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Editorial on the Research Topic

Multi-Omics Technologies for Optimizing Synthetic Biomanufacturing

Industrial manufacturing endures as an essential human activity yielding a variety of useful products;
it plays a significant role in the global economy with huge impacts in everyday life. However, the
manufacturing process requires consumption of various raw materials (especially petroleum
derivatives), generates a variety of harmful waste products, causes pollution, and is energetically
inefficient. Biological manufacturing from sustainable, affordable, and scalable feedstocks potentially
enables the displacement of the entire portfolio of currently available products produced by
industrial processes, enabling the manufacturing of renewable and eco-friendly products
(Clomburg et al., 2017). Thus, successful development of a robust biomanufacturing strategy
and technology platform, based on the latest advances in synthetic biology and chemical
catalysis, will decrease both the cost and production time compared with previous
manufacturing processes. Development of biomanufacturing processes using a synthetic biology
platform requires the multidisciplinary efforts of science and engineering fields including molecular
biology, microbiology, genetic engineering, informatics, metabolic modeling and chemical or process
engineering (El Karoui et al., 2019).

In this research topic, Amer and Baidoo discussed the importance of using multi-omic
analytical approaches to monitor and improve the biomanufacturing process. These approaches
include genomics, transcriptomics, proteomics, metabolomics and fluxomics (Figure 1). The
multi-omics data acquired from the biomanufacturing process not only provides potential
solutions to low production efficiency by identifying underlying metabolic bottlenecks or
pathway sinks, but also guides the understanding of how these modified biological systems
function. Furthermore, such multi-omics technologies are constantly innovated and improved
to expand molecular detection coverage, obtain data with increased accuracy by using new or
novel analytical instruments, achieve better computational algorithms, and create wider and
deeper databases to support a growing variety of biological host systems. Roy et al. described a
combined computational tool to optimize the DBTL (Design-Build-Test-Learn) cycle in
biomanufacturing process by collecting, visualizing, and utilizing large multi-omics datasets
from various biological systems and emphasized their importance in the following metabolic
engineering processes with machine learning approaches.

Gao et al. compared microflow and nanoflow liquid chromatography-selected reaction
monitoring (LC-SRM) methods for analysis of hundreds of targeted peptides associated with
132 proteins in major pathways of Pseudomonas putida, a versatile bacterial host for production
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of bioproducts and biofuels via metabolic engineering. The
increased throughput and accuracy of protein measurement
will not only reduce the DBTL cycle time in future
applications, but is, in addition, easily applied to other
biomanufacturing host organisms.

Fletcher and Baetz reviewed the toxicity of phenolic compounds
which are produced from pretreatment or hydrolysis of natural
lignocellulosic biomass based on functional genomics and
transcriptomics approaches, especially to the important model
organism and industrial bioproduction host strain, Saccharomyces
cerevisiae. Information regarding physiological tolerances of toxic
phenolic compounds may be applied and evaluated in other host
strains for future improvement. In that regard, Garcia et al.
developed the genome-scale metabolic model of Clostridium
thermocellum for efficient conversion of lignocellulosic biomass
which has unique preference for its anaerobic and thermophilic
growth attributes. This model will provide a useful tool to
understand physiological and metabolic parameters associated
with potential future biomanufacturing process.

Pinheiro et al. studied a xylose metabolism by Rhodosporidium
toruloides, an oleaginous yeast with significant emerging potential
in industrial applications, using a detailed physiological
characterization interpreted with absolute proteomics and
genome scale metabolic models. Kim et al. performed a multi-
omics analysis on R. toruloides and the transcriptomics,
proteomics, metabolomics and RB-TDNA sequencing data
improved the current genome-scale model to make it a more
exhaustive and accurate metabolic network model.

Pomraning et al. integrated high-throughput proteomics and
metabolomics data as part of a DBTL cycle focused on improving
production efficiency of 3-hydroxypropionic acid (3HP) in
engineered Aspergillus pseudoterreus strains. This was the first
report of 3HP production in a filamentous fungus amenable to
industry-level biomanufacturing of organic acids at high titer and
low pH. Chroumpi et al. studied another filamentous fungus

Aspergillus niger for better understanding of pentose catabolic
pathways by deletion of the key genes. The high-throughput
multi-omics data (i.e., transcriptome, metabolome and
proteome) generated on the mutant strains revealed that these
genes are critical for metabolic pathways but not as critical for
growth of A. niger on more complex biomass substrates, which
raises fundamental questions on nutrient acquisition during
growth on various carbon sources.

Wu et al. investigated the metabolic potential of Zymomonas
mobilis for conversion of glucose and xylose to 2,3-butanediol. This
study used calculated thermodynamic and kinetic parameters to
generate insights of Z. mobilis metabolism. They also performed
pathway and dynamic flux balance analysis to understand metabolic
potential and production efficiency for future industrial applications.
Nitta et al. acquired metabolomics and transcriptomics data on
antibiotic producing strain, Streptomyces coelicolor to understand
the functional connections between the production of antibiotic,
actinorhodin and the level of cAMP. They found that higher levels of
cAMP improved cell growth and production of actinorhodin, which
was confirmed by the metabolomic and transcriptomic data.

We conclude by emphasizing that high-throughput multi-
omics data play a critical role to unravel the complexities of
metabolic engineering to improve production efficiency and
product titer produced by a variety of industrial microbes. In
addition, generation of multi-omics datasets accelerates the
adoption and subsequent application of artificial intelligence
approaches such as machine learning to design of improved
microbial bioproduction host systems (Lawson et al., 2021). In
terms of technological perspectives, enhanced high-throughput
measurement and improved coverage of multi-omics analyses
with higher accuracy will not only benefit in shortened DBTL
cycle times for the metabolic engineering process, but also will lead
to improved fundamental understanding of engineered biosystems.
Refining tools and analytical platforms will benefit manipulating,
modifying, and reshaping potential host systems. The long-term
outcomes of these efforts will impact the world and our future by
decarbonizing the current manufacturing processes via an
environmental-friendly manner.

AUTHOR CONTRIBUTIONS

Y-MK, CP, EK, and SB served as co-editors for the Research Topic:
Multi-omics technologies for optimizing synthetic
biomanufacturing. Y-MK conceived of the idea for the research
topic, and all the authors contributed to writing the editorial.

FUNDING

The work was supported by Agile BioFoundry (http://
agilebiofoundry.org), funded by the United States Department
of Energy, Office of Energy Efficiency and Renewable Energy,
Bioenergy Technologies Office, under Award No. DE-
NL0030038. Pacific Northwest National Laboratory (PNNL) is
operated for the U.S. Department of Energy by Battelle Memorial
Institute under contract DE-AC05-76RL01830.

FIGURE 1 | Schematic view of multi-omics application to
biomanufacturing process. Improvement of each technology will enhance the
measurement coverage and accuracy in future applications.
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The use of cell factories to convert sugars from lignocellulosic biomass into chemicals
in which oleochemicals and food additives, such as carotenoids, is essential for the
shift toward sustainable processes. Rhodotorula toruloides is a yeast that naturally
metabolises a wide range of substrates, including lignocellulosic hydrolysates, and
converts them into lipids and carotenoids. In this study, xylose, the main component
of hemicellulose, was used as the sole substrate for R. toruloides, and a detailed
physiology characterisation combined with absolute proteomics and genome-scale
metabolic models was carried out to understand the regulation of lipid and carotenoid
production. To improve these productions, oxidative stress was induced by hydrogen
peroxide and light irradiation and further enhanced by adaptive laboratory evolution.
Based on the online measurements of growth and CO2 excretion, three distinct
growth phases were identified during batch cultivations. Majority of the intracellular flux
estimations showed similar trends with the measured protein levels and demonstrated
improved NADPH regeneration, phosphoketolase activity and reduced β-oxidation,
correlating with increasing lipid yields. Light irradiation resulted in 70% higher carotenoid
and 40% higher lipid content compared to the optimal growth conditions. The presence
of hydrogen peroxide did not affect the carotenoid production but culminated in the
highest lipid content of 0.65 g/gDCW. The adapted strain showed improved fitness and
2.3-fold higher carotenoid content than the parental strain. This work presents a holistic
view of xylose conversion into microbial oil and carotenoids by R. toruloides, in a process
toward renewable and cost-effective production of these molecules.

Keywords: microbial oil, carotenoids, Rhodotorula toruloides, Genome-scale modelling, xylose, biorefinery,
absolute proteomics

INTRODUCTION

Rhodotorula toruloides is considered one of the most promising oleaginous yeasts for industrial
applications. This microorganism is a natural producer of lipids (microbial oil) and high-
value compounds, such as carotenoids and enzymes for pharma and chemical industries (L-
phenylalanine ammonia-lyase and D-amino acid oxidase) (Park et al., 2017). The microbial
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oil, which is primarily composed of triacylglycerides (TAGs),
is a potential raw material for oleochemicals that can be used
as biodiesel, cosmetics, and coatings as well as a replacement
of vegetable oil in fish feed (Unrean et al., 2017; Blomqvist
et al., 2018; Yang et al., 2018). Carotenoids are important
molecules for different industries, such as the food, chemical,
pharmaceutical and cosmetics industries. In addition to its
colorants properties, carotenoids can be metabolised into vitamin
A and have antioxidant activity that has been explored, for
example, in the prevention of cancer, immune diseases and as
skin protection against radiation (Stahl and Sies, 2007; Du et al.,
2016; Kot et al., 2019). The global market for carotenoids should
reach US$2.0 billion by 2022 (BBC Research, 2018), while the
global demand for fatty acids (FAs) and alcohols is expected to
reach over 10 Mt in 2020 (Adrio, 2017).

In addition to the ability to produce a variety of relevant
compounds, R. toruloides can consume a range of carbon
and nitrogen sources (Park et al., 2017; Lopes et al., 2020b),
including lignocellulosic hydrolysates (Bonturi et al., 2017;
Lopes et al., 2020a). Following cellulose, hemicellulose is the
second most abundant fraction of lignocellulose, and this
fraction consists of polymerised five-carbon sugars, mainly
xylose. The efficient utilisation of xylose by a microorganism is
essential to improve the conversion of lignocellulosic materials
into target compounds, thus increasing the economic viability
of the biotechnological processes in biorefineries. Therefore,
understanding of the metabolic mechanisms involved in the
production of lipids and carotenoids from xylose by R. toruloides
is crucial to further improve the titres, yields and rates of
this bioprocess.

The cellular content of lipids and carotenoids is affected by
several factors, including medium composition and cultivation
conditions (Mata-Gómez et al., 2014). Previous studies have
described the increase in carotenoid production in the presence
of oxidative stress, such as hydrogen peroxide (H2O2) and
light irradiation. In the presence of H2O2 (5 mmol/L), a
five-fold increase in carotenoid production by Rhodotorula
mucilaginosa was observed (Irazusta et al., 2013), illustrating
how optimisation of cultivation conditions can improve
production yields of the desired metabolites. Under light
irradiation (4,000 lux), the production of carotenoids and
lipids by Rhodotorula glutinis increased 60% (Gong et al.,
2020). The cellular response mechanism against oxidative
stress is not clear for yeast, including R. toruloides. This
condition is associated with the presence of reactive oxygen
species (ROS), including H2O2, superoxide (O2

−) and
hydroxyl radicals (HO·). ROS are potent oxidants that can
damage all cellular components, including DNA, lipids
and proteins. Microbial cells possess two defensive systems
against oxidative damage: enzymatic and non-enzymatic.
The former is mainly constituted by enzymes superoxide
dismutase and catalase, and the latter is involved in direct
scavenging of ROS or recycling of oxidised compounds,
such as ascorbate, glutathione, α-tocopherol, and carotenoids
(Irazusta et al., 2013).

Integration of large-scale data sets is crucial for a better
understanding of the genomic organisation and metabolic

pathways in living cells. Complete genome sequences are
available for several R. toruloides strains (Kumar et al., 2012;
Zhu et al., 2012; Morin et al., 2014; Hu and Ji, 2016; Sambles
et al., 2017; Coradetti et al., 2018). The lipid formation
process during different growth phases of cultivation on
glucose has been investigated through proteomic analysis
(Liu et al., 2009) and compared with cells grown on xylose
(Tiukova et al., 2019b). Multi-omics analyses have identified
metabolism modification under nitrogen (Zhu et al., 2012)
and phosphate limitation (Wang Y.et al., 2018). The latter
studies have identified higher lipid accumulation under nitrogen
or phosphate limitation, which has been correlated to higher
activation in nitrogen recycling but also lipid degradation
and autophagy. Carotenoid production from glycerol was
investigated using global metabolomics, revealing reduced
abundance of metabolites involved in TCA and amino acid
biosynthesis (Lee et al., 2014).

Genome-scale metabolic models (GEMs) are another
powerful tool to understand and provide a holistic view of
metabolic fluxes, energy and redox metabolism or even suggest
targets for metabolic engineering. GEMs are constructed based
on the available genome sequence of a specific organism, thus
providing a summary of the metabolic network (Kerkhoven
et al., 2015). Regarding R. toruloides, a number of metabolic
models are available to assess lipid production (Bommareddy
et al., 2015; Castañeda et al., 2018), and two reports of GEMs
are available (Dinh et al., 2019; Tiukova et al., 2019a). Lopes
et al. (2020a) reported the first study that combined data
from cultivations of R. toruloides under different carbon
sources with the GEM. The approach proved to be useful
for understanding metabolic fluxes and identifying targets to
improve lipid production either by metabolic engineering or
process optimisation.

Therefore, the current study aimed at providing a holistic
view of lipid and carotenoid production by R. toruloides
using xylose as a sole carbon source by combining
detailed physiological characterisation with the quantitative
proteomics and GEM analysis. Oxidative stress (H2O2
and light irradiation) and adaptive laboratory evolution
(ALE) were employed to improve lipid and carotenoids
production. To our knowledge, this is the first work
combining such approaches for this strain, and the data
obtained here can be used to establish future bioprocesses
in biorefineries.

MATERIALS AND METHODS

Strain and Inoculum
Rhodotorula toruloides (previously known as Rhodosporidium
toruloides) CCT 7815 was obtained from “Coleção de Culturas
Tropicais” (Fundação André Tosello, Campinas, Brazil) and
stored at −80◦C in 10% (v/v) glycerol. This strain was derived
from R. toruloides CCT 0783 (synonym IFO10076) after short-
term adaptation in sugarcane bagasse hemicellulosic hydrolysate.
Adaptation process resulted in no physiological changes
regarding growth and substrate consumption profile between
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both strains, but CCT 7815 produces more lipids and has
higher induction of some genes related to hydrolysate-tolerance
and lipid accumulation (Bonturi et al., 2017). Cultivation
inoculum was prepared in YPX medium at 200 rpm and 30◦C
for 24 h. The cells were washed twice with 0.9% (v/v) NaCl
before inoculation.

Adaptive Laboratory Evolution
Adaptive laboratory evolution was performed by successive
shake flask cultivations of R. toruloides in the presence of
H2O2 in rich medium (30.0 g xylose, 2.5 g glucose, 0.9 g
yeast extract, 0.2 g (NH4)2SO4, 1.5 g KH2PO4, and 0.9 g
MgSO4·7 H2O). ALE was performed in two cycles with the
aim of improving the performance of this yeast under this
oxidative environment. The initial H2O2 concentration was
10 mmol/L (the highest concentration in which the cells grew
in successive cultivations) in the first cycle and 20 mmol/L in
the second cycle (the highest concentration that the parental
strain tolerated). In each cycle, the cells were harvested at the
exponential growth phase and transferred to a fresh medium with
the same H2O2 concentration. The initial OD (at 600 nm) of
every passage was 0.5. The end of the cycle was determined by
the stabilisation of the maximum specific growth rate and the
length of lag phase.

Yeast Cultivation
Batch cultivations were performed in 1-L bioreactors (Applikon
Biotechnology, Delft, Netherlands) with a working volume
of 600 mL at pH 6.0 and controlled with the addition of
2 mol/L KOH. Dissolved oxygen was maintained at greater
than 25% using 1-vvm airflow and stirring speeds between
400 and 600 rpm. The cultivation started with 1% (v/v) of
overnight culture inoculum. Oxidative stress was induced by the
addition of H2O2 (20 mmol/L) at the start of the cultivation
or by light irradiation (white LED light, 40,000 lux) throughout
the experiment. The composition of CO2 and O2 in the gas
outflow was measured using an online gas analyser (BlueSens
gas sensor GmbH, Herten, Germany), and optical density was
monitored online using a Bug Lab BE3000 Biomass Monitor
(Bug Lab, Concord, CA, United States) at 1,300 nm. Data
were collected and processed with BioXpert V2 software v. 2.95
(Applikon Biotechnology, Delft, Netherlands). All experiments
were performed in triplicate.

The medium composition used in the bioreactor experiments
was, per litre, 70.0 g xylose, 1.95 g (NH4)2SO4, 3.0 g
KH2PO4, 0.5 g MgSO4·7 H2O, 1.0 mL vitamins solution
and 1.0 mL trace metal solution (Lahtvee et al., 2017),
supplemented with 100 µl antifoam 204 (Sigma-Aldrich,
St. Louis, MO, United States). Samples for dry cellular
mass, carotenoid and extracellular metabolite analyses
were collected every 24 h. Samples were withdrawn from
bioreactors, transferred into precooled 2-mL Eppendorf
tubes and centrifuged for 20 s at 4◦C and 18,000 × g.
The supernatant was collected and stored at −20◦C for
extracellular metabolite quantification. Cell pellets was snap-
frozen in liquid nitrogen, stored at −80◦C, and further used for
proteomics analysis.

Quantification of Dry Cell Mass,
Extracellular Metabolites, Carotenoids,
Total Lipids and Proteins
Online turbidity measurements were calibrated by
gravimetrically measuring the dry cellular mass (DCW)
every 24 h. Extracellular metabolites in the broth were measured
using HPLC (LC-2030C Plus, Shimadzu, Kyoto, Japan) equipped
with a refractive index detector (RID-20A, Shimadzu, Kyoto,
Japan). Concentrations of xylose, organic acids and glycerol
were measured using an HPX-87H column (Bio-Rad, Hercules,
CA, United States) at 45◦C, and 5 mmol/L H2SO4 served as
the mobile phase with isocratic elution at 0.6 mL/min. Xylitol
and arabitol were quantified using Rezex RPM-Monosaccharide
column (Phenomenex, Torrance, CA, United States) at 85◦C,
and purified water (Milli-Q Ultrapure Water System, Merck,
Darmstadt, Germany) used as the mobile phase with isocratic
elution at 0.6 mL/min.

For quantification of carotenoids (modified from Lee et al.,
2014), 2 mL of cells were harvested by centrifugation, washed
twice in distilled water and resuspended in 1.0 mL of acetone.
The cells were lysed with acid-washed glass beads (400–650 µm)
using the FastPrep homogeniser for three cycles (4 m/s for 20 s)
(MP Biomedicals, Irvine, CA, United States). After centrifugation
at 15,000 × g for 5 min, the acetone solution containing
carotenoids was collected and stored at 4◦C. These steps were
repeated until the cell debris was colourless. Then, the solvent
was evaporated in Concentrator Plus (Eppendorf, Hamburg,
Germany), and the remaining extracts were resuspended in a
known volume of acetone. Carotenoids were measured using
Acquity UPLC (Waters, Franklin, MA, United States) equipped
with a TUV detector (Waters, Franklin, MA, United States)
and C18 column (BEH130, 1.7 µm, 2.1 × 100 mm, Waters,
Franklin, MA, United States). The mobile phase was a gradient
from 80 to 100% of acetone in purified water at a flow rate
of 0.2 mL/min. Detection was performed at 450 nm (modified
from Weber et al., 2007). All identified peaks were quantified
using the β-carotene standard (Alfa Aesar, Tewksbury, MA,
United States). Detected peaks were identified according to the
known carotenoid retention time profile (Weber et al., 2007;
Lee et al., 2014).

Lipids were extracted according to an adaptation of the Folch
method (Folch et al., 1957) described by Bonturi et al. (2015).
Briefly, a mixture of chloroform and methanol (2:1 v/v) was
added to dried cells. After 24 h, the solvent was evaporated in a
rotary evaporator (Buchi, Flawil, Switzerland), and the total lipid
content was determined gravimetrically.

Total proteins were extracted from 600 µg of cells resuspended
in Y-PER solution (Thermo Fisher Scientific, Waltham, MA,
United States) in a 2-mL Eppendorf tube. This suspension was
incubated at 30◦C for 45 min. Then, glass beads were added in
the tube, and cell lysis was performed in a FastPrep homogeniser
during ten cycles (4 m/s for 20 s). Between the cycles, the tubes
were placed on ice for 3 min. After centrifugation at 18,000 × g
and 4◦C for 10 min, the supernatant was carefully removed and
stored at 4◦C for further protein quantification. Y-PER reagent
was added to the remaining cells in the tube, and the cell
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disruption process was repeated. This step was performed until
no protein was detected. Total protein was quantified using a
commercially available assay (Micro BCATM Protein Assay Kit,
Thermo Fisher Scientific), and samples were diluted in the linear
range of BSA protein standard (0.5–20 µg/ml).

Proteome Analysis
Fully labelled cellular biomass was used as the internal standard
in absolute proteome analysis, and produced by cultivating
R. toruloides in minimal mineral medium containing labelled
heavy 15N, 13C-lysine (Silantes, Munich, Germany). Heavy
labelling of the proteinogenic lysine was measured at 96.6%
(data not shown). Absolute proteomics and internal heavy-
labelled standard preparation and analyses were performed
similarly as described in Lahtvee et al. (2017) and Kumar and
Lahtvee (2020). Briefly, cells were resuspended in the lysis buffer
(6 mol/L guanidine HCl, 100 mmol/L Tris–HCl pH 8.5 and
100 mmol/L dithiothreitol) and homogenised with glass beads
using the FastPrep24 device. The supernatant was removed by
centrifugation (17,000 × g for 10 min at 4◦C) and precipitated
overnight with 10% trichloroacetic acid at 4◦C. Pellets from the
previous precipitation step were spiked in 1:1 ratio with the
heavy-labelled standard. This mixture was further precipitated
with 10% TCA. The pellet was resuspended in a buffer containing
7 mol/L urea and 2 mol/L thiourea in 100 mmol/L ammonium
bicarbonate (ABC) followed by reduction using 5 mmol/L DTT
and alkylation with 10 mmol/L chloroacetamide. Peptides were
digested at room temperature with Achromobacter lyticus Lys-C
(Wako Pure Chemical Industries, Osaka, Japan) for 4 h at the
ratio of 1:50 (enzyme:protein) followed by overnight digestion
of the previous solution diluted five times in 100 mmol/L ABC
buffer. Peptides were desalted using in-house prepared C18
(3M Empore, Maplewood, MO, United States) tips and were
reconstituted in 0.5% trifluoroacetic acid (TFA). For separation,
2 µg of peptides was injected on an Ultimate 3000 RSLCnano
system (Dionex, Sunnyvale, CA, United States) coupled to a
C18 cartridge trap-column in a backflush configuration and an
analytical 50 cm × 75 µm emitter-column (New Objective,
Woburn, MA, United States) in-house packed with 3 µm C18
particles (Dr. Maisch, Ammerbuch, Germany). Eluted peptides
were sprayed to a quadrupole-orbitrap Q Exactive Plus (Thermo
Fisher Scientific, Waltham, MA, United States) tandem mass
spectrometer. MaxQuant 1.4.0.8 software package was used for
raw data identification and identification (Cox and Mann, 2008).
R. toruloides NP11 served as a reference proteome database in
UniProt1. Protein quantification was performed following the
total protein approach described in Sánchez et al. (2020) and
assuming 90% coverage from the total protein abundance.

LC-MS/MS proteomics data were deposited in the
ProteomeXchange Consortium2 via the PRIDE partner
repository (Vizcaíno et al., 2016) and can be retrieved using the
dataset identifier PRIDE: PXD019305. Processed quantitative
data are presented in Supplementary Table S7. Triplicated
quantitative proteomics data were used for differential expression

1www.uniprot.org
2http://proteomecentral.proteomexchange.org

analysis. p-values were adjusted for multiple testing using the
Benjamini–Hochberg procedure (Benjamini and Hochberg,
1995). Additional data analysis included gene set analysis (GSA)
(carried out using PIANO platform; Väremo et al., 2013) and
gene enrichment analysis (g:Profiler; Raudvere et al., 2019).

Genome-Scale Modelling
The intracellular flux patterns were predicted using the
R. toruloides genome-scale metabolic network rhto-GEM version
1.2.1 and flux balance analysis (FBA) (Tiukova et al., 2019a;
Lopes et al., 2020a). Models and experimental rates used
for the reference condition (REF_P1, REF_P2, and REF_P3)
were uploaded on GitHub repository3. Random sampling
simulations, quantitative proteomics data and the reference file
(gmt format) used for the gene enrichment analysis (g:Profiler)
are hosted on the same repository. The model was improved
by adding carotenoids (β-carotene, γ-carotene, torulene and
torularhodin) into the biomass pseudo-reaction, and adding
D-arabitol production pathway (Jagtap and Rao, 2018). To allow
the model to predict the production of either D- or L-arabitol,
in silico pseudo-reactions were added, converting, both, D- and
L-arabitol into an “artificial” arabitol without a specific isoform.
FBA was performed to calculate intracellular flux patterns using
RAVEN Toolbox (Wang H.et al., 2018) on MATLAB (The
MathWorks Inc., Natick, MA, United States), Gurobi solver
(Gurobi Optimization Inc., Houston, TX, United States) and by
optimising for non-growth related ATP maintenance (NGAM).
The latter was followed by flux variability analysis (random
sampling at n = 5000) at 95% from the maximal NGAM value.
Experimental data obtained from the yeast cultivations were used
to constrain the model if not stated otherwise. Cellular biomass
composition was adjusted to the measured total protein, lipid and
carotenoid content.

RESULTS

Three Distinct Phases of R. toruloides
Growth on Xylose
Rhodotorula toruloides growth was characterised with xylose as a
sole carbon source under aerobic batch conditions on a mineral
medium. The initial xylose concentration of 70 g/L was chosen,
and the amount of nitrogen was adjusted to result in a C/N
ratio of 80 mol/mol. On-line monitoring of culture turbidity,
CO2 production and O2 consumption was complemented by off-
line analysis of sugars, alcohols and cell mass composition (total
lipids, proteins and carotenoids; Figure 1). During the batch
cultivation of R. toruloides, three distinct growth phases were
observed based on growth dynamics and substrate consumption
patterns. In the first growth phase (P1), cells were growing
exponentially without any observable limitation, and xylose was
used as the sole carbon source. Arabitol, xylitol and CO2 were
the main fermentation by-products detected. Phase two (P2)
started with a sudden decrease in the specific growth rate due to
nitrogen limitation. At that point, approximately 23 g/L of xylose

3https://github.com/SynBioUniTartu/Rhto_OxidativeStress
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FIGURE 1 | Rhodotorula toruloides batch cultivation on xylose under the
reference (optimal) environmental conditions for the parental strain. Dashed
vertical lines define three observed growth phases. The specific growth rate
(µ), cell mass concentration, intracellularly accumulated lipid and carotenoid
concentrations, extracellular metabolite profiles and CO2 production profile in
the outflow gas are presented. The values represent an average of three
independent cultivation experiments; error bars represent standard deviation.
The red arrows represent the proteomic data points.

was consumed, indicating a critical C/N ratio of 26 (mol/mol)
for R. toruloides to reach nitrogen limitation. P2 lasted until
the depletion of the primary carbon source, namely, xylose.
Consumption of arabitol and xylitol under nitrogen limitation
defined the third growth phase (P3). To our knowledge, no
previous study has provided a characterisation of R. toruloides
physiology on xylose in such detail. These phases were further
analysed in this work, aiming to identify the cellular metabolic
behaviour in response to the environment changes during
the batch growth.

First growth phase (P1) comprised the highest specific
growth rate (µ, 0.060 ± 0.001 h−1) and the specific xylose
uptake rate (rXYL, 1.74 ± 0.12 mmol/gDCW.h) (Supplementary
Table S1), while no nutrient-level limitations were detected.
During the exponential growth, approximately one-third of
the consumed carbon was secreted as arabitol and xylitol.
An additional one-third of the consumed carbon was secreted
as CO2. Although the carotenoid content in P1 was low
(0.66 ± 0.06 mg/gDCW), the specific production rate (rCAR) was
the highest (0.042 ± 0.003 mg/gDCW.h) due to the higher µ

(Figure 2A, Supplementary Table S1). The biomass yield and
lipid content were 0.25 ± 0.02 and 0.18 ± 0.03 g/gDCW,

respectively. Carbon balance in this phase was estimated at 93%,
indicating a small amount of undetected by-products.

Nitrogen limitation under the xylose-excess conditions
marked the start of P2. The limitation led to a decrease
in µ (average value 0.020 ± 0.002 h−1) and rXYL (average
value 0.41 ± 0.06 mmol/gDCW.h). Compared to P1, the
carotenoid content did not show a significant difference; however,
rCAR decreased four-fold compared with P1 (Supplementary
Table S1). As expected, lipid accumulation doubled compared to
P1 due to the positive influence of nitrogen limitation, reaching
0.38± 0.05 g/gDCW (Figure 2B). P3 started after the depletion of
xylose. Here, xylitol and arabitol were simultaneously consumed
by the cells. The average specific growth rate was the lowest
of the three growth phases (0.005 ± 0.0003 h−1). The highest
accumulation of carotenoids per cell mass was detected in
this phase, increasing substantially to 1.87 ± 0.21 mg/gDCW;
however, the rCAR was the lowest of all phases (Figure 2 and
Supplementary Table S1). The lipid content remained at the
same level as that noted in P2. In addition, 50% carbon loss
(undetected carbon) was observed in P3, which can be partially
explained by the technical uncertainty of measurements for off-
gas at the very low growth rate conditions in the P3. Total
carotenoid and lipid yields on cell mass for the whole batch
cultivation were 0.85± 0.01 and 0.33± 0.07 g/gDCW, respectively
(Table 1, column REF).

Understanding Intracellular Flux Patterns
Among Three Growth Phases
To understand the changes in intracellular flux patterns between
the observed growth phases, simulations using R. toruloides GEM
were performed (Supplementary Tables S2; Tiukova et al., 2019a;
Lopes et al., 2020a). GEM is a mathematical reconstruction
of the metabolic network based on genome annotations and
information, such as gene-protein-reaction relationships. GEM
in combination with FBA allows simulation of intracellular
flux patterns by using linear programming based optimization
under the provided constraints and selects the most ATP-
efficient pathways for satisfying the pre-set constraints. However,
the model does not take into account metabolic regulation
nor limitations due to the capacity or activity of enzymes,
which should be taken into account when interpreting the
modelling results. For the flux distribution comparison between
the observed growth phases, fluxes were normalised by the total
carbon uptake rate (Supplementary Table S3).

As to the best of our knowledge, there has not been a
direct experimental validation of the arabitol isoform which
is produced by R. toruloides, we used the GEM to predict
it based on the provided stoichiometry of the reactions. Our
simulations suggested L-arabitol production, as the L-arabitol
production pathway regenerates one NADPH and one NADH,
while D-arabitol production pathway regenerates only one
NADH. NADPH supply is crucial for lipid production given
that every elongation step of fatty acid (FA) synthesis requires
the oxidation of two NADPH (Wasylenko et al., 2015). In
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FIGURE 2 | Carotenoid (A) and lipid (B) yields on cell mass in each growth phase of R. toruloides parental strain under the reference condition (REF), light irradiation
(LIG) and in the presence of hydrogen peroxide (PER), and the adapted strain under oxidative stress (ADA). Yields were calculated considering the production in
each growth phase.

TABLE 1 | Global titres, yields on cell mass (Y) and on substrate (YS), and volumetric production rate (q) of carotenoids and lipid production by R. toruloides parental
strain under the reference condition (REF), light irradiation (LIG), hydrogen peroxide stress (PER), and the adapted strain under oxidative stress (ADA).

REF LIG PER ADA

Carotenoids Titre (mg/L) 20.7 ± 0.5 36.2 ± 2.6 19.3 ± 0.2 44.0 ± 2.4

Y (mg/gDCW) 0.85 ± 0.01 1.45 ± 0.14 0.89 ± 0.04 1.90 ± 0.13

q (mg/L.h) 0.12 ± 0.003 0.22 ± 0.02 0.06 ± 0.02 0.23 ± 0.01

YS (mg/gsub) 0.29 ± 0.02 0.54 ± 0.04 0.29 ± 0.01 0.62 ± 0.04

Lipids Titre (mg/L) 8.1 ± 0.3 11.1 ± 1.7 13.8 ± 0.9 13.3 ± 0.5

Y (g/gDCW) 0.33 ± 0.07 0.46 ± 0.12 0.65 ± 0.06 0.58 ± 0.07

q (g/L.h) 0.05 ± 0.003 0.07 ± 0.005 0.05 ± 0.002 0.07 ± 0.002

YS (g/gsub) 0.12 ± 0.01 0.17 ± 0.03 0.21 ± 0.02 0.19 ± 0.01

These values were based on the final titres and the total fermentation time, representing the mean and standard deviation of triplicate experiments.

addition to FA synthesis, xylose and L-arabitol utilization also
require NADPH. For all three growth phases, the highest NADPH
usage was observed for substrate uptake: xylose reductase (XR)
(r_1093) in P1 and P2 and L-xylulose reductase (t_0882) in
P3 (Supplementary Figure S1 and Table S5). During xylose
metabolism (P1 and P2), arabitol production via L-xylulose
reductase partially regenerated the oxidised NADPH. Once
xylose was exhausted (P3), NADPH was required for arabitol
catabolism (Supplementary Figure S1). Our simulations noted
that the oxidative branch of the pentose phosphate pathway
(PPP), namely, glucose 6-phosphate dehydrogenase (r_0466)
and phosphogluconate dehydrogenase (r_0889), was responsible
for 83, 87, and 96% of NADPH regeneration in P1, P2, and
P3, respectively. Although NADPH demand in the substrate
consumption and amino acid biosynthesis pathways decreased
in P2 and P3 compared to P1, fluxes in lipid biosynthesis
increased 1.4-fold.

At the xylulose-5P branch point, 91% of carbon entered
into the central carbon metabolism via transketolase (r_1049,
r_1050) in P1 (Figure 3B). The remaining 9% was converted

into glyceraldehyde-3-phosphate and acetyl-phosphate by the
phosphoketolase reaction (t_0081). Under nitrogen limitation,
the activity of phosphoketolase was approximately tripled
compared to P1. The phosphoketolase pathway further
generates acetyl-CoA, a precursor of FA synthesis, by phosphate
transacetylase (t_0082) without losing a carbon compared to the
pathway originating from pyruvate.

At the pyruvate branch point, on average, ca. 70% of
the pyruvate produced in the cytosol was transported to
mitochondria (r_1138 and r_2034) to be converted by pyruvate
dehydrogenase (r_0961) into acetyl-CoA, which is used in the
tricarboxylic acid (TCA) cycle by citrate synthase (r_0300). The
remaining cytosolic pyruvate was either converted to cytosolic
oxaloacetate (pyruvate carboxylase, r_0958) or into acetyl-CoA
by three enzymatic steps (pyruvate decarboxylase, r_0959;
acetaldehyde dehydrogenase, r_2116; acetyl-CoA synthase,
r_0112). Acetyl-CoA can also be produced from citrate by
ATP-citrate lyase (ACL, y200003) or from acetyl-P by phosphate
transacetylase. Under excess nitrogen conditions (P1), acetyl-
CoA synthase was responsible for 60% of the flux. However,
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FIGURE 3 | Rhodotorula toruloides GEM-based fluxes (normalized to the substrate uptake) and measured protein abundances (µg/g-protein) under the three
growth phases of reference cultivation on xylose (P1–P3). The main NADPH regeneration and utilization fluxes are presented with positive and negative values,
respectively (A). Representation of the central carbon metabolism illustrating xylulose 5-phosphate, pyruvate and acetyl-CoA branchpoints (B). The fluxes were
normalized by the substrate uptake rate in each phase (the absolute substrate uptake values (mmol/gDCW.h) are represented in italic in panel (A) [note that in P3,
arabitol and xylitol were co-consumed)]. The colour of enzymes name indicates the significant protein allocation change under nitrogen limitation (P3) compared to
nitrogen excess condition (P1); and the dashed arrow on panel (B) represent multiple reactions. All the fluxes and protein abundance are represented in the
Supplementary Tables S3, S7, respectively. G3P: glyceraldehyde 3-phosphate, PEP: phosphoenolpyruvate, PYR: pyruvate, OAA: oxaloacetate, ACE-ALD:
acetaldehyde, TKT: transketolase, PK: phosphoketolase, PCK: phosphoenolpyruvate carboxykinase, PYK1: pyruvate kinase, PYC: pyruvate carboxylase, PDC:
pyruvate decarboxylase, MCP2: mitochondria pyruvate carrier, ADH: alcohol dehydrogenase, ACS: acetyl-CoA synthase, ACL: ATP citrate lyase, and ACC1:
acetyl-CoA carboxylase. More abbreviations can be found in the Supplementary Table S4.

under nitrogen limitation (P2 and P3), ca. 71% of acetyl-CoA
originated via phosphate transacetylase (Figure 3B). Although
flux variability analysis demonstrated rather high flexibility
in the ACL flux, phosphate transacetylase was still predicted
as the main source of acetyl-CoA under nitrogen limitation
(Supplementary Table S2).

Our physiological data showed that the lipid content was
higher under nitrogen-limitation phases (P2 and P3), and the
carotenoids content was higher in P3. These results can be
explained by the higher predicted fluxes through reactions
involving phosphoketolase, FA and carotenoids synthesis, and
NADPH regeneration.

Impact of Oxidative Stress via Light
Irradiation or the Presence of H2O2
Further, we were interested in how oxidative stress created
by either 20 mmol/L H2O2 or light irradiation (40,000 lux
white light) affects cellular growth and lipid and carotenoid
accumulation. Cultivation of R. toruloides under these oxidative
stress conditions presented the same three growth phases
described for the reference condition (REF) and a similar

growth and substrate consumption profile (Supplementary
Figures S2A,B). The specific growth rate differences compared
to the reference condition were insignificant under the light
irradiation (LIG) condition, but a significant 50% decrease was
observed under the H2O2 stress (PER) in P1 (Supplementary
Table S1). The most significant difference was detected in
the longer lag phase (approximately 90 h) shown in the
PER condition (Supplementary Figure S2B). Moreover, the
accumulation profiles of carotenoids and lipids showed altered
behaviour compared to the reference (Figure 2). The stress
caused by H2O2 negatively affected carotenoid production in P1.
However, in P3, the total carotenoid content was the highest
of all conditions (4.72 ± 0.47 mg/gDCW); thus, the highest
rCAR (0.026 ± 0.012 mg/gDCW.h) was reached in the third
phase (Figure 2A, Supplementary Table S1). Lipid production
exhibited a different behaviour, presenting a higher content in P1
and P2 compared to the reference condition. The specific lipid
production rate (rLIP) in P2 was the highest of all conditions in
all phases (0.020 ± 0.004 g/gDCW.h), albeit the specific growth
rate was not amongst the highest obtained in this study.

Regarding the overall results, for the entire cultivation under
light irradiation, the cells presented 70% increased carotenoid
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content (1.45 ± 0.14 mg/gDCW) and 40% increased lipid content
(0.46± 0.12 g/gDCW) compared to the reference condition. H2O2
stress in the parental strain (PER) did not affect carotenoid
production (compared to REF), and the production yield on cell
mass was maintained at 0.89 ± 0.04 mg/gDCW. Surprisingly, this
condition showed the highest lipid content (0.65± 0.06 g/gDCW),
which was increased by two-fold compared with the reference
condition (Table 1). The achieved lipid content was only slightly
lower than the highest lipid content reported in the literature
for R. toruloides; specifically, 0.68 g/gDCW has been reported
in fed-batch cultivation on a rich, glucose-based medium
(Li et al., 2007).

Increasing Carotenoid Accumulation via
Adaptive Laboratory Evolution
Adaptive laboratory evolution is a strategy to improve the fitness
of the microorganism in a challenging environment. H2O2 stress
improved lipid accumulation but increased the lag phase and
lowered the growth rate. Therefore, ALE was performed to
improve those parameters. The first cycle of ALE started with
10 mmol/L of H2O2. After 16 passages (ca. 30 generations), the
lag phase decreased 11-fold (from 46 to 4 h), and µmax stabilised
at 0.045 ± 0.003 h−1, resulting in a 66% increase compared to
the parental strain under the same conditions (Supplementary
Figure S3A). Once the µmax plateaued, the second cycle of ALE
was started by increasing the selective pressure to 20 mmol/L of
H2O2 in the medium (Supplementary Figure S3B). As a result,
after 15 passages (ca. 20 generations), the lag phase of yeast
growth decreased from 30 to 5 h, and the µmax improved to
0.055 ± 0.001 h−1, representing a 22% increase compared to the
first cycle. Although µmax did not improve remarkably during the
second cycle of ALE, the cells presented stronger pink colouration
compared to the parental strain, indicating increased carotenoid
accumulation. Therefore, the ALE experiment was halted, and the
strains were characterised.

The adapted strain in presence of H2O2 (20 mmol/L) showed
a remarkable ca. three-fold increase in carotenoid content
and titre, respectively, compared to the parental strain under
the same condition during the initial screening experiments
(Supplementary Table S6). Therefore, the adapted strain was
further characterised under controlled environmental conditions
in bioreactors and studied on the proteomics level.

Adapted Strain Under H2O2 Stress
The performance of adapted strain under oxidative stress (by
the presence of 20 mmol/L H2O2, ADA) was evaluated and
compared to the parental strain under the same stress condition
(PER). ADA exhibited a 70-h shorter lag phase compared with the
PER (Supplementary Figure S2C). Aeration and agitation in the
bioreactor may increase the oxidative stress, which could explain
the longer lag phase compared to initial screening experiments in
shake flasks (mentioned above).

Some differences were noticed between the ADA and other
conditions. Although the µ in P1 did not show a significant
difference, the rCAR was increased by four-fold in ADA compared
with PER (Supplementary Table S1). However, in P2, the µ in

ADA was two-fold reduced compared with the other conditions,
but rCAR remained 20% increased. The lower rXYL in P2 could
have resulted the lower production of xylitol and arabitol in
ADA compared to the other conditions probably due to a softer
redox imbalance during xylose catabolism. The ADA showed
ca. two-fold increased content of carotenoids and lipids under
nitrogen-limiting phases (P2 and P3) compared to REF. In P3,
the lipid content was 1.0 ± 0.03 g/gDCW, indicating that the
gain of cell mass noted during this phase was mainly related to
lipid accumulation.

The whole batch growth of ADA exhibited a 2.3-fold increase
in carotenoid yield on cell mass compared to PER; however, the
lipid yield did not show a significant difference (Table 1).

Composition of Carotenoids in Cell Mass
Rhodotorula toruloides mainly produces four carotenoids:
γ-carotene, β-carotene, torulene and torularhodin (Mata-Gómez
et al., 2014). The carotenoid profile was very similar in
all the studied conditions. The β-carotene fraction decreased
over time, whereas the opposite was observed for torulene
(Supplementary Figure S3). Torularhodin was the most
abundant fraction of carotenoids under all studied conditions.
Growth of the parental strain under light irradiation and
adapted strain cultivations showed torularhodin fraction higher
than 50% during P2, which can be related to a stronger
antioxidative property of this carotenoid, attributed to the
presence of more double bonds in its chemical structure
(Kot et al., 2018).

Proteomic Results Revealed the Highest
Difference Between Nitrogen Excess
and – Limiting Conditions
Total protein measurements were combined with the absolute
proteome analysis for the most relevant conditions. Therefore,
samples from three different growth phases (P1, P3, and
SP- an early stationary phase) from the reference cultivation
were analysed, illustrating conditions under the nitrogen
excess and two samples from nitrogen limitation conditions.
Additionally, P3 of light-induced oxidative stress (LIG P3)
and P1 and P3 of H2O2-induced oxidative stress for the
adapted strain (ADA P1 and P3, respectively). For LIG
condition, P3 represents the nitrogen-limitation phase
with a higher carotenoid titre and specific production rate
than REF P3. In ADA P1, the adapted strain presented a
higher carotenoid yield on cell mass (YCAR) compared to
parental strain under reference condition (REF P1). While
P3 (ADA P3) showed the highest lipid content (g/gDCW)
compared to all conditions, indicating that during the phase,
almost all carbon taken up by the cells ended in the lipid
composition (Figure 2B).

Almost doubled total protein content was measured for
the nitrogen-excess condition during the P1 of a reference
culture. All other conditions showed no significant differences in
protein content with an average of 0.24 g/gDCW (Figure 4A). In
differential expression analysis, proteome data were normalised
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FIGURE 4 | Proteomics results from R. toruloides studies on xylose under different environmental conditions (REF P1, P3, and SP; LIG P3; ADA P1 and P3). Total
protein content in cells (A). Asterisk “*” indicates significant difference in comparison to all the other studied conditions (Student’s t-test p-value < 0.01). Principal
component analysis (B). Significantly (adj. p-value < 0.01) up- and down-regulated proteins (C). Gene set enrichment analysis based on the proteomics data, where
GO groups were received from UniProt, enzyme-metabolite interactions and subgroups from the rhto-GEM (D). All previewed categories show significant difference
at least in two comparisons (adj. p-value < 0.01). Number in brackets indicates proteins in each category. Panels (C,D) present comparisons between samples
showing clear separation in PCA represented in panel (B).

to a constant protein mass, representing allocation differences for
the individual proteins.

On average, more than 3,000 individual proteins were
quantified under every condition studied (Supplementary
Table S7). Principal component (PC) analysis clearly identified
the biggest differences in the data set, which were determined
by the switch into nitrogen limitation as indicated by the
clear separation of the samples on the first PC, characterising
39% of the changes (Figure 4B). The second PC separated
samples based on the use of the adapted strain under
the oxidative stress environment (17% of the difference in
the data). Altogether, 1,518 proteins showed significant (adj.

p-value < 0.01) allocation changes under at least one of the
environmental conditions (Figure 4C).

Translation and NADPH Metabolism
Were Most Affected Under Nitrogen
Limitation
To understand the main differences in the dataset, GSA
was used to identify classes of proteins that are significantly
over-represented among the measured proteins and may have
an association with a specific phenotype. A variation of
GSA-based analysis was conducted. First, protein-Gene Ontology
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(GO) group relations were received from UniProt database.
Second, protein-subsystem relationships were obtained from
rhto-GEM, providing more specific information on various
metabolic pathways present in R. toruloides. Given that PCA
divided samples into four separate quadrants based on nitrogen
availability and oxidative stress, we focussed on the comparison
of these sample clusters throughout the study. Using UniProt-
provided GO groups in GSA, 14 groups exhibited significant
over-representation with an adj. p-value < 0.01 under the studied
conditions (Supplementary Table S8). Most of these groups were
related to protein translation, which were down-regulated under
nitrogen limitation and correlated with the lower specific growth
rates under these conditions (Figure 4D). A clear correlation
between ribosome abundances and specific growth rate has been
demonstrated previously for other organisms (Scott et al., 2014;
Metzl-raz et al., 2017). When subsystems from rhto-GEM were
considered, significant up-regulation was detected among carbon
metabolism and its subgroups (glycolysis, gluconeogenesis, TCA
cycle, glyoxylate and dicarboxylate metabolism; Supplementary
Table S9). Interestingly, only the parental strain (under
nitrogen-limiting conditions) showed overexpression in fatty
acid degradation pathways and down-regulation in amino acid
biosynthesis pathways (with the exception of the tryptophan
pathway, which was up-regulated). Differences in the regulation
of fatty acid degradation pathways could be responsible for the
significantly increased lipid accumulation under the oxidative
stress condition.

Based on the enzyme-metabolite relationships present in
the rhto-GEM, reporter metabolites were analysed as the third
variation of GSA, illustrating metabolites showing significant
alterations among enzymes they interact with (Supplementary
Table S10). When samples under nitrogen-limitation were
compared to samples cultured under excess nitrogen, the
most significant up-regulation was detected among proteins in
proximity to NAD+/NADH (Figure 4D). More than 65% of
the proteins associated with NAD+/NADH showed increased
allocation under nitrogen limitation (REF P3 and SP, LIG P3,
ADA P3). In contrast, protein allocation decreased significantly
for proteins related to NADP+/NADPH metabolism. Down-
regulation was predominantly noted in amino acid biosynthesis
pathways, while NADPH consumption in lipid metabolism and
the glutamate production pathway showed up-regulation. Up-
regulation of enzymes in glutamate biosynthesis in response to
nitrogen starvation have been demonstrated previously (Zhu
et al., 2012; Tiukova et al., 2019b). Additionally, metabolites
related to lipid synthesis (CoA, acetyl-CoA, acetate, and
pyruvate) showed increased protein allocation during nitrogen
limitation, while xylitol related proteins were down-regulated (in
all cases adj. p-value < 0.01).

Protein Changes Demonstrate Similar
Trends With the Simulated Fluxes

The global comparison of differentially expressed proteins with
their corresponding fluxes between the nitrogen excess and
limitation conditions demonstrated similar trends for the 62%

of cases (Supplementary Table S11). In response to nitrogen
limitation, proteins involved in central nitrogen metabolism,
such as glutamate dehydrogenase (GDH, RHTO_04650,
RHTO_07718) and glutamine synthetase (GLN, RHTO_00673,
RHTO_00401) were up-regulated (Figure 3A). This response
has been previously reported under nitrogen limitation for
R. toruloides grown in both glucose and xylose (Zhu et al., 2012;
Tiukova et al., 2019b). Additionally, activation of autophagy
process has been described as a direct response via TOR
activation to recycle nitrogenous compounds (Zhu et al., 2012;
Tiukova et al., 2019b). Although initially expressed at a low level,
up-regulation of autophagy-related proteins (RHTO_05541,
RHTO_06526) was detected.

Proteins related to oxidative stress response showed up-
regulation for P3 and SP (nitrogen limitation) compared to
P1 (nitrogen excess). Catalase (CAT, RHTO_01370), which
breaks down hydrogen peroxide in the peroxisomal matrix,
was the most up-regulated protein with a six-fold increase
under nitrogen limitation (Supplementary Table S7). Recent
reports in oleaginous microorganisms showed that ROS is an
important signalling molecules in response to various stresses
(Shi et al., 2017). Nitrogen depletion is an example of such
stress, leading to the accumulation of ROS (Liu et al., 2012;
Fan et al., 2014; Chokshi et al., 2017) and higher activities of
catalase and other antioxidant enzymes, suggesting that lipid
accumulation under nitrogen depletion is mediated by oxidative
stress (Yilancioglu et al., 2014).

The highest carbon fluxes detected with GEM analysis were
further assessed to understand the level of their regulation. In P3
and SP, there is no longer xylose in the system, which was reflected
in the down-regulation of proteins involved in xylose assimilation
(Supplementary Table S1). Proteins belonging to arabitol
metabolism, such as L-xylulose reductase (LXR, RHTO_00373),
and D-arabitol dehydrogenase (DAD, RHTO_07844), and
L-iditol 2-dehydrogenase, identified by Bommareddy et al. (2015)
as L-arabitol dehydrogenase (LAD, RHTO_01629) were all
down-regulated under nitrogen- limiting conditions.

Approximately four-fold increased transketolase (TKT,
RHTO_03248) abundance compared to phosphoketolase (PK,
RHTO_04463) was consistent with the simulated increased flux
through the transketolase reaction. However, PK levels increased
more than two-fold under nitrogen limitation, which was
consistent with the increased flux levels under the mentioned
conditions. Furthermore, the magnitude of the PK increase
in this condition was 50–60% higher than TKT (Figure 3B).
Carbon was mainly channelled via TKT because it leans toward
glycolysis and the oxidative branch of the PPP, which have been
identified as the preferred pathway to regenerate NADPH (Lopes
et al., 2020a, this study). GEM simulations revealed that XR,
fatty acid synthase and glutamate dehydrogenase consume most
of the NADPH, which was regenerated by 6-phosphogluconate
dehydrogenase (GND1), glucose-6-phosphate dehydrogenase
(ZWF1), and L-xylulose reductase (LXR) (Figure 3A). With the
exception of fatty acid synthase, these enzymes were also among
the most abundant NADPH-dependent enzymes quantified.

In the oleaginous microorganism, cytosolic ATP-citrate lyase
(ACL, RHTO_03915) is considered an important enzyme
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as a source of acetyl-CoA (Ratledge and Wynn, 2002;
Koutinas and Papanikolaou, 2011). Under nitrogen limitation,
this enzyme was found in higher levels compared to P1 (four-
and two-fold increase for P3 and SP, respectively, Supplementary
Table S7). Cytosolic acetyl-CoA can also be supplied by acetyl-
CoA synthase (ACS1, RHTO_08027), which was up-regulated
two-fold in nitrogen-limiting phases, and by xylose metabolism
via PK and phosphate acetyltransferase. FBA predicted that the
majority of cytosolic acetyl-CoA originating from pyruvate via
ACS1 (in nitrogen-excess phase) and from PK and phosphate
transacetylase (in nitrogen-limiting phase) (Figure 3B).

Acetyl-CoA can be transformed into malonyl-CoA, a substrate
for FA synthesis, by the enzyme acetyl-CoA carboxylase (ACC1,
RHTO_02004), which was 3.4- and 1.6-fold up-regulated in
P2 and P3, respectively. Then, FAs are produced by fatty acid
synthases FAS1 (RHTO_02032) and FAS2 (RHTO_02139), which
were significantly up-regulated in the nitrogen-limiting phases.
Such findings were in accordance with the predicted higher
fluxes from acetyl-CoA toward FA synthesis in P3. Additionally,
acetyl-CoA can enter the mevalonate pathway (MEV) through
acetyl-CoA C-acetyltransferase (ERG10, RHTO_02048) to
produce sterols and carotenoids. Despite the highest carotenoid
content under nitrogen limitation, ERG10 and other proteins
related to the MEV pathway, hydroxymethylglutaryl-CoA
synthase (ERG13, RHTO_02305) and reductase (HMG1,
RHTO_04045) were down-regulated. Proteins directly related to
the carotenogenesis pathway were either not detected or did not
show any significant difference. FBA predicted very low fluxes
throughout carotenoid production.

Comparative Proteomics at Different
Growth Phases Under Oxidative Stresses
Although P3 of cultivation under light exposure (LIG_P3)
showed higher carotenoid production rates than REF_P3
(Figure 2 and Supplementary Table S1), only two proteins
(RHTO_06480 and RHTO_01160) were differentially expressed
between those conditions (adj. p-value < 0.01), suggesting a post-
translational regulation of the carotenoid production pathways
under the studied environmental conditions.

Under oxidative stress, the adapted strain showed many
similar changes to the reference condition while entering
into nitrogen limitation but was also clearly differentiated
as described by PC analysis (Figure 4B). Clustering of the
significantly differentially expressed proteins was performed to
understand the main changes compared to REF. Cluster showing
significant differences among ADA and other conditions was
enriched by the proteins from amino acid biosynthesis and
the TCA cycle. Although TCA cycle was already up-regulated
under nitrogen-limiting conditions, more pronounced up-
regulation was detected in ADA, including the up-regulation of
citrate synthase (CIT1, RHTO_06406), malate dehydrogenase
(MDH, RHTO_04363), and NADP+-dependent isocitrate
dehydrogenase (IDH, RHTO_04315). NADPH regeneration by
GND1 (RHTO_ 02788) in PPP was also up-regulated. Similar
to the REF under nitrogen limitation, FA biosynthesis was
up-regulated; however, β-oxidation, which is responsible for

lipid degradation, remained lower and could at least partially
explain the higher lipid accumulation under oxidative stress.
Additionally, the carotenogenesis pathway was more activated
since phytoene dehydrogenase (CRTI, RHTO_04602) were
three-fold up-regulated (Figure 5A).

As expected, enzymes involved in the oxidative stress response
were up-regulated in the ADA compared to REF; CAT exhibits a
16-fold increase for P1 (Supplementary Table S7).

Translation Processes Also Play a
Crucial Role in Proteome Allocation
Analysis
Absolute protein analysis allows comparisons of protein
abundance levels between conditions and quantification of
condition-dependent protein allocation patterns (Figure 5B).
The top 100 of the most abundant proteins represented greater
than 50% of the total proteome. Ribosomal proteins were
the largest protein group, forming almost one-third of the
total proteome in REF P1. However, these levels decreased to
approximately 10% under the lower growth rate conditions
in P3. For ADA, ribosomal protein allocation was already
reduced to a lower level and decreased further, forming only 21%
under the nutrient-limiting conditions in P3. As ribosomes are
essential for achieving faster cell growth, the trade-off between
allocation toward ribosomal proteins or energy generation
pathways has been demonstrated previously (Nilsson and
Nielsen, 2016; Sánchez et al., 2017; Kumar and Lahtvee, 2020).
Interestingly, glycolysis was increased to the same extent under
nitrogen-limiting conditions in the presence and absence of
oxidative stress, but mitochondria and amino acid metabolism
demonstrated significantly increased allocation for the ADA. The
latter changes seemed to be responsible for the more efficient
metabolism, providing higher yields on cell mass for adapted
cells (Figure 5B and Table 1).

DISCUSSION

Efficient microbial production of chemicals from sustainable
resources is essential for the transition toward bioeconomy.
R. toruloides has been considered as a potential microorganism to
produce high-value products from biological resources, including
hemicellulosic material, mainly composed of xylose. However,
xylose metabolism in R. toruloides is still not completely
understood. Only few studies have focussed on the metabolism
of xylose assimilation in this oleaginous yeast (Jagtap and Rao,
2018; Tiukova et al., 2019b; Lopes et al., 2020a). Therefore, in our
study, detailed physiology characterisation was combined with
genome-scale modelling and quantitative proteomics with the
goal to investigate xylose metabolism in R. toruloides and use
oxidative stress as a strategy to improve the production of lipids
and carotenoids.

In this study, we demonstrated how R. toruloides growth on
xylose exhibited three distinct phases, where most metabolic
changes occurred after the transition into nitrogen limitation.
Approximately 30% of consumed xylose by the parental strain
accumulated into xylitol and arabitol during the first two growth
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FIGURE 5 | Main differences in protein allocation between the adapted strain under oxidative stress (ADA) and the parental strain under reference condition (REF)
studied under the nitrogen limitation (P3). The colour of enzymes name indicates the change in protein allocation in ADA compared to REF (A). Proteome allocation
into the most abundant metabolic groups for ADA and REF in P1 (nitrogen excess) and P3 (nitrogen limitation) (B). GND1, 6-phosphogluconate dehydrogenase;
IDP1, isocitrate dehydrogenase; PK, phophoketolase; CRTI, phytoene dehydrogenase, ACD, acyl-CoA dehydrogenase.

phases probably to balance NADPH required for the growth or
due to limitations in the abundance of xylulokinase. According
to Fernandes and Murray (2010), fungi can produce both L-
and D-arabitol. Jagtap and Rao (2018) reported that D-xylulose
is converted to D-arabitol by DAD, although the methodology
employed by the authors is not able to discriminated between
the L and D isoforms. Same for the methodology employed
in this work. The UniProt protein database for R. toruloides
contains only sequences for LXR and for DAD, lacking the
levogyrous version of the latter. Bommareddy et al. (2015)
assembled the metabolic network for R. toruloides based in
previous omics studies and identified that the enzyme LAD,
identified as L-iditol dehydrogenase by UniProt, is responsible
for arabitol production in this species. The GEM constructed by
Tiukova et al. (2019b) contains only the L-arabitol production
pathway. In this work, we updated the model including also the
pathway described in Jagtap and Rao (2018) and our simulations
showed that the L-isoform was preferred. Forcing the model for
the production of only D-arabitol did not reflect our experimental
data, unless the cofactor for DAD was NADPH instead of
NADH. An in silico analysis of the amino acids sequences
of the LXR, LAD, and DAD by the NCBI conserved domain
search tool4 showed that those enzymes could use both or
either NADH and NADPH. Our proteomics analysis was able
to detect enzymes for both pathways, LXR, LAD, and DAD
(Supplementary Figure S1). Seiboth et al. (2003) reported that

4https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

the LAD can partially compensate for the xylose metabolism
in mutants knocked out for xylitol dehydrogenase in Hypocrea
jecorina. Curiously, xylulokinase, an enzyme responsible for
the last step in xylose metabolism, was not detected in our
proteomic analysis, suggesting a low expression level that could
limit xylose catabolism. The available knowledge on the xylose
metabolism in R. toruloides is poor and further studies aiming
at revealing the involved enzymes along with its co-factors and
reactions are needed.

Under nitrogen-limiting conditions, increased flux via
phosphoketolase was observed, corresponding well with the
detected enzyme up-regulation. The phosphoketolase reaction
saves carbon by producing an acetyl residue together with
G3P directly from D-xylulose 5-P instead of requiring several
reactions until pyruvate decarboxylation, potentially resulting in
an increased product yield from substrate. However, cells seem
to prefer the alternative pathway of transketolase as it provides
more carbon toward oxidative PPP, where the majority of
NADPH is regenerated. The overexpression of phosphoketolase
and phosphotransacetylase enzymes in Yarrowia lipolytica Po1d
resulted in 20–50% increased lipid production (Niehus et al.,
2018). Therefore, the up-regulation of phosphoketolase could
be partially related to the increased accumulation of lipids and
carotenoids at the aforementioned phases.

NADPH regeneration is an important mechanism for xylose
assimilation and lipid synthesis. ME is considered a key enzyme
in the recycling of NADPH for lipid biosynthesis (Ratledge and
Wynn, 2002). However, according to our proteomic data and
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simulations, the majority of the reducing power is generated in
the oxidative branch of the PPP. These results are consistent with
previous 13C-labelling experiments with Y. lipolytica performed
using glucose as the carbon source (Wasylenko et al., 2015).
However, ME overexpression in Rhodotorula glutinis has led to
a two-fold increase in lipid accumulation (Li et al., 2013).

Induction of oxidative stress in R. toruloides cultivation was
employed as a strategy to identify the metabolic changes that
result in the higher levels of carotenoids and lipids. Surprisingly,
under PER conditions, no changes in carotenoid production
compared to REF were observed. However, the lipid content
was two-fold increased, reaching a content of 0.65 g/gDCW. The
highest reported lipid production in R. toruloides is 0.675 g/gDCW
(Li et al., 2007) using a rich medium with glucose as a
carbon source. The review by Shi et al. (2017) reports that
different authors found evidence for ROS stress enhancing
the formation of lipid droplets as an important signalling
molecule in response to nitrogen starvation in oleaginous
microorganisms. Cells under oxidative stress might possess an
even greater supply of NADPH by channelling sugar catabolism
to PPP to stabilise the redox balance and ROS clearance
(Kuehne et al., 2015). Enzymes related to oxidative stress
were up-regulated not only in ADA but also in REF under
nitrogen limitation. Tiukova et al. (2019b) reported not only
the up-regulation of oxidative stress related enzymes during
the lipid accumulation phases but also the up-regulation of
the β-oxidation representing an ATP sink. According to Xu
et al. (2017), lipid oxidation leads to accumulation of oxidative
and aldehyde species in Y. lipolytica, reducing production
performance. The same authors showed that overexpressing
enzymes from the oxidative stress defence pathway resulted in
industrially relevant lipid production (lipid titre of 72.7 g/L and
content of 81.4%) by synchronising lipogenesis to cell growth and
mitigating lipotoxicity.

The successive application of H2O2 in the cell through the
ALE potentially overwhelmed the cellular antioxidant defence
system, boosting carotenoid production. Increased accumulation
of carotenoids and lipids was noted in all the phases of ADA
compared to REF. In general, improved production can result
from the up-regulation of phosphoketolase, which led to a slightly
more efficient production process. The carotenoid biosynthesis
pathway was more activated by higher levels of CRTI what
could explain the higher carotenoid levels. IDP1 and GND1
up-regulation improved the capacity of NADPH regeneration.
The up-regulation of the oxidative stress defence pathway
potentially diminished lipotoxicity. All the aforementioned
factors combined with the down-regulation of the β-oxidation
could explain the higher lipid production by the adapted cells
under oxidative stress (Figure 5A). No reasonable significant
modifications in proteomics levels were observed under the
light condition in contrast to the findings of Gong et al.
(2019) for R. glutinis. However, irradiation increased final
titres of carotenoids and lipids (75 and 40% improvement,
respectively) likely due to post-translational mechanisms. Some
fungi, such as Mucor circinelloides, harbour genes for carotenoid
synthesis that are based on light-induced expression mechanisms
(Quiles-Rosillo et al., 2005).

CONCLUSION

In this study, the detailed physiological characterisation of
R. toruloides growth revealed that a considerable amount of
xylose was converted into by-products, such as arabitol and
xylitol. The accumulation of these by-products can be considered
an overflow metabolism, contributing to the redox balancing
during xylose catabolism. According to the model simulations,
which does not take into account metabolic regulation or enzyme
capacity constraints, the highest NADPH demand was related
to substrate uptake and was about five-fold higher compared
with the NADPH levels required for lipid production. The main
NADPH regeneration reactions were derived from the oxidative
branch of PPP, and ME was underused.

Under nitrogen limitation, the parental strain showed
some increased protein expression related to lipid synthesis
(FAS complex) and oxidative stress response mechanisms.
Interestingly, the adapted strain down-regulated the FA
degradation pathway, which combined with the up-regulation
of NADPH regeneration mechanisms and FA and carotenoid
synthesis, led to better production performance. Additionally,
this strain demonstrated increased allocation of proteins related
to mitochondria and amino acid metabolism, potentially
explaining the more efficient metabolism.

In general, a good correlation was noted between the predicted
fluxes and determined protein abundances. Using data obtained
in this study, we can design strategies of metabolic engineering
to make the process economically viable by improving cell
factory performance.
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Solving environmental and social challenges such as climate change requires a shift

from our current non-renewable manufacturing model to a sustainable bioeconomy.

To lower carbon emissions in the production of fuels and chemicals, plant biomass

feedstocks can replace petroleum using microorganisms as biocatalysts. The anaerobic

thermophile Clostridium thermocellum is a promising bacterium for bioconversion due

to its capability to efficiently degrade lignocellulosic biomass. However, the complex

metabolism of C. thermocellum is not fully understood, hindering metabolic engineering

to achieve high titers, rates, and yields of targeted molecules. In this study, we developed

an updated genome-scale metabolic model of C. thermocellum that accounts for recent

metabolic findings, has improved prediction accuracy, and is standard-conformant to

ensure easy reproducibility. We illustrated two applications of the developed model.

We first formulated a multi-omics integration protocol and used it to understand

redox metabolism and potential bottlenecks in biofuel (e.g., ethanol) production in

C. thermocellum. Second, we used the metabolic model to design modular cells for

efficient production of alcohols and esters with broad applications as flavors, fragrances,

solvents, and fuels. The proposed designs not only feature intuitive push-and-pull

metabolic engineering strategies, but also present novel manipulations around important

central metabolic branch-points. We anticipate the developed genome-scale metabolic

model will provide a useful tool for system analysis of C. thermocellum metabolism to

fundamentally understand its physiology and guide metabolic engineering strategies to

rapidly generate modular production strains for effective biosynthesis of biofuels and

biochemicals from lignocellulosic biomass.

Keywords: Clostridium thermocellum, biofuels, genome-scale model, metabolic model, omics integration,

modular cell design, ModCell
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1. INTRODUCTION

Global oil reserves will be soon depleted (Shafiee and Topal,
2009), and climate change could become a major driver
of civil conflict (Hsiang et al., 2011). These challenges to
security and the environment need to be addressed by
replacing our current non-renewable production of energy
and materials for a renewable and carbon neutral approach
(Ragauskas et al., 2006). The gram-positive, thermophilic,
cellulolytic, strict anaerobe C. thermocellum is capable of efficient
degradation of lignocellulosic biomass to produce biofuels and
biomaterial precursors, making this organism an ideal candidate
for consolidated bioprocessing (CBP), where production of
lignocellulosic enzymes, saccharification, and fermentation take
place in a single step (Olson et al., 2012). However, its complex
and poorly understood metabolism remains the main roadblock
to achieve industrially competitive titers, rates, and yields of
biofuels such as ethanol (Tian et al., 2016) and isobutanol
(Lin et al., 2015).

For the past decade, significant efforts have been dedicated

to characterize and manipulate the central metabolism of
C. thermocellum, due to increasing interest in developing
this organism as a CBP manufacturing platform for biofuels
production (Akinosho et al., 2014). C. thermocellum possesses
atypical central metabolism, characterized by the important

roles of pyrophosphate and ferredoxin (Zhou et al., 2013),
which makes redirection of both carbon and electron flows
for biofuel production challenging to achieve. Specifically,
the metabolic network of C. thermocellum contains various
reactions to regulate intracellular concentration levels of NADH,
NADPH, and reduced ferredoxin. These cofactors are used as
electron donors with high specificity throughout metabolism.
To maintain redox balance, C. thermocellum also possesses
several hydrogenases to oxidize these reduced cofactors to
molecular hydrogen that is secreted by the cell. Removal of these
hydrogenases through deletion of ech (encoding the ferredoxin-
dependent hydrogenase, ECH) and hydG (associated with the
bifurcating hydrogenase, BIF, and bidirectional hydrogenase,
H2ASE_syn) was successfully applied to increase ethanol yield by
electron rerouting (Biswas et al., 2015). Thompson et al. (2015)
characterized the 1hydG1ech strain in depth by flux analysis
of its core metabolism, concluding that the major driver for
ethanol production was redox rather than carbon balancing. In
particular, the conversion of reduced ferredoxin to NAD(P)H
is likely the most rate limiting step. In a subsequent study,
Lo et al. (2017) over-expressed rnf (encoding the ferredoxin-
NAD oxidoreductase, RNF) in the 1hydG1ech strain that
is expected to enhance NADH supply, but did not achieve
improved ethanol yield.

In an attempt to redirect carbon and electron flows for
enhanced ethanol production, Deng et al. (2013) manipulated
the pyruvate node and malate shunt of C. thermocellum. By
converting phosphoenolpyruvate (pep) to oxaloacetate (oaa) and
then to pyruvate (pyr), this shunt can interchange one mole
of NADPH with one mol of NADH generated from glycolysis.
Interestingly, the authors noted that replacement of the malate
shunt by alternative pathways not linked to NADPH increased

ethanol production and carbon recovery but reduced amino acid
formation, confirming the role of the malate shunt as an NADPH
source in C. thermocellum.

Sulfur metabolism also plays a key role in redox metabolism
of C. thermocellum and has been investigated for its role in
ethanol production. Sulfate, a component of C. thermocellum
media, serves as an electron acceptor, which is capable of
oxidizing sulfate to sulfite and then sulfide. Thompson et al.
(2015) demonstrated that the strain 1hydG1ech1pfl could not
grow in a conventional defined medium due to its inability to
secrete hydrogen or formate, but was able to rescue growth
by sulfate supplementation to the culture medium. More
recently, Biswas et al. (2017) reported an increase in final
sulfide concentration and over-expression of the associated
sulfate uptake and reduction pathway in the 1hydG strain,
but did not observe a significant difference in final sulfide
concentration in 1hydG1ech. Remarkably, neither of the strains
consumed cysteine from the medium, unlike the wild-type.
Sulfide can be converted to cysteine by CYSS (cysteine synthase)
or homocysteine and then methionine by SHSL2 (succinyl-
homoserine succinate lyase) and METS (methionine synthase),
but the connection between the cessation of cysteine uptake and
sulfate metabolism remains unclear.

Overall, the complex interactions of C. thermocellum
metabolic pathways remain challenging to understand and
engineer with conventional methods, and hence require a
quantitative systems biology approach to decipher. To this
end, several genome-scale metabolic models (GSMs) of
C. thermocellum have been developed. The first GSM, named
iSR432, was constructed for the strain ATCC27405 and applied
to identify gene deletion strategies for high ethanol yield
(Roberts et al., 2010). This model was then further curated
into iCth446 (Dash et al., 2017). More recently, Thompson
et al. developed the iAT601 genome-scale model (Thompson
et al., 2016) for the strain DSM1313, which is genetically
tractable (Argyros et al., 2011). The iAT601 model was used
to identify genetic manipulations for high ethanol, isobutanol,
and hydrogen production (Thompson et al., 2016), and to
understand growth cessation prior to substrate depletion
observed under high-substrate loading fermentations that
simulate industrial conditions (Thompson and Trinh, 2017). In
addition to these core and genome-scale steady-state metabolic
models, a kinetic model of central metabolism, k-ctherm118,
was recently developed and used to elucidate the mechanisms
of nitrogen limitation and ethanol stress (Dash et al., 2017).
Due to the biotechnological relevance of the Clostridium genus,
GSMs have also been developed for other species (Dash et al.,
2016), including C. acetobutylicum (Senger and Papoutsakis,
2008; Salimi et al., 2010; McAnulty et al., 2012; Wallenius et al.,
2013; Dash et al., 2014; Yoo et al., 2015; Lee and Trinh, 2019),
C. beijerinckii (Milne et al., 2011), C. butyricum (Serrano-
Bermúdez et al., 2017), C. cellulolyticum (Salimi et al., 2010), and
C. ljungdahlii (Nagarajan et al., 2013).

In this study, we developed an updated genome-scale
metabolic model of C. thermocellum, named iCBI655, with
more comprehensive and precise metabolic coverage, enhanced
prediction accuracy, and extensive documentation. This model
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is a human-curated database that coherently represents all
the available genetic, genomic, and metabolic knowledge
of C. thermocellum from both experimental literature and
bioinformatic predictions. Furthermore, the model can be
applied not only to enable metabolic flux simulation but also to
provide a framework to contextualize disparate datasets at the
system level. As a demonstration for the model application, we
first developed a quantitative multi-omics integration protocol
and used it to fundamentally study redox metabolism and
potential redox bottlenecks critical for production of biofuels
(e.g., ethanol) in C. thermocellum. Furthermore, we used the
model, in combination with the previously developed ModCell
tool (Garcia and Trinh, 2019c), to design modular (chassis) cells
(Garcia and Trinh, 2019b) for alcohol and ester production.

2. RESULTS

2.1. Development of an Upgraded
C. thermocellum Genome-Scale Model
Named iCBI655
The iCBI655 model was developed using the published iAT601
model (Thompson et al., 2016) as a starting point. The
model improvements include updated metabolic pathways,
new annotation, and new extensive documentation. A
detailed account of these changes can be found in the
Supplementary Datasheet 1. Here, we highlight the most
relevant modifications.

2.1.1. Modeling Updates
To facilitate model usage and reduce human error, the identifiers
of reactions and metabolites were converted from KEGG into
BiGG human-readable form (King et al., 2015). Additionally,
reaction andmetabolite identifiers were linked to themodelSEED
database (Henry et al., 2010) that enables analysis through
the KBase web interface (Arkin et al., 2018). The gene
identifiers and functional descriptions were updated to the most
current annotation (NCBI Reference Sequence: NC_017304.1).
Metabolite formulas and charges from the modelSEED database
(Henry et al., 2010) were included in the model and reactions
were systematically corrected for charge and mass balance by the
addition of protons and water.

2.1.2. Metabolic Updates
The automated construction process used in the previous model
introduced several inconsistencies that were corrected in the
current model. We removed reactions that were blocked and
non-gene-associated, apparently introduced during automated
gap-filling. Two notable examples are (i) the blocked selenate
pathway which lacks experimental evidence (e.g., selenoproteins
have not been found in C. thermocellum), and (ii) blocked
reactions involving molecular oxygen (e.g., oxidation of Fe2+

to Fe3+) that are not possible in strict anaerobes like
C. thermocellum. Furthermore, tRNA cycling reactions were
unblocked by including tRNA in the biomass reaction (Reimers
et al., 2017). Metabolite isomers were examined and consolidated
under the same metabolite identifier when possible, leading to
the removal of duplicated reactions and the elimination of gaps.

Transport and exchange reactions were updated to reflect the
export of amino acids and uptake of pyruvate as observed during
fermentation experiments (Holwerda et al., 2014).

In terms of specific reactions, oxaloaceate decarboxylase
was eliminated from the model in accordance with recent
findings (Olson et al., 2017). The stoichiometries of pentose-
phospate reactions, including sedoheptulose 1,7-bisphosphate
D-glyceraldehyde-3-phosphate-lyase (FBA3) and sedoheptulose
1,7-bisphosphate ppi-dependent phosphofructokinase
(PFK3_ppi), were corrected (according to experimental
evidence, Rydzak et al., 2012) from the previous model by
ensuring mass balance and avoiding lumping multiple steps
into one reaction. Transaldolase (TALA) was removed from the
model due to lack of annotation for this gene in C. thermocellum.

Several modifications were also performed in key bioenergetic
reactions. The reactions catalyzed by membrane-bound
enzymes, including inorganic diphosphatase (PPA) (Zhou
et al., 2013) and membrane-bound ferredoxin-dependent
hydrogenase (ECH) (Calusinska et al., 2010), were corrected
to capture proton translocation. Furthermore, hydrogenase
reactions were updated to ensure ferredoxin association for
all cases and remove those reactions that do not involve
ferredoxin and only use NAD(P)H as a cofactor, based on
our recent understanding of C. thermocellum metabolism
(Biswas et al., 2017). Gene-protein-reaction associations were
updated to represent experimental knowledge. For instance,
the hydrogenases BIF (CLO11313_RS09060-09070) and
H2ASE (CLO1313_RS12830, CLO1313_RS02840) require
the maturase Hyd (CLO1313_RS07925, CLO1313_RS11095,
CLO1313_RS12830) to be functional, and the maturase itself
requires all of its subunits to operate, which enables accurate
representations of hydG deletion genotypes (Biswas et al., 2015).

Two hypothetical reaction modifications were introduced to
ensure consistency with reported phenotypes. First, to enable
growth without the need for succinate secretion, as observed
in experimental data (Supplementary Datasheet 2), the reaction
homoserine-O-trans-acetylase (HSERTA) was added to enable
methionine biosynthesis (essential for growth). Although this
reaction is not currently known to be associated with any
gene in C. thermocellum, it is present as a gene-associated
reaction in other Clostridium GSMs (Nagarajan et al., 2013).
Next, the reaction deoxyribose-phosphate aldolase (DRPA) was
removed based on a systematic analysis (section 4.4) to ensure
correct lethality prediction of the 1hydG1ech1pfl mutant
strain as well as the correct prediction of growth recovery
in this mutant by addition of external electron sinks such as
sulfate or ketoisovalerate (Table 1). The correct prediction of
1hydG1ech1pfl-associated phenotypes is critical to successfully
use the model for computational strain design (Long et al.,
2015; Ng et al., 2015; Maranas and Zomorrodi, 2016; Wang and
Maranas, 2018; Garcia and Trinh, 2019a,b,c).

2.2. Comparison of iCBI655 Against Other
Genome-Scale Models
We compared iCBI655 with the previous GSMs of
C. thermocellum and the highly-curated GSM iML1515 of
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TABLE 1 | Comparison of mutant growth rates predicted by iAT601 and iCBI655.

Gene deletions Medium Percent of W.T. growth rate (%)

iAT601 iCBI655 Experiment

hydg MTC 100 100 73

hydg-ech MTC 85 85 67

hydg-pta-ack MTC 100 100 48

hydG-ech-pfl MTC 58 0 0

hydG-ech-pfl MTC + fumarate 377 726 0

hydG-ech-pfl MTC + sulfate 58 65 +

hydG-ech-pfl MTC + ketoisovalerate 97 101 +

Experimental values are taken from Thompson et al. (2015); for some mutants whose

growth recovery, not growth rate, was reported, they are presented with “+”. W.T.,

wildtype; MTC, Medium for Thermophilic Clostridia.

TABLE 2 | Comparison of all genome-scale metabolic models of C. thermocellum

and the latest E. coli model.

iSR432 iCth446 iAT601 iCBI665 iML1515

Strain ATCC27405 ATCC27405 DSM1313 DSM1313 MG1655

Genes 432 446 601 665 1515

Metabolites 583 599 903 795 1877

Reactions 632 660 872 854 2712

Blocked

reactions

39.2% 32.1% 40.8% 35.1% 9.8%

Reference Roberts

et al., 2010

Dash et al.,

2017

Thompson

et al., 2016

This study Monk

et al., 2017

the extensively studied bacterium Escherichia coli (Table 2).
The increased number of genes in iCBI655 with respect to
iAT601 cover a variety of functions, including hydrogenase
chaperones, cellulosome and cellulase, ATP synthase, and
transporters. Remarkably, iCBI655 has a smaller percentage of
blocked reactions than iAT601, indicating higher biochemical
consistency. The number of metabolites in iCBI655 is smaller
than those in iAT601 mainly due to the removal of metabolites
that did not appear in any reaction, duplicated metabolites (e.g.,
certain isomers), and blocked pathways added automatically
during gap-filling without any gene association. C. thermocellum
DSM1313 has 2911 protein coding genes, 22% of which is
captured by iCB655, while E. coli MG1655 has 4240 genes,
35% of which is included in iML1515. Overall, iCBI655
has the increased coverage of the metabolic functionality of
C. thermocellum but remains far from the well-studied E. coli.

2.3. Training of Model Parameters Under
Diverse Conditions
Growth and non-growth associated maintenance (GAM and
NGAM) are parameters that capture the consumption of ATP
toward cell division and homeostasis, respectively. These are
known to be condition-specific; however, genome-scale models
do not include a mechanistic description that allows to determine
these ATP consumption rates as part of the simulation. Instead,
GAM is incorporated into the biomass pseudo-reaction and

NGAMhas its own pseudo-reaction that hydrolyzes ATP at a rate
tuned by the constraint parameters.

To increase model prediction accuracy for various
conditions, we trained GAM and NGAM parameters of
iCBI655 using an extensive dataset of 28 extracellular fluxes
(Supplementary Datasheet 2) measured during the growth
phase under different reactor configurations, carbon sources,
and gene deletion mutants. This approach is based on the
method used to train the iML1655 E. coli model (Monk et al.,
2017). Remarkably, we observed highly linear trends under three
different conditions, including chemostat reactor with cellobiose
as a carbon source, chemostat reactor with cellulose as a carbon
source, and batch reactor with either cellobiose or cellulose as
a carbon source (Figure 1A). This model training has led to
improved growth rate prediction of iCBI655 as compared to
iAT601 that has previously been trained with only a smaller
dataset (Figure 1B). Specifically, the iAT601 training dataset was
limited to batch conditions; hence, the inaccurate predictions of
iAT601 were observed for chemostat conditions (Figure 1C).

2.4. Assessment of Model Quality and
Standard Compliance With Memote
The field of metabolic network modeling suffers from a lack
of standard enforcement and quality control metrics that limit
model reproducibility and applicability. To address this issue,
Lieven et al. (2020) recently developed the Memote framework
that systematically tests for standards and best practices in GSMs.
We applied Memote to both the iCBI655 and E. coli iML1515
models for comparison (Figure 1D). This analysis produced five
independent scores that assess model quality. The consistency
score measures basic biochemical requirements, such as mass
and charge balance of metabolic reactions, and it was near 100%
for both models. Additionally, the different annotation scores
quantify how many elements in the model contain relevant
metadata. More specifically, the systems biology ontology (SBO)
annotation indicates if an object in the model refers to a
metabolite, reaction, or gene, while the respective annotation
scores of these elements correspond to properties (e.g., name,
chemical formula, etc.) and identifiers linking them to relevant
databases (e.g., KEGG Kanehisa and Goto, 2000 or modelSEED
Henry et al., 2010). The overall score is computed as a weighted
average of all the individual scores with additional emphasis
on the consistency score. In summary, the high scores obtained
by iCBI655 indicate the quality of the model and ensure its
applicability for future studies.

2.5. Model-Guided Analysis of Proteomics
and Flux Datasets Sheds Light on Redox
Metabolism Critical for Biofuel Production
in C. thermocellum
For the first application of the genome-scale metabolic model,
we aimed to understand the complex redox metabolism
and potential redox bottlenecks critical for enhanced biofuel
production in C. thermocellum. We used the model as a scaffold
to analyze proteomics and metabolic flux data collected for
the C. thermocellum wild-type and 1hydG1ech strains. The
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FIGURE 1 | Training and validation of the iCBI655 model. (A) Training of GAM and NGAM parameters. Discrete points correspond to experimental data. The slope of

the linear regression function corresponds to GAM, while the intercept corresponds to NGAM. The data points circled as outliers were not included in any of the linear

regression calculations. (B) Comparison of growth prediction error between iCBI655 and iAT601. Each maximum growth rate was predicted by constraining the

models with the measured substrate uptake and product secretion fluxes (Supplementary Datasheet 2). r2 corresponds to the Pearson correlation coefficient.

(C) Error in growth predictions under batch and chemostat conditions. Predicted and measured growth rates correspond to the values included in (B). (D) Scores

provided by the quality control tool Memote (Lieven et al., 2020) for iCBI655 and iML1515. “Overall score” is shown in the legend.

1hydG1ech mutant was engineered to redirect electron flow
from hydrogen to ethanol by removal of primary hydrogenases
(Biswas et al., 2015; Thompson et al., 2015). Previous studies of
1hydG1ech based on analysis of secretion fluxes (Thompson
et al., 2015) or omics (Biswas et al., 2017) suggested the presence
of redox bottlenecks in this mutant but did not identify which
specific pathways and cofactors (i.e., NADH vs. NADPH) are
responsible.We aim to solve this problem through integrated and
quantitative analysis of omics and fluxes at the genome scale.

2.5.1. Development of Fold Change-Based Omics

Integration Protocol
To perform the analysis, we formulated an omics integration
protocol anchored at the quantification of fold change (FC)
between case and control samples (Figure 2A). In this approach,
we first compared FCs between simulated intracellular fluxes and

measured omics data. Next, we identified consistent reactions
with FCs of the same sign and different from zero in
both measured proteomics and simulated fluxes for further
analysis (section 4.6).

To start the FC-based omics integration, we obtained
measured FCs by mapping the measured proteomics data to 510
out of the 856 reactions in the model through the gene-protein-
reaction (GPR) associations (Figure 2B). Then, we identified 70
consistent reactions by comparing measured FCs with two types
of simulated FCs: (i) parsimonious flux balance analysis (pFBA)
that determines the most efficient flux distribution (assuming all
enzymes are roughly as efficient) and (ii) flux variability analysis
(FVA) that identifies the feasible flux range of each reaction.

The Pearson correlation coefficients between simulated and
measured FCs for the consistent reactions were 0.26 and
0.09 for pFBA and FVA, respectively (Figure 2C). In general,
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FIGURE 2 | Multi-omics data integration procedure. (A) Fold change-based multi-omics data integration and analysis protocol. (B) Mapping of proteomic data for the

1hydG1ech case study to model reactions. (C) Correlation between measured and simulated fold changes (pFBA in blue and FVA in orange) for all 70 consistent

reactions of the 1hydG1 ech case study.

the FVA reaction flux ranges remained mostly unchanged,
suggesting that pFBA is a better representation of actual
metabolic fluxes as previously observed (Machado and Herrgård,
2014). The top consistent reactions with the highest proteomics
FCs (Table S1) belong primarily to the central metabolism
of C. thermocellum (Figure 3). Interestingly, discrepancies in
magnitude between flux and protein FCs for consistent reactions
could be used to identify bottlenecks. For example, for a
given enzyme, a small increase in flux combined with a large
increase in translation could be an indicator of low catalytic
efficiency; alternatively, such discrepancy could also point at
an upstream thermodynamic bottleneck. Similar comparisons
between simulated flux and omics has previously been used to
identify regulatory mechanisms (Bordel et al., 2010). Overall, the
identification and analysis of consistent reactions is an effective
approach to gain certainty on the activity changes of metabolic
pathways between conditions.

2.5.2. FC-Based Omics Integration Reveals

Redirection of Electron Flow for NADPH Supply in

1hydG1ech Strain
Our identification of the consistent reactions by using the FC-
based omics integration protocol revealed coherent indications
of increased NADPH biosynthesis in the 1hydG1ech mutant
with respect to the wild-type across three major metabolic
areas: (i) an increased protein level of FRNDPR2r (also
known as NFN) that converts one mol of reduced ferredoxin
(fdxr_42) and one mole of NADH into two moles of NADPH
(Figure 3A), (ii) an increased protein level of all three malate
shunt enzymes and a decreased protein level of the alternative
route PPDK (Figure 3B), and (iii) a decreased protein level
of sulfur transporter and of HSOR that oxidizes sulfite into
sulfide consuming NADPH (Figure 3C). These observations
are consistent with the failure of rnf over-expression to
enhance ethanol production (Lo et al., 2017), since RNF
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FIGURE 3 | Metabolic map visualization for (A) redox and hydrogenases pathway, (B) pyruvate node that links glycolysis, incomplete Krebs cycle, anapleurotic

pathway, and fermentative pathway, and (C) sulfur metabolism using the Escher tool. Values next to reaction labels correspond to proteomics fold change between

the 1hydG1ech and wild-type strains only for the 70 consistent reactions identified by using the FC-based omics integration protocol (section 2.5). The labels of

extracellular metabolites are appended with “_e.” Reactions marked with a red cross are deleted in 1hydG1ech.
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produces NADH but the key cofactor bottleneck seems to be
NADPH. Furthermore, a direct look at the proteomics data
revealed that RNF subunits (Clo1313_0061-Clo1313_0066) had
a statistically significant decrease in protein levels of the mutant
(Supplementary Datasheet 2). The preference of 1hydG1ech
toward NADPH could be due to the cofactor specificity of
the remaining redox balancing pathways (e.g., isobutanol),
thermodynamics and protein cost constraints, or a combination
of both. While the contribution of thermodynamic constraints
is beyond the scope of this study, a recent analysis (Dash et al.,
2019) of the ethanol production pathway in C. thermocellum
highlighted the importance of engineering strategies to increase
NADPH, for instance, introduction of NADPH-linked GAPDH
that converts glyceraldehyde-3-phosphate to 3-phospho-D-
glyceroyl phosphate in glycolysis or overexpression of NADPH-
FNOR that transfers electrons from reduced ferredoxin to
NADPH. The contribution of alternative redox balancing
pathway toward the increased NADPH biosynthesis will be
examined next.

2.5.3. Analysis of Simulated Fluxes Reveals the Role

of NADPH in Redox Balancing
The analysis based on consistent reactions strongly indicates that
NADPH production is important in the 1hydG1ech mutant
to achieve redox balance. However, the pathways oxidizing
NADPH remain unknown since not all reactions in the model
could be mapped to proteomics measurements and carbon
recovery was lower in the mutant strain (Thompson et al.,
2015). To identify these pathways, we examined the simulated
fluxes of all reactions (instead of only consistent reactions) that
differed in value between wild-type and mutant, and limited
this search to exchange reactions and reactions that involve
NADPH (Table S2). These simulated fluxes predicted an increase
in the isobutanol pathway, including keto-acid reductoisomerase
(KARA1) that consumes NADPH and isobutanol secretion
(EX_ibutoh_e). The isobutanol pathway can consume NADPH
through several enzymes (Lin et al., 2015) and has increased flux
during overflowmetabolism at high-substrate loading (Holwerda
et al., 2014; Thompson and Trinh, 2017). The model also
predicted a decrease in valine secretion (EX_val__L_e), since
the isobutanol pathway competes with the valine pathway after
KARA1. Remarkably, this prediction is consistent with the lower
valine secretion measured in 1hydG1ech (Biswas et al., 2017).
A certain amount of NADPH is likely oxidized by the mutated
alcohol-dehydrogenase enzyme observed after short adaptation
in 1hydG that is compatible with both NADH and NADPH
(Biswas et al., 2015). However, this feature is not captured by
the model since in general gene knock-outs are simulated by
blocking the associated reactions. Overall this analysis indicates
that 1hydG1ech likely increases isobutanol secretion to alleviate
redox imbalance.

Taken altogether, model-guided data analysis illustrates the
power of the model as contextualization tool and provides new
insights into the redox bottlenecks present in C. thermocellum
that are critical in the production of reduced molecules. The
integration of omics and fluxes led to the resolution of NADPH
as the key cofactor in redox bottleneck of 1hydG1ech. It

helped identify specific pathways that undergo major changes
in protein levels, providing interesting target reactions for
further engineering. Generally, the developed FC-based omics
integration protocol can be applied to different omics data
types due to its simplicity. The method does not require one
to formulate or assume a quantitative relationship between
omics measurements and simulated fluxes. Furthermore,
fold change in biomolecule concentrations implemented
in the method is currently much easier to measure in a
quantitatively reliable manner for many molecules than
case-specific absolute concentrations.

2.6. Model-Guided Design of Modular
Production Strains for Biofuel Synthesis
Another common application of genome-scale models is strain
design (Long et al., 2015; Ng et al., 2015;Maranas and Zomorrodi,
2016; Wang and Maranas, 2018; Garcia and Trinh, 2019a,b,c).
We used the iCBI655 model combined with the ModCell tool
(section 4.9) to design C. thermocellum modular production
strains for efficient biosynthesis of alcohols and esters. Briefly,
with ModCell we aim to design a modular (chassis) cell that
can be rapidly combined with exchangeable pathway modules
in a plug-and-play fashion to obtain modular production strains
exhibiting target phenotypes with minimal strain optimization
cycles (Trinh, 2012; Trinh et al., 2015; Garcia and Trinh, 2019b,c).
In this study, the target phenotype for modular production
strains is growth-coupled to product synthesis (wGCP), that
corresponds to the minimum product synthesis rate at the
maximum growth rate. The ModCell mathematical formulation,
computational algorithm, and implementation were described
in details previously (Garcia and Trinh, 2019a,c, 2020). The
design variables to attain the target phenotypes involve genetic
manipulations of two types: (i) reaction deletions, constrained
by the parameter α, that corresponds to gene knock-outs; and
(ii) module reactions, constrained by the parameter β , that
corresponds to reactions deleted in the modular cell but added
back to specific modules to enhance the compatibility of the
modular cell. Once these two parameters are specified, the
solution to the problem is a set of Pareto optimal designs named
Pareto front. In a Pareto optimal design, the performance (i.e.,
objective value) of a given module can only be increased at the
expense of lowering the performance of another module. To
characterize the practicality of each design, we say a modular
cell is compatible with certain modules if the design objective
is above a specific threshold (e.g., 0.5 in this study). Hence,
the compatibility of a design corresponds to the number of
compatible modules.

To design C. thermocellum modular cells, we first evaluated a
range of design parameters α and β with an increasing number
of genetic manipulations (Figure 4A). As expected, increasing
the number of deletions leads to more compatible designs, at the
expense of more complexity in the implementation. We selected
an intermediate point of α = 6, β = 0 for further analysis. This
Pareto front is composed of 12 designs that can be clustered into
two groups (Figure 4B). The first group (e.g., designs 3, 8, and 9)
are compatible with all products except butanol and its derived
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FIGURE 4 | Modular cell designs for biosynthesis of 12 alcohols and esters. (A) Module compatibility for various design parameters. (B) Pareto front for parameters

α = 6,β = 0. (C) Pareto set for parameters α = 6,β = 0. Reaction names and formulas are included in Table 3. (D) Feasible phenotypic spaces for select designs.

esters, whereas the second group (e.g., designs 1, 2, 10, and 12)
have high objective values for butanol and its derived esters.

To understand the characteristics of each group, we can
inspect the deletions of each design (Figure 4C,Table 3). Designs
3, 8, and 9 all have in common H2ASE_syn, GLUDy, PPDK, and

FRNDPR2r deletion, while the last two deletions never appear in
design 1, 2, 10, or 12. The majority of deletion targets are central
metabolic reactions (Table 3). The common targets include
deletion of hydrogenases that appear in the cluster of designs
2, 4, 7, 10, 11, and 12 with the 1hydG1ech genotype discussed
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TABLE 3 | Reaction deletions sorted by appearance frequency (counts) in the designs of the Pareto front for α = 6, β = 0.

ID Name Formula Counts (%)

PGM Phosphoglycerate mutase 2pg_c ↔ 3pg_c 75

H2ASE_syn Bidirectional [NiFe] Hydrogenase (Fe-H2) h2_c + nadp_c ↔ h_c + nadph_c 75

ECH (FeFe)-hydrogenase, ferredoxin dependent,

membrane-bound

2.0 fdxr_42_c + 3.0 h_c ↔ 2.0 fdxo_42_c + h2_c + h_e 66.7

BIF Bifurcating Hydrogenase 2.0 fdxr_42_c + 3.0 h_c + nadh_c ↔ 2.0 fdxo_42_c + 2.0 h2_c + nad_c 66.7

GLUDy Glutamate dehydrogenase (NADP) glu__L_c + h2o_c + nadp_c ↔ akg_c + h_c + nadph_c + nh4_c 50

FRNDPR2r Ferredoxin: nadp reductase (NFN) 2.0 fdxr_42_c + h_c + nadh_c + 2.0 nadp_c ↔ 2.0 fdxo_42_c + nad_c + 2.0 nadph_c 41.7

RNF Ferredoxin:NAD oxidoreductase (membrane bound) 2.0 fdxr_42_c + 2.0 h_c + nad_c ↔ 2.0 fdxo_42_c + h_e + nadh_c 33.3

PEPCK_re Phosphoenolpyruvate carboxykinase (GTP) co2_c + gdp_c + pep_c → gtp_c + oaa_c 33.3

ALCD2x Alcohol dehydrogenase (ethanol) acald_c + h_c + nadh_c → etoh_c + nad_c 25

ACALD Acetaldehyde dehydrogenase (acetylating) accoa_c + h_c + nadh_c → acald_c + coa_c + nad_c 25

PPDK Pyruvate, phosphate dikinase amp_c + 2.0 h_c + pep_c + ppi_c → atp_c + pi_c + pyr_c 25

GLUSy Glutamate synthase (NADPH) akg_c + gln__L_c + h_c + nadph_c → 2.0 glu__L_c + nadp_c 16.7

PFL Pyruvate formate lyase coa_c + pyr_c → accoa_c + for_c 16.7

LDH_L L-lactate dehydrogenase h_c + nadh_c + pyr_c → lac__L_c + nad_c 16.7

POR Pyruvate-ferredoxin oxidoreductase coa_c + 2.0 fdxo_42_c + pyr_c → accoa_c + co2_c + 2.0 fdxr_42_c + h_c 8.3

CEPA Cellobiose phosphorylase cellb_c + pi_c → g1p_c + glc__D_c 8.3

GMPS GMP synthase atp_c + nh4_c + xmp_c → amp_c + gmp_c + 3.0 h_c + ppi_c 8.3

AHSL O-Acetyl-L-homoserine succinate-lyase achms_c + cys__L_c ↔ ac_c + cyst_L_c + h_c 8.3

earlier or removal of reactions that form fermentative byproducts
such as ALCD2x and ACALD (ethanol), PFL (formate), LDH_L
(lactate). Interestingly, ACKr or PTA (acetate) does not appear
in this list, likely because acetate production can serve as a
regulatory valve for redox metabolism, especially in a modular
cell that must be compatible with products of diverse degrees
of reduction.

More interestingly, we also found important branch-point
deletion reactions (Stephanopoulos and Vallino, 1991) in central
metabolism that have not yet been explored for strain design.
Most prominently, these reactions include GLUDy, PEPCK_re,
and PPDK, which appear with percentage frequencies of 50%,
33.3%, and 25%, respectively (Table 3). Both PEPCK_re and
PPDK present two alternative routes that influence the ratio of
NADPH to NADH, which is relevant to control metabolic fluxes
though the specific dependencies of certain enzymes toward each
redox cofactor. Since GLUDy consumes NADPH and is a key
reaction in amino-acid metabolism, this enzyme and related ones
(e.g., GLUSy) are interesting targets for practical implementation.
We speculate the two product groups emerge likely because
the butanol pathway strictly depends on NADH due to the
reactions ACOAD1z (acyl-CoA dehydrogenase) and HACD1 (3-
hydroxyacyl-CoA dehydrogenase), while the ethanol, propanol,
and isobutanol pathways are more flexible in their use of NADH
or NADPH. The designs 3, 8, and 9 perform poorly with butanol,
and are also the only ones containing PPDK deletion. This
deletion forces pep to pyruvate flux through the malate shunt
that converts NADH to NADPH. Engineering of the cofactor
specificities of the butanol pathway can be used to build one
modular cell compatible with all products under consideration.

Two representative designs from the groupsmentioned earlier
are 3 and 12. Their feasible growth and production phenotypes

reveal a tight coupling between product formation and growth
rate (Figure 4D). This phenotype enables pathway optimization
through adaptive laboratory evolution, as previously done for
ethanol (Tian et al., 2016), overcoming one of themain challenges
of C. thermocellum engineering that is optimization of enzyme
expression levels. Hence, the proposed modular cells can also
serve as platforms for pathway selection and optimization. In
summary, this analysis demonstrates the potential of the model
to identify non-intuitive metabolic engineering strategies that
can be key to build effective modular platform strains for the
production of biofuels and biochemicals in C. thermocellum.

3. CONCLUSIONS

In this study, we developed a genome-scale metabolic model of
the biotechnologically relevant organism C. thermocellum. Model
development followed standards and best practices to ensure
reproducibility and accessibility. We demonstrated the enhanced
predictions of the model for diverse fermentation conditions
and gene lethality. Genome-scale models have a broad range of
applications in systems biology, including metabolic engineering,
physiological discovery, phenotype interpretation, and studies
of evolutionary processes (Feist and Palsson, 2008; Palsson,
2015). To illustrate the model applications, we chose to tackle
the challenge of disparate data integration and interpretation
at the systems level. We developed a fold-change-based omics
integrationmethod for this purpose, and used it to identify routes
in central metabolism that were selected to increase NADPH
generation in the 1hydG1ech strain. This analysis revealed
the importance of NADPH cofactor over its alternatives and
provided new engineering targets for enhanced biosynthesis of
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reduced products in C. thermocellum. We also illustrated the
use of the model to design C. thermocellum modular cells, using
the ModCell tool (Garcia and Trinh, 2019b). The proposed
designs cover C2 through C4 alcohols and their derived esters,
which are key target molecules for renewable production with
C. thermocellum (Peters, 2018). The proposed designs feature
a combination of previously-explored and novel strategies to
couple target metabolite production with cellular growth. Like
the well-developed genome-scale models (Monk et al., 2017; Lu
et al., 2019) of the important organisms Escherichia coli and
Saccharomyces cerevisiae broadly used for strain engineering
both in academia (Blazeck and Alper, 2010) and industry (Yim
et al., 2011), we anticipate the iCBI655 genome-scale model will
also provide a versatile tool for systems metabolic engineering
of C. thermocellum.

4. METHODS

4.1. Model Curation
The genome scale model iCBI655 was constructed from iAT601
(Thompson et al., 2016) by following the standard GSM
development protocol (Thiele and Palsson, 2010). Reaction
and metabolite identifiers were mapped from KEGG to BiGG
using the BiGG API (King et al., 2015). Metabolite charges
were obtained from modelSEED when available, and otherwise
calculated using the Chemaxon pKa plugin (Szegezdi and
Csizmadia, 2007) for a pH of 7.2 (Thiele and Palsson, 2010). The
biomass objective function was consolidated into one pseudo-
reaction avoiding the use of intermediate pseudo-metabolites
present in iAT601. Reactions were assigned with a confidence
level based on a standard genome-scale model annotations
(Thiele and Palsson, 2010).

4.2. Metabolic Flux Simulations
Constraint-based metabolic network modeling (Palsson, 2015)
is based on the feasible flux space, �k, defined by network
stoichiometry and flux bounds that represent thermodynamic
constraints and measured values:

�k : = {vjk ∈ R :

∑

j∈J

Sijvjk = 0 ∀i ∈ I (1)

ljk ≤ vjk ≤ ujk ∀j ∈ J } (2)

Here I and J are the sets of metabolites and reactions
in the model, respectively, and vjk is the metabolic flux
(mmol/gCDW/h) through reaction j in the simulation condition
k. Constraint (1) enforces mass balance for all metabolites in the
network, where Sij represents the stoichiometric coefficient of
metabolite i in reaction j. Constraint (2) enforces lower and upper
bounds ljk and ujk, respectively, for each reaction j in the network.

In different simulation conditions, k, Sij remains fixed given
the structure of the network for all i, j ∈ I ,J . However,
certain bounds ujk and ljk are modified to represent specific
metabolic constraints. For example, to apply measured reaction
fluxes such as in the case of GAM and NGAM calculation or the

omics integration protocol (section 4.6), ljk and ujk are specified
using the experimentally measured average (µjk) and standard
deviation (σjk), which for normally distributed samples with 3
replicates produces an interval with a confidence level above 90%
(3-4). Similarly, to represent a certain gene deletion mutant k, the
bounds are set to be ujk = ljk = 0 for the associated reaction j.

ljk = µjk − σjk ∀j ∈ Measuredk (3)

ujk = µjk + σjk ∀j ∈ Measuredk (4)

The feasible flux space �k can be explored in different ways;
(Trinh et al., 2009; Palsson, 2015) for instance, an optimization
objective is often defined to identify specific flux distributions
vsim
jk

∀j ∈ J :

vsimjk ∈ argmax







∑

j∈J

cjvjk : vjk ∈ �k







∀j ∈ J (5)

Here cj is the coefficient of reaction j in the linear objective
function, which is changed according to the simulation context.
For example, to train GAM andNGAM (Figure 1A) the objective
was set to maximize flux through the ATP hydrolysis reaction,
i.e., cj = 1 for j corresponding to ATP hydrolysis reaction,
and 0 otherwise. To evaluate growth prediction accuracy
(Figures 1B,C), the objective was set to maximize growth, i.e.,
cj = 1 for j corresponding to growth pseudo-reaction and
0 otherwise.

4.3. Simulation of Different Growth
Environments
The model is configured to generally represent different medium
and reactor conditions by modifying three features. The first
feature involves model boundaries specifying which metabolites
may enter the intracellular environment (i.e., present in the
growth medium) or may exit the intracellular environment
(i.e., secreted by C. thermocellum). This feature can be adjusted
through ujk and ljk for exchange reactions. In our simulations,
only essential metabolites required for in silico growth may
be consumed and only commonly observed metabolites may
be produced, unless otherwise noted. The second feature
involves biomass objective function. iCBI655 contains 3
possible biomass reactions: (i) BIOMASS_CELLOBIOSE
used for growth in cellobiose with cellulosan constituting
2% of cell dry weight (CDW) (Zhang and Lynd, 2005), (ii)
BIOMASS_CELLULOSE used for growth on cellulose with
cellulosan constituting 20% of CDW (Zhang and Lynd, 2005),
and (iii) BIOMASS_NO_CELLULOSOME, a biomass function
that does not consider cellulosan production and only used as a
control. The combination of cellulosome and protein fractions
accounts for 52.85% of the CDW in all cases (Roberts et al., 2010;
Thompson et al., 2015). Cellobiose conditions were used in all
simulations unless otherwise noted. The third feature involves
GAM/NGAM. Three sets of these parameters are considered
including batch, chemostat-cellulose, and chemostat-cellobiose,
based on fitting the model to experimental data. Batch conditions
were used in all simulations unless otherwise noted.
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For growth on cellulose, the experimentally measured
glucose-equivalent uptake was represented in the model through
the following pseudo-reactions: 3 glceq_e → cell3_e; 4 glceq_e
→ cell4_e; 5 glceq_e → cell5_e; and 6 glceq_e → cell6_e. Here,
cell3_e, cell4_e, cell5_e, and cell6_e are cellodextrin polymers with
3, 4, 5, and 6 glucosemonomers, respectively. These polymers can
be imported inside the cell through the oligo-cellulose transport
ABC system. The model is free to use any cellodextrin length,
although utilization of longer cellodextrins results in higher ATP
yield (Zhang and Lynd, 2005; Thompson et al., 2016).

4.4. Single-Reaction Deletion Analysis to
Match Experimentally Observed Phenotype
A core model of C. thermocellum (Thompson et al., 2015)
correctly predicted the experimentally observed lethality of
1hydG1ech1pfl; however, the iAT601 genome-scale model built
by extension of this core model failed, suggesting that the
genome-scale model has alternative active pathways leading
to the false growth prediction in silico. To resolve this false
positive prediction in iCBI655, we calculated the maximum
growth rates for all possible additional single reaction deletions
in the 1hydG1ech1pfl mutant. This analysis resulted in three
possible additional reaction deletions that are predicted to
be lethal (i.e., maximum growth rate prediction below 20%
of the simulated wild-type value Palsson, 2015), including
the removal of (i) glycine secretion (EX_gly_e), (ii) 5,10-
methylenetetrahydrofolate oxidoreductase (MTHFC), and (iii)
deoxyribose-phosphate aldolase (DRPA). For the first removal,
addition of sulfate or ketoisovalerate in the growth medium of
1hydG1ech1pfl fails to predict growth recovery as observed
experimentally (Thompson et al., 2015), making this option
invalid. Likewise, the second removal is invalid because it makes
PFL an essential reaction in the wild-type strain; however,
experimental evidence demonstrates that 1pfl mutant is able to
grow (Papanek et al., 2015). The last option was chosen since it
correctly predicts growth recovery of 1hydG1ech1pfl by sulfate
or ketoisovalerate addition in the growth medium, and does not
make PFL essential in the wild-type strain.

4.5. Model Comparison
The C. thermocellum and E. coli models were obtained
from their respective publications in SBML format. Blocked
reactions were calculated by allowing all exchange reactions
to have an unconstrained flux (i.e., lbjk = −1, 000, ubjk =

1, 000 ∀j ∈ Exchange). This procedure enables the most
general scenario which produces the smallest number of blocked
reactions in each model. Additional details can be found in
Supplementary Datasheet 1.

4.6. Omics Integration Protocol
The omics integration protocol developed in this study consists
of three steps: (i) simulation of fold changes, (ii) mapping of
measured gene fold changes to reactions, and (iii) comparison of
measured and simulated fold changes.

4.6.1. Calculation of Simulated Fold Changes
To simulate metabolic fluxes, lower and upper bounds (2) are
constrained according to experimental data as described in
section 4.2. Then, for the pFBAmethod, a quadratic optimization
problem (6) is solved, leading to a unique flux distribution

v
pFBA
jk

∀j ∈ J .

v
pFBA
jk

∈ argmin







∑

j∈J

v2jk : vjk ∈ �k







∀j ∈ J (6)

For the FVA method, a sequence of linear programming
problems is solved where each flux is minimized (7) and
maximized (8):

vmin
jk ∈ argmin

{

vjk : vjk ∈ �k

}

∀j ∈ J (7)

vmax
jk ∈ argmax

{

vjk : vjk ∈ �k

}

∀j ∈ J (8)

Note that for computation we applied the loop-less FVA method
(Schellenberger et al., 2011; Chan et al., 2018), as implemented
in cobrapy (Ebrahim et al., 2013), that introduces additional
constraints in �k to remove thermodynamically infeasible cycles
from all feasible flux distributions.

FVA produces a flux range [vmin
jk

, vmax
jk

] for each reaction j ∈ J .

To compare between states k (e.g., wild-type and mutant), we
define the FVA center, a scalar variable that generally indicates
a change in this range (9).

vFVAjk =
vmax
jk

+ vmin
jk

2
(9)

The FVA center is a heuristic analysis with the main purpose of
determining whether a reaction exhibits an upward shift (center
increase) or a downward shift (center decrease) between two
conditions k. It should be emphasized that the FVA center, vFVA

jk
,

does not attempt to quantify the fraction of overlap between
ranges nor to identify what type of shift might occur from all

possible permutations. Unlike v
pFBA
jk

, vFVA
jk

does not necessarily

represent a feasible flux distribution of�k. Furthermore, the FVA
center could potentially fail to capture hypothetical permutations
of fluxes. Despite these considerations, the FVA center remains a
useful heuristic to analyze simulated fold changes.

Finally, to determine the fold change for either pFBA or FVA
simulated fluxes, the conventional procedure for fold change
calculation in omics data is emulated. First, values are floored
to avoid very large (or infinite) fold changes in cases with very
small magnitude change. This is accomplished through a flooring
piece-wise function (10), where ǫ = 0.0001 is theminimum value
and x is an arbitrary scalar variable.

floor(x) =











x+ ǫ if 0 < x < ǫ

x− ǫ if 0 > x > −ǫ

x otherwise

(10)
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Then, the fluxes are normalized to the substrate uptake
rate vuptake,k and fold change is calculated in log2
space (11).

FCsim
j (vj,mut, vj,wt) = log2

[

floor

(

vj,mut

|vuptake,mut|

)]

− log2

[

floor

(

vj,wt

|vuptake,wt|

)]

(11)

4.6.2. Calculation of Measured Fold Changes
Fold change between case and control samples, FCl, is calculated
in log2 space for each gene l ∈ L, where L is the set of
genes in the model. These gene fold changes can be mapped to
metabolic reaction fold changes using the gene-protein reaction
associations (GPR), given Gj as the set of genes with FCl 6= 0 in
the GPR of reaction j:

FCmeas
j =

1

card(Gj)

∑

l∈Gj

FCl (12)

4.6.3. Identification of Consistent Fold Changes
A reaction j is said to have a consistent fold change if the
measured fold change has the same sign of at least one of the
simulated fold changes, more formally:

M : =
{

j ∈ J :

([

(FC
sim,pFBA
j < 0) ∨ (FCsim,FVA

j < 0)
]

∧ (FCmeas
j < 0)

)

∨
([

(FC
sim,pFBA
j > 0) ∨ (FCsim,FVA

j > 0)
]

∧ (FCmeas
j > 0)

) }

(13)

where M ⊆ J is the set of consistent reactions which is
considered for further analysis and the simulated fold changes
are re-defined for brevity (14-15).

FC
sim,pFBA
j : = FCsim

j (v
pFBA
j,mut , v

pFBA
j,wt ) (14)

FCsim,FVA
j : = FCsim

j (vFVAj,mut, v
FVA
j,wt ) (15)

4.7. Software Implementation
Model development was performed using Python and Jupyter
notebooks with open-source Python libraries including cobrapy
(Ebrahim et al., 2016). The sequence of upgrades and
improvements can be seen in the Git version control records.
The repository is available online through Github (https://github.
com/trinhlab/ctherm-gem) and in Supplementary Datasheet 1.

4.8. Proteomics Data Collection
C. thermocellumwild-type and1hydG1ech strains were cultured
in batch reactors and metabolic fluxes were calculated as
previously described (Thompson et al., 2015). For proteomics
measurements, the wild-type andmutant strains were cultured in
MNM and MTC media (Kridelbaugh et al., 2013), respectively.
While both wild-type and mutant were originally cultured in
MTC (Thompson et al., 2015), the wild-type had to be cultured
separately in MNM medium due to insufficient volume for
proteomics sampling in the MTC culture. MTC has higher

nitrogen and trace mineral concentrations, but previous studies
have shown no effect on growth rates (Kridelbaugh et al., 2013).
During the mid-exponential growth phase 10mL samples were
collected, centrifuged, and the resulting pellet was stored at
−20 ◦C. Cell pellets were then prepared for LC-MS/MS-based
proteomic analysis. Briefly, proteins extracted via SDS, boiling,
and sonic disruption were precipitated with trichloroacetic
acid (Giannone et al., 2015b). The precipitated protein was
then resolubilized in urea and treated with dithiothreitol and
iodoacetamide to reduce and block disulfide bonds prior
to digestion with sequencing-grade trypsin (Sigma-Aldrich).
Following two-rounds of proteolysis, tryptic peptides were
salted, acidified, and filtered through a 10 kDa MWCO spin
column (Vivaspin 2; GE Healthcare) and quantified by BCA
assay (Pierce).

For each LC-MS/MS run, 25 µg of peptides were loaded via
pressure cell onto a biphasic MudPIT column for online 2D
HPLC separation and concurrent analysis via nanospray MS/MS
using a LTQ-Orbitrap XL mass spectrometer (Thermo Scientific)
operating in data-dependent acquisition (one full scan at 15 k
resolution followed by 10 MS/MS scans in the LTQ, all one
µscan; monoisotopic precursor selection; rejection of analytes
with an undecipherable charge; dynamic exclusion = 30 s)
(Giannone et al., 2015a).

Eleven salt cuts (25, 30, 35, 40, 45, 50, 65, 80, 100, 175, and 500
mM ammonium acetate) were performed per sample run with
each followed by 120min organic gradient to separate peptides.

Resultant peptide fragmentation spectra (MS/MS) were
searched against the C. thermocellum DSM1313 proteome
database concatenated with common contaminants and reversed
sequences to control false-discovery rates using MyriMatch v.2.1.
(Tabb et al., 2007). Peptide spectrummatches (PSM) were filtered
by IDPicker v.3 (Ma et al., 2009) to achieve a peptide-level FDR
of <1 % per sample run and assigned matched-ion intensities
(MIT) based on observed peptide fragment peaks. PSM MITs
were summed on a per-peptide basis and those uniquely mapping
to their respective proteins were imported into InfernoRDN
(Taverner et al., 2012). Peptide intensities were log2-transformed,
normalized across replicates by LOESS, standardized by median
absolute deviation, and median centered across all samples.
Peptide abundance data were then assembled to proteins via
RRollup and further filtered to maintain at least two values in at
least one replicate set. Protein abundances were then used for the
modeling efforts describe herein.

All raw and database-searched LC-MS/MS data pertaining to
this study have been deposited into the MassIVE proteomic data
repository and have been assigned the following accession
numbers: MSV000084488 (MassIVE) and PXD015973
(ProteomeXchange). Data files are available upon publication
(ftp://massive.ucsd.edu/MSV000084488/).

4.9. Modular Cell Design
The ModCell formulation, computational algorithm, and
implementation followed the previous reports (Garcia and Trinh,
2019a,c, 2020). The iCBI655 model with cellobiose as a carbon
source in the batch reactors (Supplementary Datasheet 4) was
used as an input for modular cell design. The alcohol pathways
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were curated from recent literature (Holwerda et al., 2014; Lin
et al., 2015; Loder et al., 2015), where adapted Adh can use
either NADH or NADPH as an electron donor to synthesize
the target alcohol (Biswas et al., 2015). The esters-producing
pathways require an alcohol acetyltransferase (AAT) reaction to
condense an alcohol and acyl-CoA that are already present in
the alcohols-producing pathways. Even though a thermostable
AAT has not yet been reported in literature to function at high
temperature, an engineered chloramphenicol acetyl transferase
(CAT) can be repurposed as a thermostable AAT (Seo et al.,
2019, 2020). The ModCell software is available online at https://
github.com/TrinhLab/ModCell2.
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Synthetic biology has played a major role in engineering microbial cell factories
to convert plant biomass (lignocellulose) to fuels and bioproducts by fermentation.
However, the final product yield is limited by inhibition of microbial growth and
fermentation by toxic phenolic compounds generated during lignocellulosic pre-
treatment and hydrolysis. Advances in the development of systems biology technologies
(genomics, transcriptomics, proteomics, metabolomics) have rapidly resulted in large
datasets which are necessary to obtain a holistic understanding of complex biological
processes underlying phenolic compound toxicity. Here, we review and compare
different systems biology tools that have been utilized to identify molecular mechanisms
that modulate phenolic compound toxicity in Saccharomyces cerevisiae. By focusing
on and comparing functional genomics and transcriptomics approaches we identify
common mechanisms potentially underlying phenolic toxicity. Additionally, we discuss
possible ways by which integration of data obtained across multiple unbiased
approaches can result in new avenues to develop yeast strains with a significant
improvement in tolerance to phenolic fermentation inhibitors.

Keywords: systems biology, synthetic biology, yeast, phenolic inhibitors, fermentation, metabolism,
biomanufacturing

INTRODUCTION

Biomanufacturing is transforming how new and existing platform chemicals are made in a way
that is environmentally friendly, renewable, and sustainable. To make bio-derived chemicals
competitive to fossil-derived chemicals, high productivity and cost reduction are a major
consideration. Therefore, there has been a growing interest in using cheap and readily available
feedstocks, such as plant material (lignocellulose) obtained from agricultural and forestry wastes.

Lignocellulose is an abundant and ubiquitous biomass feedstock that can be hydrolyzed to
yield simple sugars which are fermented by yeast to produce bioethanol, fine chemicals, and other
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bioproducts (Abo Bodjui et al., 2019). However, converting
lignocellulose to these products during biomanufacturing has
its challenges. The sugars in lignocellulose exist as long
polysaccharide chains in the form of cellulose and hemicellulose
which are held together by lignin (Becker and Wittmann, 2019).
In order to make the cellulose and hemicellulose polymers
accessible for hydrolysis to release sugars for fermentation, a pre-
treatment step is required to dissolve the lignin fibers holding
the sugar polymers. While physical (pyrolysis), physicochemical
(ammonia fiber explosion) and biological methods exist for
pre-treating lignocellulose, chemical pre-treatment methods are
commonly used since they are simple and efficient (Becker and
Wittmann, 2019). Chemical pre-treatment involves the use of
dilute acid or alkali to break down the lignin. As a result,
phenolic compounds which are monomeric subunits of lignin
are produced during the pre-treatment step (Palmqvist and
Hahn-Hägerdal, 2000). Phenolic compounds inhibit enzymes
used to hydrolyze cellulose (Qin et al., 2016) and in effect, limit
the amount of sugars available for fermentation. Phenolics are
also extremely toxic to yeast even in minute quantities and
significantly inhibit yeast growth and fermentation (Ando et al.,
1986; Adeboye et al., 2014) thus, reducing the product yield and
increasing the cost of fermentation.

Phenolic compounds exist in different forms in
lignocellulosic hydrolysates as phenolic acids (e.g., ferulic
acid), phenolic aldehydes (e.g., vanillin), phenolic ketones
(e.g., 4-hydroxyacetophenone), and phenolic alcohols. The
concentrations of each of these compounds in hydrolysates
vary depending on the plant material and the pre-treatment
method used. They appear to have different toxic effects on
the cell with phenolic aldehydes being the most toxic and
completely inhibit yeast growth at concentrations as low as
1 and 5 mM for coniferyl aldehyde and vanillin, respectively
(Adeboye et al., 2014). The different levels of toxicity of multiple
phenolic compounds were confirmed in a study which showed
that the chemical nature of phenolic compounds determine
their toxicity and the physiological impact they have on the
cell (Adeboye et al., 2014). This study was backed by another
report that demonstrated that ferulic acid and coniferyl aldehyde,
though structurally similar with the only difference being
the functional group, presented very distinct chemogenomic
profiles and inhibited yeast growth using specific mechanisms
(Fletcher et al., 2019).

Apart from converting lignocellulosic materials to bioethanol
and other chemicals by fermentation, there has been a recent
interest in valorizing lignin in lignocellulose to produce
precursors and final products for the fine chemicals industry
(Becker and Wittmann, 2019; Li et al., 2019; Ponnusamy
et al., 2019). Vanillin is an example of a valuable phenolic
compound in the fine chemicals industry mainly used as flavor
or scent in food, pharmaceuticals and cosmetics (Luziatelli et al.,
2019). While a process has been developed for fermenting
glucose to vanillin (Brochado et al., 2010), ferulic acid is an
important precursor which can be converted to vanillin by
engineering microbial cell factories to express feruloyl-CoA
synthase and feruloyl-CoA hydratase (Luziatelli et al., 2019).
Other phenolic compounds, such as eugenol present in grains

and cereals can be converted to ferulic acid and subsequently
to vanillin (Overhage et al., 2002; Di Gioia et al., 2009). Again,
a major limitation of using engineered yeasts for ferulic acid
conversion to vanillin is the issue of toxicity of both vanillin
and its ferulic acid precursor. It is possible to remove phenolic
compounds from lignocellulosic hydrolysates as they form to
prevent toxicity to the yeast cells (Carter et al., 2011; Xue et al.,
2018) but this comes at an extra manufacturing cost. Therefore,
to cost-effectively achieve high yields of bioethanol and other
bioproducts from lignocellulose by fermentation, there is the
need to improve tolerance to phenolic fermentation inhibitors in
yeast cell factories that are used for the bioconversion.

A thorough understanding of the mechanisms that modulate
phenolic compound toxicity is required to engineer yeast
strains that are tolerant to individual phenolic compounds
and/or a complex mix of phenolics found in hydrolysates.
As inhibitor tolerance is a multigenic complex trait (de Witt
et al., 2019) global cellular approaches are required to identify
key determinants associated with phenolic compound tolerance.
Advances in systems biology approaches have revolutionized
our ability to assess how cells respond to phenolic toxicity.
The use of genome-wide approaches have given insight into
how the cell responds to individual phenolics and identified
genetic and metabolic targets that can be engineered to improve
tolerance to toxic phenolic fermentation inhibitors. However, a
comprehensive understanding of the phenolic tolerance pathway
remains lacking since data from the individual studies have not
been fully integrated.

Here, we review several unbiased functional genomics and
transcriptomic approaches to identify general and specific genetic
targets that modulate phenolic compound toxicity in S. cerevisiae.
We also highlight the potential of exploiting proteomics
and metabolomics approaches, which remain underutilized in
the field. Finally, synthetic biology approaches and future
developments that can rapidly be used to generate yeast tolerant
to phenolic fermentation inhibitors are discussed.

FUNCTIONAL GENOMIC APPROACHES

Improving yeast tolerance to phenolic compounds first requires
the identification of genes and pathways that can be engineered to
confer increased tolerance. Therefore, functional genomic tools
including chemogenomic screens, adaptive laboratory evolution,
genome shuffling, and high content imaging can be exploited to
discover genes associated with biological processes underlying
phenolic tolerance in yeast.

Chemical Genomics
The availability of both haploid and diploid deletion mutant
collections, in which the majority of yeast open reading frames
have been systematically deleted has made it possible to conduct
chemical profiling or chemogenomic screens (reviewed in
Giaever and Nislow, 2014). In agar-based array screens, the
deletion mutant library is pinned onto solid media containing
sub-lethal concentrations of the compound(s) being tested.
Following incubation, colony sizes of the mutant strains on
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the selection plates vs. control plates are quantified to obtain
fitness scores for all the mutants. Mutants that lack genes
required for growth in the presence of the compound show
a significant growth defect and are hypersensitive to the
compound. Mutants that are sensitive to a compound aid in
the identification of proteins and pathways needed for survival
upon exposure to inhibitors. On the other hand, mutants that
grow better than the wild type in the presence of the compound
are called “suppressors.” Though it is harder to generalize
the mechanism(s) by which suppressors when deleted confer
protection to a compound, one possibility is the suppressor
protein increases toxicity of the compounds. An example of
a suppressor gene is BNA7 which was found to enable yeast
growth, when deleted, in media containing ferulic acid (Fletcher
et al., 2019). Interestingly, though Bna7 has a well-established
role in the tryptophan catabolic pathway, no other components
of this pathway when deleted conferred improved tolerance
to ferulic acid.

Presently, four phenolics (coniferyl aldehyde, ferulic acid, 4-
hydroxybenzoic acid, and vanillin) (Endo et al., 2008; Fletcher
et al., 2019) have been screened through agar based methods to
identify their chemogenomic profiles (Figure 1A and Table 1).
The highest overlap in chemogenomic profiles (or shared gene
“hits”) was found between ferulic acid and vanillin with 17
common deletion mutant genes with hypersensitivity shared
between these two compounds, which is not unexpected
considering vanillin is derived from ferulic acid. Most of these
common genes clustered into biological processes [according
to Gene Ontology enrichment analysis (Robinson et al., 2002)]
mainly associated with protein transport (COG6, COG7, and
ARL1), chromatin modification and transcription (SWC3, ARP6,
YAF9, HTZ1) (Figure 1B; Endo et al., 2008; Fletcher et al.,
2019). These biological processes serve as interesting targets for
engineering a vanillin-producing yeast strain that uses ferulic acid
as a precursor since tolerance to both phenolics will be required
in such a strain. Also, wheat straw hydrolysate and synthetic
miscanthus hydrolysate which contain a complex mixture of
several phenolics has been screened for yeast tolerance (Skerker
et al., 2013; Pereira et al., 2014; Table 1). Genes involved in
protein synthesis (RPL13B, RPL13A), ergosterol biosynthesis
(ERG2) and oxidative stress response (SOD1, SOD2) were among
the top hits that came up in the screen (Skerker et al., 2013;
Pereira et al., 2014). Since the yeast libraries contain over 4,000
non-essential mutants, the use of robotics in performing genome-
wide screens is now taking center stage as it allows the screens to
be performed rapidly and simply.

In addition, agar-based screens have also been used to
perform focused screens. For example, a yeast deletion mutant
array composed of 30 yeast transcription factor mutants
has been screened to provide insight into phenolic-induced
transcriptional changes. The study revealed that genes encoding
the transcription factors YAP1, DAL81, GZF3, LEU3, PUT3,
and WAR1 were required by yeast to grow in coniferyl
aldehyde (Wu et al., 2017). This approach provides preliminary
information on transcription factors that can be engineered
to concurrently regulate the expression of several genes
associated with phenolic tolerance instead of engineering

the individual genes they regulate. However, studies of this
nature are limited by the size and composition of the mini-
array being screened.

The yeast deletion libraries are barcoded with a unique 20 bp
sequence placed upstream (uptag) and downstream (dntag) of the
KanMX selection marker gene used to replace the gene of interest
(Winzeler et al., 1999). Genetic barcoding is a powerful tool for
even more complex fitness profiling of the mutant collection
where thousands of yeast mutants are pooled, and grown in
liquid media containing an inhibitor and analyzed in parallel
(Shoemaker et al., 1996). Coupled to next generation sequencing
(NGS), the amount of barcoded PCR product representing
each mutant can be quantified to identify mutants with high
tolerance to the inhibitor being tested (Smith et al., 2009). Genetic
barcoding has the advantage of allowing screening of complex
phenolic mixtures and plant hydrolysates (Skerker et al., 2013;
Table 1). Furthermore, this method is useful for identifying
suppressors since tolerant mutants outgrow the other strains in
the mutant pool and are selected at the end of the experiment. For
example, genetic barcoding was used to identify suppressor genes
involved in fatty acid metabolism (EEB1) and vesicle trafficking
(SSH4 and VAM6) as important for conferring tolerance to a
mixture of phenolics in a synthetic hydrolysate (Xue et al., 2018;
Table 1). Similarly, by screening and sequencing a pooled yeast
deletion mutant library, suppressor genes (SUR1, NBP2, DFG1)
whose deletion resulted in tolerance to poacic acid were identified
(Piotrowski et al., 2015; Table 1).

Although chemogenomic screens, serve as a powerful tool for
identifying genes associated with phenolic compound tolerance
(sensitive mutants), it remains a challenge to identify suppressors
by either method. This is likely because in most cases the
growth improvement of the suppressors is small at the sub-lethal
concentrations these screens have been performed at. However,
success at identifying suppressors can be improved by performing
parallel chemical genomic screens at multiple dosages. Further,
chemogenomic screens are limited in that they only screen
the impact of loss of open reading frames, hence this type of
screen excludes gain or separation of function mutations and
mutations in regulatory regions. Again, current screens have only
probed the non-essential genes, and have not probed the essential
mutant collections. Plus, chemogenomic screens are not ideal for
selecting tolerance phenotypes that are as a result of epistatic
interactions between multiple genes since it only determines the
effect of single-gene deletions or mutations.

To complement the chemogenomic method where yeast
deletion libraries are screened, overexpression libraries, such as
the MoBY collection (Hou, 2009) can be probed to identify
genes whose overexpression result in tolerance to phenolic
compounds. Even though this method has not yet been applied
to phenolic tolerance, it has been demonstrated that by screening
an overexpression library, a multi efflux pump, SGE1, was found
to improve yeast tolerance to a yeast growth inhibitor used as a
pre-treatment solvent (Higgins et al., 2018).

Adaptive Laboratory Evolution
As an alternative approach, other studies have used adaptive
laboratory evolution to point out key driver mutations that
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FIGURE 1 | Genetic hits for different phenolics in functional genomics screens overlap. Chemical structures of phenolic compounds ferulic acid (FA), poacic acid
(PA), coniferyl aldehyde (CA), 4-hydroxybenzoic acid (HBA), and vanillin (Van.) are shown in (A). Overlapping biological processes of the deletion mutants identified in
chemogenomic screens for FA, PA, CA, HBA, and Van are indicated in (B) The heatmap shown here is based on published data obtained from Endo et al. (2008),
Skerker et al. (2013), Pereira et al. (2014), Piotrowski et al. (2015), Wang X. et al. (2017), Wu et al. (2017), Biot-Pelletier et al. (2018), Sardi et al. (2018), Xue et al.
(2018), Fletcher et al. (2019), and Hacısalihoǧlu et al. (2019). The genes were clustered according to their associated biological process (Robinson et al., 2002).

are essential to increase tolerance to phenolic compounds. In
adaptive laboratory evolution, yeast cultures containing mild
concentrations of the phenolic compound are serially transferred
into fresh media supplemented with increasing concentrations
of the phenolic compound until a significant improvement in
growth rate is observed after several generations and serial
transfers (Dragosits and Mattanovich, 2013). Advances in whole-
genome sequencing technologies with regards to reduction in
costs, new and improved sequence analysis tools (Sandmann
et al., 2017) and sequencing platforms (Rhoads and Au,
2015; Tyler et al., 2018) have made it possible to identify
mutations that lead to improved growth in the presence of
phenolic compounds.

Adaptive mutations can occur in the regulatory regions
or coding regions of the target gene and result in loss of

function, increased activity, or decreased dosage of the gene
product (Dragosits and Mattanovich, 2013). For example, the
zinc finger transcription factor, YRR1 acquired a frameshift
mutation resulting in a loss of function which improved yeast
growth in vanillin (Wang X. et al., 2017; Table 1). The role of
YRR1 in vanillin tolerance was confirmed by deleting the gene
(Wang X. et al., 2017). In another example, nonsense mutations
acquired by MUK1 and MRS4 resulted in tolerance to coniferyl
aldehyde (Hacısalihoǧlu et al., 2019). The challenge with using
adaptive laboratory evolution, though, is most times several
mutations unrelated to the compound tolerance phenotype will
arise making it challenging to pinpoint the actual mutations
that are required for tolerance. It is possible to confirm each
mutation gained in a laboratory evolution experiment but in
instances where several mutations arise, a considerable amount
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TABLE 1 | Functional genomic strategies to elucidate yeast tolerance to phenolic inhibitors.

Screening tool Fermentation inhibitor Significant biological processes References

Chemogenomic screen (agar-based array) Ferulic acid Protein and vacuolar trafficking Ergosterol
biosynthesis

Fletcher et al., 2019

Chemogenomic screen (agar-based array) 4-hydroxybenzoic acid Ergosterol biosynthesis Protein trafficking Fletcher et al., 2019

Chemogenomic screen (agar-based array) Coniferyl aldehyde Pentose phosphate pathway Fletcher et al., 2019

Chemogenomic screen (agar-based array) Vanillin Ergosterol biosynthesis Histone exchange Endo et al., 2008

Chemogenomic screen (agar-based array) Synthetic miscanthus
hydrolysate

Ergosterol biosynthesis Oxidative stress
response Pentose phosphate pathway

Skerker et al., 2013

Chemogenomic screen (well-by-well array) Wheat straw hydrolysate Vacuolar acidification Ribosome biogenesis
Mitochondrial and peroxisomal function
Ergosterol biosynthesis

Pereira et al., 2014

Chemogenomic screen (barcode
sequencing of pooled mutants)

Poacic acid Cell wall and glycosylation Piotrowski et al., 2015

Chemogenomic screen (barcode
sequencing of pooled mutants)

Synthetic corn stover
hydrolysate

Fatty acid biosynthesis Vesicle trafficking Xue et al., 2018

Adaptive laboratory evolution Coniferyl aldehyde Vacuolar transport Mitochondrial function
Transcriptional regulation

Hacısalihoǧlu et al., 2019

Adaptive laboratory evolution Vanillin Transcriptional regulation Wang H.-Y. et al., 2017;
Wang X. et al., 2017

Genome shuffling Lignocellulosic hydrolysate Transcriptional regulation Biot-Pelletier et al., 2018

Genome-wide association studies Synthetic corn stover
hydrolysate

Ergosterol biosynthesis Proteolysis Sardi et al., 2018

Chemogenomic screen (well-by-well array) Coniferyl aldehyde Membrane transport Oxidative stress response Wu et al., 2017

of time is required to validate the effect of all the mutations in
a wild type strain. One method to circumvent this challenge is
to perform multiple parallel screens (Fletcher et al., 2017). High
throughput evolution of several lines in parallel facilitated by
robotics, automation and mutational analysis makes it possible
to quickly identify common suppressors over parallel evolutions
(Radek et al., 2017) but this has not yet been applied to
phenolic screens.

Genome-Shuffling
Laboratory evolution can be extended in another approach called
genome shuffling to find novel genes that can be modulated
for increased phenolic tolerance. Genome shuffling allows the
discovery of positive epistasis and the accumulation of beneficial
mutations. The technique involves performing mutagenesis on
haploid yeasts of both mating types (a and α), selecting for
tolerant haploids and mating them to obtain diploid strains
(Hou, 2009; Pinel et al., 2011). The diploids are screened on
media containing increasing concentrations of the phenolic
compound after which the most tolerant diploids are isolated.
The diploids with increased tolerance then undergo a new round
of sporulation, mating and selection on increasing concentrations
of phenolic compounds. Several cycles of “genome-shuffling” are
performed to generate yeast strains with improved tolerance.
The resulting strains are sequenced to identify key mutations
that can then re-constructed in the wild type to confirm the
role of the selected mutations on increasing tolerance. Using
genome shuffling, genes including NRG1, GSH1, and GDH1 were
identified as key determinants required by yeast for improved
tolerance to lignocellulosic hydrolysate (Biot-Pelletier et al., 2018;
Table 1). Although genome shuffling has the advantage of

filtering mutations that are unrelated to phenolic tolerance, it
can be laborious and time consuming. Currently, the technology
is challenged by the lack of high throughput screening methods
(Magocha et al., 2018). As such, there is the need to automate
the process to make it rapid and more efficient in identifying
novel genetic mutations that are linked with improved tolerance
to phenolic inhibitors in yeast.

High Content Imaging
Another emerging technology is the use of a high content,
image-based profiling to identify biological processes that are
targeted by toxic compounds (Ohnuki et al., 2010). Here, it
is assumed that changes in yeast morphology as a result of a
chemical treatment will resemble the morphology of mutants
that lack genes associated with biological processes that are
inhibited by the chemical. High content imaging was used to
identify genes associated with toxicity to vanillin by comparing
the altered morphology of >4,000 yeast mutants to that of wild
type yeast treated with vanillin (Iwaki et al., 2013). Using this
technique, 18 mutants with an altered morphology that mimic
the morphology of vanillin-treated cells were identified. Out of
the 18 mutants, three mutants (rpl8a1, rpp1b1, and rpl16a1)
that had the closest resemblance to vanillin-treated cells lacked
genes belonging to the gene ontology (GO) term “cytoplasmic
protein component of the large ribosomal subunit”(Iwaki et al.,
2013). The outcome of the study indicates that vanillin toxicity
may be due to inhibition of large ribosomal subunit leading to an
impairment of protein synthesis.

Though useful in elucidating novel mechanisms of toxicity of
phenolic compounds, a limitation of cell imaging is that it is not
suitable for screening phenolic compounds that do not induce
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morphological changes. An extension of this technology will
be the development of high throughput microscopy screening
of the yeast GFP collection (Ghaemmaghami et al., 2003)
to determine the impact of phenolic treatment on protein
subcellular localization and abundance (Koh et al., 2015). For
instance, upon coniferyl aldehyde treatment, several enzymes in
the pentose phosphate pathway are both induced and partially
localize to the mitochondria (Fletcher et al., 2019). It will
be interesting to fully screen the yeast GFP collection to
identify other proteins that change localization upon exposure
to different phenolic compounds. Not only will such a screen
provide an idea of what proteins are induced and change
localization but it will also bring to light novel and alternative
mechanisms of regulation where changes in protein localization
render a pathway active or inactive due to unavailability of
upstream intermediates.

TRANSCRIPTOMIC APPROACHES

Exploring transcriptomic changes during exposure to phenolics
provides another dimension to obtaining a holistic view of the
phenolic tolerance landscape of yeast. Historically, microarray
technology has been used to observe the expression of thousands
of genes simultaneously to obtain a gene expression profile
of cells under a given condition (Raghavachari, 2013). More
recently, developments in high throughput RNA sequencing
(RNA-Seq) has made it possible to quantify transcriptomes
by measuring mRNA transcripts (Sardi et al., 2018). Unlike,
microarrays which are limited by the genes included on the array,
RNA-Seq allows for the identification of novel transcriptomic
changes including alternative splice variants, novel genes and
small mRNA sequences (Han et al., 2015).

Presently, two distinct transcriptomics approaches have been
applied to unravel the biology of phenolic tolerance in yeast
(Table 2). In one strategy, the transcriptome of phenolic-adapted
strains are compared to that of un-adapted strains. Here, the
goal is to identify the genes whose expression is modulated in
the adapted strain as these genes and their associated biological
pathways potentially confers tolerance to the phenolic inhibitor.
In the second strategy, the transcriptome profile of yeast exposed
to phenolic inhibitors are compared to that of an un-treated
yeast. The goal of these experiments is to identify changes in
gene expression upon phenolic exposure as these genes and their
associated biological pathways may contribute to protecting the
cell from phenolic toxicity.

Remarkably, yeast strains evolved for vanillin tolerance in
two independent studies displayed a similar transcriptome
profile (Endo et al., 2008; Shen et al., 2014). Subunits of
the cytochrome b-c1 complex (QCR2, QCR10, QCR6, and
CYT1), which are components of the mitochondrial electron
transport chain, together with an electron donor to the
mitochondrial electron transport chain (CYC1), were upregulated
in both vanillin-tolerant yeasts. This suggests an induction in
aerobic respiration and energy generation in vanillin adapted
strains is critical to confer tolerance (a summary of the
transcriptome data comparing published transcriptome studies

is provided in Supplementary Table 1). Furthermore, more
than half of the upregulated genes that overlap in vanillin-
(Endo et al., 2008; Shen et al., 2014) and coniferyl aldehyde-
(Hacısalihoǧlu et al., 2019) adapted strains are involved in
oxidation-reduction processes and NADPH production (BDH2,
CTT1, COX5B, SDH1, IDP2, CYB2, NDI1, ALD3, COX7, SPS19,
ALD4, and ALD6). Additionally, FAA1, PRS3, and ALD5 were
repressed in both vanillin-tolerant and coniferyl aldehyde-
tolerant strains under non-stress conditions. The similarity in
gene expression profiles in coniferyl aldehyde- and vanillin-
adapted yeast from independent studies suggest that yeast
utilizes common mechanisms to build tolerance to these
compounds. Knowledge of these commonly induced pathways
in adapted strains could be exploited to further improve
phenolic tolerance.

Given the similarity in transcriptomes from adapted strains,
it is somewhat surprising that transcriptome profiles of wild-
type yeast exposed to phenolic compounds (ferulic acid,
coniferyl aldehyde, vanillin, isoeugenol, and plant hydrolysates
composed of a combination of these phenolic compounds)
during growth share limited common features (Sundström et al.,
2010; Park and Kim, 2014; Thompson et al., 2016). In these
studies, apart from the mitochondrial potassium homeostasis
gene YLH47 that was upregulated in ferulic acid, coniferyl
aldehyde and isoeugenol-treated cells, no particular set(s) of
genes overlapped in all the studies. Though direct comparisons
between transcriptomic studies have limitations (Larsson and
Sandberg, 2006), these transcriptome studies suggests that
the cell’s transcriptional response is largely distinct for each
phenolic study so far.

Interestingly, four genes that are upregulated in the
transcriptome of vanillin-adapted strains obtained under no
stress (Shen et al., 2014) are also upregulated in the transcriptome
of un-adapted yeasts treated with vanillin (Park and Kim, 2014).
All four genes (CIT1, LSC2, SDH1, SDH2) encode enzymes in
the TCA cycle. Similarly, genes involved in oxidation-reduction
(YML131W, YKL071W, and OYE3), transport (SNQ2) and
response to oxidative stress (SRX1) were upregulated in both
coniferyl aldehyde-adapted yeasts (non-stressed conditions)
(Hacısalihoǧlu et al., 2019) and in un-adapted yeasts treated with
coniferyl aldehyde (Sundström et al., 2010).

Taken together, oxidation-reduction, electron transfer chain,
and the TCA cycle are enriched in the transcriptome of
yeast during phenolic toxicity suggesting an upregulation of
mitochondrial activity during phenolic stress (Supplementary
Table 1). A broader overview of transcriptome changes induced
by phenolics in yeast studies are limited by the number of
phenolics studied. There is the need to expand these studies to
include a wide range of phenolic compounds to ascertain the
effect of various phenolic compounds on the yeast transcriptome
as a way of identifying potential biological processes that can be
targeted to improve phenolic tolerance in yeast.

While transcriptomics can identify gene targets that when
overexpressed or downregulated can improve phenolic tolerance,
this technology is challenged by the fact that changes in the
expression of most genes do not correlate with improved
tolerance to yeast stress (Evans, 2015). Hence transcriptional
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TABLE 2 | Transcriptomic profiling of yeast to elucidate cellular responses to phenolic inhibitors.

Screening tool Fermentation inhibitor Significant biological processes References

Microarray analysis of a tolerant strain
(non-stressed conditions)

Vanillin Ergosterol biosynthesis Mitochondrial
function

Endo et al., 2009

Microarray analysis of a tolerant strain
(non-stressed conditions)

Coniferyl aldehyde Oxido-reductase activity Oxidative stress
response

Hacısalihoǧlu et al., 2019

Microarray analysis of a tolerant strain
(non-stressed conditions)

Vanillin Oxido-reductase activity Oxidative stress
response

Shen et al., 2014

Microarray analysis of a tolerant strain
(non-stressed conditions)

Vanillin Response to stress Phospholipid
metabolism

Wang X. et al., 2017

Microarray analysis of evolved strain (stressed
conditions)

Softwood hydrolysate Oxidative stress response Membrane
transport

Thompson et al., 2016

Microarray analysis of wild type strain (stressed
conditions)

Vanillin TCA cycle Aerobic respiration Park and Kim, 2014

Microarray analysis of wild type strain (stressed
conditions)

Coniferyl aldehyde Oxido-reductase activity Mitochondrial
function

Sundström et al., 2010

Microarray analysis of wild type strain (stressed
conditions)

Ferulic acid Protein import Mitochondrial function Sundström et al., 2010

Microarray analysis of wild type strain (stressed
conditions)

Isoeugenol Mitochondrial function Sundström et al., 2010

Microarray analysis of yrr11 strain (stressed
conditions)

Vanillin Ribosome biogenesis rRNA processing Wang X. et al., 2017

profiling, while providing a holistic snapshot of the yeast’s
response to a phenolic, may not provide a direct entry point into
genetic engineering strains for phenolic tolerance improvement.

OTHER SYSTEMS BIOLOGY
APPROACHES

Though functional genomics and transcriptomic studies have so
far dominated the field of yeast phenolic tolerance, they clearly
do not capture all the biological events that occur upon exposure
to phenolics. While functional genomics identify proteins and
pathways required for survival upon exposure to phenolics, it fails
to assess how these proteins are regulated and their biological
role in phenolic tolerance. Gene expression modulation during
phenolic compound stress serves as a tangible way of quantifying
induction and repression of genes associated with phenolic
toxicity. However, RNA levels can only be used as a proxy
for measuring products of expressed genes within the cell and
may not reflect protein levels, protein function or modification
of proteins by post-translational modifications. Further, neither
functional genomics nor transcriptomics can assess how phenolic
exposure modifies a cell’s metabolism. Hence, two emerging
systems biology approaches worth highlighting that can provide
this extra layer of genome-wide information are proteomics
and metabolomics.

PROTEOMIC PROFILING OF YEAST
PHENOLIC TOLERANCE

Shotgun Proteomics
One approach to capture protein changes in the cells is
the shotgun proteomic method which involves digesting total

cellular proteins (isolated from cells treated with or without a
toxic compound) into peptides which are separated by liquid
chromatography followed by identification and quantification
using mass spectrometry (Zhang et al., 2013). Beyond identifying
differential changes in protein expression, post-translational
modification sites can be identified using quantitative methods,
such as stable isotope labeling by/with amino acid in cell culture
(SILAC) (Ong et al., 2004).

To date, very few studies have probed the proteomic profile of
yeast upon phenolic exposure, using shotgun proteomics tools.
A proteomic study quantified protein expression in two natural
isolates of S. cerevisiae that exhibited remarkable tolerance to a
synthetic inhibitor cocktail containing ferulic acid, cinnamic acid,
and coniferyl aldehyde (de Witt et al., 2018). Their proteomic
profile revealed a general tolerance mechanism which mainly
included genes associated with oxido-reductase activity (de Witt
et al., 2018). In another proteomic study, expression of oxidative
stress response proteins (Ahp1 and Grx1) was found to be
induced during yeast growth in a combination of three inhibitors
which include phenol (Ding et al., 2012a). So far, the application
of shotgun proteomics to understanding phenolic tolerance has
been limited to quantifying protein expression. Future work
should investigate post-translational modification of the most
differentially expressed proteins during yeast growth in different
phenolic compounds.

METABOLOMICS PROFILING OF
PHENOLIC FERMENTATION INHIBITORS

Comprehensive analysis of metabolites during cellular stress is
gaining popularity as another strategy to understand tolerance
mechanisms (Nugroho et al., 2015). Therefore, metabolomics
tools are being developed to obtain a cell’s metabolic profile
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or metabolome which directly reflects the cell’s metabolic state
(Zampieri et al., 2017).

Mass Spectrometry-Based
Metabolomics
Developments in mass spectrometry-based metabolomics have
enabled quantification of metabolites even at low concentrations
with high resolution and dynamic range (Marshall and
Powers, 2017). Extending this technology to understanding the
underlying basis of phenolic toxicity in yeast, a metabolic shift
between a parental yeast and an inhibitor-tolerant yeast was
observed during growth in a mixture of inhibitors which included
phenol (Ding et al., 2012b). The mixed inhibitors induced the
production of myo-inositol and phenylamine in the tolerant
yeast suggesting regulation of membrane trafficking and cytosolic
Ca2+ concentration, respectively. Remarkably, glycolysis and
TCA cycle intermediates including citrate, succinate, and 2-
oxoglutarate were decreased in the tolerant strain during growth
in the mixed inhibitors (Ding et al., 2012b). It will be interesting
to further explore the effect of a wide range of phenolic
compounds on changes in yeast metabolomic profiles using
untargeted metabolomic tools followed by a targeted approach to
confirm any observed metabolic shifts.

MINING GENOME-WIDE STUDIES TO
IDENTIFY COMMON APPROACHES TO
IMPROVE TOLERANCE TO PHENOLICS

The different systems biology tools discussed above have
highlighted several biological processes associated with
phenolic tolerance. While proteomic and metabolomics
data is currently limited for phenolics, the functional genomics
and transcriptomics data can be used to identify common
mechanisms underlying phenolic toxicity. By targeting common
mechanisms it may be possible to engineer strains with improved
tolerance toward all phenolic compounds. Four common cellular
responses to phenolic exposure that have been identified from
the functional genomics and transcriptomics data are: oxidative
stress response, oxido-reductase and mitochondrial activity,
ergosterol biosynthesis, and membrane transport.

Oxidative Stress Response
Functional genomic screens determined that deletion of genes
involved in oxidative stress response (YAP1, STB5, GSH1, SOD1,
SOD2) resulted in hypersensitivity to phenolics (Skerker et al.,
2013; Pereira et al., 2014; Wu et al., 2017; Biot-Pelletier et al.,
2018). Also, YAP1, SOD2 and other genes with antioxidant
activity (GRX2, CTT1, CTA1) are upregulated during phenolic
exposure as shown in the transcriptomic studies (Park and Kim,
2014; Shen et al., 2014). Furthermore, Grx1 and Ahp1 which
are oxidative stress response genes are differentially enriched in
proteomic studies when yeasts are treated with phenolics (Ding
et al., 2012a) suggesting the production of reactive oxygen species
(ROS). Together, this suggests that phenolic exposure elicits an
oxidative stress response in yeast.

Experimental evidence shows that phenolic compounds,
particularly those with an aldehyde functional group, such as
vanillin and coniferyl aldehyde induce ROS formation (Nguyen
et al., 2014; Fletcher et al., 2019). ROS production comes
from a combination of aerobic respiration and possibly from
the endogenous process of oxidizing the compound to less
toxic forms (Adeboye et al., 2015; Hacısalihoǧlu et al., 2019).
Yap1, a major oxidative stress transcription factor that regulates
the expression of several genes responsible for scavenging
ROS (Maeta et al., 2004; Rodrigues-Pousada et al., 2010)
changes localization from the cytosol to the nucleus upon
vanillin treatment where it activates transcription of its target
genes (Nguyen et al., 2014). Not surprisingly, some genes
regulated by Yap1 including GPX1 and SOD2 are significantly
upregulated in a transcriptomic screen for vanillin (Shen et al.,
2014). Additionally, yeast functional genomic study showed
that YAP1 deletion results in hypersensitivity to synthetic
miscanthus hydrolysate which contains a mixture of phenolic
compounds including coniferyl aldehyde (Skerker et al., 2013).
Although it has been previously established that ferulic acid,
4-hydroxybenzoic acid and coniferyl aldehyde induce ROS
formation in yeast, the specific species of ROS induced by
different phenolic compounds is yet to be identified.

Catalases and the glutathione pathway which scavenge ROS
from the cell require NADPH (Toledano et al., 2013; Gómez
et al., 2019). Interestingly, not only are oxidative stress response
proteins differentially expressed during treatment with phenolic
inhibitors, as revealed in a proteomics screen, but also flux is
moved toward the pentose phosphate pathway (Lv et al., 2014),
one of the main metabolic pathways that generate cytosolic
NADPH (Chen et al., 2019). Indeed, this proteomic study is
corroborated by a functional genomic screen which showed
that pentose phosphate pathway mutants accumulated ROS
and were hypersensitive to coniferyl aldehyde (Fletcher et al.,
2019). Moving forward, knowledge of the specific ROS species
induced by individual phenolics will be beneficial in tailoring
and engineering specific tolerance pathways for individual
phenolic compounds.

Oxido-Reductase and Mitochondrial
Activity
Coniferyl aldehyde, vanillin, synthetic hydrolysates, and
softwood hydrolysate induce an upregulation of genes involved
in oxidoreductase activity and mitochondrial function (Endo
et al., 2009; Sundström et al., 2010; Shen et al., 2014; Thompson
et al., 2016). Also, functional genomic studies identified
other proteins with mitochondrial activity (MRS4 and AFG3)
that play a role in phenolic tolerance (Fletcher et al., 2019;
Hacısalihoǧlu et al., 2019). A proteomic screen identified several
oxido-reductases including Adh7, Adh4, and Ald6 as the most
differentially expressed proteins upon phenolic treatment
(de Witt et al., 2018).

In the context of tolerance to phenolic inhibitors, the
mitochondria are an important site for detoxification of
phenolic compounds as enzymes, such as Ald5 and Pad1 that
catabolize phenolic aldehydes are located in the mitochondria
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(Adeboye et al., 2017). Detoxification of phenolics is a strategy
employed by cells to prevent intracellular accumulation.
Conversion of vanillin and coniferyl aldehyde to less toxic
compounds catalyzed by enzymes with an oxido-reductase
activity is upregulated during exposure to these compounds
(Wang H.-Y. et al., 2017; Hacısalihoǧlu et al., 2019). Furthermore,
a gene encoding an NADH-dependent aldehyde reductase
(YLL056C) is enriched in yeast exposed to coniferyl aldehyde
(Sundström et al., 2010). While degradation of coniferyl aldehyde
by Yll056c has not been reported, enzymatic reduction of other
toxic aldehydes found in lignocelluloic hydrolysates (furfural
and glycoaldehyde) has been demonstrated (Wang H.-Y. et al.,
2017). Lastly, the NADPH-dependent alcohol dehydrogenase,
Adh6, contributes to vanillin tolerance by converting intracellular
amounts of vanillin to the less toxic vanillyl alcohol (Nguyen
et al., 2015). Moving forward, it will be interesting to determine
if mitochondrial function or content, for example increased
mitochondrial volume per cell, can be engineered to improve
phenolic tolerance.

Ergosterol Biosynthesis
Ergosterol biosynthesis genes (ERG5, ERG26, ERG7, HMG1,
ERG28) have been reported to upregulated upon phenolic
exposure in transcriptomic studies (Endo et al., 2009; Sardi et al.,
2016). Confirming the role of ergosterol biosynthesis in phenolic
tolerance, several functional genomics studies have shown that
deletion of ergosterol biosynthesis genes result in a growth defect
in the presence of individual phenolics and plant hydrolysates
(Endo et al., 2008; Skerker et al., 2013; Piotrowski et al., 2015;
Fletcher et al., 2019).

These data suggest that maintaining the proper levels of
ergosterol is essential for growth in the presence of phenolic
compounds. Indeed, increased levels of ergosterol are seen
in vanillin-tolerant yeasts (Endo et al., 2009; Zheng et al.,
2017) further confirming the need for ergosterol in the cell
during exposure to phenolic compounds. Cellular ergosterol
plays different roles in cells mainly by maintaining membrane
integrity (Abe and Hiraki, 2009) and acting as components of
lipid rafts (Eisenkolb et al., 2002; Bastos et al., 2012) which are
possibly required for proper cellular function during growth in
phenolics. Fine-tuning ergosterol levels and spatial localization
to organelles may offer a unique way to buffer the toxic
effects of phenolics.

Membrane Transport
Integration of systems biology tools reveal membrane efflux as
another significant mechanism used by yeast as a survival strategy
during growth in phenolic compounds. A functional genomic
screen showed that the deletion of genes encoding membrane
transporters, PDR5, YOR1, and SNQ2 made S. cerevisiae sensitive
to coniferyl aldehyde (Hacısalihoǧlu et al., 2019). Also, SNQ2 and
another transporter, MCH2, were upregulated in transcriptomic
studies during yeast growth in vanillin (Park and Kim, 2014;
Wang X. et al., 2017).

Enrichment of genes encoding membrane transporters
during exposure to vanillin hints that flushing out phenolic
compounds from the cell prevents intracellular accumulation

(Thompson et al., 2016; Wang X. et al., 2017; Hacısalihoǧlu
et al., 2019). Not surprisingly, Pdr1 which regulates the
transcription of these transporters was identified during a
screen of transcription factor mutants for coniferyl aldehyde
tolerance (Wu et al., 2017). Export of phenolics from the cell
complements efforts used by the cell to detoxify intracellular
amounts of the compound. These transporters require ATP
for activity (Katzmann et al., 1995; Mamnun et al., 2004).
Hence, in order to meet the ATP needs of the cell, aerobic
respiration via the TCA cycle and the mitochondrial electron
transport chain are induced during growth in vanillin, coniferyl
aldehyde and lignocellulosic hydrolysates as revealed in multiple
studies (Endo et al., 2009; Park and Kim, 2014; Sardi et al.,
2016; Thompson et al., 2016). Besides, since the transporters
localize to the plasma membrane, changes in membrane
composition and integrity have severe consequences on their
activity (Kodedová and Sychrová, 2015). Not surprisingly, genes
ascribed to fatty acid metabolism (TES1), ergosterol biosynthesis
(ERG5, ERG7, ERG26, HMG1, ERG28) and cell membrane-
associated proteins (HES1, PUN1) are upregulated during growth
in phenolic compounds (Endo et al., 2009; Sardi et al., 2016;
Thompson et al., 2016).

Taken together, in dealing with phenolic compound toxicity,
it is evident that S. cerevisiae upregulates its oxido-reductase
machinery to oxidize and/or reduce phenolic compounds into
less toxic forms as well as deal with the oxidative stress associated
with this conversion. In addition, the mitochondrial function is
upregulated to ensure ATP production required for the activity of
transporters which potentially extrudes the phenolic compounds
and/or the detoxified forms of it.

METABOLIC ENGINEERING
CONSIDERATIONS AND SYNTHETIC
BIOLOGY TOOLS TO IMPROVE
S. cerevisiae TOLERANCE TO PHENOLIC
FERMENTATION INHIBITORS DURING
BIOMANUFACTURING

ROS scavenging, regulation of ergosterol biosynthesis and
compound efflux serve as general phenolic tolerance pathways
that can be engineered in a yeast production strain. Beyond
engineering a general tolerance pathway, more distinct genetic
modifications can be incorporated to result in tolerance to
particular phenolics. For instance, deleting YRR1, MRS4, and
BNA7 to specifically increase tolerance to vanillin (Wang X.
et al., 2017), coniferyl aldehyde (Hacısalihoǧlu et al., 2019), and
ferulic acid (Fletcher et al., 2019) respectively. To rapidly facilitate
these metabolic engineering strategies in building a phenolic
tolerance pathway, genome editing tools, such as the CRISPR/Cas
technology will make this possible (Li et al., 2020).

With the CRISPR/Cas technology, stable genetic
modifications including introduction of specific mutations
can be inserted into both promoter regions and coding regions of
genes. This will facilitate modulating the transcription of genes
required for phenolic tolerance (Giersch and Finnigan, 2017).
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Alternatively, expression of target genes can be regulated using
a repurposed CRISPR system referred to as CRISPR interference
(CRISPRi) (Qi et al., 2013). Similarly, introduction of mutations
into the coding region can target protein modification sites
(Giersch and Finnigan, 2017), modify activity (gain or loss
of function), or changes in localization. Other modifications
possible with the CRISPR/Cas method are gene insertions and
deletions (Akhmetov et al., 2018). Insertion of extra copies of
genes is done to stably overexpress target genes whereas multiple
gene deletions can be used to knock out specific metabolic
pathways (Giersch and Finnigan, 2017). Presently, CRISPR/Cas
technology has not yet been applied to improving phenolic
tolerance in yeast although the technology has been used to
improve tolerance to other fermentation-related stresses in yeast
(Giersch and Finnigan, 2017).

While growth (biomass yield) and tolerance are closely
connected, making certain genetic manipulations associated with
phenolic tolerance may lead to unwanted trade-offs in production
hosts which can negatively impact product yield and titers.
Therefore, to ensure the success of engineering yeast phenolic
tolerance, metabolic flux analysis should be performed to assess
the effect of the genetic modifications on the general physiology
of the cell as well as carbon flux toward product formation.
Such metabolic flux analyses should quantify and guide efficient
resource allocation to ensure that cellular resources, such as
NADPH and ATP are not diverted to phenolic tolerance at the
expense of biosynthesis of bioproducts in the production strain.

Lastly, in the context of producing phenolic compounds, such
as vanillin by fermentation, metabolic regulation of pathways that
result in the catabolism of the phenolic as a detoxification strategy
should be eliminated to improve yields.

FUTURE OUTLOOK AND CONCLUDING
REMARKS

Overall, different systems biology approaches have been used
to track global phenolic stress responses in S. cerevisiae. While
common themes or mechanisms coincide among multiple
studies, the different approaches provide alternative pathways
and biological processes that can be exploited for strain
improvement. Moving forward, since most of the long list
of genetic hits reported in the various studies has not been
validated, significant effort is required to confirm their actual
role in tolerance or sensitivity to phenolics. This is particularly
crucial for the transcriptomics data because the fact that a gene
is upregulated or enriched during stress does not necessarily
mean an overexpression of that gene will result in tolerance

(Evans, 2015). Gene enrichment could merely be a stress response
and not a tolerance mechanism. If possible, the role of enriched
genes associated with phenolic tolerance should be confirmed
by deleting and/or overexpressing target genes in cells grown
in the presence phenolic inhibitors. Such confirmed genes
should be cataloged in a “phenolic stressome” database similar
to the yStreX (Wanichthanarak et al., 2014) as a repository
where synthetic biologists can search for genetic targets to
engineer tolerance to different phenolic compounds. By applying
synthetic biology tools, such as the CRISPR/Cas technology, the
expression of single or multiple genes identified in the “phenolic
stressome” can be regulated in order to improve tolerance to
phenolic compounds.

Finally, establishing the metabolomic profile of S. cerevisiae
that are tolerant to a wide spectrum of individual phenolics
may guide the development of biosensors to detect “signature
metabolites” characteristic of tolerant and high-performing
strains. Again, using synthetic biology, biosensors can be
constructed with promoters (that are responsive to metabolites
characteristic to tolerant and high-performing strains) and a
reporting system (e.g., GFP), and inserted into a library of yeast
mutants. Next, by applying microfluidics, a pool of heterogenous
yeast mutants can be sorted to isolate phenolic tolerant strains
that can be used in fermentation-based biomanufacturing to
increase product yield and titers.
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Cyclic adenosine monophosphate (cAMP) has been known to play an important role
in regulating morphological development and antibiotic production in Streptomyces
coelicolor. However, the functional connection between cAMP levels and antibiotic
production and the mechanism by which cAMP regulates antibiotic production remain
unclear. In this study, metabolomics- and transcriptomics-based multi-omics analysis
was applied to S. coelicolor strains that either produce the secondary metabolite
actinorhodin (Act) or lack most secondary metabolite biosynthesis pathways including
Act. Comparative multi-omics analysis of the two strains revealed that intracellular and
extracellular cAMP abundance was strongly correlated with actinorhodin production.
Notably, supplementation of cAMP improved cell growth and antibiotic production.
Further multi-omics analysis of cAMP-supplemented S. coelicolor cultures showed
an increase of guanine and the expression level of purine metabolism genes. Based
on this phenomenon, supplementation with 7-methylguanine, a competitive inhibitor
of reactions utilizing guanine, with or without additional cAMP supplementation, was
performed. This experiment revealed that the reactions inhibited by 7-methylguanine
are mediating the positive effect on growth and antibiotic production, which may occur
downstream of cAMP supplementation.

Keywords: Streptomyces coelicolor, metabolomics, transcriptomics, cAMP, secondary metabolites, actinorhodin,
7-methylguanine

INTRODUCTION

Streptomyces species are soil-dwelling Gram-positive Actinobacteria and well-known important
sources of bioactive secondary metabolites such as antibiotics (e.g., streptomycin; Davies et al.,
1964), immunosuppressants (e.g., FK-506; Kino et al., 1987a,b), and anthelmintics (e.g., avermectin;
Ikeda and Omura, 1997). Secondary metabolism is not necessary for bacterial growth and often
occurs under nutrient limitation (Strauch et al., 1991), in specific medium condition (Lim et al.,
2018), or in co-culture with other microbes (Onaka et al., 2011). The regulation of secondary
metabolite production has therefore been a focus of research in natural product discovery
and production (Liu et al., 2018). One way of improving secondary metabolite production
is the addition of exogenous compounds such as cyclic adenosine monophosphate (cAMP)
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supplementation in Streptomyces coelicolor (Susstrunk et al.,
1998), rare earth elements (e.g., scandium) in S. coelicolor
(Tanaka et al., 2010), S-adenosyl-L-methionine (SAM) in
Streptomyces lividans (Kim et al., 2003), and hormones with a
butanolide skeleton in Streptomyces virginiae (Kim et al., 1989).
However, in most cases, it is not fully understood by which
mechanism such approaches led to the increased production of
secondary metabolites.

With the recent rapid progress of analytical equipment and
methods that contribute to the accumulation of more analytical
data, new opportunities arise for studying the regulation of
secondary metabolism. Transcriptome (Hwang et al., 2019),
proteome (Millan-Oropeza et al., 2017), metabolome (Senges
et al., 2018), and lipidome analyses (Zhang et al., 2020) or
various combinations of these (Wang et al., 2017; Gosse et al.,
2019) in Streptomyces have been applied to studies of secondary
metabolism regulation.

In this study, we exploit these new technological opportunities
to develop a more detailed picture of the regulatory circuitry
surrounding the production of antibiotics in the model
Streptomyces species S. coelicolor. Liquid chromatography
tandem mass spectrometry (LC-MS/MS)–based metabolome
analysis with wide metabolite coverage and RNAseq-based
transcriptome analysis were employed, for comparative analyses
of strains with differing antibiotic production phenotypes to
identify the possible factors affecting secondary metabolite
production and to provide a more detailed understanding of the
regulation of secondary metabolites. This multi-omics analysis
revealed that antibiotic production is correlated with cAMP
levels, and cAMP supplementation to S. coelicolor culture led
to improvements of cell growth and antibiotic production.
Furthermore, multi-omics analysis of cAMP-supplemented
cultures was performed to explore how the effects of cAMP
are mediated through changes in the S. coelicolor metabolome
and transcriptome.

These results provide valuable mechanistic insights into the
effects of cAMP and their regulation, which in the future might
be exploited for manipulating the cell growth and antibiotic
production of S. coelicolor.

RESULTS AND DISCUSSION

Phenotypes of S. coelicolor Strains for
Omics-Based Comparative Analyses
In a previous study, the M1146 strain was generated from
strain M145 thorough step-by-step deletion of the four major
native antibiotics biosynthetic gene clusters in S. coelicolor: act
(actinorhodin, Act), red (undecylprodigiosin), cpk (coelimycin
P1), and cda (calcium-dependent antibiotic). The original
intention was to achieve higher antibiotic production ability
by deleting these carbon-consuming pathways and increasing
available carbon source for other (heterologously expressed)
antibiotics producing pathways and to simplify the detection of
the secondary produced that will be produced (Gomez-Escribano
and Bibb, 2011). Here, we make use of this “clean” M1146 strain
as a reference for an omics-based comparison against M1146

expressing a heterologous Act biosynthetic gene cluster by an
integrated cosmid (M1146 + ACT) to identify the molecular
consequences of the difference in antibiotic production
phenotype. Act was chosen as the target compound for this
study, as its intense blue coloration allows easy detection and
quantitation of metabolite production. Introduction of the Act
biosynthetic genes into M1146 did not affect growth (Figure 1A),
but it caused Act production as expected (Figure 1B). Glucose
and phosphate consumption did not show any statistically
significant difference, but the M1146 + ACT strain showed
slightly higher glutamate consumption, presumably because
glutamate was used as a nitrogen source for Act production in
this nutrient condition (Supplementary Figure 1A). We also
analyzed the effect of amplifying Act production in the M145
strain (parent of M1146). An additional Act biosynthetic genes
cluster was introduced into M145, as was done in M1146. M145
showed reproducible antibiotic production as in a previous
study (Nieselt et al., 2010), and while growth was not affected
(Figure 1C), M145 with the additional Act biosynthesis gene
cluster (M145 + ACT) showed earlier Act production and
a 2.41-fold higher Act production than M145 (Figure 1D).
Contrary to the analogous case of M1146/M1146 + ACT,
there was no significant difference in glutamate consumption
between M145 and M145 + ACT (Supplementary Figure 1B),
probably because in this case both strains produce Act and
utilize glutamate as a nitrogen source for this purpose. However,
phosphate was consumed more slowly in M145 + ACT compared
to M145. Interestingly, the production of undecylprodigiosin
(RED) also increased in M145 + ACT, whereas coelimycin
production was not observed (Supplementary Figure 1C).
All the strains used in this study are summarized in
Supplementary Table 1.

Metabolome Analysis of S. coelicolor
Strains: Correlation of cAMP Levels With
Actinorhodin Production
To understand the difference in metabolism with and without Act
production, extracellular, and intracellular metabolome profiles
of M1146 and M1146 + ACT were determined (Figure 2). Among
the 99 metabolites analyzed (Supplementary Table 2), the major
difference in both intracellular and extracellular metabolites
between the two strains was that in cAMP levels (Figure 2).
These were substantially higher in the M1146 + ACT compared
to M1146 (Figures 3A,B). To support this observation, the
intracellular and extracellular cAMP levels were also measured in
M145 and M145 + ACT (Supplementary Figure 2) and showed
higher cAMP levels in M145 + ACT compared to M145, as
was observed in M1146 with and without ACT (Figures 3C,D).
Comparing all four strains, cAMP production was strongly
correlated with antibiotic production (e.g., production of Act and
coelimycin P1; Figures 3E,F; and Supplementary Figure 1C).

Transcriptome Analysis of S. coelicolor
Strains
To further support the results of the targeted metabolome
analysis, fine-grained transcriptome analysis was conducted
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FIGURE 1 | Cell growth and actinorhodin production in four S. coelicolor strains. (A) Growth curve (DCW: mg/mL) in M1146 (dot line chart) and M1146 + ACT (black
line chart). Error bar means standard deviation from three replicates. (B) Extracellular actinorhodin production in M1146 (dot line chart) and M1146 + ACT (black line
chart). Error bar means standard deviation from three replicates. (C) Growth curve (DCW: mg/mL) in M145 (dot line chart) and M145 + ACT (black line chart). Error
bar means standard deviation from three replicates. (D) Extracellular actinorhodin production in M145 (dot line chart) and M145 + ACT (black line chart). Error bar
means standard deviation from three replicates.

on M1146 and M1146 + ACT at 10 time points during
growth (Figure 1A).

Differentially expressed genes (DEGs) between M1146 and
M1146 + ACT were identified in order to further evaluate
the effects of Act production on gene expression levels. The
false discovery rate (FDR) was controlled at 5%, and only
genes with an absolute log2-fold change (FC) greater than
0.5 were included in the analysis. As expected, the genes
of the Act biosynthetic gene cluster were only expressed in
M1146 + ACT (at very high levels), whereas no expression was
detected in M1146, which lacks this gene cluster (Supplementary
Table 3). As this observation is trivial, these enzyme-coding
genes were excluded from the subsequent analysis of differential
expression. In total, 100 genes were identified as overexpressed
in M1146 + ACT, whereas 15 genes were identified as
less abundantly expressed in M1146 + ACT based on the
DEG criteria described above (Supplementary Table 4). Based
on the DEGs, Gene Set Enrichment Analysis (GSEA) was
performed, using biological process, pathway, and keywords to
define the gene sets (Figure 4A and Supplementary Table 5).
The major overexpressed gene sets in M1146 + ACT were
associated with biotin biosynthesis and oxidation/reduction
processes (Figure 4A).

High expression of biotin biosynthetic genes is perhaps not
surprising, as biotin is a necessary cofactor for malonyl-CoA
synthesis, which is the essential building block for biosynthesis
of actinorhodin (a polyketide; Katz and Donadio, 1993). This
observation also matches the high levels of expression of the
two acetyl-CoA carboxylase–encoding genes, SCO6271 (accA1)
and SCO4921 (accA2) in M1146 + ACT (Figure 4B). When

malonyl-CoA levels were analyzed by LC-MS/MS, malonyl-CoA
decreased with time, and the malonyl-CoA level was lower
in M1146 + ACT at 20 h (Figure 4B). Thus, malonyl-CoA
was consumed earlier in the M1146 + ACT strain, which is
presumably due to the malonyl-CoA being intensely utilized for
Act biosynthesis. The difference in expression levels of genes
encoding enzymes responsible for cAMP biosynthesis, adenylate
cyclase (SCO4928), and cAMP degradation, phosphodiesterase
(SCO6075), was not statistically significant (Supplementary
Figure 3). The expression level of both genes is low and was only
slightly increased in M1146 + ACT and showed a very similar
trend, where a second peak of increased gene expression was seen
at 30 h, which coincides with the cells entering the stationary
phase. This in itself cannot explain the observed difference in
cAMP production. The discrepancy in the expression of the genes
encoding cAMP synthesis and degradation and cAMP levels
is intriguing and will need further study to fully understand
this phenomenon.

To reveal trends in the gene expression time courses, the
transcriptome data were subjected to k-means clustering (k = 20;
Figure 4C, Supplementary Figure 4, and Supplementary
Excel File 1). All genes were clustered into 20 classes,
and classes J and K genes were more highly expressed in
M1146 + ACT at all sampling points. Class J consisted of
22 genes encoding enzymes involved in Act biosynthesis,
whereas class K has 10 genes, most of which were reported
as related to the soxR regulon (Table 1; Dela Cruz et al.,
2010; Naseer et al., 2014). The SoxR regulon was reported
to be upregulated by oxidative stress caused by high levels
of Act production in previous studies (Shin et al., 2011;
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FIGURE 2 | Time-course metabolome analysis of M1146 and M1146 + ACT. (A) Intracellular metabolite levels shown by fold change value using heatmap analysis.
Comparison between M1146 and M1146 + ACT. Average values from three replicates were used to calculate the fold change value. (B) Extracellular metabolite
levels shown by fold change value using heatmap analysis. Comparison between M1146 and M1146 + ACT. Average values from three replicates were used to
calculate the fold change value. Metabolites circled by red box represent cAMP.

Mak and Nodwell, 2017), which would be in agreement
with our results.

cAMP Supplementation to S. coelicolor
Increased Cell Growth and Secondary
Metabolite Production
To explore whether the observed correlation of cAMP
levels with antibiotic production was the result of a causal
connection between the two phenomena, we performed a

cAMP supplementation experiment (Figure 5). cAMP has been
previously reported as an inducer of Act production (Susstrunk
et al., 1998), and the deletion of the cya (SCO4928) encoding
the adenylate cyclase abolished antibiotic production (Susstrunk
et al., 1998; Kang et al., 1999), whereas the cAMP receptor protein
CRP encoded by gene SCO3571 was shown to be important
for morphological development, and ChIP-chip experiments
showed secondary metabolism gene clusters including Act
contained Crp-associated sites (Derouaux et al., 2004; Gao
et al., 2012). Before conducting the cAMP supplementation,
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FIGURE 3 | cAMP level measurement in four S. coelicolor strains. Error bar means standard deviation from three replicates. (A) Intracellular cAMP-level comparison
between M1146 (dot line chart) and M1146 + ACT (black line chart). (B) Extracellular cAMP-level comparison between M1146 (dot line chart) and M1146 + ACT
(black line chart). (C) Intracellular cAMP-level comparison between M145 (dot line chart) and M145 + ACT (black line chart). (D) Extracellular cAMP-level comparison
between M145 (dot line chart) and M145 + ACT (black line chart). (E) Intracellular cAMP-level comparison between four strains: M145 (dot line chart with blank
circle), M145 + ACT (black line chart with square), M1146 (dot line chart with black circle), and M1146 + ACT (black line chart with triangle). (F) Extracellular
cAMP-level comparison between all four strains, in an independent replication experiment: M145 (dot line chart with blank circle), M145 + ACT (black line chart with
square), M1146 (dot line chart with black circle), and M1146 + ACT (black line chart with triangle).

cAMP stability in cell-free medium and cAMP uptake by M1146
at 1 h and 2 h after cAMP supplementation was confirmed
(Supplementary Figures 5A,B). Interestingly, when M1146 and
M1146 + ACT were supplemented with 10 µM cAMP at the
mid–log phase (20 h), cell growth increased; the cell masses after
supplementation were 1.20- and 1.22-fold higher in M1146 and
M1146 + ACT, respectively (Figure 5A). Moreover, intracellular
Act production increased in M1146 + ACT (Figure 5B and
Supplementary Figure 6A) starting after 50 h, and at 72 h,
the total Act production increase was 1.1-fold on average; this
is a very minor increase, but statistically significant (p < 0.05;
Figure 5B). Interestingly, extracellular supplemented cAMP
rapidly decreased in M1146, but showed a slower decrease in
M1146 + ACT (Figures 5C,D). After 50 h, a renewed increase of
extracellular cAMP was observed with or without the addition
of cAMP (Figure 5C), but the extracellular cAMP accumulation

was higher in the cAMP-supplemented M1146 + ACT culture.
The intracellular cAMP showed an increase in both strains with
addition of external cAMP (Figure 5D).

To evaluate the effects of cAMP on gene expression levels,
RNAseq-based transcriptome analysis of cAMP-supplemented
cultures of M145 was performed, and DEGs were identified
(Supplementary Table 6) based on DEG criteria. cAMP 3 µM
was added to M145 cultures after 48 h of the growth and samples
were taken at 50 h. Interestingly, cAMP addition increased
expression of two genes from the Act biosynthetic gene cluster;
SCO5086 (ketoacyl reductase) increased most dramatically by
3.05-fold on average, and SCO5085 (Act biosynthesis pathway-
specific activator actII-ORF4) increased by 1.93-fold on average
(Figure 5E). Act biosynthesis is known to be tightly controlled
by actII-ORF4 (Gramajo et al., 1993), and Act production starts
after the increased expression of this pathway-specific activator
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FIGURE 4 | Transcriptome analysis of M1146 and M1146 + ACT. (A) Gene set enrichment analysis by means of highly expressed genes from identified differentially
expressed genes (DEGs) in time-course transcriptome analysis of M1146 and M1146 + ACT. Biological process, pathway, and keywords were used to define the
gene sets. (B) Gene expression level comparison of two acetyl-CoA carboxylases and metabolite-level comparison of malonyl-CoA between M1146 (dot line chart)
and M1146 + ACT (black line chart). The error bar in malonyl-CoA–levels line chart means standard deviation from three replicates. (C) K-means clustering of
transcriptome analysis of M1146 and M1146 + ACT (k = 20). Gene expression trends in the focus classes J and K are shown here. K-means clustering results using
all genes are shown in Supplementary Figure 2.

TABLE 1 | List of selected class K genes in heatmap analysis of time-course
RNAseq of M1146 and M1146 + ACT.

Locus tag Product Note Reference

SCO1178 NAD-dependent
epimerase/dehydratase

SoxR regulon Naseer et al., 2014

SCO1909 Monooxygenase SoxR regulon

SCO4266 Oxidoreductase SoxR regulon

SCO7008 ABC transporter ATP-
binding protein

SoxR regulon

SCO2478 Flavoprotein reductase SoxR regulon

SCO0320 Quinone oxidoreductase Potential SoxR regulon

SCO0321 Carboxylesterase Potential SoxR regulon

(Gramajo et al., 1993). It is also reported that increasing the
transcription of actII-ORF4 results in the overproduction of Act
(Gramajo et al., 1993). The increase of actII-ORF4 in our results is
in line with these previous reports and provides a possible direct
link between cAMP supplementation and Act production at the
level of gene expression.

Interestingly, following the rapid disappearance of
supplemented cAMP from the culture medium, a minor
accumulation of extracellular cAMP was observed in M1146
at 72 h (Figure 5C). As we had previously observed that
antibiotic production was correlated with extracellular cAMP
accumulation, we hypothesized that this cAMP accumulation
might be related to the production of other secondary metabolites
in M1146—while this “clean” strain lacks the capacity to produce
the four major antibiotics, 18 other potential biosynthetic gene

clusters are known to be still present in the genome (Bentley
et al., 2002). To understand if the effect of cAMP addition on
the increase of Act production is accompanied by consequences
for the production of other secondary metabolites, ethyl acetate
extracts of cultures of M1146 and M1146 supplemented with
cAMP were measured by LC-QTOF (Quadrupole Time-OF-
Flight) MS. As shown in previous studies, antibiotic production
heavily depends on the utilized medium (Cihak et al., 2017; Lim
et al., 2018). Based on previous data on S. coelicolor secondary
metabolites, candidate peaks were explored, and two secondary
metabolites, namely, germicidin A (theoretical mass: 197.11777,
observed mass: 197.118462, mass error: 4.0 ppm) and germicidin
B (theoretical mass: 183.10212, observed mass: 183.102920, and
mass error: 3.5 ppm), were detected in the extracts (Figure 5F).
The annotation was confirmed by MS/MS analysis of each
peak (Supplementary Figures 6B,C), and both MS/MS spectra
matched the MS/MS spectra from a previous study (Cihak
et al., 2017). Based on the peak areas, the production of the
two germicidins significantly increased (p < 0.01) in the
cAMP-supplemented culture (Figure 5G).

Metabolomics and Transcriptomics
Analysis of cAMP-Supplemented
S. coelicolor Cultures
In order to understand how cAMP improves secondary
metabolite production and cell growth, comparative metabolome
analysis of M1146 and M1146 + ACT with and without cAMP
supplementation was performed (Figure 6A and Supplementary
Figure 7). We measured a total of 98 metabolites. The analysis
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FIGURE 5 | Analysis of cAMP-supplemented to M1146 and M1146 + ACT. (A) Cell growth (mg/mL) comparison between the control sample (dot line chart) and
cAMP-supplemented sample (black line chart) in M1146 and M1146 + ACT. cAMP was supplemented at the time of the first sampling (20 h). The left panel shows
the growth comparison between M1146- and cAMP-supplemented M1146, whereas the right panel shows the growth comparison between M1146 + ACT- and
cAMP-supplemented M1146 + ACT. Error bars indicate the standard deviation from three replicates. (B) Actinorhodin production (mg/L) comparison between the
control sample (dot line chart) and cAMP-supplemented sample (black line chart) in M1146 + ACT during the growth. The left panel shows intracellular actinorhodin
production comparison between M1146 + ACT- and cAMP-supplemented M1146 + ACT, whereas the right panel shows total actinorhodin (inside and outside the
cell, per 50-mL culture) comparison between M1146 + ACT- and cAMP-supplemented M1146 + ACT. Error bars indicate the standard deviation from three
replicates. (C) Extracellular cAMP-level comparison between the control sample (dot line chart) and cAMP-supplemented sample (black line chart) during the growth.
The left panel shows extracellular cAMP-level comparison between M1146- and cAMP-supplemented M1146, whereas the right panel shows extracellular
cAMP-level comparison between M1146 + ACT- and cAMP-supplemented M1146 + ACT. Error bars indicate the standard deviation from three replicates.
(D) Intracellular cAMP-level comparison between the control sample (dot line chart) and cAMP-supplemented sample (black line chart) during the growth. The left
panel shows intracellular cAMP-level comparison between M1146- and cAMP-supplemented M1146, whereas the right panel shows intracellular cAMP-level
comparison between M1146 + ACT- and cAMP-supplemented M1146 + ACT. Error bars indicate the standard deviation from three replicates. (E) Gene expression
level comparison between non–cAMP-supplemented M145 (white bar graph) and cAMP-supplemented M145 (black bar graph). Read count normalized by TPM
(transcripts per million) was used, and error bar means standard deviation from three replicates. Gene names are listed in Supplementary Table 7. Asterisk means
significant difference (p < 0.01). (F) Chromatograms of germicidin B and germicidin A from ethyl acetate extracts from M1146 culture with (red line) and without
(black line) the addition of cAMP. (G) Area value comparison between non–cAMP-supplemented and cAMP-supplemented M1146. Error bar means standard
deviation from three replicates. Double asterisk means significant difference (p < 0.01).

here focuses on metabolites, which consistently increased in
M1146 and M1146 + ACT when cAMP was supplemented.

Interestingly, levels of purine bases, such as hypoxanthine
guanine and xanthine, substantially increased at 64 h
and 72 h when cAMP was supplemented (Figures 6A,B).
Therefore, we hypothesized that increased guanine, xanthine,
and hypoxanthine levels and the purine base–utilizing
reactions might be a key factor mediating increased cell
growth and antibiotic production improvement following
cAMP supplementation. This would be in line with earlier
observations of a link between purine metabolism and
antibiotic production, through their involvement in the
synthesis of guanosine tetraphosphates and pentaphosphates
(p)ppGpp and the second messenger cyclic-di-GMP (c-di-GMP;
Sivapragasam and Grove, 2019).

To support the metabolome analysis result and to understand
the phenomenon caused by cAMP supplementation at the
level of gene expression, transcriptome analysis of cAMP was
performed. To distinguish between the direct effects of cAMP
supplementation and indirect effects of Act production, we
performed transcriptome analysis on M1146 with addition of
cAMP. Based on the same differential expression criteria as
described above, DEGs were identified between time points
0, 1, and 2 h (Supplementary Figure 8 and Supplementary
Table 8) to identify genes that showed different expression
in response to cAMP supplementation. Here, gene expression
related to purine metabolism was mapped to the metabolic
pathway (Figure 7). The results showed increased expression
levels of genes, encoding enzymes involved in the synthesis
of 5-aminoimidazole-4-carboxamide ribonucleotide (a shared
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FIGURE 6 | Metabolome analysis of cAMP-supplemented M1146 and M1146 + ACT. (A) Intracellular metabolome analysis of cAMP-supplemented M1146 and
M1146 + ACT during growth. The metabolite amount difference is shown by fold change of area value (cAMP supplemented/non–cAMP supplemented) in heatmap
clustering. Average values from three replicates were used to calculate the fold change values. This heatmap consists of data of cAMP-supplemented of M1146
(pink, left six panels) and M1146 + ACT (blue, right six panels). The metabolites are listed in Supplementary Table 2. (B) Intracellular selected metabolite-level
(hypoxanthine, guanine, and xanthine) comparison between non–cAMP-supplemented and cAMP-supplemented culture. The left figure shows the comparison
between M1146 (dot line, circle) and cAMP-supplemented M1146 (black line, square), whereas the right figure shows the comparison between M1146 + ACT (dot
line, circle), and cAMP-supplemented M1146 + ACT (black line, square). Error bar means standard deviation from three replicates.

precursor of purines) in response to cAMP supplementation:
SCO1254 (2SCG1.29), SCO4068 (purD), SCO4087 (purM), and
SCO4813 (purN). This transcriptome trend is consistent with
purine bases (guanine, xanthine, hypoxanthine, and adenine)
increasing at the metabolome level. In addition, expression
levels of genes encoding salvage pathway enzymes [SCO1514,
apt, and SCO3405, hprT (FDR = 0.077 and log2FC = 0.64)]
increased. These phenomena at transcriptome level are consistent
with the metabolome-based observation that guanine and GMP
levels increase as cAMP is supplemented (Figure 7). Therefore,
among the candidate key metabolites (guanine, xanthine, and
hypoxanthine) identified to be increasing in the metabolome
analysis of cAMP-supplemented culture, it was suggested that
guanine or a guanine-related reaction may be mediating the effect
of cAMP on cell growth and antibiotic production.

To test this hypothesis, we supplemented M1146 + ACT at
the mid–log phase with 20 µM 7-methylguanine, which is an
analog of guanine that inhibits guanine utilizing reactions by

competitive inhibition (Goodenough-Lashua and Garcia, 2003;
Fernandez et al., 2010). In addition, 20 µM 7-methylguanosine,
which is a possible competitive inhibitor of guanosine utilizing
reactions (Pathak et al., 2005), was also supplemented
independently at the mid–log phase of M1146 + ACT, to
test the idea that guanosine instead of guanine might be the
active metabolite in this regulatory system (Figures 8A,B).
Interestingly, both 7-methylguanine, and 7-methylguanine
supplementation impaired Act production by 2.22- and 1.85-
fold, respectively. In addition, both 7-methylguanine and
7-methylguanosine supplementation impaired guanine levels
by 2.81- and 2.31-fold, respectively (Figure 8D). In order
to identify whether this impairment occurs downstream or
upstream of the positive effect of cAMP supplementation,
cAMP was also supplemented to the two inhibitor-treated
cultures. cAMP supplementation recovered about 50% of Act
production only in the 7-methylguanosine–supplemented
culture (Figures 8A,B). Cell growth was monitored at 72 h

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 November 2020 | Volume 8 | Article 59555259

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-595552 November 3, 2020 Time: 11:51 # 9

Nitta et al. Multi-Omics Analysis of Streptomyces coelicolor

FIGURE 7 | Multi-omics analysis of cAMP-supplemented M1146 mapped to purine metabolism. Time course (20, 30, 40, 50, 64, and 72 h: from left to right) of
metabolite-level fold change between non–cAMP-supplemented M1146- and cAMP-supplemented M1146 is shown on a color scale from blue to red. Average
values from three replicates were used to calculate the fold change. Time-course gene expression (0, 1, and 2 h: from left to right) changes in response to cAMP
supplementation are shown on a color scale from green to red. The average value of read counts was normalized by autoscaling to see the difference well.

after cAMP was supplemented to the 7-methylguanine– or
7-methylguanosine–treated M1146 + ACT. 7-methylguanine–
treated cultures after cAMP supplementation still showed
a decreased amount of cells (p < 0.01), whereas cAMP
supplementation of 7-methylguanosine–treated cultures restored
the cell amount to untreated levels (p < 0.05; Figure 8C).
Guanine levels in the cells in inhibitor- and cAMP-supplemented
cultures were also monitored and compared at 72 h; here,
the addition of cAMP did not restore the guanine level in
7-methylguanine–supplemented culture, whereas addition
of cAMP restored the guanine level in 7-methylguanosine–
supplemented cultures (by 1.66-fold, statistically not significant;
Figure 8D). This is in partial agreement with our original
hypothesis that an increase in guanine is necessary for cell
growth and antibiotic production improvement by cAMP
supplementation. In summary, the addition of cAMP to 7-
methylguanine–supplemented culture did not restore Act
production and cell growth, whereas the addition of cAMP to
7-methylguanosine–supplemented culture restored the impaired
Act production and cell growth. Therefore, the negative effect of
7-methylguanine supplementation occurs upstream of the effects
of cAMP supplementation, and we suggest that the reaction(s)
inhibited by 7-methylguanine are mediating the positive effect
on growth and antibiotic production in S. coelicolor.

CONCLUSION

In this study, a metabolomics- and transcriptomics-based
approach was applied to elucidate the effect of Act production
in S. coelicolor. The analysis showed that Act production

was highly correlated with an increase in extracellular cAMP
levels, and cAMP supplementation was found to increase
antibiotic production and cell growth. Further multi-omics
analysis of cAMP-supplemented cultures showed that guanine
levels increased in response to cAMP supplementation, and
inhibition of guanine utilizing reactions by the analog 7-
methylguanine confirmed that some reaction or reactions
inhibited by 7-methylguanine mediate the positive effect of
cAMP supplementation on growth and antibiotic production.

MATERIALS AND METHODS

Bacterial Strain, Medium, Growth
Condition
Bacterial strains were grown in 50 mL liquid minimum nutrition
medium with same composition as previous study (Nieselt et al.,
2010) in well-siliconized 250-mL flasks containing stainless-steel
springs. For inoculation, 1 × 109 colony-forming units of spores
were inoculated to the 50 mL medium. Incubation speed and
temperature were set to 220 rpm and 30◦C, respectively. To
measure growth, cells were collected in 2 mL Eppendorf tube
and centrifuged to discard supernatant and washed well by
dH2O and lyophilized by freeze drying for measurement of dry
cell weight (DCW).

Antibiotic Production Quantification
Procedure to quantify extracellular actinorhodin was based on
previous study (Nieselt et al., 2010). Cells for intracellular
actinorhodin quantification were sampled by fast filtration with
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FIGURE 8 | Actinorhodin production inhibition by 7-methylguanine and 7-methylguanosine in M1146 + ACT and restoration by addition of cAMP. (A) Actinorhodin
production in control (M1146 + ACT; semi dotted line, circle), 7-methylguanine (20 µM)-supplemented (black line, square), and 7-methylguanine (20 µM)– and cAMP
(10 µM)–supplemented (dotted line, triangle) cultures. Error bar means standard deviation from three replicates. Circle means control sample, square means
7-methylguanine–supplemented, and triangle means 7-methylguanine– and cAMP-supplemented culture. (B) Actinorhodin production in control (M1146 + ACT;
semi dotted line, circle), 7-methylguanosine (20 µM)-supplemented (black line, square), and 7-methylguanosine (20 µM)– and cAMP (10 µM)–supplemented (dotted
line, triangle) cultures. Error bar means standard deviation from three replicates. (C) Cell weight (DCW: mg/mL) comparison at 72 h. Error bar means standard
deviation from three replicates. Asterisk means significant difference (**p < 0.01, *p < 0.05). (D) Guanine amount comparison at 72 h. Error bar means standard
deviation from three replicates. Asterisk means significant difference (**p < 0.01).

5.0-µm pore size nylon membrane filter and subjected to vacuum
fast filtration, and the cells were quenched in 15-mL Falcon
tube by liquid nitrogen and kept at −80◦C until extraction.
The cells were extracted by 4 mL of mix-solvent solution
[methanol, chloroform, and water 5:2:2 (vol/vol/vol)] with three
cycles of freeze and thaw cycle (freezing at −80◦C and thawing
at −30◦C). The extracts were centrifuged at 10,000 rpm for
10 min, and 2 mL supernatant was transferred to new 15-
mL Falcon tube, and 1 mL ultrapure water was added to
the supernatant and vortexed well. The mixture was separated
to two layers by centrifugation at 10,000 rpm for 10 min,
and the upper layer was used for intracellular actinorhodin
quantification. The colored extracts were diluted with the same
amount of 1 M NaOH solution, and OD608 was measured by
photometer. Here, a culture with an already known actinorhodin
concentration was extracted exactly the same way as was done
for intracellular actinorhodin extraction, and the OD608 was

measured. The value was used to quantify the unknown amount
of intracellular actinorhodin.

Culture Sampling for Metabolome
Analysis
Based on the growth curve of each strain, more than 10 mg
DCW cultures were sampled by nylon membrane filter with 5.0-
µm pore size and 47-mm diameter and subjected to vacuum fast
filtration. Cells on the filter were washed using twice amount of
3.5% (vol/vol) NaHCO3 solution to wash the medium component
away. The filter with cells was immediately quenched in 15-
mL Falcon tubes by liquid nitrogen and kept at −80◦C until
extraction. One-milliliter culture was sampled for extracellular
metabolome analysis and medium components analysis and Act
quantification. The culture was centrifuged at 10,000 rpm for
10 min, and supernatant was kept at −80◦C until extracellular
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metabolites extraction and medium components consumption
analysis. For time-course metabolome analysis and medium
components analysis, 20, 30, 40, 50, 64, and 72 h were selected
for sampling points based on the growth curve. In the case
of comparing the metabolome analysis data with transcriptome
analysis data, 18, 20, 22, 26, 30, 32, 34, 38, 44, and 50 h
were selected for extracellular metabolome analysis, whereas
less time points, 18, 22, 26, 30, 34, 38, 44, and 50 h, were
selected for intracellular metabolome analysis due to lack of
sampling volume.

Medium Components (Glucose,
Glutamate, and Phosphate)
Consumption Quantification
Medium components, glucose, glutamate, and phosphate, were
measured by commercially available quantification kits. F-kit-D-
glucose (J. K. International), L-glutamate assay kit Yamasa NEO
(Yamasa), and PiBlue phosphate assay kit (BioAssay Systems)
were used for quantification of glucose, glutamate and phosphate
in medium, respectively, by following manufacturing guides.

Extraction of Cells and Medium for
Metabolome Analysis
For intracellular metabolome analysis, 4 mL of mix solvent
[methanol, chloroform, and water ratio 5:2:2 (vol/vol/vol)] with
50 µg/L (+) 10-camphorsulfonic acid as an internal standard
was added to frozen cells in 15-mL Falcon tubes and extracted
with three cycles of freeze and thawing cycles (freezing at –
80◦C, thawing at –30◦C, vortexing for 10 s, and sonication for
10 s). The extracted cells were centrifuged at 10,000 rpm, 4◦C
for 10 min, and the supernatant was used for the following
extraction procedures. To the supernatant (2 mL), 1 mL ultrapure
water was added and vortexed for 5 s and separated to two
layers by centrifugation (10,000 rpm, 4◦C) for 10 min. The
upper polar phase was filtered by 0.2 µm PTFE hydrophilic
membrane filter, and the 2 mL extract solution was applied
to centrifugal concentration by spin dryer for 2 h, and the
samples were lyophilized overnight. The lyophilized sample
was kept at −80◦C until analysis. The lyophilized sample was
reconstituted with 400 µL ultrapure water when analyzed. The
extracted cells were washed by ultrapure water and subjected
to freeze drying to calculate DCW used for intracellular
metabolome analysis and normalize metabolite abundance by
the cell amount.

For extracellular metabolome analysis, 50 µL culture
supernatant was added to 1.8 mL mix solvent with the same
composition for intracellular metabolites extraction. The mixture
was vortexed for 5 s and kept at -30◦C, and the extracts were
centrifuged at 10,000 rpm and 4◦C for 10 min. The supernatant
(1.3 mL) was mixed with 0.65 mL ultrapure water and vortexed
for 5 s and separated to two layers by centrifugation at 10,000 rpm
and 4◦C for 10 min, and supernatant was filtered by 0.2 µm PTFE
hydrophilic membrane filter. Filtered sample (1 mL) was applied
to centrifugal concentration by spin dryer for 1 h, and the sample
was lyophilized overnight, and lyophilized sample was kept at

-80◦C until analysis. The lyophilized sample was reconstituted
with 200 µL ultrapure water when analyzed. Intracellular
and extracellular reconstituted sample solution (40 µL) was
transferred to LC vial for following LC-MS/MS analysis.

LC-MS/MS Analysis for Intracellular and
Extracellular Metabolome Analysis
In this study, two kinds of LC-MS/MS platform were employed
for achieving a wider range of metabolite coverage. One is
ion-pair LC-MS/MS with negative ionization mode, which is
previously described (Nitta et al., 2017). Acquired data from this
analysis were analyzed by Lab solution (Shimadzu).

For sugar phosphate isomer separation, different gradient (see
below) was employed for better chromatographic separation,
whereas other parameters were set to be the same. The gradient is
as follows: Percentage of mobile phase B was held at 0% for 1 min
and raised to 50% in 30 min and raised to 100% in a minute. After
holding at 100% for 1 min, the percentage was decreased to 0% in
a minute and held at 0% for 6 min for column equilibration for
the next analysis. All metabolites’ abundance was normalized by
area value of internal standard [(+) 10-camphorsulfonic acid] and
the DCW used for metabolite extraction.

The other platform is LC-MS/MS in positive ionization mode
with ESI (electrospray ionization) mode. Nexera X2 UHPLC
coupled to LCMS 8050 (Shimadzu) with Discovery HS F5-3
(3 µm, 150 × 2.1 mm) column was used. Formic acid 0.1%
(vol/vol) in ultrapure water was used for mobile phase A, whereas
acetonitrile was used for mobile phase B.

Column oven temperature was set to 40◦C, and injection
volume was set to 3 µL. The chromatographic separation was
conducted by gradient mode as follows. The total flow rate
was set to 0.2 mL/min, and percentage of mobile phase B
was held at 0% for 5 min and raised with a gradient for
4%/min until 40% and held for 10 min and then raised with
a gradient 60%/min until 100%. After holding at 100% for
2.5 min, the percentage was decreased to 0% in a minute
and held at 0% for 6 min for column equilibration for the
next analysis. Mass spectrometer parameters were set to as
follows: DL (desolvent line) temperature was set to 250◦C;
heating block temperature was set to 400◦C; nebulizer gas
flow was set to 3 L/min; drying gas flow rate was set to
10 L/min; heating gas flow rate was set to 10 L/min; and
interface temperature was set to 400◦C. All analyses were
performed by MRM mode. Acquired data from this analysis
were analyzed by Lab solution (Shimadzu). All metabolites’
abundance was normalized by area value of internal standard [(+)
10-camphorsulfonic acid]. Metabolome analysis data have been
deposited to the Metabolights public repository under accession
numbers MTBLS1984 and MTBLS2025.

Culture Sampling for RNAseq Analysis
Before sampling, all solutions used for RNA extraction was
autoclaved two times to avoid RNase contamination. Based on the
growth curve, more than 2.0 mg DCW cell cultures were sampled
and mixed with twice the amount of RNA protection reagent
(Qiagen), immediately. The cells were vortexed for 10 s, kept
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for 5 min at room temperature, and centrifuged at 10,000 rpm,
20◦C for 10 min. Supernatant was eliminated as much as possible,
and the cells were quenched by liquid nitrogen immediately and
kept at −80◦C until RNA isolation. For time-course RNAseq of
M1146 and M1146 + ACT, the samples were collected at 18,
20, 22, 26, 30, 32, 34, 38, 44, and 50 h. For RNAseq of cAMP-
supplemented M145, 3 µM cAMP was supplemented to M145
at 48 h, and the samples were collected at 50 h. For RNA-Seq of
cAMP-supplemented M1146, 10 µM cAMP was supplemented at
20 h, and the samples were collected at 21 and 22 h.

Cell Lysis, RNA Extraction, Purification,
and Quality Check
Cells were resuspended by double-autoclaved empty tip, and
0.17 mL of 15 mg/mL lysozyme was added to the cells and
incubated at 30◦C for 10 min. The solutions including cells
were transferred to tube containing lysing matrix E (MPbio
medicals) and 0.6 mL RLT buffer (Qiagen) supplemented with
β-mercaptoethanol (100:1, vol/vol) and vortexed for 5 s. Three
pulses were applied to the tube by Fast Prep (6.5 m/s, 30 s),
whereas the tubes were kept on ice between pulses for 30 s. The
tubes were centrifuged at 10,000 rpm and 4◦C for 1 min, and
the lysate was recovered. After centrifuging heavy Phase Lock
Gel (PLG) tube to pack the resin for 1 min, 0.65 mL recovered
lysate was transferred to the heavy Phase Lock Gel (PLG) tube;
0.65 mL isoamyl alcohol and acid phenol mixture were added
to the lysate in heavy PLG tube and mixed by inversion for
1 min. The heavy PLG tubes containing extracts were centrifuged
for 5 min, and superior aqueous phase was recovered. RNA
purification was performed with Direct-zol RNA MiniPrep Plus
(Zymo research). After 0.6 mL ethanol was added to recovered
0.6 mL of aqueous phase and mixing by pipette, Zymo-spin IIICG
column was assembled to collection tube, and 0.6 mL mixture
solution was transferred to the assembled column-collection tube
and centrifuged at 10,000 rpm for 30 s. Flow-through from the
collection tube was discarded, and the remaining 0.6 mL of
mixture of aqueous extract and ethanol was transferred to the
assembled column-collection tube, consequently centrifuged at
10,000 rpm for 30 s. The flow-through in the collection tube
was discarded again. RNA wash buffer completed with ethanol
(0.4 mL) was added to the column and centrifuged at 10,000 rpm
for 30 s, and the flow-through was discarded. To the column
matrix, 80 µL of DNase (6 U/µL) was added and incubated
at 30◦C for 15 min. After incubation, RNA was washed for
two cycles (adding 0.4 mL of Direct-zol RNA prewash to the
column, centrifuging at 10,000 rpm for 30 s and discarding the
flow through). To the column, 0.7 mL RNA wash buffer was
added and centrifuged for 2 min to ensure complete removal
of wash buffer. Consequently, the column was transferred to
a new RNase-free tube; 50 µL of DNase/RNase-free water was
added and incubated at room temperature for 1 min. The column
with sample containing water was centrifuged at 10,000 rpm
for 1 min, and the tube with the RNA sample was frozen by
liquid nitrogen until the next step. RNA concentration was
quantified by NanoDrop (ThermoFisher Scientific), and RNA

quality based on RNA integrity number was evaluated by Bio-
analyzer (Agilent Technologies).

Ribosomal RNA Deletion, cDNA Library
Construction, and Sequencing
All rRNA deletion, strand-specific cDNA library construction,
and the sequencing experiment were outsourced to Vertis Co.
(Germany) and Genewiz Japan (Japan) and performed by their
in-house–developed methods. Time-course RNAseq analysis of
M1146 and M1146 + ACT and RNAseq of cAMP-supplemented
M145 was performed by Vertis (Germany), and cDNA pools
were sequenced on an Illumina NextSeq 5000 system using
75-bp length with 1 × 10-M reading depth. Time-course
RNAseq analysis of cAMP-supplemented M1146 was performed
by Genewiz (Japan), and cDNA pools were sequenced by
Illumina HiSeq X-ten system using 150-bp length with 2 × 10-
M reading depth.

RNASeq Data Analysis
Sequencing data were obtained from Vertis Co. and Genewiz
Co. in FASTQ format. Reference genome data of S. coelicolor
were downloaded from NCBI, and generation of reference
genome library and read mapping to the reference genome
library were performed by STAR version 2.7 (Dobin et al.,
2013) on a Linux PC. Obtained SAM files were converted to
BAM file by Samtools (Li et al., 2009). Defining gene model,
reads counting, normalization, and differential gene expression
analysis procedures were based in a previous study (Love
et al., 2015). All data were transferred to R version 3.6.1, and
BAM file list was generated by R package Rsamtools; reference
gene model was generated by R package GenomicFeatures
(Lawrence et al., 2013); sequencing reads were counted R
package GenomicAlignments (Lawrence et al., 2013), and finally
RLE normalization and differential gene expression analysis
were performed by R package DESeq2 (Love et al., 2014).
For defining differential gene expression, a threshold of FDR
less than 5% and log2 FC greater than 0.5 was chosen.
RNAseq analysis data have been deposited to the NCBI Gene
Expression Omnibus public repository under accession numbers
GSE155796, GSE158810, and GSE158811.

GSEA
Gene Set Enrichment Analysis was performed using the DAVID
Functional Annotation Bioinformatics Microarray Analysis
version 6.8 (Huang da et al., 2009a,b). The GSEA was performed
based on biological process, pathway, and keywords.

Multivariate Analysis (Heatmap Analysis
and K-Means Clustering)
Heatmap analysis of metabolome data was conducted using the
R package pheatmap under R version 3.6.1. K-means clustering
of time-course transcriptome data was performed using iDEP90
(Ge et al., 2018).
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cAMP Addition and Analysis of the
Culture Extracts by LC-QTOF MS
cAMP (10 µM) was supplemented to culture of M1146 at the
mid–log phase, and culture was sampled at 72 h. Medium (20 mL)
was vortexed well with 20 mL ethyl acetate. After centrifugation
(10,000 rpm, 4◦C) for 10 min, the 20 mL supernatant was
subjected to centrifugal concentration and lyophilized by freeze
drying. The lyophilized sample was reconstituted with 400 µL
50% acetonitrile, and the 40 µL solution was transferred to LC
vial and subjected to LC-QTOF MS analysis. LC-QTOF MS
9030 (Shimadzu) was used for secondary metabolite detection
and Nexera XR UHPLC (Shimadzu), and the Inert Sustain AQ-
C18 (3 µm, 150 × 2.1 mm; GLscience) column was used for
chromatographic separation. Formic acid 0.1% in ultrapure water
(vol/vol) was used for mobile phase A. whereas acetonitrile with
0.1% formic acid (vol/vol) was used for mobile phase B. The
chromatographic separation was performed by gradient mode.
Gradient condition is as follows. The ratio of mobile phase B was
kept at 0% for 3 min, raised until 100% by 8 min, and kept at 100%
for 2 min. The B ratio was reduced to 0% by 3 min and kept at 0%
for the next analysis. The flow rate was set to 0.2 mL/min. Column
oven temperature was set to 40◦C. The injection volume was set
to 3 µL. For mass spectrometer parameter, the following settings
were used. Interface voltage was set to 4 kV, needle voltage was
set to 4.5 kV, flow rate of nebulizer gas was set to 2.0 L/min,
flow rate of heating gas was set to 10 L/min, flow rate of drying
gas was set to 10 L/min, interface temperature was set to 300◦C,
DL temperature was set to 250◦C, and heat block temperature
was set to 250◦C. Metabolites were ionized in positive ionization
mode by DUIS (dual ion source) mode. For secondary metabolite
peak discovery, TOF m/z range was set to 100 to 700. For specific
germicidin analysis, TOF m/z range was set to 100–250. For
MS/MS analysis, collision energy was set to -15 eV.
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Targeted proteomics is a mass spectrometry-based protein quantification technique
with high sensitivity, accuracy, and reproducibility. As a key component in the multi-
omics toolbox of systems biology, targeted liquid chromatography-selected reaction
monitoring (LC-SRM) measurements are critical for enzyme and pathway identification
and design in metabolic engineering. To fulfill the increasing need for analyzing large
sample sets with faster turnaround time in systems biology, high-throughput LC-SRM
is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the
speed offered by microflow LC-SRM. Recent advancements in mass spectrometry
instrumentation significantly enhance the scan speed and sensitivity of LC-SRM,
thereby creating opportunities for applying the high speed of microflow LC-SRM
without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the
performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339
peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various
carbon sources. The results from the two LC-SRM platforms are highly correlated. In
addition, the response curve study of 248 peptides demonstrates that microflow LC-
SRM has comparable sensitivity for the majority of detected peptides and better mass
spectrometry signal and chromatography stability than nanoflow LC-SRM.

Keywords: targeted proteomics, Pseudomonas putida KT2440, mass spectrometry, selected reaction monitoring,
central carbon metabolism

INTRODUCTION

Liquid chromatography (LC) selected reaction monitoring (SRM, or multiple reaction
monitoring – MRM) targeted proteomics is a popular mass spectrometry (MS)-based
protein quantification technique (Picotti and Aebersold, 2012; Ebhardt et al., 2015). Highly
sensitive and accurate protein quantification is afforded by LC-SRM analysis of enzymatic
digests of proteins in the presence of isotope-labeled internal peptide standards. Most
targeted proteomics assays are limited to a few dozen proteins per run and the samples
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are often acquired using nanoflow LC-SRM in order to achieve
high sensitivity (Picotti et al., 2009; Huttenhain et al., 2012).
As mass spectrometry techniques advance, the sensitivity and
scan speed of mass spectrometers have greatly improved,
yielding analyte detection with high signal to noise in short
dwell times. LC-SRM workflows can now monitor hundreds
of peptides in a single analysis (Lee et al., 2020), which
provides researchers opportunities for deeper exploration into
biological systems. In the current era of high-throughput
biology, there is also an increasing need to systematically
capture detailed information about biological systems with high-
throughput experiments. Therefore, the long overhead time
(i.e., sample loading, column washing, and equilibrating) of
nanoflow LC-SRM can no longer meet the demands of high-
throughput studies. Nanoflow LC-SRM also lacks robustness
due to the difficulty in keeping stable electrospray over
a long period of time. Compared to nanoflow LC-SRM,
microflow LC-SRM provides higher throughput and better
reproducibility, advantages that overshadow its slightly less
sensitivity (Bian et al., 2020).

Pseudomonas putida KT2440 (P. putida) is a metabolically
versatile, Gram-negative soil bacterium with excellent
environmental tolerance since it can grow on a wide variety of
carbon sources and thrive in diverse environmental conditions
(e.g., aquatic and soil). It has considerable potential for a wide
range of biotechnological applications (Linger et al., 2014;
Loeschcke and Thies, 2015; Nikel et al., 2016; Johnson et al.,
2019). It is critical to understand the intrinsic metabolism of
P. putida before redesigning it to function as an efficient cell
factory for desired bioproduct production through synthetic
biology-guided engineering.

Here, we performed a systematic comparison of key
characteristics of microflow LC-SRM and the conventional
nanoflow LC-SRM platforms through a response curve study
of 248 P. putida peptides in pooled P. putida digests, including
throughput, sensitivity, reproducibility, and stability. We also
applied both platforms to quantify the expression levels of 132
enzymes (i.e., 339 peptides) in P. putida, including enzymes from
carbohydrate metabolism, amino acid metabolism, and other
pathways. The bacteria were grown in 8 different conditions
(p-coumarate in MOPS medium, glucose in MOPS medium,
glucose in M9 medium, gluconate in M9 medium, fructose
in M9 medium, glucose plus gluconate in M9 medium,
fructose plus glucose in M9 medium, and fructose plus glucose
plus gluconate in M9 medium). Together, we demonstrated
that microflow LC-SRM is a robust, high-throughput targeted
proteomic approach with little or no loss of sensitivity relative
to nanoflow LC-SRM, and it works well in quantifying
metabolic pathway enzymes and providing deep insights into the
metabolism of P. putida.

MATERIALS AND METHODS

P. putida KT2440 Cell Cultivation
Pseudomonas putida KT2440 cells were grown in either MOPS
minimal media (LaBauve and Wargo, 2012) or modified minimal

M9 medium (comprising 6.78 g/L Na2HPO4, 3 g/L KH2PO4,
0.5 g/L NaCl, 1 g/L NH4Cl, 2 mM MgSO4, 100 µM CaCl2,
18 µM FeSO4), and 30 mM total of the respective carbon
source(s). In MOPS minimal media, cell cultures were cultivated
in two individual carbon sources, glucose and p-coumarate. In
modified minimal M9 medium, cell cultures were cultivated
in three individual carbon sources, as well as permutations of
each carbon source combination. Specifically, cell cultures were
grown individually on glucose, gluconate, and fructose, and
on mixed carbon sources: glucose plus gluconate, fructose plus
glucose, fructose plus glucose plus gluconate. Cell cultures were
inoculated to a starting optical density measured at 600 nm
(OD600, measured by a Beckman DU640 spectrophotometer)
of 0.1 in 50 mL of medium, according to previously reported
methods (Bentley et al., 2020). The cultures were then incubated
at 30◦C in 250 mL baffled flasks, shaking at 225 rpm until an
OD600 of 0.7 was reached, reflecting mid-log phase of growth.
The cells were pelleted by centrifugation at 4,500 rpm for 5 min,
the supernatant was decanted, and the pellets were washed with
ice cold phosphate-buffered saline (PBS) and flash frozen in
liquid nitrogen and stored at−80◦C until analysis.

Protein Extraction and Tryptic Digestion
Proteins were extracted from the cell pellets using a metabolite,
protein, lipid extraction (MPLEx) method (Nakayasu et al.,
2016; Burnum-Johnson et al., 2017; Kim and Heyman, 2018).
Briefly, in solvent resistant tubes (Sorenson), the cell pellets were
resuspended in H2O and a solvent mixture of four volumes
of cold 2:1 chloroform:methanol mix was added. Samples were
vigorously vortexed for 30 s, placed on ice for 5 min, vortexed
again for 30 s, and centrifuged at 15,000 × g for 5 min
at 4◦C. After centrifugation, the denatured protein interphase
was washed in 1 mL of cold 100% methanol, vortexed, and
centrifuged again at 15,000 × g for 5 min at 4◦C to pellet
the protein. The methanol was removed, and samples were
dried in a fume hood.

The protein pellet was resuspended in 100 mM NH4HCO3
containing 8 M urea and protein concentration was measured
by a bicinchoninic acid (BCA) assay (Thermo Fisher Scientific,
Waltham, MA, United States). Disulfide bonds were reduced by
adding dithiothreitol (DTT) to a final concentration of 5 mM
and incubating at 60◦C for 30 min with constant shaking at
850 rpm. Samples were alkylated with a final concentration of
40 mM iodoacetamide for 1 h at 37◦C at 850 rpm. The reaction
was then diluted 10-fold with 100 mM NH4HCO3 followed by
the addition of CaCl2 to 1 mM final concentration. Sequencing-
grade trypsin (Promega, Madison, WI, United States) was added
to all protein samples at a 1:50 (w/w) trypsin-to-protein ratio
and incubated for 3 h at 37◦C. Digested samples were desalted
with 1 mL Discovery C18 SPE columns (Supelco, Bellefonte, PA,
United States), using the following protocol: 3 mL of methanol
was added for conditioning the column followed by 2 mL of 0.1%
TFA in H2O. The samples were then loaded onto each column
followed by 4 mL of 95:5: H2O:ACN, 0.1% TFA. Samples were
eluted with 1 mL 80:20 ACN:H2O, 0.1% TFA. The samples were
concentrated down to ∼100 µL using a Speed Vac and a final
BCA was performed to determine the peptide concentration.
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Targeted Proteomics Assay
Development
Targeted peptides were selected for 132 proteins in major
pathways of P. putida KT2440, including carbohydrate
metabolism, amino acid metabolism, biosynthesis of terpenoids
and polyketides, energy metabolism, xenobiotics biodegradation,
lipid metabolism, and nucleotide metabolism pathways
(Supplementary Table 1) derived from RefSeq assembly
accession GCF_000007565.2 using a BioCyc pathway/genome
database (Caspi et al., 2013; Paley et al., 2017; Karp et al., 2019).
Peptide selection was based on the spectral count data from
our global proteomics and then evaluated by Prego (Searle
et al., 2015) and CONSeQuence (Eyers et al., 2011) scores. All
peptides were further blasted against P. putida KT2440 proteome
using Protein Coverage Summarizer1 for their uniqueness to
target proteins. The crude synthetic heavy isotope-labeled (e.g.,
13C/15N on C-terminal lysine and arginine unless otherwise
noted) peptides were purchased from New England Peptide
(Gardner, MA, United States; FlashPureTM Custom Peptide
Array Tier 3). All the cysteines of the synthetic heavy peptides
were modified by carbamidomethylation (CAM). Upon receiving
the crude synthetic heavy peptides, they were mixed together and
diluted with 0.1% formic acid in 15% acetonitrile in water to get a
nominal concentration of 1 µM for each individual peptide. The
heavy peptide stock solution was aliquoted and stored at −80◦C
until further use.

To evaluate the peptide quality and select the best responsive
transitions for each peptide, 500 fmol/µL of heavy peptide
mixture was subjected to high-resolution mass spectrometry
analysis (e.g., LTQ Velos Orbitrap MS) since the peptide
fragmentation patterns from HCD MS/MS on Orbitrap MS is
similar to those from CID MS/MS on triple quadrupole MS
(Wu et al., 2014). Firstly, the six most intensive fragment ions
for each peptide were selected based on their corresponding
MS/MS spectra. The collision energies for individual transitions
were obtained by using empirical equations from the Skyline
software (MacLean et al., 2010). Secondly, we employed LC-
SRM to further evaluate all heavy peptides for the LC
performance (e.g., the stability of peptide retention time), MS
response (e.g., reliable heavy peptides identification), transition
interferences, and endogenous peptide detectability by spiking
them into water and the samples. In the end, 2–3 transitions
per peptide and 1–3 peptides per protein were selected for
the final panel of targeted proteomics assay. There were 339
peptides representing 132 proteins monitored in the final assay
(Supplementary Tables 1, 2).

Heavy Peptide Spike-In and Sample
Loading
There are two sets of samples. One is individual P. putida samples
taken directly from peptide digests, and the other is the pooled
P. putida samples, where the individual samples were pooled
together to make peptide digests with large volume and used
exclusively for response curve studies.

1https://omics.pnl.gov/software/protein-coverage-summarizer

For individual P. putida samples of microflow LC-SRM
analysis, crude heavy peptide mixture stock solution was spiked
in the 0.50 µg/µL peptide samples at a nominal concentration of
25 fmol/µL for each peptide. For individual P. putida sample of
nanoflow LC-SRM analysis, crude heavy peptide mixture stock
solution was spiked in the 0.125 µg/µL peptide samples at a
nominal concentration of 6.25 fmol/µL for each peptide.

In the response curve study, the response curves of 248
peptides representing 111 proteins were evaluated by spiking
heavy isotope labeled peptides in pooled P. putida samples at
concentrations of 0 (blank), 0.002, 0.008, 0.04, 0.24, 1.2, 6, 30,
120, and 600 fmol/µg. Each of the above samples was subject to
both microflow LC-SRM and nanoflow LC-SRM with loading of
25 µg for microflow LC-SRM and 0.25 µg for nanoflow LC-SRM.
The response curve samples were injected from lowest to highest
with triplicated technical replicates performed on each sample
and platform combination.

Microflow and Nanoflow LC-SRM
Analysis
Microflow LC-SRM analysis utilized a nanoACQUITY
H-Class UHPLC R© system (Waters Corporation, Milford,
MA, United States), while nanoflow LC-SRM analysis utilized
a M-Class UHPLC R© system (Waters Corporation, Milford,
MA, United States). Both are coupled online to a TSQ AltisTM

triple quadrupole mass spectrometer (Thermo Fisher Scientific).
The microflow LC-SRM’s UHPLC R© system was equipped with
an ACQUITY UHPLC BEH 1.7 µm C18 column (1,000 µm
i.d. × 15 cm), while the nanoflow LC-SRM’s UHPLC R© system
was equipped with an ACQUITY UHPLC BEH 1.7 µm C18
column (100 µm i.d. × 10 cm). In both systems, the mobile
phases were (A) 0.1% formic acid in water and (B) 0.1% formic
acid in acetonitrile. The sample loading for microflow LC-SRM
is 50 µL of sample (i.e., 25 µg of peptides), while that for
nanoflow LC-SRM is 2 µL of sample (i.e., 0.25 µg of peptides).
The gradient profile for the microflow LC contained a duty
cycle of 32.0 min and a gradient length of 18.9 min (detailed as
following, 0.0:90:7, 1.1:90:7, 12.0:90:28, 18.0:90:60, 20.0:90:95,
22.0:90:95, 23.0:90:1, 24.0:90:50, 25.0:90:1, 26.0:90:7, 32.0:90:7, in
terms of min:flow-rate-µL/min:%B), while the gradient profile
for the nanoflow LC contained a duty cycle of 110.0 min and
a gradient length of 78.0 min (detailed as following, 0.0:0.4:1,
1.0:0.6:1, 6.0:0.6:1, 7.0:0.4:1, 9.0:0.4:6, 40.0:0.4:13, 70.0:0.4:22,
80.0:0.4:40, 85.0:0.4:95, 90.0:0.4:95, 91.0:0.5:95, 92.0:0.5:95,
93.0:0.5:50, 94.0:0.5:95, 95.0:0.6:1, 98.0:0.4:1, 110.0:0.4:1, in
terms of min:flow-rate-µL/min:%B). Both LC columns were
operated with a temperature of 45◦C. The TSQ AltisTM triple
quadrupole mass spectrometer was operated with ion spray
voltages of 4000 ± 100 V and a capillary inlet temperature of
325◦C in microflow SRM mode, while it was operated with ion
spray voltages of 2100 ± 100 V and a capillary inlet temperature
of 350◦C in nanoflow SRM mode. In both microflow LC-SRM
and nanoflow LC-SRM, tube lens voltages were obtained from
automatic tuning and calibration without further optimization.
Both Q1 and Q3 were set at unit resolution of 0.7 FWHM and Q2
gas pressure was optimized at 1.5 mTorr. The transitions were
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scanned with a minimal dwell time of 0.879 msec for microflow
SRM and 0.806 msec for nanoflow SRM, respectively.

Data Analysis
All the LC-SRM data were imported into the Skyline software
and the peak boundaries were manually inspected to ensure
correct peak assignment and peak boundaries. The normalized
dot product of the light transition peak areas with the heavy
transition peak areas (i.e., DotProduct as denoted in Skyline) was
calculated by the Skyline software, and it can be used to check
whether the transition peak areas in the two label types are in the
same ratio to each other determining their spectral similarity.

For individual samples, the total peak area ratios of
endogenous light peptides and their corresponding heavy
isotope-labeled internal standards were calculated by the Skyline
software. The detectability of a spectra was defined by having
DotProduct above 0.86 and maximum intensity of light above
1,300. Peptide-peptide correlation within single proteins were
evaluated and there were 16 peptides whose abundance profile
across 30 samples were significantly different from other peptides
in the same proteins. The final 323 peptides were proceeded with
final protein abundance rollup by removing those 16 peptides.
Specifically, data were log2 transformed, compared to assure no
biases (Webb-Robertson et al., 2011), and normalized by global
median centering based on rank-invariant peptides (Callister
et al., 2006), where rank invariance was determined by a p-value
threshold of 0.2. Protein quantification was performed using
R-rollup (Polpitiya et al., 2008; Matzke et al., 2013), which
scaled the peptides associated with each protein by a reference
peptide (the peptide with the least missing data) and then set the
median of the scaled peptides as the protein abundance. Pairwise-
univariate statistical comparisons were carried out between each
of the other carbon sources and glucose in M9 medium using
an analysis of variance (ANOVA) with a Dunnet multiple
test correction, or between p-coumarate and glucose in MOPS
medium and between MOPS medium and M9 medium with
glucose as carbon source using a standard two-sample t-test
(Webb-Robertson et al., 2010, 2017).

For response curve study, the response curves of peptides
were generated using the heavy-over-light peak area ratios and
the heavy peptides concentrations. Similar to the analysis of
individual samples, the DotProduct for all the replicates at the
LODs and LOQs level need to be above 0.86 while the maximum
intensity of heavy above 1,300. The limit of detection (LOD)
was determined from the blanks using the average plus three
times the standard deviation of the blank signals, while the limit
of quantification (LOQ) using the average plus 10 times the
standard deviation of the blank signals. Additionally, LOQs also
have coefficient variations of less than 20%. The final LOD and
LOQ were listed in Supplementary Table 3. Peak capacity was
calculated using the formula p = 1 + tg/w, where tg is the length
of the length of the LC gradient and w is the peak width in
terms of the full width at half maximum (FWHM). FWHMs
were exported from Skyline. The gradient lengths are 78.0 min
and 18.9 min for nanoflow and microflow LC-SRM, respectively,
while the average FWHMs of all the 248 response curve peptides
are 0.22 min and 0.12 min for nanoflow and microflow LC-SRM,

respectively. The calculated peak capacities are 356 and 159 for
nanoflow and microflow LC-SRM, respectively.

RESULTS

The goal of this study was to develop a high-speed platform
that can expedite targeted proteomics analysis, thereby increasing
the sample analysis throughput for studying biological systems
without significantly reducing the sensitivity. Implementation of
this high-speed LC-SRM platform can analyze enzymatic digests
of P. putida protein extracts in the presence of hundreds of
isotope-labeled internal peptide standards, enabling rapid and
accurate protein quantification and deep exploration of metabolic
pathways (Figure 1).

Microflow and Nanoflow LC-SRM
Platform Comparison in Response Curve
Study
The microflow LC-SRM platform utilized a 1 mm i.d. column
packed with 1.7 µm C18 particles, with a total run time of
32 min. By comparison, the nanoflow LC-SRM system employed
a 100 µm i.d. column packed with the same C18 particles, with
a total run time of 110 min, and thus the microflow LC-SRM
platform increases the sample analysis throughput by more than
3-fold. The microflow LC-SRM platform can potentially result
in analyzing 10,000 more samples than the nanoflow LC-SRM
system each year (Figure 2). Many software tools (MacLean et al.,
2010; Choi et al., 2014; Gibbons et al., 2019) can be used to
facilitate the efficient analysis of the large-scale SRM data, and
the data analysis time will be well below the instrument run time.
The utilization of microflow LC-SRM is often considered to have
lower sensitivity but increased robustness relative to the nanoflow
LC-SRM system (Gatlin et al., 1998; Bian et al., 2020). In order to
evaluate the effectiveness and efficacy of microflow LC-SRM, we
performed a thorough comparison between microflow LC-SRM
and nanoflow LC-SRM.

The study monitored the responses of 248 heavy isotope
labeled synthetic peptides (Supplementary Table 3) spiked-
in at various concentrations on both microflow LC-SRM and
nanoflow LC-SRM platforms. The endogenous peptides in the
pooled P. putida samples were used here as references in LC-
SRM analysis. The effective gradient length of nanoflow LC-SRM
is about five times that of microflow LC-SRM (Supplementary
Figure 1). On average, the chromatographic peak width (FWHM)
in microflow LC-SRM is about 2 times that of nanoflow LC-
SRM (Figure 3A). The resulting peak capacity of the nanoflow
LC-SRM is substantially higher than that of the microflow
LC-SRM (>2 times). This indicates that the extended LC
gradient greatly improves peak capacity, even when the column
length of microflow LC-SRM (150 mm) is longer than that
of nanoflow LC-SRM (100 mm). The lower peak capacity
of microflow LC-SRM resulted in lower separation power
compared to that of nanoflow LC-SRM, as seen in their total
ion chromatography (Supplementary Figure 1). Even though
microflow LC-SRM will benefit from the narrower peak width
by increasing analyte concentration, the high flow significantly
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FIGURE 1 | Schematic diagram of the liquid chromatography selected reaction monitoring (LC-SRM) workflow. (A) Sample establishment. The heavy isotope
labeled internal standard peptides from metabolic pathways of interest are spiked into the tryptic peptides digested from cell lysates, and this results in a mixture of
endogenous peptides and internal standard peptides. The mixture will go through liquid chromatography separation and be analyzed by mass spectrometers.
(B) Selected reaction monitoring using a triple quadrupole mass spectrometer. The eluents of liquid chromatography (LC) separation, carrying both endogenous and
internal standard peptides at the same time, are ionized using electrospray ionization. The precursor ions are filtered in Q1, and they are then dissociated via collision
into multiple fragment ions in Q2. In Q3, each fragment ion is monitored individually (normally 1 to 5 fragment ions per precursor ion) over the LC elution time. The
endogenous peptides share the same retention time and fragmentation profile as their internal standard counterparts. The authors thank PNNL Graphic Designer
Nathan Johnson for preparing the figure.

dilutes analyte concentration (90 µL/min versus 0.4 µL/min).
To offset this dilution, 100 times more sample mass was loaded
on to the microflow LC-SRM column. Sample loading might
be a concern for some biological studies with limited sample
volumes. By loading 100 times more sample onto the column,
similar concentrations of analytes at the time of elution were
achieved between nanoflow LC-SRM and microflow LC-SRM.
The peak areas of peptides in nanoflow LC-SRM were on average
4 times higher than those in microflow LC-SRM (Supplementary
Figures 2A,C), mainly due to less interference and better
ionization efficiency of nanoflow LC-SRM. However, the stability
of the ESI signal in microflow LC-SRM is much higher than
that in nanoflow LC-SRM, as demonstrated by the coefficient of
variation (CV) of peptide peak areas of three replicated samples
(Supplementary Figures 2B,D) as well as the CV of peptide
peak area ratios of three replicated samples (Supplementary
Figure 2E). Moreover, the peptide retention time is also more
stable in microflow LC-SRM compared to that in nanoflow LC-
SRM. As shown in Figure 3B, the average standard deviation
of peptide retention time is 0.21 min for nanoflow LC-SRM
while 0.01 min for microflow LC-SRM. The standard deviation
of peptide retention time is an important factor in determining
the time window (i.e., start and end times of acquisition) of
each peptide for a large-scale multiplexed LC-SRM assay. The

smaller the standard deviation of peptide retention time, the
narrower the time window. Microflow LC-SRM will be able to
use a much narrower time window to fit more peptides in the
assay, which will improve the peptide-multiplexing power in a
single LC-SRM run.

In order to evaluate the sensitivity of microflow LC-SRM
and nanoflow LC-SRM, the LODs and LOQs of 248 peptides
were measured. The LODs and LOQs of all the 248 peptides are
listed in Supplementary Table 3. In general, the distributions of
overall LODs and LOQs in microflow LC-SRM are very similar
to those in nanoflow LC-SRM (Figures 3C,D). Comparing the
LODs and LOQs of microflow LC-SRM to those of nanoflow LC-
SRM at the individual peptide level (Figures 3E,F), the LODs
and LOQs of the majority of peptides are the same, while the
number of peptides whose LODs are higher in microflow LC-
SRM are more than the number of peptides whose LODs are
lower in microflow LC-SRM. This indicates that microflow LC-
SRM provides equal or slightly lower sensitivity compared to
nanoflow LC-SRM. Microflow LC-SRM is likely to lose some
sensitivity compared to nanoflow LC-SRM due to its smaller peak
area and lower separation power, but the increased stability of
microflow LC-SRM overcomes this potential limitation.

In summary, compared to nanoflow LC-SRM, microflow LC-
SRM has comparable or slightly lower sensitivity and similar
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FIGURE 2 | Comparison of the microflow LC-SRM and nanoflow LC-SRM platforms. The top figure includes the size of the column, sample loading, total gradient
length, and number of samples per day. The bottom figure shows the number of samples run versus the days spent on the analysis in an ideal situation regardless of
the instrument down time. In 1 year, the microflow LC-SRM platform can analyze >10000 more samples than the nanoflow LC-SRM platform.

multiplexing power, but much better sample throughput and
stability. The main criteria for applying microflow LC-SRM
is whether there is enough biological material (i.e., 25–
50 µg of peptide digests) to load onto the larger microflow
analytical column.

LC-SRM Analysis of Metabolic Pathway
Enzymes in 30 P. putida Samples
Both microflow LC-SRM and nanoflow LC-SRM were
used to analyze a total of 132 enzymes, including 92 in
carbohydrate metabolism, 26 in amino acid metabolism,
4 in nucleotide metabolism, 3 in energy metabolism, 4
in biosynthesis of terpenoids and polyketides, 2 in lipid
metabolism, and 1 in xenobiotics biodegradation, as
listed in Supplementary Table 1. All the 339 peptides
corresponding to 132 proteins monitored were detected
by both microflow LC-SRM and nanoflow LC-SRM. The
detectability (i.e., number of samples where peptides

are detected) in the majority of the peptides (i.e., 304
peptides) are the same between microflow LC-SRM
and nanoflow LC-SRM, while nanoflow LC-SRM has
slightly better detectability in 34 peptides and worse
detectability in 1 peptide than microflow LC-SRM
(see Supplementary Table 4). Overall, the peptide
abundance measured by microflow LC-SRM and nanoflow
LC-SRM are highly correlated for the same sample
(Supplementary Figure 3).

In this study, the samples fed with glucose were grown
in either M9 minimal salts medium or MOPS minimal
medium, while samples fed with p-coumarate were grown
in MOPS medium and samples fed with gluconate,
fructose and mixed carbon sources (glucose + gluconate,
fructose + glucose, fructose + glucose + gluconate) were
grown in M9 medium. Statistical comparisons between
conditions at protein level demonstrated great similarity
between microflow LC-SRM and nanoflow LC-SRM
in their findings of significantly differentiated proteins
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FIGURE 3 | Performance characteristics of the microflow LC-SRM system versus nanoflow LC-SRM system from the response curve study of 248 P. putida
peptides. The microflow LC-SRM platform is shown in blue and the nanoflow LC-SRM platform in brown for (A–D). (A) Violin plot comparing the average full width at
half maximum (FWHM) of the three replicated samples at 600 fmol/µg heavy isotope labeled peptide spike-in concentration. (B) Violin plot comparing the standard
deviation of the retention times of the three replicated samples at 600 fmol/µg heavy isotope labeled peptide spike-in concentration. (C) Violin plot comparing the
limit of detection (LOD). (D) Violin plot comparing the limit of quantification (LOQ). (E) Histogram of the LOD differences between microflow LC-SRM platform and
nanoflow LC-SRM platform of individual peptides, in terms of ratios of LOD in microflow LC-SRM over LOD in nanoflow LC-SRM. (F) Histogram of the LOQ
difference between the microflow LC-SRM platform and nanoflow LC-SRM platform of individual peptides, in terms of ratios of LOQ in microflow LC-SRM over LOQ
in nanoflow LC-SRM. The three horizontal lines across the violin plots are 2.5, 50, and 97.5% quartiles, respectively, while the red dots in the violin plots are the
mean value.

(i.e., p-value < 0.05 and fold change > 2), as shown in
Supplementary Figures 4A–G.

The stability of peptide retention time across 30 samples
in nanoflow LC-SRM is worse than that in microflow LC-
SRM (Supplementary Figure 5), and these differences were
larger when analyzing 30 different samples compared to only

analyzing 3 samples of the same matrix composition in the
response curve study (Figure 3B). The less stable peptide
retention time using nanoflow LC-SRM will make the time
window scheduling challenging, especially for the analysis of
complex sample extracts. Microflow LC-SRM is better suited
to facilitate high-throughput time-scheduled SRM transition
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FIGURE 4 | Volcano plots displaying differential expressed genes in four comparisons presented by microflow LC-SRM results of protein expression level of pathway
genes in P. putida. (A) Comparison of strains grown in MOPS medium to those grown in M9 medium, both with glucose as carbon source. (B) Comparison of strains
grown in p-coumarate against those grown in glucose, both in MOPS medium. (C) Comparison of strains grown in fructose against those grown in glucose, both in
M9 medium. (D) Comparison of strains grown in gluconate against those grown in glucose, both in M9 medium. The vertical axis (y-axis) corresponds to the
significance in terms of -log10 P (p-value), and the horizontal axis (x-axis) displays the log2 fold change value. The red dots represent significantly differentially
expressed genes (p-value < 0.05, | fold change| > 2) that are either increased (right) or decreased (left); the blue dots represent the genes whose fold change is less
than two folds in either direction but with enough significance (p-value < 0.05); the green dots represent genes whose fold change is more than two folds in either
direction without enough significance (p-value > 0.05); the black dots represent genes whose fold change is less than two folds in either direction without enough
significance (p-value > 0.05). All the significantly differentially expressed genes are label with their gene names. The total of variables plotted contain results of 132
genes. The shades on the gene labels indicate their pathway categories, including the Embden-Meyerhof-Parnas (EMP) pathway of glycolysis, pentose phosphate
(PP) pathway, Entner-Doudoroff (ED) pathway, anaplerosis routes, tricarboxylic acid cycle (TCA), the initial glucose catabolism pathways, and β-ketoadipate pathway.

acquisition of large target numbers (hundreds of peptides) across
large sample sets.

Enzyme Expression Levels of P. putida
KT2440 Strains Grown in Different
Carbon Sources
Central carbon metabolism (Supplementary Figure 6) consists
of a series of enzymatic activities to convert carbon sources
into valuable metabolic precursors (Noor et al., 2010), and in
P. putida includes the Embden-Meyerhof-Parnas (EMP) pathway
of glycolysis, pentose phosphate (PP) pathway, Entner-Doudoroff
(ED) pathway, anaplerosis routes, and tricarboxylic acid cycle
(TCA) (Nikel et al., 2015). P. putida can grow on a wide variety

of carbon sources, from multiple carbohydrates (e.g., glucose,
gluconate, fructose) to aromatic carbon (e.g., p-coumarate).
Glucose and gluconate are transported into the cell either directly
or through the conversion process of glucose to gluconate
to 2-ketogluconate in the periplasmic space (Supplementary
Figure 6) (Rojo, 2010). Once inside, glucose, gluconate, and
2-ketogluconate go through the initial glucose catabolism
pathways and converge onto the central carbon metabolism
(Chavarria et al., 2012). In contrast, fructose is transported
by phosphoenolpyruvate-dependent sugar phosphotransferase
system (PTS) and converted to fructose-1,6-bisphosphate by 1-
phosphofructokinase encoded by genes in the fruBKA operon
(Chavarria et al., 2016). P. putida lacks a classical EMP pathway
due to the absence of 6-phosphofructokinase, and utilizes
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FIGURE 5 | Boxplot of the relative abundance of enzymes in the initial glucose catabolism pathways of up-taking glucose and gluconate with P. putida grown on
eight different growth conditions: A, p-coumarate in MOPS medium; B, glucose in MOPS medium; C, glucose in M9 medium; D, gluconate in M9 medium; E,
fructose in M9 medium; F, glucose and gluconate in M9 medium; G, fructose and glucose in M9 medium; H, fructose, glucose and gluconate in M9 medium. The
enzymes are quinoprotein glucose dehydrogenase (GCD), alcohol dehydrogenase cytochrome c subunit (AdhB), cytochrome c family protein (PP_4232), gluconate
2-dehydrogenase cytochrome c subunit (PP_3382), gluconate 2-dehydrogenase flavoprotein subunit (PP_3383), gluconate 2-dehydrogenase gamma subunit
(PP_3384), gluconokinase (GnuK), and putative 2-ketogluconokinase (KguK). Each box represents the distribution of expression levels of the corresponding
enzymes in at least three independent biological replicated samples, including minimum (bottom bar), maximum (top bar), median (line inside the box), first quartile
(bottom edge of the box), third quartile (top edge of the box) and diamond (outliers).

these hexose sugars through a cycle formed by enzymes in
the ED, EMP, and PP pathways (Nikel et al., 2015). On the
other hand, p-coumarate is metabolized via the β-ketoadipate
pathway before joining the central carbon metabolism via acetyl-
CoA and succinate.

Among the 132 enzymes monitored in this study, 83 of
them comprise central carbon metabolism, the β-ketoadipate
pathway, and the initial glucose catabolism pathways, as
shown in Supplementary Figure 6. Overall, microflow LC-
SRM and nanoflow LC-SRM resulted in similar quantitative
patterns across 84 proteins and 30 biological samples and
the hierarchy of clustering of genes obtained after performing
unsupervised clustering was the same for both platforms
(Supplementary Figure 7).

There are slight differences of enzyme expression levels
between glucose-fed samples grown in MOPS medium versus
those in M9 medium, and the major variant enzymes between
the two conditions are the ones in the TCA, EMP, and PP
pathways (see Figure 4A). Comparing strains grown on different
carbon sources in the same medium (for example, p-coumarate
versus glucose in MOPS medium, fructose versus glucose in
M9 medium), the enzymes in pathways associated with the
intracellular entering route of the carbon sources into P. putida

have the most significantly (i.e., p-value < 0.05 and fold
change > 2) altered expression levels. When p-coumarate is
the sole carbon source, the majority of the enzymes in the
β-ketoadipate pathway are increased, while the majority of the
enzymes in the initial glucose catabolism pathways and all
the enzymes in the ED pathway are significantly decreased
(Figure 4B). However, few enzymes in the EMP pathway, PP
pathway, and TCA cycle are significantly altered, while the
enzymes in the TCA cycle exhibit some differences. Namely,
some are decreased (AceE, AceF, and Mqo2) and others are
increased (SdhA, SdhB, SdhC, SdhD, AceA, and PP_2652). When
fructose is the sole carbon source, the downstream enzymes (i.e.,
GnuK, PP_4232, PP_3382, PP_3383, PP_3384, and KguK) in
the initial glucose catabolism pathways of the glucose-gluconate
uptake system are expressed at a very low level, but in contrast,
the levels of early pathway enzymes (i.e., GCD and AdhB) in
the periplasmic space are expressed at a significantly higher level
compared to the presence of other carbon sources (Figures 4C,
5). In addition, several enzymes in the β-ketoadipate pathway
are significantly increased and half of the enzymes in the ED
pathway are significantly decreased (Figure 4C). However, only a
few enzymes in the EMP pathway and TCA cycle are significantly
altered and the rest show minor changes in relative abundance,
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FIGURE 6 | Boxplot of the relative abundance of enzymes in P. putida grown on eight different growth conditions: A, p-coumarate in MOPS medium; B, glucose in
MOPS medium; C, glucose in M9 medium; D, gluconate in M9 medium; E, fructose in M9 medium; F, glucose and gluconate in M9 medium; G, fructose and
glucose in M9 medium; H, fructose, glucose and gluconate in M9 medium. These enzymes either facilitate the entrance of key organic carbon products (pyruvate
and acetyl-CoA) into the tricarboxylic acid cycle (TCA cycle) or fuel TCA cycle via succinate as substrates. While pyruvate is generated from aliphatic carbon sources
(i.e., fructose, glucose and gluconate), acetyl-CoA and succinate are resulted from aromatic carbon source (i.e., p-coumarate). The enzymes are pyruvate
carboxylase subunit A (PycA), pyruvate carboxylase subunit A (PycB), citrate synthase (GltA), malate synthase G (GlcB), isocitrate lyase (AceA), succinate
dehydrogenase flavoprotein subunit (SdhA), succinate dehydrogenase iron-sulfur subunit (SdhB), succinate dehydrogenase membrane b-556 subunit (SdhC), and
succinate dehydrogenase hydrophobic membrane anchor subunit (SdhD). Each box represents the distribution of expression levels of the corresponding enzymes in
at least three independent biological replicated samples, including minimum (bottom bar), maximum (top bar), median (line inside the box), first quartile (bottom edge
of the box), third quartile (top edge of the box) and diamond (outliers).

and similar to what was observed in the comparison between
p-coumarate and glucose, the enzymes in the TCA can be either
decreased or increased depending on carbon sources.

Most of the enzymes are not altered significantly when
comparing fructose mixed with either glucose or glucose plus

gluconate against glucose (Supplementary Figures 4D,E), and
gluconate either alone (Figure 4D) or mixed with glucose
against glucose (Supplementary Figure 4G). The expression
levels of only a few enzymes are changed significantly. This is
likely due to either the convergence of the metabolic pathways
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utilized by gluconate and glucose and/or the co-presence of
glucose in the system.

The uptake of glucose and gluconate into the cell are
incorporated through the initial glucose catabolism pathways.
Glucose can be converted to gluconate in the periplasmic
space by quinoprotein glucose dehydrogenase (encoded
by the gcd gene). Once in cytoplasm, glucose will first be
phosphorylated by glucokinase (encoded by the glk gene)
and then converted to 6-phosphogluconate by glucose-6-
phosphate 1-dehydrogenase (encoded by the zwfA, zwfB,
and zwf genes) followed with 6-phosphogluconolactonase
(encoded by the pgl gene), while gluconate is phosphorylated
directly to 6-phosphogluconate by gluconokinase (encoded
by the gnuK gene). Interestingly, even grown solely in
either glucose or gluconate (both with M9 medium), there
are no variations of expression levels for the enzymes
converting these carbon sources to 6-phosphogluconate,
except slight increase of KguK in samples grown in
gluconate (Figure 5).

Fructose, glucose, and gluconate metabolism eventually
converge to pyruvate and then into the TCA cycle, either
directly or through acetyl-CoA as intermediate, while carbon
from p-coumarate enters the TCA cycle through acetyl-
CoA and succinate (Figure 6). When p-coumarate is the
sole carbon source, the levels of enzymes at the entrance
point of acetyl-CoA into TCA cycle (GltA and GlcB) and
those utilizing succinate into TCA cycle (SdhA, SdhB, and
SdhD) are relatively increased. In contrast, the levels of
pyruvate carboxylase subunit A and B (PycA and PycB) and
pyruvate dehydrogenase E1 and E2 component (AceE and
AceF) are decreased when p-coumarate is used relative to
glucose. This agrees with the fact metabolism of p-coumarate
generates succinate and acetyl-CoA via β-ketoadipate without
pyruvate. In P. putida KT2440, benzoate is also known to be
degraded to succinate and acetyl-CoA via β-ketoadipate, and
its catabolism has been well studied using kinetic modeling
(Sudarsan et al., 2016), transcriptomics (Sudarsan et al., 2014),
global proteomics and fluxomics (Kukurugya et al., 2019).
The transcriptomics study found that these genes involved in
pyruvate metabolism and TCA cycle were not differentially
expressed at steady state between benzoate and glucose, but
the downregulation of succinate dehydrogenase was observed
transiently when carbon source was shifted from benzoate
to glucose (Sudarsan et al., 2014). More similar observations
were made in the proteomics study comparing cells grown
on glucose and benzoate to glucose only, including the
upregulation of citrate synthase and succinate dehydrogenase
as well as the downregulation of pyruvate dehydrogenase
(Kukurugya et al., 2019). Interestingly, different observation
was made for the expression of genes involved in glyoxylate
cycle. In the global proteomics study isocitrate lyase (AceA)
was significantly downregulated comparing cells grown on
glucose and benzoate to glucose only and malate synthase
G (GlcB) was not detected in either cases (Kukurugya
et al., 2019), whereas in our targeted proteomics study
AceA and GlcB were both increased in p-coumarate versus
glucose (Figure 6).

CONCLUSION

In this study, we systematically compared the performance
of two LC-SRM platforms, microflow LC-SRM and nanoflow
LC-SRM, through monitoring hundreds of targeted peptides
in response curve samples as well as individual samples
grown in different environmental conditions. The results
of this evaluation clearly demonstrated the promise of
microflow LC-SRM as a robust protein quantification
system biology tool with high sensitivity, high peptide-
multiplexing capability, and high sample throughput. Compared
to nanoflow LC-SRM, microflow LC-SRM improves the
speed by 3-fold, while providing comparable sensitivity
over hundreds of peptides. The results of 132 enzymes in
P. putida reveals reliable and highly correlated quantification
by microflow LC-SRM and nanoflow LC-SRM. In addition, the
quantification of enzymes in the central carbon metabolism,
the initial glucose catabolism pathways, and β-ketoadipate
pathway reveals the changes of these enzyme expression
levels of P. putida in response to various carbon sources
and media composition. The increased throughput and
measurement reliability of the presented microflow LC-SRM
platform makes it an exceptional test tool for synthetic
biology-guided engineering by reducing the cycle time
of Design-Build-Test-Learn cycles for enhanced microbial
bioproduct production.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The name of the repository and
link can be found below: Panorama Public, https://
panoramaweb.org/ABF_P_Putida_KT2440_HighFlow_SRM.url.

AUTHOR CONTRIBUTIONS

KB-J and YG planned and designed the targeted proteomic
studies. GTB, JG, AG, GJB, CJ, JAM, JKM, and KB-J planned and
designed the P. putida studies. NM and MB prepared the samples
for proteomic analysis. YG and TF performed the targeted
proteomic experiments and data analysis. B-JW-R performed the
statistical analysis. YG and JK performed the data analyses. YG
wrote the first draft of the manuscript. All authors contributed to
the revision of the manuscript.

FUNDING

A portion of this research was performed at Pacific Northwest
National Laboratory (PNNL) using EMSL (grid.436923.9), a
DOE Office of Science User Facility sponsored by the Office of
Biological and Environmental Research. PNNL is a multiprogram
national laboratory operated by Battelle for the Department
of Energy (DOE) under Contract DE-AC05-76RLO 1830.
This work was authored in part by Alliance for Sustainable

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 December 2020 | Volume 8 | Article 60348876

https://panoramaweb.org/ABF_P_Putida_KT2440_HighFlow_SRM.url
https://panoramaweb.org/ABF_P_Putida_KT2440_HighFlow_SRM.url
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-603488 November 26, 2020 Time: 20:47 # 12

Gao et al. Targeted Proteomics Assays for Pseudomonas putida

Energy, LLC, the manager and operator of the National
Renewable Energy Laboratory for the U.S. Department of Energy
(DOE) under Contract No. DE-AC36-08GO28308. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the
U.S. DOE under contract DE-AC05-00OR22725. Funding was
provided by the U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy Bioenergy Technologies Office
(BETO) for the Agile BioFoundry (under Award No. DE-
NL0030038). The views expressed in the article do not necessarily
represent the views of the U.S. Department of Energy or the
United States Government.

ACKNOWLEDGMENTS

We thank Jay Fitzgerald at DOE and members of the Agile
BioFoundry for helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.603488/full#supplementary-material

REFERENCES
Bentley, G. J., Narayanan, N., Jha, R. K., Salvachúa, D., Elmore, J. R., Peabody,

G. L., et al. (2020). Engineering glucose metabolism for enhanced muconic acid
production in Pseudomonas putida KT2440. Metab. Eng. 59:12.

Bian, Y., Zheng, R., Bayer, F. P., Wong, C., Chang, Y. C., Meng, C., et al. (2020).
Robust, reproducible and quantitative analysis of thousands of proteomes by
micro-flow LC-MS/MS. Nat. Commun. 11:157.

Burnum-Johnson, K. E., Kyle, J. E., Eisfeld, A. J., Casey, C. P., Stratton, K. G.,
Gonzalez, J. F., et al. (2017). MPLEx: a method for simultaneous pathogen
inactivation and extraction of samples for multi-omics profiling. Analyst 142,
442–448. doi: 10.1039/c6an02486f

Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W. J., Webb-
Robertson, B. J., et al. (2006). Normalization approaches for removing
systematic biases associated with mass spectrometry and label-free proteomics.
J. Prot. Res. 5, 277–286. doi: 10.1021/pr050300l

Caspi, R., Dreher, K., and Karp, P. D. (2013). The challenge of constructing,
classifying, and representing metabolic pathways. FEMS Microbiol. Lett. 345,
85–93. doi: 10.1111/1574-6968.12194

Chavarria, M., Goni-Moreno, A., De Lorenzo, V., and Nikel, P. I. (2016). A
Metabolic widget adjusts the phosphoenolpyruvate-dependent fructose influx
in Pseudomonas putida. mSystems 1, e00154-16.

Chavarria, M., Kleijn, R. J., Sauer, U., Pfluger-Grau, K., and De Lorenzo, V. (2012).
Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of
Pseudomonas putida in central carbon metabolism. mBio 3, e00028-12.

Choi, M., Chang, C. Y., Clough, T., Broudy, D., Killeen, T., Maclean, B., et al.
(2014). MSstats: an R package for statistical analysis of quantitative mass
spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526. doi:
10.1093/bioinformatics/btu305

Ebhardt, H. A., Root, A., Sander, C., and Aebersold, R. (2015). Applications of
targeted proteomics in systems biology and translational medicine. Proteomics
15, 3193–3208. doi: 10.1002/pmic.201500004

Eyers, C. E., Lawless, C., Wedge, D. C., Lau, K. W., Gaskell, S. J., and Hubbard,
S. J. (2011). CONSeQuence: prediction of reference peptides for absolute
quantitative proteomics using consensus machine learning approaches. Mol.
Cell Prot. 10:M110003384.

Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J., and Yates, J. R. III (1998).
Protein identification at the low femtomole level from silver-stained gels using
a new fritless electrospray interface for liquid chromatography-microspray and
nanospray mass spectrometry. Anal. Biochem. 263, 93–101. doi: 10.1006/abio.
1998.2809

Gibbons, B. C., Fillmore, T. L., Gao, Y., Moore, R. J., Liu, T., Nakayasu, E. S.,
et al. (2019). Rapidly assessing the quality of targeted proteomics experiments
through monitoring stable-isotope labeled standards. J. Prot. Res. 18, 694–699.
doi: 10.1021/acs.jproteome.8b00688

Huttenhain, R., Soste, M., Selevsek, N., Rost, H., Sethi, A., Carapito, C., et al. (2012).
Reproducible quantification of cancer-associated proteins in body fluids using
targeted proteomics. Sci. Transl. Med. 4, 142ra194.

Johnson, C. W., Salvachúa, D., Rorrer, N. A., Black, B. A., Vardon, D. R., John,
P. C., et al. (2019). Innovative chemicals and materials from bacterial aromatic
catabolic pathways. Joule 3:15.

Karp, P. D., Midford, P. E., Billington, R., Kothari, A., Krummenacker, M.,
Latendresse, M., et al. (2019). Pathway tools version 23.0 update: software for
pathway/genome informatics and systems biology. Brief. Bioinform. bbz104.

Kim, Y. M., and Heyman, H. M. (2018). Mass spectrometry-based metabolomics.
Methods Mol. Biol. 1775, 107–118.

Kukurugya, M. A., Mendonca, C. M., Solhtalab, M., Wilkes, R. A., Thannhauser,
T. W., and Aristilde, L. (2019). Multi-omics analysis unravels a segregated
metabolic flux network that tunes co-utilization of sugar and aromatic carbons
in Pseudomonas putida. J. Biol. Chem. 294, 8464–8479. doi: 10.1074/jbc.ra119.
007885

LaBauve, A. E., and Wargo, M. J. (2012). Growth and laboratory maintenance of
Pseudomonas aeruginosa. Curr. Protoc. Microbiol. 6:1.

Lee, J. Y., Shi, T., Petyuk, V. A., Schepmoes, A. A., Fillmore, T. L., Wang, Y. T.,
et al. (2020). Detection of head and neck cancer based on longitudinal changes
in serum protein abundance. Cancer Epidemiol. Biomark. Prev. 29, 1665–1672.
doi: 10.1158/1055-9965.epi-20-0192

Linger, J. G., Vardon, D. R., Guarnieri, M. T., Karp, E. M., Hunsinger, G. B.,
Franden, M. A., et al. (2014). Lignin valorization through integrated biological
funneling and chemical catalysis. Proc. Natl. Acad. Sci. U.S.A. 111, 12013–12018.
doi: 10.1073/pnas.1410657111

Loeschcke, A., and Thies, S. (2015). Pseudomonas putida-a versatile host for the
production of natural products. Appl. Microbiol. Biotechnol. 99, 6197–6214.
doi: 10.1007/s00253-015-6745-4

MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen,
B., et al. (2010). Skyline: an open source document editor for creating and
analyzing targeted proteomics experiments. Bioinformatics 26, 966–968. doi:
10.1093/bioinformatics/btq054

Matzke, M. M., Brown, J. N., Gritsenko, M. A., Metz, T. O., Pounds, J. G., Rodland,
K. D., et al. (2013). A comparative analysis of computational approaches
to relative protein quantification using peptide peak intensities in label-free
LC-MS proteomics experiments. Proteomics 13, 493–503. doi: 10.1002/pmic.
201200269

Nakayasu, E. S., Nicora, C. D., Sims, A. C., Burnum-Johnson, K. E., Kim, Y. M.,
Kyle, J. E., et al. (2016). MPLEx: a robust and universal protocol for single-
sample integrative proteomic, metabolomic, and lipidomic analyses. mSystems
1, e00043-16.

Nikel, P. I., Chavarria, M., Danchin, A., and De Lorenzo, V. (2016). From dirt
to industrial applications: Pseudomonas putida as a Synthetic Biology chassis
for hosting harsh biochemical reactions. Curr. Opin. Chem. Biol. 34, 20–29.
doi: 10.1016/j.cbpa.2016.05.011

Nikel, P. I., Chavarria, M., Fuhrer, T., Sauer, U., and De Lorenzo, V. (2015).
Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed
by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose
phosphate pathways. J. Biol. Chem. 290, 25920–25932. doi: 10.1074/jbc.m115.
687749

Noor, E., Eden, E., Milo, R., and Alon, U. (2010). Central carbon metabolism as
a minimal biochemical walk between precursors for biomass and energy. Mol.
Cell 39, 809–820. doi: 10.1016/j.molcel.2010.08.031

Paley, S., Parker, K., Spaulding, A., Tomb, J. F., O’maille, P., and Karp, P. D. (2017).
The Omics Dashboard for interactive exploration of gene-expression data.Nucl.
Acids Res. 45, 12113–12124. doi: 10.1093/nar/gkx910

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 December 2020 | Volume 8 | Article 60348877

https://www.frontiersin.org/articles/10.3389/fbioe.2020.603488/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2020.603488/full#supplementary-material
https://doi.org/10.1039/c6an02486f
https://doi.org/10.1021/pr050300l
https://doi.org/10.1111/1574-6968.12194
https://doi.org/10.1093/bioinformatics/btu305
https://doi.org/10.1093/bioinformatics/btu305
https://doi.org/10.1002/pmic.201500004
https://doi.org/10.1006/abio.1998.2809
https://doi.org/10.1006/abio.1998.2809
https://doi.org/10.1021/acs.jproteome.8b00688
https://doi.org/10.1074/jbc.ra119.007885
https://doi.org/10.1074/jbc.ra119.007885
https://doi.org/10.1158/1055-9965.epi-20-0192
https://doi.org/10.1073/pnas.1410657111
https://doi.org/10.1007/s00253-015-6745-4
https://doi.org/10.1093/bioinformatics/btq054
https://doi.org/10.1093/bioinformatics/btq054
https://doi.org/10.1002/pmic.201200269
https://doi.org/10.1002/pmic.201200269
https://doi.org/10.1016/j.cbpa.2016.05.011
https://doi.org/10.1074/jbc.m115.687749
https://doi.org/10.1074/jbc.m115.687749
https://doi.org/10.1016/j.molcel.2010.08.031
https://doi.org/10.1093/nar/gkx910
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-603488 November 26, 2020 Time: 20:47 # 13

Gao et al. Targeted Proteomics Assays for Pseudomonas putida

Picotti, P., and Aebersold, R. (2012). Selected reaction monitoring-based
proteomics: workflows, potential, pitfalls and future directions. Nat. Methods
9, 555–566. doi: 10.1038/nmeth.2015

Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., and Aebersold, R. (2009).
Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics.
Cell 138, 795–806. doi: 10.1016/j.cell.2009.05.051

Polpitiya, A. D., Qian, W. J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp, D. G.,
et al. (2008). DAnTE: a statistical tool for quantitative analysis of -omics data.
Bioinformatics 24, 1556–1558. doi: 10.1093/bioinformatics/btn217

Rojo, F. (2010). Carbon catabolite repression in Pseudomonas: optimizing
metabolic versatility and interactions with the environment. FEMS Microbiol.
Rev. 34, 658–684. doi: 10.1111/j.1574-6976.2010.00218.x

Searle, B. C., Egertson, J. D., Bollinger, J. G., Stergachis, A. B., and Maccoss, M. J.
(2015). Using Data Independent Acquisition (DIA) to model high-responding
peptides for targeted proteomics experiments. Mol. Cell Prot. 14, 2331–2340.
doi: 10.1074/mcp.m115.051300

Sudarsan, S., Blank, L. M., Dietrich, A., Vielhauer, O., Takors, R., Schmid, A., et al.
(2016). Dynamics of benzoate metabolism in Pseudomonas putida KT2440.
Metab. Eng. Commun. 3, 97–110. doi: 10.1016/j.meteno.2016.03.005

Sudarsan, S., Dethlefsen, S., Blank, L. M., Siemann-Herzberg, M., and Schmid, A.
(2014). The functional structure of central carbon metabolism in Pseudomonas
putida KT2440. Appl. Environ. Microbiol. 80, 5292–5303. doi: 10.1128/aem.
01643-14

Webb-Robertson, B. J., Matzke, M. M., Jacobs, J. M., Pounds, J. G., and Waters,
K. M. (2011). A statistical selection strategy for normalization procedures
in LC-MS proteomics experiments through dataset-dependent ranking of
normalization scaling factors. Proteomics 11, 4736–4741. doi: 10.1002/pmic.
201100078

Webb-Robertson, B. J., Mccue, L. A., Waters, K. M., Matzke, M. M., Jacobs, J. M.,
Metz, T. O., et al. (2010). Combined statistical analyses of peptide intensities
and peptide occurrences improves identification of significant peptides from
MS-based proteomics data. J. Prot. Res. 9, 5748–5756. doi: 10.1021/pr10
05247

Webb-Robertson, B. M., Bramer, L. M., Jensen, J. L., Kobold, M. A., Stratton,
K. G., White, A. M., et al. (2017). P-MartCancer-interactive online software
to enable analysis of shotgun cancer proteomic datasets. Cancer Res. 77,
e47–e50.

Wu, C., Shi, T., Brown, J. N., He, J., Gao, Y., Fillmore, T. L., et al. (2014). Expediting
SRM assay development for large-scale targeted proteomics experiments.
J. Prot. Res. 13, 4479–4487. doi: 10.1021/pr500500d

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer LB declared a past co-authorship with one of the authors GTB to the
handling editor.

Copyright © 2020 Gao, Fillmore, Munoz, Bentley, Johnson, Kim, Meadows, Zucker,
Burnet, Lipton, Bilbao, Orton, Kim,Moore, Robinson, Baker,Webb-Robertson, Guss,
Gladden, Beckham, Magnuson and Burnum-Johnson. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 December 2020 | Volume 8 | Article 60348878

https://doi.org/10.1038/nmeth.2015
https://doi.org/10.1016/j.cell.2009.05.051
https://doi.org/10.1093/bioinformatics/btn217
https://doi.org/10.1111/j.1574-6976.2010.00218.x
https://doi.org/10.1074/mcp.m115.051300
https://doi.org/10.1016/j.meteno.2016.03.005
https://doi.org/10.1128/aem.01643-14
https://doi.org/10.1128/aem.01643-14
https://doi.org/10.1002/pmic.201100078
https://doi.org/10.1002/pmic.201100078
https://doi.org/10.1021/pr1005247
https://doi.org/10.1021/pr1005247
https://doi.org/10.1021/pr500500d
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-612832 December 24, 2020 Time: 17:4 # 1

ORIGINAL RESEARCH
published: 08 January 2021

doi: 10.3389/fbioe.2020.612832

Edited by:
Dong-Yup Lee,

Sungkyunkwan University,
South Korea

Reviewed by:
Christopher Rao,

University of Illinois
at Urbana–Champaign, United States

Julio Augusto Freyre-Gonzalez,
National Autonomous University

of Mexico, Mexico

*Correspondence:
John M. Gladden

jmgladden@lbl.gov
Jon K. Magnuson

jon.magnuson@pnnl.gov

Specialty section:
This article was submitted to

Synthetic Biology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 30 September 2020
Accepted: 04 December 2020

Published: 08 January 2021

Citation:
Kim J, Coradetti ST, Kim Y-M,
Gao Y, Yaegashi J, Zucker JD,

Munoz N, Zink EM,
Burnum-Johnson KE, Baker SE,

Simmons BA, Skerker JM,
Gladden JM and Magnuson JK

(2021) Multi-Omics Driven Metabolic
Network Reconstruction and Analysis

of Lignocellulosic Carbon Utilization
in Rhodosporidium toruloides.

Front. Bioeng. Biotechnol. 8:612832.
doi: 10.3389/fbioe.2020.612832

Multi-Omics Driven Metabolic
Network Reconstruction and
Analysis of Lignocellulosic Carbon
Utilization in Rhodosporidium
toruloides
Joonhoon Kim1,2,3, Samuel T. Coradetti1,4, Young-Mo Kim1,3, Yuqian Gao1,3,
Junko Yaegashi2,3, Jeremy D. Zucker1,3, Nathalie Munoz1,3, Erika M. Zink3,
Kristin E. Burnum-Johnson1,3, Scott E. Baker1,2,3, Blake A. Simmons1,2,5,
Jeffrey M. Skerker6, John M. Gladden1,2,4* and Jon K. Magnuson1,2,3*

1 Department of Energy, Agile BioFoundry, Emeryville, CA, United States, 2 Department of Energy, Joint BioEnergy Institute,
Emeryville, CA, United States, 3 Pacific Northwest National Laboratory, Richland, WA, United States, 4 Sandia National
Laboratories, Livermore, CA, United States, 5 Lawrence Berkeley National Laboratory, Berkeley, CA, United States,
6 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States

An oleaginous yeast Rhodosporidium toruloides is a promising host for converting
lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-
omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed
the genome-scale metabolic network of R. toruloides. High-quality metabolic network
models for model organisms and orthologous protein mapping were used to build a
draft metabolic network reconstruction. The reconstruction was manually curated to
build a metabolic model using functional annotation and multi-omics data including
transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-
omics data and metabolic model were used to investigate R. toruloides metabolism
including lipid accumulation and lignocellulosic carbon utilization. The developed
metabolic model was validated against high-throughput growth phenotyping and gene
fitness data, and further refined to resolve the inconsistencies between prediction and
data. We believe that this is the most complete and accurate metabolic network model
available for R. toruloides to date.

Keywords: Rhodosporidium toruloides, multi-omics, metabolic networks, genome-scale models, lignocellulosic
biomass

INTRODUCTION

An oleaginous yeast Rhodosporidium toruloides is a non-model basidiomycete fungus known for
its ability to produce carotenoids and accumulate lipids. The high flux in lipid and carotenoid
biosynthetic pathways makes R. toruloides a promising host organism for producing biofuels
and value-added bioproducts from carbon sources derived from lignocellulosic biomass (Wiebe
et al., 2012; Fei et al., 2016; Yaegashi et al., 2017; Park et al., 2018; Zhuang et al., 2019). It is
also known for the tolerance of inhibitory compounds in lignocellulosic biomass hydrolyzate
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as well as the ability to consume aromatic compounds
related to lignin degradation products (Yaegashi et al., 2017;
Sundstrom et al., 2018). For example, R. toruloides can utilize
hexoses, pentoses, and aromatic compounds that are found
in lignocellulosic biomass hydrolyzate such as glucose, xylose,
and p-coumaric acid, and produce bisabolene or amorphadiene
(Yaegashi et al., 2017). Genome sequence and annotation
are available for several R. toruloides strains and efficient
transformation methods have been developed (Zhu et al., 2012;
Zhang et al., 2016; Liu et al., 2017; Coradetti et al., 2018). More
advanced genetic tools and parts to engineer R. toruloides have
been recently developed including RB-TDNAseq, CRISPR/Cas9
editing, RNA interference, and promoter libraries (Coradetti
et al., 2018; Liu et al., 2019; Nora et al., 2019; Otoupal et al., 2019).

Previous studies of R. toruloides metabolism primarily focused
on the lipid production and carotenoid production and several
multi-omics studies have been performed to date (Zhu et al.,
2012; Lee et al., 2014; Bommareddy et al., 2017; Coradetti
et al., 2018). However, it is still not fully clear how different
carbon sources present in lignocellulosic biomass hydrolyzate are
utilized. There are multiple reports indicating that R. toruloides’s
metabolism of glucose, xylose, or glycerol is different from
Saccharomyces cerevisiae’s. For example, R. toruloides is an
oleaginous yeast and generates cytosolic acetyl-CoA from
citrate using ATP-citrate lyase whereas S. cerevisiae does not
have ATP-citrate lyase and uses the pyruvate dehydrogenase
bypass (Rodriguez et al., 2016). When grown on D-xylose,
R. toruloides transiently accumulates D-arabinitol (or D-arabitol)
while S. cerevisiae accumulates xylitol (Jagtap and Rao, 2018). The
regulation of genes involved in glycerol metabolism including
glycerol kinase and glycerol 3–phosphate dehydrogenase was also
found to be different between R. toruloides and S. cerevisiae
(Bommareddy et al., 2017). Fatty acids are degraded by
peroxisomal β-oxidation in S. cerevisiae, but both mitochondrial
and peroxisomal β-oxidation pathways are shown to be present
and necessary for efficient fatty acid degradation in R. toruloides.
The growth of S. cerevisiae is known to be inhibited by
some phenolic compounds that are found in lignocellulosic
biomass hydrolyzate including p-coumaric acid, ferulic acid,
and coniferyl aldehyde, and S. cerevisiae can convert them to
less inhibitory products, but it is unable to grow on them as
sole carbon sources (Adeboye et al., 2015). On the other hand,
R. toruloides grows on p-coumaric acid, ferulic acid, vanillic
acid, p-hydroxybenzoic acid, and benzoic acid (Yaegashi et al.,
2017), but the catabolism of aromatic compounds related to
lignin is not well studied in fungi yet. Therefore, there is a
need for a metabolic network model to systematically investigate
the metabolism of non-model oleaginous basidiomycete yeast,
R. toruloides. In this work, we reconstruct the genome-
scale metabolic network of R. toruloides using high-quality
published models and perform manual curation using functional
annotation and multi-omics data in a fully reproducible manner.
Every step of the reconstruction and curation was written
in electronic notebooks starting from the reconstruction of
a draft metabolic network to the evaluation of the resulting
metabolic model. The developed metabolic model and multi-
omics data were used to study the utilization of carbon

sources that are present in lignocellulosic biomass hydrolyzate in
R. toruloides.

MATERIALS AND METHODS

Metabolic Network Reconstruction
The R. toruloides IFO0880 genome sequence, gene models, and
gene annotation from a previous study (Coradetti et al., 2018) was
used for the metabolic network reconstruction. The same study
identified R. toruloides proteins that have orthologous proteins
in several different eukaryotic organisms using OrthoMCL (Li
et al., 2003). To this list we further added orthologous proteins in
Escherichia coli K-12 MG1655 and Pseudomonas putida KT2440,
identified with a separate OrthoMCL analysis including proteins
from R. toruloides NP11, Saccharomyces cerevisiae, Lipomyces
starkeyi, and Yarrowia lipolytica. The list of orthologous proteins
was used to gather metabolic reactions from BiGG Models
(King et al., 2016), a repository containing high-quality manually
curated genome-scale metabolic models. Among the models
available in BiGG Models, genome-scale metabolic models of
S. cerevisiae (Mo et al., 2009), Chlamydomonas reinhardtii
(Chang et al., 2011), human (Duarte et al., 2007), mouse
(Sigurdsson et al., 2010), E. coli (Monk et al., 2017), and
P. putida (Nogales et al., 2008) were used for reconstruction
since these models covered most of the orthologous proteins
found in R. toruloides. In addition, a genome-scale metabolic
model of another oleaginous yeast Y. lipolytica CLIB122 (Wei
et al., 2017) was included. For each protein in R. toruloides,
metabolic reactions from other metabolic models were added
to the R. toruloides metabolic network if orthologous proteins
were associated with the reactions, and their gene association was
updated with the R. toruloides protein identifiers. The function
and localization of proteins was determined by Joint Genome
Institute’s annotation on MycoCosm (Grigoriev et al., 2014),
WoLF PSORT (Horton et al., 2007) prediction, and the presence
of peroxisomal targeting sequences PTS1 and PTS2 predicted by
FIMO (Grant et al., 2011) using MEME (Bailey and Elkan, 1994)
motifs from known peroxisomal protein sequences.

Metabolic Network Modeling
COBRApy (Ebrahim et al., 2013) was used for curation,
evaluation, and modeling of the reconstructed metabolic
network. Metabolic models were imported from either the BiGG
Models directly or a JSON file constructed from supplemental
files from publications. Lieven et al. (2014) was also used to
track the development and evaluate the quality of the metabolic
model. Escher (King et al., 2015) was used to build metabolic
pathway maps and visualize omics data. BOFdat (Lachance
et al., 2019) was used to update the biomass composition from
experimental data.

Phenotype Microarrays
Phenotype microarray plates and standard components for yeast
phenotypic analysis were obtained from Biolog Inc. (Hayward,
CA). Wild type R. toruloides IFO0880 was precultured to log
phase in LB broth at 30◦C, 200 RPM in 10 mL culture tubes.
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Cells were centrifuged 5 min at 3000 RCF, 22◦C, washed twice
in sterile water, then resuspended OD 600 of 0.005 in Biolog
inoculation fluid IFY-0 with 1 µM nicotinic acid (Sigma, N4126),
1 µM myo-inositol (Sigma, I5125), 1 µM thiamine HCl (Sigma,
T1270), 1 µM p-aminobenzoic acid (Sigma, A9878), and 1 µM
calcium pantothenate (Sigma, 21210) plus Biolog dye mix E
(a proprietary, tetrazolium-based dye) and 1 µM menadione
sodium bisulfite (Sigma, M5750). For nitrogen, phosphorous, and
sulfur sources 100 mM glucose was added to the inoculation fluid.
Hundred microliters of the cell suspension was added to each
well in plates PM1, PM2, PM3, and PM4. Plates were sealed with
clear sealing film (Axygen, CTP-103) and incubated for 120 h
at 30◦C in the dark. Respiration in each condition was detected
by measuring reduction of the dye by comparing absorbance at
590 nm to absorbance at 750 nm.

Fitness Analysis With RB-TDNAseq
Fitness analysis was performed as described in a previous study
(Coradetti et al., 2018). Briefly, the three aliquots of the random
insertion mutant pool were thawed on ice and recovered in
100 mL YPD (BD Difco, 242820) for two generations (OD
0.2 to OD 0.8). A 10 mL of each starter culture was pelleted
and frozen as an initial “time 0” sample. The remaining cells
were pelleted 5 min at 4000 RCF, 22◦C, washed twice with
sterile water and inoculated at OD 0.1 in 50 mL SD media
plus 76 mM KH2PO4 (Sigma, P9791), 24 mM K2HPO4 (Sigma,
P3786), and 100 nM FeSO4 (Sigma, 215422) with 1% w/v
carbon source. Cultures were grown to OD 600 = 5–10 (20–
50 h depending on carbon source) at 30◦C, 200 RPM in
baffled flasks (25630-250, DWK Life Sciences). Ten milliliters
mL samples were pelleted and frozen for DNA extraction. DNA
extraction, barcode amplification, and sequencing was performed
as described in Coradetti et al. (2018), except that we used
primers including dual indexes to prevent “index swapping” on
the HiSeq 4000 instrument (Costello et al., 2018) and different
lengths of random bases for improved phasing (Price et al., 2019).
Fitness analysis was performed with the RBseq software package
version 1.0.6, an updated implementation of the algorithms
(available at https://github.com/stcoradetti/RBseq). Raw barcode
sequencing data are available at the NCBI Sequence Read
Archive (PRJNA595384). Fitness scores are available at the fungal
fitness browser.1

Lipid Content by Fatty Acid Methyl-Ester
Analysis
Twenty milligrams of lyophilized cell mass was suspended
in 750 µl 3N methanolic HCl (Sigma, 40104-U) and 50 µl
chloroform (Sigma, CX1050-1). A total of 100 µl of 10 mg/mL
tridecanoic acid methyl ester (Sigma, T0627) in methanol
(Sigma, 34860) was added as an internal standard and all the
resuspended cell mass was transferred to bead-bug screw-top
tubes with glass beads. Tubes were shaken vigorously in a
Retsch Tissue Lyser at 30 cycles/second for 5 min to break
up cell aggregates and disrupt cell walls, then incubated in an
80◦C water bath for 2 h with occasional vortexing. fatty acid

1http://fungalfit.genomics.lbl.gov

methyl-esters (FAMEs) were extracted with 500 µl n-hexane
(Sigma, 650552), and diluted 1:10 in hexane. Methyl esters
of palmitic, palmitoleic, heptadecanoic, stearic, oleic, linoleic,
alpha linoleic, arachidic, behenic, and lignoceric acid were
separated in a DB-wax column (Agilent, 123-7012) on a Thermo
Scientific Focus gas chromatograph (AS 3000 II) with a flame
ionization detector. Standard curves of ratios of peak areas from
standards of those FAMEs (Sigma) to tridecanoic acid methyl
ester (internal standard) were established. FAME concentrations
were determined by comparing ratios of peak areas of FAMEs to
the internal standard in the samples.

Media and Growth Conditions for
Multi-Omics Experiment
Wild type R. toruloides IFO0880 was grown in synthetic defined
(SD) medium supplemented with different carbon sources
(1% glucose, 1% glucose + 1% D-xylose, 1% D-xylose, 1%
L-arabinose, or 1% p-coumarate). The SD medium was made
with Difco yeast nitrogen base without amino acids (Becton,
Dickinson & Co., Sparks, MD) and complete supplemental
mixture (Sunrise Science Products, San Diego, CA). Cells were
pre-cultured in LB media, and pelleted and washed once with
sterile ddH2O before inoculation. Initial pH was adjusted to 7.4
with NaOH, and cells were inoculated to 30 mL of medium
with a starting optical density at 600 nm of 0.1. Cultures
were grown at 30◦C and shaken at 200 rpm. Samples were
taken in triplicates at 24 and 48 h in SD glucose, at 24, 66,
and 90 h in SD glucose + D-xylose, at 66 and 90 h in SD
D-xylose, at 40 and 66 h in SD L-arabinose, and at 40 and
90 h in SD p-coumarate. RNA extraction was performed on
Promega’s Maxwell RSC machine using Plant RNA extraction
kit (Promega Corporation, Madison, WI). For proteomics and
metabolomics, cells were pelleted and washed twice with 100 mM
NH4HCO3 at pH 7.8, and spent media was filtered through a
0.45 µ m filter.

RNA Sequencing and Analysis
RNA samples were sequenced and processed at Joint Genome
Institute (SRP143805, SRP143806, SRP143807, SRP143808,
SRP143809, SRP143810, SRP143811, SRP143812, SRP143813,
SRP143814, SRP143815, SRP143816, SRP143817, SRP143818,
SRP143819, SRP143820, SRP143821, SRP143822, SRP143823,
SRP143824, SRP143825, SRP143826, SRP143827, SRP143828,
SRP143829, SRP143830, SRP143831, SRP143832, SRP143833,
SRP143834, SRP143835, SRP143836, and SRP143838). Raw read
counts were used to perform differential gene expression analysis
using DESeq2 (Love et al., 2014).

Metabolite Extraction
Metabolites were extracted from the cell pellets using MPLEx
method (Nakayasu et al., 2016; Kim and Heyman, 2018).
Briefly, the cell pellets were extracted with a solvent mixture
of four volumes of a chloroform and methanol mix (2:1)
with a volume of nanopure water. Strong vortexing and ice-
cold temperature were also used in the protocol to aid the
disruption of the cells. After centrifugation, the aqueous layer
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and half of the organic layer (containing polar and non-polar
metabolites, respectively) were combined for GC-MS analysis.
The remaining volume of the organic layer was kept for
lipidomics analysis. Collected liquid fractions were transferred
to new clean vials and subsequently dried in a speed-vacuum
concentrator. The denatured protein disk, located between the
aqueous and organic layers during the MPLEx protocol, were
separately stored for proteomics analysis. All the samples were
dried completely and stored in the −80◦C freezer until the
instrumental analysis.

Metabolomics Analysis
The stored metabolite extracts were completely dried under
speed-vacuum to remove moisture and chemically derivatized
as previously reported (Kim et al., 2015). Briefly, the extracted
metabolites were derivatized by methoxyamination and
trimethylsilyation (TMS), then the samples were analyzed
by GC-MS. GC-MS raw data files were processed using
the Metabolite Detector software, version 2.5 beta (Hiller
et al., 2009). Retention indices (RI) of detected metabolites
were calculated based on the analysis of a FAMEs mixture,
followed by their chromatographic alignment across all
analyses after deconvolution. Metabolites were initially
identified by matching experimental spectra to a PNNL
augmented version of Agilent GC-MS metabolomics Library,
containing spectra and validated RI for over 850 metabolites.
Then, the unknown peaks were additionally matched
with the NIST17/Wiley11 GC-MS library. All metabolite
identifications and quantification ions were validated and
confirmed to reduce deconvolution errors during automated
data-processing and to eliminate false identifications. All
metabolomics raw data files are available at OSF data depository
https://osf.io/tnqwx/.

Lipidomics
The lipid samples were analyzed using liquid chromatography
tandem mass spectrometry (LC-MS/MS) as outlined before
(Kyle et al., 2017). Briefly, lipid fractions were re-dried in
vacuo to remove moisture and reconstituted in 50 µl methanol,
10 µl of which was injected onto a reversed phase Waters
CSH column (3.0 mm × 150 mm × 1.7 µm particle
size) connected to a Waters Acquity UPLC H class system
interfaced with a Velos-ETD Orbitrap mass spectrometer. Lipid
molecular species were separated over a 34 min gradient
[mobile phase A: acetonitrile/water (40:60) containing 10 mM
ammonium acetate; mobile phase B: acetonitrile/isopropanol
(10:90) containing 10 mM ammonium acetate] at a flow rate
of 250 µl/min. Samples were analyzed in both positive and
negative ionization using higher-energy collision dissociation
and collision-induced dissociation to obtain high coverage of
the lipidome. Confident lipid identifications were made using
in-house developed identification software LIQUID (Kyle et al.,
2017) where the tandem mass spectrum was examined for
diagnostic ion fragments along with associated hydrocarbon
chain fragment information. To facilitate quantification of
lipids, a reference database for lipids identified from the
MS/MS data was created and features from each analysis

were then aligned to the reference database based on their
identification, m/z and retention time using MZmine 2 (Pluskal
et al., 2010). Aligned features were manually curated and
peak apex intensity values were generated for subsequent
statistical analysis.

Proteomics
The protein disks were dissolved in 100 mM NH4HCO3
containing 8 M urea and the protein concentration was
measured by BCA assay. Disulfide bonds were reduced by
adding dithiothreitol to a final concentration of 5 mM and
incubating at 60◦C for 30 min. Samples were alkylated with
a final concentration of 40 mM iodoacetamide for 1 h at
37◦C. The reaction was then diluted 10-fold with 100 mM
NH4HCO3 followed by the addition of CaCl2 to 1 mM final
concentration. Digestion was carried out for 3 h at 37◦C with
1:50 (weight:weight) trypsin-to-protein ratio. Salts and reagents
were removed by solid-phase extraction using C18 cartridges
according to the manufacturer instructions and the resulting
peptides were dried in a vacuum centrifuge. The peptides were
then resuspended in milliQ water and 500 ng of material was
loaded onto in-house packed reversed-phase capillary columns
(70-cm × 75 µm i.d.) with 3-µm Jupiter C18. The separation
was carried out using a nanoAcquity HPLC system (Waters
Corporation) at room temperature. The mobile phase A is 0.1%
formic acid in water while mobile phase B is 0.1% formic acid
in acetonitrile. The elution was carried out at 300 nL/min with
the following gradient: 0–2 min 1% B; 2–20 min 8% B; 20–
75 min 12% B; 75–97 min 30% B; 97–100 min 45% B; 100–
105 min 95% B; 105–110 min 95% B; 110–140 min 1% B. MS
analysis was carried out using a Q Exactive HF (Thermo Fisher
Scientific) in data dependent mode. Mass spectrometer settings
were as following: full MS (AGC, 1 × 106; resolution, 30,000;
m/z range, 350–2000; maximum ion time, 20 ms); MS/MS (AGC,
1 × 105; resolution, 15,000; m/z range, 200–2000; maximum ion
time, 200 ms; minimum signal threshold, 2.5 × 104; isolation
width, 2 Da; dynamic exclusion time setting, 45 s; collision
energy, NCE 30).

All mass spectrometry data were searched using MS-GF+
(Kim and Pevzner, 2014) and MASIC (Monroe et al., 2008)
software. MS-GF+ software was used to identify peptides by
scoring MS/MS spectra against peptides derived from the whole
protein sequence database. MASIC software was used to generate
the selected ion chromatographs (SICs) of all the precursors in
MSMS datasets and calculate their peak areas as abundance.
MASICResultsMerger2 was used to append the relevant MASIC
stats for each peptide hit result in MS-GF+. The MS-GF+ data
were then filtered based on 1% false discovery rate (FDR) and
less than 5-ppm mass accuracy to generate a list of qualified
peptide hit results. The abundances of peptides were determined
as the highest peak area identified for the peptide within a sample.
RRollup algorithm in InfernoRDN software (Polpitiya et al.,
2008) was used to calculate the final protein abundance based on
peptide abundance.

2https://omics.pnl.gov/software/masic-results-merger
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FIGURE 1 | A workflow to develop the metabolic network model of R. toruloides.

RESULTS

Metabolic Network Reconstruction
Workflow
We documented every step of the metabolic network
reconstruction process (Figure 1) using Jupyter Notebooks3

to keep records of changes in metabolic network content
and the rationale behind them. We divided the process in
multiple notebooks for each stage of reconstruction process
(Supplementary File 1).

Genome Annotation and Draft Metabolic
Network Reconstruction
First, we used orthologous protein groups from OrthoMCL and
published metabolic models to build a draft metabolic network
reconstruction. Metabolic reactions were taken from published

3https://jupyter.org

models when any orthologous protein was found in gene-
reaction association information. OrthoMCL orthologous groups
consist of orthologs and recent paralogs (i.e., gene duplication
after speciation and likely to retain similar function) from at
least two species (Li et al., 2003). It is generally thought that
gene function is more conserved among orthologous genes
than between-species paralogs. Recent studies of gene function
versus evolutionary history have demonstrated that paralogs can
provide more information that previously thought (Stamboulian
et al., 2020) but that this added value comes mostly from
within species paralogs in taxa with a large corpus of extant
biochemical data. Thus, to build our initial metabolic network
we transferred functions from orthologous protein groups only.
However, during our manual refinement, in rare cases where
we had functional data from R. toruloides or for filling gaps
in pathways for which we have high confidence to exist in R.
toruloides, we transferred functional prediction from paralogs
in other species.

The initial draft reconstruction of R. toruloides metabolic
network consisted of 1596 proteins, 3804 reactions, and 3589
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metabolites. Among the 1596 proteins, 1137 proteins had
orthologous R. toruloides proteins, but 459 were not yet mapped
to R. toruloides proteins. Manual investigation of functional
annotation and BLAST search were used to determine whether
the unmapped proteins were present or absent in R. toruloides.
For the reactions associated with a protein absent in R. toruloides,
the absent protein was removed from the gene association if there
were isozymes and at least one mapped isozyme was present.
A reaction was removed from the metabolic network if the
absent protein was a subunit of an enzyme complex and no
other isozyme was present. One of the reasons why the number
of reactions and metabolites in the initial reconstruction was
very large was that protein localization was not yet considered,
and same reactions in multiple compartments were present
including compartments that are present in other organisms
but absent in R. toruloides. These reactions were examined and
either removed or assigned to appropriate compartments based
on the localization prediction and the presence of a signal peptide
sequence. It was also found that, although reconstructed from
published metabolic models, the initial reconstruction contained
many erroneous reactions and metabolites including duplicate
reactions or metabolites with different names as well as mass or
charge imbalanced reactions.

Manual Curation of the Draft Metabolic
Network Reconstruction
Manual curation of the metabolic network reconstruction was
performed to first identify and remove duplicate metabolites and
reactions. As duplicate or incorrect metabolites and reactions
were found, thorough inspection of the metabolic pathway
involving them was performed. Functional annotation and
localization of each gene in the pathway was confirmed,
duplicate or erroneous metabolites and reactions were removed
or corrected, and missing metabolites and reactions were either
created based on literature and metabolic pathway database
or added from other metabolic models in BiGG database.
For example, metabolic pathways involving ferricytochrome c
were first investigated since duplicate metabolite identifiers exist
in BiGG database (ficytc/focytc versus ficytC/focytC). Lactate
dehydrogenase and related enzymes involving cytochrome c
had many duplicated reactions and incorrect compartment
assignments. Cytochrome c oxidase, peroxidase, reductase,
NADH:ubiquinone reductase and other mitochondrial electron
transport chain reactions were curated. R. toruloides is known
to have coenzyme Q9 (ubiquinone-9) with nine isoprenyl units
(Yamada and Kondo, 1973), and our lipidomics analysis also
detected coenzyme Q9. The ubiquinone synthesis reactions from
other existing models were modified to include 9 isoprenyl units.
Heme biosynthesis reactions were also manually curated since
heme O and heme A synthesis reactions in BiGG database had
incorrect stoichiometries.

There were many incorrect reactions involved in fatty acid
biosynthesis and beta-oxidation, especially for unsaturated fatty
acids. Impossible lumped reactions were removed considering
the cis and trans configuration of fatty acids, and irrelevant
fatty acid reactions (bacteria or plant specific unsaturated fatty

acids) were removed. Long-chain fatty acid biosynthesis and
fatty acid desaturase reactions were moved from cytosol to
endoplasmic reticulum, and short-chain peroxisomal fatty acid
beta-oxidation reactions were moved to mitochondria since
R. toruloides possesses both mitochondrial and peroxisomal
beta-oxidation enzymes. Sphingolipid metabolism was extended
to include sphingolipid desaturase, methyltransferase, and
fungal ceramide biosynthesis and the reactions were placed in
endoplasmic reticulum. Localization of reactions involved in
phospholipid biosynthesis and remodeling, and triacylglycerol
were also updated.

Rhodosporidium toruloides naturally produces and
accumulates carotenoids that are derived from mevalonate
pathway products. Metabolic reactions and genes in mevalonate
pathway and sterol biosynthesis were inspected, and it was
found that an ERG27 ortholog is missing in R. toruloides.
A previous phylogenomics study of sterol synthesis found
that a 3-ketosteroid reductase exists in vertebrates and fungi
(HSD17B7 in vertebrates and ERG27 in S. cerevisiae) but is
missing in land plants and other eukaryotic phyla (Desmond
and Gribaldo, 2009). More recent studies have suggested that
enzymes that oxidizes the C-3 hydroxyl group of sterols to a
ketone also reduces the C-3 ketone in tomato (Lee et al., 2019) or
sterol-producing bacteria (Lee et al., 2018). On the other hand, in
human aldo-keto reductases of the 1C subfamily are involved in
3-ketosteroid reduction and known to be promiscuous (Penning
et al., 2015). We found three aldo-keto reductase family proteins
in R. toruloides (protein ID 13153, 14209, and 14213) that are
homologous to human aldo-keto reductases 1C. One of the
aldo-keto reductases (14213) had a predicted signal peptide by
SignalP and predicted localization in endoplasmic reticulum
by WoLF PSORT, and was assigned to reactions catalyzed
by the 3-ketosteroid reductase. Carotenoid biosynthesis in
endoplasmic reticulum and accumulation in lipid droplets were
added based on previous studies (Sun et al., 2017; Ma et al., 2019;
Rabeharindranto et al., 2019).

The reactions and genes in the central metabolic pathways
were manually checked for their co-factor usage and localization.
Reactions in the compartments that are present in other
organisms but irrelevant in R. toruloides were either moved
to appropriate compartments or removed from the model
if redundant. Reactions with incomplete gene-to-protein-to-
reaction association (e.g., missing subunits) were either removed
from the model or updated with corresponding genes if found.
Reactions were checked for mass and charge balance, and
chemical formula and charge information was updated for all
metabolites. When needed, chemical equations were modified
based on metabolic databases or new evidence in literature. The
curated metabolic reconstruction consisted of 1106 genes, 1934
reactions, and 2010 metabolites (1246 unique metabolites) in
nine compartments.

Metabolic Network Modeling and Growth
Simulation
A biomass reaction from the S. cerevisiae metabolic model
and exchange reactions for external metabolites were added
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to the metabolic network reconstruction to develop a draft
metabolic model that can be used to make growth and flux
predictions. In addition, transport reactions for water, carbon
dioxide, and oxygen in different compartments were added. We
first examined whether each biomass precursor in the biomass
reaction can be synthesized in an aerobic glucose minimal
medium. A flux balance analysis (FBA) problem maximizing
the biomass production was solved, and the shadow prices
of metabolites were examined to identify biomass components
that could not be synthesized. The cytosolic components in
S. cerevisiae biomass reaction whose biosynthesis reactions
were moved to endoplasmic reticulum were replaced with the
respective metabolites in endoplasmic reticulum, and transport
reactions for fatty acids, phospholipids, and sterols were added
to allow lipid production. In addition, mitochondrial transport
reactions for several amino acids and their precursors were
added and incorrect reactions in lysine biosynthesis were
manually curated to allow synthesis of all components in
S. cerevisiae biomass reaction. Several reactions generating a
free proton gradient across mitochondrial membrane via a loop
were identified by mixed-integer programming and removed to
prevent unrealistic ATP production.

We used multi-omics and other experimental measurement
to update the biomass reaction. The DNA composition was
updated using the genome sequence, RNA composition was
updated using transcriptomics data, amino acid composition
was updated using proteomics data, and lipid composition
was updated using fatty acid methyl ester analysis. For lipid
composition, we measured fatty acid profiles in multiple media
conditions to cover from low lipid to high lipid production
states (Figure 2A). We observed that the weight percentages
of a subset of individual fatty acids linearly increased from a
low lipid condition (e.g., YPD) to a high lipid condition (e.g.,
YNB CN120) whereas the weight percentages of the other fatty
acids remained relatively constant. We assumed those fatty acids
that were linearly increasing to be the major components in the
lipid body, and used segmented linear regression to estimate the
fatty acid composition in “lean” cell mass where the majority
of lipids are phospholipids, and the fatty acid composition
in lipid body where the majority of lipids are triacylglycerols
and sterol esters (Figure 2B). The fatty acid composition in
“lean” cell mass was estimated from the y-intercepts and used
in the biomass equation, and the fatty acid composition in
lipid body was estimated from the slopes and used in demand
reactions for triacylglycerols and sterol esters accumulation in
lipid droplet. This allows for the simulation of cell growth and
lipid accumulation in lipid body separately, and also enables
the simulation of lipid mobilization using sink reactions for
triacylglycerol and sterol esters in lipid droplet. Next, we
added commonly known trace elements including cofactors and
vitamins to the biomass equation and examined using FBA
whether they could be synthesized. The reactions involved in
folate, thiamine pyrophosphate, quinone, and biotin biosynthesis
were manually curated to enable their biosynthesis. It was
necessary to add demand reactions for 8-amino-7-oxononanoate
and lipoate since we were not able to find all the required enzymes
for their synthesis.

We tested the model’s capability to predict growth on carbon
sources that can be often found in lignocellulosic biomass
hydrolyzate – glucose, D-xylose, L-arabinose, and p-coumarate.
The initial metabolic model was able to predict growth on
glucose, but not on D-xylose, L-arabinose, and p-coumarate.
We examined the existing reactions in the model to identify
the missing links within known catabolic pathways. In order
to predict growth on D-xylose, the xylose reductase reaction
was needed. Two potential xylose reductase encoding genes
were found in R. toruloides with sequences that are similar to
larA and xyrA in Aspergillus niger. For growth on L-arabinose,
the L-arabinose transporter, L-arabinitol 4-dehydrogenase, and
L-xylulose reductase reactions were needed but BLAST of known
genes for these reactions resulted in multiple hits with moderate
scores. For p-coumarate utilization, four reactions in the known
p-coumarate degradation pathway in bacteria were present in
the model. We identified genes that could potentially catalyze
the missing reactions in the known p-coumarate degradation
pathway using functional annotation and BLAST searches.
However, additional experimental data was still needed to
identify which of these candidates are actually responsible for
the missing or added metabolic functions in the D-xylose,
L-arabinose, and p-coumarate utilization pathways. We therefore
performed multi-omics experiments for R. toruloides grown
in these carbon sources to elucidate the genes and reactions
necessary for their utilization.

Multi-Omics Analysis of Lignocellulosic
Carbon Utilization in R. toruloides
We performed transcriptomics, proteomics, and metabolomics
analysis to investigate genes involved in carbon utilization
pathways in R. toruloides. Cells were grown with glucose,
glucose + D-xylose, D-xylose, L-arabinose, or p-coumarate as
carbon source, and samples were taken during exponential
growth phase and stationary phase. An additional sample was
taken between exponential and stationary phase for cells grown
with glucose + D-xylose to study the co-utilization pattern. Gene
expression profiles in cells grown on D-xylose, L-arabinose, or
p-coumarate was compared to glucose in order to identify genes
specifically upregulated or downregulated by each carbon source.
RB-TDNA sequencing was also performed in glucose, D-xylose,
L-arabinose, p-coumarate and other related metabolites. RB-
TDNA sequencing uses sequence barcoded random insertions
throughout the genome to identify genes required for growth in a
given condition. A mixed population of hundreds of thousands of
different mutant strains, each bearing an insertion at a different
genomic location, is cultured in the condition of interest. The
relative abundances of all barcoded strains in the population
are simultaneously measured from a single sample by high
throughput sequencing. For the more than 6000 genes with three
or more independently tracked insertions within their coding
sequence, those abundances are aggregated into a single “fitness
score” for mutations in each gene in the tested condition. Genes
with an essential function in a given condition (e.g., an enzymatic
reaction in catabolic pathway) will have negative fitness scores in
that condition. Transcriptomics, proteomics, and fitness scores
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FIGURE 2 | Fatty acid composition of R. toruloides in different media conditions and segmented linear regression. (A) Fatty acid composition by fatty acid methyl
ester analysis in M9, YNB with C to N ratio of 120, YPD, and SD media. Colors indicate different fatty acid species and shapes indicate different media.
(B) Estimation of fatty acid content in “lean” cell mass and fatty acid content in lipid body using segmented linear regression. Dashed lines are segmented linear
regression for each fatty acid k using the equation yk = mk (x–x0) + bk . The inset shows the slope mk in a black dashed line, the x-intercept x0 in a red dotted line,
and the y-intercept bk in a blue dotted line for fatty acid k.

were used to assign genes to reactions when annotations were
ambiguous or multiple isozymes with substrate promiscuity were
present. Metabolomics data was used to identify intermediates
in utilization pathways to provide additional support for the
proposed pathways.

We first investigated the metabolic pathways and associated
genes involved in D-xylose and L-arabinose utilization using
the multi-omics data. The functional annotation and multi-
omics data suggested that R. toruloides uses an alternative
pathway involving D-arabinitol and D-ribulose forming ribulose-
5-phosphate instead of the known fungal xylose pathway
forming D-xylulose-5-phosphate (Figure 3 and Table 1). Two
genes in R. toruloides NP11 were annotated as D-arabinitol
dehydrogenase, RHTO_07702 and RHTO_07844, and used to
identify potential arabinitol dehydrogenases in strain IFO0880.
Protein ID 9990 was identified as an ortholog of RHTO_07844 by
OrthoMCL, and a BLAST search found matches to D-arabinitol
2-dehydrogenases (converting D-arabinitol to D-ribulose) with
relatively high identity (over 50%). Consistent with this
annotation, Protein ID 9990 had significant fitness defects
in many pentose sugars and alcohols including D-xylose,
xylitol, D-xylulose, D-arabinitol, L-arabinose, L-lyxose, and
L-arabinitol, but not in D-ribulose. Protein ID 9837 was
identified as an ortholog of RHTO_07702 by OrthoMCL, and
a BLAST search found matches to D-arabinitol dehydrogenase
(NADP+), D-arabinitol 2-dehydrogenases, and D-arabinitol 4-
dehydrogenase (converting D-xylulose to D-arabinitol) with
lower identity (less than 40%). BLAST analysis of Aspergillus
niger D-arabinitol 4-dehydrogenase (An04g09410) against the
R. toruloides genome found several hits including protein ID 9837
suggesting its role as D-arabinitol 4-dehydrogenase. However,
protein ID 9837 had a weaker fitness defect suggesting that
other enzymes participate in the conversion of D-xylulose to
D-arabinitol. Among other BLAST hits, protein ID 8905 was
upregulated in D-xylose and L-arabinose and had some fitness
defect during growth on pentose sugars and alcohols. Therefore,
the weak fitness defects for either protein ID 9837 and protein
ID 8905 are consistent with genetic redundancy at this step

in the xylose utilization pathway. The proposed alternative
pathway is supported by our observation that the D-xylulose
kinase (protein ID 16850) had very low RNA abundance and
no detectable peptides in every condition we tested, and that
mutants for protein ID 16850 had no significant fitness defect
in any condition tested. Another supporting observation is
that the D-ribulose kinase (protein ID 14368) had significant
fitness defects in all pentose sugar and alcohol media conditions
tested. This pathway is also consistent with recent observations
that R. toruloides grown on D-xylose transiently accumulates
D-arabinitol in the culture media (Jagtap and Rao, 2018). In
summary, our omics and genetic data supports an alternative
D-xylose and L-arabinose utilization pathway involving a
D-ribulose-5-phosphate intermediate rather than a D-xylulose-
5-phosphate intermediate (Figure 3).

Next, we propose that R. toruloides metabolizes p-coumarate
to protocatechuate by a beta-oxidation-like pathway in
the peroxisome (Figure 4 and Table 2). Previously known
p-coumarate utilization pathway in bacteria such as P. putida
contains p-coumaroyl-CoA hydratase/aldolase or feruloyl-CoA
hydratase/lyase that hydrolyzes p-coumaroyl-CoA to 3S-(4-
hydroxyphenyl)-3-hydroxy-propanoyl-CoA and subsequently
produces 4-hydroxybenzoyl-CoA and acetyl-CoA. We found
that, in R. toruloides grown in p-coumarate media, enzymes
that are similar to peroxisomal fatty acid beta-oxidation
enzymes ACSL (long-chain acyl-CoA synthetase), FOX2
(multifunctional enzyme, 3-hydroxyacyl-CoA dehydrogenase,
and enoyl-CoA dehydratase), and POT1 (3-ketoacyl-CoA
thiolase) were upregulated. Our fitness data from RB-TDNAseq
on p-coumarate and previously published RB-TDNAseq data on
oleic and ricinoleic acid (Coradetti et al., 2018) shows that these
enzymes are distinct from the mitochondrial or peroxisomal
fatty acid beta-oxidation enzymes (Figure 5 and Table 3) since
they did not have a fitness defect in oleic or ricinoleic acid
media. Mitochondrial or peroxisomal fatty acid beta-oxidation
genes did not have significant fitness defect in p-coumarate
or ferulate media (Figure 5 and Table 3). The predicted
localization of the enzymes involved in p-coumarate indicates
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FIGURE 3 | Pentose utilization pathway in R. toruloides. (A) Pentose sugars and alcohols are converted to D-ribulose-5-phosphate via D-arabinitol dehydrogenases
before entering the pentose phosphate pathway. (B) Gene expression, protein expression, and fitness scores for pentose utilization pathway genes (exp, exponential
phase; trans, transition phase; stat, stationary phase).

TABLE 1 | Genes involved in pentose sugar and alcohol utilization.

Protein ID Annotation S. cerevisiae
best hit

Human best hit

9774 Alcohol dehydrogenase
(NADP+)

YPR1 AKR1A

11882 Glycerol 2-dehydrogenase
(NADP+)

YPR1 AKR1A

13562 Alcohol dehydrogenase
(NADP+)

ADH7

12974 Zinc-binding alcohol
dehydrogenases

SOR1 SORD

12977 L-iditol 2-dehydrogenase XYL2 SORD

16452 D-xylulose reductase SOR1 SORD

8988 Sorbose reductase DHRS4

16850 Xylulokinase XKS1 XYLB

8905 Reductases with broad range
of substrate specificities

IRC24 DHRS4

9837 D-arabinitol dehydrogenase

9990 D-arabinitol 2-dehydrogenase SPS19 CBR4

14368 Ribulose kinase and related
carbohydrate kinases

YDR109C FGGY

12976 Predicted transporter (major
facilitator superfamily)

STL1 SLC2A

10452 Predicted transporter (major
facilitator superfamily)

RGT2 SLC2A

12978 Fungal specific transcription
factor Zn(2)-Cys(6) binuclear
cluster domain

10174 Related to C2H2 zinc finger
protein

SDD4

that p-coumarate is first degraded to protocatechuate in the
peroxisome, and protocatechuate is transported to the cytosol for
further degradation via the 3-oxoadipate pathway. Degradation
of p-coumarate and ferulate via a beta-oxidation like pathway
would result in 4-hydroxybenzoate and vanillate, respectively.

Protocatechuate and 4-hydroxybenzoate were detected in the
intracellular and extracellular metabolomics of cells grown on
p-coumarate (Figure 4C). An enzyme similar to kynurenine
3-monooxygenase BNA4 showed fitness defect in p-coumarate,
but not in ferulate, which indicates it is likely to be a 3-
hydroxybenzoate 4-monooxygenase producing protocatechuate
from 4-hydroxybenzoate. 4-hydroxybenzoate may also be
transported to mitochondria for quinone biosynthesis.
A fitness defect in mitochondrial oxoadipate carrier ODC2
suggests that 3-oxoadipate is transported from cytosol to
mitochondria for the final steps in the beta-ketoadipate pathway
generating succinyl-CoA and acetyl-CoA which can feed
into the TCA cycle. Interestingly, several genes involved in
aromatic amino acid metabolism showed a significant fitness
defect in p-coumarate, although they showed some degree of
fitness defect in other media conditions. For example, four
genes in the tryptophan degradation pathway to 2-amino-3-
carboxymuconate semialdehyde via kynurenine (BNA1, BNA2,
BNA4, and BNA5) as well as cytosolic aspartate aminotransferase
AAT2 had pronounced fitness defects in p-coumarate and
ferulate (Figure 5 and Table 3). Since p-coumarate and 4-
hydroxybenzoate are known to be ubiquinone precursors
and they are synthesized from aromatic amino acids, it is
possible that high concentration of these compounds affects
the regulation of aromatic amino acid pathway genes and
fitness defect becomes more pronounced. Taken together,
the omics and genetic data support a proposed p-coumarate
utilization pathway that involves formation of protocatechuate
in the peroxisome, followed by ortho-cleavage in the cytosol,
and then 3-oxoadipate degradation in the mitochondria
(Figure 4). Multi-omics analysis and manual curation improved
the metabolic model, but their scope was still limited to
lignocellulosic carbon utilization pathways. In the next section,
we performed a genome-scale evaluation and iteratively
improved the model using high-throughput growth phenotyping
and functional genomics.
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FIGURE 4 | p-Coumarate utilization pathway in R. toruloides. (A) p-Coumarate degradation to protocatechuate by a beta-oxidation like pathway in peroxisome,
protocatechuate degradation to 3-oxoadipate by the ortho-cleavage pathway in cytosol, and 3-oxoadipate degradation in mitochondria. (B) Gene expression,
protein expression, and fitness scores for p-coumarate utilization pathway genes (exp, exponential phase; stat, stationary phase). (C) Intracellular and extracellular
measurement of p-coumarate and intermediates in p-coumarate condition (not detected in glucose, glucose + D-xylose, D-xylose, and L-arabinose conditions).

TABLE 2 | Genes involved in p-coumarate utilization.

Protein ID Annotation S. cerevisiae
best hit

P. putida best hit PTS2 (N-terminal) PTS1 (C-terminal) Pathway

12555 Long-chain acyl-CoA synthetase FAA2 AKL* Peroxisomal p-coumarate
degradation to
protocatechuate

16635 Long-chain acyl-CoA synthetase PCS60 AKL*

16515 Enoyl-CoA hydratase/isomerase family ARL*

9469 Peroxisomal dehydratase FOX2 SKL*

10551 3-oxoacyl-(acyl-carrier protein)
reductase

FOX2 6-RLQQVQGQL-14

10558 3-oxoacyl-(acyl-carrier protein)
reductase

FOX2 7-RLSAVSGQL-15

9065 3-oxoacyl CoA thiolase POT1

14934 Alpha/beta hydrolase family ARL*

12923 Monooxygenase involved in coenzyme
Q (ubiquinone) biosynthesis

pobA ASL*

12623 Dioxygenase pcaH Protocatechuate
degradation via
3-oxoadipate

12622 Lactonase pcaB

12620 Carboxymuconolactone decarboxylase
family

pcaCD

13090 3-oxoacid CoA-transferase pcaIJ

15228 Acetyl-CoA acyltransferase 1 pcaF

10635 Mitochondrial 2-oxodicarboxylate
transporter

ODC2

8936 Aspartate aminotransferase,
cytoplasmic

AAT2

12950 Vanillin dehydrogenase UGA2 ALDH9

16323 Aldehyde dehydrogenase (NAD+) HFD1 ALDH3

13229 Unknown transmembrane protein

15306 long-chain acyl-CoA synthetase

16462 Phenylalanine/tyrosine ammonia-lyase

10304 Cytochrome P450, family 3, subfamily A

PTS, peroxisomal targeting sequence.
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FIGURE 5 | Gene expression, protein expression, and fitness scores for fatty acid beta-oxidation and NAD biosynthesis pathway genes (exp, exponential phase;
stat, stationary phase).

TABLE 3 | Genes involved in fatty acid beta-oxidation and NAD biosynthesis.

Protein ID Annotation S. cerevisiae best hit Human best hit Pathway

14070 Short/branched chain acyl-CoA dehydrogenase ACADS Fatty acid beta-oxidation

12570 Acyl-CoA dehydrogenase ACADM

14805 Enoyl-CoA hydratase EHD3 ECHS1

11203 3-hydroxyacyl-CoA dehydrogenase HADH

8885 Acetyl-CoA acyltransferase 2 ERG10 ACAA2

12555 Long-chain acyl-CoA synthetase FAA2 ACSL1

12742 Acyl-CoA oxidase POX1 ACOX1

12752 Acyl-CoA oxidase POX1 ACOX1

9700 Acyl-CoA oxidase POX1 ACOX1

11362 Multifunctional beta-oxidation protein FOX2 HSD17

13813 Acetyl-CoA acyltransferase 1 POT1 ACAA1

15923 Indoleamine 2,3-dioxygenase BNA2 IDO1 NAD biosynthesis

8540 Kynurenine aminotransferase BNA3 KYAT3

9267 Kynurenine 3-monooxygenase BNA4 KMO

8725 Kynureninase BNA5 KYNU

8602 3-hydroxyanthranilate 3,4-dioxygenase BNA1 HAAO

10331 Nicotinate-nucleotide pyrophosphorylase (carboxylating) BNA6 QPRT

Validation and Reconciliation of Growth
Phenotype and Gene Essentiality
Predictions
We tested the developed metabolic model’s capability to predict
growth on different carbon, nitrogen, sulfur, and phosphate
sources. Growth phenotype data from Biolog Phenotype

MicroArrays were used to evaluate the model predictions
(Figure 6). Among 384 conditions in Biolog plates (PM1, PM2,
PM3B, and PM4A), 116 conditions could be simulated with
the model since not all the metabolites were present in the
metabolic network. Of these 116 conditions, the model correctly
predicted 76 positive and 12 negative growth phenotypes, and
incorrectly predicted 6 false positive and 22 false negative growth
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FIGURE 6 | Model evaluation using high-throughput growth phenotype data. (A) Biolog phenotype microarray data (white indicates low growth and red indicates
high growth). Comparison of model predicted growth and experimental data (B) before and (C) after manual curation to include more metabolites.

phenotypes. The overall accuracy was 75.9%, comparable to
previously published metabolic models of other organisms [e.g.,
E. coli iAF1260 model (Feist et al., 2007) with 75.9% accuracy
in 170 conditions]. We then manually refined the model to
include more metabolites found in Biolog plates and reconcile
the inconsistencies. The updated model was able to simulate 213
conditions in Biolog plates with 78.4% accuracy and Matthew’s
correlation coefficient of 0.493.

We used the fitness scores from RB-TDNAseq to evaluate
the model’s capability to predict conditionally essential genes in
different growth conditions (Figure 7). Genes were considered
essential if they were classified as essential in our previous
RB-TDNAseq study (Coradetti et al., 2018) or fitness score
was less than a cut-off value. There were 1147 genes in the
model, but 15 genes were mitochondrial and excluded from this
analysis since their essentiality was not available from the RB-
TDNAseq data. The model predicted gene essentiality for 1132
genes in 27 different growth conditions with 72.7% accuracy
and Matthew’s correlation coefficient of 0.388. The model was
further refined to resolve the inconsistencies and several genes
with erroneous ortholog mapping were removed from the
model. The refined model had 1142 genes, 2398 reactions, and
2051 metabolites (1205 unique metabolites), and predicted gene
essentiality for 1127 non-mitochondrial genes in 27 conditions
with 78.6% accuracy and Matthew’s correlation coefficient of
0.406 [see Supplementary File 5 for a comparison with a
previously published model (Dinh et al., 2019)]. Among these
1127 genes, 281 genes were essential across all conditions, 772

genes were not essential under any conditions, and 74 genes were
essential under only certain conditions. For these 74 conditionally
essential genes, the refined model predicted gene essentiality with
78.7% accuracy.

DISCUSSION

In this work, we have developed a genome-scale metabolic
network model of R. toruloides and utilized the model to study
the metabolic pathways for utilizing carbon sources derived
from lignocellulosic biomass. The initial metabolic network was
reconstructed from high-quality published metabolic network
models of other organisms using orthologous protein mapping.
There is some risk of incorrect reaction identification from the
false positives in ortholog identification due to horizontal gene
transfer (HGT), and there are many examples that highlight
the importance of HGT in ascomycete yeasts (Goncalves et al.,
2018; Shen et al., 2018; Kominek et al., 2019; Devia et al., 2020).
However, ortholog identification continues to be a standard
practice for the initial reconstruction of genome-scale metabolic
networks for non-model organisms and currently we do not
have evidence of large scale HGT in R. toruloides. As with any
model, our model will need to be improved and re-evaluated
over time in cases of HGT and as new metabolic pathways
are characterized. The developed model contains 1141 genes,
2398 reactions, and 2051 metabolites (1205 unique metabolites)
in nine compartments. The lipid body was separated from
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FIGURE 7 | Model evaluation using high-throughput gene essentiality data. (A) RB-TDNA sequencing fitness score data for all genes in the model. Comparison of
model predicted gene essentiality and experimental data for (B) all model genes and (C) conditionally essential genes in experiment.

the biomass equation allowing the independent simulation of
lipid accumulation or mobilization in oleaginous yeasts. The
separation of the lipid body from biomass eliminated the
need for more than one biomass equation depending on the
growth condition or lipid content. Multi-omics analysis and
metabolic network reconstruction identified unique reactions
and enzymes as well as their localization for unique pentose
and aromatic compound utilization pathways in R. toruloides.
The pentose and aromatic compound utilization pathways
proposed in this study have not been suggested in previously
published multi-omics studies or genome-scale metabolic models
of R. toruloides (Bommareddy et al., 2015; Dinh et al., 2019;
Tiukova et al., 2019a,b; Lopes et al., 2020; Pinheiro et al., 2020).
The first genome-scale metabolic model for R. toruloides was
recently built for strain NP11 (Tiukova et al., 2019b), and a
proteomics study of xylose metabolism was conducted by the
same research group (Tiukova et al., 2019a). Another genome-
scale metabolic model was shortly after published for strain
IFO0880 utilizing the functional genomics data (Coradetti et al.,
2018). More recent studies utilized these models to study the
utilization of different carbon sources, but their focus was
primarily on lipid production (Lopes et al., 2020; Pinheiro et al.,
2020).The metabolic network model developed in this study was
reconstructed and manually curated reproducibly using multi-
omics data and electronic notebooks, and validated against high-
throughput growth phenotypes in 213 growth conditions and
conditional gene essentiality in 27 growth conditions with high
prediction accuracies, significantly expanding the breadth and
depth of metabolic coverage from previously published models
(Dinh et al., 2019; Tiukova et al., 2019b). We believe that the
developed metabolic network for R. toruloides is most complete

and accurate to date, and the multi-omics data and metabolic
model presented in this study will be useful for studying and
engineering R. toruloides for lignocellulosic biomass conversion.
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Biology has changed radically in the past two decades, growing from a purely descriptive

science into also a design science. The availability of tools that enable the precise

modification of cells, as well as the ability to collect large amounts of multimodal data,

open the possibility of sophisticated bioengineering to produce fuels, specialty and

commodity chemicals, materials, and other renewable bioproducts. However, despite

new tools and exponentially increasing data volumes, synthetic biology cannot yet fulfill

its true potential due to our inability to predict the behavior of biological systems.

Here, we showcase a set of computational tools that, combined, provide the ability to

store, visualize, and leverage multiomics data to predict the outcome of bioengineering

efforts. We show how to upload, visualize, and output multiomics data, as well as

strain information, into online repositories for several isoprenol-producing strain designs.

We then use these data to train machine learning algorithms that recommend new

strain designs that are correctly predicted to improve isoprenol production by 23%.

This demonstration is done by using synthetic data, as provided by a novel library, that

can produce credible multiomics data for testing algorithms and computational tools. In

short, this paper provides a step-by-step tutorial to leverage these computational tools

to improve production in bioengineered strains.

Keywords: machine learning, flux analysis, metabolic engineering, biofuels, synthetic biology, multiomics analysis

INTRODUCTION

Synthetic biology represents another step in the development of biology as an engineering
discipline. The application of engineering principles such as standardized genetic parts (Canton
et al., 2008; Müller and Arndt, 2012) or the application of Design-Build-Test-Learn (DBTL)
cycles (Petzold et al., 2015; Nielsen and Keasling, 2016) has transformed genetic and metabolic
engineering in significant ways. Armed with this new engineering framework, synthetic biology
is creating products to tackle societal problems in ways that only biology can enable. Synthetic
biology, for example, is being leveraged to produce renewable biofuels to combat climate change
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(Peralta-Yahya et al., 2012; Beller et al., 2015; Chubukov et al.,
2016), improve crop yields (Roell and Zurbriggen, 2020), combat
the spread of diseases (Kyrou et al., 2018), synthesize medical
drugs (Ajikumar et al., 2010; Paddon and Keasling, 2014),
biomaterials (Bryksin et al., 2014), and plant-based foods (Meat-
free outsells beef, 2019).

However, the development of synthetic biology is hindered
by our inability to predict the results of engineering outcomes.
DNA synthesis and CRISPR-based genetic editing (Ma et al.,
2012; Doudna and Charpentier, 2014) allow us to produce and
change DNA (the working code of the cell) with unparalleled
ease, but we can rarely predict how that modified DNA will
impact cell behavior (Gardner, 2013). As a consequence, it is not
possible to design a cell to fit a desired specification: e.g., have
the cell produce X grams of a specified biofuel or an anticancer
agent. Hence, metabolic engineering is often mired in trial-and-
error approaches that result in very long development times
(Hodgman and Jewett, 2012). In this context, machine learning
has recently appeared as a powerful tool that can provide the
predictive power that bioengineering needs to be effective and
impactful (Carbonell et al., 2019; Radivojević et al., 2020; Zhang
et al., 2020).

Furthermore, although there is a growing abundance of
phenotyping data, the tools to systematically leverage these
data to improve predictive power are lacking. For example,
transcriptomics data has a doubling time of 7 months (Stephens
et al., 2015), and high-throughput techniques for proteomics
(Chen et al., 2019) and metabolomics (Fuhrer and Zamboni,
2015) are becoming increasingly available. Often, metabolic
engineers struggle to synthesize this data deluge into precise
actionable items (e.g., down regulate this gene and knock out this
transcription factor) to obtain their desired goal (e.g., increase
productivity to commercially viable levels).

Here, we showcase how to combine the following existing
tools to leverage omics data and suggest next steps (Figure 1): the
Inventory of Composable Elements (ICE), the Experiment Data
Depot (EDD), the Automated Recommendation Tool (ART), and
Jupyter Notebooks. ICE (Ham et al., 2012) is an open source
repository platform for managing information about DNA parts
and plasmids, proteins, microbial host strains, and plant seeds.
EDD (Morrell et al., 2017) is an open source online repository of
experimental data and metadata. ART (Radivojević et al., 2020;
Zhang et al., 2020) is a library that leverages machine learning
for synthetic biology purposes, providing predictive models
and recommendations for the next set of experiments. Jupyter
notebooks are interactive documents that contain live code,
equations, visualizations, and explanatory text (Project Jupyter |
Home1; IOS Press Ebooks - Jupyter Notebooks) (Kluyver et al.,
2016). When combined, this set of tools can effectively store,
visualize, and leverage synthetic biology data to enable predictive
bioengineering and effective actionable items for the next DBTL
cycle. We will demonstrate this with an example in which we
leverage multiomics data to improve the production of isoprenol,
a potential biofuel (Kang et al., 2019). This multiomics data set

1Project Jupyter | Home. Available online at: https://jupyter.org/ (accessed

September 4, 2020).

FIGURE 1 | Combining several tools to guide metabolic engineering. The

combination of ICE, EDD, and ART provides the ability to store, visualize and

leverage multiomics data to guide bioengineering. Here, we showcase how to

use this collection of tools to improve the production of isoprenol in E. coli for a

simulated data set.

is a synthetic data set (i.e., simulated computationally without
experimental work) generated through the new Omics Mock
Generator (OMG) library. Synthetic data provide the advantage
of easily producing large amounts of multimodal data that would
be prohibitively expensive to produce experimentally. In this
way, we can concentrate this manuscript on the demonstration
of computational tools rather than the details and vagaries of
data collection. The OMG library provides an easily accessible
source of biologically believable data that can be used to test
algorithms and tools systematically. Validation for these tools
with experimental data has already been provided elsewhere (e.g.,
Radivojević et al., 2020; Zhang et al., 2020).

METHODS

Synthetic Data Generator Library (OMG)
The Omics Mock Generator (OMG) library is used to provide
the synthetic multiomics data needed to test the computational
tools described here (Figure 2). Since experimental multiomics
data are expensive and non-trivial to produce, OMG provides
a quick and easy way to produce large amounts of multiomics
data that are based on plausible metabolic assumptions. OMG
creates fluxes based on Flux Balance Analysis (FBA) and growth
rate maximization (Orth et al., 2010), leveraging COBRApy
(Ebrahim et al., 2013). OMG can use any genome-scale model,
but in this case we have used the iJO1366 E. coli genome
scale model, augmented with an isoprenol pathway obtained
from the iMM904 S. cerevisiae model (Notebook A). In order
to obtain proteomics data, we assume that the corresponding
protein expression and gene transcription are linearly related to
the fluxes. We also assume the concentration of metabolites to
be loosely related to the fluxes of the reactions that consume
or produce them (no fluxes → no metabolite): the amount of
metabolite present is assumed to be proportional to the sum of
absolute fluxes coming in and out of the metabolite. Therefore,
although the data provided by OMG is not real, it is more realistic
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FIGURE 2 | Demonstrating ICE, EDD, and ART using synthetic data. For the purposes of the demonstration of how ICE, EDD, and ART work together, we use a

synthetic data set of multiomics data (transcriptomics, proteomics, metabolomics, fluxomics) for several time points created by the Omics Mock Generator (OMG)

library (see Methods section). We start with a base strain (wild type, or WT) that is bioengineered according to several designs (i.e., knockout malate dehydrogenase,

overexpress citrate synthase) suggested by ART. The results are 95 bioengineered strains (BE1, BE2… etc.) for which experimental data (isoprenol production levels)

are simulated through OMG and stored in EDD and ICE. These data are then leveraged by ART to recommend, using machine learning, new designs that are

expected to improve isoprenol production (REC1, REC2, …). These recommendations and production predictions are compared with the ground truth provided by

OMG. Each of these steps (in orange) is demonstrated through screencasts and Jupyter notebooks (Table 1).

than randomly generated data, providing a useful resource to test
the scaling of algorithms and computational tools.

The data generated by OMG was used in this manuscript to
test EDD input, output, and visualization, and to provide training
data for ART (Figure 2). This tool can be a very useful resource
for the rapid prototyping of new tools and algorithms.

Generating Flux Time Series Data
Fluxes describe the rates of metabolic reactions in a given
organism, and can be easily generated through FBA. FBA
assumes that the organism is under selective pressure to increase
its growth rate (Orth et al., 2010; Lewis et al., 2012), hence
searching for the fluxes that optimize it. FBA relies on genome-
scale models, which provide a comprehensive description of
all known genetically encoded metabolic reactions (Thiele and
Palsson, 2010). FBA produces fluxes by solving through Linear
Programming (LP) the following optimization problem:

MaximizeVbiomasssubject to :

6jSijVj = 0

lbj ≤ Vj ≤ ubj (1)

where S is the stoichiometry matrix of size m∗n (number of
metabolites∗number of reactions in the model), Vj is the flux for
reaction jwithin themodel (j= 1,...,n). The lower bound (lbj) and
upper bound (ubj) provide the minimum and maximum for each

reaction. For example, if the input carbon source is glucose and
we know that the input in a given time lapse is−15 mmol/gdw/h,
the upper bound and lower bound for the exchange reaction
corresponding to glucose are set to this value: −15 < VEX_glc

< −15. The solution to this optimization problem provides the
fluxes that maximize growth rate, and that will be used later on
to obtain transcriptomics, proteomics and metabolomics data.
However, one must be aware that this optimization problem is
underdetermined, and there are multiple solutions that satisfy
exchange flux constraints.

We create time series of fluxes by doing a batch simulation
based on FBA (see OMG library and Notebook A). We assume a
given concentration for extracellular metabolites (e.g., 22mM of
glucose, or 18mM of ammonium) and, for each time point, we
run FBA for the model and update the extracellular metabolite
concentration based on the exchange fluxes coming from the
simulation (see Notebook A). For example, if an exchange flux
of V_EX_glc_D = −15 mmol/gdw/hr is obtained for the model,
the corresponding glucose concentration is adjusted as follows:

[glc_D]new = [glc_D]old − 15mmol/gdw/hr · 1t · [cell]

Where [glc_D]old is the old glucose concentration, [glc_D]new
is the updated concentration, 1t is the time change and [cell]
is the cell concentration. In practice, we assume that the cell
density increase is better described by an exponential than a
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linear relationship, and 1t ·
[

cell
]

is substituted by 1[cell]/µ,
where µ is the growth rate: µ = 1/[cell] · 1[cell]/1t. The
simulation proceeds until the carbon source (e.g., glucose) is
exhausted. The result of the simulation is a set of fluxes, cell
concentration and extracellular metabolite concentration for
each time point (see Figure 3). The fluxes will be the base for
calculating transcriptomics, proteomics, and metabolomics data,
as shown below.

Generating Proteomics Data
The flux values obtained from FBA are subsequently used to
generate proteomics data, which describe the concentration
of the protein catalyzing a given reaction within the
host organism. The protein concentration for each time
point is derived from the corresponding fluxes through a
linear relationship:

Pj = Vj/k + β (2)

which is loosely inspired in the Michaelis-Menten equation
(Heinrich and Schuster, 1996), where Vj is the flux of reaction
j, Pj is the concentration of the protein catalyzing the reaction j,
and k is a linear constant arbitrarily set to 0.1. The symbol β is an
added random noise which is set to 5% of the signal.

Generating Transcriptomics Data
The aforementioned proteomics values are subsequently used
to generate transcriptomics data, which describe the abundance
of RNA transcripts linked to a given protein within the host
organism. For simplicity, the transcript data is assumed to have a
linear relationship with the proteomics data:

Tj = Pj/q+ γ (3)

where Tj is the abundance of RNA transcripts linked to the
reaction j, and q is a linear constant arbitrarily set to 0.833. As
above, γ is a random noise addition set to 5% of the signal data.
This calculation is performed for each time point.

Generating Metabolomics Data
The flux values obtained from the FBA are also used to generate
the metabolomics data, which describe the concentration of a
given metabolite within the host organism. While finding the
metabolite concentrations compatible with a given metabolic
flux, protein concentrations, and transcript levels is a non-trivial
endeavor, here we attempt to produce metabolite profiles that are
not obviously unreasonable. Hence, we want concentrations of
zero for metabolites that are connected to fluxes that are null,
and non-zero in any other case. The easiest way to achieve this
is by averaging the absolute value of all the fluxes producing or
consuming the desired metabolite:

Mi = 6j|SijVj| /n (4)

where Mi is the concentration of the metabolite i, j is a reaction
that involves metabolite i, and n is the total number of reactions

in which metabolite i participates. This calculation is performed
for each time point.

Generating Training Data for Machine
Learning and Testing Predictions
We leverage the OMG library to create training data to showcase
the use of ART to guide bioengineering (Figure 2). We will first
create multiomics (transcriptomics, proteomics, metabolomics),
cell concentration, and extracellular metabolite concentration
data for the wild type E. coli strain (WT). Then we will use
ART to suggest initial WT modifications (designs) so as to create
enough data to train ART to be predictive. Those initial designs
will be used by OMG to simulate isoprenol production data
for bioengineered strains that include the genetic modifications
indicated by the initial designs. ART will be trained on these data,
and then used to suggest strain modifications that are predicted
to increase isoprenol production. We will then compare ART
predictions for isoprenol production with the “observed” results
produced by using those designs to simulate bioengineered
strains through OMG. In sum, OMG results are used as ground
truth to be leveraged in testing ART’s performance.

This process involves the following phases:

1. Choosing input and response variables. Since the objective
is to improve production of isoprenol, we use isoprenol
concentration as the response variable. By inspecting the E.
coli network we choose the following fluxes connected to
acetyl-CoA, which is the source for the isoprenol pathway:
ACCOAC, MDH, PTAr, CS, ACACT1r, PPC, PPCK, PFL.
These fluxes then form the set of input variables for ART
(Radivojević et al., 2020).

2. Representation of different strain designs (i.e., genetic

modifications). We will consider only two types of
modifications for each flux: knock-out (KO) and doubling
the flux (UP). This choice results in three categories for each
of the fluxes, which additionally include no modification
(NoMod). We denote these categories by 0, 1, and 2 for KO,
NoMod, and UP, respectively. Considering eight fluxes and
three options for design of each, the total number of possible
designs is 38 = 6,561.

3. Choose training data size. We choose the initial training
data to consist of 96 nonequivalent designs (instances),
including theWT strain. This choice mimics one 96-well plate
run. Different designs (instances) here represent different
engineered strains. These 96 designs represent about 1.46% of
all design space.

4. Generate initial designs. Initial designs are generated using
ART’s feature for generating recommendations for the initial
cycle, by setting its input parameter initial_cycle to
True. This ART functionality relies on the Latin Hypercube
method (McKay et al., 1979), which spaces out draws in a way
that ensures the set of samples represents the variability of
the full design space. Another parameter needed for ART is
num_recommendations, which we set to 95 (see point 3
above). See the ART publication (Radivojević et al., 2020) for
a list of other optional parameters. As the current version of
ART deals only with continuous variables for the initial cycle,
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FIGURE 3 | Visualizing data in EDD. EDD provides data visualization in the form of bar and line charts. The lower menu provides filtering options to facilitate

comparison of lines. More sophisticated visualization can be achieved by pulling the data from EDD through the REST API.

FIGURE 4 | Generating multiomics time series data. For each time point, we

generate fluxes by solving an FBA problem, until glucose is fully consumed.

MOMA is used in conjunction with the design (e.g., increase MDH flux 2-fold,

knock CS out, maintain PTAr) to predict fluxes for the strain bioengineered

according to the design.

ART’s recommendations will be drawn from interval [0, 1],
which is the default interval if no specific upper and lower
bounds are provided in a separate file.We then transform each
of those values into one of the defined categories {0, 1, 2} by

applying the function f(x) = 3∗floor(x). Finally, we add a WT
strain design {1,1,. . . ,1}. See Jupyter Notebook B for the details.

5. Generate production data for the initial designs. The initial
designs from ART are used as input to the OMG library,
generating our “ground truth” for the isoprenol production
levels for each of the initial designs. This represents the
strain construction and the corresponding phenotyping
experiments, which are simulated throughOMG’smechanistic
modeling. In order to simulate how production is affected
by the genetic changes suggested in the designs (e.g., knock
out MDH, upregulate PFL and do not change CS), we used
MOMA (Segrè et al., 2002) for each of the time points in the
flux series (Figure 4). Details can be found in Notebook C.

6. Training ART with initial production data. ART uses the
initial designs and their corresponding productions from
phases 4 and 5 to train, enabling it to predict isoprenol
production for designs it has not seen. Details can be found
in Jupyter Notebook D.

7. Generate next-cycle design recommendations using ART.
Once trained, ART generates 10 recommendations that
are expected to improve isoprenol production. Predictions
are generated for each recommendation in the form of
probability distributions (Figure 5). Details can be found in
Notebook D.

8. Compare ART predictions to ground truth. Finally,
we take ART’s design recommendations from phase 7
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FIGURE 5 | Using machine learning to predict production and recommend new designs. The ART library takes a DataFrame containing input designs (i.e., which

fluxes to overexpress, 2, keep the same, 1, or knock out, 0) and isoprenol production (response). The trained model recommends new designs that have the highest

production. The recommendations come with predictions of production in a probabilistic fashion: i.e., the probability of production of 10, 15, 25, 40 mMol, etc.

FIGURE 6 | ART recommendations display production levels production very similar to predictions. Left panel compares cross-validated predictions for isoprenol

production from ART versus the values obtained through the OMG library for the training data set. Cross-validation keeps a part of the data set hidden from the

training to compare against predictions, providing a good idea of the quality of predictions for new data sets. The right panel compares the predicted production for

the recommended strain (#97) vs the actual production as generated through the OMG library. The comparison indicates a very good agreement between the

prediction and observation.

and use OMG to simulate the corresponding ground
truth isoprenol productions, similarly as in phase 5.
We compare these isoprenol productions (observed

production) vs. the machine learning recommendations
from ART (Figure 6). Details can be found in Jupyter
Notebook E.
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Data Formats for Generic Input Files
The data formats for the generic input files in EDD involve
five columns. The first column specifies the line (e.g., WT). The
second one is the measurement type identifier, which involves a
standardized choice: Pubchem IDs for metabolites, UniProt IDs
for proteins, and Genbank gene IDs for transcripts (e.g., CID:
715, acetate). The third column is the time point (e.g., 0 h). The
fourth column is a value for the corresponding identifier (e.g.,
2.4). The final column is the unit corresponding to this value:
FPKM for transcriptomics data, proteins/cell for proteomics
data, and mg/L or mM for metabolomics data. Optical Density
(OD) has no units.

RESULTS AND DISCUSSION

In the following sections, we will provide a step-by-step example
of how to use this suite of tools (ICE, EDD, ART, OMG, and
Jupyter notebooks) to guide metabolic engineering efforts and
increase isoprenol production in E. coli for a synthetic data set
(Figure 2, and “Methods” section). Using synthetic (simulated)
data allows for a more effective demonstration, since there is
no obstacle to creating time series multiomics data involving
transcriptomics, proteomics, metabolomics, and fluxomics. For
the purposes of this demonstration, creating such a data set using
real experiments would be prohibitively expensive and limiting.

Storing Strain Information in ICE
Our first step involves storing the initial strain information in the
Agile BioFoundry (ABF) instance of ICE: https://public-registry.
agilebiofoundry.org/ (see Screencast 1 in Tables 1, 2). Storing
strain information in ICE provides a standard way to document
the design phase andmake this information available for later use.
ICE provides access controls so that the strains can be created
as the experiment progresses, and then made public later (e.g.,
at publication time). We will initially store the information for
the base strain (or wild type, WT). After creating an account and
logging in, we click on “Create Entry” and choose “Strain.” We
then fill the relevant strain information (e.g., “Name,” “Biosafety
Level,” “Description,” “Sequence,” etc.). Finally, we will click on
“Submit” to create the strain entry. The strain is now available
on the ICE instance and is assigned a part number that will be
used to enter experimental data into EDD as the next step. Strain
information can also be easily downloaded from ICE through the
GUI (Screencast 5).

Importing Data Into EDD
Importing the multiomics data set into EDD allows for
standardized data storage and retrieval. The use of the
Experiment Data Depot (EDD) allows for the seamless
integration of data generated from different analytical methods
(e.g., mass spectroscopy, sequencing, HP-LC). EDD focuses on
storing the biologically interpretable data: i.e., data that can
be immediately interpreted by a biologist without requiring
detailed knowledge of the analytical measurement technique
(e.g., metabolite concentrations rather than GC-MS traces, or
transcripts per cells rather than individual genomic sequencing
reads). Furthermore, the use of standardized schemas is

TABLE 1 | Workflow for the paper and demonstrative Jupyter notebooks and

screencasts.

Step Description Demonstration

1 WT strain import into ICE Screencast 1

2 WT multiomics data generation Notebook A

3 EDD import of WT multiomics data Screencast 2

4 EDD visualization of WT multiomics data Screencast 3

5 Initial designs generation by ART Notebook B

6 Bulk ICE import of bioengineered (BE)

strains

Screencast 4

7 ICE export of BE strains Screencast 5

8 Isoprenol production data generation for

BE strains

Notebook C

9 Bulk EDD import and visualization of BE

strains production data

Screencast 6

10 EDD export of BE production data Screencast 7 + Notebook D

11 ART predictions and recommendations Screencast 8 + Notebook D

12 Using the ART frontend Screencast 9

13 Comparing ART predictions with ground

truth

Notebook E

All screencasts and notebooks are enumerated in Tables 2, 3.

TABLE 2 | Screencasts.

Screencast Description

1 WT strain import into ICE

2 EDD import of WT multiomics data

3 EDD visualization of WT multiomics data

4 Bulk ICE import of bioengineered (BE) strains

5 ICE export of BE strains

6 Bulk EDD import and visualization of BE strains production data

7 EDD export of BE production data

8 ART predictions and recommendations

9 Using the ART frontend

fundamental for downstream analysis such as machine learning
or mechanistic modeling. Indeed, it is estimated that 50–80% of
a data scientist’s time is spent with the type of data wrangling
that EDD avoids by providing an ontology (For Big-Data
Scientists, ‘Janitor Work’ Is Key Hurdle to Insights - The New
York Times) (Lohr, 2014). This ontology reflects the objects
and processes most often encountered in metabolic engineering
experiments (see Figure 2 in Morrell et al., 2017). For example, a
typical metabolic engineering project starts by obtaining several
strains from a strain repository (e.g., DMZ, ATCC, ICE). Those
strains are cultured in different flasks under different conditions
(different media, induction levels etc.), which we call lines
because they are a combination of strain and culture conditions,
and represent a different line of enquiry or question being asked
(e.g., does this strain under this condition improve production?).
The final steps usually involve making measurements relevant to
the experiment’s ultimate goal. These measurements could be the
concentration of the metabolite that the strains are engineered
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FIGURE 7 | Storing strain information in ICE. ICE provides a standardized repository to store information for DNA parts and plasmids, proteins, microbial host strains,

and plant seeds. These data will be linked to the experimental data contained in EDD through the part ID, to be present in the experiment description file.

to produce (e.g., isoprenol in our example), or a transcriptomics
or proteomics analysis that describes the amount of gene
transcription or protein expression. Each of these measurements
is obtained by applying a protocol (e.g., proteomics) to a given
line, resulting in an assay. Performing an assay results in a set
of measurement data: e.g., the number of grams of acetate per
liter in the media, or the number of proteins per cell. In this
ontology, assays can include one or more time points. As a
general rule, destructive assays (e.g., proteomics through LC-
MS) include one time point per assay, and non-destructive assays
(e.g., continuous measurement of cell optical density through an
optode in a fermentation platform such as a biolector) include
several time points in the same assay. All this information is
collected in a study, which is used to describe a single continuous
experiment (e.g., using measuring isoprenol production for all
bioengineered strains).

The first step in the data import involves creating a study
and uploading an “Experiment description” file, which collects
all the experimental design and metadata (see Screencast 2).
The “Experiment description” file describes the strains being
used through a “Part ID” number tied to a strain repository,
such as ICE (Figure 7). This file also contains metadata relevant
to the experiment (e.g., temperature, culture shaking speed,
culture volume etc.). The “Experiment description” file should
not include any result data. Often, the distinction between data
and metadata is crystal clear, but it can be blurred in the
case of concatenated experiments: e.g., the hydrolysate sugar
concentration for a plant deconstructed with ionic liquid can

be data for a deconstruction experiment, but metadata for an
experiment focused on the fermentation of that hydrolysate
through a bioengineered strain. As a rule of thumb, metadata
involves the information that is known before the experiment,
and data is the information that is only obtained by performing
the experiment. Once the “Experiment description” file is added,
you should be able to see all the experimental design data under
the “Experiment description” tab in EDD.

The second step in data input involves uploading the data
files for each assay. In order to do so, click on “Import data,”
and you will access EDD’s new streamlined import. This new
import emphasizes clarity and usability, and starts by prompting
for the “Data category” to be uploaded (Figure 8). Data categories
involve broad umbrellas of data types such as: transcripts,
proteins, metabolites, or other data. The next choice involves
the actual specific protocol used for acquiring the data. There
are many types of, e.g., proteomics protocols which differ in
extraction protocols, as well as the type ofmass spectrometer used
and its setting (chromatography column, gradient time, etc.). We
encourage the use of formal protocol repositories which provide
DOIs (digital object identifiers), such as protocols.io (Teytelman
et al., 2016), to encourage reproducibility. Protocols can be added
by the system administrator in charge of the EDD instance used.
The next choice involves the type of file used to input the data.
All protocols include a generic file type which is the simplest
possibility (see “Data Formats for Generic Input Files” section).
More complex file types can be easily added through scripts that
map into this generic file type. The file upload completes the
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FIGURE 8 | Importing data into EDD. The new data import into EDD is divided into three parts: an initial choice of the data category, the protocol used to gather the

data, and the file format used for the data. Once these are chosen, the data is uploaded for future visualization and use with, e.g., machine learning algorithms or

mechanistic models.

data import, and these data can be now found under the “Data”
tab in the study. Similar to entering strains in ICE, data and
metadata import into EDD creates incremental documentation
of the experiment in a form that can easily be published later by
modifying the study’s access controls.

We import data into EDD twice in our metabolic engineering
workflow (Figure 2): steps 3 and 9 in Table 1. In the first case
(Screencast 2), we upload data created through the OMG library
for the wild type (WT, Notebook A). Later (step 8) we use OMG
to simulate isoprenol production data for the 95 bioengineered
strains proposed by ART (Notebook C), and upload that data into
EDD (step 9, Screencast 6).

Visualizing Data in EDD
EDD provides data visualization for the comparison of
multiomics data sets though line and bar graphs. For example,
you can easily compare the synthetic data sets created for
this manuscript, which include the cell density, extracellular
metabolites, transcriptomics, proteomics and metabolomics data
for the base strain (Figure 2). Once in EDD, the data can be
viewed by clicking on the “Data” tab in the corresponding EDD
study (see Screencast 3, Figure 3). The default view is the “Line
Graph” view, which displays the data as times series, with the
time dimension on the x-axis and the measurements on the
y-axis. Each different measurement unit is given an axis (e.g.,

mg/L for metabolites, proteins/cell for proteomics, FPKM for
transcriptomics). The filters at the bottom of the screen allow
the users to choose the data they want to concentrate on: e.g.,
only transcriptomics, only proteomics, only metabolites, only
metabolite “octanoate,” or only proteins “Galactokinase” and
“Maltoporin,” or only gene “b0344” and protein “Enolase.” It is
also possible to view the data in the form of bar graphs clustered
by measurement, line, or time. The “Table” tab shows a quick
summary of all data available in the study.

EDD provides basic visualization capabilities to check data
quality and compare different lines and data types. Users who
want a customized visualization or figure can download the
data into a pandas DataFrame (pandas - Python Data Analysis
Library) (McKinney, 2015) through the REST API (see next
section), and use Python to leverage any of the available
visualization libraries: e.g., Matplotlib (Yim et al., 2018) or
Seaborn (Seaborn: Statistical Data Visualization — Seaborn
0.10.1 Documentation) (Waskom et al., 2020).

EDD visualization is demonstrated for two very different cases
in two steps of our metabolic engineering workflow (Figure 2):
steps 4 (Screencast 3) and 9 (Screencast 6). The first case
involves visualizing multiomics data for a single strain (WT,
Figure 3), whereas the second case involves the visualization of
shallow data (final isoprenol production at a final point) for 96
different strains.
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FIGURE 9 | Exporting data from EDD into an executable Jupyter notebook for downstream processing. The EDD study web address (A) provides the server

(magenta) and the slug (red) to export the study data in the form of a pandas DataFrame into a Jupyter notebook (B). Once in a DataFrame format in a Jupyter

notebook, a plethora of Python libraries are available for visualization, mechanistic modeling or machine learning.

Exporting Data From EDD
Data can be exported from EDD in two ways: a manual CSV file
download, or a REpresentational State Transfer (REST) (Masse,
2011) Application Programming Interface (API). The REST API
is the preferred method since it is easy to use, convenient,
and flexible.

CSV export works through the Graphical User Interface (GUI)
found in the “Table” tab. By selecting the desired measurements
and clicking on “Export Data,” the user can access a menu that
provides options for layout and metadata to be included, as well
as a visual example of the export. A CSV file is then generated by
clicking on “Download.”

The REST API provides a way to download the data in a
form that can be easily integrated into a Jupyter notebook (see
Figure 9, Screencast 7, and Table 3). A Jupyter notebook is a
document that contains live code, equations, visualizations and

TABLE 3 | Jupyter notebooks.

Jupyter notebook Description

A WT multiomics data generation

B Initial designs generation by ART

C Isoprenol production data generation for BE strains

D EDD export and ART recommendations

E Comparing ART predictions with ground truth

explanatory text (Project Jupyter | Home1; Jupyter Notebooks)
(Kluyver et al., 2016). The edd-utils package uses EDD’s REST
API to provide a DataFrame inside of your Jupyter notebook
to visualize and manipulate as desired. A DataFrame is a
structure from the popular library Pandas (Python ANd Data
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FIGURE 10 | ART also provides a frontend that does not require coding. The frontend can be found at https://art.agilebiofoundry.org/ and provides the main

functionality of the ART library (Figure 5) in an intuitive interface. The frontend also provides a REST API that users with coding experience can leverage to use

Berkeley Lab’s compute resources for running ART, or to trigger ART runs automatically from other code.

AnalysiS) (pandas - Python Data Analysis Library) (McKinney,
2015), that focuses on providing tools for data analysis in
python. The combination of Pandas with Jupyter notebooks
provides reproducible workflows and the capability to do
automated data analyses (see Screencast 8). The users can run
the export_study() function from the edd-utils package (see
code availability) to download a study from a particular EDD
instance. The study is identified by its slug: the last part of the
internet address corresponding to the EDD study (Figure 9). The
EDD instance is identified by its internet address (e.g., http://
public-edd.agilebiofoundry.org/ or https://public-edd.jbei.org/).
Anyone with an approved account can use the EDD instances
hosted at those addresses, or anyone can create their own EDD
instance by downloading and installing the open source EDD
software (see code availability). EDD includes access controls,
e.g., for preventing dissemination of experimental data prior
to publication.

EDD export is demonstrated in a single step in our workflow
(Figure 2): the export of production data for the bioengineered
strains in step 10 (Screencast 7). These data will be used
to train the machine learning algorithms in the Automated
Recommendation Tools, and recommend new designs.

Recommending New Designs Through ART
The data stored in EDD and ICE can be used to train machine
learning methods and recommend new experiments. We will
now show, for example, how to use the data we uploaded
into EDD to suggest how to improve the final production of
isoprenol, by using the Automated Recommendation Tool (ART)
(Radivojević et al., 2020). ART is a tool that combines machine
learning and Bayesian inference to provide a probabilistic
predictive model of production, as well as recommendations for
next steps (Figure 5, see technical details in Radivojević et al.,
2020). In this case, we will use as input the genetic modifications
on the strain (e.g., knockout ACCOAC, overexpress MDH,

maintain CS, etc.) and we will try to predict final isoprenol
production (see “Generating training data for machine learning
and testing predictions” section).

Firstly, we will adapt the DataFrame obtained previously
(step 10 in Table 1) to provide training data for ART. All we
need to provide ART is the input (genetic modifications) and
response (final isoprenol production) for each of the 96 instances.
We do this by expanding the line description to include the
design details into several new columns detailing the specified
genetic modification for each reaction (Screencast 8, Notebook
D). Next, we specify ART’s parameters: input variables, response
variable, number of recommendations, etc. ART uses these data
and parameters to train a predictive model, which is able to
recapitulate quite effectively the observed isoprenol production
for the training data set (Figure 6). Recommendations for
designs that are predicted to increase production are also
provided by ART (Figure 5).

We can also use ART’s web-based graphical frontend
to produce recommendations, if we prefer not to use
code (Figure 10). ART’s frontend can be found at https://
art.agilebiofoundry.org/, and requires creating an account
(Screencast 9). Once the account is created and approved, we can
provide the same DataFrame we created above in CSV or Excel
format (Notebook D). We can then select the input variables
and response variables, select the objective (maximization,
minimization or reach a target value), a threshold for declaring
success, and then press “Start.” The job is sent to the server and
an email is sent to the user once it is finished.

ART’s recommendations suggest that knocking out the PPCK
flux and either maintaining or overexpressing all other seven
fluxes should increase production of isoprenol from 0.46 mMol
to 0.57 mMol (23% increase, Figure 5). The machine learning
model suggests that these are the best combinations based on
the predictive probability. We can check this result through the
OMG library, which we consider our ground truth (Figure 2).
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Indeed, isoprenol production for this design is 0.57 mMol vs.
the predicted 0.57 ± 0.02 (Figure 6). Hence, ART has been
able to predict which combination of designs would produce a
production increase. This is a non-trivial endeavor, since only
11% of designs actually improve production, according to the
synthetic data provided by OMG.

CONCLUSION

In conclusion, we have shown that the combination of tools
presented here (ICE + EDD + ART + OMG + Jupyter
notebooks) provide a standardized manner to store data so it can
be leveraged to produce actionable recommendations. We have
shown how to use ICE to store strain information, EDD to store
experiment data and metadata, and ART to leverage these data
to suggest new experiments that improve isoprenol production.
By combining these tools we have shown how to pinpoint genetic
modifications that improve production of isoprenol, a potential
biofuel, by 23% (from 0.46 mMol to 0.57 mMol, Figure 5), in
a simulated data set (through OMG). The same procedures are
applicable in the case of real experimental data. In sum, this set of
tools provides a solution for the data deluge that bioengineering
is currently experiencing, and a way to build on preexisting data
to fruitfully direct future research.

CODE AVAILABILITY

All the code used in this paper can be found in the following
github repositories:

• The Jupyter Notebooks associated with this paper, as
well as the input files: https://github.com/AgileBioFoundry/
multiomicspaper

• OMG: https://github.com/JBEI/OMG
• ICE: https://github.com/JBEI/ice
• EDD: https://github.com/JBEI/EDD
• The edd-utils package: https://github.com/JBEI/edd-utils
• ART: https://github.com/JBEI/ART

DATA AVAILABILITY STATEMENT

Data are available in the multiomics github repository. See
Jupyter notebooks (Table 3) for exact file location. In addition,
the collection for initial designs (screencast 5) is stored in a
public ICE instance at https://public-registry.agilebiofoundry.

org/folders/8. EDD entries for WT and BE strains (screencasts
2 and 6) are stored at https://public-edd.agilebiofoundry.org/
s/multiomics-data-for-wt-strain-c450/ and https://public-
edd.agilebiofoundry.org/s/multiomics-be-strains-data-089b/,
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Radivojević, T., Costello, Z., Workman, K., and Garcia Martin, H. (2020). A

machine learning Automated Recommendation Tool for synthetic biology.Nat.

Commun. 11:4879. doi: 10.1038/s41467-020-18008-4

Roell, M.-S., and Zurbriggen, M. D. (2020). The impact of synthetic biology

for future agriculture and nutrition. Curr. Opin. Biotechnol. 61, 102–109.

doi: 10.1016/j.copbio.2019.10.004

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in

natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99,

15112–15117. doi: 10.1073/pnas.232349399

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J.,

et al. (2015). Big data: astronomical or genomical? PLoS Biol. 13:e1002195.

doi: 10.1371/journal.pbio.1002195

Teytelman, L., Stoliartchouk, A., Kindler, L., and Hurwitz, B. L. (2016).

Protocols.io: virtual communities for protocol development and discussion.

PLoS Biol. 14:e1002538. doi: 10.1371/journal.pbio.1002538

Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-

quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121.

doi: 10.1038/nprot.2009.203

Waskom, M., Gelbart, M., Botvinnik, O., Ostblom, J., Hobson, P., Lukauskas, S.,

et al. (2020).mwaskom/seaborn: v0.11.1 (December 2020) [Computer software].

Zenodo. doi: 10.5281/ZENODO.592845

Yim, A., Chung, C., and Yu, A. (2018). Matplotlib for Python Developers:

Effective Techniques for Data Visualization With Python. Birmingham, AL:

Packt Publishing Ltd.

Zhang, J., Petersen, S. D., Radivojevic, T., Ramirez, A., Pérez-Manríquez,

A., Abeliuk, E., et al. (2020). Combining mechanistic and machine

learning models for predictive engineering and optimization of

tryptophan metabolism. Nat. Commun. 11:4880. doi: 10.1038/s41467-020-1

7910-1

Disclaimer: The views and opinions of the authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency

thereof. Neither the United States Government nor any agency thereof, nor any

of their employees, makes any warranty, expressed or implied, or assumes any

legal liability or responsibility for the accuracy, completeness, or usefulness of

any information, apparatus, product, or process disclosed, or represents that its

use would not infringe privately owned rights. The United States Government

retains and the publisher, by accepting the article for publication, acknowledges

that the United States Government retains a non-exclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes. The Department

of Energy will provide public access to these results of federally sponsored research

in accordance with the DOE Public Access Plan (http://energy.gov/downloads/

doe-public-access-plan).

Conflict of Interest:NH declares financial interests in TeselaGen Biotechnologies,

and Ansa Biotechnologies.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Roy, Radivojevic, Forrer, Marti, Jonnalagadda, Backman, Morrell,

Plahar, Kim, Hillson and Garcia Martin. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 February 2021 | Volume 9 | Article 612893107

https://doi.org/10.1038/npjsba.2016.9
https://doi.org/10.1126/science.1258096
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1016/j.copbio.2014.08.006
https://doi.org/10.1016/j.tibtech.2013.01.018
https://doi.org/10.1093/nar/gks531
https://doi.org/10.1016/j.ymben.2011.09.002
https://doi.org/10.1016/j.ymben.2019.09.003
http://ebooks.iospress.nl/publication/42900
http://ebooks.iospress.nl/publication/42900
https://doi.org/10.1038/nbt.4245
https://doi.org/10.1038/nrmicro2737
https://doi.org/10.1016/j.cbpa.2012.05.001
https://doi.org/10.1080/00401706.1979.10489755
http://pandas.pydata.org
https://doi.org/10.1038/s41587-019-0313-x
https://doi.org/10.1021/acssynbio.7b00204
https://doi.org/10.1007/978-1-61779-412-4_2
https://doi.org/10.1016/j.cell.2016.02.004
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/nrmicro3240
https://doi.org/10.1038/nature11478
https://doi.org/10.3389/fbioe.2015.00135
https://doi.org/10.1038/s41467-020-18008-4
https://doi.org/10.1016/j.copbio.2019.10.004
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1371/journal.pbio.1002538
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.5281/ZENODO.592845
https://doi.org/10.1038/s41467-020-17910-1
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


REVIEW
published: 23 February 2021

doi: 10.3389/fbioe.2021.613307

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 February 2021 | Volume 9 | Article 613307

Edited by:

Eduard Kerkhoven,

Chalmers University of

Technology, Sweden

Reviewed by:

Hyun Uk Kim,

Korea Advanced Institute of Science

and Technology, South Korea

Adam M. Feist,

University of California, San Diego,

United States

*Correspondence:

Edward E. K. Baidoo

eebaidoo@lbl.gov

Specialty section:

This article was submitted to

Synthetic Biology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 01 October 2020

Accepted: 11 January 2021

Published: 23 February 2021

Citation:

Amer B and Baidoo EEK (2021)

Omics-Driven Biotechnology for

Industrial Applications.

Front. Bioeng. Biotechnol. 9:613307.

doi: 10.3389/fbioe.2021.613307

Omics-Driven Biotechnology for
Industrial Applications
Bashar Amer 1,2 and Edward E. K. Baidoo 1,2,3*

1 Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States, 2 Biological Systems and

Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3U.S. Department of Energy, Agile

BioFoundry, Emeryville, CA, United States

Biomanufacturing is a key component of biotechnology that uses biological systems

to produce bioproducts of commercial relevance, which are of great interest to

the energy, material, pharmaceutical, food, and agriculture industries. Biotechnology-

based approaches, such as synthetic biology and metabolic engineering are heavily

reliant on “omics” driven systems biology to characterize and understand metabolic

networks. Knowledge gained from systems biology experiments aid the development

of synthetic biology tools and the advancement of metabolic engineering studies

toward establishing robust industrial biomanufacturing platforms. In this review, we

discuss recent advances in “omics” technologies, compare the pros and cons of the

different “omics” technologies, and discuss the necessary requirements for carrying

out multi-omics experiments. We highlight the influence of “omics” technologies on the

production of biofuels and bioproducts by metabolic engineering. Finally, we discuss the

application of “omics” technologies to agricultural and food biotechnology, and review

the impact of “omics” on current COVID-19 research.

Keywords: systems biology, genomics, transcriptomics, metabolomics, proteomics, multi-omics, metabolic

engineering, biotechnology

INTRODUCTION

Biotechnology employs biological processes, organisms, or systems to yield products and
technologies that are improving human lives (Bhatia, 2018). The use of biological systems to
manufacture bioproducts of commercial relevance (i.e., biomanufacturing) is a key component
of the biotechnology industry. This manufacturing approach is used by the energy, material,
pharmaceutical, food, agriculture, and cosmetic industries (Zhang et al., 2017). The bioproducts
made from biomanufacturing processes are typically metabolites and proteins, which can be
obtained from cells, tissues, and organs. The biological systems producing these bioproducts can be
natural or modified by genetic engineering (Zhang et al., 2017), metabolic engineering (optimizing
metabolic networks and pathways for increased production of metabolites and/or by-products),
synthetic biology (applying engineering principles to the chemical design of biological systems),
and protein engineering (optimizing protein design to develop valuable proteins) (Zhang et al.,
2017).

Modern biotechnology-based biomanufacturing started in the early twentieth century with the
production of short-chain alcohols and ketones, amino acids, organic acids, and vitamin C by
microbial mono-culture fermentation (Zhang et al., 2017). This was followed by the production
of antibiotics via microbial fermentation in the 1940s and protein drug production in animal cells
and microorganisms in the 1980s (Zhang et al., 2017). With the advent of translational research
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(e.g., stem cell research) in the 2000s, the bioproducts can
now be engineered cells, tissues, and organs (e.g., by stem cell
engineering) (Roh et al., 2016; Zhang et al., 2017). In addition
to this, advancements in synthetic biology and metabolic and
protein engineering have been applied to renewable energy
research in the development of advanced biofuel and hydrogen
production by engineered microorganisms (Zhang et al., 2017).
Research efforts are underway at bioenergy research centers (e.g.,
US DOE Bioenergy Research Centers) to make biofuels more
affordable by coproducing them with renewable bioproducts.
This is of great importance, as environmental, geopolitical, and
economic factors are reshaping our view of global energy and
manufacturing demands (Clomburg et al., 2017). The tools (and
ideology) from these approaches have also been leveraged by the
food industry to produce artificial food products via synthetic
biocatalysts in a sustainable way (Zhang et al., 2017).

Synthetic biology and metabolic engineering can benefit
from systems biology approaches, which in turn rely on
“omics” technologies to characterize and understand metabolic

networks. The considerable amount of knowledge obtained from

omics-driven systems biology experiments can be used in the
development of synthetic biology tools and the advancement
of metabolic engineering. This facilitates the manipulation of
complex biological systems toward establishing robust industrial
biomanufacturing platforms (Baidoo and Teixeira Benites, 2019).

In this review, we aim to examine the influence of
“omics” technologies on biotechnology research. “Omics”
techniques were compared to understand their relevance and
applicability to biotechnology research, especially in the context

FIGURE 1 | An overview of the flow of molecular information from genes to metabolites to function and phenotype, and the interactions between the “omes” and the

“omics” techniques used to measure them.

of microbial biotechnology, with the aim of facilitating the
experimental design of individual “omics” and multi-omics
studies. Finally, we compared the trends in “omics” utilization
during the last two decades to determine their progression in
biotechnology research.

A COMPARISON OF THE MAJOR “OMICS”
TECHNOLOGIES

Biological engineering requires the accurate prediction of
phenotype from genotype. Thus, testing and validating modified
and synthesized genomes (i.e, genomics) as well as the study
of the transcriptome (the complete set of RNA transcripts),
which is expressed from the genome (i.e., transcriptomics),
are crucial to evaluating genome engineering. Proteomics and
metabolomics have also gained a lot of attention due to their
provision of metabolic information pertaining to both function
and phenotype (Baidoo, 2019). Forty years ago, scientists realized
that the flow of biochemical information in biological systems
is not unidirectional from the genome to metabolome, but
rather a set of interactions between the “omes” (Roberts et al.,
2012). Therefore, a multi-omics approach is necessary for
the elucidation of chemical structure, function, development,
adaptation, and evolution of biological systems for deeper
understanding of the principles of life (Baidoo, 2019) (Figure 1).

In comparison to metabolites and proteins, genes are less
chemically heterogeneous. Each gene is made up of DNA
that is composed of only four basic nucleotides (i.e., guanine,
adenine, cytosine and thymine), whereas each protein is
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composed of a mixture of 32 amino acids, while metabolites
are much more variable in their chemical structures (Wang
et al., 2010). Therefore, it is analytically less challenging to
perform genomics and transcriptomics, when compared to
proteomics and metabolomics (Aizat et al., 2018). Consequently,
genomics and transcriptomics provide the most comprehensive
and robust platforms for biotechnology applications. Over
the past few decades, research has shown that genomics and
transcriptomics cannot solely provide a complete description of
complex biological systems as genetic information can produce
more questions than answers. For instance, genomics can
describe genes and their interactions (measure genotype) but
cannot explain phenotypes. Thus, the attention is turned to
the utilization of other “omics” techniques, such as proteomics
and metabolomics, which can bridge the gap between genetic
potential and final phenotype to facilitate a greater understanding
of biological systems (Smith and Figeys, 2006; Wilmes et al.,
2015). While transcriptomics (transcription) and proteomics
(translation) provide information on gene expression, the latter
directly links genotype to phenotype. In addition to providing
phenotypic information, the metabolome provides an instant
response to genetic and/or environmental perturbations and,
therefore, provides a snap shot of the actual metabolic and
physiological state of a cell (Tang, 2011). However, metabolomics
alone is not able to measure changes at the gene level and
correlate them with the observable properties of organisms,
the phenotypes, which are produced by the genotype in
the first place (Fiehn, 2001). Therefore, a comprehensive
understanding of an organism on a molecular level requires the
integration of “omics” data in order to discover new molecules
and pathways (Wang et al., 2010) (Figure 1). Integration of
“omics” data helps to assess the flow of information from
one “omics” level to the other and, therefore, links genotype
to phenotype (Subramanian et al., 2020). Furthermore, the
combination of “omics” techniques is important to address open
biological questions (i.e., data driven research) that accelerate our
understanding of the system as a whole and boost the use of
systems metabolic engineering tools in industrial settings (Zhao
et al., 2020).

Genomics and Transcriptomics
The construction of predictable and preferred phenotypes is
crucial in synthetic biology; therefore, tight and tunable control
of gene expression is highly desirable. Biological engineering,
moreover, is greatly benefiting from the recent innovations
in genomics and genome editing technologies, which offer
advanced tools to re-engineer naturally evolved systems and to
build new systems as well. In addition, advances in de novo
synthesis and in vivo gene targeting enable efficient testing of
model-driven hypotheses. Furthermore, genomics allows the
high-throughput DNA sequencing and large-scale bimolecular
modeling of metabolic and signaling networks in natural and
engineered strains (Pagani et al., 2012).

Genomics and Transcriptomics Analysis
One of the challenges facing traditional genomics (and
other “omics”) analyses is that not all microorganisms can

be cultured in a laboratory setting. Furthermore, isolated
strains might behave differently in culture than in their
natural environments. Therefore, there was an urgent need to
develop cultivation independent methods to study microbial
communities (VerBerkmoes et al., 2009). Metatranscriptomics
can reveal the diversity of active genes within microbial
communities (e.g., 16S rRNA sequencing for reconstructing
phylogenies) (Bashiardes et al., 2016).

Metagenomics studies the structure and function of genetic
material in complex samples of multi-organisms as well as of
entire microbial communities without a cultivation step and can
offer a solution for such challenges and facilitate the discovery
of novel genes, enzymes, and metabolic pathways. Metagenomics
analyses are classified as sequence-based and function-based
screening, which are used to discover and identify, respectively,
novel natural genes and compounds from environmental samples
(Chistoserdova, 2010; Gilbert and Heiner, 2015; Kumar Awasthi
et al., 2020). For example, metagenomics is actively used in
agricultural research to understand themicrobial communities in
the soil system (Durot et al., 2009), to examine various microbes
that can stimulate the cycling of macro- andmicro-nutrients, and
the release of essential enzymes, which enhance crop production
(Cupples, 2005).

Nanopore sequencers are massively parallel sequencing
technologies. Oxford Nanopore Technologies (ONT), in
particular, provides a single molecule sequencer using a
protein nanopore that realizes direct sequencing without DNA
synthesis or amplification (Brown and Clarke, 2016; Roumpeka
et al., 2017). The ONT sequencer can determine DNA/RNA
modifications and sequence an ultra-long read limited by the
input nucleotide length (Kono and Arakawa, 2019). However,
ONT reads require polishing and great care needs to be taken
when contigs are polished individually to avoid the removal of
true, natural sequence diversity due to cross mapping of reads in
repeat regions. Therefore, it was found that it is crucial to apply
long-range information technologies (e.g., 10x genomics, Hi-C,
synthetic long reads) and to develop new algorithms to simplify
the extensive assembly and polishing workflow (Somerville et al.,
2018).

Sort-seq is a single-cell sequencing platform, which combines
flow cytometry, binned fluorescence-activated cell sorting
(FACS), next-generation sequencing (NGS), and statistical
inference to quantify the dynamic range of many biosensor
variants in parallel (Rohlhill et al., 2017; Batrakou et al., 2020;
Koberstein, 2020). FACS, which enables the sorting of single
cells, allows the enrichment of specific cells to generate high-
resolution gene expression and transcriptional maps (Kambale
et al., 2019). NGS and RNA sequencing (RNA-seq) technologies
enable the large-scale DNA and RNA sequencing of the
entire genome and transcriptome, respectively, providing an
unbiased and comprehensive view of biological systems towards
understanding genomic function (Frese et al., 2013; Alfaro et al.,
2019; Stark et al., 2019). Examples of NGS platforms include
the Illumina HiSeq, Genome Analyzer Systems, 454 Genome
Sequencer FLX Titanium System, the Helicos HeliScope, the
SOLiD sequencing platform and the Ion Torrent Sequencing
platform. In addition, there are other techniques used to measure
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the interaction between proteins and DNA, such as chromatin
immunoprecipitation (ChIP). ChIP followed by NGS sequencing
(ChIP-seq) has high potential for detailing the binding sites
of various transcription factors and assaying protein–DNA
interaction at a whole-genome level (Roukos, 2012).

Bar-seq (barcode analysis by sequencing) is another high-
throughput quantitative DNA sequencing technique that enables
the parallel phenotyping of pools of thousands of mutants
and monitoring thousands of gene-chemical interactions (Smith
et al., 2010; Robinson et al., 2014). Techniques, such as bar-seq
can lower the complexity of data obtained from a large number of
sequence reads, thus, making NGS more efficient and affordable
(Smith et al., 2009).

New computational tools have enabled researchers to perform
fast and accurate analysis of big genomics data. Extracted
genomic information has been used tomodelmetabolic processes
and signaling networks across the entire cell, generating many
new testable hypotheses (Lewis et al., 2012; Esvelt and Wang,
2013). Due to the robustness of genomic measurements, there are
numerous genomics databases and data analysis tools available
(Roumpeka et al., 2017).

Proteomics
Proteomics focuses on the analysis of proteins and peptides
produced by cells at different stages of development and life
cycle and in biological systems under a given growth condition.
Proteomics is also used to elucidate the temporal dynamics
of protein expression levels or post-translational modification
(PTM) (VerBerkmoes et al., 2009).

Proteomics Sample Preparation
High biological sample diversity and complexity and the dynamic
range of protein levels present in such samples are the main
challenges that proteomics encounter. These factors, in addition
to the large number of proteins, complicate the analysis of
low abundance proteins. The development of automated sample
preparation workflows are becoming more common for high-
throughput, quantitative proteomic assays of microbes. One
automated workflow was able to quantify >600 peptides with
a 15.8% median coefficient of variation, demonstrating the
robustness of this approach (Chen et al., 2019). Another high-
throughput automatable workflow was developed to increase the
yield of lysis of several representative bacterial and eukaryotic
microorganisms via vigorous bead-beating with silica and
glass beads in presence of detergents (Hayoun et al., 2019).
Interestingly, a universal, high-throughput and a detergent-free
sample preparation protocol was developed this year for peptide
generation from various microbes [i.e., Escherichia coli (E. coli),
Staphylococcus aureus and Bacillus cereus]. The protocol holds
the potential to dramatically simplify and standardize sample
preparation while improving the depth of proteome coverage
especially for challenging samples (Doellinger et al., 2020).

Proteomics Data Acquisition

Protein Identification and Structural Elucidation
Most proteomics workflows are based on a bottom-up approach,
where protein is extracted, digested (e.g., trypsin digestion)

into proteolytic peptides, then analyzed via MS (Kleiner
et al., 2017). When liquid-chromatography is coupled to mass
spectrometry (LC-MS), both qualitative and quantitative data
analysis of proteins are improved. Moreover, the application of
multidimensional LC separation prior to MS protein analysis
provides enhancedMS sensitivity by reducing sample complexity
and increasing the number of chromatographic peaks that can
be resolved in a single analytical run (Hinzke et al., 2019;
Duong et al., 2020). Targeted proteomics via LC-tandemMS (LC-
MS/MS) is a commonly used MS method, where the analysis
focuses on a subset of biological proteins of interest (Marx,
2013). When a bottom-up approach is applied to all proteins
within a given biological system, it is called shotgun (untargeted)
proteomics (Wolters et al., 2001; Nesvizhskii and Aebersold,
2005). Top-down proteomics, conversely, is based on the analysis
(via LC-MS or LC-MS/MS) of intact proteins, and thus, provides
unique information about the molecular structure of proteins
(e.g., PTM) (Catherman et al., 2014). However, it is not always
possible to separate intact proteins, especially large proteins,
prior to MS analysis in a top-down approach. Besides that,
top-down is less sensitive and has a lower throughput than a
bottom-up approach (Catherman et al., 2014).

Accurate determination of protein structure helps to define
their roles and functions in biological systems. However, many
folded proteins have complex structures, which complicates
their structural elucidation (Yates, 2019). Therefore, cryogenic
electron microscopy and ion-mobility-MS are used to determine
the structures of such proteins such proteins (Yates, 2019).
Moreover, a combination of MALDI, high resolution MS (i.e.,
orbitrap and ion trap MS) and a UV–Vis-based reduction assay
is used to elucidate peptide modification via the analysis of
specific fragmentation of synthesized peptides, which might have
inhibitory effects on various diseases (Rühl et al., 2019).

The identification of PTM peptides can be difficult in the case
of labilemodifications (e.g., phosphorylation and S-nitrosylation)
that might break down during MS/MS fragmentation. Such
modifications require soft fragmentation and high-resolution
methods to identify and determine the location of a PTM.
Electron-transfer dissociation is considered to be the favorable
choice for the identification of liable PTM as it transfers electrons
to multi-protonated proteins or peptides, which leads to N-Cα

backbone bond cleavage (Chen et al., 2017).
Metaproteomics is the large-scale characterization of the

entire protein complement of environmental microbiota at
a given point in time to determine structure (Wilmes and
Bond, 2004; Kleiner et al., 2017), metabolism and physiology
of community components (Kleiner et al., 2012). The recent
advancement in LC and high-resolution MS have enabled
the identification and quantification of more than 10,000
peptides and proteins per sample in metaproteomics (Kleiner,
2019). Metaproteomics can also measure interactions between
community components (Hamann et al., 2016) and assess
substrate consumption (Bryson et al., 2016; Kleiner et al., 2018).

Protein Quantification
Besides identification, MS-based technologies became the tools
of choice for the quantification of proteins in an organism
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(Karpievitch et al., 2010). Stable isotope labeling is one approach
that can be used to quantify proteins by measuring the
relative abundance of labeled protein to non-labeled protein
(VerBerkmoes et al., 2009). However, the variation in ionization
efficiency among peptides and proteins and the low recovery of
some peptides (e.g., hydrophobic peptides adhere to surfaces)
can affect the accuracy of their direct quantification. Recent
advances in MS acquisition rate, detection, and resolution
have addressed much of the sensitivity concerns of MS-based
quantification for proteomics (Iwamoto and Shimada, 2018). MS
sensitivity was further enhanced with the application of micro-
flow (Krisp et al., 2015; Bian et al., 2020) and nano-flow (Wilson
et al., 2015) LC-MS. Another major advancement for global
protein quantification was the introduction of isobaric tags or
multiplexed proteomics, which in a single experiment enables the
quantification of proteins across multiple samples (Pappireddi
et al., 2019). Tandem-mass-tags are examples of commonly used
isobaric tags for instance in human cerebrospinal fluids (Dayon
et al., 2008).

Proteomics Data Analysis
Proteomics data analysis tools are generally used for protein
identification (via bioinformatics) and quantification, and
bioinformatics techniques tools used to process the proteomics
data. A few examples of data analysis tools that are used
for the identification of peptides and proteins include Mascot
(Eng et al., 1994), Swiss-Prot (Bairoch and Boeckmann, 1994),
Sequest (Perkins et al., 1999), Tandem (Craig and Beavis, 2004),
Skyline (MacLean et al., 2010), Uni-Prot,1 UniNovo (Jeong et al.,
2013), and SWPepNovo (Li et al., 2019). Such algorithm-based
software were developed to match the MS collected data from
peptide/protein analysis to their base peptides/proteins and with
in silico predicted intact masses and fragmentation patterns
(Urgen Cox andMann, 2011). Moreover, they determine both the
mass and exact location of any possible modifications (Hansen
et al., 2001; Savitski et al., 2006). Common bioinformatics
techniques tools for proteomics data analysis include CRONOS
(Waegele et al., 2009), COVAIN (Sun and Weckwerth, 2012),
SIGNOR (Perfetto et al., 2016), KEGG (Kanehisa et al., 2017), and
STRING v11 (Szklarczyk et al., 2019).

Metabolomics
Metabolomics, which is the measurement of small molecule
substrates, intermediates, and/or end products of cellular
metabolism (i.e. metabolites), provides an immediate and
dynamic response to genetic and/or environmental perturbations
in a biological system (Fiehn, 2002; Ellis and Goodacre, 2012;
Zhao et al., 2020). Targeted and untargeted metabolomics are
used to quantify a group of defined metabolites and determine
all measurable metabolites in a biological sample, respectively
(Scalbert et al., 2009). MS-based metabolomics, like proteomics,
normally employs separation [e.g. LC and gas chromatography
(GC)] or capillary electrophoresis (CE) before MS detection

1UniProt. Available online at: https://www.uniprot.org/ (accessed September 30,

2020).

(Fiehn, 2002). Whereas, MALDI-MS conducts high-throughput
screening without separation.

Nuclear magnetic resonance (NMR) spectroscopy is a
powerful analytical technique for high-throughput metabolic
fingerprinting and provides more reliable metabolite structure
(e.g., via 2D NMR) identification than MS (Giraudeau,
2020). However, although NMR offers unambiguous structure
determination of unknown metabolites via 1H- and 13C-NMR,
MS-based methods comprise widely accessed metabolomics
techniques due to higher sensitivity and lower instrumentation
cost (Chatham and Blackband, 2001). Furthermore, NMR is
semi-quantitative whereas MS is quantitative, thus, NMR and
MS are highly complementary techniques. In addition, the
diverse physiochemical properties (e.g., solubility, reactivity,
stability, and polarity) of the metabolome limits our ability
to analyze all metabolites from a biological system with a
single or even a limited-set of analytical techniques (Fiehn,
2002). Therefore, multiple methods are used for comprehensive
metabolome characterization.

Metabolomics Sample Preparation
Metabolites are constantly going under reformation and
transformation in biochemical reactions within a cell and/or
being thermally degraded (and in some cases oxidized) at
ambient conditions (Scalbert et al., 2009). Therefore, quick
and efficient metabolic quenching protocols are required to
accurately quantify metabolic information. Not surprisingly,
researchers tend to develop metabolic quenching methods in
conjunction to and metabolite extraction protocols. Doran
et al. (2017), for example, proposed an acidic-based metabolic
quenching to aqueous-alcohol metabolite extraction. This
protocol yielded low metabolite leakage and high extraction
recovery in Acidithiobacillus ferrooxidans. Complex biological
sample matrices can also suppress metabolite MS detection.
Thus, clean up strategies, such as solid phase extraction (SPE) and
solid phase micro-extraction (SPME) can reduce the complexity
of sample matrices prior to LC-MS and GC-MS analysis, thereby
increasing the quantitative capability of metabolomics methods
(Yang et al., 2011). The last 5 years witnessed the development
of high-throughput 96-well plate SPE (Li et al., 2015) and 96-
well automated SPME (Mousavi et al., 2015) for the simultaneous
extraction of metabolites and lipids from biological samples.

In addition, robotics and microfluidics tools can be applied
to high-throughput synthetic biology applications by automating
cell preparation and metabolite extraction to increase coverage
(Yizhak et al., 2010; Koh et al., 2018; Vavricka et al., 2020).
Automated liquid handler technologies, therefore, are important
for high-throughput sample preparation as they ensure good
quality and reproducibility of sample extraction and processing
for unbiased measurement of metabolic differences (e.g., based
on disease states or interventions stimuli) (Liu et al., 2019).

Metabolomics Data Acquisition
The development of nanoelectrospray-ionization and direct
infusion nanoelectrospray high-resolution MS have led to a
considerable increase in the dynamic range and detection
sensitivity of metabolites from tissues and biofluids in
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human studies (Chekmeneva et al., 2017; Southam et al.,
2017). Generally, nanospray technology is more sensitive
than electrospray, but suffer from low robustness. However,
nanoelectrospray employs low level of nebulization and flow rate
to achieve high sensitivity without compromising robustness
(Guo et al., 2016). Besides, the application of ion mobility and
high resolution MS has improved the identification of isomers,
thereby enabling a more accurate assessment of their biological
roles (Ren et al., 2018; Rathahao-Paris et al., 2019). Moreover,
new developments in orbitrap MS systems have improved
metabolites annotation and coverage in GC- and LC-MS studies
(Simirgiotis et al., 2017; Misra et al., 2018; Manier et al., 2019;
Stettin et al., 2020).

Although GC-MS requires more sample preparation steps
when derivatizing hydrophilic non-volatile metabolites, it is
more robust than LC-MS. Moreover, method development
is easier for GC-MS than for LC-MS. GC-MS also achieves
better identification of untargeted metabolites due to
standardized ionization conditions, which makes it possible
to set up a universal compound identification library/database,
such as NIST. While CE achieves the highest separation
efficiency, CE-MS is the least robust and sensitive of the three
separation techniques.

Real-time metabolomics enables the simultaneous and high-
throughput analysis of microbial metabolites without the need
for time-consuming sample preparation steps (Link et al., 2015;
Boguszewicz et al., 2019; Nguyen et al., 2020). However, the
lack of chromatographic or electrophoretic separation in this
approach reduces the quantitative capability of this technique
(Baidoo and Teixeira Benites, 2019). While MALDI can be used
for high-throughput metabolite screening, MALDI imaging MS
has emerged as a powerful tool for analyzing tissue specimen
in an unprecedented detail. MALDI imaging MS has made
significant contributions to the understanding of the biology of
disease and its perspectives for pathology research and practice,
as well as in pharmaceutical studies (Aichler and Walch, 2015;
Mahajan and Ontaneda, 2017; Schulz et al., 2019).

Metabolomics technologies are regularly applied to metabolic
flux analysis (MFA, i.e., 13C) studies (Baidoo and Teixeira
Benites, 2019). MFA determines the rates of in vivo metabolic
reactions. Thus, enabling an understanding of carbon and energy
flow throughout the metabolic network in a cell. Overall, MFA
accelerates the discovery of novel metabolic pathways and
enzymes for improved synthetic bioproduction (Feng et al., 2010;
Ando andGarcíaMartín, 2019; Babele and Young, 2019; Vavricka
et al., 2020). However, the availability and high cost of stable
isotope compounds can limit MFA capability (Gonzalez and
Pierron, 2015).

Metabolomics Data Analysis
Multivariate data analysis methods, such as principal component
analysis (PCA) and partial least squares (PLS) analysis are
used to analyze large quantities of metabolic profiling data
(i.e., reveal clustering-based on features). In addition, there
is a need for advanced pathway analysis tools to interpret
metabolomics data to solve some of the most challenging
biological paradoxes and reveal optimal conditions for biological

systems. Such techniques enable systems biology researchers
to utilize metabolomics data as a resource that contributes
to an iterative cycle of hypothesis generating and hypothesis
testing phases (Kell, 2004; Vavricka et al., 2020). To address
all of this, more attention is being paid to the area of
big data and machine learning. Thus, the state-of-the-art
understanding of cell metabolism can be improved and further
combined with mechanistic models to automate synthetic
biology and intelligent biomanufacturing (Oyetunde et al., 2018).
To this end, recent advancements in metabolomics tools for
data analysis, storing and sharing have been developed [e.g.,
WebSpecmine (Cardoso et al., 2019), SIRIUS 4 (Dührkop
et al., 2019), MetaboAnalyst 4.0 (Chong et al., 2018), and
SECIM (Kirpich et al., 2018)]. Knowledge of biology (e.g.,
regulation, metabolism, physiology, etc.) is still, however,
necessary for efficient experimental design and accurate data
interpretation in order to understand and accurately characterize
biological systems.

Multi-Omics for Systems Biology
The recent advancement in omics technologies has improved
the analysis efficiency by reducing cost and time, but also
by collecting informative and meaningful multi-omics data.
Thus, facilitating the implementation of multi-omics techniques
in systems biology studies. However, integrating multi-omics
platforms is still an ongoing challenge due to their inherent
data differences (Saito and Matsuda, 2010; Yizhak et al., 2010;
Brunk et al., 2016; Koh et al., 2018; Pinu et al., 2019; Vavricka
et al., 2020). For example, genomics data are qualitative, accurate
and reproducible, while other “omics” data, such as proteomics
and metabolomics are both qualitative and quantitative, not
as reproducible, and noisy (Kuo et al., 2002; MacLean et al.,
2010; Guo et al., 2013; Gross et al., 2018). Further, multi-omics
data is normally pre-treated by various data treatment methods
(e.g., deconvolution, normalization, scaling, and transformation)
and software before being integrated. Multi-omics studies also
require experts in their respective “omics” fields (as well as IT
support) to validatemulti-omics data.While this provides greater
data interpretation accuracy it does, however, complicate data
acquisition and analysis.

Recently, Pinu et al. discussed some recommendations
to overcome the major challenge facing the implementation
of multi-omics techniques in systems biology, which is the
differences among their inherent data. The aim of their
recommendations is tomake researchers aware of the importance
of having a proper experimental design in the first place.
Thus, the appropriate biological samples should be carefully
selected, prepared, and stored before planning any “omics”
study. Afterward, researchers should carefully collect quantitative
multi-omics data and associated meta-data and select better tools
for integration and interpretation of the data. Finally, develop
new resources for the deposition of intact multi-omics data sets
(Pinu et al., 2019). It is also necessary to select or developmethods
that keep the optimum balance between high recovery and low
degradation of extracted biological features.

As scientists are becoming more aware of the importance
of multi-omics analysis, a number of tools, databases, and
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methods are being developed for the aim of integrating multi-
omics data sets. These tools perform advanced statistics (e.g.,
multivariate data analysis) and data illustration (e.g., correlation
maps). Examples of databases used for multi-omics analysis
include ECMDB 2.0 (Sajed et al., 2016), Saccharomyces Genome
Database (MacPherson et al., 2017), YMDB 2.0 (Ramirez-Gaona
et al., 2017), GenBank (Benson et al., 2013), KEGG (Kanehisa
and Subramaniam, 2002), and many others. A recent review
by Subramaniam et al. showed that common multi-omics data
integration and interpretation tools were able to derive new
insights from data, conduct disease subtyping, and obtain
diagnostic biomarker prediction (Subramanian et al., 2020).

Table 1 provides a comprehensive comparison of the major
“omics” technologies. The aim of this comparison is to facilitate
the experimental design of individual “omics” and multi-
omics studies by highlighting the general characteristics of
each technology.

OMICS-GUIDED BIOTECHNOLOGY

“Omics” technologies are becoming increasingly involved
in the development of biotechnological processes for the
production of many substantial products. The use of “omics”
technologies to characterize and understand biological systems
has enabled researchers to select and predict phenotypes (Abid
et al., 2018; Babar et al., 2018), which aids the optimization
of biotechnological processes toward enhanced production
(in quality and quantity) of commercially relevant products
(Figure 2). This section discusses the application of “omics”
in the development of biofuels and bioproducts, agricultural
biotechnology, food biotechnology, and bio-therapeutics.
In addition, this section discusses the involvement of
“omics” technologies in the development of bio-therapeutics
for COVID-19.

Omics-Guided Metabolic Engineering of
E. coli and Yeast Toward the Production of
Primary and Secondary Metabolism-Based
Biofuels and Bioproducts
Microbial production of bio-based chemicals represents an
appealing and more sustainable alternative to traditional
petrochemicals (Opgenorth et al., 2019) and has led to a
growing catalog of natural products and high-value chemicals
(Carbonell et al., 2018). The use of lignocellulosic biomass
offers an economical approach to generate biofuels and
bioproducts (Fatima et al., 2018). However, to achieve consistent
conversion of low-cost input material into value-added products
(Yan and Fong, 2018) at industrial levels requires systematic
engineering workflows.

The Design-Build-Test-Learn (DBTL) cycle is becoming an
increasingly adopted frame-work for metabolic engineering
experiments (Opgenorth et al., 2019). It represents a systematic
and efficient approach to strain development efforts in biofuels
and bio-based products (Opgenorth et al., 2019). Growing
interest in the DBTL cycle for metabolic engineering is largely
due to improving capabilities in synthetic biology (e.g., synthetic

biology tools, DNA synthesis, and genome editing), “omics”
technologies, and Learning methods (Carbonell et al., 2018;
Opgenorth et al., 2019; Robinson et al., 2020). The DBTL cycle
uses synthetic biology to Design and Build genetic constructs
in microbial hosts, after which the information gained from
“omics” technologies, during the Test phase of the cycle, is
passed on to Learning processes (Figure 3). What is Learned
(e.g., COBRA models) is then fed back to new cycles of design
to advance the engineering biology goal (Vavricka et al., 2020) for
further strain development and optimization. Thus, facilitating
the rapid optimization of microbial strains for production of
any chemical compound of interest (Carbonell et al., 2018).
Arguably the weakest link in the DBTL cycle workflow is the
Learning process since mathematical models (of the engineered
bioproduct, pathway, biological system, or biome) are only as
good as their assumptions (Liu andNielsen, 2019). Consequently,
both high quality and large “omics” data sets are necessary
to improve training models, ensuring increased accuracy and
robustness of the Learning process.

Recently, Geiselman et al. utilized the DBTL cycle to engineer
Rhodosporidium toruloides, an oleaginous yeast species with the
ability to grow on lignocellulosic feedstock, to produce the
diterpene ent-kaurene, a potential therapeutic, by the native
mevalonate pathway and the non-native production of the
diterpene precursor geranylgeranyl diphosphate (GGPP). Multi-
omics data, in the first round of the DBTL cycle, suggested
a limited availability of GGPP. In successive DBTL cycles, an
optimal GGPP synthase (GGPPS) was selected, whose expression
was balanced with the addition of kaurene synthase from
Gibberella fujikuroi and a mutant version of farnesyl diphosphate
(FPP) synthase from Gallus gallus that produces GGPP under
strong promoters. The higher ent-kaurene titer achieved was the
first demonstration of the production of a non-native diterpene
from lignocellulosic hydrolysate in Rhodosporidium toruloides
(Geiselman et al., 2020). Additionally, Opgenorth et al. used
the DBTL cycle approach to optimize 1-dodecanol production
in E. coli MG1655 strains by modulating ribosome binding
sites and acyl-ACP/acyl-CoA reductase on a single operon. The
proteomics and metabolomics data collected during the first
DBTL cycle were used to train the Learning algorithms, with
protein profiles being used to suggest the second DBTL cycle,
which led to a 21% increase in 1-dodecanol titer. While this
resulted in a 6-fold increase in what was previously reported, the
study, however, highlighted the need for more accurate protein
expression predictive tools and the importance of genomic
sequencing checks on plasmids in cloning and production strains
to establishing robust microbial cell factories (Opgenorth et al.,
2019).

Adaptive laboratory evolution (ALE) studies the evolutionary
forces and adaptive changes influencing microbial strain
phenotypes, performance, and stability in order to acquire
production strains containing beneficial mutations and positive
traits (Dragosits and Mattanovich, 2013; Sandberg et al., 2019;
Gibson et al., 2020). Microorganisms are cultured in a desired
growth environment for an extended period of time, allowing
natural selection to enrich for mutant strains with improved
fitness (Johansen, 2018; Sandberg et al., 2019). Therefore, the
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TABLE 1 | A comparison of the major “omics” techniques.

Technique Genomics Transcriptomics Proteomics Metabolomics Multi-omics

Study - Genome (the complete set of

genes in a biological system)

- Genome sequence

- Gene functions and

interactions

- Metagenomics

- Transcriptome (the complete set of RNA

transcripts in a biological system)

- Gene transcription (i.e., gene expression)

- Transcriptome sequence

- Metatranscriptomics via 16S rRNA

- Proteome (the complete set of proteins in a

biological system)

- Protein translation (i.e., gene expression)

- Post-translational modification (PTM) state of

proteins

- Metaproteomics

- Metabolome (the complete set of metabolites in

a biological system)

- Metabolites (i.e., substrates, intermediates or

end products of cellular metabolism)

- Pathway flux (i.e., concentration and/or

metabolic flux analysis)

- Integrated information of genes,

transcriptomes, proteins, and metabolites

Advantages - Evaluate genome modification

in engineered vs. naturally

evolved systems

- Evaluate gene function via mRNA

transcripts

- 16S rRNA sequencing for

reconstructing phylogenies

- Assess gene function

- Evaluate protein translation

- Evaluate PTM

- Identify diagnostic biomarkers

- Provides phenotypic information

- Assess gene function

- Identify metabolic pathway bottlenecks

- Identify diagnostic biomarkers (e.g., productivity

biomarkers)

- Evaluate protein function

- Provides phenotypic information

- Identify diagnostic biomarkers with a high

degree of accuracy

- Provides a comprehensive knowledge

and understanding of biological systems

Challenges/

Disadvantages

- Cannot solely provide

complete description of

complex biological systems

(i.e., cannot describe

phenotypes)

- Cannot solely provide complete

description of complex biological systems

(i.e., cannot describe phenotypes)

- Insufficient information due to PTM

- Cross contamination and

cross hybridization

- High instrument cost

- Difficult protein/peptide quantification

- Inaccurate analysis of labile PTM

- Can be expensive as it requires advanced tools

(e.g., mass spectrometry)

- Low abundance proteins are difficult to analyze

- Cross contamination during enzymatic

proteolysis (same peptide may come from

different proteins)

- Difficult to cover whole proteome due to large

number of proteins

- High instrument cost

- The metabolome is very chemically diverse

- Metabolites can have short half-lives due to

instability and/or bio-transformations

- Low abundance metabolites are difficult to

analyze

- Challenging sample preparation (e.g.,

metabolite extraction, and matrix clean up)

- Difficult to identify source of metabolite

production and consumption in

microbial communities

- High data volume and complexity

- This approach can be very expensive

- Requires good/rigorous experimental

design that accounting for all parameters

pertaining to individual and combined

“omics” technologies

- Requires advanced data integration and

analysis tools, and specialists from

each discipline

Relative throughput - Highest (fast DNA sequencing) - High (fast RNA sequencing) - Moderate - Moderate - Depends on selected “omics”

Ideal for - Testing model-driven

hypotheses (targeted

approach)

- Testing model-driven hypotheses

(targeted approach)

- Targeted (i.e., bottom-up)

- Untargeted (i.e., shotgun)

- Identifying pathway bottlenecks

- Targeted analysis

- Untargeted analysis

- Identifying pathway bottlenecks

- Understanding biological systems

- Identify diagnostic biomarkers

- Identify bioproduction bottleneck

Pathway analysis - No - No - Yes (e.g., via protein abundance/quantity and

PTM)

- Yes (e.g., via the assessment of protein function

and metabolite production)

- Yes (integrated proteomics and

metabolomics)

Relative coverage - Very comprehensive - Comprehensive - Good - Moderate - Depend on selected “omics” techniques

Information gained - Genotype - Genotype - Phenotype - Phenotype - Connects genotype to phenotype

Type of data - Qualitative - Qualitative and quantitative - Qualitative and quantitative - Qualitative and quantitative - Qualitative and quantitative

Relative ease of

sample preparation

- Easiest (chemically

homogeneous, and stable,

thus, easy sample preparation,

storage and analysis)

- Easy to moderate - Moderate (proteins are chemically

heterogeneous, and moderately stable, thus,

challenging sample preparation, and

moderately hard to store)

- Difficult (metabolites are physio-chemically

heterogeneous, and unstable (e.g., thermally

labile), thus, challenging sample preparation

(e.g., metabolite extraction, and matrix clean

up), and storage)

- Most difficult

Relative ease of

data acquisition

- Easiest - Easy - Moderate to difficult - Difficult (no single analytical technique, nor

multiple analytical techniques (e.g., GC-MS,

LC-MS, CE-MS, and NMR) can cover the

whole metabolome)

- Depends on selected “omics” techniques

Key acquisition

tools

- Next generation sequencing

(NGS)

- PCR

- RFLP-PCR

- RNA sequencing (RNA-seq) - LC-MS (e.g., orbitrap, and TOF)

- MALDI

- LC-MS

- GC-MS

- CE-MS

- NMR

- Combination of “omics” acquisition tools

Relative ease of

data analysis

- Easiest (fast and accurate data

analysis)

- Easy - Difficult (protein identification and quantification

are challenging steps)

- Difficult (data need pre-treatment (e.g.,

normalization, scaling, and transformation)

before analysis)

- Most difficult (integration of various

“omics” data is challenging)

Key data analysis

tools

- EBI

- GEO

- ArrayExpress

- GenBank

- DESeq2

- DEXseq

- Mascot, Sequest

- Tandem

- Skyline

- Uni-prot, Swiss-prot

- R and Matlab based tools

- SIMCA

- WebSpecimine, SIRIUS 4

- MetaboAnalyst 4.0, SECIM

- COLMAR, MzMine

- ECMDB 2.0

- YMDB 2.0

- GenBank

Overall relative ease

of analysis

- Easiest - Easy - Moderate to difficult - Difficult - Most difficult

Reproducibility - High - Good - Moderate - Low to moderate - Depend on selected “omics” techniques
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FIGURE 2 | “Omics” approaches facilitate the development of new biotechnologies.

FIGURE 3 | The Design-Build-Test-Learn (DBTL) cycle of metabolic engineering.

throughput of ALE will depend on the experimental design.
Furthermore, the task of identifying all beneficial mutations of an
ALE experiment remains a major challenge for the field (Phaneuf

et al., 2020). ALE is often used to optimize microbial growth
rate, increase strain tolerance, improve stress regulation and
adaptation, improve substrate utilization and uptake, increase
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product titer/rate/yield, as well as for biological discovery via
systems biology, evolutionary modeling, and genome dynamics
(Bergh, 2018; Dourou et al., 2018; Sun et al., 2018; Wang
et al., 2018; Yan and Fong, 2018; Sandberg et al., 2019; Phaneuf
et al., 2020). ALE experiments allow researchers to learn how
to improve multiple strain properties simultaneously (Sandberg
et al., 2019).

ALE has become a valuable tool in metabolic engineering
for strain development and optimization by reliably facilitating
microbial fitness improvements, via both predictable and non-
intuitive mechanisms (Sandberg et al., 2019). ALE can be
employed in the DBTL cycle in the Build step to recover strains
with fitness issues or to optimize strains (Sandberg et al., 2019).
Furthermore, ALE can be used in the Design step to enrich for
mutant strains with improved fitness and can also replace both
Design and Build steps in situations where a desired phenotype
is tied to selection without the need for engineering (Sandberg
et al., 2019; Lee and Kim, 2020). While ALE can precede the
Test and Learn steps in the DBTL cycle, the information gained
from these steps can also be utilized by ALE to produce strains
with better properties. In this way, ALE may benefit from using
“omics” technologies during the Test phase of the DBTL cycle
(Horinouchi et al., 2018; Long and Antoniewicz, 2018; Walker
et al., 2019; Wu et al., 2020).

In most microbial metabolic engineering studies, however, the
Learn phase of the DBTL cycle is often addressed by hypothesis-
driven user intuition that is often based on empirical evidence
(Liu and Nielsen, 2019). As with the DBTL cycle, genomic
sequence information in the traditional approach is invariably
utilized in the initial stages of a study. However, genomics
has come a long way in the last decade. Bar-seq can now be
used to study population dynamics of Saccharomyces cerevisiae
(S. cerevisiae) deletion libraries during bioreactor cultivation,
enabling the identification of factors that impact the diversity
of a mutant pool (Wehrs et al., 2020). Whereas, a sort-seq-
guided engineering approach can be used to identify key mutated
promotors for tuning expression levels, thereby facilitating the
dynamic regulation of microbial growth as well as dynamic
pathway regulation (Rohlhill et al., 2017). While transcriptomics
yields gene expression data (i.e., activity of target genes,
gene sequence data, and gene expression levels), proteomics
and metabolomics approaches are increasingly being used for
pathway analysis studies as they can measure protein translation
and activity, respectively (Volke et al., 2019). Proteomics-guided
approaches have been used to engineer polyketide biosynthesis
platforms for aromatic compounds in yeast (Jakočiunas et al.,
2020) and in vitro production of adipic acid (Hagen et al., 2016).
In addition to this, metabolomics enables the assessment of
pathway flux, carbon source diversion, and cofactor imbalance,
which all contribute to the identification of pathway bottlenecks
(Nielsen and Jewett, 2007; Zhao et al., 2020, Volke et al., 2019).
Luo et al. used a metabolomics guided approach to characterize
cannabinoid production in engineered S. cerevisiae and identified
cannabinoid analogs produced by several promiscuous pathway
genes (Luo et al., 2019). Furthermore, metabolomics analysis
aided the design (Kang et al., 2016) and optimization (Kang et al.,
2019) of a novel isopentenyl diphosphate-bypass mevalonate

pathway in E. coli for C5 alcohol production. With a combined
genetic, biochemical and fermentation approach, Uranukul et al.
utilized the native glycolytic pathway in S. cerevisiae to produce
monoethylene glycol, an important commodity chemical , and
upon further metabolic engineering and process optimization
were able to achieve 4.0 g/L (Uranukul et al., 2019). The
integration of proteomics and metabolomics promises accurate
assessment of pathway flux due to proper accounting of protein
abundance. When pathway data is obtained in addition to
transcriptomics data and/or large scale targeted/untargeted
proteomics or metabolomics data, the impact of the engineered
pathway on cellular metabolism and physiology can be
determined. Exploring the interplay between heterologously
expressed pathways and endogenous metabolism could reveal
factors affecting strain variation, identify perturbed metabolic
nodes, and produce new engineering targets (Chen, 2016).

The Application of “Omics” Technologies
to Agricultural and Food Biotechnology
Recent advances in agricultural biotechnology have led to
new plant varieties being engineered by recombinant DNA
technology and grown by farmers to respond to market
demands and environmental challenges (https://www.usda.gov/
topics/biotechnology). “Omics” technologies are being applied
to agricultural biotechnology to enhance desirable phenotypic
traits (e.g., color, taste, drought tolerance, pesticide resistance,
etc.) (Aliferis and Chrysayi-tokousbalides, 2011; Van Emon,
2016). While “omics” plays a major role in improving crop
quality, consistency, and productivity, they have also led to
the development of food crops with enhanced nutritional
composition (Van Emon, 2019) (Figure 2). Moreover, omics-
driven systems biology provides an understanding of the
interactions between the “omes” and mechanisms involved and
provide links between genes and traits (Van Emon, 2016).

As arable land is being farmed more heavily, soil is
becoming more susceptible to loss of structure, organic matter,
minerals, and erosion. Thus, efforts are being made, via
agricultural biotechnology, to maintain a sustainable supply of
nutrients essential to the growth of crop plants. An integral
part of this approach is the use of biofertilizers, which are
the preparations containing specialized living organisms (i.e.,
microbial inoculants) that can fix, mobilize, solubilize, or
decompose nutrient sources, and are applied through seed
or soil to enhance nutrient uptake by plants (Mohanram
and Kumar, 2019). The sustainable enhancement in food
production from less available arable land relies on the balanced
utilization of inorganic minerals, organic matter, and biofertilizer
sources of plant nutrients to augment and maintain soil
fertility and productivity. Widespread adoption of this approach,
however, has been hindered by varying responses of microbial
inoculants across fields and crops (Mohanram and Kumar,
2019). As a result, there is an urgent need to understand
the mechanisms underlying the interdependencies between soil
microbial communities and the host plant and their impact
on crop productivity. These interactions are played out in
the rhizosphere, which encompasses the region of soil that is
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directly influenced by root secretions and associated microbial
communities (Zhalnina et al., 2018). In a recent comparative
genomics and exo-metabolomics study, specific rhizosphere
bacteria were shown to have a natural preference for certain
aromatic organic acids exuded by plants, suggesting that plant
exudation traits and microbial substrate uptake traits interact to
yield the patterns of microbial community assembly (Zhalnina
et al., 2018). Furthermore, the application of genomics and
transcriptomics to the study of luxury phosphate uptake (i.e., the
ability of microalgae to take up more phosphorus than necessary
for immediate growth) revealed a range of Pi transporters in
various microalgae and their expression patterns in relation
to the availability of P (Yang et al., 2018; Mohanram and
Kumar, 2019; Solovchenko et al., 2019). At present, “omics”
technologies are being used to understand complex rhizospheric
intercommunications, which is crucial to the development and
choice of biofertilizer and, by extension, the construction of
rhizopheres that promote stable plant growth, better crop
productivity and yield (Mohanram and Kumar, 2019).

In the related field of food biotechnology, transcriptomics
and metabolomics analysis showed that Bacillus pumilus LZP02
promote the growth of rice roots by enhancing carbohydrate
metabolism and phenylpropanoid biosynthesis (Liu et al., 2020).
Further, the application of “omics” to starch bioengineering is
increasing our understanding of the specific contributions of
the most important enzymes for starch biosynthesis. This has
enhanced our ability to predict how starch-related phenotypes
can be modified, thus ensuring further progress in the research
field of rice starch biotechnology (Nakamura, 2018). “Omics”
are solving issues surrounding food quality and traceability,
to safeguard the origin of food, and discover biomarkers of
potential food safety problems (Ferranti, 2018). In the wine
industry, the wine microbiome associated with the fermentation
of must has a great influence on factors transforming grapes to
wine, including flavor and aroma. “Omics” characterization of
the complex interactions between these microbes, the substrate
and environment, is key to shaping wine production (Sirén
et al., 2019). Finally, combining “omics” technologies with
genome editing of food microbes can be used to generate
enhanced probiotic strains, develop novel bio-therapeutics and
alter microbial community structure in food matrices (Pan and
Barrangou, 2020).

The Use of “Omics” Technologies in the
Development of Therapeutics for COVID-19
The coronavirus disease 2019 (COVID-19) characterized by the
Severe acute respiratory syndrome coronavirus 2 [i.e., SARS-
CoV-2, which binds to the ACE2 receptor in the lung and other
organs (Ahmed et al., 2020)] has caused a global pandemic
and slowed much of the world’s economy. To date (December
5th, 2020), there are more than 64 million confirmed cases and
1.5 million confirmed deaths world-wide (https://www.who.int/
emergencies/diseases/novel-coronavirus-2019). Thus, there is a
pressing need for an effective countermeasure to mitigate the
spread of the pandemic (van Doremalen et al., 2020).

Consequently, efforts are underway to fast-track the
development and production of safe and effective vaccines
against SARS-CoV-2. Prior knowledge of SARS and Middle East
respiratory syndrome (MERS) has enabled scientists to target
the spike protein as the viral antigen (via the ACE2 receptor).
Moreover, the release of the SARS-CoV-2 genome sequence in
January 2020 made it possible to expedite the development of
next generation mRNA [e.g., mRNA-1273 from NIH/Moderna
(Jackson et al., 2020) and BNT162 from Pfizer/BioNTech
(Mulligan et al., 2020)] and DNA [e.g., ChAdOx1 nCoV-19 from
University of Oxford/Vaccitech/AstraZeneca (Folegatti et al.,
2020; van Doremalen et al., 2020)] vaccine platforms that encode
for the antigen. Once injected into a host, the former (which is
encased in lipid nano-particles) remains in the cytoplasm while
the latter (which is encased in an attenuated adenovirus vector)
enters its nucleus. The host cell translates these genetic materials
into the spike protein, which decorates the surface of the cell and
elicits an adaptive immune response mediated by T cells (e.g.,
CD4+ and CD8+) and B cells (i.e., antibodies). These vaccines
were reported to be efficacious against SARS-CoV-2 in recent
clinical trials, which underscores the importance of genomics to
this new era of vaccine development.

Gordon et al. produced a SARS-CoV-2 protein interaction
map via a proteomics-based approach to reveal targets for drug
repurposing. They cloned, affinity tagged and expressed 26 of
the 29 SARS-CoV-2 proteins in human cells and identified the
associated proteins via proteomics analysis. A total of 66 human
proteins or host factors were identified as possible drug targets
of 69 compounds, from which two sets of these pharmacological
agents showed antiviral activity. This work highlights the
potential of host-factor-targeting agents, when acting alone or
in combination with drugs that target viral enzymes, to be
used as therapeutic treatments for COVID-19 (Gordon et al.,
2020). Furthermore, computational immunoproteomics studies
have the potential to guide lab-based investigations to evaluate
specificity of diagnostic products, to forecast on potential adverse
effects of vaccines and to reduce the use of animal models
(Tilocca et al., 2020).

Recently, metabolomics was able to distinguish COVID-19
patients from healthy controls via the analysis of 10 plasma
metabolites. Additionally, lipidomics data from this study
suggests monosialodihexosyl ganglioside enriched exosomes
could be involved in pathological processes related to COVID-
19 pathogenesis (Song et al., 2020). Recent proteomics and
metabolomics studies in COVID-19 patient sera suggest that
SARS-CoV-2 infection causes metabolic dysregulation of
macrophage and lipid metabolism, platelet degranulation,
complement system pathways, and massive metabolic
suppression (Shen et al., 2020); with the plasma metabolomic
signatures appearing to be similar to those described for sepsis
syndrome (Langley et al., 2013, 2014; Migaud et al., 2020).
Furthermore, transcriptomics results indicate higher expression
of genes related to oxidative phosphorylation both in peripheral
mononuclear leukocytes and bronchoalveolar lavage fluid,
suggesting a critical role for mitochondrial activity during
SARS-CoV-2 infection (Gardinassi et al., 2020). Understanding
the clinical presentation of COVID-19 as well as metabolomic,
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proteomic, and genetic profiles could lead to the discovery
of diagnostic, prognostic and predictive biomarkers, ensuring
the development of more effective medical therapy (Ahmed
et al., 2020). Moreover, identifying metabolic biomarkers of
severe vs. mild disease states in the lung during respiratory
infections could lead to the development of novel therapeutics
that modulate symptom and disease severity (Bernatchez and
McCall, 2020; Shen et al., 2020). It is, therefore, critical to develop
new approaches to early assess which cases will likely become
clinically severe (Shen et al., 2020).

TRENDS IN “OMICS” RELATED
BIOTECHNOLOGY RESEARCH

The aim of this section is to present the trends in “omics”
techniques utilization in biotechnology research (i.e., food,
natural products, agriculture, pharmaceutical, materials, and
bioenergy) during the course of last two decades. Such trends,
which are based on the number of annual publications obtained
from a search in Web of Science (www.webofknowledge.com)
topics, are used to illustrate the progression of “omics”
technologies in biotechnology. In Web of Science, the topics
searched are as follows: title, abstract, author keywords, and
keywords plus. It is worth noting that the trends in this section
showing a reduction in the number of publications for the current
year (i.e., 2020), which is expected to be a result of the COVID-
19 related shut-down that has affected scientific labs worldwide
and the mid-2020 collection of the data. Furthermore, it is

also important to note that search entries, such as food, and
bioenergy can generate publications based on the contributions
of both closely and, to a lesser extent, loosely related topics.
Additionally, it is worth noting that not all “omics” research
data (e.g., industrial-based studies) is being published and made
available to the public. Therefore, the trends data (Figures 4, 5)
represents a qualitative rather than a quantitative measure of
“omics” utilization.

Omics-based technologies serve as the connective tissue that
links biotechnology to these fields of research. For example,
the advancement in genomics technologies have improved
biotechnology platforms, which have led to developments in
pharmaceutical, bioenergy, food, materials, and agriculture
research (Oksman-Caldentey and Saito, 2005; Crommelin et al.,
2013; Misra et al., 2013; de Pablo et al., 2019; Rexroad et al.,
2019). Figure 4 shows a steady growth in the number of genomics
publications in biotechnology research, which might be due to
the advancement in DNA sequencing, resulting in reduced cost
and increased throughput (Pagani et al., 2012). Transcriptomics
also appears to show a slight increase in the application of
biotechnology-based research during the last decade (Figure 4).

Interestingly, while the utilization of proteomics in
biotechnology seems to be significantly increased in the period
of 2004–2006, it has generally plateaued during the following
years (Figure 4). However, Figure 4 suggests a growing trend
in the application of metabolomics studies to biotechnology-
based research during the last decade. Additionally, metabolic
flux analysis has also shown a slight growing trend in the
last decade.

FIGURE 4 | Number of annual publications that utilize “omics” technologies for biotechnology during the period of 2000–2020. Search criteria: the individual “omics”

technology was selected. The search was conducted using the Web of Science platform.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 February 2021 | Volume 9 | Article 613307119

http://www.webofknowledge.com
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Amer and Baidoo Omics-Driven Biotechnology for Industrial Applications

FIGURE 5 | Number of annual publications that utilize “omics” technologies for biotechnology research areas during the period of 2000–2020. Search criteria: the

individual “omics” technology and the individual biotechnology research area were selected. The search was conducted using the Web of Science platform.

The performed search also suggests an increased utilization
of genomics, proteomics and metabolomics during the last
two decades in the following research fields: food, materials,
and natural products (Figure 5). This is not surprising as
there is a growing need for more phenotypic information.
Consequently, scientists are using these “omics” techniques to
facilitate their research. The improvements in proteomics and
metabolomics analytical capabilities may also have contributed
to the potential growth in their utilization over the last decade
for those fields. Genomics has shown an upward trend in the
number of publications for agriculture over the last 20 years
(Figure 5).

The utilization of metabolic flux analysis in all research
areas has shown a prospective slight growth trend during
the last decade (Figure 5). The number of metabolic
flux analysis publications, however, is relatively low in
the perspective areas for similar reasons to that described
for biotechnology.

CONCLUSIONS

The DBTL cycle is becoming an increasingly adopted framework
in metabolic engineering experiments as it provides a systematic
and efficient approach to strain development. However, the
DBTL cycle is limited by the Learning process since it requires
high quality and large “omics” data sets to increase the
accuracy and robustness of Learn methods. The DBTL cycle
relies heavily on “omics” technologies during the testing phase
of the cycle, and can be integrated into ALE experiments.
“Omics” technologies have played major roles in the metabolic
engineering of biofuels, bioproducts, and crop development.
Proteomics and metabolomics are routinely applied to the
analysis of engineered biosynthetic pathways in microbial
hosts. Genomics sequencing information appears to be a key
component in the development of next generation mRNA and
DNA vaccines against virus’s such as SARS-CoV-2. Whereas,
transcriptomics, proteomics, and metabolomics analyses are
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being used to guide the development of therapeutic drugs for
COVID-19. In the last 20 years, genomics has shown a steady
growth in the number of biotechnology publications, however,
the emergence of transcriptomics, proteomics, andmetabolomics
in this field of research is a testament to the development of
robust “omics” technologies and methods.
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The filamentous ascomycete Aspergillus niger has received increasing interest as
a cell factory, being able to efficiently degrade plant cell wall polysaccharides as
well as having an extensive metabolism to convert the released monosaccharides
into value added compounds. The pentoses D-xylose and L-arabinose are the most
abundant monosaccharides in plant biomass after the hexose D-glucose, being major
constituents of xylan, pectin and xyloglucan. In this study, the influence of selected
pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and
re-routing of sugar catabolism was addressed to gain a better understanding of the
flexibility of this fungus in using plant biomass-derived monomers. The transcriptome,
metabolome and proteome response of three PCP mutant strains, 1larA1xyrA1xyrB,
1ladA1xdhA1sdhA and 1xkiA, grown on wheat bran (WB) and sugar beet pulp (SBP),
was evaluated. Our results showed that despite the absolute impact of these PCP
mutations on pure pentose sugars, they are not as critical for growth of A. niger on more
complex biomass substrates, such as WB and SBP. However, significant phenotypic
variation was observed between the two biomass substrates, but also between the
different PCP mutants. This shows that the high sugar heterogeneity of these substrates
in combination with the high complexity and adaptability of the fungal sugar metabolism
allow for activation of alternative strategies to support growth.

Keywords: lignocellulosic substrates, pentose catabolic pathway, D-galacturonic acid catabolic pathway,
L-rhamnose catabolic pathway, wheat bran, sugar beet pulp, CAZymes, Aspergillus niger

INTRODUCTION

The majority of industrial processes for the production of chemicals, materials, and energy are still
based on fossil fuels, especially coal and crude oil. However, to gain independence from these raw
materials, more consideration has been given in the last decades to the use of renewable materials
and agricultural residues as promising low-cost feedstocks for obtaining high added-value products.
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The filamentous fungus Aspergillus niger is one of the most
prominent fungal cell factories used in biotechnology. It is
known for its ability to naturally degrade complex plant biomass
polysaccharides, including both cell wall (cellulose, hemicellulose
and pectin) and storage (inulin and starch) components, into
simple sugars using a rich arsenal of Carbohydrate-Active
Enzymes (CAZymes) (de Vries and Visser, 2001; Lombard
et al., 2014; Benoit et al., 2015). Despite the complexity of
the polysaccharides forming the cell wall, their backbone is
mainly formed by simple sugars, such as D-glucose, D-xylose,
L-arabinose, D-galactose, D-galacturonic acid, D-fructose and
L-rhamnose (Somerville, 2006; Mohnen, 2008; Scheller and
Ulvskov, 2010; Ochoa-Villarreal et al., 2012). In nature, fungi
need to first recognize the plant biomass components to produce
the right set of CAZymes that can break down the complex
structures into these simple molecules. The resulting sugars
are subsequently transported into the cell and converted into
energy and intermediate metabolites through a wide range
of metabolic pathways (Khosravi et al., 2015). An in-depth
understanding of the A. niger metabolic network will provide
a detailed blueprint for the metabolic engineering of this
fungus to improve productivity of a broad range of proteins
and metabolites.

The pentoses L-arabinose and D-xylose are the most abundant
monosaccharides in nature after D-glucose, being major
components of the hemicelluloses xylan and xyloglucan, and
of pectin (Seiboth and Metz, 2011). In most fungi, L-arabinose
and D-xylose are metabolized through the pentose catabolic
pathway (PCP) (Witteveen et al., 1989), through oxidation,
reduction and phosphorylation reactions to finally form D-
xylulose-5-phosphate, which enters the pentose phosphate
pathway (PPP) (Seiboth and Metz, 2011; Figure 1A). Although
pentose catabolism is among the best studied pathways of
A. niger primary carbon metabolism, the simplistic view of
this pathway has recently been challenged (Chroumpi et al.,
2021). Due to the residual growth of the PCP single deletion
mutants, identification of additional genes involved in pentose
catabolism was achieved: a second D-xylose reductase (XyrB),
a second L-xylulose reductase (LxrB) and the role of sorbitol
dehydrogenase (SdhA) in compensating for the loss of L-arabitol
dehydrogenase (LadA) and xylitol dehydrogenase (XdhA)
(Figure 1A). Additionally, all enzymatic steps of the PCP in
A. niger, apart from the last one, were shown to be catalyzed by
multiple enzymes, which together ensure efficient conversion of
pentose sugars.

In this study, the influence of selected PCP deletion strains on
growth on plant biomass and re-routing of sugar catabolism was
analyzed to gain a better understanding of the flexibility of this
fungus in using plant biomass-derived monomers as substrates.
The transcriptome, metabolome and proteome responses of
three pentose catabolic mutant strains, 1larA1xyrA1xyrB,
1ladA1xdhA1sdhA and 1xkiA, grown on two plant biomass
substrates, wheat bran (WB) and sugar beet pulp (SBP), were
evaluated. These mutants have been previously shown to block
pentose catabolism at different steps of the pathway and as a result
accumulate different intermediates that could act as inducers
(Chroumpi et al., 2021). While both substrates contain cellulose,

WB is rich in arabinoxylan and SBP contains xyloglucan and
pectin (Figure 1C). This means that both substrates contain
considerable amounts of L-arabinose and D-xylose, making them
highly suitable for analysis of this pathway.

MATERIALS AND METHODS

Strains, Media, and Growth Conditions
The A. niger strains used in this study are listed in Table 1.
The strains were grown at 30◦C using Minimal Medium (MM,
pH 6) or Complete Medium (CM, pH 6) with the appropriate
carbon source (de Vries et al., 2004). For solid cultivation, 1.5%
(w/v) agar was added in the medium and, unless stated otherwise,
all agar plates contained 1% D-glucose as carbon source. When
required, media of auxotrophic strains were supplemented with
1.22 g/L uridine.

For growth profiling, 6 cm petri dishes with vents containing
MM agar supplemented with 25 mM D-glucose (Sigma, G8270),
a mixture of 12.5 mM D-xylose (Sigma, 95729) and 12.5 mM L-
arabinose (Sigma, A3256), 3% wheat bran (WB) or 3% sugar beet
pulp (SBP) were used. The monosaccharide composition analysis
of WB and SBP is presented in Figure 1C. Spores were harvested
from CM agar plates in ACES buffer, after five days of growth, and
counted using a hemocytometer. Growth profiling plates were
inoculated with 1,000 spores in 2 µl, and incubated at 30◦C for
5 days.

All liquid cultures were incubated in an orbital shaker at
250 rpm and 30◦C. For transfer experiments, the pre-cultures
containing 250 mL CM with 2% D-fructose in 1 L Erlenmeyer
flasks were inoculated with 106 spores/mL and incubated for
16 h. Subsequently, the mycelia were harvested by filtration on
sterile cheesecloth, washed with MM and ∼0.5 g (dry weight)
was transferred to 250 mL Erlenmeyer flasks containing 50 mL
MM supplemented with 1% WB or 1% SBP. All cultures were
performed in biological triplicate as were all the subsequent
analyses. After 2, 8, and 24 h of incubation, the mycelia were
harvested by vacuum filtration, dried between tissue paper and
frozen in liquid nitrogen. Culture filtrates were also harvested for
extracellular metabolomics and proteomics analysis. All samples
were stored at−80◦C until being processed.

Transcriptome Sequencing and Analysis
The transcriptomic response of the reference strain and the PCP
deletion mutants induced after 2, 8, and 24 h on 1% WB or
1% SBP was analyzed using RNA-seq analysis. Total RNA was
extracted from ground mycelial samples using TRIzol R© reagent
(Invitrogen) and purified with the NucleoSpin R© RNA Clean-up
Kit (Macherey-Nagel), while contaminant gDNA was removed
by rDNase treatment directly on the silica membrane. The
RNA quality and quantity were analyzed with a RNA6000 Nano
Assay using the Agilent 2100 Bioanalyzer (Agilent Technologies).
Purification of mRNA, synthesis of cDNA library and sequencing
were conducted at the Environmental Molecular Sciences
Laboratory (EMSL).

RNA samples were assessed using the Agilent 2100
Bioanalyzer. The TruSeq stranded mRNA (cat#20020594)
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FIGURE 1 | (A) Pentose catabolic pathway (PCP) in Aspergillus niger. LarA = L-arabinose reductase, LadA = L-arabitol dehydrogenase, LxrA and LxrB = L-xylulose
reductases, SdhA = sorbitol dehydrogenase, XyrA and XyrB = D-xylose reductases, XdhA = xylitol dehydrogenase, XkiA = D-xylulose kinase. (B) Growth profile of the
A. niger reference strain (N593 1kusA) and the PCP deletion mutants on solid MM with or without addition of carbon source. Strains were grown for 5 days at 30◦C
and (C) composition analysis of polymeric carbon sources, wheat bran (WB) and sugar beet pulp (SBP), used for growth profile and multi-omics analysis of PCP
mutants. Rha = rhamnose, Ara = arabinose, Xyl = xylose, Man = mannose, Gal = galactose, Glc = glucose, GalUA = galacturonic acid. Concentration in mol%.

was used to generate cDNA library for illumina NextSeq550
platform according to the manufacture protocol. Single-read
sequencing of the cDNA libraries with a read length of 150 was
performed with NextSeq 500 Sequencing System using NextSeq
500/550 High Output v2 kit 150 cycles (cat#20024907). Data
quality was assessed using FastQC1. Reads were aligned to the
A. niger NRRL 3 genome (Aguilar-Pontes et al., 2018) using
bowtie22, with parameters -local, –sensitive-local. The RNAseq
data set was deposited at the GEO (Barrett et al., 2012) database
under the accession number GSE162901. Reads were aligned to
genes using HTSeq−count (Anders et al., 2014) with parameters
-a = 1, –mode = "union". The analysis was performed on three
independent biological replicates. Differential gene expression
was assessed using the R package DESeq2 (Love et al., 2014),
with all subsequent analysis performed in R unless otherwise
stated. Transcripts were considered differentially expressed if the
DESeq2 fold change was >2 or <0.5 and Padj < 0.01. Transcripts
with FPKM ≤ 50 were considered lowly (i.e., not substantially)
expressed. MDS plots were also generated using DESeq2.

The Gene Ontology (GO) annotation was retrieved from JGI
MycoCosm database3 and the Gene Ontology (GO) annotation
database from R Bioconductor was used to map their ancestor
nodes in the GO hierarchy. The GO Slim terms defined in

1https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2http://bowtiebio.sourceforge.net/bowtie2/index.shtml
3https://genome.jgi.doe.gov/Aspni_NRRL3_1/Aspni_NRRL3_1.home.html

AspGD4 were selected for enrichment analysis. The GO biological
process terms enriched within the significant differentially
expressed gene lists compared to the genome background were
detected by a hypergeometric distribution model calculated with
in-house script. The P-values for multiple tests were corrected
with Benjamini and Hochberg’s method, and significantly
enriched GO terms were selected with P-values <0.01.

Proteomics Data Generation and
Analysis
Equivalent volumes of culture supernatant were extracted
using the MPLEx protocol (Nakayasu et al., 2016). The
protein interlayer from the extraction was then resuspended
in an 8 M urea solution, reduced with DTT, digested with
Trypsin, put through C18 SPE for clean-up, and diluted to
0.1 µg µL−1 for LC-MS/MS.

MS analysis was performed using a Q−Exactive Plus mass
spectrometer (Thermo Scientific) outfitted with a homemade
nano−electrospray ionization interface. Electrospray emitters
were homemade using 150 µm o.d. × 20 µm i.d. chemically
etched fused silica (Kelly et al., 2006). The ion transfer
tube temperature and spray voltage were 250◦C and 2.2 kV,
respectively. Data were collected for 120 min following a 10 min
delay after completion of sample trapping and start of gradient.
FT−MS spectra were acquired from 300 to 1,800 m/z at a

4http://www.aspgd.org/
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FIGURE 2 | Gene Ontology (GO) terms associated with the function of genes upregulated or downregulated during growth on sugar beet pulp (SBP) and wheat bran
(WB) in the A. niger reference strain (N593 1kusA) and the PCP deletion mutants. The size and color of the circles represent the number of genes and statistical
significance of enriched GO terms, respectively.

TABLE 1 | A. niger strains used in this study.

Strains Gene ID Enzyme activity CBS number Genotype References

Reference strain
(N593 1kusA)

– – CBS 138852 A. niger N593, cspA1,
kusA:amdS, pyrG-

Meyer et al., 2007

1larA1xyrA1xyrB NRRL3_10050 (larA) NRRL3_01952
(xyrA) NRRL3_10868 (xyrB)

L-arabinose/
D-xylose reductase

CBS 144530 A. niger N593, cspA1,
kusA:amdS, pyrA-,
larA−, xyrA−, xyrB−

Chroumpi et al.,
2021

1ladA1xdhA1sdhA NRRL3_02523 (ladA) NRRL3_09204
(xdhA) NRRL3_04328 (sdhA)

L-arabitol/xylitol
dehydrogenase

CBS 144672 A. niger N593, cspA1,
kusA:amdS, pyrA−,
ladA−, xdhA−, sdhA−

Chroumpi et al.,
2021

1xkiA NRRL3_04471 (xkiA) xylulokinase CBS 144042 A. niger N593, cspA1,
kusA:amdS, pyrA−,
xkiA−

Chroumpi et al.,
2021

resolution of 30 k (AGC target 3e6) and while the top 12
FT−HCD−MS/MS spectra were acquired in data−dependent
mode with an isolation window of 1.5 m/z and at a resolution
of 17.5 k (AGC target 1e5) using a normalized collision energy of
30 s exclusion time.

Generated MS/MS spectra were searched using the mass
spectral generating function (MSGF +) algorithm (Kim et al.,
2008; Kim and Pevzner, 2014) against the A. niger translated

genome sequence available from Aspni_NRRL3_1 (Aguilar-
Pontes et al., 2018). MSGF + was used in target/decoy mode
with 20 ppm parent ion tolerance, partial tryptic rule and
methionine oxidation (+ 15.9949) as dynamic modification.
Best matches from the MSGF + searches were filtered at
1% FDR and only protein specific peptides were used in
consequent aggregation and quantitative analysis. Relative
peptide abundances can be determined by calculating the
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area under the curve of the peptide ion peak in the MS
measurement. This was accomplished using MASIC software
(Monroe et al., 2008)5 and results were aggregated using MS
SQL (Microsoft) database. InfernoRDN software (Polpitiya et al.,
2008)6 was used to transform peptides abundances (log2) and
perform mean central tendency normalization. Protein grouped
normalized peptide abundances were de-logged, summed,
transformed (log2) and normalized again in InfernoRDN to
produce normalized abundances for the protein level roll-up. For
an identified protein to be considered differentially produced,
the requirements were a fold change of the mean intensity
values of >2 or <0.5 and Padj < 0.05 from a two−tailed
t −test of the log2 transformed intensity values. Note that
where an intensity value was not detected for a protein in
a sample, a zero value was used. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium via the MassIVE partner repository with the data set
identifier (PXD023205).

Metabolomics Data Generation and
Analysis
Dried metabolite extracts from samples were derivatized using
a modified version of the protocol used to create FiehnLib
(Fiehn, 2016). Samples underwent methoximation to protect
carbonyl groups and reduce tautomeric isomers, followed by
silylation with N-Methyl-N-(trimethylsilyl) trifluoroacetamide
and 1% trimethylchlorosilane (MSTFA) to derivatize hydroxy
and amine groups to trimethylsilated (TMS) forms. GC/MS data
were collected over a mass range of 50–550 m/z using an Agilent
GC 7890A coupled with a single quadrupole MSD 5975C (Agilent
Technologies). A standard mixture of fatty acid methyl esters
(FAMEs) (C8-C28) was analyzed with samples for RI alignment.
The GC oven was held at 60◦C for 1 min after injection, followed
by a temperature increase of 10◦C min−1 to a maximum of 325◦C
at which point it was held for 5 min.

Agilent.D files were converted to netCDF format using
Agilent Chemstation. GC-MS raw data files were converted to
binary files and processed using MetaboliteDetector software
(version 2.5 beta) (Hiller et al., 2009). Retention indices (RIs)
of detected metabolites were calculated based on analysis of
the Fatty acid Methyl Esters standard mixture followed by
chromatographic deconvolution and alignment. Metabolites
were initially identified by matching experimental spectra to an
augmented version of FiehnLib (Kind et al., 2009). All metabolite
identifications were manually validated with the NIST 14 GC–
MS library. The summed abundances of the three most abundant
fragment ions of each identified metabolite were integrated
across the GC elution profile (automatically determined by
MetaboliteDetector). Fragment ions due to trimethylsilylation
(that is, m/z 73 and 147) were excluded from the determination
of metabolite abundance. Features resulting from GC column
bleeding were removed from the data before further data
processing and analysis.

5https://github.com/PNNL-Comp-Mass-Spec/MASIC/releases
6https://github.com/PNNL-Comp-Mass-Spec/InfernoRDN/releases

RESULTS

The Different A. niger PCP Deletion
Mutants Cause Significant Phenotypic
Variation on Lignocellulosic Biomass
Substrates
Selected PCP gene deletion mutants that block conversion of both
pentoses at different pathway steps (Figure 1A), and thus result
in accumulation of different PCP intermediates, were grown on
a mixture of the monosaccharides L-arabinose and D-xylose, and
on the biomass substrates WB and SBP (Figure 1B). As expected,
all three 1larA1xyrA1xyrB, 1ladA1xdhA1sdhA and 1xkiA
mutants were unable to grow on the pentose mixture, while these
deletions resulted in reduced growth on WB and SBP, compared
to the reference strain (Figure 1B). The extent of the growth
reduction depended on the mutant strain and the substrate. The
1larA1xyrA1xyrBmutant, which blocks the first step of pentose
conversion, was practically unable to grow on WB, but showed
only a small growth reduction on SBP. In contrast, growth of
1ladA1xdhA1sdhA was similarly affected as that of the triple
reductase mutant on WB, but was nearly abolished on SBP.
Finally, the growth of 1xkiA mutant, was reduced compared to
the reference strain, but not abolished on both tested biomass
substrates.

The rescued growth of 1xkiA mutant on both biomass
substates and of 1larA1xyrA1xyrB mutant on SBP (Figure 1B),
could suggest the expression of genes encoding alternative
kinases and reductases, respectively, with sufficient specificity for
the accumulated PCP intermediates to support growth. Following
these observations, the re-routing of sugar metabolism in order
to support growth of these PCP mutants on WB and SBP
was further analyzed by multi-omics analysis. Mycelia of the
reference strain and the PCP mutants were transferred to WB and
SBP, and both mycelial and supernatant samples were harvested
after 2, 8 and 24 h.

The PCP Deletions Affect the
Transcriptome Abundance of Metabolic
and CAZy Genes on WB and SBP
GO enrichment analysis of the expression data of the PCP
mutants revealed a significant effect of these mutations on
both primary and secondary metabolic responses of the fungus
(Figure 2). During growth on both substrates, the expression
of genes particularly involved in carbohydrate metabolic
processes (GO:0005975), but also in cellular amino acid
metabolic processes (GO:0006520) and in ribosome biogenesis
(GO:0042254) was elevated compared to the reference strain.
However, transport processes (GO:0006810) and metabolic
processes do not seem to be synchronized. This is in line with
the results of a previous study (Mäkelä et al., 2018), where sugar
transport and metabolism were shown not to be co-regulated
during growth of A. niger in liquid cultures. Interestingly,
after 8 h of growth on SBP, an overall repression of genes
involved in most of the studied GO terms was observed for
all three mutants.
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In this study, in order to investigate the adaptation strategy of
each PCP mutant to these biomass substrates, we mainly focused
on the genes encoding carbon catabolic enzymes and CAZymes
involved in plant biomass degradation.

The Upregulation of the D-Galacturonic
Acid and L-Rhamnose Catabolic
Pathway Genes Could Partly Explain the
Rescued Growth of the
1larA1xyrA1xyrB and 1xkiA Mutants on
SBP
Deletion of the PCP genes in the mutant strains led to
altered expression of the remaining PCP genes on WB
and SBP. On both biomass substrates, the expression of
the remaining PCP genes increased after 8 h in all strains
(Figures 3A,B and Supplementary Table 1). This is probably
due to the accumulation of pentoses and polyols that have
been previously indicated as potential inducers of the AraR
and XlnR transcriptional activators of the PCP genes (de Vries,
2003; de Groot et al., 2007; Battaglia et al., 2011a,b). However,
their expression in the reference and the 1xkiA strains strongly
reduced after 24 h on both biomass substrates, while they
remained at significantly high levels in 1larA1xyrA1xyrB and
1ladA1xdhA1sdhA (Figures 3A,B). Apart from the reference
strain, the 1xkiA mutant was the only strain that was still able to
grow on both WB and SBP (Figure 1B). This indicates that the
depletion of the pentose sugars and pathway intermediates under
these conditions might be the reason of the observed reduction
in expression of the PCP genes in these strains (Figure 4). The
depletion of the pentose sugars in the 1xkiA mutant could be
explained by the presence of enzymes with some kinase activity
on D-xylulose, of which the corresponding genes are induced
under these conditions.

Similar to the PCP genes, the expression of genes involved in
other carbon metabolic pathways was also affected. In particular,
the expression of the genes involved in the catabolism of D-
galacturonic acid was also significantly upregulated in the PCP
deletion mutants compared to the reference strain on SBP
(Figure 3D and Supplementary Table 1). On WB, which does not
contain substantial amounts of D-galacturonic acid (Figure 1C),
expression of the D-galacturonic acid catabolic pathway (GACP)
genes was not induced (Figure 3C and Supplementary Table 1).
Only the expression of larA/gaaD, encoding the enzyme involved
in the last step of the GACP, was strongly induced on both
substrates, since it is the same enzyme involved in the first
step of L-arabinose metabolism in A. niger (Martens-Uzunova
and Schaap, 2008; Mojzita et al., 2010). The expression of this
gene was higher in the 1ladA1xdhA1sdhA mutant on both
substrates (Figures 3C,D and Supplementary Table 1) showing
that its induction is mainly a result of L-arabitol accumulation in
this strain.

Finally, the expression of the genes involved in L-rhamnose
catabolism was also upregulated on SBP (Figure 3E,F and
Supplementary Table 1), while the absence of L-rhamnose in
WB (Figure 1C) resulted in no expression of the L-rhamnose

catabolic pathway (RCP) genes on this substrate (Figure 3C). In
contrast to the other pathway genes, significant upregulation of
lkaA, which was previously shown to be involved in the last step
of L-rhamnose catabolism (Chroumpi et al., 2021), was observed
on both substrates after 8 h of incubation.

Interestingly, albeit both biomass substrates are rich in D-
glucose, increased expression of the glycolytic genes was not
observed for any of the PCP mutants (data not shown).

The Rescued Growth of the
1larA1xyrA1xyrB and 1xkiA Mutants on
SBP Relies in Activation of Different
Carbon Catabolic Re-routing Strategies
Similar to recently results on pure pentose sugars (Chroumpi
et al., 2021), no significant accumulation of arabinose, xylose or
other PCP intermediates were observed during growth on WB
and SBP in the reference strain (Figure 4). Since the PCP remains
intact in this strain, the released pentose sugars can efficiently be
catabolized and used to support growth.

In the 1larA1xyrA1xyrB mutant, accumulation of arabinose
and xylose occurred after 8 and 24 h of growth on SBP and WB
(Figure 4). Although the 1larA1xyrA1xyrB mutant could grow
on SBP, the amount of accumulated pentose sugars increased
with time. This observation supports our previous conclusion
that this mutant cannot utilize the pentose sugars for growth.
The absence of polyol accumulation also suggests that under
these conditions no alternative enzymes are induced which
are able to convert arabinose and xylose into their respective
polyols. As expected, accumulation of D-galacturonic acid was
also observed in the 1larA1xyrA1xyrB mutant at the later time
points on SBP (Figure 4), due to the fact that the last step of the
pathway is also disrupted after deletion of larA/gaaD. However,
the growth of this mutant on SBP indicates the activation of
other catabolic pathways that allow its adaptation under these
conditions. Interestingly, glucose was shown to be significantly
reduced after 8 and 24 h on SBP (Figure 4), indicating that it
might be used as an alternative carbon source to support growth
of the 1larA1xyrA1xyrB mutant.

In the 1xkiA mutant, which was able to grow on both biomass
substrates (Figure 1B), the accumulated arabinose and xylose
observed after 8 h of growth on SBP and WB were depleted
after 24 h (Figure 4). In this mutant, a similar consumption
pattern was also observed for the accumulated arabitol and
xylitol. These observations again support our previous hypothesis
for the presence of alternative enzymes induced under these
conditions, which may facilitate the conversion of pentose sugars
and of PCP intermediates in A. niger. The limited presence of the
PCP inducers can also justify the reduced expression of the PCP
genes after 24 h on both substrates (Figures 3A,B).

Finally, in the 1ladA1xdhA1sdhA mutant, the accumulated
arabinose and xylose measured after 8 h of growth on SBP
and WB were also depleted after 24 h (Figure 4). However,
in contrast to the 1xkiA mutant, significant accumulation of
their respective polyols followed the depletion of the pentose
sugars, showing that this was not a result of their use to support
growth but their conversion into further downstream PCP
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FIGURE 3 | Expression levels (FPKM) of catabolic genes during growth on (A,C,E) wheat bran (WB) and (B,D,F) sugar beet pulp (SBP) in the A. niger reference
strain (N593 1kusA) and the PCP deletion mutants. PCP, pentose catabolic pathway; GACP, D-galacturonic acid catabolic pathway; RCP, L-rhamnose catabolic
pathway. Genes encoding L-arabinose reductase (larA), L-arabitol dehydrogenase (ladA), L-xylulose reductases (lxrA and lxrB), sorbitol dehydrogenase (sdhA),
D-xylose reductases (xyrA and xyrB), xylitol dehydrogenase (xdhA), D-xylulose kinase (xkiA), D-galacturonic acid reductase (gaaA), L-galactonate dehydratase (gaaB),
2-keto-3-deoxy- L-galactonate aldolase (gaaC), L-glyceraldehyde reductase (larA/gaaD), L-rhamnose-1-dehydrogenase (lraA), L-rhamnono-γ-lactonase (lrlA),
L-rhamnonate dehydratase (lrdA), L-2-keto-3-deoxyrhamnonate aldolase (lkaA).
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FIGURE 4 | Metabolite abundance in culture supernatant of arabinose, xylose, xylitol, galacturonic acid and glucose, after 2, 8, and 24 h transfer of the A. niger
reference strain (N593 1kusA) and the PCP deletion mutants to 1% (w/v) wheat bran (WB) and 1% (w/v) sugar beet pulp (SBP). The error bars represent the
standard deviation between three biological replicates.

intermediates. In this mutant, accumulation of D-galacturonic
acid and glucose was also observed at the later time points on SBP,
suggesting that neither of these sugars could be used as alternative
carbon sources.

Significant Variation in Expression of the
CAZy Genes Involved in Utilization of
Arabinoxylan, Cellulose and Xyloglucan
Was Observed Between the PCP
Mutants
Expression of Carbohydrate Active Enzymes (CAZymes) was
also impacted in the PCP deletion mutants (Figure 5 and
Supplementary Table 2) on both biomass substrates. Based

on their substrate specificity, these enzymes were divided
into 11 different sub-groups (Figure 5 and Supplementary
Table 2). The substrate specific enzyme sub-groups that
showed the highest differences in the mutants compared to
the reference strains were the ones involved in degradation
of the polysaccharides arabinoxylan, cellulose and xyloglucan,
justified by the composition of WB and SBP (Figure 1C).
The arabinoxylan-specific sub-group comprised of several genes
encoding β-1,4 endoxylanases (XLN), β-1,4 xylosidases (BXL),
arabinoxylan arabinofuranohydrolase (AXH), α-glucoronidase
(AGU) and acetyl xylan esterases (AXE). The cellulose−specific
sub−group included genes encoding β-1,4-glucosidases (BGL),
β−1,4−endoglucanases (EGL), cellobiohydrolases (CBH) and
cellobiose dehydrogenases (CDH), while the xyloglucan−specific

FIGURE 5 | Expression levels (FPKM) of genes encoding CAZymes during growth on (A) wheat bran (WB) and (B) sugar beet pulp (SBP) in the A. niger reference
strain (N593 1kusA) and the PCP deletion mutants.
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sub−group included xyloglucanases (XG-EGL), α−xylosidases
(AXL) and α−fucosidases (AFC).

In A. niger, the transcriptional activator XlnR and AraR have
been shown to regulate the expression of (hemi-)cellulolytic
genes (van Peij et al., 1998a; de Vries, 2003), and arabinanolytic
genes (Battaglia et al., 2011b), respectively. Genes under control
of XlnR encode arabinoxylan−active enzymes, such as β-1,4
endoxylanases (xlnB, xlnC) (van Peij et al., 1998a,b), β-1,4
xylosidase (xlnD) (van Peij et al., 1998a,b), α−glucuronidase
(aguA) (van Peij et al., 1998b; de Vries et al., 2002), acetyl
xylan esterase (axeA) (van Peij et al., 1998b) and arabinoxylan
arabinofuranohydrolase (axhA) (van Peij et al., 1998b), but also
cellulose−active enzymes, such as β−endoglucanases (eglA, eglB,
eglC) (van Peij et al., 1998b) and cellobiohydrolases (cbhA, cbhB)
(Gielkens et al., 1999), and CAZymes with broad specificity such
as feruloyl esterase (faeA) (van Peij et al., 1998b), α−galactosidase
(aglB) (de Vries et al., 1999a) and β−galactosidase (lacA) (de
Vries et al., 1999a). The transcriptional regulator AraR controls
the expression of genes encoding α−arabinofuranosidases (abfA,
abfB) in A. niger (Battaglia et al., 2011b).

The expression of the arabinoxylan-specific gene sub-group
on both substrates remained low in the reference strain,
where the accumulation of the XlnR and AraR inducers has
been shown to remain at significantly lower levels compared
to the PCP mutants (Chroumpi et al., 2021). In general,
growth on WB, which is a particularly rich in arabinoxylan,
led to higher expression of the genes encoding arabinoxylan-
specific enzymes compared to the other groups of enzymes
(Figure 5A and Supplementary Table 2). After 24 h of growth
on WB, an even stronger upregulation of these genes was
observed, coinciding with higher accumulation of pentoses in the
1larA1xyrA1xyrB mutant (Figure 4). On SBP, the expression
of the arabinoxylan-specific genes was also strongly upregulated
in all three 1larA1xyrA1xyrB, 1ladA1xdhA1sdhA and 1xkiA
mutants after 8 h compared to the reference strain (Figure 5B
and Supplementary Table 2). However, after 24 h of incubation
on both substrates, the expression of the arabinoxylan-specific
genes in the 1xkiA mutant was reduced at similar levels to the
reference strain (Figure 5 and Supplementary Table 2), as also
earlier observed for the PCP genes (Figures 3A,B).

Although cellulose is a very abundant component of both WB
and SBP, the expression of the cellulose-specific genes was not
significantly upregulated on WB in the mutants compared to
the reference strain (Figure 5A and Supplementary Table 2).
On SBP, significantly higher expression of the cellulose-specific
sub-group was only observed in the 1larA1xyrA1xyrB mutant
(Figure 5B and Supplementary Table 2). In this mutant,
increased expression of the xyloglucan-specific sub-group genes
was also observed on SBP (Figure 5B). This upregulation
of the cellulose-specific and xyloglucan−specific genes in the
1larA1xyrA1xyrB mutant could contribute in its ability to grow
on SBP (Figure 1B).

Finally, the sub-group of CAZymes with broad specificity,
consisting of enzymes that act on various polysaccharides
such as α−arabinofuranosidase (ABF), feruloyl esterase
(FAE), β−1,4−galactosidase (LAC), β−1,4−glucosidase (BGL)
and lytic polysaccharide monooxygenase (LPMO), was also

significantly affected. These activities are necessary for complete
depolymerization of cellulose, arabinoxylan and xyloglucan
which are present in WB and the expression of some of them has
been shown to be under the control of XlnR. In the conditions
where the expression of the arabinoxylan-specific enzymes was
increased compared to the reference strain, the expression of
CAZymes with broad specificity seems to follow the same pattern
(Figure 5 and Supplementary Table 2).

The Exo-Proteome Confirmed the Large
Impact of the PCP Mutants on
Lignocellulolytic Enzyme Production
The exo-proteome of the A. niger reference strain and the studied
PCP mutants grown on WB and SBP was also analyzed to
explain their phenotypic differences on these biomass materials
among the studied strains. A complete list of CAZymes
secreted by the reference strain, and the 1larA1xyrA1xyrB,
1ladA1xdhA1sdhA and 1xkiA mutants is presented in
Supplementary Table 3. All experimentally identified CAZymes
were qualified (number of detected CAZymes) and quantified
(protein abundance). In general, a delayed response of the
extracellular proteome (Figure 6) compared to the transcriptome
(Figure 5) was observed. On both substrates, the strongest
representation of detected CAZymes in relation to the expressed
CAZy genes, as well as the highest total protein abundance
were measured in the culture supernatant after 24 h of
incubation (Supplementary Table 3). Additionally, differences
between the transcriptomic and proteomic responses were also
observed, possibly related to factors such as temporal differences,
membrane binding and/or stability of the produced proteins.

On WB, the total CAZyme abundance was higher in the
reference strain compared to the mutants (Figure 6), which could
partly explain the reduced phenotype of the mutants on this
substrate compared to the reference strain (Figure 1B). Although
no significant differences were observed in the arabinoxylan-
specific sub-group among the different studied stains, high
variability was detected in the secreted CAZymes involved in
degradation of the polysaccharides cellulose, pectin and starch
(Figure 6A). On WB, the cellulose-specific CAZymes were
significantly reduced in all mutants compared to the reference
strain. The least affected mutant regarding the abundance
of this CAZy sub-group was 1xkiA, although it was still
significantly reduced compared to the reference strain. This
could partly explain the fact that 1xkiA was the only mutant
that could still grow well on WB (Figure 1B). In the other
two mutants, 1larA1xyrA1xyrB and 1ladA1xdhA1sdhA,
which were both nearly unable to utilize WB for growth, the
levels of the cellulose-specific CAZymes in the secretome was
dramatically reduced compared to the reference (Figure 6A and
Supplementary Table 3), while the abundance of the pectin-
specific CAZymes was significantly increased compared to 1xkiA
and the reference strain. However, the higher abundance of the
pectin-specific subgroup in both mutants does not seem to be
able to compensate for their reduced ability to grow on WB
(Figure 1B). Finally, the secretion of the starch-specific CAZymes
was significantly reduced in all three mutants compared to the
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FIGURE 6 | CAZy protein abundance (protein intensity values) in the secretome of the A. niger reference strain (N593 1kusA) and the PCP deletion mutants grown
on (A) wheat bran (WB) and (B) sugar beet pulp (SBP) for 2, 8, and 24 h.

reference strain. The most affected strains were the severely
growth impaired 1larA1xyrA1xyrB and 1ladA1xdhA1sdhA,
highlighting the importance of this polysaccharide during growth
of A. niger on WB.

On SBP, the abundance of the arabinoxylan-specific CAZymes
significantly varied between the reference strain and the mutants
(Figure 6B). The most pronounced difference was detected
in 1larA1xyrA1xyrB, showing the highest production of
this CAZy subgroup compared to the reference strain and
1ladA1xdhA1sdhA and 1xkiA. Similar to the transcriptome
response (Figure 5B), the cellulose-specific CAZy sub-group
in 1larA1xyrA1xyrB was secreted at similar levels to the
reference strain (Figure 6 and Supplementary Table 3), both
showing the same growth pattern on this biomass substrate
(Figure 1B). In 1ladA1xdhA1sdhA and 1xkiA, the abundance
of the cellulose degrading CAZymes was significantly reduced
compared to the reference strain. Finally, the xyloglucan-
specific CAZy sub-group, which was also strongly upregulated in
1larA1xyrA1xyrB grown on SBP (Figure 5B), was also secreted
in significantly higher levels in 1larA1xyrA1xyrB, compared to
the other strains (Figure 6B).

DISCUSSION

In this study, the transcriptome, metabolome and proteome
response of three pentose catabolic mutant strains of A. niger,
1larA1xyrA1xyrB, 1ladA1xdhA1sdhA and 1xkiA, grown on
two plant biomass substrates, WB and SBP, was evaluated. Both
substrates contain considerable amounts of L-arabinose and D-
xylose (Figure 1C), making them highly suitable for the analysis
of this pathway. All three combinatorial mutations have been
previously shown to block pentose catabolism at different steps
of the pathway, resulting in abolishment of growth of all three
mutants on L-arabinose and D-xylose, as well as in accumulation
of different pathway intermediates (Chroumpi et al., 2021).

However, our results reveal that despite the absolute impact of
these PCP mutations during growth on pure pentose sugars, they
are not as critical for growth ofA. niger on more complex biomass
substrates, such as WB and SBP.

In the 1xkiA mutant, which was able to grow on both WB
and SBP (Figure 1B), a strong reduction in expression of the
PCP and the arabinoxylan-active CAZy genes was observed after
24 h on both substrates (Figures 3A,B, 5). Both the PCP and the
arabinoxylan-specific CAZy genes have been previously shown
to be under the control of the transcriptional regulators AraR
and XlnR, which are specifically induced in the presence of the
pentose sugars and their polyols (van Peij et al., 1998a; Battaglia
et al., 2011b). Our hypothesis is that their reduced expression
is due to the reduction of the arabinose, xylose and xylitol
concentrations observed on both WB and SBP after 24 h in
this strain, in combination with the presence of high glucose
levels (Figure 4). Similar suggestions have been also made in a
previous study (de Vries et al., 1999b), where the expression of
the arabinoxylan-specific genes xlnB, xlnD, aguA and faeA was
drastically decreased at lower concentrations of D-xylose in the
presence of D-glucose, due to activation of the carbon catabolite
repressor CreA. Considering that 1xkiA was unable to grown
on L-arabinose and D-xylose, this suggest that during growth on
plant biomass a possible by-pass mechanism is induced, resulting
in efficient re-routing of the metabolism of 1xkiA and rescue of
its growth.

The depletion of the pentose sugars in the 1xkiA mutant,
especially on WB, could be explained by the presence
of enzymes with some kinase activity on D-xylulose, of
which the corresponding genes are induced under these
conditions. Blocking the pathway at earlier steps, as in the
1larA1xyrA1xyrB and 1ladA1xdhA1sdhA mutants does not
result in similar rescued growth on WB (Figure 1B), suggesting
that it is D-xylulose for which an alternative enzyme or pathway
is induced. However, no putative enzymes, classified in the
same Pfam family or showing relatively close homology to
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A. niger D-xylulokinase, were identified as likely candidates in our
analysis. Alternatively, the conversion of D-xylulose into another
compound that can be further metabolized through alternative
carbon catabolic pathways, and not be phosphorylated, should
be also considered. The better growth of the 1xkiA mutant
on SBP (Figure 1B), compared to WB, could be explained by
the additional utilization of alternative carbon sources available
for growth on this substrate (Figure 1C). SBP contains a
significant amount of pectin, that next to L-arabinose also
contains significant amounts of D-galacturonic acid and L-
rhamnose. These sugars are converted through the GACP
(Martens-Uzunova and Schaap, 2008; Alazi et al., 2017) and the
RCP (Khosravi et al., 2017; Chroumpi et al., 2020; Figure 7).
In 1xkiA, high expression of the GACP and RCP genes were
observed after 24 h (Figures 3D,F), while the accumulated
D-galacturonic acid was significantly reduced after 24 h of
growth on SBP (Figure 4). Higher expression of the pectin-
specific CAZymes was also observed in this mutant on SBP,
compared to the reference strain (Figure 5), supporting our
conclusion that the presence of pectin can largely rescue growth
on SBP.

The 1larA1xyrA1xyrB mutant, which blocks the first step of
pentose conversion (Chroumpi et al., 2021), was nearly unable to
grow on WB, but only a small growth reduction was observed on
SBP, compared to the reference strain (Figure 1B). As expected,
accumulation of both pentoses were observed on both biomass
substrates (Figure 4), while the expression of the PCP and
arabinoxylan-active CAZy genes remained at high levels after
24 h (Figures 3A,B, 5). The lower expression levels of the PCP
genes on SBP, compared to WB, could be explained by the
different composition of these biomass substrates in pentoses
(Figure 1C). Additionally, the significantly higher expression of
the arabinoxylan-active CAZy genes in this mutant (Figure 5),
compared to the 1xkiA and 1ladA1xdhA1sdhA mutants,

shows that the pentose sugars and no other PCP intermediates
are the main inducers of this CAZy sub-group.

In the 1larA1xyrA1xyrB mutant, re-routing of sugar
catabolism toward utilization of D-galacturonic acid as a substrate
was also proposed, since the expression of the GACP genes
(Figure 3D) was slightly increased after 24 h on SBP (Figure 4).
However, low accumulation of D-galacturonic acid was observed
after 24 h on SBP (Figure 4), showing reduced ability of the
1larA1xyrA1xyrB mutant to metabolize D-galacturonic acid.
Reduced growth and slower consumption rates of D-galacturonic
acid were also previously reported for the A. niger 1larA
mutant grown on the pure sugar (Alazi et al., 2017). In their
study, it was proposed that other partially redundant enzymes
may also contribute in the conversion of 2-keto-3-deoxy- L-
galactonate to pyruvate and L-glyceraldehyde. Deletion of the
lkaA gene, involved in the last step of the L-rhamnose catabolism
in A. niger (Chroumpi et al., 2020), in the 1gaaD background,
resulted in slightly reduced growth compared to the single 1gaaD
mutant (Chroumpi et al., 2021). However, growth of the double
1gaaD1lkaA was not abolished on D-galacturonic acid, showing
that also other enzymes are involved in this step.

The expression of the RCP genes was significantly upregulated
in the 1larA1xyrA1xyrB mutant, compared to the reference
strain after 24 h of growth on SBP. The delayed response of
the RCP genes on SBP, compared to the previously shown PCP
and GACP genes, could be simply attributed to the sequential
manner in which A. niger consumes sugars in liquid cultures
(Mäkelä et al., 2018). L-rhamnose has been shown to be the
least preferred carbon source between them, and as a result,
the upregulation of the genes involved in its catabolism was
significantly delayed compared to the other sugars (Figure 3F).
Several other genes, encoding enzymes that are classified in the
same Pfam family or show relatively close homology to A. niger
pentose reductases and polyol dehydrogenases, were also found

FIGURE 7 | Schematic overview of the pathways used by Aspergillus niger to convert plant biomass derived monosaccharides.
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to be upregulated on SBP in the 1larA1xyrA1xyrB mutant,
compared to the reference strain (Supplementary Table 4). It is
possible that apart from the utilization of other available sugars
in SBP to support growth, these enzymes could be also involved
in the rescue phenotype of this mutant on SBP, by re-routing
the PCP metabolism of the 1larA1xyrA1xyrB mutant. The
expression of these genes was not particularly affected in the non-
growing 1ladA1xdhA1sdhA mutant on SBP, further supporting
our theory.

In contrast to the 1larA1xyrA1xyrB mutant, the growth of
the 1ladA1xdhA1sdhA mutant on SBP was severely impaired
(Figure 1B). The 1ladA1xdhA1sdhA mutant lacks sdhA, a gene
that has been previously shown to be part of both the PCP
(Chroumpi et al., 2021) and the oxido-reductive D-galactose
pathway of A. niger (Koivistoinen et al., 2012). Thus, the growth
impairment of 1ladA1xdhA1sdhA on SBP could be attributed
to the inability of this mutant in using both pentose sugars and D-
galactose for growth. However, although this mutant was not able
to grow on D-sorbitol, its growth was only slightly reduced on D-
galactose compared to the reference strain (data not shown). This
shows that on pure D-galactose, the D-galactose catabolism in the
1ladA1xdhA1sdhA mutant can follow an alternative route than
the oxidoreductive D-galactose catabolic pathway. Although, the
presence of all A. niger genes/enzymes involved in the Leloir and
the oxido-reductive D-galactose catabolic pathways have been
previously shown, the relative contribution of these two pathways
during growth on D-galactose or D-galactose containing complex
carbohydrates is not known. It could be that under the tested
conditions the oxido-reductive pathway is mainly active and as
a result catabolism of D-galactose in the 1ladA1xdhA1sdhA
mutant is blocked, severely affecting its growth of on SBP.
Finally, the potential involvement of the deleted dehydrogenase
encoding genes also in other pathway steps of A. niger sugar
catabolism or a possible severe intracellular redox imbalance
effect, caused by the simultaneous deletion of these enzymes
involved in NADH regeneration reactions (Witteveen et al.,
1989; Koivistoinen et al., 2012), can also not be excluded.
Because of the broad cellular and system functions of NAD+-
dependent enzymes, such an imbalance in the intracellular
NAD+/NADH ratio could alter cellular homeostasis by affecting
enzymes that are involved in metabolism, regulation of gene
expression, DNA repair, intracellular trafficking, aging, and
cell death.

Interestingly, accumulation of D-galacturonic acid and glucose
was also observed at the later time points on SBP in this mutant,
suggesting that neither of these sugars could be used as alternative
carbon sources. This was surprising as the 1ladA1xdhA1sdhA
mutant was not hypothesized to affect the D-galacturonic
acid catabolism.

It was previously shown that blocking the direct entry of
hexoses to the glycolytic pathway by deletion of the hxkA
and glkA genes activates alternative metabolic conversion of
these sugars in Aspergillus nidulans during growth on WB, but
also upregulates conversion of other sugars, such as pentoses
(Khosravi et al., 2018). However, in our study, although both
substrates are rich in cellulose, this does not seem to significantly
compensate for their reduced ability to use pentoses. In all the

PCP mutants, the expression of the glycolytic genes on both
substrates was unaffected, compared to the reference strain (data
not shown). Additionally, neither the genes encoding cellulose-
active enzymes were significantly upregulated in most of the PCP
mutants (Figure 5) nor extracellular detection of these enzymes
was observed in the proteomic data (Figure 6). Only in the
1larA1xyrA1xyrB mutant, the cellulase-specific CAZy genes
were upregulated on SBP (Figure 5B) and earlier reduction of
the accumulated glucose levels was observed (Figure 4), which
may have also contributed to its rescued growth on this substrate.
Improved cellulase production by A. niger has been previously
achieved by deleting the noxR gene, encoding the regulatory
subunit of the NADPH oxidase complex (Patyshakuliyeva et al.,
2016). A combination of the PCP and noxR gene deletions might
help to improve cellulase utilization of these strains and as a result
the growth of the PCP mutants on these biomass substrates.

Our results also suggests that an adaptation to other
components of the substrates may cause a general growth arrest.
This was in particular true for SBP as at 8 h an overall repression
of genes involved in most of the studied GO terms was observed
for all three mutants. This could be an indication that at that later
time point the mutants’ metabolism is paused, due to the fact
that the most available carbon sources L-arabinose and D-xylose
cannot be used for growth, before they redirect their metabolism
and adapt in the new situation.

To conclude, our results demonstrate that despite the
significant impact of these catabolic gene deletions during growth
on pure pentose sugars, they are not as critical for growth of
A. niger on more complex biomass substrates. It seems that
the high sugar heterogeneity of these substrates in combination
with the high complexity and adaptability of the fungal sugar
metabolism allow for activation of alternative strategies to
support growth. Production of additional enzymes that have
side-activity on the PCP sugars, and therefore contribute to the
conversion of D-xylose or L-arabinose, or re-routing of sugar
catabolism toward utilization of other available plant derived
monosaccharides apart from pentoses were shown to be involved.
This advanced understanding of central metabolic pathways
is critical when applying metabolic engineering strategies in
biotechnology. The use of low-cost lignocellulosic biomass
materials as feedstocks combined with metabolic engineering
could facilitate efficient utilization of the raw materials, but high
production rates and high growth rates are required to attain
economically feasible biotechnological processes. The effects of
the mutations on CAZy genes were less clear, which could be
due to the fact that many of these genes are affected by multiple
regulators in A. niger (Gruben et al., 2017).
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Kyle R. Pomraning1* , Ziyu Dai1, Nathalie Munoz1, Young-Mo Kim1, Yuqian Gao1,
Shuang Deng1, Joonhoon Kim1,2, Beth A. Hofstad1, Marie S. Swita1, Teresa Lemmon1,
James R. Collett1, Ellen A. Panisko1, Bobbie-Jo M. Webb-Robertson1,
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Biological engineering of microorganisms to produce value-added chemicals is a
promising route to sustainable manufacturing. However, overproduction of metabolic
intermediates at high titer, rate, and yield from inexpensive substrates is challenging
in non-model systems where limited information is available regarding metabolic flux
and its control in production conditions. Integrated multi-omic analyses of engineered
strains offers an in-depth look at metabolites and proteins directly involved in growth
and production of target and non-target bioproducts. Here we applied multi-omic
analyses to overproduction of the polymer precursor 3-hydroxypropionic acid (3HP) in
the filamentous fungus Aspergillus pseudoterreus. A synthetic pathway consisting of
aspartate decarboxylase, beta-alanine pyruvate transaminase, and 3HP dehydrogenase
was designed and built for A. pseudoterreus. Strains with single- and multi-copy
integration events were isolated and multi-omics analysis consisting of intracellular and
extracellular metabolomics and targeted and global proteomics was used to interrogate
the strains in shake-flask and bioreactor conditions. Production of a variety of co-
products (organic acids and glycerol) and oxidative degradation of 3HP were identified
as metabolic pathways competing with 3HP production. Intracellular accumulation of
nitrogen as 2,4-diaminobutanoate was identified as an off-target nitrogen sink that may
also limit flux through the engineered 3HP pathway. Elimination of the high-expression
oxidative 3HP degradation pathway by deletion of a putative malonate semialdehyde
dehydrogenase improved the yield of 3HP by 3.4 × after 10 days in shake-flask culture.
This is the first report of 3HP production in a filamentous fungus amenable to industrial
scale biomanufacturing of organic acids at high titer and low pH.

Keywords: 3-hydroxypropionic acid (3-HP), Aspergillus pseudoterreus, beta-alanine pathway, Agile BioFoundry,
3HP
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INTRODUCTION

Since the industrial revolution, petroleum-based feedstocks have
been the primary source for production of fuels and chemicals.
However, their non-renewable nature and the detrimental effects
of extractive practices have fueled a movement to produce
drop-in or alternative fuels and chemicals from renewable
feedstocks. A bioeconomy, based around the production of fuels
and chemicals from renewable biological feedstocks has been
proposed and supported as a way to improve the sustainability
of fuel and commodity chemical production. Building new
and modifying existing industries to produce the myriad of
chemicals currently derived from petrochemical feedstocks will
require extensive metabolic engineering of a wide variety
of bacteria, plants, and fungi and integration with catalytic
and thermochemical conversion processes to attain near-term
economic viability. To support this, a public Agile BioFoundry
has been established to efficiently engineer microorganisms for
the production of fuels and chemicals from renewable feedstocks1

(Hillson et al., 2019). The breadth of capabilities available
to Design, Build, Test, and Learn (DBTL) from engineered
organisms at a dedicated biofoundry enables a system-wide
examination of engineered pathways and a deeper understanding
of metabolic capability in non-model bioconversion hosts. An
emphasis on maximizing the efficiency of multi-omic analyses
during the Test and Learn portions of the DBTL cycle will
expedite the arrival of a functioning bioeconomy by allowing
strain and bioprocess development to overcome challenges
associated with the complexity of metabolic systems.

Of interest to supporting a sustainable bioeconomy are
biological production of chemicals that can be polymerized to
produce biobased and biodegradable plastics. One such chemical,
3-hydroxypropionic acid (3HP) can be used to produce polymers
directedly, such as poly-3HP, or more complex structures that
also incorporate 3-hydroxybutyric acid, 4-hydroxybutyric acid,
and/or lactic acid to produce polymers with altered physical
properties (Tripathi et al., 2013; Meng et al., 2015; Ren et al.,
2017). For drop-in to existing industrial processes, 3HP can be
dehydrated to produce acrylic acid (Decoster et al., 2013) which
has received commercial interest for biobased production of
acrylates from glycerol (BASF, 2014). 3HP is also a precursor for
carbon fiber via conversion to acrylonitrile and polymerization
to polyacrylonitrile, which can be used in standard industrial
processes to make carbon fibers (Davey, 2018).

3HP is produced naturally by phototrophic bacteria in the
family Chloroflexaceae capable of CO2 fixation via the 3HP
cycle (Strauss and Fuchs, 1993; Klatt et al., 2007) as well
as chemotrophic Crenarchaeota via the 3HP/4HB cycle (Berg
et al., 2007). Enzymes from naturally occurring 3HP biosynthetic
pathways have been used to design 3HP production pathways
that route metabolic flux through beta-alanine, malonyl-CoA, or
glycerol (Valdehuesa et al., 2013; Ji et al., 2018). Iterations of these
pathways have been engineered into a variety of yeast and bacteria
with notable successes. In the yeast Saccharomyces cerevisiae
both the malonyl-CoA (Kildegaard et al., 2016) and beta-alanine

1https://agilebiofoundry.org/

(Borodina et al., 2015) pathways have been established with
yields of 0.13 and 0.14 g/g 3HP from glucose. In bacteria
production of 3HP via the glycerol pathway has been particularly
successful with yields as high as 0.457 g/g 3HP directly from
glycerol with engineered Escherichia coli (Kim et al., 2020) and
0.51 g/g 3HP from glucose with engineered Corynebacterium
glutamicum which is also capable of converting xylose to
3HP (Chen et al., 2017). These examples demonstrate that
microorganisms can be engineered to produce 3HP at reasonably
high levels in laboratory conditions and further research will
continue to improve production efficiency toward levels needed
for economic viability. However, apart from C. glutamicum, the
organisms being engineered for 3HP production may not be
ideal hosts for bioconversion of lignocellulosic and low-cost
renewable feedstocks that are often composed of a spectrum
of organic compounds that model organisms may struggle to
metabolize. Further, production of 3HP as a free acid, rather than
its conjugate base may aid online or down-stream separation
processes. Filamentous fungi from the genus Aspergillus are
notable for their ability to produce organic acids such as citric
acid, malic acid, and itaconic acid at industrial scale and at a pH
that is well below the pKa = 4.5 of 3HP (Liu et al., 2017; Cairns
et al., 2018; Kuenz and Krull, 2018). To that end, we examined
utilization of Aspergillus pseudoterreus as a host for bioconversion
of sugars to 3HP through the beta-alanine pathway (Borodina
et al., 2015) because of its acid tolerance, high glycolytic flux, and
ability to utilize a broad range of carbon and nitrogen sources
(Kuenz and Krull, 2018; Saha et al., 2019; Deng et al., 2020).
Engineered strains were evaluated using multi-omics analyses to
understand the impacts of the introduced metabolic pathway and
identify targets for improvement of 3HP production.

MATERIALS AND METHODS

Strain Maintenance and Cultivation
Aspergillus pseudoterreus strain ATCC R© 32359TM was obtained
from American Type Culture Collection (Manassas, VA,
United States). All strains were maintained on complete medium
agar (CM) (Deng et al., 2020) and spore suspensions stored in
15% glycerol at –80◦C. Spore inoculum was grown on CM agar
plates for 5 days to produce conidia, which were harvested by
washing the plates with sterile 0.4% Tween 80 solution. For shake-
flask experiments, 2E6 A. pseudoterreus spores were inoculated
in 50 mL minimal medium [MM; 100 g/L glucose, 2.36 g/L
(NH4)2SO4, 0.11 g/L KH2PO4, 2.08 g/L MgSO4.7H2O, 0.13 g/L
CaCl2.2H2O, 74 mg/L NaCl, 1.3 mg/L ZnSO4.7H2O, 0.7 mg/L
MnCL2.4H2O, 5.5 mg/L FeSO4.7H2O, 0.2 mg/L CuSO4.5H2O,
adjusted to pH 3.4 with 5M KOH] adapted from Riscaldati
et al. (2000) in 250 mL shake-flasks at 30◦C and 200 rpm in
an orbital shaker. For submerged stirred tank 20 L bioreactor
cultivation, 2E6 A. pseudoterreus spores were inoculated within
a 30-L Sartorius Biostat-C bioreactor filled to 20 L with MM at
30◦C. Impeller stir-rate was set at a constant rate of 100 rpm
until the pH dropped to 2.8 after which stir-rate was increased
to 400 rpm and pH maintained at 2.8 by online addition of 5M
KOH. For submerged stirred tank 0.5 L bioreactor cultivation,
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2E6 A. pseudoterreus spores were inoculated within 0.5 L Sixfors
bioreactors (Infors HT, Basel, Switzerland) filled to 0.45 L with
MM at 30◦C. Impeller stir-rate was set at a constant rate
of 200 rpm until the pH dropped to 2.8 after which stir-
rate was increased to 600 rpm and pH maintained at 2.8 by
online addition of 5M KOH. For both reactor scales air was
sparged at a constant rate of 0.4 vessel volumes/min. Sterile
broth samples were collected by filtration through a 0.2 µm
filter and then frozen at –20◦C for analysis of sugar, nutrient,
and metabolite concentrations. Cell pellets were collected by
vacuum filtration on 0.45 µm nylon Whatman filters and
washed with phosphate buffered saline. Cells were transferred
to Eppendorf tubes, flash frozen in liquid nitrogen, and stored
at –80◦C. Mycelial dry cell weight at each time point was
determined by harvesting the mycelia on a pre-weighed filter
by vacuum filtration and washing with 20 mL distilled water.
Subsequently, the dry weight was determined after freeze-drying
in a lyophilizer overnight.

Strain Construction
Coding sequences for TcPAND, BcBAPAT, and EcHPDH
were codon optimized for Aspergillus species and synthesized.
Individual DNA fragments were isolated with the following
primer pairs; 5′-cad1 of A. pseudoterreus 5′-(ccctcgaggtcgacggtat
cgatagatatcggttgtagcagcgtaaacac-3′/5′-tctttcatagtagccttggtgaacatc
ttgagg-3′); gpdA promoter of A. niger (5′-atgttcaccaaggctac
tatgaaagaccgcgatg-3′/5′-cgccggtggcgggcattgtttagatgtgtctatgtg-3′);
TcPAND coding sequence (5′-catctaaacaatgcccgccaccggcgagga
cca-3′/5′-atccaacccatcagaggtcggagcccaggcgttcg-3′); bi-direction
transcriptional terminator of A. niger elf3 gene (5′-gggct
ccgacctctgatgggttggatgacgatg-3′/5′-tctggcccagctctgagtcctagatgggt
ggtg-3′); BcBAPAT coding sequence (5′-catctaggactcagagctg
ggccagacattccttc-3′/5′-gtccatcaacatggaactgatgatcgtccaggtcac-3′);
and A. niger eno1 promoter (5′-cgatcatcagttccatgttgatggactgga
ggg-3′/5′-gaactagtggatcccccgggctgcgttaactcgagcttacaagaagtagcc-
3′) by high-fidelity PCR and assembled by Gibson Assembly
(Gibson et al., 2008) into the pBlueScript SK(–) vector linearized
with restriction enzymes HindIII and PstI to form pZD4025 with
an addition of HpaI restriction enzyme site downstream of the
enol promoter.

Individual DNA fragments were then isolated with the
following primer pairs; gpdA (or tdh) promoter of A. nidulans
(5′-acaggctacttcttgtaagctcgagtttctgtacagtgaccggtgac-3′/5′-tgaccag
cacgatcatggtgatgtctgctcaag-3′); EcHPDH coding sequence
(5′-agacatcaccatgatcgtgctggtcacgggcgc-3′/5′-gccatcggtcctattggcg
gtggacgttcaggc); trpC transcriptional terminator (5′-cgtccaccgcca
ataggaccgatggctgtgtag-3′/5′-cccgtctgtcagagagcggattcctcagtctcg-
3′); pyrithiamine resistance gene (ptrA) of A. oryzae
(5′-gaggaatccgctctctgacagacgggcaattgattac-3′/5′-gaatgttgctgagga
gccgctcttgcatctttg-3′); 3′-cad1 gene (5′-gcaagagcggctcctcagcaac
attcgccatgttc-3′/5′-actaaagggaacaaaagctggagctcagctccactgctcata
gtctttg-3′) by PCR and assembled along with HpaI linearized
pZD4025 to form pZD4028. pZD4028 was linearized with
EcoRV for chemical mediated protoplast transformation into
A. pseudoterreus (ATCC R© 32359TM) as previously described
(Deng et al., 2020) to construct strains ABF_004528_2
(cad:3HP+) and ABF_004528_6 (cad:3HP+, 3HP+).

Upstream and downstream regions of the candidate malonate
semialdehyde dehydrogenase (Apald6) were PCR amplified
from A. pseudoterreus genomic DNA using primer pairs
(5′-gcctataagcaaccgcctgtataaggaagagccttggtgctaacggc-3′/5′-gctg
cgcaactgttgggaagggcgatgctgccagactgcaacaagaacc-3′) and (5′-g
cagcccagtagtaggttgaggccgtcgacgaagctgatggccttgatgg-3′/5′-tgttgac
ctccactagctccagccaaggcttctcgcactctcaccaccgc-3′) respectively.
Hygromycin phosphotransferase (hph) was amplified with
oligo pair (5′-cttggctggagctagtggagg-3′/5′-tccttatacaggcggttgc-
3′) and the backbone of vector pRF-HU2 (Frandsen et al.,
2008) with oligo pair (5′-atcgcccttcccaacagttgcg-3′/5′-acggc
ctcaacctactactgggc-3′). The four fragments were assembled using
NEBuilder R© HiFi DNA Assembly Master Mix (NEB, Ipswitch,
MA, United States) according to the manufacturer’s instructions
and transformed into strain ABF_004528_6 (cad:3HP+, 3HP+)
using agrobacterium mediated transformation as previously
described (Michielse et al., 2008) to make strain ABF_008339
(cad:3HP+, 3HP+; 1Apald6).

Sample Preparation
TissueLyser II system (Qiagen, Valencia, CA, United States) 2 mL
trays were frozen at –20◦C overnight. Two 3 mm stainless steel
beads were added to 2 mL snap-cap centrifuge tubes (Eppendorf,
Hamburg, Germany) along with 0.5 mL H2O and each fungus
piece. The tubes were placed inside the trays and they were then
set on the TissueLyser II system. The frozen samples were ground
for 2 min at 30 Hz until it reached a completely homogenized,
cold solution. To separate the protein and metabolites, 1 mL
cold (–20◦C) chloroform:methanol mix [prepared 2:1 (v/v)] was
pipetted into a chloroform compatible 2 mL Sorenson MulTITM

SafeSealTM microcentrifuge tubes (Sorenson bioscience, Salt Lake
City, UT, United States) inside an ice-block. Then 200 µl of
the sample homogenate in water was added to the Sorenson
tube at a ratio of 1:5 sample:chloroform mix [2:1 (v/v)] and
vigorously vortexed. The sample was then placed in the ice block
for 5 min and then vortexed for 10 s followed by centrifugation at
10,000× g for 10 min at 4◦C. The upper water-soluble metabolite
phase and the lower lipid soluble phase were also collected into
the same vial for metabolomics analysis. The metabolite samples
were dried to complete dryness in a speed vac and then capped
and stored dry at –20◦C until analysis. The remaining protein
interphase had 1 mL of cold (–20◦C) pure methanol added,
vortexed and centrifuged at 12,000 × g for 5 min to remove the
chloroform and pellet the protein. The methanol supernatant was
decanted into waste and the pellet lightly dried in a fume hood
and then stored at –80◦C until protein digestion.

Protein Digestion
The protein interlayer pellet was digested by adding 200 µl of
an 8 nM urea solution to the protein pellets and vortexed into
solution. A bicinchoninic acid (BCA) assay (Thermo Scientific,
Waltham, MA, United States) was performed to determine
protein concentration. Following the assay, 10 mM dithiothreitol
(DTT) was added to the samples and incubated at 60◦C for
30 min with constant shaking at 800 rpm. Reduced cysteine
residues were alkylated by adding 400 mM iodoacetamide
(Sigma-Aldrich) to a final concentration of 40 mM and
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incubating in the dark at room temperature for 1 h. Samples were
then diluted eightfold for preparation for digestion with 100 mM
NH4HCO3, 1 mM CaCl2 and sequencing-grade modified porcine
trypsin (Promega, Madison, WI, United States) was added to
all protein samples at a 1:50 (w/w) trypsin-to-protein ratio
for 3 h at 37◦C. Digested samples were desalted using a
4-probe positive pressure Gilson GX-274 ASPECTM system
(Gilson Inc., Middleton, WI, United States) with Discovery C18
100 mg/1 mL solid phase extraction tubes (Supelco, St. Louis,
MO, United States), using the following protocol: 3 mL of
methanol was added for conditioning followed by 2 mL of 0.1%
triflouroacetic acid (TFA) in H2O. The samples were then loaded
onto each column followed by 4 mL of 95:5: H2O:ACN, 0.1%
TFA. Samples were eluted with 1 mL 80:20 ACN:H2O, 0.1% TFA.
The samples were concentrated down to ∼100 µL using a Speed
Vac and a final BCA was performed to determine the peptide
concentration, and then stored at –80◦C until usage.

Global Proteomics Analysis
Peptides digests were diluted to 0.1 µg/µL with nanopure water
for LC-MS/MS analysis. Five µL of samples were loaded onto in-
house packed reversed-phase capillary columns (70 cm× 75 µm
i.d.) with 3 µm Jupiter C18 particles. The separation was carried
out using a nanoAcquity HPLC system (Waters Corporation,
Milford, MA, United States) at room temperature. The mobile
phase A is 0.1% formic acid in water while the mobile phase B
is 0.1% formic acid in acetonitrile. The elution was carried out
at 300 nL/min with the following gradient: 0–2 min 1% B; 2–
20 min 8% B; 20–75 min 12%B; 75–97 min 30%B; 97–100 min
45%; 100–105 95%; 105–110 min 95%; 110–140 min 1%. The
eluting peptides were directly analyzed using a Q Exactive HF
mass spectrometer (Thermo Fisher Scientific) in data-dependent
acquisition mode. Mass spectrometer settings were as following:
full MS (AGC, 3 × 106; resolution, 60,000; m/z range, 300–1800;
maximum ion time, 20 ms); MS/MS (AGC, 1 × 105; resolution,
15000; m/z range, 200–2000; maximum ion time, 100 ms; TopN,
12; isolation width, 2 Da; dynamic exclusion, 30.0 s; collision
energy, NCE 30).

All mass spectrometry data were searched using MS-GF+
(Kim and Pevzner, 2014) and MASIC (Monroe et al., 2008)
software. MS-GF + software was used to identify peptides by
scoring MS/MS spectra against peptides derived from the whole
protein sequence database. MASIC software was used to generate
the selected ion chromatographs (SICs) of all the precursors in
MSMS datasets and calculate their peak areas as abundance.
MASICResultsMerger2 was used to append the relevant MASIC
stats for each peptide hit result in MS-GF+. The MS-GF+ data
were then filtered based on 1% false discovery rate (FDR) and less
than 5-ppm mass accuracy to generate a list of qualified peptide-
hit results. The abundance of peptides was determined as the
highest peak area identified for the peptide within a sample.

Sample level quality was ensured by a robust Principal
Component Analysis (PCA) to compute a robust Mahalanobis
distance (rMd) based on sample-level parameters (Matzke et al.,
2011). Peptides were also filtered to remove those with inadequate

2https://omics.pnl.gov/software/masic-results-merger

data for statistics, either three samples with measured values
in one group or two values measured for subjects within two
distinct groups. The default for normalization is standard global
median centering to account for total abundance differences
between samples. A test was performed to assure that these
factors are not biases (Webb-Robertson et al., 2010). For this
dataset there was no bias detected and we utilized global
median centering (Callister et al., 2006). Protein quantification
was performed with standard reference-based median averages
(Polpitiya et al., 2008; Matzke et al., 2013). Statistics were
performed with established standard methods (Webb-Robertson
et al., 2017). For time we utilized an ANOVA with a Dunnett’s
test to compare all time points back to the first time point within
each strain. We also utilized a g-test with a Bonferonni correction
to identify qualitative markers both to compare strains or time
(Webb-Robertson et al., 2010).

Targeted Proteomics Analysis
Targeted Proteomics was performed via Liquid Chromatography
(LC) – Selected Reaction Monitoring (SRM) approach. 3–5
peptides per protein were initially selected based on either their
identification in global proteomics or their SRM suitability scores
predicated by CONSeQuence (Eyers et al., 2011) and Prego
(Searle et al., 2015) software tools. All the peptides were further
blasted to ensure their uniqueness to target proteins in the
organism. Crude synthetic heavy isotope-labeled (e.g., 13C/15N
on C-terminal lysine and arginine) peptides were purchased
from New England Peptide (Gardner, MA, United States). Upon
receiving, the crude synthetic heavy peptides were mixed together
and diluted with 0.1% formic acid in 15% acetonitrile in water
to obtain a nominal concentration of 1.5 pmol/µL for each
individual peptide. The heavy peptide mixture stock solution was
aliquoted and stored at –80◦C until further use.

To develop targeted proteomics assay, all the SRM precursor-
fragment ion pairs (i.e., transitions) were first analyzed using LC-
SRM by spiking heavy peptides in test samples. 2–3 transitions
per peptide and 1–5 peptides per protein were selected in a final
assay based on their LC performance, MS response, transition
interferences, and endogenous peptide detectability. Collision
energies of transitions were obtained using empirical equations
provided in Skyline software (MacLean et al., 2010).

For peptide samples, crude heavy peptide mixture stock
solution was spiked in the 0.25 µg/µL peptide samples at
a nominal concentration of 35 fmol/µL for each peptide.
LC-SRM analysis utilized a nanoACQUITY UPLC R© system
(Waters Corporation, Milford, MA, United States) coupled
online to a TSQ AltisTM triple quadrupole mass spectrometer
(Thermo Fisher Scientific). The UPLC R© system was equipped
with an ACQUITY UPLC BEH 1.7 µm C18 column (100 µm
i.d. × 10 cm) and the mobile phases were (A) 0.1% formic acid
in water and (B) 0.1% formic acid in acetonitrile. Two µL of
sample (i.e., 0.4 µg of peptides) were loaded onto the column and
separated using a 110-min gradient profile as follows (min:flow-
rate-µL/min:%B): 0:0.4:1, 6:0.6:1, 7:0.4:1, 9:0.4:6, 40:0.4:13,
70:0.4:22, 80:0.4:40, 85:0.4:95, 91:0.5:95, 92:0.5:95, 93:0.5:50,
94:0.5:95, 95:0.6:1, 98:0.4:1. The LC column is operated with
a temperature of 42◦C. The TSQ AltisTM triple quadrupole
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mass spectrometer was operated with ion spray voltages of
2100 ± 100 V and a capillary inlet temperature of 350◦C.
Tube lens voltages were obtained from automatic tuning and
calibration without further optimization. Both Q1 and Q3 were
set at unit resolution of 0.7 FWHM and Q2 gas pressure was
optimized at 1.5 mTorr. The transitions were scanned with a
7 min retention time window and a cycle time of 0.8 s.

All the LC-SRM data were imported into Skyline software
and the peak boundaries were manually inspected to ensure
correct peak assignment and peak boundaries. Peak detection
and integration were determined based on two criteria: (1) the
same LC retention time and (2) approximately the same relative
peak intensity ratios across multiple transitions between the
light peptides and heavy peptide standards. The total peak area
ratios of endogenous light peptides and their corresponding
heavy isotope-labeled internal standards were then exported from
Skyline software as Ratio-to-Standard. For each peptide, the total
peak area ratios of individual samples were normalized to the
average total peak area ratio of all the samples.

Sample level quality was ensured by a robust Principal
Component Analysis (PCA) to compute a robust Mahalanobis
distance (rMd) based on sample-level parameters (Matzke et al.,
2011). The default for normalization is standard global median
centering to account for total abundance differences between
samples. A test was performed to assure that these factors are
not biases (Webb-Robertson et al., 2010). For this dataset, we
utilized global median centering (Callister et al., 2006). Protein
quantification was performed with standard reference-based
median averages (Polpitiya et al., 2008; Matzke et al., 2013).
Statistics included standard methods (Webb-Robertson et al.,
2017). For this specific dataset, we utilized an analysis of variance
(ANOVA) with Tukey’s adjustment to compare all strains to on
another within each time point. In the time-course study, we
utilized an ANOVA with a Dunnett’s test to compare all time
points back to the first time point within each strain.

Global Intracellular Metabolomics
The stored metabolite extracts were completely dried under
speed-vacuum to remove moisture and chemically derivatized
as previously reported (Kim et al., 2015). Briefly, the extracted
metabolites were derivatized by methoxyamination and
trimethylsilyation (TMS), then the samples were analyzed by
GC-MS. Samples were run in an Agilent GC 7890A using a HP-
5MS column (30 m× 0.25 mm× 0.25 µm; Agilent Technologies,
Santa Clara, CA, United States) coupled with a single quadrupole
MSD 5975C (Agilent Technologies). One microliter of sample
was injected into a splitless port at constant temperature of
250◦C. The GC temperature gradient started at 60◦C and hold
for 1 min after injection, followed by increase to 325◦C at a rate
of 10◦C/min and a 5-min hold at this temperature. Fatty acid
methyl ester standard mix (C8-28) (Sigma-Aldrich) was analyzed
in parallel as standard for retention time calibration. GC-MS
raw data files were processed using the Metabolite Detector
software (Hiller et al., 2009). Retention indices (RI) of detected
metabolites were calculated based on the analysis of a FAMEs
mixture, followed by their chromatographic alignment across all
analyses after deconvolution. Metabolites were initially identified

by matching experimental spectra to a PNNL augmented
version of Agilent GC-MS metabolomics Library, containing
spectra and validated retention indices for over 850 metabolites.
Then, the unknown peaks were additionally matched with the
NIST17/Wiley11 GC-MS library. All metabolite identifications
and quantification ions were validated and confirmed to reduce
deconvolution errors during automated data-processing and to
eliminate false identifications.

Quantification of Extracellular
Metabolites
For quantification of metabolites in the spent medium, samples
were diluted 1:20 and 20 µL of these diluted samples were
dried in a glass vial. Solutions ranging from 0 to 300 µg/mL
containing standards of organic acids of interest, including 3HP,
were prepared and 20 µL of these in triplicate were dried to build
an external calibration curve. Derivatization protocol, analysis by
GC-MS and processing of the data was done as described above,
but the analysis was targeted to only the metabolites present
in the standard mixes. Calibration curves were established for
each of the standards in the mixture of organic acids. After
linear regression fitting, concentration of the metabolites in the
spent medium samples was determined upon consideration of
the dilution factor. For HPLC, samples were analyzed using high
performance liquid chromatography (HPLC) equipped with a
Waters 2414 refractive index detector. A Bio-Rad Aminex HPX-
87H ion exclusion column (300 mm × 7.8 mm), heated to 65◦C
was used for analyte separation. Sulfuric acid (0.0045 M) was used
as eluent at a flow rate of 0.55 mL/min. Extracellular metabolite
quantities were used as boundary constraints for parsimonious
flux balance analysis (pFBA) using OptFlux (Vilaca et al., 2018)
with Aspergillus niger genome scale metabolic model iJB1325
(Brandl et al., 2018).

RESULTS

Design and Build to Establish 3HP
Production in Aspergillus pseudoterreus
Production of 3HP in fungi has been explored in a number
of species including Pichia pastoris (Zhou et al., 2011),
Schizosaccharomyces pombe (Takayama et al., 2018), and via
a variety of pathways in S. cerevisiae (Borodina et al.,
2015; Kildegaard et al., 2016). However, to our knowledge
3HP production has not been explored in filamentous fungi.
Aspergillus species, in particular, are notable for their ability
to produce commodity chemicals at low pH which is valuable
for the production of free acids. We chose A. pseudoterreus
as a filamentous fungal host in which to establish 3HP
production due to its demonstrated ability to produce and
tolerate high quantities of itaconic acid at low pH (Okabe
et al., 2009). The beta-alanine production pathway (Figure 1A),
originally demonstrated in S. cerevisiae (Borodina et al., 2015),
was recapitulated for A. pseudoterreus by codon optimizing
the aspartate-1-decarboxylase (pand), beta-alanine pyruvate
transaminase (bapat) and 3-hydroxypropionate dehydrogenase
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FIGURE 1 | Establishment of 3HP production in A. pseudoterreus. (A) Ideal carbon flux in a high theoretical yield (2 mol/mol) metabolic pathway for production of
3HP from sugar monomers. (B) The beta-alanine metabolic pathway to enable 3HP production was codon optimized for A. pseudoterreus and placed under the
control of high expression promoters. The engineered pathway was targeted to the cis-aconitic acid decarboxylase (cad1) locus to disrupt the gene. 3HP,
3-hydroxypropionate; AAT, aspartate aminotransferase, Ala, alanine; ALT, alanine transaminase; αKg, alpha-ketoglutarate; Asp, Aspartate; βAla, beta-alanine;
BcBAPAT, beta-alanine pyruvate aminotransferase; EcHPDH, 3-hydroxypropionate dehydrogenase; Glc, glucose; Glu, glutamate; Msa, malonate semialdehyde;
Oaa, oxaloacetate; PYC, pyruvate carboxylase; Pyr, pyruvate; TcPAND, aspartate 1-decarboxylase.

(hpdh) genes from Tribolium castaneum, Bacillus cereus, and
E. coli respectively; and expressing them under the control of
high-expression gpdA and enoA promoters (Figure 1B). The
major product secreted by A. pseudoterreus during industrial
fermentations is itaconic acid (Lockwood and Nelson, 1946).
To eliminate production of itaconic acid, the beta-alanine
pathway overexpression construct was targeted to the cis-aconitic
acid decarboxylase (cad1) locus (Deng et al., 2020) to allow
redistribution of metabolic flux elsewhere (Figure 1B). Screening
of transformants identified a transgenic strain with a single copy
of the synthetic pathway integrated at the cad1 locus (strain
ABF_004528_2; cad:3HP+) and a strain with one copy of the
synthetic pathway integrated at the cad1 locus and a second copy
of the pathway that integrated elsewhere in the genome (strain
ABF_004528_6; cad:3HP+, 3HP+). Deletion of cad1 (strain
ABF_002234) eliminated itaconic acid production as previously
described (Deng et al., 2020). Overexpression of the beta-alanine
pathway established 3HP production in A. pseudoterreus while a
second copy of the biosynthetic pathway enabled nearly twice the
yield of extracellular 3HP (Figure 2B).

Test/Learn; Multi-Omics Analysis of 3HP
3HP producing strains with single and multi-copy integration
of the beta-alanine 3HP pathway were selected and compared
to a cad1 parental strain during an 8-day production period
in shake flasks. Flasks were harvested at 2-day intervals and
samples collected for intracellular and extracellular metabolomics
as well as global and targeted proteomics. In total, global
profiling detected 4,674 proteins, while targeted proteomics
quantified 79 proteins involved in central carbon metabolism.
Nine extracellular metabolites were absolutely quantified while
320 intracellular metabolites were detected, 122 of which were
structurally identified (Figure 2).

Individual metabolites and proteins were assessed to identify
metabolic nodes and pathways that are perturbed in Aspergillus

strains engineered for 3HP production. The most strongly
perturbed proteins and metabolites identified are directly
involved in 3HP production as intermediates to the biosynthetic
pathway. In the strain with the synthetic 3HP pathway integrated
at multiple locations in the genome, we detected 1.66 ± 0.13×
as much of the three heterologous proteins (TcPAND, BcBAPAT,
and EcHPDH) (Figure 2B). Conversely, the intracellular levels
of beta-alanine and 3HP are not significantly different in the
engineered strains suggesting that the production of extracellular
3HP is not transport limited, nor is the flux toward 3HP limited
by either of these reactions. The fact that aspartate is present
at a somewhat higher level in the single-copy strain suggests
that flux through Aspartate 1-decarboxylase may be the limiting
step in the pathway.

The engineered 3HP biosynthetic route from pyruvate
involves a series of balanced transamination reactions (alanine
transaminase, aspartate aminotransferase, and the introduced
beta-alanine pyruvate transaminase; Figure 1A) that under ideal
conditions cycle nitrogen between alanine, glutamate, aspartate,
and beta-alanine. Establishment and increase in expression
level of the 3HP biosynthetic pathway did not significantly alter
the alanine, glutamate, or aspartate pool sizes though they did
tend to decrease in concentration. The beta-alanine pool size
substantially increased (148× – 249× higher from day 2 to
8) with establishment of the pathway but was not significantly
altered by higher expression level. In addition to beta-alanine,
we found that the pool size of 2,4-diaminobutanoate is
substantially increased (41× –131× higher from day 2 to
8) with establishment of the pathway. Metabolic pathways
that produce 2,4-diaminobutanoate are not annotated in
Aspergillus species. We therefore examined the proteome
for up-regulated transaminases capable of producing 2,4-
diaminobutanoate from substrates that are enriched or
suspected to be high-flux in the engineered strains. The
most significantly up-regulated enzyme in the engineered
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FIGURE 2 | Multi-omics analysis of 3HP producing A. pseudoterreus strains. (A) Profiling of intracellular and extracellular metabolites and targeted proteomics of
central metabolic pathways. (B) Effect of establishment and increase in production level on enzymes and metabolites in the engineered 3HP metabolic pathway.
(C) The metabolite 2,4-diaminobutanoate is accumulated in engineered strains. Upregulated transaminases that may promiscuously use aspartate semialdehyde as
a substrate are shown.

strains is the 4-aminobutyrate aminotransferase Apuga1.
If Apuga1also functions promiscuously with aspartate-
semialdehyde as a substrate (Figure 2C), 2,4-diaminobutanoate
would be produced rather than 4-aminobutanoate (predicted
reaction: aspartate-semialdehyde + glutamate ↔ alpha-
ketoglutarate + 2,4-diaminobutanoate). It is also possible that
BcBAPAT, overexpressed as part of the engineered 3HP pathway,
is promiscuous and produces 2,4-diaminobutanoate with
aspartate-semialdehyde as a substrate (predicted reaction:
aspartate-semialdehyde + alanine ↔ pyruvate + 2,4-
diaminobutanoate). We did not detect 2,4-diaminobutanoate
extracellularly suggesting that this by-product of the engineered
pathway accumulates as an intracellular nitrogen sink
and may compete with nitrogen recycling necessary for
high-yield 3HP production.

Test/Learn; 3HP Scale-Up
To assess performance changes during scale-up, the highest
producing 3HP strain from shake-flask experiments (cad:3HP+,
3HP+) was cultured in a 30 L bioreactor. Off-gas, biomass, and
targeted extracellular metabolite concentrations were monitored
to provide boundary constraints for parsimonious flux balance
analysis (pFBA) (Vilaca et al., 2018). During bioreactor
cultivation, biomass and CO2 were the main products during
the first 2 days of cultivation with CO2 production peaking at
hour 44. Production of 3HP and glycerol began early during the
exponential growth phase of the culture and prior to peak CO2
production. In contrast, production of organic acids (aconitic
acid, isocitric acid, citric acid, alpha-ketoglutaric acid, and malic
acid) began later when biomass production had slowed and
become a near-linear process (Figure 3). This suggests that
production of 3HP via the beta-alanine pathway is primarily a
growth linked process, and as such, scale-up requirements may

be very different than bioprocesses optimized for production of
TCA-cycle derived organic acids in Aspergillus species.

Production of extracellular 3HP in bioreactor conditions
reached a maximum titer of 0.69 g/L, considerably less than
in shake-flasks, at hour 67 and then declined steadily to a
final titer of 0.17 g/L. Follow-up experiments where exogenous
3HP was incubated in comparable conditions without the
presence of a fungus or with an A. pseudoterreus strain not
engineered for 3HP production demonstrated that 3HP is stable
in acidic culture conditions and degraded biotically (Figure 4B).
Production of 3HP began tapering off at the on-set of organic acid
production suggesting the pathway involved in 3HP degradation
is activated during the transition from growth to organic acid
production stage.

We examined these results further within the context
of metabolic model iJB1325, constructed for the related
fungus Aspergillus niger (Brandl et al., 2018) and modified
by the addition of reactions encoding beta-alanine pyruvate
transaminase (beta-alanine + pyruvate ↔ malonate
semialdehyde + alanine), 3-hydroxypropionic acid
dehydrogenase (malonate semialdehyde + NADPH ↔ 3-
hydroxypropionic acid + NADP+), and associated transport
reactions and drains. Consumption and production rates for
glucose, CO2, 3HP, aconitic acid, isocitric acid, citric acid,
alpha-ketoglutaric acid, malic acid, and glycerol were used to
constrain the model for pFBA. We found that the model is able to
recapitulate the slow growth of A. pseudoterreus observed in the
bioreactor but that all consumed 3HP is secreted as beta-alanine
regardless of objective function. Within the metabolic network,
3HP can be reversibly metabolized to beta-alanine, but due to
irreversibility of aspartate 1-decarboxylase (aspartate → beta-
alanine+ CO2) and the energy requirement to metabolize excess
beta-alanine through the pantothenate biosynthetic pathway,
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FIGURE 3 | Bioreactor cultivation of A. pseudoterreus for 3HP production. Time-course production of 3HP and other bioproducts detected by extracellular
metabolomics.

FIGURE 4 | 3HP is degraded biotically through Acetyl-CoA by A. pseudoterreus. (A) Model for 3HP oxidative degradation pathway present in A. pseudoterreus.
(B) Shake-flasks were spiked with 3HP and incubated for 5 days at 30◦C with or without the presence of a strain not engineered for 3HP production (cad).
Uninoculated flasks were examined across a pH range expected to be experienced during A. pseudoterreus growth. The expected abiotic degradation product,
acrylic acid was not detected in any flask. 3HP was not detected after 5 days incubation with A. pseudoterreus (cad). (C) Deletion of the putative malonate
semialdehyde dehydrogenase (Apald6) improves yield of 3HP from glucose. Two independent deletion mutants are shown.
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it must be secreted under steady-state. However, extracellular
beta-alanine was not observed in shake-flask or bioreactor
cultures. This suggests that existing pathway(s) to metabolize
3HP are not represented within the metabolic model.

In bacteria pathways have been identified to directly
metabolize 3HP via a reductive route to propionyl-CoA
(Schneider et al., 2012) or an oxidative route to malonate
semialdehyde, essentially the reverse of the final reaction step
of the metabolic pathway deployed here (Zhou et al., 2014).
Malonate semialdehyde is then degraded to acetyl-CoA by
malonate semialdehyde dehydrogenase (Talfournier et al., 2011).
In the fungus Candida albicans, 3HP is degraded by the oxidative
pathway described above by the enzymes Hpdhp and Ald6p
(Otzen et al., 2014). Genes encoding enzymes homologous to
the oxidative 3HP degradation pathway were identified by BlastP
in A. pseudoterreus. The best BlastP hit for Ald6p (E-value 2E-
114) is among the most significantly up-regulated genes during
production phase (p < 1E-7 from days 4 to 8) in shake-
flasks in strains engineered for 3HP production while the best
BlastP hit for Hpdhp (E-value 8E-34) was not detected by
global proteomics.

It is expected that both the native 3HP dehydrogenase
(Aphpd1) and the overexpressed version from E. coli (hpdh) are
reversible and it is therefore unlikely that we could eliminate
3HP degradation while retaining the engineered pathway. We
therefore focused on elimination of the competing degradation
pathway at the point of malonate semialdehyde by deleting
the putative malonate semialdehyde dehydrogenase (Apald6). In
shake-flasks the yield of 3HP is improved by 3.4× in the Apald6
mutant (Figure 4C) confirming the presence and impact of this
competing pathway in A. pseudoterreus.

The 1Apald6 and parent strains were then scaled-up to
0.5 L in bioreactors to re-evaluate 3HP production with pH
control and improved aeration (Figure 5). By day seven the
parent strain had accumulated 0.27 ± 0.10 g/L 3HP while
yield was improved by 3.3 × to 0.88 ± 0.11 g/L 3HP in the
Apald6 mutant. We did not observe actively decreasing 3HP
in shake-flask or small-scale bioreactor experiments as we did
in the 20 L bioreactor, but improved yield suggests that flux
toward acetyl-CoA is a major competitor with flux toward 3HP
from malonate semialdehyde. At 0.5 L scale the rate of CO2
evolution was slower while higher levels of glycerol and erythritol
were accumulated. The major product during cultivation in the
20L bioreactor, aconitic acid, was not observed in the 0.5 L
bioreactors supporting the hypothesis that a shift to organic acid
production coincides with loss of 3HP. The predicted reaction
catalyzed by malonate semialdehyde dehydrogenase (EC 1.2.1.27;
Figure 4A) was added to the metabolic model. This modification
eliminates production of unobserved metabolites during pFBA
and improves the consistency of the model with empirical
observations from bioreactor and shake-flask cultivations.

DISCUSSION

Biological engineering of microorganisms is a promising
route to sustainable manufacturing of fuels and chemicals

that are currently derived from the petroleum industry.
Here we focused on engineering an acidophilic filamentous
fungal host, A. pseudoterreus, for conversion of sugars
to the polymer precursor 3HP. Production of 3HP using
A. pseudoterreus is possible in acidic conditions at a pH of
2–3 where 3HP is primarily in the protonated free-acid form,
potentially reducing the cost of downstream separations.
Overexpression of a synthetic pathway that has been shown
to function in yeast (Borodina et al., 2015) demonstrated
that production of 3HP is feasible using A. pseudoterreus
but initial yield was poor. Understanding low productivity is
challenging in non-model systems where limited information
is available regarding metabolic flux and its control. Here we
applied multi-omic analyses of engineered A. pseudoterreus
strains to generate a systems-level snapshot of metabolites
and proteins involved in 3HP production and metabolism
as a whole. This approach quantified the effect of initial
and increased expression level of the 3HP pathway on
the bioconversion host and identified pathways competing
with 3HP production.

Establishment of the beta-alanine pathway for 3HP
biosynthesis had a greater overall effect on metabolism
than increased expression level of the pathway and resulted
in substantially increased intracellular pools of beta-alanine,
2,4-diaminobutanoate, and 3HP and up-regulation of malonate-
semialdehyde dehydrogenase (Apald6), enzymes involved
in 4-aminobutanoate (GABA) degradation to succinate
(Apuga1, Apuga2), and genes that may be involved in
metabolism of 3HP pathway intermediates through a CoA
bound intermediate (Apsuc5, succinyl-CoA:3-ketoacid-CoA
transferase; Apadh11, hydroxyacid-oxoacid transhydrogenase;
ApcoaT, acyl-CoA:carboxylate-CoA transferase; Apahd2,
aldehyde dehydrogenase; Apacat1, keto-acyl-CoA thiolase; and
Apacat2, acyl-CoA thiolase), similar to the 3HP/4HB CO2
fixation cycle described in archaea (Berg et al., 2007).

The GABA degradation response to the 3HP pathway ties
nitrogen and carbon metabolism together through succinate.
In yeast, uga1 and uga2 are up-regulated in response to the
presence of GABA (Ramos et al., 1985), however we did
not detect a significant impact on the intracellular GABA
pool size in response to the presence of the 3HP pathway.
4-hydroxybutanoate (GHB) was also accumulated in the
engineered strains (Supplementary File 1). In yeast, there is
evidence to support the presence of a succinate semialdehyde
dehydrogenase to produce GHB (Bach et al., 2009) but not for the
reverse reaction catalyzed by GHB dehydrogenase (Mekonnen
and Ludewig, 2016), though Aspergillus species with a larger
genome may catalyze this reaction. Elucidation of the genes
responsible in fungi would aid in understanding the effect
of 3HP on GABA and GHB metabolism. It is likely that
accumulation of 2,4-diaminobutanoate is a direct result of
increased Apuga1 expression (Figure 2), with the proposed
precursor aspartate semialdehyde being supplied by an enhanced
aspartate pool through the activity of aspartate kinase and
aspartate semialdehyde dehydrogenase, though neither enzyme
is significantly differentially expressed in response to the presence
of the 3HP pathway (Supplementary File 1).
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FIGURE 5 | Deletion of Apald6 increases 3HP yield at 0.5 L bioreactor scale. Time-course production of 3HP and other detected bioproducts. Error bars represent
the standard deviation from three replicates.

Extracellular metabolomics during bioreactor cultivation
revealed that 3HP is produced and then metabolized at the
onset of organic acid production. This led us to search for
metabolic pathways involved in catabolism of 3HP, which are
poorly characterized in fungi. During shake-flask cultivation the
methylmalonate-semialdehyde dehydrogenase (g153; Apald6) is
strongly up-regulated at all times in the engineered strains.
This enzyme, normally involved in branched-chain amino acid
degradation, has been implicated in 3HP metabolism in bacteria
(Zhou et al., 2014; Arenas-Lopez et al., 2019) and the yeast
C. albicans (Otzen et al., 2014) by also acting as a malonate-
semialdehyde dehydrogenase and diverting flux toward acetyl-
CoA rather than 3HP. Here we deleted a putative malonate-
semialdehyde dehydrogenase Apald6 and found that 3HP yield
was drastically improved (Figure 4). Reductive degradation of

3HP via propanoyl-CoA synthase has also been demonstrated
in bacteria (Schneider et al., 2012), and while homologs of
the enzymes involved are not readily identifiable in fungi, we
have identified a variety of significantly up-regulated enzymes
that may be directly involved in alternative 3HP assimilation
pathways. Further genetic characterization will reveal the
metabolic repertoire that fungi express to metabolize 3HP.

Multi-omic technologies offer a promising route to systematic
analysis of bioconversion processes and identification of targets
for improvement of metabolic flux. The results in this study
demonstrate that 3HP production can be effectively improved
by application of multi-omic analyses to further our system
level understanding of genetically engineered A. pseudoterreus.
However, extracellular metabolomics in shake-flasks and
bioreactor scale-up revealed a wide variety of co-products being
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produced at levels higher than that of 3HP. These co-
products compete metabolically with production of 3HP and
contaminate the desired end-product, making separations
impractical. Improvement of 3HP production in A. pseudoterreus
will require minimization of these co-products either through
growth optimization or further metabolic engineering.
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Prior engineering of the ethanologen Zymomonas mobilis has enabled it to metabolize
xylose and to produce 2,3-butanediol (2,3-BDO) as a dominant fermentation product.
When co-fermenting with xylose, glucose is preferentially utilized, even though xylose
metabolism generates ATP more efficiently during 2,3-BDO production on a BDO-mol
basis. To gain a deeper understanding of Z. mobilis metabolism, we first estimated
the kinetic parameters of the glucose facilitator protein of Z. mobilis by fitting a
kinetic uptake model, which shows that the maximum transport capacity of glucose
is seven times higher than that of xylose, and glucose is six times more affinitive
to the transporter than xylose. With these estimated kinetic parameters, we further
compared the thermodynamic driving force and enzyme protein cost of glucose
and xylose metabolism. It is found that, although 20% more ATP can be yielded
stoichiometrically during xylose utilization, glucose metabolism is thermodynamically
more favorable with 6% greater cumulative Gibbs free energy change, more economical
with 37% less enzyme cost required at the initial stage and sustains the advantage
of the thermodynamic driving force and protein cost through the fermentation
process until glucose is exhausted. Glucose-6-phosphate dehydrogenase (g6pdh),
glyceraldehyde-3-phosphate dehydrogenase (gapdh) and phosphoglycerate mutase
(pgm) are identified as thermodynamic bottlenecks in glucose utilization pathway, as
well as two more enzymes of xylose isomerase and ribulose-5-phosphate epimerase
in xylose metabolism. Acetolactate synthase is found as potential engineering target
for optimized protein cost supporting unit metabolic flux. Pathway analysis was then
extended to the core stoichiometric matrix of Z. mobilis metabolism. Growth was
simulated by dynamic flux balance analysis and the model was validated showing
good agreement with experimental data. Dynamic FBA simulations suggest that a high
agitation is preferable to increase 2,3-BDO productivity while a moderate agitation will
benefit the 2,3-BDO titer. Taken together, this work provides thermodynamic and kinetic
insights of Z. mobilis metabolism on dual substrates, and guidance of bioengineering
efforts to increase hydrocarbon fuel production.

Keywords: dynamic flux balance analysis, thermodynamics analysis, enzyme protein cost analysis, kinetic
models, Zymomonas mobilis, biofuel production, 23-butanediol
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INTRODUCTION

Zymomonas mobilis is a facultative anaerobic Gram-negative
microorganism, well known for its efficient production of
bioethanol as replacement for fossil fuels (Swings and De
Ley, 1977; Skotnicki et al., 1982; Sprenger, 1996; Gunasekaran
and Raj, 1999; He et al., 2014; Yang et al., 2016a). The
bacterium possesses a relatively simple central metabolic
network, including a non-functional Embden-Meyerhof-Parnas
(EMP) glycolytic route (Fuhrer et al., 2005; Seo et al.,
2005; Felczak et al., 2019), incomplete pentose phosphate
pathway (Feldmann et al., 1992; De Graaf et al., 1999) and
truncated tricarboxylic acid (TCA) cycle (Lee et al., 2010;
Jacobson et al., 2019). Instead, hexoses including glucose
and fructose are metabolized via the Entner-Doudoroff (ED)
pathway to form primarily ethanol, along with glycerol
and succinic, lactic and acetic acid by-products (Zhang
et al., 2019b). Because of its unusual and efficient metabolic
machinery, Z. mobilis can achieve remarkably high bioprocess
efficiency, with up to 98% of hexose carbon converted into
ethanol (Kalnenieks et al., 2019). In recent decades, genetic
engineering has been used to broaden the spectrum of
fermentation substrates and products by Z. mobilis. Introduction
of exogenous enzymes of xylose isomerase, xylulokinase,
transketolase, and transaldolase from Escherichia coli endows
the bacterium the capability of fermenting pentose sugars
(Zhang et al., 1995), whereas Enterobacter cloacae derived
acetolactate synthase, acetolactate decarboxylase and butanediol
dehydrogenase help the redirection of carbon flux to 2,3-
butanediol (2,3-BDO), a bio-derived precursor for gasoline and
jet fuel (Syu, 2001; Celinska and Grajek, 2009; Ji et al., 2011;
Yang et al., 2016b).

Metabolism begins with the uptake of sugar substrates from
the media by the glucose facilitator protein, glf, in the cell
membrane of Z. mobilis. Glf is a low-affinity, high-velocity carrier
that also transports xylose but with the competitive inhibition by
glucose (Dimarco and Romano, 1985). In fermentation, glucose
is preferentially utilized by Z. mobilis when co-fermenting with
xylose (Zhang et al., 1995). Stoichiometrically, 1 mol of glucose is
consumed to form 1 mol of 2,3-BDO with 1 mol of ATP generated
via the ED pathway as:

1glucose→ 2, 3− BDO+ 2CO2 +NADPH+ ATP

For xylose, 1.2 mol of ATP will be produced when xylose is
metabolized through the completed pentose phosphate pathway
and lower glycolysis to produce an equal amount of 2,3-BDO:

1.2xylose→ 2, 3− BDO+ 2CO2 + 0.2NADH+ 0.8NADPH

+1.2ATP

Yields of ATP from xylose are higher than for glucose on 2,3-
BDO basis in large part because carbon from xylose is rearranged
in the pentose phosphate pathway into glyceraldehyde-3-
phosphate, whereas for glucose, only half of the carbon flows
through glyceraldehyde-3-phosphate due to 2-dehydro-3-deoxy-
phosphogluconate aldolase in the ED pathway (Figure 1A).

Engineered xylose metabolism in Z. mobilis, therefore, more
closely resembles xylose metabolism in organisms that utilize
the EMP pathway. Accordingly, a bioenergetic question arises
as to why an energy inefficient glucose metabolism pathway is
preferred over xylose metabolism.

Max-min driving force (MDF) optimization and enzyme
protein cost estimation have been proposed to evaluate to
what extent a metabolic pathway’s flux is constrained by
thermodynamic driving force and determine the protein expense
required to support a pathway’s enzymes (Flamholz et al., 2013;
Noor et al., 2014). Thermodynamically, the directionality and
feasibility of a reaction is determined by the Gibbs free energy
change, 1G′, in which a large negative value indicates a strong
driving force for the reaction to proceed forward. Similarly, the
driving force of a metabolic pathway can be assessed by solving
a maximin problem, which seeks to maximize the negative
1G′ of the most thermodynamically unfavorable reaction by
tuning the concentrations of involved metabolites (Flamholz
et al., 2013; Noor et al., 2014; Wu et al., 2020). On the other
side, the enzyme level required by a reaction to proceed is
determined by both reaction thermodynamics and the kinetic
properties of the enzyme, according to a common modular rate
law (Liebermeister et al., 2010) and the Haldane relationship
(Alberty, 2006). Accordingly, the total enzyme mass required to
support a unit pathway flux can be estimated by solving a non-
linear optimization with respect to intermediate concentrations
(Flamholz et al., 2013; Wu et al., 2020). So far, the methodology
has been successfully applied in the thermodynamic comparison
between glycolytic pathways in E. coli (Flamholz et al., 2013; Noor
et al., 2014), and photosynthesis pathways in cyanobacteria with
thermodynamic bottlenecks and potential engineering targets
identified to enhance CO2 fixation (Janasch et al., 2019; Wu et al.,
2020).

In this work, we first use MDF and enzyme cost to investigate
the thermodynamic and kinetic properties of co-utilization
of glucose and xylose by a 2,3-BDO producing Z. mobilis
strain BC42C 1pdc which diverts carbon flux from ethanol
biosynthesis through a pyruvate decarboxylase knockout (Zhang
and Himmel, 2019; Zhang et al., 2019a). Next, we extend
the mathematical modeling from pathway level to the core
metabolic network of Z. mobilis using dynamic flux balance
analysis (dynamic FBA). With a validated model, optimization
is performed to identify the optimal initial sugar ratio and
agitation conditions for 2,3-BDO fermentation. This work reveals
a deeper understanding of mixed C5/C6 sugar metabolism by
Z. mobilis and sheds light on rational design of bioengineering
and fermentation for hydrocarbon fuel production.

RESULTS

Uptake Kinetics of Glucose and Xylose in
Zymomonas mobilis
Following previous studies (Dimarco and Romano, 1985;
Schoberth and de Graaf, 1993; Ren et al., 2009), we began
by constructing a Michaelis–Menten kinetics model with
competitive inhibition term for the dual-functional transporter in
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FIGURE 1 | (A) Map of core-carbon metabolism in the engineered Z. mobilis strain. A list of abbreviations used are shown in Supplementary Table 1. (B) Kinetic
properties of glucose facilitator (glf) in Z. mobilis BC42C 1pdc. Kinetic parameters (Vmax , Km, and Ki ) are estimated by fitting the time-course utilization of glucose
(green) and xylose (blue) with coefficient of determination R2 = 0.99. Dots denote experimental data points, and lines denote the best fit curve of substrates uptake
kinetics. (C,D) Contour plots illustrating substrate uptake rates as a function of glucose (C) and xylose (D) concentrations.

Z. mobilis (Materials and Methods). Kinetics parameters (Vmax,
Km, and ki) for both glucose and xylose were estimated by
fitting experimental results. As shown in Figure 1B, simulated
kinetic curves match well with the data (R2 = 0.99). The fitting
results suggest that the maximum transport capacity of glucose
is ninefold higher than xylose (29.30 mmol gDCW−1 h−1 vs.
3.18 gDCW−1 h−1 in Vmax), and glucose is twofold more
affinitive to the transporter than xylose (40.21 mM vs. 80.96 mM
in Km), which could explain the preferential utilization of glucose
when co-fermenting with xylose from a kinetics perspective. It
is also noteworthy that the inhibitor constant of glucose was
estimated to be much greater than that of xylose, which suggests
that competitive inhibition might not be the dominant factor in
substrate preference of Z. mobilis.

With the estimated kinetic parameters, we simulated glucose
and xylose uptake rates at different glucose and xylose
concentrations (Figures 1C,D). The contour plots illustrate
how glucose and xylose uptake rates change as a function of
concentrations of both substrates. In general, glucose uptake rate
correlates positively with glucose concentration, and negatively
with xylose concentration. Xylose uptake rate mirrors the pattern
but lowered by almost an order of magnitude, determined by the

maximum uptake capacity of the two substrates. Despite the low
uptake rate of xylose, transport of this substrate still occurs in the
initial phase of fermentation, which leads to simultaneous and
not sequential utilization of glucose and xylose.

Thermodynamic Driving Force and
Enzyme Protein Cost of Glucose and
Xylose Metabolism in Zymomonas
mobilis
Thermodynamic analysis was performed to compare the
feasibility of glucose and xylose metabolism pathways.
Kinetic parameters for substrate uptake were estimated
from experimental data, while parameters for other pathway
enzymes were taken from the Brenda database (Jeske et al.,
2019). Three enzyme reactions catalyzed by glucose-6-
phosphate dehydrogenase (g6pdh), glyceraldehyde-3-phosphate
dehydrogenase (gapdh) and phosphoglycerate mutase (pgm) in
the glucose utilization pathway were identified as thermodynamic
bottlenecks for positive Gibbs free energy changes assuming
1 mM concentration of substrate and product (Figure 2). In
addition to the three shared reactions, two more bottlenecks,
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FIGURE 2 | Max-min driving force (MDF) optimization (upper panels) and enzyme protein cost estimation (lower panels) of glucose (A) and xylose (B) metabolism
pathway of Z. mobilis BC42C 1pdc at the initial state. MDF optimization is presented as the cumulative sum of reaction Gibbs free energies, 1G′. Blue line with
triangle symbols denotes standard Gibbs free energies with all metabolite concentrations fixed at 1 mM, and red line with circle symbols denotes Gibbs free energies
when the minimal 1G′ is optimized with metabolite concentrations constrained ranging from 1 µM to 10 mM except that extracellular glucose/xylose concentration
fixed at measured value. Enzyme protein costs were optimized for the minimal protein mass required to support unit pathway flux under the same concentration
constraints with MDF optimization. eda, 2-dehydro-3-deoxy-phosphogluconate aldolase; edd, phosphogluconate dehydratase; eno, enolase; g6pdh,
glucose-6-phosphate dehydrogenase; gapdh, glyceraldehyde-3-phosphate dehydrogenase; glf, glucose facilitator protein; glk, glucokinase; pgi,
glucose-6-phosphate isomerase; pgl, 6-phosphogluconolactonase; pgm, phosphoglycerate mutase; pgk, phosphoglycerate kinase; pyk, pyruvate kinase; rpe,
ribulose-5-phosphate epimerase; rpi, ribose-5-phosphate isomerase; tal, transaldolase; tkt, transketolase; xk, xylulokinase; xyl, xylose isomerase.

xylose isomerase (xyl) and ribulose-5-phosphate epimerase
(rpe), were found in the xylose pathway. The MDF of the
initial phase of sugar fermentation was optimized for both
pathways by tuning concentrations of involved metabolites with
extracellular substrates fixed at measured concentrations. The
results show that glucose metabolism is initially slightly more
favorable (−241.2 vs. −228.0 kJ mol−1) than the xylose pathway
thermodynamically.

Enzyme protein costs were estimated in both pathways, which
calculate the total protein cost needed to support a unit pathway
flux. As shown in Figure 2, the total protein requirement of xylose
utilization pathway is 58% higher [1.9 × 104 g/(mol s−1) vs.
1.2× 104 g/(mol s−1)] than glucose metabolism at the beginning
of fermentation, which indicates a protein burden for Z. mobilis
to initiate xylose metabolism when co-fermenting with glucose.
It was also found that, likely due to the high Km value, the
exogenous enzyme acetolactate synthase (als) accounts for the
dominant amount of protein cost in both pathways: 41% and
25% of total pathway protein requirement for glucose and xylose,
respectively. Consistent with a previous study (Yang et al., 2016b),
our results suggests that als is the bottleneck in acetolactate
generation from pyruvate, and because the limitation is kinetic
rather than thermodynamic, represents a potential metabolic
engineering target to improve 2,3-BDO production in Z. mobilis.

We then extended the MDF optimization and enzyme protein
cost estimation to the entire fermentation process. As shown
in Figure 3 as well as Supplementary Figures 1, 2, the MDF
and protein requirements of most enzymes vary with depletion
of the two substrates. With respect to glucose metabolism,
the MDF of majority of the pathway enzymes rises steeply
(approaching zero from the negative direction) after 25 h when

the glucose concentration was below 3 mM with the exception
of phosphogluconate dehydratase (edd), als and acetolactate
decarboxylase (aldc) (Supplementary Figure 1A), whereas only
a gentle increase was seen in enzymes located at the beginning
and end of the xylose metabolism pathway (Supplementary
Figure 2A). In total reaction driving force, glucose utilization
maintained thermodynamic favorability over xylose until the
glucose concentration was below 2 mM, when xylose achieved a
maximum uptake rate.

Similar results were obtained in the time course enzyme
protein requirement for both pathways. The protein cost
increases drastically with the depletion of substrates to sustain a
given uptake rate. As the transporter of glucose and xylose, glf
is influenced the most by the substrate exhaustion since protein
cost scales inversely proportional to substrate concentration.
It is noteworthy that the protein requirement of als is barely
affected by the substrate concentration in both pathways and
dominates the total protein requirement with sufficient substrate
concentrations (Supplementary Figures 1B, 2B). Like the
thermodynamic driving force, glucose metabolism is always more
economical in total enzyme protein than xylose metabolism until
glucose is depleted.

Growth Simulation of Zymomonas
mobilis With Dynamic Flux Balance
Modeling
To further account for cell growth dynamics and predict cellular
metabolism of Z. mobilis, we extended the stoichiometric model
from the pathway-level to the system-level and performed
dynamic FBA (Mahadevan et al., 2002). In dynamic FBA, the
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FIGURE 3 | Time-course kinetic and thermodynamic profile of glucose and xylose metabolism by Z. mobilis BC42C 1pdc. Substrate concentrations constituted the
fitting curve of experimental data. Specific substrate uptake rates were calculated as the first derivative of substrate concentrations divided by corresponding
biomass concentrations. MDF optimization and enzyme protein cost estimation were performed at 100 equally spaced timepoints during fermentation with substrate
concentration fixed at corresponding values. Only total cumulative 1G′ and protein cost were illustrated, see Supplementary Figures 1, 2 for results of individual
enzymes.

timescales associated with cell growth and substrate uptake are
assumed to be much faster than the dynamics of intracellular
metabolic conversions. This a smaller dynamic system of only

the extracellular metabolites to be considered while maintaining
a pseudo-steady-state for intracellular metabolite concentrations
for FBA. The core reaction network, consisting of 79 reactions
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and 70 metabolites, was built based on a genome-scale metabolic
reconstructions of Z. mobilis (Lee et al., 2010; Pentjuss et al.,
2013; Nouri et al., 2020), and includes an incomplete EMP
pathway (with phosphofructokinase missing), the ED pathway,
the pentose phosphate pathway, and an incomplete TCA cycle
(with α-ketoglutarate dehydrogenase and malate dehydrogenase
missing, Figure 1A). Estimated kinetic parameters were used to
describe substrate uptake kinetics of the model. The lower and
upper bounds of metabolic flux through pyruvate decarboxylase
were set to zero to mimic the knockout of the associated gene.

The measured time course for extracellular metabolites and
predictions by the dynamic FBA model for batch aerobic
growth of Z. mobilis BC42C 1pdc on mixed glucose and
xylose media are shown in Figure 4. The model simulations
show good agreement with the experimental data, except
for an overprediction of biomass accumulation. It could
be attributable to the unmeasured metabolite leak in the
fermentation. Nevertheless, the leaked metabolites will have less
effect on modeling of the formation of other products since
metabolic flux is additive, and the excess biomass predicted
by model could have been converted into the unmeasured
metabolites. Diauxic growth was not evident since the two
substrates, glucose, and xylose, were consumed simultaneously.
The accumulation of acetoin was delayed until glucose was
exhausted, and 2,3-BDO concentration began to decrease when
both sugar substrates were depleted. As a reduced product,
2,3-BDO can be re-oxidized to generate NADH, which with
an external electron acceptor, can be used to produce ATP
for cell maintenance. This phenomenon is implemented by
addition of reuptake kinetics of 2,3-BDO in the dynamic
flux balance model.

Identification of Optimal Growth
Conditions for 2,3-BDO Production
Since our dynamic flux balance model was validated to make
accurate prediction of growth on dual substrates, the model
was further used to identify in silico the optimal fermentation
conditions for 2,3-BDO production. For this purpose, maximum
2,3-BDO productivity was used as the optimization objective,
defined as the maximal ratio of extracellular concentration of
2,3-BDO divided by the fermentation time. First, the initial
concentration of glucose and xylose was tuned to see whether
a simultaneous depletion of the two sugars can be achieved.
The ratio of glucose and xylose was varied from 0.5 to 4
while the total C-mol of substrates was fixed as a constant.
As shown in Figure 5A, the biomass accumulates with little
change between different glucose:xylose ratios; however, the
consumption time of the two substrates rarely deviates either.
We found that formation of reduced products, glycerol and
2,3-BDO, increase with the ratio of glucose to xylose in the
media, which can be attributed to the more efficient production
of reducing equivalents by glucose metabolism. Accordingly,
in silico optimization shows that the highest maximum 2,3-BDO
productivity of 14.6 mmol L−1 h −1 at 36.2 h can be reached with
a glucose:xylose ratio of 4, though the maximum productivity is
insensitive to the ratio changes.

The effect of different levels of oxygen supply was also
studied for which the oxygen transfer coefficient, kLa, was
selected as the tuning parameter. With an increased oxygen
supply, our model predicts faster growth and substrate
consumption (Figure 5B). In the model, enhanced uptake of
oxygen consumes extra reducing power as an effective acceptor
of electrons, thereby stimulating the regeneration of redox
cofactors by sugar metabolism. Changing the oxygen supply
also diverts carbon flux from glycerol to acetoin and 2,3-
BDO, since acetoin and 2,3-BDO are produced through the
generation of NADH and NADPH, whereas glycerol production
primarily serves to capture excess electrons generated through
g6pdh when the cell lacks an external electron acceptor.
Accordingly, the optimization of oxygen supply suggests that
a high agitation rate will benefit the production of 2,3-
BDO by Z. mobilis. On the other hand, if maximum 2,3-
BDO titer is used as the optimization objective, a moderate
aeration will be the optimal condition for the formation
of the product which is consistent with the previous study
(Yang et al., 2016b).

DISCUSSION

To investigate the preferable utilization of glucose over xylose
by Z. mobilis, a thermodynamic analysis was first performed
which showed a continuously stronger driving force of glucose
metabolism until the substrate is exhausted. Thermodynamics
is the key factor determining the feasibility and efficiency of
a metabolic pathway. Rutkis et al. (2013) has reported that
ATP consumption exerts a high level of control on the ED
glycolysis activity of Z. mobilis through kinetic modeling and
metabolic control analysis (Kalnenieks et al., 2014). Interestingly,
our thermodynamic model also shows an enhanced driving force
with a decreased ratio of ATP and ADP in both glucose and
xylose metabolism pathway (Supplementary Figures 3A,B). Our
results support their findings since a decreased ATP/ADP ratio
usually suggests an increased ATP requirement, whereas a larger
negative 1G′ indicates a higher ratio between the forward and
backward fluxes, that is, stronger metabolic activity in a pathway
according to the flux-force relationship (Beard and Qian, 2007;
Noor et al., 2014). Similar results were noticed by Jacobson et al.
(2019) who quantified the intracellular metabolite concentrations
with a 13C labeling approach (Bennett et al., 2008), and found
a significant lower ATP/ADP ratio in Z. mobilis than in E. coli
and Saccharomyces cerevisiae. Z. mobilis thus suffers an energy
shortage and sustains a high ED pathway activity for ATP
production (Seki et al., 1990; Kalnenieks et al., 2014; Jacobson
et al., 2019). Our results also show that the ratio between reducing
equivalents and their oxidized form positively correlates with the
cumulative 1G′ of both glucose (Supplementary Figures 3C,E)
and xylose (Supplementary Figures 3D,F) metabolism. This
suggests reducing power might have a controlling effect on
Z. mobilis glycolytic activity as well, while more theoretical and
experimental evidence is required.

Next, enzyme protein cost was estimated for both substrate
utilization pathways at the initial state and during the
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FIGURE 4 | Comparison of dynamic flux balance model predictions (lines) and experimental data (dots) for Z. mobilis BC42C 1pdc co-utilizing glucose and xylose.
The estimated kinetic parameters are used in substrate uptake kinetics. The lower bound of non-growth associated maintenance (NGAM) is set to zero. Reuptake of
products acetoin and BDO are allowed for a better match of the experimental results.

FIGURE 5 | Effects of initial substrate concentration ratio (A) and oxygen supply (B) on predictions of dynamic flux balance model. In the investigation of initial
substrate concentration, a gradient of glucose:xylose ratios are tested keeping the total substrate C mol as a constant. Different agitation and oxygen supply levels
are studied by varying the mass transfer coefficient (kLa).

fermentation process. A number of assumptions must be made
in building the protein cost model. Besides those basic ones for
modeling pathway protein cost (Flamholz et al., 2013) and those
for application of the common rate law (Wu et al., 2020), two
more assumptions are required for the time course analysis. First,
the entire fermentation process is divided into small enough time
intervals, and metabolic steady state is achieved and sustained
during each interval, which means that the transition between
two steady states is instantaneous. This assumption is similar
to the one used in the static optimization approach to solve a
dynamic flux balance model (Mahadevan et al., 2002), and thus
is reasonable for our time course analysis. Second, we assume
that the expression level of native enzymes is not affected by
introduction of exogenous enzymes. This assumption might be
violated due to interactions between the introduced enzymes
and local proteins or cofactors; however, it serves as the best
approximation until further experimental evidence is available.
Notably, the protein cost has the unit g/(mol s−1), which yields
mass proportion of pathway enzyme to cell dry weight multiplied
by metabolic flux in mmol gDCW−1 s−1. It suggests that our

time course protein cost estimation could be further validated
with dynamic proteomics analyses which is, however, beyond the
scope of this research.

Finally, a global stoichiometric model was constructed to
simulate and optimize the growth of Z. mobilis by dynamic
FBA. Our results show that higher 2,3-BDO productivity can be
achieved with increased oxygen supply. However, fully aerobic
growth for 2,3-BDO productivity is not possible since there exists
a balance between excess oxygen supply where producing acetoin
is favorable to 2,3-BDO and insufficient aeration that benefits
the formation of glycerol. More experiment trials are therefore
required to identify and specify the balance. Experimental
investigation of whether increased oxygen concentrations in
microaerobic fermentations improves growth rates for our
engineering Z. mobilis strain remains as future work, as growth
for ethanol-producing Z. mobilis typically does not benefit
from oxygen availability. Taken together, with an insight of
the dynamic behavior of metabolic networks, the approach
shows the potential of providing profound guidance in industrial
applications of biofuel production.
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MATERIALS AND METHODS

The Strain and Measurement of Growth,
Substrate, and Product Kinetics in Batch
Fermentations
The Z. mobilis strain used in batch fermentations is BC42C
1pdc which is capable of 2,3-BDO production without ethanol
biosynthesis by a pyruvate decarboxylase knockout (Zhang and
Himmel, 2019; Zhang et al., 2019a). The biological cultures were
kept frozen in a −80◦C freezer using a 20% glycerol solution.
The strains were revived from frozen culture on rich media
(10 g L−1 yeast extract, 2 g L−1 potassium phosphate) and 50 g
L−1 glucose (RMG 5%) in a 50 mL baffled flask with 10 mL
media. The flasks were incubated for 6 h at 30◦C and 180 rpm
in a shaker incubator. The revived culture was used to start
the seed for the primary fermentation. The seed media was
prepared in a 125 mL baffled shake flask with RMG 8% (80 g
L−1 glucose) at a 50 mL working volume. The revived culture
was transferred to the flask at a volume to achieve an initial
optical density (OD) of 0.1 when measured with a spectrometer
at 600 nm wavelength. The seed flask was incubated at 30◦C
and 180 rpm overnight in a shaking incubator. Fermentations
to generate experimental design data for 2,3-BDO production
were conducted in BioStat-Q plus fermentors with a 300 mL
working volume. The specific fermentation parameters that were
used in the described kinetic model were a constant temperature
of 30◦C, pH 5.8 controlled with KOH (4 N), 100 mL air
flowrate through overlay rings, and an agitation at 700 rpm while
glucose was present that was reduced to 300 rpm when only
xylose was remaining.

Samples were taken throughout the batch fermentations
for analyses. Fermentation samples were centrifuged, and
supernatants were filtered through a 0.2-µm syringe filter
before placing in high-pressure liquid chromatography (HPLC)
vials. The samples were analyzed for carbohydrates and
BDO (both Meso and SS stereoisomers), acetoin, glycerol,
and other by-products. Carbohydrate analysis was done
on the Shodex SP0810 carbohydrate column, and organic
acids analysis was performed using the Bio-Rad Aminex
HPX-87H organic acids column. Sugar utilization, 2,3-BDO,
acetoin, and glycerol titers and yields were calculated based
on the HPLC data.

Estimation of Kinetic Parameters of
Substrate Uptake
The glucose and xylose uptake of Z. mobilis is described
by Michaelis–Menten kinetics with terms for their mutual
competitive inhibition (Dimarco and Romano, 1985), which is
formulated as:

vglc =
Vmax,glc · [glc]

Km,glc · (1+ (xyl)
Ki,xyl

)+ [glc]
(1)

vxyl =
Vmax,xyl · [xyl]

Km,xyl · (1+ (glc)
Ki,glc

)+ [xyl]
(2)

where [glc] and [xyl] are extracellular concentrations of glucose
and xylose, kinetic parameters Vmax,glc and Vmax,xyl are the
maximum uptake rate of each sugar, Km,glc and Km,xyl are
corresponding Michaelis-Menten constants that indicate the
affinities of the reactants for enzyme, and Ki,glc and Ki,xyl
are inhibition constants. The dynamics of substrate uptake is
described with the following ordinary differential equations
(ODEs):

d[glc]
dt
= −vglc · [X] (3)

d[xyl]
dt
= −vxyl · [X] (4)

where [X] is the biomass concentration, for which values were
obtained by a simple linear interpolation between experimental
datapoints. The ODEs were solved using odeint in the Python
package scipy, and the kinetic parameters were estimated by
solving the least squares problem minimizing the difference
between experimentally measured and simulated substrate
concentrations using openopt. The optimization was repeated
several times and always converged to a stable solution. The
coefficient of determination R2 was also calculated to evaluate the
goodness of fit.

Max-Min Driving Force Optimization and
Enzyme Protein Cost Estimation
The MDF and protein cost analysis were conducted to assess
the thermodynamic feasibility and protein synthesis expense of
both glucose and xylose utilization pathways using a Python-
based pathway analysis tool PathParser (Wu et al., 2020). The
enzymes involved as well as their thermodynamic and kinetic
parameters used for calculation were listed in Supplementary
Tables 2, 3. Standard reaction Gibbs free energies were searched
in eQuilibrator (Flamholz et al., 2012). Michaelis-Menten
constants, catalyst rate constants and molecular weights of
Z. mobilis enzymes were taken from BRENDA (Jeske et al., 2019).
Geometric mean was used if multiple values were available. For
heterologous proteins, parameters were taken for enzymes in
their host species. Kinetic parameters for acetolactate synthase,
acetolactate decarboxylase and butanediol dehydrogenase were
taken from E. cloacae (Yang et al., 2016b), while values from
E. coli were used for xylose isomerase, xylulokinase, transketolase
and transaldolase (Zhang et al., 1995). For the substrate uptake
reaction, irreversible Michaelis-Menten kinetics was applied to
sugar transporter glf with zero Gibbs free energy change. During
optimization, extracellular sugar concentrations were fixed at
experimentally measured values, and intracellular metabolite
concentrations were allowed to vary between 1 µM and 10 mM
(Flamholz et al., 2013). To perform the time course MDF
optimization and enzyme protein cost estimation, the batch time
was divided into many time intervals in which a metabolic steady
state was assumed. Accordingly, the extracellular glucose and
xylose concentrations were set to the lowest values obtained by
fitting in each time interval.
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Dynamic Flux Balance Model
In addition to glucose and xylose metabolism and 2,3-BDO
synthesis pathways, the core metabolic reactions of Z. mobilis
BC42C 1pdc was expanded to include an incomplete EMP
pathway (with phosphofructokinase missing), the ED pathway,
pentose phosphate pathway and an incomplete TCA cycle
(with α-ketoglutarate dehydrogenase and malate dehydrogenase
missing) (Lee et al., 2010; Pentjuss et al., 2013; Nouri et al.,
2020). The constructed flux balance model consists of 79
reactions with 70 related metabolites, which is provided as
Supplementary Data.

For dynamic flux balance analysis, the uptake kinetics of
glucose and xylose was described by Equations 1, 2, while oxygen
uptake was described by the following equation:

vo2 =
Vmax,o2 · [o2]

Km,o2 + [o2]
(5)

To better match the experimental data, reuptake of fermentation
products acetoin and 2,3-BDO were allowed through the
following kinetics:

vactn =
Vmax,actn · [actn]
Km,actn + [actn]

(6)

vbdo =
Vmax,bdo · [bdo]
Km,bdo + [bdo]

(7)

where [O2], [actn], and [bdo] are extracellular concentrations of
oxygen, acetoin and 2,3-BDO, Vmax,o2, Vmax,actn and Vmax,bdo
as well as Km,o2, Km,actn and Km,bdo are corresponding
maximum uptake rate and Michaelis-Menten constants. The
kinetic parameters of glucose and xylose were estimated by
fitting the model to experimental data as described above.
The maximum uptake rate of oxygen was assumed to be
15 mmol gDCW−1 h−1 (Mahadevan et al., 2002) and its
Michaelis-Menten constant was set to 1.24 µM by experimental
measurement (Balodite et al., 2014). Vmax and Km of acetoin
and 2,3-BDO were assumed to be 10 mmol gDCW−1 h−1

and 5 mM, respectively.
The extracellular mass balance of above the species, as well as

biomass and glycerol, are described by:

d[o2]

dt
= −vo2 · [X] + kLa · [(o

∗

2)− (o2)] (8)

d[actn]
dt

= −vactn · [X] (9)

d[bdo]
dt
= −vbdo · [X] (10)

d[X]
dt
= µ · [X] (11)

d[glyc]
dt
= vglyc · [X] (12)

where kLa is the mass transfer coefficient for oxygen which is
positively correlated with the impeller speed during fermentation

(Mastroeni et al., 2003) and assumed to be 30 h−1 at 300 rpm.
[O2
∗] denotes the oxygen concentration in gas phase and

assumed to be a constant 0.21 mM (Mahadevan et al., 2002).

Growth Simulation
Dynamic flux balance analysis of Z. mobilis BC42C 1pdc was
performed using the metabolic modeling package COBRApy
in Python (Ebrahim et al., 2013), and was implemented in a
static optimization approach. Maximization of the production
of biomass and products and minimization of the consumption
of substrates and oxygen were used as lexicographic constraints.
Growth was simulated by integration of extracellular mass
balance Equations 3, 4, 6–10 using odeint in SciPy package.
All growth simulations were performed with inoculum OD of
0.84, and initial glucose and xylose concentrations of 443 and
245 mM, respectively, matching experimental conditions. The
batch time for simulation was set to be 65 h, after which both
substrates were depleted.

To investigate the effect of the initial sugar ratio on
fermentation performance, growth was simulated at different
glucose:xylose ratios of 1:2, 1:1, 2:1 and 4:1 with the total C-mol
of the substrates as a constant. To investigate the effect of
agitation on fermentation performance, growth simulations were
performed by varying the mass transfer coefficient, kLa. The
fermentation performance was quantified through the maximum
2,3-BDO productivity, defined as the maximal concentration of
2,3-BDO divided by fermentation time.
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