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Editorial on the Research Topic

Integration of Hormonal Signals Shaping Root Growth, Development, and Architecture

Plants need to constantly modify their growth and development to adapt to the ever-changing
conditions and thus optimize the use of available resources. Over millions of years of evolution,
plants have developed sophisticated mechanisms that allow them to integrate the information from
external stimuli with their own internal programs to generate appropriate developmental outputs.
Plant hormones act as signals in this integration process and contribute to the extraordinary plant
morphological plasticity. The root system is a key determinant of plant development, exploring
uncharted territory in the soil and serving as an interface between plant and rhizosphere. The
roots enable the selective uptake of water and nutrients whereas exclude phytotoxic compounds.
All these functions aremaximized by the root morphological plasticity. The root anatomy is defined
by regular patterns originated by cell division in the root apical meristem and consecutive cell
differentiation that result in the different tissues composing the root. Due to these remarkable
regular patterns, the root is an exceptionally useful system to study the effects of hormones on
growth and development. Changes in plant hormone homeostasis via synthesis, modification,
catabolism, and transport as well as the modulation of signaling components are key for a tunable
and resettable hormone response system that controls root growth and development. Additional
layers of fine-tuning are achieved by the intense cross-talk between different plant hormones at
various levels. Phytohormones affect every stage of plant development including agriculturally
important processes. Therefore, understanding how particular hormones and gene expression
networks interact to coordinate root growth and development in a dynamic environment is
essential, not only for developmental biology but also for the design of the next generation of crops
coping with current agricultural challenges such as increasing food demand and climate change.

The main objective of this Research Topic is to gather current works studying the integration
of hormonal signals in the root, a key question in plant developmental biology. If we improve our
understanding on how hormones coordinate root growth, development, and architecture we can
then improve our crops.

In crops, especially those cropped intensively such as cereals, developing an optimal root
architecture is crucial for yield enhancement and space optimization without disturbing proper
nutrient absorption. Therefore, the original research done by Sun et al., “A strigolactone signal
inhibits secondary lateral root development in rice” aims to understand the hormonal control of
secondary lateral roots in rice. Based on previous knowledge indicating that strigolactone signaling
regulates lateral root development, the authors investigated whether secondary lateral roots
development is also regulated by strigolactone and what the relationship between strigolactone and
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auxin signaling could be. Following an approach combining
genetic analyses and pharmacological applications the authors
show that while auxin applications on rice mutants deficient in
strigolactone biosynthesis and sensitivity increased the number
of secondary lateral roots, adding strigolactone treatments to
the experiment only reduced the auxin effect in strigolactone
biosynthesis mutants, but not in strigolactone-insensitive
mutants. Thus, Sun et al. work points out that auxin and
strigolactone have opposing effects in the process, and that the
regulation of their action is complex.

Another original research article in this Topic (Liang et al.)
focuses on how the crop load influences growth and hormone
changes in the roots of “Red Fuji” apple. Crop load represents
a crucial factor for the shoot and root growth and development
of apple trees. The authors analyze the effects of an extensive
range of crop loads on hormone levels and growth in apple roots.
Higher crop loads resulted in lower root growth and non-fruiting
plants exhibit elevated root growth. During the root growth
peaks, the levels of cytokinins, indole acetic acid, and gibberellic
acid were also at their highest. Together with the increase of
crop load, the hormone levels were gradually decreasing within
each peak. The results of this work suggest that root growth is
positively correlated with hormone levels during the fruit growth
phase, and that the reduction in root growth caused by crop load
might be regulated by the reduction on hormone levels.

A collection of reviews bringing together different levels
of root development regulation is also present in this
Research Topic.

Ramachandran et al. focus their review on how water

limitations modulate xylem development. In normal conditions,

correct xylem development depends on the balance between

hormones such as auxin, cytokinin, brassinosteroids, jasmonic
acid, and abscisic acid. Drought alters that balance leading to a

reduction of cambial cellular proliferation accompanied by an
increase of xylem vessels production. These vessels, however,
are significantly thinner, enhancing water transport efficiency
while protecting the plant from embolism. This developmental
plasticity is key for acclimation to drought. However, to date, little
is known about the molecular mechanisms underlying it. Data
previously produced by the authors’ lab indicate that abscisic
acid is, most likely, at the center of this plastic response to
drought. The authors elegantly explain why breeding for xylem
developmental alterations emulating those induced by drought

may improve agricultural systems sustainability by enhancing
water usage efficiency. Finally, Ramachandran et al. also point

out that a number of links between environmental factors and the

molecular regulation of xylem development are still missing and
that implementing new technological approaches such as single

cell sequencing, sheet fluorescence microscopy combined with
Growth and Luminiscence Observatory for roots (GLO-Roots)
or natural variation analyses to the study of xylem development
hold great promise in identifying them.

The review by Xu et al., hones in the integration of jasmonic
acid and ethylene into auxin signaling and how these interactions
coordinate root development through the activity of ERF and

HD-ZIP transcription factor families. ERF109 is induced by
jasmonic acid. ERF109 induces local auxin production in the
root stimulating lateral root formation. Recently, ERF109 has
also been associated with plant regeneration. Ethylene induces
the expression of ERF1 which activates auxin biosynthesis and
transport that in turn inhibits the elongation of the primary root.
Ethylene also upregulates the expression of HB52, a member of
the HD-ZIP transcription factor family. HB52 regulates auxin
transport, altering auxin homeostasis in roots and inhibiting
primary root elongation. The examples discussed in this review
represent key crosstalk nodes between ethylene, jasmonic acid,
and auxin that regulate root development.

Cell fate determination and stem cells maintenance at
the root apical meristem (RAM) are key for proper growth
and organogenesis of the primary root. Many intrinsic gene
regulatory networks that involve phytohormones, peptide
signaling, microRNAs and transcription factors are integrating
the information from the environmental cues to maintain the
characteristics of the root stem cell niche. Recently, studies
indicate the cellular redox status and the presence of ROS can
also play a pivotal role in this complex process. In the current
Research Topic, the work of Zhou et al. portraits the panoramic
view of ROS, as a fine-tuner of plant stem cell proliferation and
differentiation. Zhou et al. summarize the recent findings in the
field of ROS and the role of ROS in root development with
an emphasis on root stem cell differentiation and maintenance,
root hair differentiation and during the cell-cycle progression.
Further, Zhou et al. not only describe the crosstalk between
known genetic factors, hormones, and peptides with ROS, but
also its newly found role in aerenchyma formation.

Calleja-Cabrera et al. discuss the root growth adaptation to
climate change in crops. Climate change is the biggest threat
to crop productivity in the world. High temperatures caused
by global warming have deleterious effects on plant growth
and development. As mentioned above, roots are essential for
water and nutrient uptake. Modifications of soil temperatures
affect root growth restraining production. Root architecture
is affected by warmer soils. Increasing temperatures trigger
diverse physiological andmetabolic responses in the plant coping
with warmer soils. Different regulatory mechanisms control the
plant responses that prevent root cell damage and root growth
impairment. Increasing temperatures are accompanied by other
abiotic and biotic stresses such as drought, salinity, nutrient
deficiencies, and pathogen infections that affect hormone
homeostasis and gene expression. The authors not only discuss
the latest studies in the field but also future research paths.

In conclusion, these original and review articles discuss the
large interest and substantial progress that has been made in the
field of root biology, especially on shedding light on hormonal
cross-talk in root development.
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A Strigolactone Signal Inhibits 
Secondary Lateral Root Development 
in Rice
Huwei Sun 1*, Fugui Xu 1, Xiaoli Guo 1, Daxia Wu 2, Xuhong Zhang 2, Manman Lou 2, 
Feifei Luo 2, Quanzhi Zhao 1, Guohua Xu 2 and Yali Zhang 2*

1 Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, 
Henan Agricultural University, Zhengzhou, China, 2 Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches 
of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China

Strigolactones (SLs) and their derivatives are plant hormones that have recently been 
identified as regulators of primary lateral root (LR) development. However, whether SLs 
mediate secondary LR production in rice (Oryza sativa L.), and how SLs and auxin interact 
in this process, remain unclear. In this study, the SL-deficient (dwarf10) and SL-insensitive 
(dwarf3) rice mutants and lines overexpressing OsPIN2 (OE) were used to investigate 
secondary LR development. The effects of exogenous GR24 (a synthetic SL analogue), 
1-naphthylacetic acid (NAA; an exogenous auxin), 1-naphthylphthalamic acid (NPA; a 
polar auxin transport inhibitor), and abamine (a synthetic SL inhibitor) on rice secondary 
LR development were investigated. Rice d mutants with impaired SL biosynthesis and 
signaling exhibited increased secondary LR production compared with wild-type (WT) 
plants. Application of GR24 decreased the numbers of secondary LRs in dwarf10 (d10) 
plants but not in dwarf3 (d3), plants. These results indicate that SLs negatively regulate 
rice secondary LR production. Higher expression of DR5::GUS and more secondary LR 
primordia were found in the d mutants than in the WT plants. Exogenous NAA application 
increased expression of DR5::GUS in the WT, but had no effect on secondary LR formation. 
No secondary LRs were recorded in the OE lines, although DR5::GUS levels were higher 
than in the WT plants. However, on application of NPA, the numbers of secondary LRs were 
reduced in d10 and d3 mutants. Application of NAA increased the number of secondary 
LRs in the d mutants. GR24 eliminated the effect of NAA on secondary LR development 
in the d10, but not in the d3, mutants. These results demonstrate the importance of auxin 
in secondary LR formation, and that this process is inhibited by SLs via the D3 response 
pathway, but the interaction between auxin and SLs is complex.

Keywords: auxin, OsPIN2, rice, secondary lateral roots, strigolactones

INTRODUCTION
Plants have successfully colonized the terrestrial environment via the evolution of multicellular 
organs that absorb the nutrients and water required for their growth and development (Pires and 
Dolan, 2012). The root system is the main organ by which plants obtain nutrients and water from 
soil (Péret et al., 2009; Sun et al., 2018a, 2018b; Huang et al., 2019). Therefore, diversity and plasticity 
in root architecture may contribute to the survival strategies of plants.
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Root systems consist of embryonic roots derived from the 
embryo and post-embryonic roots derived from existing roots 
or non-root tissues (Atkinson et al., 2014). Post-embryonic 
roots arising from existing roots are lateral roots (LRs), and 
roots arising from non-root tissues are adventitious roots (ARs) 
(Atkinson et al., 2014). LRs develop from founder cells in the 
pericycle, the outermost layer of the vascular cylinder (stele) of 
a root (De Smet et al., 2006). In contrast to the taproot system, 
the majority of monocot roots form a fibrous root system that is 
characterized by the formation of many seminal roots (SRs) and 
ARs. In monocots, the LRs develop from ARs and SRs (Osmont 
et al., 2007; Bellini et al., 2014).

Several lines of study have suggested that LR formation is 
regulated by genetic factors (Lavenus et al., 2015; Murphy et al., 
2016; Fernández-Marcos et al., 2017). In addition to genetic 
factors, LR growth and development are also regulated by plant 
hormones, such as auxin. Previous studies have shown that auxin 
plays a key role in LR formation and growth in plants (Guseman 
et al., 2015; Xuan et al., 2016; Tang et al., 2017). Auxin is 
synthesized mainly in aboveground tissue, such as shoot apices, 
by YUCCA family genes (Zhao, 2012) and redistributed by auxin-
influx carriers, such as AUX1/LAX family proteins, and auxin-
efflux carriers, including ABCB/PGP and PIN family proteins in 
several plant species (Friml, 2003; Blakeslee et al., 2005; Wang 
et al., 2009; Zazimalova et al., 2010; Péret et al., 2012). The polar 
transport of auxin is very important for LR development in plants 
(Swarup et al., 2005; De Smet et al., 2007; Inahashia et al., 2018). 
For example, the roots of the aux1 mutant bend constitutively 
in one direction, forming root coils with LRs distributed 
predominantly on the convex side of the curve, which differs 
markedly from the wavy pattern seen in the roots of Arabidopsis 
(Swarup et al., 2005; De Smet et al., 2007). The mutants of pin2, 
pin3, and pin7 have an altered branching pattern, with closely 
grouped lateral root primordia (LRP)/LRs or fewer LRP/LRs, in 
Arabidopsis (Laskowski et al., 2008). Moreover, AtPIN3 is part 
of an auxin reflux pathway that is transiently established during 
the early phases of LR formation (Marhavy et al., 2013). OsPIN2-
altered auxin flow in the root tip region is responsible for LR 
growth and formation patterns in rice (Inahashia et al., 2018).

Besides auxin, newly identified phytohormones named 
strigolactones (SLs) are involved in the growth and formation 
of LRs in several plant species (Kapulnik et al., 2011; Ruyter-
Spira et al., 2011; Mayzlish-Gati et al., 2012; Rasmussen et al., 
2012; Sun et al., 2014; De Cuyper et al., 2015). Compared with 
WT plants, a SL-synthesis mutant (more axillary growth4) and 
a SL-signaling mutant (more axillary growth2) were found to 
have greater LR densities in Arabidopsis (Kapulnik et al., 2011; 
Kohlen et al., 2011; Ruyter-Spira et al., 2011). However, LR 
density did not differ between WT plants and d mutants in rice 
(Sun et al., 2014). In Arabidopsis and rice, application of GR24 
(a SL analogue) decreased the LR density in WT plants and 
SL-synthesis mutants (more axillary growth4/d10), but not in 
SL-signaling mutants (more axillary growth2/d3) (Ruyter-Spira 
et al., 2011; Sun et al., 2014).

The interactions between SLs and auxin in the regulation 
of LR growth are closely linked (Ruyter-Spira et al., 2011; 

Sun et al., 2014). In Arabidopsis and rice, higher auxin levels in 
roots were recorded in SL-synthesis mutants than in WT plants. 
Application of GR24 to the roots of WT and SL-synthesis 
mutants inhibited LR formation by reducing auxin transport 
(Ruyter-Spira et  al., 2011). PIN proteins are the major auxin 
efflux carriers in plants (Friml, 2003; Wisniewska et al., 2006). 
Application of GR24 decreased PIN1, PIN3, and PIN7 protein 
levels in the primary root tips of Arabidopsis. However, PIN 
levels were not affected when similar levels of GR24 were 
applied in the presence of exogenous auxin (Ruyter-Spira et al., 
2011). The expression of most PIN family genes in roots was 
downregulated by application of GR24 in rice (Sun et al., 2014). 
These results indicate that SLs inhibit LR formation, perhaps by 
reducing the levels of PIN proteins.

Rice is an ideal model for the study of plant root growth 
because of its small genome and the availability of its complete 
genome sequence and well-characterized mutants (Feng et al., 
2002; Sasaki et al., 2002). Relative to primary LR development, 
the formation of secondary LRs in rice has not been characterized 
in detail. We found that secondary LR formation was induced 
in d mutants and that exogenous GR24 inhibited secondary LR 
formation in d10 plants, but not in d3 plants. NPA treatment 
reduced the number of secondary LRs in the d mutants. However, 
application of NAA increased the number of secondary LRs in the 
d mutants, but not in WT plants. The effect of NAA on secondary 
LR development was eliminated by supplying GR24 to the d10 
plants, but this was not the case in the d3 plants. These results 
demonstrate that auxin induced rice secondary LR formation in 
the absence of SLs.

MATeRIALS AND MeThODS

Plant Materials
The d3-1 and d10-1 mutants (Shiokari ecotype) (Sun et al., 2014), 
and lines overexpressing OsPIN2 (OE1 and OE2) (Nipponbare 
ecotype), were used in this study.

Plant growth
Rice seedlings were grown at day/night temperatures of 30/18°C 
under natural light in a greenhouse. Seven-day-old seedlings of 
uniform size and vigour were transplanted into holes in lids placed 
over the tops of pots (four holes per lid and three seedlings per 
hole). Nutrient solutions ranging from one-quarter strength to full 
strength were applied for 1 week, followed by application of full-
strength nutrient solution for 2 weeks. The chemical composition 
of the International Rice Research Institute (IRRI) nutrient 
solution is (mM): 1.25 (NH4)2SO4, 0.3 KH2PO4, 0.35 K2SO4, 1.0 
CaCl2, 1.0 MgSO4·7H2O, 0.5 Na2SiO3; and (µM) 9.0 MnCl2, 0.39 
(NH4)6Mo7O24, 20.0 H3BO3, 0.77 ZnSO4, and 0.32 CuSO4 (pH 5.5).

The treatments applied were as follows: 10 nM 
1-naphthylacetic acid (NAA), 2.5 µM GR24 (a SL analogue), 
100 µM abamine (a SL-synthesis inhibitor) (Sun et al., 2014; 
Sun et al., 2015; Sun et al., 2016), and localized application 
of NPA (a polar auxin transport inhibitor). The latter was by 
dispensing diluted agar containing 20 µM NPA directly from a 
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pipette across the shoot base (Chen et al., 2012). All experiments 
included three independent biological replicates.

Measurement of Secondary Lateral  
Root and Primordia Numbers
As reported previously, SRs were significantly longer than 
ARs under our experimental conditions. Our preliminary 
experiment showed similar primary LR and secondary LR 
responses in SRs and ARs (Sun et al., 2014). Therefore, SRs 
were chosen as representative organs to study the mechanism of 
secondary LR formation. Primary LR density and the numbers 
of secondary LRs/primordia SR were analyzed in detail. SR 
length was measured with a ruler and LRs/secondary LRs 
were counted by eye. Primary LR density was calculated as LR 
number divided by SR length. All experiments included three 
independent biological replicates.

In this study, the stages of secondary LR development followed 
Malamy and Benfey (1997), with stages I–XII grouped here as 
unemerged primordia. The primordia of the secondary LRs were 
classified as unemerged and emerged. An emerged LRP longer 
than 0.5 mm (visible to the naked eye) was considered a LR, and 
was referred to as being activated (Song et al., 2013). To visualize 
the development of secondary LRs, we exploited pDR5::GUS 
transgenic rice plants. After the roots were stained in GUS buffer 
solution, the secondary LR primordia were easy to count. The 
experiments included three independent biological replicates.

pDR5::gUS Construct
To examine the distribution of indole-3-acetic acid (IAA) in 
rice plants, the pDR5::GUS construct was transformed into the 
WT plants a, d mutants, and lines overexpressing OsPIN2 using 
Agrobacterium tumefaciens (strain EHA105) (Sun et al., 2014). The 
samples used for IAA analysis were also used for histochemical 
GUS staining. The stained tissues were photographed using 
an Olympus SZX2-ILLK stereomicroscope with a color CCD 
camera (Olympus).

GUS activity was examined according to Jia et al. (2011). 
Samples were homogenized in GUS extraction buffer (50 mM 
NaPO4 (pH 7.0), 10 mM 2-mercaptoethanol, 10 mM Na2-
EDTA, 0.1% sodium dodecyl sulfate, 0.1% Triton X-100). After 
centrifugation, 20 µl of the supernatant was mixed with 180 µl 
of an assay buffer containing 1 mM 4-methylumbelliferyl-β--
glucuronide. After incubation at 37°C for 1 h, the reaction was 
stopped by adding 1,800 µl 0.2 M Na2CO3. Fluorometer values 
were compared with those of a 4-methylumbelliferone dilution 
series. Protein content was determined with a Bio-Rad protein 
assay kit (Bio-Rad Laboratories, Shanghai, China) using bovine 
serum albumin as the standard. All experiments included three 
independent biological replicates.

Strigolactone Measurement
After 3 weeks growth, root exudates (approximately 500 ml) 
of the rice plants were collected at 24-h intervals, as described 
previously (Yoneyama et al., 2012; Xie et al., 2013). Root 
exudates adsorbed on charcoal were eluted with acetone. After 

evaporation of the acetone in vacuo, the residue was dissolved 
in 50 ml water and extracted three times with 50 ml ethyl 
acetate. The ethyl acetate extracts were combined, washed with 
0.2 M K2HPO4 (pH 8.3), dried over anhydrous MgSO4, and 
concentrated in vacuo. These crude extracts were stored in 
sealed glass vials at 4°C until use.

The 2’-epi-5-deoxystrigol concentrations in the root exudates 
were determined by liquid chromatography–mass spectrometry/
mass spectrometry, as described previously (Xie et al., 2013). 
Data were acquired and analyzed using MassLynx software 
(ver. 4.1; Waters, Milford, MA). The experiments included three 
independent biological replicates.

Quantitative Reverse Transcription-
Polymerase Chain Reaction
Total RNA was isolated from the roots of 7-day-old rice plants. 
The RNA extraction, reverse transcription, and quantitative 
reverse transcription-polymerase chain reaction (qRT-PCR) 
methods were as described by Jia et al. (2011). The experiments 
included three independent biological replicates.

Data Analysis
Data from the experiments were pooled to calculate the means 
and standard errors (SEs) and subjected to one-way analysis 
of variance (ANOVA), followed by an LSD test at P < 0.05 to 
determine the statistical significance of differences between 
treatments. All statistical evaluations were conducted using SPSS 
(version 11.0) statistical software (SPSS Inc., Chicago, IL, USA).

ReSULTS

Tiller and Secondary Lateral Root 
Production Were Induced in the Rice 
dwarf3 and dwarf10 Mutants
As reported by Ishikawa et al. (2005), compared with wild-type 
(WT) plants, tiller numbers were increased in d10 (SL-synthesis 
mutant) and d3 (signaling mutant) plants (Figures 1A, C). 
Secondary LR formation was significantly induced in the d 
mutants relative to the WT plants (Figures 1B, D–F). These 
results imply that SLs induce branching of both shoots and roots.

exogenous Application of gR24 Inhibited 
Secondary Lateral Root Formation in the 
dwarf10 Plants, But Not in the dwarf3  
of Rice
As in a previous study, endogenous 2’-epi-5-deoxystrigol was 
detected in WT and d3 mutant plants, but not in d10 plants 
(Umehara et al., 2008). Primary LR density of SRs did not 
differ between the WT plants and the d mutants (Figure 2A). 
Application of GR24 decreased the primary LR density in the WT 
and d10 mutant plants, but not in the d3 plants (Figure 2B). These 
results are consistent with those reported by Sun et al. (2014). To 
determine whether SLs regulate the formation of secondary LRs in 
rice, GR24 was applied exogenously to WT plants and the two d 
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mutants (Figures 2A, B). Application of GR24 had no effect on the 
development of secondary LRs in the WT, but inhibited secondary 
LR formation in the d10 mutants to the same level of the WT plants. 
However, the numbers of secondary LRs in the d3 mutants were 
not affected by GR24 application (Figures 2C, D). Treatment with 
abamine had no effect on the development of secondary LRs in the 
d mutants, but induced secondary LR formation in the WT plants 
(Figure 2E). These results indicate that SLs inhibit secondary LR 
formation and the involvement of SL signaling (D3 gene) in the SL 
regulatory pathway for secondary LR formation.

higher Auxin Levels in the Rice Roots  
Were Not the Only Reason for Secondary 
LR Formation
In a previous study, endogenous IAA levels were higher in the 
roots of d10 and d3 mutants relative to WT plants (Sun et al., 
2014). To assess whether higher auxin levels induce secondary LR 
formation in d mutants, the secondary LR primordia in the roots 
of rice plants were analyzed on application of exogenous NAA. A 
specific reporter was used that contains seven repeats of a highly 
active synthetic auxin response element, and changes in auxin 
levels in vivo were monitored via the expression of DR5::GUS 
(Ulmasov et al., 1997). Expression of DR5::GUS was subsequently 
examined in the WT plants and in the d10 and d3 mutants. GUS 
activity was higher in the roots of the d mutants than in the WT 
plants (Figures 3A, B), consistent with Sun et al. (2014). However, 

the numbers of secondary LR primordia were significantly higher 
in the d mutants, but not in the WT plants (Figures 3A, C). These 
results imply that higher auxin levels in roots increase secondary 
LR primordia production. Application of NAA to the WT plants 
increased expression of DR5::GUS in roots to levels similar to 
those in the roots of the d  mutants (Figure 3C). However, the 
higher DR5::GUS levels did not induce secondary LR primordia 
formation in the WT plants. These results suggest that higher 
auxin levels in the roots of d mutants were not the only reason for 
secondary LR primordia formation.

Overexpression of OsPIN2 Increased 
Auxin Levels in Roots But Did Not Induce 
Secondary Lateral Root Formation
Expression of OsPIN2 was analyzed in the WT plants and in 
the d mutants. Compared with the WT plants, levels of OsPIN2 
were up-regulated in the d mutants (Supplementary Figure 1). 
To determine further whether secondary LRs were induced by 
auxin, lines overexpressing OsPIN2 were used in this study. As 
reported by Chen et al. (2012), compared with the WT, plant 
height was significantly reduced in lines overexpressing OsPIN2 
(OE) (Figure 4A). The endogenous IAA content of roots is higher 
in OE lines than in WT plants (Chen et al., 2012). The secondary 
LR primordia in the roots of the OE lines were analyzed and 
expression of DR5::GUS in the rice plants was subsequently 
examined. GUS activity was higher in the roots of the OE lines 

FIgURe 1 | The morphology of tiller and roots in wild-type (WT, Shiokari), strigolactone-synthesis (d10), and strigolactone-signaling (d3) mutants. Seedlings were 
grown in a hydroponic media for 21 days. (A) The morphology of the rice plants. (B) The morphology of roots. (C) Tiller. (D–F) Secondary lateral root (LR). All 
experiments included three independent biological replicates.
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than in those of the WT plants (Figures 4F, G), consistent with 
Chen et al. (2012). However, no secondary LRs or LR primordia 
were found in the OE lines (Figures 4B-F and 5B). In addition, 
the primary LR density and numbers of secondary LRs did not 
differ between the WT and OE lines (Figures 5A, B). These 
results further imply that the higher auxin levels in the OE lines 
did not induce the development of secondary LRs.

Auxin Induced the Development of 
Secondary Lateral Roots in the Absence 
of Strigolactones
To analyze further the interaction between SLs and auxin in 
the regulation of secondary LR development, the numbers 
of secondary LRs in the WT plants and the d mutants were 
recorded on application of NAA, NPA, NPA+NAA, NAA+GR24, 
and NPA+NAA+GR24. In comparison with mock treatment, 
application of NPA significantly decreased both DR5::GUS levels 
in the primary LR region and primary LR density in the WT 
plants and in the d mutants (Figures 6A, B). The numbers of 
secondary LRs were reduced in the d10 and d3 mutants under 
NPA treatment relative to the mock condition (Figure 7B). The 
numbers of secondary LRs were increased in the d mutants, but 
not in the WT plants, on NAA supply (Figure 7C). Application 

of NAA restored the effect of NPA on the numbers of secondary 
LRs to levels similar to those induced by NAA treatment alone 
in the d mutants (Figure 7D), and supply of GR24 eliminated 
the effect of NAA on secondary LR development (Figure 
7E). Treatment of roots with GR24 under the NPA plus NAA 
condition further inhibited secondary LR formation in the d10 
plants, but not in the d3, mutants (Figure 7F). These results 
imply that auxin induces secondary LR formation in the absence 
of SLs.

DISCUSSION
Development of optimal root morphology, including formation of 
LRs, is crucial for absorbance of nutrients and water and successful 
growth of transplants. In addition to providing anchorage, LRs 
contribute to water-use efficiency and facilitate extraction of 
micro- and macronutrients from soil (Casimiro et al., 2001; Péret 
et al., 2009). Most studies of LRs in plants have focused on primary 
LRs; the mechanisms of secondary LR formation remain largely 
unexplored. This study provides evidence of the regulatory roles of 
auxin and SLs in rice secondary LR development.

The SL pathway is involved in primary LR growth 
and development. In tomato (Solanum lycocarpum) and 

FIgURe 2 | The primary lateral root (LR) density and secondary LR number in wild-type (WT, Shiokari), strigolactone-synthesis (d10), and strigolactone-signaling (d3) 
mutants. Seedlings were grown in a hydroponic media with or without GR24 and Abamine for 21 days. (A) Primary LR density. (B) The morphology of secondary 
LR number. (C–e) Secondary LR number. Data are means ± SE. *P < 0.05 comparing the WT and other rice plants. The red arrow indicates the secondary LR. All 
experiments included three independent biological replicates.
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Arabidopsis, the density of primary LRs was increased in 
SL mutants, implying that SLs inhibit LR formation (Koltai 
et al., 2010; Kapulnik et  al., 2011; Ruyter-Spira et al., 2011). 
Application of GR24 reduced primary LR formation by 
suppressing the outgrowth of primary LRs in Arabidopsis 
and pea (Kapulnik et al., 2011; Ruyter-Spira et al., 2011; 
Rasmussen et al., 2012). The density of primary LRs was 
affected by GR24 in WT seedlings and SL-synthesis mutants, 
but not in SL-signaling mutants, implying that the effect of 
SLs on primary LR density is mediated via the MAX2 gene 
(Kapulnik et al., 2011; Koltai, 2011; Ruyter-Spira et al., 2011). 
In contrast to findings in upland plants, primary LR density 
did not differ between WT plants and d mutants in rice (Arite 
et al., 2012; Sun et al., 2014). Application of GR24 reduced 
primary LR density, but the extent of the decrease did not 
change with increasing GR24 concentrations (Sun et al., 2014). 
The primary LR densities in the d mutants in the present 
study were similar to those reported by Sun et al. (2014). 
Correspondingly, the numbers of secondary LRs increased 
significantly in the d mutants relative to the WT plants. 
Application of GR24 reduced the numbers of secondary LRs 

in the d10 mutants, but not in the d3 mutants (Figures 2C, 
D). Treatment with abamine induced secondary LR formation 
in the WT plants (Figure 2E). These results indicate that 
SLs inhibit secondary LR formation and demonstrate the 
involvement of the D3 gene in the SL regulatory pathway for 
secondary LR formation.

Accumulating evidence indicates that auxin regulates LR 
formation in plants (Goh et al., 2012; Xuan et al., 2016). Polar 
auxin transport is essential for LR formation, and an auxin-
transport-independent pathway is involved in changes in LR 
formation in plants (Swarup et al., 2005; De Smet et al., 2007; 
Okumura et al., 2013; Inahashia et al., 2018). However, the 
mechanisms by which auxin regulates secondary LR formation 
are poorly understood. In this study, DR5::GUS levels were 
higher in the roots of the d mutants than in the WT plants 
(Figures 3A, B), consistent with a report by Sun et al. (2014). 
These results imply that the higher auxin levels in the roots of 
d mutants are not the reason for secondary LR formation. In 
addition, lines overexpressing PIN2 showed increased auxin 
transport from shoots to roots in rice (Chen et al., 2012). 
Similar to the d mutants, higher DR5::GUS levels were found 

FIgURe 3 | DR5::GUS activity and secondary lateral root (LR) primordia number in rice plants. Seedlings were grown in a hydroponic media with or without 
1-naphthylacetic acid for 21 days. (A, B) DR5::GUS activity in LR region. (C) Secondary LR primordia number. Bar = 1 mm. Data are means ± SE. *P < 0.05 
comparing the WT and other rice plants. The red arrow indicates the secondary LR primordia. All experiments included three independent biological replicates.
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FIgURe 4 | The morphology and DR5::GUS activity in wild-type (WT, Nipponbare) and overexpression of OsPIN2 lines (OE1/OE2). Seedlings were grown in a 
hydroponic media for 21 days. (A) The morphology of the rice plants. (B–e) The morphology of roots. (F, g) DR5::GUS activity in lateral root region. Bar = 1 mm. 
Data are means ± SE. *P < 0.05 comparing the WT and other rice plants. All experiments included three independent biological replicates.

FIgURe 5 | Lateral root (LR) region in wild-type (WT, Nipponbare) and overexpression of OsPIN2 lines (OE1/OE2). Seedlings were grown in a hydroponic 
media for 21 days. (A) Primary LR density. (B) The morphology of LRs region. Data are means ± SE. All experiments included three independent 
biological replicates.
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in roots in the OE lines relative to the WT plants (Figures 
4F, G). However, no secondary LRs were induced in the OE 
lines (Figure 5B). These results further imply that higher 
auxin levels in roots may not be the reason for secondary LR 
formation in rice.

It has been suggested that SLs modulate auxin transport, 
thereby regulating primary LR growth (Ruyter-Spira et al., 
2011; Sun et al., 2014). Polar auxin transport is mediated 
primarily by PIN genes. In Arabidopsis, Ruyter-Spira et al. 
(2011) suggested that SLs modulate local auxin levels and that 
the net result of SL action is dependent on the auxin status of 
the plant. Application of GR24 inhibited primary LR formation 
by decreasing auxin transport in roots, with the involvement 
of PIN protein (Ruyter-Spira et al., 2011; Sun et al., 2014). 
Experiments examining [3H]IAA transport and DR5::GUS 
activity confirmed that application of GR24 markedly reduced 
auxin transport, indicating that PINs are involved in the auxin 
transport from the shoots to the roots that is downregulated 
by SLs in rice (Sun et al., 2014; Sun et  al.,  2018b). In this 
study, similar SL levels were recorded in WT plants and in 
lines overexpressing OsPIN2 (Supplementary Figure 2). 
Although higher auxin levels were found in OE lines than in 
WT plants (Chen et al., 2012; Figures 4F, G), no secondary 
LRs were induced in the OE lines (Figure  5). Application of 
NPA significantly decreased DR5::GUS levels in the primary 
LR region and the density of primary LRs in the WT plants 
and in the d mutants (Figures 6A, B). However, the numbers 
of secondary LRs were reduced in the d mutants under NPA 
treatment (Figures 7A, B). Treatment with NAA restored the 

FIgURe 6 | DR5::GUS activity and lateral root (LR) region in wild-type (WT, 
Shiokari) and d mutants. Seedlings were grown in a hydroponic media with or 
without NPA for 21 days. (A), DR5::GUS activity in LR region. (B) Primary LR 
density. Bar = 1 mm. Data are means ± SE. *P < 0.05 comparing the WT and 
other rice plants. All experiments included three independent biological replicates.

FIgURe 7 | The secondary lateral root (LR) number in wild-type (WT, Shiokari) and d mutants. Seedlings were grown in a hydroponic media in addition to NPA, 
NAA, NPA+NAA, NAA+GR24, and NPA+NAA+GR24 for 21 days. (A–F) Secondary lateral root number. Data are means ± SE. *P < 0.05 comparing the WT and 
other rice plants. All experiments included three independent biological replicates.
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effect of NPA on the numbers of secondary LRs in the d mutants 
(Figure 7C). These results imply that auxin is involved in the 
development of secondary LRs. The effect of NAA on secondary 
LR development was eliminated in the d10 mutants, but not in 
the d3 mutants, by application of GR24 (Figure 7E). And a 
model for these signaling pathways is shown in Supplementary 
Figure 3. These results further demonstrate that secondary LR 
formation is inhibited by SLs via the D3 response pathway, and 
the importance of auxin for secondary LR formation.
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As sessile organisms, plants must be highly adaptable to the changing environment
by modifying their growth and development. Plants rely on their underground part,
the root system, to absorb water and nutrients and to anchor to the ground. The
root is a highly dynamic organ of indeterminate growth with new tissues produced
by root stem cells. Plants have evolved unique molecular mechanisms to fine-tune
root developmental processes, during which phytohormones play vital roles. These
hormones often relay environmental signals to auxin signaling that ultimately directs root
development programs. Therefore, the crosstalk among hormones is critical in the root
development. In this review, we will focus on the recent progresses that jasmonic acid
(JA) and ethylene signaling are integrated into auxin in regulating root development of
Arabidopsis thaliana and discuss the key roles of transcription factors (TFs) ethylene
response factors (ERFs) and homeobox proteins in the crosstalk.

Keywords: Arabidopsis thaliana, root, auxin, jasmonic acid, ethylene, ethylene response factor, homeobox protein

INTRODUCTION

Plant root systems represent the underground organs that provide mechanical support and uptake
of nutrients and water. Depending on the species and environment, root systems show a high
level of morphological diversity. Improved root architecture can increase the utilization of water
and nutrients, which in turn helps increase crop yield. Most dicotyledons have tap root systems,
while monocotyledons have fibrous root systems. The tap root system is composed of a developed
primary root, lateral roots and adventitious roots, while the fibrous root system is mainly composed
of adventitious roots (Martinez-de la Cruz et al., 2015; Zhang X. et al., 2019). The development
of primary roots begins from embryonic development, whereas the lateral roots are initiated
from asymmetrical divisions of the pericycle founder cell of primary roots. The root system
morphology or architecture (RSA) is a highly plastic trait that is influenced by numerous biotic
and abiotic factors (Osmont et al., 2007). An increasing number of studies in the model plant
Arabidopsis thaliana have helped to address the underlying molecular mechanisms of this plasticity
(Motte et al., 2019).

Root development occurs with the concerted action of multiple plant hormones (Petricka et al.,
2012). Auxin has emerged as a core player on which other plant hormones integrate to regulate
root development. Auxin synthesis, transport, and signaling pathways are important for plant root
development. Indole-3-acetic acid (IAA) is the main naturally occurring auxin and the biosynthetic
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pathway of IAA has been clearly understood (Zhao, 2018).
L-tryptophan is the major precursor of IAA synthesis, and
the rate-limiting step of tryptophan synthesis is catalyzed by
anthranilate synthase (a heterocomplex consisting of ASA1/2 and
ASB1) (Sun et al., 2009; Casanova-Saez and Voss, 2019). ASA1
and ASB1 are also named WEI2 (Weak Ethylene Insensitive
2) and WEI7, respectively, since they were characterized from
ethylene insensitive mutants of root growth (Stepanova et al.,
2005). The two-step indole-3-pyruvate (IPA) pathway is the only
IAA biosynthetic pathway that has been fully elucidated, and it
is also the main pathway for IAA synthesis (Zhao, 2012). TAAs
(Tryptophan Aminotransferase of Arabidopsis) and YUCCAs
(YUCs) are enzymes that catalyze these two steps (Mashiguchi
et al., 2011; Zhao, 2012). TAA1/WEI8, like ASA1 and ASB1,
was also identified from the ethylene insensitive mutant wei8
(Stepanova et al., 2008; Tao et al., 2008). Polar distribution is
characteristic of auxin, which is mediated by PIN-FORMED
(PIN) and AUXIN1/LIKE-AUX1 (AUX1/LAX) family members
under strict regulations (Band et al., 2014; Adamowski and
Friml, 2015). Localized auxin biosynthesis has been shown to
play critical roles in root development as well (Zhao, 2010,
2018). Besides, the auxin signaling pathway is intensively studies
recently with a focus on the fine regulation mechanisms of
the IAA (INDOLEACETIC ACID-INDUCED PROTEIN) -ARF
(AUXIN RESPONSE FACTOR) network (Wang and Estelle,
2014). Briefly, the auxin receptor TIR1/AFB (TRANSPORT
INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX) binds
to auxin causing degradation of IAA proteins that interact with
ARF transcription factors (TFs) (Leyser, 2018; Gallei et al., 2019).
ARFs bind to the auxin response elements (AREs) in promoters
of target genes to regulate gene expression (Gallei et al., 2019).

During the stage of embryogenesis, auxin distribution patterns
determine the position around which the embryonic roots start
growing. In a later stage, auxin distribution patterns in and
around the meristem determine root meristem activity and lateral
root spacing (Motte et al., 2019). The development of lateral root
is closely related to auxin, including its synthesis, transport and
signal transduction (Osmont et al., 2007; Motte et al., 2019).

The gaseous phytohormone ethylene is well-known for its
functions in plant maturation and senescence. In addition,
numerous studies have shown that ethylene is involved in
various plant growth and developmental processes, including
root growth (Ruzicka et al., 2007; Swarup et al., 2007; Lewis
et al., 2011; Street et al., 2015; Mao et al., 2016; Miao et al.,
2018). The function of jasmonic acid (JA) in plant injury and
defense responses has been thoroughly studied, and its roles in
growth and development has also been widely reported (Kazan
and Manners, 2013; Cai et al., 2014; Ye et al., 2019). Like
other hormone signaling pathways, ethylene and JA signaling are
integrated into auxin in root development, largely through TFs
acting as the key crosstalk nodes.

Ethylene-Auxin Crosstalk in Root
Development
Ethylene is an important regulatory signal in regulating the
process of root development (Ruzicka et al., 2007; Swarup et al.,
2007; Street et al., 2015). Plants produce more ethylene when

exposed to external stimuli (Wang et al., 2002). Ethylene binds
to ETR1(ETHYLENE RESPONSE 1) receptor family on the
endoplasmic reticulum (ER) membrane, leading to inactivation
of the S/T protein kinase CTR1 (CONSTITUTIVE TRIPLE
RESPONSE 1), which functions to repress EIN2 (ETHYLENE
INSENSITIVE 2). After detaching from CTR1, EIN2 can be
cleaved to release EIN2 C-terminal (EIN2C). The EINC has
two levels of regulation of EBF1/2 (EIN3-BINDING F BOX
PROTEIN 1/2). On the one hand, EIN2C binds to 3′-UTR of
EBF1/2 in the cytoplasm to inhibit its translation (Li et al.,
2015; Merchante et al., 2015), and on the other hand, EIN2C
is translocated into the nucleus to promote the degradation of
EBF1/2 (Qiao et al., 2012; Dolgikh et al., 2019), both leading
to stabilization of EIN3/EIL1 (ETHYLENE-INSENSITIVE3-
LIKE1) to activate ethylene response genes. Although ethylene
is best known for triggering fruit ripening, it also plays a crucial
role in regulating root development. In response to ethylene
or its precursor ACC (1-aminocyclopropane-1-carboxylic acid)
treatment, the root of Arabidopsis seedlings shows three growth
responses: rapid downregulation of cell elongation, increased
root width, and induction of ectopic root hairs, which collectively
will provide plants with greater anchorage and more dynamic
regulation of root growth (Swarup et al., 2007).

Inhibition of root growth by ethylene depends on auxin
biosynthesis, transport and signaling pathway (Ruzicka et al.,
2007; Swarup et al., 2007). Ethylene up-regulates expression
of auxin synthesis and transport-related genes in Arabidopsis
roots, resulting in a high concentration of auxin that inhibits
cell elongation (Ruzicka et al., 2007; Strader et al., 2010).
Ethylene modulates the auxin transport machinery by directly
or indirectly regulating the expression of auxin efflux (PINs) and
influx (AUX1) carriers (Ruzicka et al., 2007). A subsequent study
showed that ethylene can negatively regulate cell proliferation
in addition to inhibiting cell elongation and SHY2 (SHORT
HYPOCOTYL 2)/IAA3 mediated this effect in the root meristem
(Street et al., 2015). It has been found that in Arabidopsis
seedlings CTR1 transduces the ethylene signal to EIN2 in the root
and then affects PIN2 expression to modulate the root stem cell
niche maintenance (Mendez-Bravo et al., 2019). The screening
experiment on the ethylene overexpression mutant eto1 identified
a small molecule named L-kynurenine (Kyn), which could
inhibit ethylene-directed auxin biosynthesis and root growth by
inhibiting TAA1’s activity (He et al., 2011). POLARIS (PLS),
encoding a predicted functional 36-amino acid peptide, is
required in ethylene-mediated root inhibition through regulating
auxin transport and affecting microtubule cytoskeleton dynamics
(Chilley et al., 2006). The PLS expression is activated by auxin
and suppressed by ethylene, and PLS peptide in turn negatively
regulates the ethylene signaling pathway (Chilley et al., 2006). It
was reported that ethylene can induce an oxidase named MINE,
which produces pyridoxal-5′-phosphate (PNP), and PNP acts as
a cofactor in TAA1/TAR-dependent auxin biosynthesis, which
in turn influences ethylene-auxin crosstalk in Arabidopsis root
(Kim et al., 2018).

Ethylene is involved in regulating the growth and
development of not only primary roots but also lateral
roots. Increased endogenous ethylene or ACC treatment
activates PIN3/7 expression thereby enhancing auxin transport
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and reducing lateral root formation (Lewis et al., 2011).
Auxin signaling affects the cell division pattern of lateral root
primordium by regulating the expression of the ERF (ethylene
response factor) family transcription factor PUCHI, which is
required for the proper pattern of early lateral root primordia
(Hirota et al., 2007). PLS, the small peptide mentioned above,
is also required in lateral roots initiation via ethylene-mediated
auxin transport to the pericycle (Chilley et al., 2006).

Adventitious root initiation and development are also
regulated by ethylene-auxin crosstalk. Ethylene was reported to
inhibit adventitious rooting in Arabidopsis dark-grown seedlings
by negatively regulating auxin biosynthesis (Veloccia et al., 2016).
When applied together with IBA (indole-3-butyric acid), ethylene
promotes the conversion of IBA to IAA and thus the development
of adventitious roots (Veloccia et al., 2016). Ethylene-auxin
crosstalk also regulates the initiation of adventitious roots near
cut sites where the levels of auxin and ethylene both increase
(Guan et al., 2019).

JA-Auxin Crosstalk in Root Development
Jasmonates are well-known lipid-derived compounds as key
regulators in plant growth and development as well as in plant
stress responses. JA participates in the regulation of root growth,
seedling development, flower development, root regeneration,
seed development, seed germination, tuber formation and
senescence (Wasternack and Hause, 2013; Ye et al., 2019;
Zhang G. et al., 2019). JA regulates root growth in many
aspects, including inhibition of primary root (Chen et al., 2011),
promoting lateral roots formation (Cai et al., 2014), negatively
regulating adventitious roots (Gutierrez et al., 2012; Lakehal
et al., 2019), and inducing root regeneration (Ye et al., 2019;
Zhang G. et al., 2019). Most of these processes are achieved via
cross-talking with auxin.

Root growth inhibition is one of the first discovered
features of JA. By screening mutants insensitive to JA-
mediated root inhibition, a number of regulatory factors
in the JA signaling pathway were revealed, such as JAR1
(JASMONATE RESISTANT 1) (Staswick et al., 1992),
MYC2/JAI1 (JASMONATE INSENSITIVE 1) (Berger et al.,
1996), and COI1 (CORONATINE INSENSITIVE 1) (Feys et al.,
1994). JA inhibits root elongation by reducing both cell counts
and cell dimension, suggesting that JA-induced primary root
growth inhibition is a complicated process involving diverse
cellular processes in different root tissues (Chen et al., 2011,
2012). JA-mediated inhibition of root development is auxin-
dependent (Wasternack and Hause, 2013). JA activates MYC2,
leading to the repression of PLT1 (PLETHORA1) and PLT2 in
root stem cell niche (Chen et al., 2011). PLTs encodes members of
the AP2/EREBP transcription factor family and are key effectors
for the establishment of the stem cell niche during embryonic
pattern formation. They respond to auxin accumulation and
this response depends on auxin-responsive TFs. Therefore, PLTs
serve as a key node for JA-auxin crosstalk in regulating the
maintenance of the stem cell niche in roots (Chen et al., 2011).

Jasmonic acid is also involved in regulating lateral roots
development. In response to methyl jasmonate (MeJA)
treatment, Arabidopsis wild type produces more lateral

roots, while the mutant asa1-1 does not produce lateral roots
(Sun et al., 2009). The JA receptor COI1 plays a critical role
in the formation and even distribution of lateral roots (Raya-
Gonzalez et al., 2012). In the coi1-1 mutant, the lateral roots
displayed uneven distribution and JA failed to induce more
lateral roots (Raya-Gonzalez et al., 2012). In the root, MeJA
activates the transcription of ASA1 and several other auxin
biosynthesis-related genes, such as YUCCA2 (Cheng et al.,
2006), ASB1 (Stepanova et al., 2005), and NITRILASE 3 (NIT3)
(Kutz et al., 2002). JA failed to increase lateral root initiation
in mutants with disrupted auxin signaling, like slr1 (iaa14) and
arf7/19 double mutant (Sun et al., 2009), which further supports
that JA-induced lateral root formation is auxin-dependent.
Activated expression of the transcription regulator HDG11
(HOMEODOMAIN GLABROUS11) increases the level of JA in
the roots by directly up-regulating the expression of several genes
encoding JA biosynthetic enzymes, resulting in enhanced auxin
signaling and lateral root formation (Cai et al., 2015). MeJA can
also induce YUC8 and YUC9 expression and thus participate in
auxin-mediated primary root growth and lateral root initiation
(Hentrich et al., 2013).

Jasmonic acid can exert negative effects on adventitious root
formation (Gutierrez et al., 2012). ARF6, ARF8, and ARF17 act
upstream of Gretchen Hagen3.3 (GH3.3), GH3.5, and GH3.6.
These three GH3s inactive JA by conjugating JA to amino acids
Asp, Met, and Trp, and therefore promote adventitious rooting
(Gutierrez et al., 2012). The effect of JA in adventitious root
development depends on experimental conditions. At low sub-
micromolar concentrations, MeJA has been shown to promote
adventitious root development when applied together with IBA,
and this process does not involve regulation of ARF6 or ARF8
expression (Fattorini et al., 2018).

It is well known that plants can regenerate tissues and even
complete organs after damage. Recently, Zhou et al. (2019)
reported that the synergy between jasmonate and auxin signaling
pathways promotes root regeneration by activating root stem
cells (Zhou et al., 2019). In this process, JA induces ERF109,
CYCLIN D6;1 (CYCD6;1), and ERF115 expression to activate
stem cell and promote tissue regeneration. Auxin also activates
key regeneration regulators of this pathway (Zhou et al., 2019).

TFs Involved in JA-Auxin and
Ethylene-Auxin Crosstalk
Transcription factors are specific implementers of numerous
regulation processes. Each hormone crosstalk involves many
important TFs. Here we focus on ERF family and HD-ZIP TFs
in JA-auxin and ethylene-auxin crosstalk.

Ethylene response factor family TFs are plant specific
and involve in a variety of plant development processes
and stress responses. Many ERFs are responsive to ethylene.
ERF1 negatively regulates primary root elongation in an
auxin biosynthesis-dependent manner. Being downstream and
a direct target of EIN3, ERF1 activates ASA1 by binding to
GCCGCC motifs (GCC-boxes) in the promoter of ASA1. The
up-regulation of ASA1 increases auxin biosynthesis, promotes
auxin accumulation in root tip, and consequently suppresses root
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elongation (Mao et al., 2016). Therefore, ERF1 acts as a critical
crosstalk joint connecting ethylene and auxin in regulating
primary root elongation (Figure 1).

HOMEOBOX PROTEIN52 (HB52) belongs to the HD-ZIP
transcription factor family. The HD-ZIP transcription factor
family only found in plants with 47 members in Arabidopsis.
According to protein structures and functions, HD-ZIP family
members can be divided into four subfamilies (I-IV), and
HB52 belongs to the HD-ZIP I subfamily (Ariel et al., 2007).
HD-ZIP I family genes are responsive to external stimuli
like drought, high temperature, osmotic stress, and lights.
HB52 was identified from the study of ethylene-mediated root
inhibition (Mao et al., 2016). HB52 is highly expressed in
roots and is responsive to the ACC treatment as a direct
target of EIN3. HB52 regulates primary root elongation through
affecting auxin transport. HB52 binds to the homeodomain-
binding cis-elements in the promoters of PIN2 and WAG1/2
to activate their expression (Figure 1). WAG1/2, closely related
to PINOID, can phosphorylate PIN2 to increase its auxin
efflux carrier ability (Willige et al., 2012). Therefore, HB52
serves as another important crosstalk node between ethylene
and auxin to regulate root elongation (Miao et al., 2018).
Together, ERF1 and HB52 constitute the ethylene-responsive
modules for auxin biosynthesis and transport, respectively, in
root elongation regulation.

ERF109 is another member of the ERF family and responsive
to the JA signaling pathway. ERF109 binds to GCC-boxes in the
promoter regions of its target genes. Under normal conditions,

FIGURE 1 | Integration of Ethylene into Auxin Signaling in Arabidopsis Root
Development. Environmental cues trigger the biosynthesis of ethylene in
Arabidopsis, and then ethylene binds to ETR receptors to inactivate CTR1,
which functions to repress EIN2. When EIN2 is released by CTR1, it can be
cleaved and then helps to stabilize EIN3/EIL1, leading to the activation of
downstream transcriptional cascades. Ethylene inhibits primary root growth
by regulating auxin biosynthesis, transport, and signaling. ERF1 and HB52
function as crosstalk nodes between ethylene and auxin in this process. An
increase in endogenous ethylene enhances auxin transport and reduces
lateral root formation depending on AUX1, PIN3, and PIN7. The ERF1 and
HB52 regulatory modules are part of the molecular mechanisms in the
adaptive response of root growth to environmental cues.

ERF109 is expressed at a very low level in roots. After MeJA
treatment, the transcription level of ERF109 was significantly
induced in both roots and shoots, especially in the lateral root
primordium region and the tip and base of lateral roots (Cai
et al., 2014). Genetic analyses showed that ERF109 positively
regulates lateral root formation through upregulating auxin
biosynthesis. In vitro and in vivo experiments showed that
ERF109 binds to the GCC-boxes in ASA1 and YUC2 promoters
and directly activates their expression, leading to increased auxin
biosynthesis and accumulation in the root (Cai et al., 2014).
Thus, ERF109 serves as an important crosstalk node between JA
and auxin signaling (Figure 2). Recently, three research groups
independently reported that ERF109 has a novel function in
plant regeneration depending on its roles in upregulating ASA1
expression (Ye et al., 2019; Zhang G. et al., 2019) or activating
ERF115 and CYCD6;1 (Zhou et al., 2019).

ERF1, ERF109, and HB52 are representative TFs involved in
the crosstalk of JA-auxin and ethylene-auxin signaling pathways
in regulating root development. Other TFs participated in the
processes are yet to be identified.

CONCLUSION AND PERSPECTIVES

Crosstalk between hormone signaling are fundamental process
in plant development, yet the underlying mechanisms are far
from clear. In this review, we summarized recent advances on the
understanding of ethylene and JA integration into auxin signaling
in the regulation of root development.

FIGURE 2 | Integration of JA into Auxin Signaling in Arabidopsis Root
Development. Plants generate JA in response to environmental cues. COI1
receptor perceives JA, and then recruits JAZs subjected to degradation.
Subsequently, MYC2 can activate transcription of early JA-responsive genes.
JA promotes lateral root formation by regulating auxin biosynthesis (via ASA1
and YUC2) and transport (via PID and PIN2/4). Transcription factor ERF109
functions as a key crosstalk node in this process. JA inhibits primary root
development by repressing the expression of PLT1 and PLT2. Auxin
modulates JA homeostasis by regulating GH3.3/5/6 through ARF6/8/17, then
influences adventitious root formation. Therefore, the ERF109 regulatory
module plays critical roles in the growth and development of lateral, primary
and adventitious roots in the adaptive response of the root system to
environmental factors.
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Auxin plays the central role in regulating root development.
Plant roots constantly perceive environmental cues and generate
hormonal signals in order to adjust developmental programs
for better adaptation to the changing surroundings. JA and
ethylene are two representative hormones in plants responding
to environmental changes. These two hormonal signals can
be relayed to auxin signaling, the master regulator of root
development. In the signal relay, TFs play critical roles to
integrate other hormonal signal into auxin signaling through
modulating auxin biosynthesis (for example, ERF1 and ERF109)
or auxin transport (for example, HB52) to fine-tune the
regulation of primary root growth and/or lateral root formation.

To unravel the complete network of JA-auxin and ethylene-
auxin crosstalks in root development, we need to identify
the more components involved in these processes, as well as
understand the spatial-temporal relationships between these
components. Some attempts have been recently made by
identifying the root epidermis cells where the interaction between

ethylene and auxin takes place (Vaseva et al., 2018; Mendez-
Bravo et al., 2019). Moreover, local auxin biosynthesis is critical
in ethylene-auxin crosstalk (Brumos et al., 2018). With the
advance of new technology such as single-cell sequencing and
high-resolution microscope, in-depth details in the crosstalk
will be revealed.
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Climate change is threatening crop productivity worldwide and new solutions to adapt
crops to these environmental changes are urgently needed. Elevated temperatures
driven by climate change affect developmental and physiological plant processes that,
ultimately, impact on crop yield and quality. Plant roots are responsible for water and
nutrients uptake, but changes in soil temperatures alters this process limiting crop
growth. With the predicted variable climatic forecast, the development of an efficient
root system better adapted to changing soil and environmental conditions is crucial for
enhancing crop productivity. Root traits associated with improved adaptation to rising
temperatures are increasingly being analyzed to obtain more suitable crop varieties. In
this review, we will summarize the current knowledge about the effect of increasing
temperatures on root growth and their impact on crop yield. First, we will describe the
main alterations in root architecture that different crops undergo in response to warmer
soils. Then, we will outline the main coordinated physiological and metabolic changes
taking place in roots and aerial parts that modulate the global response of the plant to
increased temperatures. We will discuss on some of the main regulatory mechanisms
controlling root adaptation to warmer soils, including the activation of heat and oxidative
pathways to prevent damage of root cells and disruption of root growth; the interplay
between hormonal regulatory pathways and the global changes on gene expression
and protein homeostasis. We will also consider that in the field, increasing temperatures
are usually associated with other abiotic and biotic stresses such as drought, salinity,
nutrient deficiencies, and pathogen infections. We will present recent advances on how
the root system is able to integrate and respond to complex and different stimuli in
order to adapt to an increasingly changing environment. Finally, we will discuss the
new prospects and challenges in this field as well as the more promising pathways for
future research.

Keywords: climate change, root traits, crop yield, adaptation, increased temperature

CLIMATE CHANGE AND CROP YIELD

Effects of climate change are accelerating significantly since the last century. Changes in weather
conditions and increases in the occurrence of extreme events are being felt more often. The
Earth’s climate continues to warm and, all the model simulations predict a global trend to warmer
temperatures (Lean and Rind, 2009). Considering the temperature data, the northern hemisphere
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is warming more rapidly than the southern hemisphere (Foster
and Rahmstorf, 2011). Although long term weather changes
are more difficult to predict, it is expected that, by 2050,
the global mean temperature increase 1.5–2◦C. These changes
in the global temperature would cause further alterations in
the climate leading to an increased frequency of heat-waves,
fewer days of freezing temperatures, less rainfall but more
intense precipitations and higher incidence of droughts and
other weather extremes experienced across the globe that will
negatively affect agricultural production (Easterling et al., 2000;
Dempewolf et al., 2014). The global population is expected to
reach nine billion by 2050, representing an additional two billion
people to feed (Ray et al., 2013). The projections show that
feeding world’s population would require raising the overall food
production by around 70% by 2050 (Global agriculture toward
2050. Rome, FAO, 2009a). However, current trajectory shows
that the rates of global production in key crops would increase
far below what is needed to produce enough food to meet the
raising population demands (Ray et al., 2013). This widening
mismatch between demand and supply is causing concern for
future food security (Godfray et al., 2010). Further reasons for
alarm are the yield losses predicted to be provoked by climate
change (Lobell et al., 2011; Tai et al., 2014). Although climate
changes will not impact crop production evenly according
to geographical distribution, it will threaten food production
globally (Thiault et al., 2019). For all those reasons, there is
an urgent need to maintain and improve crop productivity
under these climatic constrains (Bailey-Serres et al., 2019;
Shan-e-Ali Zaidi et al., 2019).

Climate Change Impact on Crops
Climate change is a long-term challenge, but requires urgent
action given the pace and the scale by which greenhouse gases are
accumulating in the atmosphere and the risk of more than 2◦C
global temperature rise. Greenhouse gases (CO2, O3, and CH4)
driving climate change, affect directly crop productivity (IPCC,
2014). Higher concentrations of CO2 are expected to act as a
fertilizer by improving net photosynthesis rates and increasing
water use efficiency (Long et al., 2004; Long et al., 2004; Deryng
et al., 2016). This positive effect is higher in C3 plants such
as wheat, rice and soybean, due to the limited photosynthetic
output of photorespiratory carbon losses. Nevertheless, in the
long term, the constant increment of CO2 concentration will
have a negative impact in the climate, thus counterbalancing
the increase in crop yield (Specht et al., 1999; Long et al., 2004;
Dong et al., 2018; Senapati et al., 2019; Wei et al., 2019). On
the other hand, O3 changes have significant negative effects on
the yield of major agricultural crops. O3 is one of the most
highly reactive oxidants, provoking damage in plant tissues,
which includes visible leaf injuries, decreased photosynthesis
and accelerated senescence and cell death (Vandermeiren et al.,
2009). But interestingly, there are pronounced differences in
O3 sensitivity between species (Mills et al., 2007). O3 causes a
decrease in crop biomass in wheat and soybean, more specifically
root biomass, during reproductive and grain filling stages leading
to a reduction of overall crop yield. Consequently, global
production losses due to O3 in these crops are expected to be

higher than losses in rice and maize (Van Dingenen et al., 2009;
Avnery et al., 2011; Tang et al., 2013; Feng Z. et al., 2019;
Wang Y. et al., 2019).

Climate change is causing the shifting of the rainfall patterns.
More intense rainfall producing flooding periods, the appearance
of drought seasons and offseason precipitations are expected. In
several prediction models, offseason rainfall during critical stages
of crop growing could lead to a very significant reduction in
crop yield (Lobell and Burke, 2008). In winter oilseed rape it has
been reported that a more intense rainfall during autumn and
winter periods may boost the appearance of diseases (Sharif et al.,
2017). And in maize and soybean, more intense precipitations
in spring provoke early damage in young plants (Urban et al.,
2015). Another risk associated to more extreme rainfall is the
intensification of flooding events. In China or Bangladesh much
of the harvest areas are in the flooding threatened regions.
Floods put in danger the food security of these countries by
destroying cropping areas or delaying crop planting due to high
soil moisture (Monirul Qader Mirza, 2002; Xu et al., 2013; Iizumi
and Ramankutty, 2015). Moreover, in coming years the flooding
risk of coastal regions will increase due to the rising of the
sea-level and the alteration of climatology. Seawater flooding of
coastal regions is becoming more frequent because waves and
storm surges are getting stronger (Vitousek et al., 2017). Osmotic
and anionic stress caused by the high salinity of seawater will
become an additional problem to crops besides the low O2 and
CO2 levels caused by anoxia. It has been shown that oilseed rape
plants exposed to seawater flooding conditions suffer a reduction
in plant biomass and a fall in productivity due to a lower number
of siliques per plant and a lower seed mass (Hanley et al., 2019).

More frequent drought events are also expected due to longer
periods without rain added to warmer temperatures. Although
droughts restrict cropping areas, the decrease of agricultural
productivity is mainly caused by a severe direct effect on crop
yield (Saadi et al., 2015; Lesk et al., 2016; Zipper et al., 2016). The
most damaging impact of drought stress on crop productivity
occurs at reproductive or growing stages. The former produces
pollen sterility (as observed in barley) or ovary abortion (as
observed in maize) and the latter a reduction in kernel number
and biomass (Boyer and Westgate, 2004). In general, a drought
period causes a reduction of water consumption by the plant,
leading to a stomatal closure and lower CO2 intake. Following
decrease in photosynthesis ratio provokes a final reduction of
crop biomass (Garofalo et al., 2019). The water scarcity imposed
by drought is frequently accompanied by salinity stress. The ion
toxicity and the reduction of soil water potential contribute to
a severe reduction of plant growth. Soil salinity reduces yield in
highly tolerant crops as cotton, barley and sugar beet as well as
in crops with high salinity sensitivity as sweet potato, wheat or
maize (Zörb et al., 2019).

All these adverse climate effects together with elevated
temperature will increase agriculture losses even further (Fuhrer,
2003; Lobell and Burke, 2008; Ainsworth, 2017; Tai and Val
Martin, 2017). Numerous studies suggested that global warming
will lead to substantial declines in mean crop yields in the
next future, and that the most serious agricultural impacts
will occur in the tropics, where the majority of the world’s
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food-insecure population resides (Battisti and Naylor, 2009).
Furthermore, mean crop yield will decline and their variability
will increase even if interannual climate variability remains
unchanged (Tigchelaar et al., 2018). Adding up these and other
effects, models show possible yield losses of 6–10% per 1◦C
of warming in the average temperature of the growing season
(Guarino and Lobell, 2011). Moreover, climate variation is
already causing a major effect on the stability of crop production.
Yields of the top ten global crops–barley, cassava, maize, oil
palm, rapeseed, rice, sorghum, soybean, sugarcane and wheat
has been affected significantly in different regions all over the
world (Ray et al., 2019). In this review we will focus on the effect
and consequences of one of the major components of climate
change, increased temperature and, in particular, its effect on
crop roots (Figure 1).

Increased Temperature Impact on Crops
As a consequence of global warming, the yield increment that
started in the last century is stagnant and even decreasing in
some areas (Lobell and Field, 2007). High temperature response
has been studied at extreme conditions characterized by the
heat shock response. However, even small differences in ambient
growth temperature can have profound effects on crop growth
and yield. Although abundant literature is available on how plants
tolerate extreme damaging heat less is known on how crops adapt
to moderately increased or warmer temperatures (Quint et al.,
2016; Vu et al., 2019b).

Prediction models reveal that the continuous increment in
temperature would result in heavy losses in crop yield at medium
latitudes (Liu et al., 2016), whereas less fertile soil areas located
at extreme latitudes are getting a more appropriate climate for
agriculture (Long and Ort, 2010; Lobell et al., 2011; Iizumi and
Ramankutty, 2015; Sharif et al., 2017). Thus, warmer temperature
could expand the areas potentially suitable for cropping, increase
the length of the growing period, and crop yields may rise in
these areas (How to Feed the World in 2050, Rome; FAO, 2009b).
However, globally higher temperatures shorten the growth
season, letting the crops with a much shorter period to perform
photosynthesis even in the case of well irrigated and tolerant
crops. Moreover, heat stress directly affects photosynthetic rate
accentuating the effect of this shorter growth period. As a result,
crops have less biomass to face the anthesis and the consequent
grain filling. Warmer environments also affect post-anthesis
stages reducing grain growth and promoting fruit senescence.
Additionally, the increase in temperature promotes a higher
evapotranspiration rate that, ultimately reduce soil moisture
and the available water needed for grain filling. When plants
suffer extreme temperatures of short duration these processes
are even more severely affected (Asseng et al., 2011, 2015, 2019;
Liu et al., 2014, 2019; Lesk et al., 2016). Accordingly, it has
been reported that in wheat, rice and shorghum heat causes
loss of grain yield by shortening its growth period, altering
spikelet’s development (number of spikes per plant and spikes
size), grains per spike and reducing grain size (Prasad et al., 2006;
Jagadish et al., 2010; Fahad et al., 2017). Similarly, in oilseed
rape, Brassica rapa and Brassica juncea yield losses are produced
by a decrease in seeds per silique and number of siliques per

plant as well as defects in pod formation (Angadi et al., 2000;
Morrison and Stewart, 2002). High temperatures also lead to a
decrease in crop quality by changing seed composition. Thus, in
cereals and oilseed crops heat stress reduces the oil, starch, and
protein contents of seeds (Jagadish et al., 2015; Fahad et al., 2017).
It has been shown that in wheat, increased temperatures reduce
the levels of valuable protein whereas it causes the accumulation
of proline and soluble carbohydrates (Qaseem et al., 2019). On
the other hand, higher temperature also reduces oilseed rape
seeds quality by reducing the amounts of oil and increasing the
levels of proteins and glucosinolates (Aksouh et al., 2001). In
rice, high temperatures during ripening led to the deterioration
of grain quality including starch accumulation (Morita et al.,
2016; Chen et al., 2017). In brief, crops are substantially but
heterogeneously affected by temperature variability (Thiault
et al., 2019). To remedy this effect, we need to evaluate and
understand further the changes that crops undergo under the
future climatic scenario.

ROOT RESPONSE TO INCREASED
TEMPERATURE

Crops face rising temperatures by triggering a heat response,
whose timing and effectiveness will determine if the plants
overcome the stress. The effect of increased temperatures on
aerial parts of the plants and their responses has been well
studied, whereas their influence and response on roots (and
root-to-shoot signaling) has been less explored (Wahid et al.,
2007). If we attempt to enhance adaptation of crops to severer
environments triggered by climate change, we need to take into
account below ground traits. For that, first, we need to improve
our understanding of the processes regulating the root response
to increased temperature.

Plants have a greater water demand in warmer environments
due to increased water loss by evapotranspiration and decreased
water uptake by the root, causing an overall water deficit
situation (Heckathorn et al., 2013). Water uptake takes place
in the root either through aquaporins, membrane channels
that facilitates water transport inside the cells, or by diffusion
through plasmatic membrane (Maurel et al., 2015). Studies with
several crops have shown different response of aquaporins and
plasmatic membrane fluidity to higher temperatures in roots.
Thus, in pepper and wheat, water uptake in warmer soil seems to
positively correlate with aquaporin activity (Carvajal et al., 1996;
Cabañero et al., 2004), whereas in broccoli (Brassica oleracea
var. italica) and maize, warmer temperatures decrease aquaporin
quantity and activity but increase membrane fluidity. When
temperature is extreme, the membrane starts to rigidify heavily
decreasing even more water uptake (Iglesias-Acosta et al., 2010;
Ionenko et al., 2010).

Nutrient balance is also altered by changes in temperature.
Similarly to water, temperature effect on nutrient uptake varies
depending on the crop. In tomato, warmer soils limit root
growth and decrease nutrient uptake causing a reduction in
macro and micro-nutrient levels (Tindall et al., 1990; Giri et al.,
2017). In Agrostis stolonifera, a grass species used as fodder for
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FIGURE 1 | Mechanisms of temperature sensing and response in plants. Plants sense variations in temperature that are translated into the activation of several
physiological and signaling processes. Primary temperature-sensing events start with the alteration of membrane fluidity and composition that causes the activation
of calcium (Ca2+) channels. A feedback mechanism between the calcium and lipid signaling through accumulation of PIP2 and IP3, enhances even further the Ca2+

entry in the cell. Several heat shock transcription factors (HSFs) and calcium-dependent protein kinases (CDPKs and MAPKs) are activated by Ca2+ and ROS/redox
signaling network. At the same time, the accumulation of unfolded proteins in the endoplasmic reticulum (ER) that are potentially toxic activates the ER stress that
sets off the unfolded protein response (UPR), a cytoprotective signaling pathway. Subsequent activation of bZIP transcription factors induces the expression of Heat
Shock Proteins (HSPs). HSPs protect proteins from misfolding and subsequent loss of functionality and help the detoxification of ROS. ARP6, a subunit of SWR1
complex, mediates the insertion of the variant histone H2A.Z in the nucleosome. At warmer temperatures, the antagonistic roles of H2A.Z and HSF1 seem to be
required to activate heat response (HR) gene transcription. Lastly, the alternative splicing machinery allows the rapid adjustment of the abundance and function of
key stress-response components.

livestock, the application of high temperature to roots results
in a lower number of roots and an increase in the uptake and
partitioning of nitrogen, phosphorous and potassium (Huang
and Xu, 2000). In Andropogon gerardii, another plant used as
fodder, supra-optimal root temperatures cause a decrease in
root and shoot growth. Further higher temperatures moderately
affects nitrogen uptake but its efficiency use is severely perturbed
(DeLucia et al., 1992). In contrast, warm temperature does
not alter nitrogen, phosphorus and potassium uptake in
maize, but higher temperatures seem to only slightly decrease
phosphorus and potassium uptake (Bravo-F and Uribe, 1981;
Hussain et al., 2019).

All these negative root responses to increase temperature
severely compromise water and nutrient uptake and the
consequence is a dramatic reduction on crop yield. Cultivars

better adapted to temperature will have to shape their roots to
improve their water and nutrient efficiency if they aim to secure
yield stability under this challenging environment. As we will
ascertain during this review, root organization shows a high
plasticity in response to soil changes providing high opportunities
for improvement. Better comprehension of the physiological,
genetic and molecular mechanisms regulating this plasticity will
allow us to develop better adapted crops.

Temperature Sensing and Signaling in
Roots
Although it has been proposed that thermomorphogenesis
signaling could differs between roots and shoots, a common set
of mechanisms of temperature sensing mediate organ response
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FIGURE 2 | Root response to increased ambient temperature. Climate change is increasing the ambient temperature altering crops growth. Crops adapt root
development and functionality to maintain water and nutrients availability in this stressing environmental situation. These changes in their RSA, include alterations in
lateral and primary root growth and root hair elongation, and adjustment of their interchange with aboveground organs. Roots also suffer changes in their
metabolism affecting mainly carbohydrate/amino acid balance, lipid metabolism and the activation of heat and oxidative pathways to prevent disruption of root
growth. Temperature-mediated alteration of hormone levels trigger signal transduction pathways that prepare plants to overcome the stress situation. Other
significant molecular changes that regulate root adaptation include global transcriptomic reprogramming, changes in protein profiles, and activation of epigenetic and
chromatin-based mechanisms. In the field, increasing temperature is usually accompanied with other abiotic and biotic stresses such as drought, salinity, nutrient
deficiency and pathogen infections. Roots are able to integrate and respond to all these different stress situations to promote their survival and maintain their growth.

at a molecular and cellular level (Bellstaedt et al., 2019). Plants
can sense small variations in temperature, and this sensing can
be translated into activation of several physiological processes
that are considered the primary temperature-sensing events
(Figure 2; Penfield, 2008; McClung and Davis, 2010). Roots
sense these thermal changes directly or indirectly. Indirectly
sensing is either triggered by the shoot demand of water and
nutrient or by the supply of carbon from the shoot to root (Plieth
et al., 1999; Heckathorn et al., 2013). Warmer temperatures, and
more sharply, high temperature, alter the stability of membranes
and cystoskeleton components, as well as proteins and nucleic
acids (Vu et al., 2019a). Temperature changes alter membrane
fluidity and composition causing the activation of calcium (Ca2+)
channels. Increased intracellular Ca2+ triggers the lipid signaling
through the lipid-modifying enzymes PLD and PIPK. Subsequent
accumulation of PIP2 and IP3, in turn, enhances Ca2+ entry in

the cell (Mittler et al., 2012). The Ca2+ influx can activate several
heat shock transcription factors (HSFs) and calcium-dependent
protein kinases (CDPKs and MAPKs) that control heat stress
responses. The ROS/redox signaling network is also mediating
plant sensing to high temperature due to direct activation of HSFs
and heat related MAPKs. ROS accumulation might be produced
as unwanted products of several metabolic pathways due to heat-
mediated changes in the stability and activity of their enzymes
or by calcium activation of ROS-producing enzyme RBOHD
(Suzuki et al., 2011; Rasul et al., 2017).

Heat stress causes accumulation of unfolded proteins in the
endoplasmic reticulum (ER) that are potentially toxic leading
to what is known as ER stress. ER stress elicits the unfolded
protein response (UPR), a cytoprotective response to mitigate
and to protect from this damage (Howell, 2013). The UPR is
signaled through two pathways: one involving the proteolytic
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processing transcription factor bZIP28, and the other involving
the ribonuclease IRE1, which mediates the splicing of the
bZIP60 transcription factor mRNA (Neill et al., 2019). Both UPR
pathways induce the expression of Heat Shock Proteins (HSPs)
and activation of brassinosteroids (BRs) signaling (Che et al.,
2010). These two pathways seems to be less sensitive than Ca2+

channels because only high temperatures are able to provoke
a global unfolding of proteins (Liu and Howell, 2016). HSPs
are actively translated during the onset of temperature stress
response to protect proteins from misfolding and subsequent loss
of functionality. But HSPs also improves membrane stability and
detoxification of ROS by regulating several antioxidant enzymes
therefore attenuating stress response (Ul Haq et al., 2019).

ARP6, a subunit of SWR1 complex, has been proposed as a
histone themosensor. ARP6 mediates the insertion of the variant
histone H2A.Z in the nucleosome. H2A.Z nucleosomes wrap
DNA more tightly, which affects the ability of RNA polymerase
(Pol) II to initiate transcription. At warmer temperatures, H2A.Z
is evicted from the nucleosomes located at the transcriptional
start of heat response genes (Kumar and Wigge, 2010). This
process also required the recruitment of HSFA1 to the promoters
of these genes to activate their transcription (Cortijo et al., 2017).
Therefore, the antagonistic roles of H2A.Z and HSF1 seems
to be require to activate gene expression rapidly and precisely
in response to elevated temperature (Wigge, 2013). Lastly,
warmer temperature could alter RNA unfolding, metabolism
and structure (Su et al., 2018) as well as changes in small RNA
expression (Liu et al., 2017). It also causes a recruit of alternative
splicing (AS) machinery that will allow the rapid adjustment of
the abundance and function of key stress-response components
(Laloum et al., 2018). All these pathways trigger different
sensing events that contribute to the activation of the overall
heat response. This heat response includes a large number of
morphological, physiological, metabolic and molecular changes
altering root growth that we will describe in more detail.

Morphological and Physiological
Response
Roots need an optimal temperature range to have a proper growth
rate and function. In general, optimal root temperature tends
to be lower than optimal shoot temperature. Crop roots have
different optimal root temperature depending on the species.
Within this range, a higher temperature is usually associated to
altered root:shoot ratio, and a further increase in temperature
would limit root development and alter root system architecture
(RSA) reducing root:shoot ratio (Ribeiro et al., 2014; Koevoets
et al., 2016). RSA is defined as the organization of the primary,
lateral, adventitious and accessory roots. Each RSA is determined
by parameters such as length, number and angle of these root
components. RSA is the main factor that controls nutrient and
water uptake efficiency since it determines the soil volume that
roots are able to explore at different environmental situations
(Lynch, 1995). Generally, the exposure of roots to temperatures
higher than the optimal causes a decrease in the primary root
length, number of lateral roots and their angle of emergence.
Moreover, the increase in temperature causes the initiation of

second and third order lateral roots that are characterized by
a larger diameter (Figure 3). The negative effect of increasing
temperatures usually reduces the surface between root and soil,
therefore decreasing nutrient and water uptake (Nagel et al.,
2009). In cassava and sweet potato, high root zone temperature
significantly decreases the total length of the adventitious roots
and the number and total length of the first order lateral roots
(Pardales et al., 1999). Seminal and crown roots retarded their
emergence and elongation when wheat seedlings are grown at
high temperature (Huang et al., 1991a). In maize adult plants,
the increase in temperature slows down lateral root growth to
promote the development of long axile roots to reach the water
of the deeper soil layers (Hund et al., 2008). But in potato, the
increase in temperature causes the inhibition of adventitious
and lateral roots initiation and elongation. Other effects of the
warmer soil in potato are the swelling of the root cap meristem
and bending of the root tip. Alteration of root growth in these
crops seems to be caused by a decrease in the cell division
rate (Sattelmacher et al., 1990; Joshi et al., 2016). Similarly, in
sorghum, high root zone temperature reduces the elongation
and cell production rate in seminal roots (Pardales et al., 1992).
Interestingly, in wheat the increase in temperature causes a
decrease in the length and number of central late metaxylem in
the root tip. This change has been interpreted as an adaptation
to limit damage in the root by the changes in water viscosity
and root hydraulic conductance produced by heat (Huang et al.,
1991b; Morales et al., 2003).

Another strategy used by roots to cope with changing
environmental conditions that affect water and nutrient
availability is increasing the number of root hairs and their
length. This increase enhances root surface area that in turn
will improve soil exploration, and therefore, water and nutrient
uptake (Pregitzer et al., 2000). Hence, the contribution of root
hairs to total root surface area in two crops, oilseed rape and
barley increases with temperature. This increase provides their
roots with a greater surface area for absorption per unit root
weight or length (Macduff et al., 1986). In Arabidopsis and
soybean, the lack of root hairs produces reduction in heat
adaptation competence suggesting a key role of root hairs in
short-term adaptation to high temperatures (Tanaka et al., 2014;
Valdés-López et al., 2016). Moreover, since genes that participate
in early sensing and adaptation to high temperature are switched
off in barley root-hairless mutant plants, it has been suggested
a role of root hairs as sensors of environmental soil condition
(Kwasniewski et al., 2016).

Communication between aerial and belowground organs
seems to underlie heat tolerance and root response in some crops.
Several studies made with tomato have shown that the more
heat tolerant varieties are those that have a higher root activity
or a larger RSA. Wider root system can access to more water
and nutrient sources, increasing the water uptake and letting the
leaves to increase its evapotranspiration rate, cooling their canopy
temperature and improving the photosynthetic rate. This in turn
allows that larger quantity of assimilates can be used to boost
root growth (Shaheen et al., 2016; Zhou et al., 2019). On the
other hand, it has also been observed that carbon translocation
from shoots to roots is inhibited at high soil temperatures.
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FIGURE 3 | Response of major root traits to increasing temperatures in crops. Increasing temperature of the soil affects root traits related with its organization,
growth and function. Root system architecture defined as the organization of the primary, lateral, shoot-borne and lateral roots is drastically altered in response to
increased temperature in the soil (B) compared to plants growing in optimal conditions (A). Crops growing under higher temperatures show shorter primary roots (1),
reduction of lateral roots growth and number (2) and their angle of emergence (3), higher number of second and third order roots (4) with larger diameter (5), inhibition
of shoot-borne roots (adventitious and nodal roots) elongation and number (6) and increase of root hairs number and length (7). In addition, this overall reduction on
root system growth causes a reduction of root:shoot ratio (8) and reduction of root carbon allocation (9). As a consequence of all these changes, nutrient and water
uptake conducted by the roots for the whole plant is compromised and crop yield is severely affected. Although most of these effects are detrimental to root growth,
some responses alleviate this situation by increasing root:soil surface [increase in number of second to third roots number (4) and number and length of root hairs
(7)], improving water efficiency uptake [increase in diameter of roots (5)], or increase in root depth (lower root angle). Interestingly, these root responses coincide with
root traits associated with cultivars more tolerant to high temperatures. A comprehensive evaluation of these traits and their impact on crops productivity will help to
decide which root traits are more valuable to be incorporated to breeding programs designed to improved crop yield under climate change conditions.

Under high temperature field conditions, wheat root growth
is diminished due to a reduction in the carbon partitioned
belowground, and the number, length and diameter of roots
are especially affected (Batts et al., 1998). Similarly, in grape, an
increase in the temperature reduces root growth rate whereas
shoot growth increases due to alteration of assimilate partition
(Mahmud et al., 2018). This sink effect of the aerial part of the
plants is mostly observed during the reproductive stage, when the
carbon partitioning to the root decreases to help flowering and
seed development. In summary, warmer soils cause alteration in
RSA and root functionality triggering numerous changes in the
whole plant in order to adapt to this climatic variance.

One more aspect of root adaptation that is being increasingly
explored is the effect of gradient temperature on root
architecture. As soil warming reduces downward, progressively
deeper soil layers become better suitable for root growth affecting
differentially the upper and lower part of roots (Parts et al., 2019).
Thus, roots of barley seedlings exposed to uniform temperature
or to a vertical gradient respond with significant differences in
terms of biomass production and root architecture (Füllner et al.,
2012). Other soil conditions associated with soil temperature that
also differentially affect root architecture are soil compaction,

nutrient composition and moisture. To respond to all these
heterogeneous soil environments, crops produce compensatory
effects regarding root system architecture and root growth
dynamics. In order to capture the best root ideotypes, successful
root mechanisms need to be identified by deep phenotyping in
complex soil environments and climates. Ideally these ideotypes
not only have to respond to specific growth locations but to
different dynamics of the stress since increasing temperatures
are to be expected as short heat waves or increase seasonal mean
temperatures. Finally, farming practices, including plant density,
and water and fertilization regimes that directly impact on root
development could be crucial to mitigate the unfavorable effects
on roots of higher soil temperatures (Pfeifer et al., 2014; Hecht
et al., 2016). In this context, modeling of the root behavior
under different scenarios including genotype, environment and
management will be need to test root traits value for breeding
new varieties adapted to increased temperatures.

Hormonal Response
Several plant hormones that take part in root development
and growth have been described to mediate temperature
stress response in this organ. In particular, a role of BRs
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(Bajguz and Hayat, 2009; Anwar et al., 2018), salycilic acid
(SA) (Dat et al., 1998), ethylene (ET) (Lin et al., 2009), abscisic
acid (ABA) and cytokinin (CK) (Vishwakarma et al., 2017)
has been reported in several crops. Temperature-mediated
alteration of these hormone levels trigger signal transduction
pathways that prepare plants to overcome the stress situation.
Key phytohormones including ABA, SA, and ET increase
their levels under heat stress, while others such as CK, auxin
(AUX), and gibberellins (GAs), decrease (Talanova et al., 2003;
Larkindale and Huang, 2004; Larkindale et al., 2005;
Nolan et al., 2017, 2019).

Regulation of root response to temperature is mediated by
BRs signaling in Arabidopsis. Increased growth temperature
reduces the level of the BR receptor BRI1 to downregulate
BR signaling and increases root elongation independently of
auxin (Martins et al., 2017). Interestingly, it has been proposed
that downregulation of BR signaling by temperature elevation
could promote GA-dependent root growth. In contrast, in crops,
different behavior of BRs has been reported. The application
of 24-epibrassinolid (24-EBR), a functional BR, to tomato
and oilseed rape seedlings inhibits root elongation in both
species but increase their acquired thermotolerance. Molecular
analyses of 24-EBR treated and untreated seedlings show that
this thermotolerance is a result of increased levels of HSPs
(Dhaubhadel et al., 1999, 2002). On the contrary, transgenic
lines of oilseed rape overexpressing AtDWF4, an Arabidopsis
gene encoding an enzyme that catalyzes a bottleneck step in BR
biosynthesis, shows an increased root length and fresh and dry
root weight. However, the transgenic plants show an increased
thermotolerance, and consistent with the results in tomato and
oilseed rape, the level of different HSPs gene family members
were increased (Sahni et al., 2016).

Improved plant tolerance to heat stress mediated by SA has
also been reported in crops (Khan et al., 2015; Nazar et al., 2017).
In soybean, wheat, maize and chamomile, this tolerance seems
to be mediated by the growth-stimulating effects of SA (Rivas-
San Vicente and Plasencia, 2011). Additionally, exogenous SA
has a protective role in mitigating extreme temperature-induced
damages in different crops (Hasanuzzaman et al., 2017). In
grape cultivars root-derived SA have a role in the response to
aboveground high temperature. The increase in temperature did
not affect free SA content in roots but reduced the levels of
conjugated SA, a storage form of this hormone. It is proposed
that the sensing of warmer temperatures causes roots to send
its conjugated SA reserves to the aboveground parts of the plant
where is transformed into free SA to promote the adaptation and
resistance to heat stress (Liu et al., 2008).

ET also takes part in root adaptation to increased
temperatures. ET production is increased under heat stress,
although exogenous ET application cannot confer heat tolerance
(Müller and Munné-Bosch, 2015). Nevertheless, thermotolerance
is enhanced in rice seedlings under heat stress by an increase
in the levels of ET (Wu and Yang, 2019). In sorghum, heat
induced inhibition of root elongation and cell production rate
is affected by ET levels (Prasad et al., 2008). Likewise, in lettuce,
temperature promotes the synthesis of ET. Moreover, exogenous
ET application to the root causes heat stress symptoms including

reduced root length and surface area and increased root diameter.
Application of ET biosynthesis inhibitors to plants exposed to
heat alleviates the root growth inhibition. Interestingly, ET
effect in this crop has been linked to a similar root-to-shoot
communication mechanisms described for SA signaling. Higher
ET biosynthesis produced by increased temperatures causes an
efflux of ACC, the ET precursor, to the shoot via xylem. ACC
then promotes thermotolerance in aboveground tissues by the
reduction of oxidative damage and maintenance of chlorophyll
content (Qin et al., 2007).

ABA is one of the main hormones to control tolerance to
abiotic stress and its biosynthesis is promoted by these stresses
also in roots. In cucumber, the application of higher temperature
to the whole seedling increases the levels of ABA in both leaves
and roots (Talanova et al., 2003). ABA seems to improve heat
tolerance through exogenous application or by manipulation of
ABA-related genes in some crops. This tolerance is achieved by
increasing leaf photochemical efficiency and membrane stability
or by induction of HSF (Abass and Rajashekar, 1991; Zhou
et al., 2014; Wang et al., 2017). ABA also seems to increase
root hydraulic conductance and promote root hair development
during adverse environmental situations (Vishwakarma et al.,
2017) and it has been suggested as a potential candidate of
root-to-shoot communication (Talanova et al., 2003).

CKs are one of the key regulators of root system architecture
and they have been implicated in heat stress. In contrast to
their role in promoting growth in the shoot, CKs reduce root
growth, by inhibiting primary root elongation and promoting
cell differentiation in the root apical meristem (Dello Ioio
et al., 2008). They are also regulators of root branching (Chang
et al., 2015). A decrease in CK levels or a reduction in
CK signaling can lead to an enlarged root system improving
temperature root response (Bielach et al., 2017; Kieber and
Schaller, 2018). Contrarily, stress driven alteration of CKX1
levels in roots, a CK oxidase/dehydrogenase (CKX) enzyme
that regulates CK degradation, results in enhanced drought
and heat tolerance in tobacco. The enhanced stress tolerance
of these plants has been correlated with raised bioactive
CK levels during the early phase of the stress response
(Macková et al., 2013).

In summary, several hormones are known to control root
growth and are in charge of controlling this process during high
temperature stress. Modulation of hormonal signaling in roots
in response to heat not only prepares this belowground organ
to respond to this stress but also the whole plant since some
hormones like SA, ET and ABA could act as intercommunication
signals between the root and the aboveground organs.

Metabolic Response
During heat stress, plant roots suffer large quantity of metabolic
changes to maintain homeostasis and allow the plant to survive. It
has been suggested that overall alteration of metabolic pathways
probably depend on the sensitivity to high temperature of key
metabolic regulatory enzymes. Different studies carried out in
crops and fodder species shows a common pattern in the
response of primary and secondary metabolism to heat stress in
roots. Main carbohydrates such as glucose, fructose, galactose,
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sucrose or xylose are usually lower after the root experience
high temperatures, as well as the levels of several glycolytic cycle
enzymes (Ribeiro et al., 2014; Aidoo et al., 2016; Sun et al., 2016).
In, cassava, warmer soils inhibit starch biosynthesis through
the direct decrease of enzymatic activity or down regulation of
transcriptional levels of the main starch biosynthesis enzyme
(Ma et al., 2018). Other sugars and polyols such as raffinose,
galactinol, and glycerol that has been described as stress tolerance
compounds increase its content during stress conditions (ElSayed
et al., 2014; Salvi et al., 2018). In contraposition of down-
accumulation of carbohydrates, some amino acids seem to
be accumulated during heat stress. This negative correlation
between sugars and amino acid appears to be provoked by
the inhibition of carbon assimilates supply to the roots during
heat stress. One of the accumulated amino acid is proline,
an osmoprotective compound, used to avoid molecular and
cellular damage during stress situations (Szabados and Savouré,
2010). Increase temperature also regulates significantly lipid
metabolism probably associated to the cell membrane rigidity
needed to counteract the fluidity provoked by warmer soils. Thus,
fatty acids, phospholipids and glycerolipids shows a reduction
in their accumulation after exposing the plant to heat stress
together with TCA cycle intermediaries and related enzymes
(Ribeiro et al., 2014).

There is fewer and fragmentary data concerning secondary
metabolism response to rising temperatures in roots. In maize,
increase in temperature causes a decrease in the level of secondary
metabolism compounds such as fitosterols and terpenoids (Sun
et al., 2016), but in castor bean, although β-sitosterol levels
decrease, campesterol storage is increased. The levels of other
metabolites like tocopherol, squalene and ricinine, also change in
response to heat.

During heat stress, as with other stresses, the intracellular
levels of ROS increase sharply. Although it could act as a
signaling molecule, higher levels of ROS cause damage at cellular
level and interfere with protein and enzymatic activities and
gene expression. It has been reported in several crops that the
high temperatures promote the expression of ROS scavenging
enzymes such as catalases (CAT), peroxidases, superoxide
dismutase (SOD) and ascorbate peroxidase to counteract
ROS damage (Gill and Tuteja, 2010). Glutathione (GSH) has
been described to take part in thermotolerance in eukaryotic
organisms by scavenging ROS (Colville and Kranner, 2010).
Under heat stress, roots use cysteine to synthesize GSH that could
increase the thermotolerance of these organs (Nieto-Sotelo and
Ho, 1986). NO and H2S are two gaseous molecules that act as
signaling compounds during different developmental processes,
including root morphogenesis, and stress situations, like heat
stress. It has been described for both molecules that its external
application confers thermotolerance in both shoot and roots (Li
et al., 2013; Singh et al., 2019).

Altogether, significant changes in metabolism in response
to high temperature have been reported in different crops
directed to alleviate the damage triggered by this stress. Although
significant information in this process has been conveyed
from several groups, the complete picture of how temperature
regulates metabolism in roots is far from been complete.

A substantial effort in the study of this regulation will be needed
to understand how metabolic changes are integrated in the overall
response of roots to this stress.

Genetic and Molecular Regulatory
Pathways
High temperature triggers significant molecular changes in
plants, including global transcriptomic reprogramming and
changes in protein profiles, to adjust plant growth to this
stressing environmental situation. A large number of transcripts
and proteins alter their expression and levels in response
to heat stress in roots. From these changes, a pattern of
stress response reflecting the physiological, morphological and
hormonal changes that we have previously described could be
drawn. Thus, most of the differential transcripts and proteins
represent genes that are involved in primary and secondary
metabolism, such as genes related to ROS scavenging, as SOD
or CAT and GSH synthesis to sugar and flavonoid biosynthesis;
from calcium and signal transduction kinases to proteins related
with the regulatory pathways of several hormones (such as ET,
SA, JA, ABA, and CK); or from lipid signaling to heat shock
proteins and factors (Bita and Gerats, 2013; Valdés-López et al.,
2016; Jia et al., 2017; Carrera et al., 2018; Wang et al., 2018a,b).

Activation of HSPs and HSFs gene families seems to be
a universal response to high temperature being found in all
organisms from humans to plants. Consequently, several of these
genes encoded proteins have been associated to thermotolerance
in different crops. In wheat, HsfA6f overexpression enhances
thermotolerance through the induction of several HSP and
heat responsive genes. It also activates raffinose and galactinol
biosynthesis enzymes and ROS scavenging enzymes by binding
to the heat shock elements in the promoters of these genes
(Xue et al., 2015). In many plant species, response to heat
stress is particularly dependent upon induction of HSP70 and
HSP101 (Queitsch et al., 2000). In maize, HSP101 regulates
root elongation in both normal conditions and mild-heat stress
and is needed during germination to balance growth and
tolerance establishment (Nieto-Sotelo et al., 2002). Interestingly,
it has been observed that differences in thermotolerance
between rice cultivars could be mediated also by differences
in HSP101 and HSA32 protein levels (Lin et al., 2014).
Similarly, in pepper cultivars, HSP25.9, a HSP20, could also be
mediating thermoresponse by reducing the accumulation of ROS,
enhancing the activity of antioxidant enzymes and regulating the
expression of stress-related genes (Feng X. H. et al., 2019).

Heat response encompasses different regulatory gene
networks involving specific set of transcription factors, protein
kinases and other signaling related proteins (Ohama et al.,
2017). In several crops, specific families of transcription factors
are candidates to mediate heat stress response in roots. Thus,
HD-ZIP and NAC transcription factors are induced by heat
stress in potato and radish (Karanja et al., 2017; Li et al., 2019).
In batata, ABF4, an ABA-responsive element binding factor
that is up-regulated under heat stress promotes the expression
of several stress responsive genes and mediate root elongation
response (Wang W. et al., 2019). In rice, ZFP350, a Zinc Finger
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Protein (ZFP) transcriptional factor, is specifically expressed in
roots and up regulated by heat. ZFP350 seems to control root
response to high temperatures by promoting the expression
of stress responsive genes like HSP70 (Kang et al., 2019). In
tomato, a GRF transcription factor, GRF6, is regulated by several
stresses including heat through a hormonal mediated pathway
(Khatun et al., 2017). Another group of important regulatory
proteins that are induced after heat sensing are diverse kinases
such as CDPKs or MAPKs (Wang et al., 2018a). A putative rice
orthologue of Brassinosteroid insensitive 2 (BIN2), a glycogen
synthase kinase3-like gene 1 (GSK1), that acts as repressor of
BR signaling seems to mediate heat tolerance in roots (Koh
et al., 2007). In pepper, WAKL20, a wall associated RLK-like
(WAKL) kinases acts as a negative regulator of thermotolerance
by down regulating ABA–responsive genes that in turn decrease
plant ABA sensitivity during root growth (Wang H. et al., 2019).
Other signaling pathways involving hormone responses are those
related with Proline Rich Proteins (PRPs). This family of proteins
has been described in several crops as part of root developmental
and stress response processes. RCc3, a rice root specific PRP,
improves RSA during heat stress by promoting auxin efflux,
biosynthesis and accumulation in the roots (Li et al., 2018).

Stress response mediated by increased temperatures also alters
several proteins levels through post-translational modifications
(Ahmad et al., 2016; Wu et al., 2016; Kosová et al., 2018). These
post-translational modifications included phosphorylation,
sumoylation or ubiquitination events. For example, the
differential phosphorylation levels of two isoforms of fructose-
biphosphate aldolase seems to underlie the contrasting heat
tolerance in roots of two C3 grass Agrostis species, A. scabra and
A. stolonifera (Xu and Huang, 2008). Also sumoylation levels
are altered in several crop roots under heat stress pointing to
this protein modification as part of the root response to high
temperatures (Augustine et al., 2016; Li X. et al., 2017). Finally,
in tomato, ShATL78L, a RING finger protein, enhances multiple
abiotic stresses tolerance, including heat, by interacting with a
subunit of COP9 signalosome complex and therefore altering
ubiquitin-mediated protein degradation (Song et al., 2016).

In recent years, several epigenetic and chromatin-based
mechanisms have been implicated in the regulation of heat
responsive genes and their function but few examples have been
described in crop roots. These epigenetic mechanisms include
DNA methylation, histone modifications, histone variants such
as the previously mentioned H2A.Z variant, small RNAs and
miRNA (Kim et al., 2015; Liu et al., 2015; Lämke and
Bäurle, 2017; Saraswat et al., 2017). In rice, several microRNAs
show a differential expression in roots of contrasting heat
response cultivars. Similarly, in barley, a heat-induced increase
in miR160a, down-regulates the expression levels of ARF17
and ARF13, which could affect shoot morphology and root
growth (Kruszka et al., 2014). In maize roots, the expression
and acetylation levels (histone 3 lysine residue 9, H3K9; and
histone 4 lysine residue 5, H4K5) of two genes related to lateral
root development (HO1 and GSL1), are decreased under heat
stress suggesting a mechanism mediated by up-regulation of
histone acetyltransferases (HATs) in the root response to this
stress (Zhang et al., 2018).

In summary as we have described briefly, there are an
increasing number of regulatory mechanisms that are being
implicated in the control of heat response in root of different
crops. Although there are still many gaps in our knowledge of
how all these mechanisms work, all this mounting information
will be crucial to expand the set of molecular targets that could be
used to improve heat tolerance in crops.

Increased Temperature Associated Root
Traits
Breeding of new cultivars able to overcome the challenging
new environmental conditions driven by climate change must
incorporate traits regarding root architecture (Koevoets et al.,
2016). The potential of roots to boost crop productivity has been
establish in several studies where correlations between root traits
and yield have been determined (Bray and Topp, 2018; Robinson
et al., 2018; Jia et al., 2019). This close relation is confirmed by the
co-ocurrence of QTLs for root traits and grain yield and other
agronomic traits associated to productivity in different crops
(Maccaferri et al., 2016; Ju et al., 2018). Root traits like deep
rooting or root angle seem to increase vegetative growth and
subsequent grain filling but are also context dependent. Deep
root systems developed in limiting water conditions increase
grain yield by providing access to residual water in deeper soil
layers (El Hassouni et al., 2018). Additionally, root length has
been correlated with flowering traits in different crops but how
this association takes place is not well known (Voss-Fels et al.,
2018). Similarly, several above-ground traits are influenced by
root behavior under different stress conditions including high soil
temperatures (Batts et al., 1998; Arai-Sanoh et al., 2010). All these
studies highlight the idea that a complete plant phenology has to
be taken into account when root traits are selected for breeding
for adaptation to avoid yield penalties.

As we have seen, roots are very plastic to environmental
conditions and display a large range of highly variable
physiological and morphological traits to adapt root architecture
and functionality to disadvantageous conditions. Classical
breeding trials were designed to select for cultivars with high yield
using non-limiting nutrients and non-challenging environmental
conditions which has often led to selection for smaller and less
plastic roots (White et al., 2013). Moreover, modern cultivars
have relied on the monitoring and selection of above-ground
traits looking for increasing biomass into the shoots rather
than into the roots, that it turns has selected for smaller
root sizes and root:shoot ratios (Waines and Ehdaie, 2007;
Friedli et al., 2019). As a result, root traits have been usually
downplayed in breeding programs but numerous studies have
shown the correlation of root traits with enhanced tolerance
and productivity in different crops species (Den Herder et al.,
2010). These studies highlight the potentiality of root traits
as tools for breeding high tolerant crops (de Dorlodot et al.,
2007). Heat stress tolerance as other abiotic tolerance seems
to be a multigenic trait and the candidate genes are poorly
known. Root traits are genetically complex and more difficult
to measure (Wasaya et al., 2018). Everything considered,
improving this stress tolerance in root crops is a very limiting
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step in plant breeding. Roots are challenging to evaluate in
the soil and this has been a major reason for the poor
attention that they have been paid in breeding programs in
the past. Numerous methods of phenotyping have been used,
from laboratory-based methods including the use of soil-free
media pots, rhizoboxes, hydroponics or semi-hydroponics media
combined with high-throughput digital phenotyping or 3D
imaging systems (Walter et al., 2015; Voss-Fels et al., 2018;
Jia et al., 2019; Ma et al., 2019; Qiao et al., 2019) to field
shovelomics (Trachsel et al., 2011). But still all these methods
are generally expensive or/and time-consuming, so better and
affordable tools to improve analysis of root traits are still
needed. Nevertheless, significant information of root adaptation
to changes in temperature has been provided by exploiting
genetic variation associated to root traits.

Genome-wide association studies (GWAS) have been widely
used during the last few years to identify loci on tolerance
to extreme temperatures in crops (Hu et al., 2017; Maulana
et al., 2018; Jamil et al., 2019; Jia et al., 2019; Oladzad et al.,
2019) or root architecture (Li X. et al., 2017; Li Y. et al., 2017)
but analyses focused on root response to temperature are still
lacking. Similarly, QTL mapping has been used to narrow down
regions of crop genomes related to root architecture (Gong
et al., 2015). Although several studies has identified, mapped
and predicted potential genes candidates for QTLs associated
with heat or high temperature tolerance in several crops like
tomato (Wen et al., 2019), maize (Van Inghelandt et al., 2019),
barley (Arifuzzaman et al., 2014) and wheat (Sharma et al.,
2017), very few have been focused on root related traits. Thus,
in wheat, QTLs for cooler canopy temperature (QTL-CT) are
associated to a higher number of superficial roots compared
to deep roots (Pinto and Reynolds, 2015). QTL analyses also
in wheat show a coincidence of a QTL for heat and drought
tolerance suggesting a common genetic basis for adaptation to
both stresses. This QTL seems to be associated with changes
in root distribution to increase water availability (Pinto et al.,
2010). Likewise, a later analysis in wheat to identify meta-QTL
associated with adaptation to drought and heat stress, shows
that a large number of QTLs are shared to both heat and
drought response and two of them are associated to higher
root length (Acuña-Galindo et al., 2015). Similarly, in rice,
studies with recombinant inbred lines (RILs) obtained from
crosses between heat tolerant and non-tolerant cultivars have
identified QTLs associated with root length under heat stress (Ps
et al., 2017; Kilasi et al., 2018), and in barley, two heat-stress
QTLs are adjacent to a QTL reported for root length and root-
shoot ratio (Gous et al., 2016). In maize, association mapping
studies between inbred lines with different heat tolerance show
a significant effect on lateral and axillary root elongation rates
in these genotypes (Trachsel et al., 2010; Reimer et al., 2013).
Interestingly, this change on root architecture coincides with the
proposed maize ideotype for the root system which represents
steep and deep roots, and reduction of the metabolic cost of
soil exploration (Lynch, 2013; Gong et al., 2015). Altogether
these analyses reinforce the idea that better developed roots help
the plant to increase the water intake during heat stress that
in turn increases the evapotranspiration rate and decreases the

aboveground temperature allowing a better photosynthetic ratio
and crop yield. However, the optimal RSA could be different in
each targeted environment and breeding efforts have to account
for these differences. Moreover, some of the adaptive root traits
are only conveyed when roots are under specific stresses making
phenotyping and evaluation of root traits even more challenging
(Alahmad et al., 2019). Thus, drought induced deep rooting that
reduces root growth in upper soil layers compare to shallow
roots is an effective strategy when heat is combined with low
moisture soil but has yield penalties in moisture rich soils (Comas
et al., 2013; El Hassouni et al., 2018). Combination of context
dependant or independent root traits has been proposed as
solution for adaptation to target multiple environments. For
that purpose, analysis of natural variation and wild relatives
have been used to uncover some of the processes underlying
either root growth or responses to temperature changes. New
root trait alleles would be uncovered using this strategy but the
effectiveness of these tools to analyze root response to increase
temperature in crops is yet to be explored (Ristova and Busch,
2014; Blackman, 2017; Driedonks et al., 2018; Ristova et al., 2018;
Wang et al., 2018c).

In summary, the information gathered from all these studies
has been very useful to shed light onto some of the possible
strategies adopted by the roots to confront temperature stress.
These strategies include primarily alteration of RSA and
adjustments of their interchange with aboveground organs.
However, there are still many other avenues to extensively exploit
the plasticity of the roots. In modern agricultural system, crops
are highly densely planted and root traits related with root angle
or root occupancy could be highly valuable (Meister et al., 2014;
Hecht et al., 2016). In cereals, with a root system that changes
during their lifespan (postembryonic root are different from
embryonic roots), a multi-trait approach considering all root
types will be needed to uncover useful genotypes. Lastly, root
traits identifyed on multi environmental field trials considering
complex and concomitant soil conditions seems a very promising
approach to adapt root system of crops to climate change.

ROOT RESPONSES TO TEMPERATURE
ASSOCIATED ABIOTIC AND BIOTIC
STRESS

In field conditions, under the predicted climate change scenario,
the increase in temperatures is usually accompanied by an
enhanced evapotranspiration of soil and plants following by an
increase in drought incidence and soil salinization. Additionally,
higher temperatures could lead to an increased virulence and
expansion of crop pathogens (Mahalingam, 2015). Therefore, in
order to improve root adaptation in crops we need to consider
how combined stress responses affect root growth (Figure 4;
Koevoets et al., 2016).

Abiotic Stresses
Water is one of the most limiting factors for crop growth
and its availability is determined by weather, soil structure and
root uptake. Root growth response to water deprivation usually
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FIGURE 4 | Effect of increasing temperature and associated abiotic stresses on root growth. In the field, the increase in temperatures driven by climate change is
normally accompanied by water deprivation provoked by enhanced evapotranspiration of the soil and plants. Moreover, increased soil salinization and changes in the
nutrient composition of the soil further compromise plant growth. Roots are essential for water, ions and nutrient uptake therefore the adverse effects on roots of
these combined stresses as is summarized in this figure, directly affects crop productivity on the field. New crops with improved root response to a variety of biotic
and biotic stresses will be needed to maintain yield stability under the changeable environmental conditions driven by climate change.

includes inhibition of lateral root growth and enhancement of
primary and secondary root growth. But when scarcity of water
is more severe a drought avoidance program is deployed to
direct root growth and branching into regions of soil where
these resources are more abundant (Dinneny, 2019). ABA and
auxins regulate this hydropatterning response (Orosa-Puente
et al., 2018). Interestingly, a major rice QTL for the control of
deep rooting, DRO1, modulates yield under drought stress by
affecting root growth angle (Uga et al., 2013). Severe drought
conditions, in addition to higher temperatures, provoke a strong
inhibition on root respiration rate and growth as well as a
reduction in the partitioning of carbon assimilates to the roots
(Prasad et al., 2008). The root response to the combined effect

of heat and drought could vary depending on the crop and the
developmental stage. Thus, root growth seems to be directly
affected by water deficit and temperature to a greater extent in C3
than C4 crops. Sunflower, a C3 plant, responds to the combined
stress situation by partitioning carbon assimilates to the root to
promote growth and ensure water availability. In maize, a C4
plant, increased temperature inhibits root elongation (Killi et al.,
2017). In barley, plants at heading stage seem to be more sensitive
to both stresses than plants during vegetative growth, and plants
that show greater carbon assimilates partitioning to the root
during heading also show lower yield and lower quality traits
(Mahalingam and Bregitzer, 2019). In tomato, heat stress causes
an increase in root activity that is translated into an increase in
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water uptake. But this response is reversed when this stress is
combined with drought. In addition, the combination of both
stresses accelerates the harmful effects of each stress (Zhou et al.,
2019). At cellular level, the combination of heat and drought
causes oxidative stress (Zandalinas et al., 2018). Roots exposed
to these conditions accumulate more proline and increased
expression of antioxidant enzymes to suppress the potential
molecular damage (Selote and Khanna-Chopra, 2010; Sekmen
et al., 2014). Lastly, interesting information could be deducted
from the ability of some plants such as members of the Cactaceae
family to grow in arid desert that combine both stresses. Root
traits from these plants includes the iterative senescence of the
primary root tip, which facilitates rapid branching and shallow
root system growth during the rare precipitation events occurring
in the desert (Shishkova et al., 2013).

Soil salinization is a major threat that negatively affects crop
productivity. Salinity impairs plant growth and development via
water stress and cytotoxicity due to excessive uptake of ions such
as sodium (Na+). Additionally, salinity is typically accompanied
by oxidative stress due to generation of ROS (Isayenkov and
Maathuis, 2019). Contrary to what happen with heat, roots are
more resistant to salt stress than leaves, but this stress still severely
inhibits root growth and provokes damages and alterations in
the RSA (Robin et al., 2016). These alterations seem to depend
on the crop. Thus, in wheat, root elongation is promoted by the
combination of heat and drought but high salinity alone inhibits
root growth. Furthermore, when plants were treated with salt and
heat, the inhibition caused by the salinity was stronger (Keleş
and Öncel, 2002). Similarly, in barley, root growth is severely
inhibited and ROS levels sharply increase. To counteract this
response, plants accumulate a great quantity of proline and other
osmoprotectants, and increase the expression and activity of ROS
scavenging enzymes. SA may have a role in this tolerance process
by promoting the biosynthesis of osmoprotectants and regulating
the activity of several ROS scavenging enzymes (Torun, 2019). On
the contrary, in tomato, heat seems to alleviate salinity damage
by increasing evapotranspiration and photosynthetic rates. The
combination of both stresses also seems to alter the uptake,
transport and accumulation of Na+ and K+. So, under heat
and salinity stresses, tomato accumulates Na+ ions in the root
in order to decrease the level of this ion in leaves and evict
photosynthesis alteration (Rivero et al., 2014).

Nitrogen levels in soil also affect root viability, thereby
higher or lower nitrogen levels than optimum negatively alters
root growth. Additionally, proper N availability is important
for plant resistance to stress conditions. In warm soils during
spring, roots have to mobilize nitrogen reserves to respond
to increased plant growth demand including enhanced root
growth. Therefore, it has been suggested that supplying N
to the soil could mitigate the effect of temperature on root
growth in a similar way (Waraich et al., 2012). Application
of nutrients like N, K, Ca, and Mg seems to reduce the
toxicity of ROS whereas K and Ca improve intake of
water and help to maintain high tissue water potential.
One challenge to enhance nitrogen efficiency in crops is to
understand how lroots respond to low nitrogen and how the
modulation of root architecture is coordinated to maximize

nutrient acquisition in variable ambient temperatures. Positive
or negative coincidences between N uptake and heat tolerance
have been observed in different species (Yan et al., 2012;
Giri et al., 2017). Thus, N availability influences HSP levels
in maize (Heckathorn et al., 1996) and in the perennial
grass, Agrostis stolonifera. Combination of nutrient deficiency
with higher temperatures in soils, further alters HSP synthesis
(Wang et al., 2014).

A major constrain for crop productivity is the deficiency
of resources, water and nutrients, in the soil surrounding the
root system. As we have seen, roots alter their physiology
and morphological traits to increase their efficiency when
it is compromised by environmental conditions as increased
temperature or a combination of stresses. This root multi-
adaptive response need to be incorporated in the breeding of new
cultivars to increase their adaptation to unstable climates.

Biotic Stress
Environmental conditions profoundly affect plant disease
development; however, the underlying molecular bases are not
fully understood. Weather plays a large role in determining the
outcome of plant–pathogen interactions, and disease epidemics
are more likely to occur when environmental conditions are
detrimental for the plant. For example, it is known that
temperature fluctuation is a key determinant for microbial
invasion and host evasion. Thus, there is an observed pattern
of movements driven by global warming effects on crop
pathogens and pests, and/or on the availability of crops to
cope with them (Bebber et al., 2013). Other outcomes of
warming temperatures are that new pathogen strains better
adapted to these temperatures may become prevalent and the
rise of more aggressive plant disease vectors (Velásquez et al.,
2018). High temperature enhances plant disease susceptibility,
attenuating disease resistance and promoting pathogen growth
(Fujita et al., 2006; Huot et al., 2017). Several mechanisms
seem to be implicated in this effect. Increase in temperature
causes a decrease in the elicitor detection by the plant and
the breakdown of effector-triggered immunity (de Jong et al.,
2002; Alcázar and Parker, 2011; Cheng et al., 2013; Hua, 2013).
Examples of this effect in roots have been already described.
Changes in weather conditions including increased mean winter
temperatures have favored infection by several Phytophthora spp.
species that are responsible for increasing amounts of root rot
in forest trees (Jung and Burgess, 2009; Sturrock et al., 2011).
Additionally, other soil-borne root diseases seem to be more
severe under increased temperature conditions (Elad and Pertot,
2014). Plant response to pathogens and adverse environmental
conditions is challenging. Since both responses share many
components, plants need to trigger a balanced response between
the tolerance and defense response. In fact, mounting evidence
suggests that hormone signaling pathways regulated by ABA, SA,
JA and ET, as well as MAP-kinase cascades and ROS signaling
pathways, play key roles in the crosstalk between biotic and
abiotic stress signaling such as heat (Chen et al., 2015; Zhai
et al., 2017). In this context, stress caused by temperature has
been shown to negatively affect the plant ability to respond to
pathogens through changes in ABA levels that influence defense
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responses involving SA, JA, or ET (Asselbergh et al., 2008). An
emerging field in abiotic and biotic interaction is that involving
plant–microbiome interaction. Disease-suppressive soils with
enrichment in specific bacterial clades are able to protect against
soil-borne pathogens including fungal root pathogens (Mendes
et al., 2011; Philippot et al., 2013). But the alteration of the
microbiome and the reduction in number and diversity caused
by higher soil temperature could lead to the loss of pathogen
suppression capacity of the rhizobiome (Mendes et al., 2011; van
der Voort et al., 2016). Although much work is still to be made
to understand the crosstalk between environmental conditions
such temperature and pathogen interaction in plants, there is an
urgency to produce disease-resistant crop plants that are resilient
to climate change.

Crop breeding programs are incorporating the response to
a combination of different stresses in the evaluation of new
varieties. This type of analysis although challenging due to the
requirement of multi-environment field trials, are becoming a
necessary requisite to assess the real value of the traits to be
integrated in the varieties. This is especially relevant in the
context of root traits given the high plasticity of the RSA to
changes in the environmental conditions and composition of
the soil. Root traits aimed to improve the stability of crop
productivity have to be able to respond favorably in all the
environmental contexts.

CHALLENGES AND FUTURE
SOLUTIONS

Humanity’s main challenge of this century is to feed the growing
population in a context of climate change. Between 2030 and
2050 the population will have increased to 9,000 million people
whereas global temperature will have increased between 1.5
and 2◦C. The alteration of climate and the more common
appearance of extreme events, in addition to higher temperatures,
will negatively affect crop yield. Global food security would
be endangered resulting in the increase of food prices and
food shortages, and in consequence increasing global hunger,
poverty and inequality. So, it is of paramount importance the
improvement of crop tolerance to abiotic and biotic stresses in
order to confront climate change effects.

Root traits still withhold the potential to reach this goal,
but first the extensive existing phenotypic variation in these
traits must be studied and analyzed (Figure 5). Moreover,
the improvement of root capability might help to mitigate
the harmful effect of agriculture on environment. Better
root performance could reduce the water used for irrigation
during heat waves or the massive fertilization of fields. On
the other hand, root development and capacity should be
improved without sacrificing other traits regarding aboveground
development or yield. How temperature related changes in root
architecture might affect the aerial part of the plant is not well
understood and in particular, the signaling from the root to the
shoot (or vice versa) in order to prepare the whole plant for
the heat stress. Having a better comprehension of the genetic
and molecular regulatory pathways underlying root-to-shoot

interaction under stress condition could be useful to improve root
performance without altering shoot development related traits.

Another challenging aspect to consider is that the temperature
of the soil is not uniform, but it maintains a gradient that
decreases with depth. This gradient varies depending on the
soil composition, a factor contributing to heat conduction and
convection. Consequently, the temperature of the soil, and the
root, decreases with depth increasing the complexity of root
response to heat and its study. The complex relation between
the root and the soil increases even more when the role of
the rhizosphere is added to the analysis. The potential effect
of the rhizosphere to defend or prepare the plant against
biotic and abiotic stresses is little explored. Unraveling the
complex interaction between the rhizobiome and the root, during
heat stress at a molecular and cellular level is essential to
understand whole-plant heat tolerance processes. As we have
seen throughout this review, in the changing climatic condition,
the different stresses do not occur separately but very often
they appear together. How plants response to several stresses
simultaneously is a poorly understood process especially in roots
compared to the information gathered from aboveground tissues.
Better understanding of plant response to each stress or its
combination is primary to develop more tolerant crop varieties.
In brief, there is still a lot of work to be done to obtain potential
applications and improvements of root tolerance not only to heat
stress but also to other biotic and abiotic stresses.

A first approach to tackle the effect of climate change on
crops and at the same time lessen the impact of agriculture is the
improvement of agronomic management practices and the use of
precise farming. A more efficient use of nitrogen and phosphate
fertilizers as well as water could reduce their use in the field.
This strategy could help to alleviate the soil deterioration caused
by these fertilizers and contribute to reduce water scarcity and
pollution. In this context, the optimization of root efficiency in
nutrients and water uptake and distribution could lead to a better
fertilizer and water management. Better root systems provided
by cover crops could be useful in managing and preserve soil
quality and soil moisture. Moreover, the use of leguminous
plants as cover crops could also be use as a fertilization method
due to its symbiotic relationship with nitrogen fixation bacteria.
Additionally, the use of better or new agronomic techniques
could help to alleviate the increase in soil temperature. For
example, no-tillage seems to be beneficial to avoid, or at least,
decrease heat stress in root (Wang et al., 2007). Lastly as
commented in the previous section, the tailored application of
N to the soil could enhance root growth alleviating heat effects.

One of the emerging strategies to approach the use of root
traits to fight global warming and its effects on crop yield is
the use of the rhizobiome. Plants are able to adjust rhizobiome
composition through root exudates that could stimulate the
growth of beneficial microorganism in the rhizosphere (Vives-
Peris et al., 2018). But changes in soil characteristics lead
to a change in root exudates and, in consequence, a change
in rhizobiome composition (Philippot et al., 2013). Specific
bacteria have been described to enhance plant tolerance to biotic
(Santhanam et al., 2015) and abiotic stresses (Rolli et al., 2015). In
fact, increased temperature leads to alterations in root exudates

Frontiers in Plant Science | www.frontiersin.org 14 May 2020 | Volume 11 | Article 54436

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00544 May 7, 2020 Time: 19:52 # 15

Calleja-Cabrera et al. Crop Root Adaptation to Temperature

FIGURE 5 | Challenges and potential solutions to improve crop root adaptation to climate change. Global alteration of climate in addition to higher temperatures will
negatively affect crop yield. There is an urgent need to improve and maintain crop productivity under these climatic constrains and root traits withhold the potential to
reach this goal. In order to confront climate change effects we still have to overcome a few challenges, largely concerning the necessity to increase our knowledge of
different aspects of the root adaptation process. New solutions bringing together technical and conceptual advances in the analysis of root traits will drive
this advancement.

that promote some beneficial bacteria that could improve crop
survival in this condition (Ali et al., 2011). Harnessing the
beneficial interaction between the root and rhizosphere has the
potential to improve crop tolerance to various stresses (Ahkami
et al., 2017). Moreover, the use of symbiotic or non-symbiotic
fungi isolated from plant species that grow in inhospitable
environments to provide crops with tolerance to several stresses
is also being explored (Singh et al., 2011).

Another focus of attention in the field of root adaptation is the
use of temperature adapted wild relatives and landraces. During
the domestication of crop species, the main traits selected were
those related to a greater yield and quality. In this process the loss
of root traits related with stress tolerance probably has happened.
Crop wild relatives are a source of genetic diversity of natural
evolved root traits including root adaptation to stresses. By
analyzing the genome of these plants, the evolutionary pathways
taken to gain these traits could be understood and applied in
breeding programs. Analyses of crop wild relatives have already
shown that their genetic variability is a great field to exploit
in breeding programs centred on obtaining new crop varieties
with tolerance to diverse stresses (Dempewolf et al., 2010, 2014).
For example, wild relatives of pigeon pea (Cajanus cajan) and
wheat has proven to be a source of genetic resources and traits to
improve the tolerance of their related crops to stress conditions
(Zaharieva et al., 2001; Khoury et al., 2015; Von Wettberg
et al., 2018). In addition to wild relatives, crop landraces are a
great source of genetic variability for their adaptation to specific
ecosystems and climatic conditions (Cantalapiedra et al., 2017;
Carvalho et al., 2017; Sani et al., 2018). On the other hand, latest
studies with orphan crops have demonstrated that those crops are
a powerful tool to improve their related global-traded crops due
to its resistance against unfavorable conditions (Song et al., 2019;
Tadele and Bartels, 2019).

Traditionally, one of the main bottlenecks to study root
adaptation in crops and wild species has been the technical
challenge to phenotype roots as a whole system and in their
interaction with the soil. The progressive appearance of non-
invasive and non-destructive new methods such as shovelomics,
X-ray thomography and magnetic resonance imaging (MRI) to
visualize the 3D-configuration of roots is allowing to deepen
the study of root development during the whole life cycle of
plants (Keyes et al., 2013; Walter et al., 2015). As a result,
media that allow direct observation of root development, such
as hydroponic culture or the use of gelled media, is being
widely used to facilitate these studies. Still more problems
arise when the goal is to analyze root soil interaction and
specially to emulate soil temperature gradient (Füllner et al.,
2012). Different sharing platforms and softwares specifically
designed to analyze root traits are easing the study of the
root system and the associations of different traits to different
stages or root responses (Das et al., 2015; Tracy et al., 2020).
Although a few challenges still remain to study root adaptation
in crops, new methodologies and tools are constantly being
developed. Thus, analysis like the transcriptional landscape of
different roots types in wheat (Ramírez-González et al., 2018)
or the development of expression tissue profiling similar to
eFP browser (Winter et al., 2007) or Tomato Expression Atlas
(Fernandez-Pozo et al., 2017) in roots of different crops will be
immensely useful.

Once beneficial root traits have been defined and potential
gene candidates are identified they must be incorporated
into breeding programs. A critical challenge is the time it
takes from research finding to implementation in agriculture.
Complementary approaches and technologies are needed to
accelerate downstream breeding. Between the most promising
solutions, crop editing has the greatest potential to improve root
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performance under various abiotic stresses in relatively short
time (Butt et al., 2019). Gene editing driven by tailored strategies
focused in specific crop species and stress situation, and a rational
design and assembly of appropriated gene combination could
result in the generation of new crop varieties able to respond
to a particular or a combination of stresses without affecting
their yield (Bailey-Serres et al., 2019). This approach, together
with powerful genome scale analysis, genome wide association
studies and molecular marker assisted breeding are a promiseful
alternative to produce new elite varieties adapted to the incoming
climatic situation.
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Periods of drought, that threaten crop production, are expected to become more
prominent in large parts of the world, making it necessary to explore all aspects of
plant growth and development, to breed, modify and select crops adapted to such
conditions. One such aspect is the xylem, where influencing the size and number
of the water-transporting xylem vessels, may impact on hydraulic conductance and
drought tolerance. Here, we focus on how plants adjust their root xylem as a response
to reduced water availability. While xylem response has been observed in a wide
array of species, most of our knowledge on the molecular mechanisms underlying
xylem plasticity comes from studies on the model plant Arabidopsis thaliana. When
grown under water limiting conditions, Arabidopsis rapidly adjusts its development to
produce more xylem strands with altered identity in an abscisic acid (ABA) dependent
manner. Other hormones such as auxin and cytokinin are essential for vascular
patterning and differentiation. Their balance can be perturbed by stress, as evidenced
by the effects of enhanced jasmonic acid signaling, which results in similar xylem
developmental alterations as enhanced ABA signaling. Furthermore, brassinosteroids
and other signaling molecules involved in drought tolerance can also impact xylem
development. Hence, a multitude of signals affect root xylem properties and, potentially,
influence survival under water limiting conditions. Here, we review the likely entangled
signals that govern root vascular development, and discuss the importance of taking
root anatomical traits into account when breeding crops for enhanced resilience toward
changes in water availability.

Keywords: Arabidopsis, drought, root, development, xylem

ROOT XYLEM CHARACTERISTICS ARE INFLUENCED BY
CHANGES IN WATER AVAILABILITY

Agricultural drought refers to conditions of insufficient water availability rendering conditions
unsuitable for plant growth (Wilhite and Glantz, 2009). Understanding mechanisms of plant
response to water limitation can help in the breeding of crops with enhanced survival under
such conditions. For long, focus has been put on above ground traits or root system architectural
properties, but recently more attention has been given to how anatomical parameters and, in
particular, xylem structures of the roots influence water transport and drought resilience. The
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tracheary elements of the xylem form hollow vessels or tracheids
that are structurally reinforced with lignified secondary cell walls
(SCW), providing the ability to withstand the strong negative
pressure generated by the transpiration pull and promote bulk
water movement from the roots to the shoot. The geometrical
and physical properties of the tracheary elements influence water
transport capacity and research in a wide array of species suggests
that xylem traits are important for the ability of plants to
withstand periods of reduced water availability (Lucas et al.,
2013). The importance of root xylem characteristics for drought
tolerance was recently underscored by a study identifying
Arabidopsis thaliana (Arabidopsis) ecotypes with enhanced root
hydraulic conductance (Tang et al., 2018). Through genome
wide association studies this trait was linked to XYLEM NAC
DOMAIN1 (XND1) (Tang et al., 2018), a well-known negative
regulator of xylem differentiation (Zhao et al., 2008, 2017). The
xnd1 loss of function mutants in the Col-0 ecotype had increased
root xylem area, and higher aquaporin activity, resulting in
enhanced hydraulic conductance compared to wild type, and
these plants also displayed enhanced drought tolerance on soil
(Tang et al., 2018). Similar root anatomical traits were associated
with enhanced hydraulic conductance, drought tolerance and
increased yield in field grown soy bean (Glycine max) plants
(Prince et al., 2017). Interestingly, wheat varieties bred to
instead possess smaller xylem diameter displayed higher grain
yield during drier growth periods because of improved use of
subsoil water (Richards and Passioura, 1989). In line with this,
drought exposed rice may respond with formation of smaller
xylem diameter (Henry et al., 2012). This strategy is similar
to what is observed in drought stressed poplar (Populus nigra
L. × Prunus maximowiczii) trees, which adjust their xylem
development to produce thinner but more xylem vessels in
their wood (Arend and Fromm, 2007). Thinner xylem vessels
increase resistance but reduce risk of embolisms, which occurs
under water limiting conditions (Lucas et al., 2013). Thus,
different species may benefit from different strategies, but the
occurrence of xylem modifications under drought in different
species grown under both lab and field conditions suggests
these to be important adaptive responses to water limitation.
Hence, the molecular mechanisms underlying these responses are
potentially important targets for crop breeding programs. Here,
we discuss a number of hormones and small molecules known,
primarily from studies in Arabidopsis, to affect root xylem
patterning and differentiation and how the current knowledge
can be employed to optimize plant behavior under normal and
drought conditions.

ABA REGULATES XYLEM
DEVELOPMENT VIA MIRNA165

Under conditions of reduced water availability, in vitro-grown
Arabidopsis responds with reduced root growth and suppressed
lateral root development (Rowe et al., 2016). Recently, it was
found that this also causes major changes to the root’s internal
anatomy (Jang and Choi, 2018; Ramachandran et al., 2018; Bloch
et al., 2019). Normally, the Arabidopsis root stele has a diarch

anatomy: a xylem axis traverses the stele with one strand of
protoxylem with annular or spiral SCW at either end of the axis
and metaxylem with pitted SCW in the center (Figure 1). When
water availability is reduced, additional protoxylem strands
form, both to widen the axis and to shift the identity of the
xylem strands within the axis such that protoxylem develops in
metaxylem positions (Jang and Choi, 2018; Ramachandran et al.,
2018; Bloch et al., 2019). Identity changes were observed also
under exogenous treatment with ABA, a well-known mediator
of abiotic stress (Zhu, 2016), even below root growth-inhibiting
concentrations (Figure 1). These phenotypic alterations were
strongly attenuated when ABA signaling was compromised,
suggesting that they are ABA mediated. Strikingly, inhibition
of ABA signaling in the endodermis cell-layer, surrounding the
stele, was sufficient to partially suppress xylem identity changes,
indicating that ABA acts via a non-cell-autonomous signal
(Ramachandran et al., 2018; Bloch et al., 2019). The microRNAs,
microRNA165 (miR165) and miR166, are well-known signals
moving from endodermis into the stele to determine xylem cell
identity (Carlsbecker et al., 2010; Miyashima et al., 2011). These
miRNAs are produced in the endodermis but move into the
stele to target mRNAs of class III homeodomain leucine-zipper
(HD-ZIP III) transcription factors (TFs). The lower levels of
HD-ZIP III TFs in the periphery compared to the central stele
determine protoxylem and metaxylem identity in the peripheral
and central positions of the xylem axis, respectively (Carlsbecker
et al., 2010; Miyashima et al., 2011). Hence, upon elevated miR165
levels or in HD-ZIP III loss-of-function mutants, protoxylem
forms in the place of metaxylem, conspicuously similar to the
phenotype observed under limited water availability or ABA
treatments. Indeed, under water-limiting conditions miR165
production in the endodermis is enhanced and, consequently,
HD-ZIP III TF levels reduced, explaining the observed shift in
xylem cell identity (Ramachandran et al., 2018; Bloch et al., 2019).
Intriguingly, if miR165/166 levels instead are strongly reduced
throughout the Arabidopsis plant, by the use of an artificial
miRNA-target that sequesters miR165/166 (STTM165/166), it
results in elevated expression of ABA-related genes and enhanced
drought tolerance (Yan et al., 2016). Similar approach conferred
drought tolerance also in rice, however in rice miR166 is
expressed only in the shoot and consequently only leaf and
stem xylem number were affected (Zhang et al., 2018). Since
the HD-ZIP III TFs can influence leaf morphology as well as
root xylem development, further studies are needed to investigate
if these factors could be differentially regulated in roots and
shoot upon water stress, and how they may contribute to
ABA homeostasis.

AUXIN-CYTOKININ INTERPLAY
PATTERNS THE ROOT VASCULATURE

Under normal development, research on Arabidopsis embryos
and roots has shown that auxin plays a key role in establishing
vascular patterns where xylem and phloem are separated by
intervening procambium (Figure 1; Bishopp et al., 2011).
Central for this is the TF AUXIN RESPONSE FACTOR5
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FIGURE 1 | Hormone circuits controlling root xylem development. In the Arabidopsis seedling root, to the right, spiral-walled protoxylem vessels (light blue-green)
differentiate first followed by the pitted metaxylem vessels (dark blue-green). To the left a cartoon depicting a cross section focusing on the stele surrounded by the
endodermis. Cell types are as indicated: endodermis (green), pericycle (dark gray), procambium (light gray), protoxylem (light blue-green), metaxylem (dark
blue-green). Signaling pathways affecting xylem patterning and differentiation are shown on top of the cross section. Hormones are in bold red letters. Arrows
indicate activation, bars inhibition. Dashed arrows indicate movement. Phenotypic consequences of hormone treatments or biosynthesis/signaling perturbations for
selected experiments are displayed around the cross section. Decreased hormone levels/signaling (light blue background), enhanced levels/signaling (light red
background). A PIN3/7 mediated lateral transport focuses auxin (IAA) to a central axis within the stele (Bishopp et al., 2011). Here, auxin-activated MP induces
TMO5 that activates LOG3 and LOG4 resulting in CK biosynthesis (De Rybel et al., 2014; Ohashi-Ito et al., 2014). MP also activates AHP6 which inhibits CK
signaling (Bishopp et al., 2011). CK moves to the procambium and activates PIN3 and 7, and DOF TFs (Bishopp et al., 2011; Miyashima et al., 2019; Smet et al.,
2019). MP is required for xylem formation, as the weak mpS319 mutant has discontinuous protoxylem and mutants defective in the MP repressors IAA20 and IAA30
result in additional protoxylem (Müller et al., 2016). The auxin biosynthesis mutant wei8 tar2 lacks metaxylem because of reduced HD-ZIP III expression (Ursache
et al., 2014). The cytokinin biosynthesis mutant log3 log4 has extra protoxylem and a wider xylem axis (De Rybel et al., 2014; Ohashi-Ito et al., 2014), whereas
treatment with the synthetic CK, 6-benzylaminopurine (BA) results in loss of protoxylem due to AHP6 suppression (Argyros et al., 2008; Bishopp et al., 2011). JA
activates AHP6 expression and suppresses PIN7 expression (Jang et al., 2017, 2019). Methyl-JA treatment results in extra protoxylem and a wider xylem axis, but
mutation in the JA receptor COI does not affect xylem development (Jang et al., 2017). ABI1 mediated ABA signaling in endodermis induces miR165 and miR166,
which move into the stele to restrict HD-ZIP III mRNA, exemplified with PHABULOSA (PHB) (Ramachandran et al., 2018; Bloch et al., 2019). ABA treatment results in
protoxylem in place of metaxylem and extra protoxylem, while ABA signaling and biosynthesis mutants display xylem breaks (Ramachandran et al., 2018).
Endodermal ABA signaling enhances suberization (Barberon et al., 2016). Mobile AHP6 represses suberization resulting in passage cells for water and nutrient
uptake (Andersen et al., 2018). ABA signaling components interact with BR signaling resulting in antagonistic control of downstream targets. ABA signaling activates
ABI5, while ABI5 expression is repressed by BES1/BZR1 via BRI1-BAK1 receptor and BIN2 GSK3-mediated BR signaling, and BIN2 interferes with ABA signaling by
activating SnRK2 kinases (Planas-Riverola et al., 2019). BR activates VND TFs that induce xylem differentiation. In the in vitro vascular cell induction system VISUAL,
formation of ectopic xylem is inhibited in the BR signaling mutant bes1−1 (Saito et al., 2018).

(ARF5)/MONOPTEROS (MP) (Berleth and Jürgens, 1993;
Bishopp et al., 2011). High levels of auxin, primarily within the
xylem precursors, activate MP, which in turn induces TARGET

OF MONOPTEROS5 (TMO5) (Schlereth et al., 2010). TMO5
in complex with LONESOME HIGHWAY (LHW), controls
procambial periclinal cell divisions (Ohashi-Ito et al., 2013),
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by promoting cytokinin (CK) biosynthesis via the activation
of LONELY GUY3 (LOG3) and LOG4 (De Rybel et al., 2014;
Ohashi-Ito et al., 2014). Although CK is synthesized within
the xylem domain, CK response is low here (Bishopp et al.,
2011). Instead, CK is sensed in the neighboring procambial
cells, where it activates several DNA-binding one finger (DOF)
TFs to promote procambial periclinal cell divisions (Miyashima
et al., 2019; Smet et al., 2019). CK also promotes the
expression of auxin efflux carriers PIN3 and PIN7, which
move auxin laterally into the xylem domain (Bishopp et al.,
2011). Auxin, in the protoxylem positions, induces HISTIDINE
PHOSPHOTRANSFER PROTEIN6 (AHP6) (Bishopp et al., 2011),
a negative regulator of CK signaling (Mähönen et al., 2006),
partially explaining the reduced CK response and limited
periclinal cell divisions within the xylem axis. Within the
central xylem axis, auxin biosynthesis promotes HD-ZIP III
transcription (Ursache et al., 2014), and it is possible that these
factors contribute to the suppression of CK signaling, as they can
inhibit B-type response regulators (B-ARRs) under conditions
of high CK levels (Sebastian et al., 2015). Modeling approaches
have shown that the above described interactions are sufficient
to generate de novo patterning, replicating both a diarch and
more complex anatomical patterns that are seen in other plant
species, primarily depending on the size of the stele (Mellor et al.,
2017, 2019). The patterning factors are further intertwined, as
the HD-ZIP III TFs both interfere with auxin signaling (Müller
et al., 2016), and suppress expression of cytokinin induced DOF
TFs, while certain DOF TFs move from the phloem to positively
influence HD-ZIP III expression in intervening procambial cells
(Miyashima et al., 2019). Hence, it is conceivable that, similar
to ABA’s influence on miR165/HD-ZIP III TFs, this complex
network is targeted at multiple points by abiotic signals to alter
xylem development. It remains to be examined if the formation
of extra xylem strands, widening the xylem axis, observed under
water limiting conditions, is the effect of ABA impinging on
the delicate auxin-cytokinin balance that normally demarcates
domains of low and high periclinal division activity. Multiple
examples where abiotic stresses, and ABA specifically, intersect
with and affect auxin and cytokinin can be found in other
contexts for example in the regulation of seed germination,
cell elongation and root growth (Verslues, 2016; Bielach et al.,
2017; Huang et al., 2018). Such an intersection may therefore be
anticipated also in the regulation of vascular patterning.

ABIOTIC STRESS AFFECTS ROOT
XYLEM DIFFERENTIATION TO
INFLUENCE DROUGHT TOLERANCE

The xylem precursor cells, patterned and specified by the
auxin-cytokinin/HD-ZIP III regulatory networks, differentiate
into functional xylem vessels through a differentiation program
involving programmed cell death and SCW deposition (reviewed
by Furuta et al., 2014). Apart from XND1, TFs of another
NAC subfamily, VASCULAR NAC DOMAIN (VND), are
master regulators of xylem differentiation, and overexpression
of any of the seven VND-genes result in trans-differentiation

of other cell types into tracheary element cells (Kubo et al.,
2005; Endo et al., 2015). A hierarchical TF network with
VNDs regulating two tiers of MYB domain TFs acts directly
upstream of lignin and cellulose biosynthesis genes (Taylor-
Teeples et al., 2014; Turco et al., 2019). Network perturbation
analysis revealed that one of the HD-ZIP III TFs, REVOLUTA
is a negative regulator of lignin biosynthesis, and that the
network modulates xylem development under conditions of
iron deficiency or salt stress (Taylor-Teeples et al., 2014).
The increase in expression of lignin biosynthesis genes under
iron deficient conditions is dependent on reduction in REV
levels, while MYB46 and VND7 play crucial roles in enhancing
xylem differentiation during salt stress (Taylor-Teeples et al.,
2014). Thus, the presence of several upstream regulators
of SCW biosynthesis allows the use of specific TFs in
response to different types of stresses. Interestingly, in apple,
MdMYB88 and MdMYB122 were found to influence hydraulic
conductivity by affecting xylem density, diameter, and the
expression of SCW biosynthesis genes (Geng et al., 2018). The
activation of SCW biosynthesis genes to maintain root hydraulic
conductivity during drought stress was found to be through
their direct regulation of MdVND6 and MdMYB46, suggesting
that co-option of xylem development regulators maybe be
evolutionarily conserved.

Intriguingly, low levels of ABA, even under non-stressed
conditions, are required for the formation of continuous
xylem strands, since both ABA-biosynthesis and signaling
mutants have patches along the xylem strands that are
either retained in an undifferentiated procambial state or
are xylem cells with defective SCW formation (Figure 1;
Ramachandran et al., 2018). Suppression of ABA signaling in
cell-layers external to the stele, such as in the endodermis or
epidermis also resulted in similar discontinuous xylem suggesting
a non-cell autonomous effect of ABA. Indeed, inhibition
of ABA biosynthesis or suppression of endodermal ABA
signaling reduced MIR165A levels and consequently elevated the
expression of certain HD-ZIP III genes (Ramachandran et al.,
2018). ABA is also important during secondary development
as ABA biosynthesis mutants exhibit delayed xylem fiber
formation (Campbell et al., 2018). Contrastingly, exogenous
ABA treatment induces protoxylem differentiation closer to
the root tip in Arabidopsis and tomato (Bloch et al., 2019)
suggesting that in addition to interfering with xylem identity
ABA promotes differentiation. Interestingly, endodermal ABA
signaling acts in a similar manner to promote suberization of
the endodermis (Figure 1; Barberon et al., 2016). The movement
of AHP6 from protoxylem precursors and neighboring pericycle
cells to the endodermis represses cytokinin signaling allowing
the formation of “passage cells” lacking suberization for the
entry of water and nutrients into the stele. Increase in ABA
levels enhances endodermal suberization and reduces passage
cell number (Andersen et al., 2018). It will be important to
further explore how the differentiation programs of xylem and
endodermis are intertwined and how this may influence radial
conductivity of water and nutrients. Furthermore, endodermal
ABA signaling can also affect lateral root development (Duan
et al., 2013), hinting toward the endodermis as a hub for multiple
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developmental changes upon drought, from xylem patterning to
root architecture.

BRASSINOSTEROIDS AND
THERMOSPERMINES AFFECT XYLEM
DIFFERENTIATION AND IMPACT ON
ABIOTIC STRESS TOLERANCE

Use of Arabidopsis and Zinnia in vitro cell culture systems,
where cells are triggered to trans-differentiate into xylem cells,
have identified brassinosteroids (BR) as molecular cues that
promote xylem differentiation (Yamamoto et al., 1997; Tan
et al., 2019). The addition of BR or chemical inhibitors of
BR signaling repressors to culture media containing auxin and
cytokinin promoted xylem differentiation in a VND-dependent
manner (Kondo et al., 2014; Tan et al., 2018). Although BR
and ABA seem to act similarly with respect to promotion
of xylem differentiation, there is substantial evidence for BR-
ABA antagonism at several levels. BR and ABA responsive
TFs, BRI1 EMS SUPPRESSOR1 (BES1) and RESPONSIVE TO
DESICCATION (RD26), respectively, share common targets
but regulate them in opposing ways (Chung et al., 2014).
Under normal conditions, BR signaling promotes growth in a
BES1 dependent manner, however, upon exposure to stress the
activation of RD26 inhibits BR mediated growth through the
regulation of BES1 targets. Interestingly, while the application
of BR promotes drought tolerance in a concentration dependent
manner, genetic evidence indicates that loss of BR receptor
function can also confer drought tolerance (reviewed by Nolan
et al., 2020). Adding to the complexity, the overexpression of
one of the BR receptors, BRASSINOSTEROID INSENSITIVE1
LIKE3 (BRL3) also conferred drought tolerance, without affecting
growth, through the accumulation of osmoprotectant sugars in
the root (Fàbregas et al., 2018). The antagonistic function of
BR and ABA in growth modulation, but their similar effects in
promoting xylem formation, raises the question of whether the
two hormones might regulate similar sets of genes but under
different conditions thus providing a frame work to regulate
xylem development independent of growth inhibition. Also,
other molecules need to be included into the equation: in the BR
receptor mutant bri1, the root procambial cells differentiate into
xylem, resulting in an increased number of xylem vessels in a BR
independent manner. This is due to the positive effect that BRI1
exerts on phytosulfokine (PSK) signaling, and mutants defective
in PSK signaling display similar ectopic xylem differentiation in
procambial positions (Holzwart et al., 2018). The involvement
of BRI1 in BR, ABA, and PSK signaling provides challenges to
dissect the individual roles of these components in controlling
xylem development and if they function together in stress
mediated xylem modifications.

Another molecule with a capacity to regulate xylem
differentiation is the polyamine thermospermine. This
molecule represses xylem differentiation, as mutations in
the thermospermine synthase gene, ACAULIS5 (ACL5), result in
earlier xylem differentiation (Muñiz et al., 2008). Furthermore,

ACL5 influences procambial divisions as thermospermine
affects the translation of the auxin induced SUPPRESSORS
OF ACAULIS51 LIKE (SACL) group of bHLH TFs. The SACL
TFs are paralogs to TMO5, and compete for dimerization
with LHW, thereby restricting TMO5-mediated promotion of
procambial divisions (Katayama et al., 2015; Vera-Sirera et al.,
2015). Interestingly, the acl5 mutant, which has excess xylem
formation, is salt sensitive while mutations in the gene encoding
a thermospermine catabolizing enzyme, POLYAMINE OXIDASE
5 (PAO5), or treatment with thermospermine which results in
fewer xylem vessels, rendered the plant tolerant to salt stress
(Shinohara et al., 2019). Thus, here fewer xylem strands correlate
with an increased tolerance to salt stress, possibly by reducing the
systemic spread of salt toxicity. However, acl5 mutants displayed
wildtype-like sensitivity when exposed to drought and mannitol
treatments suggesting that different mechanisms are at play
in mediating salt and drought stress tolerance. Interestingly,
pao5 mutants, which show elevated levels of thermospermine,
spermine, and N’-acetyl spermine and have fewer xylem vessels
in the root display tolerance to drought and reduced sensitivity
to ABA thus indicating that the levels of these molecules can be
modulated during stress to alter xylem development (Shinohara
et al., 2019). A study in poplar revealed that thermospermine
level established by a negative feedback regulation between
ACL5, auxin and the HD-ZIP III TF ATHB8 is important for
proper xylem differentiation (Milhinhos et al., 2013). Further
investigations into the roles of these polyamines and how they
function together with other xylem development regulators
during stress will be important to understand how polyamine
modulation can confer stress tolerance.

LONG DISTANCE SIGNALING
COMPONENTS INFLUENCING XYLEM
DEVELOPMENT

To cope with environmental stressors, plants have developed an
array of long-distance signaling cascades that include hydraulic,
electrical, and chemical signals (Huber and Bauerle, 2016).
An example of how such long-range signals can impact root
xylem development comes from experiments where wounding
of Arabidopsis cotyledons resulted in hydrogen peroxide
accumulation in the root causing root xylem differentiation closer
to the root tip (Fraudentali et al., 2018). Jasmonic acid (JA), a
wound induced signal, may be one such long-range signal as JA
was found to cause hydrogen peroxide accumulation and early
xylem differentiation (Ghuge et al., 2015). It has been suggested
that JA and CK signaling pathways have antagonistic interactions
(reviewed by O’Brien and Benková, 2013) and they play similar
antagonistic roles in xylem development. Exogenous application
of methyl-JA for long periods caused the formation of extra
xylem strands by promoting xylem differentiation of procambial
cells. This xylem promoting effect of JA was accomplished
by interference with the auxin/cytokinin balance within the
stele, through ectopic activation of AHP6, which suppresses
cytokinin response, and repression of PIN7 expression within the
procambial domain (Jang et al., 2017, 2019). Further, reduced
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water availability activated the expression of JA responsive genes,
LIPOXYGENASE2 (LOX2) and JASMONATE INSENSITIVE 1
(JAI1/MYC2), indicating that during drought stress JA signaling
might be another pathway involved in xylem developmental
plasticity (Jang and Choi, 2018).

A recent study identified the CLAVATA3/EMBRYO-
SURROUNDING REGION-RELATED25 (CLE25) peptide to act
as a mobile signal from the root to the leaves under dehydration
conditions (Takahashi et al., 2018). Application of CLE25 to
Arabidopsis seedlings, induced ABA biosynthesis and resulted
in ABA mediated stomatal closure (Takahashi et al., 2018).
The receptor BARELY ANY MERISTEM1 (BAM1) involved in
CLE25 signaling, also associates with CLE9/10 to restrict xylem
cell number. Mutants defective in CLE9/10 display increased
periclinal cell divisions within the xylem axis resulting in more
xylem vessels (Qian et al., 2018). Interestingly, in cotyledons,
CLE9 perception and signaling through a different receptor,
HAESA-LIKE1, negatively affects the number of guard cells (Qian
et al., 2018). Hence, the mobility of CLE peptides and their ability
to control two aspects of plant development that are involved
in hydraulic conductance warrants further investigation into
how these peptides might coordinate drought stress responses
in the root and shoot.

WHAT CAN WE LOOK FORWARD TO?

Studies on Arabidopsis have revealed how different regulatory
components influence root xylem developmental. Existing
evidences point toward the repurposing of core developmental
regulators to bring about phenotypic alterations in response to
environmental perturbations. However, there are missing links
on how different environmental inputs are interpreted by the
plant. Recent progress in single cell sequencing technologies will
help identify how the developmental trajectories of specific cell
types are altered by external stimuli and find components central
to phenotypic plasticity (Rodriguez-Villalon and Brady, 2019;
Ryu et al., 2019; Shulse et al., 2019). The understanding of plant
response to water stress requires simultaneous monitoring of
various physiological characteristics, such as modifications to the
xylem vessel diameter and number, properties of the cell wall
such as lignification or suberization and composition of the soil-
root-microbiome interface (reviewed by Lynch et al., 2014). Plant

imaging platforms such as light sheet fluorescence microscopy
and Growth and Luminescence Observatory for Roots (GLO-
Roots) allow not only the analysis of root system architecture and
anatomical phenes but also the visualization of gene expression
patterns, enabling the simultaneous characterization of responses
at physiological and molecular levels (Rellán-Álvarez et al.,
2015; von Wangenheim et al., 2020). In addition, computational
simulation tools such as GRANAR, which facilitate studies on
the effect of different monocot root anatomies on root hydraulic
conductivity (Heymans et al., 2020) or OpenSimRoot, which
can be used to reconstruct root systems, in combination with
hydraulic models, will aid the study of anatomical parameters
that influence water transport (Postma et al., 2017). One has to
bear in mind, though, that varieties that constitutively employ
theoretical water saving strategies are not always best suited for
real world growth regimes (Skirycz et al., 2011). Rather, the
future of agriculture likely lies in the generation of “personalized
crops” that are designed to suit the climate, soil properties and
microbiota of a certain region. To meet such a goal, multiple
approaches will be needed, including further exploration into
the extent of natural variation. Interestingly, the Arabidopsis
C24 ecotype has been found to be tolerant to multiple stress
factors and has a unique combination of low water use and high
seed biomass (Bechtold et al., 2010; Bechtold et al., 2018), thus
the underlying genetics of this and similar studies on naturally
occurring stress tolerant populations of a species can guide
approaches in crop breeding. Alternatively, available knowledge
on regulatory networks such as those described in this review can
be harnessed to alter phenotypes specifically and rationally.
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Crop load has a substantial impact on growth of the aerial and belowground parts
of apple trees. Here, we examined the effects of different crop loads on growth and
hormone levels in apple roots. A crop load of 1.5 (T1.5) fruits per cm2 trunk cross-
sectional area (TCSA) treatment resulted in lower root growth vigor, while non-fruiting
(T0) and T0.4 conditions showed higher root growth vigor. In all treatments, dead
roots increased in length 90 days after full bloom (DAFB), whereas live roots were
more abundant at about 50 and 170 DAFB, showing a bimodal curve. During each
root growth peak, levels of cytokinins (CTKs), indole acetic acid (IAA), and gibberellic
acid (GA3) were higher. Moreover, hormone levels gradually decreased with increasing
crop load within each peak. Root turnover tended to decrease with decreasing crop
load. These findings indicate that root growth and hormone contents were positively
correlated during the fruit growth phase, and that the negative impact of crop load on
root growth may have been caused by hormone level decreases.

Keywords: apple, root system, endogenous hormones, minirhizotron, fruit load

INTRODUCTION

Alternate bearing is one of the greatest problems in apple production, resulting in unbalanced
production and fruit quality. This issue can be alleviated by managing an appropriate crop load,
which influences vegetative and productive growth (Smith and Samach, 2013). For instance,
excessive crop load may reduce shoot elongation, leaf growth, and root development, which directly
affect photosynthesis and carbon allocation. Root growth is of great significance for vegetative
growth, because nutrients are necessary for the energy required for both photosynthesis and root
uptake. Studies investigating the effects of fruits on photosynthesis, partitioning of assimilates,
and dry matter accumulation have shown higher leaf photosynthetic efficiency in fruiting than in
non-fruiting trees (Heim et al., 1979; Negi and Sharma, 2011). Both roots and fruits, non- or low-
photosynthetic organs, act as sinks depending exclusively on photosynthetic products imported
from leaves. Thus, root growth is much greater in non-fruiting trees than in fruiting trees (McClure
and Cline, 2015). Unequal competition among sinks may cause a disequilibrium between vegetative
and reproductive growth due to changes in carbon allocation, which may lead to a new source/sink
balance and water and nutrient supplies. Carbon distribution plays an important role in root
development. Despite studies on fruit and shoot growth, the effects of crop load on root growth
and development remain unclear.
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Phytohormones are endogenous substances that play vital
roles in plant growth and development. Hormone signals
transmit information about environmental and endogenous
changes to integrate the physiological responses of the whole
plant to optimize growth and development, and form new
source–sink balances (Lemoine et al., 2013). The initiation and
development of roots, which supply water and nutrients, are
affected by the combined actions of endogenous phytohormones.
Plant growth is modulated by sink strength, and cytokinins
(CTKs) regulate the rate-limiting steps that determine nutrient
availability by establishing local metabolic sinks (Werner et al.,
2008). CTKs have an inhibitory effect on lateral root initiation
and a stimulatory effect on lateral root elongation. Exogenously
applied CTKs completely inhibit lateral root primordia formation
and stimulate lateral root elongation by increasing cell length
(Goodwin and Morris, 1979). Exogenously applied auxin
counteracts the effect of CTKs on lateral root initiation and
elongation, suggesting that CTKs act on lateral root elongation
through an auxin-dependent pathway (Debi et al., 2003).
Numerous studies have shown that auxin is necessary for
lateral root initiation and subsequent growth (Blakely et al.,
1988; Celenza et al., 1995; Reed et al., 1998). Exogenous
application of auxin or enhancement of endogenous auxin
synthesis results in a significant increase in the number of
lateral roots (Kares et al., 1990; Boerjan et al., 1995; Laskowski
et al., 1995). CTKs, together with auxin, play an essential
role in plant morphogenesis, and have a strong influence
on root and shoot formation and relative growth. CTKs act
antagonistically to auxin and determine cell senescence by
promoting shoot and root differentiation in callus culture
(Laplaze et al., 2007).

Many studies have reported on the physiological functions of
gibberellins (GAs) during root growth. Concentration-dependent
stimulation of elongation growth by GA is important for
regulating plant height and root length. In GA depletion
experiments, either by inhibiting GA biosynthesis or using
GA-deficient mutants, remarkable thickening of roots was
observed, while slender roots were induced by GA treatment
(Tanimoto, 1987, 1994). Furthermore, GA clearly stimulated root
elongation under growth-suppressed conditions induced by a
GA biosynthesis inhibitor (Zhang and Hasenstein, 1999). Finally,
Tanimoto (2012) showed that endogenous GA content affected
the root-to-shoot ratio.

The effects of hormones on root development have been
well documented (Casimiro et al., 2003; Peret et al., 2009;
Petricka et al., 2012). However, few such studies have applied
minirhizotron methods. Despite the large body of experimental
work on exogenous hormone application to roots, little is
known about the effects of crop load on endogenous hormone
contents, root growth, and their interactions. Therefore, to
gain a better understanding of the effects of crop load on
the belowground response, we conducted an experiment using
minirhizotrons, which allowed for clear, accurate, and continuous
observations of root growth. Plants were grown in pots for
accurate observations, and the root growth dynamics and root
hormone contents under different crop loads were determined.
The minirhizotron observation method allowed us to compare

root length, surface area, and volume under different crop
load conditions during the observation period, revealing the
changes in root growth dynamics and the relationship between
root growth and root hormone contents. Our hypothesis was
that crop load would have a negative effect on root CTK,
GA3, and IAA contents, thereby reducing root growth. To test
this hypothesis, we assessed root growth dynamics and root
hormone contents.

MATERIALS AND METHODS

Plant Materials
The trials were conducted at Hebei Agricultural University,
Baoding, Hebei, China. We used 4-year-old Tianhong
2/SH40/Baleng crabapple potted plants. All plants were grown
in cylindrical root limiter (30 cm × 30 cm) filled with loam in a
greenhouse under natural temperature and light conditions.

Experimental Design
On April 19, 2018, plants of similar size (height, ∼1.5 m, trunk
girth, 21 cm) were transplanted into cylindrical non-woven
fabric pots (75 cm × 60 cm) filled with loam. The spacing
between plants and rows was 1 m × 1.5 m. For root growth
observations, two minirhizotrons (length, 60 cm; diameter, 7 cm)
were installed 25 cm from the trunk on the east and west sides
of each plant during transplanting. The experimental layout was
completely randomized and we selected 24 plants and divided
these into four crop load treatments. The plant material was
thinned on May 18, and crop loads of 0 (T0), 0.4 (T0.4), 1.1
(T1.1), and 1.5 (T1.5) fruits per cm2 trunk cross-sectional area
(TCSA) were set up. Each treatment was repeated six times. Drip
irrigation was used with two drippers per pot evenly distributed
on both sides of the plant. Beginning at 50 days after full bloom
(DAFB) on June 8, the roots were sampled with a soil sampler
every 20 days to determine hormone contents. After sampling,
the samples were transported to the laboratory and cleaned in
distilled water, and then put into liquid nitrogen and stored
at −80◦C.

Root Data Acquisition and Analysis
The root Scanner-R root detection system was used to scan
and collect root images every 20 days beginning 50 DAFB.
Root analysis software was used to process the images, and
the occurrence and death of new roots were observed and
recorded. Relevant indicators were calculated based on unit soil
volume (S × D), where S is the area of the cultivation matrix
observed by a single minirhizotron (S = 7π × 22 cm2) and D
is the observed thickness of the substrate (D = 0.25 cm). Roots
that were un-suberized and white or changing to brownish in
subsequent viewings were recorded as living. Roots were defined
as dead when they turned black and produced no new roots on
subsequent occasions (Wei et al., 2019).

Root length density (mm·cm−3) = L/(S × D), where L is
the total length of a single minirhizotron. Root surface area
density (mm2

·cm−3) = SA/(S × D), and total root surface
area (mm2) of a single micro root canal. Root volume density
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(mm3
·m−3) = V/(S × D), where V is the total volume

of a single micro root canal (mm3). Root number density
(×10 m−3) = TN/(S × D), where TN is the total number of single
micro root canals (×103). The annual mortality of fine roots was
calculated by the total length of dead roots per unit volume of soil,
and the number of live roots was calculated by the total length
of living roots per unit volume each time we observed the roots.
Root turnover was estimated by the ratio of total dead root length
to average live root length for the entire observation period based
on the method used by Majdi and Andersson (2005).

Determination of Hormone Content in
Roots
The samples for hormones were collected under different
crop loads at 50, 70, 90, 110, 130, 150, and 170 DAFB.
Endogenous hormones, including indole acetic acid (IAA), zeatin
riboside (ZR), dihydrozeatin riboside (DHZR), kinetin (KT),
isopentenyladenine (IP), and gibberellic acid (GA3) contents
were extracted from root samples, using a high-performance
liquid chromatography method described by Fang et al. (1998).
Absorbance in each well was measured at 260 nm using a
microplate reader (Infinite M200; Tecan, Vienna, Austria). The
extracted phytohormones were separated by nano-flow reversed-
phase liquid chromatography on a nano-LC system (1260 series;
Agilent Technologies, Palo Alto, CA, United States) using a nano
Acquity Eclipse Plus C18 column (0.5 µm, 250 × 4.6 mm;
Agilent Technologies) at a flow rate of 0.7 mL·min−1 at 30◦C
in a mobile phase of 40% acetic acid in 0.7% or 5% acetonitrile
and 55% methanol. The samples were measured at 254 nm on a
VWD Chemstation (Agilent 1260 VWD), and the retention time
was 10 min. The hormones were quantified based on standard
curves and expressed as ng g−1 fresh weight. The standard curves
for each hormone were as follows: ZR (y = 0.0216x − 0.6876,
R2 = 0.9994), DHZR (y = 0.0253x − 0.419, R2 = 0.9998), IP
(y = 0.0225x − 0.0986, R2 = 0.9998), KT (y = 0.0213x − 0.0987,
R2 = 0.9996), IAA (y = 0.0764x − 0.1301, R2 = 0.9998), GA3
(y = 0.4474x − 0.7624, R2 = 0.9937).

Statistical Analysis
Experimental data are presented as the mean ± standard
deviation (SD). All data were analyzed by one-way analysis
of variance followed by Tukey’s multiple range test to detect
differences among the groups. All statistical analyses were
performed using SPSS 20.0 software (IBM Corp., Armonk, NY,
United States). A p-value < 0.05 was considered significant.

RESULTS

Effects of Different Crop Loads on Live
Root Development
To determine the effects of crop load on root development, we
observed the roots every 20 days from 50 to 190 DAFB. Live
root length density, live root surface area density (LRSAD), and
live root volume density (LRVD) were determined (Figure 1).
The results showed that root growth peaked at 150 DAFB under

all crop loads. Among the peaks, root growth at the higher
crop loads was significantly inhibited compared to that at lower
crop loads. The growth peaks were less obvious after observing
that the number of roots decreased from 50 to 110 DAFB.
During this period, more roots were maintained under T0.4
than the other treatments. The root developing conditions of
T0 differed markedly from all other treatments, showing a
constantly increasing trend (Figure 1A). Root surface area and
volume densities changed in a similar manner in all treatments,
remaining relatively low from 50 to 110 DAFB, then increasing,
and peaking at 170 DAFB. Among the peaks, LRSAD and LRVD
at 130 DAFB were significantly higher in T0 and T1.5 showed the
lowest levels (p < 0.05). The tendencies of the two parameters
for each treatment were similar, although LRVD was higher than
LRSAD for T0 and T0.4 (Figures 1B,C). Overall, T0 and T0.4 had
longer roots than all other treatments, indicating the inhibition of
root growth at higher crop loads.

Effects of Different Crop Loads on Dead
Root Length Density and Root Turnover
The dead root length density (DRLD) in all treatments peaked
at 90 DAFB (Figure 2), and then decreased gradually, but
increased again 190 DAFB. At their peaks, T0, T0.4, and T1.1
had significantly higher DRLDs than T1.5 (p< 0.05). The DRLDs
of T1.1 and T1.5 were significantly higher at 190 DAFB than
those in T0 and T0.4, and the DRLD of T0 was significantly
lower than those in the other treatments. Significant differences
were observed in root turnover under different crop loads during
the observation period (Figure 3). When compared with T0, the
root turnover rate were increased by 66.67, 125.00, and 125.00%
in T0.4, T1.1, and T1.5, respectively. Overall, root turnover
presented an increasing tendency with increasing crop load.

Effects of Different Crop Loads on Root
CTK Content
Crop load significantly affected endogenous hormonal levels
in roots, and root CTK content exhibited a bimodal curve
throughout the fruit development stages (Figure 4). At both 90
and 130 DAFB, the ZR contents were significantly higher in
lower and non-crop load treatments than in higher crop load
treatments. The first peak appeared from 70 to 90 DAFB, and
the second peak appeared from 110 to 130 DAFB; those of the
four treatments appeared at different periods (Figure 4A). The
root IP content also exhibited a bimodal curve throughout the
fruit development period, with two peaks appearing at 90 and
130 DAFB. At both 90 and 130 DAFB, the root IP contents
were significantly higher in T0 and T0.4 than in T1.1 and T1.5.
Lower crop load treatments showed higher IP content, which
decreased with increasing crop load (Figure 4B). The DHZR
contents in all treatments increased after 70 DAFB, with the
first peak at 90 DAFB and the second peak at 150 DAFB. The
DHZR content during the first peak was significantly higher in
T0.4 than the other treatments, whereas T1.5 had the lowest
level. The DHZR content decreased with increasing crop load,
and T0 exhibited the highest level among the treatments during
the second peak (Figure 4C). Root KT content also exhibited a
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FIGURE 1 | Changes in the live roots length density [LRLD (A)], the live root surface area [LRSAD (B)] and live roots volume density [LRVD (C)] of “Red Fuji” apple
under different crop load treatments from 50 days after full bloom (DAFB) to 190 DAFB. Data are means ± SD of three replicate samples. Treatments: T0, the crop
load levels of 0 fruits cm−2 TCSA; T0.4, the crop load levels of 0.4 fruits cm−2 TCSA; T1.1, the crop load levels of 1.1 fruits cm−2 TCSA; T1.5, the crop load levels
of 1.5 fruits cm−2 TCSA. I, fruit set stage; II, fruit growth stage; III, fruit ripening stage; IV, fruit harvest stage. Different letters indicate significant differences between
treatments, according to one-way ANOVA followed by Tukey’s multiple range test at P0.05 level.

bimodal distribution, except for T0.4. The first peak appeared
from 70 to 90 DAFB, and the second peak appeared from 130
to 150 DAFB. The KT contents in T1.1 and T1.5 at the first

peak were significantly higher than those in the other treatments.
However, after 90 DAFB, the KT content was significantly lower
in T1.5 than in the other treatments (Figure 4D).
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FIGURE 2 | Changes in the dead root length density (DRLD) of “Red Fuji” apple under different crop load treatments from 50 to 190 DAFB. Data are means ± SD of
three replicate samples. Treatments: T0, the crop load levels of 0 fruits cm−2 TCSA; T0.4, the crop load levels of 0.4 fruits cm−2 TCSA; T1.1, the crop load levels of
1.1 fruits cm−2 TCSA; T1.5, the crop load levels of 1.5 fruits cm−2 TCSA. I, fruit set stage; II, fruit growth stage; III, fruit ripening stage; IV, fruit harvest stage.
Different letters indicate significant differences between treatments, according to one-way ANOVA followed by Tukey’s multiple range test at P0.05 level.

Effects of Different Crop Loads on Root
Auxin Content
The changes in IAA content were similar among the four crop
loads, with unimodal curves peaking at 130 DAFB (Figure 5).
At 130 DAFB, the IAA content was significantly higher in T0
than T1.1 and T1.5. No significant differences were observed
in IAA contents between T0.4 and T0 or T1.1, but the IAA
contents were significantly higher than that in T1.5 treatment
(p < 0.05). The IAA content in T1.5 was significantly lower than
that in the other treatments throughout the observation period
(p < 0.05). At 110 DAFB, the IAA contents differed significantly
among the four treatments. The IAA content was significantly
higher in T0 than in the other treatments, and was significantly
higher in T0.4 than in T1.1 and T1.5, whereas the IAA content
was significantly lower in T1.5 than in the other treatments
(p < 0.05).

Effects of Different Crop Loads on Root
GA3 Content
The root GA3 content exhibited a bimodal distribution through
the fruit development stage in T0.4 and T1.1, and a unimodal
distribution in T0 and T1.5 (Figure 6). In T0.4 and T1.1, the
first GA3 content peak occurred at 90 DAFB; the GA3 content
was significantly higher in T0.4 than the other treatments,
and was significantly higher in T1.1 than in T0 and T1.5
(p < 0.05). The GA3 content also peaked at 130 DAFB.
By contrast, the lowest GA3 contents were observed at
110 DAFB for all four treatments. At 130 DAFB, the GA3
content was significantly higher in T0.4 and T1.1 than in T0
and T1.5, and was significantly higher in T0 than in T1.5
(p < 0.05).

FIGURE 3 | Effect of different crop load treatments on the root turnover of
“Red Fuji” apple. Data are means ± SD of six replicate samples. Different
letters denote significant differences at P0.05 by Tukey’s multiple range tests.
Treatments: T0, the crop load levels of 0 fruits cm−2 TCSA; T0.4, the crop
load levels of 0.4 fruits cm−2 TCSA; T1.1, the crop load levels of 1.1 fruits
cm−2 TCSA; T1.5, the crop load levels of 1.5 fruits cm−2 TCSA.

DISCUSSION

We examined the effects of crop load on growth and
phytohormone contents in Fuji/SH40/Baleng Crabapple roots.
Pome fruit trees exhibit irregular root growth patterns, with
periods of active growth alternating with less active growth
periods (Reig et al., 2013). In the present study, root growth
dynamics exhibited bimodal curves, with decreases at 110 DAFB
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FIGURE 4 | Changes in the ZR (A), DHZR (B), IP (C), and KT (D) content of “Red Fuji” apple roots under different crop load treatments from 50 to 170 DAFB. Data
are means ± SD of three replicate samples. Treatments: T0, the crop load levels of 0 fruits cm−2 TCSA; T0.4, the crop load levels of 0.4 fruits cm−2 TCSA; T1.1, the
crop load levels of 1.1 fruits cm−2 TCSA; T1.5, the crop load levels of 1.5 fruits cm−2 TCSA. I, fruit set stage; II, fruit growth stage; III, fruit ripening stage; IV, fruit
harvest stage. Different letters indicate significant differences between treatments, according to one-way ANOVA followed by Tukey’s multiple range test at P0.05 level.

and a strong increase at 130 DAFB. Previous studies have
shown that the fruit and vegetative growth of trees are affected
by crop load, and that both shoot length and root growth
are significantly restricted by excessive crop load (Pallas et al.,
2018). These changes are induced by alterations in fixed carbon
allocation to roots, because fruits are a major carbohydrate sink.
Thus, during the most active period of fruit development, root
growth parameters vary inversely with crop load. For example,
Abrisqueta et al. (2017) reported that root growth activity was
higher in non-fruiting trees than in fruiting trees. Similarly,
decreases in root development were related to crop load in the
present study; root growths was significantly higher in trees with
low crop load than in those with high crop load. Thus, root
growth was inhibited by crop load, possibly due to the absence
of competition with fruit growth.

Cytokinins inhibit the initiation of root primordia but have a
positive effect on root elongation, and IAA plays an important
role in root initiation and elongation (Debi et al., 2005). GA
has been shown to control root growth at a considerably lower

concentration than is necessary for controlling shoot growth
(Tanimoto, 1994). In the present study, increases in root growth
corresponded with increases in hormones contents during the
fruit development stage. Root development dynamics appear to
have been mediated by hormones under different crop loads,
such that the source–sink ratio and carbohydrate allocation
affected hormone signaling during root development. High crop
loads have been reported to decrease aerial part IAA content
and basipetal transportation to roots, affecting root initiation
and development (Casimiro et al., 2003; Van Hooijdonk et al.,
2010). Our findings demonstrate that excessive crop load reduces
root IAA content, thereby causing a decline in root growth.
By extension, IAA content may also be positively correlated
with root growth.

Reductions in hormone contents inhibits the development
of root primordia, weakens growth vigor, and results in less
root growth (Aloni et al., 2010). In the present study, the CTK
and GA3 levels in roots of the high crop load treatments were
also the lowest among all treatments. CTKs and GA3 in roots
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FIGURE 5 | Changes in the IAA content of “Red Fuji” apple roots under different crop load treatments from 50 to 150 DAFB. Data are means ± SD of three replicate
samples. Treatments: T0, the crop load levels of 0 fruits cm−2 TCSA; T0.4, the crop load levels of 0.4 fruits cm−2 TCSA; T1.1, the crop load levels of 1.1 fruits cm−2

TCSA; T1.5, the crop load levels of 1.5 fruits cm−2 TCSA. I, fruit set stage; II, fruit growth stage; III, fruit ripening stage. Different letters indicate significant differences
between treatments, according to one-way ANOVA followed by Tukey’s multiple range test at P0.05 level.

FIGURE 6 | Changes in the GA3 content of “Red Fuji” apple roots under different crop load treatments from 50 to 170 DAFB. Data are means ± SD of three
replicate samples. Treatments: T0, the crop load levels of 0 fruits cm−2 TCSA; T0.4, the crop load levels of 0.4 fruits cm−2 TCSA; T1.1, the crop load levels of 1.1
fruits cm−2 TCSA; T1.5, the crop load levels of 1.5 fruits cm−2 TCSA. I, fruit set stage; II, fruit growth stage; III, fruit ripening stage; IV, fruit harvest stage. Different
letters indicate significant differences between treatments, according to one-way ANOVA followed by Tukey’s multiple range test at P0.05 level.

may be regulated by IAA content and transport, considering
that less vegetative growth affects the IAA level in both aerial
and belowground parts of apple trees, resulting in less vigorous
growth (Van Hooijdonk et al., 2010). Considering the relatively
high levels of CTKs and GA3 and the low quantity of roots
in non-fruiting trees, an imbalance between hormone content
and growth may be induced by undetected root growth in
minirhizotrons. It can be assumed that the active growth in aerial
parts provided abundant IAA to the roots, stimulating CTK and
GA3 synthesis. Studies have shown that exogenous CTKs enhance

root elongation but have side effects on the initiation of root
primordia, which differed from our study (Mao et al., 2018).
However, unlike IP and DHZR, ZR, and KT did not correlate well
with the root growth under different crop loads at 130 DAFB, but
the highest crop load treatment did have the lowest root growth
rate. It was reported that ZR and KT showed significant inhibitory
effects on adventitious root formation (Kuroha et al., 2002). The
inhibition of adventitious root formation by CTKs occurs during
the induction phase of root cell division. During the induction
phase, IAA induces adventitious root formation in apple cuttings
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and seems to interact antagonistically with CTKs to control
the initiation of adventitious roots (De Klerk et al., 1995).
Endogenous CTKs along with IAA and GA3 may work together
to affect root development, masking the inhibitory effect of CTKs
(Hayat et al., 2019). The regulation effect of phytohormones on
root development is complex, and the functions of endogenous
hormones are still need to be further studied.

Tworkoski and Miller (2007) reported that GA3 negatively
regulated radial growth of roots; thus, the higher concentration
of GA3 may have decreased radial root growth, resulting in a
long and thin root phenotype. In this study, the low- or non-
fruiting treatments resulted in a higher GA3 content and higher
root length density, which increased strongly after 130 DAFB; by
contrast, root surface area and volume density did not increase
as intensely as root length density. These differences may have
been induced by the high root GA3 content. We conclude that
the differences in phytohormone levels could be responsible for
differences in root growth vigor under different crop loads. In
the present study, IAA, CTK, and GA3 contents were positively
correlated with root growth vigor in the different crop load
treatments. The decline in root growth at 110 DAFB occurred
when IAA, CTKs, and GA3 reached their lowest levels, whereas
hormone contents increased rapidly at 130 DAFB, and were
subsequently maintained at relatively high levels. Root growth
decreased after the root growth peak in fall along with the
increase in crop load, which was positively correlated with
hormone contents.

CONCLUSION

In conclusion, the results of this study confirm that fruit plays
an important role in restricting root growth and hormone

contents in apple. Trees with a low crop load showed more
active root growth than trees with high crop loads. Excessive
crop loads limited root growth and IAA, CTK, and GA3
contents during the fruit growth phase. Our data also provided
evidence that root growth dynamics and IAA, IP, DHZR,
ZR, and GA3 contents were positively correlated. We suggest
that the decrease in IAA, CTK, and GA3 levels in roots
could be considered compliant with the root growth restriction
caused by crop load.
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Reactive oxygen species (ROS), a type of oxygen monoelectronic reduction product, have
a higher chemical activity than O2. Although ROS pose potential risks to all organisms via
inducing oxidative stress, indispensable role of ROS in individual development cannot be
ignored. Among them, the role of ROS in the model plant Arabidopsis thaliana is deeply
studied. Mounting evidence suggests that ROS are essential for root and root hair
development. In the present review, we provide an updated perspective on the latest
research progress pertaining to the role of ROS in the precise regulation of root stem cell
maintenance and differentiation, redox regulation of the cell cycle, and root hair initiation
during root growth. Among the different types of ROS, O2

•− and H2O2 have been
extensively investigated, and they exhibit different gradient distributions in the roots. The
concentration of O2

•− decreases along a gradient from the meristem to the transition zone
and the concentration of H2O2 decreases along a gradient from the differentiation zone to
the elongation zone. These gradients are regulated by peroxidases, which are modulated
by the UPBEAT1 (UPB1) transcription factor. In addition, multiple transcriptional factors,
such as APP1, ABO8, PHB3, and RITF1, which are involved in the brassinolide signaling
pathway, converge as a ROS signal to regulate root stem cell maintenance. Furthermore,
superoxide anions (O2

•−) are generated from the oxidation in mitochondria, ROS
produced during plasmid metabolism, H2O2 produced in apoplasts, and catalysis of
respiratory burst oxidase homolog (RBOH) in the cell membrane. Furthermore, ROS can
act as a signal to regulate redox status, which regulates the expression of the cell-cycle
components CYC2;3, CYCB1;1, and retinoblastoma-related protein, thereby controlling
the cell-cycle progression. In the root maturation zone, the epidermal cells located in the H
cell position emerge to form hair cells, and plant hormones, such as auxin and ethylene
regulate root hair formation via ROS. Furthermore, ROS accumulation can influence
hormone signal transduction and vice versa. Data about the association between nutrient
stress and ROS signals in root hair development are scarce. However, the fact that
ROBHC/RHD2 or RHD6 is specifically expressed in root hair cells and induced by
nutrients, may explain the relationship. Future studies should focus on the regulatory
.org September 2020 | Volume 11 | Article 485932163
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mechanisms underlying root hair development via the interactions of ROS with hormone
signals and nutrient components.
Keywords: reactive oxygen species, Arabidopsis thaliana, root-stem-cell maintenance and differentiation, root-hair
development, cell cycle, aerenchyma formation
INTRODUCTION

In the Earth’s distant past, the rapid accumulation of oxygen in the
atmospherewas an important event for the evolutionofmulticellular
molecular processes (Jeltsch, 2013).Oxygen is an essential element of
life for all multicellular organisms including plants and animals
especially some specific processes in animals (e.g., oxygen circulation
blood vessels) and plants (e.g., cell survive in the deepmost position
in roots). In the presence of oxygen, the cellular processes
characterized by high-speed electron or energy transport inevitably
result in the leakage of electrons or energy in the form of molecular
oxygen (O2), thereby producing reactive oxygen species (ROS) with
a higher chemical activity than O2. Consequently, ROS are
continuously generated during the respiratory processes in aerobic
organisms (Apel and Hirt, 2004). In addition, ROS are a primary
product of several enzymatic reactions, which have emerged through
cellular evolution. The main forms of ROS include singlet oxygen
(1O2), superoxide anion (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radical (HO•) (Mhamdi and Van Breusegem, 2018;
Waszczak et al., 2018). Among these, H2O2 and O2

•− are the most
stable forms of ROS, having a long lifetime—from milliseconds to
seconds, whereas the lifetime of singlet oxygen (1O2) and hydroxyl
radical (HO•) is shorter, ranging fromnanoseconds tomicroseconds
(Waszczak et al., 2018).

ROS are highly reactive and may cause damage to cellular
DNA, lipids, and proteins, and they are often implicated in the
development of cancer and other diseases (Hossain et al., 2015).
However, growing evidence indicates that ROS may play a critical
regulatory role in blood-cell development in the larval lymph
glands of Drosophila melanogaster (Theopold, 2009), resistance to
drought stress and pathogen attack (Qi et al., 2018), and lateral
root formation in plants (Biswas et al., 2019). Although ROS pose
potential risks to certain processes, they also accumulate in plant
root cells under normal growing conditions (Dunand et al., 2007).
Furthermore, they are pivotal for the normal growth and
development of the root. Recent research in the model plant
Arabidopsis thaliana has provided strong evidence supporting the
indispensable role of ROS in plant root development (Yu et al.,
2016; Zeng et al., 2017; Kong et al., 2018; Yamada et al., 2018; Tian
et al., 2018), and this research will provide reference for sustainable
development of agriculture.
GRADIENT DISTRIBUTION OF ROS
REGULATES ROOT STEM CELL
DIFFERENTIATION

The roots form a key organ that anchors plants to the soil and
provides the means to absorb the nutrients and water necessary
.org 264
for plant growth. In addition, roots can sense and respond to
changes in the surrounding environment. Root growth relies on
the balance of proliferation and differentiation in root stem
cells (Petricka et al., 2012). Plant root systems can be divided
into three zones along the longitudinal axis; namely, the
meristematic, elongation, and maturation zones (Rodriguez-
Alonso et al., 2018). The most characteristic stem cells of
plants are in the shoot apical meristem and root apical
meristem (Sarkar et al., 2007). Stem cells are defined as a
specific group of cells with the capacity to self-renew and
produce undifferentiated daughter cells, which can form new
tissues. Such cells reside in a confined microenvironment known
as the stem cell niche, and their characteristics are synergistically
maintained by intracellular and extracellular signals (Sarkar
et al., 2007). The potential molecular mechanisms underlying
the formation and maintenance of plant stem cells have been
extensively investigated (e.g., Sarkar et al., 2007; Yang et al.,
2018). The role of the synergistic action of transcription factors,
regulated by auxins and cytokinins, in the maintenance and
differentiation of stem cells has been well established (Singh et al.,
2017). Recent research has also revealed that the redox state and
the presence of ROS can precisely regulate stem cell fate, and
ROS are thus often referred to as a fine-tuner of plant stem cell
fate (Tsukagoshi, 2016; Zeng et al., 2017; Yang et al., 2018; Qin
et al., 2019). The root tips of A. thaliana exhibit complex redox
potential patterns, and the quiescent center (QC) and cell regions
adjacent to the meristem exhibit the strongest negative potential.
The transition and elongation zones are in an oxidized state
(Jiang et al., 2016). The implications, function, and regulation
mechanism of ROS polarized gradient distribution at root tips
are the present highlight research area. Among the different types
of ROS, O2

•− and H2O2 have been studied more extensively, and
they exhibit different gradient distributions in the roots (Figure
1) (Dunand et al., 2007; Wells et al., 2010). Their gradient
distribution is related to UPBEAT1 (UPB1). UPBEAT1, a basic
helix-loop-helix (bHLH) transcription factor, that regulates the
expression of a set of peroxidases which participate in the
establishment of ROS (H2O2 and O2

•−) gradient distribution in
the root meristem (Tsukagoshi et al., 2010; Perilli et al., 2012; Del
Pozo, 2016). This distribution is affected by the nitrate nutrient
(Trevisan et al., 2019).

The dynamic balance of ROS in the root apex also plays a key
role in modulating cell distribution from the cell division zone to
the elongation and maturation (differentiation) zones. O2

•− and
H2O2 accumulate in the meristematic and elongation zones,
respectively (Dunand et al., 2007; Biswas et al., 2019). An
imbalance will lead to a change in the size of the meristematic
zone. UPB1 regulates the ROS (H2O2) content in the root apex
by inhibiting the expression of class III peroxidases in the
September 2020 | Volume 11 | Article 485932
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elongation zone (Figure 1) (Tsukagoshi et al., 2010; Qi et al.,
2018). The upb1-1 mutant in A. thaliana presented longer
meristems and a lower H2O2 level in the elongation zone, and
the UPB1 overexpression lines exhibited shorter meristems and a
higher H2O2 level in the elongation zone than those in the wild
type. Conversely, the peroxide level in the meristematic zone was
higher in the upb1-1mutant but lower in theUPB1 overexpression
lines. Furthermore, the overexpression of a UPB1-targeted
peroxidase resulted longer meristems than those in the wild
type, and the overexpression of another peroxidase gene, PER34,
resulted in a longer-root phenotype than that of the wild type
(Tsukagoshi et al., 2010; Tsukagoshi, 2016).
ROS ARE KEY REGULATORS OF ROOT
STEM CELL NICHE MAINTENANCE

There are multiple signal pathways mediated by ROS signals that
may be involved in stem cell maintenance and cell fate
determination (Figure 2). APP1 encodes a mitochondria-
localized P-loop NTPase involving ATP hydrolysis and ROS
Frontiers in Plant Science | www.frontiersin.org 365
generation. Loss-of-function alleles of APP1 caused lower level of
ROS (both O2

•− and H2O2) in the root meristem, and enhanced
the expression of the two peroxidases genes PER11 and PER55,
which are involved in ROS detoxification (Del Pozo, 2016).
This leads to an increase in the number of cells in the QC
and promotes stem cell differentiation. However, APP1
overexpression leads to defective stem cell niches and higher ROS
(H2O2 and O2

•−) levels in the root meristem (Yu et al., 2016).
Another pathway involves the hormone abscisic acid (ABA).

The ABA OVERLY SENSITIVE MUTANT (ABO8) gene,
encoding a pentatricopeptide repeat domain protein,
modulates ROS homeostasis in the root apex (Yang et al.,
2014). In the abo8-1 mutant, ROS accumulates excessively and
hinders the expression of PLETHORA1 (PLT1) and PLT2, both
at the transcriptional and post-transcriptional levels. This leads
to the establishment of a hypothetical relationship between ROS
signals and PLT-mediated maintenance and regulation of the
root stem cell niche (Figure 2) (Yang et al., 2014; Tsukagoshi,
2016). These results indicate that appropriate ROS levels and
FIGURE 1 | Gradient distribution of superoxide anion (O2
•−) and hydrogen

peroxide (H2O2) in Arabidopsis thaliana roots. Nitro blue tetrazolium (NBT)
staining showed the distribution of O2

•− in the roots, from the meristematic to
elongation zones. The gradients of reactive oxygen species (ROS) are
regulated by peroxidases, which are modulated by the UPBEAT1 (UPB1)
factor. The concentration of O2

•− decreases along a gradient from the
meristem to transition zones and the concentration of H2O2 decreases along
a gradient from the differentiation to elongation zones. Arrow-head line
indicates stimulation effect, and “T”-shaped line shows the inhibition.
FIGURE 2 | Reactive oxygen species (ROS) mediate root stem cell
maintenance. pWOX5:GFP marks the quiescent center (QC) in Arabidopsis
roots. Multiple parallel signaling pathways integrate multiple transcription
factors to converge as an ROS signal to regulate root stem cell maintenance.
APP1 is upregulated, and ABO8 and PHB3 inhibit H2O2 signals, thus
stimulating ERF109/114/115 or inhibiting WOX5. ERF109/114/115 negatively
regulates root stem cell maintenance, whereas WOX5 positively regulates it.
Another cascade pathway converges on RITF1 to regulate the level of H2O2

and O2
•−, and its downstream products regulate PLT1/2, thus controlling

stem-cell fate. Furthermore, the brassinolide signaling pathway regulates the
level of BRAVO and stem-cell fate in the roots. Arrow-head line indicates
stimulation effect, and “T”-shaped line shows the inhibition.
September 2020 | Volume 11 | Article 485932
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gradients play a key regulatory role to preserve the stability of the
root stem cell niche (Yu et al., 2016).

Recently, Kong et al. (2018) verified that PROHIBITIN3
(PHB3) maintains the root stem cell niche via regulating ROS
homeostasis. Transcriptome analysis revealed that some
downstream genes including ETHYLENE RESPONSE FACTOR
115 (ERF115), ETHYLENE RESPONSE FACTOR 114 (ERF114),
and ETHYLENE RESPONSE FACTOR 109 (ERF109), which are
responsible for maintaining the root stem cell niche, were induced
by ROS (Yang et al., 2018) (Figure 2). In addition, ectopic
expression of ERF115, ERF114, and ERF109 were found in the
phb3 mutant root meristem, indicating that PHB3 limits the
expression of ERF115, ERF114, and ERF109 in the root meristem
via ROS distribution (Kong et al., 2018). Kong et al. (2018) further
confirmed that PHYTOSULFOKINE2 (PSK2) and PSK5 are the
direct targets of ERF115, ERF114, and ERF109 through ChiP-
qPCR assay. Thus, ROS appears to modulate the proliferation of
QC cells through the ERF-PSK module (Yang et al., 2018).
However, the mechanisms of ROS regulating the expression of
PLT1/2, ERF115, ERF114, and ERF109 are still unknown.

The ROOT MERISTEM GROWTH FACTOR 1 (RGF1)-
RGFR1/2/3 signaling pathway maintains the characteristics of
the root stem cell niche by maintaining the PLT gradients in the
proximal meristem (Ou et al., 2016). However, the molecular
mechanisms involved in promoting the PLT1/2 protein stability
via the RGF1-RGFR1/2/3 pathway remain unclear. In a recent
study, Yamada et al. (2018) provided evidence that the RGF1-
RGFR1/2/3 signaling pathway modulates ROS distribution and
enhances PLT1/2 stability. Moreover, PLT2 localization is related
to ROS distribution, and transcriptome data analysis of RGF1
treatment revealed that RGF1 INDUCIBLE TRANSCRIPTION
FACTOR 1 (RITF1; AT2G12646) is one of the downstream
mediators of the RGF1-RGFR1/2/3 pathway (Yamada et al.,
2018). This is consistent with the observations in similar ROS
distribution phenotypes between RITF1 overexpression and RGF1-
treated roots. The aforementioned results indicate that the RGF1-
RGFR1/2/3 signaling pathway maintains the characteristics of the
stem cell niche by regulating the ROS levels and distribution by
RITF1, and thereby maintaining PLT1/2 stability in the
meristematic zone (Yang et al., 2018) (Figure 2).

One plausible explanation is that the PLT1/2 stability may be
related to ROS-induced post-translational modification. ROS
may rapidly modulate the target proteins such as PLT1/2 via
post-translational modifications, which include phosphorylation,
glycosylation, and ubiquitination (Yang et al., 2018). The ROS-
sensitive proteins undergo oxidative modifications targeted at
sulphur atoms in cysteine and methionine residues in an H2O2-
dependent manner. Research has revealed that H2O2 treatment
of plant cells leads to sulphur oxidation in approximately 100
types of cytosolic proteins (Hossain et al., 2015). Tian et al.
(2018) have reported the redox regulation of brassinosteroid
(BR) signals, and this process is related to ROS-induced protein
modification. BRs induce the generation of H2O2 in the root
meristem, particularly in the root stem cell niche, in a
BRASSINOSTEROID INSENSITIVE 1 (BRI1)-dependent manner,
and this is required for BRs to promote QC cell division (Yang et al.,
Frontiers in Plant Science | www.frontiersin.org 466
2018; Surgun-Acar and Zemheri-Navruz, 2019). In-vitro and in-vivo
studies have confirmed that cys-63 and cys-84 residues are the
conserved oxidization sites in BRASSINAZOLE-RESISTANT 1
(BZR1) and BRI1-EMS-SUPPRESSOR 1 (BES1), respectively (Tian
et al., 2018). During the oxidative modification of BZR1, the
transcriptional activity is enhanced by promoting interactions
between BZR1 and key transcriptional regulators of the auxin and
light signaling pathways, such as AUXIN RESPONSE FACTOR 6
(ARF6) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4)
(Tian et al., 2018).

Mutations in the oxidation sites in the proteins aforementioned
such as BZR1 and BES1, or a reduction in endogenous ROS
content can significantly impair the functions of BZR1 and BES1
in regulating gene expression and various biological processes,
including QC cell division in the roots (Vilarrasa-Blasi et al., 2014;
Yang et al., 2018; Surgun-Acar and Zemheri-Navruz, 2019).
Furthermore, Vilarrasa-Blasi et al. (2014) indicated that the
BRAVO/BES1 signaling model, rather than BZR1, plays a role
in BR-mediated stem cell quiescence regulation in plants. In the
future, it is worth investigating whether the oxidative modification
of BES1, which regulates root stem cell quiescence, leads to
changes in BRAVO-BES1 interactions and BRAVO expression.
BALANCE OF THE INTRACELLULAR
REDOX STATE FINE-TUNES CELL-CYCLE
PROGRESSION

While there is evidence to suggest that ROS regulate the animal
cell cycle (Burhans and Heintz, 2009), direct evidence for the role
of ROS in the plant cell cycle is still limited. The utilization of
exogenous H2O2 has been reported to inhibit the expression of
genes related to cell-cycle inhibition and reduce the size of the
root meristem (Tsukagoshi, 2012; Tsukagoshi, 2016). A potential
scenario for the accumulation of ROS and prevention of cell
proliferation following DNA damage has been reported (Tanaka
et al., 2006; Roldán-Arjona and Ariza, 2009). H2O2 accumulation
occurred in the root elongation zone after treatment with zeocin,
a double-strand DNA break-inducing agent. The sog1 mutant
was not sensitive to zeocin treatment, and it did not accumulate
H2O2 (Yoshiyama et al., 2009). SUPPRESSOR OF GAMMA
RESPONSE 1 (SOG1) is a master transcription factor regulating
the response to double-strand DNA break induction (Yoshiyama
et al., 2009; Yoshiyama et al., 2013). ChiP-qPCR showed that
defense-related genes were the target genes of SOG1, suggesting
the involvement of SOG1 in plant immunity (Ogita et al., 2018).
FMO1, directly controlled by SOG1 under DNA damage
conditions, encodes a flavin-containing monooxygenase that is
associated with the production of ROS (Chen and Umeda, 2015).
Therefore, ROS homeostasis is pivotal in root meristem size
modulation following DNA damage. H2O2 also influences cortex
proliferation (Cui et al., 2014).

The redox state regulates the maintenance of the root
meristem in plants (Tsukagoshi, 2016). As ROS are highly
reactive, the accumulated ROS in cells will oxidize proteins,
September 2020 | Volume 11 | Article 485932
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chemical substances, and metabolites. To prevent such oxidative
damage, the cells regulate redox balance through small antioxidant
molecules, such as glutathione (GSH) and thioredoxin (TRX)
(Hernández et al., 2015; Sevilla et al., 2015). g-Amino butyric
acid (GABA) could function as an antioxidant to scavenge ROS
under stress conditions (Liu et al., 2011). In plants, ROOT
MERISTEM LESS 1 (RML1) encodes the first enzyme in GSH
biosynthesis, and active root meristem formation was inhibited in
rml1 mutant plants (Vernoux et al., 2000). The regulatory role of
the GSH levels in the G1/S transition of cycling cells has been
demonstrated. Glutathione reductase (GR) catalyzes GSH
reduction and regulates root meristem maintenance (Schippers
et al., 2016). Arabidopsis thaliana contains two GR genes, GR1 and
GR2 (Marty et al., 2009). Based on the T-DNA insertion and
homozygous and heterozygous phenotype screening and
observation, the complete loss of function of GR2 leads to
embryonic lethality (Tzafrir et al., 2004), severe growth defects
were observed in seedlings of gr2 mutants (Yu et al., 2013).

GSH and TRX also participate in the regulation of root
meristem size. Mutants of TRX reductase (ntra and ntrb)
exhibit small meristem phenotypes (Reichheld et al., 2007;
Bashandy et al., 2010). These findings provide strong evidence
of the key role of cellular redox regulation in maintaining the
meristem activity. Redox regulation is a crucial mechanism
involving ROS, GSH, GR, and TRX, and it plays an important
role in the regulation of plant growth and development.With such
a mechanism, hormonal control, energy metabolism, and
bioenergetics can be linked to plant growth and development
(Schippers et al., 2016). It is highly likely that cell proliferation and
differentiation regulated by ROS are affected by the regulation of
cell-cycle progression and/or proteins and enzymes involved in
cell differentiation, by the coupling of TRX with GSH/GR.

Cell-cycle phases are highly conserved throughout eukaryotic
cells; they comprise the G1 phase, which involves DNA
unzipping and the start of RNA and protein synthesis,
followed by the S phase (DNA synthesis), and G2 phase (lipid
synthesis) (Schippers et al., 2016). In these consecutive, dynamic,
cellular events, oxygen consumption, energy metabolism, and
cellular redox state are closely related with the cell-cycle
progression in eukaryotic cells (Burhans and Heintz, 2009;
Schippers et al., 2016). Bursts of O2

•− and H2O2 activate cell
signaling pathways, thereby activating the G0/G1 transition
(Kovtun et al., 2000; Diaz Vivancos et al., 2010).

During DNA replication and mitosis in yeast, oxygen
consumption and relevant metabolic processes are reduced to
their lowest levels. However, it is unclear whether the redox
regulation of shoot apical meristematic cell proliferation in
plants is similar to relevant mechanisms observed in other
eukaryotes. A mechanism conserved in plants and animals is
the nuclear localization of GSH during the cell cycle (Diaz
Vivancos et al., 2010; Garcıá-Giménez et al., 2013). This may be
due to reduced auxin polar transport (Bashandy et al., 2010). For
instance, reduced polar transport and a weaker auxin response
were observed in grxs17 mutants (Benitez-Alfonso et al., 2009).

The cellular entry of apoplastic H2O2 is mediated by intrinsic
membrane proteins. Although there is no direct evidence of the
Frontiers in Plant Science | www.frontiersin.org 567
influence of protein oxidation on cell-cycle components (e.g.,
cyclins and cyclin-dependent kinases), redox regulation occurs in
cell-cycle transcriptional regulators (Schippers et al., 2016). For
instance, transcriptional factors, NF-YC (Nuclear Factor-Y
subunit C) and TCPs (TEOSINTE BRANCHED/CYCLOIDEA/
PCFs) are deactivated via cysteine oxidation, and the presence of
GSH and GR can reduce such proteins and restore their activity
(Schippers et al., 2016). TCPs stimulate the expression of CYCA2;3,
CYCB1;1, and retinoblastoma-related protein (RBR), thereby
directly regulating the cell cycle (Schippers et al., 2016). The
initial GSH pool may also be induced by the plant hormone
jasmonate, and TCPs are negative regulators of jasmonate
biosynthesis (Schippers et al., 2016). Therefore, their function will
lead to the consumption of the GSH pool, and ultimately causes
TCP deactivation through oxidation. In addition, prohibitin is
necessary for the coordination of mitochondrial function in the
meristem. Lastly, the ROS generated in non-green plastids
negatively influence intracellular communication by promoting
callose accumulation at plasmodesmata. In the non-green plastids
of meristems and organ primordia, the main function of TRX-m3 is
to prevent excessive ROS formation (Schippers et al., 2016).
ROS REGULATION DURING ROOT HAIR
DIFFERENTIATION

Root hairs, which are tubular structures formed by root epidermal
cells, facilitate the uptake of nutrients, interaction with microbes,
and anchoring of roots to soil (Molendijk et al., 2001). Root hair
development comprises four stages: cell specialization, root hair
initiation, tip growth, and root hair maturation (Grierson et al.,
2014). Epidermal cells are regulated by multiple genes during the
specialization process. SCRAMBLED (SCM), a leucine-rich repeat
receptor-like kinase, allows epidermal cells to sense their location
and select the correct cell fate and gene expression patterns.
Mutations in this gene disturb the distribution of root hair and
non-hair cells (Kwak et al., 2005).

In A. thaliana, WEREWOLF (WER), TRANSPARENT
TESTA GLABRA (TTG), and GLABRA3 (GL3) simultaneously
promote non-hair cell differentiation and inhibit root hair cell
differentiation (Galway et al., 1994; DiCristina et al., 1996;
Bernhardt et al., 2005). The products of these genes form the
WER-GL3/EGL3-TTG complex through physical interactions
to positively regulate the expression of GLABRA2 (GL2)
(AT1G79840) (Bernhardt et al., 2003). GL2 encodes a
homeodomain transcription factor that determines non-hair-
cell differentiation by promoting the expression of genes related
to non-hair-cell differentiation (DiCristina et al., 1996;
Schiefelbein and Lee, 2006) (Figure 3).

CAPRICE (CPC) encodes a nuclear-localized R3-type MYB
transcription factor, which can positively regulate root hair-cell
differentiation (Tominaga-Wada et al., 2017). Mutations in this
gene result in fewer root hair cells (Wada et al., 1997). CPC can
bind with GL3/EGL3-TTG to form an inactive complex, which
inhibits GL2 expression and ultimately promotes epidermal
cell differentiation into root hair cells (Tominaga et al., 2007;
September 2020 | Volume 11 | Article 485932
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Song et al., 2011; Kang et al., 2013). Besides CPC, other genes that
encode R3-MYB proteins include TRIPTYCHON (TRY) and
ENHANCER OF TRY AND CPC1 (ETC) with functions that are
partially redundant with those of CPC (Schellmann et al., 2002;
Kirik et al., 2004; Simon et al., 2007; Serna, 2008; Wang et al.,
2016; Tominaga-Wada et al., 2017).

ROOTHAIR DEFECTIVE 6 is a crucial gene encoding a bHLH
transcription factor (Menand et al., 2007). Mutations in this gene
result in root without root hairs, a condition which can be alleviated
with the addition of 1-amino-1-cyclopropanecarboxylic acid or
indole-3-acetic acid (IAA) in the medium (Masucci and
Schiefelbein, 1994). RHD6-like 4 (RSL4) and MEDIATOR 25
Frontiers in Plant Science | www.frontiersin.org 668
(MED25) also promote root hair elongation and function in the
auxin-regulated transcriptional pathway (Foreman et al., 2003;
Sundaravelpandian et al., 2013; Mangano et al., 2017).

Polarized growth of root hairs is an ideal model to study the
regulation of ROS. NADPH oxidase (NOX), which catalyzes
ROS production, and is an effective protein regulating root hair
development. NOX, also known as Respiratory Burst Oxidase
Homologs (RBOH), plays an important role in plant
development (Choudhary et al., 2020; Hu et al., 2020). RBOHC
(AT5G51060), a member of the Arabidopsis RBOH family, was
specifically expressed in Arabidopsis root hairs (Chapman et al.,
2019). The study of root hair cells shows that the polarized
growth of cells depends on the local accumulation of ROS
produced by NADPH oxidase (NOX) (Foreman et al., 2003).
Root hairs of ROS mutants without AtRBOHC/RHD2 did not
elongate (Foreman et al., 2003).

During root hair formation, owing to changes in the acid
environment of the cell wall, cell protrusion is localized to a small
disc-shaped area in the cell wall facing outward, approximately
22 µm across, in a process known as root hair initiation (Grierson
et al., 2014). Accumulation of large amounts of ROP (Rho of
Plant) proteins, which are GTP-binding proteins unique to plants
and related to the small GTPases that control the morphogenesis
of animal and yeast cells (Vernoud et al., 2003), occur at root hair
growth sites (Molendijk et al., 2001). The localization of the ROP
proteins is the first marker of root hair formation, and these
proteins remain at the tip of developing root hairs throughout
root hair growth (Molendijk et al., 2001; Grierson et al., 2014).
RHO-RELATED PROTEIN FROM PLANTS 2 (ROP2) activates
ROS generation through the NADPH oxidase gene ROOT HAIR
DEFECTIVE 2 (RHD2), which encodes a respiratory burst
oxidase homolog (RBOH) or NADPH oxidase (Jones et al.,
2007; Gu and Nielsen, 2013). Mutations of this gene impair the
ability of ROS to accumulate in the tips of root hairs, thereby
inhibiting the development of root hair initials (Foreman et al.,
2003). In addition, treating wild-type A. thaliana with the
NADPH oxidase inhibitor diphenyleneiodonium (DPI) also
impairs ROS accumulation in the root tips and leads to the
failure of root hair development.

In addition to RHD2 (also called RBOHC), there are nine
other respiratory burst oxidase homologs (RBOH), named as
RBOHA-RBOHJ (Table 1). The isoforms of RBOH regulate all
aspects of plant development. For example, RBOHB, RBOHC/
RHD2, and RBOHG are specific to, or at least relatively highly
expressed, in the roots. RBOHC participates in root hair
formation and primary root growth, and the mutants of
RBOHC/RHD2 exhibit defective root hair phenotypes (Mhamdi
and Van Breusegem, 2018). The other RBOH homologs control
primary root elongation and lateral root emergence (e.g., RBOHD,
RBOHE, and RBOHF) or pollen tube growth (e.g., RBOHH and
RBOHJ). The mutants of RBOHE and RBOHH exhibit reduced
fertility and disrupted pollen tube growth (Table 1).

Root hair tip growth is closely related to ROS signaling. ROS
accumulation activates calcium channels in root hair cells,
increasing the calcium ion levels (Wymer et al., 1997). The
Ca2+ gradient at the tip of root hairs is a part of the mechanism
FIGURE 3 | Regulation of crucial components in root-hair development.
Transverse section of Arabidopsis root showing the relative position of the
epidermis and cortex. The epidermis cells are in the H cell position and
emerge to form hair cells, and the epidermal cells beneath the cortex cells are
in the non-hair cell (N) position and do not form root-hair cells. The root (H)
and non-hair cell (N) positions have different components that participate in
root-hair formation. Some components shuttle to different types of cells to
converge at ROOT HAIR DEFECTIVE (RHD6), a bHLH factor, which when
activated, controls the differentiation and formation of root-hair cells, and
when non-activated, regulates non-hair-cell formation. Meanwhile, plant
hormones such as auxins and ethylene play a positive role in root-hair
formation via reactive oxygen species (ROS). Arrow-head line indicates
stimulation effect, and “T”-shaped line shows the inhibition.
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that regulates growth direction in root hairs, promotes the fusion
of vesicles with plasma membranes of root hair tips, and provides
raw material for cell wall expansion (Ridge, 1995; Pei et al., 2012).
The calcium gradient is maintained in the root hair tips
throughout tip growth (Wymer et al., 1997). These results
indicate that ROS accumulation in the root hair tips is
necessary for normal root hair development (Tsukagoshi, 2016).
GENERATION OF ROS AND
MODIFICATION OF CELL WALLS IN ROOT
ELONGATION

The ROS are essential for root growth and development, and one
of their major functions in the development of the root system is
cell wall modification (O’Brien et al., 2012; Kärkönen and
Kuchitsu, 2015). In the root system, the ROS are generated by
NADPH oxidases (RBOH) in the plasma membrane or through
mitochondrial and plastid respiration (Suzuki et al., 2011; Lázaro
et al., 2013; Serrato et al., 2013). The RBOH isoforms may also be
key producers of ROS in the apoplast (Table 1).

O2
•− is formed in O2 reduction by the catalytic activity of

NADPH oxidases (Tsukagoshi, 2016). As the catalytic domain of
NADPH oxidases is positioned toward the apoplast, O2

•− is
released into the apoplastic space (Suzuki et al., 2011).
Subsequently, O2

•− is degraded into H2O and O2 by the
catalytic activities of enzymes such as superoxide dismutase
(Bowler et al., 1992), apoplastic oxalate oxidases, diamine
oxidase, and peroxidase (Federico and Angelini, 1986; Caliskan
and Cuming, 1998; Cosio and Dunand, 2009). The H2O2

generated in the apoplast is then degraded by peroxidases
secreted into the apoplastic space (Trevisan et al., 2019).
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The shape of plant cells changes with the modification of their
cell walls (Grierson et al., 2014). Peroxidases promote the
conversion of H2O2 into H2O and O2. During this conversion,
an electron is also produced and is used to modify the primary
and secondary cell walls (Francoz et al., 2015; Tsukagoshi, 2016).
The modification process involves electron transfer to lignin
monomers, which are subunits of polymeric lignin, in cells in the
maturation zone. Upon activation by electrons, lignin monomers
will trigger the lignin polymerization process and bind to
secondary cell walls during the process of secondary cell wall
formation (Novo-Uzal et al., 2013). Lignin in the secondary cell
walls provides substantial mechanical strength, which is essential
for vascular plants (Ros Barceló, 2005). In addition, NADPH
oxidases, peroxidases (e.g., Peroxidase 64 (PER64)), and other
enzymes catalyzing ROS metabolism are recruited to form lignin
polymerization machinery in the formation of casparian strips
(Kamiya et al., 2015), which are bands of lignin that act as
diffusion barriers in the endodermal cells of plant roots (Lee
et al., 2013; Tsukagoshi, 2016). To facilitate the formation of
casparian strips, the casparian strip domain proteins, which are
specifically expressed in the endodermis, guide the localization of
the aforementioned enzymes into the plasma membrane of
endodermal cell walls (Lee et al., 2013; Geldner, 2013).
ROS INTERACT WITH OTHER SIGNALING
HORMONES TO REGULATE ROOT
DEVELOPMENT

The ROS act as key signaling molecules under conditions of
stress and increasing attention has been paid to the role of ROS
in plant stress resistance (Jia, 2011; Gill et al., 2015; Wang et al.,
TABLE 1 | Summary of the role of the respiratory burst oxidase homolog (RBOH) isoforms in plant development.

Gene Locus tag Relative expression level Function(s) Mutant phenotype

RBOHA AT5G07390 Specific, highly expressed in the roots and 6–7-
week-old siliques

Unknown Unknown

RBOHB AT1G09090 Specific, highly expressed in the roots Seed after ripening Faster germination of fresh seeds
RBOHC/
RHD2

AT5G51060 Specific, highly expressed in the roots Root hair formation;primary root
elongation and development

Root hair defective

RBOHD AT5G47910 Specific, highly expressed in the cotyledons,
hypocotyl, rosette leaves (2–12), cauline, and
senescent leaves

Stomata closing, lateral root emergence,
and primary root elongation and
development

Atypical tubulin formation; early emergence of
lateral roots (LRs), and enhanced density of
LRs

RBOHE AT1G19230 Specific, highly expressed in 6–10-week-old of
siliques

Anther and pollen development and
lateral root emergence

Aborted pollen and reduced fertility

RBOHF/
SGN4

AT1G64060 Specific, highly expressed in the stamens and
sepals

Stomata closing, lateral root emergence,
and primary root elongation and
development

Early emergence of lateral roots (LRs) and
enhanced density of LRs

RBOHG AT4G25090 Relatively highly expressed in the roots Unknown Unknown
RBOHH AT5G60010 Specific, highly expressed in mature pollens Pollen tube growth Defective root hairs, reduced fertility, and

impaired pollen tube growth
RBOHI AT4G11230 Highly expressed in the roots, and relatively highly

expressed in the shoot apex and mature pollens
Unknown Unknown

RBOHJ AT3G45810 Specific, highly expressed in mature pollens Pollen tube growth Dfective root hairs, reduced fertility, and
impaired pollen tube growth
Se
Data were comprehensively analyzed using AtGenExpress eFP, and the excerpt from Mhamdi and Van Breusegem (2018) was obtained with permission granted by the Copyright
Clearance Center.
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2016). Different environmental stresses, including drought, salt,
ultraviolet radiation, and light, can cause an increase in cellular
ROS levels (Perez and Brown, 2014; Gururani et al., 2015). ROS
accumulation can influence hormone signal transduction, and
vice versa (Xia et al., 2015). Auxin, one of the most important
plant hormones, influences systematic root development
(Bustillo-Avendaño et al., 2018), and participates in meristem
maintenance and lateral root formation (Vilches-Barro and
Maizel, 2015). Notably, all RBOH transcripts are auxin
inducible (Mhamdi and Van Breusegem, 2018).

PLETHORA (PLT) is a key regulator of auxin-induced stem
cell niche activity (Aida et al., 2004), and PLT expression was
altered inmiaomutants (one kind of Glutathione reductase (GR)
mutant) (Yu et al., 2013). Although PLT2 overexpression in the
miao mutants does not lead to the recovery of small meristem
phenotypes, it increases meristem size in the wild type. Despite
the understanding that auxin induces ROS production to
regulate cell elongation (Schopfer, 2001) and root gravitropism
(Joo et al., 2001), the molecular relationship between ROS and
auxin remains largely unknown. Recent study revealed the
potential feed-forward loop between ROS and auxin signaling
to control lateral root formation (Biswas et al., 2019). It was
confirmed that production of reactive oxygen species (ROS) via
the hormone-induced activation of respiratory burst oxidase
homologous NADPH oxidases facilitates lateral root (LR)
formation, and that the auxin-induced production of ROS and
their downstream products RCS (reactive carbonyl species)
modulate the auxin signaling pathway in a feed-forward
manner. RCS are key agents that connect the ROS signaling
and the auxin signaling pathways (Biswas et al., 2019).

The hormone ABA is a major contributor to the response of
plants to abiotic stresses (Nakashima et al., 2014). The
accumulation of ABA under abiotic stress conditions reduces
root growth. As mentioned above, the production of ABO8 is
responsible for splicing NADH dehydrogenase subunit 4
(NAD4) in the mitochondrial complex, and abo8 mutants were
associated with ROS accumulation and ABA production. ROS
accumulation was enhanced in the root tips of abo8 mutants
treated with ABA, and this inhibited root growth (Yang et al.,
2014). Moreover, auxin distribution and PLT protein levels in the
root tip cells of abo8 mutants were altered. Therefore, ABA-
induced ROS accumulation in the mitochondria reduces the
root-system growth via changes in auxin distribution and
PLT levels.

These findings clearly illustrate the complex interactions
between plant hormones and ROS in the modulation of root
system growth. Other plant hormones such as brassinolide (BR),
gibberellin, ethylene, strigolactones, salicylic acid, and jasmonate
also participate in hormonal crosstalk (Xia et al., 2015), which in
association with ROS, regulate plant growth (Biswas et al., 2019).

Pharmacological and genetic experiments have indicated that
auxin and ethylene promote root hair cell differentiation in A.
thaliana. Treating the roots of A. thaliana seedlings with 1-
amino-1-cyclopropanecarboxylic acid induced ectopic root hair
formation (Tanimoto et al., 1995). In addition, in the ethylene
signaling pathway, the CTR1 Raf-like kinase encoded by
Frontiers in Plant Science | www.frontiersin.org 870
CONSTITUTIVE TRIPLE RESPONSE (CTR1) acts as a
negative regulator of root hair formation (Kieber et al., 1993),
with mutations in CTR1 leading to ectopic root hair formation
(Dolan et al., 1994; Ikeda et al., 2009). This is consistent with
evidence indicating that epidermal cells in the root hair position
(H) are more sensitive to ethylene induction than epidermal cells
in the non-hair position (N) (Casson and Lindsey, 2003). Besides
ethylene and auxin, other hormones also influence root hair
development (Konno et al., 2003; Boisson-Dernier et al., 2013).
During the early stages of root hair initiation, BRs can influence
the fate of root hair cells (Kuppusamy et al., 2009); strigolactones
can increase root hair length by interfering with the regulation of
cell expansion by auxin, indicating that strigolactones play a role
in the late stages of root hair formation (Kapulnik et al., 2011).
Similarly, methyl jasmonate promotes root hair growth in a
dose-dependent manner, involving the participation of the
ethylene and auxin pathways (Zhu et al., 2006).
NUTRIENT STRESS REGULATES ROOT
HAIR DEVELOPMENT

The major function of root hairs is to expand root surface area,
and thus, facilitate water and nutrient uptake from the soil
(Grierson et al., 2014). More or longer root hairs are
advantageous to plants under low-nutrient conditions. For
instance, a high density of long root hairs was more efficient in
acquiring phosphate in A. thaliana Co and C24 accessions
(Narang et al., 2000). Furthermore, under low phosphorus
conditions, phosphorus was more efficiently taken up by wild-
type plants than the mutants of rhd6 and rhd2 (Bates and Lynch,
2000). Enzymes and nutrient transport proteins in root hairs
participate in nutrient uptake (Böhme et al., 2004). For example,
the activity of ferric chelate reductase (FCR) in wild-type plants
was two-fold higher than that in hairless mutants (rm57/rhd7),
suggesting that this enzyme is localized in the root hairs (Moog
et al., 1995).

Root hair development is influenced by nutrient concentrations,
and root hair density and length are generally increased under
nutrient-deficient conditions (Grierson et al., 2014). Phosphate
(Bates and Lynch, 1996), iron (Schmidt et al., 2000), manganese
(Konno et al., 2003), and nitrate can increase root hair density in A.
thaliana (Canales et al., 2017). The density of root hairs in A.
thaliana ‘Columbia’ grown under low-phosphorus (1.0 µM)
conditions was five times greater than that in plants grown under
high-phosphorus (1000 µM) conditions (Bates and Lynch, 1996;
Savage et al., 2013; Grierson et al., 2014). Under low-phosphorus
conditions, the number of root hair-forming files was increased
from 8 to 12, and more of the cells in these files formed root hairs
than in plants grown under high-phosphorus conditions (Ma et al.,
2001; Grierson et al., 2014). Furthermore, the root hairs in A.
thaliana grown under low-phosphorus conditions were three times
longer than those in plants grown under high-phosphorus
conditions (Bates and Lynch, 1996). The bHLH transcription
factor ROOT HAIR DEFECTIVE6-LIKE4 (RSL4) promotes root
hair growth. Thus, the length of root hairs increases in plants grown
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under low-phosphorus conditions (Yi et al., 2010; Grierson et al.,
2014). The same phenomenon was also observed under iron
deficiency, which was accompanied with an increase in root hair
density and length. In iron-deficient roots, ectopic hairs were
produced, and root hair length was doubled (Schmidt et al.,
2000). The mechanisms by which different nutrients modulate
root hair development differ. For instance, auxin and ethylene
signaling is crucial for the responses of plants to iron deficiency,
but it has no effect on low-phosphorus responses (Schmidt and
Schikora, 2001). Currently, data about the relationship between
nutrient stress and ROS signals in root hair development are
limited. However, the genes specifically expressed in root hair
cells, such as ROBHC/RHD2 and RHD6, which may be induced
by nutrients, seem to validate this relationship (Table 1). A recent
study further confirmed that nitrite could affect the expression of
UPBEAT1 and localization of ROS in Zea mays L. roots (Trevisan
et al., 2019).
ROS FUNCTIONS IN AERENCHYMA
FORMATION

The parenchyma tissue with a large number of intercellular
spaces is called aerenchyma. Aerenchyma is the evolutionary
result of plant adaptation to flood-submerged and waterlogged
growth environments (Bailey-Serres et al., 2012; Nishiuchi et al.,
2012; Kato et al., 2020), and the classical view is that it is the
channel for oxygen to enter the root. For hydrophytes and
hygrophytes, aerenchyma forms in their rhizomes; however,
terrestrial plants could also differentiate to produce or accelerate
the development of aerenchyma in an anoxic environment. In this
situation, ROS and ethylene signaling are involved in this
adaptation regulation (Yamauchi et al., 2014; Sasidharan and
Voesenek, 2015; Singh et al., 2016; Choudhary et al., 2020;
Hong et al., 2020). Lysigenous aerenchyma contributes to the
ability of plants to tolerate low-oxygen soil environments by
providing an internal aeration system for the transfer of oxygen
from the shoot. However, aerenchyma formation requires
Programmed Cell Death (PCD) in the root cortex (Drew et al.,
2000; Bartoli et al., 2015; Fujimoto et al., 2018; Guan et al., 2019).
Interestingly, both the aerenchyma formation and PCD in
waterlogged sunflower stems are promoted by ethylene and
ROS (Steffens et al., 2011; Petrov et al., 2015; Ni et al., 2019). In
the root, during lysigenous aerenchyma formation under oxygen-
deficient conditions, the precise balancing of ROS production and
scavenging serves a crucial role (Paradiso et al., 2016; Yamauchi
et al., 2017a; Yamauchi et al., 2017b).
CONCLUSIONS

Root system growth depends on maintaining the balance
between root-tip cell proliferation and differentiation (Petricka
et al., 2012). In the meristematic zone, the cells exhibit higher
rates of cell division, but they do not elongate; in the elongation
zone, the cells cease to proliferate, become elongated, and start to
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differentiate (Beemster and Baskin, 1998). The maturation zone
is characterized by fully elongated cells that undergo differentiation
to form different types of cells, including root hairs (Caño-Delgado
et al., 2010; Mendrinna and Persson, 2015). More importantly, the
lateral roots are developed from primary roots in the maturation
zone. These newly formed organs are important for the branching
structure of the root system (Vermeer and Geldner, 2015).
Research on the components that regulate such a balance is
crucial to understanding plant growth and root development
(Tsukagoshi, 2016). After decades of research, several pivotal
plant hormones involved in root development have been
identified (Ubeda-Tomas et al., 2009; Vanstraelen and Benková,
2012; Yamada and Sawa, 2013; Schaller et al., 2015). Recent studies
have shown that ROS can function as signaling molecules to
regulate root system growth (Mhamdi and Van Breusegem, 2018;
Waszczak et al., 2018; Biswas et al., 2019; Chapman et al., 2019;
Trevisan et al., 2019). ROS are especially important in maintaining
the balance between cell proliferation and differentiation. The
hypothesis that ROS have a hormone-like function by acting as
signaling molecules is supported by a substantial amount of
evidence (Yang et al., 2018; Mhamdi and Van Breusegem, 2018;
Waszczak et al., 2018). From these results, ROS appear to be key to
vital processes, including stem-cell maintenance, cell-cycle
progression, and root hair initiation in the maturation zone of
roots. Future research should aim to further elucidate the
involvement of ROS in these processes. This will advance our
understanding of the role of ROS in root development (Boisson-
Dernier et al., 2013).
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Flores-Cáceres, M. L., Ortega-Villasante, C., et al. (2015). Contribution of
glutathione to the control of cellular redox homeostasis under toxic metal and
metalloid stress. J. Exp. Bot. 66, 2901–2911.

Hong, C. P., Wang, M. C., and Yang, C. Y. (2020). NADPH oxidase RbohD and
ethylene signaling are involved in modulating seedling growth and survival
under submergence stress. Plants (Basel). 9 (4), 471.

Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., et al.
(2015). Hydrogen peroxide priming modulates abiotic oxidative stress
tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci.
6, 420.
September 2020 | Volume 11 | Article 485932

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhou et al. ROS in Arabidopsis thaliana Roots
Hu, C. H., Wang, P. Q., Zhang, P. P., Nie, X. M., Li, B. B., Tai, L., et al. (2020).
NADPH Oxidases: The Vital performers and center hubs during plant growth
and signaling. Cells 9 (2), E437.

Ikeda, Y., Men, S., Fischer, U., Stepanova, A. N., Alonso, J. M., Ljung, K., et al.
(2009). Local auxin biosynthesis modulates gradient-directed planar polarity in
Arabidopsis. Nat. Cell Biol. 11, 731–738.

Jeltsch, A. (2013). Oxygen, epigenetic signaling, and the evolution of early life.
Trends Biochem. Sci. 38 (4), 172–176.

Jia, L. (2011). Is reactive oxygen species (ROS) the underlying factor for inhibited
root growth in Osspr1? Plant Signal Behav. 6 (7), 1024–1025.

Jiang, K., Moe-Lange, J., Hennet, L., and Feldman, L. J. (2016). Salt stress affects
the redox status of Arabidopsis root meristems. Front. Plant Sci. 7, 81.

Jones, A. R., Raymond, M. J., Yang, Z., and Smirnoff, N. (2007). NADPH oxidase-
dependent reactive oxygen species formation required for root hair growth
depends on ROP GTPase. J. Exp. Bot. 58, 1261–1270.

Joo, J. H., Bae, Y. S., and Lee, J. S. (2001). Role of auxin-induced reactive oxygen
species in root gravitropism. Plant Physiol. 126, 1055–1060.

Kamiya, T., Borghi, M., Wang, P., Danku, J. M., Kalmbach, L., Hosmani, P. S., et al.
(2015). The MYB36 transcription factor orchestrates Casparian strip
formation. Proc. Natl. Acad. Sci. U. S. A. 112 (33), 10533–31058.

Kang, Y. H., Song, S. K., Schiefelbein, J., and Lee, M. M. (2013). Nuclear trapping
controls the position-dependent localization of CAPRICE in the root
epidermis of Arabidopsis. Plant Physiol. 163, 193–204.

Kapulnik, Y., Delaux, P. M., Resnick, N., Mayzlish-Gati, E., Wininger, S.,
Bhattacharya, C., et al. (2011). Strigolactones affect lateral root formation
and root-hair elongation in Arabidopsis. Planta 233, 209–216.

Kärkönen, A., and Kuchitsu, K. (2015). Reactive oxygen species in cell wall
metabolism and development in plants. Phytochemistry 112, 22–32.

Kato, Y., Collard, B. C. Y., Septiningsih, E. M., and Ismail, A. M. (2020). Increasing
flooding tolerance in rice: combining tolerance of submergence and of stagnant
flooding. Ann. Bot. 124 (7), 1199–1210.

Kieber, J. J., Rothenberg, M., Roman, G., Feldman, K. A., and Ecker, J. R. (1993).
CTR1, a negative regulator of the ethylene response pathway in Arabidopsis,
encodes a member of the Raf family of protein kinases. Cell 72, 427–441.

Kirik, V., Simon, M., Huelskamp, M., and Schiefelbein, J. (2004). The
ENHANCER OF TRY AND CPC1 gene acts redundantly with
TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in
Arabidopsis. Dev. Biol. 268, 506–513.

Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., et al. (2018). PHB3
maintains root stem cell niche identity through ROS-responsive AP2/ERF
transcription factors in Arabidopsis. Cell Rep. 22, 1350–1363.

Konno, M., Ooishi, M., and Inoue, Y. (2003). Role of manganese in low-pH-
induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. J.
Plant Res. 116 (4), 301–307.

Kovtun, Y., Chiu, W. L., Tena, G., and Sheen, J. (2000). Functional analysis of
oxidative stress-activated mitogen-activated protein kinase cascade in plants.
Proc. Natl. Acad. Sci. U. S. A. 97, 2940–2945.

Kuppusamy, K. T., Chen, A. Y., and Nemhauser, J. L. (2009). Steroids are required
for epidermal cell fate establishment in Arabidopsis roots. Proc. Natl. Acad. Sci.
U. S. A. 106, 8073–8076.

Kwak, S. H., Shen, R., and Schiefelbein, J. (2005). Positional signaling mediated by
a receptor-like kinase in Arabidopsis. Science 307, 1111–1113.
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