. However, statistical analysis of high-dimensional

time-series data is challenging. Here we develop a novel approach to model temporal

metabolomic and transcriptomic data by combining machine learning with metabolic

models. ADAPT (Analysis of Dynamic Adaptations in Parameter Trajectories) performs

metabolic trajectory modeling by introducing time-dependent parameters in differential

equation models of metabolic systems. ADAPT translates structural uncertainty in the

model, such as missing information about regulation, into a parameter estimation

problem that is solved by iterative learning. We have now extended ADAPT to include

both metabolic and transcriptomic time-series data by introducing a regularization

function in the learning algorithm. The ADAPT learning algorithm was (re)formulated as a

multi-objective optimization problem in which the estimation of trajectories of metabolic

parameters is constrained by the metabolite data and refined by gene expression data.

ADAPT was applied to a model of hepatic lipid and plasma lipoprotein metabolism to

predict metabolic adaptations that are induced upon pharmacological treatment of mice

by a Liver X receptor (LXR) agonist. We investigated the excessive accumulation of

triglycerides (TG) in the liver resulting in the development of hepatic steatosis. ADAPT

predicted that hepatic TG accumulation after LXR activation originates for 80% from an

increased influx of free fatty acids. The model also correctly estimated that TG was stored

in the cytosol rather than transferred to nascent very-low density lipoproteins. Through

model-based integration of temporal metabolic and gene expression data we discovered

that increased free fatty acid influx instead of de novo lipogenesis is the main driver of

LXR-induced hepatic steatosis. This study illustrates how ADAPT provides estimates

for biomedically important parameters that cannot be measured directly, explaining

(side-)effects of pharmacological treatment with LXR agonists.

Keywords: longitudinal trajectory modeling, regularization, cholesterol, LXR agonist, systems biology, machine

learning, mechanistic modeling, uncertainty quantification
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1. INTRODUCTION

Dynamic responses contain important information about
the behavior of biological systems. For example, data from
continuous glucose monitoring has been used to identify
characteristic patterns in glucose dynamics (Hall et al., 2018).
Statistical modeling of time-series data using machine learning
works well if the number of samples (individuals) in the dataset
is large and the number of outcome variables is (relatively)
small. For example, Latent Class Trajectory Analysis has been
applied for time-series modeling of glucose measurements
obtained during an oral glucose tolerance test (Hulman et al.,
2018), thyroid hormones during gestation (Pop et al., 2018)
and troponin levels after cardiac surgery (Deneer et al., 2020).
The application of omics technologies, such as transcriptomics
and metabolomics, to study the dynamics of biological systems
results in high-dimensional time-series data, in which the
number of gene expression values or small molecules detected in
biological fluids is larger than the number of samples. Statistical
analysis of high-dimensional time-series data is challenging.
Mechanistic modeling offers a complementary approach to
study the dynamics of biological systems (van Riel, 2006).
Differential equation models can be used to describe disease
progression. For example, the model by de Winter et al. (2006)
is composed of three differential equations to simulate glucose,
insulin and HbA1c (glycated hemoglobin) over time in patients
with diabetes. Dynamic metabolic models calibrated to time-
series data have been developed for biological systems such
as yeast (e.g., Rizzi et al., 1997; van Riel et al., 1998) and
human metabolism (e.g., Rozendaal et al., 2018a; O’Donovan
et al., 2019). In silico dynamic models often lack the multi level
layers of regulation that control metabolism. This impedes their
application in disease modeling because causes of disease can be
located at multiple levels, and also molecular therapies can be
targeted to genes, proteins and metabolites. To overcome current
limitations in statistical analysis and mechanistic modeling we
combine metabolic modeling with machine learning techniques
to integrate longitudinal metabolic and transcriptomic data.
Previously we developed the computational approach called
ADAPT (Analysis of Dynamic Adaptations in Parameter
Trajectories) (Tiemann et al., 2011; van Riel et al., 2013). ADAPT
combines mechanism-based differential equation models with
machine learning to model temporal metabolic data (Tiemann
et al., 2013; Rozendaal et al., 2018b). ADAPT functions as a so-
called state observer (or state estimator), which is a system that
provides an estimate of the internal state of a given real system
from measurements of the input and output of the real system.
Here, we aimed to extend ADAPT to include both metabolic
and transcriptomic time-series data. Hereto we added a new
regularization function to the learning algorithm that is used
to estimate model parameters. The new version of ADAPT uses
the metabolite data as input to estimate trajectories of metabolic

Abbreviations:ADAPT, analysis of dynamic adaptations in parameter trajectories;

apo, apolipoprotein; C, cholesterol; CE, cholesterylester; DNL, de novo lipogenesis;

ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acid; FPLC, fast

protein liquid chromatography; HDL, high density lipoprotein; LXR, liver X

receptor; ODE, ordinary differential equation; SSE, sum of squared errors; TG,

triglyceride; VLDL, very low density lipoprotein.

parameters and takes the gene expression data as additional
information to refine the trajectories.

ADAPT has been applied to a model of hepatic lipid
and plasma lipoprotein metabolism (HepaLip2) to predict
which metabolic adaptations are induced upon pharmacological
treatment of mice by Liver X receptor (LXR) agonist T0901317.
LXR agonists exert potent antiatherosclerotic actions but
simultaneously induce excessive triglyceride (TG) accumulation
in the liver. Using the new version of ADAPT we reveal
that both input and output fluxes to hepatic TG content are
considerably induced on LXR activation and that in the early
phase of LXR agonism, hepatic steatosis results from only
a minor imbalance between the two. It is generally believed
that LXR-induced hepatic steatosis results from increased de
novo lipogenesis (DNL). In contrast, ADAPT predicts that
the hepatic influx of free fatty acids is the major contributor
to hepatic TG accumulation in the early phase of LXR
activation. This prediction is tested in vivo by a metabolic
tracer experiment.

2. RESULTS

2.1. HepaLip2: Model of Hepatic Lipid and
Plasma Lipoprotein Metabolism
Fundamental in ADAPT is a mathematical model of the
(molecular) pathways of interest. We developed a mathematical
multi-compartment model describing triglyceride and
cholesterol metabolism (HepaLip2). The mathematical model
contains three compartments representing the liver cytosol,
liver endoplasmic reticulum (ER) and blood plasma (Figure 1).
The liver includes the production, utilization and storage of
triglycerides (TG) and cholesterols. Triglycerides are produced
in the ER and can be transferred to the cytosol where they
are stored in lipid droplets or catabolized. TG produced in
the ER are also incorporated into nascent produced very low
density lipoprotein (VLDL) particles. These VLDL particles
are subsequently secreted in the blood plasma where they
provide nutrients for peripheral tissues. The model also includes
the hepatic uptake of free fatty acids (FFA) from plasma that
predominantly originate from adipose tissue. Finally, the
model includes the reverse cholesterol transport pathway,
i.e., the net transport of cholesterol from peripheral tissues
back to the liver via high density lipoproteins (HDL). The
model is composed of 11 differential equations, (Table 1) 29
fluxes and 22 parameters. The flux equations are based on
mass-action kinetics. Each flux equation introduces a parameter
with unknown in vivo value. Collectively these parameters
are referred to as the ’metabolic parameters’. A detailed
description of the mathematical model including an overview
of the state variables, parameters, fluxes, and differential
equations is presented in the Supplementary Material

(section 2).

2.2. Pharmacological Treatment With LXR
Agonists
The liver X receptor (LXR) plays a central role in the
control of cellular lipid and cholesterol metabolism and is
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FIGURE 1 | Computational model of hepatic lipid and plasma lipoprotein metabolism (HepaLip2), under fasting conditions. The HepaLip2 model is composed of three

compartments representing the liver cytosol, liver endoplasmic reticulum, and blood plasma. The liver compartment includes reactions comprising the production,

utilization, and storage of triglycerides and cholesterols, and the mobilization of these metabolites to the endoplasmic reticulum, where they are incorporated into

nascent VLDL particles. The VLDL particles are secreted in the plasma compartment where they serve as energy source for peripheral tissues. Remnant particles are

taken up and cleared by the liver. The model furthermore includes the hepatic uptake of free fatty acids as well as HDL-mediated reverse cholesterol transport. The

model is composed of 11 differential equations (and 11 corresponding state variables x), 29 fluxes f and 22 (unknown) parameters. ApoB, apolipoprotein B; CE,

cholesterylester; ER, endoplasmic reticulum; FFA, free fatty acid; FC, free cholesterol; HDL, high density lipoprotein; TG, triglyceride; VLDL, very low density lipoprotein.

considered a potential target to treat or prevent atherosclerosis.
However, a serious complication of LXR activation is the
excessive accumulation of triglycerides in the liver, which finally
results in the development of hepatic steatosis. The underlying
molecular mechanisms inducing these adaptations are not fully
understood, which complicates the clinical application of LXR
agonists (Grefhorst et al., 2002; Grefhorst and Parks, 2009;
Cave et al., 2016). We used data obtained from pharmacological
treatment of mice by LXR agonist T0901317 up to 3 weeks.
Quantitative experimental data at different stages of the
treatment intervention were collected to study the dynamics
of induced molecular adaptations. All the experiments were

performed in the fasting state. Details about the experimental
procedures can be found in section 5.

An overview of the quantities that were experimentally
observed and their relation to corresponding model components
is presented in Table 2. A model output yi (i = 1, . . . , 15) was
coupled to experimental data di. Somemodel outputs are equal to
state variables, other outputs are a combination (summation) of
state variables. The data also includes fluxes, such as the synthesis
rate of triglycerides secreted in VLDL particles, and the size and
composition of VLDL particles and the corresponding variables
in themodel were also selected as outputs. Data was collected at 0,
1, 2, 4, 7, 14, and 21 days of treatment with T0901317 (Figure 2).
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TABLE 1 | State variables included in the HepaLip2 model (Figure 1).

State Name Description Units

x1 xFC Hepatic free cholesterol µ mol/liver

x2 xCEcyt Hepatic cholesteryl ester (cytosol) µ mol/liver

x3 xCEER Hepatic cholesteryl ester (ER) µ mol/liver

x4 xTGcyt
Hepatic triglyceride (cytotol) µ mol/liver

x5 xTGER
Hepatic triglyceride (ER) µ mol/liver

x6 xTGdnlcyt Hepatic de novo triglyceride (cytosol) µ mol/liver

x7 xTGdnlER Hepatic de novo triglyceride (ER) µ mol/liver

x8 xTGVLDL
Plasma VLDL-triglyceride µ mol/L

x9 xCVLDL Plasma VLDL-cholesterol µ mol/L

x10 xCHDL Plasma HDL-cholesterol µ mol/L

x11 xFFA Plasma free fatty acid µ mol/L

The differential equations, parameters and fluxes are presented in

Supplementary Material (section 2).

TABLE 2 | Measured quantities and their relation to model components.

Measurement Model

output

Equation Unit

Hepatic triglyceride y1 [x4]+ [x5]+ [x6]+ [x7] µ mol/liver

Hepatic cholesteryl

ester

y2 [x2]+ [x3] µ mol/liver

Hepatic free cholesterol y3 [x1] µ mol/liver

Plasma total cholesterol y4 [x9]+ [x10] µ mol/L

HDL-cholesterol y5 [x10] µ mol/L

Plasma triglyceride y6 [x8] µ mol/L

Plasma free fatty acid y7 [x11] µ mol/L

VLDL TG/C ratio y8 TGcnt/CEcnt [-]

VLDL diameter y9 DVLDL nm

VLDL-TG production y10 f14 µ mol/h

VLDL catabolic rate y11 CRVLDL [-]

de novo lipogenesis y12 FCDNL [-]

Hepatic HDL-C uptake y13* f21 µ mol/h

Ratio cyt-TG / ER-TG

concentration

y14* RcTGcyt,TGer [-]

Ratio cyt-TG / ER-TG

production

y15* RpTGcyt,TGer [-]

*Only for the untreated phenotype (t = 0).

Most measurements were available for all the seven time points,
but y13 to y15 were experimentally observed for the untreated
phenotype (t = 0) only.

2.3. Calibrating the Model to the Untreated
Phenotype
First the HepaLip2 model was used to describe the untreated
phenotype. Model parameters at baseline (start of simulation
and experiment) are estimated from metabolic data and
flux information. ADAPT estimates the model parameters by
applying a least squares algorithm that minimizes the sum of
squared errors (SSE) between the metabolic data dm,i of the
untreated phenotype and corresponding model outputs yi. To

account for experimental and biological uncertainties different
random samples of the data were generated assuming a data
error model based on Gaussian distributions, with means and
standard deviations according to the experimental data. A global
scatter search was used to initialize a multi-start, gradient-based,
interior point local optimization method, resulting in a collection
of parameter sets that describe the untreated phenotype. These
parameter sets served as a starting point from which ADAPT
iteratively learns and updates the parameters to describe the
transition between experimental data obtained during different
stages of the treatment, as is described next.

2.4. Linking the Computational Model to
Time-Series Data
HepaLip2 and ADAPT have been employed to generate
insight in the LXR agonism response. The T0901317-induced
perturbation starts at the proteome level and subsequently
induces adaptations at the other levels. During the 3 week
treatment the metabolic parameters and fluxes are expected to
change over time. ADAPT captures adaptations or modulating
effects on metabolic pathways by introducing time-dependent
descriptions of model parameters. Parameter trajectories are
constrained by experimental data. To enable the estimation
of dynamic trajectories of metabolic parameters and fluxes,
continuous dynamic descriptions of the experimental data are
used as input for ADAPT. For this purpose, cubic smoothing
splines were calculated that describe the experimental data,
taking into account experimental and biological uncertainties. A
collection of splines was calculated using aMonte Carlo approach
as follows. For all time points in the data the same data model
and sampling approach were used as described above for the
untreated phenotype (the first time point in the time-series).
Subsequently, for each generated set of time samples a cubic
smoothing spline was fitted, which is used as input for the next
step of the ADAPT algorithm. The experimental data and splines
are presented in Figure 2.

2.5. Estimating Time-Dependent Changes
of the Model Parameters
The HepaLip2 model mechanistically describes the kinetics
of metabolic pathways (Figure 1). ADAPT is based on the
assumption that during disease development and treatment
response, changes in kinetic metabolic parameters are caused
by changes in corresponding enzymes that catalyze conversion
or transport of metabolites. Adaptations in metabolic processes
are identified by inferring which metabolic parameters and
consequently metabolic fluxes necessarily have to change to
describe the experimental data. To this end, a simulation of
the full treatment period was divided into a number Nt of
time segments 1t. First, the simulation is started using the
parameters and model state of the untreated phenotype. Next,
for each subsequent segment n, the system is simulated (using
a variable step integration method) for a time-period 1t using
the parameters and model state of the previous step n − 1 as a
starting point. The parameters for segment n are re-estimated
by minimizing the difference between the data interpolants
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FIGURE 2 | Metabolic data and interpolants. Metabolic time-series data and 2D histograms of the splines that were used as input for ADAPT (included in χ2
d ,

Equation 2). A darker color represents a higher density of trajectories in that specific region and time point. The white lines enclose the central 67% of the interpolant

density at each time point. Data is represented as means ± standard deviations (N = 5–6), with an exception for the experimental data obtained via FPLC

measurements. These measurements were performed on pooled mice plasma and are represented by the white dots. Measures of variance used for the Monte Carlo

sampling of these quantities were estimated based on similar experiments that were performed in Grefhorst et al. (2012).

and corresponding model outputs for that time segment. This
procedure is repeated for all segments and as a result parameter
trajectories are inferred by minimizing the objective function χ2

over the time segments through numerical optimization:

Êp(n1t) = arg min
Ep(n1t)

χ2(Ep(n1t)) n = 1, . . . ,Nt (1)

Êp(n1t) represents the optimized parameter set for the nth time
segment. The objective function χ2 is the weighted sum of
squared differences between model outputs and data:

χ2(Ep(n1t)) =

Ny
∑

i=1

(
Yi(n1t)− dm,i(n1t)

σm,i(n1t)

)2
.
= χ2

d (Ep(n1t))

(2)

where Ny is the number of measured model variables (outputs),
Yi(n1t) are the discrete time model outputs, dm,i(n1t) are the
interpolants of the metabolic data with standard deviation σm,i.
The optimization procedure is repeated for all data interpolants,
starting from the state and parameter set of the untreated
phenotype. An ADAPT solution was considered acceptable if
model outputs were within the 95% confidence interval of the
data. In this study Ny = 15, and Nt = 200 was used.

ADAPT simulation of HepaLip2 provides estimates for
system variables that were not experimentally observed, such
as the synthesis rate and composition of VLDL particles

(Supplementary Figure 7). As observed before (Tiemann et al.,
2013), VLDL particle secretion is reduced upon LXR activation.
Although the secretion of VLDL particles decreased, an increased
release of VLDL-TG to the plasma was experimentally observed
(Supplementary Figure 7B). Similarly, the computational
analysis showed an increased production of VLDL-CE to the
plasma (Supplementary Figure 7C). According to the model
the progressive increase of these fluxes was facilitated by an
increased loading of triglycerides and cholesterol onto VLDL
particles (Supplementary Figures 7D,E). These predictions were
obtained using only the metabolic data as input for ADAPT.

2.5.1. Integration of Gene Expression Data
Until here ADAPT connected metabolic parameters to activity
of enzymes (protein level). Next, gene expression was added
as a third layer of information. ADAPT has been extended to
include a potential functional relationship between metabolic
parameters and gene expression levels. Variables in the
mechanistic (metabolic) part of the model can be directly linked
to metabolic data, which is used to fit the model to that
experimental data. Pathways at the transcriptome level were not
modeled mechanistically due to the lack of sufficient quantitative
information about these systems. Gene expression data does not
have an one-to-one connection with the metabolic variables and,
therefore, cannot be included in the error function (Equation
2). Therefore, a different approach was used to integrate gene
expression data in the parameter trajectory estimation algorithm.
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The transcriptomic data is implicitly used to constrain the
dynamic behavior of parameter trajectories, by including a
regularization function. Time-course data of relative expression
levels of 23 genes was available (Figure 3). Table 3 provides
an overview of the parameters and genes that were coupled.
The optimization problem was extended as follows. First, for
each time segment 1t, parameter adaptations are preferred
such that resulting parameter trajectories and corresponding
gene expression profiles display temporal correlation. This was
implemented by including an additional component (χ2

g1
) in

the objective function which maximizes the Pearson correlation
between these profiles. Secondly, the gene expression data
was also used to find parameter trajectories that are steady
and smooth (enforcing temporal sparsity in the solutions). It
was assumed that parameters are less likely to change when
corresponding gene expression levels remain unchanged over
time, compared to data indicating that expression of the genes
is induced or repressed. Therefore, when transcriptomics data
indicate that expression of genes changes over time parameter
adaptations will be less penalized compared to genes with
constant expression. This was implemented by including a third
component (χ2

g2
) in the objective function which utilizes the

time derivative of gene expression profiles to penalize parameter
fluctuations. The higher the derivative of the gene expression
profile, the lower the penalty on changes in parameter values will
be. The resulting objective function χ2(Ep) is written as:

χ2(Ep) = χ2
d (Ep)+ λg1χ

2
g1
(Ep)+ λg2χ

2
g2
(Ep) (3)

in which χ2
d
is the (weighted) sum of squared errors (SSE) of

metabolic data and model outputs (Equation 2), χ2
g1

maximizes
the temporal correlation between parameter trajectories and gene
expression profiles, and χ2

g2
penalizes parameter fluctuations.

λg1 and λg2 are regularization constants (also referred to as
weighting coefficients) that determine the relative importance of
the components. Further details are provided in section 5 and in
the Supplementary Material.

2.6. Setting the Regularization Constants
In multi-objective optimization and regularized regression
approaches, like Equation (3), the weights of the different
components in the objective function are important hyper-
parameters of the algorithm that are problem dependent and
need to be tuned for adequate performance. First, the influence
of the regularization constants for gene correlation (λg1 ) and
damping of unnecessary parameter fluctuations (λg2 ) on the
estimation of the parameter trajectories was investigated using
a Monte Carlo approach. ADAPT was performed for 20, 000
random combinations for λg1 and λg2 and the values of the three
components in the objective function were analyzed. Results
are reported in the Supplementary Material (section 3.1). We
found combinations of regularization constants for which λg1χ

2
g1

becomes effective: when λg1 is larger than 10−6 and λg2 is
smaller than 10−8 parameter-gene couples displayed temporal
correlation. For these combinations λg2 is sufficiently large for
λg2χ

2
g2

to reduce unnecessary parameter trajectory fluctuations,

and the data error χ2
d
is always small (Supplementary Figure 3).

Secondly, the characteristics of parameter trajectory solutions
corresponding to a specific combination of gene regularization
constants was investigated. In some cases parameter-gene
couples already displayed (high) temporal correlation without
including gene expression data (Supplementary Figure 4,
bottom panel). As expected, in many cases an increase in
temporal correlation between the assigned parameter-gene
couples was obtained when gene expression data was included
(Supplementary Figure 4, bottom panel). Interestingly, couple
c5,1 showed a predominantly negative correlation for all solution
groups. Couple c5,1 links the expression of Apob encoding
for the apolipoprotein B to VLDL particle secretion (flux
f24, parameter p22, Table 3). This can be explained when
inspecting the VLDL particle secretion, described in detail in the
Supplementary Material (section 3).

After these verification steps, we concluded the proposed
method works as designed for Hepalip2 in combination with
the experimental data: ADAPT provides a data-driven approach
to incorporate the multi level layers of regulation in a
dynamic model of metabolism. In the following sections we
analyze the applicability of gene expression data to constrain
model predictions, and ADAPT is applied to study: (1) the
compartmentalization of hepatic triglycerides, (2) adaptations
in the hepatic lipid loading capacity, and (3) the quantitative
contribution of the different metabolic routes to the increased
hepatic triglyceride level.

2.7. Integration of Gene Data Constrains
Metabolic Predictions
We introduce the following notation: A group of trajectory
solutions is denoted by Gi where i (0.05 ≤ i ≤ 1) represents
the fraction of all solutions with the highest temporal correlations
of parameter trajectories with gene expression over the entire
treatment period (hence lowest χ2

g1
). For example, group G0.05

contains 5% of the 20, 000 trajectory solutions with the lowest
values for χ2

g1
summed over time. Furthermore, G0 is defined as

the group of solutions corresponding to λg1 = λg2 = 0 (solutions
obtained without regularization). The effect of integration of
gene expression data on model performance was expressed
as reduction in variance in model estimations (Equation 7
in the Supplementary Material). Figure 4 shows the variance
reduction of G0.05 compared to G0 at each time point for all state
variables (left panel), parameters (middle panel), and fluxes (right
panel). The (dark-)gray parts clearly display model predictions
that were effectively constrained by the gene expression data.
Note that in multiple cases also a reduction in variance was
obtained for parameters that were not coupled to genes.

2.8. Compartmentalization of Hepatic
Triglycerides
A reduction in the variance (estimation uncertainty) was
observed for many of the model components when gene
expression was included (Figure 4). One example concerns
the hepatic storage of triglycerides in cytosolic (x4 + x6) and
endoplasmic reticulum (x5 + x7) fractions. The cytosolic fraction
represents the TG pool stored in lipid droplets and the ER
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FIGURE 3 | Gene expression data and interpolants. Temporal expression data for 23 genes and 2D histograms of the corresponding cubic splines that were used as

input for ADAPT (included in χ2
g1

and χ2
g2
). The experimental data is represented as means ± standard deviations (N = 5-6). The white lines enclose the central 67% of

the interpolant density at each time point. (see Table 3 for the gene names).
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TABLE 3 | Parameter-gene couples, linking 23 genes to 11 model parameters.

Couple Parameter Gene Description

c1,1 p16 Ldlr Low-density lipoprotein receptor

c1,2 p16 Vldlr Very-low-density lipoprotein receptor

c1,3 p16 Lrp1 Low-density lipoprotein receptor-related

protein 1

c2,1 p12 Cd36 Cluster of differentiation 36

c2,2 p12 Ap2 Adipocyte protein 2

c3,1 p14 Mtp Microsomal triglyceride transfer protein

c4,1 p15 Mtp Microsomal triglyceride transfer protein

c5,1 p22 Apob Apolipoprotein B

c6,1 p18 Lpl Lipoprotein lipase

c7,1 p8 Lcad Long chain acyl-CoA dehydrogenase

c7,2 p8 Aox Aldehyde oxidase

c7,3 p8 Hmgcoa Hydroxymethylglutaryl-CoA

c7,4 p8 Ucp2 Uncoupling protein 2

c8,1 p7 Gpat Glycerol-3-phosphate acyltransferase

c8,2 p7 Fas Fatty acid synthase

c8,3 p7 Me1 NADP-dependent malic enzyme 1

c8,4 p7 Srebp-1c Sterol regulatory element binding

transcription factor 1c

c8,5 p7 Scd1 Stearoyl-CoA desaturase 1

c9,1 p10 Gpat Glycerol-3-phosphate acyltransferase

c9,2 p10 Fas Fatty acid synthase

c9,3 p10 Me1 NADP-dependent malic enzyme 1

c9,4 p10 Srebp-1c Sterol regulatory element binding

transcription factor 1c

c9,5 p10 Scd1 Stearoyl-CoA desaturase 1

c10,1 p2 Abcg1 ATP-binding cassette subfamily G member 1

c10,2 p2 Abcg5 ATP-binding cassette subfamily G member 5

c10,3 p2 Cyp7a1 Cytochrome P450, family 7, subfamily A,

polypeptide 1

c11,1 p1 Sqs Squalene synthase

c11,2 p1 Hmgcoared HMG-CoA reductase

c11,3 p1 Srebp-2 Sterol regulatory element-binding protein 2

A description of the parameters and corresponding fluxes is presented in

Supplementary Material (section 2).

fraction the TG contained in nascent VLDL particles. Figure 5
shows the 95% intervals of these model quantities for group
G1 (Figure 5, left column), G0.1 (Figure 5, middle column),
and G0.05 (Figure 5, right column). The experimental data only
includes measurements of the total hepatic triglyceride content
(y1) and the model provides more detailed information on where
these lipids reside inside the hepatocyte. Experimental data of
the total hepatic triglyceride content (y1 = x4 + x5 + x6 + x7)
was included in the optimization procedure and all solution
groups describe this data adequately. Before the inclusion of
gene expression data, it was not possible to accurately predict
how the total triglyceride content is distributed between cytosolic
and VLDL fractions (Figure 5, left column). However, when the
gene expression data was included, the model estimates that the
increased triglyceride fluxes are especially stored in the cytosol,
rather than transferred to nascent VLDL (Figure 5, middle and

right column). This estimation was more precise for the 5% of
the trajectory solutions with the lowest values for χ2

g1
(highest

temporal correlation with gene expression) compared to when
the number of trajectories in the analysis was increased to
include 10% of the trajectories with the lowest values for χ2

g1
(G0.05 vs. G0.1).

Subsequently, additional independent measurements
were performed to validate this model result. Fractionation
experiments were performed on livers from untreated C57BL/6J
mice and C57BL/6J mice treated with T0901317 for 14 days, to
separate the cytosolic triglyceride fraction from the microsomal
fraction, containing VLDL. A description of the experimental
materials and procedures is available in section 5. Indeed,
the experimental data shows that the increased triglyceride
fluxes are predominantly stored in the cytosolic fraction
compared to the microsomal fraction (Figure 6), confirming the
model prediction.

The parameter and flux trajectories were investigated to
determine which processes are responsible for the observed
compartmentalization of hepatic triglycerides between cytosolic
and ER fractions (Supplementary Material, section 4). It
appeared that the calculation of constrained estimations for
the nascent VLDL triglyceride content was determined by two
factors. First, the nascent VLDL triglyceride content is co-
determined by the hepatic capacity to load these triglycerides
onto nascent produced VLDL particles (fluxes f14 and f15). A
second factor is the VLDL-TG production flux which increases
progressively during the treatment (Supplementary Figure 7).
Mathematically, this compartmentalization was enforced by
a predicted increase of the hepatic lipid loading capacity
of lipoproteins, as described before (Figure 5). The lipid
loading capacity is co-determined by the activity of microsomal
triglyceride transfer protein Mtp. Expression of Mtp is linked to
parameters p14 and p15 in the HepaLip2 model. The expression
level of the Mtp gene was increased upon LXR activation
(Figure 3). Furthermore, a significant increase of the activity of
Mtp was experimentally observed in mice treated with T0901317
for 1 week (Grefhorst and Parks, 2009).

2.9. Hepatic Triglyceride Accumulation
Pharmacological activation of LXR induces the excessive
accumulation of triglycerides in the liver (Figure 7). Figure 7A
shows that the sum of all fluxes contributing to the hepatic
triglyceride pool increased rapidly during the first 3 days
of the intervention, and remained at this elevated level
upon prolonged treatment. In the mathematical model the
additive fluxes (Fa) include: de novo lipogenesis, hepatic
FFA uptake from plasma, and clearance of lipoproteins
via lipases and whole-particle uptake (Equation 8 in the
Supplementary Material). Figure 7B shows that the increased
Fa was closely accompanied by an increase of the fluxes
that catabolize hepatic triglycerides (Fs, Equation 9 in the
Supplementary Material). The subtractive fluxes include the
secretion of triglycerides to nascent produced VLDL particles
and the hepatic catabolism of triglycerides (the hydrolysis of
triglyceride into fatty acids and glycerol which are subsequently
used in processes such as β-oxidation, gluconeogenesis,
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FIGURE 4 | Temporal variance reduction by incorporating gene expression data. The gray-intensity indicates reduction in variance for estimated state variables (left),

parameters (middle), and fluxes (right). The asterisk signs (*) indicate parameters that were coupled to one or multiple genes. The (dark-)gray parts display model

estimates that were effectively constrained by the gene expression data. Results shown for group G0.05, containing 5% of the trajectory solutions with the highest

temporal correlation between parameter trajectories and gene expression (lowest penalty by χ2
g1
). Compared to G0, which are the solutions obtained without

regularization Note f14 = f28 + f29.

ketogenesis, sterol- and phospholipid synthesis). The difference
between additive and subtractive triglyceride fluxes is displayed
in Figure 7C. An imbalance between these fluxes can be
observed during the first days of the intervention, which
stabilizes gradually during the treatment. One process that
contributes to the hepatic triglyceride accumulation is de
novo lipogenesis. LXR induces the expression of lipogenic
genes such as Fas (fatty acid synthase) and Scd1 (stearoyl-CoA
desaturase 1) (Figure 3), resulting in an increased fractional
contribution of de novo lipogenesis (Figure 2). A question
remained whether de novo lipogenesis is the sole process being
responsible for the triglyceride accumulation. Experimental
data and model simulations showed that the hepatic triglyceride
level was already increased within 1 day of treatment, while
no significant change in the fractional contribution of de novo
lipogenesis was observed. This suggests that other processes
are involved during the initial phase of the treatment (and
perhaps also upon prolonged treatment). Therefore, we
quantified the contribution of all metabolic routes included in

the mathematical model that influence the hepatic triglyceride
level. Figure 7D shows how the fractional contribution of
the various fluxes included in Fa changes during treatment
with T0901317. The analysis shows that plasma FFA provided
a major contribution to the supply of hepatic triglycerides,
whereas the clearance of lipoproteins played merely a minor
role. Furthermore, the figure shows a peak contribution of
hepatic FFA uptake at t ≈ 1 day, while the contribution of
de novo lipogenesis increased gradually up to one week of
treatment. Figure 7E shows the time to peak (time to maximal
fractional contribution) of the various processes. The results
clearly indicate that an increased uptake of FFA precedes the
induction of de novo lipogenesis. The hepatic influx of FFA
contributes for roughly 80% to the accumulation of TG in
the liver.

To establish whether the flux of FFA from plasma to the liver
is indeed increased in the initial phase of LXR activation, as
suggested by the model, experiments were performed in which
13C-palmitate was infused into C57Bl/6J mice that were treated

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 February 2021 | Volume 8 | Article 536957331

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


van Riel et al. Metabolic Trajectory Modeling

FIGURE 5 | Hepatic triglyceride fluxes are increased and especially stored in the cytosolic fraction. Trajectories of the total hepatic TG content (y1 = x4 + x5 + x6 + x7),

as well as its subdivision into cytosolic (x4 + x6) and endoplasmic reticulum (x5 + x7) fractions, are displayed for different groups of solutions. The experimental data of

the total hepatic TG content (the error bars represent the standard deviation of the data) was included in the optimization procedure (linked to output y1) and all groups

describe this data adequately. When only the metabolic data was used to calibrate the model (group G1 ), the distribution of the total TG content between the cytosolic

fraction (TG in lipid droplets) and ER fraction (TG transferred to nascent VLDL could not be estimated precisely (left column). When including the gene expression data,

model results showed that the increased TG pool is especially stored in the cytosol, rather than transferred to nascent VLDL (middle and right column). The solutions

with the highest correlation between parameter trajectories and temporal gene expression (G0.05, right column) yielded the most precise estimates. The shaded areas

indicate the 95% confidence intervals of the model estimates.

FIGURE 6 | Fractionation of hepatic triglycerides. Additional measurements were performed on livers from C57BL/6J mice treated with T0901317 for 14 days and

untreated controls to separate the cytosolic TG fraction from the microsomal fraction, containing VLDL particles. The experimental data shows that hepatic TG is

predominantly stored in the cytosolic fraction, which confirmed the model estimations presented in Figure 5. Note the 20-fold scale difference in both y-axis. The bars

indicate mean + standard deviation, *p < 0.05, Mann-Whitney U-test.
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FIGURE 7 | Hepatic accumulation of triglycerides. (A) The sum of fluxes contributing to the hepatic TG pool. (B) The sum of fluxes that catabolize hepatic TG. (C) The

difference between additive and subtractive TG fluxes. Note the 10-fold smaller scale of the y-axis in (C) compared to (A,B). (D) The fractional contribution of the

various fluxes included in Fa. (E) The time to peak (time to maximal fractional contribution) of the various processes. The areas and bars represent median ± median

absolute deviation. The solutions of group G0.05 are displayed.

with T0901317 for 1 day, and untreated controls (Hijmans
et al., 2015). A description of the experimental materials and
procedures is available in section 5. The contribution of plasma
palmitate to hepatic palmitate and stearate were unchanged after
1 day of LXR activation (Figures 8A,B). However, LXR activation
increased the flux from plasma palmitate to liver palmitoleate and
oleate (Figures 8C,D), thereby confirming the model prediction
obtained via ADAPT that FFA uptake increases within 1 day of
treatment with T0901317.

3. DISCUSSION

Biomedical applications of systems biology require to consider

the complexity of the physiological system in humans or in

the animals used to study human disease, including its highly

interconnected structure and nonlinear dynamic behavior. The
study of progressive adaptations during disease or intervention
is complicated by the multilevel characteristics (metabolome,

proteome, and transcriptome) of the underlying biological
systems and the timescales on which these occur (seconds to
years). Physiological parameters with diagnostic value are hidden
in complicated, multivariate datasets. Time-series measurements
of the metabolome provide information-rich data about the
status of a biological system (Smilde et al., 2010). Gene expression
data is abundant in literature and online repositories. However,
it is not trivial to integrate multi-omics data, and hence to
exploit the full potential of the information contained in these
data. Multi-omics data is high-dimensional because the number
of features and outcome variables is larger than the number
of samples. Despite developments in machine/deep learning
methods, data-driven approaches have fundamental limitations
to model high-dimensional time series data. Mathematical
modeling can construct computer simulation models from
expert-based domain knowledge that can make transparent
and explainable predictions of biological systems (mechanism-
based systems biology models, van Riel, 2006). We proposed
a combination of mathematical models and machine learning,
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FIGURE 8 | The hepatic uptake of FFA is increased. Additional experiments were performed in which 13C-palmitate was infused into C57Bl/6J mice that were treated

with T0901317 for 1 day, and untreated controls. The different graphs present the contribution of plasma palmitate to hepatic palmitate (A), stearate (B), palmitoleate

(C), and oleate (D). The contribution of plasma palmitate to hepatic palmitoleate and oleate was increased after 1 day of LXR activation, thereby confirming the model

estimation presented in Figure 7. The bars represent mean + standard deviation, *p<0.05, Mann–Whitney U-test.

implemented in ADAPT. ADAPT is less susceptible to data bias
than data-driven, machine learning methods. Moreover, ADAPT
quantifies uncertainty in the model and its predictions.

ADAPT is rooted in methods and techniques like system
identification (from systems theory, Ljung, 1998), state-
estimators (such as the Kalman filter, currently applied in
navigation and positioning technology; Kalman, 1960) and data
assimilation (in geosciences, such as weather forecasting, Asch
et al., 2016). Characteristic is the use of a dynamical model
of the system being analyzed in combination with statistical
methods to incorporate measured data. Like a state-estimator,
ADAPT combines dynamic models based on system knowledge
with measurements and statistical models of uncertainties
and variation in the process. The computer simulation model
contains the elements and the dynamics of how the (complex)
biological system operates. ADAPT connects the real biological
system and the corresponding virtual model by different types
of data, and the model updates (“learns”) as the biological
counterparts changes. The algorithm requires time-series data
to execute the model. It provides estimates for unobserved
system variables and at time points for which data is not
available. These state estimates are the “predictions” that can
be made with ADAPT. In studies in humans and animals it is
relatively easy to collect blood to perform measurements in. Via
these measurements one often aims to get information about
processes in organs and tissues. ADAPT enables the translation

of plasma time-series metabolomics data to information about
metabolic processes in tissues and between organs. In dedicated
experiments with metabolic tracers and liver tissue was collected
we have been able to validate estimates (predictions) of metabolic
pools and fluxes to explain the development of hepatic steatosis
as side-effect of treatment with a synthetic LXR agonist.

The application of advanced simulation models in
(biomedical) systems biology and systems medicine requires
credible models, that have been scrutinized on verification,
validation and uncertainty quantification (Viceconti et al., in
press). ADAPT addresses two major types of uncertainty in
model estimation that impact model credibility and applicability:
parametric uncertainty and structural uncertainty. First,
parametric uncertainty concerns the problem of parameter
identifiability. Values of model parameters are inferred from
experimental data, but not all parameters might be identifiable
from the available data (Raue et al., 2009; Vanlier et al., 2013).
Since model parameters are estimated by calibrating the model
to experimental data, uncertainty in the data (noise, errors)
will propagate into the parameter estimates. Uncertainty in
the parameter estimates subsequently will limit the accuracy of
the model predictions. We used a stochastic data model from
which samples were generated using a Monte Carlo approach.
ADAPT was run for all samples hereby quantifying confidence
in the estimated parameter trajectories. Parameter estimation
in nonlinear dynamic models remains a computationally
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challenging task due to its non-convexity (presence of local
optima) and ill-conditioning (Gábor and Banga, 2015). ADAPT
uses a global scatter search to initialize a multi-start, gradient-
based, interior point local optimization method. This approach
was shown to be a successful strategy with a good performance
in a benchmark study (Villaverde et al., 2019). A local solver
(lsqnonlin in Matlab) is started from multiple start points to
sample multiple basins of attraction associated with possible
local minima in the cost function (the negative log-likelihood).
The scatter search was made more efficient by only selecting the
10% of the most promising sampled parameters sets (lowest SSE)
as start values for the local solver to estimate the model for the
untreated condition (multistart with preselection).

Second, lack of knowledge about components and their
quantitative interactions introduces uncertainty about the
model structure. Structural uncertainty resides in simplifications
that are inherent to the process of model building and
assumptions that are made in case the nature and/or
kinetic details of certain interactions are unknown (or
disputed). The network topology of metabolic pathways
is (relatively) well-known. Network structures impose
strong constraints on the solution space of mathematical
models, a characteristic that is employed in constraint-
based simulation and analysis of (genome-scale) metabolic
network models (Orth et al., 2010). Mathematical modeling
of signal transduction and gene regulatory networks is more
difficult. Insufficient information is available to formulate
accurate mathematical descriptions of these networks. Making
wrong and/or too strong assumptions about interactions
and their kinetics could largely bias the model. Instead
of adding equations with structural uncertainty, ADAPT
introduces freedom in model parameters to compensate for
unmodeled regulation.

ADAPT combines differential equationmodels of the network
topology and mass fluxes in metabolic pathways with machine
learning to model temporal metabolic data (Tiemann et al., 2013;
Rozendaal et al., 2018b). A more complete understanding of
underlying biological adaptations requires integration of other
molecular data, such as transcriptomics and proteomics. Here we
have extended ADAPT to integrate metabolic and transcriptomic
time-series data. ADAPT uses numerical optimization for
learning and updating of model parameters, to estimate the
current state of the system and forecast its future trajectory. A
new regularization function was added to the learning algorithm
that is used to estimate model parameters. The new version of
ADAPT uses the metabolite data as input to estimate trajectories
of metabolic parameters and takes the gene expression data
as additional information to refine the trajectories. The gene
expression data was included implicitly in the model by
incorporation in the regularization function (composed of two
components χ2

g1
and χ2

g2
), where it was implicitly used to

guide and constrain the dynamic variations in the parameter
trajectories. First, parameter adaptations were preferred such
that resulting parameter trajectories and corresponding gene
expression profiles display temporal correlation. Secondly, the
gene expression data was used to prevent unnecessary (random)
fluctuations in parameter trajectories, that could be the result

of poor identifiability of certain parameters. The importance
(weight) of each objective function component is determined by
the corresponding regularization constant. The penalty function
is a refinement of the regularization function described in
Tiemann et al. (2013). χ2

g2
effectuates that changing a parameter

is costly, which will therefore be avoided unless it is required to
describe the metabolic data. This results in parameter trajectories
that are steady and smooth (enforcing temporal sparsity in the
solutions). However, in the present study, the penalty of changing
a parameter is reduced when corresponding gene expression
level changes.

Regularization is a key component of ADAPT. It provides
the possibility to extend the biological realism of the simulations
by including post-transcriptional control that was not accounted
for in the mathematical model. Regularization also improves
numerical performance by resolving ill-conditioning of the
estimation problem. Regularization is known to be beneficial for
inverse problems, of which parameter estimation is an example.
Regularized regression, like LASSO, is used to prevent overfitting
and perform feature selection in computational statistics and
machine learning (e.g., Imangaliyev et al., 2018). Regularization
for estimatingmodels of dynamical systems has been investigated
in much lesser extent (Chen, 2013). We and others have
shown that regularization can be very effective to mitigate ill-
conditioning when estimating dynamic systems biology models
(van Riel et al., 2013; Gábor and Banga, 2015). In ADAPT
regularization is extended beyond so-called ridge regression (also
known as Tikhonov regularization), in which the regularization
function penalizes deviations of the parameter estimates from
their reference (nominal) values or a priori defined target values
(Cedersund and Roll, 2009; Dolejsch et al., 2019). Regularized
estimations ensure a trade-off between bias and variance,
reducing overfitting, and allowing the incorporation of prior
knowledge in a systematic way.

Previously we had applied a model of hepatic lipid and
plasma lipoprotein metabolism using an earlier version of
ADAPT and discovered how pharmacological activation of LXR
induced the reverse cholesterol pathway, but with counter-
intuitive behavior of scavenger receptor class B1 (SR-B1), a
receptor that facilitates the hepatic uptake of cholesterol from
HDL particles (Tiemann et al., 2013). Here we have included
gene expression data that was not available in the previous
work to study the development of hepatic steatosis, which is a
serious side effect of pharmacological activation of LXR. Results
from the computational analysis showed that the additional
integration of gene expression data effectively constrained
and improved estimations (model predictions). of the hepatic
storage of triglycerides in cytosolic and nascent VLDL fractions
(Figure 5). Without the gene expression data it was not possible
to accurately estimate how the total triglyceride content is
distributed between these fractions. Interestingly, when the gene
expression data was included, model predictions indicated that
the increased triglyceride fluxes are predominantly stored in the
cytosol, rather than being transferred to nascent VLDL. Hepatic
fractionation experiments were subsequently performed that
confirmed this prediction, providing an independent validation
of the model.
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As LXR induces the expression of lipogenic genes, such as Fas
and Scd1, it was expected that de novo lipogenesis would be the
major metabolic route contributing to development of hepatic
steatosis. Experimental data shows that the hepatic triglyceride
level was already increased within 1 day of treatment. The
parameter and flux trajectories obtained with ADAPT were used
to quantitatively analyze the contribution of all metabolic routes
included in the mathematical model to the accumulation of
hepatic triglycerides. Remarkably, the computational analysis
revealed that plasma FFA provided a major contribution to the
supply of hepatic triglycerides. Moreover, a peak contribution of
hepatic FFA uptake was observed at 1 day of treatment, while the
contribution of de novo lipogenesis increased gradually up to 1
week of treatment. The computational results clearly indicated
that an increased uptake of FFA precedes the induction of de
novo lipogenesis. This predictionwas validated in an independent
experiment with a metabolic tracer. To establish whether the
flux of FFA from plasma to the liver is increased upon LXR
activation, 13C-palmitate was infused via jugular vein catheter
into C57Bl/6J mice that were treated with T0901317 for 1 day,
and untreated controls. Indeed, an increased incorporation of
13Cwas observed in the hepatic triglyceride levels of palmitoleate
and oleate confirming plasma as main source, as predicted by
the model. Our findings might also be relevant to understand
the development of steatosis, non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH) associated
with Metabolic Syndrome (Rozendaal et al., 2018b). Increased
flux of FFA and glycerol from lipolysis of white adipose
tissue (O’Donovan et al., 2019) has been associated with liver
steatosis and NAFLD, also contributing to impaired postprandial
repression of endogenous glucose production occurring in Type
2 Diabetes (Perry et al., 2015; Roden and Shulman, 2019).

ADAPT can be used to extract information on disease
development and effects of medication that cannot be directly
observed from the data. The computational model functions as
a state-estimator applied to monitor the effect of therapeutic
interventions and detect critical transitions of the system. Future
developments include applications in so-called digital twinning
in which computer simulation models are connected to their
biological counterparts by different types of data and the model
automatically updates as the biological counterpart changes (van
Riel et al., 2020).

4. CONCLUSIONS

The development of computational models and techniques to
study molecular adaptations during disease or intervention are
important challenges in the field of biomedical systems biology
and systems medicine. ADAPT combines the data-driven power
of machine learning with that of knowledge-based, mechanistic
simulation models. We presented an extension of ADAPT
to integrate metabolomic and transcriptomic time-series data
using a novel regularization approach. The gene expression
data effectively constrained and improved model predictions,
providing new insights in triglyceride metabolism related to
drug-induced development of hepatic steatosis.

5. MATERIALS AND METHODS

The computational workflow of ADAPT is described. First,
the mathematical modeling of metabolic pathways and the
identification of molecular adaptations are discussed. Second, the
methodology to integrate gene expression data is presented.

5.1. Continuous Descriptions of the
Experimental Data
Progressive diseases affect multiple processes operating at
different levels (metabolome, proteome, and transcriptome)
and different timescales (seconds to years). During disease
development metabolic parameters (and consequently metabolic
fluxes and concentrations) can be expected to change over time.
The concept of time-dependent model parameters is introduced
to study these adaptations. ADAPT identifies necessary dynamic
changes in the model parameters to describe the transition
between experimental data obtained during different stages
(time points) of the disease. To estimate dynamic trajectories
of model parameters, continuous dynamic descriptions of the
experimental data were used as input for ADAPT. Cubic
smoothing splines were calculated to describe the dynamics of
the experimental data. To account for experimental variance
and biological variation a collection of splines was calculated
using a Monte Carlo approach. Different random samples
of the experimental data were generated assuming Gaussian
distributions with means and standard deviations according
to the data. Subsequently, for each generated sample a cubic
smoothing spline was calculated (Figure 9).

In the present study, a distinction between two types of data
wasmade. First, metabolic data was acquired, e.g., concentrations
and fluxes of metabolites in plasma and tissue compartments.

The splines describing this data are denoted by Edm(t).
Secondly, experimental data derived from the transcriptome
level was considered, e.g., mRNA expression levels of genes.

Corresponding splines are denoted by Edt(t).

5.2. Mathematical Modeling of the
Metabolome Level
Mathematical modeling was centered on metabolic pathways.
Pathways at the proteome and transcriptome levels that
modulate the metabolic processes were not modeled explicitly
as insufficient information of the underlying network structure
and interaction mechanisms was available. The metabolic model
is defined by a set of (non)linear ordinary differential equations
(state-space structure):

Ėx(t) = NEf (Ex(t), Ep, Eu) with Ex(t0) = Ex0

Ey(t) = Eg(Ex(t), Ep, Eu)
(4)

where Ėx is a vector of first derivatives of molecular species (or
state variables) Ex with respect to time. The right-hand side of the
equation is given by the topology of the network (stoichiometric

matrix N) and a set of functions Ef that describe the interactions
between the species. The initial concentrations of Ex are given by
Ex0. The vector Ey represents the model outputs, which are given
by a set of functions Eg that map the model states to specific
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FIGURE 9 | Pre-processing of experimental data for ADAPT. The experimental data consists of time course, longitudinal data obtained at multiple, discrete points in

time, describing the transition of the biological system. In (A), the black error bars represent mean and standard deviation of the data at each point in time. A time

continuous description of the data is obtained by spline interpolation. To account for experimental and biological uncertainties, a Monte Carlo approach is used. The

data is randomly sampled assuming a data error model based on Gaussian distributions with means and standard deviations according to the experimental data (A;

blue circles). A cubic smoothing spline (B; green line) is fitted through these samples. This process is repeated, obtaining a collection of splines (C).

quantities of interest. The outputs usually are quantities that have

been experimentally measured. Both functions Ef and Eg depend on
kinetic parameters Ep and optional external inputs Eu. In principle,
the generic set of equations in (4) can be used to describe
any biomolecular reaction network. Here we use the system of
ordinary differential equations to describe metabolic networks.

5.3. Dynamic Parameters to Describe
Metabolic Adaptations
Details of the ADAPT methodology have been described
in Tiemann et al. (2013) and are repeated here briefly for
consistency. Dynamic adaptations in metabolic processes are
identified by inferring necessary dynamic changes in the model
parameters which are therefore time-dependent. To this end, a
simulation of the treatment was divided in Nt steps of 1t time
period using the following discretization:

EX(n1t) = Ex(1t, Ep(n1t))

EY(n1t) = Eg(EX(n1t), Ep(n1t))

EX(0) = Ex0(Ep(0))

(5)

with 0 ≤ n ≤ Nt and Nt1t the time period of the entire
experiment. The simulation is initiated (n = 0) using the initial
values of the model states Ex0 obtained with parameter set Ep(0)
representing the untreated phenotype. Subsequently, for each
step n > 0 the system is simulated for a time period of 1t
using the final values of the model states of the previous step
n − 1 as initial conditions. Parameters Ep(n1t) are estimated by

minimizing the difference between the data interpolants Edm(n1t)
and corresponding model outputs EY(n1t). Here, the previously
estimated parameter set Ep((n − 1)1t) is provided as initial
set for the optimization algorithm. The parameter optimization
problem is given by:

Êp(n1t) = arg min
Ep(n1t)

χ2
d (Ep(n1t)) (6)

χ2
d (Ep(n1t)) =

Ny
∑

i=1

(
Yi(n1t)− dm,i(n1t)

σm,i(n1t)

)2

(7)

where Êp(n1t) represents the optimized parameter set and χ2
d

is the weighted sum of squared errors (SSE), with Ny the
number of model outputs (equal to the number of measured
variables). Parameter trajectories were estimated using 200 time
steps (Nt = 200).

A Monte Carlo approach was employed to account for
methodological and experimental uncertainties. First, a global
scatter search was used to initialize a multi-start local
optimization method (Tiemann et al., 2011). 2 × 105 parameter
vectors were sampled from a widely dispersed range of initial
parameter values (10−6 to 106). For each parameter vector χ2

d
|n=0

was computed (SSE at t = 0). 2 × 104 (10%) of the best
performing parameter sets (with lowest χ2

d
|n=0) were selected

and used to initiate the optimization procedure and estimate

Êp(0), using a gradient-based, interior point local optimization
method (lsqnonlin in Matlab). This resulted in a collection of
parameter sets that describe the untreated phenotype. Secondly,
in each optimization series a different spline function for
Edm was used. Finally, distributions of parameter trajectories
(and consequently state and flux trajectories) are obtained that
describe the transition of the phenotype during the disease
or intervention.

5.4. Implicit Integration of the
Transcriptome Level
Time-course data of relative gene expression levels was used as
an additional source of information to constrain the dynamic
behavior of parameter trajectories. However, note that pathways
at the transcriptome level were not modeled explicitly due to
the lack of sufficient quantitative information about the gene
regulatory networks regulating the response to LXR activation.
Therefore, the parameter trajectory estimation protocol, as
formulated in Equations (6) and (7), was modified to integrate
gene expression data. ADAPT is based on the assumption that
changes in metabolic parameters are reflected by changes in
corresponding enzymes, which in turn are reflected by changes
in corresponding gene expression levels. This implies there is
a functional relationship between a metabolic parameter pi and
corresponding gene expression level dt,i.
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5.4.1. Maximization of the Temporal Correlation
The optimization problem presented in Equation (6)
was extended as follows. For clarity we introduce the
following definitions: Ep[·n] = Ep[0,1t, · · · n1t] and
Edt[·n] = Edt[0,1t, · · · n1t], which represents the parameter
trajectories from time step 0 to n and corresponding gene
expression data, respectively. During a re-optimization of the
metabolic parameters Ep from step n − 1 to step n, a 1Ep is
preferred such that resulting parameter trajectories Ep[·n] and

corresponding gene expression profiles Edt[·n] display temporal
correlation.This was effectuated by including an additional
component χ2

g1
in the objective function which maximizes the

temporal correlation between these profiles:

χ2
g1
(Ep(n1t)) =

Np
∑

i=1

Vi(n1t) (8)

where Np is the number of parameters, and Vi(n1t) is given by:

Vi(n1t) =











1

Nci

Nci∑

j=1

(

1− ρij(n1t)
)2

if Nci > 0

0 otherwise

(9)

where Nci is the number of genes assigned to parameter i, and
ρij(n1t) is given by:

ρij(n1t) =
Cov(Epi[·n], Edt,ij[·n])

σ (Epi[·n])σ (Edt,ij[·n])
(10)

Equation (10) represents the Pearson correlation coefficient
between a parameter trajectory and corresponding gene
expression data, which is bounded between −1 (maximal
negative correlation) and 1 (maximal positive correlation). Note
that multiple genes can be assigned to a parameter, which could
be useful for instance when a cascade of molecular processes is
integrated in a single mathematical reaction equation.

5.4.2. Constraining the Magnitude of Dynamic

Variations in Trajectories
The gene expression data was also used to constrain the
magnitude of dynamic variations in the parameter trajectories.
It was assumed that parameters are less likely to change
when corresponding gene expression levels remain unchanged,
compared to scenarios when expression of the genes is induced
or repressed. Therefore, in latter cases parameter adaptations are
less penalized compared to former cases. This was effectuated
by including an additional objective function χ2

g2
which utilizes

the time derivative of gene expression profiles to penalize
parameter fluctuations:

χ2
g2
(Ep(n1t)) =

Np
∑

i=1

Wi(n1t) (11)

withWi(n1t) given by:

Wi(n1t) =











1

Nci

Nci∑

j=1

(
Pi(n1t)

Gij(n1t)

)2

if Nci > 0

Pi(n1t) otherwise

(12)

with Pi(n1t) and Gij(n1t) defined as:

Pi(n1t) =
1

pi(0)

pi(n1t)− pi((n− 1)1t)

1t
(13)

Gij(n1t) =
1

dt,i,j(0)

d

dt
dt,i,j(t)

∣
∣
∣
∣

t=n1t

(14)

where Pi(n1t) represents the normalized derivative of parameter
i at time step n. Relative derivatives were used to assign
equal relevance to all parameters and to avoid domination
of the optimization by large absolute values. Furthermore,
Gij(n1t) represents the normalized derivative of the spline
function (evaluated at time step n) that describes corresponding
gene expression data. To avoid division by zero (when
Gij(n1t) = 0), the minimal absolute value of Gij(n1t) was
truncated at 10−6. Note that Pi(n1t) effectuates that changing
a parameter is costly, which will therefore be avoided unless it
is required to describe the experimental data. However, when
accompanied by a change in gene expression level, the penalty
of changing corresponding parameter is reduced (because P is
divided by G).

Objective functions χ2
g1

and χ2
g2

were formulated as soft
constraints by introducing constants λg1 and λg2 , which
determine the contribution strengths of the functions. This
implies that metabolic parameters and corresponding gene
expression levels do not necessarily have to display temporal
correlation when this is in contradiction to the metabolic data.
This provides the possibility to account for post-transcriptional
control. In summary, an optimized parameter set is defined
as follows:

Êp(n1t) = arg min
Ep(n1t)

(

χ2
d (Ep(n1t))+ λg1χ

2
g1
(Ep(n1t))

+λg2χ
2
g2
(Ep(n1t))

)

(15)

The determination of the regularization constants is discussed in
Supplementary Material (section 3.1).

5.5. Implementation Details
The mathematical model and ADAPT were implemented
in MATLAB (The Mathworks, Natick, Massachusetts,
USA). The code is available on GitHub (https://github.com/
nvanriel/ADAPT, https://github.com/rcqsnel/adapt-modeling-
framework, and https://github.com/yvonnerozendaal). The
ordinary differential equations were solved with compiled MEX
files using numerical integrators from the SUNDIALS CVode
package (2.6.0, Lawrence Livermore National Laboratory,
Livermore, California) (Hindmarsh et al., 2005). An absolute
and relative tolerance of 10−6 were used. The MATLAB
nonlinear least-squares solver lsqnonlin (from the Optimization
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Toolbox), which uses an interior reflective Newton method
(Coleman and Li, 1996), was used to estimate model
parameters. The termination tolerances for the objective
function and the parameter estimates were set to 10−10,
the maximum number of iterations allowed was set to 103

and the maximum number of function evaluations allowed
to 105. Parameter trajectories were estimated using 200
time steps. The MATLAB function csaps (from the Curve
Fitting Toolbox) was used to calculate cubic smoothing
splines using the default smoothness setting (= 1) and the
roughness dependent on the variation in the data: (1/std)2 (std:
standard deviation).

5.6. Experimental Procedures
The experimental procedures have been described previously
(Tiemann et al., 2013; Hijmans et al., 2015). Information
about the fractionation experiments is provided in the
Supplementary Material. Experimental procedures were
approved by the Ethics Committee for Animal Experiments of
the University of Groningen.
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