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Editorial on the Research Topic

Machine Learning in Genome-Wide Association Studies

INTRODUCTION

Genome-wide association studies (GWAS) are used to detect genetic variants that explain common
human diseases in populations. The initial GWAS achieved notoriety by successfully identifying
thousands of genes associated with a variety of genetic disorders. However, these identified genes
have been most successful in establishing individual associations with Mendelian diseases and
explaining only a small portion of the heritability. Complex diseases are likely better explained by
multiple interacting genetic and environmental variants. Such non-linear, non-additive gene-gene
interaction effects, i.e., epistasis, render traditional one-gene-at-a-time analysis methods ineffective
for GWAS. Instead, powerful machine learning algorithms that can detect and characterize
high-order interactions among multiple genetic variants are needed.

The focus of this Special Topic Issue is to examine the novel design and application of machine
learning algorithms in detecting interacting genetic variants for GWAS in six included articles.

Liu et al. proposed a deep-learning framework using convolutional neural networks to predict
the quantitative traits from single nucleotide polymorphisms (SNPs) and to investigate genotypic
contributions to the trait using saliency maps. The authors evaluated the performance of the
proposed approach using both simulation and experimental soybean datasets. The results showed
that deep learning modeling can bypass the imputation of missing values and achieve more
accurate results for predicting quantitative phenotypes than well-established statistical methods.
The authors claim their approach effectively and efficiently identifies significant SNPs and SNP
combinations associated with GWAS data.

Zhang et al. presented circLGB, a machine learning-based framework to discriminate circRNA
from other lncRNAs. This approach combined commonly used sequence-derived features and
three new ones; adenosine to inosine (A-to-I) deamination, A-to-I density, and internal ribosome
entry site. circLGB categorizes circRNAs by utilizing a LightGBM classifier with feature selection.
In addition, the authors apply circMRT, another ensemble machine learning framework to
systematically predict the regulatory information for circRNA, including their interactions with
microRNA, RNA binding protein, and transcriptional regulation. Feature sets including sequence-
based features, graph features, genome context, and regulatory information features were modeled
in circMRT. Experiments on publicly available datasets and lab generated ones showed that the
proposed algorithms outperform the available state-of-the-art methods.

In a review article by Nicholls et al., the authors discussed the landscape of ML applications
in GWAS by following three components: selected models, input features, and output model
performance. The authors focused particularly on the prioritization of complex disease-associated
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loci and explored the contributions ML has made toward
reaching the GWAS end-game with consequent wide-ranging
translational impact.

Leem et al. have proposed a permutation method for GWAS,
i.e., ENhanced Permutation tests via multiple Pruning (ENPP).
ENPP prunes the features in each permutation round if they were
determined to be non-significant. Their simulation study showed
that the ENPP method could remove about 50% of the features,
at the first permutation round, and by the 100th permutation
round, 98% of the features were removed. Only 7.4% of the
compute time was required, compared to the original unpruned
permutation approach. In addition, they applied this approach
to a real data set of ∼300K SNPs, to find the association with a
non-normal distributed phenotype.

Arabnejad et al. designed a machine learning algorithm,
i.e., Nearest-neighbor Projected-Distance Regression
(NPDR), in order to detect complex multivariate effects for
GWAS. NPDR used a regression formalism that allowed
statistical significance testing and efficient control for
multiple testing. In addition, the regression formalism
provided a mechanism for NPDR to adjust for population
structure, which was applied to GWAS data of Systemic
Lupus Erythematosus (SLE). The authors also tested
NPDR on benchmark simulated genetic variant data with
epistatic effects, main effects, imbalanced data for case-
control design, and continuous outcomes. NPDR identified
potential epistatic and other effects that influence the complex
SLE disorder.

Lastly, in the article by Ni et al., ∼300K stomach tissue-
specific eSNPs with gastric cancer (GC) risk in three GWAS
datasets were investigated. The authors conducted a gene-based
analysis to calculate the cumulative effect of eSNPs through
a sequence kernel association combined test and Sherlock
integrative analysis. At the SNP-level, they identified two novel
variants associated with GC risk. Gene-based analyses identified
2 novel susceptibility genes for GC which were significantly
overexpressed in GC tissues than in their adjacent tissues and
the high expression level of these two genes was associated with
an unfavorable prognosis of GC patients. Co-expression genes
with these two novel genes in normal stomach tissues were
significantly enriched in several cancer-related pathways.
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Genomic selection uses single-nucleotide polymorphisms (SNPs) to predict quantitative 
phenotypes for enhancing traits in breeding populations and has been widely used to 
increase breeding efficiency for plants and animals. Existing statistical methods rely on a 
prior distribution assumption of imputed genotype effects, which may not fit experimental 
datasets. Emerging deep learning technology could serve as a powerful machine learning 
tool to predict quantitative phenotypes without imputation and also to discover potential 
associated genotype markers efficiently. We propose a deep-learning framework using 
convolutional neural networks (CNNs) to predict the quantitative traits from SNPs and also 
to investigate genotype contributions to the trait using saliency maps. The missing values 
of SNPs are treated as a new genotype for the input of the deep learning model. We 
tested our framework on both simulation data and experimental datasets of soybean. The 
results show that the deep learning model can bypass the imputation of missing values 
and achieve more accurate results for predicting quantitative phenotypes than currently 
available other well-known statistical methods. It can also effectively and efficiently 
identify significant markers of SNPs and SNP combinations associated in genome-wide 
association study.

Keywords: genomic selection, deep learning, genome-wide association study, soybean, genotype contribution

INTRODUCTION
The marker-assisted selection (MAS) strategy has made significant improvements in phenotype 
prediction for quantitative traits in breeding, assuming that genotype markers have significant 
associations with their phenotypes. The genome-wide association study (GWAS) has also been 
applied to select those phenotype-associated genetic variants. Genomic selection (GS) is one type of 
MAS strategy, using single-nucleotide polymorphisms (SNPs) to predict breeding values (BVs) or 
quantitative phenotypes. The strategy has been widely applied in i) major crops (Jannink et al., 2010), 
such as soybeans [Glycine max], rice [Oryza sativa], and maize [Zea mays] (Zhao et al., 2012; Spindel 
et al., 2015; Xavier et al., 2018); ii) crops with long life cycles, such as oil palm [Elaeis guineensis 
Jacq.] (Cros et al., 2015) and domesticated animals like Holstein dairy cattle (Schaeffer  2006; 
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Verbyla et al., 2009). Traditional statistical methods, such as the 
best linear unbiased prediction (BLUP), Bayesian A, B, Cπ, and 
Bayesian LASSO (BL) (Hayes and Goddard, 2001; Pérez et al., 
2010; Endelman, 2011) have been widely utilized for modeling 
genotype effects and predicting phenotypes. These statistical 
methods usually assume that genotype random effects follow 
a prior distribution such as Gaussian, and the contribution of 
each genotype to the associated phenotype is considered as an 
independent feature. This prior assumption requires sufficiently 
large training samples to cover the overall population structure 
and to make it true. However, in practice, the individual 
genotype effect is unknown and may not strictly follow a certain 
distribution. In addition, SNPs may also have interactions with 
other SNPs that contribute to complex diseases or traits (Wang 
et al., 2015) as seen due to the epistasis effects.

Missing values in a genotype matrix represent another 
challenge for statistical methods, wherein these missing values 
are usually screened out during preprocessing or filled with 
values through imputation (Howie et al., 2009; Marchini and 
Howie 2010; Rutkoski et al., 2013). Imputation is a computational 
process for estimating missing values in genotypes from a template 
population. Several methods have been developed for genomic 
imputation with or without the reference genome information. 
The calculated mean, expectation–maximization (EM) algorithm 
is provided in the R package rrBLUP (Endelman 2011); random 
forest (RF) is provided in missForest (Stekhoven and Bühlmann, 
2011), and a hidden Markov model (HMM)-based method is 
applied in BEAGLE (Browning et al., 2018) and MaCH (Li et al., 
2010) with the reference genome. The imputation accuracy is 
highly dependent on observed non-missing genotypes and the 
missing rate of the whole population, which directly affects the 
performance of the phenotype prediction model (Rutkoski et al., 
2013; Xavier et al., 2016). To develop a phenotype prediction 
model through statistical approaches, the genotype matrix is 
required to be imputed together and then divided into training 
and testing datasets for model training and testing. To some 
extent, the testing set is not totally independent from the training 
set, since the training set may contain genotypes estimated from 
the testing set under this circumstance. Inaccurate imputation 
methods may also introduce errors and uncertainty and 
further affect biomarker selection. Therefore, these imputation 
approaches may not be effective in inferring informative genetic 
markers hidden in the entire genome.

Recently, deep learning has been applied in computational 
biology (Angermueller et al., 2016), with the introduction of 
noncoding variant function prediction (Zhou and Troyanskaya, 
2015), protein localization prediction (Alipanahi et al., 2015; 
Zhang N et al., 2018), protein secondary structure prediction 
(Spencer et al., 2015), and protein post-translational modification 
site prediction (Wang D et al., 2017; Wang et al., 2018). In genotype 
association studies, deep learning has also been used to identify 
SNP interactions (Uppu et al., 2016), classify genomic variants 
(Liang et al., 2016). DeepGS, an ensemble of convolutional neural 
network (CNN) (Krizhevsky et al., 2012) and rrBLUP have been 
used to predict phenotypes using imputed SNPs (Ma et al., 2018), 
and a simple dense neural network (DNN) is used on genotype-
by-sequencing (GBS) data (Montesinos-López et  al., 2018). For 

these phenotype prediction problems, CNN can capture spatial 
information from raw sequencing reads or genomic variants 
without feature engineering. To some extent, the CNN also resolves 
the local epistasis effect as the convolving process is considering 
interactions among neighboring SNPs within different ranges of 
the kernel window. However, the above deep learning methods 
have not effectively addressed the problem of missing values, and 
they all treat the deep learning models as black boxes without 
discussing the effective SNP markers. In particular, none of them 
have explored the internal features associated with the traits 
through attention mechanisms, which is an approach developed 
for visualization of the black box of deep learning architecture. 
The saliency map (Simonyan et al., 2013) of deep learning was first 
introduced for visualizing image features in classification and now 
plays a major role in image segmentation and image style transfer 
(Gatys et al., 2016). This strategy can evaluate the contribution of 
each input component to differentiate output categories.

In this paper, we propose an independent deep CNN (Szegedy 
et al., 2017) model to predict phenotypes from SNPs, which 
contains dual-stream of CNNs and can take either an imputed 
or non-imputed genotype matrix as the input. We also applied 
the saliency map deep learning visualization approach to select 
significant associated biomarkers from our trained model. To the 
best of our knowledge, this is the first study to apply a saliency 
map for a GWAS. The comparison results with traditional 
statistical methods (rrBLUP, Bayesian ridge regression (BRR), 
Bayesian A, and BL) and existing deep learning used several 
evaluation metrics on both simulation and experimental data, 
which indicate that our proposed deep learning model serves as 
a robust and efficient architecture in selecting germplasms and 
discovering genotype–phenotype relationships.

MATeRIAlS AND MeThODS

Dataset
We used an experimental soybean dataset and a simulation 
dataset as the benchmark to evaluate the performance of our 
deep learning model, as summarized in Table 1.

Soybean Dataset: The soybean dataset from the soynam 
project was generated using a nested association panel (Xavier 
et al., 2015; Song et al., 2017). The soybean dataset contains more 
than 5,000 recombination inbred lines (Rils) and 4,236 common 
SNPs between imputed data and raw quality assured  data. 
The  genotype and phenotype data were available in the 

TABle 1 | Summary of soybean experimental dataset.

Dataset Trait environment Sample 
(N)

heritability Reference

SoyNAM Yield 2013 Illinois 5,001 0.512 (Xavier 
et al., 2015)

Protein 2012 Illinois 5,128 0.545

Oil 2012 Illinois 5,128 0.617
Moisture 2012 Illinois 5,128 0.582

Height 2013 Illinois 5,138 0.667
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“SoyNAM” R Package (Xavier et al., 2015). We selected five traits 
from the 2013 and 2012 Illinois Location. Missing genotypes 
in the soybean dataset were imputed using the MaCH software 
(Li, et al., 2010) based on the HMM Approach. The imputation 
method applied on the soybean dataset was discussed in Xavier 
et  al. (2016), who found it to have the best performance in 
imputing accuracy and phenotype predicting ability.

Simulation Dataset: The simulation dataset was constructed 
using Hypred (Technow, 2011), which simulates 10,000 
F2 recombined individuals with 5,000 SNPs. We assigned 
quantitative trait locus (QTL) every 500 SNPs at SNP index 
position 100, 600, 1100, 1600, 2100, 2600, 3100, 3600, 4100, and 
4600. No missing value was included in the simulation set.

The genotype matrix used as inputs for the three datasets was 
coded into 0, 1, or 2 to represent homozygous, heterozygous, and 
reference homozygous, respectively, and missing genotypes were 
coded as −1 for genotypes without imputation.

Narrow-Sense heritability
The narrow-sense heritability of each trait is calculated based on 
the BRR model from the R package SoyNAM. It is defined as the 
ratio of phenotypic variance due to additive genotypes as follows:

 

h
V

V V
2 =

+
g

g e
 

where Vg is the phenotypic variance and Ve is the residual 
variance estimated from a BRR model.

Deep learning Architecture
Genotype Coding With One-Hot
Three genotypes (0, 1, 2) and missing values (−1) are first encoded 
using one-hot binary coding and serve as the input vector. 
Using one-hot coding, each marker is represented by a four-
dimensional vector with 1 at the index for one genotype and the 
rest of them are set at 0 as shown in the far left inset of Figure 1. 
For example, three genotypes [AA, Aa, aa] are represented as 
[0, 1, 0, 0], [0, 0, 0, 1], and [0, 0, 1, 0], respectively. The missing 
genotype is represented as [1, 0, 0, 0]. Encoded genotypes serve 
as input to our model.

Genotype Processing Blocks
Our dual-stream CNN-based deep network contains 
three building blocks as shown in Figure 1, i.e., the input 
processing block, the feature processing block, and the output 
processing block.

Input Processing Block: This block contains an input layer, 
a dual-CNN layer, which contains two parallel CNN streams 
(Szegedy et al., 2017) and a sum-up layer to combine the parallel 
CNN streams. The input layer contains one-hot encoded 
genotypes, and subsequently the encoded genomics makers 
are simultaneously passed to the dual-CNN layer. We applied 
the idea of residual learning (He et al., 2016) in this dual-
CNN layer, which was first introduced for image recognition 
and classification to solve the vanishing gradient problem. The 
residual connection is a shortcut connection from a previous 
layer and was added to identity mapping used to form a residual 
mapping. This approach has been applied in predicting protein 
backbone torsion angles and protein contact maps (Wang S et al., 

FIGURe 1 | Dual-stream CNN model structure. Genotypes are one-hot coded and passed to the input processing block, which contains two streams of CNNs. 
The first stacked-CNN stream contains two feed-forward CNN layers with kernel sizes 4 and 20. The second single-CNN stream contains one CNN layer with 
kernel size 4, followed by an add-up layer to aggregate outputs from the two streams. The feature processing block contains another single convolution layer 
with kernel size 4. Processed features are then passed to the output processing block, which contains a flatten layer and a fully connected dense layer. CNN, 
convolutional neural network.
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2017; Fang et al., 2018). In the dual-CNN layer, the single-CNN 
stream served as a residual connection to the other stacked-
CNN stream. The stacked-CNN contains two stacks of 1D 
convolutional layer with different kernel sizes, 4 and 20; and the 
single-CNN stream contains one convolutional layer with kernel 
size 4. The sum-up layer is used to aggregate the outputs from 
previous dual-CNN layer, and it is the element sum of both.

In order to optimize the kernel sizes, we used the affinity 
propagation (AP) (Frey and Dueck, 2007) clustering method on 
the genotype features to help guide us in selecting convolution 
sizes in this block. AP divided genotypes into clusters without 
assigning a number of clusters. The algorithm estimates the cluster 
center as the “exemplar” from data points. Real-time messages 
were exchanged between data points until a set of exemplars 
and clusters emerges through minimizing negative Euclidean 
distance. This clustering algorithm has been applied in computer 
vision and regulates transcript gene identification (Vlasblom and 
Wodak, 2009). We conducted AP clustering on 4,236 SNPs from 
the soybean dataset and repeated the process 100 times. Python 
package “sklearn” was used for AP cluster estimates (Pedregosa 
et al., 2011). We recorded sizes of clusters from 100 runs and tested 
kernel sizes using the number of genotypes clustered together. 
We aimed to capture short-range and long-range marker effects 
at various scales across the genome (Xu and Taylor, 2009; Brodie 
et al., 2016) so that small and large convolving sizes were used in 
our model. We finalized 4 and 20 as our convolving kernel sizes 
for stacked-CNN stream and 4 for the single-CNN stream.

Feature Processing Block: After completing our work on 
the input processing block, we determined that the aggregated 
sim-up outputs with different kernel sizes had more powerful 
representations of important genotypes than with a single kernel 
size. Hence, another convolution layer with a small kernel size 
4 was added to integrate all the outputs and to further process 
genotype features in this block.

Output Processing Block: After completing our work on the 
feature processing block, a flattened layer was added to convert the 
convolution layer into a flattened layer. The flattened layer integrates 
the extracted features from the previous feature processing blocks, 
and features are passed to the last dense output layer, which contains 
a single neuron to represent the final predicted phenotypes.

Activation Function
We used the inverse square root unit (ISRU) (Carlile et al., 2017) 
activation functions in the model, which is defined as follows:

 
Y x

ax
=

+1 2
 

The ISRU function was applied to add constraint of the predicted 
phenotype value and to speed up the model learning process. 

The activation function is bound to the range –
1

,
1
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we estimated a according to the maximum observed absolute 
phenotype values, which are 0.5, 0.03, 0.02, 0.02, and 0.02 for 
grain yield, height, moisture, oil, and protein of the soybean 
dataset, respectively.

Model Training for Overfitting Control
It is important for the deep learning model to avoid overfitting 
because of the small training population of our datasets and 
because the total sample size is much smaller than the number of 
genotypes used as features. To reduce the effect of overfitting, we 
added dropout layers (Srivastava et al., 2014) after convolutional 
layers with a dropout ratio of 0.75. We then applied the L2 
regularization on the cost function of mean square error (MSE) 
between estimated and predicted phenotypes:
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We also monitored the mean absolute error (MAE) on our 
validation set and stopped the model training process as soon 
as the observed MAE stopped decreasing enough to confirm 
cessation. Hyperparameters, such as batch size and learning rate, 
were tuned by Hyperas (Pumperla, 2019). The deep learning 
models were implemented using Keras 2.1.1 on a workstation 
with GPU NVidia GTX 1080 Ti.

SNP Contribution Using Saliency Map
We defined saliency values based on the idea of saliency 
map (Simonyan et al., 2013) to measure individual marker 
effects and their associations with quantitative GWAS trait. 
In the phenotype prediction problem, saliency values can be 
interpreted as scores to indicate effects of markers inside a 
window at length of a decided convolution kernel size from our 
deep learning model. The saliency values can guide extracting 
meaningful SNPs that show high-order marker effects correlated 
with phenotypes. In our deep model, given a genotype matrix 
X (n*p) of n individuals and p genotypes, the phenotype value 
was estimated as follows:

 Y WX b≈ +  

where W represents the trained weight of each genotype 
and b is the model bias. In this case, after training the model, 
we can retrieve the output from the last output layer and 
calculate gradients w with respect to each input genotype using 
independent testing set as below:

 
w Y

X
= ∂∂

∂∂
( )

 

Since our genotypes were coded into one-hot vectors with 
four dimensions as the model inputs, we define the saliency value 
of each genotype as the maximum absolute value of gradients 
among those four coding channels. Therefore, to calculate the 
saliency value SV of a single genotype whose index is i and is 
coded in the c-dimension of one-hot vector, we use the following 
function:

 SV MAX ABS wii = ( ( )),c  
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We then calculate the median saliency value of whole 
populations, and this population median value is used as a 
measurement of our SNP contribution.

Model Performance With Cross-Validation
Phenotype Prediction Accuracy
To measure our dual-stream CNN deep learning model 
performance, we calculated the Pearson correlation coefficient 
(PCC) between genomic predicted phenotypes and observed 
phenotype values of the testing dataset. We compared our 
deep learning model with four statistical models (rrBLUP, 
BRR, Bayesian A, and BL) and three deep learning models 
using the same training, validating, and testing datasets. The 
rrBLUP was implemented using the “mixed.solve” function 
from the “rrBLUP” package (Endelman, 2011) based on the 
maximum-likelihood (ML) estimation. BRR, Bayes A, and 
BL were implemented using the “wgr” function from the 
“SoyNAM” package (Xavier et al., 2015) based on the Monte 
Carlo Markov chain (MCMC) strategy with 4,000 iterations 
and 500 burn-ins.

The three compared deep learning models were a dense 
network (Montesinos-López et al., 2018) using several dense 
layers, the deepGS (Ma et al., 2017) a feed-forward three layer 
convolutional neural work, and a single-stream CNN that only 
contains the stacked-CNN layers from our proposed model. 
Hyperparameters were adopted from published codes.

Snp Contribution Accuracy
To measure the performance of our saliency value associated 
with the genotype contribution, we compared our results with 
a standard GWAS method using “gwas2” function from “NAM” 
R package based on the empirical Bayesian model (Xavier 
et al., 2015) that the significance of each genotype marker was 
evaluated through the Wald statistical test value.

Ten-Fold Cross-Validation
All soybean individuals were first split into 10 equal folds, in 
which eight folds formed the training set. One fold was assigned 
as the validation set, and the remaining one fold was employed 
to test the model performance. We repeated the same process 
10 times, and the average PCC from the 10 calculations was 
reported to measure model performance.

ReSUlTS AND DISCUSSION

Model Performance and Comparison 
With Other Methods
Dual-Stream CNN Model Improves Performance on 
Low Heritability Phenotypes
By using deep learning, missing genotypes can be coded using 
the one-hot binary coding method and can be treated as a 
category of genotype through computation. We coded both raw 
and imputed genotype matrix with a one-hot vector with four 
channels and applied the same deep learning architecture on 
them. The comparison of average PCC using existing statistical 
and deep learning methods is shown in Table 2. Missing value 
is not accepted by statistical methods, and hence, we only 
show results of imputed genotypes of statistical methods. The 
singleCNN network has similar PCC to statistical methods, 
and our dual-stream CNN outperforms statistical model and 
singleCNN using same imputed genotypes. Among the five 
traits, PCC of trait yield increases from 0.41 to 0.43, moisture 
increase from 0.38 to 0.412 and oil increase from 0.388 to 0.412 
that is better than height and protein increasing from 0.458 to 
0.465 and from 0.392 to 0.402.

Compare to singleCNN, performance of proposed dualCNN 
increases by adding a parallel single-CNN stream to the 
stacked-CNN stream. The add-up layer then integrates feature 
maps from both CNN streams, and this is necessary due to 
the loss of important features through convolving process 
with  different kernel sizes, and it strengthens the signal of  
genotype features.

Predicting Phenotype With Imputed vs Non-Imputed 
Genotype Using Deep Learning
All four deep learning based methods have higher PCC on 
non-imputed than imputed genotypes (Table 2). The soybean 
dataset has ~25% missing genotypes in the quality assured raw 
datasets. One reason deep learning model has higher predicting 
ability on raw datasets may be because the imputation process 
fills most missing genotypes with reference alleles, and it 
deflates the effects of different genotypes. Imputation methods 
assimilate missing genotype effects based on non-missing 
genotypes, which may compromise the prediction ability of 
selected quantitative traits.

TABle 2 | Average Pearson correlation coefficient of five traits from cross-validation.

Yield Protein Oil Moisture height

dualCNN (imp/non-imp) 0.434/0.452 0.402/0.619 0.412/0.668 0.426/0.463 0.465/0.615
DeepGS (imp/non-imp) 0.347/0.391 0.231/0.506 0.344/0.531 0.024/0.310 0.357/0.452
Dense (imp/non-imp) 0.359/0.449 0.357/0.603 0.401/0.657 0.370/0.427 0.434/0.612
singleCNN (imp/non-imp) 0.422/0.463 0.380/0.573 0.392/0.627 0.370/0.449 0.442/0.565
rrBLUP 0.412 0.392 0.39 0.413 0.458
BRR 0.422 0.392 0.39 0.413 0.458
Bayes A 0.419 0.393 0.388 0.415 0.458
Bayesian LASSO 0.419 0.394 0.388 0.416 0.458

CNN, convolutional neural network; BRR, Bayesian ridge regression.
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Our dualCNN outperforms single-stream CNN and 
followed by a dense network (Montesinos-López et al., 2018) 
and then the DeepGS (Ma et al., 2017) for this soybean 
dataset (Figure 2) with lowest training loss on validation set. 
DualCNN, singleCNN, and the dense network have close 
performance on high heritability traits of oil and height, and 
our dualCNN has better performance in the other three low 
heritability traits yield, protein, and moisture on both imputed 
and non-imputed dataset. The dense network is better than 
deepGS for this soybean dataset, probably because the deepGS 
with more parameters is easier to be over-trained than the 
dense network. The DeepGS has a convolution layer of kernel 
size 18 that is not fit for the soybean SNP distribution of whole 
genome, while the dense network does not contain convolution 
layer, and each SNP was treated as a feature contribute 
independently to associated phenotype. But this dense network 
may also fail to integrate neighbor SNP associations within the 
convolution kernel.

effects of Training Population on 
Model Performance
The training population size is a major factor in both machine 
learning and statistical approaches, and it directly affects 
predicting performance (Xavier et al., 2016; Cericola et al., 
2017). Good training data will be able to represent the whole 

population structure and to satisfy the prior assumption of 
genotype effects for statistical models. Figure 3 shows the 
average PCC of five traits predicted on the testing set trained 
with different sizes of training sets. For soybean dataset, the 
dualCNN reaches a higher PCC than the other four statistical 
models and was less affected by the training population size 
in low heritability traits as yield, moisture, and protein. As 
long as the training size reached 1,500, our model showed a 
higher performance than statistical models. The whole genome 
regression (BRR, BayesA, and BayesLASSO from the NAM 
package) had a better performance than the rrBLUP package, 
since the former applies Gibbs resampling and MCMC to 
update regression coefficients.

Comparison of Genotype Contribution 
Between Saliency Map and GWAS
We compared our deep learning saliency value against GWAS 
results through Manhattan plot using a simulation and an 
experimental dataset (Figure 4). Their calculated saliency 
values and Wald test score are available at Supplemental 
Table  1. For the two datasets, we observed a similar curve 
pattern from both saliency values and the GWAS Wald test 
score. In the experimental dataset, we compared the top three 
SNPs according to their significance and discussed potential 
markers discovered using our method. The top ranked SNPs 
and their relative position in the other measurement were 
plotted in red. Since the soybean linkage disequilibrium extent 
region of a significant SNP ranges from ~20 to ~100 kb, we 
located the closest gene within the 20-kbp region centered with 
the identified SNPs and annotated genes with Gene Ontology 
(GO) (Ashburner et  al., 2000), protein family (PFAM) 
(Bateman et al., 2004) using Soybase Gbrowser (Grant et al., 
2009) and SoyKB (Joshi et al., 2012; Joshi et al., 2013) according 
to gene model “Glyma.Wm82.a1.v1.1” (Schmutz et al., 2010). 
Gene annotations and literature reports indicate those markers, 
and their nearby regions are highly associated with their traits. 
Several novel markers and regions were detected and are listed 
as follows:

Simulation: Both saliency values and GWAS results showed 
the same three peaks on the simulation dataset in Figure 4. The 
three peaks were correlated with the QTLs assigned at the SNP 
index positions of 2100, 4100, and 4600. It strongly indicates 
that the saliency approach can find similar SNPs with statistical 
GWAS models.

Grain Yield: For soybean grain yield, we identified SNPs 
Gm01_28793495, Gm07_36725068, and Gm15_15220084, 
with the highest saliency value as shown in Figure 4. The top 
SNPs from GWAS, Gm19_10774629, and Gm19_40740547 
also have high saliency value and locate in the same haplotype 
block with a linkage disequilibrium r2=0.9766. Potential 
genes Glyma15g18430 and Glyma15g18450 are close to SNP 
Gm15_15220084. Glyma15g18430 reported by Won Oh et al. 
(2014) has differentially changed soybean root proteins with 
gibberellic acid treatment under flooding stress. It belongs 
to the glycosyl hydrolases family (PF01301) and involves in 

FIGURe 2 | Training loss different deep learning models. The x-axis is 
number of epochs; the y-axis is the training the loss of mean absolute error 
(MAE) of validation dataset. The singleCNN (purple), dualCNN (blue), and 
Dense (green) network are conserved, and DeepGS is overfitting after 20 
epochs, and our dualCNN has the lowest training loss. CNN, convolutional 
neural network.
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carbohydrate metabolic process (GO: 0005975). Glyma15g18450 
is associated with plant flowering (Jung et al., 2012) has 
biological process of flower development (GO: 0009908) and leaf 
morphogenesis (GO: 0009965).

Plant Height: For soybean plant height, saliency and 
Wald test value were plotted in Figure 4. One region on 
chromosome 12 is most significant from the saliency value 
but not present in the GWAS results; thus, we investigated 

FIGURe 3 | Average Pearson correlation coefficient of five traits using different sizes of training dataset. The x-axis is number of folds of training data; the y-axis is 
the average Pearson correlation coefficient from cross-validation.

FIGURe 4 | Comparison of genotype contribution using saliency map and GWAS Wald test of simulation (A) and experimental soybean dataset with five traits (B–F). 
The x-axis is the index of SNPs in the genotype matrix; the y-axis is the saliency and Wald test results. Top ranked SNPs were plotted in red. GWAS, genome-wide 
association study; SNP, single-nucleotide polymorphism.
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the closest gene, Glyma12g04400, of the SNP Gm12_2894203. 
This gene belongs to the putative snoRNA binding domain 
(PF01798,GO:0003677) and is reported by Komatsu et al. (2012; 
2014) with differential protein change under flooding stress. 
The region around SNP Gm12_2659260, from 26624**kb to 
26629**kb, is reported in a 302 resequencing soybean dataset 
(Zhou et al., 2015) as a copy number variation signal that is 
associated with plant height. Two SNP Gm12_2894203 and 
Gm12_2659206 are in the same haplotype block with r2=0.9510. 
The closest region of SNP Gm13_23782754 is reported as a 
QTL region associated with plant height (Zhang X et al., 2018). 
Both saliency and GWAS identified SNP Gm04_18306789 and 
Gm10_50834461, and close gene Glyma10g44500 is associated 
with salt tolerance (Pantalone et al., 1997) and is involved in 
lipid transport (GO: 0006869).

Moisture: The most significant SNP Gm17_6781998 and 
Gm18_8451185 from saliency values also present in the GWAS 
results in Figure 4. The closest gene Glyma17g09165 belongs 
to the protein kinase domain (PF00069) and is involved in 
the biological process in response to cold, wounding, salt 
stress, and mannitol stimulus, that is, GO: 0009409, GO: 
0009611, GO: 0009651, and GO: 0010555, respectively. Gene 
Glyma18g09550 belongs to seed storage family (PF00234) 
with lipid transport (GO: 0006869). Both methods identified 
SNP Gm02_48371970, and the closest gene Glyma02g43602 is 
response to fungus, chitin, and fatty acid (GO: 0009620, GO: 
0010200, GO: 0071398).

Protein: For the soybean protein content, saliency value and 
Wald test score were plotted in Figure 4. The SNPs Gm02_5299205 
and Gm20_29976653 are only present in the saliency value, and 
the former is in gene region of Glyma02g06650. The region 
around both SNPs may associated with protein content in 
chromosome 2 (Akond et al., 2012) and chromosome 20 (Hwang 
et al., 2014). Both saliency value and Wald test score indicate SNP 
Gm07_7832406 as the most significant one, and it is a missense 
mutation in the coding sequence region of gene Glyma07g09400. 
This gene belongs to the PP-loop family (PF01170) with 
molecular functions of ATP binding, ligase activity, and forming 
carbon–nitrogen bonds (GO: 0000166, GO: 0005524). This could 
also be a new marker associated with protein QTL region (Jun 
et al., 2008).

Oil: For SoyNAM protein content, saliency value identified a 
potential novel SNP Gm15_48737423, and it is inside the gene 
region on Glyma15g41600 Figure 4. It belongs to the pyridocal-
phosphate-dependent enzyme protein family (PF00291) and 
involves a sulfur amino acid metabolic process, a cysteine 
biosynthetic process, and a cell wall modification (GO:0000096, 
GO: 0006535, GO: 0042545). This gene was reported by Prince 
et  al. (2015) with an association with potential root QTL, 
and it was also reported as a putative β-substituted alanine 
synthase isoform by Yi et al. (2010). A new marker around 
region Gm16_756426 also detected associated with oil content 
(Jun et al., 2008). The common SNP Gm04_8184443 is close 
to gene Glyma04g09900, and this gene belongs to the protein 
tyrosine kinase family (PF07714), which involves the protein 
phosphorylation process and the oligopeptide transport process 
(GO: 0006468, GO: 0006857).

SUMMARY
In this paper, we proposed a deep learning of dual-stream CNN 
method to accurately predict phenotypes using SNP markers 
that can avoid missing genotype imputation. We also proposed 
using saliency map approach to measure SNPs associated with 
the selected traits, which helps to determine important markers 
and QTL regions. We have explored several different deep 
learning architectures, such as the fully connected DNN, deepGS, 
single-stream CNN, as well as several statistical approaches. We 
have found the two-stream CNN structure has best predicting 
performance on real experimental datasets, especially with low 
heritability quantitative traits, and it less relies on the structure 
of training population. To our knowledge, we are the first to use 
saliency value as a measurement of SNP contribution. By using 
CNN, the saliency map calculates the genotype effect not only as a 
single marker but also through convolving with their neighboring 
SNPs, which helps detect important trait associated regions.

Computing efficiency is also important for machine learning 
problems. It may not be fair to compare computing efficiency of a 
deep learning model applicable on GPU with statistical models on 
CPU, but GPU-based deep learning models actually outperformed 
most R-based genomics selection packages with much less 
computing time. Our dual-stream CNN model costs around 
10 minutes, and statistical regressions cost more than 3 hours to 
train the model and test results for the soybean dataset. Taking 
the advantage of GPU computing and progress in the state-of-art 
deep learning technique, we expect this deep learning approach 
to be useful in accurately predicting phenotypes and detecting 
meaningful genomic markers in a more efficient way. In the future, 
we will continue improving our model and studying effects of 
genotype interactions on phenotypes explicitly. We will also work 
with biologists to interpret underlying biological significance of 
the prediction results. It is recommended to use deep learning on a 
large population of high-dimensional genotype and low-heritability 
phenotypes in phenotype prediction and biomarker selection.
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SUPPleMeNTARY MATeRIAl
The Supplementary Material for this article can be found online at: 
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full#supplementary-material

SUPPleMeNTAl TABle1 | Each column in the table represents: SNP: 
SNP ID wald_protein: Wald test value of protein sigma2_protein: estimated 
residual variance of protein eff_protein: estimated allele effect of protein 

saliency_protein: saliency value of protein wald_yield: Wald test value of yield 
sigma2_yield: estimated residual variance of yield eff_yield: estimated allele 
effect of yield saliency_yield: saliency value of yield wald_oil: Wald test value of 
oil sigma2_oil: estimated residual variance of oil eff_oil: estimated allele effect 
of oil saliency_oil: saliency value of oil wald_height: Wald test value of height 
sigma2_height: estimated residual variance of height eff_height: estimated 
allele effect of height saliency_height: saliency value of height wald_moisture: 
Wald test value of moisture sigma2_moisture: estimated residual variance of 
moisture eff_moisture: estimated allele effect of moisture saliency_moisture: 
saliency value of moisture.
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Genome-wide association studies (GWAS) have revealed thousands of genetic loci that
underpin the complex biology of many human traits. However, the strength of GWAS –
the ability to detect genetic association by linkage disequilibrium (LD) – is also its
limitation. Whilst the ever-increasing study size and improved design have augmented
the power of GWAS to detect effects, differentiation of causal variants or genes from
other highly correlated genes associated by LD remains the real challenge. This has
severely hindered the biological insights and clinical translation of GWAS findings.
Although thousands of disease susceptibility loci have been reported, causal genes
at these loci remain elusive. Machine learning (ML) techniques offer an opportunity
to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis
phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from
relatively simple logistic regression approaches to more complex ensemble models such
as random forests and gradient boosting, as well as deep learning models, i.e., neural
networks. Paired with functional validation, these methods show important promise for
clinical translation, providing a strong evidence-based approach to direct post-GWAS
research. However, as ML approaches continue to evolve to meet the challenge of
causal gene identification, a critical assessment of the underlying methodologies and
their applicability to the GWAS prioritization problem is needed. This review investigates
the landscape of ML applications in three parts: selected models, input features,
and output model performance, with a focus on prioritizations of complex disease
associated loci. Overall, we explore the contributions ML has made towards reaching
the GWAS end-game with consequent wide-ranging translational impact.
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clinical translation, deep learning, data science
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INTRODUCTION

A genome-wide association study (GWAS) examines a genome-
wide set of genetic variants in a group of individuals to
identify variants associated with a trait or phenotype. The goal
of GWAS is to identify variants which show a statistically
significant association with a phenotype. This enables guided
functional investigation of the most likely causal variants and
genes driving the genetic association, thus pinpointing genes and
pathways of interest for disease diagnosis, drug discovery, and
precision medicine.

As GWAS studies have scaled up to discover ever more disease
variants (Evangelou et al., 2018; Giri et al., 2019; Nalls et al., 2019)
it has become impractical to perform functional investigation
on all disease relevant loci. This limitation arises in part due to
variability in reporting of GWAS results, some studies report loci
which have been independently replicated in a different cohort
(the gold standard approach), and others do not. This reporting
can question the confidence of some discovered loci, calling
for a balance between stringent p-values to correct for multiple
testing and false discovery, and conservative correction leading
to false negative association. A compounding factor is also the
need to differentiate causal variants or genes from other genes
associated by linkage disequilibrium (LD), thus confounding the
detection of causal genes within a locus – making it unclear
which variants and genes warrant further analysis and potential
functional study. This range of issues undermines the robustness
of GWAS, and challenges the validity of downstream analyses
and biological hypothesis development, critically undermining
some of the major motivators for performing GWAS in the first
place, such as target validation (Hurle et al., 2016). Ultimately this
highlights the need for computational solutions to improve the
signal to noise ratio of GWAS results and to highlight genes and
variants that are most likely to be causal.

Machine learning (ML) has been one emerging branch of
computational applications (alongside network analysis and tools
such as text-mining) built to enhance GWAS performance
and downstream interpretation (Seyyedrazzagi and Navimipour,
2017; Raj and Sreeja, 2018). Machine learning algorithms build
mathematical models that are learnt from training data in order
to make predictions or decisions. Machine learning consists of
supervised, unsupervised, and reinforcement learning methods,
with supervised and unsupervised learning being the most
commonly implemented with GWAS data. Supervised learning
provides ML algorithms with labeled training data and aims
to infer a mapping function from the input variables to the
output variable – or label for classification tasks (Figure 1). This
mapping function may then be used to predict the labels of
new “testing” data. Unsupervised learning, by contrast, has no
response variable. Instead, the algorithm must attempt to find
patterns in the data, such as clusters or outliers. When tailored
for understanding GWAS data, ML predictions can provide
an improved statistical foundation of evidence to support or
improve GWAS results. For instance, ML in GWAS has been
applied to identify loci, increase the statistical power of GWAS
(Mieth et al., 2016), detect epistatic interactions (Leem et al.,
2014), improve polygenic risk scoring produced from GWAS

(Pare et al., 2017), and prioritize genes and variants on post-
GWAS analysis (Vitsios and Petrovski, 2019). Here we will focus
on the ML applications developed for post-GWAS prioritization.

The growth of GWAS over the past decade has identified
thousands of associated loci, in September 2019 the NHGRI-
EBI GWAS catalog contained 161,525 variant-trait associations
from 4,298 publications1. Thousands of variant associations can
now be found within a single complex disease, such is the
case for inflammatory bowel diseases (IBD) with 1,829 variant
associations and schizophrenia with 3,069 variant associations
(see text footnote 1). In the case of blood pressure (BP) with
5,148 associations (see text footnote 1) 2,293 genes are implicated
(Evangelou et al., 2018; Giri et al., 2019), these represent almost
10% of the known gene complement and 5.82% of the genome
by LD alone. These results represent an important insight into
the complex systems regulating BP and offer a basis for a
better understanding of BP biology and the personalization of
hypertension treatment. However, this knowledge still has great
potential to confound understanding. Based on the simplifying
assumption that each locus is driven by only one gene (whereas
gene cluster associations are also possible), if we subtract 901
loci reported by Evangelou et al. (2018) from 2,605 genes
mapping to these loci, 65.4% of “associated” genes can be
expected to be unrelated to BP. This level of signal to noise, still
presents a considerable problem to the formulation of an efficient
follow up strategy.

Individual GWAS loci have already shown the potential
for large scale prioritization by providing novel biological
insights and potential drug targets and drug repositioning
opportunities (Sanseau et al., 2012). For example, a GWAS on
BP found associations in the SLC5A1 gene. The association
of SLC5A1 with BP and its role as a target of a type 2
diabetes drug, canagliflozin, highlights the opportunity to re-
purpose drugs for treating hypertension (Evangelou et al., 2018).
Currently, research has shown only 38% of essential hypertension
patients have effective treatment (Banegas et al., 2011). Similarly,
IBD and schizophrenia both currently have lacking treatment
options alongside their thousands of associations (Danese, 2012;
Leucht et al., 2013) – suggesting that a path to improved
therapeutics for complex diseases may lie within the associated
loci and the biological functions contained within them.

Defining functional impact of associated variants is a unique
challenge in itself, but it is subsumed by a greater problem.
Although it is possible to predict functional impact with some
confidence in coding regions and to a lesser extent in non-
coding regions, differentiating variants and inferring causality
is very challenging without further laboratory investigation. For
example, BP associations found in several SMAD family genes
and the TGFβ gene, which collectively participate in the TGFβ

pathway, led to the suggestion that these may affect sodium
transport in the kidney and ventricular remodeling (Evangelou
et al., 2018). However, multiple genes impacting the same
pathway raise the question of which gene should be functionally
investigated first. Usually the evidence is not strong enough to
warrant laboratory investigation of all the associated genes in a

1https://www.ebi.ac.uk/gwas/
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FIGURE 1 | Supervised Machine Learning Algorithm Training. (A) Data containing labeled genes (e.g., genes labeled as causal or non-causal for blood pressure –
BP) and columns of features describing those genes are input into a machine learning algorithm. Machine learning algorithms firstly initialize themselves by applying
their rules to a subset of the data (deemed training data) and its features at random. E.g., an algorithm’s first practice iteration can involve assigning feature
importance at random (importance denoted by size of feature image). The algorithm uses its feature initialization to classify genes into either affecting BP (red genes)
or not affecting BP (blue genes). Algorithms then use the practice predictions to calculate loss (an error rate) and iterate over the data again with applying the
previous iteration’s loss calculation to adjust feature handling (B). With using the loss calculations the algorithm aims to improve predictive performance with each
training iteration.

particular pathway. The follow-up GWAS laboratory studies to
date have developed without a standardized method for selecting
causal genes and consequently they are likely to be susceptible
to personal or “cherry picking” bias. These issues highlight the
need for a pipeline that methodically triages variants and genes
based on their likelihood of affecting a trait. Only then, will there
be consistency in follow-up of genetic results using functional
analysis with minimized risk of investigating false positives or low
impact genes. The standardized in silico identification of the most
likely causal genes at a genome scale may be an opportunity to
gain higher level systems insights into trait biology. This in turn
may help to fine-tune ML algorithms, as seen with research using
ML variant prioritization as a feature fed into gene prioritization
(Khan et al., 2018).

The development of systematic prioritization post-GWAS
using ML has been researched as early as 2007 (Lewinger
et al., 2007). Since then several computational methods for
prioritizing GWAS associated loci have been developed with
growing attention on ML applications (Fridley et al., 2011;
Gagliano et al., 2015; Raj and Sreeja, 2018; Wu et al., 2018).
ML for prioritizing GWAS results has used common models
(Figure 2) such as logistic regression, decision tree classifiers
such as – e.g., gradient boosting machines (GBM) and random
forests (Wang et al., 2013; Oh et al., 2017), – and support vector
machines (SVM; Vitsios and Petrovski, 2019), with more recent
advances including deep learning models (Khan et al., 2018;
Zhou et al., 2018).

An increasing number of studies are investigating how ML
can be tailored to locus prioritization across diseases, but

the ML pipelines for GWAS prioritization are mainly limited
by the range and quality of training data. In order for ML
models to present reliable guide-posts for post-GWAS research,
a critical assessment of developing methods is needed – as the
most recent systematic and literature reviews of post-GWAS
prioritization cover few ML studies in comparison to other
prioritization methods (Seyyedrazzagi and Navimipour, 2017; Raj
and Sreeja, 2018). Here we will review the current landscape of
ML applications for post-GWAS prioritization, and how ML can
aid reaching the end-game for GWAS, which we define as a state
where all common population variation with impact on a trait
is identified; providing solid biological insights and mechanisms
with reliable translational capability.

MACHINE LEARNING MODELS

GWAS prioritization as a classification problem has been
approached using both simplistic and complex models (Table 1)
depending on the problem requirements and data available.
Primarily five types of models have been implemented: logistic
regression, SVM, random forest, gradient boosting, and deep
neural networks (Figure 2), each with varying advantages and
disadvantages (Table 2). Logistic regression is a commonly
applied statistical method that when used with categorical
variables can be contemplated as a generalized linear model. In
a logistic regression, it is typical to apply a regularization term –
e.g., L1 (the sum of the absolute value of feature weights) and
L2 (the sum of squared feature weights) – that introduce some
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FIGURE 2 | Supervised Machine Learning Models. Diagram detailing three machine learning model bases used in supervised learning, each providing varying
algorithms most commonly used in post-GWAS prioritization.

bias while reducing variance, thereby improving predictive ability
(Demir-Kavuk et al., 2011). Isakov et al. (2017) used elastic net
logistic regression (Zou and Hastie, 2005) which combines L1 and
L2 penalties to prioritize IBD genes. This method performs both
variable selection (L1), and shrinks coefficient sizes to reduce
variance (L2) (Ogutu et al., 2012). Regularized logistic regression
with elastic net aims to minimize the “curse of dimensionality” –
where data has a larger number of features than samples – which
is a particular blight on GWAS. For example, Isakov et al. (2017)
used data consisting of 314 positive genes and 1,736 negative
genes each annotated with 1,027 features. By applying logistic
regression with elastic net they could then select the best data
for their models (309 features selected which are predominantly
from biological ontologies). However, due to the growing size in
genetic data, and the broader range of features becoming available
to describe genes and variants, the increased computational
demand requires more advanced models.

Seven out of 19 ML models for post-GWAS prioritization
curated in this review (Table 1) are ensemble models, namely
random forests and gradient boosting. Ensemble methods
combine multiple models to improve performance and are ideal
for heterogenous GWAS data. Deo et al. (2014) developed a
GBM (OPEN – Objective Prioritization for Enhanced Novelty)
for prioritizing causal genes in multiple diseases. They used
data comprising of more than 40,000 genomic features from
public databases [Gene ontology (GO), Mouse Phenotype
database, Human Phenotype Ontology (HPO), and Online
Mendelian Inheritance in Man (OMIM)] aiming to benefit
from unbiased features. GBM is a tree-based model, with tree
branches performing yes/no decisions leading to a sample’s
classification (Natekin and Knoll, 2013). GBM operates one

tree at a time, attempting to optimize with each tree. Deo
et al. (2014) made accurate predictions with GBM identifying
genes affecting cardiovascular disease (CVD) related traits.
Performance was measured by the area under the receiver
operating characteristic curve (AUROC), with values ranging
between 0.75 and 0.9 across traits (Deo et al., 2014). The
model’s consistently high scores are due to the ensemble methods
providing the opportunity for predictive mistakes to be removed
in aggregate, due to multiple models testing different hypotheses
and taking an average, expanding the representational space of
a classification problem (Dietterich, 2000). This is seen with
gradient boosting across research, with the model known for
reducing bias and variance and offering improved accuracy
(Natekin and Knoll, 2013). However, there is also a need to
benchmark model performance, as whilst ensemble models are
reliable, a singular approach into a novel classification problem
provides a risk of unnoticed overfitting – which is also a
known issue for gradient boosting depending on regularization
techniques used.

Vitsios and Petrovski (2019) built a semi-supervised learning
framework in which they benchmarked seven models (random
forest, extremely randomized trees, GBM, extreme gradient
boosting, SVM, deep neural networks, and a stacking classifier
using all models) to prioritize genes for three diseases –
amyotrophic lateral sclerosis, chronic kidney disease and
epilepsy. In total they used data containing more than 1,200
features describing tens of thousands of genes for each disease.
They found that random forest was the top-performing classifier,
with this ensemble model consisting of multiple decision trees
predicting in parallel (Breiman, 2001). Gradient boosting was
the second most accurate, showing the high performance of

Frontiers in Genetics | www.frontiersin.org 4 April 2020 | Volume 11 | Article 35019

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00350 April 10, 2020 Time: 18:34 # 5

Nicholls et al. GWAS and Machine Learning Present and Future

TABLE 1 | Curation of machine learning studies applied to post-GWAS prioritization of variants and genes.

PMID Models description Methods description Data and assessment
descriptions

30692607* LR; Genes – Crohn’s disease Uses backward stepwise regression to build significant expression
datasets (with emphasis on epigenetic data) to give prediction in
combination with genotype data. Expression data reduces the
uncertainty of smaller effect loci shown in fine-mapping and
prioritization was followed-up with protein network analyses for
validation

10-fold cross validation (2,000
genes per fold)

25935003* LR; Genes – Crohn’s disease Combines GWAS results with gene expression features and
whether genes are associated with other autoimmune diseases to
better identify disease-related genes. More powerful for prioritizing
rare missense variants

Cross-validation performed.
50:50 training:testing ratio.
Training iterated 500 times. 54
Crohn’s disease genes used as
positively labeled training genes

29407288 SVM, LASSO,
classification-regression trees;
Variants – major depressive
disorder and adverse drug
response (duloxetine)

Models used features selected by LASSO regression and classified
variants based on a clinical depression scoring defining drug
response and remission

Dataset size: 186 patients.
Nested 5-fold cross-validation.
80:20 training:testing ratio

21317188* SVM, RF; Variants – arthritis
and T1D

Compares support vector machine and random forest performance
to chi-squared ranking

Dataset size: 452,176 T1D
SNPs 63 arthritis SNPs

31779641 RF; Variants – intronic variants
associated to cellular sensitivity
to clofarabine-induced
cytotoxicity

Focuses on integrating splicing data features with other types.
Validates model prioritization with laboratory follow-up – limited by
technical noise during laboratory work

3-fold cross-validation. Training
data size: 6,676 variants.
Testing data size: 1,222
variants

24564704* Parallel RF Regression;
Variants – brain structure and
function. Alzheimer’s disease
GWAS

Designed to run on large Hadoop clusters, including those available
through cloud computing. Multivariate applications not available on
Hadoop

Each tree bootstraps to form
training data (63.2%) with
out-of-bag samples for test
data. 500 simulated datasets

28592878* RF Hyper-ensemble;
Non-coding variants – curated
mendelian diseases

Addresses class imbalance via resampling using simultaneous
oversampling of minority class and undersampling of majority class.
HyperSMURF can detect disease variants nearby to non-disease
variants

10-fold cross-validation
partitioning variants into
chromosomal bands so no
variants had same location,
gene or disease in training and
testing. GWAS total size
approximately 2,000 variants

25633252* GB; Genes – cardiovascular
diseases and traits

Explored prioritization of 38 phenotypes (predominantly
cardiovascular). Each tree within model updates a log-odds of
disease association per gene. GWA-prediction assigns scores to
genes in loci based on reasonings (transcription sites, experimental
evidence, etc.) to identify likely positives which are used in training
for phenotypes with GWAS training data

Six rounds of 8-fold
cross-validation. Seventy
percent of loci as positive
training examples with
matching numbers of negative
samples

30591030* LR and DL; Genes and
variants – schizophrenia and
autism

Performed variant prioritization which fed into gene prioritization.
Variant prioritization used eQTL and pathogenic scoring data
features. Gene prioritization used the variant rank in combination
with genotypic data. Used to prioritize an individual’s variants and
genes and can be re-applied to GWAS data

10-fold cross-validation on four
training and test sets

28795970 LR with elastic net, RF, SVM
with polynomial kernel, extreme
GB; Genes – inflammatory
bowel diseases

All genes in dataset were annotated with 1,027 features. 16,390
genes scored and classified, with prediction as a score between 0
and 1. Models evaluated separately and together in combined
performance score

5-fold cross-validation repeated
10 times. Training data: 314
positive genes and 1,736
negative genes

30013180* DL – ExPecto; Variants –
publicly available GWAS for four
immune diseases

Data profiling >140 million promoter-proximal mutations allowed
for deep learning to predict variant effect, with effect feeding into
the prioritization of SNPs

Dataset size: 390,085 variants.
Whole-chromosome holdout of
chromosome 8 with 990
genes – using these genes for
testing

30859622 LR with stochastic gradient
descent, SVM, RF, K-Nearest
Neighbors; Genes – colorectal
cancer

Used a network approach – collecting both global and local data to
create an epistasis network. Topology of the network was then
used as features in machine learning, with different types of feature
selection compared, to prioritize genes biologically relevant to
colorectal cancer

Dataset size: 185,180 SNPs.
Training on 90% of the dataset
with 10-fold cross validation

(Continued)
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TABLE 1 | Continued

PMID Models description Methods description Data and assessment
descriptions

doi: 10.1101/655449* SVM, RF, extra trees, GB,
extreme GB, DNN and a
stacking classifier with four
base classifiers (RF, extra trees,
GB and SVM) followed by a
DNN in the second layer.
Genes – chronic kidney
disease, amyotrophic lateral
sclerosis, epilepsy

Models applied with positive-unlabeled learning – stochastic
semi-supervised learning. Explored combinational impact of all
models, and chose best performing model for each disease. There
was a dependency on existing patterns – beneficial for finding new
causal associated genes which may impact known mechanisms

10-fold cross validation. Gene
samples: 25,000 for chronic
kidney disease, 17,000 for
epilepsy and 79,500 for
amyotrophic lateral sclerosis

21687685 Bayesian latent variable model;
Variants – ovarian GWAS

Used features about a SNP to estimate a latent quality score, with
SNPs prioritized based on the posterior probability distribution of
the rankings of latent quality scores. Incorporated the uncertainty of
the ranking into the prioritization via probability calculation

NA

23369106* Genetic algorithm; Variants –
select OMIM diseases

Algorithm estimates feature weights to characterize SNPs related to
an input dataset of genes, biological processes or GWAS results.
Users can select features and assign a custom relevance and
model relies on data mining of public data

Leave one out cross validation –
single disease in the set used to
validate (repeats for each disease)

29874547* Network representation learning
(random walk); Genes –
Parkinson’s, RA, Crohn’s,
Ulcerative Colitis, CAD, T2D

Unsupervised model learns embeddings of genes from multiple
gene networks and develops hierarchical statistical model to
integrate the learned embeddings of genes with GWAS summary
data. Gene-level p-values infer each gene’s posterior probability of
association, which is in turn used for gene prioritization. Lack of
direct biological interpretations available for the learned
embeddings of genes

NA

21977986* Multi-task learning ProDiGe;
Genes – 265 diseases and 936
associations

Model learns from positive and unlabeled examples. The model
shared information across diseases to improve the predictive
performance for diseases with minimal positive labeled genes. The
information shared is weighed depending on similarity of one
disease to another

Training set: at least one known
disease gene in training data.
Training data per disease >11
genes. Leave one out validation
on select diseases

26504140* Unsupervised model – bayes
classifier – GenoWAP;
Variants – schizophrenia and
Crohn’s disease

Unsupervised learning – integrates GenoCanyon (their previous
model) functional prediction and GWAS p-values. Reduce noises
caused by linkage disequilibrium and rescues marginal signals in
GWASs with insufficient sample sizes

NA

27058395* Unsupervised model – bayes
classifier – Genoskyline;
Variants – schizophrenia and
coronary artery disease

Successor of GenoWAP model, building from it by using
annotations integrating tissue-specificity. Customizable with
researchers able to input many feature annotations. Whilst
tissue-specific it also lacked data from all tissue types

NA

*Software/code available; LR, logistic regression; RF, random forest; GBM, gradient boosting machine; SVM, support vector machine; DL, deep learning; DNN, deep
neural networks; ET, extra trees; GWAS; genome wide association study; SNP; single nucleotide polymorphism; CAD, coronary artery disease; T1D, type 1 diabetes;
T2D, type 2 diabetes.

tree-based ensemble classification. However, the AUCs between
all algorithms were deemed too similar to conclude one model
out-performed all others across datasets. These results were also
supported by comparison with a combined framework using
all models in prioritization, the stacking classifier, ensuring
the highest reliability in the chosen classifier for each disease
(Vitsios and Petrovski, 2019). Kafaie et al. (2019) aimed to
prioritize genes associated with colorectal cancer comparing
various models (SVM, random forest, logistic regression with
stochastic gradient descent, and K−nearest neighbors). They
found that logistic regression was the highest performing ML
model – emphasizing that a classification problem may require
simpler solutions.

Besides ensemble learning and logistic regression, SVM is also
consistently used within studies performing benchmark
comparisons (Roshan et al., 2011; Isakov et al., 2017;
Maciukiewicz et al., 2018; Vitsios and Petrovski, 2019). SVM

aims to plot a decision boundary between groups by measuring
hyperplanes – based on the distances between the most extreme
samples of each classification group (Smola and Scholkopf, 2004;
Figure 2). However, within benchmarking studies, SVM has not
shown itself to be a top-performing model. For example, Vitsios
and Petrovski (2019) found it had the lowest AUC (0.83, only
slightly lower than the top-performing random forest at 0.85)
of their seven models, while Kafaie et al. (2019) found SVM
performed better than random forest yet worse than logistic
regression. The varying performance of SVM also highlights the
importance of input data, as Kafaie et al. (2019) were one of the
only studies to focus on comparing feature selection methods as
well as models. Kafaie et al. (2019) found SVM performed well
given certain features, whilst in comparison logistic regression
had a more stable high performance regardless of external
selection, emphasizing the value of logistic regression’s internal
feature selection via regularization.
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TABLE 2 | Comparison of machine learning model performance. Comparison of the most common models used in post-GWAS prioritization including performance
metrics, comparing metrics of each model’s highest performance score per study.

Models PMID Best performance Model advantages and disadvantages

Logistic regression 25935003 0.94 (AUC) – Crohn’s disease Advantages:
- Easy to implement
- Efficient to train
- High interpretability
- Can act as a benchmark for exploring more complex

algorithms

Disadvantages:
- Difficulty recognizing complicated data patterns
- Difficulty handling large datasets

28795970 0.775 (ROC) – inflammatory bowel diseases

Random forest 28592878 0.635 (AUCROC) – curated Mendelian diseases Advantages:
- It can handle large data with higher dimensions
- Ensemble method reduces overfitting by several

models testing multiple hypotheses

Disadvantages:
- Many parameters to tune, affecting computational

efficiency
- Ensemble method lows interpretability

31779641 0.96 (AUCROC) – cellular sensitivity to
clofarabine-induced cytotoxicity

21317188 0.81 (AUC) – T1D

28795970 0.80 (ROC) – inflammatory bowel diseases

doi: 10.1101/655449 0.85 (AUC) – average between all diseases

Gradient boosting 28795970 0.783 (ROC) – inflammatory bowel diseases Advantages:
- High power performance
- Flexible with several parameter tuning options
- Ensemble method reduces overfitting by several

models testing multiple hypotheses

Disadvantages:
- Reliance on high quality training data
- Many parameters to tune, affecting computational

efficiency

doi: 10.1101/655449 0.848 (AUC) – average between all diseases

25633252 0.959 (ROC) – HCM

Support vector machine 28795970 0.786 (ROC) – inflammatory bowel diseases Advantages:
- Computationally efficient
- It handle can handle large data and high dimensions

Disadvantages:
- Does not provide class probabilities
- Difficulty to interpret

29407288 0.66 (Accuracy) – major depressive disorder
and adverse drug response (duloxetine)

doi: 10.1101/655449 0.832 (AUC) – average between all diseases

Deep neural network 30013180 0.815 (AUCROC) – lymphoblastoid expression Advantages:
- Recognizes patterns in large complex data
- High power performance
- Able to handle noisy data

Disadvantages:
- Difficulty to interpret
- Computationally expensive requiring GPUs for high

power performance

AUC, area under curve; GPU, graphics processing unit; ROC, receiver operating characteristic; T1D, type 1 diabetes; HCM, hypertrophic cardiomyopathy.

Deep learning has also been explored for prioritization, this
method can increase sensitivity in larger datasets due to the
methods ability to incrementally capture abstract representations
of high-level information. In general, this is beneficial for GWAS
prioritization where the data is growing dramatically in size and
heterogeneity with increasing annotations post-GWAS, and also
has few labeled samples (known disease causing variants/genes)
for supervised learning. Deep learning becomes advantageous
in this scenario as it identifies complex patterns via supervised
and unsupervised learning from large datasets (Najafabadi et al.,
2015) and can be applied for further insights into GWAS
data. However, whilst deep learning enables the consideration
of millions of parameters, its application to date has mostly
flourished in image classification and natural language processing
(Zeng et al., 2018; Aung et al., 2019; Hampe et al., 2019),

requiring an investment in its development and benchmarking
with traditional models for developing GWAS application.
A deep neural network (ExPecto) applied by Zhou et al.
(2018) prioritized causal variants for immune-related diseases
using sequence-based features. This dataset contained more
than 140 million promoter-proximal mutations, and allowed for
the unidirectional flow of information from base-sequence to
functional predictions which enabled variant prioritization. To
approach this large dataset ExPecto applies spatial transformation
to the data, weighting transformations based on transcription
start site distances. This was performed on a tissue-specific basis
of over 200 tissues (Zhou et al., 2018), providing hundreds of
features for the model to process. ExPecto is also able to perform
pattern recognition and prioritization of rare and unobserved
variants. However, whilst models are selected based on their
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suitability to the data, performance can also be dependent on class
balance and data quality available.

Predominantly, ML studies use cross-validation to ensure a
reliable estimate of model performance. However, with GWAS
data commonly lacking functionally validated disease causing
variants and genes, there are minimal learning opportunities for
supervised models. Oversampling or undersampling techniques
can be used to address class imbalance. Schubach et al. (2017)
developed a hyper-ensemble model (hyperSMURF) using
random forests with imbalance-awareness by using both under-
and oversampling. By balancing the training data classes, and
exposing the base learners in the hyper-ensemble to different
training datasets, the random forests are able to diversify their
understanding of the data, improving accuracy regardless of
data size. Using hyperSMURF they prioritized thousands of
GWAS variants annotated with 1,842 features. Their sampling
techniques created balanced training data, where the original
GWAS data had a 1:700 label imbalance. However, oversampling
techniques develop synthetic samples based on example data
points to increase the minority class size, which can create
overfitting. Schubach et al. (2017) addressed this by preventing
example variants of the same location/gene to occur in the
training and test sets, minimizing the oversampling bias.

Whilst only one post-GWAS prioritization study has focused
on class imbalance (Schubach et al., 2017), several have targeted
data quality with a focus on data labeling. For example, positive
unlabeled learning is semi-supervised learning with only positive
labeled examples, a common occurrence for GWAS data where
only a few causal genes have been functionally validated.
For positive unlabeled learning overfitting is avoided using
approaches such as classing unlabeled samples as negative and
bootstrapping random samples. Vitsios and Petrovski (2019)
applied positive labels to disease genes from the HPO with further
validating clinician confirmation, and treated any unlabeled
genes as negative samples. They then conducted random
sampling of positive and unlabeled samples, aiming to equalize
the ratios of the positive and negative genes to expose their
models to a balanced dataset. Mordelet and Vert (2011) also
applied their model (ProDiGie) using positive unlabeled learning.
Whilst they only had minimal positive samples per disease, the
model shared information across diseases – enabling it to use
information from causal genes for closely related diseases in
prioritization. Despite these benefits, positive unlabeled learning
is limited by prior knowledge of known causal genes, leading to
potential false negatives, and unlikely scenarios for a model to
prioritize genes in novel mechanisms.

Overall, there is a need for benchmarking in order to select the
model best suited to the data, and for post-GWAS prioritization
the optimal model currently varies across diseases without a one-
size-fits-all winner. An optimal model also hinges on data size
and quality for reliability and performance, with studies varying
in data size and choice of features – from using hundreds of
selected features (Isakov et al., 2017) to others exploring tens of
thousands (Deo et al., 2014). Further in silico methods need to
address these aspects of ML, the lack of functionally validated
associated genes at the disposal of ML, and how features are used
in order to build a model tailored to post-GWAS prioritization.

FEATURE CURATION

To fine-tune a model, researchers must perform data curation
and feature quality control to achieve the best possible
performance. GWAS associations are typically annotated to a
wide range of biological annotations. Biological features range
from eQTL (expression quantitative trait loci), RNA, epigenetic,
and protein data to describe a variant or gene’s functionality.
For example, several studies use eQTL data, providing tissue-
specific and population-specific insight, with researchers noting
the use of eQTLs can improve the ability for models to
distinguish single causal genes within a locus (Deo et al., 2014).
For example, Ning et al. (2015) built a logistic regression
for prioritizing Crohn’s disease associated genes. They found
that integration of eQTL data with GWAS data provided an
overlap of information between the two that strengthened model
performance. Furthermore, the cataloging of eQTLs mapped to
non-coding RNA provides a better insight into how non-coding
RNA affects gene expression (Branco et al., 2018), increasing the
strength of regulatory information at the disposal of ML models.
The growing integration of related biological features suggest this
will provide clearer insight for models to be able to pinpoint the
most likely disease causing genes in a locus (Branco et al., 2018;
Dai et al., 2019).

Other features used by studies are those provided by GO and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
database. Merelli et al. (2013) built SNPranker using terms from
GO and KEGG to prioritize variants across diseases via a genetic
algorithm. This model focuses on user-guided optimization,
which is beneficial as SNPranker also takes features from data
mining, allowing the researcher to adjust feature weights to
minimize bias. Merelli et al. (2013) also focus on sharing
information across ontologies, illuminating similar genes to those
with known functional causality, indicating that this can grow
the causal gene list (Merelli et al., 2013). Despite this possibility
of increasing the model’s training data, expanding a list of causal
genes based on known biological processes alone is likely to create
susceptibility to bias and weaker model performance – as the
model is then less able to prioritize loci within novel systems
which may be affecting a phenotype.

The use of other biological features, e.g., RNA and epigenomic
features, has also grown in recent years. These features may
provide further insights into associated loci located in non-
coding regions. For example, researchers developed and
combined models GenoWAP and GenoSkyline (Lu et al., 2016a;
Casas et al., 2005). Both methods use unsupervised learning –
GenoWAP performs GWAS prioritization and GenoSkyline
integrates tissue-specific and epigenomic annotations for
predicting tissue-specific functional regions. They found
these annotations showed both functional and non-functional
tissue-specific variants were enriched, suggesting LD between
variants in both regions (Lu et al., 2016b). For example, one
schizophrenia associated locus within an intergenic region,
upstream of MMP16, had high prioritization by GenoWAP in
brain tissue (Lu et al., 2016b). This result is then augmented
as GenoSkyline predicted that this locus plays a role in the
functional regions downstream, offering new targets for further
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research. However, they concluded that their results can be
improved with cell-specific data. Since GenoWAP, the ExPecto
tool was built to make cell-type-specific predictions with high
accuracy which it uses for variant prioritization, providing a
novel method for generating cell-specific data in silico (Zhou
et al., 2018). Whilst this method of predicting cell-specific data is
disadvantageous to manual curation, the systematic collection of
cell-specific data is in development and standardized resources
have not been widely applied to post-GWAS analysis. Methods
such as ExPecto provide a starting point for cell-specific
curation and also a potential benchmark for the manual
curation as it develops.

Alongside general biological characterization, disease-
specific data is gradually increasing, further enabling accurate
prioritization of GWAS associated loci. Vitsios and Petrovski
(2019) for example prioritized chronic kidney disease genes,
using annotations from the Chronic Kidney Disease database
among their features to improve stratification. Algorithmic
scorings are also used for prioritization (e.g., Eigen, CADD,
DANN, GWAVA, DeepSea). These scorings predict pathogenicity
of variants based on their expected functional consequences,
and have been used to aid variant prioritization, however, to the
best of our knowledge this is only been demonstrated by Khan
et al. (2018), requiring further exploration into their benefits as
features in ML prioritization.

Beyond data collection, studies also need to consider feature
importance and feature selection to gain an understanding of
models “under-the-hood” This is often a part of why researchers
choose L1 regularized logistic regression, which automatically
performs feature selection. Several studies have used logistic
regression, such as Isakov et al. (2017) with using the elastic
net, who found positive feature coefficients (predicting causal
genes) were highest for immune and inflammatory response
features from GO. Recently Gettler et al. (2019) also used logistic
regression – as part of their gene prioritization regression model
(GPRM) – to prioritize genes for Crohn’s disease. While Gettler
et al. (2019) do not discuss the impact of feature importance,
they note that GO enrichment analysis showed immune and
inflammatory genes were significantly enriched. This enrichment
is to be expected from an autoimmune disease, however, it
also suggests validation for the feature importance found by
Isakov et al. (2017). Maciukiewicz et al. (2018) applied L1
logistic regression to identify significant features, and followed-
up with SVM for predicting causal variants for duloxetine
response in major depressive disorder. They found a non-coding
RNA annotation had the largest positive coefficient. However,
unlike the study of IBDs, Maciukiewicz et al. (2018) is the first
prioritization study to focus on their drug response phenotype,
requiring further work to validate feature importance and begin
to suggest how that may fit into biological understanding
of GWAS results. There is also work focused primarily on
improving feature selection for GWAS data (Szymczak et al.,
2016; Nembrini et al., 2018). For example, random forests provide
feature importance measures and have been investigated by
Szymczak et al. (2016). They developed a recurrent relative
variable importance measure from random forest to rank
important variants in GWAS. This focus on feature importance

developed a useful tool for highlighting loci deserving of
functional-follow up and could be used to reduce false positive
GWAS results (Szymczak et al., 2016). The only other study
investigating feature importance in prioritization has been
SNPranker, with Merelli et al. (2013) finding epigenetic features
(namely enhancer, CpG islands, and DNase cluster data) had
the highest importance for default prioritization. Additionally
to a model’s internal feature weightings, permutation is also
able to provide feature importance, doing so for any model by
shuffling feature values and viewing model error rate. Vitsios and
Petrovski (2019) use permutation via the boruta algorithm, which
creates synthetic features from random permutation to weigh
the importance of original features and remove any unimportant
annotations. For all studies incorporating feature selection or
importance they note an improvement in model performance or
understanding of their predictive reasoning.

PRIORITIZATION OF VARIANTS AND
CANDIDATE GENES

Prioritization methods post-GWAS have had development for
several models that aim to be applicable for multiple diseases –
e.g., ExPecto (Zhou et al., 2018), GenoWAP (Lu et al.,
2016b), HyperSMURF (Schubach et al., 2017), and SNPRanker
(Merelli et al., 2013). For example, ExPecto used all publicly
available GWAS data for prioritizing variants for Crohn’s disease,
ulcerative colitis, Behçet’s disease, and hepatitis B virus (Zhou
et al., 2018). On prioritization they found highly ranked variants
were also most likely to be replicated across GWAS. For Crohn’s
disease the top prioritized variant by ExPecto was rs1174815
(Zhou et al., 2018), yet neither the variant or gene (IRGM) has
been highly prioritized by any other study focusing on Crohn’s
disease. In comparison with other model rankings for Crohn’s
disease loci, there are only a handful of genes that have been
highly prioritized in more than one study. An example of this is
GSDMB, a gasdermin gene known to affect apoptosis in epithelial
cells. GPRM prioritized this gene, alongside ExPecto prioritizing
a variant in GSDMB (rs58989791) (Zhou et al., 2018; Gettler et al.,
2019). This prioritization has aligned with experimental work
recently focusing on GSDMB in IBDs, finding an increase in the
gene’s expression may have a developmental role for IBDs (Rana
and Pizarro, 2019). Another disease that has been prioritized
by multiple studies is Alzheimer’s disease, for which models
consistently prioritize APOE (Mordelet and Vert, 2011; Wang
et al., 2013; Deo et al., 2014). However, this questions model
training in these studies, as APOE has been reported as affecting
Alzheimer’s disease as early as 1993 (Schmechel et al., 1993).

An issue with prioritizing variants and genes is the
ability to ascertain if the model predictions are accurate.
Schubach et al. (2017) address this by prioritizing regulatory
variants for both mendelian diseases and complex diseases,
for which the mendelian disease variants had been validated
with a biomedical literature review. They found hyperSMURF
consistently out-performed other methods (Eigen, GWAVA,
CADD, and DeepSea) on both mendelian and GWAS data,
suggesting minimized risk of overfitting and the potential for
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ML to be able to generalize across datasets. In terms of
performance metrics, Schubach et al. (2017) also explore multiple
measurements – F1 score, AUROC, precision, recall, and the
area under the precision-recall curve (AUPRC) – however, other
studies primarily use AUROC. Whilst AUROC is an excellent
metric in many cases, it can be highly misleading for imbalanced
datasets like those commonly found in GWAS prioritization (Jeni
et al., 2013; Saito and Rehmsmeier, 2015). Precision-recall curves
are a popular alternative in cases of extreme class imbalance, with
Schubach et al. (2017) applying these in combination with other
metrics in a particularly rigorous approach. Studies focused on
addressing imbalanced data are important for developing reliable
GWAS applications, and continuing to focus on imbalance-aware
approaches will reinforce the reliability of model predictions as
much as possible in silico.

In order to establish model capability past performance
metrics, a prioritized variant or gene’s causality can be
evidenced with functional follow-up. For example, Lin et al.
(2019) developed RegSNPs-Intron which was a random forest
prioritizing intronic variants associated to cellular sensitivity
to clofarabine-induced cytotoxicity – with the model primarily
relying on splicing data. After prioritization they performed
ASSET-seq (ASsay for Splicing using ExonTrap and sequencing),
which measures the impact of splicing on an intronic variant.
They found 63 out of 82 experimentally tested variants had
a significant splicing impact in multiple cell lines (Lin et al.,
2019), suggesting further directions for functional study and
validating the RegSNPs-Intron’s prioritization. Zhou et al. (2018)
also performed experimental follow-up, looking at their top
prioritized variants with a luciferase assay. This confirmed
prioritized variants affect regulatory activity – e.g., variant
rs381218 prioritized to affect chronic hepatitis B virus had a
significant change in reporter activity, predicted also by ExPecto
to impact HLA-DOA (Zhou et al., 2018). These functional
results improve the interpretation of potential regulatory
roles for prioritized loci by validating prioritizations in vitro,
enabling hypotheses produced by ML to be confirmed and
further expanded upon.

PAST AND PRESENT CARDIOVASCULAR
MACHINE LEARNING PRIORITIZATION

ML approaches for post-GWAS prioritization have been applied
over the last decade, with applications providing the projected
outputs expected from GWAS with biological insights and
translational results. In 2014, Deo et al. (2014) applied OPEN
to prioritize 38 phenotypes, many of which were CVD traits.
CVD is a particularly appropriate example to investigate, due
to its high powered GWAS with thousands of associated loci,
presenting a large benefit to gain from ML prioritization. To the
best of our knowledge, this is the only ML study that includes
CVD traits. OPEN was applied to prioritize BP associated loci,
for which several of its highly ranked genes have since been
studied in laboratory experiments and leading to insights on
biological mechanisms with possible translational impacts. NPR3
was the second prioritized gene to affect BP by Deo et al. (2014).

At the time of prioritization GWAS was one line of evidence
showing a relationship between NPR3 and BP, however, Ren
et al. (2018) focused on this gene’s functional roles in vascular
smooth muscle. They found variants at this locus were associated
with reduced NPR3 mRNA and changes to chromatin structure,
supporting a regulatory role leading to increases in vascular
smooth muscle proliferation and suggesting a mechanism which
can be a therapeutic target for BP. Overall with examining the top
ten prioritized BP genes by Deo et al. (2014) (ANTXR2, NPR3,
MECOM, PLCE1, ENPEP, PDGFRA, CACNB2, ARID5B, MRVI1,
and GUCY1B3) eight of the associations have been validated
by GWAS and mechanisms characterized by experimental work
and indicate effects on BP (Rippe et al., 2017; Takeuchi et al.,
2018; Giri et al., 2019; Kichaev et al., 2019) – only ANTXR22

and PDGFRA3 have not been validated in recent BP GWAS. The
gene GUCY1B3, ranked tenth by Deo et al. (2014), and JAG1
(ranked 11th) have consistently been studied in relation to BP
and nitric oxide regulation (Rippe et al., 2019). Rippe et al. (2017)
identified both genes as affecting Notch pathway signaling in the
aorta of mice, rats and humans – this study provided further
insight into each gene’s activity across species. Interestingly,
variants at MRVI1 (ranked eighth) have been found to be
genome-wide significant in an arterial stiffness GWAS (Fung
et al., 2019), implying a possible relation to BP and opportunity
for follow-up investigation such as with colocalization analyses
(Kanduri et al., 2019).

OPEN also ranked genes without high prioritization but have
since been demonstrated to be important to BP regulation and
have clinical significance (Deo et al., 2014). An example of this
is uromodulin (UMOD), which Deo et al. (2014) prioritized
approximately in the middle of their rankings of hundreds of
associated genes affecting BP. UMOD has been replicated in
GWAS (Evangelou et al., 2018) and is a target currently being
tested in a clinical trial for its interaction with NKCC2 in
hypertension – as UMOD genotypes of increased or decreased
expression affect salt sensitivity in the kidney and a person’s
propensity for hypertension.

Aside from BP, Deo et al. (2014) also report success for other
cardiac conditions that have additional evidence and support
today. FLNC was prioritized as affecting left ventricular diameter.
Deo et al. (2014) investigated FLNC further in a zebrafish model,
finding knocked down FLNC showed cardiac abnormalities and
hypertrophy, and also found one dilated cardiomyopathy patient
(who had no known dilated cardiomyopathy gene mutations)
with a splice-site mutation in FLNC. This work aligned with
FLNC gaining functional cardiovascular research attention, with
its role in cardiomyopathies also being first discovered in 2014
(Valdes-Mas et al., 2014). This result validates OPEN’s high
performance for cardiomyopathies (AUCROCs of 0.88 and 0.96),
with its performance ranging from 0.75 to 0.9 for all other cardiac
traits. Notably, Deo et al. (2014) used known causal genes as
their training examples for cardiomyopathies, unlike the use of
GWAS associated genes in the training data for other phenotypes,
implying the benefit of using well-curated input data.

2https://www.ebi.ac.uk/gwas/genes/ANTXR2
3https://www.ebi.ac.uk/gwas/genes/PDGFRA
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The insights into the functions of prioritized genes since 2014
indicate the potential of ML for guiding hypothesis generation,
but also outline examples of the experimental work ahead for
validating the biological mechanisms of such ranked genes in
order to confidently identify drug targets post-GWAS. With 451
BP associated genes gathered by Deo et al. (2014) in comparison
to 2,993 validated associated genes in 2019 (Evangelou et al.,
2018; Giri et al., 2019), this suggests that re-running OPEN now
with updated data would provide interesting results detailing
which genes have withstood the test of time in terms of
maintaining their ranking.

DISCUSSION

Machine learning is advancing rapidly but its applications
in GWAS are still in their infancy with respect to becoming
gold standard methods producing consistently validated
biological insights. This review has focused on post-GWAS
ML prioritization methodologies ranging from model selection
and input features, to performance assessment and output
prioritization results. For model selection several studies
explore only one algorithm without comparison. Studies
using benchmarking comparisons with several models offer
a form of standardization for selection, contributing to
research transparency which is crucial for work justifying
investment in functional study. Recent studies are more
frequently incorporating benchmarking comparison showing the
development of robust methodology in this field (Isakov et al.,
2017; Kafaie et al., 2019; Vitsios and Petrovski, 2019).

The feature curation also needs improved interpretation
of selected features and their importance, as current work
highlights the need to account for bias within biological
features, and the requirement for continued upkeep of biological
data. This interlinks with a broader demand for standardized
use of recently discovered datatypes, as prioritization studies
differ in their resources, hindering the interpretation of model
performance. For example with growing epigenomics resources,
Cazaly et al. (2019) note this is leading to research using varying
standardization methods. How that data is collected and recorded
then also affects the reliability of ML methods and comparison
of model performances. This point can also be made for models
such as ExPecto or iMEGES firstly applying variant prediction
which feeds into gene prioritization as a feature (Khan et al.,
2018; Zhou et al., 2018), as there is a risk of the predicted features
overfitting, and those features then not being reproducible.

There are also datatypes, such as clinical datasets and
wider ranges of omics data which are underrepresented in
ML prioritization studies. Studies focus on genomic features,
however, the contributions of transcriptomic, epigenomic and
proteomic data are less frequently investigated. This lack is
contrasted by studies solely integrating wide-ranging omics data
to calculate GWAS prioritization scores (Ayalew et al., 2012;
Ciesielski et al., 2014) – and identifies potential for collaboration
with ML to improve data integration methods. To date ML
studies highlight the benefits of multi-omic integration, but few
directly investigate that need (Merelli et al., 2013; Dai et al., 2019).

Building this multi-omic range of data could improve accuracy
and provide information specifying not only the most likely
causal genes, but the biological functions contributing to
their causality. With current data and research there is a
disconnect between prioritization of genes and identification of
the mechanism that links a feature to gene/variant causality,
which could benefit hypothesis specification in functional work.

As high quality disease-specific data becomes increasingly
available to fine-tune model training, ML models may become
more efficient in the prioritization of heterogenous data to
identify the most likely causal disease genes. However, reliance
on specific annotations presents a challenge for the prioritization
of novel genes and hence novel mechanisms without prior
knowledge. More generally, models including data mining
features are also susceptible to this issue, as they contribute
to a bias for prioritizing already characterized genes in known
disease pathways. These already researched genes may be highly
ranked not due to impactful biological knowledge but simply
due to having a wealth of study. Overall how feature curation
is implemented is a key factor to the developing success of ML
applications for GWAS, especially when considering imbalanced
data where positively labeled disease genes and variants are
limited. This highlights the need for high quality gene annotation
and disease resources – if features are not accurately researched
and curated, the potential for models to accurately prioritize
GWAS results will be diminished, ultimately ML methods are
limited by the quality and quantity of input training data.

When comparing output prioritizations there is a need
to appraise the quality of the training data, understanding
which genes/variants are included and how they might impact
prediction. For example with the prioritization of APOE by
models for Alzheimer’s disease (Mordelet and Vert, 2011; Wang
et al., 2013; Deo et al., 2014), it could also be argued that this
validates the model performance, as this gene is expected to be
prioritized. However, the studies prioritizing Alzheimer’s disease
genes do not provide their training and testing data to explore
this further (Mordelet and Vert, 2011; Wang et al., 2013; Deo
et al., 2014), showing the need to improve reproducibility. More
recent studies prioritizing different phenotypes are beginning to
provide both their data and source code, such as Khan et al.
(2018), enabling the development of more accessible and reliable
tools. This development is essential for applications to be used
and interpreted by non-computer scientists and for the output
biological findings to have a traceable reasoning as to why they
were prioritized.

On investigating OPEN’s prioritizations and comparing them
with more recent research, it emphasizes the potential for post-
GWAS ML to give GWAS results a wider-impact contribution
to complex diseases. The accuracy of the model across multiple
diseases identifies the possibility that one model can be applied to
several diseases successfully. Furthermore, the early prioritization
of diagnostic genes such as FLNC shows the power of ML which,
when combined with functional follow-up building biological
insights, can lead into translational impacts. However, OPEN also
showed genes which upon recent review were mis-prioritized
(UMOD and ANTXR2). This ranking may be due to Deo et al.
(2014) using GWAS results as part of their training data with
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them also noting that their features may be too weak to prioritize
genes a part of novel mechanisms for a pathology (Deo et al.,
2014). These misjudged genes highlight flaws applicable for all
ML models, with reliance on current biological data, requiring
that data to be high quality for reliable loci prioritization.

For future applications ML can learn from work such as
Deo et al. (2014) in combination with more recent work on
larger datasets, e.g., Zhou et al. (2018). Research can develop
models aiming to be applied across diseases, and re-used by
other researchers, with consideration for the size of present
GWAS data, varying datatypes, and feature importance. Doing
so could then lead to more accessible, reusable models – for
example with source code or web-interfaces that are useable by
a wider range of GWAS researchers – and create more globally
implemented ML applications for GWAS prioritization, thus
accelerating researchers towards the post-GWAS endgame of
understanding disease.

With the creation of accessible models, a role for ML
prioritization in personalizing medicine can develop. For
example, ML could potentially be used to augment genetic risk
scores, identifying which genes contribute to a person’s high
risk score, and offering more information at the disposal of
clinicians. To build ML tools to a clinically acceptable standard,
however, requires comparison with other prioritization methods
and ensuring model interpretability. One of the most common
other methods used in post-GWAS prioritization is network
analysis. This method builds networks ranging from the gene
to protein level, enabling a flow of information from GWAS
to protein and metabolic pathways (Leal et al., 2019). However,
studies note that gene networks can contain noise, and the
analysis is confounded by its aggregation of GWAS data to the
gene level, causing a loss of variant information (Wu et al., 2018;
Leal et al., 2019). Machine learning offers an improvement for
this with data integration, that can preserve variant information,
and with the ability to handle noisy data. Another method
identifying causality is Mendelian randomization, although in
some cases this can provide a clear illustration of risk, such as the
link between homocysteine concentration and stroke risk (Casas
et al., 2005), it is limited to high risk variants and independent
variables (Haycock et al., 2016). In comparison, unlike other
computational methods, the choices ML models make for
prioritization are not always clearly available to be understood by
the user. However, ML has also been applied in combinational
approaches with network modeling (Kafaie et al., 2019) and
Mendelian randomization for causal inference (Hemani et al.,
2017) to overcome the disadvantages of a singular method.
Hybrid approaches such as these highlight the many avenues
of ML research to be explored for developing optimal GWAS
prioritization. Aside from method comparison, improving data
curation, and model benchmarking, the interpretability of models
is a critical challenge for future research, and one of the largest
obstacles for GWAS prioritization by ML to gain widespread
reliable use. Developing model interpretability will involve a
strong understanding of not only a model’s mechanics but of
feature importance and known disease causing genes given in
model training – requiring an interdisciplinary effort to explore
the potential of ML post-GWAS prioritization in full.

KEY CONCEPTS

Supervised learning: Models learn from labeled training data.
Labeled positive and negative examples in training allow a
model to practice decision-making before being assessed on new
“testing” data.
Unsupervised learning: Models learn from unlabeled data. The
models recognize patterns between samples that can identify
clusters or outliers.
Semi-supervised learning: Models use both labeled and
unlabeled data during training to perform pattern recognition.
This is usually with a larger amount of unlabeled data than labeled
data and enables techniques such as positive unlabeled learning.
Overfitting: When a model performs well on training data but
poorly on test data. Some amount of overfitting is inevitable, but
extreme cases can render a model useless.
Cross-validation: A procedure for assessing generalization error.
Data are split into k subsets (or folds) of roughly equal size.
Train k separate models with each fold held out once for testing.
Average error across the k trials is reported.
Class imbalance: When the ratio of positive to negative labels
is far from one, creating less opportunity for a model to learn
from the minority class. Imbalance-aware methods perform
undersampling or oversampling of majority and minority classes,
respectively, to balance the dataset.
Sensitivity: The number of true positive samples correctly
classified by a model. Also known as the true positive rate
or recall.
Specificity: The number of true negative samples correctly
classified by a model. Also known as the true negative rate
or selectivity.
Precision: The ratio of true positives to declared positives.
Also known as the positive predictive value, and equal to the
complement of the false discovery rate.
AUROC: Area under the receiver operating characteristic curve,
which illustrates the tradeoff between sensitivity and specificity.
Can be interpreted as the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative one.
AUPRC: Area under the precision-recall curve, which
illustrates the tradeoff between precision and recall; useful
when classes are imbalanced.

CONCLUSION

Machine Learning is gradually proving itself to be a
valuable tool for post-GWAS analysis, as methodology
and high quality training data iterates, ML is showing
increasingly optimized performance for prioritizing loci.
It has begun to output results which have been validated
by showing clinical impact. For complex diseases such as
CVD, its ability to generate hypotheses has streamlined
functional work that has led to biological insights –
enabling the unraveling of how the predominantly non-
coding associated loci may affect cardiovascular health.
However, before ML models can consolidate their role in the
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post-GWAS analyses, research needs to address several
aspects ranging from performance (including model
benchmarking and fine-tuning), reproducibility, and
accessibility. There also needs to be greater comparison
between ML and other prioritization methods in order
to understand ML’s place in the post-GWAS pipeline
and enable GWAS to truly provide the projected
biological insights and translational capability that it has
so long promised.
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Big multi-omics data in bioinformatics often consists of a huge number of features
and relatively small numbers of samples. In addition, features from multi-omics data
have their own specific characteristics depending on whether they are from genomics,
proteomics, metabolomics, etc. Due to these distinct characteristics, standard statistical
analyses using parametric-based assumptions may sometimes fail to provide exact
asymptotic results. To resolve this issue, permutation tests can be a way to exactly
analyze multi-omics data because they are distribution-free and flexible to use. In
permutation tests, p-values are evaluated by estimating the locations of test statistics in
an empirical null distribution generated by random shuffling. However, the permutation
approach can be infeasible when the number of features increases, because more
stringent control of type I error is needed for multiple hypothesis testing, and
consequently, much larger numbers of permutations are required to reach significance.
To address this problem, we propose a well-organized strategy, “ENhanced Permutation
tests via multiple Pruning (ENPP).” ENPP prunes the features in every permutation round
if they are determined to be non-significant. In other words, if the feature statistics from
the permuted datasets exceed the feature statistics from the original dataset, beyond
a predetermined threshold, the feature is determined to be non-significant. If so, ENPP
removes the feature and iterates the process without the feature in the next permutation
round. Our simulation study showed that the ENPP method could remove about 50%
of the features at the first permutation round, and, by the 100th permutation round,
98% of the features had been removed and only 7.4% of the computation time with
the original unpruned permutation approach had elapsed. In addition, we applied this
approach to a real data set (Korea Association REsource: KARE) of 327,872 SNPs to
find association with a non-normally distributed phenotype (fasting plasma glucose),
interpreted the results, and discussed the feasibility and advantages of the approach.

Keywords: permutation test, multiple hypothesis testing, pruning, big multi-omics data, GWAS

INTRODUCTION

Unlike typical big data, big data in bioinformatics consists of huge numbers of features and
relatively small numbers of samples. For example, the data from genome-wide association
studies (GWAS) contain at least thousands of samples and several hundred thousands of single
nucleotide polymorphisms (SNPs) (Manolio, 2010). In the case of transcriptomic analysis for
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finding differently expressed genes, tens of thousands of genes
are tested from only hundreds of samples at most (McLachlan
et al., 2005). In epigenomic data, such as DNA methylation,
the number of features (e.g., CpG sites) varies from tens of
thousands to several million according to profiling techniques
and their resolution (Bibikova et al., 2011; Adusumalli et al.,
2014). Moreover, not only large numbers of features but also
various characteristics of the features are important points to be
considered. For example, in genomic data, such as SNPs, a feature
is represented as a count of a minor allele at a genomic locus in
each individual. In transcriptome data sets, gene expression levels
are represented as continuous and positive real values measured
from microarray spot intensities. In the case of epigenomics data,
the DNA methylation levels of loci can be provided as a ratio
between read counts of C and read counts of C and T. In addition,
proteomics and metabolomics data provide marker intensities
from mass-spectrometry-based approaches. Therefore, detecting
association between phenotypes and biomarkers using standard
statistical approaches may sometimes be inaccurate, as many of
these are based on parametric assumptions that require specific
properties of the features. Although several remedies have been
proposed in terms of parametric approaches (Thygesen and
Zwinderman, 2004; Lin et al., 2008; Park and Wu, 2016), they
are naturally asymptotic ones and still possibly have type 1 error
inflation or low power.

As an alternative to these issues, the permutation test
(Pitman, 1937; Annis, 2005) has become a popular approach for
analyzing multi-omics data because it can be used regardless
of the shape of distribution of the biomarkers’ expression and
uses a simple algorithm. In the permutation test, a p-value is
assessed through evaluating the relative rank of the observed
test statistic in an empirical null distribution of the test statistic
generated by random shuffling. The permutation test has already
been used in some omics analysis. For example, in GWAS,
the permutation test is used for adjusting for multiple tests
(Browning, 2008), considering biological structures (Pahl and
Schäfer, 2010), and identifying gene-gene interactions (Ritchie
et al., 2001; Greene et al., 2010). In next-generation sequencing
data analysis, rare variants have been identified by permutation
test for association with a phenotype (Madsen and Browning,
2009) and as a significance test of structural models (Lee et al.,
2016; Kim et al., 2018). In integration analysis of multi-omics
data, the permutation test is used for finding edges in the
integrated network (Jeong et al., 2015) and significance testing
of an aggregated unit with a structure (Kim et al., 2018). In
metagenome studies, the permutation test is used for testing
differences between distances of groups (Chen et al., 2012),
finding differentially abundant operational taxonomic units
(Anderson, 2005), and finding differentially abundant genomic
features (Paulson et al., 2011).

However, a major obstacle to the permutation test is its
large computation time, because the smallest p-value that a
permutation test can reach is inversely proportional to the
permutation time. Therefore, if a data set has a large number
of features, it requires a large number of permutations to
detect significantly associated features because larger numbers
of features require more stringent type 1 error control in

terms of multiple hypothesis testing correction. For example,
if a researcher wants to test an association between 5.0 × 105

SNPs and a specific phenotype, the p-value threshold will be
1.0 × 10−7 [0.05/(5.0 × 105) by Bonferroni correction]. To
achieve such a stringent p-value threshold, the number of
permutations must be at least 1.0 × 107

−1 for each SNP,
and the total computation time for all features is impractical.
Considering that only significant features are of general interest
to researchers, pruning insignificant features can be a way to
resolve the issue.

Therefore, in this study, we propose a well-organized strategy,
ENhanced Permutation tests via multiple Pruning (ENPP). The
key idea of ENPP is simple. When the number of features
is large, the p-value threshold is very low due to multiple
testing correction. In most cases, if a feature is reported to
be significant, its observed test statistic value should be more
extreme than those from permuted data sets. On the other hand,
if a feature has more than a set number of instances of having
larger statistics from permuted data sets, it can be regarded as
a feature with significantly less chance of being significant, and
ENPP prunes the feature during a certain permutation round. In
other words, ENPP specifically removes non-significant features
and continues the permutation procedures with the remaining
features, which can then be candidates for a predetermined
significance level. This approach can reduce total permutation
time to a feasible level compared to ordinary permutation
approaches that conduct the same number of permutation tests
on all features. Herein, we show that ENPP can remove about
50% of features in the first permutation round and requires, at
the 100th permutation round, only 7.4% of the computation time
needed for the unpruned permutation approach. This relative
proportion of computation time becomes smaller as the iteration
time increases. In addition, we applied our approach to a real
data set (Korea Association REsource: KARE) (Cho et al., 2009)
containing 327,872 SNP features and a non-normally distributed
phenotype (fasting plasma glucose, FPG) for validation of our
approach in terms of feasibility and usefulness.

MATERIALS AND METHODS

Data Set
For real data analysis, we chose a Korean GWAS data set collected
since 2007 by The Korean Association REsource (KARE) project
(Cho et al., 2009). In this project, all participants were recruited
from either of two region-based cohorts (rural Ansung and
urban Ansan). The total number of participants was 10,038
(5,018 from Ansung and 5,020 from Ansan), and they were all
genotyped, using genomic DNA from peripheral blood, using
the Affymetrix (Santa Clara, CA, United States) Genome-Wide
Human SNP array 5.0, containing 500,568 SNPs. For quality
control, we followed the same process used in a previous study
(Oh et al., 2016). As a result, we finally obtained 8,842 individuals
and 327,872 SNPs, and the processed data set was used in our
real data analysis. The study was reviewed and approved by the
Institutional Review Board of Seoul National University (IRB
No. E1908/001-004).
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ENPP Approach
Suppose that there are N samples, each with a dependent variable
Y, and J features X1, . . . ,XJ , representing features from a multi-
omics data set. In general, for a significance test of association
between a specific Xj and Y, the null distribution of the test
statistic S consists of test statistics from permuted data sets, and
we call the statistics sr , where r = 1,2,. . .,R, with R denoting
the total number of permutation rounds for the feature. Then,
the observed value, sobs (i.e., the original value of the test
statistic, S) is compared to the null distribution of S, and the
significance is assessed by the proportion of sr values more
extreme than sobs. For exact generation of the null distribution,
N! iterations are required. However, when N! is too large,
R iterations of random shuffling (R) (R << N!) are generally
used for assessing computational feasibility in terms of Monte-
Carlo estimation. A finding that a sobs value is larger than the
simulated sr values implies that the test is more supportive of the
alternative hypothesis, and the p-value is then calculated by the
following equation:

Pperm =
1+

∑r=R
r=1 I(sobs ≤ sr)
R+ 1

, (1)

where I(·) is an indicator function, and +1 in the numerator and
denominator can be omitted.

When the number of features is multiple, the p-value threshold
should be adjusted for a multiple testing comparison. For
example, a typical p-value threshold is 0.05, and, if there are 1,000
features for association tests, then the p-value threshold becomes
0.05/1,000, for the Bonferroni correction. In other words, when a
feature has a p-value smaller than this adjusted p-value threshold
it is reported as significant. Therefore, the possibility of I(·) = 1
(more extreme than the observed statistic value) is extremely
low for this feature. On the other hand, if I(·) = 1 frequently
appears in a feature, the p-value of the feature may be closer to
1, meaning that it may not be significant and would therefore be
of no interest to researchers. Let praw be an unadjusted p-value
threshold (e.g., 0.05) and padj be an adjusted p-value threshold,
for each feature, after the multiple testing correction (e.g., 0.05/J
by Bonferroni correction). padj is then the significance level for
which we need to detect significant features, and the decision of
whether or not to prune a feature, in any specific round, is based
on the hypothesis that:

H0 : p = padj, and H1 : p > padj, (2)

where p implies the true p-value from the permutation approach.
In the hypothesis, the significance level for the test needs to be
determined, and we call the threshold pprun. For the hypothesis
test, a binomial test can be used, and, based on padj and pprun,
we can set an integer Cprun that satisfies pprun in a permutation
round. Therefore, Cprun is a variable that depends on permutation
numbers, while padj and pprun are fixed values for the whole
pruning process. Consequently, using this rule, EPNN counts in
how many cases a feature has a more extreme test statistic than
its observed test statistic value in each permutation round. If a
feature is equal to or greater than Cprun in a round, it is removed

from the next permutation round. The following is a detailed
explanation of the parameter determination.

Let us assume that padj = 5 × 10−5, which is equivalent to a
threshold Bonferroni correction with 1,000 features, and pprun =
padj. In addition, if we let pk|r denote a probability of observing
at least a number k of test statistics values more extreme than the
observed test statistics at the rth permutation round, then pk|r =
t=r∑
t=k

(
r
t

)
ptadj(1− padj)r−t . Therefore, if the p-value of a feature

is significant, then pk|r should be equal to or smaller than pprun.
As an illustration, consider the first permutation round. Based
on a setting of padj = 5 × 10−5, two probabilities, p0|1, p1|1, are
given. Because we set pprun=padj, p0|1 will be 1 and p1|1 will be
padj, implying that Cprun = 1 is in the first round. For the second
round, there are three probabilities, p0|2, p1|2 and p2|2, that can
be easily computed. In this case, p1|2 = 1× 10−4 > pprun p2|2 =

10−9 < pprun. Therefore Cprun will be 2 for the second round.
In this manner, we can obtain Cprun for all permutation rounds
conducted. We will show the properties of the parameters in
the next section.

RESULTS

Simulation Analysis
In this section, we evaluated the advantages of ENPP compared
to a strict permutation approach, including its need for only
very few counts for rejecting and removing non-significant
features. As a consequence of this attribute, ENPP can greatly
reduce total computation time to a feasible level compared to an
unpruned permutation approach. To show the desired properties,
we artificially generated data sets whose features did not associate
with a feature. When the Bonferroni threshold was applied and
praw = 0.05, the first example had p1

adj = 0.05/1,000 and the second
example had p2

adj = 0.05/(5 × 105). In addition, we also assumed
that pprun = padj for both examples.

Distribution of Cprun
Firstly, we investigated the distribution of Cprun values according
to each permutation round for p1

adj, and p2
adj, respectively.

Using the formula described in the methods, Cprun values were
calculated for r = 1,2,. . ., 10,000, and the resulting values are
shown in Figure 1A, which also shows that the values of Cprun
for p1

adj are at most 6 in the 10,000th round. This implies that
the threshold is not hard to satisfy and that we can reduce a
large proportion of the number of features at each permutation
round. In the case of p2

adj, Cprun becomes smaller (Figure 1B).
In detail, Cprun is 1 for i = 1, 2 for i ∈ [2, 4, 473], and 3 for
i ∈ [4, 474, 10, 000], implying that smaller padj values provide
smaller Cprun values, although pprun is proportional to padj.

Pruning Rates and Computational
Efficiency in Each Permutation Round
Based on the Cprun values calculated above, we also evaluated
the pruned proportion of the total features for each permutation
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FIGURE 1 | (A) Distribution of Cprun with Pprun = 5 × 10−5. (B) Distribution of Cprun with Pprun = 1 × 10−7.

round. Suppose that the p-value of a feature has a uniform
distribution, meaning that the feature has no association with
a phenotype. In this setting, the pruned proportion of features
depends only on Cprun. For example, at the first round, for
Cprun (1) = 1, the proportion of pruned features will be

∫ 1
0 pdp =

1
2 . At the second round, for Cprun (2) = 2, no pruning will
happen, because the event that Cprun (1) = 1 includes the
event that Cprun (2) = 2. At the third round of permutation,
for Cprun (3) = 2, the expected pruning proportion after the
permutation will be:

∫ 1

0
(1− p)p2dp =

∫ 1

0
(p2
− p3)dp =

1
3
−

1
4
=

1
12

.

In other words, at the first permutation, 1
2 of the features are

expected to be pruned, and 1
12 of the features are additionally

pruned after the third round. In this manner, the expected
proportions of remaining features after pruning from 1 to
10,000 permutation rounds are calculated using the Cprun values
(Figure 1), and the results are described in Figure 2. Because the
cumulative pruning proportion is not easily derived by numerical
calculation, we estimated the proportion by simulation using
variables from a Bernoulli distribution, with the probability for
success taken from a uniform distribution U(0,1). In Figure 2A,
only about 2% of features remain after the 100th permutation
round in both pprun settings, thus greatly reducing the number
of tests for the data set at the round. However, as Cprun becomes
different, the remaining proportions also become different. For
example, at the 1000th permutation round, 0.3% of total features
remained for p1

adj and 0.2% for p2
adj. The ratio between the two

proportions became larger at the 10,000th permutation round,

with 0.057% for the former, p1
adj, and 0.028% for the latter, p2

adj.
These results reflect the differences of Cprun provided in Figure 1.

We next assessed computational efficiency by comparing
the total permutation time for ENPP to that for the original,
unpruned permutation test. The efficiency is represented as a
ratio between the number of tests in the original unpruned
permutation approach and the cumulative number of tests in
the ENPP approach. The total permutation time for a given
permutation round in ENPP is calculated by accumulating all
permutation times of earlier permutation rounds. Therefore,
larger computational efficiencies imply a large timesaving
advantage for ENPP analysis. For example, during the first round,
there is no reduction of permutation time, but for the second and
third permutation rounds, ENPP needs only 1

2 the computations
compared to the original unpruned permutation tests, and 5

12
the permutations are needed for the fourth round. Therefore,
computational efficiency will be 1

1 = 1 for the first permutation
round, and 1+1

1+ 1
2
=

4
3 , 1+1+1

1+ 1
2+

1
2
=

3
2 , 1+1+1+1

1+ 1
2+

1
2+

5
12
=

48
29 . for the

second, third, and fourth permutation rounds, respectively. The
Inverse Computational Efficiency (ICE) for each permutation
round is summarized in Figure 2B. In Figure 2B, ICE does
not seem to decrease as fast as the remaining proportion, as
shown in Figure 2A, due to the fact that permutation times
of precedent rounds accumulate in estimating computational
efficiency. Compared to the ordinary unpruned permutation test,
only about 7.4% of the computation time is needed at the 100th
permutation round in both settings, because they have the same
numbers for Cprun and the same resulting remaining proportions.
However, as in the remaining proportion of features, ICE became
more different in terms of ratios between the two settings as
the permutation round progresses. For example, at the 1000th
permutation round, ICE is 1.3% for pprun = 5 × 10−5 and
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FIGURE 2 | (A) Proportion of tested features at each round after pruning for the two Pprun values in Figure 1. (B) Inverse of computational efficiency (ICE) for 2A.
(C) Type 1 error results. We divided the number of false-positive features by 1,000 to obtain the family-wise type 1 error rate. 95% confidence intervals of the
estimated type 1 errors are also provided.

1.2% for pprun = 1 × 10−7. However, in the 10,000 iteration,
0.23% is needed for the former, pprun while 0.17% is needed
for the latter, pprun. Thus, the overall computational efficiency
improves as the iteration round progresses because the remaining
rate of the features grows smaller, and smaller pprun requires
less computation.

On the other hand, we assessed the type 1 error rate of non-
associated features from the ENPP approach. For p1

adj and p2
adj,

we generated 106 and 5 × 108 non-associated features from the
Bernoulli distribution so that the expected numbers of features
with type 1 error are 50 in both settings. We first applied the
pruning process to the non-associated features and then the full
permutation approach to the remaining unpruned features. After
the full permutation approach had been applied, we counted
how many non-associated features were found significant at the
given significance levels. The type 1 error rates are summarized
in Figure 2C, showing that the ENPP approach controls the
type 1 error well.

Real Data Analysis
We next applied our approach to a real genome-wide data set
(Korea Association REsource: KARE), which has 327,872 SNPs
from each of 8,842 individuals (Cho et al., 2009). In order to
detect significant SNP features at the Bonferroni significance
level in the data set, the ordinary permutation approach (without
ENPP) requires at least (1/0.05) × 327,8722 = 2.15 × 1012, a
computationally impractical number of tests. Therefore, using a
pruning approach for this data set becomes inevitable when the
permutation approach is used. For the application of ENPP, we
set praw = 0.05 and pprun = padj = 0.05/327,872 = 1.52 × 10−7,
and the corresponding Cprun is calculated and described in
Figure 3A. Here, we set the number of iterations to 100,000
because simulation analysis found that the remaining proportion
of features was 3.7 × 10−5 at the 100,000th round and

the corresponding expected count of remaining features was
3.7 × 10−5

× 327,872 = 12.13 if all features were assumed
not to associate with a phenotype. We selected fasting plasma
glucose (FPG) as a phenotype because its distribution is very
highly skewed (skewness = 5.32) and the skewness is still high
(=2.71) (Kim, 2013) even after log-transformation. Consequently,
we expected that this property may produce results that differ
between a parametric approach and a permutation approach. For
the association analysis, we used age, gender, and living regions as
covariates, and we assumed that the genotype of the SNP features
has an additive effect on the phenotype. As a test statistic for the
permutation test, we used a t-statistic for the genotype effect.

Based on the expected remaining proportion of the features,
we found ICE to be 2.4 × 10−4 at the 100,000th permutation
round (Figure 3C), meaning that we needed only 24 times
more computation compared to the parametric linear regression
approach. This number of permutation tests can be done in
a few days, even in a single thread. After implementing the
100,000th iteration of ENPP with the real data set, we plotted
the number of remaining features (Figure 3B) and the ICE
(Figure 3C) in each round. Those results showed that 46 SNP
features remained and that the computational efficiency was
3.7× 10−4, implying that some SNP features were candidates for
significant features. For each of 46 SNP features, we implemented
a 3×107

−1 permutation test to provide a p-value not only for
Bonferroni correction but also for a genome-wide significance
of 5 × 10−8 (Xu et al., 2014). After implementation of the test,
we found that five SNP features passed the Bonferroni threshold,
and two SNPs also passed for genome-wide significance (Table 1).
On the other hand, the parametric approach found four SNPs
for Bonferroni correction, and two SNPs passed genome-wide
significance. However, only three SNPs overlapped for the
former threshold, and one SNP overlapped for the latter one.
To determine substantial differences of p-values between the
two approaches, we used an exact binomial test (Clopper and
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FIGURE 3 | (A) Distribution of Cprun for the real data set with Pprun = 1.52 × 10−7. (B) Proportion of tested features after pruning. (C) ICE for Pprun = 1.52 × 10−7.
Black lines are expected values from the simulation, and blue lines are observed values from the real data analysis.

TABLE 1 | 6 SNPs selected from either parametric (linear regression) or non-parametric (ENPP) tests at a Bonferroni significance level p = 1.52 × 10−7.

CHR SNP id MAF P-value from
linear regression

P-value from
permutation

P-value from comparison
between the two values

6 rs9348440T 0.478 1.63 × 10−7 1.33 × 10−7 1

6 rs6456368C 0.480 1.54 × 10−7 1.00 × 10−7 0.640

6 rs10946398C 0.479 8.35 × 10−8 6.67 × 10−8 1

6 rs7754840C 0.479 4.93 × 10−8 3.33 × 10−8 1

6 rs9460546G 0.481 5.45 × 10−8 3.33 × 10−8 1

16 rs7197218G 0.014 4.81 × 10−8 7.33 × 10−7 <2.2 × 10−16

Here, we provide information for SNP features such as chromosome, SNP id, and minor allele frequency (MAF) and the p-values from both tests. In the last column of
the table, we also include the results of an exact binomial test for permutation results based on the null hypothesis that the p-value of the permutation test is the same as
the results from the parametric approach.

Pearson, 1934) that regarded p-values from the parametric
approach as a null hypothesis p-value for the permutation results.
From the test, we found that only one SNP (rs7197218G in
chromosome 16) showed a significant difference between the
two results (Table 1). This SNP showed a more conservative
result from the permutation approach; this result may come
from type 1 error inflation in the parametric test in the presence
of very low minor allele frequency and large differences of
variance between FPG values with and without the minor allele
(Zimmerman, 2004).

DISCUSSION

For the analysis of multi-omics data, the permutation test has
been popularly used because it is non-parametric and flexible
to use. However, the main drawback of this approach is that it
may require such a large number of tests as to make it infeasible,
especially for data sets with large numbers of features and a
Bonferroni-corrected significance level. To resolve this issue, we
proposed a well-organized strategy, ENhanced Permutation tests
via multiple Pruning (ENPP), for enhanced permutation tests,
using the idea of pruning. ENPP investigates the features at every

permutation round and removes them if they have less chance
of being significant. Our empirical study showed that the ENPP
method could remove about 50% of the number of features at
the first permutation round and required only 7.4% of the total
computation time at the 100th permutation round as is needed by
an unpruned approach. Moreover, in real data analysis, on a data
set of 327,872 SNP features, our approach was found to greatly
reduce computational burden to a feasible level, and the analysis
results seemed more reliable than the results from a parametric
approach because they were not affected by a specific assumption
of a null distribution. Interestingly, we found that the number
of tests conducted in the ENPP process was much smaller than
the number in the final evaluation of the 46 SNP features to
obtain precise p-values. In the pruning process of real GWAS
data, about 1.2× 107 permutations were needed, while in parallel,
the full permutation analysis required about 1.4× 109 iterations.
Since the pruning process and the full permutation process
are performed on each feature independently, they can easily
be parallelized. We believe that parallelism has a large impact
on the full permutation process because the full permutation
process seems to take much more computing time than the
pruning process in our real data analysis. Therefore, with the
help of parallel computing, our ENPP approach can easily handle,
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without computational burden, larger data sets such as human
methylation data with 2× 107 CpG site features.

Our EPNN algorithm is also flexible for pruning processes.
Researchers can modify padj and pprun as they want. In this
study, we set padj = pprun, with padj from a Bonferroni correction,
and conducted 100,000 ENPP permutations. These settings
could be interpreted with the number of expected significant
features and the number of tests of the features, considering that
summation of the actual significance level, calculated for Cprun,
from the first round to the 100,000th round is 2.66 × 10−3,
and it admits 0.05/(2.66×10−3) ≈ 18 truly significant features
at the Bonferroni threshold. In other words, if there are 18 or
fewer significant features, at p = 1.52×10−7, we can control
the probability of falsely pruning any significant features under
0.05. This assumption of the number of the significant features
is reasonable, considering that only a few features may satisfy
Bonferroni cutoff in general and that our analysis results in
both parametric and permutation approaches found only four or
five SNPs, respectively. In addition, researchers may sometimes
be interested not only in features for a specific Bonferroni
significance level but also in a p-value distribution of whole
features. For this purpose, ENPP can be applied after some
number of unpruned permutation rounds, such as 100, so that
more precise p-values can be obtained, even for non-significant
features, and the results can be used in false discovery rate (FDR)
approaches (Benjamini and Hochberg, 1995) or in combining
p-value approaches for some group-wise testing such as gene-
or pathway-wise significance tests (Subramanian et al., 2005).
Our ENPP approach will help many researchers achieve precise
p-values in a feasible time, even for datasets with a large number
of features. A brief R script for performing ENPP is provided for
SNPs at http://statgen.snu.ac.kr/software/ENPP. This will enable
more accurate decisions based on the statistical results.
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Genome-wide association studies (GWAS) have identified several susceptibility loci
for gastric cancer (GC), but the majority of identified single-nucleotide polymorphisms
(SNPs) fall within the non-coding region and are likely to exert their biological function by
modulating gene expression. To systematically estimate expression-associated SNPs
(eSNPs) that confer genetic predisposition to GC, we evaluated the associations of
314,203 stomach tissue-specific eSNPs with GC risk in three GWAS datasets (2,631
cases and 4,373 controls). Subsequently, we conducted a gene-based analysis to
calculate the cumulative effect of eSNPs through sequence kernel association combined
test and Sherlock integrative analysis. At the SNP-level, we identified two novel variants
(rs836545 at 7p22.1 and rs1892252 at 6p22.2) associated with GC risk. The risk
allele carriers of rs836545-T and rs1892252-G exhibited higher expression levels of
DAGLB (P = 3.70 × 10−18) and BTN3A2 (P = 3.20 × 10−5), respectively. Gene-based
analyses identified DAGLB and FBXO43 as novel susceptibility genes for GC. DAGLB
and FBXO43 were significantly overexpressed in GC tissues than in their adjacent
tissues (P = 5.59 × 10−7 and P = 3.90 × 10−6, respectively), and high expression
level of these two genes was associated with an unfavorable prognosis of GC patients
(P = 1.30 × 10−7 and P = 7.60 × 10−3, respectively). Co-expression genes with
these two novel genes in normal stomach tissues were significantly enriched in several
cancer-related pathways, including P53, MAPK and TGF-beta pathways. In summary,
our findings confirm the importance of eSNPs in dissecting the genetic basis of GC, and
the identified eSNPs and relevant genes will provide new insight into the genetic and
biological basis for the mechanism of GC development.

Keywords: gastric cancer, eSNP, genome-wide association study, gene-based analysis, Sherlock integrative
analysis
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INTRODUCTION

Gastric cancer (GC) is the fifth most common neoplasm and
second leading cause of cancer-related death globally. There
were approximately one million newly diagnosed GC cases and
780,000 deaths in 2018 (Bray et al., 2018). Approximately half
of the new GC cases and deaths worldwide occur in China,
indicating a major public health burden (Chen et al., 2016). A
large twin cohort study in Nordic countries suggested that up
to 22% interindividual variability in GC risk could be explained
by genetic factors (Mucci et al., 2016). In the past decade, we
and other groups have reported a number of susceptibility loci
for GC through genome-wide association study (GWAS), which
only explain a fraction of GC heritability (Abnet et al., 2010; Shi
et al., 2011; Wang et al., 2017; Park et al., 2019). Moreover, the
vast majority of disease-related variants discovered by GWAS
fall within intergenic or non-coding regions, which may regulate
the expression of target genes and influence the process of
pathogenesis (Maurano et al., 2012).

Expression quantitative trait locus (eQTL) analysis has been
conducted to provide prior weights for the statistical analysis
of new susceptibility single-nucleotide polymorphism (SNP)
discovery and prioritize SNPs or genes for further functional
experiments (Li et al., 2013). Integration of GWAS and eQTL can
help us dissect genetic mechanism of multiple diseases (Guo et al.,
2018; Heinrichs et al., 2018). The Genotype-Tissue Expression
(GTEx) project has established the largest comprehensive public
database with whole-genome and transcriptome sequencing data
across 53 normal human tissues from nearly 1,000 individuals,
making it better to dissect the effects and molecular mechanism
of functional variations.

In a given gene, several variants modulate its expression level
in stomach tissue. These expression-associated SNPs (eSNPs)
may synergistically regulate the expression of the target gene.
Thus, collections of multiple genetic variants, rather than
individual highly significantly associated eSNPs, may account
for the putative role of the novel gene in predisposition to
GC. Pathway-based analysis evaluates the cumulative effect of
multiple SNPs from the same gene set. Utilizing this approach,
several novel genes and biological pathways enriched with
significantly disease-associated SNPs were identified (Cheng
et al., 2016; Yao et al., 2016; Walsh et al., 2019). Generally,
most studies select the representative SNPs by their proximity
to a specific gene, which inevitably obscures the genetic
effect between the candidate gene and disease. Accordingly,
incorporating functional eSNPs into the pathway analysis is
appealing because of its ability to explore the mechanism of
complex diseases. Through evaluating the cumulative effect
of 322,324 eSNPs in Caucasian individuals, scientists found
that the autoimmune thyroid disease pathway and JAK-STAT
pathway were involved in basal cell carcinoma pathogenesis
(Zhang et al., 2012). Moreover, a similar strategy was also
applied to obtain biological insight into the development of
lung cancer and type 2 diabetes (Zhong et al., 2010; Wang
et al., 2018). During the preparation of the manuscript, another
similar computational method called loci2path was reported
(Xu et al., 2020).

Considering the fact that regulatory causal variants confer to
GC risk by affecting their target gene expression, we initially
conducted genome-wide screening of 389,207 potential eSNPs
in stomach tissues from the GTEx database. We then evaluated
the associations of 314,203 eSNPs shared in three GWAS datasets
with GC risk. In addition, we performed a gene-based analysis to
calculate the cumulative effect of eSNPs and identify additional
susceptibility genes that might help provide new insight into the
mechanism of GC.

MATERIALS AND METHODS

eSNP Analysis
Expression-associated SNPs in stomach tissues were derived
from the GTEx v7 database (Stomach.allpairs.txt.gz). Genotyping
was performed using Illumina HumanOmni 5 M and 2.5 M.
Transcriptome dataset was generated by Affymetrix Expression
Array or Illumina TruSeq RNA sequencing. A total of 237
stomach tissues with both genotype and expression data were
available. Linear regression analysis was applied to evaluate the
association between genetic variants and expression levels of
genes within 1 Mb distance. As a result, a total of 636,426 cis-
eQTL gene (eGene) pairs were defined with a false discovery rate
(FDR) P-value < 0.05. After excluding indels, duplicated and
non-biallelic eSNPs, there were 389,207 eSNPs remained.

GC GWAS Datasets
Three existing GC GWAS datasets were used in the current
study, including 2,631 cases and 4,373 controls. Of them, NJ-
GWAS, and BJ-GWAS were previously conducted by our group
(Shi et al., 2011). All subjects recruited from Nanjing (550 cases
and 1,155 controls) and Beijing (456 cases and 1,118 controls)
were genotyped with Affymetrix Genome-Wide Human SNP
Array 6.0. Another GC GWAS dataset named SX-GWAS was
approved and downloaded from the dbGap (accession number:
phs000361.v1.p1; Abnet et al., 2010). All participants (1,625 cases
and 2,100 cancer-free individuals) recruited from Shanxi and
Linxian were genotype using the Illumina 660W-Quad chips.
The basic characteristics of study participates were shown in
Supplementary Table S1.

Quality Control and Imputation for GWAS
We performed a standard quality control procedure for these
three GWAS by excluding samples with lower call rates, sex
discordance, or excessive heterozygosity. Then, we excluded
eSNPs with a call rate < 95%, minor allele frequency (MAF)
<0.01, or P < 1 × 10−6 for Hardy-Weinberg equilibrium.
Imputation was performed with SHAPEIT v2 (Delaneau et al.,
2011) and IMPUTE2 (Howie et al., 2009) with the 1000 Genomes
Project (Phase III integrated variant set release, across 2,504
samples) as reference. We selected eSNPs with INFO score ≥ 0.4
for further association analysis.

Association Analysis
For each eSNP, unconditional logistic regression was conducted
to calculate odds ratios (ORs), and 95% confidence intervals
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(CIs). We performed genetic association analysis assuming an
additive effect model with adjustment for age, sex, smoking,
alcohol consumption, and top ten principal components (PCs)
in NJ-GWAS and BJ-GWAS. Since the smoking and drinking
status were not available in the SX-GWAS dataset, we took age,
sex and top ten PCs as covariates. Subsequently, a meta-analysis
with the fixed-effects model was conducted to pool the results
from each GWAS by using the GWAMA software (Magi and
Morris, 2010). I2 indicates the percentage of the effect estimates
variability which can be attributed to heterogeneity, and an
I2 value of ≥75% represents high heterogeneity. We filtered
significant eSNPs on linkage disequilibrium (LD; r2 < 0.1), from
which, the index eSNPs with the lowest p value in each LD block
were obtained. All statistical analyses were conducted by using
PLINK 1.9 and R language (version 3.5.0). Regional association
plots were generated in LocusZoom.

Variance Explained
The phenotypic variance explained by genetic variants was
estimated using the fixed-effects model in the single-variant
analysis as previously described (Lee et al., 2012). Variants
identified in the present study and those published in previous
GWAS (Supplementary Table S2) were used to calculate the
respective variances by assuming the 5-year prevalence of GC to
be 32.43/100,000, 42.43/100,000, and 52.43/100,000 in China1.

In silico Functional Annotation
We used ANNOVAR (Wang et al., 2010) to generate gene-
based annotation and then described the distribution of all these
eSNPs. We extracted candidate SNPs in strong LD (r2

≥ 0.6)
with the index variant based on the 1000 Genomes Phase 1
Asian individuals from the online HaploReg v4.2 tool (Ward and
Kellis, 2012). According to the available data from ENCODE
(Ward and Kellis, 2012) and Roadmap (Bernstein et al., 2010)
we predicted regulatory elements (promoter, enhancer, etc.)
through histone modification markers (H3K4me3, H3K4me1,
and H3K27ac) and chromatin state segmentation in the stomach
tissues and DNase I hypersensitivity sites (DHS) in 125
cell types. Other bioinformatics annotation tools, including
RegulomeDB (Supplementary Table S3; Boyle et al., 2012)
CADD (Kircher et al., 2014) GWAVA (Ritchie et al., 2014) and
PINES (Corneliu et al., 2018) were also used to decipher the
potential functional variants.

Gene-Based and Pathway Analysis
Gene-based analysis was performed using the sequence kernel
association combined test (SKAT-C), which calculates the
combined effect of common variants toward a particular
phenotype (Ionita-Laza et al., 2013). Pathway analysis was
conducted in merged dataset by the adaptive rank truncated
product (ARTP) method with 10,000 permutations, which
utilizes highly efficient permutations to analyze the association
between genes within a pathway and diseases (Yu et al., 2009). All
analyses were implemented in R package “SKAT” and “ARTP.”
Human-derived gene sets were cataloged by and obtained

1https://gco.iarc.fr/today/online

from the Molecular Signatures Database (MSigDB, version 6.2).
Finally, a total of 1,077 pathways with 5,155 related genes were
derived from KEGG (n = 186), Reactome (n = 674), and BioCarta
(n = 217). The Benjamini-Hochberg method was applied to
correct multiple testing, setting the threshold for significance at
5% FDR. In addition, genes were considered significant when
they had P-values < 0.05 in at least two GWAS datasets.

Sherlock Integrative Analysis
We used Sherlock integrative analysis for further validation (He
et al., 2013). Sherlock uses a Bayesian statistical method to
calculate the individual Bayes factor for each eSNP, and their sum
constitutes the final Log Bayes factor (LBF) score for each gene.
The larger LBF score represents the higher probability that the
gene is associated with GC. If an eSNP is significantly associated
with GC, a positive score would be assigned. Otherwise, a
negative LBF score would be given. The P threshold for statistical
significance was set to 1.0 × 10−3.

Differential Expression Analysis
We downloaded the normalized expression data and clinical
information of individuals with GC from The Cancer Genome
Atlas database. Differential expression analyses were performed
in 32 paired gastric tumor and adjacent normal tissues.

Co-expression and Gene-Set Enrichment
Analysis
The expression data of 23,424 genes in 237 normal stomach
tissues were obtained from the GTEx v7 database. We conducted
genome-wide expression correlation analysis to identify co-
expression genes with the linear regression model. Gene-set
enrichment analysis (GSEA) of the KEGG pathway gene set
collection was implemented in R package “clusterProfiler” (Yu
et al., 2012). All genes were pre-ranked according to the Pearson
correlation coefficients calculated by the co-expression analysis.
Then, gene sets were considered significantly enriched if the FDR
was <0.05 after 100,000 permutations.

RESULTS

Individual eSNP Associated With GC Risk
As shown in the workflow chart (Figure 1), 389,207 eSNPs were
found to be significantly associated with their surrounding gene
expression levels (FDR < 0.05) in 237 stomach tissue samples
from the GTEx database. Among them, 319,656, 321,098, and
322,370 eSNPs passed the quality control in NJ-GWAS, BJ-
GWAS, and SX-GWAS, respectively. A total of 314,203 shared
eSNPs were included in the genetic association analysis, and
the association results of 307,676 variants without heterogeneity
between studies (I2 < 75.0%) were shown in Figure 2A.
Most of the eSNPs were located within intronic (48.21%) or
intergenic (32.60%), and 8.19% had a RegulomeDB score less
than 3 (Figure 2B). After LD pruning, we identified a total of
1,222 index eSNPs at P < 0.05. Among them, 4 eSNPs were
retained after multiple testing correction (FDR < 0.05; Table 1).
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FIGURE 1 | Workflow of the study design.

Region plots of these four significant variants were depicted in
Supplementary Figure S1.

The two most strongly risk-associated variants (rs6676150
at 1q22 and rs12217597 at 10q23.33) in known loci achieved
genome-wide association significance (P = 4.29 × 10−10

and P = 1.74 × 10−8, respectively), which correlated with
the expression level of THBS3 and NOC3L, respectively,
(Figures 3A,B). Moreover, these two variants were in strong
LD with previously reported index SNPs (Supplementary
Table S4). Of note, we found that two novel variants at 7p22.1
(rs836545), and 6p22.2 (rs1892252) were significantly associated
with GC risk (per T allele OR = 1.23, 95% CI: 1.12–1.35, and
P = 7.46 × 10−6; per G allele OR = 1.41, 95% CI: 1.20–
1.66, and P = 2.43 × 10−5, respectively). Meanwhile, the risk
alleles rs836545-T and rs1892252-G were correlated with higher
expression levels of DAGLB (P = 3.70 × 10−18) and BTN3A2
(P = 3.20 × 10−5), respectively (Figures 3C,D). A total of 63
candidate SNPs in strong LD (r2

≥ 0.6) with rs836545 were
extracted by using the HaploReg v4.2 tool (Supplementary
Table S5). We found that the rs836545 site located within an
active enhancer in three cell types, and the variant allele was
predicted to alter the binding of four regulatory motifs; however,
the chromatin status in stomach tissue was quiescent. As depicted
in Supplementary Figure S2, we focused on the region nearby
the promoter of DAGLB containing two variants in perfect

LD (rs3828944 and rs4724806 at a 25 bp distance, pairwise
r2 = 1.00), where histone markers and chromatin state signatures
exhibited a strong transcriptional activity as well as DNase-seq
evidence for transcription factor binding. Using a combination of
annotation tools, we proposed that rs3828944 might be the most
promising functional variant in this region. We did not observe
any variants in LD with the rs1892252 by HaploReg. Nevertheless,
our previous study have observed a tumor-promoting role of
BTN3A2 that was remotely regulated by rs1679709 at 6p22.1
(Zhu et al., 2017).

Variance Explained by Independent
eSNPs
Based on the eSNPs identified in present study and those
reported by previous GWAS, we estimated the proportion of
phenotypic variance explained by a liability threshold model
assuming a GC prevalence of 32.43/100,000, 42.43/100,000,
and 52.43/100,000 (Table 2). These four identified eSNPs
showed 0.58, 0.60, and 0.62%, respectively, while nineteen
of these GWAS-reported SNPs accounted for 1.14, 1.19,
and 1.23% of the total phenotypic variance at the respective
prevalence. In total, all these variants associated with
susceptibility to GC showed 1.30, 1.35, and 1.39% of the
phenotypic variance, respectively.These two novel eSNPs
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FIGURE 2 | SNP-based associations with GC in the GWAS meta-analysis. (A) Manhattan plot of P value for each expression-related SNPs (eSNPs) highlighting key
chromosomal regions. The associations [-log10 (P) values, Y-axis] are plotted against genomic position (X-axis by chromosome and the chromosomal position of
NCBI build 37). The green horizontal line corresponds to a P value threshold of 1.00 × 10−4; (B) Pie charts showing the distribution of functional annotation and
Regulome DB score (a categorical sore range from 1a to 7, indicating biological indicating biological evidence of a SNP being a regulatory element, with a low score
denoting a higher likelihood of a SNP being regulatory) for 307,676 eSNPs without heterogeneity between studies.

(rs836545 and rs1892252) showed approximately 12.37%
(0.49%/3.96%) of the phenotypic variance owing to known
genetic variations.

Susceptibility Genes Associated With GC
Risk and Pathway Analysis
At the gene level, 302 (5.97%) of 5,055 pathway genes were
associated with GC risk at a nominal P-value < 0.05. Five
protein-coding genes, including THBS3 (P = 2.65 × 10−8),
GBA (P = 1.29 × 10−6), GPR27 (P = 1.59 × 10−5), AMDHD1

(P = 2.65 × 10−5), and FBXO43 (P = 1.26 × 10−4),
were significantly related to GC susceptibility in the pooled
dataset after correction for multiple testing (FDR < 0.05;
Table 3). Two genes (THBS3 and GBA) were located in
known susceptibility locus (1q22), while the other three genes
(GPR27 at 3p13, AMDHD1 at 12q23.1, and FBXO43 at
8q22.2) were identified as novel GC susceptibility genes. At
the pathway level, there were no significant pathways after
multiple testing correction. However, 23 pathways reached a
less stringent threshold (P < 0.05), which was predominantly
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TABLE 1 | Associations of four significant expression-related SNPs (eSNPs) with GC risk under the additive genetic model.

SNP Region Allelesa NJ-GWAS BJ-GWAS SX-GWAS Fixed-effect meta-analysis

OR(95% CI)b OR(95% CI)b OR(95% CI)c OR(95% CI) P value FDRd

rs6676150 1q22 G/C 0.67 (0.52–0.86) 0.79 (0.54–1.17) 0.55 (0.65–0.76) 0.67 (0.59–0.76) 4.29 × 10−10 3.41 × 10−6

rs12217597 10q23.33 T/C 1.05 (0.85–1.29) 1.31 (0.95–1.81) 1.28 (1.45–1.64) 1.33 (1.21–1.47) 1.74 × 10−8 6.92 × 10−2

rs836545 7p22.1 C/T 1.10 (0.91–1.33) 1.37 (1.04–1.81) 1.13 (1.26–1.41) 1.23 (1.12–1.35) 7.64 × 10−6 2.03 × 10−2

rs1892252 6p22.2 C/G 1.69 (1.33–2.16) 1.60 (1.05–2.43) 0.70 (0.89–1.14) 1.41 (1.20–1.66) 2.43 × 10−5 4.83 × 10−2

aReference allele/effect allele. bAdjusted for age, gender, smoking, drinking and top ten principal components (PCs). cAdjusted for age, gender and top ten PCs. dFDR
was corrected by Benjamini-Hochberg procedure.

FIGURE 3 | eQTL analysis shown the associations of four expression-related SNPs (eSNPs) and its related genes in stomach tissues from GTEx. The small gray dot
represents the individual log2 gene expression value. (A) eQTL analysis (rs6676150, risk allele C) for the expression of THBS3 (P = 2.10 × 10−12); (B) eQTL analysis
(rs12217597, risk allele C) for the expression of NOC3L (P = 6.20 × 10−9); (C) eQTL analysis (rs836545, risk allele T) for the expression of DAGLB
(P = 3.70 × 10−18); and (D) eQTL analysis (rs1892252, risk allele G) for the expression of BTN3A2 (P = 3.20 × 10−5).
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TABLE 2 | Heritability estimated from variants associated with GC risk.

Modela h2(SE) observed scale h2(SE) liability scale

Prevalence Prevalence Prevalence

(32.43/100,000) (42.43/100,000) (52.43/100,000)

SNPs identified by previous GWAS (n = 19)a 3.50% 1.14% 1.19% 1.23%

The identified eSNPs (n = 4)b 1.80% 0.58% 0.60% 0.62%

The identified eSNPs in unknown loci (n = 2)c 0.49% 0.16% 0.16% 0.17%

Combination (n = 21)d 3.96% 1.30% 1.35% 1.39%

aVariants reported by previous GWAS studies. bSignificant eSNPs identified by the present study. cSignificant novel eSNPs identified by the present study. dConsist of 19
GWAS reported SNPs and 2 novel identified eSNPs by present study.

TABLE 3 | Significant GC-associated protein-coding genes predicted by sequence kernel association combined test (SKAT-C).

Region Gene eSNP testeda PNJ−GWAS PBJ−GWAS PSX−GWAS Pcombined FDRb

Known region

1q22 THBS3 79 4.98 × 10−2 2.75 × 10−1 7.89 × 10−6 2.65 × 10−8 3.00 × 10−5

1q22 GBA 14 2.56 × 10−2 7.14 × 10−2 8.56 × 10−4 1.29 × 10−6 1.11 × 10−3

Unknown region

3p13 GPR27 51 4.97 × 10−8 9.99 × 10−1 6.03 × 10−3 1.59 × 10−5 9.30 × 10−3

12q23.1 AMDHD1 75 1.17 × 10−6 2.83 × 10−3 1.54 × 10−1 2.65 × 10−5 1.36 × 10−2

8q22.2 FBXO43 28 3.81 × 10−1 5.00 × 10−3 1.61 × 10−3 1.26 × 10−4 4.97 × 10−2

aNumber of eSNPs mapped to each gene. bFalse discovery rate in the combined dataset.

TABLE 4 | Top GC-related protein-coding genes predicted by Sherlock integrative analysis.

Region Gene LBFa Pb Supporting SNPc PGWAS
d PeQTL

e

Known region

1q22 THBS3 7.31 2.45 × 10−5 rs2049805 2.82 × 10−8 1.85 × 10−9

10q23.33 NOC3L 7.18 2.45 × 10−5 rs12220125 2.09 × 10−9 2.79 × 10−9

1q22 GBA 6.87 3.43 × 10−5 rs12034326 1.38 × 10−5 2.90 × 10−6

Unknown region

8q22.2 FBXO43 5.79 9.31 × 10−5 rs2453641 9.39 × 10−5 3.45 × 10−6

7p22.1 DAGLB 5.60 1.32 × 10−4 rs4724806 1.08 × 10−5 3.44 × 10−18

19p13.11 HAPLN4 4.18 7.99 × 10−4 rs2905421 4.48 × 10−5 4.62 × 10−8

19q13.43 ZNF329 4.17 8.08 × 10−4 rs157375 3.34 × 10−4 4.53 × 10−6

aLBF (logarithm of Bayes factor) is to assess whether a gene is associated with GC through integrating the GWAS signal and eQTL. The larger LBF score represents the
higher probability that the gene is associated with GC. For example, a LBF of 7.31 means that a gene is more likely [1495 times, (exp(7.31) = 1495] to be associated
with GC than no association. bP-value from Sherlock integrative analysis. ceSNP with the highest LBF. dP-value from expression quantitative trait analysis. eP-value from
meta-analysis of three GC GWAS datasets.

related to metabolism and transcription. Details are shown in
Supplementary Table S6.

Sherlock Integrative Analysis Prioritizes
Seven Risk Protein-Coding Genes
We integrated genetic associations from the meta-analysis of
three GC GWAS (a total of 307,676 eSNPs with no heterogeneity)
with stomach eQTL from the GTEx database. Sherlock
integrative analysis identified seven top GC susceptibility genes
whose expression might confer GC risk (P < 1.0 × 10−3;
Table 4). Compared with the abovementioned results, this new
approach validated five genes consisting of three known genes
(THBS3, NOC3L, and GBA) and two novel genes (FBXO43
and DAGLB).

Differential Expression Analysis and
GSEA
We compared the expression level of DAGLB and FBXO43 in
32 paired tissue samples of patients with GC. Both mRNA
levels of the two genes were remarkably unregulated in tumors
than in their adjacent normal tissues (P = 5.59 × 10−7

and P = 3.90 × 10−6, respectively; Supplementary Figures
S3A,B). The Kaplan-Meier plotter online tool revealed that high
expression level of DAGLB or FBXO43 was associated with an
unfavorable prognosis in patients with GC (DAGLB, HR = 1.77,
95%CI: 1.43–2.20, and P = 1.30 × 10−7; FBXO43, HR = 1.39,
95%CI: 1.09–1.78, and P = 7.60 × 10−3; Supplementary
Figures S3C,D). To identify the potential function of these
two genes in GC tumorigenesis, we conducted GSEA on the
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correlation coefficients from co-expression analysis with 23,424
genes in 237 normal stomach tissues. We observed that co-
expression genes with DAGLB or FBXO43 were significantly
enriched in several classical cancer-related pathways, including
MAPK, WNT, JAK-STAT, and P53 signaling (all FDR < 0.05;
Supplementary Tables S7, S8).

DISCUSSION

In the current study, we conducted a genome-wide scan with
2,631 cases and 4,373 controls to systematically explore the
associations of 314,203 cis-eSNPs with GC risk, and then
we incorporated the association signals with eQTL data to
identify more risk genes for GC. Hitherto, this is the most
extensive overview of the role of eQTL related variants in GC
susceptibility. Of interest, we discovered two independent novel
eSNPs associated with GC risk, which together captured nearly
12.37% of the phenotypic variance explained by all identified
genetic loci. Synthesizing the results of single SNP association
and gene-based analyses, we identified DAGLB and FBXO43
as novel susceptibility genes for GC. Differential expression
analysis and GSEA also highlighted the tumorigenicity of DAGLB
and FBXO43.

At the individual eSNP level, we discovered two novel risk
loci (rs836545 at 7p22.1 and rs1892252 at 6p22.2). The risk
T allele of rs836545 increased the expression level of DAGLB
in stomach tissues. As supporting evidence, it was shown that
DAGLB was significantly elevated in GC tissues than in adjacent
normal tissues. Moreover, Sherlock integrative analysis also
confirmed that DAGLB was a promising susceptibility gene
for GC. DAGLB, which encodes diacylglycerol lipase beta, has
been widely studied in lipid mechanism. In DAGLB knockout
mice, DAGLβ inhibition can reduce 2-arachidonoylglycerol and
arachidonic acid and eicosanoids in macrophages (Hsu et al.,
2012). A recent GWAS reported a novel variant with HDL-C
levels by modifying expression of DAGLB (Zhou et al., 2018).
To the best of our knowledge, metabolism of lipids, especially
arachidonic acid, has been proved to be an important regulator
in the process of inflammation and cancer (Walduck et al.,
2009). Using In silico analysis, we identified that rs3828944
(in perfect LD with rs836545, r2 = 0.97) located in the
promoter region of DAGLB was mapped with the center of
DHS peaks in 125 cell types and within regions harboring
histone marks (H3K4me1, H3K4me3, and H3K27ac) in stomach
tissues or mucosae. These convergent lines of evidence implied
that the risk T allele of rs3828944 at 7p22.1 might confer
GC risk though enhancing the expression of DAGLB. For
rs1892252 at 6p22.2, the risk allele rs1892252-G showed increased
expression of BTN3A2, which was greatly overexpressed in GC
tissues. A recent GWAS have reported that rs1892252-C was
a risk allele for schizophrenia (OR = 1.12, 95%CI: 1.09–1.15,
P = 7.0 × 10−13; Ikeda et al., 2019). Intriguingly, our group
has previously verified that the rs1679709 at 6p22.1 remotely
regulated BTN3A2 expression by modulating its enhancer activity
and deletion of BTN3A2 inhibited proliferation, migration,
and invasion of GC cells (Zhu et al., 2017). BTN3A2, an

isoform of BTN3 family, participates in regulating immune
signal in T and natural killer cells (Messal et al., 2011).
Besides, BTN3A2 also plays an important role in activating
the phosphoantigen-mediated Vγ9Vδ2 T cells toward the
development of pancreatic ductal adenocarcinoma (PDAC),
implicating it as a promising immunotherapeutic target for the
treatment of PDAC (Benyamine et al., 2017).

As mentioned above, only one candidate susceptibility
gene was found based on single eSNP analysis. Therefore,
collections of multiple genetic variants, rather than individual
highly significantly associated eSNPs, may account for a
putative role of the novel gene in predisposition to GC.
From the results of the SKAT-C and Sherlock integrative
analyses, we identified another new risk gene, FBXO43, also
known as EMI2, which is a member of F-box protein
family that influences the state of meiosis via translational
regulation (Tan et al., 2018). A previous study has shown
that the mRNA level of FBXO43 is dramatically upregulated
in hepatocellular carcinoma tissues than in normal tissues,
and elevated FBXO43 expression indicates a poor prognosis
in patients with hepatocellular carcinoma (Tang et al., 2008).
Consistent with the observation, FBXO43 was overexpressed
in GC tissues and associated with poor prognosis in patients
with GC. Co-expression genes with FBXO43 in normal stomach
tissue were predominantly involved in several important signal
transduction pathways, including MAPK, TGF-beta, WNT,
and P53 signaling.

In conclusion, our findings highlighted the importance of
eSNPs in dissecting genetic basis of GC. We discovered two
novel eSNPs, rs836545 at 7p22.1, and rs1892252 at 6p22.2,
which were significantly associated with susceptibility to GC.
Furthermore, we integrated eQTL data with GWAS association
signal to identify FBXO43 and DAGLB as new GC risk genes.
These susceptible eSNPs, together with candidate genes, will
provide new insight into the genetic and biological basis for the
mechanism of GC development.
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Circular RNA (circRNA) is a closed long non-coding RNA (lncRNA) formed by
covalently closed loops through back-splicing. Emerging evidence indicates that
circRNA can influence cellular physiology through various molecular mechanisms.
Thus, accurate circRNA identification and prediction of its regulatory information
are critical for understanding its biogenesis. Although several computational tools
based on machine learning have been proposed for circRNA identification, the
prediction accuracy remains to be improved. Here, first we present circLGB, a
machine learning-based framework to discriminate circRNA from other lncRNAs.
circLGB integrates commonly used sequence-derived features and three new features
containing adenosine to inosine (A-to-I) deamination, A-to-I density and the internal
ribosome entry site. circLGB categorizes circRNAs by utilizing a LightGBM classifier
with feature selection. Second, we introduce circMRT, an ensemble machine learning
framework to systematically predict the regulatory information for circRNA, including
their interactions with microRNA, the RNA binding protein, and transcriptional regulation.
Feature sets including sequence-based features, graph features, genome context, and
regulatory information features were modeled in circMRT. Experiments on public and
our constructed datasets show that the proposed algorithms outperform the available
state-of-the-art methods. circLGB is available at http://www.circlgb.com. Source codes
are available at https://github.com/Peppags/circLGB-circMRT.

Keywords: circular RNA, long non-coding RNA, microRNA, RNA binding protein, transcriptional regulation,
machine learning

INTRODUCTION

Circular RNA (circRNA) constitutes a unique class of RNAs that is characterized by the presence of
a covalently closed cyclic structure without a poly adenylated tail (Lasda and Parker, 2014). During
pre-mRNA splicing, the 5′ and 3′ termini of exons can be covalently ligated to form circRNAs
(Barrett et al., 2015; Wang and Wang, 2015). Owing to their circular structure and lack of free ends
(Awasthi et al., 2018), circRNAs have greater stability and are more conserved across species than
linear RNAs (Jeck et al., 2013). Although the functions of most circRNAs are still elusive, they have
been shown to act as sponges to microRNAs (miRNAs; Hansen et al., 2013; Panda, 2018) and may
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potentially sponge RNA binding proteins (RBPs; Memczak
et al., 2013). In addition, circRNAs can also be involved in
transcriptional regulation (TR) and alternative splicing (Zhang
et al., 2013; Conn et al., 2017). circRNAs may even have
translation potential (Li et al., 2018). circRNAs play crucial
roles in gene regulation and the development of many complex
diseases. Moreover, circRNAs have a promising potential as
biomarkers of diseases due to their stability and relation to
diseases (Zhang et al., 2018).

Circular RNAs have some different attributes from other
long non-coding RNAs (lncRNAs), such as back-splicing (Xiong
et al., 2015). Unlike lncRNA, which can be effectively recognized
from other little non-coding RNAs (e.g., miRNA, siRNA, and
snoRNA) according to the transcript size, it is scarcely possible
to distinguish circRNA from different lncRNAs based on simple
features (Xiong et al., 2015). Moreover, it is hard to classify
circRNAs from other lncRNAs due to the low expression levels
of almost all lncRNAs. To date, several machine learning-
based methods have been developed for circRNA detection.
For example, PredcircRNA (Pan and Xiong, 2015) identifies
circRNAs by utilizing a multiple kernel learning-based (MKL)
framework. This tool incorporates diverse sequence features
including basic sequence features, graph features, conservation
scores as well as features of transposable element (ALU), tandem
repeats, ORF length, ORF proportion, and single nucleotide
polymorphism (SNP) density (ATOS) to train and test the model.
Hierarchical extreme learning machine (H-ELM; Chen et al.,
2018) extracts identical features and discriminates circRNAs
by performing a H-ELM algorithm with feature selection.
circDeep (Chaabane et al., 2019) distinguishes circRNAs by
integrating a reverse complement matching descriptor, an
asymmetric convolutional neural network (CNN) combined with
bidirectional long short-term memory sequence descriptor and a
conservation descriptor for extracting high level abstract features
of a given RNA sequence. When evaluating the performance
on the published dataset proposed by Pan and Xiong (2015),
circDeep achieves an improvement of over 12% in terms of
accuracy (ACC) compared with PredcircRNA and H-ELM (with
values of 0.778 vs. 0.789). However, there is still room for
improving the performance. Thus, novel computational methods
and comprehensive exploration of informative sequence features
affecting back-splicing are required.

Technological obstacles for understanding the regulation and
functions of circRNAs occur at various levels. Take suppression
strategy as an example, it usually uses loss and gain functions
to annotate gene function [i.e., RNAi (Boutros and Ahringer,
2008) and CRISPR/Cas9-mediated genome editing (Shalem et al.,
2015)]. However, this technique does not have adequate ability
to achieve specificity or high efficacy in targeting circRNAs.
Therefore, decoding the regulatory interactions of circRNAs
can greatly expand the understanding of their functions.
Thanks to the development of high-throughput sequencing,
alongside the advance of bioinformatics technology, a great
number of circRNAs loci have been discovered in human
genomes. Several databases and resources are available for
describing the circRNAs regulatory interactions, which can
facilitate research on miRNA, RBP, and TR interacting with

specific circRNAs. For instance, Circ2Traits (Ghosal et al., 2013)
predicts interactions between the disease-associated miRNAs
and circRNAs. CircNet (Liu et al., 2016) provides circRNA–
miRNA–gene regulatory networks and tissue-specific circRNA
expression profiles. CircInteractome (Dudekula et al., 2016)
explores circRNAs interacting with miRNAs. Besides, it identifies
RBPs binding to circRNA junctions. CIRCpedia v2 (Dong et al.,
2018) provides a comprehensive circRNA annotation from over
180 RNA-seq datasets across six different species. ENCORI (Li
et al., 2014) identifies the miRNA–ceRNA, miRNA–ncRNA,
and protein–RNA interaction networks. TRCirc (Tang et al.,
2018) provides a resource for efficient retrieval, browsing and
visualization of TR information of circRNAs. The availability of
these databases speeds up the exploration of circRNAs biogenesis
and the function analysis.

Machine learning has made impressive advances in the area
of bioinformatics such as molecular interactions prediction.
The machine learning-based predictors require considerable
domain expertise to design the feature extractor. For example,
Muppirala et al. (2011) proposed support vector machine (SVM)
and random forest (RF)-based methods to predict the RNA–
RBP interactions using sequence composition. Previous studies
suggested that incorporating informative features can boost the
predictive power (Ahmed et al., 2009, 2013; Wang L. et al., 2019).
For instance, Ahmed et al. (2009) proposed SVM-based methods
to predict guide strand of miRNAs and human Dicer cleavage
sites (Ahmed et al., 2013). In their work, they found adding
secondary structure information contributes to the improvement
of ACC compared with considering sequence only. Owing to
the non-coding nature of circRNA, the relationship between
structure and function in it is stronger than in linear RNAs.
There is increasing evidence that RNA secondary structure
promotes exon skipping RNA circularization (Pervouchine,
2019) and alternative splicing (Buratti and Baralle, 2004). Besides,
a quantitative characterization of the relationship between
primary sequence and structure of circRNAs contributes to
our understanding of how their function emerges. Inspired by
this, incorporating secondary structure features may achieve
better performance than considering primary sequence for
circRNAs regulatory interactions prediction. Recently, machine
learning-based identification of circRNAs coordinated regulatory
interaction has been gradually applied in the bioinformatics
field. For example, CircRNAs Interact with Proteins (CRIP)
integrates CNN and a recurrent neural network to predict
circRNA–RBP binding sites (Zhang et al., 2019). Wang Z.
et al. (2019) proposed a multiple CNNs-based method to
identify cancer-specific circRNA–RBP binding sites considering
only nucleotide sequences. Ju et al. (2019) applied a hybrid
LSTM-CNN-CRF (a long short-term memory network, CNN
network and a conditional random field) model to identify
RBP-binding sites on circRNAs (Ju et al., 2019). Lei and Fang
(2019) proposed GBDTCDA, a gradient boosting decision tree
(GBDT) regression model with multiple biological data to predict
circRNA-disease associations (Lei and Fang, 2019). To the best
of our knowledge, no machine learning-based tool has been
proposed to systematically predict the regulatory information of
circRNAs, including their interactions with miRNA, RBP, and TR.
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In this study, we introduce two machine learning-based
methods, circLGB and circMRT to combine both sequence and
structure information, to identify circRNAs from other lncRNAs
and to predict their regulatory interactions, respectively. circLGB
extracts the commonly used features and three new features
including adenosine to inosine (A-to-I) deamination, A-to-I
density as well as internal ribosome entry site (IRES), and in
turn, distinguishes circRNA by utilizing a LightGBM classifier.
We propose a two-step feature optimization strategy to select
the most discriminative features. circLGB achieves superior
performance on the public and our datasets compared to
the state-of-the-art methods. circMRT integrates sequence-
based features, graph features, genome context and regulatory
information for predicting circRNA interacting with miRNA,
RBP, and TR. We first propose three classifiers to predict
circRNA–miRNA, circRNA–RBP and circRNA–TR interactions,
respectively. Each classifier extracts the abovementioned
sequence features and predicts the regulatory interaction by
applying an ensemble machine learning algorithm with optimal
features. Then, the outputs of all three classifiers are fused by a
union operator to predict the coordinated regulatory interaction
of the candidate circRNA. As far as we know, circMRT is
currently a comprehensive computational platform that predicts
the regulatory information of circRNA using machine learning.

MATERIALS AND METHODS

Data Collection and Pre-processing
circlncRNA Datasets
We downloaded the human circRNAs from the circBase
(Glazar et al., 2014) database. Taking circRNA isoforms into
consideration and removing the transcripts which were shorter
than 200 nt, we obtained 79,987 positive samples. Besides,
we also downloaded the annotated human lncRNAs from
LNCipedia (Volders et al., 2013). This database provides basic
transcript information, gene structure and several statistics
(e.g., miRNA binding sites and secondary structure) for each
transcript. After excluding the overlapped circRNAs in circBase
and deepBase (Zheng et al., 2016), we obtained 127,432 lncRNAs
transcripts. We randomly selected 21,882 circRNAs and the same
number of lncRNAs to construct our circlncRNA dataset. The
determination of the sample size is given in Supplementary
Material (Supplementary Figure S1).

CIRCdeep Dataset
We used a dataset available in Chaabane et al. (2019) (hereafter
referred to as CIRCdeep). This dataset contains 32,914 human
circRNAs and 19,683 lncRNAs. circRNAs were downloaded
from the circRNADb (Chen et al., 2016) database. Transcripts
shorter than 200 nt were removed. Negative data was collected
from the GENCODE (Harrow et al., 2012) database. The
annotated lncRNAs in GENCODE have three validation levels
for RNA annotation, namely validation, manual annotation, and
automated annotation. Only validated or manually annotated
transcripts were chosen. CIRCdeep dataset can be downloaded
at https://github.com/UofLBioinformatics/circDeep.

circMI, circRBP, circTR Datasets and the
Independent Test Set
circRNA–miRNA and circRNA–RBP interactions were
downloaded from the ENCORI database1. Additionally,
circRNA–TR interactions were extracted from the TRCirc
database2. After removing the duplicates and getting the
full-length sequence and basic sequence information from
circBase database, we built datasets circMI, circRBP, and circTR
for training the classifiers of circRNA–miRNA, –RBP and –
TR, respectively. To be specific, we randomly selected 1046
full-length circRNAs interacting with miRNAs to construct the
positive data of circMI dataset. We collected 1036 and 2172 entire
circRNAs which have interactions with RBPs and TRs, being
used as positive data of circRBP and circTR datasets, respectively.
Note that, there is no overlap among these three positive samples.
We randomly selected 1046 circRNAs interacting with TRs as
negative data for circMI dataset. Analogously, 1036 circRNAs
interacting with TRs were derived to be used as negative
samples for circRBP dataset. The 2172 circRNAs interacting with
miRNAs or RBPs were chosen to construct the negative data of
circTR dataset. In addition, we used 140 samples including 29
circRNA–miRNA interactions, 50 circRNA–RBP interactions,
40 circRNA–TR interactions, and 21 miRNA–circRNA-RBP
interactions as an independent test set. This test set does not
overlap the former datasets. More details can be found in Table 1.

Feature Extraction
Feature extraction has great influence on the predictive
performance. Note that, features related to RNA circularization
and circRNA regulatory information may be different. So, we
separately extracted the features for circLGB and circMRT
models. 188 sequence-derived features including 70 sequence
composition features, 101 graph features, 12 conservation scores,
and 5 ATOS features (Pan and Xiong, 2015; Chen et al., 2018)
were used for circRNAs detection. Based on these features,
we added three features including A-to-I, A-to-I density and
IRES to train our circLGB. We extracted a 182-dimensional
vector to train our circMRT for circRNAs regulatory interactions

1http://starbase.sysu.edu.cn/
2http://licpathway.net/TRCirc/view/index

TABLE 1 | Summary of circMI, circRBP, circTR datasets and the
independent test set.

Model Dataset Positive data Negative data

circRNA-miRNA circMI 1046 circRNAs
interacting with
miRNAs

1046 circRNAs
interacting with
TRs

circRNA-RBP circRBP 1036 circRNAs
interacting with
RBPs

1036 circRNAs
interacting with
TRs

circRNA-TR circTR 2172 circRNAs
interacting with
TRs

2172 circRNAs
interacting with
miRNAs or
RBPs

circMRT Independent test set – –
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prediction. These features were divided into four groups:
sequence-based features, graph features, genome context and
regulatory information. The value of each feature was normalized
to the interval from 0 to 1. More details were summarized in
Supplementary Tables S1, S2.

Features of circLGB for Classifying circRNA From
Other lncRNAs
Group 1: Basic sequence features
The basic sequence features were extracted using the same
processing scheme described in Pan and Xiong (2015). These
features contain a wide range of possible explanatory attributes
from 64 trinucleotide frequencies and other sequence component
composition features, e.g., sequence length, GC content,
frequencies of AG, GT, AGGT, and GTAG. GT/AG signal has an
impact on forming the circRNAs, such as back-splicing and exon-
junction (Kitamura-Abe et al., 2004). A detailed description can
be referred to Pan and Xiong (2015).

Group 2: Graph feature
RNA structure plays an important role in gene splicing,
which has an influence on back-splicing (Ding et al., 2014).
Secondary structures play important role in identifying of the
hypothetical interacting sites of circRNAs (Cuesta and Manrubia,
2017). In RNA graph, the nodes are nucleotides while edges
represent backbone connection or bond relations between the
nucleotides (Maticzka et al., 2014). RNA graph features reflect
the relationships between nucleotides and represent the relations
of the abstract structure annotations predicted from RNA
shapes (Steffen et al., 2006). GraphProt is a machine learning-
based framework considering both sequence and full secondary
structure information that can find RBP sequence and structure-
binding preferences from the high-throughput data (Maticzka
et al., 2014). In this work, we applied GraphProt to calculate RNA
secondary structures. In addition, it was adopted in previous
studies (Pan and Xiong, 2015; Chen et al., 2018; Pan et al., 2018;
Ilik et al., 2020). We initially extracted a 32,768-dimensional RNA
graph feature vector for the candidate transcript using GraphProt
1.0.1. To improve the feature representation ability, Pan et al.
employed RF to rank the extracted features by their importance
scores and chose the top 101 features (Pan and Xiong, 2015).
For fair comparison, we used these 101 features for analysis.
The RF importance ranking list of the selected features can be
downloaded from https://github.com/xypan1232/PredcircRNA/
blob/master/features/all_fea_ranking.

Group 3: Conservation scores
Previous studies showed that circRNAs are significantly enriched
with conserved nucleotides (Memczak et al., 2013). On the
contrary, lncRNAs have a low level of sequence conservation
compared with other functional transcripts (Marques and
Ponting, 2009). Thus, conservation scores may help to
discriminate circRNAs from lncRNAs. These scores were
extracted by downloading the placent_phylop46way3 from the
UCSC database (Karolchik et al., 2003). We calculated the mean,

3http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/
placentalMammals/

maximum, and variance of conservation scores from per base
phyloP conservation score for each transcript (Lowe et al., 2011).
Furthermore, the frequencies of bases with conservation scores
greater than 0.3, 0.6, 0.9 and smaller than 0.9 were also calculated.

Group 4: ALU and tandem repeat, ORF, SNP, IRES, A-to-I,
and A-to-I density
ALU repeats contribute to RNA circularization by making the
splice sites recognize each other (Liang and Wilusz, 2014).
We downloaded the annotated ALU repeat sites from UCSC
and calculated the number of ALU repeats for each transcript.
Tandem duplications within a gene have a great impact on back-
splicing (Ulitsky et al., 2011). Tandem repeats were detected by
employing Tandem Repeat Finder (Benson, 1999). We computed
the frequency of tandem repeats. The open reading frame (ORF)
length information was extracted by using txCdsPredict from
UCSC. The longest ORF and ORF propensity (ORF prop)
defined by the length of an ORF divided by the total length of
the transcript were calculated. Single nucleotide polymorphism
data with coordinates in the genome was downloaded from
the 1000 Genomes Project (Kuehn, 2008). Single nucleotide
polymorphism density was computed for each transcript.
A previous study suggested that A-to-I editing events occur
frequently at intronic positions that were proximal to the splice
sites of circularized exons (Ivanov et al., 2015). The annotated
data of A-to-I was downloaded from the RADAR (Ramaswami
and Li, 2014) dataset. A-to-I density was defined by the number
of A-to-I divided by the sequence length for each transcript.
Another work demonstrated that IRES provides the information
of peptides or proteins from circRNA (Abe et al., 2015), implying
that this feature has discriminative power for circRNA detection.
IRES information of the given RNA sequence was extracted by
IRESfinder (Zhao et al., 2018).

Features of circMRT for Predicting circRNA
Regulatory Interactions
Group 1: Sequence-based features
The sequence features consist of 70 sequence composition
features and one repeat feature. Note that these features were
generated in the same way in section “Features of circLGB for
Classifying circRNA From Other lncRNAs.”

Group 2: Graph features
The 101-dimensional graph features were generated identically to
the way described in section “Features of circLGB for Classifying
circRNA From Other lncRNAs.”

Group 3: Genome context features
We calculated the mean and standard deviation of conservation
scores for each transcript. ALU, SNP density and A-to-I features
were generated identically to the way described in section
“Features of circLGB for Classifying circRNA From Other
lncRNAs.” A previous study showed that circRNA sequences are
enriched for back-splice junctions (Jeck et al., 2013). Moreover,
CIRI (Gao et al., 2015) and find_circ (Memczak et al., 2013)
characterized circRNA by calculating the circular junctions. We
derived the one-dimensional back-splice junction feature from
the TRCirc database. It is a general phenomenon that circRNAs
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FIGURE 1 | Overview of the proposed circLGB for circRNA identification that involved the following steps: (i) construction of circlncRNA dataset; (ii) extraction of
sequence-derived features including sequence composition, graph features, conservation scores and ATOSAAI for training and testing the circLGB model; (iii)
ranking the features using mRMR algorithm according their importance and generation of the optimal feature subset using SFS; and (iv) construction of the final
prediction by applying LightGBM classifier that separates the input into circRNAs and lncRNAs. ALU, transposable element; ATOSAAI, ATOS, A-to-I, A-to-I density
and IRES; ORF, open reading frame; SNP, single nucleotide polymorphism; A-to-I, adenosine to inosine; mRMR, minimal redundancy and maximal relevance; SFS,
sequential forward search. These abbreviations also apply to Figures 2, 3.

compete with other RNAs for binding miRNAs. For example,
ciRS-7 contains over 70 selective conserved miRNA target sites
(Hansen et al., 2013). We integrated the one-dimensional miRNA
binding sites as one feature.

Group 4: Regulatory information features
Transcriptional regulation involves in a complex and meticulous
pattern of activities that incorporates with transcription factors
(TFs; Rowell et al., 2014). A recent study indicated that TFs can
selectively promote the expression of circular Cul2 rather than
the host gene (Meng et al., 2018). circRNAs are regulated by TFs
and other correlative information, such as H3K27ac signals. Yang
et al. found N6-methyladenosine boosts the efficient initiation of
protein translation from circRNAs in human cells (Yang et al.,
2017). We obtained the one-dimensional of TF feature vector,
methylation feature vector, H3K27ac feature vector from TRCirc
for each sequence, thereby leading to a 3-dimensional vector.

Model Training and Optimization
LightGBM
Gradient boosting decision tree (Friedman, 2001) is an iterative
decision tree algorithm with various effective implementations
such as XGBoost (Chen and Guestrin, 2016). However, the
efficiency and scalability are still ungratified when feature
dimension is high and data size is large (Ke et al., 2017).
Recently, LightGBM (Ke et al., 2017) has been proposed

to address this issue, which can effectively solve the time-
consuming problem of conventional GBDT while retaining high
classification ACC. LightGBM possesses two novel techniques:
gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB). Gradient-based one-side sampling excludes a
significant proportion of data instances with small gradients and
uses the remaining to estimate the information gain. Hence,
this technique can effectively reduce the number of data at the
time of calculation and further improve the efficiency. Exclusive
feature bundling bundles mutually exclusive features to reduce
the number of features. Features with larger gradients contribute
more to the information gain and are thus more important for
classification. Compared with GBDT, LightGBM speeds up the
training process significantly because the number of bundled
features will be much smaller than those of the original features.
The speed of model training in LightGBM is 20 times faster than
GBDT under the premise of achieving almost the same ACC (Ke
et al., 2017). We employed the LightGBM algorithm using the
lightgbm package in Python4.

Support Vector Machine
Support vector machine is one of the most widely used machine
learning algorithms for classification problems (Noble, 2006).
The main idea of SVM is based on kernel functions that map

4https://github.com/Microsoft/LightGBM
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FIGURE 2 | The overall framework of circMRT. (A) An outline of the overall flowchart of circMRT. The development of circMRT involved four major steps: (i) data
collection and preprocessing, (ii) feature extraction, (iii) ensemble model construction, and (iv) model prediction and performance assessment. (B) An illustration of
the detailed procedures for constructing the circRNA-miRNA classifier. (i) Four groups of features including sequence composition, graph features, genome context
and regulatory information are extracted for each candidate circRNA. (ii) The optimal feature set is selected by applying the proposed two-step feature selection
strategy. (iii) Based on the optimal feature set, we train the prediction models using seven machine learning-based algorithms. (iv) Three individual model’s outputs
are integrated by using majority voting algorithm.

the input data into a high dimensional space. Support vector
machine aims to search the hyperplane to maximize the margin
between two support vectors. In this study, SVM with the “linear”
kernel was implemented using the Scikit-learn library in Python.
We optimized the parameter cost C from the choice of (1.0, 1.1,
1.2, 1.3, 1.4) by grid search. After optimization, the parameter of
C was set as 1.0.

Random Forest
Random forest (Liaw and Wiener, 2002) is an ensemble learning
method for regression and classification which involves multiple
decision trees. Random forest assumes that there are P samples
with Q features in the original training set, and it selects P samples
from the training data by bootstrapping and randomly selects q
features (q� Q) to train a decision tree. By repeating the step
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FIGURE 3 | Performance of circLGB for circRNA identification on the circlncRNA dataset by various combinations of sequence-derived features including IRES,
A-to-I and A-to-I density. Panel (A) shows comparison of ROC curves and panel (B) shows comparison of ACC, MCC, SE, SP, F1,3] and PRE.

FIGURE 4 | (A) ROC curves and (B) histograms showing the performance of circLGB by extracting 188 and 191 sequence-derived features on the circlncRNA
dataset under 10-time 5-fold cross-validation. The performance comparison in terms of ACC, MCC, SE, SP, F1, and PRE.

above, numerous decision trees are trained, and their outputs are
integrated in the ensemble model to make a final prediction. We
trained the RF with 20 decision trees using Scikit-learn.

Stochastic Gradient Descent
Stochastic gradient descent (SGD; Friedman, 2001) is an effective
method for solving large scale supervised machine learning
problems. It generally confers a significant decrease in training

time without sacrificing ACC. In particular, SGD with early
stopping at a fixed number of interactions approximately
halves the training time. In this work, SGD was applied
using Scikit-learn.

Gaussian Naive Bayes
A Naive Bayes (NB) classifier calculates the probability of
a given example belonging to a certain class. When the
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FIGURE 5 | Feature importance analyses. (A) SFS curve of MCC with increasing number of ranked features. The features are selected by mRMR feature importance
list in descending order. X-axis represents the number of selected features. The maximum MCC (0.946) obtained by integrating the top 54 features on the curve is
marked by a red pentagon. This notation also applies to Figure 7A. (B) ROC curves of circLGB for discriminating circRNAs and lncRNAs by using the top 1 to top 5,
top 54 and total 191 features.

FIGURE 6 | (A) ROC curves and (B) histograms of evaluation metrics show the superior performance of circLGB over GBDT, XGBoost, RF, SVM, SGD, and GNB for
circRNA identification on the circlncRNA dataset under 10-time 5-fold cross-validation. Evaluation metrics including ACC, MCC, SE, SP, F1, and PRE. GBDT,
gradient boosting decision tree; RF, random forest; SVM, support vector machine; SGD, stochastic gradient descent; GNB, Gaussian naive Bayes.

likelihood of the features is assumed to be Gaussian, the
NB classifier is called Gaussian naive Bayes (GNB; John and
Langley, 2013). Gaussian naive Bayes supposes that features are
independent from each other. Gaussian naive Bayes is simpler

and faster than other sophisticated methods. Thus, it is usually
used for prediction problems in bioinformatics (Murakami
and Mizuguchi, 2010). Here, GNB was also implemented
using Scikit-learn.
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TABLE 2 | Performance evaluation of our circLGB and other two learning-based
algorithms on the CIRCdeep dataset.

Model ACC MCC F1 References

circLGB 0.998 0.995 0.998 –

circDeep 0.942 0.883 0.940 (Chaabane et al., 2019)

PredcircRNA 0.806 0.611 0.811 (Pan and Xiong, 2015)

The best performance across different evaluation metrics is highlighted in bold for
clarification. These highlights also apply to Tables 3, 4.

TABLE 3 | Performance of three ensemble machine learning-based classifiers for
circRNA regulatory interactions prediction based on different groups of
sequence-derived features.

Features ROC SE SP ACC MCC F1 PRE

(A) circRNA-miRNA classifier

Sequence-
based

0.995 1.000 0.991 0.995 0.990 0.995 0.990

Graph
features

0.958 0.980 0.937 0.957 0.915 0.956 0.933

Genome
context

0.884 0.876 0.892 0.883 0.766 0.889 0.904

Regulation
information

0.952 0.922 0.981 0.952 0.906 0.950 0.979

(B) circRNA-RBP classifier

Sequence-
based

0.991 0.986 0.995 0.990 0.981 0.991 0.995

Graph
features

0.969 0.954 0.985 0.969 0.938 0.970 0.986

Genome
context

0.895 0.833 0.956 0.894 0.794 0.888 0.951

Regulation
information

0.955 0.925 0.985 0.954 0.910 0.954 0.985

(C) circRNA-TR classifier

Sequence-
based

0.993 0.989 0.998 0.993 0.986 0.993 0.998

Graph
features

0.961 0.935 0.987 0.962 0.925 0.959 0.985

Genome
context

0.891 0.954 0.829 0.891 0.788 0.896 0.846

Regulation
information

0.971 0.978 0.965 0.971 0.943 0.970 0.962

circLGB
We proposed a machine-learning framework called circLGB to
classify circRNA from lncRNAs. As shown in Figure 1, the
major procedures of circLGB can be summarized as below:
(i) The collected human circRNAs and lncRNAs transcripts
are combined to construct the circlncRNA dataset. (ii) Four
groups of sequence-derived features are extracted from various
toolkits and databases. (iii) minimum redundancy-maximum
relevance (mRMR; Ding and Peng, 2005) feature selection
framework is applied to rank the extracted features according
their importance scores. Then, sequential forward search (SFS)
is utilized to determine the optimal feature subset which yields
the best Matthews correlation coefficient (MCC). Supplementary
Table S3 summarizes the feature importance scores on the
circlncRNA dataset. (iv) The resulting feature vector is fed

into the LightGBM classifier for circRNA identification. Finally,
performance metrics are calculated for model evaluation.

circMRT
We next developed circMRT to predict the regulatory
information for circRNAs, including their interactions with
miRNA, RBP, and TR. Note that, one interaction may exist
simultaneously for a given circRNA. We first developed three
binary classifiers to explore whether the given circRNA has
associations with miRNA, RBP, and TR, respectively. Then, the
outputs of these classifiers were fused to make a final prediction.
The circMRT methodology (Figure 2) consists of four major
steps: (i) Datasets circMI, circRBP and circTR are constructed
to train the circRNA–miRNA, circRNA–RBP and circRNA–TR
classifiers, respectively. Besides, independent test set is generated
to evaluate the generalization of circMRT. (ii) The candidate
circRNA sequence is input for feature encoding by extracting
four types of features. (iii) The extracted features are fed into
the abovementioned classifiers for training and testing. Each
classifier is trained on its own optimal features selected by
applying the proposed feature optimization strategy. (iv) The
independent test set is respectively fed into three well-trained
classifiers for prediction. Finally, the outputs are fused by
a union operator to predict the regulatory interactions for
a given circRNA.

Feature Selection
We utilized a two-step feature selection strategy to improve
the feature representation ability. We first used mRMR to
achieve the ranked feature list according to the importance
scores of the learned features. Features with higher scores
were more predictive. Second, SFS was applied to investigate
the optimal combination of features that can yield the best
performance. We ranked the features in a descending order
from the mRMR features list. Subsequently, incremental feature
selection approach was employed to select the optimal top-k
features. We added the features from the ranked feature list one
by one and trained the proposed model. The feature subset with
the relative higher values of MCC was regarded as the most
discriminative features. It is worth noting that we here used
the MCC since it is a balanced measurement, even if the sizes
of positive and negative samples are imbalanced. Therefore, the
MCC is a better indicator to assess the performance of the models.

Hyperparameters Optimization
cricLGB and circMRT were implemented using Python 2.7. All
experiments were carried out on a desktop computer with Intel
(R) Core (TM) i7-7800X CPU @ 3.50GHz, Ubuntu 16.04.5 LTS
and 16 GB RAM. To ensure the ACC and robustness of the
proposed algorithms, we employed the grid-search parameter
adjustment to achieve the optimal parameters. Specifically, we
used grid-search to tune six parameters including learning rate,
number of leaves, feature fraction, bagging fraction, reg_alpha,
and reg_lambda for each dataset. The Grid search range of each
parameter was as below: learning rate from the choice (0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2), number of leaves
from the choice (20, 25, 30, 35, 40, 45, 50), feature fraction from
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FIGURE 7 | SFS curves of MCC with increasing number of selected features for classifiers of panel (A) circRNA-miRNA, (B) circRNA-RBP, and (C) circRNA-TR,
respectively. The features are selected by their estimated feature importance in descending order. We choose the top 21, top 26, and top 15 features for the above
three classifiers, with MCC values of 0.994, 0.981, and 0.985, respectively.

TABLE 4 | Performance evaluation of three binary classifiers on datasets circMI, circRBP, and circTR, respectively.

Classifier Dataset ROC SE SP ACC MCC F1 PRE

circRNA-miRNA circMI 0.981 0.986 0.976 0.981 0.994 0.981 0.977

circRNA-RBP circRBP 0.990 0.991 0.990 0.990 0.981 0.991 0.991

circRNA-TR circTR 0.992 0.988 0.997 0.992 0.985 0.992 0.997

the choice (0.5, 0.6, 0.7, 0.8, 0.9), bagging fraction from the choice
(0.5, 0.6, 0.7, 0.8, 0.9), reg_alpha from the choice (0.001, 0.01,
0.03, 0.05), and reg_lambda from the choice of (0.001, 0.01, 0.03,
0.05). The proposed methods are binary classification problems,
we used “binary” of “objective” and “auc” of ‘metric’ with 100
times iteration and “stopping patience” of 10.

Considering that the grid-search for all the parameters
requires a large computation cost, we adjusted the above
parameters in batches to maximize the value of AUC under 5-
fold cross-validation. We took the optimal hyperparameters for
the model once the performance does not improve. The tuned
optimal parameters were regarded as the input parameters to
tune the next parameters. We first tuned the parameters of
learning rate and number of leaves. Then, we adjusted the feature
fraction and bagging fraction. Next, we tuned the regularization
parameter including alpha and lambda. The combination of
the optimal parameters for circLGB from the learning rate
of 0.1 were, number of leaves of 60, feature faction of 0.5,
bagging fraction of 0.6, reg_alpha of 0.01 and reg_lambda of
0.001. The determination of the optimal parameters of circRNA–
miRNA, circRNA–RBP and circRNA-TR classifiers were as
follows: learning rate of (0.1, 0.1, 0.1), number of leaves of (20,
40, 35), feature faction of (0.6, 0.6, 0.6), bagging fraction of (0.6,
0.6, 0.5), reg_alpha of (0.01, 0.001, 0.01), and reg_lambda of
(0.03, 0.001, 0.01).

Performance Evaluation
To evaluate the performance of our models and to compare with
existing state-of-the-art methods, sensitivity (SE), specificity (SP),

FIGURE 8 | Histograms showing the performance of circRNA-miRNA,
circRNA-RBP and circRNA-TR classifiers in terms of ROC, SP, SE, ACC, F1,
and PRE on the independent testing dataset.

precision (PRE), F1 score (F1), ACC, and MCC were calculated.
These indicators are widely used to measure the quality of binary
classification defined as follows:

SE =
TP

TP + FN
(1)

Frontiers in Genetics | www.frontiersin.org 10 July 2020 | Volume 11 | Article 65558

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00655 July 24, 2020 Time: 9:5 # 11

Zhang et al. circRNA Prediction via Machine Learning

SP =
TN

TP + FP
(2)

PRE =
TP

TP + FP
(3)

F1 = 2×
SN × PRE
SN + FRE

(4)

ACC =
TP + TN

TP + FP + TN + FN
(5)

MCC =
(TP × TN)− (FN × FP)

√
(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

(6)

where TP, TN, FP, and FN represent the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
Receiver Operating Characteristic (ROC) curves were employed
to visualize the performance between different methods together
with the area under ROC curve (AUC).

RESULTS

circLGB for circRNA Identification
The Effect of Three New Sequence-Derived Features
We first examined whether A-to-I, A-to-I density or IRES could
be used as effective features for circRNA identification. To this
end, we trained circLGB with these features on the circlncRNA
dataset under 10-time 5-fold cross-validation. As shown in
Figure 3, two observations can be made: (i) circLGB trained using
IRES achieved the highest SE value of 0.632. (ii) circLGB trained
with A-to-I achieved more optimal performance than those using
A-to-I density or IRES. These results indicated that no single
feature contains enough useful patterns and characteristics for
classifying circRNAs.

To achieve better performance, the combination of these
three new features was modeled in circLGB. As depicted in
Figure 3, IRES combined with A-to-I outperformed any other
combinations of two features, reaching AUC value of 0.886.
Interestingly, though A-to-I density alone showed relatively poor
performance, it gained great progress by incorporating with A-to-
I or IRES, reaching AUC values of 0.803 and 0.798, respectively.
circLGB achieved an overall AUC of 0.894 using these three
features. So, we added them with commonly used features to
train our model. As expected, circLGB trained using 191 features,
achieved better performance than that on 188 features, reaching
AUC values of 0.999 and 0.977, respectively (Figure 4A). Similar
results on other evaluation metrics can be found in Figure 4B.
Together, the addition of three new features can boost the
prediction ability of circLGB.

Feature Importance Analysis for circLGB
Next, we adopted the proposed optimization strategy to enhance
the feature representation ability. Figure 5A depicts the SFS
curve of MCC of circLGB on the circlncRNA dataset by adding
features one by one from the ranked feature list (Supplementary
Table S3). Apparently, it increased quickly as the features were
integrated. The MCC reached a relatively high value of 0.946

when adding the top 54 features. However, the performance
fluctuated when incorporating more features. This implied that
the improvement of the low-ranked features is not obvious,
and they even lead to a decline of the performance. Moreover,
we compared the performance of circLGB using the top 1
to top 5, top 54 and all features under 10-time 5-fold cross-
validation. Obviously, the performance of circLGB trained on
the selected feature sets improved when gradually adding the
top ranked features (Figure 5B). The predictive results using
the optimal features showed comparable performance with those
using 191 features, reaching ROC values of 0.996 and 0.999,
respectively. Therefore, these 54 features were regarded as the
optimal features.

Supplementary Figure S2 illustrates the feature importance
distribution of the optimal features based on the importance
scores. There were 30 graph features, 10 sequence-based features,
9 conservation scores, and 5 ATOSAAI features (ATOS, A-
to-I, A-to-I density and IRES) amongst them. This result was
consistent with a recent study that shows that graph features are
the most predictive features for circRNA detection (Chen et al.,
2018). We noted that A-to-I density, A-to-I, and IRES features,
respectively, were ranked in the 3rd, 26th, and 49th place, which
verified their superior ability in identifying circRNA.

Comparison With Learning-Based Methods
We compared the performance of circLGB with six machine
learning algorithms including GBDT, XGBoost, RF, SVM, SGD,
and GNB on the circlncRNA dataset using the optimal features
under 10-time 5-fold cross-validation. All the machine learning
methods were run under their optimal parameters for fair
comparisons. As shown in Figure 6A, of the seven algorithms
tested here, circLGB was the most predictive, with ROC of
0.996. Moreover, circLGB outperformed others with remarkable
ACC, MCC, SE, SP, F1, and PRE values of 0.973, 0.946, 0.958,
0.988, 0.972, and 0.987, respectively (Figure 6B). Furthermore,
we compared circLGB with two state-of-the-art predictors (e.g.,
circDeep and PredcircRNA) on the CIRCdeep dataset. For fair
comparison, we randomly separated the dataset into a training
dataset, a validation dataset, and an independent testing set with
75, 10, and 15%, respectively. Overall, circLGB achieved the most
powerful predictive ability, with ACC, MCC, and F1 values of
0.998, 0.995, and 0.998, respectively (Table 2).

circMRT for Predicting circRNA
Regulatory Interactions
Feature Importance Analysis for circMRT
We first compared the performance of the proposed classifiers.
As indicated in Table 3, sequence-based features were more
important than other groups of features for each classifier.
The regulation information features had strong discriminating
power for predicting circRNA–TR interactions. Supplementary
Tables S4–S6 present the ranked feature list of circRNA–miRNA,
circRNA–RBP, and circRNA–TR classifiers on datasets circMI,
circRBP, and circTR, respectively. Some interesting conclusions
can be drawn: (i) The predicted results of circRNA-miRNA
interactions were strongly influenced by ALU and miRNA. (ii)
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FIGURE 9 | Visualization of the circRNA-associated interactions according to databases ENCORI, TRCirc and Interactome. (A) Visualization of the
has_circ_0033725 associated with miRNAs interactions. (B) Visualization of the has_circ_001886 associated with RBPs interactions. (C) Visualization of
has_circ_0006111, has_circ_0008173, has_circ_0012351, has_circ_0014408, has_circ_0025154, has_circ_0035174, has_circ_0080641, and has_circ_0088103
associated with TR interactions. (D) Visualization of has_circ_0004915 associated with miRNAs and RBPs interactions.

Junction and repeat features contributed most for the circRNA–
RBP classifier. (iii) Junction and methylation were the most
predictive for the circRNA–TR classifier. (iv) Conservation scores
ranked in the top seven features of all three classifiers. Therefore,
conservation information was very predictive to distinguish
circRNA regulatory interactions.

To avoid overfitting, we performed the proposed feature
optimization strategy to obtain the representative features for
each classifier. Figure 7 depicts the MCC curves of these
classifiers by gradually integrating features from the ranked
feature list. It can be observed that the maximum MCC values
of circRNA–miRNA, circRNA–RBP, and circRNA–TR classifiers
were 0.994, 0.981, and 0.985 (Table 4) when the top 21, 26, and 15
features from their own ranked feature list were used. Therefore,

circRNA associated with miRNA, RBP, and TR were predicted
using the proposed classifiers with their own optimal features.

Performance Evaluation of circMRT on the
Independent Test Set
In this section, we focused on measuring the generalizability
of circMRT for unseen data. For this purpose, we evaluated
the performance of circMRT on the constructed independent
test set. This dataset was split into 60, 20, and 20% classes,
subsequently being used as the training set, validation set, and
testing set, respectively. As depicted in Figure 8, circRNA-TR
classifier exhibited the best predictive power, with the maximal
ROC and ACC values of 0.890 and 0.929. The circRNA-RBP
classifier was the second most predictive, with ROC and ACC of
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FIGURE 10 | Screenshots show the prediction of hsa_circ_0009178. Users can submit query sequence in the following four steps: (1) Click the START button to be
taken to the prediction page. (2) Input the hsa_circ_0009178 sequence into the input box and then click the Submit button to make prediction. (3) Click the Submit
button to upload hsa_circ_0009178 sequence. (4) The web server returns the prediction result “circRNA”İ with a probability score of 0.926 in the Gray box.

0.735 and 0.736, respectively. The circRNA-miRNA classifier also
performed well, but with relatively lower ROC and ACC.

Taking has_circ_0033725 as an example, our circMRT
predicted that it has interactions with miRNAs. According to the
ENCORI database, has_circ_0033725 has interactions with 16
miRNAs (Figure 9a). circMRT predicted that has_circ_001886
has association with RBP. Databases ENCORI and Interactome5

shows that has_circ_001886 has interactions with AGO2,
EIF4A3, FMRP, HUR, IGF2BP1, IGF2BP2, IGF2BP3, and
LIN28A (Figure 9b). circMRT suggested that circRNAs
has_circ_0006111, has_circ_0008173, has_circ_0012351,
has_circ_0014408, has_circ_0025154, has_circ_0035174,
has_circ_0080641, and has_circ_0088103 have associations
with TR. According to the TRCirc database, all the above
circRNAs have interactions with CTCF (Figure 9c). Moreover,
has_circ_0004915 was predicted to have interactions with
miRNA and RBP. From ENCORI, has_circ_0004915 has
interactions with AGO2, FUS, HNRNPC, PTB, has_miR_19b-
3p, has_miR_19a-3p, has_miR_2681-5p, has_miR_320c,
has_miR_320b, has_miR_320d, and has_miR_4429 (Figure 9d).
More details can be found in the Supplementary Material.

5https://circinteractome.nia.nih.gov/

Availability of Online Webserver
For the convenience of researchers, we have developed an
easy-to-use webserver that implements our circLGB, which is
freely accessible through http://www.circlgb.com. The following
description provides a step-by-step instruction on how to use
the webserver to obtain the prediction result. First, users need
to submit the query sequence into the input box or upload a
FASTA sequence file to make a prediction. Note that the input
sequence must only contain the following four canonical bases
“A,” “C,” “G,” and “T.” The FASTA formatted sequence begins
with a single line description, followed by lines of sequence data.
The definition line is distinguished from the sequence data by
a greater-than “>” character at the beginning. The rest of the
definition line must contain five columns including sequence
name, chromosome, start position, end position, and strand.
Second, click the Submit button to upload the query sequence
(FASTA file) for prediction. Upon submitting the sequence, the
software will extract the features for the given sequence from
a server. The Prediction page will show the job description
including job ID, job name, email address, and job state. The
web server will return the prediction result in the Gray box
when the job is completed. Figure 10 shows an example for
using the web server.
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DISCUSSION

Here we present two machine learning-based methods, circLGB
and circMRT, to classify circRNA from other lncRNAs and
to predict its regulatory interactions using diverse sources of
sequence-derived features, respectively. The feature section is
important, in addition to the modeling approach for predicting
activity. In recent years, considerable research efforts have been
made in identifying circRNA, thus generating several groups
of features for RNAs representation. Inspired by these studies
(Pan and Xiong, 2015; Chen et al., 2018), we integrated the
commonly used sequence features to generate the feature space
of circLGB. To achieve optimal performance, A-to-I and A-to-I
density, and IRES features were modeled in the circLGB model.
The success of circLGB lies in the enriched representative features
and powerful machine learning model incorporating the feature
optimization strategy. Compared to existing tools, circLGB has
the following merits: (i) It successfully integrates three new
features that can enhance the discrimination ability for circRNA
detection. (ii) It takes advantage of the feature optimization
strategy to determine the most important features, thus reducing
the feature dimensions and avoiding overfitting. (iii) circLGB
provides a user-friendly webserver to identify circRNA for a new
query RNA sequence.

Many studies focus on the interactions between circRNAs and
miRNAs (e.g., TargetScan, miRanda), RBPs (e.g., ENCORI), and
TRs (e.g., TRCirc). However, there is a lack of a comprehensive
human circRNA regulatory information database. circMRT is
an efficient computational ensemble machine learning model
for simultaneous prediction of circRNA potential interacted
miRNAs, RBPs, and TRs, further facilitating interpretation and
its functional mechanisms. circMRT incorporates several features
from other freely available web resources and toolkits, such
as UCSC, TRCirc, and GraphProt. It enables the user to find
the potential regulatory interactions for an unseen circRNA
sequence. Together, circMRT will accelerate our efforts to
understand the roles of circRNAs in biological processes related
to health and disease.

Several future improvements are expected. First, we have
currently designed circLGB and circMRT only for human
circRNAs. They will be expanded to include other species in the
future. Second, manual design of proper RNA sequence features
will definitely enhance the prediction ability of models. Here,
we use the commonly used sequence-derived features as well
as explore three new features for RNA sequence representations
and show that feature engineering really boosts the performance.
Future directions can combine feature engineering and feature
selection strategies for improving the prediction performance.
Third, the number of the available training sample sizes have
great influence on the predictive performance. However, after

removing the duplications, the sample sizes of circRNA–miRNA,
circRNA–RBP, and circRNA–TR interactions are relatively small,
which brings a challenge for an unseen query sequence.
Consequently, appropriate data augmentation techniques await
exploration. Finally, though circLGB and circMRT achieve the
desired performance for circRNA identification and prediction
of its regulatory interactions, both of them rely heavily on the
considerable domain expertise to design the feature extractor.
We believe that simple and modern deep learning models will
contribute to enhancements for these issues.
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1 Tandy School of Computer Science, University of Tulsa, Tulsa, OK, United States, 2 Arthritis and Clinical Immunology
Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States, 3 Department
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Nearest-neighbor Projected-Distance Regression (NPDR) is a feature selection
technique that uses nearest-neighbors in high dimensional data to detect complex
multivariate effects including epistasis. NPDR uses a regression formalism that allows
statistical significance testing and efficient control for multiple testing. In addition, the
regression formalism provides a mechanism for NPDR to adjust for population structure,
which we apply to a GWAS of systemic lupus erythematosus (SLE). We also test
NPDR on benchmark simulated genetic variant data with epistatic effects, main effects,
imbalanced data for case-control design and continuous outcomes. NPDR identifies
potential interactions in an epistasis network that influences the SLE disorder.

Keywords: epistasis, feature selection, GWAS, machine learning, nearest-neighbors

INTRODUCTION

An important challenge for machine learning in GWAS is to perform computationally efficient
screening for variants involved in complex genetic models, including epistatic effects. The
identification of interactions in GWAS may lead to an increased understanding of pathogenic
mechanisms and potential therapeutic targets, but low minor allele frequencies and the curse
of dimensionality make interaction detection difficult. Machine learning methods also face the
challenge of identifying statistical thresholds that limit false discoveries and handling the intricacies
of biomedical studies such as covariates and population structure.

Recently we developed a flexible nearest-neighbor-based machine learning feature selection
method called Nearest-neighbor Projected Distance Regression (NPDR) to address these challenges
(Le et al., 2020). NPDR integrates a regression formalism to allow statistical significance testing with
projected nearest-neighbor machine learning to enable detection of complex multivariate models
in high dimensional data. The projection of nearest neighbors from high dimensions onto single
feature dimensions allows NPDR to detect features involved in complex patterns with other features
in high-dimensional data that influence phenotypic variance. The regression formalism of NPDR
maintains the ability to detect interactions while providing a statistical basis for feature selection
thresholding and control of false discoveries due to multiple hypothesis testing.

In the current study, we demonstrate the capabilities of the NPDR framework to detect variants
involved in complex genetic models and to adjust for population structure. We compare the
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performance of NPDR with random forest and univariate
analysis on a panel of benchmark simulated genetic variant
data described by Urbanowicz et al. (2018). We analyze data
with multivariate main effects and multiple epistatic effects and
outcomes with balanced and imbalanced cases-control ratios as
well as continuous variation. Consistent with our previous studies
(McKinney et al., 2009; Le et al., 2020), we show that random
forest is able to detect interactions when the number of predictors
is small but its power diminishes with the dimensionality of the
data. NPDR is less susceptible to the curse of dimensionality as we
show it is able to detect interactions with statistical significance in
both low and high dimensional contexts.

In addition to adjustment for multiple testing, NPDR enables
the adjustment for covariates such as sex, age, or population
structure – due to population stratification or cryptic relatedness.
Population structure leads to linkage disequilibrium (LD) and
this deviation from independence may increase false associations
(McCarthy et al., 2008; Chen et al., 2016). The confounding effect
of population structure may be exacerbated for complex models
involving interactions between variants. Covariate adjustment is
challenging for many machine learning methods that have the
flexibility of being model free (Le et al., 2020). NPDR is model
free in its use of nearest neighbors for detecting interactions,
but it includes a statistical model for the projected distance for
each feature. This generalized linear model (GLM) of projected
distances then allows for the inclusion of projected distance
covariates such as principal components (PCs).

Systemic lupus erythematosus (SLE) is an autoimmune
inflammatory disease characterized by antinuclear autoanti
bodies, complement and interferon activation, and tissue
destruction. It predominantly affects women. Numerous
immune-related genes and genes with other functions have been
shown to predispose to SLE (Harley et al., 2008; Gregersen and
Olsson, 2009), but there is a need to identify other genomic
factors that may be interacting with each other as pairs or in
a higher-order network to influence the development of this
complex disease (Davis et al., 2013; Tyler et al., 2019). We
use NPDR to enrich for interactions in the systemic lupus
erythematosus genetics (SLEGEN) GWAS, which consists
of females of European ancestry (720 SLE and the 2,337
controls) (Harley et al., 2008). Although the SLEGEN data is
a homogeneous sample, we demonstrate the ability of NPDR
to adjust for possible cryptic relatedness by including PCs as
covariates. Identifying additional interacting variants may lead
to a better understanding of the pathways affecting SLE.

MATERIALS AND METHODS

Nearest-Neighbor Projected-Distance
Regression
Relief-based methods are known for their ability to identify
interactions with computational efficiency but generally do not
account for statistical significance of the attributes that may lead
to high misclassification rate. In order to control false discoveries
and adjust for covariates, we developed NPDR to use the GLM
to perform regression between nearest-neighbor pair distances

projected onto each predictor dimension (Le et al., 2020). We
define the NPDR neighborhood set N of ordered pair indices of
subjects as follows.

In NPDR, instance (e.g., subject) i is a point in p attribute
(e.g., variant) dimensions, and the topological neighborhood of
i is labeled by Ni. This neighborhood is a set of other instances
trained on the dataset Xm×p of m instances and p attributes and
depends on the type of Relief neighborhood method (e.g., fixed-
k or adaptive radius) and the type of metric (e.g., Manhattan
or Euclidean). If instance j is in the neighborhood of i (j ∈ Ni),
then the ordered pair is in the overall neighborhood ((i, j) ∈ N )
for the projected-distance regression analysis. The ordered pairs
constituting the overall neighborhood can then be represented as
nested sets:

N = {{
(
i, j
)
}

m
i=1}{j6=i:j∈Ni}.

The cardinality of the set {j 6= i : j ∈ Ni} is ki, the number
of nearest neighbors for subject i. In the analyses in the current
study, we use an adaptive k for hits and misses, k = 0.154 (m-1),
that has shown good balance between detecting main effects and
interaction effects (Le et al., 2019, 2020).

We compute the distance between two instances i and j in the
space of the set A of all attributes with an Lq metric

D(q)
ij =

(∑
a∈A

∣∣dij(a)
∣∣q)1/q

,

where |A| = p is the number of attributes in the dataset. We use
q = 1 (Manhattan) in this study. The projected difference or diff
function [dij(a)] between two instances i and j onto a SNP is of
critical importance to the NDPR algorithm and can be computed
by various difference functions. The standard difference used
by Relief-based algorithms for categorical variables is a binary
mismatch. For SNPs, this genotype mismatch (GM) is a 0 or 1
difference between two individuals (Ri, Rj) for a SNP, a, based
on the individuals’ genotypes for this SNP. Specifically, the diff
function is

dGM
ij (a) = diffGM(a, Ri, Rj)

=

{
0, genotype (a, Ri) = genotype

(
a, Rj

)
1, otherwise

}
where genotype (a, Ri) is the genotype for individual Ri for
SNP a. In other words, two individuals have zero diff if they
have identical genotypes and they have unit diff if they have
different genotypes.

A potential drawback of GM is that it is not sensitive to
heterozygous genotype differences when computing the diff.
The following allele mismatch (AM) diff accounts for the
difference in the number of alleles for a SNP when computing
the distance between two individuals (Arabnejad et al., 2018).
The AM difference of two individuals can be calculated by the
following formula:

dAM
ij (a) = diffAM (gν, Ri, Rj)

=
1
2
× |genotype (a, Ri)− genotype

(
a, Rj

)
|
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TABLE 1 | Properties of simulated data from epistasis benchmarking repository (https://github.com/EpistasisLab/rebate-benchmark/).

Dataset Predictive features (influence ratio) Total features Heritability MAF Instances (case/ctl)

Main effect pair 2 (50:50) 20 0.4 0.2 800/800

4-main effect 4 (25:25:25:25) 20 0.4 0.2 800/800

4 interactions 4 (2 interacting pairs) 20 0.4 0.2 800/800

Interacting pair 2 20 0.05 0.2 800/800

Continuous outcome interactions 2 20 0.4 0.2 1,600

Imbalanced outcome interactions 2 20 0.4 0.2 960/640

10,000 variants 2 10,000 0.4 0.2 800/800

All scenarios are case-control except one continuous outcome dataset. All scenarios have 20 features except for one with 10,000 features.

FIGURE 1 | Performance of three feature selection algorithms (from left to right): NPDR, random forest (RF) using permutation P-value, and univariate regression for
three simulation models from https://github.com/EpistasisLab/rebate-benchmark/. Simulated models include (from top to bottom) main effect of two variants, main
effect of four variants, and heterogeneous interaction of two interacting pairs. The –log(adjusted P-value) is plotted for the 20 variants in each dataset for 30 replicate
simulations. The functional variable names (blue) begin with letter M, and the background variable names (red) start with letter N. Datasets have 1,600 samples (800
cases and 800 controls). Additional dataset details are given in Table 1. The dashed line represents Bonferroni adjusted P-value of 0.05.

where genotype (a, Ri) is the genotype encoding for number of
copies of the reference allele for SNP a for individual i. In other
words, the value of genotype (a, Ri) is the number of minor
alleles in the genotype: 0, 1, or 2. Then the return value of dAM

ij (a)

is 0, 0.5, or 1 when the two individual have 2, 1, or 0 alleles in

common, respectively. Other projected differences and metrics
are described by Arabnejad et al. (2018).

Nearest-neighbor Projected-Distance Regression uses the
GLM to perform regression between nearest neighbors. For
each attribute, the NPDR model fits a GLM to the attribute’s
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FIGURE 2 | Performance of three feature selection algorithms (from left to right): NPDR, random forest (RF) using permutation P-value, and univariate regression for
three simulation models from https://github.com/EpistasisLab/rebate-benchmark/. Simulated models include (from top to bottom) an interacting pair, an interacting
pair with a continuous outcome, and imbalanced case-control (60%). The –log(adjusted P-value) is plotted for the 20 variants in each dataset for 30 replicate
simulations. The functional variable names (blue) begin with letter M, and the background variable names (red) start with letter N. Datasets have 1,600 samples (800
cases and 800 controls). Additional dataset details are given in Table 1. The dashed line represents Bonferroni adjusted P-value of 0.05.

projected distances between all pairs of nearest neighbors.
The regression coefficients are calculated to minimize the
least-squares error. For case-control phenotypes, pmiss

ij is the
probability that subjects i and j are in the opposite phenotype
class (misses) versus the same class (hits). We model this
probability from the projected differences for SNP a with
logit function:

logit
(

pmiss
ij

)
= β0 + βadij(a)+ εij.

The NPDR test statistic for attribute a is the βa estimate with
one-sided hypotheses:

H0 : βa < 0.

H1 : βa ≥ 0.

The quantity eβa is the predicted change in odds of neighbors
being in opposite classes when the difference of the attribute a
changes by one unit. For a continuous outcome (quantitative

trait), NPDR uses linear regression of the numerical difference
dnum

ij (y) of the outcome y between neighbors:

dnum
ij (y) = β0 + βadij (a)+ εij

and feature importance and significance are again determined
from the coefficient βa.

False-positive associations can arise in GWAS due to
population stratification or cryptic relatedness. A standard
approach to correct for population structure is to include PCs
in the regression model to account for the genetic background.
Many machine learning feature selection algorithms have limited
ability to adjust for population structure or other potentially
confounding covariates. However, the NPDR formalism can
adjust for multiple covariates by including projected differences
dnum

ij (Eycovs) for each covariate attribute in the regression model.
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FIGURE 3 | Rank (lower is better) of the two functional interacting variants [variant 1 (green) and variant 2 (purple)] in simulated datasets with 10,000 total variants
from https://github.com/EpistasisLab/rebate-benchmark/. The ranks of the two functional variables are averaged over 30 replicate simulations. NPDR P-value
ranking is performed for allele mismatch (AM) and genotype mismatch (GM) projected distance metrics. Random forest ranking is performed by permutation
importance score (RF) and univariate uses the regression coefficient P-value. The 10,000 simulated variants have average minor allele frequency 0.2 and heritability
0.4, and datasets have 800 cases and 800 controls.

The covariate adjusted model then becomes,

logit
(

pmiss
ij

)
= β0 + βadij (a)+ EβT

covsdij(Eycovs)+ εij

where the covariate coefficient vector for 10 PCs is,

EβT
covs = (βPC1 , βPC2 , . . . , βPC10)

and again pmiss
ij is the probability of neighbors having a different

phenotype. Neighbors are still determined in the attribute
(variant) space, but we add additional covariate diffs to the NDPR
regression model.

Simulated Data
We compare methods using existing simulated data from the
epistasis benchmark described by Urbanowicz et al. (2018) and
available at https://github.com/EpistasisLab/rebate-benchmark/.
For simplicity, many of the benchmark simulations use 20
total variants, but we also compare performance for multiple
replicate simulations with 10,000 total variants to demonstrate
computational feasibility and the effect of higher dimensionality

(Table 1 summary of datasets). For case-control data, we use
data with 1,600 balanced instances (800 cases and 800 controls)
and one imbalanced scenario with (60% cases). Datasets have
a heritability effect size of 0.4, minor allele frequency of 0.2
and include models with 2–4 functional variants and models
with additive main effects and epistatic effects. We also use
a dataset with a pair of interacting variants that influence a
continuous endpoint.

Real GWAS
We apply NPDR to a study of females with European ancestry
with genotyping data for 317,503 SNPs for 720 SLE subjects and
2,337 controls from the SLEGEN consortium (Harley et al., 2008).
All women with SLE satisfied the revised criteria for classification
of SLE from the American College of Rheumatology. The
study sample consisted of 730 unrelated women with SLE
and 475 controls from SLEGEN. Additional “out-of-study”
European ancestry female controls were added from Illumina’s
iControlDB. The majority of iControlDB are from the Robert
S. Boas Center for Genomics and Human Genetics at the
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FIGURE 4 | Epistasis Network for Lupus GWAS. Edges are significant pairwise interactions with adjusted P-value < 10−6 between variants in genes computed after
filtering. The edge weights are the magnitude of the statistical interaction between SNPs calculated by –log10 (adjusted P-value). The espin-like (ESPNL) gene is an
epistasis hub with 15 edges. The interaction on the left (HLA-DOB and PBX2) is between genes in the MHC II region.

Feinstein Institute for Medical Research. We reduced the data
dimensionality using LD pruning with a correlation threshold of
0.5, minor allele frequency threshold of 0.01, Hardy-Weinberg
Expectations (HWE) in controls P > 0.01, and HWE in cases
P > 0.0001. LD pruning helps remove redundant features,
where a SNP from a pair in high LD is removed from the
data (Calus and Vandenplas, 2018). Initial filtering reduced
the number of SNPs to 184,170. Due to computer memory
constraints of the current implementation of NPDR, we further
filtered to 10,000 SNPs based on univariate association. This
filtering risks removing some interaction effects but should
capture a considerable amount of variation in the data. Future
implementations of NPDR will improve memory efficiency and
incorporate additional variants. An advantage of NPDR is the
ability to incorporate covariates into feature selection. We used
the top 10 PCs from the variance-standardized relationship
matrix. We mapped the top SNPs found by NPDR to Ensembl
gene IDs based on proximity. If the SNP is not in an intron or
exon of a gene, the algorithm computes the distance of the variant
to the nearest two genes and the SNP is mapped to the gene
symbol of the closest gene.

RESULTS

Simulation Analysis
For low-dimensional simulations with only 20 total attributes
(Figures 1, 2), both NPDR with AM metric and random
forest rank the functionally interacting attributes at the top for
all simulation scenarios. All methods detect the main effects
(Figure 1), but as expected the univariate analysis cannot detect
interaction effects. For low dimensional datasets (20 attributes),
random forest is able to exhaustively sample all attributes and find
a tree with the interacting attributes. When the total number of
attributes increases from 20 to 10,000 (Figure 3), random forest
is unable to detect the functional interactions with average ranks
near random (5,000). In this case of 10,000 attributes, the random
forest ranking is very similar to a univariate ranking, while NPDR
has good rankings for interacting attributes using either the GM
or AM projected difference metrics (Figure 3). This is consistent
with our previous results that random forest is unable to detect
interactions beyond random chance in high dimensional data,
whereas Relief-based methods are less affected by the curse of
dimensionality (McKinney et al., 2009). NPDR also performs
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TABLE 2 | Logistic regression interaction statistics for pairs of variants in genes in the epistasis network (Figure 4) for SLE GWAS with adjusted P-values < 10−6.

SNP 1 Gene 1 SNP 2 Gene 2 P-value Adjusted P-value

rs10210979 ESPNL rs2067477 CHRM1 5.149E-12 3.51E-09

rs10210979 ESPNL rs11564281 SLC2A13 1.055E-11 3.51E-09

rs10210979 ESPNL rs4832401 KCNS3 1.243E-11 3.51E-09

rs10210979 ESPNL rs7573771 LINC01120 4.106E-11 8.70E-09

rs10210979 ESPNL rs9814172 MAGI1 1.585E-10 2.69E-08

rs10210979 ESPNL rs9807842 ZNF577 2.431E-10 3.08E-08

rs9814172 MAGI1 rs6507759 MIR4527HG 2.539E-10 3.08E-08

rs10210979 ESPNL rs7694687 HTT 4.235E-10 4.16E-08

rs9814172 MAGI1 rs2067477 CHRM1 4.415E-10 4.16E-08

rs10210979 ESPNL rs1446540 LINC00276 9.587E-10 8.13E-08

rs10210979 ESPNL rs7762152 GUCA1A 1.189E-09 9.17E-08

rs9814172 MAGI1 rs17653341 SH3TC2 1.568E-09 1.05E-07

rs10210979 ESPNL rs9311738 FHIT 1.606E-09 1.05E-07

rs10210979 ESPNL rs6507759 MIR4527HG 2.278E-09 1.38E-07

rs11920836 LINC01208 rs11564281 SLC2A13 2.638E-09 1.44E-07

rs17083190 TBC1D32 rs9317652 PCDH9 2.717E-09 1.44E-07

rs17653341 SH3TC2 rs6507759 MIR4527HG 3.133E-09 1.56E-07

rs17083190 TBC1D32 rs978268 FGF14 3.502E-09 1.61E-07

rs10210979 ESPNL rs12477083 HS6ST1 3.608E-09 1.61E-07

rs10210979 ESPNL rs6936115 AL606923.2 4.387E-09 1.86E-07

rs9814172 MAGI1 rs6936115 AL606923.2 6.287E-09 2.54E-07

rs11920836 LINC01208 rs6445245 PTPRG 8.55E-09 3.30E-07

rs9311738 FHIT rs6445245 PTPRG 1.216E-08 4.48E-07

rs10210979 ESPNL rs11920836 LINC01208 1.283E-08 4.53E-07

rs10210979 ESPNL rs11073328 FAM98B 1.449E-08 4.85E-07

rs9311738 FHIT rs9807842 ZNF577 1.486E-08 4.85E-07

rs10210979 ESPNL rs6445245 PTPRG 1.566E-08 4.92E-07

rs11920836 LINC01208 rs1446540 LINC00276 1.935E-08 5.86E-07

rs12464623 C2CD6 rs6445245 PTPRG 2.036E-08 5.95E-07

rs2067477 CHRM1 rs11920836 LINC01208 2.463E-08 6.96E-07

rs7694687 HTT rs4507859 PAX5 3.037E-08 8.31E-07

rs204995 PBX2 rs11244 HLA-DOB 3.244E-08 8.45E-07

rs1446540 LINC00276 rs4507859 PAX5 3.288E-08 8.45E-07

rs10992568 FGD3 rs4705038 STK32A 3.749E-08 9.28E-07

rs11073328 FAM98B rs9807842 ZNF577 3.832E-08 9.28E-07

well for multiple pairwise interactions (Figure 1), interactions for
a continuous outcome (Figure 2, middle row) and imbalanced
case-control data (Figure 2, bottom row).

SLE GWAS
We apply NPDR to the SLEGEN data, which is a real GWAS
composed of females with SLE and healthy controls. Although
the study is composed of European ancestry individuals, we
include 10 PCs as covariates in NPDR to account for possible
cryptic relatedness. Following filtering we create a network
from significant (adjusted P-value < 1e-6) pairwise interactions
(Figure 4). This edge significance threshold results in 35 edges
(Table 2) in the epistasis network. The espin-like (ESPNL) gene
is a hub of the network, involved in 15 of the 35 significant
interactions. The particular interacting SNP (rs10210979) in
ESPNL is an intron variant on chromosome 2. Although ESPNL
is involved in hearing, it is ubiquitously expressed and some

of its interactions may indicate novel function for the immune
system. In addition to this hub gene, there is an interesting
interaction between HLA-DOB and PBX2 (Pre-B-cell leukemia
homeobox 2). Both of these genes are located within the
major histocompatibility complex (MHC) class II region on
chromosome 6, and HLA-DOB is a beta chain of the MHC
class II molecule.

CONCLUSION

Machine learning feature selection methods are needed to
enrich for attributes involved in complex interaction network
effects in high dimensional data, such as GWAS and gene
expression, for case-control and quantitative trait studies. In
addition to interactions, machine learning methods need to
handle complicated modeling scenarios, such as controlling for
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potential confounders from demographic data or population
structure, which is a perennial challenge for GWAS data.

In the current study of GWAS data, we applied a new
feature selection technique called NPDR that uses the GLM
to perform regression between nearest-neighbor pair distances
projected onto predictor dimensions. NPDR detects interaction
structure using local nearest-neighbor information in the full
space of predictors, which may be SNPs or expression levels.
Using simulated GWAS, we showed that NPDR has good power
to detect functional variants in a variety of simulation scenarios
including case-control data with and without imbalance,
quantitative trait outcomes, main effects, and multiple pairwise
epistatic effects. Similar to our previous findings (McKinney
et al., 2009; Le et al., 2020), NPDR is less susceptible to
the curse of dimensionality than random forest because when
the total number of variants increases to 10,000, the ranking
of interacting variants by random forest is consistent with a
random ranking, while NPDR consistently ranks the functional
variants near the top.

We demonstrated NPDR’s ability to handle covariates by
including the first 10 PCs in the NPDR models for a GWAS
of SLE. Previously we showed that using the covariate term in
NPDR can remove genes from nearest-neighbor feature selection
that are confounded by sex (Le et al., 2020). In the current study,
we constructed a candidate epistasis network for SLE from the
filtered data, and found the ESPNL gene is a hub in the network
with 15 of the 35 statistically significant interactions. There is no
prior evidence for the role of ESPNL in autoimmunity, but it is
ubiquitously expressed. Replication and functional investigation

of these interactions are needed to identify mechanisms in the
pathogenesis of autoimmunity. The lupus epistasis network also
contains a significant interaction between HLA-DOB and PBX2,
which are both located within the MHC class II region on
chromosome 6. A limitation of this discovery analysis was the
lack of a replication dataset. Another limitation is the need for
SNP filtering in the current NPDR implementation in R for
GWAS. Future implementations will take advantage of binary
GWAS data formats for improved memory management.
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