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Editorial on the Research Topic

Ecological Applications of Earth SystemModels and Regional Climate Models

Earth systemmodels (ESMs) that couple sub-models describing atmospheric and oceanic dynamics
with models of the cryosphere and biosphere are increasingly used to project climate change.
Regional climate models (RCMs) function similarly but focus on regional scales with finer
resolution. Due to the inclusion of lower trophic levels in ESMs (phytoplankton, zooplankton),
these models are increasingly applicable for addressing ecological questions. While ESMs and
RCMs do not typically represent higher trophic levels, they provide insights through: (1) coupling
with mechanistic upper trophic level models, and (2) providing outputs to parameterize statistical,
habitat-based models. Both types of analyses are increasingly used to forecast the dynamics of
commercially and ecologically important species for management (Payne et al., 2017; Tommasi
et al., 2017; Jacox et al., 2020). There are challenges related to using ESMs to explore ecological
questions due to their coarse spatial and taxonomic resolution and a lack of understanding by
many ecologists of the structural differences among different ESMs (Kearney et al., 2021). This
Research Topic (RT) emerged as a result of the 2014 Ecological Dissertations in Aquatic Sciences
Symposium, which led to amanuscript (Asch et al., 2016) and a session at the 2019 Aquatic Sciences
Meeting entitled “Ecological Applications of ESMs and RCMS.” The RT includes papers from the
2019 conference session and additional contributions from the community.

REGIONS

In Figure 1, we grouped the papers in this RT based on region, trophic level, oceanic drivers
of changes, and modeling approach. Five papers focused on the Northeast Pacific (California
Current, Gulf of Alaska), three the Northeast Atlantic, two theWestern Pacific, and three presented
global analyses (Figure 1A). Studies from the southern hemisphere were underrepresented. This

5

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.773443
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.773443&domain=pdf&date_stamp=2021-10-08
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aschr16@ecu.edu
https://doi.org/10.3389/fmars.2021.773443
https://www.frontiersin.org/articles/10.3389/fmars.2021.773443/full
https://www.frontiersin.org/research-topics/10815/ecological-applications-of-earth-system-models-and-regional-climate-models


Asch et al. Editorial: Ecological Applications of Climate Models

is a pattern common to meta-analyses of marine global change
biology (Mackas et al., 2012; Poloczanska et al., 2013). Also
not represented was the Western Atlantic; these gaps might
reflect regional research priorities and the availability of well-
developed RCMs.

MODELING APPROACHES

Contributions were evenly distributed between global ESMs
and RCMs (Figure 1D). Some papers (Holdsworth et al.; Pozo
Buil et al.) integrated across these models by using dynamical
downscaling of global models to inform boundary conditions
at the edges of RCMs. Within the ESM and RCM analyses,
papers used diverse approaches to examine how physical and
biogeochemical forcing impacts marine ecosystems (Figure 1E).
Some studies, such as Birkmanis et al., used species distribution
modeling to statistically link environmental drivers with changes
in habitat suitability. Other papers used a more mechanistic
approach, such as trait-based models to investigate functional
group dynamics (Petrik et al.) or an individual-based approach
to examine larval dispersal or animal movement (Fiechter et al.;
Norton et al.). Other papers conducted model experiments
where simulations of different scenarios were run to evaluate
organismal responses (Bahl et al.; Bednaršek et al.). Two papers
investigated coupled natural-human systems; Suh and Pomeroy
used changes in fish catch to parameterize an economic model
and Fiechter et al. considered fleet dynamics when modeling
Pacific sardine.

Coupling ESMs and RCMs to ecological analyses offers several
key advantages:

(1) Emergent properties of the coupled physical and ecological
systems can be identified, revealing underlying dynamics that
could be difficult to tease out via observations or experiments.
For example, Bahl et al. identified biogeochemical variables
that exhibit linear vs. non-linear responses to radiative
forcing. Petrik et al. investigated the “pelagicification” of ocean
ecosystems whereby the biomass of large pelagic fishes declines
under climate change due to their increasing metabolic
demands combined with decreased secondary productivity.
Norton et al. followed the environmental exposure history of
individual crab larvae, which would be impossible to track
with solely observations.

(2) Projection of responses to future conditions (temperature,
ocean acidification, hypoxia, stratification) are well-grounded
by the use of ESMs and RCMs. Such analyses also allow the
separation of effects due to individual stressors that often
co-occur. Bednaršek et al. differentiated between changes in
aragonite saturation due to rising CO2 and eutrophication
by using model scenarios to separate these effects. Boyd
et al. differentiated between multiple drivers affecting Atlantic
mackerel and concluded that fishing mortality had a larger
effect than climate change.

(3) Model simulations can identify rapidly changing locations
or organisms at risk. Reygondeau et al. identified no-analog
biogeochemical provinces that emerged under climate change.
How organisms will adapt and acclimate to these novel

conditions is unknown andmodeling results could help ensure
ecological monitoring is in place to detect such responses.

INTEGRATING OCEAN OBSERVATIONS
AND MODELS

In situ observations are often the most reliable measure of
a variable. However, they can be costly to obtain and may
lack resolution in space or time. Satellite products are useful
for increasing coverage, but rely on calibration with in situ
measurements (Behrenfeld and Falkowski, 1997). Although using
satellite data requires additional training, integrating in situ and
satellite approaches with modeling is a logical step forward and
is illustrated with two papers on the North Sea. This focus on
the North Sea may reflect its historical wealth of observations
and heterogeneous oceanography, which is difficult for models to
capture. North Sea mixing is controlled by tidal influence along
the coast and convective forcing offshore, both of which affect
biogeochemistry and phytoplankton biomass. Mészáros et al.
integrated satellite, in situ, and model observations to describe
more accurately the dynamic nature of the region and project
changes in primary productivity. Biogeochemistry of the coastal
North Sea is also highly influenced by terrestrial run-off. Xu
et al. showed coastal and offshore sites had different historical
trends in chlorophyll a, with decreasing concentrations offshore
and increasing trends along the coast despite a decrease in
nutrient supply. This result was counterintuitive, leading them to
conclude that satellite andmodeling data should be used together
to reassess in situmonitoring locations.

SPECIES AND CLIMATE DRIVERS

Climate change is a multifaceted phenomenon that causes
changes in diverse physico-chemical ocean characteristics. Papers
covered a wide range of oceanic drivers affected by climate
change that impact marine ecosystems (Figure 1C). The most
common drivers examined were changes in temperature and
primary and secondary productivity. Notably missing were
studies examining sea level rise, which has a substantial
effect on habitat availability and coastal ecosystem functioning
(Oppenheimer et al., 2019). This gap likely reflects that ESMs and
RCMs operate at broader geographic scales than most analyses of
sea level rise that focus on nearshore environments.

Papers were nearly evenly distributed among examining
nutrients and biogeochemical dynamics, primary production,
and upper trophic levels (Figure 1B). Several papers also
investigated the dynamics of zooplankton, benthos, and fisheries.
The few examples focused on zooplankton may reflect that they
tend to be poorly represented in both nutrient-phytoplankton-
zooplankton-detritus models and upper trophic level models
(Rose et al., 2010).

Six papers projected the responses of fish and crabs to
future climate (Figure 1B). Use of Representative Concentration
Pathway 8.5 was common across all analyses; several studies also
included other Representative Concentration Pathways. These
papers showed that the response of upper trophic levels to future
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FIGURE 1 | Shared characteristics of papers in this Research Topic (RT). (A) Geographic distribution of studies. (B) Trophic level examined. This diagram contains

pictorial representations of nutrients, primary producers, zooplankton, benthic organisms, top predators, and fisheries. Arrows depict flows between these trophic

levels. If a study considered primary production mainly as a driver of ecological change at higher trophic levels, then this study is represented in this diagram as

focusing on higher trophic levels rather than primary producers. (C) Drivers of ecological change examined in this RT. Temp, temperature; NPP, net primary production.

(Continued)
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FIGURE 1 | This also includes studies examining chlorophyll concentration or secondary production; DO, dissolved oxygen; Nut, nutrients; pH, includes all studies

examining ocean acidification and the carbonate chemistry system; Light, includes studies examining changes in turbidity or euphotic depth; Sal, salinity; Strat,

stratification. This includes studies examining changes in mixed layer depth (MLD) since MLD is often measured as a function of stratification; Mixing, includes

upwelling and mixing by eddies; Physio, includes physiological and metabolic rates; Econ, economic drivers; Bathy, bathymetry. If phytoplankton dynamics are

examined by a study as the primary ecological variable of interest, then primary producers are classified as a response variable and not the underlying driver of

change. (D) Venn diagram indicating how many studies utilized regional climate models (RCMs) and global earth system models (ESMs). The intersection between

these categories includes dynamical downscaling studies that used outputs from ESMs to simulate future changes in regional climate. Studies that utilized RCMs but

where downscaling was not a major focus of the manuscript were placed solely in the RCM category. (E) Venn diagram of modeling and observational approaches

used in each manuscript. SDM, species distribution model; IBM, individual-based model; CNH, coupled natural-human system. Mechanistic models refer to the

ecological component of the model and not the underlying ESM or RCM. Classifications are based on a study’s primary modeling approach. Illustrations are from

ian.umces.edu/media-library and freepik.com.

climate was not a simple decline or poleward shift following
optimal temperatures. Projected responses were complicated,
including positive and negative responses in abundance that
were accompanied by changes in the location and shape of
spatial distributions. For example, Petrik et al. predicted general
declines in their fish functional groups within an ESM under
climate change but groups differed in how closely they tracked
the climate-induced changes in productivity and their prey.
Birkmanis et al. predicted opposite responses of two different
shark species, while Boyd et al. and Fiechter et al. predicted
long-term increases in their study species.

Overall, RT papers were diverse in terms of modeling
approach, focal ecosystems, and species examined. The research
approaches described provide examples of how ESMs and RCMs
can be coupled to models to address ecological questions related
to climate change. Some missing topics include paleo-ecological
studies, data assimilation, integration of data from autonomous
observational platforms (Chai et al., 2020), and examination of
climate variability. The recent publication of the 6th Assessment
Report by the Intergovernmental Panel on Climate Change will
provide additional impetus to continue the application of ESMs
and RCMs to answer pressing ecological questions.
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The Importance of Environmental
Exposure History in Forecasting
Dungeness Crab Megalopae
Occurrence Using J-SCOPE, a
High-Resolution Model for the US
Pacific Northwest
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2 Department of Marine Sciences, University of Connecticut Groton, Groton, CT, United States, 3 Conservation Biology
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The Dungeness crab (Metacarcinus magister) fishery is one of the highest value fisheries
in the US Pacific Northwest, but its catch size fluctuates widely across years. Although
the underlying causes of this wide variability are not well understood, the abundance
of M. magister megalopae has been linked to recruitment into the adult fishery
4 years later. These pelagic megalopae are exposed to a range of ocean conditions
during their dispersal period, which may drive their occurrence patterns. Environmental
exposure history has been found to be important for some pelagic organisms, so we
hypothesized that inclusion of recent environmental exposure history would improve our
ability to predict inter-annual variability in M. magister megalopae occurrence patterns
compared to using “in situ” conditions alone. We combined 8 years of local observations
of M. magister megalopae and regional simulations of ocean conditions to model
megalopae occurrence using a generalized linear model (GLM) framework. The modeled
ocean conditions were extracted from JISAO’s Seasonal Coastal Ocean Prediction of
the Ecosystem (J-SCOPE), a high-resolution coupled physical-biogeochemical model.
The analysis included variables from J-SCOPE identified in the literature as important
for larval crab occurrence: temperature, salinity, dissolved oxygen concentration, nitrate
concentration, phytoplankton concentration, pH, aragonite, and calcite saturation state.
GLMs were developed with either in situ ocean conditions or environmental exposure
histories generated using particle tracking experiments. We found that inclusion of
exposure history improved the ability of the GLMs to predict megalopae occurrence
98% of the time. Of the six swimming behaviors used to simulate megalopae dispersal,
five behaviors generated GLMs with superior fits to the observations, so a biological
ensemble of these models was constructed. When the biological ensemble was used for
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forecasting, the model showed skill in predicting megalopae occurrence (AUC = 0.94).
Our results highlight the importance of including exposure history in larval occurrence
modeling and help provide a method for predicting pelagic megalopae occurrence.
This work is a step toward developing a forecast product to support management of
the fishery.

Keywords: Metacarcinus magister, megalopae, particle tracking, simulated larval behaviors, exposure history,
habitat modeling, J-SCOPE, GLM

INTRODUCTION

The Dungeness crab fishery is one of the most economically
important fisheries on the US West Coast, totaling over $200M
in 2017 (Pacific States Marine Fisheries Commission, 2019).
However, this fishery experiences wide inter-annual fluctuations
in catch size. For example, in Washington and Oregon, the lowest
commercial crab catches were reported in the early 1980s (<1300
metric tons in Washington; <2300 metric tons in Oregon), and
record high catches, nearly 10-fold higher, were reported in the
2004–2005 season (>11,300 metric tons in Washington; >15,000
metric tons in Oregon), with moderate variability observed
even across consecutive years.1, 2 Variable catch rates have
been accompanied by large swings in ex-vessel landing values,
e.g. from $33.9M in the 2013–2014 season to $74.2M in the
2017–2018 season in Oregon. These large fluctuations have the
potential to affect management strategies, fishermen’s livelihoods,
and local economies (Botsford et al., 1983; Methot, 1986). Due to
consistently high fishing effort, it is thought that variable annual
catch rates reflect changes in adult Dungeness crab population
sizes. The precise causes of this variability are not completely
understood but have long been a subject of research (Methot and
Botsford, 1982; Botsford and Hobbs, 1995; Higgins et al., 1997).

One factor that has been linked to variability in the
Metacarcinus magister fishery is the abundance of the final
pelagic larval stage, the megalopal stage, 4 years prior (Shanks
and Roegner, 2007; Shanks et al., 2010; Shanks, 2013). Shanks
(2013) reported a significant, parabolic relationship between
megalopae abundance in coastal habitats and recruitment into
the adult M. magister fishery four years later: recruitment into the
fishery was maximized at intermediate megalopae abundances,
and otherwise was limited either by population levels (low
abundance) or density-dependent effects (high abundance).

Abundance of M. magister megalopae is influenced by ocean
conditions on small and large scales. For example, survival
and condition of M. magister larvae have been shown to be
negatively impacted by exposure to low pH (Descoteaux, 2014;
Miller et al., 2016); steep calcite saturation state gradients
(Bednaršek et al., 2020); extreme temperatures (Wild, 1980;
Pauley et al., 1989; Sulkin et al., 1996); low salinities (Reed,
1969; Brown and Terwilliger, 1999); low oxygen conditions
(Bancroft, 2015; Gossner, 2018); and poor-quality or scarce food
(Bigford, 1977; Harms and Seeger, 1989; Sulkin et al., 1998;
Casper, 2013). Additionally, megalopae abundance has been

1https://www.dfw.state.or.us/MRP/shellfish/commercial/crab/landings.asp
2https://wdfw.wa.gov/fishing/commercial/crab/coastal/about

significantly correlated with large-scale oceanographic features,
such as the phase of the Pacific Decadal Oscillation (PDO;
Shanks, 2013), wind-induced currents (Hobbs et al., 1992), and
the timing of the spring transition of the California Current
(Shanks and Roegner, 2007). The spring transition marks the
onset of seasonal upwelling, which is a primary driver of ocean
variability in this region.

Every summer the coastline of the Pacific Northwest
experiences a shift in wind direction that promotes upwelling
of “corrosive” deep water, which is low in oxygen, pH, and
calcium carbonate saturation states, to habitat on the continental
shelf (Huyer et al., 1979; Feely et al., 2008, 2016; Hickey and
Banas, 2008). Though these winds vary in intensity and duration,
hypoxia (O2 < 1.4 ml l−1; 61 µmol kg−1; 62 mmol m−3) has
increasingly developed over portions of the continental shelf in
recent years, with occasional severe hypoxia (O2 ∼ 0.5 ml l−1;
22 µmol kg−1; 22 µmol kg−1) occurring in M. magister habitat
(Grantham et al., 2004; Chan et al., 2008; Connolly et al., 2010).
Low pH conditions, sometimes as low as 7.6, and other carbonate
chemistry parameters (e.g. delta calcite, pCO2, aragonite and
calcite saturation states), accompany this low oxygen water,
providing an additional stress to organisms (Feely et al., 2008,
2012, 2016; Harris et al., 2013; Busch and McElhany, 2016;
Hodgson et al., 2016; Miller et al., 2016; Siedlecki et al., 2016;
Bednaršek et al., 2017, 2020).

Summer upwelling conditions have been simulated by an
experimental ocean model, JISAO’s Seasonal Coastal Ocean
Prediction of the Ecosystem (J-SCOPE; Siedlecki et al., 2016).
J-SCOPE is a high-resolution (1.5 km horizontal resolution;
40 vertical layers), Regional Ocean Modeling System (ROMS)-
based, biogeochemical model for Washington and Oregon shelf
waters.3 J-SCOPE has demonstrated measurable skill for ocean
conditions on seasonal timescales (Siedlecki et al., 2016), and
environmental variables from this model have been used to
predict habitat for sardines (Sardinops sagax; Kaplan et al.,
2016) and hake (Merluccius productus; Malick et al., in prep).
Additionally, by pairing the J-SCOPE model system with a
particle tracking model and simulated behaviors, environmental
exposure history has been shown to influence pteropod survival
(Bednaršek et al., 2017). When run in hindcast-mode, J-SCOPE
simulates realistic historical ocean conditions and benefits from
physical forcing (e.g. boundary conditions, atmospheric forcing,
rivers, and tides) that is data-assimilated. These hindcasts,
spanning years 2009–2017, output variables specifically relevant
to M. magister megalopae, and are used in this study.

3http://www.nanoos.org/products/j-scope/home.php
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With the right combination of prognostic ocean conditions,
M. magister megalopae occurrence and habitat could be forecast
over a large spatial scale and variable conditions, supplementing
field surveys of megalopae (Shanks et al., 2010) and improving
forecasting for management applications. Current management
relies on pre-season monitoring of crab conditions and real-
time catch rates. By incorporating the megalopal stage into
management, Dungeness crab fisheries managers in Washington
and Oregon would benefit from an ocean model-based tool
that would forecast catch with a lead time of >4 years,
a timescale that is useful for coordinating state, tribal, and
federal managers to develop realistic long-term management
strategies, and for fishermen to anticipate changes in the resource
(Hobday et al., 2016).

Our aim is to develop a statistical model driven by
modeled ocean conditions to predict megalopae occurrence.
We tested the hypothesis that occurrence of M. magister
megalopae is affected by exposure to both concurrent and
recent environmental conditions that are predictable on seasonal
timescales. We propose that exposure history may influence
megalopae occurrence patterns because prior exposure to
lethal or sub-optimal environmental conditions would either
increase megalopae mortality or potentially spur avoidance
behaviors (which have been observed during settlement,
e.g. Sobota and Dinnel, 2000), ultimately resulting in a
decreased probability of occurrence. Thus, we investigated
whether inclusion of recent exposure history would improve
our ability to model megalopae occurrence over using only
environmental conditions concurrent with sampling. Hence,
simulated ocean conditions over an 8 year period were used
to model the occurrence of megalopae within generalized
linear models (GLMs) that included two distinct suites
of predictor variables: (1) “in situ” GLMs were developed
with physical and biogeochemical variables extracted from
the ocean model at the times and locations concurrent
with megalopae sampling and (2) “exposure history” GLMs
included physical and biogeochemical variables extracted along
simulated megalopae trajectories from six distinct dispersal
experiments. We found that exposure history did improve
our ability to model megalopae occurrence, and we assembled
a “biological ensemble” of GLMs to generate a superior
forecast for megalopae occurrence. An ancillary outcome
of this study was the identification of ocean conditions
that may influence spatial heterogeneity of M. magister
megalopae, identified as the environmental variables that
were included as predictors in the occurrence GLMs. The
framework developed in this study could be applied to other
pelagic species to assess the influence of exposure history
on their habitat.

MATERIALS AND METHODS

Our methods rely on a range of interdisciplinary tools and
procedures. We provide a flow chart to clarify the order of
operations and linkages therein for the methods and results in
this paper (Figure 1).

Metacarcinus magister Megalopae
Collection
Metacarcinus magister larvae were collected on surveys
conducted by NOAA Northwest Fisheries Science Center
(NOAA/NWFSC) as part of a larger study of juvenile salmonids
and associated nekton (Morgan et al., 2019) at 37 unique stations
off of the Washington and Oregon coasts from 2009 to 2017
(Table 1 and Supplementary Table 1). Surveys were conducted
during the daytime in late May and/or June for approximately
week-long periods. Larvae were collected using a 0.6 m bongo net
with 335 µm mesh size. Plankton nets were towed obliquely by
letting out 60 m of cable and immediately retrieving it at a rate of
30 m/min while being towed at two knots. Thus, nets were fished
from a maximum depth of 20–30 m to the surface, spanning
a large portion of the expected depth habitat of megalopae
(see details below). Samples were immediately preserved in
5% buffered formalin/seawater solution and returned to the
laboratory for analysis. In the laboratory, plankton samples were
rinsed and then sorted based on larval developmental stage and
enumerated. For more details on field and laboratory methods,
see Morgan et al. (2005). For this study, we modeled megalopae
occurrence, characterized as presence or absence of megalopae at
each sampling station.

Modeled Ocean Conditions
J-SCOPE Historical Ocean Simulations
Historical ocean simulations (i.e. hindcasts) were used in lieu
of empirical measurements because they provide spatially and
temporally continuous ocean conditions. We have conducted
extensive model evaluation with ocean observations for all
the variables considered here (see Siedlecki et al., 2016, and
results below). Modeled environmental variables, obtained
from the J-SCOPE ocean model (Siedlecki et al., 2016),
were used to develop the GLMs to predict megalopae
occurrence. Environmental conditions were extracted from
historical ocean simulations for 2009–2016 corresponding to
either the megalopae collection times and locations (in situ GLM)
or along backtracking particle trajectories (exposure history
GLMs; more details below). Historical ocean simulations for 2017
were reserved for GLM performance testing.

J-SCOPE Variable Skill Assessment
Validation of J-SCOPE’s historical ocean simulations was
performed for a wider range of environmental variables than
in previous work (e.g. Siedlecki et al., 2015, 2016; Year in
Review webpages at http://www.nanoos.org/products/j-scope/).
Additionally, assessments were performed for distinct depth
intervals (Table 2) to investigate the skill of particular ocean
conditions as they were experienced by in situ or exposure
history particles, since the skill of these predictor variables may
be relevant to the subsequent performance of the megalopae
occurrence GLMs. To accomplish this, empirical observations
were matched temporally and spatially to modeled variables.

Ocean Observational Data
Observational data were compiled from regional moorings
and surveys conducted from 2009 to 2017 (Figure 2 and
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FIGURE 1 | Flowchart summarizing the main methods and results of this paper, including validation of predictor variables skill (gray); development of in situ (blue)
and exposure history (red) generalized linear models (GLMs); comparison of in situ and exposure history GLMs (purple); assembly of the biological ensemble (yellow);
and forecasting of megalopae occurrence and habitat (green). Start and end nodes are in ovals, process steps are in boxes, and decision points are in diamonds.
Table SX refers to Supplementary Tables (1–9). AICc = Akaike information criterion corrected for small sample size; AUC = area under the receiver operating
characteristic (ROC) curve; EH = exposure history; GLM = generalized linear model; J-SCOPE = JISAO’s Seasonal Coastal Ocean Prediction of the Ecosystem.

Supplementary Table 2). CTD-based measurements of
temperature, salinity, oxygen, and phytoplankton (measured as
fluorescence) were made ∼1–2 times per month from 2009 to
2017 at seven stations across the continental shelf and slope along
the Newport Hydrographic Line (NHL; 44.6517◦N). Surface
nitrate data were also collected along the NHL. NOAA/NWFSC
Groundfish bottom trawl surveys measured bottom temperature
on the continental shelf and slope from 2009 to 2014. Nitrate was
also measured at surface and sub-surface locations during the

NOAA/NWFSC Northern California Current survey in 2011. In
addition to megalopae sampling conducted by NOAA/NWFSC
Juvenile Salmon surveys, nitrate was measured at 3 m depth at
37 stations off the Washington and Oregon coasts from 2009 to
2014. Temperature and oxygen were observed at surface and sub-
surface locations∼1–2 times per month from 2009 to 2017 at the
Cape Elizabeth mooring in the Olympic Coast National Marine
Sanctuary (OCNMS). Temperature, oxygen, salinity, nutrients
(i.e. nitrate, phosphate, and silicate), dissolved inorganic carbon
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TABLE 1 | Megalopae sampling survey information, including sampling date,
number of stations where megalopae were present and absent, and total number
of stations sampled (see Figure 4A for map; see Supplementary Table 1 for
sampling location information).

Survey Year Sampling
dates

Megalopae
present (# Stns)

Megalopae
absent (# Stns)

Total # Stns
sampled

1 2009 5/23–5/28 15 15 30

2 2009 6/24–6/30 11 23 34

3 2010 5/21–5/27 17 12 29

4 2010 6/22–6/28 5 31 36

5 2011 5/21–5/26 13 16 29

6 2011 6/21–6/27 9 26 35

7 2012 5/30–6/3 5 20 25

8 2012 6/22–6/28 11 24 35

9 2013 6/21–6/27 13 23 36

10 2014 6/21–6/27 18 17 35

11 2015 6/22–6/28 5 28 33

12 2016 6/23–6/29 5 27 32

13 2017 6/22–6/28 5 28 33

Sampling was conducted with a bongo net fished from a maximum depth of 30 m
to the ocean surface. Surveys from 2009 to 2016 were used in generalized linear
model development, while the 2017 survey was reserved for out-of-sample model
performance testing.

TABLE 2 | Environmental condition extractions for in situ (row 1) and particle
tracking (rows 2–7) experiments, including (when relevant) where environmental
conditions were extracted, the behavior simulated for particles, the depth at which
particles were initialized, and the core depth habitat.

Experiment Environmental
exposure
extractions

Particle
behavior

Start
depth (m)

Core
depth

habitat (m)

In situ Sampling station
locations

N/A N/A 0–30

EH-DVM30 Particle tracking 0–30 m DVM 30 0–30

EH-DVM60 Particle tracking 0–60 m DVM 60 0–60

EH-S1 Particle tracking Surface-following 1 0–5

EH-P1 Particle tracking Passive 1 40–50

EH-P30 Particle tracking Passive 30 55–70

EH-D15P Particle tracking 0–30 m DVM for
15 days, then

passive

30 0–30

EH = exposure history simulation; DVM = diel vertical migration behavior;
S = surface-following behavior; P = passive behavior.

(DIC), and total alkalinity (TA) were measured at surface and
sub-surface locations on Pacific Coast Ocean Observing System
(PaCOOS) annual surveys in 2009 and 2010. Temperature,
oxygen, salinity, nutrients, phytoplankton, DIC, and TA were
also measured at surface and sub-surface locations on West
Coast Ocean Acidification (WCOA) surveys conducted in 2011,
2012, 2013, and 2016. For all surveys with temperature, salinity,
phosphate, silicate, DIC, and TA measurements, values of pH (at
in situ temperature, salinity, and pressure, on the total scale) and
aragonite (�ar) and calcite saturation states (�ca) were calculated
in CO2SYS (Pelletier et al., 2007), using carbonate dissociation
constants from Lueker et al. (2000), salinity to boron ratios
from Uppström (1974), bisulfate equilibrium constants from

Dickson (1990), and the “seacarb” option for fluoride (i.e. Perez
and Fraga, 1987 when 33 > T > 10 [◦C] and 40 > S > 10 [PSU],
otherwise Dickson and Riley, 1979). Additionally, empirical
relationships using the proxy variables oxygen and temperature
were developed to estimate carbonate chemistry variables for the
region encompassed by the model domain based on calibration
data sets collected on all WCOA surveys following the methods
described in Alin et al. (2012; Eqs. 1–3):

pH = 7.2587+ 0.0021314×O+ 0.018633× T (1)

�ar = 0.990759+ 0.04372× (T− Tr)+ 0.0043285× (O− Or)

+ 0.0006399× (T− Tr)× (O− Or) (2)

�ca = −20.343+ 1.8719× T+ 0.0082364×O+ 69.047÷ T

− 0.046982× T2 (3)

where Tr = 8.1903 and Or = 144.441 are reference values
based on the calibration data set, and T = temperature (◦C)
and O = oxygen (µmol kg−1) are modeled or observed
values. These equations were applied at sites where both
temperature and oxygen data were available. For phytoplankton
observations (measured as either fluorescence or chlorophyll),
units were converted following the methods of Davis et al.
(2014) prior to comparison with the modeled phytoplankton
variable (mmol m−3).

Statistical Skill Calculations
Observations and modeled data were paired within a given
depth interval (Table 2), and two statistics were calculated
to assess model variable skill: (1) the Pearson correlation
coefficient (r), ranging from −1 (negative correlation)
to 1 (positive correlation), indicates the degree of linear
correlation between the observed and modeled variables;
and (2) normalized root-mean-square error (NRMSE)
estimates the magnitude of the difference between the
observed and modeled variables, with the sign indicating
the direction of model bias (positive sign indicates model
overestimate; negative sign indicates model underestimate; see
Supplementary Equations 1, 2).

Variable Selection for Habitat Models
In situ Variables
To assemble a suite of potential predictor variables for developing
the GLM, we selected physical and biogeochemical variables
identified in the biological literature as important for the
development and survival of M. magister megalopae or a closely
related organism, and that exist or can be derived from the
J-SCOPE historical ocean simulations. We omitted synthetic
or summary variables, such as the PDO or upwelling indices,
despite their reported correlations with megalopae abundance
(Hobbs et al., 1992; Shanks and Roegner, 2007; Shanks, 2013)
because we strive for a mechanistic understanding of how
fundamental ocean conditions characterize megalopae habitat—
e.g. is it the cooler water temperatures, lower oxygen levels, or
more acidified conditions of the upwelled waters that influence
habitat? Thus, a total of eight potential predictor variables were
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FIGURE 2 | Empirical observation sampling locations used to assess the skill
of J-SCOPE modeled ocean variables. Survey and mooring symbols
correspond to the figure legend, with tiny black dots representing groundfish
survey locations. The Grays Harbor Line and the Newport Line, two common
hydrographic transects, are plotted for reference. The 200 and 500 m isobaths
are indicated by light brown contours, and depths shallower than 50 m are
shaded light brown. Land is shaded gray. NHL = Newport Hydrographic Line;
NCC = Northern California Current; OCNMS = Olympic Coast National Marine
Sanctuary; PaCOOS = Pacific Coast Ocean Observing System;
WCOA = West Coast Ocean Acidification. See Supplementary Table 2 for
additional information on sampling dates, depths, and measured parameters.

considered for inclusion in our statistical models: temperature,
salinity, dissolved oxygen concentration, nitrate concentration,
phytoplankton concentration, pH, aragonite saturation state
(�ar), and calcite saturation state (�ca). Temperature was chosen
because it is thought to influence M. magister larval development
duration (Moloney et al., 1994; Sulkin and McKeen, 1996; Sulkin
et al., 1996) and to be an indicator of advective processes (Ferrari
and Ferreira, 2011). Due to the high abundance of M. magister
megalopae observed within Columbia River plume fronts,
salinity was selected as there is substantial salinity variability
within the plume (Morgan et al., 2005), and M. magister larvae
are reportedly sensitive to changes in salinity (Pauley et al., 1989).

Dissolved oxygen was selected because M. magister megalopae
and juveniles experience negative metabolic effects and high
mortality rates, respectively, in hypoxic conditions (Bancroft,
2015; Gossner, 2018). In addition to temperature, nitrate
concentration is a strong indicator of upwelling, indicating
both nutrient sources for primary productivity and offshore
Ekman transport (Hales et al., 2005; Palacios et al., 2013).
Phytoplankton concentration was selected as an indicator of
cross-shelf and alongshore currents and retentive features, and
as a proxy for food availability (Largier et al., 2006; Kudela
et al., 2008). pH was included because Miller et al. (2016)
found that exposure of M. magister larvae to low pH conditions
increased mortality and slowed development rates. We selected
�ca as a potential predictor because the M. magister megalopae
exoskeleton contains calcite (Bednaršek et al., 2020; Boßelmann
et al., 2007; Neues et al., 2007). Although �ar may not directly
affect the condition of the megalopal exoskeleton, we chose to
include this variable as a potential predictor because of the
impacts it has on the pelagic food web that may influence
megalopae development and survival (Riebesell et al., 2000;
Fabry et al., 2008).

Five variables (temperature, salinity, dissolved oxygen
concentration, nitrate concentration, and phytoplankton
concentration) were extracted directly from the J-SCOPE
historical ocean simulations at the stations where megalopae
were sampled, and then averaged over the upper 30 m of the
water column, the sampling depth of the megalopae collections.
The remaining three variables (pH, �ar, �ca) were calculated
with empirically derived formulae that used dissolved oxygen
concentration and temperature at the station locations from the
J-SCOPE historical ocean simulations (see equations above);
these were then averaged over the surface 30 m.

Exposure History Variables
Simulated megalopae dispersal
To test our hypothesis that recent environmental exposure
history is important in determining megalopae occurrence, we
used particle tracking to simulate virtual megalopae dispersal.
Since megalopal stage duration is approximately 30 days for
temperatures in this region (Poole, 1966; Ebert et al., 1983) and
physical uncertainty in the particle trajectories due to unresolved
vertical and horizontal advection and diffusion becomes large
over approximately the same time span (sensitivity analyses not
shown), particles were tracked backward in time for a period
limited to 30 days. Future studies may incorporate earlier larval
developmental stages (e.g. zoeae) or run full lifecycle individual-
based models, but the current study focuses on whether the
environmental exposure over the course of the 30 days prior
to megalopae collection can be used to improve megalopae
occurrence modeling. Thus, we simulated megalopae dispersal
with an offline particle tracking model, the Larval TRANSport
Lagrangian model (LTRANSv2b; North et al., 2008, 2011; Schlag
and North, 2012), driven by external physical forcing, random
displacement, and directed swimming behaviors as prescribed
by the user. To account for stochasticity, 100 particles were
initialized at each of the 37 sampling stations on the last
day of each survey (Table 1). Ocean velocities from J-SCOPE
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hourly historical ocean simulations were “reversed” (i.e. negated)
to force particle advection backward in time, and particle
behavior was imposed.

Although researchers have used observations of the horizontal
and vertical distribution of larvae to infer swimming behavior,
these behaviors have not been precisely characterized. Thus,
six particle back-tracking experiments were run to simulate the
depth habitats occupied and the range of behaviors potentially
exhibited by M. magister megalopae in the 30 days prior to
collection (Table 2). In the first two simulations, particles
exhibited diel vertical migration (DVM) behavior to daytime
depths of either 30 m (“EH-DVM30”) or 60 m (“EH-DVM60”),
per depth variations reported in the literature (Hobbs and
Botsford, 1992). These behaviors simulated active swimming
down to the maximum depth at dawn, maintaining that
depth throughout the day (∼16 h), swimming up to the
water’s surface at dusk, and maintaining the near surface
habitat for the remainder of the night (∼8 h; swimming
speed = 10 cm/s; Fernandez et al., 1994; Rasmuson, 2013;
Rasmuson and Shanks, 2014). In the third simulation, particles
sustained a near-surface habitat by constantly swimming upward
(“EH-S1”) to mimic anecdotal reports of surface aggregations
of megalopae in swarms or attached to flotsam (Lough, 1976;
Shenker, 1988). Although DVM and surface-following behaviors
are most commonly reported in the biological literature for
megalopae, we ran two additional simulations that allowed
particles to disperse passively (i.e. no swimming behavior) after
being initialized either at the surface (“EH-P1”) or at 30 m
depth (“EH-P30”), which represent the vertical limits of the
plankton collection tows. Passive behavior was simulated for two
reasons: (1) because the collected organisms were identified to
developmental stage (i.e. megalopae) but their precise age was
unknown, organisms that had recently molted from the last
zoeal stage would have exhibited reduced swimming abilities
commensurate with the earlier life stage (Jacoby, 1982) for
potentially a large portion of the back-tracking period, which
would be more closely approximated by passive dispersal; and
(2) to investigate the effects of behavior on environmental
exposure history, passive dispersal served as a null model for
comparison with the active behaviors. The passive dispersal
simulations included a backward random walk in the vertical
direction, whose magnitude was calculated at each time step
based on the stored local value of vertical diffusion calculated
by the J-SCOPE historical ocean simulation. Finally, to account
for megalopae who may have molted from the final zoeal
stage mid-way through the 30-day period prior to collection,
we simulated a behavior for which the particle exhibited
DVM (0–30 m depth) for the first 15 days of the back-
tracking simulation, followed by passive dispersal for the
second half of the simulation (“EH-D15P”). For all behaviors,
simulated dispersal trajectories were updated every 60 s, and
particle locations and ambient environmental conditions were
recorded hourly.

Prior to calculating exposure history for the particle tracks,
we removed records of particles that had exited the model
boundaries, which included particles located in the Columbia
River and Salish Sea, due to a lack of confidence in the

biogeochemical modeling in those areas (i.e. particles located
at longitude > −123.9◦E or < −126.5◦E or latitude > 49.5◦N
or < 43.5◦N; 12.2% of exposure history records). Additionally, we
removed any particle exposure data that had unrealistic negative
values due to extrapolation errors when a particle was located
either at the ocean surface or just above the seafloor (0.29% of
exposure history records).

Exposure history variable calculations
Two types of exposure history statistics were calculated
for each particle and then averaged across all particles
(N = 100) initialized at each station. (1) Average environmental
conditions for all variables (temperature, salinity, dissolved
oxygen concentration, nitrate concentration, phytoplankton
concentration, pH, �ar, and �ca) were calculated by extracting
the ambient environmental field from the J-SCOPE historical
ocean simulations along the particle trajectory and then averaging
over the entire 30-day simulation. (2) Severity indices (“SI”),
which are a combined metric of the intensity and duration of
exposure to stressful conditions, were calculated for a subset
of environmental variables (oxygen, pH, �ar, and �ca) by
multiplying the duration of time (in days) and magnitude
beyond an environmental threshold that a particle was exposed
to a stressful condition, and then summed over the 30-day
backtracking simulation (Hauri et al., 2013; Bednaršek et al.,
2017; Supplementary Equations 3, 4). Environmental thresholds
for the severity indices were defined as oxygen < 1.4 ml l−1

(O2 < 62 mmol m−3; 61 µmol kg−1; i.e. hypoxia), pH < 7.75
(Feely et al., 2008, 2016; Hodgson et al., 2016; Miller et al., 2016),
�ar < 1 (i.e. physical threshold for aragonite dissolution), and
�ca < 1 (i.e. physical threshold for calcite dissolution).

Developing a Habitat Model for
Megalopae
GLM Development
A GLM was used to identify the modeled environmental variables
that best explain the temporal and spatial heterogeneity in
M. magister megalopae occurrence in coastal Washington and
Oregon waters. Although life stage processes and population
dynamics are assumed to be non-linear, linear models are often
used to approximate these processes in fisheries science (e.g.
Ricker, 1973; Austin and Cunningham, 1981; Guisan et al.,
2002; Venables and Dichmont, 2004), and GLMs have been used
successfully to predict probability of occurrence for a wide range
of species (Brotons et al., 2004; MacLeod et al., 2008; Krigsman
et al., 2012; Froehlich et al., 2015). A GLM is a statistical model
that relates a combination of predictor variables (i.e., modeled
ocean variables) to a response variable (i.e. megalopae occurrence
characterized as presence or absence at each sampling station).
Because our response variable had a binomial distribution (i.e.
megalopae were either “present” or “absent”), we used a logit link
function (Eq. 4; Fisher, 1954),

f (µ) = log
(

µ

1− µ

)
(4)
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where
µ =

eXb

1+ eXb
(5)

where Xb is a linear combination of predictor variables (Eq. 5).
To examine the hypothesis that exposure history is an

important driver of megalopae occurrence, a suite of potential
GLMs were developed using environmental variables from one of
two types of experiments (Table 2): (1) “in situ” ocean conditions
extracted from the model at the times and locations where
megalopae were sampled; and (2) exposure history statistics for
ocean conditions were extracted along particle trajectories from
six distinct particle behavior simulations. We included modeled
variables from all 12 surveys (2009–2016; i.e. the “calibration
survey period”) during GLM development. The automated GLM
forward and backward stepwise function in Matlab (R2018b;
stepwiseglm) was used to evaluate all possible combinations of
the suite of predictor variables (eight variables for the in situ
models; 12 variables for the exposure history models), and to
add and/or remove variables until the best GLM with the lowest
Akaike information criterion corrected (AICc) score for small
sample size was derived (Burnham and Anderson, 2002). Non-
significant and/or potentially collinear predictors were retained
in GLMs if their removal resulted in an increased AICc score,
indicating that they contributed to model fit despite their
lack of statistical significance and/or independence from other
predictors in the model. AICc scores attempt to balance the
inclusion of additional predictor variables that improve model fit
but result in increased model complexity by imposing a penalty
for variable inclusion to prevent over-fitting and subsequent
declines in model prediction performance (Wilks, 1995). AICc
scores were used to compare GLMs developed using in situ and
exposure history experiments.

To investigate the impacts of year effects due to inter-annual
variation in environmental conditions in the northeast Pacific
Ocean (e.g. El Nino-Southern Oscillation and an anomalous
“marine heatwave” in 2014–2016; Bond et al., 2015; Fisher
et al., 2015; Thompson et al., 2018) and variability in J-SCOPE
model skill (e.g. Year in Review pages at http://www.nanoos.org/
products/j-scope/) on GLM model development, we conducted
a modified sliding window analysis to develop additional GLMs.
Here, we modified the calibration survey period to include only
10 of the 12 surveys available between 2009 and 2016 during
GLM development, i.e. all combinations of 10 out of 12 surveys
[mathematically, C(12,10)] were used to develop an additional 66
GLMs for the in situ and exposure history experiments, following
the methods described above.

Biological Ensemble Assembly
Since the primary aim of this study was to generate the best model
for forecasting inter-annual megalopae occurrence patterns, we
relied on a model performance metric, the in-sample AUC value,
to identify high-performance GLMs across experiments (i.e.
in situ or exposure history behaviors). The in-sample AUC value
[“area under the receiver operating characteristic (ROC) curve,”
see Fielding and Bell, 1997] measures model performance on the
data used to develop the model. AUC is calculated by comparing
the GLM output probability to the observed presence/absence

for megalopae at each station. AUC ranges from 0 to 1, with
AUC < 0.5 indicating no model skill, and 0.5 < AUC ≤ 1
indicating skill above random chance.

Due to the high performance of several individual GLMs
across exposure history experiments, we selected multiple GLMs
to form a “biological ensemble” to represent a range of simulated
megalopae behaviors for forecasting applications (see below).
We used a criterion of in-sample AUC ≥ 0.64 to identify a
cluster of top-performing GLMs to include in the biological
ensemble. Each member GLM was weighted equally. To evaluate
potential collinearity of variables in the final biological ensemble,
correlation coefficients were calculated for predictor variables in
each member GLM.

Applying the Habitat Model
Biological Ensemble Performance Evaluation
To quantify the biological ensemble’s ability to forecast
megalopae occurrence, the ensemble was used to predict
megalopae occurrence for the out-of-sample 2017 survey. Each
member GLM of the biological ensemble was individually
evaluated for 2017, and then the forecasted megalopae occurrence
probabilities were averaged across the member GLMs to obtain
the biological ensemble forecast for 2017. Specifically, particle
simulations using J-SCOPE modeled ocean conditions for 2017
were conducted for each behavior represented by the GLMs in
the biological ensemble. Exposure histories for each behavior
were incorporated into the relevant member GLM to generate
five independent forecasts of megalopae occurrence probabilities
for each sampling site. These five sets of probabilities were then
averaged (with equal weighting of each member GLM) to forecast
megalopae occurrence probabilities for the biological ensemble as
a whole. Ultimately, an AUC value was calculated by comparing
the biological ensemble’s forecasted megalopae probabilities to
megalopae occurrence observed on the 2017 survey.

Habitat Forecasting
Finally, megalopae habitat throughout the J-SCOPE model
domain was forecast for 2017 using the biological ensemble.
Habitat prediction simulations were run for each behavior
represented by the GLMs in the biological ensemble, using
particles initialized over a grid throughout the x/y domain of the
J-SCOPE ocean model. As described above, the particle exposure
histories were incorporated into the individual GLMs comprising
the ensemble, and then those output probabilities of megalopae
occurrence were averaged across the member GLMs to generate
a spatially comprehensive forecast of megalopae habitat for the
biological ensemble for 2017.

RESULTS

Generalized linear models predicting megalopae occurrence
based on the experiments outlined in Table 2 were constructed
using modeled ocean conditions from either in situ megalopae
sampling locations or exposure history simulations based
on particle tracking experiments with unique behavior and
initialization depth. Comparing these GLMs allowed us to
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TABLE 3 | Skill assessment of J-SCOPE historical ocean simulation variables that will be considered as potential predictor variables during megalopae occurrence GLM
development.

Experiment Depth
habitat (m)

Temperature
(◦C)

Salinity Oxygen
(mmol m−3)

Nitrate
(mmol m−3)

Phytoplankton
(mmol m−3)

pH �ar �ca

In situ/EH-DVM30/EH-D15P 0–30 0.88 0.76 0.71 0.61 0.10 0.71 0.75 0.78

0.58 −0.66 0.79 1.01 1.56 −0.77 −0.70 0.67

(8391) (8391) (8189) (860) (8105) (7516) (7516) (7516)

EH-DVM60 0–60 0.91 0.79 0.75 0.62 0.09 0.75 0.77 0.80

0.51 −0.63 0.82 1.19 −1.30 0.78 0.73 0.68

(14832) (14832) (14482) (906) (14398) (13287) (13287) (13287)

EH-S1 0–5 0.82 0.74 0.50 0.62 0.50 0.56 0.72 0.76

0.76 −0.70 −0.92 −0.84 2.71 −0.88 −0.72 −0.69

(1335) (1335) (1302) (625) (1255) (1195) (1195) (1195)

EH-P1 40–50 0.87 0.66 0.71 0.75 0.04 0.72 0.73 0.77

−0.59 −0.85 −0.94 2.63 −1.14 −0.90 −0.84 −0.77

(2403) (2403) (2348) (33) (2353) (2165) (2165) (2165)

EH-P30 55–70 0.89 0.61 0.54 N/A 0.09 0.58 0.56 0.72

−0.51 −0.92 −1.25 −1.57 −1.13 −1.13 −0.88

(2729) (2729) (2665) (0) (2689) (2409) (2409) (2409)

Environmental variables were validated in May and June from 2009 to 2017 and binned by megalopae depth habitat, corresponding to distinct exposure history particle
dispersal simulations or “in situ” habitat (0–30 m). Variable skill was assessed by computing statistical comparisons of modeled and observed values at the time and
location where observations were collected. Within each box, Pearson’s correlation coefficient (r) is on top, the normalized root-mean-square error (NRMSE) where the
sign indicates the direction of bias of the model (see Supplementary Equations 1, 2) is in the middle, and the number of observations (n) used for model validation is
shown parenthetically at the bottom. Shading indicates significant skill of the J-SCOPE modeled variable: blue indicates r > 0.5; green indicates −1 < NRMSE < 1. See
Table 2 for details of in situ and exposure history behaviors.

investigate the hypothesis that exposure history is important for
characterizing megalopae occurrence. Because these GLMs are
built from modeled ocean variables, we begin by reporting skill
assessments for these variables to understand their influence on
GLM fit and performance.

J-SCOPE Variable Skill Assessment
Environmental variables from J-SCOPE historical ocean
simulations performed well (as indicated by r and NRMSE;
Table 3) within the depth habitats dictated by the simulated
megalopae behaviors (Table 2) and during the time period when
particle dispersal was simulated (May–June). All but one of the
variables (phytoplankton) had a significant correlation with
the observations at all depth habitats (r > 0.5), and variable
performance generally improved with depth. Phytoplankton
did not perform as well as the other variables, except near
the ocean surface (0–5 m). Year-round model validation
showed similar patterns as seen in the May–June validations
(Supplementary Table 3).

Environmental Exposure of Megalopae
The exposure histories generated by the particle tracking
experiments were driven predominantly by the particle depth
habitats, which were determined by particle behavior and
initialization depth (Figures 3–5; ANOVA results shown in
Supplementary Table 4). On average, particles exhibiting
passive dispersal initialized at 30 m depth (EH-P30) inhabited
significantly deeper waters (mean particle depth = 47.1 ± 13.3 m
(mean ± std); Figure 3 and Supplementary Table 4)
and originated farther offshore (mean particle ending
isobath = 572 ± 455 m; Figure 4) than particles in any

other experiment. The properties of the simulated ocean
conditions that these particles were exposed to were ultimately
different because of their unique depth habitat (Figure 5
and Supplementary Table 4). Exposure histories for these
passive particles were characterized by significantly lower
temperature, dissolved oxygen concentration, phytoplankton
concentration, pH, �ar, and �ca, and significantly higher salinity
and nitrate concentrations than particles in other exposure
history simulations. Consequently, particles in this experiment
were exposed to the most severe hypoxic stress and corrosive
waters [severity index (SI) for oxygen = 2.14± 3.23 hypoxia-days;
SI pH = 1.88 ± 1.45 days with pH < 7.75; SI �ar = 2.90 ± 2.37
undersaturation-days; SI �ca = 1.69 ± 2.13 undersaturation-
days). In contrast, the surface-following particles (EH-S1)
had a tightly constrained depth habitat within ∼5 m of the
ocean surface (mean particle depth = 2.39 ± 0.04 m), which
was significantly shallower than any of the other experiments
(Figure 3). Their exposure histories were characterized by
significantly higher temperature, oxygen, phytoplankton, pH,
�ar, and �ca, and significantly lower salinity and nitrate
concentrations (Figure 5 and Supplementary Table 4). Thus,
these surface-following particles experienced minimal exposure
to hypoxic and corrosive waters (SI Oxygen = 0.02 ± 0.06
hypoxia-days; SI pH = 0.07 ± 0.15 days below 7.75 pH; SI
�ar = 0.10 ± 0.20 undersaturation-days; SI �ca = 0.002 ± 0.004
undersaturation-days). Particles in other experiments were
exposed to intermediate environmental conditions at
intermediate depth habitats. Passive particles initialized at
the surface (EH-P1; mean particle depth = 20.4 ± 20.7 m) had
exposure histories most similar to particles in the 30 m DVM
experiment (EH-DVM30; mean particle depth = 20.3 ± 1.2 m)
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FIGURE 3 | Average depth and variability over time was driven by simulated particle behavior and initialization depth. Particles exhibiting DVM behaviors were tightly
constrained between 30 m (EH-DVM30; A) or 60 m depths (EH-DVM60; B) and the surface. (C) Passive particles initialized at 1 m (EH-P1) and at 30 m depths
(EH-P30) originated from deeper depths and traveled up in the water column over time, while surface-following particles (EH-S1) experienced a tightly constrained
depth habitat near the surface. (D) These particles spent the first 15 days of the simulation exhibiting DVM between the surface and 30 m depth, and then they
transitioned to passive dispersal (EH-D15P).

and the experiment where particles transitioned from DVM to
passive dispersal (EH-D15P; mean particle depth = 20.7± 7.3 m).
Passive dispersal particles initialized at 30 m (EH-P30; mean
particle depth = 47.1 ± 13.3 m) experienced conditions most
similar to the 60 m DVM particles (EH-DVM60; mean particle
depth = 30.8 ± 2.4 m). In situ extracted conditions were most
similar to those experienced by passively dispersing particles
initialized at the surface (EH-P1).

GLM Comparisons: In situ Versus
Exposure History
Inclusion of environmental exposure history during GLM
development improved our ability to predict megalopae
occurrence. The in situ GLM had the worst model fit (i.e. highest
AICc score) and worst in-sample model performance (i.e. lowest
AUC) compared to the exposure history models (Table 4; see
additional statistics in Supplementary Table 5). Sliding window
analyses that were used to evaluate the influence of individual
surveys on GLM fit and performance (Supplementary Table 6)
provided further support that, independent of the calibration
survey period used to develop the GLM, the in situ model was

out-performed by the exposure history models in 65 out of 66
cases (98% of cases).

Among the exposure history GLMs, model fit and in-
sample performance were affected by the type of simulated
behavior and the depth at which the particles were initialized
(Table 4 and Supplementary Table 6). Simulations that included
passive dispersal (EH-P1, EH-D15P, and EH-P30) had the
best model fit (i.e. lowest AICc scores), followed by DVM
behaviors (EH-DVM30 and EH-DVM60), and then the surface-
following behavior (EH-S1). These rankings of model fit based
on simulated behavior were supported by the sliding window
analyses as well (Supplementary Table 6). In-sample model
performance, however, showed a different pattern of GLM
rankings. When all surveys from 2009 to 2016 were used for
GLM development, in-sample AUC indicated highest model
performance for the EH-P1 GLM, followed by EH-D15P,
EH-DVM60, EH-S1, EH-DVM30, and finally EH-P30 GLMs
(Table 4). The sliding window analysis showed similar results,
such that the EH-P1, EH-D15P, and EH-DVM60 GLMs generally
had the highest performance, but on average, the EH-DVM30
and EH-P30 GLMs performed better than the EH-S1 GLMs
(Supplementary Tables 6, 7).
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FIGURE 4 | Particle start (A) and average back-tracked origination locations (B–G) after 30-day simulated backtracking for particle exposure history simulations
(2009–2017) that varied by behavior and initialization depth: DVM behavior from the surface to 30 m (EH-DVM30; B) and 60 m depths (EH-DVM60; C); the
surface-following behavior (EH-S1; D); passive particles initialized at 1 m (EH-P1; E) and at 30 m depths (EH-P30; F); and DVM transitioning to passive dispersal at
day 15 (EH-D15P; G; see Table 2 for details about exposure history experiments). Particles were initialized at the same 37 sampling stations. Back-tracked
origination locations were averaged for all 100 particles initialized at each station, which sometimes resulted in the average origination location being on land; these
particles were moved to the nearest shoreline. Initialization locations are uniquely colored for improved resolution of differing dispersal patterns across the spatial
domain. Land is shaded gray, and the 200 m isobath is shown for reference.

FIGURE 5 | In situ conditions and particle tracking exposure histories differed among years and among simulations with different particle behaviors and initialization
depths. These box and whisker plots show the interquartile range (bounds of the box) with a horizontal line at the median, ends of the vertical lines at the fifth and
95th percentiles, and outliers represented by dots. Averages were calculated across all particles within an in situ extraction or particle tracking simulation, and
statistics were calculated across survey averages to show variability over time (2009–2017; see Supplementary Table 4 for ANOVA results).

The GLMs contained different significant predictors
depending on whether or not exposure history was included, and
which particle tracking behavior was simulated (Table 4). The

predictors included in the GLMs calibrated with all surveys from
2009 to 2016 were oxygen (three occurrences), salinity (two),
nitrate (two), SI for �ca (one), phytoplankton (one), SI for �ar
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TABLE 4 | Predictor variables [significant predictors in bold (p < 0.05)] and their
direction of correlation to megalopae occurrence for generalized linear models
(GLMs) developed using surveys from 2009 to 2016 (see Supplementary
Table 5 for additional statistics and Supplementary Tables 6, 7 for results from
the sliding window analysis).

Experiment Predictor variables (bold p < 0.05) 1AICc In-sample AUC

In situ −N 11.8 0.602

EH-DVM30 +O 4.7 0.644

EH-DVM60 +S, +O 5.3 0.650

EH-S1 −T, −N, −SI �ca 7.9 0.645

EH-P1 +S, +O 0.0 0.658

EH-P30 +P, −SI �ar 1.9 0.625

EH-D15P +pH 1.7 0.657

Metrics for relative model fit (1AICc; low values are superior) and in-sample model
performance (AUC; high values are superior) are shown. N = nitrate; O = oxygen;
P = phytoplankton; S = salinity; T = temperature; SI �ar = severity index for
aragonite saturation state; and SI �ca = severity index for calcite saturation state.
See Table 2 for details about in situ and exposure history experiments.

(one), temperature (one), and pH (one). Although the sliding
window analysis indicated that the calibration survey period used
to develop the GLM had some influence on which predictors
were included in the GLMs (Supplementary Tables 6, 8), the
relative frequency of the most common predictors was similar to
that observed in the GLMs developed using all surveys: oxygen
(194 occurrences), salinity (161), nitrate (146), �ca (76), SI for
�ca (66), phytoplankton (60), �ar (38), SI for �ar (36), and
temperature (35; Supplementary Table 8).

Biological Ensemble Formation
Due to the overall high performance of several GLMs and slight
variations in their relative performance when different calibration
survey periods were used (Supplementary Table 6), we decided
to select multiple models to generate a biological ensemble
that we expect to be more robust to interannual variability
than any single model (Table 5). The biological ensemble is
comprised of five GLMs with the highest overall in-sample model
performance (i.e. AUC ≥ 0.64) from the following exposure
history behaviors: 30 m DVM (EH-DVM30), 60 m DVM (EH-
DVM60), surface-following (EH-S1), passive dispersal initialized
at 1 m depth (EH-P1), and DVM transitioning to passive
dispersal (EH-D15P). For the biological ensemble, megalopae
abundance was positively correlated with salinity, oxygen, and
pH, and negatively correlated with temperature, nitrate, and
the SI for �ca. Correlation coefficients calculated for pairwise
comparisons of predictor variables within a single GLM indicated
low dependency among variables (Supplementary Table 9).

Habitat Model Performance and
Predictions
When model performance was tested for the biological
ensemble using the out-of-sample 2017 survey, the ensemble
performed better than random (AUC > 0.5), indicating skill in
predicting megalopae occurrence (Table 5). Each member of the
biological ensemble performed better than random (AUC > 0.5;
Supplementary Figure 1), and the ensemble as a whole

TABLE 5 | A biological ensemble of GLMs [significant predictors in bold
(p < 0.05)] assembled from models with strong in-sample performance (AUC
(2009–2016) ≥ 0.64; see Table 4 for all models considered).

Experiment Equation (bold p < 0.05) 2017 AUC

EH-DVM30 −3.01 + 0.109∗O 0.814

EH-DVM60 −6.42 + 0.132∗S + 0.00988∗O 0.936

EH-S1 1.77 − 0.157∗T − 0.0994∗N − 79.5∗(SI �ca) 0.757

EH-P1 −11.0 + 0.248∗S + 0.0111∗O 0.914

EH-D15P −34.9 + 4.32∗pH 0.779

Biological ensemble: 0.943

Out-of-sample model performance was evaluated for the 2017 survey for each
model individually, and for the biological ensemble as a whole when probabilities
from all five models were averaged to predict megalopae occurrence. O = oxygen
(mmol m−3); S = salinity; T = temperature (◦C); N = nitrate (mmol m−3); and SI
�ca = severity index for calcite saturation state (undersaturation-days). See Table 2
for details about exposure history experiments.

performed better than any individual member (AUC = 0.94).
An AUC value of 0.94 means that for 94% of the stations where
megalopae were found to be present, the model predicted a higher
probability of megalopae occurrence than for randomly sampled
stations where megalopae were observed to be absent.

Finally, when we simulated dispersal of megalopae initialized
throughout the J-SCOPE model domain, and applied their
environmental exposure histories within the biological ensemble,
we were able to generate a spatially explicit habitat model for
Washington and Oregon (Figure 6). Over this larger domain,
the biological ensemble predicted relatively high probabilities
of megalopae occurrence seaward of the continental shelf
break. Additionally, megalopae occurrence probabilities tended
to increase with latitude. Markedly low probabilities of megalopae
occurrence were predicted near the mouth of the Columbia River
and near the Strait of Juan de Fuca.

DISCUSSION

Importance of Exposure History
Model fit and performance (indicated by AICc and AUC,
respectively) improved when megalopae exposure history was
used to develop the GLM compared to the in situ GLM, regardless
of the type of particle behavior used to simulate megalopae
dispersal. This suggests that prior environmental exposure is
important to include in addition to in situ conditions when
predicting megalopae occurrence. While behavior affected the
exposure history of the particles, the type of behavior did not
influence the GLM performance as much as the decision to
include exposure history itself. A biological ensemble of five top
performing exposure history GLMs was created to capture the
range of behaviors that best predicted megalopae occurrence.
Within the biological ensemble, megalopae occurrence was
positively correlated with dissolved oxygen concentration,
salinity, and pH, and negatively correlated with temperature,
nitrate concentration, and the SI for �ca. These predictor
variables suggest that megalopae are less common in nutrient-
rich environments, potentially generated by upwelling of deep
waters that are corrosive and hypoxic, or inflow from terrestrial
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FIGURE 6 | Biological ensemble model forecast for the out-of-sample 2017
survey. (A) Comparison of ensemble-predicted and observed megalopae
occurrence at 33 stations. Markers located at the megalopae sampling
stations are filled (see color bar) according to the probability of megalopae
occurrence as predicted by the biological ensemble (see Table 5). The outline
color and orientation of the triangle indicates whether megalopae were
observed to be present (orange, upward-pointing triangles) or absent (blue,
downward-pointing triangles) at that station. (B) Probability of megalopae
occurrence throughout the J-SCOPE x, y model domain forecasted by the
biological ensemble (see color bar). Land is shaded gray, and the 200 m
isobath is shown.

sources, such as the Columbia River or the Strait of Juan de Fuca,
characterized by warmer temperatures and low salinities (Fiedler
and Laurs, 1990; Davis et al., 2014).

Below, we discuss in more detail (1) why a biological ensemble
was assembled to encompass the range of potential behaviors
exhibited by M. magister megalopae, (2) how the predictor
variables in the biological ensemble generate a picture of the
preferred habitat for M. magister megalopae, and (3) what the
limitations of this work are and how they can be addressed
in future studies.

Multiple Behaviors in the Biological
Ensemble
The biological ensemble consists of the top performing GLMs
which represent the breadth of possible behaviors that forecast
megalopae occurrence most skillfully (Table 5). Due to the
uncertainty of the precise age of the megalopae at collection,

potential life history changes over the 30 days prior to
collection may explain why passive, DVM, and surface-following
behavior models produced GLMs with strong model fit and
performance (Tables 4, 5). M. magister larvae may spend as
few as ∼7 days or as many as ∼33 days in the megalopal
stage (Poole, 1966; Ebert et al., 1983; Sulkin et al., 1996),
so our 30-day backtracking experiments may have spanned a
period when larvae had reduced swimming abilities as zoeae
(Jacoby, 1982), or our DVM behaviors may have overestimated
their swimming speeds (Hobbs and Botsford, 1992). Including
a GLM with a combination of passive and DVM behavior
(EH-D15P) only increased the performance of the ensemble
as a whole. Additionally, the surface-following model (EH-
S1) may have simulated reported phenomena of megalopae
attaching to flotsam or forming swarms near the water’s surface
during the daytime (Lough, 1976; Shenker, 1988; Roegner et al.,
2003). Thus, we hypothesize that realistic megalopae behaviors
may be more accurately represented through a combination of
passive, DVM, and surface-following simulations compared to
any one behavior alone.

Modeled Megalopae Habitat Conditions
The biological ensemble, when used to forecast megalopae habitat
for the entire J-SCOPE domain and compared to the out-of-
sample 2017 survey, performed very well (Table 5 and Figure 6).
This spatially explicit model showed increasing probabilities of
megalopae occurrence seaward of the continental shelf break.
This modeled habitat pattern aligns with reports from the
literature that M. magister larvae disperse offshore during early
development before traveling back to the continental shelf to
settle (Johnson et al., 1986; Pauley et al., 1989; Hobbs et al., 1992;
Morgan and Fisher, 2010). On regional scales, low probabilities
for megalopae occurrence were predicted near the mouth of the
Columbia River, in the Strait of Juan de Fuca, and for near-
shore areas in Oregon. Finally, high variability in megalopae
occurrence was predicted on kilometer scales. The predictor
variables identified in the biological ensemble may provide
insight into the environmental conditions that create suitable
(and unsuitable) habitat for M. magister megalopae.

The biological ensemble member GLMs can be divided into
two depth habitat groups characterized by unique predictor
variables. Four of the five models in the biological ensemble
were defined by megalopae swimming behaviors that resulted
in intermediate depth habitats, in which a small portion of
dispersal time was spent at the ocean surface and the majority of
time was spent at depth (EH-DVM30, EH-DVM60, EH-P1, and
EH-D15P; Tables 2, 5 and Figure 3). In these GLMs, megalopae
occurrence was positively correlated with oxygen concentration
and/or salinity, or pH. These predictor variables may indicate
that megalopae in mid-water depth habitats are sensitive to low
oxygen or low pH conditions characteristic of upwelled waters
and/or low salinities indicative of terrestrial sources, such as
the Columbia River plume or the Strait of Juan de Fuca waters.
Preferences for environments characterized by high oxygen, pH,
and salinity are generally consistent with the habitat requirements
for M. magister described in the literature (e.g. Reed, 1969;
Sulkin and McKeen, 1989; Brown and Terwilliger, 1999;
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Curtis and McGaw, 2012; Descoteaux, 2014; Miller et al., 2016;
Gossner, 2018). For example, negative impacts, such as increased
mortality, decreased growth, and increased respiration rates, have
been demonstrated when M. magister megalopae and juveniles
are exposed to hypoxic conditions (Bancroft, 2015; Gossner,
2018). Prior laboratory experiments have also shown increased
mortality of M. magister zoeae and megalopae when exposed
to low salinity conditions (Reed, 1969; Brown and Terwilliger,
1999), and avoidance of adult crabs to low salinity conditions,
except when starved (Curtis and McGaw, 2012). The positive
correlation between pH and megalopae occurrence is consistent
with reports that M. magister larvae are negatively impacted by
exposure to low pH (Descoteaux, 2014; Miller et al., 2016).

In contrast to the intermediate depth habitat models discussed
above, the fourth member GLM of the biological ensemble
corresponds to megalopae occurrence in near-surface habitats
(i.e. the surface-following behavior model, EH-S1). In surface
waters, where oxygen concentrations and salinity are relatively
consistent across temporal and spatial domains (Figure 5),
alternative predictors were identified to characterize preferred
habitat, such as minimal exposure to calcite-undersaturated
conditions, relatively cool temperatures, and low nutrient
concentrations (Table 5). These habitat preferences again may
signal avoidance of upwelled waters, characterized by low �ca and
rich in nutrients, or terrestrial inputs, with warm temperatures
and high nutrient concentrations. The negative correlation
between SI for �ca and megalopae occurrence is supported
by recent work by Bednaršek et al. (2020) which showed
that M. magister megalopae may experience external carapace
dissolution due to prolonged exposure to more severe calcite
saturation state gradients. Several studies have also highlighted
the importance of temperature on larval development and
survival in M. magister (Sulkin and McKeen, 1989; Sulkin
and McKeen, 1996; Sulkin et al., 1996; Brown and Terwilliger,
1999), and our results indicate a preference for relatively cool
temperatures in shallow habitats where thermal stress may
be more common than at depth (Figure 5). If megalopae
occurrence is linked to exposure history via a mortality
mechanism, then our results may suggest that megalopae
experience lethal temperatures in shallow habitats over the 30-
day particle tracking simulations. To our knowledge, no studies
have investigated the direct effects of nitrate concentrations
on megalopae survival or development. We propose that
low nutrient concentrations may indirectly define megalopae
habitat by serving as a proxy for preferred downwelling
regimes (Hales et al., 2005; Palacios et al., 2013) outside of
freshwater plumes, or may indicate the presence of food sources
(such as phytoplankton and zooplankton), causing a draw-
down of nutrients.

A novel approach taken by this study was to evaluate
the skill of modeled variables within the specific depth range
and season relevant to our study species. Since the skill
of the ocean variables influences the skill of the GLMs
to predict megalopae occurrence, and ultimately to model
preferred habitat, differences in variable skill may help explain
differences in predictive power of GLMs developed with
exposure histories from unique behavior simulations. Overall,

our model validation showed that ocean variable skill generally
improved with depth (Table 3), consistent with prior work
by Siedlecki et al. (2016), but variables with strong skill in
surface waters also generated GLMs capable of good model
performance (e.g. EH-S1 GLM in Table 5). Notably, the 0–
30 m DVM exposure history experiment (EH-DVM30), the
DVM transitioning to passive behavior (EH-D15P), and the
in situ model all used ocean variables within ∼0–30 m depth
range, and thus the J-SCOPE variable skill was similar for
all GLMs, yet both exposure history GLMs had better fit
(lower AICc) and higher predictive skill (higher AUC) than the
in situ GLMs (Table 4 and Supplementary Tables 6, 7). This
finding further supports our conclusion that exposure to recent
environmental conditions is important to include in modeling
megalopae occurrence.

Model Limitations and Future Work
In this study, the suite of potential predictor variables was
limited to (1) variables that were included in the J-SCOPE
historical ocean simulations, (2) variables whose skill could
be assessed using observational data, and (3) variables, or
threshold values for severity indices, identified in the published
literature as being important for M. magister megalopae or related
species. For example, only microzooplankton concentration is
modeled in J-SCOPE, a class of zooplankton which is not the
main food source for brachyuran crab larvae (Bigford, 1977;
Harms and Seeger, 1989; Sulkin et al., 1998; Casper, 2013),
so we omitted this variable from consideration. Regarding the
severity indices, we used thresholds to characterize stressful
conditions that may not be biologically relevant for M. magister
megalopae, due to limited availability of published scientific
studies (see discussions in Hettinger et al., 2012; Waldbusser
et al., 2015). Given the importance of temperature and
salinity on modeling megalopae occurrence, severity indices for
these conditions could also be developed if critical thresholds
were identified.

Here, we assembled the five best-performing GLMs into a
biological ensemble with equal weighting of its members, due
to a lack of information about realistic larval behaviors in wild
populations. Future in situ behavioral studies of M. magister late-
stage zoeae and early-stage megalopae would help shape realistic
larval behavior in particle tracking simulations and inform the
relative weighting of member GLMs in the biological ensemble.

Application of the biological ensemble for modeling
megalopae habitat is best applied during the temporal and spatial
window of the megalopae observations used in this study—
namely, late May (2009–2012) and late June (2009–2017) over
the continental shelves of Washington and Oregon. Since marine
conditions typically become more stressful as the upwelling
season evolves, beginning in ∼mid-April (Austin and Barth,
2002; Hales et al., 2006; Hauri et al., 2015), our model may
weight exposure to more stressful conditions more heavily given
the relative under-representation of the earlier (May) sampling
period in recent years. Additionally, because all megalopae
sampling stations were located over the continental shelf, but we
applied the biological ensemble to forecast habitat over the entire
J-SCOPE model domain, evaluation of the model’s prediction
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of high-quality megalopae habitat in offshore areas would be
essential to utilizing the predicted habitat fields offshore.

Finally, this study laid the groundwork for future forecasting
of megalopae abundance. To model more complex dynamics,
such as abundance, we will apply either generalized linear
mixed models (GLMMs), delta-GLMs, or generalized additive
models (GAMs), which have relaxed constraints on the types
of relationships allowed between the predictor and response
variables (Guisan et al., 2002; Venables and Dichmont, 2004;
Brodie et al., 2019). Additionally, we will rely on J-SCOPE
seasonal forecasts to predict megalopae abundance on seasonal
timescales. Since megalopae abundance is correlated with
recruitment into the M. magister fishery 4 years later (Shanks
and Roegner, 2007; Shanks et al., 2010; Shanks, 2013), improved
forecasts of megalopae abundance, generated without arduous
field sampling, would extend the management time horizon from
seasonal to more than 4 years in advance, potentially promoting
increased long-term planning and stability in the fishery (Hobday
et al., 2016; Tommasi et al., 2017).

CONCLUSION

Inclusion of environmental exposure history improved our
ability to predict megalopae occurrence. Ultimately, a biological
ensemble was generated from GLMs developed with multiple
behaviors to encompass biologically relevant variations in
megalopae dispersal. This biological ensemble showed superior
predictive performance (high AUC) relative to individual GLMs.
The biological ensemble identified positive correlations between
megalopae occurrence and oxygen concentration, salinity,
and pH, and negative correlations with temperature, nitrate
concentration, and the SI for �ca. When considered together,
these variables indicate that megalopae habitat is characterized
by downwelling conditions seaward of terrestrial inputs, such as
Columbia River plume or the Strait of Juan de Fuca waters.
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Climate change and its impact on fisheries is a key issue for fishing nations, particularly

the Philippines. The Philippines is highly vulnerable to the impacts of climate change

on fisheries and it can lead to economic shock on the nation’s economy. This paper

examines the impact of climate change on marine capture fisheries in the Philippines

using a computable general equilibrium (CGE) model to elaborate and project impacts

on the national economy. In the simulation, one baseline scenario and two climate change

scenarios based on greenhouse gas concentration—RCP 2.6 and RCP 8.5—were

considered. The model focuses on Gross Domestic Product (GDP) and income

distribution by region, which can represent economic conditions in terms of economic

growth and distribution. Results show that there will be a negative change on both the

fisheries and economic variables where more extreme changes in climate occur.

Keywords: climate change, marine capture, fisheries economics, economic growth, income distribution

INTRODUCTION

The Philippines, a maritime nation that is a complex of islands, comprises 7,641 islands and has
the territorial sea that covers 679,800 km2 and Exclusive Economic Zone (EEZ) of 2,263,816 km2.
Most parts of the Philippines are coastal areas, and about 70% of Filipinos are estimated to live
in coastal areas (Palomares and Pauly, 2014). Fisheries have a great significance in terms of food
security and economy in the Philippine (Santos et al., 2011). There is a need to secure the food
supply to keep feeding people as poverty has remained continuously high and the population has
grown in the Philippines. Fisheries are a strategically important factor because it has a positive
nutritional effect as a source of necessary protein and essential nutrients (Prein and Ahmed, 2000;
Irz et al., 2007)1. Total fish consumption has been rising steadily with increases in production
(Cuvin-Aralar et al., 2016).

The fisheries in the Philippines makes a significant contribution to the national economy in
terms of income and employment. Total fish production was estimated at 4.65 million metric
tons, and the fisheries sector contributed almost 4.33 billion dollars to the country’s economy
in 2015 (BFAR, 2016). The fisheries sector employed an estimated 1.6 million people national
wide, contributing 1.5% to the gross domestic product (GDP) in 2015 (BFAR, 2016; PSA, 2017a).
According to an FAO report, the Philippines places eighth globally in fish production, as of 2014,
and is a key economic sector for the country (BFAR, 2016).

1According to the prevalence of undernourishment data, in 2017, about 13.5% of the population was malnourished in the

Philippines [World Bank (n.d.), “Prevalence of undernourishment”], and fish provides Filipino people with approximately

one-third of their average per capita intake of animal protein (Bennett et al., 2018).
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Climate change has been considered particularly important
for fishing nations (Kelleher et al., 2009; Barange et al., 2014),
but discussion of climate change and impact on fisheries is also
a key issue for the Philippines (Santos et al., 2011; Geronimo,
2018). These changes may cause not only loss of productivity,
but also economic shock on the nation’s economy. Since climate
change is expected to have different consequences, impacts can
be related to vulnerability in countries heavily dependent on
fishery, in view of the important contribution of these sectors
to employment, supply, income and nutrition (Vannuccini et al.,
2018). The Philippines is actually vulnerable to the impacts of
climate change on fisheries and it can lead to economic shock
on the nation’s economy. Among fishing nations, Philippines is
one of the most vulnerable countries to climate change (Badjeck
et al., 2010; FAO, 2016). The Philippines is third in the ranking
of vulnerability to climate change risks among 67 developed,
emerging and frontier market countries, and is particularly very
sensitive to extreme weather events in terms of people affected
and economic costs (Paun et al., 2018).

Since fisheries is intimately related to various economic
sectors, such as transportation, storage, processing, it is
necessary to elaborate a systematic model to understand the
economic impact of climate change on fisheries throughout
an economy. In this paper, a computable general equilibrium
(CGE) model, which is useful to explain economic impacts
of events in a quantitative manner (Dwyer et al., 2005),
is developed to examine how climate change may affect
the marine capture fishing sector in the Philippines and
consequently how the economy may react to the change. The
paper will contribute to the current discussion of climate
impacts in the ocean of the Philippines, adding dimensions to
macroeconomic interpretations of impact on fisheries focusing
on marine capture fish2 which can be relatively more affected by
climate change.

CLIMATE CHANGE AND OCEAN IN THE
PHILIPPINES

Climate change is an important thread in the tapestry of
earth’s history along with the evolution of life and the physical
transformations of this planet (Ruddiman, 2001). The study of
climate in fisheries also matters for a practical reason: climate
is a primary determinant of fish population (Lehodey et al.,
2006). Changes in climate condition and shifts in the distribution
of species are closely related to the productivity of fish stocks
(Perry et al., 2005; Munday et al., 2008; Nilsson et al., 2009;
Pankhurst and Munday, 2011; Pratchett et al., 2014). Climate
change causes the change of oceanic currents3 and consequently
affects the environment for fish: areas that have favorable

2Capture fisheries includes not only marine capture fisheries but also inland

capture fisheries. This paper focuses onmarine capture fisheries which is dominant

in capture fisheries – according to fisheries situation report (PSA, 2014), it shows

95% of capture fisheries.
3El Niño is associated with warming in the tropical Pacific Ocean, and has global

climatic teleconnections, affecting the global climate change (Yeh et al., 2009). Sea

Surface Temperature (SST) in Southeast Asia has shown an extreme trend due to

El Niño (Thirumalai et al., 2017).

conditions increase resulting in expansion in species’ range and
the growth in population; areas where favorable conditions exist
may move, causing a population’s numbers to decline in certain
areas and increase in others, effectively shifting the population’s
range; and favorable conditions for a species may disappear,
leading to a population crash and possible extinction (Roessig
et al., 2004; Ganachaud et al., 2011; Stock et al., 2011; Dunne
et al., 2012, 2013). Mora and Ospina (2001) examined the
critical thermal maximum of 15 fishes. The critical thermal
maximum ranges from 34.7 to 40.8◦C while sea temperature
reached 32◦C in a broad range of latitudes in the tropical
eastern Pacific Ocean during El Niño. They argue the studied
fish are tolerant to temperatures occurring during the particular
warm event such as El Niño. Eme and Bennett (2009) examined
thermal limits of fishes around Banda Sea of Indonesia which
is connected to the Pacific Ocean using the critical thermal
methodology and chronic lethal methodology. Thermal limits
show different figures by species, for example, such Squaretail
mullet did not survive temperatures higher than 38.9 ± 0.7◦C
while such common goby did not survive temperatures below
10.9± 0.2◦C.

Increase in temperature on the Philippines seas has been
reported by several studies (Peñaflor et al., 2009; Pörtner
et al., 2014; Khalil et al., 2016; Hoegh-Guldberg et al., 2017;
Geronimo, 2018). Sea surface temperature in the sea near
the Philippines shows upward trend with the warming rate
of 0.2◦C per decade over the period 1985–2017, based on
0.05◦ resolution satellite-based sea surface temperature data
(Peñaflor et al., 2009; Khalil et al., 2016). The warming
trend is not spatially identical for the Philippines and the
warming rate varies by region. The warming rate in the
West Philippine Sea bordering the west-central part of the
Province of Ilocos Norte shows a faster rate while the rate
in the sea surrounding Palawan Island and the sea between
Catanduanes Island and Samar Island shows slower compared
to other sea areas in the Philippines (Khalil et al., 2016). The
forecasting model of warming with a scenario of greenhouse gas
(GHG) concentration mitigation under the phase 5 of Coupled
Model Intercomparison Project (CMIP), which is collaboration
between climate modeling groups for the purpose of advance
in knowledge of climate change, indicates that sea surface
temperature in the Philippine will increase around 0.36◦C by
2100 based on the RCP 2.6 emissions scenario, noting that the
majority of this warming will happen over the next 30 years
(Khalil et al., 2016).

The use of linear regression from CMIP5 provides projected
changes in SST around the Philippines including the Coral
Triangle in the next 90 years. Increase in SST ranges from
0.42 to 0.76◦C for near-term, and 0.58 to 2.95◦C for a long-
term, depending on level of GHG concentrations and mitigation
(Hoegh-Guldberg et al., 2017). Climate model simulations driven
with historical changes in anthropogenic and natural drivers,
and GHG concentration scenarios (the RCP 4.5 and the RCP
8.5), based on the average of Hadley Centre Interpolated
SST 1.1 data, also indicate that SST around the Philippines
will increase (Pörtner et al., 2014; Hoegh-Guldberg et al.,
2017).
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ECONOMIC REVIEW ON IMPACTS OF
CLIMATE CHANGE ON FISHERIES

Many empirical studies in oceanography, physiology and ecology
began to deal with the relationship between fisheries and
climate due to the growing need for extension of the discussion
about continued climate change (Brander, 2007; Barange and
Perry, 2009), but few studies cover the economic impact on
fisheries. Several studies have argued that climate change affects
the amount of catch in business terms. Cheung et al. (2010)
present maximum exploitable catch of a species under climate
change using a dynamic bioclimate envelope model. They
demonstrate climate change considerably affects the distribution
of catch potential leading to potential fisheries productivity. Their
estimation shows that catch potentials will fall in many coastal
regions, particularly in the tropics and the southern margin of
semi-enclosed seas, since species are expected to move away
from the regions due to rising temperature in the ocean. Lam
et al. (2016) demonstrate the impacts of climate change on
global fisheries revenues. They argue climate change will have
a negative impact on the maximum revenue potential of most
fishing countries. It was found that coastal low-income food
deficit countries (LIFDC) are heavily dependent on fish catches
as a way of meeting their nutritional needs but almost every
coastal LIFDC is in danger of decrease in fisheries maximum
revenue potential. Merino et al. (2011) examined the synergistic
effect of climate variability and production of fish with estimation
of maximum sustainable yield. They put emphasis on global
management measures to achieve optimized global supply of
marine products, suggesting interaction between global markets
and regional climate may be acting as a factor causing sequential
overexploitations and resource depletion.

Few studies have analyzed the economic impacts of climate
change on fisheries dealing with the national economy. Arnason
(2007) estimated the impact of global warming on fish stocks
in Iceland and Greenland using Monte Carlo simulations. The
result shows positive impact on GDP in Iceland and Greenland.
Ibarra et al. (2013) examined economic impacts of climate change
in Mexican coastal fisheries in terms of shrimp and sardine
fisheries. They found climate change causes a decrease in shrimp
production and a high degree of variability and uncertainty of
sardine fisheries stocks.

This paper will make several contributions to this literature.
First, this study analyzes the impact of climate change in fisheries
from the perspective of the economic modeling. It estimates the
impact of climate change adding dimensions to macroeconomic
interpretations of impact onmarine capture fisheries. Few studies
deal with the economic impact of climate change on fisheries,
but even these studies focus on changes of catch in terms of
productivity with simplistic calculations. Thus, the evidence for
projection is limited. This study covers the potential causes of
economic impact other than production associated with climate
change. This paper also presents an economic impact which
includes notable indicators, such as GDP and income distribution
with estimation using major national economic variables, so
it can be useful in establishing economic mechanism related
to fisheries.

Second, the study examines the economic impact of climate
change on fisheries for a specific country rather than at a
global level. Climate change impacts will differ from region to
region and country to country. Some regions will get warmer
well above the average, in contrast, others may not get warmer
or may even get colder (Arnason, 2006). In addition, the
economy of each country has different characteristics. This study
carries out modeling specific to the Philippines so that the
results obtained will prove helpful in decision-making related to
adaptation options.

METHODS

Construction of Model
In this paper, the model estimates the impacts of climate change
constructing future scenarios including one baseline scenario and
two climate scenarios for the Philippines. The baseline scenario
depicts how the economy of the Philippines might be expected
to change if the condition related to climate were not changed.
Climate scenarios are based on the Representative Concentration
Pathways (RCP) which describes trajectories of greenhouse gas
concentration, provided by the fifth assessment report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC, 2013).
One of climate scenarios assumes RCP 2.6 which is a scenario of
strong mitigation (Scenario A) and the other one assumes RCP
8.5 which is a scenario of comparatively high greenhouse gas
emissions (Scenario B).

The model employs the method of the projected change in
maximum revenue potential (MRP) which is explained by Lam
et al. (2016). MRP in the study implies the potential change in
revenue, which can be expected under climate change scenarios,
resulted from the change in the amount of fish catches due to
climate change. The combined outputs of coupled atmospheric-
ocean physical and biogeochemical Earth System Models (ESM)
with Dynamic Bioclimate EnvelopeModels (DBEM) and outputs
from three ESMs that are available for the Coupled Models
Intercomparison Project Phase 5 (CMIP5): the Geophysical Fluid
Dynamics Laboratory Earth System Model 2M (GFDLESM2M,)
the Institute Pierre Simon Laplace (IPSL) (IPSL-CM5-MR) and
Max Planck Institute forMeteorology Earth SystemModel (MPI-
ESM MR) (Method) were used, employing the model described
in Sarmiento et al. (2004), and Cheung et al. (2010). In the
model, projected revenue is calculated by the product of ex-
vessel price and maximum catch potential. The model assumes
that real ex-vessel price is constant for the study period with
the fact that the real ex-vessel prices have remained relatively
stable since 1970. Maximum catch potential is derived from
the product of projected fishing mortality required to achieve
the maximum sustainable yield and projected biomass. Since
projected fishing mortality is required to achieve the maximum
sustainable yield approximates natural mortality rate of the stock,
change in revenue is determined by change in biomass. So, in
this paper the trend of production is subject to the trend of MRP,
assuming production is proportional to biomass ceteris paribus.

Linearly calculated trends based on the projected change in
MRP are put into the production in the capture fisheries sector
data assuming functions in the models are the same. To calculate
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change in production of fisheries, it is necessary to determine the
latitude of the Philippine in the Pacific Ocean. The Philippines
extends 1,150 miles from north to south and has a comparatively
wide range of latitude with reference to Manila (about 14.5◦).
Initial general equilibrium is constructed from production of
capture fisheries in initial data, and the new states are applied
by reflecting changes in production repeatedly. As the capture
sector is a subsector of primary industry and products in the
capture sector are not an intermediate product which are value
added, the effects of marine capture are estimated by calculation
of the share of marine capture in the total effects of capture,
with the assumption that the marine capture sector and other
capture sectors such as freshwater capture do not affect each
other’s sector.

Climate change involves large changes that are well outside of
historical experiences. This suggests the need to use simulation
techniques of some kind. The simulation is based on the CGE
model which is a system of equations that describes an economy
as a whole and the interactions among its parts. The CGE
model is primarily used to simulate and assess the structural
adjustments, undertaken by economic systems, as a consequence
of shocks, like changes in technology, preferences, or economic
policy (Berrittella et al., 2006). In the context of the study, climate
change works as the shock which affects the economy since
increases or decreases in catch is directly connected to supply
level and production in the fishing industry and fisheries sector.

CGE has the advantage of analyzing direct and indirect
impacts on the nation’s economy and estimating how an
economy might react to changes because it provides a before
and after comparison of an economy when a shock, such
as a tax, causes it to reallocate its productive resources in
more or less efficient ways (Burfisher, 2017). Static models can
tell a powerful story about the ultimate winners and losers
from economic shocks, but it cannot represent the object
interactions over time, so dynamic CGE model is considered
an appropriate model since climate change is not just a one-
off shock.

Dynamic CGE has the advantage of reflecting adjustment
process in a recursive dynamic framework. The earliest forms
of dynamic CGE were carried out by Hudson and Jorgenson
(1974) and Adelman and Robinson (1978). Dynamic CGE
has become common in forward-looking expectation since
Ballard et al. (1985) performed dynamic CGE model for the
analysis on tax policy. Recently, the model is often used to
figure out the economic effect related to environment such
as pollution abatement (Dessus and Bussolo, 1998; Dellink
et al., 2004), environment tax (Wendner, 2001; Kumbaroglu,
2003; Siriwardana et al., 2011), and climate change (Eboli
et al., 2010; Robinson et al., 2012). In this paper, the iterative
method is used and the updated dataset provided by the
simulation of the current period is used for the simulation
of the next period, so that each solution is solved in a
recursive year-on-year framework (Figure 1). Through the
analysis, it can derive intuitive economic indicators such
as change in GDP and income distribution, according to
climate change.

Supply
The model covers economic features that reflect the
characteristics of the Philippines and the structure follows
the approach of Dervis et al. (1982), Robinson (1989), Shoven
and Whalley (1992), Ginsburgh and Keyzer (1997), and Lofgren
et al. (2002) based on neoclassical perspective. On the side
of supply, the model is established under the assumption of
profit maximization. Production involves information of input-
output based on factors of production and has flexibility for
substitution between the labor and capital. The model assumes
a Cobb-Douglas production function for the technology in
the production process, so the function is homogeneous of
degree one and it has constant returns to scale. The formula for
production function can be represented as follows:

QAa=ada·
∏

f

QF
αvafa
fa

where ada is production function efficiency, αvafa is value-added
share for factor f in activity a,QAa is production activity level, and
QFfa is quantity demanded of factor f by production activity a.

In the model, domestic and export commodity have a
constant elasticity of transformation (CET). In other word, the
distribution of theses commodities is modeled in the form of CET
function, so output transformation can be represented by the
function of the quantity of exports and the quantity of domestic
output as follows:

QXc=atc·(αtr
t
c·EX

ρt
c

c +(1−αtrtc)·QD
ρt
c

c )
1/ρt

c

where atc is shift for output transformation, αtrtc is share for
output transformation, ρt

c is exponent for output transformation,
QXc is the quantity of domestic output, QDc is the quantity
of domestic output sold domestically, and EXc is the quantity
of exports.

Market is represented by perfect competition. Consequently,
incidental assumptions are required to develop themodel. If price
of an input changes then the quantity of the output sold alters,
and that affects demand for the input (Hoffmann, 2003). The
model assumes the impact of input price is insignificant and firms
do not make economic profit, not measuring elasticity of demand
which reflects the market power that firms have.

Demand
On the side of demand, the model consists of household,
government and the foreign sector reflecting the consumption
of domestic good and imported good. Households are classified
depending on region. They are divided into two groups:
urban and rural household. The government of the model has
similar expenditure to the household and gets money through
taxation and consumes commodity quantities paying market
prices and transfers to households according to the expenditure
function. Foreign sector in the model also purchases domestically
produced commodity.
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FIGURE 1 | Conceptual framework of CGE for impact of change on fisheries.

The demand side can be represented by the combination of
domestic commodity use as follows:

QDc=
∑

a

ICca+
∑

h

QHch+gdoc+QIc

where QDc is domestic sales of domestic output, ICca is
intermediate use of commodity c by activity a, QHch is
quantity of consumption of commodity c by household h,
gdoc is government demand for commodity, and QIc is
investment demand.

Armington assumption is used for determination of the
combination of domestically produced commodity and imported
commodity reflecting responses of trade to price changes.

Composite supply takes the form of Armington function
as follows:

QQc=aqc·(αco
q
c ·IM

−ρ
q
c

c +(1−αco
q
c )·QD

−ρ
q
c

c )
−1/ρ

q
c

where QQc is quantity supplied to domestic commodity
demanders, aqc is shift parameter for composite supply, αco

q
c is

share parameter for composite supply, ρ
q
c is exponent (−1 < ρ

< ∞) for composite supply, and IMc is quantity of imports, and
QDc is domestic use of domestic output. Due to the equilibrium
of demand and supply (i.e., QDc = QQc), the demand side is
connected with Armington assumption.
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Government
Government also plays a role as an economic agent in
general equilibrium. Government consumes commodities while
it obtains revenue by collecting tax and transfer. Government
revenue and expenditure are represented as follows:

YG=
∑

h

tdhh·YHh+CR·trg,r+
∑

c

tcoc· (PDc·QDc

+ (PMc·IMc)|c∈CM
)

+
∑

c

timc·CR·pmc·IMc+
∑

c

tixc·CR·pec·EXc

where YG is government revenue, tdhh is the income tax rate of
household, trg,r is transfer from government to rest of world, tcoc
is the rate of consumption tax, timc is the tariff rate on import,
pmc is import price, tixc is the rate of tax on exports, pec is price
of exports, CR is the exchange rate, PDc is the price of domestic
output,QDc is the quantity of domestic output sold domestically,
PMc is the price of imports in domestic currency, IMc is the
quantity of imports, and EXc is the quantity of exports.

GX=
∑

h

trh,g+
∑

c

gdoc•PCc

where GX is government expenditure trh,g is transfer from
household to government, gdoc is government demand for
commodity, and PCc is price of composite commodity c.

Market Clearing
In the CGE model, some constraints are considered for the
equilibrium. One of important constraints is the market clearing,
so the model assumes market clearing in the factor market
and the commodity market. The condition of the factor market
clearing can be represented by the equality of supply and demand
of factor as follows:

FSf=
∑

a

QFfa

where FSf is supply of factor f and QFfa is quantity demanded of
factor f by activity a.

The condition of the commodity market clearing comes from
relationship between two equations in demand, and it can be
represented as follows:

QQc=
∑

a

ICca+
∑

h

QHch+gdoc+QIc

where QQc is quantity supplied to domestic commodity
demanders, ICca is intermediate use of commodity c by activity a,
QHch is quantity of consumption of commodity c by household
h, gdoc is government demand for commodity, and QIc is
investment demand.

Data
In the study, the one country, multi-sector and recursive CGE
model is constructed. For the analysis, information of the value
of all transactions in an economy is required. Thus, it is necessary
to utilize a social accounting matrix (SAM) which indicates a
logical framework of rows and columns providing a visual display
of the transactions as a circular flow of national income and
spending in an economy (Burfisher, 2017). In this study, the
model uses SAM by modification of the 2013 Social Accounting
Matrix from the compilation of the Agricultural Model for Policy
Evaluation which is constructed by Briones (2016). It provides
a set of transactions between fisheries, industry and service sub-
sectors in the Philippines. The SAM includes the primary sector,
the manufacturing and industry sector, the service sector, and
the public sector. The primary sector encompasses the capture
fisheries and aquaculture fisheries and other primary sector
such as the agriculture. Parameters are drawn from SAM with
econometric analysis, and the effect of marine capture fisheries
is calculated by interpolation because values of capture fisheries
sector are aggregated in the SAM. The modeling4 is based
on standard hypotheses of CGE and the model is solved in
Generalized Algebraic Modeling System (GAMS).

After the construction of the general equilibrium, GDP is
calculated by sum of the value of final demands and net exports
as follows:

GDP =
∑

h

∑

c

PCcQHc,h +
∑

a

∑

c

∑

h

CAacQHAach

+
∑

c

PCcQGc +
∑

c

PCcQIc +
∑

c

PCcqstc

+
∑

h

∑

c

PCcQHc,h +
∑

c

PMcIMc +
∑

c

PEcEXc

where PCc is composite commodity price, QHch is quantity of
commodity consumption by household, CAac is marginal cost
of commodity from activity, QHAach is quantity of household
consumption of commodity from activity for household, QGc

is government consumption demand for commodity, QIc is
quantity of investment demand, PMc is price of imports in
domestic currency, IMc is quantity of imports, PEc is price of
exports in domestic currency, EXc is quantity of exports, and qstc
is quantity of stock change.

RESULTS

Philippines Economy
In the simulations, results show more negative change in
economic variables where more extreme changes in climate
occur. Since three scenarios are applied in this study, the model
focuses on the results on differences in GDP. The result of
simulation is shown in Figure 2. Ceteris paribus except change
in production of fisheries resulted from climate change, baseline

4The model includes 27 equations to form the system. Most parameters, variables

and equations and the code for the model are developed based on Lofgren

et al. (2002) and Lofgren (2003) following the neoclassical structure which is

well-developed by Dervis et al. (1982).
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FIGURE 2 | Projection of decrease in GDP by scenario.

scenario is normalized in the analysis. Index score of 100 is set
based on GDP of baseline specifying 100 as a reference point.
So, the score of 100 means the level of GDP in baseline for
each year, and scores <100 indicate the levels in scenarios are
underperforming the comparison in the year. As it shows, higher
radiative forcing value causes lower level of GDP compared to
baseline scenario assuming no changes in the status quo.

As a result of simulation, GDP is expected to decrease by
0.16% with scenario A (RCP 2.6) and 0.37% with scenario B
(RCP 8.5) up to 2060. This state came from direct effect, i.e.,

reduction in catch in exclusive economic zone and seas in the
Philippines leading to dwindling supplies, and indirect effect i.e.,

effects that came about as other product and factor markets in the
Philippines respond to the change in productivity.

For the examination of distributional aspects between urban
and rural area, households are grouped by residence. Looking
at consumption patterns, the nation’s service sector seems most
active, and that is especially predominant in urban areas. It
is shown that rural households spend more on the primary
sector and manufacturing and industry sector compared to
urban households. On the other hand, urban households appear
to spend more on the service sector. To review the fisheries
sector, urban households and rural households are on nearly
the same share of household consumption spending on fishery
commodities. The share of household expenditure allocated
to fisheries indicates about 1.4% (Table 1). Urban households
spend more on aquaculture products (0.83%) compared to rural
households (0.80%), while rural households relatively spend
more on marine capture products (0.67%) compared to urban
household (0.54%), but there is no significant difference between
patterns on the whole.

TABLE 1 | Share of household consumption spending on commodity.

Primary sector Mfg. and

industry

Service

sector

Public

sector

Fisheries Other

U-HH 0.014 0.056 0.323 0.601 0.006

R-HH 0.015 0.108 0.389 0.482 0.005

TABLE 2 | Distribution of household income in the fisheries by scenario.

Baseline Scenario A Scenario B

U-HH 100.000 99.840 99.640

R-HH 100.000 99.837 99.628

Table 2 presents the household income related with the
fisheries sector normalized to 100 for the baseline scenario.
Ceteris paribus, the result implies that the more global warming,
the greater loss of income that will occur. That is to say, climate
change has an effect of income reduction. The rate of decrease
in income of rural household is 0.163 and 0.372, for scenario A
(RCP 2.6) and scenario B (RCP 8.5), respectively; while for the
rate of decrease in income of urban household, is 0.160 and 0.360,
for scenario A and B, respectively.

Marine Capture Fisheries Sector
Marine capture fisheries in the simulation represents fisheries
excluding inland capture and aquaculture. This follows a
classification of the fisheries subsector used in the fisheries
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FIGURE 3 | Projection of decrease in contribution of marine capture to GDP by scenario.

situation report issued by the Philippine statistics authority (PSA,
2014). According to the volume of fisheries production data in
the Philippines (1980–2010), capture fisheries have made up a
high percentage (82%) of the total fisheries production for three
decades, and the percentage of marine capture fisheries is 89%
and that of inland fisheries is 11% among capture fisheries. The
percentage of capture fisheries is decreasing recently, while that
of aquaculture is growing. In 2013, capture fisheries accounts
for 59% of the total fisheries production in terms of the value
of production at constant prices, but based on capture fisheries,
marine capture fisheries became more dominant showing 95% of
total capture fisheries (PSA, 2014).

Climate change is one of the underlying causes of decrease in
production in the marine capture fisheries sector, and the impact
of climate change onmarine capture fisheries sector is substantial
since production is a big part of the economy. In the Philippines,
marine capture is currently dominated by roundscad, big-eyed
scad, anchovy, Indian oil sardines, Indian mackerel, threadfin
bream and tuna species (PSA, 2017a). Production of anchovy is
greatly affected by climate change compared to big-eyed scad,
Indian mackerel and threadfin bream. Sardine is relatively less
vulnerable compared to anchovy but weak upwelling conditions
can affect its population. With warmer water and less oxygen
available, tuna species in the Philippines (frigate tuna, eastern
little tuna, yellowfin tuna, skipjack, bigeye tuna), making 28%
of the catch (PSA, 2017a), are expected to decrease due to the
shortage of microscopic plants and animals which are an integral
part of the tuna food webs (Vousden, 2018).

The marine capture fisheries sector is affected directly
by decrease in production while other sectors of the
Philippines economy are influenced by only indirect
effect. Thus, looking over the marine capture sector, the
economic impact of climate change is significant in terms
of the ratio. As a result of the simulation, the contribution
of marine capture to GDP is expected to decrease by
9.41% with scenario A and 17.95% with scenario B up to
2060 (Figure 3).

The decrease in contribution of marine capture to GDP
leads to the decrease in income of fishermen. Fishermen in the
Philippines, one of the poorest groups in the nine basic sectors,
belong to households with income below the official poverty
threshold, representing a poverty incidence of 34% (PSA, 2017b).
Thus, a decrease in contribution of marine capture to GDP
has a negative impact on the mitigation of poverty incidence,
and that means climate change adds to the social welfare in
the Philippines.

Climate change brings negative consequences in terms of
rural household income (Figure 4). Decreases in productivity
leads to income reduction of households engaged in fisheries,
dampening profitability of fishing industries. Considering
fishermen reside more in rural areas rather than urban
areas, it is expected that climate change affects income of
rural households more than urban households. Income of
rural households is liable to decrease as climate change
continues, and it is expected to deepen as climate change
becomes extreme.
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FIGURE 4 | Projection of loss in rural household income by scenario. Income level in base year is normalized to 100.

Capture-Aquaculture Combined Fisheries
Sector
In order to examine the impact of climate change on the

production of marine capture fisheries, a simulation about

capture-aquaculture combined fisheries is carried out. Capture-
aquaculture combined fisheries in this section refers to all kinds

of fisheries traded in the Philippine market and Filipino fisheries
exported to the world market. As shown by the simulation
of the economic sector, GDP of the Philippines is expected
to decrease from 0.16 to 0.37% compared to the baseline
scenario. In light of the proportion of the fisheries sector
(which is about 1.8%) to the national economy, there is a
huge amount of influence on the economy. Fisheries GDP is
expected to decrease by about 9.27% with scenario A and bout
17.65% with scenario B up to 2060 compared to the baseline
(Figure 5).

Economic growth is an increase in the production of
goods and services due to an improvement in production
capacity, and is represented by an increase in GDP. The
current Philippines economic data suggests that the fisheries
sector will continue to grow due to a rise in demand,
an increase in productive capacity, and the development of
new technology. Economic growth in fisheries is expected to
slow compared to the baseline scenario since climate change
brings negative effects. Figure 6 shows economic growth in the
fishing sector based on capture indicating inflation-adjusted
measures in a corresponding year, i.e., the increase in real
GDP. As shown in Figure 6, the model notes that economic
growth in the fisheries slopes upward in all scenarios, but

the curves in the scenario A and B show relatively slower
economic growth.

Like the marine capture fisheries sector, loss of income affects
rural households slightly more than urban households as climate
change continues. It implies that climate change can cause urban-
rural income disparity. This is because there are more people who
work in fisheries in rural areas than urban areas and a decrease in
fish catch affects rural household income. Thus, climate change
has more negative effect on rural households in terms of fisheries.
Figure 7 represents loss in rural household income by scenarios
A and B. As shown in the figure, climate change has negative
effect of income.

DISCUSSION

Vicious Circle in Fisheries Sector
The economy of the Philippines has grown for the last decade,
but more than 20% of the Philippines population remains
poor and the Philippines does not show big dynamism in
improvement of economic security, rise in the middle class
and even elimination of poverty, compared to other East
Asian countries (World Bank, 2016, 2018). The problem is
that the poor in the Philippines (30.8% of the population was
economically vulnerable, 18.7% was moderately poor, and 6.6%
of the population was extremely poor) are more vulnerable to
negative shocks being exposed to more risks for shortage of
resources without ability to cope and capacities necessary to
adapt to potential risks (World Bank, 2018). In other words,
climate change leads to problems for the collective economy
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FIGURE 5 | Projection of decrease in contribution of capture-aquaculture combined fisheries to GDP by scenario.

FIGURE 6 | Projection of economic growth in the fisheries by scenario. The GDP in base year is normalized to 100.

of the Philippines represented by slow economic growth
and deterioration of income distribution. In addition, climate
change contributes to accelerating the plight of the poor in
the Philippines.

The issue related with climate change and fisheries resulting
from this study is the slowdown in economic growth in the
fisheries sector. The problem is that for poor households in rural
regions, a large share of income comes from activities associated
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FIGURE 7 | Projection of loss in rural household income by scenario. Income level in base year is normalized to 100.

with the primary sector (World Bank, 2018). Therefore, it is
expected that factors such as climate change will contribute to
the plight of the poor in the Philippine due to slow growth
of fisheries and the poor’s dependency on fisheries sector. The
second problem is the fact that negative economic impacts on the
fisheries sector may affect fishery resources in Philippines making
a vicious cycle since changes in fish abundance and location
will cause more completion and conflict for the remaining
resources. It would result in a decline in food resources and
food security. Decrease in fish products, which are the means of
inexpensive and nutritious food supply, causes significant strain
on the cost of living of low-Income people in the Philippine due
to limited options in terms of food consumption. Thus, poor
fisheries productivity caused by climate change is expected to
affect the nation’s economy but particularly bring hardships to
the poor.

Limitations on the Model
Several points are worth noting to contemplate what are the
limitations and how they could be extended in future work.
The paper assumed perfect competition in the market of the
Philippines. In reality, it may be natural to face different
types of market structure that do not meet rigorous criteria
of perfect competition. It is necessary to incorporate cases
of imperfect markets such as price controls, if applicable.
It is also necessary to consider the more flexible and
complex functional form of analysis, as well as Cobb-
Douglas functions, to better reflect the structure of the
Philippine economy.

Second, the paper assumed productivity of all sectors except
fisheries, which remains constant, i.e., supply of other fields
might be altered under the model mechanism, but it does
not mean they are directly affected by climate change. The
assumption is advantageous for identifying the influence on
fisheries, but leaves something to be desired if someone wants
to completely examine the state of the economy itself. To
improve predictive power of the model and better represent
comprehensive economic condition, it is necessary to consider all
products being influenced by climate change, such as agricultural
products, simultaneously. Also, the paper assumed paradigm
of general equilibrium depending on aggregated data. It is
necessary to note that a possibility of spatial variation in fisheries
productivity and decline in fisheries is inherent in reality.

Third, the adaption needs to be discussed in depth. This
study focuses on assessment of the economic impact by means
of the CGE model by reflecting changes in fish catch due to
climate change. The model used in this study is reflective of
dynamic reaction to change in factors like labor, capital and
inputs. However, the adjustment is limited to the changes within
the system built to reproduce the economy. Consequently, the
adjustments that can progress beyond the current structure is
not mechanically reflected in the model as when dealing with
non-monetary objectives such as adaptation to climate change.
Different adaptabilities could result in change inmarket structure
according to learning effect, change in preference, and new
policies. Simulations are performed under the assumption that
the current condition persists, but it would be desired to include
many situations. It is necessary to reflect various situations with
collecting information for any future study.
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CONCLUSION AND RECOMMENDATION

This paper examined economic impacts of climate change on
fisheries in the Philippines applying the dynamic computable
general equilibrium (CGE) model. In the analysis, one baseline
scenario and two climate change scenarios based on greenhouse
gas concentration were considered. The study focused on GDP
and income distribution by sector, which can represent economic
conditions in terms of economic growth and distribution.

The climate change impacts on marine capture fisheries in
the Philippines is projected to cause a decrease by about 9% of
fisheries GDP with the mitigation scenario and about 18% of
GDP with the extreme scenario up to 2060, compared to the
baseline scenario. This impact results in income reduction by
as much as 0.36% for urban households and 0.38% for rural
households in the Philippine economy. In addition, urban-rural
income disparity increases because loss for rural households is
slightly higher than that of urban households.

Climate change will affect the fisheries over a long period of
time. Accordingly, it means that the Philippines must prepare
itself to get ready for the impact and endeavor to mitigate
climate change. To prepare for climate change, the Philippine
needs to: (i) conduct an assessment of vulnerability to climate
change for fisheries at the national level in order to respond
to changing economic conditions expected to worsen over time
and that the assessment is continuously and periodically carried
out; (ii) carry out a gap analysis on the capability to cope
with the impact of climate change on fisheries for the national
economy; the gap analysis enables organizations to take the
selective and premeditated actions providing the information
about whether a sector or area can potentially be associated with

the issue or which community is more vulnerable to climate
change; (iii) make effective management plans for fisheries to
develop adaptation to climate change with the accumulated
information in the process—for an effective plan, it is necessary
to establish reliable research materials by collecting climate
data and fisheries-related information, and these sources should
be open to both organizations and the public to help make
more informed fisheries management decision; (iv) incorporate
climate change impacts into national economic development
plans and fisheries development plans; and (v) incorporate
climate adaptation into the fisheries management plan—it should
be accompanied by education on climate change that can increase
awareness of impacts of climate change and promotion of
adaptation strategies that can reduce the effect of climate change
on fisheries.
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Calcifiers in the Salish Sea:
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Ocean acidification (OA) is projected to have profound impacts on marine ecosystems
and resources, especially in estuarine habitats. Here, we describe biological risks
under current levels of exposure to anthropogenic OA in the Salish Sea, an estuarine
system that already experiences inherently low pH and aragonite saturation state (�ar)
conditions. We used the Pacific Northwest National Laboratory and Washington State
Department of Ecology Salish Sea biogeochemical model (SSM) informed by a selection
of OA-related biological thresholds of ecologically and economically important calcifiers,
pteropods, and Dungeness crabs. The SSM was implemented to assess current
exposure and associated risk due to reduced �ar and pH conditions with respect to
the magnitude, duration, and severity of exposure below the biological thresholds in the
Salish Sea in comparison to the pre-industrial era. We further investigated the individual
effects of atmospheric CO2 uptake and nutrient-driven eutrophication on changes in
chemical exposure since pre-industrial times. Our model predicts average decreases in
�ar and pH since pre-industrial times of about 0.11 and 0.06, respectively, in the top
100 m of the water column of the Salish Sea. These decreases predispose pelagic
calcifiers to increased duration, intensity, and severity of exposure. For pteropods,
present-day exposure is below the thresholds related to sublethal effects across the
entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited
basis. The greatest risk for larval Dungeness crabs is associated with spatially limited
exposures to low calcite saturation state in the South Sound in the springtime, triggering
an increase in internal dissolution. The main anthropogenic driver behind the predicted
impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a
marginal role over spatially and temporally limited scales. Reduction of CO2 emissions
can help sustain biological species vital for ecosystem functions and society.

Keywords: ocean acidification, threshold, attribution analyses, anthropogenic stressors, nutrient
remineralization, Dungeness crab, pteropods, biogeochemical projections
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INTRODUCTION

Anthropogenically enhanced ocean acidification (OA) represents
one of the most significant risks to coastal marine ecosystems
(Feely et al., 2010, 2016, 2018; Bednaršek et al., 2016, 2014, 2017a,
2018, 2019, 2020; Wallace et al., 2014; O’Neill et al., 2017; Evans
et al., 2019). These concerns are especially relevant in highly
productive eastern boundary upwelling systems, as well as the
coastal and estuarine systems where OA impacts on key marine
organisms are already detectable. These organisms face a high
risk of impacts well before 2100, even under the low-emissions
scenario (RCP2.6; Gattuso et al., 2015), that will negatively affect
human benefits and services. The identification of major drivers
and trends of OA variability is critical for understanding the
biological changes related to OA.

The upwelling regime along the United States West Coast
has experienced a pH decline of at least 0.1 pH unit since
pre-industrial times (Chavez et al., 2017; Laruelle et al., 2018;
Osborne et al., 2020). The results of intensifying OA have
resulted in increased magnitude, duration, and frequency of OA
exposure (Feely et al., 2008, 2016, 2018; Gruber et al., 2012; Hauri
et al., 2013; Turi et al., 2016; Chan et al., 2017; Sutton et al.,
2019). Experimental simulations of OA exposure demonstrate
copious evidence of the detrimental effects of OA on a variety
of ecologically and economically important calcifiers along the
United States West Coast (Gaylord et al., 2011; Baumann et al.,
2012; Lischka and Riebesell, 2012; Waldbusser et al., 2015;
McLaskey et al., 2016; Miller et al., 2016; Osborne et al., 2016;
Giltz and Taylor, 2017; Hales et al., 2017; Kapsenberg et al.,
2018; Williams et al., 2019). Furthermore, synthesis and meta-
analyses work indicate a much broader vulnerability with the
ultimate impact on marine ecosystems (Kroeker et al., 2013;
Busch and McElhany, 2016). Moreover, the impact is noticeable
under present-day conditions, with field studies delineating
effects in some of the most vulnerable marine species, such
as oysters (Barton et al., 2012, 2015), copepods (Engström-Öst
et al., 2019), foraminifera (Osborne et al., 2016, 2020), pteropods
(Bednaršek et al., 2014, 2016, 2017a, 2018, 2019; Feely et al.,
2016) and Dungeness crab larvae (Bednaršek et al., 2020). For
the last three species in particular, robust attribution analyses
have unequivocally demonstrated the impact of anthropogenic
OA as a driver behind observed negative responses (Bednaršek
et al., 2014, 2020; Osborne et al., 2020). Due to the shortness of
time series, population-specific measurements linked to in situ
anthropogenic CO2 are still lacking.

It is particularly important to address the risks related
to anthropogenic drivers on regional scales because of their
connection to local economies based on marine resources,
fisheries, and recreation (Barange et al., 2014; Gattuso et al.,
2015). Fingerprinting of the anthropogenic OA signal is
particularly essential in estuarine systems that support structural
and functional biodiversity and productivity in order to evaluate,
manage, and limit the risks to habitats. However, these systems
are characterized by extensive spatial and seasonal variability and
prolonged time of emergence (Cai et al., 2011; Sunda and Cai,
2012; Feely et al., 2018; Sutton et al., 2019), and conclusively
linking anthropogenic attribution to baseline shifts is difficult.

Despite this, recent studies have identified remarkably consistent
bounds for anthropogenic CO2 concentrations for the coastal
waters of the California Current Ecosystem and the Salish Sea
(Feely et al., 2016; Evans et al., 2019).

The Salish Sea in the Pacific Northwest is one of the most
productive estuarine systems in the United States with many
ecologically, economically, and culturally significant species.
Yet, the Salish Sea is rapidly changing because of its poor
buffering capacity (Feely et al., 2010, 2012, 2018; Fassbender
et al., 2018; Evans et al., 2019) and multiple anthropogenic and
natural drivers that can simultaneously exacerbate OA, including
freshwater (riverine) inputs, respiration processes, and other
redox reactions (e.g., Feely et al., 2010, 2016, 2018; Alin et al.,
2018; Evans et al., 2019, and references therein). Anthropogenic
CO2 uptake and local eutrophication enhancing respiration have
been recognized as the most important contributions to changing
OA baseline conditions (Feely et al., 2010, 2012, 2018; Pelletier
et al., 2017, 2018; Bianucci et al., 2018; Evans et al., 2019).
Anthropogenic CO2 concentrations are changing surface ocean
habitats following the exchange of CO2 across the air/water
interface, with increased concentration of dissolved inorganic
carbon (DIC) from the atmosphere.

While these processes are subjecting ecologically and
economically important calcifying species to enhanced
anthropogenic OA exposure (Feely et al., 2016, 2018), the
understanding of OA’s impacts on important species to the Salish
Sea ecosystem is currently restricted to experimental results and
food web model outputs of projected OA changes. Several studies
demonstrate the most damaging OA impacts on various pelagic
calcifiers, including pteropods, benthic grazers, and Dungeness
crabs (Busch et al., 2013, 2014; Miller et al., 2016). However,
because of the uncertainties associated with extrapolating from
experimental results to highly variable estuarine conditions,
OA risk assessment across spatial and temporal windows of
exposures is limited.

Pteropods are ecologically important as a food resource for
various fish (Aydin et al., 2005), and are regarded as sensitive
OA indicators of ecological health (Bednaršek et al., 2017b).
Their OA sensitivity is related to multiple pathways ranging from
shell dissolution, physiological and behavioral responses, and
mortality (Lischka et al., 2011; Busch et al., 2014; Bednaršek et al.,
2017a,b). As described by Wang et al. (2018) and Bednaršek et al.
(unpublished), pteropod life history in the Salish Sea consists of
are two major spawning events in the Salish Sea: a primary event
occurs during the springtime (March–May) and a secondary
event occurs in the fall (September–October), generating most
sensitive early life stages that inhabit upper 100 m of their
vertical habitat (Wang et al., 2018; Bednaršek et al., unpublished).
A single field study so far in the Salish Sea shows evidence of
negative biological effects, shell dissolution, under present OA
gradients for pteropods (Bednaršek et al., unpublished); these
findings are indicative of high pteropod sensitivity yet insufficient
to accurately ascribe the risks for the pteropod community
in the Salish Sea.

Dungeness crabs are the most important fishery in
Washington State, with an estimated total value between $90
and $110 million annually (Childers, R., Washington Fish and
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Wildlife, personal communication). Exposure to OA conditions
is pre-determined by the life history of larval Dungeness crabs
occurring during the springtime (May–June), with early life
stages inhabiting upper 160 m of water column considered to
be their diel vertical habitat in the Salish Sea (Jamieson and
Phillips, 1993). Experimental analyses of the Dungeness crab
demonstrate delayed development and increased mortality in the
zoea stages (Miller et al., 2016), while megalopae show evidence
of increased exoskeleton dissolution (Bednaršek et al., 2020).
There is consistent evidence of a regionally limited population
collapse of Dungeness crabs (Childers, R., Washington Fish and
Wildlife, personal communication) but causality behind the
observed phenomenon has not yet been determined because
the pathways of sensitivity or attribution analyses to specific
drivers are lacking.

To evaluate OA-related risks and uncertainties on biological
populations, an understanding of two factors, i.e., species
sensitivity and associated exposure to unfavorable OA conditions,
is needed. Standardizing sensitivity across species, life stages,
studies, and different approaches is difficult and potentially
biased. In the absence of a comprehensive understanding of
species sensitivity, needed to predict future OA effects, the
United Nations Intergovernmental Panel on Climate Change
(IPCC) uses thresholds with associated confidence levels to
communicate the risks (Mastrandrea et al., 2010). Biological
thresholds are recommended tools for evaluating species
sensitivity, especially when derived through the expert consensus
process (Mastrandrea et al., 2010; Bednaršek et al., 2019). As such,
they can be used to assess biological vulnerability when there are
gaps in the empirical evidence. Although there is a significant
gap of known OA thresholds for most marine organisms, such
thresholds are currently available for different life stages of
pteropods (Bednaršek et al., 2019). The biological thresholds
cover a range of conditions specifically related to aragonite
saturation state (�ar) that can induce either sublethal (increased
dissolution, reduced growth) or lethal (mortality) effects. Species
life histories provide a context for interpreting sensitivity during
their most sensitive biological stages (Bednaršek et al., 2019).

In regard to OA exposure in regionally specific coastal-
estuarine ecosystems, downscaled biogeochemical models are
among the best tools for evaluating current conditions and
predicting changes against a background of ocean variability.
More importantly, they can help delineate the location and
potential impact of specific anthropogenic stressors, such
as atmospheric CO2 addition or eutrophication, as well as
quantitatively assess the changes to either of these two
stressors. Biological thresholds can be incorporated easily into
biogeochemical models as an application tool to identify spatially
explicit OA hotspots and refugia, as well as temporal windows in
which the biological risks will be most significant. Furthermore,
applying thresholds to biogeochemical models with distinct
“scenarios” can help delineate the extent of currently observed
biological impacts due to a specific anthropogenic OA driver, e.g.,
CO2 emissions vs. nutrient loading.

The application of biological thresholds into the Salish Sea
Model (SSM) to identify spatial and temporal windows of
conditions that induce sublethal and/or lethal biological effects

is a novel approach in assessing risk associated with OA.
Here, we apply a highly resolved biogeochemical SSM to assess
the changes in chemical exposure since the pre-industrial era
using an attribution analysis of atmospheric CO2 emissions
and nutrient-driven eutrophication in the Salish Sea. Metrics
of exposure (duration, intensity, severity) were modeled to
delineate predominant anthropogenic drivers, atmospheric CO2
and nutrient-related eutrophication, and discern their effects
across spatial and temporal scales since the pre-industrial era.
We conducted OA risk analyses using two pelagic calcifiers
with the greatest predisposition to exposure and demonstrated
vulnerability to OA conditions in the Salish Sea: pteropods
(Limacina helicina) and larval stages of Dungeness crab
(Metacarcinus magister). The interpretation of their biological
risks was based either on the biological thresholds (pteropods,
Bednaršek et al., 2019) or sensitivity equation related to the
OA conditions (larval Dungeness crabs, Bednaršek et al., 2020).
In doing so, we were able to determine current risks facing
ecologically and economically important species in the Salish Sea,
as well as delineate the anthropogenic drivers associated with the
greatest risk for species sustainability.

MATERIALS AND METHODS

Description of the Salish Sea Model
This project utilizes a recently completed physical-
biogeochemical model for the Salish Sea coastal waters developed
by the Pacific Northwest National Laboratory (PNNL) and the
Washington State Department of Ecology (DOE) (Pelletier
et al., 2017; Bianucci et al., 2018). Our project focus is on
the Salish Sea; therefore, we call it the SSM, but the model
domain also extends into the Strait of Juan de Fuca and Strait of
Georgia. The hydrodynamic module of the SSM is an application
of the Finite-Volume Community Ocean Model (FVCOM;
Chen et al., 2003).

The SSM uses an unstructured grid that represents the
complex shoreline, islands, bathymetry, and waterways of the
Salish Sea. The unstructured SSM grid consists of 9,013 nodes and
13,941 elements. The vertical resolution of the model employs
a sigma coordinate system with 10 layers. Layer thicknesses
are distributed with highest density near the surface. The
thickness of the surface layer ranges from about 0.16 m in the
shallow nearshore areas to 7.6 m in the deepest areas, with an
average thickness of about 1.9 m across the model domain. The
thickness of the bottom layer ranges from about 0.75 m in the
shallow nearshore areas to 35 m in the deepest areas, with an
average thickness of about 8.6 m across the model domain. The
number of model grid layers within the euphotic zone depth of
approximately 20 m varies from all 10 layers in the nearshore
regions to the top two layers in the deepest areas.

The biogeochemical module of the SSM is adapted from
the Integrated Compartment Model (CE-QUAL-ICM; Cerco
and Cole, 1993, 1994). Bianucci et al. (2018) extended the
SSM to include carbonate system variables, i.e., total alkalinity
(TA) and DIC in the water column and a two-layer sediment
diagenesis module (Di Toro, 2001). The SSM is driven by
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boundary conditions at two open boundaries (Strait of Juan
de Fuca and Strait of Georgia), nearly 100 freshwater sources,
including rivers, other watershed sources, and wastewater
treatment plants, and meteorological forcing at the water surface.
The SSM tracks the following state variables: phytoplankton
(two groups), nutrients (nitrate, ammonium, and phosphate),
dissolved oxygen, dissolved and particulate organic carbon and
nitrogen (labile and refractory), alkalinity, and DIC. The SSM
is an offline model that uses input from a previously computed
hydrodynamic solution. A detailed description of the SSM is
provided by Yang et al. (2010), Khangaonkar et al. (2011),
Khangaonkar et al. (2012), and Kim and Khangaonkar (2012).

The model setup for realistic historical conditions in 2008 is
exactly the same as described by Bianucci et al. (2018), except
for the following changes to better represent model boundary
conditions:

– Monthly averages were used to represent alkalinity in
rivers instead of using a constant value for each river for
the entire year, using the same data sources described by
Bianucci et al. (2018);

– Atmospheric xCO2 of 390 ppm was used instead
of 400 ppm to better match the observed
data off the coast of Washington during 2008
(PSEMP Marine Waters Workgroup, 2016).

Model Scenarios
Several model runs were used in this project to represent the
following scenarios:

(1) Existing conditions in 2008. These are the realistic
historical conditions observed in 2008 (referred as S1Ex);

(2) Hypothetical reference conditions in 2008 without regional
human nutrients. This is the same as Scenario 1,
except with regional anthropogenic sources of nutrients
removed (e.g., wastewater treatment plant loads and
freshwater anthropogenic nonpoint sources). The regional
anthropogenic nutrient loads that were excluded from
the reference condition scenario include anthropogenic
inorganic N (nitrate and ammonium), dissolved and
particulate organic N, and dissolved and particulate
organic carbon (referred as S2Ex-nut);

(3) Hypothetical reference conditions without global
anthropogenic CO2. This is the same as Scenario 1 except
with atmospheric and ocean boundary partial pressure of
CO2 (pCO2) and DIC reduced to pre-industrial conditions
(referred as S3Ex-atm);

(4) Hypothetical pre-industrial conditions without global
anthropogenic CO2 or local human nutrients. This is
the same as Scenario 1, except with atmospheric and
ocean boundary pCO2 and DIC reduced to pre-industrial
conditions and regional anthropogenic nutrient sources
excluded (referred as S4Ex-nut-atm);

(5) Hypothetical conditions from the years 1780 to 2100 in
response to changing global CO2 under RCP 8.5. This is
a set of 17 separate scenarios that are same as Scenario 1,
except with atmospheric and ocean boundary pCO2 and

DIC changed to reflect projected conditions between the
years 1780 and 2100 with atmospheric increase from 280
to 910 ppm (Scenario 5, S5-Future).

The effects of regional anthropogenic nutrient sources
on water quality were evaluated by analyzing the difference
in results between the historical conditions in 2008 and the
reference conditions with human nutrients excluded [difference
between Scenario 1 (S1Ex) and 2 (S2Ex-nut)]. Regional
anthropogenic nutrient sources that were removed in the
reference conditions include the anthropogenic component
of loading in the wastewater treatment plants and all
freshwater sources within Washington State. The effects
of global anthropogenic sources of CO2 were evaluated by
analyzing the difference in results between the historical
conditions in 2008 and the reference conditions with
global anthropogenic CO2 excluded [difference between
Scenario 1 (S1Ex) and 3(S2Ex-atm)]. The combined effect
of global anthropogenic CO2 and human nutrient sources
was based on the difference between Scenarios 1 (S1Ex) and
4 (S4Ex-nut-atm).

The method used to calculate DIC at the ocean boundary
under pre-industrial conditions assumes that pCO2 in the water
is increased at the same rate as in the atmosphere (Takahashi
et al., 2009). Atmospheric CO2 was 390 ppm in 2008 and 280 ppm
under pre-industrial conditions; therefore, the difference of
110 ppm was subtracted from the 2008 ocean boundary pCO2 in
the water to estimate ocean boundary pCO2 under pre-industrial
conditions, and pre-industrial DIC was calculated with CO2SYS
(Lewis and Wallace, 1998; Evans et al., 2019).

The methods used to estimate the nutrient loading from
all existing sources and reference conditions (with estimated
regional anthropogenic sources excluded) are presented in
Mohamedali et al. (2011) and Pelletier et al. (2017). Regional
anthropogenic sources of nutrients that were removed from the
reference conditions include wastewater treatment plant loads
and freshwater anthropogenic nonpoint sources of nutrients,
including anthropogenic inorganic N (nitrate and ammonium),
organic N (dissolved and particulate), and organic carbon
(dissolved and particulate). Natural reference conditions were
established from the results of a meta-analysis considering
concentration data from various sources (Mohamedali et al.,
2011): ambient monitoring data, rainfall data, and data from
other studies. Monthly 10th percentiles of ambient data were
used to represent natural nutrient concentrations for different
regions in Puget Sound and the Strait of Georgia. Monthly 50th
percentiles were used for the Olympic Peninsula watersheds
draining to the Strait of Juan de Fuca and Hood Canal.

We demonstrate the effects of the changes in carbonate
chemistry conditions over the entire Salish Sea region through
the model outputs, and additionally focus on the stations in Puget
Sound, which represent the southern part of the Salish Sea where
current OA monitoring is taking place (Figure 1). All of the
model scenarios used in this study use the same hydrodynamic
and physical conditions as the year 2008. Therefore, the
differences between scenarios isolate the effects of only regional
human nutrients and global anthropogenic CO2.
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FIGURE 1 | Map of the Salish Sea with selected stations in its southern part of Puget Sound with Main Basin (P28) that are part of the OA monitoring efforts in
Washington state.
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Determining the Exposure and Sensitivity
for Two Groups of Marine Calcifiers
The availability of tools that allow interpretation of biological
sensitivity, as well as model outputs that allow assessment
of chemical exposure, made it possible to evaluate the risks
for two pelagic calcifiers, i.e., pteropods and larval stages of
Dungeness crabs.

Depending on the application of the tools in the
biogeochemical model, the exposure can be assessed temporally
and spatially. In assessing temporal exposure, we applied
the sensitivity tools across different seasonal scales that
align with the species life history, i.e., when the magnitude
of seasonal exposure co-occurs with the most sensitive
biological processes. Spatial sensitivity was assessed over
the entire Salish Sea, which is the spatial domain of the SSM
biogeochemical model.

Pteropods in the Salish Sea inhabit the upper 100 m
water column and undergo two spawning events. One event
occurs in the springtime (March–May) and the other occurs
in the fall (September–October). For pteropods, biological
sensitivity is based on thresholds describing the sublethal and
acute biological responses that were derived through expert
consensus (Bednaršek et al., 2019). Each of the six thresholds
in the study was assigned a specific confidence score, which
was based on the combination of evidence and agreement
(Mastrandrea et al., 2010).

Life history context was used for assessing the OA risks to
larval Dungeness crabs considering their diel vertical migration
pattern within the upper 160 m during the spring (May–
June). Biological thresholds, however, were not available for the
larval Dungeness crabs. Consequently, we used the equation
that best describes their sensitivity against regionally specific
OA gradients (Bednaršek et al., 2020). Larval stages of the
Dungeness crab are susceptible to OA exposure, which can
induce internal and external exoskeleton carapace dissolution
(Bednaršek et al., 2020). Internal dissolution was correlated
against calcite saturation state (�cal; Eq. 1; p = 0.003), derived
from in situ vertical coastal gradients at the stations along
Washington’s coast that are interconnected with the waters of the
Salish Sea. Because of the regional similarity, we extrapolated this
equation to the waters of the Salish Sea. The extent of internal
dissolution is associated with extracellular acid-base control,
which is linked to increased energetic demands and thus related
to physiological impairments (Michaelidis et al., 2005; Hans et al.,
2014; Bednaršek et al., 2020).

While evaluating the risks of sublethal exposure is simple,
interpreting the risks at the population level is more complex
and multifaceted. Here, we consider population-level effects
to be most significant if anthropogenically induced OA
conditions result in exposure inducive to the mortality
threshold, particularly during the most vulnerable early-life
stages. Alternatively, if the magnitude of exposure inducive
to sublethal effects prevails for a prolonged time, it can
contribute to compromised organismal performance and
thus indirectly induce mortality. As such, we delineate
the exposure related to sublethal effects on either seasonal
(September–October or January-February) or annual

bases to provide us with different temporal windows of
OA-associated risks.

Applied Thresholds or Sensitivity
Equations for Pteropods and Dungeness
Crabs
Pteropod thresholds describe biological condition gradients
ranging from sublethal biological effects (mild to severe
dissolution, growth impairment) to lethal effects (survival).
Each pteropod threshold is associated with the magnitude
(Tmag in units of �ar) and duration (Tdur in units of days)
of exposure at which significantly negative impacts occur.
Each threshold is additionally characterized by a confidence
score determined by using a combination of the evidence and
agreement, as based on the IPCC approach (Mastrandrea et al.,
2010; Bednaršek et al., 2019).

Pteropod thresholds were applied over the upper 100 m
integrated water column, which delineates the vertical habitat of
pteropods in the Salish Sea. We conducted the application for
three thresholds:

1. Mild dissolution (sublethal response; �ar = 1.5 for 5 days;
high confidence score)

2. Growth impairment (sublethal response; �ar = 1.0 for
7 days; medium confidence score)

3. Mortality (lethal response; �ar = 0.95 for 14 days; low
confidence score).

For larval Dungeness crab, we used the equation (Eq. 1)
for �cal over the upper 160 m water column to delineate the
sublethal effects in the Salish Sea. Since the megalopae build
their exoskeleton of calcite, the model outputs are in calcite
saturation state (�cal), which is linearly correlated to �ar. Internal
dissolution describes a relative extent of dissolution per each
individual (Bednaršek et al., 2020).

Internal dissolution = −0.448 �cal + 1.147 (1)

Evaluation of Biological Thresholds
Using Model Outputs
Conditions of adverse �ar below biological thresholds for
pteropods are defined as the cumulative length of time with
duration (D, days) of �ar less than the defined threshold
magnitude value (Tmag) for all events that each have time periods
greater than the defined threshold for duration of each event
(Tdur). We adopt the approach of Hauri et al. (2013) to define
the intensity (I, unitless) of adverse events as:

I = Tmag −�ar,mean (2)

where �ar,mean is the mean �ar averaged over the time of the
event. The intensity represents the average magnitude of decrease
in �ar below the threshold during events. Both duration and
intensity have an impact on health of organisms (e.g., Beesley
et al., 2008), therefore the combined effect of duration and
intensity is represented by a metric called severity (S, omega-
days):

S = I × D (3)
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The following steps are involved in processing the model outputs:

(1) Extract the time series of predicted �ar values and adjust
for average model bias of−0.08 units. Model outputs are a
continuous time series of predicted �ar values at intervals
of every 6 h;

(2) Step through the time series of bias-adjusted omega values
to identify all events that have magnitudes less than Tmag
for event durations greater than Tdur;

(3) Calculate the cumulative duration integrated across all
events for the time period being evaluated (e.g., annual or
seasonal);

(4) Calculate the cumulative intensity during events integrated
across all events using Eq. 2;

(5) Calculate the integrated severity across all events from the
cumulative duration and intensity using Eq. 3.

RESULTS

Carbonate Chemistry Changes Due to
Anthropogenic Contributions
Under the current conditions (Scenario 1; S1Ex) in the upper
100 m, about 94% of surface area of the Salish Sea has an average
�ar < 1 annually, with the remaining 6% ranges of 1 < �ar < 1.2
(Figure 2 and Table 1). The worst conditions, in terms of the
intensity, are located in the stratified bays of Hood Canal (stations
P12 and P402), Whidbey Basin (station P4), and the northern
part of the Salish Sea (station P28; Figure 2 and Table 1).
Since pre-industrial times, �ar conditions have been significantly
affected by anthropogenic inputs, particularly atmospheric CO2.
The annual mean �ar over the 0–100 m depth range was 0.91
in the pre-industrial period compared to the current value of
0.8. The difference between current and pre-industrial water-
column averages is nearly the same regardless of depth, while
the average �ar is higher toward the shallower depths (Table 1).
In comparison, the mean pH for 0–100 m across the entire
system is currently 7.69, while in the pre-industrial it was 7.76.
The carbonate chemistry in the Main Basin (station P28) and
various sub-basins have been mostly affected by atmospheric

CO2 uptake (Table 1 and Figures 2, 3). These changes indicate
that anthropogenically induced OA significantly increases the
exposure below biological thresholds of pelagic calcifiers, i.e.,
pteropods and larval crabs. Spatially, the most affected habitats
are the stratified bays of Hood Canal (station P12, P402), South
Sound (station P38), and Whidbey Basin (station P4). With
respect to the nutrient impacts, the calculated annual mean
change in pH and �ar is everywhere close to or below the root
mean squared error (RMSE) of the SSM.

Anthropogenic inputs play a major role in lowering �ar on
a seasonal basis, with unequal contributions to the baseline �ar
shifts during different seasons and locations. In terms of the
latter, the underlying variability in carbonate chemistry dictates
the changes due to anthropogenic inputs with a lower mean and
amplitude of change, but the same frequency (Figure 3). In this
manner, different regions exhibit different patterns. For example,
the greatest difference in total change since the pre-industrial
period appears to be at the deeper, well-mixed stations (e.g., P8,
P28), while anthropogenic impacts are the smallest in the Hood
Canal (P4 and P12; Figure 4).

When assessing estuarine habitat conditions, we separated
habitats into two categories: first, the habitats with a low �ar
baseline level in which exposure can induce biological risk, while
the anthropogenic component only adds to a minor extent of
the overall change (0.06–0.08 �ar). Such is the case at stations
P12 and P402 (Figure 4). Second, the habitats with higher �ar
levels where the anthropogenic component contributes to more
significant changes, with �ar change up to 0.15 at stations P8, P4,
P28, and P38 (Figure 4).

Impacts of Nutrient-Driven
Eutrophication
The observed trends show that nutrient-driven eutrophication
impacts on �ar changes are largely dependent on primary
production and respiration processes, and can have positive
or negative effects, respectively, depending on spatial location
and season. Based on the seasonally specific distributions, the
greatest magnitude in �ar change over the upper 100 m occurs
during the early spring and late autumn period at stations

FIGURE 2 | Current omega saturation state (�ar) averaged over 100 m in the Salish Sea (A), with the changes in �ar due to nutrients (B), atmospheric CO2 (C), and
a combination of both (D).
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P28 and P38 (Figures 3, 4). When �ar is above 1–1.2 in the
upper water column, the effect of added nutrients increases
�ar because the addition of eutrophication fuels primary
production, which increases �ar > 1 in near-surface waters. In
this region, increased nutrient loading induces greater organic
production and uptake of CO2 from the water by phytoplankton.
When the additional phytoplankton settles to deeper depths,
the decomposition of organic matter via respiration processes
releases CO2. Consequently, the added nutrients contribute to
greater decomposition of organic carbon, decreased pH, and
lower �ar values in deeper waters. This is reflected in the
shape of the curve describing baseline vs. change in �ar due
to anthropogenic nutrients (at different regions throughout
the year; Figures 3–5), the negative values of change in �ar
(indicating decrease in �ar due to added nutrients), and the
decreasing slope of the curve with decreasing �ar < 1 values at
most stations (Figure 5).

Model Skill
Root mean squared error and bias are appropriate measures
of model skill for numerical biogeochemical models (Stow
et al., 2009). Average model RMSE and bias for �ar is ±0.29
and −0.08, respectively. Average RMSE and bias for pH is
±0.12 and −0.05, respectively. The model predictions of �ar
and pH were adjusted by the average model bias before
reporting summary statistics or comparing with thresholds.
In this report we use the model to calculate differences in
carbonate system variables between realistic historical conditions
in 2008 (Scenario 1: S1Ex, also referred to as “existing
conditions”) and the other model scenarios to estimate the
changes caused by anthropogenic CO2 and nutrients. Because
the results of the different model scenarios are highly correlated
with the existing conditions, the RMSE of the differences
between scenarios is much less than the RMSE of the existing
conditions. Pelletier et al. (2017) estimate the RMSE of predicted
anthropogenic changes in pH and �ar to be ±0.006 and ±0.03,
respectively, using the SSM.

Threshold Application
Chemical Exposure Related to Pteropod Sublethal
Thresholds
Sublethal and lethal pteropod thresholds were examined
separately to ascribe the range of biological responses, from
the subacute (dissolution and growth impairment) to the
acute (mortality).

The most sensitive of the sublethal thresholds is mild shell
dissolution (�ar = 1.5 for 5 days), which describes the early
warning stage of pteropod sensitivity (Figure 6). Under the
current conditions, the duration of exposure for these thresholds
occurs throughout the year (Figure 6A), with the intensity of
exposure at 0.4–0.6 �ar unit below the thresholds (Figure 6G),
which is almost uniformly distributed within the Salish Sea
basin. While the duration of exposure has not changed since
pre-industrial times (Figure 6D), the intensity of exposure
has increased from 0.06 in the smallest bays and inlets of
the Hood Canal and the South Sound to 0.16 �ar unit in
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FIGURE 3 | Graphical representation of the average annual 0–100 m values of �ar (2008 baseline), and separated as a contribution to nutrients, atmospheric CO2,
and both at six selected stations in Puget Sound (P4, P8, P12, P28, P38, P402 with locations shown in Figure 1).

the Main Basin (station P28) and most of the South Sound
(station P38; Figure 6J), mostly due to the atmospheric CO2
uptake (60–90%; Figures 6I,L). Moreover, the nutrient-driven
eutrophication contributes, on average, a 10% increase in the
intensity of exposure across the wider Salish Sea, while up to 20–
40% increase (up to 0.05 �ar unit) occurs in the smaller inlets of
the South Sound (Figure 6K). The increase in severity of exposure
resembles the intensity (Figures 6M–R). Our results suggest
that nutrient-driven eutrophication might increase pteropod
exposure inducive of mild dissolution during the late fall to
early spring period in the smaller inlets of the South Sound,
an increase that is greater than the model RMSE of 0.03 �ar
unit (Figure 4).

The sublethal threshold of growth impairment (�ar = 1.2
for 14 days; Figure 7) was applied in the SSM during the
fall (September–October), co-occurring with the sensitive time
period of growth of the secondary spawning pteropod cohort.
During this period, the duration of exposure below the threshold

is 40–60 days (Figure 7A). Since the pre-industrial period, this
duration has increased from 10 to up to 50 days in the small
inlets of the South Sound (station P38) and the Main Basin
(station P28), respectively (Figure 7D). The model output of
present-day �ar exposure related to the intensity shows the
conditions to be 0.1–0.4 �ar unit below the growth impairment
threshold (Figure 7G). The intensity-related conditions have
changed considerably since pre-industrial times, with up to a
70–100% increase in the South Sound and the Main Basin
due to atmospheric CO2 emissions (Figures 7J–L). A change
of up to 30% (with more than 0.03 �ar unit change) can
be attributable to nutrient-driven eutrophication in the long,
stratified embayments of the South Sound during the fall
to spring period (Figure 7K), possibly triggering growth
impairment. Moreover, when applying growth thresholds to
the fall-winter period (November–February), the conditions can
induce the same extent of sublethal responses as in the fall,
indicating that pteropod sublethal processes are affected for
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FIGURE 4 | The changes in �ar due to anthropogenic nutrients (red line) and atmospheric CO2 (blue line), while the black line represents the total change from both
nutrients and atmospheric CO2 at six selected stations in Puget Sound (P4, P8, P12, P28, P38, P402 with locations shown in Figure 1).

a prolonged period, resulting in more severe exposure than
predicted if only a limited time period is considered.

Chemical Exposure Related to Pteropod Lethal
Thresholds
Model outputs with applied mortality thresholds (�ar = 0.95
for 14 days) demonstrate that various regions under present-day
conditions are differentially affected in their duration of exposure
on an annual basis. The largest duration and intensity of exposure
is in the northern part of the Salish Sea (station P22), Whidbey
Basin (station P4), and Hood Canal (Figure 8). The exposure
is below the survival threshold for a considerable amount of
time and magnitude, ranging from 70 to 300 days in the Main
Basin (station P28) and Hood Canal (stations P402 and P12),
respectively (Figure 8A), and intensity in the range of 0.1–0.4 �ar
(Figure 8B). When exposure was considered across the seasonal
time scale, we observed conditions below the survival threshold
to be prevalent during the late summer to early spring period.
This indicates that vital population processes are affected for a
prolonged duration and could subsequently result in changes on
the population level.

Since pre-industrial times, the overall change of 0.11 �ar
(Figure 8J), with 70–90% of the change attributable to
atmospheric CO2 uptake, occurred within the Main Basin, the
northern part of the Salish Sea, and Hood Canal (Figures 8I,J).
Comparatively, the impact of nutrient-driven eutrophication
since pre-industrial times was not significant (Figures 8H,K).

Impact of Anthropogenic OA on the Larval Stages of
Dungeness Crab
Exposure to current �cal during the springtime (May–June)
induces a spatially differential extent of internal dissolution of
the larval stages of the Dungeness crab (Figure 9). The most
severe extent of internal dissolution occurs in the Hood Canal,
Whidbey Basin, and partially in the South Sound (Figure 9A).
The lowest baseline �cal, which occurs in the early spring and
fall–winter periods (Figure 4), coincides with the increases in
internal dissolution over the same seasonal scales. The magnitude
of exposure since pre-industrial times has resulted in increased
internal dissolution of 20–30% across the Salish Sea. A few
spatially limited bays of the South Sound have experienced more
than a 60% increase (Figure 9D). In terms of attribution, CO2
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FIGURE 5 | The correlation between baseline �ar (as modeled for 2008) and changes in �ar at six selected stations in the Puget Sound (P4, P8, P12, P28, P38,
P402 with locations shown in Figure 1).

emissions uptake results in the greatest increase in internal
dissolution (Figure 9C), while nutrient-related eutrophication
caused an insignificant increase (Figure 9B). Areas currently
exhibiting the most extensive dissolution are not always the
same as the areas with the most rapid change. This is evident
where changes related to the combination of both anthropogenic
stressors are larger than the current state of internal dissolution
(Figures 9A vs. 9C) regionally in the South Sound, Sinclair,
and Dyes Inlets.

Temporal and Spatial Scale of
Anthropogenic Drivers Inducing
Negative Biological Responses
In evaluating the impact of the anthropogenic drivers since pre-
industrial times, there are differences in the spatial and temporal
extent of impact between two anthropogenic drivers, i.e.,
atmospheric CO2 emissions and nutrient-related eutrophication.
As such, the contributions of each to driving the conditions
below the biological thresholds are different. The results
of the attribution analyses show a predominant impact of

anthropogenic CO2 from atmospheric CO2 emissions that
increase the influx of DIC from the open ocean boundary, as well
as the exchange of CO2 across the air/water interface, driving
�ar,cal conditions below the sublethal and lethal thresholds.
Such impacts have been observed over most spatial scales in
the Salish Sea from the deeper basins to the inlets, although
not to the same extent, with �ar,cal conditions in the deep
basins being significantly more susceptible to the changes
compared to the smaller bays and inlets. The Main Basin is
consistently more affected by atmospheric CO2 than the inlets
of the South Sound (Figures 2–4). The temporal attribution
of atmospheric CO2 impacts is equally noted across all the
seasons, although at one station in the South Sound (station
P38 in Carr Inlet), the greatest impact is during the fall
to spring months (Figure 4). As such, atmospheric CO2
emissions directly contribute to the change in �ar,cal, and
thus related duration, magnitude, and severity of exposure for
major sublethal (shell dissolution and growth) and, possibly,
lethal (mortality) biological effects (Figures 6, 7 vs. Figure 8),
and thus increase in risk for both pteropods and larval
Dungeness crabs.
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FIGURE 6 | Application of pteropod threshold for mild dissolution (5 days at �ar = 1.5) over the annual scale in the upper 100 m in the Salish Sea. Model outputs
demonstrate current (2008) duration, intensity, and severity of the conditions (A,G,M). The second column indicates all the changes due to nutrients (B,H,N); the
third column is related to the changes due to atmospheric CO2 (C,I,O); and the fourth column (D,J,P) shows total changes due to both nutrients and atmospheric
CO2. The fifth column (E,K,Q) depicts % changes in �ar due to nutrients, and the sixth column (F,L,R) is the % change in �ar due to atmospheric CO2. Values of
zero are masked in white.

Eutrophication contributes to the change in �ar,cal conditions
below the thresholds to a much smaller extent than atmospheric
CO2. Since the change in �ar due to eutrophication is less
than the model uncertainty, eutrophication plays an insignificant
role across spatial and temporal scales for the annual mean
(Figure 2). The change is the greatest when baseline �ar,cal
conditions are already low, which occurs during the late summer
to early spring period. Spatially, the attribution of nutrient-driven
eutrophication on conditions above the 0.03 �ar threshold was
mainly observed in smaller, less vertically mixed bays and inlets
of the South Sound, representative of the conditions at station
P38 in Carr Inlet (Figure 4).

From a biological standpoint, added nutrients may have more
adverse impacts on the lower thresholds when �ar is closer
to or lower than 1.0 and can indirectly exacerbate biological
status of organisms when they are already severely impacted
(Figures 4, 5). This could happen by small-scale reductions of
the initially low baseline conditions that result in the threshold
crossing during some months that can affect the most critical
life stages, in the early spring and the late summer-early fall
period. Namely, around �ar < 1.0, a very small reduction in �ar
can shift the conditions inducive to sublethal processes toward
lethal processes. On the other hand, the addition of nutrients
in the spring and summer periods can increase �ar > 1, with

nutrients having a less detrimental effect, or in fact, partially
alleviating OA stress. Overall, however, because of spatially and
temporally limited impacts, we conclude that eutrophication
contributes minimally to the change in chemical exposure and,
thus, associated biological risks.

Future Projections
Here, we demonstrate future projected changes related to
the seasonal �ar distribution under RCP 8.5 for the year
2100 integrated for 0–100 m. We chose station P28 to
represent a centrally located region of the Main Basin, of
Puget Sound (Figure 10A), with the future projection scenario
as described in Scenario 5 (S5-Future; see section “Model
Scenarios”). The projections show a dramatic decrease in �ar.
Pre-industrial summer conditions were mostly supersaturated
(�ar > 1). The increase in seasonal exposure is reflected
in a reduced amount of time above the sublethal and
lethal thresholds (Figure 9B). The conditions above the
sublethal thresholds (�ar of 1.5, 1.2, and 1.0) start to
rapidly decline in the past few decades and disappear before
the year 2050. In contrast, the conditions above the lethal
threshold (�ar = 0.9) since pre-industrial times at first decline
gradually, then exponentially over the last few decades, and
completely disappear by the year 2050. Such exposure below
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FIGURE 7 | Application of pteropod threshold for growth impairment (7 days at �ar = 1.0) over the seasonal scale in the upper 100 m of the Salish Sea during
September–October. Model outputs demonstrate current (2008) duration, intensity, and severity of the conditions (A,G,M). The second column indicates the
changes due to nutrients (B,H,N); the third column depicts the changes due to atmospheric CO2 (C,I,O); the fourth column (D,J,P) shows total changes due to
both nutrients and atmospheric CO2. The fifth column (E,K,Q) depicts % changes in �ar due to nutrients, and the sixth column (F,L,R) is % change in �ar due to
atmospheric CO2. Values of zero are masked in white.

the thresholds can impose detrimental impacts on marine
calcifiers’ sustainability.

DISCUSSION

Current and Future Exposures
This is the first study along the United States West Coast
that has considered the changes in OA exposure and risk
to estuarine habitats using a combination of sensitivity tools
and a highly resolved biogeochemical model. Our results
demonstrate that the most biologically relevant changes in
carbonate chemistry in the Salish Sea since pre-industrial times
are driven on seasonal time scales. Since the seasonal conditions
are spatially dependent on the �ar status, the interpretation of
seasonal �ar projections suggest that time-sensitive biological
processes (spring and autumn spawning, spring growth) will be
most affected. Habitats currently with the lowest OA baseline
conditions (the greatest exposure) and those that are rapidly
changing due to anthropogenic drivers will likely be the most
affected. Based on seasonal exposure outputs, all of the species
are exposed to unfavorable conditions below the thresholds
for a considerable amount of time and, as such, important
processes during various life stages can be impacted. However,
while organisms in the regions currently characterized by low

OA exposure could potentially have some time to adapt, that is
not the case in the rapidly changing habitats (especially in the
small inlets of the South Sound; Figure 9D), where the lack of
available time for adaptation could impose the most detrimental
ecological changes. This is an important distinction to consider
when evaluating future habitat suitability.

Intense anthropogenic acidification is rapidly changing urban
estuaries such as the Salish Sea, driving increased risk for pelagic
calcifiers. Evans et al. (2019) quantitatively characterized future
seasonal projections for the Salish Sea, finding that the process of
acidification is predicted to non-linearly intensify in the future. In
comparison, our study of future 2050 seasonal �ar projections of
habitat suitability in the Puget Sound shows that future suitable
conditions are predominantly dependent on the vertical extent
of habitat considered. The vertical averaging of 0–100 m renders
substantially faster exponential declines with no suitable habitat
available (Figure 10B) compared to only surface waters with
some extent of suitable conditions (Evans et al., 2019).

Caveats and Strengths of Using
Biological Thresholds
The application of thresholds in the biogeochemical model
to deduce the attribution of anthropogenic stressors in the
estuarine system is a simplified approach for predicting changes
in OA exposure related to potential habitat of marine calcifiers.
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FIGURE 8 | Application of pteropod threshold for survival in the upper 100 m (14 days at �ar = 0.95) over the annual scale in the Salish Sea. Model outputs
demonstrate current duration, intensity, and severity of the conditions (A,G,M). The second column indicates all the changes due to nutrients (B,H,N); the third
column depicts the changes due to atmospheric CO2 (C,I,O), the fourth column (D,J,P) shows total changes due to both nutrients and atmospheric CO2. The fifth
column (E,K,Q) depicts % changes in �ar due to nutrients, and the sixth column (F,L,R) is % change in �ar due to atmospheric CO2. Values of zero are masked in
white.

FIGURE 9 | Application of equation for larval Dungeness crab dissolution over upper 160 m integrated water depth for May–June in the Salish Sea to demonstrate
current (2008) state of internal dissolution in % (A); % change of dissolution due to nutrients (B); due to atmospheric CO2 (C); and combined % change due to both
nutrients and atmospheric CO2 (D).

While it does not take complex variability in exposure regime
or co-occurring multiple stressors into account, here we
have used it to identify spatial and temporal anthropogenic
OA hotspots in the ecosystem. Biological thresholds are
further characterized by different levels of confidence scores,
with the lowest confidence implying greater uncertainty in
interpretations of the biological responses. Applying thresholds

only over time periods when biological processes occur,
however, ensures that temporal exposure below the threshold are
correctly interpreted within the context of species life history.
Furthermore, comparing the sensitivity of thresholds that were
derived either from experimental or synthesis studies can yield
different results and, thus, interpretation of different species risks
and sensitivities.
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FIGURE 10 | Future seasonal projections of vertically integrated (0–100 m) �ar at the station P28 in the Main Basin under RCP 8.5 scenario for the year 2100 (A)
and projected time above pteropod thresholds for sublethal (�ar of 1.0) and lethal (�ar of 0.9; B).

The impact of anthropogenic stressors in the Salish Sea
currently results in exposures that induce a variety of negative
sublethal responses, such as mild dissolution and growth
impairments, but those risks vary spatially and temporally. The
greatest magnitude change in �ar during the spring transition
is associated with the time of spawning and most intense
growth, implying a potential temporal mismatch between the
early life stages and less favorable habitats. Furthermore, there
are other sublethal thresholds that have been identified for
pteropods, such as severe dissolution, and reduced calcification
and reproductive efforts (Bednaršek et al., 2019). Given the
similarity in the magnitude and duration of these thresholds, the
current OA exposure regime, either seasonally or on annual basis,
is below multiple thresholds. This means that current exposure
can affect multiple pathways of physiological sensitivity and can
cumulatively contribute to a greater impact than only predicted
based on one pathway. It is difficult to extrapolate exposure to
mortality thresholds on the population dynamics in the Salish
Sea. Since the intensity of exposure associated with mortality
thresholds is currently still very limited spatially, we can only

infer that any potential population-level decline would be a result
of prolonged impairments on the organismal level, with the
trends outside the variability envelope taking significantly longer
to be demonstrated.

Comparisons of different thresholds for various marine
calcifiers and their life stages confirm similar magnitude of
sublethal thresholds for various oysters and mussels, ranging
from 1.4 to 1.8 (Gaylord et al., 2011; Barton et al., 2012). With
respect to the larval lethal threshold at �ar = 1.2 (Waldbusser
et al., 2015), pteropod mortality threshold is less sensitive,
thus providing a more conservative estimate of �ar impacts.
Nevertheless, since none of these studies provide a threshold
duration, the risk estimates for these species cannot be assessed
in a manner similar to this study, urging future experimental
studies to derive all elements (magnitude and duration) needed
for risk assessment.

Uncertainty of the Projections
Model projections of OA exposure below biologically relevant
thresholds include uncertainty from several sources: model
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uncertainty (including parameter and structural uncertainty),
scenario uncertainty, potential changes in hydrodynamics,
and threshold uncertainty (Bednaršek et al., 2019). Scenario
uncertainty is likely to be the most important factor for long-
term projections (Hawkins and Sutton, 2009) beyond the 2060s.
In addition, OA co-occurs with warming and deoxygenation in
the Salish Sea (Reum et al., 2014), and these interactions are
not captured in these predictions, but the fast warming rates
predicted in the Salish Sea (Hamel et al., 2015) may additionally
exacerbate already compromised biological responses imposed
by OA exposure. The uncertainty of the predicted �ar,cal, and
pH from the Salish Sea model has been described using a
variety of model skill metrics (Bianucci et al., 2018). Model skill
estimates are based on the differences between predicted and
observed conditions. By keeping hydrodynamics the same for
all scenarios, we include the caveat that the differences between
scenarios isolate the effects of only regional human nutrients and
global anthropogenic CO2 while not taking future physical and
hydrodynamics changes into account.

The sum of separately evaluated relative effects of
anthropogenic CO2 and regional anthropogenic nutrient
inputs as a percentage of the combined effects of CO2 and
nutrients together does not necessarily equal 100%. This is
partly because the effects were evaluated individually, and partly
because these processes are not necessarily linear. In other
words, the effect of added nutrient loading may differ depending
on whether the effect of added CO2 is considered or not. The
separate effects of nutrients and CO2 also may occur at different
times. The effect of nutrients in some locations and seasons
decreases the severity of adverse conditions, especially in the
euphotic zone during the growing season, when added nutrients
increase photosynthesis. In other locations and seasons, the effect
of added nutrients increases the severity of adverse conditions,
especially below the euphotic zone.

Validation Between the Observation and
Synthesis Studies
Since this is the first study that evaluates the risks related to
anthropogenic OA using biogeochemical scenarios, it is difficult
to ascribe the significance of the study’s model outputs or
compare it to any previous work. Evaluations should always
be considered in comparative terms. In an effort to interpret
observed increases related to the sublethal and lethal effects in the
model, it is clear that we cannot evaluate the absolute numbers
and conclude what this means for the organisms or populations,
although the magnitude change of 0.16 to 0.12 �ar unit appears
large. The available experimental and field data can, however,
be used to reflect and possibly validate the magnitude increases
observed in the model outputs.

Comparisons with the food web model outputs and food
web modeling conducted in the Salish Sea and the West Coast,
respectively (Busch et al., 2013; Busch and McElhany, 2016;
Marshall et al., 2017), delineate the most sensitive species, i.e.,
pteropods and Dungeness crabs. Furthermore, the experimental
work by Busch et al. (2014) confirmed pteropod sensitivity to OA
through increased shell dissolution and mortality. This finding

has been recently confirmed in a field study by Bednaršek et al.
(unpublished) that delineates spatial distribution of pteropod
shell dissolution in the Salish Sea. The latter work locates the most
severe exposure to be in the Hood Canal and Whidbey Island in
the late summer, and to a minor extent in the inlets of the South
Sound. Such spatial designation of OA hotspots aligns explicitly
with the findings of this study despite using a completely
different approach, i.e., applying shell dissolution thresholds in
the biogeochemical model. Given that the sublethal threshold of
mild dissolution is characterized by a high confidence score, the
biological interpretation of the induced sublethal effects is more
certain. The agreement between the field and biogeochemical
approaches of spatial and temporal exposure inducing risk offers
some validity to the SSM modeling.

Furthermore, the survival threshold derived from
experimental studies on pteropods from the Salish Sea is
below �ar = 0.56 (Busch et al., 2014). Despite a difference
between the experimentally derived threshold (�ar = 0.56)
and the one based on expert-based consensus (�ar = 0.95)
used in this study, our model outputs demonstrate that
there are areas in the Salish Sea with the exposure to
the lower, experimentally derived thresholds. As such,
expert-based thresholds are much more sensitive in their
value compared to experimental ones, with this approach
being more precautionary than the experimentally derived
thresholds when used to delineate areas of increased
pteropod mortality. However, since the confidence score
related to interpretation of the mortality threshold is low
(Bednaršek et al., 2019), a more scrutinized and careful
interpretation is warranted.

The sensitivity of larval Dungeness crabs relies on the
estimates of internal dissolution, the extent of which is associated
with increased energetic demand (Hans et al., 2014; Bednaršek
et al., 2020). We identified the exposure inducive to increased
internal dissolution to be spatially limited to the inlets and bays
of the South Sound, where the risks are the greatest. Based on the
data from Washington Department of Fish and Wildlife (Bosley,
Katelyn; Washington Department of Fish and Wildlife, personal
communication), the largest megalopae abundances correspond
to stations P8, P28, and P4, where the carbonate chemistry
conditions are most favorable, while some of the stations with
the lowest recorded data are at the Hood Canal (station P402)
and South Sound (P38), characterized by the lowest carbonate
chemistry conditions. Importantly, time series from the same
area identify Dungeness crab population declines over the last
years, illustrating some parallels between the model outputs and
field observations. Although the drivers behind the population
decline in the South Sound have not been identified yet, we
emphasize anthropogenic OA must be taken into account. Field
data for Dungeness crab internal dissolution are limited to the
Pacific Northwest coast (Bednaršek et al., 2020) and are not
specific to the Salish Sea. As such, direct comparison of the
results related to the spatial or temporal exposure is not feasible.
Nevertheless, the greatest extent of internal dissolution is found
at the lowest �cal (Bednaršek et al., 2020), which is also observed
in the biogeochemical model outputs. Despite the absence of
additional sensitivity tools (e.g., thresholds) in the model, our
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approach still validates the use of the sensitivity equation in the
SSM to identify the spatially relevant exposures associated with
increased risks for larval Dungeness crab.

In conclusion, these observations, experimental results, and
model output largely confirm the validity of the use of thresholds
to detect risks of anthropogenic OA exposures inducive of
sublethal and lethal responses. As a result, we propose that
thresholds be used to detect changes in exposure in comparison
with pre-industrial times, which is something that cannot be
achieved using the results of the meta-analyses, experimental, or
synthesis work that are based on future conditions. In addition,
thresholds’ applicability can resolve the changes in the magnitude
and duration of exposure attributable to specific anthropogenic
stressors. This can ultimately provide new research venues to
translate threshold species-specific model outputs to habitat
suitability modeling efforts.

Implications for Management
Overall, our results provide a set of scenarios that set the stage
to evaluate current biological risks related to anthropogenic
OA in the estuarine habitats of the Salish Sea for ecologically
and economically important species. We demonstrate that
atmospheric CO2 emissions are a major driver behind the
modeled changes and responses, the reduction of which can
help sustain biological species vital for ecosystem functions and
society. In contrast, nutrient-driven eutrophication plays only
a marginal role over spatially and temporally limited scales.
Our results provide an initial step toward the development of
management actions related to OA in the Salish Sea that focus
on mitigation strategies to reduce atmospheric CO2 emissions.
However, in the absence of regional and locally supported actions
for lowering CO2, other resilient strategies that buffer against OA,
such as kelp and seaweed farming, may be effective on a local
or regional scale.
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Global oceans are absorbing over 90% of the heat trapped in our atmosphere
due to accumulated anthropogenic greenhouse gases, resulting in increasing ocean
temperatures. Such changes may influence marine ectotherms, such as sharks, as their
body temperature concurrently increases toward their upper thermal limits. Sharks are
high trophic level predators that play a key role in the regulation of ecosystem structure
and health. Because many sharks are already threatened, it is especially important to
understand the impact of climate change on these species. We used shark occurrence
records collected by commercial fisheries within the Australian continental Exclusive
Economic Zone (EEZ) to predict changes in future (2050–2099) relative to current (1956–
2005) habitat suitability for pelagic sharks based on an ensemble of climate models and
emission scenarios. Our predictive models indicate that future sea temperatures are
likely to shift the location of suitable shark habitat within the Australian EEZ. On average,
suitable habitat is predicted to decrease within the EEZ for requiem and increase for
mackerel sharks, however, the direction and severity of change was highly influenced by
the choice of climate model. Our results indicate the need to consider climate change
scenarios as part of future shark management and suggest that more broad-scale
studies are needed for these pelagic species.

Keywords: sea surface temperature, climate change, marine ecosystems, species distribution models, global
warming, Lamnidae, Carcharhinidae

INTRODUCTION

Climate change is predicted to have unprecedented effects on the marine environment, with
changes in ocean temperature increasing extinction risk for many species (Dulvy et al., 2003;
Barnosky et al., 2011; Bruno et al., 2018; Pinsky et al., 2019) and altering the global distribution
of marine life (Tittensor et al., 2010; Garciá Molinos et al., 2016). Changes in species distribution
(Perry et al., 2005; Poloczanska et al., 2013) and community structure (Doney et al., 2012) are
already being observed in marine ecosystems due to temperature shifts associated with rising
emissions and accumulation of atmospheric carbon dioxide (Hoegh-Guldberg and Bruno, 2010;
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Doney et al., 2012; Gattuso et al., 2015). Recent modeling of
biodiversity under different future climate change scenarios,
across a wide range of marine and terrestrial ecosystems, predicts
abrupt and irreversible ecosystem disruption during the late
21st century (Trisos et al., 2020). With predicted increases of
up to ∼5◦C in worldwide sea-surface temperature (SST) by the
end of the 21st century (IPCC, 2015), there is a critical need
to investigate how marine species will be affected, especially
ectotherms which are dependent on external sources for body
heat. As ectotherms, sharks may be influenced by climate change
(Bernal et al., 2012; Rosa et al., 2014, 2017; Syndeman et al.,
2015; Pinsky et al., 2019), with higher temperatures increasing
their metabolism and oxygen demand (Pistevos et al., 2015;
Lawson et al., 2019). The exception to this may be Lamnid
mackerel sharks, which have some endothermic capability
(Watanabe et al., 2015).

Many shark species are already globally threatened due to
fisheries overexploitation (Queiroz et al., 2019) coupled with their
low fecundity, late age at maturity, and slow growth (Cortés,
2000; Garcia et al., 2008; Yokoi et al., 2017). In fact, 16.6% of
shark species are estimated to be threatened with extinction, and
another 37.9% of shark species are categorized as “Data Deficient”
by the International Union for Conservation of Nature (IUCN,
2020). Nevertheless, sharks are known to have direct economic
value in fisheries (Dulvy et al., 2017) and ecotourism (Cisneros-
Montemayor et al., 2013; Huveneers et al., 2017). They also play
a key role in ecosystem functioning and stability, connecting
distant ecosystems via their long-distance migrations (Rogers
et al., 2015), and altering prey behavior, distribution and energy
use (Heupel et al., 2015; Roff et al., 2016; Dulvy et al., 2017).
Climate change may exacerbate existing threats for sharks, for
example, suitable pelagic shark habitat in the north Pacific Ocean
is projected to decline by the year 2100 (Hazen et al., 2013).

Future projections based on existing observations and
modeling techniques can be used to investigate the effects of
climate change on pelagic sharks (Barange et al., 2016). Using
Earth System Models from the Coupled Model Intercomparison
Project Phase 5 (CMIP5; hereafter called “climate models”),
complex relationships between ecosystem health, human
activities and global climate can be included to evaluate
alternative future scenarios with varying severity of emissions
(Moss et al., 2010; Freer et al., 2017). There are four emission
scenarios commonly referred to as Representative Concentration
Pathways (RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) (IPCC,
2013). These RCP scenarios are used to predict radiative
forcing values, a measure of absorbed and retained energy in
the lower atmosphere, for the year 2100 (Moss et al., 2010;
Vuuren et al., 2011). RCP 4.5, also referred to as “stabilization
scenario,” is an optimistic scenario assuming a decline in overall
energy usage from fossil fuel sources that limits emissions and
radiative forcing (Thomson et al., 2011). Conversely, RCP 8.5,
also referred to as “business-as-usual,” is the most pessimistic
scenario assuming minimal stabilization of greenhouse gas
emissions alongside a large human population with high energy
demands (Riahi et al., 2011).

The Australian Exclusive Economic Zone (EEZ) is already
being impacted by climate change with waters off south-east
Australia warming at almost four times the global average

(Oliver et al., 2017) and range extensions already documented
in several fish species (Last et al., 2011). Australia has one
of the world’s most diverse communities of sharks, with 182
recognized species (Simpfendorfer et al., 2019), and SST has
been shown consistently to be a strong predictor of pelagic
shark occurrence in Australian waters (Rogers et al., 2009,
2015; Stevens et al., 2010; Heard et al., 2017; Birkmanis et al.,
2020). It is therefore important to investigate the likely impact
of temperature changes on pelagic shark distribution and the
location of suitable habitat on a continental scale if these species
are to be appropriately managed into the future – especially
if such changes may require a reassessment of interactions
with fisheries in the future. Sharks comprise approximately
27% of the total catch (by number) of Australian pelagic
longline fisheries (Gilman et al., 2008), with Australian stocks
of the IUCN classified “Critically Endangered” oceanic whitetip
(Carcharhinus longimanus), “Endangered” shortfin mako (Isurus
oxyrinchus), and “Endangered” longfin mako (Isurus paucus)
sharks listed respectively as “overfished,” “depleting,” and
“undefined” due to a lack of data (Simpfendorfer et al., 2019;
IUCN, 2020).

This study follows on from Birkmanis et al. (2020) in
which occurrence records of pelagic sharks belonging to the
Carcharhinidae and Lamnidae families (hereafter “requiem”
and “mackerel,” respectively) were obtained from commercial
fisheries and used to develop generalized linear models with
which to predict suitable habitat for these species within the
Australian continental EEZ. After accounting for fishing effort
bias, these models showed that SST was an important predictor of
shark distributions, with the highest ranked model also including
turbidity. Here, we extend our modeling to assess the impact
of climate change on pelagic shark habitat across the entire
continental Australian EEZ.

MATERIALS AND METHODS

Shark Occurrence
Catch records of 3,973 individual sharks from two families;
requiem (silky Carcharhinus falciformis, oceanic whitetip
Carcharhinus longimanus, dusky Carcharhinus obscurus and blue
Prionace glauca) and mackerel (shortfin mako Isurus oxyrinchus,
longfin mako Isurus paucus and porbeagle Lamna nasus) were
obtained through the Global Biodiversity Information Facility
online database (GBIF.org, 2017), as per details included in
Birkmanis et al. (2020). These oceanic sharks were caught
predominantly using commercial longlines in Commonwealth
managed fisheries (more detailed data unavailable), with catch
locations depicted in Supplementary Figure S1.

Predictors for Modeling Baseline and
Future Climate Environmental Data
A climatological baseline was used as a reference point for
projected future climate changes. According to Birkmanis et al.
(2020), SST and turbidity were the most suitable predictors of
requiem and mackerel shark occurrence within the Australian
EEZ. We therefore focused on these two predictors to develop
a climatological baseline to use as a reference for projected
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future climate changes. To calculate the SST baseline data,
we downloaded monthly SST values for the years 1956–2005,
covering the time period of our observed shark occurrence
data, from the Integrated Marine Observing System (IMOS,
2016). We then averaged the SST values for each 0.1◦ grid-
cell in the study area using ArcGIS 10.5 from Environmental
Systems Research Institute (ESRI, 2017). We incorporated the
observed turbidity values (measured as mean diffuse attenuation
coefficient at wavelength 490 nm, downloaded using the Marine
Geospatial Ecology Tool; Roberts et al., 2010) from 2000 to 2002
into our models with the assumption that turbidity will remain
unchanged in the future.

Future SST data were taken from 24 CMIP5 climate models,
using only one realization per climate model, under two
emission scenarios, RCP 4.5 and RCP 8.5, amounting to 48
total simulations (Table 1). We downloaded the SST field and
the anomaly statistic for each climate model (Table 1) under

both RCP 4.5 and RCP 8.5 from the Climate Change Web
Portal (Earth Systems Research Laboratory, 2014), developed by
the National Oceanic and Atmospheric Administration’s Earth
System Research Laboratory to collate climate data and climate
model outputs from the CMIP5 (see Scott et al., 2016 for details).
We used the portal to calculate the difference in the mean SST
between the future climate (2050–2099) and the model baseline
reference period (1956–2005), hereafter called “anomaly” data.
We then added these anomaly data to our baseline data across
the extent of the Australian EEZ using ArcGIS and included this
as the SST predictor for the future values.

Modeling Habitat Suitability for Baseline
and Future Climate Data
We developed binomial generalized linear models with a logit
link function for each of the two pelagic shark families, following

TABLE 1 | Mean and maximum projected sea surface temperature (SST) anomalies for the end of the 21st century (2050–2099) in Australian waters for each climate
model under both emission scenarios (RCP 4.5 and RCP 8.5; standard deviation shown in parentheses).

Climate model name Founding institute Projected SST anomaly from
baseline at year 2100 (◦C)

Mean (SD) Maximum

4.5 8.5 4.5 8.5

ACCESS-1.0 CSIRO and BOM, Australia 1.56 (0.39) 2.44 (0.65) 3.01 4.61

ACCESS-1.3 CSIRO and BOM, Australia 1.42 (0.36) 2.4 (0.56) 2.40 3.98

CAN-ESM2 CCCMA, Canada 1.78 (0.42) 2.86 (0.62) 3.73 5.46

CCSM4 NCAR, United States 1.35 (0.11) 2.4 (0.21) 1.65 2.96

CESM1-BGC NSF, NCAR, United States 1.35 (0.1) 2.39 (0.22) 1.65 2.99

CESM1-CAM5 NSF, NCAR, United States 1.61 (0.25) 2.52 (0.37) 2.33 3.66

CMCC_CM CMCC, Italy 1.43 (0.34) 2.47 (0.57) 2.52 4.33

GFDL_CM3 NOAA GFDL, United States 1.66 (0.48) 1.43 (0.34) 2.62 2.52

GFDL-ESM2G NOAA GFDL, United States 0.98 (0.24) 1.83 (0.37) 1.52 2.56

GFDL-ESM2M NOAA GFDL, United States 1.12 (0.3) 1.89 (0.47) 2.04 3.18

GISS-E2-H NASA GISS, United States 1.18 (0.31) 1.91 (0.5) 2.47 4.08

GISS-E2-R NASA GISS, United States 0.93 (0.23) 1.8 (0.45) 1.82 3.80

HADGEM2-AO MOHC, United Kingdom 1.63 (0.35) 0.69 (0.23) 2.87 1.36

HADGEM2-CC MOHC, United Kingdom 1.64 (0.54) 2.8 (0.79) 3.62 5.58

HADGEM2-ES MOHC, United Kingdom (additional realizations from Instituto
Nacional de Pesquisas Espaciais, Brazil)

1.69 (0.45) 2.69 (0.61) 3.33 4.57

INMCM4 INM, Russia 0.93 (0.3) 1.64 (0.43) 2.04 3.35

IPSL-CM5A-LR IPSL, France 1.73 (0.4) 3 (0.6) 3.44 5.67

IPSL-CM5A-MR IPSL, France 1.83 (0.35) 3.13 (0.56) 3.48 5.69

IPSL-CM5B-LR IPSL, France 1.08 (0.18) 1.79 (0.43) 1.71 2.99

MIROC-ESM JAMSTEC and NIES, Japan 1.67 (0.35) 2.82 (0.61) 3.40 5.92

MPI-ESM-LR MPI-M, Germany 1.3 (0.47) 2.21 (0.76) 3.76 5.71

NORESM1-M NCC, Norway 1.08 (0.2) 2 (0.28) 1.73 4.11

NORESM1-ME NCC, Norway 1.26 (0.14) 2.15 (0.23) 1.72 3.04

NORESM1-MR NCC, Norway 1.2 (0.29) 2.13 (0.51) 2.34 2.99

BOM, Bureau of Meteorology; CCCMA, Canadian Centre for Climate Modeling and Analysis; CMCC, Euro-Mediterranean Centre on Climate Change; CSIRO,
Commonwealth Scientific and Industrial Research Organization; INM, Institute of Numerical Mathematics; IPSL, Institut Pierre-Simon Laplace; JAMSTEC, Japan Agency
for Marine-Earth Science and Technology; MOHC, Met Office Hadley Centre; NASA GISS, National Aeronautics and Space Administration Goddard Institute for Space
Studies; NCAR, National Centre for Atmospheric Research; NIES, Japanese National Institute for Environmental Studies; NOAA GFDL, National Oceanic and Atmospheric
Administration Geophysical Fluid Dynamics Laboratory; NSF, National Science Foundation; MPI-M, Max Planck Institute for Meteorology; NCC, Norwegian Climate Centre.
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Birkmanis et al. (2020). In brief, the probability of shark
occurrence (calculated as the number of sharks caught divided
by the number of fishing boats occurring in the same grid-
cell) was used as the response variable, with turbidity and SST
values for either the climatological baseline or the future used as
predictors. We included effort, defined as the number of boats
recorded in each grid-cell from the same time period as the
occurrence data (2000–2002), as a model weight to account for
differing amounts of catch per unit effort (CPUE) within the
entire EEZ. As in, we weighted our models by fishing effort
to estimate the probability of finding a shark in each grid-cell
within the Australian EEZ which minimized the effect of fisheries
effort on the data (Birkmanis et al., 2020). To stabilize parameter
estimation, we standardized both predictors to z-scores using
the scale function in R statistical software (R Core Team, 2017)
before inclusion in our models (James et al., 2015). We also
included a quadratic term for SST using the poly function from
the stats package (R Core Team, 2017) in R statistical software to
account for likely preferential SST ranges. We then quantified the
goodness-of-fit for each model using the percentage of deviance
explained, and used the predict function from the stats package
in R statistical software to predict shark habitat suitability for
the baseline data and also for the end of the century using
the future climate data. To calculate the amount of change in
suitable habitat under each climate model and emission scenario,
we subtracted the number of grid-cells with resulting suitable
habitat ≥0.5 in the future climate scenarios from those obtained
in the baseline scenario. Differences between baseline and future
scenarios show the change in suitable habitat area predicted for
each family under possible future conditions.

RESULTS

Anomalies in SST in the Australian EEZ varied according to the
climate model and emission scenario used (Figure 1 and Table 1).
The mean SST anomaly for all climate models was 2.27◦C (SD: 0–
1.2) for RCP 4.5 and 3.78◦C (SD: 0–1.21) for RCP 8.5. Our results
show that the predicted mean SST anomaly ranged from minima
of 0.93◦C (for climate model GISS-E2-R, RCP 4.5) and 0.69◦C
(for climate model HADGEM2-AO, RCP 8.5), to mean maxima
of 1.83◦C (for climate model IPSL-CM5A-MR for both emission
scenarios) at the end of the century (Figure 1 and Table 1).
The climate model MPI-ESM_LR resulted in the maximum SST
anomaly projected by all climate models (3.76◦C for RCP 4.5
and 5.71◦C for RCP 8.5, respectively). Despite model-to-model
variation in the magnitude of anomalies, all climate models
predicted south-eastern Australia would experience the greatest
SST increases by the end of the century (Figure 1).

Both the baseline and future habitat suitability models
explained slightly higher deviance for requiem than mackerel
sharks but all values were around 30% (Supplementary
Table S1). The baseline models explained 31.13 and 27.33% for
requiem and mackerel sharks, respectively. The future models
explained 29.91 and 31.76% for RCP 4.5 and RCP 8.5, respectively
for requiem, and 26.47 and 26.22% for RCP 4.5 and RCP 8.5,
respectively for mackerel sharks. The resulting predicted habitat
suitability maps are presented as the mean across all climate
models for requiem (Figure 2) and mackerel sharks (Figure 3),
with the predicted change per climate model presented in
Figures 4, 5. Predicted habitat suitability was highly dependent
on the climate model used, with similar baseline values for

FIGURE 1 | Anomalies in sea surface temperatures throughout the Australian EEZ for the end of the twenty-first century (2050–2099) relative to the baseline period
(1956–2005) under two emission scenarios (RCP 4.5 mean anomaly: 0–2.27, SD: 0–1.2; RCP 8.5 mean anomaly: 0–3.78, SD: 0–1.21).
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FIGURE 2 | Predicted habitat suitability for requiem sharks across the Australian EEZ for baseline time period (1956–2005; mean habitat suitability: 0–0.65, SD:
0–0.02) and at the end of the twenty-first century (2050–2099) under two emission scenarios (RCP 4.5 mean habitat suitability: 0–0.62, SD: 0–0.04; RCP 8.5 mean
habitat suitability: 0–0.6, SD: 0–0.05).

requiem and mackerel sharks (0.65 and 0.63, respectively).
For both requiem and mackerel sharks, the maximum habitat
suitability (∼0.8) was predicted by climate model NORESM1-
ME under both emission scenarios (Figure 4). Regions where
habitat was predicted to be suitable (i.e., ≥0.5) at the end of
the century varied by family, with southern Australia suitable
for mackerel sharks, and north-eastern Australia for requiem
sharks (Figures 2, 3).

Based on 48 climate simulations, our results suggest a shift
in suitable habitat for both requiem and mackerel sharks within
the Australian EEZ in the last half of the twenty-first century
(2050–2099). The severity and direction of this shift varied,
with suitable habitat for requiem sharks predicted to decrease
under most climate models, while habitat suitability for mackerel
sharks varied to a greater degree depending on the climate
model and emission scenario. On average, predicted suitable
habitat for requiem sharks under RCP 4.5 extended south on the
north-eastern (∼600 km) and south-western coast (∼200 km),
but decreased in the north-west (∼400 km). For RCP 8.5,
suitable habitat was projected to extend south on the north-
eastern coast (∼650 km) and decrease across the north-west
(∼500 km) with similar increases on the south-western coast
(Figure 2). For mackerel sharks, the average of all climate
models predicted an increase in suitable habitat across on
the southern coast (∼900 km) and off the southern extent

of the EEZ south of Tasmania (∼400 km) for RCP 4.5, with
increases also projected to occur under RCP 8.5 (∼700 km
across and ∼200 km south along the southern coast and
∼150 km south off the southern extent of the EEZ south of
Tasmania) (Figures 3, 4).

DISCUSSION

Significant shifts in the distributions of marine organisms are
being observed in the global ocean due to anthropogenic climate
change (Poloczanska et al., 2013). Our results highlight that shifts
in the location of suitable habitat for requiem and mackerel
sharks by the end of the century are to be expected, with a
decrease in predicted suitable habitat for requiem sharks off the
south-western coast under both emission scenarios. This agrees
with predicted habitat shifts for silky, blue (both requiem family;
Cheung et al., 2015; Lezama-Ochoa et al., 2016), and mako sharks
(mackerel family; Hazen et al., 2013) in other areas. The waters
of south-western and south-eastern Australia are warming at
an increased rate, almost three and four times higher than the
global average, respectively (Hartmann et al., 2013; Robinson
et al., 2015a) as indicated in Figure 1. Our models predict that
this area will become unsuitable for both requiem and mackerel
sharks, likely due to the water temperatures at the end of the
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FIGURE 3 | Predicted habitat suitability for mackerel sharks in the Australian EEZ for baseline time period (1956–2005; mean habitat suitability: 0–0.63, SD: 0–0.02)
and at the end of the twenty-first century (2050–2099) under two emission scenarios (RCP 4.5 mean habitat suitability: 0–0.64, SD: 0–0.05; RCP 8.5 mean: 0–0.62,
SD: 0–0.07).

century exceeding the thermal tolerance of these pelagic sharks.
In our analysis, and those of Robinson et al. (2015b) and Hobday
(2010), southward shifts in suitable habitat for blue and mako
sharks on the eastern coast of Australia are predicted. This is in
line with ocean climate zones (areas with distinct climate, based
on annual SST values) shifting southwards by 200 km along the
north-eastern coast and approximately 100 km along the north-
western coast in tropical Australian waters (Lough, 2008). In the
north Pacific Ocean suitable habitat loss was predicted for both
blue and mako sharks by the end of the century (Hazen et al.,
2013). Such differences in predictions may be due to currents
and northern latitude prey species being able to migrate poleward
along the coastline (Perry et al., 2005). Due to the east-west
orientation of the temperate Australian coastline and limited
continental shelf area to the south of the continent (Urban,
2015), there are few opportunities for continental shelf marine
organisms, including fish that are shark prey species, to move
to higher latitudes and avoid increased water temperatures. Even
with suitable habitat available for pelagic sharks within Australian
waters these predators will follow prey species, such as tuna
(Hobday and Poloczanska, 2010), which are expected to decline
in the tropics and shift poleward in response to a warming ocean
(Erauskin-Extramiana et al., 2019).

Although relatively little is known about how elevated
temperatures will affect sharks (Pistevos et al., 2015), pelagic
sharks are vulnerable to climate change impacts (Jones and
Cheung, 2018) and life history strategies may play a part
in determining ultimate patterns of species distribution. For
relatively sedentary, benthic shark species, exposure to projected
end-of-century temperatures has been shown to result in both
positive and negative impacts. Port Jackson sharks (Heterodontus
portusjacksoni) exposed to elevated temperatures exhibited
an increase in mortality, altered behavior, increased learning
performance and feeding, but reduced growth and embryonic
development time (Pistevos et al., 2015; Vila et al., 2018,
2019). Conversely, brownbanded bamboo sharks (Chiloscyllium
punctatum) showed decreased survival alongside significantly
increased embryonic growth and ventilation rates (Rosa et al.,
2014), while juvenile epaulet sharks (Hemiscyllium ocellatum)
showed significantly decreased growth rates and 100% mortality
(Gervais et al., 2018). It is likely that the physiological impacts
of increasing ocean temperature will be greater for more active
pelagic sharks than for benthic species (Rosa et al., 2014), given
their reliance on ram ventilation and continuous movement
(Lawson et al., 2019). Sharks already at their provisioning
limit may be faced with starvation if temperature-driven
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FIGURE 4 | Change in predicted habitat suitability for requiem and mackerel sharks in the Australian EEZ between the baseline time period (1956–2005) and at the
end of the twenty-first century (2050–2099) under two emission scenarios (RCP 4.5 and 8.5).

increases in metabolic rates are not met with higher food
intake (Pistevos et al., 2015), and this risk will be heightened
should environmental perturbations concurrently influence prey
availability and abundance. However, the thermal tolerance of
requiem and mackerel sharks (Francis and Stevens, 2002; Last
and Stevens, 2009; Corrigan et al., 2018; Hueter et al., 2018;
Young and Carlson, 2020) may enable them to cope with
changing temperatures.

Even though we predicted an overall increase in the amount of
suitable habitat for mackerel sharks at the end of the 21st century,
temperature acclimatization comes with an energetic cost that
impacts other functions such as reproduction, growth, foraging
and swimming. Changes in the marine environment may result in
novel ecosystems requiring predators to alter foraging behaviors
and adapt to new prey species (Nagelkerken and Munday, 2016;
Rivest et al., 2019). Under such stresses, individuals become
less competitive with decreases in reproduction and population
density (Beaugrand and Kirby, 2018) and may exploit habitat
heterogeneity by undertaking vertical migrations to suitable
temperatures to maximize biological efficiency and minimize
physiological adjustment costs (Chin et al., 2010; Beaugrand
and Kirby, 2018). The endothermic ability to swim faster and
farther (Watanabe et al., 2015) may allow mackerel sharks
to migrate longer distances and forage over wider areas with
greater access to prey and seasonal resources, although at higher
energetic costs than ectothermic species. However, the ability
of pelagic sharks to move and follow the shifting suitable
habitat outside their current ranges, may potentially alter their

interactions with fisheries. It is worth noting that latitudinal
species shifts in response to warming can be misleading with
some pelagic species migrating vertically not latitudinally (Perry
et al., 2005; Beaugrand and Kirby, 2018) and this may be the
case with some pelagic shark species. In Australian waters,
pelagic sharks have been recorded regulating their depth to
occupy regions of favorable temperatures, although this behavior
could also be related to prey movements (Rogers et al.,
2009; Stevens et al., 2010; Heard et al., 2017) as well as
habitat suitability.

Our study predicts changes in habitat suitability for pelagic
sharks in the Australian EEZ, but predictions at the end of
the century are highly dependent on the climate model and
emission scenario chosen to represent future conditions. This
has been the case for similar studies on other species, for
example, freshwater fish assemblages (Buisson et al., 2010)
and mesopelagic lanternfish in the Southern Ocean (Freer
et al., 2019) highlighting the benefit of using an ensemble
approach to capture high climate uncertainty. Moreover,
the SST anomalies across the Australian EEZ also vary
according to the climate model and emission scenario used
in the analysis. Our analysis was done at the family level
due to the sample size available. Analysis at family level,
whilst valuable for relatively homogenous species groups,
inevitably results in loss of information at lower taxonomic
levels. Further research is needed in more localized areas,
including telemetry studies on single species, to add greater
certainty to species distribution model predictions. There is
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FIGURE 5 | Change in predicted habitat suitability averaged across all cells for requiem and mackerel sharks for each climate model for the end of the 21st century
(2050–2099) in continental Australian waters under two emission scenarios (RCP 4.5 and 8.5). Refer to Table 1 for model name abbreviations.

no consensus about how turbidity may vary under a changing
climate, and in our models we assumed that turbidity levels
would remain stable at the end of the century. However, a
predicted increase in extreme rainfall influenced by changes in
atmospheric circulation may increase coastal turbidity due to
terrestrial-derived nutrients and pollutant input (Harley et al.,
2006). Additionally, turbidity is correlated with chlorophyll-
a in pelagic systems, and warmer water temperatures drive
phytoplankton blooms, with elevated temperatures increasing
both cyanobacterial and algal chlorophyll-a concentrations
(Lürling et al., 2018; Trombetta et al., 2019). As aquatic nutrients
have a greater impact on chlorophyll-a concentrations than
temperature, and salinity and wind are also correlated with
plankton blooms (Lürling et al., 2018; Trombetta et al., 2019),
the impact this may have on pelagic systems in Australian
waters is still unclear. Despite the uncertainties associated
with predicting future conditions, studies such as ours using
remotely sensed environmental information and occurrence
data from fisheries over a large spatial scale, are important
to understand how pelagic species with broad geographic
ranges might fare in the future. Such studies are a first
component of broader research in which the distribution of

multiple species are predicted in a likely altered future marine
environment.
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Climate change and fishing represent two of the most important stressors facing fish
stocks. Forecasting the consequences of fishing scenarios has long been a central
part of fisheries management. More recently, the effects of changing climate have been
simulated alongside the effects of fishing to project their combined consequences
for fish stocks. Here, we use an ecological individual-based model (IBM) to make
predictions about how the Northeast Atlantic mackerel (NEAM) stock may respond to
various fishing and climate scenarios out to 2050. Inputs to the IBM include Sea Surface
Temperature (SST), chlorophyll concentration (as a proxy for prey availability) and rates
of fishing mortality F at age. The climate scenarios comprise projections of SST and
chlorophyll from an earth system model GFDL-ESM-2M under assumptions of high
(RCP 2.6) and low (RCP 8.5) climate change mitigation action. Management scenarios
comprise different levels of F, ranging from no fishing to rate Flim which represents
an undesirable situation for management. In addition to these simple management
scenarios, we also implement a hypothetical area closure in the North Sea, with different
assumptions about how much fishing mortality is relocated elsewhere when it is closed.
Our results suggest that, over the range of scenarios considered, fishing mortality has
a larger effect than climate out to 2050. This result is evident in terms of stock size
and spatial distribution in the summer months. We then show that the effects of area
closures are highly sensitive to assumptions about how fishing mortality is relocated
elsewhere after area closures. Going forward it would be useful to incorporate: (1)
fishing fleet dynamics so that the behavioral response of fishers to area closures,
and to the stock’s spatial distribution, can be better accounted for; and (2) additional
climate-related stressors such as ocean acidification, deoxygenation and changes in
prey composition.

Keywords: Atlantic mackerel, climate change, fisheries management, earth system models, individual-based
model, approximate Bayesian computation
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INTRODUCTION

Mackerel (S. scombrus, NEAM) is among the most widely-
distributed and economically valuable fish stocks in the Northeast
Atlantic (Trenkel et al., 2014; Jansen et al., 2016). An increase in
stock size over recent years has supported large catches, which
reached a peak in 2014 at around 1.4 million tons (ICES, 2019c).
As a result, the NEAM fishery is now a major contributor to
the economies of several coastal states in the Northeast Atlantic
(Jansen et al., 2016). Although current stock size is high, it
is estimated that recent levels of exploitation will lead to sub-
optimal yield in the long-term due to overfishing (ICES, 2019c).
This in part because, despite agreeing on a management strategy
in 2015, the European Union, Norway and the Faroe Islands have
since all declared quotas above those advised by the International
Council for the Exploration of the Seas (ICES) (ICES, 2019a).
Management of NEAM is further complicated by the fact that
the spatial distribution of the stock in the summer months has
recently expanded (Berge et al., 2015; Ólafsdóttir et al., 2018). It is
now found in substantial numbers in the jurisdictions of Iceland
and Greenland which previously had no share of the catch (Kooij
et al., 2015; Olafsdottir et al., 2016). Both countries have since set
unilateral quotas without international agreement (ICES, 2019a).
Given the commercial value of the NEAM stock it is crucial that
the fishery is managed appropriately in order to preserve the
economic benefits it currently provides.

Management of NEAM depends on scientific advice regarding
acceptable levels of exploitation. This advice is provided by
ICES, who assess the state of the stock using an age-structured
state-space assessment model (SAM) (Nielsen and Berg, 2014).
The first step in the stock assessment is to estimate current
levels of spawning stock biomass (SSB) and the rate of fishing
mortality (F). These outputs are then used as starting points for
forecasts of future stock status under various catch scenarios,
which inform the advisory total allowable catch (TAC) for the
following year [see ICES (2019a) and earlier advice reports].
SAM is used in stock assessment because it is able to assimilate
the large amounts of data required (e.g., catch, tag-recapture,
survey indices), and can tractably estimate many parameters.
However, like most models used for stock assessment (MacKenzie
et al., 2008; Goethel et al., 2011; Kuparinen et al., 2012), SAM
does not incorporate the spatial structure of a stock or any
environmental influence on its population dynamics. For this
reason, it is limited in its ability to make predictions about:
(1) longer-term fluctuations in the stock which may be affected
by changing climate; and (2) the effects of spatial management
measures which depend on a stock’s distribution.

Spatial management in fisheries is becoming increasingly
prevalent (Halpern et al., 2012), often in the form of seasonal
or permanent area closures in which certain stocks may not be
targeted (Hall, 2001; STECF, 2007). With respect to the NEAM
fishery, sectors of the North Sea are subject to closures for
different portions of the year. Mackerel fishing is not permitted
in the southern and central regions of the North Sea at any
time (ICES, 2019c). This measure was implemented to protect
the North Sea spawning component of the NEAM stock, which
has not recovered since being heavily depleted in the 1970s

(Jansen, 2014). The Northern region of the North Sea is subject
to a seasonal closure from February 15th to July 31st each year.
The reason that mackerel fishing is permitted in the Northern
North Sea outside of this period (August 1st to February 14th)
is that the much larger western spawning component of the
stock migrates into the area in large numbers during this
time. ICES recommends that existing area closures remain in
place to protect the North Sea spawning component (ICES,
2019c), but understanding the effects of closures is difficult.
One approach that has been used to study the effects of spatial
fishery management options is to implement them in spatially
explicit models and test how the populations respond. For
example, spatially explicit individual-based models (IBMs) have
been used predict how fish communities may respond to the
implementation of marine protected areas (Yemane et al., 2009;
Brochier et al., 2013).

In addition to exploitation, climate is likely to affect the NEAM
stock in the future. Projections using Earth System Models
(ESMs) indicate that there will be changes in temperature and
primary productivity in the North Atlantic over the twenty-
first century (Gregg et al., 2003; Henson et al., 2013; Alexander
et al., 2018). As mackerel population dynamics, such as spatial
distribution and recruitment, are highly sensitive to these drivers
(Runge et al., 1999; Borja et al., 2002; Overholtz et al., 2011;
Plourde et al., 2014; Pacariz et al., 2016; Nikolioudakis et al.,
2018; Ólafsdóttir et al., 2018), it is important to include their
effects when making predictions about the future state of the
stock. Recent years have seen the development of a first wave
of marine ecological forecast products (Payne et al., 2017)1.
These products exploit empirical relationships between biological
response variables (e.g., fish spatial distribution and recruitment)
and environmental covariates which can typically be predicted
with greater skill (Payne et al., 2017). Some ecological forecasts
have sufficient skill to be useful in a decision-making context,
but only on a seasonal basis (e.g., <6 months out) (Kaplan
et al., 2016; Payne et al., 2017). It is also possible to make
longer-term ecological projections, albeit with considerably more
uncertainty. For example, Bruge et al. (2016) projected possible
changes in the spawning distribution of NEAM out to 2100
under various climate scenarios. Long-term projections of fish
stock dynamics are likely of little direct use to decision makers
(i.e., tactical management), but can provide important, broad-
scale insight into possible directions of change under varying
climate scenarios.

Long-term (out to 2100) projections of future temperature
and primary productivity can be obtained from a number
of ESMs participating in the Coupled Model Intercomparsion
Project (CMIP) (Taylor et al., 2012). These projections are
typically available under a range of standardized greenhouse gas
emissions scenarios, such as the Representative Concentration
Pathways (RCP), which contain different assumptions about
economic activity, population growth and other socio-economic
factors (van Vuuren et al., 2011). Recently, a fisheries and
marine ecosystem model intercomparison project (FISH-MIP)
was established (Tittensor et al., 2018). In FISH-MIP physical

1www.fishforecasts.dtu.dk/forecasts

Frontiers in Marine Science | www.frontiersin.org 2 August 2020 | Volume 7 | Article 63973

http://www.fishforecasts.dtu.dk/forecasts
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00639 August 4, 2020 Time: 14:40 # 3

Boyd et al. Projections of the NEAM Fishery

and biogeochemical fields from CMIP projections under various
RCP scenarios are used as input to marine ecosystem models.
In this way predictions can be made about how the marine
ecosystem may respond to climate change. Thus far FISH-
MIP simulations have made simple assumptions about future
levels of fishing activity (i.e., fished or unfished) (Lotze
et al., 2018), likely because of the difficulty in specifying
harvesting regimes for numerous stocks at the global scale.
By focusing on a target stock (or subset of stocks), however,
it should be possible to predict the effects of more detailed
management scenarios alongside the effects of climate (e.g.,
Reum et al., 2020).

Here, we use an existing spatially explicit IBM (Boyd et al.,
2018, 2020) to simulate NEAM population dynamics and yield
from the fishery out to 2050 under a range of management and
climate scenarios. It should be noted from the outset that our
IBM is designed to represent the biological component of the
system, as opposed to the human dimension, and as such the
spatial distribution of fishing effort is represented in a simple
manner. Inputs to the IBM include Sea Surface Temperature
(SST), chlorophyll concentration (used as a proxy for prey
availability), and rates of fishing mortality (F). Predictions of
future SST and chlorophyll were obtained from the ESM GFDL-
ESM-2M under the highest and lowest climate mitigation action
(or RCP) scenarios. Future management scenarios comprise one
of three annual rates of F, ranging from no fishing to rate Flim.
By combining the different climate and management scenarios,
we generate six multi-stressor scenarios that span a range of
possible future conditions. In addition to these scenarios, we
also implement simple spatial management measures. These
measures comprise a hypothetical area closure in the Northern
North Sea, with different assumptions about how much fishing
mortality is relocated elsewhere when it is closed. We quantify
changes to the stock under each scenario in terms of three
outputs: (1) SSB, which is a key output in the stock assessment
because it represents the stock’s reproductive potential; (2)
the summer distribution, which is relevant to the division
of the NEAM catch allocation among national fisheries; and
(3) yield from the fishery. The results are discussed in the
context of the utility of long-term projections for scientific and
management purposes.

MATERIALS AND METHODS

IBM Description
In this section we give a brief overview of the IBM (Boyd et al.,
2018, 2020) and details of its key features. For a full technical
specification see the “TRAnsparent and Comprehensive model
Evaluation” (TRACE) document in Supplementary Material. In
section “Materials and Methods” of the TRACE we provide a
full model description in the standard Overview Design concepts
and Details (ODD) format (Grimm et al., 2006). The IBM was
built in the open-source software NetLogo (Wilensky, 1999),
where it comes with an easy-to-use GUI, but can be run from
the R statistical environment (R Core Team, 2019) using the
RNetLogo package (Thiele, 2017). The R and NetLogo code can

be found at https://github.com/robboyd/SEASIM-NEAM/tree/
master.

Overview
The model environment consists of dynamic maps of SST
and phytoplankton density, which we use to represent baseline
food availability (Figure 1). The fish population represents the
largest sub-unit of the NEAM stock, the western spawning
component, which has comprised a reasonably stable proportion
of the stock’s total biomass through time (∼80%) (ICES, 2014a,b,
2017). It should be noted, however, that there is evidence of
straying between the western and the much smaller North Sea
spawning component of NEAM (Jansen and Gislason, 2013),
which is not represented in the IBM. Fish are grouped into
super-individuals (SIs), which comprise a number of individuals
with identical variables (Scheffer et al., 1995). SIs are sometimes
considered to represent schools of identical individuals in
varying abundances (Shin and Cury, 2001), but the approach
is mainly used for computational tractability. SIs move around
the seascape according to their life cycles (e.g., to spawn, feed
and overwinter, Figure 1). Each has an energy budget which
determines how its characteristics (e.g., body size, life stage,
energy reserves) change in response to local food availability
and SST. Time- and age-varying fishing determines the rate of
mortality from exploitation. A constant number of new SIs enter
the model as juveniles each year, but the abundance that they
represent on entry (recruitment) is given as a function of SSB
and temperature on the spawning grounds. Abundance reduces
as fishing and natural mortalities are applied throughout life.
Population measures such as SSB and spatial distribution are
obtained by summarizing the characteristics of all the individuals
including their abundances.

State Variables and Scales
The model landscape comprises a two-dimensional grid of
patches of sea surface (Figure 1). The spatial extent spans
from 47–77◦N, and from −45◦ to 20◦E. Each patch represents
60 × 60 km (Lambert Azimuthal equal area projection) and
is characterized by prey density, sea surface temperature (SST),
mackerel density, photoperiod and horizontal current velocities.
The mackerel population is represented by a constant 4000 SIs;
as ncohort new SIs enter the model as juveniles each year, an
equal number reach terminal age (> 15 years) and are removed
from the model. While the number of SIs remains constant,
the abundance that they represent differs; a SI’s abundance is
determined by the level of recruitment in the year that it entered
the model, and all subsequent mortality. Each SI is characterized
by age, gender, life stage (egg, yolk-sac larvae, larvae, juvenile
or adult), length, mass (structural, lipid and gonad), abundance
and location. The temporal extent of the historical period spans
from January 1st 2005 to December 31st 2018, and is extended
to December 31st 2050 for projections. The model proceeds in
discrete five-day time-steps.

Sub-models
In the following we give details of the IBM’s movement,
bioenergetics and recruitment sub-models.
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FIGURE 1 | Snapshot of the IBM interface on August 1st 2009. Gray SIs in
the Nordic and North Seas are adults, and blue SIs to the west of the British
Isles are juveniles. The color of the landscape indicates phytoplankton density:
darkest green equals 0 g m−2 through light green which equals 3 g m−2.
Orange cells indicate potential spawning areas, white cells potential nursery
areas, and yellow cells indicate areas that are both potential spawning and
nursery areas. The nursery area is delimited by the 200 m isobath to the west
of the British Isles, and the potential spawning area corresponds to the
European shelf edge (−500 m < depth < −50 m). The red boxes (ICES
divisions 6a and 4a) delimit the potential overwintering areas. The easternmost
box (division 4a) is that which we close in our spatial management scenarios
(see Table 2).

Movement
In broad terms, juveniles move randomly in nursery areas,
and adults cycle between spawning, feeding and overwintering
areas (see TRACE section 2 and Figure 1). For the purposes
of this paper, we focus on the summer feeding period (July
through September). We focus on this period because: (1) the
summer distribution has recently expanded into the jurisdictions
of Iceland and Greenland, which has complicated division of the
catch allocation among states; and (2) we have recently validated
an optimal-foraging model for this period (Boyd et al., 2020),
outlined below.

In summer adults actively move in search of the most
profitable patches on which to feed. Each patch is characterized
by a profitability cue cdd which is proportional to potential
ingestion rate in that location. cdd represents the bottom-up
effect of phytoplankton density as a proxy for prey availability,
a density-dependent effect of intraspecific competition, an effect
of photoperiod (as NEAM are primarily visual feeders), and an
effect of SST (Kelvins), in the form of a modified Beddington-
DeAngelis (Beddington, 1975; DeAngelis et al., 1975) functional
response:

cdd = A (SST) pphoto
X

X + h+ c D
(1)

where X is phytoplankton density (g m−2), h is a half saturation
constant, pphoto is photoperiod (as a proportion of 24 h) at the SI’s
location, D is local mackerel density (g patch−1), c determines the
strength of the density dependence, and A(SST) is an Arrhenius

function giving the effect of SST (see Eq. 2). h was estimated by
fitting the IBM to data on NEAM SSB and weight-at-age using
rejection approximate Bayesian computation (see section “IBM
Calibration”). c was estimated using the same approach but in a
previous application of the IBM (Boyd et al. submitted). A(SST)
is given as:

A (SST) = e
−Ea

K

((
1

SST

)
−

(
1

Tref

))
(2)

where Ea is an activation energy, K is Boltzmann’s constant and
Tref is an arbitrary reference temperature.

SIs move in search of the most profitable locations (Eq. 1) at
which to feed following a gradient area search (GAS). The GAS
algorithm is similar to that presented by Tu et al. (2012); Politikos
et al. (2015), and Boyd et al. (2020). It should be noted that this
model is a slight update to that presented in Boyd et al. (2020)
as it now includes explicit effects of photoperiod and horizontal
current velocities. See TRACE section 9 for a comparison of
predicted and observed NEAM occurrence over summer. SIs
can detect the profitability of the four neighboring patches in
x and y dimensions. Positions are updated five times per time
step (i.e., once per day) to ensure that SIs cannot overshoot the
neighboring patch. Positions in x and y dimensions are updated
in continuous space, as:

xt + 1 = xt + (Dx + Rx + Cx)

yt + 1 = yt +
(
Dy + Ry + Cy

)
(3)

where Dx and Dy denote directed movements toward the most
profitable patches, Rx and Ry denote random movements, and
Cx and Cy are displacements caused by zonal and meridional
horizontal currents, respectively.

In the orientated component of Eq. (3) Dx and Dy, SIs
compare the profitability at their current location with that of the
day before. If it has become more profitable, they will continue
to swim in the same direction as the directed component of
their movement the day before. If a SI’s current environment is
less profitable than the day before, it follows a gradient search
toward what is perceived to be the most profitable patch based
on information in x and y dimensions, at realized velocity
Vr, given by:

Dx = Vr
gx√

g2
x + g2

y

Dy = Vr
gy√

g2
x + g2

y

(4)

where gx and gy are the gradients of the profitability cues (Eq. 3)
in x and y dimensions. Vr is given as minimum swimming
velocity (Vmin) plus random noise. Vmin is as a function of body
length L, as Vmin = av Lbv Acv

r , where av is a normalizing constant,
bv and cv are scaling exponents, and Ar is the caudal fin aspect
ratio (Sambilay, 1990). Vr is given by Vr = Vmin + (Vmin ε),
where ε is drawn randomly from a uniform distribution ranging
from zero to one. The directed component of the GAS algorithm
amounts to what is called a state-location orientation mechanism
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(basing new orientation on a comparison of the current and
previous environment), and there is some indication that herring
follow a similar strategy in the Norwegian sea (Fernö et al., 1998).

Following Politikos et al. (2015) we assume that movement is
directed (Dx, Dy) for 12 h day−1, and movement in the other 12 h
follows the random component of Eq. (3), Rx, Ry, given as moving
at velocity Vmin in a random direction that is not southward.
Random southward movement is not permitted because acoustic
studies have shown that NEAM infrequently swim southwards
over summer (Nøttestad et al., 2016). However, SIs may still move
southward during the oriented component of the GAS algorithm
(i.e., if feeding conditions are best on a more southerly patch), or
due to currents. Rx and Ry introduce stochasticity into the GAS
models and combine with the competition term in Eq. (1), cD, to
prevent unrealistic overcrowding on optimal patches.

The effects of horizontal currents on SIs’ locations, Cx, Cy, are
given as zonal (u) and meridional (v) current velocities (km h−1),
respectively, multiplied by the time step (here 24 h as the GAS
model operates five times per 5 day time-step).

In addition to its effect on the perceived profitability of a
patch (Eqs. 1, 2), SST delimits the possible modeled NEAM
distribution. NEAM avoid areas in which temperature is below
7◦C (Ólafsdóttir et al., 2018). To reflect this, SIs are deterred from
moving to patches on which SST is below this threshold. In the
directed component of Eq. (3), SIs are repelled from patches with
SST < 7◦C by setting profitability cues in those areas to 0. For the
random component of Eq. (3), if a SI’s orientation would direct it
on to a patch with SST < 7◦C, its heading is reversed. If currents
displace individuals on to an intolerably cold patch (or land) then
this movement is abandoned and the SI instead moves to the
centroid of the nearest suitable patch.

Bioenergetics
Individuals obtain energy from food X in the form of either
phytoplankton (a proxy for baseline food availability) or smaller
mackerel located on the same patch (see TRACE section 2 for
size-based criteria that a SI must meet to be classed as potential
prey). Over summer adults do not overlap with sufficient small
mackerel, so in Eq. (1) X refers only to phytoplankton density.
Energy uptake is proportional to Eq. (1). A proportion of the
energy ingested from food is assimilated and made available
to the vital processes maintenance (metabolic rate), growth,
reproduction and energy storage. The rates at which energy is
allocated to these processes depend on temperature and body
size. The effect of temperature is generally given by the Arrhenius
function (Eq. 2). The partitioning of energy to vital processes
depends on an individual’s life stage and time of year. See Sibly
et al. (2013) for an overview, and TRACE section 2 for full
details. Note that, while adults allocate energy to reproduction,
recruitment is modeled separately using a Ricker-style stock-
recruitment model (see section “Recruitment”).

Movement-bioenergetics coupling
The energy cost of searching for food is subsumed into an
individual’s active metabolic rate AMR. AMR is given as a
function of SST, body mass M and swimming velocity V as:

AMR = aAMR MbAMR VcAMR A(SST) (5)

where aAMR is a normalizing constant, bAMR and cAMR are scaling
exponents, and V is given by V = (Vr + Vmin)/2, i.e., assuming
that half of each day is spent at Vmin, and half at Vr.

Recruitment
In this paper, recruitment is modeled differently than in previous
applications of our IBM (Boyd et al., 2018, 2020). Here, we use a
modified Ricker stock-recruitment function because it provides
better fits to the latest recruitment estimates from the NEAM
stock assessment. The Ricker model gives recruitment R as a
function of SSB and average SST on the spawning grounds over
the months March and April, as:

R = aR SSB e−aR SSB + bR SST (6)

where aR and bR were estimated by fitting Eq. (6) (in log-linear
regression form, R2 = 0.45) to data from the stock assessment. See
TRACE section 3 for details of the Ricker model fitting process,
variable importance and model diagnostics.

On December 31st each year, ncohort new SIs (recruits) enter
the model as juveniles at a random location in the nursery area,
with abundance equal to R/ncohort. Recruits’ body lengths set at
the maximum length at the end of the first growth phase (20 cm,
Villamor et al., 2004) minus ε 3 (cm), where ε is drawn randomly
from a uniform distribution ranging from 0 to 1.

Emergent Properties
The movement and bioenergetics models describe the ways
in which individuals’ characteristics (e.g., body mass, energy
reserves, location) respond to their local food availability
and SST. By summarizing the characteristics of all the
individuals, we can obtain population measures. For example,
SSB can be obtained by summing the individual body masses
of all adults, and spatial distribution by summarizing the
locations of the SIs.

Initialization
The IBM is initialized on 1 January 1995 using estimates of
numbers-at-age from the stock assessment. This population is
then apportioned into 4000 super-individuals such that there
is an equal number of SIs in each year class. Body lengths
are calculated from age using the standard von Bertalanffy
equation, and energy reserves are set at half maximum. From
these all other state variables are calculated when the simulation
begins. Adults and juveniles are distributed randomly in the
overwintering and nursery areas, respectively (see Figure 1).
After initialization we allow the model to spin up from
1995–2005, after which point we begin to record outputs
for model calibration. See TRACE section 2 for full details
of initialization.

Model Forcing
In this section we describe the data used to force the IBM during
the historical period 1 January 2005–31 December 2018.

Environmental Inputs
Environmental inputs to the model include maps of surface
chlorophyll concentration, SST, horizontal current velocities
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and photoperiod. Chlorophyll and SST are derived from the
global ESM GFDL-ESM-2M (Dunne et al., 2013; Geophysical
Fluid Dynamics Laboratory, 2017). GFDL-ESM-2M has been
identified as a suitable candidate for forcing fisheries and
marine ecosystem models because: (1) it contains a relatively
highly resolved representation of ocean biochemistry and its
predictions correlate well with net primary productivity data;
and (2) because model drift is negligible (Lotze et al., 2018;
Tittensor et al., 2018). Environmental inputs are updated
monthly. A slight complication arises in that the historical
period as defined for CMIP (phase 5 as used here) ends in
December 2005, after which RCP scenario-driven estimates are
produced from the ESMs. This does not match the historical
period as defined in this study (everything up to 2019).
For this reason, from 2006 we had multiple environmental
trajectories (one from each RCP) from which to choose as
input to our IBM. Inspection of the environmental inputs
revealed negligible divergence between fields of chlorophyll and
SST out to 2019 from RCPs 2.6 and 8.5 (RMSEs of 0.31◦C
and 0.024 mg m−2, respectively; see TRACE section 3). For
this reason we simply took the mean of the environmental
inputs from RCPs 2.6 and 8.5 as forcing to the IBM
from 2006–2019.

Near surface (average over 0 to -30 m) horizontal current
velocities were taken from the 1/3◦ OSCAR dataset (ESR 2009).
Currents influence the movements of adults over summer
(Eq. 4), so we obtained data for the months May through
September. Outside of this period current velocities have no
effect in the IBM. It would not be appropriate to include
the effects of near surface current velocities on individuals
outside of the summer period, when mackerel may inhabit
deeper waters (e.g., −50 to −220 m over winter) (Jansen
et al., 2012). Over summer NEAM are found in the upper
water layer (average of ∼ −20 m) (Nøttestad et al., 2016). As
data are not available for the selected months prior to 2012,
we generated mean climatologies for each month over 2012–
2018. As such we do not account for inter-annual variability in
current velocities.

Data on photoperiod (as a proportion of 24 h) at all latitudes in
the IBM grid was extracted for each month using the daylength()
function in the R package geosphere (Hijmans, 2019). Values
correspond to the 15th day of each month, and are updated at the
start of each month. All environmental data required processing
for use in the IBM (e.g., re-gridding), the details of which can be
found in TRACE section 3.

Fishing Mortality
As our IBM does not explicitly represent fleet dynamics, fishing
mortality F is applied to the stock in a simple manner.
Annual rates of F at age each year were taken from the
2019 NEAM stock assessment [ICES (2019b), extracted from
stockassessment.org]. We incorporate monthly variation in F by
setting the fraction of annual F in each month proportional to
the mean historical fraction of annual NEAM catch taken in each
month (see Table 1). Unless stated otherwise (see section “Spatial
Management Scenarios”), F is applied uniformly to all individuals
within an age group regardless of their location.

TABLE 1 | Mean proportion of total annual catch taken in each month and
whether or not division 4a is closed to fishing.

Month Proportion of
annual catch

4a status

Jan 0.22 Open

Feb 0.07 Open until 15th

Mar 0.14 Closed

Apr 0.12 Closed

May 0.004 Closed

Jun 0.02 Closed

Jul 0.08 Closed

Aug 0.08 Open

Sep 0.09 Open

Oct 0.11 Open

Nov 0.05 Open

Dec 0.02 Open

Mean values are calculated over the period 1998–2018.

Future Scenarios
From 1 January 2019–31 December 2050 the IBM simulates the
NEAM population under various scenarios, each with different
assumptions about future climate and fishing pressure.

Climate Scenarios
We include two environmental scenarios representing the low
and high levels of climate change mitigation action. Both
scenarios comprise projections of chlorophyll and SST from
GFDL-ESM-2M, with forcing from RCPs 2.6 and 8.5, i.e.,
low and high greenhouse gas emissions, respectively (see van
Vuuren et al. (2011) for details). Current velocities remain
as described in section “Environmental Inputs” in the future
period for lack of available projections. It is important to note
that we do not account for other climate-related stressors (e.g.,
ocean acidification).

Fishing Scenarios
For future fishing pressure we take mean F-at-age over the
historical period 2001–2018 (Figure 2) and adjust it using one of
three multipliers. The multipliers are used to set mean F over the
most important age groups to the fishery (for NEAM 4–8 years)
at one of three rates: F = 0; FMSY (0.23 year−1), i.e., the level of
harvesting that is likely to result in maximum sustainable yield
in the long-term; and Flim (0.46 year−1), i.e., high mortality used
as an upper reference point (ICES, 2012, 2019c). Flim is slightly
larger than the highest F on record (ICES, 2019c). Monthly
variation in F is implemented as in the historical period.

Spatial Management Scenarios
In addition to changes in annual F, we also simulate the
consequences of two simple spatial management scenarios.
Currently, no mackerel fishing is permitted the Northern North
Sea (ICES division 4a, Figure 1) over the period 15 February to
31 July (ICES, 2019c). We simulate the possible consequences of
a hypothetical measure in which this seasonal closure is extended
to span the whole year. To do this we split fishing mortality into
that which is applied inside 4a, and that which is applied outside.
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FIGURE 2 | Mean F at age over 2001–2018 (black line), from which FMSY

(blue line) is calculated with a multiplier of 0.83, and Flim (red line) with a
multiplier of 1.66.

We then make assumptions about the amount of fishing mortality
that will be redistributed from inside to outside of division 4a
if it is closed. The first assumption is that none of the fishing
mortality that would have taken place in division 4a is relocated,
i.e., fishing mortality at age t Ft is set to zero inside division 4a
when it is closed, but remains unchanged elsewhere. Under this
assumption total F is reduced. The second assumption is that all
of the fishing mortality that would have been inflicted in division
4a will be uniformly redistributed elsewhere. Under the second
assumption Ft is raised outside of 4a to give redistributed fishing
mortality at age t, F′t, as:

F′t = Ft
(
1− pin, t

)−1 (7)

where pin,t is the proportion of SIs in age group t that are inside
division 4a in that time-step (see Yemane et al., 2009, for a
similar approach). Under this assumption the spatial distribution
of F changes, but the overall rate is unchanged. These scenarios
are simplistic, but represent the extremes of possible fishery
responses to area closures: relocating none or all of the fishing
mortality. As such they give the bounds of possible outcomes.

Multi-Stressor Scenarios
To generate a range of future conditions for the NEAM stock,
we combine the different assumptions about future climate and
management decisions to generate nine multi-stressor scenarios.
The first six scenarios represent each combination of RCP
(2.6 and 8.5) and annual fishing mortality rate (unfished, FMSY
and Flim). In these scenarios F is applied uniformly to all
individuals within an age group. The final three scenarios
represent the different assumptions about when ICES division

4a is closed to mackerel fishing, and if it is, how much of the
fishing pressure that would have taken place inside is relocated
elsewhere. For these latter scenarios we assume RCP = 8.5
and F = FMSY. See Table 2 for a summary of the multi-
stressor scenarios.

IBM Calibration
We calibrated the half saturation constant (h in Eq. 1), i.e., the
prey density at which ingestion rate reaches half maximum at a
given temperature. h was estimated by fitting the IBM to data
on SSB and weight-at-age using rejection approximate Bayesian
computation (ABC) (van der Vaart et al., 2015) (see TRACE
section 5 for model fits). In broad terms, we ran 2000 simulations
while randomly sampling values of h from a uniform prior
distribution. We then “accepted” the values of h that resulted
in the best-fitting 30 simulations (1.5% tolerance), giving an
approximation of its posterior distribution (see TRACE section
3 for full details of the ABC). To account for uncertainty in h, we
simulated all future scenarios (Table 2) once for each of the 30
accepted parameter values.

IBM Simulations and Outputs
The IBM simulates the full life cycle of the NEAM population
from 1 January 2005–31 December 2050. Simulations are forced
by fishing mortality F at age, phytoplankton density X and SST. F
is updated annually in the historical period, but remains constant
in the future period. SST and phytoplankton density are updated
monthly. From 2019 management and climate scenarios take
effect (Table 2).

For the purposes of this paper, key outputs from the IBM
are SSB (tonnes), annual catch (tonnes) from the fishery and
mackerel density (tonnes km−2) over the summer period (1 July
to 30 September). SSB is calculated as the sum of the body masses
of all mature individuals at spawning time (extracted 1 May).
Catch is calculated is calculated cumulatively throughout each
year from rates of fishing and natural mortality (see TRACE
section 2), and mackerel biomass-at-age, using the standard
Baranov equation (see TRACE section 2).

TABLE 2 | Summary of the multi-stressor future scenarios.

Scenario RCP Annual F 4a status F redistributed when
4a is closed?

1 2.6 0 Open No

2 8.5 0 Open No

3 2.6 FMSY Open No

4 8.5 FMSY Open No

5 2.6 Flim Open No

6 8.5 Flim Open No

7 8.5 FMSY Closed 15 Feb–31
Jul

Yes

8 8.5 FMSY Closed all year Yes

9 8.5 FMSY Closed all year No
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RESULTS

Effect of Future Scenarios on SSB and
Yield
To test how the NEAM stock size and associated yield from the
fishery may respond to future climate change and management
options, we compared future SSB and annual catch from multi-
stressor scenarios 1–6 (Table 2 and Figure 3). For both SSB and
catch we present means over the period 2021–2050. Our results
show that, for both SSB and catch, the choice of fishing mortality
has a significant effect (ANOVA, p < 0.01). As expected SSB
increases as rates of fishing mortality are lowered. The effect
of management decision on catch is more subtle. There is a
significantly higher catch under Flim than under FMSY where
RCP = 8.5 (paired t-test, p < 0.05, mean difference of 0.03 million
tons), but the mean difference is not statistically significant in
the RCP 2.6 scenario (0.009 million tons, p > 0.05). Within the
Flim and FMSY scenarios, SSB is greater in the RCP 8.5 scenarios
(paired t tests, p < 0.05, mean differences of 0.48 and 0.33 million
tons, respectively). Within the Flim and FMSY scenarios catch was
also higher in the RCP 8.5 scenario (mean differences of 0.10
and 0.08 million tons, respectively). Overall, the effect of fishing
mortality appears much greater than that of climate over the
range of scenarios considered (discussed in section “Discussion”).

Effect of Future Scenarios on the
Summer Feeding Distribution
To test how the summer feeding distribution of NEAM may
change in future, we compare mean mackerel density in July-
September over 2005–2010, with that over 2045–2050, for each
of scenarios 1–6 (Figure 4). There are positive anomalies in
the North East region south of Svalbard in all scenarios, with
the most pronounced increases of ∼ 400 tons km−2 in the
unfished scenarios. Increased density in these regions is expected
because warming opens up new habitat in the North. Another

expected finding is that, in the unfished and FMSY scenarios,
there are positive anomalies in the western region south and East
of Iceland. Again, these anomalies are most pronounced in the
unfished scenario (up to∼ 200 tons km−2). This can be explained
by an increase in stock size in these scenarios, most notably in
the unfished scenario (Figure 3). Increasing stock size provides
an incentive to move further from the traditional feeding area
(Norwegian Sea) in search of areas in which competition for food
is less intense (due to the density term, cD, in Eq. 1). Aside from
these expected results, the distribution changes are not intuitive.
Reasons for this are discussed in section “Discussion.”

Effect of Spatial Management Scenarios
To show how it may be possible to simulate the effects of spatial
management options, in Figure 5 we compare predictions of
mean SSB and catch over the period 2021–2050 from a baseline
scenario that represents the current situation (2019), to those
from two alternative scenarios. The hypothetical scenarios both
represent an extension from a seasonal to permanent closure in
ICES division 4a, with different assumptions about how much
fishing pressure is relocated elsewhere when it is closed (details in
Figure 5 caption). As expected, we found that if fishing mortality
is relocated outside division 4a when it is closed, then future
SSB does not differ from the baseline scenario (paired t-test,
p > 0.05, mean difference of 0.10 million tons). However, if
fishing mortality is not redistributed when division 4a is closed,
then future SSB is significantly higher than the baseline scenario
(paired t-test, p < 0.05, mean difference of 1.04 million tons).
To gauge the consequences of each scenario for the fishery
we also present future catch in Figure 5. It can be seen that
closing division 4a for the entire year without redistributing
fishing mortality would result in a significantly lower yield for the
fishery (paired t-test p < 0.05, mean difference of 0.11 million
tons). In summary, these results show that closing division 4a
could increase NEAM SSB, but that this will depend on the
response of the fishers in terms of how much F is redistributed.

FIGURE 3 | Left: Mean SSB at spawning time over the period 2021–2050; and right: mean annual catch from the fishery over the same period. From left to right
within each panel, boxes represent scenarios 1–6 (Table 2). Within management scenarios the left-hand boxes correspond to RCP 2.6 and the right-hand boxes to
RCP 8.5. Boxplots show medians and interquartile ranges, with the spread representing uncertainty in the parameter h and stochasticity in the IBM.
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FIGURE 4 | Change in mean mackerel density (tonnes km−2) between the start and end of a simulation for scenarios 1–6 (Table 2). Start is taken as the mean over
2005–2010, and end as the mean over 2045–2050.

A reduction in catch when F is not redistributed suggests that
fishers would be likely to redistribute their effort elsewhere should
legislation allow it.

DISCUSSION

Using an existing spatially explicit IBM, we have simulated
NEAM population dynamics and yield from the fishery out
to 2050 under a range of climate and fishing scenarios.
Environmental inputs to the IBM were obtained from the ESM
GFDL-ESM-2M assuming high and low levels of climate change
mitigation action. Management scenarios comprised a range
of levels of fishing mortality F. After testing the effects of
these simple management scenarios, we then implemented an
extension to an existing seasonal fishery closure in the Northern
North Sea, assuming a moderate level of F and low climate
mitigation action. We further divided this spatial scenario by
making assumptions about how much of the fishing mortality
that would have been inflicted in the Northern North Sea is
relocated elsewhere when it is closed. Our results suggest that,
over the range of scenarios considered, the effects of fishing
mortality are greater than those of climate. These results hold in
terms of future SSB, yield from the fishery and the extent to which
the summer distribution changes. We then showed that closing

an area to fishing may have positive effects for a stock, but that
this is highly dependent on how the fishery responds in terms of
whether or not fishing is relocated elsewhere.

In this paper we have taken a single-species approach
primarily because it allowed us to incorporate sensible
assumptions about future fishing mortality. We were able
to force the IBM with plausible rates of fishing mortality,
including a crude representation of its spatial distribution (e.g.,
inside or outside of division 4a) and intra-annual variation,
as well as the relative catchability of different age groups. This
would be difficult to achieve for numerous species or functional
groups represented in, for example, ecosystem models. Second,
we have extensively validated our IBM using data on population
dynamics, structure and spatial distribution (Boyd et al., 2018,
2020). Again, because more holistic models represent numerous
species or functional groups, it would be difficult to achieve the
same level of validation for a single species. There are, however,
processes that single-species models cannot include, notably
interspecific competition and predation (Hollowed et al., 2000).
NEAM cohabit the Nordic Seas with herring and blue whiting
in the summer months. There are contrasting reports over the
degree to which the species’ diets overlap (Langøy et al., 2012;
Bachiller et al., 2016), but recent work has shown that herring
larvae are an important prey for NEAM (Skaret et al., 2015).
Moreover, herring stock size may affect the distribution of NEAM
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FIGURE 5 | Mean SSB (left panel) and annual catch (right panel) over the period 2021–2050 under three scenarios: (1) baseline, i.e., ICES division 4a is closed
from February 15th to July 31st as at present (2019) and F is raised elsewhere to account for this; (2) division 4a is closed for the entire year and F is raised
elsewhere to account for this; and (3) division 4a is closed all year and F is not redistributed, i.e., there is an overall reduction in F. Boxplots show medians and
interquartile ranges, representing variability arising from stochasticity the IBM and uncertainty in the parameter h.

over summer (Nikolioudakis et al., 2018). When interpreting our
results, it is important to keep in mind that our IBM does not
account for interspecific interactions.

Our results suggest that, while climate is important, fishing
intensity is likely to have a much larger effect on the NEAM
stock out to 2050. This result is evident both in terms of SSB
(Figure 3), and the degree to which the summer distribution
changes (Figure 4). There are four possible explanations for
this finding. First, the relative impacts of climate and fishing
depend on the choice of scenarios. Inclusion of an “unfished”
scenario is extreme and would be expected to result in a dramatic
increase in SSB (note there is no equivalent zero emissions
scenario). However, between the more plausible FMSY and Flim
scenarios, the effect of fishing remains much greater than that
of climate. Second, the western spawning component of NEAM
may less susceptible to the effects of climate due to its latitudinal
position within the species’ thermal niche. It has been shown
that populations inhabiting the cooler parts of their species’
distribution are less negatively or more positively affected by
increasing temperature than those in the warmer regions (Free
et al., 2019). Atlantic mackerel are found as far south as Morocco
(Trenkel et al., 2014), meaning that the western spawning
component of NEAM represents one of the northernmost sub-
units of the stock. Another possibility is that the effect of climate
is smaller than fishing due to the oceanographic regime in the
North Atlantic. The ensemble of ESMs participating in CMIP
indicate that the region to the east of Greenland and south
of Iceland will not exhibit a significant increase in SST out to
2100 (Alexander et al., 2018). This could be explained by a
weakening of the Atlantic meridional overturning circulation
(AMOC) which results in reduced poleward transport of warm
water in the Atlantic (Alexander et al., 2018). Indeed, simulations
using an ensemble of 10 ESMs predict a weakening of AMOC out
to 2100, with the most marked weakening (15–60%) under RCP
8.5 (Cheng et al., 2013). Finally, the relatively small change in
the NEAM stock between climate scenarios may reflect the time

period chosen in our study. Projections of SST from the CMIP
ensemble begin to diverge around the mid-twenty-first century
(Hutchings et al., 2012, Supplementary Figure S22), and the
same is true for the projections used here (see TRACE section
3). It is possible that the effect of climate on the NEAM would
increase if simulations were conducted further into the future.

Within fishing scenarios the IBM predicts highest SSB, and
hence catch, under RCP 8.5. This is largely down to the positive
relationship between SST and recruitment included in the stock-
recruitment model. Recruitment is almost always positively
correlated with temperature for species inhabiting the cooler
regions of their thermal niche (Myers, 1998). So, while the
western component of the NEAM stock continues to spawn in
cooler regions than e.g., the southern component, the sign of
this relationship is likely to hold. This could have important
implications for the NEAM fishery if warming waters make
sustainable management easier. However, such inferences should
be made with extreme caution because we do not know if this
positive relationship will break down as waters warm. At some
temperature the relationship will shift from positive to negative
and this is not accounted for in our IBM (because we are not
able to establish the limit from historical data). If the positive
effect of temperature on recruitment ceases due to warming in
the North East Atlantic over the time period considered, then our
projections may be optimistic.

The main caveat of our approach is that we use a single ESM
to provide inputs to a single ecological model. As a result, our
predictions do not account for structural uncertainty—arising
from what processes are represented and by what functional
forms-in either of the models (Spence et al., 2018). We chose
to use the ESM GFDL-ESM-2M (Dunne et al., 2013) to provide
environmental forcing to our IBM because it has previously
been identified as suitable for this purpose as part of FISH-MIP
(Tittensor et al., 2018). Of particular relevance to our study is that
the GFDL ESM has a relatively well-developed biogeochemical
formulation and correlates well with primary productivity data
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(Tittensor et al., 2018). In addition to GFDL-ESM-2M another
ESM, IPSL-CM5A-LR, was identified by FISH-MIP as a suitable
candidate for forcing marine ecosystem models. We attempted
to include inputs from the IPSL ESM but found that an under-
prediction of SST on the NEAM spawning grounds led to
frequent recruitment failures in our IBM. With respect to the
fish population model, we are aware of other IBMs representing
NEAM (Utne et al., 2012; Heinänen et al., 2018). However, to our
knowledge these IBMs were designed primarily to represent the
stock’s spatial distribution and do not make multi-generational
predictions of stock size. For this reason, they cannot make
predictions about how the stock may develop in future. While
we do not account for variation in model structures, we have
included a wide range of possible future conditions in terms of
climate and harvesting regimes.

While our IBM captures some of the key individual level
processes that relate fish population dynamics to prey availability
and temperature, there are other climate-related stressors that
it does not account for. First, the ocean is projected to
become more acidic over the twenty-first century (Holsman
et al., 2018). It is thought that ocean acidification will have
deleterious effects on fish stocks, such as increased larval
mortality and reduced recruitment (Stiasny et al., 2016). Second,
ocean oxygen concentration is declining (deoxygenation) in
response to increasing temperature (Breitburg et al., 2018).
Oxygen concentration affects rates of energy expenditure, such
as growth and metabolism (e.g., Del Toro-Silva et al., 2008),
which is not accounted for in our bioenergetics model. Third, our
IBM uses fields of chlorophyll concentration as a proxy for prey
availability. Use of chlorophyll concentration does not account
for potential changes to the composition of prey which may occur
under novel environmental conditions (Holsman et al., 2018).
This may reduce the predictive power of our IBM if NEAM
vital rates depend on the composition of available prey. Indeed,
S. scombrus recruitment appears to be related to the prevalence of
large copepods such as Calanus species (Ringuette et al., 2002;
Jansen, 2016). This is also a problem in that zooplankton is
expected to decline at a greater rate than phytoplankton (negative
amplification) (Chust et al., 2014), and the pathways of energy
transfer from primary producers to e.g., pelagic or benthic food-
webs may change, partly in response to the composition of the
primary producers themselves (Van Denderen et al., 2018). For
these reasons our assumption that chlorophyll concentration is
near proportional to prey availability may not hold. Finally, while
our IBM captures broad scale effects of prey availability and
temperature on the NEAM stock, use of environmental fields
derived from a global ESM limited our study to a relatively coarse
(60 km2) spatial resolution (even working at this resolution
required some downscaling of the ESM outputs, see TRACE
section 3). For this reason our IBM is unable to capture mesoscale
processes, such as fronts, that could affect the distribution and
productivity of the NEAM stock (Sato et al., 2018). In all, our IBM
accounts only for broad scale effects of temperature and a proxy
for prey availability on NEAM physiology and behavior, and the
results should be interpreted with this in mind.

In addition to stock size, the future distribution of NEAM over
summer is an important output from our IBM. Over recent years

the summer feeding distribution of NEAM has expanded from
its traditional core in the Norwegian Sea, north and westward
into the jurisdictions of Iceland and Greenland (Berge et al.,
2015; Pacariz et al., 2016; Nikolioudakis et al., 2018; Ólafsdóttir
et al., 2018). This has caused political disputes over how the
catch should be allocated among coastal states in the region
(Hannesson, 2018). Our IBM predicts a north-and westward
expansion of the NEAM summer distribution under the FMSY
and unfished scenarios (Figure 4 and see Supplementary
Figure S22). This finding is expected because under these
scenarios SSB increases which forces SIs to the northern and
western fringes of the distribution where competition for food
is less intense. However, the IBM does not predict an increase
in density in Greenlandic waters out to 2050, where NEAM
have been present in large densities since ca. 2012 (Ólafsdóttir
et al., 2018). This discrepancy cannot be explained by e.g.,
temperature, which remains suitable for NEAM in this region
in all scenarios, but rather reflects the assumptions made in
our IBM. First, our foraging model assumes that SIs move in
response to local gradients in feeding opportunities (reactive
orientation). Under this assumption SIs do not reach Greenlandic
waters in appreciable numbers. It may be the case that NEAM
use a combination of reactive and predictive orientation, i.e.,
where individuals move toward areas that are predicted to be
best, when foraging. Indeed, Nøttestad et al. (2016) suggest
that NEAM may use current direction as a cue on which to
base predictive orientation. Another possibility is that changes
in the spawning distribution, which occurs in spring directly
before feeding, could influence the summer distribution. The
spawning distribution of NEAM has changed in the past (Hughes
et al., 2014) and will likely change in future (Bruge et al.,
2016), which is not captured fully by our IBM (spawning is
constrained by temperature but only occurs on the European
shelf edge). An individuals’ location once spent after spawning
is equivalent to its starting point for the feeding migration so
could influence the subsequent distribution over summer. Our
IBM can reproduce the summer distribution from Norway in the
East to Iceland in the west with high skill (Boyd et al., 2020),
but its predictions of NEAM density west of Iceland should be
viewed with caution.

Generally speaking species’ distributions are expected to
shift poleward as temperature increases (Hughes et al., 2014;
Bruge et al., 2016; Pacariz et al., 2016). However, our IBM
predicts more nuanced effects of climate on the NEAM
summer distribution. For example, density anomalies are more
positive in the northern regions under RCP 2.6, which is
usually associated with cooler conditions, than under RCP
8.5. Moreover, there are negative anomalies in the northern
Norwegian Sea under the RCP 8.5 Flim scenario, but not in
the equivalent RCP 2.6 scenario. These results can be explained
by a slight cooling of surface waters in these regions under
RCP 8.5, which may reflect the enhanced weakening of AMOC
under RCP 8.5 (Cheng et al., 2013). In summary, there are
some intuitive changes to the NEAM summer distribution
(e.g., expansion when stock size is high) out to 2050, but
a weakening of AMOC could result in more unexpected
distribution patterns.
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In addition to changes in rates of total fishing mortality,
we also simulated the effects of a hypothetical extension to
a fishery closure in the Northern North Sea. To do this
we made two simple assumptions about the redistribution of
fishing mortality from inside to outside of the area when
it is closed. Our results show that predicted stock size and
yield from the fishery are highly sensitive to these assumptions
(Figure 5). This result is intuitive, and as much as our model
in its current form can say, but does highlight the potential
value of modeling fishing pressure explicitly. Strides are being
made toward development of socio-economic IBMs [or, as
they are known in this field, agent-based models (ABMs)] in
which fishing pressure emerges from the decisions of individual
fishers (Lindkvist et al., 2020). To date, these socio-economic
ABMs have been coupled to simple models of fish population
dynamics, such as a simple logistic growth models (e.g.,
Bailey et al., 2019). In future socio-economic ABMs could be
coupled to biological IBMs such as ours, providing a detailed
description of the human-environment system. Then, variables
such as the amount of fishing pressure that is redistributed
from inside to outside an area if it is closed to fishing (as
in our simple scenario), or how the spatial distribution of
fishing effort may change in response to changes in a stock’s
distribution, would emerge. Indeed, the NEAM fishery, with
its associated geopolitical issues, may provide an interesting
candidate for studying the coupling of fisher behavior and fish
stock dynamics.

In summary, we feel that our results give valuable, broad-scale
insight into the ways in which the NEAM stock may respond
to climate and management scenarios. By simulating the stock
under a range of scenarios spanning the extremes of climate
mitigation action and fishing pressure, we hope to have given
some indication of the bounds of possible future responses.
We would like to stress, however, that our results are not
intended to be used in a decision-making context; such long-term
projections come with too much uncertainty for use in tactical
management. It is possible that our projections are optimistic as
we do not account for e.g., ocean acidification, deoxygenation
and changes in the composition of prey, all of which could
have deleterious effects on the NEAM stock. Going forward it
would be useful to extend our approach and incorporate: (1)
additional species in the IBM, such as herring and blue whiting

(though this will be time-consuming); (2) some representation
of fleet dynamics and fisher behavior in order to make more
realistic predictions about the effects of spatial management
options; and (3) additional climate-related stressors such as ocean
acidification, deoxygenation and changes in prey composition.
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We here assess long-term trends in marine primary producers in the southern North Sea
(SNS) with respect to ongoing regional Earth system changes. We applied a coupled
high-resolution (1.5–4.5 km) 3d-physical-biogeochemical regional Earth System model
that includes an advanced phytoplankton growth model and benthic biogeochemistry
to hindcast ecosystem dynamics in the period 1961–2012. We analyzed the simulation
together with in situ observations. Coinciding with the decreasing nutrient level at the
beginning of the 1990s, we find a surprising increase in phytoplankton in the German
Bight, but not in the more offshore parts of the SNS. We explain these complex patterns
by a series of factors which are lacking in many state-of-the-art coupled ecosystem
models such as changed light availability and physiological acclimation in phytoplankton.
We also show that many coastal time-series stations in the SNS are located in small
patches where our model predicts an opposite trend than found for the surrounding
waters. Together, these findings call for a reconsideration of current modeling and
monitoring schemes.

Keywords: ecosystem, modeling, North Sea, biomass, chlorophyll, regime shift

INTRODUCTION

Marine phytoplankton constitute the fundamental basis of the marine food web and
biogeochemical cycles. Phytoplankton mediates around half of net primary production (NPP) on
Earth (Field et al., 1998; Falkowski and Raven, 2007). Changes in primary production impact higher
trophic levels, from zooplankton to fish, marine mammals, and seabirds (Chassot et al., 2010;
Capuzzo et al., 2018).

Coasts and shelf seas generally reveal higher NPP due to shallower water depth and high nutrient
influx by upwelling or river inflow. The North Sea, a shallow shelf sea to the eastern North Atlantic
is one of the most utilized and highly productive sea areas in the world (Ducrotoy et al., 2000;
Emeis et al., 2015). The southern North Sea (SNS) features low water depth, strong tidal mixing,
diminished ocean influence, and high riverine nutrient inflow. Nutrient loads were elevated from
the 1950s to the 1980s due to increased wastewater discharge and use of fertilizers (eutrophication)
but declined in the recent decades (Painting et al., 2013; Burson et al., 2016) due to regulations and
better wastewater treatment.
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Nutrient levels, together with light availability, are primordial
factors controlling phytoplankton growth. Phytoplankton in
coastal areas such as the SNS are thus directly perturbed by
human action, but in addition often seem to track climatic
changes (Reid et al., 1998; Taylor et al., 2000; Schlüter et al., 2008).
A sustainable management of this sea as requested by a number
of national and international directives thus needs to disentangle
and to attribute observed changes to natural, proximate, and to
direct anthropogenic pressures.

Long-term in situ observations of phytoplankton and nutrient
concentration are available for a number of sites (Cadee and
Hegeman, 2002; Smaal et al., 2013; Desmit et al., 2019), but
prior model studies of long-term biomass dynamics (Daewel and
Schrum, 2013; Lynam et al., 2017; Capuzzo et al., 2018) have been
validated only against sparse data sets, which lack regional details
and long-term variability. Moreover, state-of-the-art coupled
biogeochemical models often come with a relatively coarse spatial
resolution and rarely resolve strong gradients in phytoplankton
community composition and ecophysiology. These models thus
face difficulties to represent strong coast-to-shelf variability in
phytoplankton (Daewel et al., 2015; Ford et al., 2017). As a
consequence, the reliability of hindcasted as well as projected
trends in coastal ecosystem states is not clear.

In this study, we employ a novel trait-based phytoplankton
model embedded into a high-resolution coastal Earth System set-
up to simulate long-term (1961–2012) variations of ecosystem
states and primary production in the SNS. The trait-based
physiological phytoplankton model has been shown to represent
major acclimation patterns over time and within the SNS
(Kerimoglu et al., 2017; Wirtz, 2019). It is modularly coupled
within a coastal Earth system model context also tested in a
number of applications. We aim to further investigate the validity
of the set-up using a large amount of in situ data for then
unraveling the response of phytoplankton biomass to changes in
nutrient levels and climate.

MATERIALS AND METHODS

Numerical Model System
Biogeochemical (BGC) cycling in the SNS is strongly influenced
by riverine and open ocean fluxes and mediated by benthic–
pelagic exchange. For the numerical description of the SNS
biogeochemistry, we employ an application of the Modular
System for Shelves and Coasts (MOSSCO, Lemmen et al., 2018),
an Earth System Modeling Framework (ESMF, Theurich et al.,
2016) software layer that here interlinks the General Estuarine
Turbulence Model (GETM, Burchard and Bolding, 2002) with
adjacent compartments as described in more detail below:
atmospheric physical and chemical forcing, riverine discharges,
and two BGC models in the pelagic and in the benthic domain.
The latter are represented within the Framework for Aquatic
Biogeochemical Modeling (FABM, Bruggeman and Bolding,
2014). This coupled system of hydrodynamics and benthic
and pelagic BGC is the core of several published MOSSCO
applications for the SNS that describe spatial–temporal
patterns in nutrient concentration (Kerimoglu et al., 2017, 2018;

Wirtz, 2019), filter-feeder effects on primary productivity
(Lemmen, 2018; Slavik et al., 2019), or benthic sediment and
biota interaction (Nasermoaddeli et al., 2018).

Hydrodnamics
The General Estuarine Transport Model (GETM, Burchard and
Bolding, 2002) is a structured grid three-dimensional coastal
ocean model that has been frequently applied in the North
Sea (e.g., Stips et al., 2004; Gräwe et al., 2015). It features
vertically adaptive layers (Hofmeister et al., 2010) and vertical
density and momentum mixing provided by the General Ocean
Turbulence Model (GOTM, Burchard et al., 2006). GETM
prognostically calculates local sea surface elevation, tidal dry-
falling, currents, temperature, salinity, and transports tracers
from other components of the coupled system, i.e., the BGC state
variables from the pelagic FABM component.

Pelagic Biogeochemistry
For the representation of pelagic BGC and phytoplankton
physiology, the Model for Adaptive Ecosystems in Coastal Seas
(MAECS, Wirtz and Kerimoglu, 2016; Kerimoglu et al., 2017)
was operated as the single module of a FABM pelagic component
in the MOSSCO coupled system. MAECS employs a trait-
based approach for the optimal allocation between different
intracellular machineries (i.e., photo harvesting, electron chain,
high number of nutrient uptake systems; major element
flows described by MACES are depicted in Supplementary
Figure S1). Simulated changes in physiological characteristic
such as light affinity or growth rate only partially reflect changes
in phytoplankton community structure. Variations in physiology
in a single species can be much greater than differences
between species (Wirtz and Kerimoglu, 2016), which makes
it difficult to reconstruct underlying changes in community
structure as often observed through, e.g., shifting diatom-to-
flagellate ratios. MAECS realistically simulates observed photo-
acclimation patterns and the co-limitation by, e.g., P and
N (Wirtz and Kerimoglu, 2016). It includes viral infection
as a relevant post-bloom phytoplankton mortality factor and
a dependence of carnivory (zooplankton mortality) on light
conditions, shallowness as a requirement for visual predation,
and the presence of suspension feeders (Wirtz, 2019). MAECS
prognostically calculates the states and variable stoichiometry of
phytoplankton chlorophyll, P and N in relation to C, and can
reproduce meso-scale patterns in chlorophyll and nutrients at
several temporal scales (Kerimoglu et al., 2017; Wirtz, 2019). The
model has, amongst others, been applied for scenario analyses of
nutrient loading for water quality in the SNS (Kerimoglu et al.,
2017, 2018) and for investigating the coastal chlorophyll gradient
(Lemmen, 2018; Wirtz, 2019).

Benthic Biogeochemistry
Nitrogen, oxygen and carbon cycling in the sea floor are
represented by the one-dimensional Ocean Margin Experiment
exchange early Diagenesis model (OMExDia, Soetaert et al.,
1996), extended for phosphorous by Hofmeister et al. (2014) and
Wirtz (2019). Two-way exchange and conversion between the
pelagic MAECS and benthic OMExDia models are mediated by
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a specialized MOSSCO component for benthic–pelagic exchange
(Hofmeister et al., 2014; Lemmen et al., 2018). Particulate
carbon is fractionated in labile and semilabile components with
different mineralization rate and N:C ratio; dissolved nitrogen
is represented by ammonium and nitrate. OMExDia resolves
both aerobic as well as anaerobic processes in the pore water.
Particulate material is bioperturbed, dissolved species are diffused
in the vertical dimension, which is discretized with linearly
increasing depth layers.

Setup and Boundary Conditions
Our SNS set-up is delineated by the Dutch and German coastline
to the South and East, and it has open boundaries to the West
(English Channel) and North (open North Sea). It is spatially
represented as a 139 × 98 grid with curvilinear projection,
with 1.5 km horizontal resolution in the coastal German Bight
and up to 4.5 km resolution at the open ocean boundaries
(Supplementary Figure S2). Bottom roughness is constant
throughout the domain (10−3 m) as proposed by Gräwe et al.
(2015). Average water depth is 20 m, and maximum 50 m,
which is resolved by 20 terrain-following model layers. Ten
river sources, including the German Bight tributaries Elbe and
Weser, provide freshwater, total nitrogen, and total phosphorous.
The river nutrient data have been compiled from regional
government, research institutions, universities and protection
organizations and are in detail described by Eisele and Kerimoglu
(2015). Sea surface height, climatological temperature, salinity,
and hourly meteorological boundary conditions were obtained
from the CoastDat II regional climate hindcast based on
the models COSMO-CLM, TRIM-NP and HAMSOM (Geyer,
2014)1 . A monthly climatology of depth-dependent open ocean
boundary conditions for dissolved inorganic N and P was
prescribed. This climatology was obtained from Grosse et al.,
2016’s ECOHAM (Ecosystem Hamburg) 2000–2010 simulation,
which in turn derives from the POLCOMS-ERSEM (Proudman
Oceanographic Laboratory Coastal Ocean Modeling System
European Regional Seas Ecosystem Model) common boundary
condition used in the North Sea ecosystem model comparison by
Lenhart et al., 2010. This physical and BGC setup was validated
by Kerimoglu et al. (2017). The sediment was constrained
by sea bottom temperature from GETM, constant saturated
oxygen and porosity ranging from 0.9 to 0.7 in the 15 layers
down to 16 cm depth.

Simulations were performed for 1960 through 2012 and
evaluated between 1961 and 2012 (52 years). Physical fields
were initialized from CoastDat climatological values; pelagic BGC
variables were initialized with constant fields from Wirtz and
Kerimoglu (2016), and spun up for 1 year (1960, discarded from
the analysis), benthic BGC was initialized with an equilibrium
steady state derived from a 30-year spin-up; all data were saved at
36-h interval for further analysis. BGC–hydrodynamics coupling
timestep was 30 min, internal integration for hydrodynamics 60 s
with 4th order Runge-Kutta scheme, for pelagic BGC 480 s with
adaptive Euler refinement and 720 s with 4th order Runge-Kutta
integration for OMExDia.

1www.coastdat.de

FIGURE 1 | Bathymetry of the model domain, the southern North Sea.
Locations of the CPR measurements from the standard CPR area D1 (white
dots) and D2 (red dots). Three pink rectangular show the selected analyzed
areas, referred to as coast (“C”), transitional (“T”) and offshore (“O”). Black
squares indicate the rivers Elbe and Weser.

All simulations presented here were produced with MOSSCO
v1.0.0 (archived at https://doi.org/10.5281/zenodo.438922). All
parameter files for the configuration of the coupled system,
GETM, MAECS, and OMExDia are archived at https://doi.org/
10.5281/zenodo.3688216).

Data Integration
The Continuous Plankton Recorder (CPR) survey, managed
by the Sir Alister Hardy Foundation for Ocean Science in
the United Kingdom, using self-contained automatic plankton
recorders, collects plankton continuously from a standard
depth of ∼7 m (Hays and Warner, 1993) along the towed
routes (Richardson et al., 2006). It provides a long-term
(∼70 years) plankton abundance at fine taxonomic resolution
and a comprehensive proxy of epipelagic biomass, which is
represented by CPR’s Phytoplankton Colour Index (PCI), often
referred to as greenness, at the regional scale (Richardson et al.,
2006; McQuatters-Gollop et al., 2015). The PCI is assigned
a numerical value to represent the amount of phytoplankton
pigment on the sample silk (Colebrook and Robinson, 1965), and
it is also considered as the best estimate of total phytoplankton
chlorophyll concentration from CPR data as it strongly agrees
with chlorophyll measurements from CPR samples (Hays and
Lindley, 1994) and with satellite estimates of chlorophyll (Batten
et al., 2003; Raitsos et al., 2005).

In this work, we used CPR observations in the standard area
D1 and most data in area D2 (Richardson et al., 2006) from 1961
to 2012 (Figure 1, database includes 15,986 samples, Helaouet,
2020)2. We interpolated the PCI to the nearest model grid and
compared the annual average of simulated chlorophyll with the
corresponding greenness.

No CPR data exist for coastal areas shallower than the
sampling depth (∼7 m, see Figure 1). To compensate for the

2https://doi.org/10.17031/1650
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FIGURE 2 | Mean surface Chl concentration (black circles: model simulation,
red diamonds: satellite data) 1997–2012 averaged along depth bands from
coast to offshore in the SNS. Shading indicates standard deviation within
depth band.

spatial blank in CPR data, we applied satellite data in our model–
data spatial comparison. The derived chlorophyll of ocean color
CCI (Climate Change Initiative) between 1997 and 2012 from
the European Space Agency (ESA, available from http://cci.esa.
int) were averaged over time to compare with mean simulated
Chl. For analyzing the nutrient variations in the transitional
area (“T,” section “Variations of Nutrients and Chlorophyll”),
regional variations in biomass, and seasonality of nutrients
(section “Seasonal Variations of Nutrients and Phytoplankton
Biomass”), we used the averages over three typical domains
in the SNS that represent the coast–offshore transect from the
outer Elbe estuary (denoted “coast” C) to the waters around the
island Helgoland (denoted “transitional,” T) in the core of the
German Bight to an offshore location in the central SNS (denoted
“offshore,” O, Figure 1).

RESULTS

Variations of Nutrients and Chlorophyll
Chlorophyll concentration (Chl) sharply decreases by 70–80%
from the coast to the transitional area, both in the simulation
and satellite data (Figure 2). The decline is slightly steeper in
the simulation, but the relative error between the climatological
coastal gradients in observed and simulated Chl distributions
rarely exceeds 20%, which for Chl can be regarded as
exceptional skill.

The long-term dynamics of simulated Chl tracks the observed
dynamics, and the Pearson correlation coefficient between
yearly (1961–2012) CPR greenness and model Chl is 0.5
(p < 0.001, n = 15986). The binary segmentation search
method reviewed by Truong et al. (2020) indicates a change
point in 1986 in both simulated and observed data with
higher chlorophyll since 1987 (Figure 3); Mean Chl in the
SNS increases from 1.12 mg m−3 (1.07 in greenness) before
1987 to 1.54 mg m−3 (1.82 in greenness) in the recent

FIGURE 3 | Simulated surface annual mean Chl (black circles) and annual
mean CPR greenness (red triangles) in the SNS. Shaded area shows the years
after the change point detected by binary segmentation in both simulation and
CPR data (1987–2012). Dashed lines are mean values of the two time periods.

FIGURE 4 | (A) Simulated annual mean DIN concentration averaged over area
“T” shown in Figure 1 (yellow triangles) and measured annual total DIN loads
of rivers Elbe and Weser (brown circles). Dashed lines are 7-year running
means. (B) Same as panel (A), but for DIP. The recent period (1987–2012) are
highlighted by shaded areas.

decades. We therefore partition the data in the two time slices
1961–1986 and 1987–2012 and denote the latter as a high
production period.
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FIGURE 5 | Simulated mean Chl (A), phytoplankton biomass (C), DIN (F), DIP (H) in the time period 1987–2012 averaged over the water column. The trends of Chl
(B), phytoplankton biomass (D), DIN (E), DIP (G) denote the difference from the 2nd period (after 1987) to the first one (before 1987).

Our simulation shows a reduction of mean dissolved inorganic
nitrogen (DIN) and dissolved inorganic phosphate (DIP) in the
area “T” since the end of 1980s (Figures 4A,B). Interannual
variations in simulated DIN and DIP in area “T” track the
changes in the observed yearly nutrient load of the rivers Elbe
and Weser, which indicate a strong control of nutrient levels
by riverine influx. Both DIN and DIP decrease over time, but
very differently. Simulated DIN decreases slowly after 1987 and
exhibits a ∼7-year oscillation, which may be connected to the
NAO pattern in atmospheric precipitation (Visser et al., 1996;
Fock, 2003; Radach and Pätsch, 2007). DIP displays a segmented
trend with a sharp transition from high values before 1987 to
lower ones after 1990. The riverine input strongly decreases
(∼50%) from 1987 to 1989, while the negative DIP trend in “T”
seems to combine a relatively gentle decrease before 1990 and a
sharp drop from 1990 to 1991.

Climatological Changes in Spatial
Physical and Biological Distributions
In agreement with the mean cross-sectional distribution for the
SNS (Figure 2), Chl along the German, Dutch, and Belgian
coasts is much higher (>10 mg m−3) than in most offshore
areas (<1 mg m−3, Figure 5A). These high levels of coastal Chl
further increase from the 1960–1980s to the 1990–2000s in most
southern coastal areas by up to 20% (Figure 5B). In the offshore
areas, small decreases in Chl produce high relative changes due
to the low concentration there. In most of the western SNS, Chl
drops by at most 5%, compared to up to 20% in the eastern SNS.

The phytoplankton biomass distribution (in terms of carbon)
exhibits a similar pattern as Chl (Figure 5C). Areas with high
biomass (>23 mmol C m−3) are located in a narrow coastal
band and overlap with the band of accumulated chlorophyll.
The northern water body with low biomass (<5 mmol C m−3)
penetrates into the transition zone following the old Elbe river
valley. The interdecadal trend of biomass is consistent with the
respective chlorophyll trend, but stronger and less confined to

the narrow band. There is a strong increase in phytoplankton
production in most high biomass areas (more than 30%).
A decoupling of the biomass–chlorophyll trend is found in the
West-Frisian Wadden Sea, where biomass increases and Chl
decreases. At parts of the coast of the southern Netherlands,
the northern Elbe estuary, and the Danish coast, chlorophyll
decreases much stronger than biomass (Figures 5B,D).

The spatial distributions of dissolved macro-nutrients (DIN
and DIP) match the biomass distributions (Figures 5F,H), which
decreases from coasts to offshore. Nutrients declined in the
recent decades (Figures 5E,G) within the entire southeastern SNS
(as exemplified by Figure 4, “T”), in particular, DIP drastically
decreases in the whole southern coastal and transitional areas,
whereas relative changes in other areas are small. The trends
in DIN and DIP are decoupled from phytoplankton biomass in
areas “C” and “T” during de-eutrophication. However, for the less
productive offshore parts in the eastern SNS, our results display a
∼20% decrease in both biomass and nutrients.

Lateral gradients in annual mean sea surface temperature
(SST) in the range from 9 to 11◦C are largely determined by the
warm tongue of the Atlantic water entering through the English
Channel (Figure 6). Winds at 10 m height dominantly come
from west (average speed 1.65 m s−1). After 1986, wind speeds
increase over the whole model domain (by 0.4 m s−1 on average)
while wind direction slightly changes to the north (on average
by 4◦). In parallel, the Atlantic warm tongue strengthens such
that surface waters of the SNS are warmed by around 0.5◦C,
and the southeastern cold-water body retreats to the shallower
areas along the Frisian archipelago and the North Frisian near-
shore waters.

Seasonal Variations of Nutrients and
Phytoplankton Biomass
The seasonality in phytoplankton biomass markedly differs
between the “C,” “T,” and the “O” areas in both climate states
analyzed (Figure 7). In the coast area, simulated phytoplankton
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FIGURE 6 | Simulated mean sea surface temperature and 10-m wind speed in (A) 1961–1986 and (B) 1987–2012.

growth starts at the end of February, followed by the bloom
peak at late March (1961–1986) to late April (1987–2012).
From mid-spring to the end of summer, biomass remains high.
Bloom timing in transitional waters is similar to the one at
the coasts, but biomass drops after the spring bloom and is
not sustained throughout the summer. Bloom timing in the
offshore domain is delayed by a few days in comparison to
the coastal and transitional areas. After a strong post-bloom
decline biomass attains even lower values in summer compared
to winter concentration due to combined nutrient limitation and
zooplankton grazing.

Our reconstructed seasonal cycle of phytoplankton reveals
long-term changes in terms of both timing and intensity. Despite
a very similar timing of the coastal bloom start in 1961–1986
and 1987–2012, the late spring and summer dynamics are
different. In the recent decades, the spring peak bloom is much
more pronounced (peaking at twice the early period biomass)
and has a pronounced maximum in late spring, which slowly
declines toward winter. In contrast, the earlier period features
a sustained (and lower) maximum biomass until late summer.
In the transitional area, the bloom peak is pronounced in 1961–
1986 and sustained in the later period, but at the high level of
the early period peak. For both the coastal and transitional areas,
the spring and summer phytoplankton biomass is much higher in
the recent than in the early period. These differences vanish in the
offshore area, except for a ∼30% long-term decrease in biomass.

The Chl:C ratio is lower in the period 1987–2012 compared to
the earlier period. The decrease reaches up to 25% at the coast in
fall, and up to 10% in transitional waters throughout summer and
fall (Figure 8A). For DIP, the maximum interdecadal difference
occurs in summer, with up to 90% reduction at the coast and 50%
reduction in “T” (Figures 8B,C). Similar decreasing trends are
found in “C” and “T” DIP concentrations throughout the year in
1987–2012, with greater magnitude in the coastal region, while
DIN exhibits richer variability. Coastal DIN concentration does

not change between the two analysis periods through the winter
and early spring but decreases in summer and fall in the period
1987–2012. The DIN variation in the “T” area reveals a negative
long-term trend.

DISCUSSION

The comparison between the satellite-observed Chl, CPR
greenness, and the model Chl reconstruction testify the ability
of the model system to reproduce spatial, multi-scale patterns
and temporal interdecadal dynamics of the SNS very well.
The ecosystem model MAECS in particular features a realistic
simulation of the coastal Chl gradient, i.e., the increase of Chl
from continental shelves toward the coast, which is observed by
satellite (Ribalet et al., 2010; Nezlin et al., 2012; Müller et al.,
2015), and has already been discussed in terms of phytoplankton
growth and mortality factors by Wirtz (2019) for the period
2000–2014. Low light availability in shallow areas is more than
compensated by lower grazing losses since zooplankton is in turn
subject to high grazing pressure by mussels and juvenile fish.
This is confirmed by our analysis: the coastal area displays lower
zooplankton abundance after the late 1980s (Figure 8), which
in turn can be ascribed to both higher temperature (and thus
increased carnivorous losses of herbivores) and lower nutrient
concentration propagating to zooplankton production rates.

Historical studies suggest an ecological regime shift in the
North Sea in the late 1980s, which involved an increase in
phytoplankton biomass (Reid et al., 1998; Beaugrand, 2004;
Alheit et al., 2005). In our simulation, we also find a post-1987
biomass increase in the SNS located at coastal to transitional
areas. The relative change in costal Chl after the regime
shift agrees with the 21% increase according to the long-term
chlorophyll data analysis by McQuatters-Gollop et al. (2015).
This biological shift coincided with the late 1980s climate regime
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FIGURE 7 | Simulated 6-day mean phytoplankton biomass and changes between 1987–2012 and 1961–1986 (shading) (A) in areas “C,” (B) “T,” (C) and “O.”

shift in the extratropical Northern Hemisphere (Lo and Hsu,
2010), which involved the warming in the North Sea (Edwards
et al., 2006; van Aken, 2010; Høyer and Karagali, 2016). This
climate regime shift is linked to an increase in the NAO index,
which is also evidenced by an increased inflow of relatively warm
Atlantic water into the SNS (Edwards et al., 2002; Weijerman
et al., 2005; Jaagus et al., 2017).

Beside climatic variations, we also simulated de-
eutrophication trends in the SNS (van Beusekom et al.,
2009; Burson et al., 2016; Meyer et al., 2018). The long-term
time series from Helgoland roads station shows that the
variabilities and trends of DIN and DIP (Wiltshire et al., 2010)
are consistent with those simulated by our model. Kerimoglu
et al. (2018) demonstrated the good skill of our model system
in simulating recent decade DIN and DIP by comparing to data
from Helgoland and four surrounding monitoring stations in
the German Bight.

The North Sea ecosystem is commonly considered as
resource-controlled (bottom-up, Beaugrand et al., 2009;
Olsen et al., 2011). As a consequence, a decline in Chl or primary
production in the SNS should be expected due to the reduced

riverine loads of nutrients after the late 1980s. This common
view is supported by studies that report decreasing Chl at
coastal sites (van Beusekom et al., 2009; Desmit et al., 2019).
These studies referred to monitoring stations located at Sylt
(“L” in Supplementary Figure S3) and very near-shore along
the northern (T-10 in Supplementary Figure S3) and southern
(NW-02, GR-06 in Supplementary Figure S3) Dutch coast.
Our simulation also reveals a local decrease consistent with
the observed trends at the locations NW-02 and GR-06, in
contrast to the general increase. Simulated offshore decreases
are in accordance with both station observations (i.e., NW-70,
Supplementary Figure S3) and other model simulations (Daewel
and Schrum, 2013; Capuzzo et al., 2018).

The disagreement between the simulation and the station
L may be due to the limited model resolution insofar failing
to represent physical conditions in the List Tide Basin. The
different trends found in station T-10 and in the simulation
may indicate the model limitation in resolving differences
in BGC processes from the transitional water to offshore as
the station is located at the boundary of the two different
trends areas. Also, the coarse and parametrized description
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FIGURE 8 | Simulated 6-day variations differences between two periods (1987–2012 – 1961–1982) in panel (A) Chl:C ratio, (B) DIN concentration, (C) DIP
concentration, and (D) zooplankton; all in areas “C” and “T” in log-10 scale.

of turbidity in the model may fail to capture actual spatial–
temporal patterns, which act as an important control of near-
shore BGC.

The transitional regions are still affected by the input
of optically active constituents such as suspended particulate
material and colored dissolved organic matter, which strongly
limit the light availability for autotrophic growth (Cadee
and Hegeman, 2002). In our long-term simulation, the
strengthening of westerly winds after 1986 leads to an elevated
transport of more clear offshore water into the “T” area,
thereby increasing light availability. In the model simulation,
this improvement triggers a decreased Chl:C ratio in “T.”
Acclimation in Chl:C allows the typically light-limited coastal
to transitional phytoplankton to more effectively utilize low

nutrient concentration. In addition, the “T” area is located
in an intermittently stratified region (van Leeuwen et al.,
2015; Capuzzo et al., 2018). The increase in biomass after
1986 occurs mainly in spring, parallel to small changes in
stratification intensity. We find a strengthening of stratification
(defined as in Lowe et al., 2009) near Helgoland in early
spring (Supplementary Figure S4), which is related to increased
water column stability and better light availability (Bopp
et al., 2001), and thus a higher bloom peak. In summer,
however, stratification has been suggested to increase only
in the northern North Sea, while decreasing in the SNS
(Emeis et al., 2015).

The relative increase in simulated phytoplankton biomass
at the coast is higher than in the transitional region. The
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differential trend reflects differences in winter concentration of
DIN, which stays invariant at the coast (“C”) but decreases
in the transitional sea (“T”). This reduction in winter DIN
in transitional water partially compensates the effect of the
improved light environment and weakens primary production.

These regional differences in trends between models, but also
between observations at different locations in the SNS underline
the relevance of high-resolution spatial monitoring for assessing
trends directly and for validating models. We confirm earlier
findings on long-term changes in biomass and productivity
for the offshore SNS but reveal a more complex picture for
near-shore and transitional waters. The latter host the highest
productivity in the SNS (Lemmen, 2018; Slavik et al., 2019) so
that the opposing trend here cannot be simply neglected.

The reliability of models and set-ups demonstrated for
hindcast studies is critical for making future projections (e.g.,
Wakelin et al., 2015; Holt et al., 2016; Daewel and Schrum,
2017). Our study has identified benchmarks in terms of relevant
spatial–temporal BGC patterns such as Chl accumulation in
turbid near-coast waters, or the biomass increase in coastal to
transitional waters after the onset of de-eutrophication. If these
patterns cannot be reproduced, it may be still too early to generate
future scenarios.

A high-resolution physical model set-up that extends into very
shallow water and is able to represent areas of the coast that
are dry during low tide (such as GETM, in our case) is clearly
needed for simulating coastal dynamics. In addition, advanced
ecosystem models, which differ from classical NPZD-type models
may be required to catch essential response mechanisms.
For example, we found as key for simulating highly variable
coastal–shelf ecosystems the capability to resolve acclimation in
phytoplankton physiology, which has already been demonstrated
to be important for the decoupling of the nutrient–biomass
dynamics (Kerimoglu et al., 2017, 2018). Other aspects include
behavioral changes in vertical swimming of phytoplankton, viral
dynamics, and the non-uniform distribution of carnivory, all
of which have been shown to be of importance for shaping
the coastal gradient (Baschek et al., 2017; Wirtz, 2019). Along
with these processes, our results demonstrate that stressors
such as changes in temperature, wind, or nutrient reduction
do not act in isolation, but may compensate (or amplify) each
other. Beside systems modeling, there is currently no alternative
approach in sight to analyze and predict responses to multiple
stressors at ecosystem scales. Recommendations can also be made
for monitoring strategies: Many coastal time-series stations in
the SNS area are located in small patches where our model
predicts an opposite trend than found for the surrounding
waters. This coincidence calls for a strengthening of spatially
continuous monitoring techniques such as CPR, satellite remote

sensing, ferrybox, gliders, and scanfish as partially realized by the
COSYNA system (Baschek et al., 2017).

SUMMARY

We have presented and analyzed a long-term simulation of
ecosystem dynamics in the southern North Sea. A major
and counterintuitive finding is the increased autotrophic
biomass in near-coast and transitional waters against the
ongoing de-eutrophication trends. This increase is attributed to
compounding factors such as improved light availability caused
by a changed wind regime, possible strengthening of trophic
cascading at higher temperature, and the acclimative capacity of
phytoplankton. These factors are in general neglected in state-
of-the-art ecosystem models coupled within an ESM context.
Also, in situ observations match locally deviating trends in
our reconstruction, calling into question the representability of
station data for highly variable coastal–shelf ecosystems.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: www.coastdat.de, doi: 10.17031/1650.

AUTHOR CONTRIBUTIONS

XX worked on data analysis, figures, and the manuscript. CL
worked on the model set up, data analysis, and the manuscript.
KW worked on the model simulation and the manuscript.

ACKNOWLEDGMENTS

The work was supported by the program PACES of the Helmholtz
society. We thank Pierre Helaouet and David Johns from
Continuous Plonkton Recorder Survey who provided the long-
term CPR data. We would also like to show our gratitude to to the
two reviewers for their comments which help us greatly improved
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.00662/full#supplementary-material

REFERENCES
Alheit, J., Möllmann, C., Dutz, J., Kornilovs, G., Loewe, P., Mohrholz, V., et al.

(2005). Synchronous ecological regime shifts in the central Baltic and the North
Sea in the late 1980s. ICES J. Mar. Sci. 62, 1205–1215. doi: 10.1016/j.icesjms.
2005.04.024

Baschek, B., Benavides, I., North, R. P., Smith, G., and Miller, D. (2017).
Submesoscale dynamics in the coastal ocean. J. Acoust. Soc. Am. 141:3545.

Batten, S. D., Walne, A. W., Edwards, M., and Groom, S. B. (2003). Phytoplankton
biomass from continuous plankton recorder data: an assessment of the
phytoplankton colour index. J. Plankton Res. 25, 697–702. doi: 10.1093/plankt/
25.7.697

Frontiers in Marine Science | www.frontiersin.org 9 August 2020 | Volume 7 | Article 66294

http://www.coastdat.de
https://doi.org/10.17031/1650
https://www.frontiersin.org/articles/10.3389/fmars.2020.00662/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2020.00662/full#supplementary-material
https://doi.org/10.1016/j.icesjms.2005.04.024
https://doi.org/10.1016/j.icesjms.2005.04.024
https://doi.org/10.1093/plankt/25.7.697
https://doi.org/10.1093/plankt/25.7.697
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00662 August 19, 2020 Time: 13:25 # 10

Xu et al. Increase Biomass in the Coastal-Transitional SNS

Beaugrand, G. (2004). The North Sea regime shift: evidence, causes, mechanisms
and consequences. Prog. Oceanogr. 60, 245–266.

Beaugrand, G., Luczak, C., and Edwards, M. (2009). Rapid
biogeographical plankton shifts in the North Atlantic Ocean. Glob.
Change Biol. 15, 1790–1803. doi: 10.1111/j.1365-2486.2009.01
848.x

Bopp, L., Monfray, P., Aumont, O., Dufresne, J. L., LeTreut, H., Madec, G., et al.
(2001). Orr, potential impact of climate change on marine export production.
Global Biogeochem. Cycles 15, 81–100.

Bruggeman, J., and Bolding, K. (2014). A general framework for aquatic
biogeochemical models. Environ. Model. Softw. 61, 249–265. doi: 10.1016/j.
envsoft.2014.04.002

Burchard, H., and Bolding, K. (2002). GETM – a general estuarine transport model.
Sci. Document.

Burchard, H., Bolding, K., Kühn, W., Meister, A., Neumann, T., and Tand Umlauf,
L. (2006). Description of a flexible and extendable physical–biogeochemical
model system for the water column. J. Mar. Syst. 61, 180–211. doi: 10.1016/
j.jmarsys.2005.04.011

Burson, A., Stomp, M., Akil, L., Brussaard, C. P. D., and Huisman, J. (2016).
Unbalanced reduction of nutrient loads has created an offshore gradient from
phosphorus to nitrogen limitation in the North Sea. Limnol. Oceanogr. 61,
869–888. doi: 10.1002/lno.10257

Cadee, G., and Hegeman, J. (2002). Phytoplankton in the Marsdiep at the end
of the 20th century; 30 years monitoring biomass, primary production, and
phaeocystis blooms. J. Sea Res. 48, 97–110. doi: 10.1016/s1385-1101(02)
00161-2

Capuzzo, E., Lynam, C. P., Barry, J., Stephens, D., Forster, R. M., Greenwood,
N., et al. (2018). A decline in primary production in the North Sea over 25
years, associated with reductions in zooplankton abundance and fish stock
recruitment. Glob. Change Biol. 24, e352–e364. doi: 10.1111/gcb.13916

Chassot, E., Bonhommeau, S., Dulvy, N. K., Melin, F., Watson, R., Gascuel, D., et al.
(2010). Global marine primary production constrains fishery catches. Ecol. Lett.
13, 495–505. doi: 10.1111/j.1461-0248.2010.01443.x

Colebrook, J. M., and Robinson, G. A. (1965). Continuous plankton records:
seasonal cycles of phytoplankton and copepods in the northeastern Atlantic and
the North Sea. Bull. Mar. Ecol. 6, 123–139.

Daewel, U., and Schrum, C. (2013). Simulating long-term dynamics of the coupled
North sea and Baltic Sea ecosystem with ECOSMO II: model description and
validation. J. Mar. Syst. 11, 30–49. doi: 10.1016/j.jmarsys.2013.03.008

Daewel, U., and Schrum, C. (2017). Low-frequency variability in North Sea and
Baltic Sea identified through simulations with the 3-D coupled physical–
biogeochemical model ECOSMO. Earth Syst. Dyn. 8, 801–815. doi: 10.5194/
esd-8-801-2017

Daewel, U., Schrum, C., and Gupta, A. K. (2015). The predictive potential of early
life stage individual-based models (IBMs): an example for Atlantic cod Gadus
morhua in the North Sea. Mar. Ecol. Prog. Ser. 534, 199–219. doi: 10.3354/
meps11367

Desmit, X., Nohe, A., Borges, A. V., Prins, T., De Cauwer, K., Lagring, R., et al.
(2019). Changes in chlorophyll concentration and phenology in the North Sea
in relation to de-eutrophication and sea surface warming. Limnol. Oceanogr
9999, 1–20.

Ducrotoy, J. P., Elliott, M., and Jonge, V. N. (2000). The north sea. Mar. Pollut. Bull.
41, 5–23.

Edwards, M., Beaugrand, G., Reid, P. C., Rowden, A. A., and Jones, M. B. (2002).
Ocean climate anomalies and the ecology of the North Sea. Mar. Ecol. Prog. Ser.
239, 1–10. doi: 10.3354/meps239001

Edwards, M., Johns, D. G., Leterme, S. C., Svendsen, E., and Richardson, A. J.
(2006). Regional climate change and harmful algal blooms in the northeast
Atlantic. Limnol. Oceanogr 820–829. doi: 10.4319/lo.2006.51.2.0820

Eisele, A., and Kerimoglu, O. (2015). MOSSCO River data basis – Riverine Nutrient
Inputs. Germany: Helmholtz-Zentrum Geesthacht Centre for Materials and
Coastal Research.

Emeis, K. C., van Beusekom, J., Callies, U., Ebinghaus, R., Kannen, A., Kraus, G.,
et al. (2015). The North Sea – A shelf sea in the Anthropocene. J. Marine Syst.
141, 18–33.

Falkowski, P. G., and Raven, J. A. (eds). (2007). in Aquatic Photosynthesis,
Princeton: Princeton University Press, 1–43.

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary
production of the biosphere: integrating terrestrial and oceanic components.
Science 281, 237–240. doi: 10.1126/science.281.5374.237

Fock, H. O. (2003). Changes in the seasonal cycles of inorganic nutrients in
the coastal zone of the southeastern North Sea from 1960 to 1997: effects of
eutrophication and sensitivity to meteoclimatic factors. Mar. Pollut. Bull. 46,
1434–1449. doi: 10.1016/s0025-326x(03)00287-x

Ford, D. A., van der Molen, J., Hyder, K., Bacon, J., Barciela, R., Creach, V., et al.
(2017). Observing and modelling phytoplankton community structure in the
North Sea. Biogeosciences 14, 1419–1444. doi: 10.5194/bg-14-1419-2017

Geyer, B. (2014). High-resolution atmospheric reconstruction for Europe 1948–
2012: coastDat2. Earth Syst. Sci. Data 6, 147–164. doi: 10.5194/essd-6-147-
2014

Gräwe, U., Holtermann, P., Klingbeil, K., and Burchard, H. (2015).
Advantages of vertically adaptive coordinates in numerical models of
stratified shelf seas. Ocean Model. 92, 56–68. doi: 10.1016/j.ocemod.2015.
05.008

Grosse, F., Greenwood, N., Kreus, M., Lenhart, H. J., Machoczek, D., Pätsch, J., et al.
(2016). Looking beyond stratification: a model-based analysis of the biological
drivers of oxygen deficiency in the North Sea. Biogeosciences 13, 2511–2535.
doi: 10.5194/bg-13-2511-2016

Hays, G. C., and Lindley, J. A. (1994). Estimating chlorophyll a abundance from
the ‘phytoplankton colour’ recorded by the Continuous Plankton Recorder
survey: validation with simultaneous fluorometry. Journal of Plankton Research
16, 23–34. doi: 10.1093/plankt/16.1.23

Hays, G. C., and Warner, A. J. (1993). Consistency of towing speed an sampling
depth for the continuous plankton recorder . J. Mar. Biol. Assoc. U. K. 73,
967–970. doi: 10.1017/s0025315400034846

Helaouet, P. (2020). Marine Biological Association of the UK (MBA): 2020 Marine
Biological Association of the UK (MBA) CPR Data request Xu Xu Helmholtz-
Zentrum Geesthacht. Geesthacht: DASSH.

Hofmeister, R., Burchard, H., and Beckers, J.-M. (2010). Non-uniform adaptive
vertical grids for 3D numerical ocean models. Ocean Model. 33, 70–86. doi:
10.1016/j.ocemod.2009.12.003

Hofmeister, R., Lemmen, C., Kerimoglu, O., Wirtz, K. W., and Nasermoaddeli,
M. H. (2014). “The predominant processes controlling vertical nutrient and
suspended matter fluxes across domains - using the new MOSSCO system
form coastal sea sediments up to the atmosphere,” in Proceedings of the 11th
International Conference on Hydroscience and Engineering, eds R. Lehfeldt and
R. Kopmann, Hamburg.

Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., et al. (2016).
Potential impacts of climate change on the primary productionof regional seas:
a comparative analysis of five European seas. Progress Oceanogr. 140, 91–115.
doi: 10.1016/j.pocean.2015.11.004

Høyer, J. L., and Karagali, I. (2016). Sea surface temperature cli- mate data record
for the North Sea and Baltic Sea. J. Clim. 29, 2529–2541. doi: 10.1175/jcli-d-
15-0663.1

Jaagus, J., Sepp, M., Tamm, T., Järvet, A., and Moisja, K. (2017). Trends and regime
shifts in climatic conditions and river runoff in Estonia during 1951–2015.
Earth Syst. Dynam. 8, 963–976. doi: 10.5194/esd-8-963-2017

Kerimoglu, O., Große, F., Kreus, M., Lenhart, H. J., and van Beusekom, J. E. E.
(2018). A model-based projection of historical state of a coastal ecosystem:
relevance of phytoplankton stoichiometry. Sci. Total Environ. 639, 1311–1323.
doi: 10.1016/j.scitotenv.2018.05.215

Kerimoglu, O., Hofmeister, R., Maerz, J., and Wirtz, K. W. (2017). The acclimative
biogeochemical model of the southern North Sea. Biogeosciences 14, 4499–4531.
doi: 10.5194/bg-14-4499-2017

Lemmen, C. (2018). North sea ecosystem-scale model-based quantification of net
primary productivity changes by the benthic filter feeder mytilus edulis. Water
10:1527. doi: 10.3390/w10111527

Lemmen, C., Hofmeister, R., Klingbei, K., Nasermoaddeli, M. H., Kerimoglu, O.,
Burchard, H., et al. (2018). "Modular System for Shelves and Coasts (MOSSCO
v1.0) – a flexible and multi-component framework for coupled coastal ocean
ecosystem modelling. Geosci. Model. Dev. 11, 915–935. doi: 10.5194/gmd-11-
915-2018

Lenhart, H. J., Mills, D. K., Baretta-Bekker, H., van Leeuwen, S. M., van der Molen,
J., Baretta, J. W., et al. (2010). Predicting the consequences of nutrient reduction

Frontiers in Marine Science | www.frontiersin.org 10 August 2020 | Volume 7 | Article 66295

https://doi.org/10.1111/j.1365-2486.2009.01848.x
https://doi.org/10.1111/j.1365-2486.2009.01848.x
https://doi.org/10.1016/j.envsoft.2014.04.002
https://doi.org/10.1016/j.envsoft.2014.04.002
https://doi.org/10.1016/j.jmarsys.2005.04.011
https://doi.org/10.1016/j.jmarsys.2005.04.011
https://doi.org/10.1002/lno.10257
https://doi.org/10.1016/s1385-1101(02)00161-2
https://doi.org/10.1016/s1385-1101(02)00161-2
https://doi.org/10.1111/gcb.13916
https://doi.org/10.1111/j.1461-0248.2010.01443.x
https://doi.org/10.1016/j.jmarsys.2013.03.008
https://doi.org/10.5194/esd-8-801-2017
https://doi.org/10.5194/esd-8-801-2017
https://doi.org/10.3354/meps11367
https://doi.org/10.3354/meps11367
https://doi.org/10.3354/meps239001
https://doi.org/10.4319/lo.2006.51.2.0820
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1016/s0025-326x(03)00287-x
https://doi.org/10.5194/bg-14-1419-2017
https://doi.org/10.5194/essd-6-147-2014
https://doi.org/10.5194/essd-6-147-2014
https://doi.org/10.1016/j.ocemod.2015.05.008
https://doi.org/10.1016/j.ocemod.2015.05.008
https://doi.org/10.5194/bg-13-2511-2016
https://doi.org/10.1093/plankt/16.1.23
https://doi.org/10.1017/s0025315400034846
https://doi.org/10.1016/j.ocemod.2009.12.003
https://doi.org/10.1016/j.ocemod.2009.12.003
https://doi.org/10.1016/j.pocean.2015.11.004
https://doi.org/10.1175/jcli-d-15-0663.1
https://doi.org/10.1175/jcli-d-15-0663.1
https://doi.org/10.5194/esd-8-963-2017
https://doi.org/10.1016/j.scitotenv.2018.05.215
https://doi.org/10.5194/bg-14-4499-2017
https://doi.org/10.3390/w10111527
https://doi.org/10.5194/gmd-11-915-2018
https://doi.org/10.5194/gmd-11-915-2018
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00662 August 19, 2020 Time: 13:25 # 11

Xu et al. Increase Biomass in the Coastal-Transitional SNS

on the eutrophication status of the North Sea. J. Mar. Syst. 81, 148–170. doi:
10.1016/j.jmarsys.2009.12.014

Lo, T. T., and Hsu, H. H. (2010). Change in the dominant decadal patterns and the
late 1980 s abrupt warming in the extratropical Northern Hemisphere. Atmos.
Sci. Lett. 11, 210–215. doi: 10.1002/asl.275

Lowe, J. A., Howard, T. P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S., et al. (2009).
UK Climate Projections Science Report: Marine And Coastal Projections. Exeter:
Met Office Hadley Center, 99.

Lynam, C. P., Llope, M., Möllmann, C., Helaouët, P., Bayliss-Brown, G. A., and
Stenseth, N. C. (2017). Interaction between top-down and bottom-up control
in marine food webs. PNAS 114, 1952–1957. doi: 10.1073/pnas.1621037114

McQuatters-Gollop, A., Edwards, M., Helaouëta, P., Johns, D. G., Owens, N. J. P.,
Raitsos, D. E., et al. (2015). The continuous plankton recorder survey: how
can long-term phytoplankton datasets contribute to the assessment of good
environmental status? Estuar. Coast. Shelf Sci. 162, 88–97. doi: 10.1016/j.ecss.
2015.05.010

Meyer, J., Nehmer, P., Moll, A., and Kröncke, I. (2018). Shifting south-eastern
North Sea macrofauna community structure since 1986: a response to de-
eutrophication and regionally decreasing food supply? Estuar. Coast. Shelf Sci.
213, 115–127. doi: 10.1016/j.ecss.2018.08.010

Müller, D., Krasemann, H., Brewin, R. J. W., Brockmann, C., Deschamps, P.-Y.,
Doerffer, R., et al. (2015). The Ocean Col- our climate change initiative: I.
A methodology for assessing atmospheric correction processors based on in-
situ measurements. Remote Sens. Environ. 162, 242–256. doi: 10.1016/j.rse.
2013.11.026

Nasermoaddeli, M. H., Lemmen, C., Stigge, G., Burchard, H., Klingbeil, K.,
Hofmeister, R., et al. (2018). A model study on the large-scale effect of
macrofauna on the suspended sediment concentration in a shallow shelf sea.
Estuar. Coast. Shelf Sci. 211, 62–76. doi: 10.1016/j.ecss.2017.11.002

Nezlin, N. P., Sutula, M. A., Stumpf, R. P., and Sengupta, A. (2012). The Ocean
col- our climate change initiative: I. A methodology for assessing atmospheric
correction processors based on in-situ measurements. J.Geophys. Res. O. 162,
242–256. doi: 10.1016/j.ecss.2017.11.002

Olsen, E. M., Ottersen, G., Llope, M., Chan, K.-S., Beaugrand, G., and Stenseth,
N. C. (2011). Spawning stock and recruitment in North Sea cod shaped by food
and climate. Proc. Soc, R. B 278, 504–510. doi: 10.1098/rspb.2010.1465

Painting, S., Foden, J., Forster, R., van der Molen, J., Aldridge, J., Best, M., et al.
(2013). Impacts of climate change on nutrient enrichment. MCCIP Sci. Rev.
2013, 219–235.

Radach, G., and Pätsch, J. (2007). Variability of continental riverine freshwater and
nutrient inputs into the north sea for the years 1977–2000 and its consequences
for the assessment of eutrophication. Estuaries Coasts 30, 66–81. doi: 10.1007/
bf02782968

Raitsos, D. E., Reid, P. C., Lavender, S. J., Edwards, M., and Richardson, A. J. (2005).
Extending the SeaWiFS chlorophyll dataset back 50 years in the north-east
Atlantic. Geophy. Res. Lett. 32:L06603. doi: 10.1029/2005GL022484

Reid, P. C., Edwards, M., Hunt, H. G., and Wamer, J. A. (1998). Phytoplankton
change in the North Atlantic. Nature 391, 546.

Ribalet, F., Marchetti, A., Hubbard, K. A., Brown, K., Durkin, C. A., Morales,
R., et al. (2010). Unveiling a phytoplankton hotspot at a narrow boundary
between coastal and offshore waters. PNAS 38, 16571–16576. doi: 10.1073/pnas.
1005638107

Richardson, A. J., Walne, A. W., John, A. W. G., Jonas, T. D., Lindley, J. A.,
Sims, D. W., et al. (2006). Using continuous plankton recorder data. Progress
Oceanogr. 68, 27–74. doi: 10.1016/j.pocean.2005.09.011

Schlüter, M. H., Merico, A., Wiltshire, K. H., Greve, W., and von Storch, H.
(2008). A statistical analysis of climate variability and ecosystem response
in the German Bight. Ocean Dyn. 58, 169–186. doi: 10.1007/s10236-008-
0146-5

Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K., and Wirtz, K. W.
(2019). The large scale impact of offshore windfarm structures on pelagic
primary production in the southern North Sea. Hydrobiologia 845, 35–53. doi:
10.1007/s10750-018-3653-5

Smaal, A. C., Schellekens, T., van Stralen, M. R., and Kromkamp, J. C. (2013).
Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta,
NL) for bivalve filter feeders due to overgrazing? Aquaculture 40, 28–34. doi:
10.1016/j.aquaculture.2013.04.008

Soetaert, K., Herman, P. M., and Middelburg, J. J. (1996). A model of early
diagenetic processes from the shelf to abyssal depths. Geochim Cosmochim Acta
60, 1019–1040. doi: 10.1016/0016-7037(96)00013-0

Stips, A., Bolding, K., Pohlmann, T., and Burchard, H. (2004). Simulating the
temporal and spatial dynamics of the North Sea using the new model GETM
(general estuarine transport model). Ocean Dyn. 54, 266–283. doi: 10.1007/
s10236-003-0077-0

Taylor, A. H., Icarus, A. J., and Clark, P. A. (2000). Extraction of a weak climatic
signal by an ecosystem. Nature 416, 629–632. doi: 10.1038/416629a

Theurich, G., DeLuca, C., Campbell, T., Liu, F., Saint, K., Vertenstein, M., et al.
(2016). the earth system prediction suite: toward a coordinated U.S. modeling
capability. Bull. Am. Meteorol. Soc. 97, 1229–1247. doi: 10.1175/bams-d-14-
00164.1

Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline change
point detection methods. Signal Procedding 167:107299. doi: 10.1016/j.sigpro.
2019.107299

van Aken, H. M. (2010). Meteorological forcing of long-term temperature
variations of the Dutch coastal waters. J. Sea Res. 63, 143–151. doi: 10.1016/
j.seares.2009.11.005

van Beusekom, J. E. E., Loebl, M., and Martens, P. (2009). Distant riverine nutrient
supply and local temperature drive the long-term phytoplankton development
in a temperate coastal basin. J. Sea Res. 61, 26–33. doi: 10.1016/j.seares.2008.06.
005

van Leeuwen, S., Tett, P., Mills, D., and van der Molen, J. (2015). Stratified and
nonstratified areas in the North Sea: long-term variability and biological and
policy implications. J. Geophy. Res. Oceans 120, 4670–4686. doi: 10.1002/
2014jc010485

Visser, M., Batten, S., Becker, G., Bot, P., Colijn, F., Damm, P., et al. (1996).
Time series analysis of monthly mean data of temperature, salinity, nutrients,
suspended matter, phyto- and zooplankton at eight locations on the Northwest
European shelf. Deutsche Hydrographische Zeitschrift 48, 299–323. doi: 10.
1007/bf02799376

Wakelin, S. L., Artioli, Y., Butenschön, M., Allen, J. I., and Holt, J. T. (2015).
Modelling the combined impacts of climate change and direct anthropogenic
drivers on the ecosystem of the northwest european continental shelf. J. Marine
Syst. 152, 51–63. doi: 10.1016/j.jmarsys.2015.07.006

Weijerman, M., Lindeboom, H., and Zuur, A. F. (2005). Regime shifts in marine
ecosystems of the North Sea and Wadden Sea. Mar. Ecol. Prog. Ser. 298, 21–39.
doi: 10.3354/meps298021

Wiltshire, K. H., Kraberg, A., Bartsch, I., Boersma, M., Franke, H. D., Freund, J.,
et al. (2010). Helgoland roads, north Sea: 45 years of change. Estuaries Coasts
33, 295–310. doi: 10.1007/s12237-009-9228-y

Wirtz, K. W. (2019). Physics or biology? Persistent chlorophyll accumulation in a
shallow coastal sea explained by pathogens and carnivorous grazing. PLoS One
14:e0212143. doi: 10.1371/journal.pone.0212143

Wirtz, K. W., and Kerimoglu, O. (2016). Autotrophic stoichiometry emerging from
optimality and variable co-limitation. Front. Ecol Evol.:4:131. doi: 10.3389/fevo.
2016.00131

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Xu, Lemmen and Wirtz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 11 August 2020 | Volume 7 | Article 66296

https://doi.org/10.1016/j.jmarsys.2009.12.014
https://doi.org/10.1016/j.jmarsys.2009.12.014
https://doi.org/10.1002/asl.275
https://doi.org/10.1073/pnas.1621037114
https://doi.org/10.1016/j.ecss.2015.05.010
https://doi.org/10.1016/j.ecss.2015.05.010
https://doi.org/10.1016/j.ecss.2018.08.010
https://doi.org/10.1016/j.rse.2013.11.026
https://doi.org/10.1016/j.rse.2013.11.026
https://doi.org/10.1016/j.ecss.2017.11.002
https://doi.org/10.1016/j.ecss.2017.11.002
https://doi.org/10.1098/rspb.2010.1465
https://doi.org/10.1007/bf02782968
https://doi.org/10.1007/bf02782968
https://doi.org/10.1029/2005GL022484
https://doi.org/10.1073/pnas.1005638107
https://doi.org/10.1073/pnas.1005638107
https://doi.org/10.1016/j.pocean.2005.09.011
https://doi.org/10.1007/s10236-008-0146-5
https://doi.org/10.1007/s10236-008-0146-5
https://doi.org/10.1007/s10750-018-3653-5
https://doi.org/10.1007/s10750-018-3653-5
https://doi.org/10.1016/j.aquaculture.2013.04.008
https://doi.org/10.1016/j.aquaculture.2013.04.008
https://doi.org/10.1016/0016-7037(96)00013-0
https://doi.org/10.1007/s10236-003-0077-0
https://doi.org/10.1007/s10236-003-0077-0
https://doi.org/10.1038/416629a
https://doi.org/10.1175/bams-d-14-00164.1
https://doi.org/10.1175/bams-d-14-00164.1
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1016/j.sigpro.2019.107299
https://doi.org/10.1016/j.seares.2009.11.005
https://doi.org/10.1016/j.seares.2009.11.005
https://doi.org/10.1016/j.seares.2008.06.005
https://doi.org/10.1016/j.seares.2008.06.005
https://doi.org/10.1002/2014jc010485
https://doi.org/10.1002/2014jc010485
https://doi.org/10.1007/bf02799376
https://doi.org/10.1007/bf02799376
https://doi.org/10.1016/j.jmarsys.2015.07.006
https://doi.org/10.3354/meps298021
https://doi.org/10.1007/s12237-009-9228-y
https://doi.org/10.1371/journal.pone.0212143
https://doi.org/10.3389/fevo.2016.00131
https://doi.org/10.3389/fevo.2016.00131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


ORIGINAL RESEARCH
published: 10 September 2020
doi: 10.3389/fmars.2020.00698

Frontiers in Marine Science | www.frontiersin.org 1 September 2020 | Volume 7 | Article 698

Edited by:

Darren Pilcher,

University of Washington and

NOAA/PMEL, United States

Reviewed by:

Ivy Frenger,

GEOMAR Helmholtz Center for Ocean

Research Kiel, Germany

Marina Levy,

Institut Pierre Simon Laplace

(IPSL), France

*Correspondence:

Anand Gnanadesikan

gnanades@jhu.edu

Specialty section:

This article was submitted to

Global Change and the Future Ocean,

a section of the journal

Frontiers in Marine Science

Received: 14 March 2020

Accepted: 31 July 2020

Published: 10 September 2020

Citation:

Bahl A, Gnanadesikan A and

Pradal M-AS (2020) Scaling Global

Warming Impacts on Ocean

Ecosystems: Lessons From a Suite of

Earth System Models.

Front. Mar. Sci. 7:698.

doi: 10.3389/fmars.2020.00698

Scaling Global Warming Impacts on
Ocean Ecosystems: Lessons From a
Suite of Earth System Models
Alexis Bahl, Anand Gnanadesikan* and Marie-Aude S. Pradal

Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, United States

An important technique used by climate modelers to isolate the impacts of increasing

greenhouse gasses on Earth System processes is to simulate the impact of an abrupt

increase in carbon dioxide. The spatial pattern of change provides a “fingerprint” that

is generally much larger than natural variability. Insofar as the response to radiative

forcing is linear (the impact of quadrupling CO2 is twice the impact of doubling CO2)

this fingerprint can then be used to estimate the impact of historical greenhouse gas

forcing. However, the degree to which biogeochemical cycles respond linearly to radiative

forcing has rarely been tested. In this paper, we evaluate which ocean biogeochemical

fields are likely to respond linearly to changing radiative forcing, which ones do not,

and where linearity breaks down. We also demonstrate that the representation of lateral

mixing by mesoscale eddies, which varies significantly across climate models, plays an

important role in modulating the breakdown of linearity. Globally integrated surface rates

of biogeochemical cycling (primary productivity, particulate export) respond in a relatively

linear fashion and are only moderately sensitive to mixing. By contrast, the habitability

of the interior ocean (as determined by hypoxia and calcite supersaturation) behaves

non-linearly and is very sensitive to mixing. This is because the deep ocean, as well

as certain regions in the surface ocean, are very sensitive to the magnitude of deep

wintertime convection. The cessation of convection under global warming is strongly

modulated by the representation of eddy mixing.

Keywords: eddy mixing, climate change, climate sensitivity, primary productivity, export, ocean deoxygenation,

calcite undersaturation, oceanic convection

INTRODUCTION

Over the past two decades, Earth System Models (ESMs) have become an important tool for
estimating how rising atmospheric carbon dioxide (CO2) concentrations have impacted global
biogeochemical cycling and projecting how it will change in the future (e.g., Bopp et al., 2001, 2013;
Fung et al., 2005; Schmittner et al., 2008). One major focus has been the rate of anthropogenic
carbon uptake (Frölicher et al., 2009; Heinze et al., 2019), which is important for setting cumulative
emissions targets to limit and reduce the risks of rising atmospheric CO2 levels. Other investigators
have focussed on changes in ocean primary and export production (Cabré et al., 2015a; Frölicher
et al., 2016) which may have implications for the future of fisheries. Still others are concerned with
increasing ocean acidification at and away from the surface (Orr et al., 2005), and the growth of
oxygen minimum zones (OMZs; Stramma et al., 2012), both of which have the potential to affect
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which regions are habitable by a range of species. However,
isolating the impact of climate change is complicated by the
presence of large-amplitude, long-period natural variability, and
by the fact that the surface radiation balance has been changed
by both greenhouse gasses and aerosols (Shine et al., 1990; Knutti
and Hegerl, 2008). For example, recent trends in Pacific oxygen
concentrations are thought to be the result of decadal variability
in winds associated with the Pacific Decadal Oscillation rather
than part of a long-term trend associated with global warming
(Deutsch et al., 2005; Kwon et al., 2016; Duteil et al., 2018).

One method by which climate modelers distinguish climate
change forcing from natural variability is by simulating
large-step function perturbations in forcing in which CO2

concentrations are instantaneously quadrupled from pre-
industrial concentrations (Friedlingstein et al., 2014). The
resulting anthropogenic climate signal is generally much larger
than the natural variability within a given model and thus allows
for extracting the magnitude of the anthropogenic radiative
forcing, for estimating the equilibrium temperature rise andmost
applicable to this study, for identifying the spatial pattern of
climate change, often described as a “fingerprint” (Hegerl and
Zwiers, 2011; Andrews et al., 2012). The “fingerprint” is further
described by Hasselmann (1993) as an optimal detection method
used to first, distinguish the externally generated time-dependent
greenhouse warming signal over time from the background noise
associated with natural variability and second, extract variables
with high signal-to-noise ratio. Such “4xCO2” runs have become
a standard part of the Intergovernmental Panel on Climate
Change (IPCC) model comparison process.

This method can also be used to distinguish historical changes
in biogeochemical processes driven by climate change from those
driven by natural variability (Heinze et al., 2019). However, such
a separation is only possible if the responses to such forcing
are linear. If the fingerprint due to increased radiative forcing
has a different pattern when the forcing is large than when it
is small, some fraction of the real change at small values of
forcing will be erroneously attributed to climate variability. Cao
et al. (2014) found differing sensitivities of ocean oxygen in the
North Pacific and at a global scale when changing the climate
sensitivity in an intermediate-complexity ESM, implying such
non-linear behavior. However, there has been limited evaluation
of the linearity of global and regional biogeochemical responses
to climate change in fully coupled ESMs.

In this paper, we attempt to answer the following three
questions about the linearity of biogeochemical responses to
climate change:

1. What fields respond linearly to step changes in radiative
forcing? Because the radiative response to increasing carbon
dioxide is roughly logarithmic (Zhang and Huang, 2014),
we examine whether quadrupling CO2 (denoted as a 4xCO2

simulation) produces twice the response of doubling CO2

(denoted as a 2xCO2 simulation). Insofar as it does, it is
reasonable to use the magnitude and pattern of the changes in
biogeochemical cycling under 4xCO2 to estimate how much
of a change has already resulted from historical increases in
greenhouse gas forcing.

2. What fields do not respond linearly to step changes in
radiative forcing? If the change in some field in the 2xCO2

simulation is much larger than half the change in the
4xCO2 simulation, this would imply that the standard IPCC
methodology would underestimate the historical impact of
increased greenhouse gasses (Taylor et al., 2011). If the reverse
is true, the standard methodology would overestimate the
historical impact.

3. What model parameters and processes are implicated
when linearity breaks down? It is difficult to answer this
question across models (Frölicher et al., 2016). This is partly
because simulating biogeochemistry requires understanding
changes in environmental conditions such as temperature,
stratification, and nutrient supply (Rykaczewski and Dunne,
2010; Taucher and Oschlies, 2011; Chust et al., 2014; Andrews
et al., 2017) capturing the sensitivity of oceanic biology to these
changes, and simulating how changes in biology feed back on
environmental conditions. For example, Andrews et al. (2017)
found that the sign and magnitude of oxygen change over the
last ∼50 years depended critically on how ocean acidification
changes the C:N ratio and calcium carbonate ballasting. The
representation of processes like mixing and clouds can also
play a big role in modulating model responses.

Because the response of the Earth System is dependent on a
multitude of parameterizations a full exploration of the third
question is impossible in one manuscript. However, we know
from previous work (Palter and Trossman, 2018; Bahl et al.,
2019) that the response of oceanic oxygen to global warming is
extremely sensitive to the representation of lateral mixing from
oceanic mesoscale eddies. While mesoscale eddies dominate both
spatial and temporal variability in velocity (Lermusiaux, 2006),
they occur at spatial scales that are generally smaller than the grid
boxes used in models. Moreover, because of computational cost,
high-resolution “eddy-permitting” models are still only run for
periods of time much shorter than the many centuries required
for biological and chemical fields to come to equilibrium. Thus,
simulating long-term biogeochemical cycles will require that the
effects of eddy velocity variability on the large-scale tracer field
be parameterized for the foreseeable future. In this study we
take advantage of key insights gained from Bahl et al. (2019)
to examine how this uncertainty is reflected in the linearity of
biogeochemical response.

The key variable or parameter used to represent the lateral
mixing due to turbulent eddies is the turbulent diffusion
coefficient, AREDI (Redi, 1982). In previous work we have
shown how the ocean uptake of anthropogenic carbon dioxide
(Gnanadesikan et al., 2015a), as well as the patterns and rates
of oceanic deoxygenation (Bahl et al., 2019), are impacted by
the value and/or spatial distribution of this parameter. However,
we have not examined the impact of changing diffusivity on the
linearity of response. Here, we build on these previous studies to
identify those regions and fields for which linear responses are
unlikely to be robust across ESMs.

This paper is structured as follows: section Methodology
covers model description, methods used, and experimental
design. In section Results, we begin by examining a number of

Frontiers in Marine Science | www.frontiersin.org 2 September 2020 | Volume 7 | Article 69898

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Bahl et al. Linearity of ESM Biogeochemical Response

indices of biological cycling that are weakly sensitive to changes
in AREDI and respond relatively linearly to climate change.
We then demonstrate that the biological cycling in Northern
subpolar regions and the habitability of the ocean interior both
respond non-linearly to climate change and are sensitive to the
mixing coefficient AREDI. Finally, we explore how convection in
the subpolar regions connects these results, as it important for
surface productivity and deep ventilation and depends on AREDI.
A major goal here is to give ecologically-oriented users of ESMs
a better sense of what might drive large shifts in ecosystems,
and why it is necessary to be cautious about extrapolating results
based on large changes in forcing to explain present-day trends.

METHODOLOGY

Overview
We use the GFDL CM2Mc coupled climate model of Galbraith
et al. (2011). This model is a coarse-resolution version of the
National Oceanic and Atmospheric Administration’s (NOAA)
Geophysical Fluid Dynamics Laboratory (GFDL) CM2M, which
was used in the IPCC’s Fourth Assessment report. The coarsened
resolution of the atmosphere and oceanic grids in CM2Mc allows
for relatively fast simulations and allows us to explore multiple
parameter settings.

Physical Model
The atmosphere uses a finite volume dynamical core discussed
in Lin (2004) as implemented in CM2.1 (Delworth et al., 2006).
The atmosphere model employs an updated M30 grid, with a
latitudinal resolution of 3◦, a longitudinal resolution of 3.75◦

and 24 vertical levels (Galbraith et al., 2011). Tracer time steps
occur every 1.5 h, dynamical time steps occur every 9min, and
the radiative time step occurs every 3 h, allowing for explicit
representation of the diurnal cycle of solar radiation.

Ocean circulation is simulated using a tripolar grid that
varies with latitude. A fine latitudinal resolution of 0.6◦ at
the equator allows for an explicit representation of equatorial
currents. A total of 28 vertical levels gradually increase in
thickness from 10m near the surface to ∼500m in the deepest
box. Pressure is used as the vertical coordinate and the model
is time stepped using an explicit bottom pressure solver that
accounts for the transfer of water mass across the ocean surface
using real freshwater fluxes. The use of partial bottom cells
allows for a representation of topography that is less sensitive
to vertical resolution. Exchange across straits is simulated using
the cross-land mixing scheme of Griffies et al. (2005). Tracer
advection uses theMultidimensional Piecewise ParabolicMethod
(MDPPM) scheme for temperature and salinity and the Sweby
Multidimensional Flux Limited (MDFL) scheme for other tracers
(Adcroft et al., 2004; Griffies et al., 2005; Galbraith et al., 2011).

Eddy Mixing
In this paper we focus on one parameter that we already know
has the potential to impact the linearity of the biogeochemical
response to increased greenhouse gasses. The lateral turbulent
mixing coefficient, AREDI, determines the rate at which tracers
are stirred horizontally in the mixed layer and laterally along

isopycnals (neutral density surfaces) in the ocean interior. This
process is represented using a Fickian diffusion approximation
(Redi, 1982) such that the flux of tracer with concentration C in
direction s (horizontal in the mixed layer or along-isopycnal in
the ocean interior as the case may be) FSC is given by:

FSC = −AREDI
∂C

∂s
(1)

where AREDI serves as our diffusion coefficient and the flux is
down-gradient from high to low values of C.

In addition to stirring tracers along isopycnals, eddies draw
their energy from sloping isopycnal surfaces, resulting in a
flattening of these surfaces (Gent and McWilliams, 1990). The
resulting overturning (shown here for the x-direction alone)
results in a transport given by:

(

FxC, F
z
C

)

= −C∗AGM∗

(

∂Sxρ

∂z
,−

∂Sxρ

∂x

)

(2)

where Sxρ is the isopycnal slope in the x direction and AGM is
a diffusion coefficient. As in CM2.1 Griffies et al. (2005), AGM

varies with the horizontal shear between a minimum of 200 m2

s−1 and a maximum of 1,400 m2 s−1. The maximum slope used
to calculate the overturning transport is set to 0.01 to avoid
singularity in mixed layers.

Biogeochemical Model
Ocean biogeochemistry is simulated using the Biology-Light-
Iron-Nutrients and Gases (BLING) model of Galbraith et al.
(2010). BLING has six explicit tracers: dissolved inorganic
carbon (DIC), alkalinity (Alk), micronutrient (nominally Fe),
macronutrient (nominally PO4), dissolved organic material,
and oxygen, all of which are advected and diffused in the
model similarly to temperature and salinity (Galbraith et al.,
2010). BLING accounts for shortwave light absorption using a
prognostic chlorophyll (Chl) variable, which varies with both
biomass and a light and nutrient-dependent Chl:C ratio following
Geider et al. (1996). When run in a fully coupled ESM,
BLING produces annual mean distributions of Chl and surface
macronutrients comparable to those associated with models that
run numerous explicit tracers (Galbraith et al., 2015).

The key aspect of BLING is an allometric grazing
parameterization [described in Dunne et al. (2005)] that
results in phytoplankton biomass being (a) tightly linked to
growth rate and (b) showing a much greater sensitivity for
large (weakly grazing-controlled) phytoplankton than for small
(strongly grazing-controlled) phytoplankton, as appears to be
the case in the real ocean.

Growth rates are calculated by:

µ = µ0∗exp
(

k∗T
)

∗min

(

PO4

KPO4 + PO4
,

Fe

KFe + Fe

)

∗

(

1− exp

(

−
Irr

Irrk

))

(3)

where µ0 is the maximum growth rate at 0◦C, k is the Eppley
coefficient, PO4 and Fe are the macro- and micronutrient
concentrations, KPO4,Fe are half saturation constants, and Irrk is
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a light limitation constant that accounts for a chl:C ratio that
depends on nutrient limitation, light supply, and temperature.
The growth rate is assumed to come into balance with a grazing
rate of:

λ = λ0 exp
(

k∗T
)

∗

(

P

P∗

)1/a

(4)

where λ0 is a scaling for grazing rate, P is phytoplankton biomass
in a particular size class, P∗ is a scaling for this biomass, and a is
a size-dependent coefficient. Solving this gives:

P =

{(

µ0P∗

λ0

)

∗min

(

PO4

KPO4 + PO4
,

Fe

KFe + Fe

)

∗

(

1− exp

(

−
Irr

Irrk

))}a

=

{(

µ0P∗

λ0

)

∗Nutlim∗Irrlim

}a

(5)

where Nutlim and Irrlim represent nutrient and light limitation
terms, respectively. For small phytoplankton a = 1, allowing for
the system to approach the equilibrium given by the classic Lotke-
Volterra equations and predicting a phytoplankton biomass
that depends linearly on the growth rate, and thus on the
most limiting nutrient at low concentrations of nutrients. For
large phytoplankton, a = 3 and biomass is the cube of
the growth rate, and thus on the cube of the most limiting
nutrient at low concentrations of nutrients. However, because the
grazing rates have the same exp(k∗T) temperature dependence,
biomass is only weakly dependent on temperature. As pointed
out by Taucher and Oschlies (2011), the relative temperature
dependence of grazing and growth rate is poorly known and
may be important for projecting future changes in productivity.
The disproportionate response of large phytoplankton biomass to
environmental changes is supported by observational estimates
of the spatial distribution of biomass made via satellite
(Kostadinov et al., 2009). However, it is inconsistent with
past studies that have shown an increased abundance of small
phytoplankton species such as small flagellates coinciding with
a decrease of large phytoplankton (Rivero-Calle, 2016; Thomson
et al., 2016).

Following Dunne et al. (2005), the export of sinking particles
from the ocean surface to the deep (carrying both macro- and
micro-nutrient) is parameterized in terms of the phytoplankton
size structure and temperature. Grazing of large phytoplankton
produces more particulate material than does grazing of small
phytoplankton and more of this material sinks at lower
temperatures. Organic material sinks with a constant velocity
of 16 m/day over the top 80m, but below 80m, the sinking
velocity decreases by 0.05 m/day/m (Galbraith et al., 2010).
The rate of remineralization of organic material depends on
the oxygen concentration within the water column resulting in
deeper penetration of organic material under OMZs.

Additionally, as described in Galbraith et al. (2011) the
model simulates the cycling of radiocarbon. Produced in the
upper atmosphere by the interaction of galactic cosmic rays
with nitrogen, the bulk of radiocarbon in the ocean-atmosphere
system is taken up by the ocean and decays there. In our model,
biological sources and sinks of DI14C are identical to those for

DIC and thus have little impact on 114C = DI14C
DIC − 1. However,

air-sea exchange, physical transport and decay lead to different
distribution patterns of DI14C and DIC and thus produce spatial
patterns in 114C. Our model simulations do not include the
impact of the 20th century atmospheric nuclear bomb tests
and thus must be compared with estimates of the “prebomb”
radiocarbon (Key et al., 2004).

Experimental Design
We present runs from six different cases. In four of them AREDI

is constant in space and time. These runs are denoted as AREDI-
400, AREDI-800 (the case used to spin up ocean state from
modern observations), AREDI-1200, and AREDI-2400, with the
number denoting the value of the coefficient in m2 s−1. AREDI-
400 and AREDI-800 will often be described in this paper as low-
mixing simulations, while AREDI-1200 and AREDI-2400 will be
described as high-mixing simulations. As discussed in previous
work (Gnanadesikan et al., 2015b) this range is comparable
to that found across CMIP5 models. In the remaining two
cases, denoted ABER2D and ABERZONAL, AREDI varies in
space but not in time. ABER2D uses the distribution found by
Abernathey and Marshall (2013), who used velocities derived
from altimetric measurements to advect tracers and invert a
diffusion coefficient. Maps of this coefficient can be found in
previous work (Gnanadesikan et al., 2015a,b; Bahl et al., 2019,
Figure 2) and in the Supplemental Material.

A key difference between ABER2D and more traditional
parametrizations is that the largest values of AREDI (reaching
up to 10,000 m2/s) occur near, but not in, the center of the
boundary currents. This is because the relevant length scale for
mixing is not the width of the baroclinic zone, but rather the
spatial scale over which propagating eddies exchange fluid.When
eddies pass through a region rapidly (as they do in boundary
currents), water has little time to feel the anomalous pressure of
the eddy and is not moved very far (Nikurashin and Ferrari, 2011;
Cole et al., 2015). ABERZONAL uses a zonally-averaged version
of ABER2D, with low values in high latitudes and high values
(exceeding 3,000 m2/s) in subtropical latitudes. ABERZONAL
was run to evaluate whether any signals seen in the ABER2D
were primarily due to the large latitudinal changes in the size
of the coefficient. If this were the case it would potentially
allow a similar parameterization to be used in simulations
of paleoclimates.

The AREDI-800 case was spun up starting from modern
oceanic temperatures and salinities for 1,500 years with aerosols
and greenhouse gases fixed at pre-industrial values. At year 1,500,
the five additional cases with different AREDI discussed above
were branched off of the main trunk and all six simulations
run out for another 500 years with fixed greenhouse gasses.
Once the models hit year 1,860 (360 years into the pre-industrial
control), two additional perturbations were performed. First, we
instantaneously doubled CO2 concentration from pre-industrial
(286 ppmv) to 572 ppmv. Second, we instantaneously quadrupled
CO2 concentration values from the same pre-industrial values to
1,144 ppmv. Both the 2xCO2 and 4xCO2 simulations were then
run out for 140 years.
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FIGURE 1 | Time-series of temperature response under global warming run for all six AREDI simulations. (A) Change in surface air temperature in ◦C. Solid lines

denote simulations under 2xCO2, dashed lines show the same simulations under 4xCO2. (B) Change in surface air temperature under 2xCO2 (horizontal axis) vs.

change in surface air temperature under 4xCO2. 2:1 Line is shown by thick dashed line. Points lying within thin dashed lines are within 10% of a 2:1 relation, meaning

that the response under 4xCO2 would predict the response under 2xCO2 to within about 10%.

RESULTS

Global Temperature Response to
Increased CO2 Is Relatively Insensitive to
Eddy Mixing
We start by demonstrating that the standard metrics for global
warming behave relatively linearly and are relatively insensitive
to the representation of eddy mixing. One of the most important
metrics is the climate sensitivity, defined as the response of
global mean surface air temperature to a doubling of atmospheric
carbon dioxide. As shown in Figure 1A, time series of the 5
year smoothed change in surface air temperature are relatively
insensitive to the parameterization of mesoscale mixing, with the
warming at the end of the 140 year period ranging between∼1.3–
1.6◦C for the 2xCO2 cases and 3.1–3.5◦C for the 4xCO2 cases.
Note that despite the 5 year smoothing, the warming simulations
all show the effects of interannual variability with a peak-to-
trough amplitude of around 0.2◦C, so that it is important not
to overinterpret differences that are smaller than this. Plotting
the 2xCO2 change against the 4xCO2 change (Figure 1B), we see
that the models initially bracket a 2:1 line (thick dashed line).
Over time the 4xCO2 cases tend to produce a warming that is
slightly more than twice that associated with the 2xCO2 cases.
The deviation from the 2:1 is generally <10%, as shown by the
dashed lines. This means that taking the projected temperature
response from the 4xCO2 model and dividing it by two would
give the projected temperature response in the 2xCO2 model to
within about 10%.

The relatively weak dependence of the warming on mixing is
somewhat surprising, given that the initial climate states differ
by up to 1.2◦C. We computed the initial radiative forcing F
associated with quadrupling CO2 (ranging between 6.11 and
7.22 W/m2) by regressing changes in net radiation at the top
of the atmosphere against global temperature change (following

Gregory et al., 2004). This is consistent with the 6.72 W/m2

value found by Andrews et al. (2012) for the higher-resolution
ESM2M and sits within the 5.85–8.5 W/m2 found across 11
CMIP5 models. However, the range in initial radiative forcing is
balanced by a similar range in how strongly the climate warms
in response to that forcing, so that the equilibrium climate
sensitivities under doubling range between 1.9 and 2.1◦C, on
the low end of the CMIP5 range. We defer a more in-depth
discussion of these results to a future manuscript. For now, it is
sufficient to note that our model has a typical radiative response
to increasing CO2 and that our 4xCO2 simulations lie in between
the Representative Concentration Pathways (RCP) 6.0 and 8.5 in
CMIP5, while our 2xCO2 simulations lie between the RCP2.6 and
RCP4.5 pathways.

Weak Dependence of Surface Chemistry
on Mixing in Control Simulations Outside
Northern Subpolar Latitudes
A relatively weak sensitivity of the model to the representation
of AREDI is also found when examining the distribution of
surface chemistry averaged over the final century of each
simulation. As shown in Figure 2, the models capture large-scale
spatial patterns of zonally-averaged annual mean macronutrient,
total alkalinity Alk, and calcite supersaturation compared to
observations (observed zonally averaged annual iron is not
shown because of data sparsity). The largest disagreements
amongst the models, as well as between the models and
observations, are found in subpolar latitudes between 40 and
60◦N. This is largely driven by the North Pacific subpolar
gyre, where iron limitation appears to be much weaker in
the model than in the real world (Nishioka, 2007). Increasing
mixing produces higher macronutrients, particularly in the
northern subpolar latitude band (Figure 2A). The low-mixing
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A B

C D

FIGURE 2 | Zonally averaged annual mean surface chemical fields in CM2Mc pre-industrial control run with six different AREDI parameterizations compared to

observations (symbols). Iron observations are not included due to a lack of reliable data. (A) Phosphate [µM, obs. from WOA09, Garcia et al. (2010)] (B) Iron (nM), (C)

total alkalinity [µM, obs from Lauvset et al. (2016)], and (D) calcite supersaturation [non-dimensional, obs from Lauvset et al. (2016)].

simulation, AREDI-400 (black line) has the lowest values, and
thus the biggest underestimate relative to observations while
ABERZONAL (purple line) produces macronutrient surface
estimates closest to observations.

The other hydrographic variables show less sensitivity to
mixing. Iron (Figure 2B) and alkalinity (Figure 2C) both show
relatively small differences across models, though Alk appears
to increase with greater mixing. All the models simulate the
zonal range of calcite supersaturation in surface waters, as seen
in Figure 2D, however, all models underestimate the degree of
calcite supersaturation relative to modern observations.

Dependence of Surface Biological Cycling
on Mixing in Control Simulations
Chlorophyll Shows Weak Dependence on Mixing

Outside Northern Subtropical Region
We now turn to how our mixing parameterizations affect
integrative measures of ecosystem function that can be
characterized using remote sensing. Despite major uncertainties
in retrieval algorithms, the fact that satellites can monitor such
fields with high spatial and temporal resolution allows for
detection of global and regional trends. In this paper we consider
a number of these variables that have been used to characterize

global change. We start with Chl because it is relatively easy to
detect from space and has been extensively examined for trends
(e.g., Gregg et al., 2005; Henson et al., 2010; Rykaczewski and
Dunne, 2011).

As is the case for nutrients, the modeled concentration of
Chl in our suite (Figure 3A) is only moderately sensitive to
the parameterization of AREDI. All models capture the observed
contrast between upwelling and downwelling regions and show
broad similarities to observations in the Southern Ocean and
the tropics. The models all overestimate Chl in the northern
subtropics from 30 to 45◦N. The largest sensitivity to mixing
is found in these latitudes as well, with increasing mixing
producing chlorophyll levels up to 50% higher than those seen
in AREDI-400.

Biomass Shows Weak Dependence on Mixing

Outside Northern Subtropical Region
Chl suffers from one major problem as a measure of
ecosystem function. Because phytoplankton can change their
chl:C ratio to match the availability of nutrients (Geider
et al., 1996), a decline in Chl in response to an increase
in light availability may not represent a decline in the total
amount of biomass in an ecosystem. For this reason, we
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FIGURE 3 | Biological fields in CM2Mc pre-industrial control run with six different AREDI parameterizations (colored lines) compared with satellite-based estimates

(symbols). (A) Zonally averaged chlorophyll (mg/m3 ). (B) Zonally averaged particulate carbon (mg/m3 ). (C) Zonally integrated primary production (GtC/yr/deg) and (D)

Zonally integrated particle export across 100m (GtC/yr/deg). Satellite estimates in (A,C,D) are taken from Dunne et al. (2007). Particulate carbon in (B) is estimated

from backscatter following Behrenfeld et al. (2005).

also examine the total phytoplankton biomass, which can be
estimated from particulate backscatter (symbols Figure 3B).
Biomass serves as an index commonly used by fishery experts
to monitor ecosystem response to climate change (e.g., Cabré
et al., 2015a) and regional trophic interactions (Kwiatkowski
et al., 2018). Note that the “observed” biomass in Figure 3B

does not show a peak in the equatorial zone, which may
be due to problems with the retrieval algorithm used to
estimate the backscatter [alternative estimates of biovolume
such as Kostadinov et al. (2009), show a clear signature of
equatorial upwelling].

As seen by the colored lines in Figure 3B, zonally averaged
phytoplankton biomass is also relatively insensitive to mixing
parameterization, except in the northern subtropics from
30 to 45◦N. Within this latitude band, macronutrients are
not typically overestimated (Figure 2A), so it is possible
that both the high Chl and biomass concentrations indicate
overly high iron concentrations. As with chlorophyll,

increasing mixing produces increasing biomass, with
the highest mixing models predicting surface biomass
in the northern subtropics that is ∼40% higher than
in AREDI-400.

Primary Productivity and Particle Export Show Weak

Sensitivity to Mixing
Tracing the flow of carbon and nutrients through an ecosystem
is generally done using measures of productivity. One such
measure is the primary productivity, representing the uptake
of carbon by phytoplankton (Chavez et al., 2011), for which
many satellite-based estimates exist in the literature (Saba et al.,
2011). However, a more appropriate index for detecting bottom-
up ecological change on longer timescales may be the particle
export (Laufkötter, 2016; Buesseler et al., 2020). This is because
export to the deep ocean is more sensitive to grazing from large
zooplankton that transfer energy up the food web to fish and also
drive the chemistry and biology of the deep ocean (Jones et al.,
2014).

Primary productivity and particle export [which are compared
with satellite-based estimates from Dunne et al. (2007) in
Figures 3C,D] are much less sensitive to mixing than chlorophyll
and biomass. They are also relatively close to observations. The
models all show similar levels of productivity and export as
the (relatively uncertain) observations, with peaks in at around
40◦S, on the equator and at 40◦N. Primary productivity is
well-simulated in all the models, with the exception of models
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FIGURE 4 | Time series of relative changes in biological variables under doubled and quadrupled CO2 for the different AREDI parameterizations shown as a ratio of

high CO2/control. Upper group of lines are for doubled CO2, while lower group shows changes under quadrupled CO2. (A) Global surface chlorophyll change.

(B) Global surface biomass change. (C) Global primary productivity change. (D) Global export across 100m.

overestimating it in the northern subtropics from 30 to 45◦N,
the same region where chlorophyll and biomass appear to be
too high in Figures 3A,B. Zonally integrated particle export
flux observations peak at 0.12 Gt C/yr/deg of carbon per year
in the Southern Hemisphere (SH) and 0.14 Gt C/yr/deg in
the NH. The models show peaks that are slightly smaller and
shifted southward in both hemispheres. As noted in Bahl et al.
(2019), globally integrated values of export production in the
model suite (which range from 9.95 GtC yr−1 in AREDI-400
to 11.1 GtC yr−1 in AREDI-2400) lie well within the range
of satellite estimates: of 9.8 GtC yr−1 ± 20% estimated by
Dunne et al. (2007).

Globally Integrated Biological Responses
to Increased CO2
Different Globally Integrated Indices of Biological

Cycling Show Differing Sensitivities to Warming and

Mixing
On a global scale all four of the indices of surface biological
cycling described in Figure 3 decrease under global warming.
An examination of relative changes in these indices (Figure 4)
shows that the bulk of the adjustment to the new equilibrium

occurs over the first 40–60 years. Further examination of Figure 4
reveals several important results.

First, although the sign of the decrease is the same across
all variables, the magnitude of the decrease is quite different,
with primary production (Figure 4C) showing much smaller
changes than chlorophyll, biomass and export production
(Figures 4A,B,D). This suggests that some fraction of the
declines in biomass are partially compensated by higher
temperatures resulting in fastermetabolic rates [larger exp(k∗T)].
It also points out that using primary productivity as an index of
climate change [as in Chavez et al. (2011)] may underestimate
potential ecosystem impacts.

Second, there is a greater spread across models for the relative
changes in the biological variables than there was for global mean
temperatures in Figure 1, with much less distinction between
the 4xCO2 and 2xCO2 simulations. Uncertainty about mixing
contributes most strongly to uncertainties in surface chlorophyll
and primary productivity, where the inter-model range (6 and
4%, respectively) is comparable to the drop due to doubling
CO2. Conversely, uncertainty about mixing contributes less
strongly to surface biomass and global export change where a
much clearer separation between the 2xCO2 and 4xCO2 cases
is seen.
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FIGURE 5 | Summary of changes in biological variables across models and scenarios. Each plot shows the relative change in % for (A) Chlorophyll, (B) Biomass, (C)

Primary Production, (D) Large Biomass, and (E) Export. Each plot is divided into results from 2xCO2 simulations (left half) and ½ the change under the 4xCO2

simulation (right half). Each cluster of bars shows changes in a particular region across models (colors denote different distributions of AREDI). Clusters from left to right

within each half plot show the global integral, the Subpolar North Pacific from 40 to 60◦N, the Subpolar North Atlantic from 40 to 60◦N, the Northern Tropical Pacific

(10-25◦N, site of the largest drops in biological variables in Figure 8), and the Southern Ocean (70-50◦S).

Third, the within-scenario spread across models is consistent
across the different variables. Models with a larger relative
decrease in chlorophyll have larger decreases in all the other
variables as well.

Finally, the size of the changes does not appear to be
monotonic with increasing mixing, with the AREDI-800 case
showing the largest drop under doubling and AREDI-800 and
AREDI-1200 cases showing the largest drops under quadrupling.
In general, the ABER2D and ABERZONAL simulations behave
more like the high-mixing models than the low-mixing models.

Response of Global Indices Is Relatively Linear,

Some Are Moderately Sensitive to Mixing
Because it is difficult to extract patterns from these time series
plots, we summarize the results by averaging over years 40–140
and presenting the results as bar plots in Figure 5. In each
subplot, fractional changes under 2xCO2 are shown on the

left, and ½ of the change under 4xCO2 is shown on the right.
When bars of different colors within a particular region and
scenario are of different lengths, this indicates that AREDI (model
uncertainty) plays an important role in explaining intermodel
variability. If corresponding collections of bars in different
scenarios have different lengths this indicates that the linearity
assumption used to hindcast historical changes from 4xCO2

changes is violated. If collection of bars is a perfect rectangle
then there is no sensitivity to mixing, whereas if the bars within
a cluster have vastly different lengths the sensitivity to mixing
is strong. In addition to the four indices used in Figure 4, we
also look at the changes in the biomass of large phytoplankton
which are disproportionately important for feeding energy to
higher trophic levels. Some models have suggested that trophic
interactions can amplify changes in large phytoplankton
biomass to produce relatively larger changes in total
biomass (Lotze et al., 2019).
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As in Figure 4, the magnitude of the decline in biological
activity under global warming (Figure 5, bars marked “Glob”
in each subplot) depends on the index. Primary productivity
is the least sensitive of any of the global indices to warming,
with declines on the order of 4% under doubling and 8% under
quadrupling (Figures 4C, 5C). The biggest changes are seen in
large phytoplankton biomass (Figure 5D), which drops 8–12%
in the 2xCO2 case and 20–24% in the 4xCO2 case. Chl (4–8%
drop under doubling, 12–16% under quadrupling), total biomass
(∼8% under doubling, ∼16% under quadrupling), and particle
export (∼8% under doubling ∼18% under quadrupling) lie in
between these extremes.

In general, the responses of the global indices to increasing
radiative forcing is relatively linear. There is some hint of non-
linear responses in the global Chl field, with the cluster of bars
marked “Glob” on the left-hand side of Figure 5A noticeably
smaller than those on the right-hand side. This is not the case,
however, for the other indices, indicating that the response at
2xCO2 is roughly half the response at 4xCO2.

There is some sensitivity, however, to the mixing
parameterization as each cluster of bars shows intra-cluster
variability. As would be expected from Figure 4, this is biggest
for surface chlorophyll, where the 4% intermodel range under
2xCO2 is 2/3 of the ∼6% drop. However, for the other variables,
the relative range across the models is smaller. There is also
some sense that the relative range across models is smaller
for the 4xCO2 cases than the 2xCO2 cases (each cluster of
bars marked “Glob” is more squared off on the right-hand
side of each subplot). It is worth noting that the models
do not show a monotonic dependence on mixing, with bar
lengths sloping down to the left or to the right within each
cluster. Instead, all clusters show the strongest sensitivity for
AREDI-800 (orange bars) and the weakest for ABERZONAL
(green bars).

Regional Response to Increased CO2

Across Models
Although the global responses are relatively linear and at most
moderately sensitive tomixing, this is not always true for regional
changes. For instance, relative changes in the zonally averaged
biological variables (Figure 6, compare with Figure 3), reach
magnitudes of up to 50% with a strong dependence on mixing.
We examine these regional changes in more detail below.

Different Regions Respond Differently to Mixing and

Increased CO2

One latitude band that stands out in Figure 6 is between ∼40
and 65◦N in NH subpolar latitudes. This region exhibits large
reductions in Chl, particulate carbon, primary productivity, and
particle export that also depend on the mixing parameterization.
Under 4xCO2, the largest drops are seen in AREDI-400
and AREDI-800, with AREDI-2400 showing the smallest
drops and ABER2D and ABERZONAL lying in between.
Returning to Figure 5, we see that the changes in the
zonal mean do not reflect zonal uniformity, as there are
large differences between the subpolar North Atlantic (bars
marked “SubPolAtl”) and the subpolar North Pacific (bars

marked “SubPolPac”) for all of the variables. Each basin
shows quite different sensitivities to mixing, with the largest
changes in the 2xCO2 simulations in the subpolar North
Pacific occurring in the AREDI-800 simulation, but in the
AREDI-400 and ABERZONAL simulations in the subpolar
North Atlantic.

Northern subpolar indices of biological cycling respond non-
linearly to increased CO2. Changes in the subpolar North Atlantic
in the 2xCO2 simulations would be greatly overestimated by
extrapolating from the 4xCO2 simulations for AREDI-800,
AREDI-1200, AREDI-2400, and ABER2D, as would changes in
the subpolar North Pacific for AREDI-1200. On the other hand,
changes in the subpolar North Pacific in AREDI-800 (orange
bars, Figure 5) in the 2xCO2 case would be underestimated by
extrapolating from changes in the 4xCO2 case.

A second large drop in Chl, biomass, and productivity
is found at about 15◦N, but in contrast to the changes in
the northern subpolar latitudes, the changes in this region
are relatively insensitive to the mixing parameterization as
the different lines overlay each other. Moreover, although
the changes shown in Figure 6 are larger under 4xCO2 than
under 2xCO2, examination of the bars marked N. Trop.
Pacific in Figure 5 shows that the responses across models
are relatively linear and that the changes in the 2xCO2

simulations can be relatively well-predicted from changes in the
4xCO2 simulations.

In the Southern Ocean, mixing has a big impact on the
biological response. The AREDI-400 simulation shows a
small increase in Chl and small decreases in total biomass,
primary productivity, and export. As the mixing increases,
we see a loss of Chl under increased CO2 and larger
decreases in biomass, primary productivity, and export.
However, the responses appear to be relatively linear across
the 2xCO2 and 4xCO2 cases (bars marked SOcean in
Figure 5).

Different Responses of Nutrients to Climate Change

by Latitude
In this subsection we examine how climate change produces
changes in nutrients. Increasing CO2 reduces macronutrient
(Figure 7A) across nearly all latitudes with the 4xCO2 scenarios
producing larger decreases than the 2xCO2 scenarios. Cabré et al.
(2015a) show similar declines in nitrate in most biomes across
CMIP5 models. The biggest decreases in our suite are seen in
the subpolar NH. However, macronutrients rise in the Southern
Ocean, most likely due to increased upwelling associated with
stronger winds under global warming.

Dissolved iron (Figure 7B) shows a very different picture
with little variation across models outside the northern subpolar
latitudes. Somewhat surprisingly, increasing CO2 increases iron
in the sub-tropics, presumably because with lower nutrients (and
export) there is less biological removal. The spatial distribution
under 4xCO2 is well-correlated with changes under 2xCO2.
In the subpolar northern hemisphere, iron decreases across
scenarios but is strongly modulated by mixing, with an overlap
between the 2xCO2 and 4xCO2 cases.
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FIGURE 6 | Relative changes in zonally averaged biological fields under global warming (paralleling Figure 3), averaged over years 40–140 of high CO2 simulations.

Solid lines show 2xCO2, dashed lines 4xCO2. (A) Chlorophyll, (B) Particulate carbon, (C) Primary productivity, and (D) Particle export across 100m.

Regional Patterns of Biomass Change in the

AREDI-400 and AREDI-2400 Models Involve Changes

in Both Light and Nutrient Limitation
As is already clear from looking at basin-averaged changes
in the subpolar NH, zonally averaged differences shown in
Figures 6, 7 are a crude representation of a more complex
pattern of changes. These patterns are broadly similar in
sign across simulations but have different magnitudes in
different regions. This can be seen by looking at Figure 8,
which shows relative changes in biomass between the 4xCO2

simulation and control simulation for the low-mixing AREDI-
400 case (top row) and high-mixing AREDI-2400 case (bottom
row). Looking at changes in total phytoplankton biomass
in Figures 8A,C, we see that both simulations project small
(<20%) increases in total phytoplankton biomass in the Arctic,
Southeast Atlantic Ocean offshore of the Benguela upwelling, the
Gulf of Mexico, parts of the Southern Ocean along the coast
of East Antarctica, and the Sea of Okhotsk. However, these
increases are offset by large decreases in the North Atlantic
and Pacific, with a particularly intense band of decrease just
south of 20◦N (corresponding to where Chl, biomass, and
productivity decrease in Figure 6). The magnitude of changes
is generally larger in AREDI-400 than in AREDI-2400. A few

regions (for example the Ross Sea) see opposite-sign changes
in biomass.

The impact of quadrupling CO2 is much greater when we
focus on large phytoplankton biomass (Figures 8B,D). Both
the low- and high-mixing models show steep reductions in
large phytoplankton biomass throughout the North. Equatorial
current, moving into the Kuroshio current and south into the
East Australia Current. The effects can also be seen in the North
Atlantic current. However, the low-mixing model appears to
project larger reductions in the North Atlantic and the North
Pacific, whereas the AREDI-2400 model (Figure 8D) projects
regional decreases that are smaller due to greater persistence of
deep convection. The changes, however, are not found in the
center of the convective regions [which Pradal and Gnanadesikan
(2014) and Bahl et al. (2019) showed are found in the Northwest
Pacific] or the equatorial upwelling zones. Instead, the big drops
in biomass in the North Pacific are found at the edges of these
high nutrient regions. This is consistent with Oschlies (2002),
who found the gyre edges experience large relative changes
in nutrients.

To better understand these changes, we revisit Equation
(5), which shows that the biomass in BLING is regulated
by the product of a nutrient limitation term and a light
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FIGURE 7 | Changes in surface chemical properties for years 40–140 of high CO2 simulations. Solid lines represent changes under doubled CO2; dashed lines

represent changes under quadrupled CO2. (A) Phosphate (µM). (B) Dissolved iron (nM). (C) Alkalinity (µM). (D) Calcite supersaturation (non-dimensional).

limitation term. The spatial distribution of the changes in these
limitation terms under quadrupled CO2 is shown for AREDI-
400 and AREDI-2400 cases in Figure 9. Both models show
broadly opposite patterns of change for light and nutrient
limitation, such that regions with more light limitation have
less nutrient limitation and vice-versa. Different biological
limitations dominate in different regions. In the Arctic, reduction
of light limitation causes biomass and productivity to increase
in both models. By contrast, greater nutrient limitation is
likely responsible for the decreases in phytoplankton biomass
in the North Pacific and subpolar North Atlantic seen in
Figures 5, 8.

What gives rise to these different spatial patterns of
limitation? In the North Tropical Pacific, greater nutrient
limitation is primarily caused by a ∼50% drop in macronutrient
concentrations in the equatorial upwelling. Because
macronutrients are relatively high along the equator this
produces only a small change in nutrient limitation there,
but once the nutrients are moved away from the equator
they run out much more quickly in the 4xCO2 simulation.
The peak of easterly wind stress to the north of the equator
also drops by about 10% in the 4xCO2 case, resulting
in less advection of nutrient-rich water northward and
less upwelling of nutrient-rich water from below. These

changes are relatively similar across the simulations with
different AREDI.

In the subpolar North Pacific, macronutrient is brought up
on the northwestern corner of the basin, but is redistributed
by the subpolar gyre, with the lowest concentrations in the
east. In the AREDI-400 case, quadrupling CO2 reduces the
concentration to the west of the dateline in the latitude band
from 40 to 60◦N from 0.4 to 0.3µM (well above the half-
saturation coefficient of 0.1µM). However, to the east of 150◦W
in the same latitude band quadrupling CO2 produces a smaller
absolute change (from 0.034 to 0.014µM) but a significant
relative change both in nutrient and in the corresponding
limitation term. As a result, the relative decline in biomass is
much larger here.

By contrast, stronger light limitation (which is driven by
more cloudiness–not shown) is responsible for the declines
in biomass seen within the Southern Ocean. The somewhat
surprising result that nutrient limitation decreases in the
Southern Ocean in AREDI-400 is partly attributable to these
decreases in light, but also to enhanced winds leading
to more upwelling bringing more iron to the surface at
around 60◦S (see also Figure 7B). By contrast in AREDI-
2400, decreases in vertical mixing result in a reduced supply
of nutrients.
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FIGURE 8 | Relative changes (natural log of the quotient of the value in century-long climatology of the 4xCO2 run over the value in a century-long climatology of the

Control) in total phytoplankton biomass (left column) and large phytoplankton biomass (right column) for the AREDI-400 case (top row) and AREDI-2400 case (bottom

row). (A) Relative change in total phytoplankton biomass for the AREDI-400 case, (B) Relative change in large phytoplankton biomass for the AREDI-400 case, (C)

relative change in total phytoplankton biomass for the AREDI-2400 case, and (D) relative change in large phytoplankton biomass for the AREDI-2400 case. Small

values are effectively fractional changes. The color bar denotes the size of the logarithmic change, so that blue denotes lower biomass; green denotes higher biomass.

Mixing Is Important for Understanding
Indices of Interior Habitability in Both the
Control and Global Warming Simulations
Although uncertainty in mixing has a relatively small impact
on global-scale biological indicators in the surface layers, we
know from previous work that this is not necessarily true for
the ocean interior. Gnanadesikan et al. (2013) and Bahl et al.
(2019) demonstrated that mixing has a big impact on the
magnitude and climate sensitivity of oceanic hypoxia (defined
here as oxygen concentration >2 ml/l or 88µM). In this section
we extend this work to look at carbonate undersaturation,
which like hypoxia, occurs where the products of respired
sinking organic material are allowed to accumulate (Gobler and
Baumann, 2016). However, in contrast to hypoxia, the calcite
saturation state is a function of pressure (Zeebe and Wolf-
Gladrow, 2001), and thus will be more strongly affected by small
increases in remineralized nutrients and carbon at depth. We
also examine the linearity of the response of both parameters,
evaluating whether historical changes can be predicted by

large-amplitude increases in atmospheric carbon dioxide. Given
that the pre-industrial control models show relatively weak
sensitivity to mixing in their surface carbonate saturation state
(Figure 2D), surface concentrations of alkalinity (Figure 2C),
and particulate export (Figure 3D), we might expect that interior
differences in hypoxia and calcite undersaturation would also be
small across models.

In fact the range of depths experiencing either calcite
undersaturation or hypoxia is strongly affected by the value
of AREDI. This is particularly clear in the North Pacific where
observations (Figures 10A,B) show hypoxic waters occupying

as much as 2,000m of the water column, while calcite-
undersaturated waters occupy more than 4,000m in some

locations. High levels of calcite undersaturation are expected in
the North Pacific where the oldest deep waters with the largest

accumulation of acidic remineralized carbon are found. The

ability of the models to simulate these environments is not very
good and is sensitive to different rates of ventilation. In the
AREDI-400model hypoxic depth ranges up to 4,500m are found,
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FIGURE 9 | Relative changes (natural log of the quotient of the value in century-long climatology of the 4xCO2 run over the value in a century-long climatology of the

Control) in the ratio of the quadrupled CO2 case and the control for the nutrient limitation term (left column) and the light limitation term (right column) for the

AREDI-400 case (top row) and AREDI-2400 case (bottom row). (A) Nutrient limitation for the AREDI-400 case, (B) light limitation term for the AREDI-400 case, (C)

nutrient limitation for the AREDI-2400 case, and (D) light limitation term for the AREDI-2400 case. As the growth rate is the product of these terms, low values mean

higher limitation, so that blue denotes lower nutrients or lower light while green denotes higher nutrients or higher light.

but the highest values are found in the Eastern Pacific, as well

as a second intense center in the Bay of Bengal. By contrast, the
high-mixing case (AREDI-2400) simulates a significantly smaller
hypoxic volume with a depth range that does not exceed 2,000m,
shown in Figure 10E. This is a somewhat of a common bias
amongst models (Gnanadesikan et al., 2013; Cabré et al., 2015b;
Bahl et al., 2019). The global volume of calcite-undersaturated
waters (Figures 10D,F) is somewhat better simulated in AREDI-
400, though the volumes in the subpolar North Pacific are too
small and those in the equatorial Pacific too large. The AREDI-
2400 model also simulates a significantly smaller volume of
calcite-undersaturated water in both regions.

Changes in the global volume of hypoxic and calcite-
undersaturated waters are very sensitive to the parameterization
of mixing, and deviate from perfect linearity. As shown in
Figure 11A, hypoxic volume expands the most for the AREDI-
400 model under 2xCO2 and actually contracts in the AREDI-
1200 models [also reported in Bahl et al. (2019)]. A novel result
in this paper is our finding that changes in hypoxic volume
cannot simply be scaled down from the 4xCO2 cases. Doing

so underestimates the change in hypoxic volume in the 2xCO2

case for all the cases other than AREDI-1200 (gray bars in
Figure 11A are smaller than the blue bars). For AREDI-1200,
hypoxia expands slightly in the 4xCO2 case but shrinks in the
2xCO2 case. The fact that it is difficult for ESMs to consistently
reproduce the observed trends of hypoxic water expansion,
particularly in the tropical OMZs (Bahl et al., 2019), may in
part stem from this underlying non-linearity [though as noted
by Andrews et al. (2017), other mechanisms such time-varying
stoichiometry may also play a role].

The global volume of calcite-undersaturated water shows a
different pattern of change in Figure 11B, with undersaturated
waters increasing for all of the values of AREDI in both the
2xCO2 and 4xCO2 simulations. The biggest increases in global
calcite undersaturation are seen for AREDI-2400, which predicts
929 Mkm3 of undersaturated water in the 4xCO2 case, an
80% increase from 513 Mkm3 volume in the pre-industrial
control simulation. By contrast, the AREDI-400 case shows an
undersaturated water volume of 654.2Mkm3 under doubling and
816Mkm3 under quadrupling vs. 584Mkm3 in the pre-industrial
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FIGURE 10 | Influence of mixing coefficient on mean-state hypoxia and calcite undersaturation. (A) Observations, taken from Bianchi et al. (2012), of depth of water in

m column occupied by hypoxic waters and (B) observations from GLODAP (Lauvset et al., 2016) of the depth of the water column in m over which calcite

undersaturation is found. (C) Hypoxic depth range for low-mixing model AREDI-400, (D) depth range of calcite undersaturation for low-mixing model AREDI-400, (E)

Hypoxic depth range for high-mixing model AREDI-2400, and (F) depth range of calcite undersaturation for high-mixing model AREDI-2400.

control. Note that in contrast to the hypoxic volume, the 4xCO2

calcite undersaturation change overpredicts the 2xCO2 change
for all values of mixing.

The spatial pattern of changes in calcite undersaturation are
shown in Figure 12 for the AREDI-400 and AREDI-2400models.
Both models show an increase in the volume of undersaturated
water in the North Pacific, qualitatively consistent with recent
observational trends (Feely et al., 2004). In AREDI-2400 the
impact of a collapse in deep convection is clearly seen, with
depths of calcite undersaturation expanding by over 2,000m.
The AREDI-400 model has much smaller changes in the
Pacific, but actually shows larger changes in the Southeast
Atlantic. Due to a lack of accumulation of respired CO2 the
North Atlantic remains supersaturated in all four runs. In the
Indian Ocean, the depths of calcite undersaturation expand
as both CO2 and mixing increase. These differences suggest

that calcite undersaturation is one field for which uncertainty

in AREDI may contribute strongly to uncertainties in future

projection–with important implications for deep-sea organisms

(Bach, 2015).

Convection Explains Why Subpolar Gyres
and Interior Habitability Behave
Non-linearly and Are Sensitive to Mixing
We have seen that in our model suite global measures of
surface ecosystem function, in particular chlorophyll, are at most
moderately sensitive to changes in mixing and vary relatively
linearly with radiative forcing. However, interior measures of
habitability such as hypoxia and calcite undersaturation aremuch
more sensitive to mixing and vary non-linearly, just as subpolar
changes in ecosystem cycling do. Moreover, we see that the
volume of calcite-undersaturated water increases under global
warming for all of our models, despite a decrease in export.

We can reconcile these apparently contradictory results by
noting that the degree to which interior waters are low in
oxygen and carbonate ion is not solely determined by the rate
which oxygen and carbonate ion are consumed as a result of
remineralization. It is also controlled by the amount of time
over which remineralization is allowed to accumulate–the age
of the water. The age is inversely related to the rate of vertical
exchange in high latitude regions and thus is tightly linked to
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FIGURE 11 | Absolute changes in the volume of hypoxic waters (A) and

waters undersaturated with respect to calcite (B) in Mkm3. Blue bars show

response under 2xCO2. Gray bars show half of the response under

4xCO2-differences from blue bars show lack of linearity.

the magnitude of convection in the subpolar gyres. As discussed
in Bahl et al. (2019), the increase in age under global warming
explains the changes in interior oxygen under 2xCO2 cases–
overwhelming the impact of declining export. Figure 11B tells us
this must be true for calcite undersaturation as well.

One way of characterizing the changes in age is by looking at
114C, which is insensitive to biological cycling. Low gradients
in 114C between the surface and 1,500m imply relatively
rapid vertical exchange. As illustrated in Figure 13A, the North
Pacific in the pre-industrial control simulation looks very
different across our model suite. The AREDI-400 model has
a vertical gradient over the top 1,000m that is relatively close
to the observed estimate from Key et al. (2004). The higher
mixing models (AREDI-1200, AREDI-2400, ABER2D, and
ABERZONAL) all simulate very low gradients of radiocarbon,
implying unrealistically rapid vertical exchange. The AREDI-
800 model (red line, Figure 13A) lies in between these
two extremes.

Global warming causes increases in the vertical gradient
of 114C but does not do so identically across models. In
the 2xCO2 simulations (Figure 13C), the vertical gradient
increases most sharply for the AREDI-800 simulation, which
as previously illustrated in Figure 5 shows the largest relative
decline in chlorophyll, biomass, productivity, and export under

this scenario. AREDI-1200 and ABER2D show a smaller increase
in vertical radiocarbon gradient in the North Pacific in Figure 13

and a smaller decrease in surface biological cycling in Figure 5

(gray and blue bars). Under 4xCO2, the biggest changes in
the North Pacific radiocarbon gradient are seen in AREDI-
1200 and ABER2D, which then also show the biggest relative
drops in biological cycling in Figure 5. In the North Atlantic,
by contrast, the largest changes in vertical radiocarbon gradient
between the pre-industrial control and the 2xCO2 case occur
in the ABERZONAL and AREDI-400 cases, while AREDI-
800 is relatively unchanged. It is thus unsurprising that it is
the AREDI-400 and ABERZONAL cases that show the largest
relative drops in biological cycling within subpolar North
Atlantic (Figure 5).

The reasons for the changes in convection are complex
and regionally dependent. As discussed in Bahl et al. (2019),
an increased hydrological cycle under global warming acts to
decrease the density of high latitude surface waters reducing
convection. On the other hand, reduction in sea ice (which occurs
across all the models for both hemispheres under both scenarios),
exposes more open water in the wintertime, leading to more
heat loss and increasing the potential for convection. Finally,
because the overturning in the North Hemisphere involves a
transformation of light to dense water which must balance
the transformation of dense to light water in the Southern
Hemisphere, the decline in the overturning in the North Pacific
can be counterbalanced by the increase in the North Atlantic.
A full discussion of these processes is beyond the scope of
this paper.

DISCUSSION

A key part of applying ESMs to ecology (a primary goal of
this special issue) is understanding where, when and why model
responses will be non-linear. This work has focused on the extent
to which uncertainty in the parameterization of lateral mixing,
which has major impacts on the distribution and sensitivity of
deep convection, can propagate into uncertainty in simulating
ecosystem functioning and habitat distribution.

Before discussing the impact of mixing in more detail, we
show that our estimates of changes in biological cycling are
broadly consistent with those seen in the literature, although
the decreases under global warming may be significantly larger
or smaller than those seen in individual models. On the one
hand, our 12–16% drops in Chl under 4xCO2 are much
smaller than the projected 50% decline in Chl associated with
a 6◦C increase in temperatures by Hofmann et al. (2011)
in an intermediate complexity ESM. This is true even when
the Chl change in Hofmann et al. (2011) is scaled down by
a factor of two to match our changes in temperatures. On
the other hand, the ∼16% drops in surface biomass under
4xCO2 are more extreme than the ∼8% drop in biomass
seen in two climate models for the RCP8.5 scenario by Lotze
et al. (2019). Also using the RCP8.5 scenario, Bopp et al.
(2013) reported declines in global primary production ranging
from 0.9 to 16.1% (with mean of 8.6%) and Heneghan et al.
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FIGURE 12 | Change in the vertical extent of the water column over which calcite undersaturation is found for the 2xCO2 (A,C) and 4xCO2 (B,D) simulations for the

AREDI-400 simulations (top row) and AREDI-2400 simulations (bottom row).

(2019) presents a global decline of 5%. Our changes of 4%
under doubling and 8% under quadrupling lie well within
this range. Similarly, our changes in particle export of 5–
6%/degree lie within the 3–15%/degree warming reported in
Cabré et al. (2015a).

The fact that our estimates for the decline in global Chl,
biomass, primary production and export cluster around a
relatively small range compared to other estimates in the
literature suggests that the range of responses in CMIP5
models is due to something other than lateral mixing. Although
neglected in our model, one possible driver is the differential
metabolic responses of phytoplankton and zooplankton to
temperature. Taucher and Oschlies (2011) compared a model
in which phytoplankton and zooplankton had the same
temperature dependence and one where they had different
temperature dependences. Under global warming the change
in primary production had different signs in the two models,
even though the changes in export were relatively consistent.
Kwong and Pakhomov (2017) argue that capturing particle
cycling and export may require letting respiration (and thus
the effective grazing rate) be dependent on both zooplankton
size and temperature and that the effective temperature for
vertically migrating zooplankton may differ from that of their

phytoplankton prey. Further investigation of such processes
is critical.

Regionally, the representation of lateral mixing can make a
big difference in the magnitude of change. This is especially
apparent for biomass, primary productivity, and export in the
subpolar regions. Eddy mixing may help explain the variance
(ranging from a small rise of 5% to decline of 20%) in productivity
changes found by Cabré et al. (2015b) in subpolar regions within
the CMIP5 models under the RCP8.5 scenario. Subpolar regions
in the Northern Hemisphere also show a strong non-linear
response to warming, with 4xCO2 simulations failing to capture
the response at 2xCO2. Studies using the output of ESMs to
attribute changes in the subpolar gyres need to be aware of
these behaviors. While ecologists should always be careful of
using projections from a single ESM, this is especially true in
such convective regions. Robust fingerprints of global warming
impacts on ecosystems could only be found within the tropics.
Even here, one can find results within the literature that disagree
with our estimates of anthropogenic impacts. For example,
Roxy et al. (2016), argued that higher sea surface temperatures
have already been associated with a mean decrease of 20% in
primary productivity with the Indian Ocean, much larger than
the changes we find under 2xCO2.
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FIGURE 13 | Profiles of radiocarbon relative to its surface value in the subpolar North Pacific and North Atlantic across our model suite. Observational estimates of

pre-bomb radiocarbon from Key et al. (2004) are shown for the North Pacific with the symbols. For the North Atlantic the methods used to remove the signal of

atmospheric nuclear testing do not work as well, and the deep ocean ends up having a higher radiocarbon concentration than the surface-a physically nonsensical

result. For this reason we do not show the Key et al. (2004) estimates for this region. Top row shows the pre-industrial control simulations, middle row the 2xCO2

simulations and bottom row the 4xCO2 simulations. All model results are from century-long averages. (A) North Pacific, Control (B) North Atlantic, Control (C) North

Pacific, 2xCO2 (D) North Atlantic, 2xCO2. (E) North Pacific, 4xCO2 (F) North Atlantic, 4xCO2.

The relationship between surface nutrients and zonally
averaged biomass is not simple. This is because changes in
biomass are much more sensitive to small absolute changes
in nutrients at levels that are lower than the half-saturation
coefficients for growth than to larger absolute changes at levels
higher than these same half saturation coefficient. For example,
the average zonally-averaged macronutrient concentrations in
the pre-industrial control simulation at ∼40◦N are ∼0.4µM
in AREDI-400 and 0.7µM in AREDI-2400 (Figure 2), far
higher than the half-saturation coefficient of 0.1µM. A drop of
0.25µM under quadrupling in AREDI-400 shifts the modeled
phytoplankton into a macronutrient-limited regime, whereas
the somewhat larger drop in AREDI-2400 still leaves the
macronutrient concentration well above the half-saturation
coefficient. As a result larger changes in biomass are seen in
AREDI-400 than in AREDI-2400 along the edges of high nutrient
zones (Figure 7B). This phenomenon is also seen across the
CMIP5 models in Cabré et al. (2015a, see their Figure 8).

Similar behavior is found with respect to iron in the Southern
Ocean. Described as the largest high nutrient, low chlorophyll
(HNLC) province in the world (Deppeler and Davidson, 2017)
the Southern Ocean is known to be highly limited by iron
(Boyd et al., 2004; Blain et al., 2007). In our model suite, iron
follows chlorophyll and biomass by showing a slight increase
under global warming in AREDI-400 and AREDI-800, but
a decrease in AREDI-1200 and AREDI-2400. Although the
differences in dissolved iron within the Southern Ocean in
Figure 7B are relatively small across the models, the background
iron concentrations (Figure 2B) are lower than the 0.2µM half-
saturation coefficient KFe. As a result, these small intermodel
differences in the change in iron concentration can help
explain the intermodel differences in the change in biomass
and productivity.

Deeper within the water column (>300m) the volume of
waters that are hypoxic and/or undersaturated with respect to
calcite vary significantly across models, and are very sensitive
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to the value of AREDI. Larger changes in calcite undersaturation
are found in high-mixing models containing excessive deep
convection that ceases under global warming as the surface water
freshens. Previous work in Bahl et al. (2019) suggests that many
CMIP5 models overestimate convection in high-mixing regions
such as the North Pacific. However, in our suite such high-mixing
models have relatively weak changes in hypoxic water volume
under either doubling or quadrupling of CO2 suggesting that
changes in 4xCO2 will not produce a robust fingerprint. That
carbonate undersaturation and hypoxia behave so differently
is particularly interesting as regional particle export declines
regardless of the AREDI parameter. The difference between the
two fields highlights how variation in AREDI produces different
sensitivities of the ventilation at different depths to warming.

Our results also demonstrate that using ESMs to project
biogeochemical changes requires constraining the turbulent
diffusion coefficient in order to give realistic results. We
emphasize that our results do not necessarily define the “correct”
values to use. As discussed in Bahl et al. (2019), different
models in our suite end up as the “best performers” when
compared against different observational metrics. For example,
our most “realistic” distribution of AREDI (ABER2D) produces
unrealistic deep convection in the Northwest Pacific in its control
simulation, leading to an unrealistic simulation of hypoxia and
calcite undersaturation, but a more realistic distribution of
surface nutrients. This is likely because of compensating errors,
the model is only weakly iron-limited in the subpolar gyre
relative to observations (e.g., Nishioka, 2007) and thus the more
realistically low levels of convection in AREDI-400 result in
excessively low surface nutrients.

Efforts to generate dynamically consistent parameterizations
of AREDI that vary in space and time are ongoing, but have not
yet been incorporated into models actually used for projecting
the future evolution of the Earth System. Fox-Kemper et al.
(2019) present a summary of some of the issues involved. Major
problems include how to limit length scales and thus the mixing
coefficient in the presence of ocean boundaries, how to deal
with locations where eddies are growing and decaying and how
to capture mixing at different spatial scales. Our work does
suggest two key features of such parameterizations will be the
suppression of isopycnal mixing within the core of currents
[as found by Abernathey and Marshall (2013) but not in our
version of the model in the North Pacific due to the location of
the Kuroshio being offset southward] and how it interacts with
convective regions. Moreover, we believe our results demonstrate
that one should examine convectivemixing and its relationship to
AREDI as a key uncertainty that has the potential to explain large
differences across ESMs, as the range of constant values used here
is comparable to that used in CMIP5.

Despite the complexity of our ESM, a number of caveats
are still in order. First, our model suite is run at a relatively
coarse resolution relative to CMIP5 and CMIP6 models. As
such, while we expect the qualitative sensitivities found in this
study to hold in higher-resolution models, it is likely that
the exact “tipping points” where convection shuts off may
be different. Additionally, as noted by Leblanc et al. (2018),
uncertainties relating to how to classify phytoplankton in models

have first order implications on projecting long-term impacts
to biogeochemical processes–our model has a relatively small
number of functional groups. Our model assumes that “a
rising tide lifts all phytoplankton.” While there is evidence for
this from iron fertilization experiments (Barber and Hiscock,
2006) and studies across ecosystems (Brewin et al., 2017), other
studies indicate that different functional groups may trade off
against each other (Rivero-Calle, 2016). Finally, our model only
considers the impact of AREDI in transporting nutrients and
affecting physical stratification on the large scale–biogeochemical
fields, which are assumed to be homogeneous within each
grid box. In real life, eddies may produce small-scale changes
associated with frontogenesis and the formation of filaments
that are also reflected in biological cycling (Lévy et al., 2012).
Further data collection to characterize such small-scale variability
remains necessary to improve our understanding of how to link
changes in the physical environment to biological cycling and
particle export.
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The global ocean is commonly partitioned into 4 biomes subdivided into 56
biogeochemical provinces (BGCPs) following the accepted division proposed by
Longhurst in 1998. Each province corresponds to a unique regional environment that
shapes biodiversity and constrains ecosystem structure and functions. Biogeochemical
provinces are dynamic entities that change their spatial extent and position with climate
and are expected to be perturbated in the near future by global climate change. Here,
we characterize the changes in spatial distribution of BGCPs from 1950 to 2100 using
three earth system models under two representative concentration pathways (RCP 2.6
and 8.5). We project a reorganization of the current distribution of BGCPs driven mostly
by a poleward shift in their distribution (18.4 km in average per decade). Projection of
the future distribution of BGCPs also revealed the emergence of new climate that has
no analog with past and current environmental conditions. These novel environmental
conditions, here named No-Analog BGCPs State (NABS), will expand from 2040 to
2100 at a rate of 4.3 Mkm2 per decade (1.2% of the global ocean). We subsequently
quantified the potential number of marine species and annual volume of fisheries
catches that would experience such novel environmental conditions to roughly evaluate
the impact of NABS on ecosystem services.

Keywords: physical oceanography, marine biogeography, pelagic environment, novel ocean climate,
environmental niche model

INTRODUCTION

The biosphere is partitioned according to well-defined biomes corresponding to unique sets of
physical, chemical and biological conditions. On land, biomes such as “desert,” “mountain,” or
“forest” can be delineated by environmental variables such as temperature, precipitation and
altitude (Peel et al., 2007; Sayre, 2014). Similarly, the ocean has been subdivided in various ways,
using either expert opinion or data driven methods based on both biotic and abiotic components
of the marine realm (Kavanagh et al., 2004; Oliver and Irwin, 2008; Reygondeau and Dunn, 2018).
The widely accepted system of ocean provinces elaborated originally by Longhurst (2007) covers

Frontiers in Marine Science | www.frontiersin.org 1 October 2020 | Volume 7 | Article 657119

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2020.00657
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2020.00657
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2020.00657&domain=pdf&date_stamp=2020-10-15
https://www.frontiersin.org/articles/10.3389/fmars.2020.00657/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00657 October 15, 2020 Time: 15:24 # 2

Reygondeau et al. Novel Ocean Biogeochemical Province

both open ocean and coastal zones. Two levels structure
Longhurst’s province system. The first one distinguishes coastal
and open ocean areas and subdivides them into temperate,
tropical and polar biomes. The second sub-divides each of the
coastal and oceanic biomes into oceanographically, ecologically
and topographically homogeneous regions. This results in 56
distinct biogeochemical provinces (BGCPs) that have been shown
to be closely related to global patterns in marine biodiversity
(Pauly, 1999; Beaugrand et al., 2000), ecosystem functions and
services such as fisheries productivity (Chassot et al., 2011;
Demarcq et al., 2012; Reygondeau et al., 2012).

While the relevance of Longhurst’s BGCPs to partition the
ocean into homogeneous environmental and ecological regions
has been established (Reygondeau et al., 2012), their delineation
has been modified to improve their representativeness of the
biogeography of diverse biological communities (Reygondeau
et al., 2013). Specifically, Reygondeau et al. (2013) have shown
how seasonal and inter-annual climate variability – such as such
as such as El Niño Southern Oscillation (ENSO) event– modifies
BGCPs’ boundaries and drives their reorganization.

Climate change is expected to lead to drastic changes in
ocean conditions. Oceans have already absorbed more than
93% of the heat resulting from the accumulation of greenhouse
gases. They are rapidly getting warmer, less oxygenated (Gattuso
et al., 2015) and changes in the seasonality of oceanographic
conditions have already been reported. These oceanographic
changes will alter the delineation and location of the BGCPs.
Notably, some variables are expected to reach levels that are
beyond those observed in recorded history (Froelicher et al.,
2016). As a result, existing BGCPs might not be able to
characterize regions where changes are projected to exceed the
range of past observations. Such “novel” climatic zones have
already been identified in the terrestrial realm. They have also
been reported during marine heatwaves (Frölicher et al., 2018;
Oliver et al., 2018).

In this study, we test the hypothesis that climate change
might result in a large-scale bio-geographic re-organization of
the oceans accompanied by the emergence of novel BGCPs.
In particular, we examine the extent to which these novel
BGCPs might overlap with marine biodiversity and fisheries
(Cheung et al., 2016b; Cheung, 2018). For this purpose, we
use the numerical approach described in Reygondeau et al.
(2013) to analyze projected ocean conditions from three Earth
System Models (ESM; Institut Pierre Simon Laplace, Max
plank Institute and Geophysical Fluid Dynamics Laboratory
models) under two climate change scenarios (the “strong
mitigation” Representative Concentration Pathway, or RCP
2.6, and “business-as-usual” RCP 8.5). For each ESM and
RCP scenario we calculate the projected annual average
distribution of each BGCP from 1950 to 2100. We then
identify regions that are characterized by novel combinations
and levels of oceanographic variables and that have therefore
never been observed historically. We name these novel
BGCPs No Analog Biogeographical State regions (NABS). We
quantify the timing of NABS emergence and evaluate the
potential consequences on marine biodiversity and key marine
ecosystem services.

MATERIALS AND METHODS

Environmental Data
The ocean properties that we used to delineate the BGCPs
from 1950 to 2100 were based on outputs from three ESMs.
They include annual average surface (average between 0
and 10 m)and bottom sea water temperature (◦C), oxygen
concentration (ml.L−1), salinity, pH, surface net primary
production (mgC.km2.year−1),particulate organic carbon
concentration (mgC.km2.year−1) and sea ice coverage
(%). These data have been simulated by the Geophysical
Fluid Dynamics Laboratory Earth System Model (GFDL
ESM2M), the Institut Pierre Simon Laplace Climate
Model (IPSL-CM5-MR) and the Max Planck Institute for
Meteorology Earth System Model (MPI-ESM). They were
made available through the Coupled Model Intercomparison
Project phase 5 (CMIP5; Taylor et al., 2012). The ESM
outputs were re-gridded onto a regular grid of 0.5◦ of
latitude by 0.5◦ of longitude using the nearest neighbor
method and values in coastal cells were extrapolated using
bilinear extrapolation. In addition, annual climatologies
of euphotic depth (Morel et al., 2007), mixed layer depth
(de Boyer Montégut et al., 2004), and bathymetry (Smith
and Sandwell, 1997) were also used to delineate BGCP
boundaries. These variables were gathered from observations
and are here used to optimize the quantification of the
environmental envelopes of specific BGCPs such as frontal
oceanic systems, coastal regions or boundary of oceanic
subtropical gyres.

The ESM outputs for the future period (2006–2100) were
simulated under RCP 2.6 and RCP 8.5. The RCP 2.6 is a
lower emission “strong mitigation” scenario under which the
radiative forcing trajectory peaks at 3 W.m−2 before 2100
and then is followed by a decline to 2.6 W.m−2 by 2100.
The RCP8.5 is a high emission “business-as-usual” scenario
with a rising radiative forcing pathway leading to 8.5 W.m−2

by 2100.

Modeling the Geography of BGCPs
To delineate the BGCPs’ boundaries for each year from 1950
to 2100, we applied the numerical approach described in
detail in Reygondeau et al. (2013). The approach quantifies
the environmental envelopes of each BGCP based on the
variables described above and projecting their future spatial
distribution (Figure 1). First, the spatial coordinates of
the boundaries for each BGCP as defined by Longhurst
(2007) were retrieved (Figure 1A). Second, to include the
monthly variation of each variable and characterize the
discrete set of environmental conditions that characterize each
BGCP, we obtained monthly values of the ESM outputs for
each variable and spatial cell in each BGCP for the time
period January 1970 to December 2000. This time period
represents the timeframe over which the BGCP delineation
was defined originally. We here used all environmental
variables (surface and bottom) for BGCP located in the
coastal biome and only surface environmental variables for
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FIGURE 1 | Distribution of the 56 BGCPs: (A) according to Longhurst (2007); and for (B) the average period 1970–2000, (C,D) for 2040–2060, and (E,F) 2080–2100
under representative concentration pathway 2.6 and 8.5, respectively. Distributions of each province were averaged across the three Earth System Models and three
Environmental Niche Models. Each color represents a BGCP. Color coding refers to panel (A). Acronyms of each BGCP can be found in Supplementary Table 1.

BGCP located in the tropical, temperate and polar biomes
(see Supplementary Table 1). We obtained 56 matrices of
environmental properties (one for each province) named Xn1,p,z
(n1 = 360 months, p = x environmental variables, z = number
of geographical cells of the selected province). Third, we
quantified the environmental envelope of each BGCP using
three environmental niche models (ENM): Non-Parametric
Probabilistic environmental niche model (Beaugrand et al., 2011),
Maxent (Phillips et al., 2004), and boosted Regression Trees
(Elith et al., 2008). We treated spatial cells included in each
distinct BGCPs as a set of “occurrence records” analogous
to species distributions and applied each ENM to model the
environmental envelopes of each BGCP. We applied a multi-
model ensemble approach to capture the uncertainty associated
with the different numerical methods. Finally, we computed
the time-dependent spatial distributions of the probability of
occurrence (values ranging between 0 and 1) of each BGCP
from the annual average ENM outputs for each ESM and
each RCP scenario. Global BGCP division is then identified
by attributing the geographical cell to the BGCP with the

highest probability of occurrence for each year in each
geographical cell and year.

Comparing Predictions With
Observations
We compared the spatial distribution of and temporal fluctuation
in the BGCPs predicted from ESM outputs with the ones
gathered using observed environmental variables in Reygondeau
et al. (2013). To harmonize the two sets of BGCP predictions,
the BGCP distributions were averaged annually over the same
period (1998–2007) and regridded using the nearest neighbor
method on a 1◦

×1◦ spatial grid (original spatial grid used in
Reygondeau et al., 2013). We first performed a spatial correlation
of the average probability of presence from 1998 and 2007
to evaluate the level of congruence between observed and
modeled BGCPs. We then performed a temporal correlation of
the standard deviation of the probability of occurrence for the
period 1998–2007 for each BGCP. Results from the analyses
were used to evaluate the ability of ESM outputs to represent
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the temporal variability of the probability of a given BGCP
(Supplementary Figure 1).

Geographical Trends
For each BGCP, we calculated changes in two geographical
indices over time and compared the results between climate
change scenarios. First, we calculated the annual centroid of each
BGCP as the average coordinates of the center of the spatial cell
belonging to a BGCP weighted by the value of the probability of
occurrence of the same BGCP in the analyzed cell (Figure 1).
Second, we calculated the total area covered by each BGCP
based on the sum of area of the spatial cells belonging to the
a given BGCP for each year. We calculated these indices using
the ensemble average BGCP distributions across ESM and ENM
under each RCP from 1950 to 2100. We then evaluated the
latitudinal shifts and changes in total area of the BGCP from
1950 to 2100 (relative to the average of 1970–2000) under RCP
2.6 and RCP 8.5.

Identification of No Analog
Biogeographical State
No-Analog BGCPs State (NABS) represents a multi-
environmental range of condition that has not been encountered
during the training set period (1950–2000) across the BGCPs.
More precisely, a NABS set of environmental conditions
is significantly different from all possible environmental
combinations encountered from 1950 to 2000 and used to
inform the multi variable environmental envelopes of the 56
BGCPs. Numerically, NABS are characterized by spatial cells
exhibiting a null probability of occurrence for all of the 56
Longhurst BGCPs. We then quantified NABS distribution and
coverage by delineating their annual boundaries and total area
for each ESM and RCP. We identified the year at which a
spatial cell first became a NABS and attributed a confirmed
NABS location if the environmental conditions are similar (Null
probability of original and spatially surrounding BGCPs) for
more than five consecutive years for a given ESM and RCP
pathway. We subsequently mapped the distribution of NABS as
the 2/3 agreement between the 3 ESMs over time.

Assessing the Potential Impacts of NABS
on Biodiversity and Ecosystem Services
The exposure to novel ocean conditions in NABS might
seriously challenge the viability of marine species currently
inhabiting those areas, thus leading to substantial species
turnover, changes in catch composition, and declines in potential
fisheries production (Cheung et al., 2016b). To evaluate the risk
that the emergence of NABS may pose to marine biodiversity and
ecosystems services, we calculated the number of marine species
and the annual volume of fisheries catches that will be exposed to
NABS conditions. For marine exploited biodiversity, we collated
the global gridded marine species richness dataset (Gagné et al.,
2020) and added several other exploited species distributions
from the Sea Around Us1 and species used in Asch et al. (2017).

1www.seaaroundus.org

This dataset included 1,105 species ranging from invertebrate
to top predator. We extracted average annual total fisheries
catch (average between 2001 and 2015) from the Sea Around Us
database. Both datasets were in the 0.5◦ latitude × 0.5◦ longitude
grid consistent with the ocean conditions and BGCPs data. We
then computed the number of species and total annual catch in
spatial cells characterized as NABS for each year between 2000
and 2100 across ESMs and RCPs.

RESULTS

We projected that 26–39% of BGCPs will expand their area, while
between 61 and 74% will shrink in size by 2100 under RCP 2.6 and
8.5, respectively (Figures 1, 2 and Supplementary Tables 1, 2),
due to changes in environmental conditions (Supplementary
Figure 2). Specifically, the tropical BGCPs were projected to
expand while the temperate BGCPs were projected to contract
by losing area on their tropical side, without compensation via
poleward expansion. The two polar BGCPs were projected to
shrink in size. This redistribution of BGCPs was moderate by
2050, but projected to be substantial by 2100 under RCP 8.5.
The level of such redistribution was found to be more important
over the Indo-Pacific basin with a high spatial perturbation
located around the warm pool and monsoon provinces (WARM
and MONS; Figure 1 and Supplementary Table 1), altering
the position of all neighboring BGCPs that tend to move
poleward. The change in the distribution can be attributed
to changes in SST, pH, salinity and oxygen concentration in
the open ocean regions and to mainly NPP and Sea Bottom
Temperature in the coastal biome (Supplementary Figure 2).
Notably, we projected the emergence of a large area of NABS
in tropical regions by the end of the 21st century under RCP
8.5 (Figure 1).

We projected significantly higher rates of poleward centroid
shifts and changes in total area of the BGCPs under RCP 8.5
compared to RCP 2.6 (Figure 2). The average projected rate of
poleward shift across the 56 BGCPs was 0.36 ± 0.66 km.year−1

(average and standard error) and 1.83 ± 1.99 km.year−1

under RCP 2.6 and RCP 8.5, respectively. ARAB (Arabian
sea, 10.99 ± 0.81 km.year−1), NADR (North Atlantic Drift
Region, 6.28 ± 4.72 km.year−1), and SATL (South Atlantic gyral
province, 5.63 ± 3.45 km.year−1) were the BGCPs exhibiting
the strongest shift in their centroid (Figure 2). The ARAB
shift would translate into a move north up to a 1,180 km by
2100. In contrast, the ISSG (Indian ocean South Subtropical
Gyre province)and BRAZ (Brazilian coastal province) BGCPs
did not shift, keeping their centroid locations constant (rate
of shift of 0.02–0.05 km.year−1). Biogeochemical provinces
that were projected to expand the most were SARC (Sub
atlantic ARCtic province; 1.98%.year−1), CNRY (1.52%.year−1)
and NECS (NorthEast Atlantic Continental Shelve province,
1.08%.year−1) – effectively doubling or more in size by
2100 – while PEQD (Pacific EQuatorial Divergence province, -
1.10%.year−1), ARCT (ARCTic province, -11.09%.year−1) and
NADR (North Atlantic Drift Region, -11.09%.year−1) were
expected to shrink substantially.
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FIGURE 2 | Bar plot of the mean latitudinal change of the BGCPs’ centroid (in km.year−1) and percentage of BGCPs area change by 2100 compared to the
1970–2000 reference period (in % .year−1) under RCP 2.6 and 8.5. The color code as well as acronyms are the same as Figure 1A.

To highlight the different categories of spatial changes
registered by the BGCPs, we describe here examples of the three
classes of projected change BGCPs may undergo: (1) poleward
shift (North Atlantic Drift Region, NADR), (2) expansion with
no spatial shift (North Atlantic Tropical Region, NATR), and
(3) no specific change in size or location (Chilean coast, CHIL)

(Figure 3). The probability of occurrence of the NADR province
was projected to decrease sharply at the southern portion of its
distribution towards the end of the 21st century under RCP 8.5,
with the area between the Greenland Sea and Norwegian Sea
displaying more NADR-like conditions over the course of this
period. Hence, the overall location of this BGCP is projected to

Frontiers in Marine Science | www.frontiersin.org 5 October 2020 | Volume 7 | Article 657123

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00657 October 15, 2020 Time: 15:24 # 6

Reygondeau et al. Novel Ocean Biogeochemical Province

FIGURE 3 | Spatial distribution of the probability of occurrence of the following three BGCPs: North Atlantic Drift region (NADR), North Atlantic Tropical Region
(NATR) and Chilean coast (CHIL). Mean ESMs and ENMs distribution of each province for the period 1970–2000, 2040–2060, and 2080–2100 are represented for
both RCP 2.6 and 8.5.

shift northward. For NATR (North Atlantic Tropical Region),
the BGCP boundary is projected to expand northward and
southward into the Atlantic Ocean, while the probability of
occurrence of the NATR province shows only a slight decline
by the end of the century under RCP 8.5. For the CHIL BGCP,
the projected boundary and probability of occurrence remained
relatively stable under all scenarios.

We identified the emergence of a NABS in large areas of the
western tropical Pacific Ocean, eastern tropical Indian Ocean
and eastern tropical Atlantic Ocean (Figure 4). The earliest
emergence of a NABS region (across all 3 ESMs) was projected
to occur in the tropical south Pacific Ocean in the 2040s, under
RCP 8.5. This NABS region was projected to grow very rapidly
during the 2050s and 2060s, extending into the eastern Indian
Ocean and emerging off the coast of tropical west Africa in the
2070s and in the Caribbean in the 2080s. In contrast, under
RCP 2.6, the emergence of NABS occurs on average one decade
later than under RCP 8.5 in the same general areas. NABS
projected size by the end of the 21st century is on average 11.9%
of projections under RCP 8.5. NABS regions are characterized
by high SST, low oxygen concentration and low NPP or low
pH and low NPP conditions compare to the reference period
(Supplementary Figure 3).

We projected that a substantial proportion of global marine
diversity and fisheries catches are presently located in regions
where NABS are projected to develop. Under RCP 8.5,
18.97 ± 6.05% in 2050 and 59.49 ± 4,08% in 2100 of the total
number of exploited marine species considered here (N = 1,105
species) will be exposed to the expansion of NABS regions. These
NABS regions are indeed projected to develop in areas with high
seafood dependence [in terms of calories and nutrition (Golden
et al., 2016)] with relatively low adaptive capacity (Blasiak et al.,

2017) and high exposure to simultaneous losses in terrestrial food
production capacity. The proportion of global marine fisheries
catches (average between 2001-2011) caught in areas of predicted
NABS in 2050 and 2100 are 7.87 ± 3.94% and 30.39 ± 5.32%,
respectively, under RCP 8.5. The projected exposure to NABS was
much lower under RCP 2.6, with only 15% of exploited species
and 5% of total catch in NABS areas by the end of the 21st century.
The difference in trajectories in regards to NABS between RCP
2.6 and RCP 8.5 became significantly larger than the inter-ESM
variability after the end of the 2040s.

DISCUSSION

This study supports the hypotheses that climate change will
deeply affect the biogeography of the global ocean, and lead
to the emergence of biomes with no historical analog. At the
global scale, we predict that trade wind provinces will expand
(Staten et al., 2018), with the distribution of several westerly
wind provinces migrating poleward. This evolution will be driven
mostly by the poleward extension of warm surface waters, pH,
oxygen concentration, and NPP (Supplementary Figure 2).
Warming of the tropics will drive a poleward migration of
the BGCPs (Figure 1 and Supplementary Figure 2) with the
polar provinces progressively shrinking over time and being
concentrated at the highest latitudes. These biogeographical
changes appear to be corroborated by the rapid modifications
in biogeochemical processes, species composition and food web
dynamics already documented for these regions (Beaugrand et al.,
2002; Dulvy et al., 2008; Polovina et al., 2008; Stramma et al.,
2012; Fossheim et al., 2015). Such patterns are also in accordance
with other projections performed using modeled distributions of
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FIGURE 4 | (A) Spatial distribution of the average time of appearance of the NABS across ESMs under RCP 8.5. (B) Evolution of the global coverage of the NABS
for the three ESMs and two RCPs. (C) Proportion of global fisheries catches (sum of catch between 2001 and 2010) located in the NABS regions for the period
1970–2100. Interval of confidence computed using the three different ESMs. Thick line represents the median across ESMs. (D) Proportion of the number of species
in the NABS for the period 1970–2100. Interval of confidence computed using the three different ESMs. Thick line represents the median across ESMs.

marine species (Cheung et al., 2009; Lenoir et al., 2011), biomes
(Sarmiento et al., 2004) and climate velocity computed using
only SST(Burrows et al., 2011). However, in areas where province
boundaries are constrained by the presence of land, we expect
a significant decline in the original area of several provinces
(ARAB, GUIN, GUIA, CARB, CHIN), with the potential to
significantly impact the ecological assemblages characterizing
those provinces.

Our results show that NABS regions will cover areas where
a substantial proportion of global marine biodiversity presently
occurs and with a crucial dependence on seafood production.
The emergence of wide NABS areas in the tropical ocean
will exacerbate the high vulnerability of populations living in
developing coastal nations and small island states (Lam et al.,
2016; Blasiak et al., 2017). Biodiversity, structure and function
of marine ecosystems, and fisheries catches are closely related
to the characteristics of the BGCPs (Reygondeau et al., 2013).
The climate-induced changes to BGCPs that we project provide
additional support to the idea that climate change will deeply alter
the distribution and function of marine ecosystems as well as the
benefits derived from them by people. Predicting the evolution
of marine biodiversity in the NABS areas raises significant
challenges, as the knowledge we currently hold regarding the
organization of ecosystems in existing biomes is likely to be
invalidated in no-analog environmental conditions (Fitzpatrick
and Hargrove, 2009). While we cannot definitively state that
no species stand to benefit from these new conditions, as the

NABS predominantly occur in tropical regions where many
species are already close to physiological maxima (Walther et al.,
2002; Sunday et al., 2011, 2012), it is likely the emergence of
NABS will substantially elevate the risk of impacts on marine
biodiversity and fisheries.

The NABS were characterized by very warm mean annual
temperatures, high salinity, low oxygen concentration and
low NPP compared to the reference period (Supplementary
Figure 3). Most marine species will be physiologically stressed
under such conditions, which could impact their survival rate
(Sunday et al., 2012). This explains the high rate of local
extinction predicted by previous studies in the regions where
NABS environmental conditions will not fit the environmental
tolerance range of the majority of endemic species (Beaugrand
et al., 2015; Jones and Cheung, 2015). Paleontological records
have shown that the apparition of novel types of climate increases
the rate of migration impacting the local biodiversity pool
(Jablonski, 2008). Also, such changes in the local environmental
condition will impact the biological processes of marine species.
In NABS regions, we therefore expect a decrease in the size of
endemic species as well as a decline in local biomass, as suggested
by the literature. However, it is possible that some species will
manage to survive in NABS-like environments, particularly small
organisms with high turnover rates, such as microbes, that have
good potential for rapid adaptation, as well as species that are
physiologically more flexible, such as widely distributed marine
species that occur in the Pacific Warm Pool. However, species
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that prove capable of adapting in NABS may only represent a
small fraction of the currently high biological diversity occurring
in these regions (Donelson et al., 2019; Palumbi et al., 2019).

Our results can be linked to recent studies on marine extreme
events (Frölicher et al., 2018; Oliver et al., 2018) that have shown,
using satellite observations, that recurring and permanent marine
heatwaves already occur in the regions where we expect NABS
to appear by the middle of the 21st century. We can reasonably
expect that the impacts that these marine heatwaves already have
had on marine life (Le Nohaïc et al., 2017; Oliver et al., 2017)
will be similar or even amplified under NABS conditions. The
emergence of NABS would be limited in most regions of the
global ocean if CO2 emissions can be held to the level required to
achieve RCP 2.6 (Figure 1). However, if this is not the case (which
currently appears likely), we expect the earliest NABS to emerge
in about twenty years from 2010 in the tropical Pacific region
and a decade later in the Indo-Pacific basin. There is therefore
an urgent need to develop adaptation policies anticipating the
risk of rapid ecosystem collapses in these regions, in addition to
supporting efforts for strong mitigation.

The original methodology developed in Reygondeau et al.
(2013) was applied on observed environmental data and
used the ocean partition proposed by Longhurst (2007) as
framework to quantify the environmental envelopes of BGCPs.
Consequently, the application of the methodology to ESM have
large uncertainty in correctly representing the ocean properties
in several regions of the Ocean and hence distribution of BGCPs.
The natural provinces (or regions of similar environmental
conditions) derived from the models may not spatially match
the prescribed boundaries found in Reygondeau et al. (2013).
We subsequently tested the spatial and temporal agreement
between our predictions based on different ESM projections and
results from Reygondeau et al. (2013) (Supplementary Figure 1).
Overall, the spatial division and internal variation of BGCPs
are well captured in ESM outputs (Supplementary Figure 1),
but several regions need to be considered with caution. First,
the dynamic of coastal regions are not well captured by this
generation of ESMs in the CMIP5 repository (Stock et al., 2011;
Cheung et al., 2016a) and consequently, the distribution and
dynamics of coastal BGCPs are not well represented for current
or future projection. Second, semi enclosed sea (Red sea, Persian
Gulf, Baltic sea, Mediterranean sea) have similar biases as coastal
regions and results for these areas need to be taken with caution.
Third, while the division of the southern ocean is well captured
by the methodology using ESM outputs, several biases in the
representation of the region biogeochemical dynamics are known
(Bindoff et al., 2019). Consequently, future projection of the
BGCPs in the southern Ocean are sensitive to thse biases. We
hope that the finer resolution of the new generation of ESM
models that are under development may resolve these issues in
a future re-analysis.

Our results indicate that the environmental changes that
would occur in the global ocean along a “no mitigation” RCP 8.5
scenario would lead to a drastic reorganization of global marine
biogeography, associated biodiversity and trophic networks.
These changes would include the emergence of wide regions with
no environmental analog compared to current observations. If

the global climate is not kept below 2◦C warming, NABS areas
can be expected to emerge, as early as 20 years from the 2010s.
It would affect 19% of the total number of exploited species
in 2050 and 59% in 2100 and would cover regions that are
currently responsible for 8% of global marine fisheries catch in
2050 and 30% in 2100, under RCP 8.5. These numbers would
change to only 15% of exploited species and 5% of total fisheries
catches in NABS areas by the end of the 21st century under the
RCP 2.6 scenario. Mitigating anthropogenic pressures at a level
sufficient to reach the Paris agreement targets would therefore
substantially reduce the risk of emergence of large NABS regions
in the global ocean, and the dramatic consequences that such
large-scale ecological changes would entail for tropical marine
biodiversity, associated fisheries and the human communities
that they support.
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Large Pelagic Fish Are Most
Sensitive to Climate Change Despite
Pelagification of Ocean Food Webs
Colleen M. Petrik1* , Charles A. Stock2, Ken H. Andersen3, P. Daniël van Denderen3 and
James R. Watson4

1 Department of Oceanography, Texas A&M University, College Station, TX, United States, 2 Geophysical Fluid Dynamics
Laboratory, National Oceanic and Atmospheric Administration, Princeton, NJ, United States, 3 Centre for Ocean Life, DTU
Aqua, Technical University of Denmark, Lyngby, Denmark, 4 College of Earth, Ocean and Atmospheric Sciences, Oregon
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Global climate change is expected to impact ocean ecosystems through increases in
temperature, decreases in pH and oxygen, increased stratification, with subsequent
declines in primary productivity. These impacts propagate through the food chain
leading to amplified effects on secondary producers and higher trophic levels. Similarly,
climate change may disproportionately affect different species, with impacts depending
on their ecological niche. To investigate how global environmental change will alter
fish assemblages and productivity, we used a spatially explicit mechanistic model of
the three main fish functional types reflected in fisheries catches (FEISTY) coupled
to an Earth system model (GFDL-ESM2M) to make projections out to 2100. We
additionally explored the sensitivity of projections to uncertainties in widely used
metabolic allometries and their temperature dependence. When integrated globally,
the biomass and production of all types of fish decreased under a high emissions
scenario (RCP 8.5) compared to mean contemporary conditions. Projections also
revealed strong increases in the ratio of pelagic zooplankton production to benthic
production, a dominant driver of the abundance of large pelagic fish vs. demersal fish
under historical conditions. Increases in this ratio led to a “pelagification” of ecosystems
exemplified by shifts from benthic-based food webs toward pelagic-based ones. The
resulting pelagic systems, however, were dominated by forage fish, as large pelagic fish
suffered from increasing metabolic demands in a warming ocean and from declines in
zooplankton productivity that were amplified at higher trophic levels. Patterns of relative
change between functional types were robust to uncertainty in metabolic allometries and
temperature dependence, though projections of the large pelagic fish had the greatest
uncertainty. The same accumulation of trophic impacts that underlies the amplification of
productivity trends at higher trophic levels propagates to the projection spread, creating
an acutely uncertain future for the ocean’s largest predatory fish.

Keywords: climate change, fish and fisheries, functional types, marine ecosystem model, metabolism, secondary
production, trait-based model, trophic amplification

Frontiers in Marine Science | www.frontiersin.org 1 November 2020 | Volume 7 | Article 588482129

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2020.588482
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2020.588482
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2020.588482&domain=pdf&date_stamp=2020-11-26
https://www.frontiersin.org/articles/10.3389/fmars.2020.588482/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-588482 November 21, 2020 Time: 13:21 # 2

Petrik et al. Climate Impacts on Fisheries Guilds

INTRODUCTION

Anthropogenic greenhouse gas emissions are increasing global
ocean temperatures, altering stratification and mixed layer
depths, and decreasing pH and dissolved oxygen (Stocker
et al., 2013). Centennial-scale projections with coupled climate-
ocean-biogeochemistry Earth system models (ESMs) show global
increases in temperature, and most project decreases in primary
productivity (Bopp et al., 2013; Stocker et al., 2013). Ocean
temperature and productivity exert strong controls on marine
fish biomasses and distributions. Temperature directly impacts
physiological rates and thus energy supply and demand. As a
consequence, cooler habitats can support greater biomasses per
unit of energy supply than warmer ones (Brown et al., 2004).
Additionally, temperature indirectly affects ecosystem structure
through the effects of stratification on primary production.
Thermal stratification maintains phytoplankton in the euphotic
zone while it impedes the upward movement of nutrients from
below the mixed layer. Regionally, the temporally evolving
interplay between access to light and nutrients shapes both the
total amount of primary production, its seasonality, and the size
of primary producers (e.g., Behrenfeld and Boss, 2014). Beyond
temperature, fish abundances are also related to measures of
ecosystem productivity. The total amount of energy available
at the base of the ecosystem and phytoplankton size affect the
number of trophic steps between primary producers and fish,
and thus the amount of energy available to upper trophic levels
(Ryther, 1969; Pauly and Christensen, 1995).

The combined effect of decreased energy at the base of the food
web and increased energy demand from higher temperatures
leads to projections of decreased fish biomasses (Cheung et al.,
2010; Blanchard et al., 2012; Bryndum-Buchholz et al., 2019;
Carozza et al., 2019; Lotze et al., 2019) and smaller individual
sizes (Blanchard et al., 2012; Audzijonyte et al., 2013; Cheung
et al., 2013; Lefort et al., 2015; Lotze et al., 2019) under climate
change. However, many of these models rely on net primary
production (NPP) as a forcing variable, yet there is a large
degree of uncertainty in NPP across ESM projections (Bopp
et al., 2013). Furthermore, the connections between primary
productivity and fish catches are complex. Empirical studies have
found that NPP alone is a weak predictor of regional variations
in total fish biomass (Ryther, 1969; Friedland et al., 2012; Stock
et al., 2017). Rather, the production of fish biomass is closely
tied to the separation of NPP into pelagic and benthic secondary
production and the total amounts of these two types (Friedland
et al., 2012; Stock et al., 2017). van Denderen et al. (2018)
expanded this work by hypothesizing that the ratio of the two
pathways from NPP to fishes influences which fish functional
type dominates. The ratio of the fraction of NPP that remained
in the pelagic to the fraction that was exported to the seafloor
explained the majority of the deviance in the relative biomass
of large pelagic fish vs. demersal fish in commercial landings
(van Denderen et al., 2018). When the amounts of pelagic and
benthic resources are similar, the generalist demersals are able
to outcompete the large pelagic specialists by feeding on both
resource pools while the large pelagics only have access to one.
Mechanistic food web models have also verified this statistical

relationship between the fraction of pelagic and benthic resources
(van Denderen et al., 2018; Petrik et al., 2019). Global simulations
of the Fisheries Size and Functional Type (FEISTY) model using
a recent historic climatology indicated that large-scale spatial
differences in the dominance of large pelagic vs. demersal fishes
is strongly related to the ratio of pelagic zooplankton production
to benthic production (Petrik et al., 2019).

The partitioning of production between pelagic and
benthic pathways also helps explain latitudinal patterns in
the distributions of large pelagic fish and demersal fish. In
oligotrophic waters, like the continuously stratified subtropical
gyres, the majority of NPP is recycled within the mixed
layer via microbial pathways that support microzooplankton
grazers in the pelagic zone. In contrast, the light-limited high
latitudes experience strong but short blooms in NPP with high
interannual variability. The variability in bloom timing can lead
to a mismatch between phytoplankton and the zooplankton
grazer population, which has been reduced to low levels via
deep winter mixing, resulting in an ungrazed fraction of NPP
that is available for export (e.g., Lutz et al., 2007). The degree
of zooplankton-phytoplankton coupling, quantified as the
fraction of NPP grazed by zooplankton, is projected to increase
in the more stratified conditions produced by climate change
(Stock et al., 2014a). Direct temperature effects reinforce bloom-
driven latitudinal patterns in pelagic vs. benthic resources, and
introduce additional sensitivities to climate change. Increasing
particle remineralization rates under warmer temperatures
during export may reduce the amount of organic carbon that
reaches the seafloor (Pomeroy and Deibel, 1986; Laws et al.,
2000; Laufkötter et al., 2017), though remineralization is also
modulated by oxygen and biogenic and lithogenic minerals
(Armstrong et al., 2002; Klaas and Archer, 2002).

The diverse pathways connecting ocean productivity and
fisheries and their myriad susceptibilities to climate change
underscores the need for models capable of resolving these
pathways and resolving the fish functional type-specific responses
to the climate-driven changes in them. Furthermore, to integrate
climate drivers, global fish models such as those considered by
Lotze et al. (2019) often rely on emergent regularities between
physiological/ecological rates and organism size and temperature
(e.g., von Bertalanffy, 1960; Perrin, 1995). These relationships are
subject to significant uncertainties (e.g., Clarke and Johnston,
1999; Rall et al., 2012) whose impacts on projected changes
in fish abundance and production have not been systematically
explored, to the best of our knowledge.

In this paper, we contribute to addressing these limitations by
assessing the impacts of changing energy flow pathways between
phytoplankton and fish by projecting the changes in global
production of three primary commercial fisheries functional
types, forage, large pelagic, and demersal fishes, under IPCC RCP
8.5 through 2100. We use the FEISTY model (Petrik et al., 2019),
which resolves trophic interactions and basic life cycle processes
for each of the functional types of interest (Figure 1). We focus
on patterns of trophic amplification, contrasts in the response
of fish functional types, and the sensitivity of both these critical
processes to uncertainties in widely applied metabolic allometries
and temperature dependences in fisheries models.
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FIGURE 1 | Model structure denoting the two zooplankton size classes, three fish size classes, three functional types, two habitats, and two prey categories.
(A) Size-based feeding interactions. Dashed line denotes feeding preference of <100%. For demersal fish (green), feeding in the pelagic only occurs in regions ≤200
m deep. (B) Life cycle dynamics including growth into a different stage/size class (solid arrows) and reproduction (dotted arrows). Fauna silhouettes courtesy of the
Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/).

MATERIALS AND METHODS

The projections integrate three model complexes that span
physics, biogeochemistry, lower trophic level production, and fish
production. In the following sections, we present an overview of
the fish production (FEISTY) model (section “FEISTY: A Global
Fisheries Model”), details on the Earth system model (ESM2M-
COBALT) that provides the physics, biogeochemistry, and lower
trophic level production (section “Ocean and Biogeochemical
Projections”), a description of how parameter uncertainty was
incorporated into projections (section “Projection Uncertainty”),
and specifications on the simulations that were run and their
analysis (section “Simulations and Analyses”).

FEISTY: A Global Fisheries Model
The fish community in FEISTY describes the three main
commercially harvested fish functional types. Each type resolves
the life cycle from eggs to adults, with growth and reproduction
depending on consumed food. The model is based on the
physiology of an individual fish of a given size: its prey encounter,
ingestion, and assimilation, its metabolic costs, and its allocation
of net energy between somatic growth and reproduction. The
scaling from individuals to the fish community is done by
respecting mass balance. A detailed description of the fish model
is given in Petrik et al. (2019).

The three functional types are forage fish, large pelagic fish,
and (large) demersal fish. Each functional type is defined by
its maximum body size (medium for forage fish; large for large
pelagics and demersals), its habitat, and its prey preference.
Within each group the size structure is represented by 2–3 life
stages from 1 mg to 0.25 kg (all types) and to 125 kg (only large
pelagics and demersals) (Table 1). The prey preference changes
with body size. Fish eat prey that is smaller than themselves,

either zooplankton, other fish, or benthos, and that live in the
same habitat (Figure 1A). The habitat is either benthic or pelagic
and changes with ontogeny. All larvae (fish in the first size group)
are pelagic. Forage fish and large pelagics are also pelagic in the
one or two next size groups. Demersal fish transition to benthic
feeding in the medium (juvenile) size group. The adults are fully
benthic in areas where the water column is >200 m, while in
shallower areas they may feed in both the benthic and pelagic
zones. This difference in habitat means that the forage and large
pelagic fishes feed only on the pelagic energy pathway, while the
demersal fish act as generalists that also feed on benthos. Benthic
invertebrates are modeled separately from the fish functional
types. They are represented by a biomass pool with no explicit
size that is governed by additions via the detrital flux to the
seafloor multiplied by a transfer efficiency and losses to predation
by demersal fish.

The energy budget of an individual fish is described through
ingestion with a Type II functional response. There is a
constant fraction lost in the assimilation process and another
loss to metabolism. The rate of biomass-specific available energy
assimilation is:

vi = aIi −Mi (1)

where Mi (d−1) is the metabolic rate of size group i, a is the
assimilation efficiency, and I (d−1) is the ingestion rate. The
available energy is used for somatic growth and reproduction,
with reproduction only by the last size class (Figure 1B).
Metabolism and all components of ingestion (encounter rate and
maximum consumption rate) scale with body size via empirically
determined allometric relationships of the form:

exp(k(T − T0))awb (2)
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TABLE 1 | Model parameters and simulated variables referenced in the main text (see Table 2 and Petrik et al., 2019 for full list).

Symbol Description Value Units

Parameters

β Transfer efficiency from detritus to benthic invertebrates 0.075 –

dt Time step 1 d

ε Reproductive efficiency 0.01 –

F Fishing mortality rate 8.22E-04 d−1

k Temperature sensitivity of most rates 0.063 ◦C−1

µnat Natural mortality rate constant 2.74E-04 d−1

T0 Metabolic rates reference temperature 10 ◦C

wL Weight of large size class individual 250–125,000 (mean 5,600) g

wM Weight of medium size class individual 0.5–250 (mean 11.2) g

wS Weight of small size class individual 0.001–0.5 (mean 0.02) g

Simulated

B Biomass of fish or benthic invertebrates – g m−2

I Mass-specific consumption rate – g g−1 d−1

M Mass-specific basal metabolic rate – g g−1 d−1

ν Rate of assimilation of total energy available for growth and reproduction – g g−1 d−1

Means are geometric means. Parameter values are those in the baseline set. Simulated quantities are those derived from the model-governing equations, given a specified
set of parameters and forcing. Note that these simulated variables are in addition to the core model state variables summarized in Figure 1.

where k governs temperature sensitivity by comparing habitat
temperature, T, to the reference, T0, w is weight, b is the size
scaling exponent, and a is a constant factor. The exponential
increase with temperature is akin to other forms such as the
Arrhenius equation, based on Boltzmann activation energy, or
the Q10 function, representing the rate of change with an increase
of 10◦C. Similar temperature- and mass-dependent functions are
broadly applied in fisheries and marine ecosystem models (e.g.,
Tittensor et al., 2018), and sensitivity of trophic amplification
and functional type-specific responses to these scalings will
be a key facet of the analyses herein (see section “Projection
Uncertainty”). Natural mortality, which represents mortality
from sources other than piscivory, is independent of size and
temperature and set at the constant value of 0.1 y−1 for all fish.

Scaling from the available energy to the group level is done as
a size structured model (Andersen et al., 2016) based on a simple
numerical scheme that reduces each size group to an ordinary
differential equation coupled to the other size groups (De Roos
et al., 2008). In this way the entire fish community is represented
by 2+3+3 = 8 ordinary differential equations. Each spatial grid
cell is comprised of this set of 8 equations and is independent
of its neighbors. At this time there is no movement of the fishes
or invertebrates, though the ESM inputs used to drive the model
(see section “Ocean and Biogeochemical Projections”) reflect the
effects of temporally varying horizontal and vertical velocities.
The model is advanced in time with a forward-Euler scheme
integrated with a daily time step, which is stable at these temporal
and spatial scales (Watson et al., 2015; Petrik et al., 2019).

The structure of FEISTY shares many characteristics
with other size-based fish community models (Maury, 2010;
Blanchard et al., 2011; Jennings and Collingridge, 2015; Carozza
et al., 2016; Andersen, 2019): it is based upon predation fueling
growth and reproduction while inflicting mortality on the
prey. The model differs from others in three ways. For one,
production of new offspring directly relies on energy available

for reproduction without any other density dependent effects or
carrying capacity. Further, it represents the difference between
pelagic and benthic energy pathways (as in Blanchard et al.,
2011) by representing pelagic and demersal fish functional
groups. Finally, FEISTY is mass-balanced with respect to its
coupling with zooplankton and benthic resources. By using the
zooplankton mortality rates from the ESM to limit the ingestion
of zooplankton, fishes never consume more than what is lost to
upper trophic levels in the independent ESM (see section “Ocean
and Biogeochemical Projections”).

Ocean and Biogeochemical Projections
As described above, FEISTY requires estimates of
mesozooplankton biomass, mesozooplankton production,
the flux of organic matter to the benthos, and depth-resolved
temperature. For this analysis, we used outputs from GFDL’s
ESM2M (Dunne et al., 2012, 2013) integrated with the Carbon,
Ocean Biogeochemistry, and Lower Trophics (COBALT)
ecosystem model (Stock et al., 2014b). This coupled climate-
atmosphere-ocean model includes the CM2.1 climate model
(Delworth et al., 2006), the AM2 atmospheric model (Anderson
et al., 2004; Lin, 2004), and the MOM4p1 ocean model (Griffies,
2009). The horizontal resolution in the ocean submodel is 1◦
that decreases down to 1/3◦ at the equator and is tripolar in the
Arctic above 65◦N (Griffies et al., 2005), while the atmospheric
submodel is 2◦ × 2.5◦. There are 50 vertical layers in the
ocean, with 10 m vertical resolution over the top 200 m. The
minimum depth is 40 m, which treats all locations <40 m as if
they are 40 m deep.

COBALT resolves cycles of carbon, nitrogen, phosphate,
silicate, iron, calcium carbonate, oxygen, and lithogenic material
at the global scale using 33 state variables (Stock et al., 2014b).
The planktonic food web within COBALT is better-resolved
than most global ESMs (Laufkötter et al., 2015; Séférian et al.,
2020) and includes interactions between bacteria, small and
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large phytoplankton, diazotrophs, and small, medium, and large
zooplankton. Trophic interactions are rooted in allometric and
bioenergetic relationships and use mean predator to prey size
ratios (Hansen et al., 1994). The model was parameterized to
be quantitatively accordant with observed large-scale planktonic
food web dynamics, including primary production, zooplankton
production, and export fluxes (Stock et al., 2014b). Detritus
is produced via phytoplankton aggregation and zooplankton
egestion, with a larger fraction of egested material contributing to
the sinking flux for larger organisms. The near surface e-folding
depth for the remineralization of sinking material is consistent
with Martin et al. (1987), with biogenic and lithogenic minerals
inhibiting remineralization for an increasing “protected fraction”
as particles sink (Armstrong et al., 2002; Klaas and Archer, 2002;
Dunne et al., 2005).

A primary shortcoming of ESM2M-COBALT, and other
global climate models and ESMs (Stock et al., 2011), is its
coarse ocean resolution. This degrades the capacity of general
circulation models to simulate coastal regions (e.g., Liu et al.,
2019). We addressed this in the initial FEISTY development
by using a simulation from a prototype high-resolution ESM
(GFDL-ESM2.6; Stock et al., 2017), which featured 10 km ocean
resolution. The computational costs of such models, however,
prevents the hundreds to thousands of years required for a full
climate change projection, forcing global fisheries projections
to rely on the large-scale patterns revealed by global general
circulation models (e.g., Lotze et al., 2019). However, we found
that the FEISTY simulation characteristics were similar at coarse
and high-resolution, and the model’s capacity to capture observed
catch patterns across functional types lessened only slightly
(Supplementary Appendix A1).

We recognize that there are differences between ESMs in
the projected changes in the plankton ecosystem properties
required to drive fisheries projections with FEISTY (Bopp et al.,
2013; Frölicher et al., 2016). We chose to focus our uncertainty
analysis on the relatively unexplored spread in projections
related to uncertainty in allometric relationships defining
the environmental dependence of the fisheries relationships
(see section “Projection Uncertainty”), leaving exploration of
uncertainty routed in different ESMs and climate scenarios to
other work (Lotze et al., 2019). Projected changes in plankton
productivity in ESM2M-COBALT are described in detail in
Stock et al. (2014a). Projected global NPP changes of –3.6%
by the latter half of the twenty-first century are consistent
with declines projected in the majority of global ESMs and
near the mid-point of the simulated range (Bopp et al., 2013;
Laufkötter et al., 2015; Kwiatkowski et al., 2020). ESM2M-
COBALT’s simulated amplification of projected changes for
mesozooplankton (–7.9%) rests on first-order trophodynamic
principles, and has now been shown to be a robust feature across
ESMs (Kwiatkowski et al., 2019).

ESM2M-COBALT is linked to FEISTY by an “offline” coupling
with no feedbacks of the fish on the plankton dynamics, but
in a way that ensures fish do not have more food available
than is produced. As described in Stock et al. (2014b), higher
predation losses are imposed on medium and large zooplankton
in COBALT. Feeding rates are determined by extrapolating

the relationship of Hansen et al. (1997) and assuming that
the biomass of unresolved predators scales in proportion to
the biomass of prey (e.g., Steele and Henderson, 1992). This
approach results in simulated mesozooplankton biomass and
productivity that are consistent with observations, with just
over half of mesozooplankton production (∼1 Pg C yr−1)
being routed to higher trophic levels (Stock et al., 2014b). This
rate of biomass loss by higher predators sets an upper bound
on ingestion of zooplankton by fish in FEISTY. Specifically,
FEISTY is forced by the COBALT outputs: medium and
large zooplankton biomass integrated over the top 100 m
(biomass m−2), the rate of biomass loss by higher predators
of medium and large zooplankton integrated over the top
100 m (biomass m−2 s−1), the flux of detrital matter to the
ocean floor (biomass m−2 s−1), the mean temperature in the
upper 100 m, and the bottom temperature. All biomasses and
fluxes from COBALT were converted from moles of nitrogen
(molN) to grams wet weight (gWW) assuming Redfield (1934)
stoichiometry and the wet weight to carbon ratio (9:1) of Pauly
and Christensen (1995). Henceforth, all biomasses are expressed
as wet weight (i.e., g signifies gWW). A daily time-step was
used for FEISTY, with plankton and ocean forcing interpolated
from monthly values.

Projection Uncertainty
A previous parameter perturbation analysis of FEISTY exposed
multiple ways of regulating the relative abundance of different
functional types and their latitudinal distribution (Petrik et al.,
2019). In order to encompass the sensitivity and uncertainty
of these parameter choices into projections of fish biomass,
we constructed an ensemble of simulations with multiple
parameter sets that maintained (1) low squared deviation
from/high correlation with estimated fish catch by functional
type and (2) coexistence between forage fish and large pelagic
fish in high productivity areas. The second condition was
imposed to prevent globally skillful ensemble members that
nonetheless produced highly unrealistic results in a small
number of regions. This was enforced by increasing the
weight (i.e., the misfit penalty) associated with forage fish in
upwelling systems.

For catch comparisons, we used a global catch reconstruction
that includes estimates of industrial fisheries, small-scale
fisheries, and discards from the Sea Around Us (SAU) project
(Pauly and Zeller, 2015; v43). We compared SAU catches
to those simulated by the model under contemporary ocean
conditions at the spatial level of large marine ecosystems
(LMEs). Model simulations were evaluated with the Akaike
Information Criterion (AIC) and model misfits from SAU
catches were calculated by functional type by LME for
the 45 LMEs that have not been identified as low-catch
and/or low-effort regions (c.f., Stock et al., 2017). As a
baseline, we considered simulations generated with the
parameter values described in Petrik et al. (2019), which
we will refer to as our “baseline parameter values.” These
values produced moderate matches with total, large pelagic,
and demersal catches, including reproduction of observed
spatial variations in fish catch spanning two orders of
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magnitude across LMEs (Petrik et al., 2019). A similar
methodology for selecting ensemble members that combines
comparison to SAU catch peaks at the LME level with other
ecologically meaningful constraints has also been used by
Carozza et al. (2017).

We restricted the search of parameter space to the 5 most
influential parameters, defined by the total magnitude of the
combined five indicator metrics (Supplementary Table A2-
1) of Petrik et al. (2019). The most critical parameters were
the assimilation efficiency and the coefficients controlling the
ingestion and respiration allometry (α, bM , bE, aM , aE). We
added the temperature scaling of metabolism (kM) to this
parameter set due to its potential importance in a warming
ocean. We tested all permutations of high, mid, and low
values of literature ranges for each variable (Table 2), yielding
729 potential combinations. From this set, we considered
43 parameter sets (Supplementary Table A2-2) with AIC
values equal to or better than our baseline parameter values
(Petrik et al., 2019) and that also satisfied co-existence
conditions (see Supplementary Appendix A2). We did not
apply any further weighting to the ensemble members based
on AIC differences (e.g., Burnham and Anderson, 2002), as
the intent here was to elucidate the basic characteristics of
the parameter sensitivity characteristics and the magnitude of
the uncertainty generated by this under-explored aspect of
model uncertainty.

The temperature dependence of respiration rates exceeded
that of the ingestion rates in the baseline parameter set,
which was replicated in the above ensemble. While this
is justified by several lines of evidence (Perrin, 1995; Rall
et al., 2012; Carozza et al., 2017), there is also support
for similar scalings (Brown et al., 2004). Thus, to further
examine the role of the temperature dependence in the
simulation results, we generated a separate set of parameters
where all rates used the same value (see Appendix A2). The
same permutations of the five most critical parameters were
combined with the temperature sensitivities of physiological
rates k = kM = 0.0630, 0.0793, and 0.0955 C−1 (equivalent
Q10 = 1.88, 2.21, and 2.60), which are low, mid, and high
values bounded by the temperature dependence of ingestion
rates in the baseline set and the highest temperature dependence
of respiration rate tested. Of this set of 729, 15 were
skillful (Supplementary Table A2-3). This parameter set is
referred to as the “equal temperature dependence ensemble”

to distinguish it from the “varying temperature dependence
ensemble” described above.

Simulations and Analyses
FEISTY was run from 1860 to 2100 using offline forcing
of the ESM2M-COBALT Historical (1860–2005) and RCP 8.5
Projection (2006–2100) conditions. Simulations with the baseline
parameter set were used to illustrate the basic characteristics
of the response of fish production, fisheries yield, food web
structure, and environmental conditions. Production is the
biomass generated via growth and/or reproduction and was
quantified as the product of biomass, B (g m−2), and the
biomass-specific assimilation rate of energy available for growth
and reproduction, ν (d−1; Eq. 1). We performed a global
area-integration of production (g m−2 d−1) to produce total
production in units of mass per time (g d−1 or g y−1). Fishing
effort was represented by a fishing mortality rate F (Table 1).
In reality, fishing effort varies globally and across the three
functional groups. In the absence of a coherent assessment of
these differences, both historically and under future scenarios,
and to isolate the bottom-up effects of climate change on fish
production, we used the same constant fishing mortality on all
functional groups. We set F = 0.3 y−1 to roughly correspond
with the fishing effort that gives the maximum sustainable yield
(Andersen and Beyer, 2015). This leads to a fisheries yield (MT
y−1) that is proportional to abundance and a decent estimate
of the maximum fisheries production. Analyses of fisheries yield
present the total area-integrated biomass harvested in LMEs.
Food web structure was quantified as the relative fractions
of production of the different fish functional types. Transfer
efficiency between different trophic levels of the food web was
calculated as in Petrik et al. (2019) by examining the ratio
of production of secondary production (medium zooplankton,
large zooplankton, benthos) to net primary production (NPP),
of the highest trophic level (HTL; pelagics and demersals in
the large size class) fish production to secondary production,
and of HTL production to NPP. Our results focused on time
series from 1951 to 2100. Spatial results present the mean
conditions of the last 50 years of the Projection (2051–2100)
compared to the 50-year period from the century prior (1951–
2000), whereas time series results are changes relative to 1951
conditions. In addition to the analyses performed on the baseline
set, the varying temperature dependence ensemble simulations
were used to identify the parameter sets that resulted in

TABLE 2 | Parameters varied in ensemble simulations from their baseline value used in the baseline set.

Parameter Description Baseline value Units Low Mid High

aE Encounter intercept 0.1918a m2 gbE−1 d−1 0.1370 0.2055 0.2740

aM Metabolism intercept 0.0110 gbM−1 d−1 0.0082 0.0110 0.0137b

α Assimilation efficiency 0.700c – 0.600d 0.675 0.750

bE Encounter slope –0.20 – –0.15 –0.20d –0.25

bM Metabolism slope –0.175a – –0.15 –0.175 –0.20

kM Metabolism Temperature Sensitivity 0.0855e ◦C−1 0.0755 0.0855 0.0955

Values shown represent the low, middle, and high end of literature values. aModifed from Hartvig et al. (2011), bHartvig and Andersen (2013), cWatson et al. (2015),
dHartvig et al. (2011), eModified from Stock et al. (2014b).
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maximum and minimum changes relative to 1951 in total
fish production and for each functional type. These ensemble
simulations of the 1+43+15 = 59 total parameter sets provided
estimates of minimum and maximum fish production, as well as
measures of uncertainty.

RESULTS

Historic Patterns
Historic simulations of ESM2M-COBALT reproduce established
large-scale patterns of primary and secondary production,
with high net primary production and mesozooplankton
production in upwelling regions as well as temperate and
subpolar areas, and high seafloor detritus in shallow shelf
environments (Figures 2A–C). Global distributions of forage
fish and large pelagic fish largely mimic those of primary

and mesozooplankton production (Figures 2E,F), whereas
demersal distributions (Figure 2G) reflect benthic production
(Figure 2D). Primary production rates span <1 order of
magnitude (90% range: 1.13–7.85 g m−2 d−1) whereas the
rates of mesozooplankton, detritus, and benthos span 1.5–
2 orders of magnitude (0.05–1.09; 7.13·10−3–4.35·10−1;
5.35·10−4–3.26·10−2 g m−2 d−1). Fish production rates
vary over 4 orders of magnitude. The smaller bodied forage
fish cover a 90% range of 6.71·10−5–1.07·10−1 g m−2 d−1.
The bottom dwelling demersal fish span a smaller range
(9.38·10−5–1.59·10−2 g m−2 d−1) owing to the lower
and more stable temperatures outside of coastal areas.
Production of large pelagic fish varies greatly (4.26·10−12–
4.91·10−2 g m−2 d−1), with rates that exceed those of
the equally large demersal fish, but also experiencing
diminished production in oligotrophic regions. Reductions
in absolute production occur moving up trophic levels

FIGURE 2 | Mean historic (1951–2000) distributions of production (log10 g WW m−2 d−1) of (A) net primary producers, (B) mesozooplankton (medium + large), (C)
seafloor detritus, (D) benthic invertebrates, (E) forage fish, (F) large pelagic fish, (G) demersal fish, and (H) all fishes combined with the baseline parameterization.
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(Figure 2) as expected from the efficiency of trophic transfers
up the food chain.

Trophic Amplification
Changes in production of primary producers, secondary
producers, and fish consumers over the last 50 years of the
twenty-first century (2051–2100) compared to the last 50 years of
the twentieth century exhibit regional variations with decreases in
the subtropics and the majority of low-latitude regions (Figure 3).
Plankton and forage fish experience increases in production
in polar areas, and scattered areas of enhanced productivity
elsewhere (Figures 3A,B,E). Plankton productivity trends and
forage fish trends are generally well correlated, but there are
regions where forage fish production increases despite declining
zooplankton production due to changes in predation on forage
fish. Forage fish productivity, for example, increases across

much of the northern sub-polar Atlantic and Pacific despite
mixed trends in NPP and mesozooplankton productivity. The
production of large pelagic fish, in contrast, is less well correlated
with local plankton productivity changes and exhibits sharp
declines in many regions, including across the Arctic (Figure 3F).
The correspondence of several areas of sharp large pelagic
declines with areas of forage increase (e.g., the sub-polar North
Atlantic) is indicative of top-down control on some productivity
trends. Conversely, production of seafloor detritus and demersal
fish decreases nearly globally, with the exception of the Arctic
and sub-Arctic, and two localized spots in southeast Pacific and
southeast Atlantic near the Humboldt and Benguela upwelling
systems, respectively (Figure 3D,G). Such regional “hot-spots”
are often associated with shifts in physical and biogeochemical
boundaries, and their locations are generally not robust across
ESMs (e.g., Bopp et al., 2013; Laufkötter et al., 2015). Their

FIGURE 3 | Percent change in production in the Projection (2051–2100) compared to the Historic (1951–2000) time period of (A) net primary producers, (B)
mesozooplankton (medium + large), (C) seafloor detritus, (D) benthic invertebrates, (E) forage fish, (F) large pelagic fish, (G) demersal fish, and (H) all fishes
combined.
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presence is thus indicative of the potential for limited regional
increases, but not strong evidence for increases in the exact
locations where they occur.

Fractional increases and decreases in production generally
become greater for larger organisms higher in the food chain,
consistent with “trophic amplification,” in both the pelagic and
benthic ecosystems (Figure 3). This is clearly illustrated in the
increasing magnitude of global declines of each size class of
organisms, with a mean decline of 13.1% ( ±1.1%) across all
medium fishes and a decline of 19.2% ( ±1.5%) across all
large fishes in the varying temperature dependence ensemble
(Figure 4A). Both decreases are substantially greater than the
primary production (3.6%) and mesozooplankton production
(7.2%) declines that underlie them (Figure 4). The magnitude
of these changes in fish production are smaller in the equal
temperature dependence ensemble, at 9.6% ( ±1.2%) and 12.1%
( ±2.1%) for medium and large fish, respectively, but the
amplification pattern is consistent (Figure 4B).

Community Reorganization
In addition to changes in the magnitude of plankton productivity
available to fish, the end of the twenty-first century also exhibits
a near-global increase in the ratio of zooplankton production to
seafloor detritus flux (Figure 5A). Increases are especially large
in upwelling and temperate/subpolar regions of the North and
Equatorial Pacific, the Humboldt Current, south of Greenland,
and in the Argentine Basin (Figure 5A). Despite area-integrated
declines in both zooplankton production and detritus flux, this
ratio increases in future projections due to the greater reductions
of detritus over time compared to mesozooplankton (Figure 5B),
denoting a “pelagification” of food resources. It is notable that
the strong pelagification in deep ocean areas (Figure 5A) often
occurs where the flux of material to the benthos is quite low. For
example, regions with a change >15 have a mean depth of 4,591
m, historic mean detrital flux of 0.02 g m−2 d−1, and historic
mean Zoo:Det ratio of 33.2. However, consideration of the
temporally evolving ratio of the globally integrated zooplankton
production to the globally integrated benthic flux (which includes

FIGURE 5 | (A) The absolute change in the ratio of zooplankton production to
seafloor detrital flux (Zoo:Det) as the difference of the Projection (2051–2100)
from the Hindcast (1951–2000). (B) Time series of the percent change in the
global area-integrated mean zooplankton production (dashed gray), the
percent change in the global area-integrated mean flux of detritus to the
seafloor (solid gray), and the absolute change in the ratio of their global
area-integrated means (Zoo:Det) during the Historic and Projection time
periods relative to 1951.

outsized contributions from coastal areas) reveals the same
pelagification trend (Figure 5B). This pelagification is evidenced
in areas shallower than 1,000 m where the mean change in
Zoo:Det is 0.13 and the projected mean Zoo:Det is 1.25.

FIGURE 4 | Area-integrated changes in production in the Projection (2051–2100) compared to the Historic (1951–2000) time period illustrating trophic amplification
of net primary production (NPP), mesozooplankton (MesoZ = medium + large zooplankton) production, all medium (M) fishes, and all large (L) fishes. Mean (± 1 SD)
of (A) varying temperature dependence parameter ensembles and (B) equal temperature dependence parameter ensembles.
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Though the ratio of zooplankton to detritus production
explains a large proportion of the historic spatial variance in the
dominance of large pelagic fish compared to demersal fish (van
Denderen et al., 2018; Petrik et al., 2019), future changes in the
fraction of large pelagic fish do not mirror the regional patterns
of the zooplankton:detritus production ratio (Figure 6A). Rather,
the fraction of all fishes that is composed of large pelagics
decreases out to 2100 despite the pelagification of food resources
(Figures 6A,D). Any positive impact of the pelagification of
food resources on large pelagics is overwhelmed by the negative
impacts of global productivity reductions and warming-driven
increased respiratory demands that act to amplify productivity
reductions at higher trophic levels. There is, however, a marked
shift toward forage fishes (Figures 6B,D) that leads to an overall
increase in the fraction of total pelagic fish production (forage +
large pelagic) at 2100 (Figure 6D) and large regional increases
in the fraction of total pelagic fish in the subpolar and polar
oceans (Figure 6C), areas with a historically large fraction
of demersal fish.

Ensemble Results
The predominant projected changes in the functional types
were robust to parameter uncertainty (Figure 7). When globally
averaged, forage fish production decreased the least with the
least variation (Table 3 and Figure 7A). Demersal fish had
intermediate levels of production decline and uncertainty, while
large pelagic fish had the greatest mean change and variance
(Table 3 and Figure 7A). Simulated fisheries yield, calculated as
a fraction of stock of biomass rather than production, exhibited
slightly different patterns (Figure 7B). The yield of forage fish
experienced the smallest changes with a moderate degree of
uncertainty (Table 3 and Figure 7B). On average, demersal fish
suffered greater losses than the forage fish, though the uncertainty
bounds of the ensemble simulations (±1 SD) overlapped (Table 3
and Figure 7B). Similar to percent changes in production, yield of
large pelagic fish fell by the greatest extent with the largest degree
of uncertainty out of all functional types (Table 3 and Figure 7B).
Despite the high uncertainty in projected changes in large pelagic
production and fishing yield, declines exceeded those of the
other functional types after 2070 at the latest (Figure 7). The
degree of uncertainty in both production and fishing yield of
each functional type increased over time in ensemble simulations
(Figure 7). Changes to production and yield in projections
under equal temperature dependence were qualitatively similar
(Supplementary Table A2-4 and Supplementary Figure A2-1).

Of the parameter sets that produced viable solutions, those
producing the largest declines for the total fish productivity
and the productivity of each functional type all featured the
highest temperature dependence of metabolic costs (Table 4
and Supplementary Table A2-5). Similarly, the most resilient
projections for all fish, large pelagic fish, and demersal fish all
featured the lowest temperature dependence of metabolic costs
(Table 4 and Supplementary Table A2-5). Other aspects of the
response differed by functional type and highlight competitive
and/or predatory interactions. For example, the least perturbed
forage fish projection valued steep allometric penalties on the
encounter rate and a large temperature dependence for the

metabolic rate. Both of these characteristics are associated
with the steepest declines in large pelagic fish, suggesting
decreased top-down control is an essential element for the
resilience of forage fish in these simulations. In contrast, the
least impaired large pelagic and demersal fish projections value
weak allometric penalties on the encounter rate. Surprisingly,
resilient large pelagic and demersal projections also feature
low assimilation efficiency and, in the case of demersals, low
overall encounter rates. These seemingly counter-intuitive results
emphasize the importance of interactions with forage fish:
parameter combinations that hinder forage fish more than
demersals and large pelagics lead to less vulnerable projections
for these larger functional types. Resilient projections for large
pelagic and demersal also both favored small allometric penalties
and the most unchanged patterns for forage fish favored
large ones in the equal temperature dependence ensemble
(Supplementary Table A2-5).

DISCUSSION

Our work contributes to a growing set of projected changes in
global fish production and biomass distribution under climate
change. Our results move beyond species-based and size-based
models by examining climate change effects on the food web
structure of global marine ecosystems, the fish functional types
composing them, and the sensitivity of responses to uncertainties
in critical allometric and temperature scalings broadly applied in
fish and fisheries modeling. Additionally, many other fish models
use net primary production (NPP) from ocean biogeochemistry
models and earth system models (ESMs) as the input at the
base of the food chain. Unfortunately, NPP estimates are highly
variable across ESMs (Bopp et al., 2013), thereby introducing
uncertainty in the fish projections based on which ESM was used
as forcing. A significant fraction of this uncertainty, however,
is linked to differences in the response of recycled production
within plankton food webs (e.g., Taucher and Oschlies, 2011).
These fluxes are not available to fish. Following Dugdale and
Goering (1967), the NPP available to higher trophic levels is
more accurately assessed by NPP supported by the supply of
“new” nutrients to the euphotic zone. Over time, this supply of
new nutrients must be balanced by export from the euphotic
zone. There is greater agreement on export production trends
across ESMs (Bopp et al., 2013; Fu et al., 2016), reducing
uncertainty relative to projections based on NPP alone. In the
present study, this reduction in uncertainty was achieved through
explicit representation of the plankton food web processes
that determine recycled and new production and subsequent
pathways of energy flow between phytoplankton and fish (Ryther,
1969; Friedland et al., 2012; Stock et al., 2017). While far from
perfect, the underlying plankton food web dynamics simulation
used in this study accurately captures observed variations in
mesozooplankton biomass and productivity and export fluxes
across ocean biomes (Stock and Dunne, 2010; Stock et al.,
2014b). Thus, by using zooplankton and seafloor detritus as
resources rather than deriving secondary production from
NPP, FEISTY may be considered a more robust indicator of

Frontiers in Marine Science | www.frontiersin.org 10 November 2020 | Volume 7 | Article 588482138

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-588482 November 21, 2020 Time: 13:21 # 11

Petrik et al. Climate Impacts on Fisheries Guilds

FIGURE 6 | The change in the fractions of (A) large pelagics (P), (B) all pelagics (Pel = F+P), and (C) forage fish (F) out of all fish during Projection (2051–2100)
period compared to the Historic (1951–2000) period. (D) Time series of the area-integrated mean fractions of large pelagics (P: blue), all pelagics (Pel = F+P: black),
and forage fish (F: red) out of all fishes during the Historic and Projection time periods relative to 1951.

FIGURE 7 | Time series of varying temperature dependence ensemble mean ( ±1 SD) (A) percent change in production relative to 1951 and (B) total change in
fishing yield (MT km−2 y−1) relative to 1951 of forage fish (red), large pelagic fish (blue), and demersal fish (green) during the Historic (1951–2000) and Projection
(2051–2100) time periods. Monthly values in (A) were smoothed with a 12-month moving mean. Yield in (B) reflects harvest of adults only.
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TABLE 3 | The difference and percent change in production (g y−1) and fisheries yield (MT y−1) of the 2051–2100 mean from the 1951–2000 mean of each functional
type and all fishes combined across the 44 member varying temperature dependence parameter ensemble.

Production Fisheries yield

Difference Percent change Difference Percent change

Mean SD Mean SD Mean SD Mean SD

F −1.12E+12 1.12E+11 −10.2 0.8 −3.07 0.98 −7.3 2.0

P −6.47E+11 2.31E+11 −20.8 1.6 −8.02 2.12 −19.7 1.2

D −1.53E+11 2.66E+10 −15.8 1.3 −3.65 0.24 −8.5 0.4

All −1.92E+12 3.16E+11 −12.8 1.0 −14.73 1.71 −11.8 0.3

B −2.52E+11 – −12.3 – – – – –

F, forage; P, large pelagic; D, demersal; All: F+P+D, B: benthos. Yield reflects harvest of adults only.

TABLE 4 | Parameter sets in the varying temperature dependence ensemble that resulted in maximum and minimum percent changes in production relative to 1951 of
each functional type and all fishes combined.

%1 production α bM bE aM aE kM

All
Max 13.6% 0.600 −0.175 −0.150 0.0082 0.274 0.0955

Min 9.0% 0.750 −0.150 −0.150 0.0110 0.274 0.0755

F
Max 9.0% 0.600 −0.175 −0.150 0.0082 0.274 0.0955

Min 5.8% 0.750 −0.150 −0.200 0.0082 0.205 0.0955

P
Max 28.2% 0.675 −0.150 −0.200 0.0082 0.274 0.0955

Min 17.2% 0.600 −0.150 −0.150 0.0082 0.274 0.0755

D
Max 21.1% 0.675 −0.150 −0.150 0.0082 0.274 0.0955

Min 13.3% 0.600 −0.150 −0.150 0.0082 0.137 0.0755

B
Max 31.9% 0.750 −0.150 −0.150 0.0110 0.274 0.0755

Min −13.9% 0.675 −0.150 −0.150 0.0082 0.274 0.0955

Parameters described in Table 2. F, forage fish; P, large pelagic fish; D, demersal fish.

future changes in the dynamics between pelagic and demersal
components of food webs.

Trophic Amplification
When grouped by trophic level, the amplification of projected
productivity declines from primary producers to fishes is
apparent in the results of FEISTY, despite differences in
feeding preferences and habitats of the three functional
types. Projections of primary and secondary production across
ESMs have previously been examined in the literature. The
ESM2M-COBALT decline in NPP of 3.6% is moderate with
respect to other CMIP5 ESMs (Bopp et al., 2013), while the
approximate doubling of production changes from net primary
producers to mesozooplankton from 3.6 to 7.9% using ESM2M-
COBALT (Stock et al., 2014a) is similar to the doubling
of biomass changes that occur in the IPSL ESM (Chust
et al., 2014) and ensembles of 12 CMIP5 ESMs (Kwiatkowski
et al., 2019). That is, there is “negative amplification” as
defined by Kwiatkowski et al. (2019).

Earth system model intercomparison of the flux of detritus
to the seafloor has not been assessed, though export production
out of the euphotic zone has. Studies have found differing ranges
of decrease that span 1–18% based on the ESMs used in the
comparison (Bopp et al., 2013; Fu et al., 2016; Laufkötter et al.,
2016). The 12.3% drop in seafloor detritus flux in ESM2M-
COBALT simulations comparing 2051–2100 to 1951–2000 is in

the center of 7–18% range in export flux of Fu et al. (2016)
who compared 2091–2100 to 1991–2000. Variations across ESMs
are due to the number of size classes of phytoplankton and
differences in aggregation and sinking formulations (Fu et al.,
2016; Laufkötter et al., 2016). Larger projected declines in export
from the euphotic zone relative to projected primary productivity
declines within it is consistent with a shift toward smaller
plankton sizes as stratification increases. This shift leads to
more effective recycling and, as deep winter mixing is reduced,
more efficient coupling between phytoplankton and grazers
(Behrenfeld and Boss, 2014; Stock et al., 2014a). Reductions
in export at the base of the euphotic zone can be further
amplified by increased remineralization in warming waters at
depth (Marsay et al., 2015; Laufkötter et al., 2017) or decreased
ballast minerals due to acidification (e.g., Gehlen et al., 2007;
Gangstø et al., 2008).

Though processes governing benthic biomass in FEISTY are
less detailed than those that dictate fish biomass, projected
changes in biomass are consistent with past results. Jones et al.
(2014) used the empirical relationship of Wei et al. (2010)
between benthic biomass and carbon export to estimate changes
in benthic biomass from carbon flux to 500 m above seafloor
derived from 8 CMIP5 ESMs. They found a global decrease of
5.2%, which was an attenuation of the 11.4% average drop in
seafloor carbon flux. Conversely, Yool et al. (2017) achieved an
amplified decline of 17.6% using a size-based model of benthic
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invertebrates forced by the coupled ocean-biogeochemistry
model NEMO-MEDUSA under RCP 8.5, which displayed 3.9%
decreases in seafloor carbon flux. The FEISTY decrease estimates
of 9.0 ± 4.6% fell within the low end of these values and
exhibited analogous patterns of spatial change to both models
(Supplementary Figure S1A). Similar to the results of Jones et al.
(2014), simulated benthic biomass did not amplify the changes
in seafloor detrital flux. The effect of the decline in detrital flux
on benthic biomass was counteracted by increases in the benthic
biomass as a result of release from top-down predation mortality
by the large demersal fish. Combined with the results of Jones
et al. (2014), the FEISTY simulations suggest that considerations
of size and respiration, as in Yool et al. (2017), are necessary to
produce trophic amplification in benthic organisms.

Unsurprisingly, increases in metabolic demands with size and
temperature are drivers of modeled trophic amplifications up
through fishes. Firstly, increases in temperature lead to greater
basal metabolic demands, which are more difficult to meet
given decreases in net primary production. This mechanism
contributes the greatest amount to trophic amplification from
phytoplankton to zooplankton in ESM2M-COBALT (Stock et al.,
2014a). Secondly, marine predator-prey relationships tend to be
size-structured, whereby decreases in plankton size lead to longer
food chains with more transfers between trophic levels (c.f.,
Ryther, 1969). For instance, in a food chain consisting of diatoms,
copepods, and forage fish, the forage fish at trophic level (TL) 3
would receive a fraction of NPP equal to TE2, where TE (transfer
efficiency) is the fraction of production that is transferred
between trophic levels and the exponent is determined by the
number of transfers (TL-1). If the primary production shifted to
smaller phytoplankton (but did not change in amount) such that
the phytoplankton had to be consumed by microzooplankton
before it could be eaten by copepods, the forage fish would move
to TL4 and would only receive NPP·TE3. Though trophic levels
are semi-fixed in FEISTY, change in trophic level is another
mechanism responsible for trophic amplification in ESM2M-
COBALT, though of lesser importance than metabolism (Stock
et al., 2014a). Finally, decreases in transfer efficiency with climate
change have been revealed in mesocosm studies (Ullah et al.,
2018) and both empirical (Moore et al., 2018) and mechanistic
(du Pontavice et al., 2020) models forced by ESMs. Thusly, fish
would likely receive a reduced fraction of NPP with increasing
temperature without any underlying changes to NPP or TL.
Similar reductions in TE are demonstrated with climate change
projections of FEISTY (Supplementary Figure A2-3). With
varying temperature dependence, decreases in transfers between
consumers (TL2 to TL4) are greater than the decline from
primary to secondary producers (TL1 to TL2; Supplementary
Figure A2-3). Since fish production is controlled by the balance
of metabolic needs with assimilated energy from ingestion, which
are functions of size, temperature, and prey abundance, it was the
greater temperature-dependence of the metabolic rate compared
to feeding rates that caused the strong decrease in high trophic
level TE. The decline in high trophic level TE was similar to
that of low trophic levels under equal temperature-dependence
(Supplementary Figure A2-3), suggesting that there are other
mechanisms involved in TE declines.

Trophic amplification of fish production in FEISTY was
consistent with multi-model ensembles of 5 global fisheries and
marine ecosystem models forced by 2 ESMs (GFDL-ESM2M and
IPSL-CM5A-LR) that spanned –5 to –28% under RCP 8.5 when
all groups of consumers at trophic levels higher than zooplankton
were combined (Lotze et al., 2019). The spatial distribution of
percent biomass change of all fishes (Supplementary Figure S1F)
agreed well with the multi-model mean of Lotze et al. (2019),
displaying increases in polar regions and declines in subtropical
and temperate areas. The only area of disagreement was in the
central North Atlantic, a region of higher inter-model variability
and lower model agreement (Lotze et al., 2019), where FEISTY
projected increases in fish biomass while the multi-model mean
projected decreases.

Community Reorganization
Projections of lower trophic levels and fishes show a
“pelagification” of marine food webs. The ratio of zooplankton
production to the seafloor detritus flux increased in nearly
all marine ecosystems. When averaged globally, both types
of secondary production decreased in the future, but seafloor
detritus experienced greater reductions. At a regional level,
increases in this ratio were the result of either (I) an increase
in zooplankton production and decrease in seafloor detritus
flux, (II) an increase in zooplankton production greater than
the increase in seafloor detritus flux, or (III) a decrease in
zooplankton production less than the decrease in seafloor
detritus flux. Type I was responsible for the increased ratio in
the central Arctic, Northwest Pacific, upwelling areas, the eastern
Caribbean, and the Southern Ocean. Unequal increases were
the least common and accounted for the increased ratio in the
coastal Arctic and two localized spots southwest of the Humboldt
and Benguela upwelling regions. On the other hand, the strong
increases in the zooplankton to detritus production ratio south
of Greenland and in the Argentine Basin were on account of
unequal decreases in production, which was the most prevalent
cause of an increase in the ratio.

Despite a large proportion of the spatial variance in historic
observed and simulated catches of large pelagic fish compared
to demersal fish being explained by the ratio of zooplankton to
detritus production (van Denderen et al., 2018; Petrik et al., 2019),
it was the fraction of forage fish (Figures 6C,D), rather than the
fraction of large pelagic fish, that best mimicked the projected
regional patterns of alteration in the zooplankton:detritus
production ratio (Figure 5). The degree of change in the
fraction of forage fish did not necessarily match that of the
zooplankton:detritus ratio, but the directions of change did.
In general, the projected variations in demersal fish biomass
reflected the modifications in the seafloor detrital flux, whereas
the relative fraction of demersal fish was approximately the
inverse of the relative fraction of forage fishes. This could be of
particular concern in coastal regions of temperate and subpolar
oceans that have historically hosted large populations of demersal
fishes that support valuable fisheries. Recent observations of these
demersal fisheries have detected poleward shifts (Fossheim et al.,
2015), which also arose in model results via increases in biomass
in polar regions and declines in temperate and subpolar areas
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(Supplementary Figure S1E). Demersal fish biomass increased
in most coastal regions of the Arctic, but decreased in the central
Arctic. The areas with reduced demersal biomass experienced a
concomitant increase in all pelagic fishes, mostly forage fish, with
the exception of the Faroe Plateau where all fishes suffered losses.
Though not directly comparable, simulations of the size-based
model of Blanchard et al. (2012) at 2050 under the SREASA1B
scenario displayed decreases in benthic biomass in nearly all 28
non-arctic Large Marine Ecosystems studied and increases in
pelagic biomass in several northern ecosystems. The Blanchard
et al. (2012) model does not include the interactions between
pelagic and demersal fish, so the similarity of the results to
FEISTY indicates that the major pattern of pelagification is driven
by the changes in primary and secondary production.

While copious research suggest that large-scale patterns in
fish biomass and catch reflect patterns in ocean productivity
(i.e., bottom-up drivers; Ryther, 1969; Friedland et al., 2012;
Stock et al., 2017), “trophic cascades” associated with strong
fishing pressure have also been observed (e.g., Pauly et al.,
1998). In some cases, evidence suggests that these cascades have
extended to plankton communities (e.g., Frank et al., 2005).
While our simulations did not consider sharp increases in
fishing pressure implicated in such cascades, pronounced shifts in
forage fish dominance could produce similar effects on plankton
communities. Resolving such feedbacks, however, would require
a “two-way” coupling between fish and plankton models (e.g.,
Maury, 2010; Kearney et al., 2012) that was beyond the scope of
this work. This should be addressed in future efforts, though we
note that doing so will make parameter uncertainty investigations
far more difficult. A further complication is to represent climate
change-driven shifts in geographical range (Pinsky et al., 2013).
It is not clear, though, whether geographical range expansions
(or contractions) on the level of functional group requires
a specific description of migration (see section “Assumptions
and Limitations”) or whether just representing demographical
change, as in the current model, is sufficient. In this respect a
particular focus should be the large pelagic fish whose migrations
span oceanic basins and have a considerable predation impact
during feeding migrations (Watson et al., 2015; Mariani et al.,
2017). Increased understanding of fisheries responses to climate
change will thus ultimately need combinations of sensitivity
studies in the one-way coupled context (such as those presented
herein) and targeted two-way coupled experiments to explore
trophic cascades and assess the higher predation closures used by
biogeochemical models.

Ensemble Results
The ensemble of diverse parameter sets was used to quantify
uncertainty and understand the sensitivity of the physiological
dimensions underlying the model structure. Parameter sets
varied in terms of assimilation efficiency, weight-dependence of
prey encounter rates, and temperature and weight dependence
of metabolic rates. These are comparable to the parameters
governing trophic scaling, growth rates, and mortality rates of
Carozza et al. (2017), who also identified their importance in
generating parameter ensembles that simulated fish biomasses
and catches in accordance with ecological constraints and

observed catches. Though it was too computationally expensive
to search the full parameter space, over 700 parameter sets
were explored, resulting in the 59 sets used in this analysis. As
expected, parameter sets with the highest temperature sensitivity
of metabolism resulted in the greatest percent reductions in
production of all fish functional types and all fishes combined.
However, this pattern was not seen in the equal temperature
dependence ensemble. Resilient projections of large pelagic and
demersal production favored small allometric penalties (e.g.,
metabolism that declines more rapidly with size than prey
encounter, bM < bE) while those for forage fish production
favored large penalties on size in both ensembles. The differential
responses of the functional types emphasize the importance of
their competitive and predatory interactions in addition to their
life history traits. To some extent, the emergent combinations of
parameters represent the physiological constraints on simulating
contemporary fish catches and producing coexistence between
forage fish and large pelagic fish in high productivity regions.
It is likely that a very limited area of parameter space
meets these conditions and that this hinders identification of
clear relationships between parameter combinations and the
magnitude of projected changes.

Regardless, parameter sets produced variability between
end members and ensemble projections yielded robust results
of the response of fish productivity under climate change.
The forage fish experienced lesser declines in production
compared to the other, larger functional types. Large pelagic
fish suffered the greatest reductions in both production and
fisheries yield, and with the highest degree of uncertainty. Even
when factoring in parameter uncertainty, these changes were
substantially larger than those of forage and demersal fish when
the temperature dependence of metabolism exceeded that of
ingestion rates. With rates of equal temperature dependence,
all results were qualitatively similar, with the exception of the
mean percent change in large pelagic fish production being
comparable to that of demersal fish. The difference between
simulations with varying vs. equal temperature dependence
is effectively demonstrated by a simpler analysis of the fish
community with a 0-dimensional model of FEISTY. With
equal temperature dependence of respiration, encounter, and
maximum consumption rates, warming above the reference
temperature of 10◦C leads to a drop in large pelagic biomass,
even with high prey resources (Supplementary Figures A2-
4A,B). This illustrates that the baseline parameters related to
the size dependence of rates disadvantage the large fish, as
was necessary to achieve coexistence between large pelagic fish
and forage fish (Petrik et al., 2019). When metabolic rates are
more sensitive to temperature, large fish are doubly hit by their
maximum size and warming, resulting in larger biomass declines
and a greater minimum level of prey production needed to
support large pelagic fish (Supplementary Figures A2-4C,D).
A similar shrinking under warming was seen in simulations
of fish communities when metabolism was more sensitive to
temperature than assimilated ingestion (Guiet et al., 2016).

Our lack of knowledge on the temperature dependence of
these physiological rates does not compromise the qualitative
predictions. Though our simulations are able to robustly predict
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the directionality of change in production, they are poor at
estimating the magnitude, which is driven by some largely
unknown set of temperature-scaling parameters. The strong
temperature dependence of metabolic rates is well-known (e.g.,
von Bertalanffy, 1960). In contrast, the temperature dependence
of encounter and consumption rates are less certain, though both
theoretical (Rall et al., 2012) and empirical (Perrin, 1995) studies
suggest that they are lower than basal metabolism. Unequal
temperature sensitivity of metabolism and other rates is adopted
by some global fish models (e.g., Cheung et al., 2010; Jennings and
Collingridge, 2015; Guiet et al., 2016; Carozza et al., 2017), but not
all, thereby making it one of many factors contributing to inter-
model variability. The ensemble results of FEISTY reveal the
importance of better constraining estimates of the temperature
sensitivity of physiological rates, especially for projecting the
impacts of climate change on large pelagic fishes. Furthermore,
interactions between temperature and oxygen (e.g., Deutsch
et al., 2015; Pauly and Cheung, 2018) and ontogenetic variations
in thermal tolerance (e.g., Dahlke et al., 2020) advocate the
need for thorough examinations of marine ecosystems under a
warming climate.

Impacts on Fisheries
To predict the bottom-up effects of climate change on ecosystem
productivity, we used a simple representation of fishing
(constant in space and time) that captured the main basin-
scale patterns under contemporary conditions. Thus, results of
simulated fisheries yield reflect the isolated bottom-up effects
of environmental change on fish communities rather than the
effects of changes in human behavior such as a redistribution
of effort in amount, space, time, or toward different functional
types. In this case, total fisheries yield declined by 11.8% (±0.3%;
Table 3) with decreases of 7.4% ( ±2.0%) at TL3 and 13.9%
( ±0.7%) at TL4. These estimates were greater than the 5.7%
and 6.8% losses in fisheries yield of TL3 and TL4, respectively,
estimated by Moore et al. (2018) who used an empirical model of
fish catch as a function of zooplankton biomass from an ESM.
Our changes in total fisheries yield are more in line with the
“no conservation” fishing scenario of Carozza et al. (2019) who
found a 15% (12, 20%) change at 2081–2100 under RCP 8.5
from 1851 to 1900 conditions in the IPSL ESM. The decrease
in the yield of large pelagic fish (19.7 ± 1.2%; Table 3) at 2100
with FEISTY was closer to their change of 32% with fishing
rates “optimized for human food” (Carozza et al., 2019), and
similar to the >20% decline of Moore et al. (2018) that did
not occur until 2300. While other marine ecosystem models
have employed reconstructions of historical fishing effort, more
work is needed on developing scenarios of plausible projections
of fishing effort like those of Carozza et al. (2019). As such,
the FEISTY levels of uncertainty in fisheries yields should be
considered underestimates, as future changes in fishing effort
and technology will further increase uncertainty. The FEISTY
results highlight the importance of considering the non-uniform
effect of climate change on the three different functional types
of fish. The projected pelagification of ecosystems will promote
some parts of the fisheries sector and weaken others, which could
require large structural changes. Though fishers can switch gears

and participate in multiple fisheries (e.g., Fuller et al., 2017), and
boats can move (e.g., Watson et al., 2018), previously unfished
regions will require management plans, while old ones will need
to be renegotiated (Pinsky et al., 2018). In addition to affecting
fishing communities, the shifts toward pelagic food webs could
impact the ecology of populations not represented in the model,
such as marine mammals and sea birds.

Assumptions and Limitations
We note that the structure of FEISTY and how it was
implemented for this study makes certain assumptions and
presents limitations. These include, but are not limited to,
simplistic fishing (addressed above), the representation of only
three fish functional types, no movement, and environmental
forcing. There are numerous factors that may influence the
productivity of fish, especially under a changing climate. This
analysis focused on the effects of temperature and secondary
production, while climate-induced changes to oxygen (e.g.,
Deutsch et al., 2015), pH (Branch et al., 2013), and nutrient
content of prey [such as lipid density (e.g., Heintz et al., 2013;
Peterson et al., 2013) or iron content (Galbraith et al., 2019)]
should be considered in future studies.

The current COBALT configuration does not include vertical
migrations of zooplankton, which results in most of the
zooplankton biomass, and thus energy available to fish, being
located in the upper 100 m of the water column. As such,
we expect that the FEISTY predictions of forage fish biomass
incorporates both epi- and mesopelagic fish. How the biomass
is distributed between the two groups will depend on the
vertical migration behavior of these fish types, their prey, and
their predators (Pinti and Visser, 2019). This work is currently
under investigation.

Our model makes the case that large pelagics are
fundamentally disadvantaged in warm water. This is a result
of the high temperature scaling of standard metabolism.
However, large pelagics are most commonly observed in warmer
tropical regions, which appears at odds with the model. We
discussed this issue at length in Petrik et al. (2019). First, large
pelagics experience competition from demersal fish, thriving in
regions where the demersals do not have support from benthic
production (van Denderen et al., 2018), most notably in the low
export, oligotrophic tropics. Second, the relationship between
growth and temperature is lower for large pelagic fish than for
small pelagic fishes (van Denderen et al., 2020), which could arise
from metabolic rates that increase with temperature at a rate
greater than the feeding rates and supports our parameterization.
Third, basin-wide migrations of large pelagics across oligotrophic
regions are often in search of favorable larval environments (e.g.,
Bakun, 2013; Reglero et al., 2014) during which adults feed
advantageously at mesoscale features (e.g., Polovina et al., 2001;
Nieblas et al., 2014) that are not represented in our global model
with a 1◦ resolution. Horizontal movement has the potential to
rectify some of the discrepancy between simulated and observed
catches of large pelagic fish, particularly in the western tropics
(Watson et al., 2015; Petrik et al., 2019). Our simulations that
exclude movement capture the first-order spatio-temporal
patterns of energy flow in marine food webs. Future work that
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incorporates swimming behavior will add value to these initial
results, particularly on the stabilizing potential of movement
(Murdoch, 1977; Briggs and Hoopes, 2004) that may reduce some
of the negative climate change impacts on large pelagic fish.
We recognize the many advantages of the FEISTY framework,
while its limitations promote the value obtained by using a
diversity of model approaches, each with their own strengths
and weaknesses, rather than promising one correct single model
(Tittensor et al., 2018).

CONCLUSION

Projections under the business-as-usual carbon emissions
scenario (RCP 8.5) of fish functional types with FEISTY
resulted in trophic amplification of the decreases in primary
and secondary production seen in GFDL-ESM2M-COBALT. The
biomass and production of all fish decreased globally, though
with differences between functional types. Large pelagic fish
suffered the greatest declines but also with the highest degree
of projection uncertainty. The reduction in large pelagic fish
occurred despite a pelagification of the food webs. Pelagification
was a result of unequal decreases in secondary production,
leading to increases in the ratio of pelagic zooplankton
production to seafloor detritus production, which shifted
benthic-based ecosystems historically dominated by demersal
fish toward pelagic-based ones dominated by forage fish.
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Model projections of ocean circulation and biogeochemistry are used to investigate large

scale climate changes under moderate mitigation (RCP 4.5) and high emissions (RCP

8.5) scenarios along the continental shelf of the Canadian Pacific Coast. To reduce

computational cost, an approach for dynamical downscaling of climate projections

was developed that uses atmospheric climatologies with augmented winds to simulate

historical (1986–2005) and future (2046–2065) periods separately. The two simulations

differ in initial and lateral open boundary conditions. For each simulation, the daily

climatology of surface winds in the driving model was augmented with high-frequency

variability from an atmospheric reanalysis product. The “time-slice” approach was able to

reproduce the observed climate state for the historical period. Sensitivity tests confirmed

that the high frequency wind variability plays an essential role in freshwater distribution in

this region. Projections suggest that sea surface temperature will increase by 1.8–2.4◦C

and surface salinity will decrease between −0.08 and −0.23 depending on whether

a moderate or high emissions scenario is used. Stratification increases throughout

the region and there is some evidence of nutrient limitation near the surface. Primary

production and phytoplankton productivity (chlorophyll) also increase. Density surfaces

are relocated deeper in the water column and this change is mainly driven by surface

heating and freshening. Changes in saturation state are mainly due to anthropogenic

CO2 with minor contributions from solubility, remineralization and advection. There is little

difference between RCP 4.5 and RCP 8.5 with regard to projections of deoxygenation

and acidification. The depths of the aragonite saturation state and the oxygen minimum

zone are projected to become shallower by ≃ 100 and ≃ 75m respectively. Extreme

states of temperature, oxygen and acidification are projected to become more frequent

and more extreme, with the frequency of occurrence of [O2] < 60mmolm−3 expected

to approximately double under either scenario.
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1. INTRODUCTION

Increasing atmospheric greenhouse gas (GHG) concentrations
affect marine ecosystems worldwide through a variety of
mechanisms, notably ocean acidification due to dissolution
of atmospheric CO2 and declining oxygen concentrations
(deoxygenation). Canadian Pacific coastal waters are often
considered to be particularly vulnerable because waters rich in
dissolved inorganic carbon (DIC) and low in oxygen are naturally
present at relatively shallow depths on the continental slope
(e.g., Feely et al., 2008). Warming of the surface ocean results
in both declining surface oxygen concentrations, and increased
stratification that leads to reduced ventilation of the subsurface
ocean. Rising temperature, acidification, and declining oxygen
are three important stressors that affect marine biodiversity and
ecosystem health both individually and synergistically (Gruber,
2011; Pörtner et al., 2014). Climate change may also result in
changes to the upwelling- and downwelling-favorable winds that
play a major role in the oceanography of the Canadian Pacific
continental margin (Merryfield et al., 2009; Foreman et al., 2014).

Episodes of extremely hypoxic or corrosive water have already
led to extensive die offs of marine life in the region (Barton
et al., 2015; Chan et al., 2019). To manage marine ecosystems
under a changing climate and plan potential strategies for
adaptation, projections of how physical, chemical, and biological
characteristics of the ocean ecosystem will change are needed.
Regional ocean downscaling of climate projections from global
Earth Systemmodels are the only available source of information
beyond the very limited time scales on which forecasting is
possible (e.g., Li et al., 2019).

Estimates of projected changes in ocean state can be used,
in combination with species observations, to estimate impacts
on marine ecosystems. By identifying habitat changes, potential
hot-spots and refugia, climate projections can be used to
inform marine conservation and spatial planning. Additionally,
projected ocean changes are a precursor to investigations of
climate impacts on the goods and services that these ecosystems
provide including, for example, the catch potential for various
marine species (Cheung et al., 2010).

We present here a high-resolution regional projection of
future climate for the Canadian Pacific continental margin.
The point of departure for this work is Foreman et al. (2014)
which examined changes in the physical oceanography of the
British Columbia (BC) Continental Shelf. Our model includes
biogeochemistry, has a higher resolution and uses an approach
to dynamically downscaling climate projections that reduces
computational costs. This work will evaluate the model’s ability
to reproduce the observed state of the ocean in the historical-
climate simulation, present projections of the future ocean
biogeochemical state, and evaluate the mechanisms underlying
the projected changes.

2. MATERIALS AND METHODS

This study uses a multi-stage downscaling approach to
dynamically downscale global climate projections at a 1/36◦

(1.5 − 2.25 km) resolution. We chose to use the second-
generation Canadian Earth System model (CanESM2) because
high-resolution downscaled projections of the atmosphere over
the region of interest are available from the Canadian Regional
Climate Model version 4 (CanRCM4). We used anomalies from
CanESM2 with a resolution of about 1◦ at the open boundaries,
and the regional atmospheric model, CanRCM4 (Scinocca et al.,
2016) for the surface boundary conditions. CanRCM4 is an
atmosphere only model with a 0.22◦ resolution and was used
to downscale climate projections from CanESM2 over North
America and its adjacent oceans.

The model used is computationally expensive. This is due
to the relatively high number of points in the domain (715 ×

1, 021 × 50) and the relatively complex biogeochemical model
(19 tracers). Therefore, rather than carrying out interannual
simulations for the historical and future periods, we implemented
a new method that uses atmospheric climatologies with
augmented winds to force the ocean. We show that augmenting
the winds with hourly anomalies allows for a more realistic
representation of the surface freshwater distribution than using
the climatologies alone.

Section 2.1 describes the ocean model that is used to
estimate the historical climate and project the ocean state
under future climate scenarios. The time periods are somewhat
arbitrary; 1986–2005 was chosen because the Coupled Model
Intercomparison Project Phase 5 (CMIP5) historical simulations
end in 2005 as no community-accepted estimates of emissions
were available beyond that date (Taylor et al., 2009); 2046–2065
was chosen to be far enough in the future that changes in 20 year
mean fields are unambiguously due to changing GHG forcing (as
opposed to model internal variability) (e.g., Christian, 2014), but
near enough to be considered relevant for management purposes.

While it is true that 30 years rather than 20 is the canonical
value for averaging over natural variability, in practice the
difference between a 20 and a 30 year mean is small (e.g., if
we average successive periods of an unforced control run, the
variance among 20 year means will be only slightly larger than
for 30 year means). Also, there is concern that longer averaging
periods are inappropriate in a non-stationary climate (Livezey
et al., 2007; Arguez and Vose, 2011). We chose 20 year periods
because they are adequate to give a mean annual cycle with
little influence from natural variability, while minimizing aliasing
of the secular trend into the means. As the midpoints of the
two time periods are separated by 60 years, the contribution of
natural variability to the differences between the historical and
future simulations is negligible e.g., (Hawkins and Sutton, 2009;
Frölicher et al., 2016).

Section 2.2 describes how climatologies derived from
observations were used for the initialization and open
boundary conditions for the historical simulations and pseudo-
climatologies were used for the future scenarios. The limited
availability of observations means that the years used for
these climatologies differs somewhat from the historical and
future periods. Section 2.3 details the atmospheric forcing
fields and the method that we developed to generate winds
with realistic high-frequency variability while preserving the
daily climatological means from the CanRCM4 data. Section
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2.4 shows the equilibration of key modeled variables to the
forcing conditions.

2.1. Northeast Pacific Model Description
and Forcing Fields
The regional model is based on the Nucleus for European
Modeling of the Ocean (NEMO) numerical framework version
3.6 (Madec, 2008). The North–Eastern Pacific (NEP) model
domain spans the Canadian Pacific Ocean east of ≃ 140◦W
and north of 45◦N (Figure 1A). The horizontal resolution is
nominally 1/36◦ latitude and longitude which gives a variable
grid spacing between 1.5 and 2.25 km (Figure 1A).

The model, referred to as NEP36, is an update of the model
developed by Lu et al. (2017) based on NEMO version 3.1 and
uses the same bathymetry (Figure 1B). The sea-ice module was
not used because of negligible presence of sea-ice in the model
domain. Water temperatures below the freezing point were set to
the freezing temperature.

The vertical discretization includes 50 levels with thickness
varying from approximately 1m at the surface to 450m at
5, 000m with partial cells at the bottom. The minimum thickness
of the partial cell at a particular location is set to be the minimum
of 6m or 20% of the full thickness of the cell near the bottom. The
thickness of the vertical levels varies slightly with changes in sea
surface elevation (Levier et al., 2007).

The NEP36 physical ocean model used in this study has the
same 50-level setup as the version validated by Lu et al. (2017).
A 75-level version of the NEP36, based on NEMO 3.6, is used
in an operational prediction system. For each version of NEP36,
the parameterizations of vertical and lateral mixing are tuned
based on model validation. Specifically, in the current version
the vertical eddy diffusivity and viscosity are computed using
the General Length Scale scheme (Umlauf and Burchard, 2003).
The bottom friction is parameterized using a quadratic law, with
a fixed drag coefficient of 5 × 10−3. The horizontal diffusivity
and viscosity are parameterized by a Laplacian scheme along
isopycnal and horizontal levels, respectively. The horizontal
viscosity is related to the strength of the horizontal shear of
the velocity according to Smagorinsky (1963), with the constant
parameter set to 0.7. The eddy horizontal Prandtl number (the
ratio of eddy diffusivity to viscosity) is set to 0.1. The background
horizontal eddy diffusivity and viscosity are set to be 20m2 s−1.
In order to compare the performance of the current version with
the 2017 version, a short hindcast test was run using the same
Climate Forecast Reanalysis (CFSR) (Saha et al., 2010) forcing.
The results were substantially close (not shown).

The ocean biogeochemistry module is called the Canadian
Ocean Ecosystem model (CanOE). It was developed for the
Canadian Earth System Model v.5 (CanESM5, Swart et al.,
2019), which is based on NEMO 3.4.1, and was adapted to
run within NEMO 3.6. CanOE is fully integrated within the
physical circulationmodel throughNEMO’s Tracers in theOcean
Paradigm (TOP) module. The model consists of 19 tracers
including dissolved inorganic carbon (DIC), total alkalinity (TA),
oxygen (O2), nitrate (NO3), ammonium (NH4), dissolved iron
(dFe), large (PL), and small (PS) phytoplankton, large (ZL) and

small (ZS) zooplankton, and large (DL) and small (DS) detritus.
Each phytoplankton group has four state variables: nitrogen,
carbon, iron, and chlorophyll. Iron limitation was turned off, as
BC shelf waters are rich in iron (Johnson et al., 2005). A schematic
diagram of the ecosystem model and a more detailed description
can be found in Hayashida et al. (2019).

The time-step of the physical model (baroclinic mode) was
60 s and each physical step covers 4 ecosystem model time-steps.
The computational cost was reduced by removing the land-only
tiles using the land-processor elimination tool within NEMO.
Unless otherwise stated, model outputs were derived from five
day averages and the analysis presented will use fields that are
averaged over the last 3 years for historical (1986–2005) and
future (2046–2065) simulations.While only three averaging years
are used, each year represents the climate over the entire 20 year
period because the model is forced with climatologies except that
the winds are augmented with high frequency variability.

To project future climate, models make use of scenarios of
how technology, population, economics, policy, and land-use will
change over time (e.g., Moss et al., 2010). This study examines
a “moderate mitigation” scenario, Representative Concentration
Pathway (RCP) 4.5, and a “no mitigation” (high emissions)
scenario, RCP 8.5.

2.2. Ocean Initialization and Forcing
For the historical simulation, the physical ocean model was
initialized using potential temperature (T), salinity (S), sea
surface height (SSH) and zonal (u) and meridional (v) velocities
from climatological conditions in January, and the lateral open
boundary conditions (OBC) use the climatologies for each
month. For ocean T and S, monthly climatologies (1985–
2004) were constructed from a combination of the North East
Pacific (NEP) and the Northern North Pacific (NNP) regional
climatologies on a 1/10◦ × 1/10◦ grid with 57 depth levels from
0 to 1, 500m (Seidov et al., 2017). TheWorld Ocean Atlas (WOA
2013) 1/4◦ data was used to fill in any gaps in our domain
for salinity (Zweng et al., 2013) and temperature (Locarnini
et al., 2013). Monthly climatologies for SSH and velocities were
created from Ocean ReAnalysis System 4 (ORAS4) (1986–2005)
(Balmaseda et al., 2013). Where necessary, SOSIE1 was used to
re-grid the data. The OBC also included tidal SSH and depth-
averaged currents for 8 constituents (K1, O1, P1, Q1, M2, S2, N2,
and K2) that were obtained fromWebTide2, with the solution for
the Northeast Pacific Ocean based on Foreman et al. (2000).

Pseudo-climatologies for DIC and TA were constructed from
the Global Ocean Data Analysis Project (GLODAP) version 2
(Key et al., 2015) and Lauvset et al. (2016) (only annual data
are available so monthly data files were created with the same
data in each month). Monthly climatologies (1981 − 2010) for
oxygen and nitrate were taken from WOA 2013 (Garcia et al.,
2014a,b). River runoff was defined according to Morrison et al.
(2012) and the concentrations of dissolved inorganic carbon and
total alkalinity in river water were set to 10−3mol/L.

1http://sosie.sourceforge.net/
2http://www.bio.gc.ca/science/research-recherche/ocean/webtide/index-en.php
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FIGURE 1 | Maps of the (A) NEP36 model domain and resolution and (B) the model bathymetry. (B) Shows the focus regions of West Coast Vancouver Island (WCVI)

and the Northern Coast (NC) as well as the positions of weather buoys maintained by Environment and Climate Change Canada. The green line shows the location

where a vertical cross-section was extracted.

Similar to Foreman et al. (2014), future initial conditions
and OBC were constructed using the Pseudo-Global-Warming
method (Hara et al., 2008; Morrison et al., 2012) by adding
a monthly anomaly generated from CanESM2 (Arora et al.,
2011) to the historical fields. CanESM2 has a 1 − 2◦ horizontal
resolution with 40 vertical levels and uses the Canadian Model
of Ocean Carbon (CMOC) which is a precursor to CanOE
with 6 passive tracers. The monthly anomalies were calculated
as the difference between climatologies for historical (1986–
2005) and future periods (2046–2065) for T, S, u, v, TA,
DIC, and NO3. Because CanESM2 did not have O2, the O2

anomaly was estimated as a solubility term calculated from T
and S and a remineralization contribution calculated from NO3

assuming Redfield stoichiometry. The sea surface height remains
unchanged from the historical simulation. Atmospheric CO2

concentration was assumed to be a constant 360 ppmv for the
historical simulation and 496 ppmv (576 ppmv) for RCP 4.5 (RCP
8.5) (Meinshausen et al., 2011).

2.3. Atmospheric Forcing
Rather than running the model forward in time from e.g., 2000
to 2070, this study uses prescribed atmospheric climatologies.
This “time-slice” approach generates outputs of the modeled
variables that represent the climate of the “historical” (1986–
2005) period and “future” (2046–2065) scenarios. While similar
approaches have been used to investigate climate change between
past and future periods the simulations were run inter-annually
and then averaged to produce the analyzed climatology (Cannaby
et al., 2015; Peña et al., 2018). Most studies using atmospheric
climatologies to force the ocean do not augment the winds with
high-frequency variability (i.e., Penduff et al., 2011). However,
studies show that high frequency wind variability is essential to
maintaining a realistic ocean state (Holdsworth andMyers, 2015;
Wu et al., 2016; Jamet et al., 2019). We introduce a new method
for dynamically downscaling climate projections using an ocean

only model that uses prescribed atmospheric climatologies and
augments the winds with high frequency variability from the
historical climate.

The CanRCM4 climatologies project increases in atmospheric
temperatures throughout all of the seasons with an annual
increase of 2.3◦C (2.9◦C) under RCP 4.5 (RCP 8.5). Projected
changes in precipitation imply wetter winters and dryer
summers. The strongest increases occurring during winter and
fall are up to 2.4mmd−1 (2.5mmd−1) under RCP 4.5 (RCP
8.5). Average summer decreases are as high as −1.0mmd−1

(−1.5mmd−1) under RCP 4.5 (RCP 8.5).
Each simulation was run for≃ 10 years or until it approached

an internal equilibrium, at least for the upper ocean. Because the
model is run for a relatively short time, this method substantially
reduces the computational costs and model drift.

Daily climatologies for surface air temperature (SAT),
total precipitation, specific humidity, sea level pressure, and
incident long-wave radiation were constructed from downscaling
simulations with the ≃ 22 km CanRCM4. CanRCM4 was
used to downscale global climate model (CanESM2) simulations
for the atmosphere over North America; the physical process
parameterizations in the CanRCM and the CanESM atmosphere
are generally the same. For surface solar irradiance (shortwave
radiation) an observation-based climatology was used. Data from
1983 to 1991 (Bishop et al., 1997) were averaged for each day of
the year. These data were interpolated to the NEP36 grid online
using the weight files generated with the NEMO TOOLS.

Climatologies of the zonal and meridional wind velocities
were constructed by computing the wind direction and speed
separately using the daily CanRCM4 output. For the wind speed,

s̄ = 1
nk

∑nk
k=1

√

(u2
k
+ v2

k
) where nk is the number of years in

the climatological period. Wind directions were computed using
θ̄ = tan−1(v̄/ū) for each day from the averaged wind vectors
(e.g., ū = 1

nk

∑nk
k=1

uk). Then, u = s̄ cos θ̄ and v = s̄ sin θ̄ define

the vector components of the climatological winds. The scalar
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averaged winds, u and v, preserve the wind speed magnitude
and are generally greater than vector averaged quantities ū and v̄
especially for locations with large variance in the wind direction.

The climatological winds exclude high frequency (. 2 days)
variability that, due to the nonlinear dependence of turbulent
surface fluxes on the wind speed, plays an important role in
ocean mixing and circulation (Wu et al., 2016). Daily forcing
frequencies cannot provide any information about variations that
occur over time-scales of <24 h. Therefore, we developed a new
method to generate hourly winds with realistic high-frequency
variability that preserves the daily climatological means from the
CanRCM4 data.

To construct the historical winds, hourly wind speed
anomalies were added to the daily means from CanRCM4 (s̄).
The anomalies were calculated based on the hourly winds of the
United States National Centers for Environmental Prediction
Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010).
To compute the anomaly, a daily climatology of the CFSR
wind speeds (1986–2005) was subtracted from the hourly
CFSR wind speeds for a selected year of the CFSR data. By
adding this hourly wind speed anomaly to s̄, and keeping the
daily wind direction (θ̄) unchanged, the hourly wind velocities
(u, v) were obtained. Years were randomly selected from the
CFSR to avoid biasing the model toward any particular year;
linear interpolation is applied over the last day of each year.
The randomly selected years were run in the following order
2005, 1994, 1997, 2002, 1986, 1999, 1993, 1998, 1989, 1990, 1988,
and 2004 (the last year was only used for interpolation
in December).

Augmenting the winds with hourly anomalies was necessary
for an accurate representation of the wind speed distribution.
The distribution of wind speeds for the historical winds is similar
to the ECCC weather buoy data, while the distribution of the
climatological winds (without including the hourly anomalies) is
dominated by weaker winds with speeds <5m s−1 (Figure 2A).
Here, the model data was extracted from the nearest grid
cell to the buoy locations. For comparison, we created daily
winds augmented with daily anomalies from the CanRCM4 data
(CanRCM4 historical). The year 1995 was selected (arbitrarily) to
facilitate direct comparison. We found that the dominant wind
speeds are within the range of 5m s−1 − 10m s−1, and strong
(weak) winds with speed larger (smaller) than 10m s−1 (5m s−1)
are still mostly missing (Figure 2A). Only the historical winds
(CanRCM4 climatological augmented with hourly CFSR) were
able to accurately represent the wind speed distribution exhibited
by the buoy time-series.

A sensitivity test was conducted using the climatological
winds. While this test provides some insight into the influence of
high frequency winds, we caution that this was completed during
model development and there are small differences in the initial
conditions between this run and the historical run. Moreover,
we are comparing 1 year of the climatological simulation with
a 3 year average from the historical simulation. More details of
model validation with shipboard data will be given in section
3.1. For the analysis of the sensitivity test, we binned the
vertical profiles at each station into the means above and below
10m so that the error bars represent the variability across the

stations. The solution of the climatological simulation exhibited
larger biases in the ocean state compared with the solution of
the historical simulation (using the augmented hourly winds)
(Figure 2B). In particular, the salinity bias for depths <10m was
significantly reduced (diamond markers) for all of the seasons
when high frequency winds were included (Figure 2B). For
greater depths, the only significant difference was in fall, however,
this cannot be directly attributed to changes in the surface winds
because of differences in the initial conditions (Figure 2C). These
results suggest that including high frequency wind anomalies is
important for an accurate representation of upper ocean mixing.

Some interannual variability is introduced to the wind fields
from the CFSR wind speed anomalies. Examining the standard
deviation among these 3 years indicates which variables are
strongly influenced by upper ocean mixing due to the wind
variability. But more carefully conducted model studies are
needed to better understand the role that high frequency wind
variability plays in setting oceanic conditions for this region.
More details of the year-over-year variability for key variables in
the 10 year historical simulation are given in section 2.4.

For the future simulations, the same technique of randomly
shuffling years for the wind speed anomalies was implemented,
but the full range of years from the CFSR data set 1979 − 2010
was used. The randomly selected years used for the wind patterns
in RCP 4.5 are 1991, 2003, 2005, 2007, 1979, 1985, 1988, 1999,
1994, 1980, 1987, 2000, and 2008 and for RCP 8.5 they are 1985,
2001, 1998, 2005, 1982, 1989, 2009, 1986, 1993, 1990, 1997, 2002,
and 1991.

While the hourly wind frequency is adequate to capture
localized wind events, future changes in the frequency, duration,
and pathways for these storms are not considered. It is widely
accepted that storms tracks will shift poleward in the future as
a result of increasing mean ocean temperatures (Yin, 2005). But
there is no generally accepted theory about how they will change
at regional scales (Shaw et al., 2016; Mbengue and Schneider,
2017), so assessing the impact of changes in weather extremes is
beyond the scope of this study.

Themagnitude of the wind speeds for the historical simulation
(with the CFSR anomaly from 2005) are consistent with
climatologies calculated from weather buoy data. The locations
of the buoys are shown in Figure 1 and a more complete
description of these data is given in the Supplementary Material.
The corresponding wind directions are more consistent with
the buoys over the open ocean and shelf than near shore
(Figure 3). Near the shelf break, winds are typically northward
in winter (downwelling-favorable) and to the east or south-
east in summer (upwelling-favorable). The wind field is broadly
consistent with the observations in terms of the timing of
upwelling, but the winds turn too early during the fall transition
and too late during the spring transition. Nearer to shore
(e.g., buoys 204, 185, 183, 145), the model wind direction has
errors of 20–30◦ (rotated clockwise relative to the observations).
The historical winds exhibit more accurate wind speeds and
directions than those of the North American Regional Climate
Change Assessment Program (NARCCAP) Regional Climate
Model (RCM) ensemble (c.f. Figure 5 of Morrison et al., 2014)
which were typically rotated counter-clockwise relative to the
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FIGURE 2 | (A) The frequency distribution of wind speeds for the historical period for the daily CanRCM4 climatology (climatological), the CanRCM4 climatology

augmented with the daily CanRCM4 anomalies (CanRCM4 historical), and the CanRCM4 climatology augmented with CFSR hourly anomalies (historical). (B,C)

Seasonal bias in salinity averaged over all stations at depths (B) < 10m and (C) > 10m for a simulations forced with the historical winds and the CanRCM4

climatology. The error-bars represent the standard deviation over the seasonal averages. The diamond markers indicate significant (p < 0.05) differences from the

historical simulation (Welch’s t-test).

FIGURE 3 | Monthly mean wind vectors for the ECCC buoy climatologies (shown in Figure 1) along with the future and historical wind fields (CanRCM4 and CFSR

from 2005).

buoy winds and did not turn sufficiently south during the
upwelling season.

The year 2005 was used for our comparisons with the future
winds because it was common to the random selections for future
and historical wind anomalies; the year chosen to provide the
high-frequency variability is, however, arbitrary and does not

affect the results. Future winds along the shelf begin the spring
transition later than the historical winds with a more southward
direction during the summer upwelling season (i.e., 204, 206,
207, 132). With the exception of the buoys over the open ocean
(004, 036, 184), winds turn earlier in the future during the fall
transition (Figure 3).
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2.4. Model Spinup
Although the model does not start from rest, it takes some time
to adjust to the forcing. Since a different randomly chosen wind
anomaly was used for each year, the model was not expected
to converge to a perfectly repeating annual cycle. To determine
whether the model had equilibrated, the domain was divided
into nine different regions and the evolution of essential model
variables was evaluated. The spin-up was examined over the
entire domain, but we show only the two example regions which
are the focus of our study as described below (Figure 1B).

The model resolution varies laterally and vertically. To avoid
any biases associated with the variable grid cell volume regional
averages for the study regions were normalized using a volume V

weighted integral F̄ =
∫

V F(x, y, z) dVV . The freshwater content

is defined by the volume weighted integral of
Sr−S(x,y,z)

Sr
with

a reference salinity Sr = 32.5 and heat content is defined
by the volume weighted integral of ρcp(T(x, y, z) − Tr) where

cp = 4, 184 J kg−1 K−1 is the heat capacity of water, ρ =

1, 020 kgm−3 is a reference density, andTr = 0◦C is the reference
temperature). Both quantities took several years to equilibrate
before a regular seasonal cycle was achieved (Figures 4A,B). This
adjustment period is most apparent for fresh water (Figure 4B)
especially for near surface waters (solid lines).

The biogeochemicalmodel was initialized late in year six of the
physical model spinup. Volume weighted mean concentrations
of NO3, and the salinity-normalized DIC (nDIC) are shown
in Figures 4C,D. Both NO3 and nDIC undergo substantial
adjustments over the first few years before a relatively regular
seasonal cycle begins to emerge (Figures 4C,D).

The future simulation was initialized with 3D velocity fields
constructed from the ORAS4 data used for the historical
simulation, plus CanESM2 anomalies. This simulation
exhibited a pattern of convergence for the physical and
biogeochemical variables that was similar to the historical
simulation (not shown).

3. RESULTS

The analysis focuses on the West Coast of Vancouver Island
(WCVI) region and the Northern Coast (NC) region shown by
shaded areas in Figure 1B. Both of these regions are bounded by
the 500m isobath on the continental slope. They meet at Brooks
Peninsula near the northwestern tip of Vancouver Island. The
WCVI region extends south to 47.7◦ and across the mouth of
Juan de Fuca Strait. It is an important region for wind-driven
upwelling, and forms the northernmost part of the California
Current system.

The NC region substantially overlaps the Pacific North Coast
Integrated Management Area (PNCIMA) (Lucas et al., 2007;
Irvine and Crawford, 2011), extending to the Alaska/Canada
border at the northern edge. The region between Vancouver
Island and Haida Gwaii, known as Queen Charlotte Sound, is
unique because of its complex bathymetry, with deep troughs
along the continental slope and shallow banks that form
important habitat for marine ecological communities.

3.1. Model Validation
Themodel ocean represents a climatology of the historical period
(1986–2005) rather than any particular year because it is forced
with climatologies of the atmospheric fields (with augmented
winds). Therefore, the resulting ocean fields are validated against
climatologies estimated from observations over the same period.
Generally, the model is in agreement with the observations. The
comparisons with the shipboard observations are described in
detail and, for brevity, only a summary is given for light-station
data, buoy data, and satellite SST analysis, which are further
described in the Supplementary Material.

For locations near the coast where the bathymetry is not well
resolved, we expected large biases. However, comparisons with
the light station data indicate an annual average fresh bias in SSS
of about 0.5±0.6 and an average warm bias of around 0.3±0.8◦C
(Fisheries and Oceans Canada , DFO). The bias for each station
and each month are shown in Supplementary Figure 4.

The model exhibits a cold bias in SST of less than 1◦C during
the winter months transitioning to a warm bias of up to 2◦C
throughout the summer compared to a climatology of NOAA
1/4◦ daily Optimum Interpolation Sea Surface Temperature
(OISST) (Banzon et al., 2016). The biases appear to be fairly
uniform across the domain, whereas we would expect a more
spatially variable pattern if the biases were primarily dynamically
driven, e.g., the bias would be larger in regions with strong
upwelling-favorable winds, which are a small part of the total
area. Comparisons with the ECCC buoy SST and SAT suggest
that these biases are largely driven by biases in the CanRCM4
surface air temperature (shown in Supplementary Figure 5).

For validation of modeled fields, vertical profiles were
compared to shipboard observations atmodel locations for which
there were at least 10 observed vertical profiles within a 5 km
radius for each season (winter-DJF, spring-MAM, summer -JJA,
fall-SON). To eliminate any overlap, the stations were separated
by at least 10 km. The observations were binned to the vertical
model levels. For each location and season, model grid points
within a 5 km radius were averaged for each z level.

The locations of shipboard observations of ocean temperature
and salinity are shown in Supplementary Figure 2. Most of the
observations are from the West Coast of Vancouver Island. For
all seasons, the model is generally biased cold (Figures 5A–D),
with biases typically less than 1◦C in summer, fall and winter
and slightly larger biases in spring (annual average bias is−0.4±
0.6◦C). There is a relatively small fresh bias for all of the seasons,
with an average bias of−0.2± 0.2 (Figures 5E–H).

The locations of the climatologies for O2 profiles are primarily
focused around WCVI with few in Queen Charlotte Sound. The
bias in O2 is positive for all seasons, with largest values in spring
and fall (Figures 5J–M). The mean bias over all of the seasons
is about 20mmolm−3 with an average standard deviation of
21mmolm−3.

For NO3, the locations of available observations were in the
WCVI region. The mean bias in NO3 over all of the seasons
is about −3.3mmolm−3 with an average standard deviation of
3.5mmolm−3.

The near-surface salinity bias averaged over all of the stations
was significantly reduced by augmenting the climatological
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FIGURE 4 | For the historical run, model spinup for the regions shown in Figure 1 (NC, North Coast; WCVI, west Coast Vancouver Island) for depths < 10m (solid

lines) and > 10m (dotted lines). (A) Ocean heat content, (B) freshwater content and volume weighted mean concentrations of (C) NO3, and (D) mean DIC

concentration normalized to a salinity of Sr = 32.5.

winds with high frequency variability from the CFSR winds
(Figure 2A). Because randomly selected years were used for the
CFSR wind anomaly, this result indicates that exact knowledge
of the high-frequency variability is not required to substantially
reduce model bias. It is evident from the sensitivity test that the
nonlinear response of ocean surface currents and mixing/stirring
to high-frequency wind forcing is important to accurately
simulating the freshwater distribution in this region.

3.2. Broad Changes Across the Continental
Shelf
Both the NC and WCVI regions are projected to experience
substantial changes. To illustrate the annual changes along
the Northeastern Pacific continental shelf in the 2055 climate,
Figure 6 shows the volume weighted averages for several model
variables. Error bars correspond to the standard deviation across
the 3 years averaged (which is due to the variability in the winds).

The regionally averaged SST is projected to increase by 1.8◦C
for the NC and 2.0◦C for WCVI under RCP 4.5 and by 2.4◦C
for both regions under RCP 8.5 (Figure 6A). These increases
correspond to a change between 3◦C and 4◦C per century which
is more rapid than the 0.9◦C per century increase reported
by Cummins and Masson (2014) for BC lightStations over the
historical record (60–70 years).

The average SSS decreases by −0.14 in the NC region

and by −0.23 in WCVI for RCP 4.5, yet for RCP 8.5, SSS

decreases by−0.10 for the NC and−0.08 forWCVI (Figure 6B).

While the change appears to be greater in RCP 4.5, the

difference is smaller than the interannual variability associated
with the augmented wind forcing which strongly influences the

freshwater distribution. The variability among model years due
to augmented wind forcing is considerably larger for SSS than
for SST, but still smaller than the change. While the future
projections all indicate freshening which is likely due to increases
in precipitation, the magnitude of the difference is less well-
constrained due to uncertainties in the projected wind speed
distributions for 2046–2065.

The only clear change in mixed layer depth (Figure 6C) is
a projected increase for WCVI under RCP 8.5; year-to-year
variability due to the wind anomaly is substantial. The overall
stratification of the water column increases. The convective
energy (CE), the amount of energy required to mix the column
to a given depth (100m), is projected to strengthen for both
regions with a greater increase in the NC compared with WCVI
(Figure 6D). This increase of about 50 Jm−3 is relatively small,
yet it represents an ≃ 10% increase in stratification. The static
stability of the water column is controlled primarily by the
salinity in all of the simulations (not shown). The increase in
stratification does not appear to inhibit phytoplankton growth,
as total chlorophyll and primary productivity increase for both of
the regions (Figures 6E,F).

The minimum oxygen and average aragonite saturation state
(�A) below 100m decreases for both regions indicative of
more corrosive (lower �A) and less oxygenated waters on the
continental shelf (Figures 6G,H). Error bars confirm that the
wind anomaly influences minimum oxygen concentration on
the shelf as highly oxygenated near-surface waters are mixed
downward, but has little effect on �A.

There is a relatively low amount of hypoxic (< 60mmolm−3)
water in the study regions on the continental shelf, but the
volume (weighted by the volume of each grid cell) increases
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FIGURE 5 | For the historical run, model bias (model-observations) in temperature (A–D), salinity (E–H), oxygen (I–L), and nitrate (M–P) concentration calculated from

climatologies of shipboard observations (1986–2005) for each of the seasons as indicated at the top of each column. For T, S, and O2 the y-axis limits differ for the

winter column as there are fewer observations. Relatively few observations of DIC are available so these data were validated using the empirical relationships derived

by D. Ianson using the methods and data from Lara-Espinosa (2012) (D. Ianson (Fisheries and Oceans Canada) private communication, 2019) and shown in the

Supplementary Material.

from around 5 km3 in the historical simulation to around
50 km3 by the 2050s (Supplementary Figure 6). The volume
of undersaturated waters is much higher (≃ 1, 000 km3).
Throughout the year, the largest volume of corrosive water is
in the NC region, while the largest volume of low-oxygen water
is in the WCVI region. The oxygen minimum zone is deeper
in the northern part of the domain (discussed in section 3.3)
so less of the low-oxygen water flows onto the shelf. Since
the saturation horizon is higher in the water column than the
oxygen minimum zone, corrosive water flows into the deep sub-
marine canyons of the NC more than in the WCVI region (see
Supplementary Figure 1).

During summer upwelling, the aragonite saturation state
of shelf waters is generally lower than the other seasons

(Supplementary Figure 6). Maps of the minimum summer �A

illustrate that while minimum �A does not change very much in
the open ocean, the shelf regions are becoming undersaturated
(�A < 1) (Figure 7) even for the moderate mitigation scenario
RCP 4.5. Hotspots of change include the near shore regions
of WCVI and the banks of the NC (Figure 7C). For RCP 8.5,
the magnitude of the change is greater, but the locations of
greatest change remain similar to RCP 4.5. While the maps
illustrate changes east of Vancouver Island (the Salish Sea), we
have neglected this region because even 2−3 km resolution is not
adequate there (cf. Peña et al., 2016; Soontiens and Allen, 2017).

The key factors influencing phytoplankton growth and
primary productivity are light, temperature, availability of
nutrients (in this region principally N), and stratification
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FIGURE 6 | Annual average (A) sea surface temperature, (B) sea surface salinity, (C) mixed layer depth, (D) convective energy, (E) total chlorophyll, (F) primary

productivity, and volume weighted averages over the bottom 100m for (G) minimum oxygen, and (H) aragonite saturation state for historical (1986-2005) and future

(2045-2065) simulations. Error bars represent the year-to-year variability due to the wind stress anomaly.

FIGURE 7 | Maps of the minimum aragonite saturation state in summer for the (A) historical period, (B) future (RCP 4.5), and the (C) difference between the two. Here

the 5-day averages were used to compute �A and the minimum was taken over all depths.

of the water column. There is a notable increase in Total
Chlorophyll (TCHL) in the top 10m across the continental
shelf. For example, Figures 8A,B shows the volume averaged
change in TCHL for RCP 4.5. Surface chlorophyll is strongly
affected by wind variability (shaded regions showing standard
deviation due to the wind anomaly) especially during the
spring over WCVI. Fewer nutrients reach the euphotic zone
in the future scenarios, but subsurface nitrate is projected to
increase during the upwelling season (Figures 8C,D) which
may be a consequence of stronger upwelling winds. The non-
dimensional nitrogen limitation term (Nlim) is based on the
cell N quota; it ranges between 0 and 1 with larger values
corresponding to increased growth rates (Hayashida et al., 2019).

Although the stratification is increasing, nitrogen limitation
does not appear to be a major factor limiting productivity
along the continental shelf in the 2050s (Figures 6F,G).
Since nutrient concentrations are generally sufficient to
support phytoplankton growth, increases in productivity
across the continental shelf could be due to temperature
dependent metabolic rate, changes in the mixed layer depth,
or changes in circulation. More work is needed to understand
these mechanisms.

3.3. Changes Along the Continental Slope
Figure 9 shows a vertical cross-section across WCVI (the green
line in Figure 1). Each column corresponds to a different
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FIGURE 8 | Regionally averaged changes between 1986− 2005 and 2046− 2065 (RCP 4.5) for (A), (B) total chlorophyll (C), (D) nitrate concentration (normalized by

the range of values in the historical period) and (F), (G) nitrogen limitation of phytoplankton based on cell nitrogen quotas. Shaded regions correspond to the standard

deviation among the years averaged due to wind variability as in Figure 6. Nitrogen limitation is a non-dimensional index ranging from 0 (cell quota at its minimum) to

1 (cell quota at its maximum).

simulation. Qualitatively, impacts are similar for both scenarios
from the continental shelf to the shore; isopycnal surfaces are
deepening, while corrosive, deoxygenated water is rising. For
RCP 8.5 the effect is more pronounced with corrosive waters
moving to shallower depths in the water column (Figure 9 row
2 and 3). While the oxygen content is declining for the bottom
waters across the continental shelf, maps of the spatial extent
indicate that hypoxic waters remain largely confined to the
continental slope (not shown).

To estimate the projected changes along the continental
margin, we first located the 300m isobath for both focus
regions, then moved approximately 100 km along the
model grid toward the open ocean (purple markers in
Figure 10A). Seasonally averaged fields were extracted along
this vertical cross-section and interpolated to a uniform 1m
vertical grid.

Isopycnal surfaces (binned at a resolution of 0.1σθ ) are
projected to deepen with increased temperature and salinity
at a given density (e.g., Figure 10B). In summer, isopycnals
are located deeper in the water column by as much as 100m
depending on the isopycnal (Figure 10C). For all of the seasons,
the most pronounced changes in isopycnal depth are from
26σθ to 27σθ (i.e., below the pycnocline), where the vertical
density gradient is small. Nearer to the surface, there are

seasonal differences in the T-S plots. In summer and fall
warming isopycnals deepen by between 15 and 25m, while
increased precipitation in winter and spring results in near-
surface isopycnals that are warmer and fresher with deepening
by 15–60m (not shown).

A likely mechanism driving the apparent downward
“shift” of isopycnal surfaces is warming and freshening
from the surface downward, which decreases the density
at a specific depth horizon causing a downward relocation
of the isopycnal. That this mechanism is responsible for
the relocation is evident from, for example, the average
temperature and salinity profiles for summer (Figure 11).
Anthropogenic warming produces a warmer atmosphere
with higher levels of precipitation in the 2050s. The warming
signal propagates downward through the water column, with
warming up to 2◦C near the surface tapering off to 1◦C
at 500m depth (Figure 11A) increasing the stratification.
Substantial freshening due to increases in precipitation
reduces the density at the surface, and the salinity anomaly
is mixed down into the upper water column (Figure 11B).
In effect, both future scenarios have lighter density waters
near the surface than the historical simulation which results
in the “movement” of denser isopycnals to greater depth
(Figure 11C). This result is consistent with observations of
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FIGURE 9 | Vertical cross-sections taken across WCVI (green line in Figure 1B) of the summer climatology for (A–C) potential density (color contours every 0.5σθ ),

(D–F) aragonite saturation state (color contours separated by 0.1), (G–I) pH and (J–L) dissolved oxygen. Each column corresponds to the simulation indicated on the

top panel (historical, RCP 4.5 and RCP 8.5).

T, S, and P from the 1970s to 1990s which show a downward
displacement of density surfaces at latitudes between 45◦ and 50◦

(Helm et al., 2011).
The change in oxygen near the surface can be attributed

mainly to changes in solubility (controlled primarily by
temperature), while changes along deeper isopycnals are
primarily due to changes in remineralization and circulation.
The apparent oxygen utilization was calculated by subtracting
the actual concentration from the saturation value of oxygen
(i.e., AOU = [O2]sat − [O2]). Assuming the non-solubility
fraction is entirely due to remineralization (remin = −AOU),
the remineralization component for DIC and NO3 were
also estimated (Sarmiento and Gruber, 2006). For example,
Figure 12 shows the change along isopycnal surfaces for summer

climatologies near the continental slope (locations shown in
Figure 10A). The change due to solubility is relatively small for
the near-surface isopycnals (σθ < 25), but this figure excludes
isopycnals that are not present in the historical climate because
of substantial decreases in surface density (i.e., Figure 11C). If,
instead, the solubility fraction is calculated based on depth levels
(e.g., inset panel of Figure 12), it accounts for about 84% (94%)
of the total in the upper 100m and 21% (28%) over all depths
for RCP 4.5 (RCP 8.5). These values are larger than the observed
oxygen decline due to solubility since the 1960s of≃ 15% for the
global ocean (Helm et al., 2011; Schmidtko et al., 2017).

The largest declines in oxygen occur for isopycnals between
26 σθ and 27σθ because that is where the most substantial
relocation occurs. For example, in summer under RCP 4.5, the

Frontiers in Marine Science | www.frontiersin.org 12 March 2021 | Volume 8 | Article 602991159

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Holdsworth et al. Canadian Pacific Margin Future Biogeochemistry

FIGURE 10 | Changes in the depths of isopycnal surfaces for a series of locations (100 km seaward of the 300m isobath. (A) Locations of vertical profiles and

bathymetry for depth < 300m. (B) T-S plots for present and future with depth of isopycnal indicated by color (same colorbar as A), and (C) change in the depth of

isopycnals between present and future simulations. All results are summer climatologies, averaged over all of the locations shown in (A).

FIGURE 11 | Using the same summer-averaged vertical profiles that were used in Figure 10 the average profiles are shown for each simulation with differences

(future-historical) on the right panel for (A) temperature, (B) salinity, and (C) density.

greatest changes in concentration occur for σθ = 26.5 with
1O2 = −54mmolm−3 and correspond to a depth change of
≃ 70m. Comparing this to the vertical gradient of O2 in the
historical climate, we find that if σθ = 26.5 were to be displaced
downward by the same distance then 1O2 ≃ −55mmolm−3.
This simple example demonstrates that the magnitude of the
change in concentration on specific isopycnals experience is
broadly consistent with the downward displacement of the
isopycnal surfaces.

Crawford and Peña (2013) examined the decline off of WCVI
for σθ = 26.6 from 1981 to 2011. While direct comparisons
with their observations are not possible because of differences in
sampling andmodel bias, examining the same isopycnal provides
insight into the change in O2 for the region. On average, the
σθ = 26.6 isopycnal sits at a depth between 186m and 296m in
the historical simulation with an average oxygen concentration
of 122mmolm−3. The change of about −0.9mmolm−3 y−1

(−1.0mmolm−3 y−1) for RCP 4.5 (RCP 8.5) (estimated from the

two time-slices) is broadly consistent with the declines (Crawford
and Peña, 2013) estimated over the historical period.

The downward penetration of atmospheric CO2 into the water
column is responsible for most of the change in the DIC. The
change due to remineralization, estimated from AOU (DICrem),
is small relative to the total projected change especially near
the surface (Figure 12B). DICrem only approaches half of the
total change at the isopycnals where O2 change is greatest
(Figure 12). The change in DIC due to anthropogenic CO2 is
likely to be primarily local, because it declines approximately
monotonically from the surface down, because it is consistent
across the region (not shown), and because vertical penetration
will be generally slower in oceanic waters, making an explanation
based on subsurface advection of such waters unlikely. The
remineralization fraction may be partly local and partly advective
(given the horizontal gradients in concentration, it would take
only a fairly small change in mean circulation to explain the
changes in concentration, and the stoichiometry of O2 loss / DIC
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FIGURE 12 | For isopycnals (binned at a resolution of 0.5σθ ), the (A) total change in [O2] and the change that is not attributable to solubility (remin = −AOU). The inset

panel shows the fraction of the change in [O2] that is due to solubility for each depth. Total change and estimated changes due to remineralization for (B) DIC and (C)

nitrate. The remineralization fraction was calculated from AOU assuming 1O2 : 1C :(16/106)N. All results are based on summer climatologies averaged over all of the

locations shown in Figure 10A.

and NO3 gain would be similar). However, a primarily advective
mechanism is unlikely because of the small change in salinity
at the levels where the greatest change occurs (Figures 10, 11),
and because, as noted above, the change in O2 on e.g., 26.5 is
consistent with the downward displacement of the isopycnal by
surface warming and freshening. To the extent that the change
in salinity is not monotonic with depth, the deviation occurs
at much shallower depths (Figure 11) and is most plausibly
explained by shoreward advection of more oceanic water due to
slightly stronger upwelling-favorable winds.

For nitrate, most of the change is associated with
remineralization (Figure 12C). The increase in remineralization
is attributed primarily to the relocation of the isopycnal surfaces,
as DIC and nitrate both increase monotonically with depth.

Corrosive (undersaturated) waters are projected to encroach
substantially on the continental shelf. The average aragonite
saturation state decreases by 0.2 (0.3) in RCP 4.5 (RCP 8.5)
(Figure 14A) becoming consistently undersaturated throughout
the year.

The oxygen minimum zone is projected to rise up in the
water column by about 75m. For example, Figure 13 shows
the change in the depth of the 60mmolm−3 isopleth (locations
in Figure 10A) under RCP 4.5. The dashed line marks Brooks
Peninsula which separates the WCVI and NC regions as
discussed above. The depths vary seasonally, particularly for the
NC region; deeper during winter downwelling and shallower
during summer upwelling. The isopleth shoals more in the south
than in the north. Qualitatively similar results were found along
the 300m isobath (parallel to those shown in Figure 10A), but
there was much more variability along the transect (not shown).

Shaded regions indicate the variability associated with the wind
anomaly was±27m.

The annual change in potential temperature for a transect
along the 300m isobath is 0.9◦C (1.8◦C) in RCP 4.5 (RCP 8.5)
which represents an average change of about 1.5◦ C (2◦ C) per
century. The depth of the saturation horizon along that transect
shoals by about 100m across all seasons (Figure 14B) while
exhibiting the same seasonal cycle of a shallower (deeper) horizon
during the upwelling (downwelling) seasons. The encroachment
projected over the next 50 years is substantially larger than the
change observed since the preindustrial period of 30–50m (Feely
et al., 2016).

In summer in the future simulation, corrosive waters reach
into the top 100m of the water column along the continental
slope. Stronger summer upwelling is not the primary driver of
the change in acidification as isopycnal surfaces are deeper in
the future relative to the historical period. Instead the change is
driven primarily by downward mixing of anthropogenic DIC.

3.4. Extreme States
Because extreme states are known to have important biological
impacts that can be overlooked by looking only at mean states,
we recorded the maximum and minimum values within the
5 day averaging period. A series of vertical profiles are extracted
along the 300m isobath of the continental slope (parallel to
the locations in Figure 10) to examine how extreme states are
changing. For each grid cell, the minimum (maximum) value
for each season is used in the histogram. Broadly, extreme
states of corrosive and deoxygenated water are becoming more
frequent and more extreme, and extremely cold temperatures
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FIGURE 13 | Depth of the [O2] = 60mmolm−3 isopleth for historical and future simulations in (A) winter, (B) spring, (C) summer, and (D) fall for a series of vertical

profiles along the 300m isobath of the continental shelf (parallel to the locations in Figure 10).

FIGURE 14 | For a series of vertical profiles along the 300m isobath of the continental shelf (parallel to the locations in Figure 10), the average (A) aragonite

saturation state and (B) saturation horizon for each month.

are becoming rare (Figure 15). The peak of the pH histogram is
shifting to more acidic conditions, with a noticeably greater effect
in RCP 8.5 than RCP 4.5. For oxygen, Figure 15B is truncated
to emphasize hypoxic states, but the mode for the historical
simulation is around 290mmolm−3, which declines by 13 −

20mmolm−3 in the future scenarios. Roughly 6% of the [O2]
data are below the canonical hypoxic threshold of 60mmolm−3,
whereas in RCP 4.5 (RCP 8.5) more than 11% (12%) are below
this threshold (Figure 15B). The modal minimum temperature
in the historical simulation is 7 ◦C increasing by between 1.9 ◦C
and 2.4 ◦C by the 2050s. In the historical simulation around half
of the temperatures are below 7 ◦C, but this declines to less than
23% (21%) in RCP 8.5 (RCP 4.5) (Figure 15C).

States of extremely warm temperatures are increasing
in magnitude and frequency (Figure 15D). The maximum
temperature in the historical climate was 17.8◦C increasing to
18.9◦C (19.9◦C) by the 2050s in RCP 4.5 (RCP 8.5). At that time,

about 4% (15%) of maximum temperatures will be above the
historical extreme maximum temperature of 17.8◦C.

4. DISCUSSION

Warming and freshening at the ocean surface will propagate
throughout the water column on the continental shelf as these
waters are mixed vertically by winter storms and tidal currents.
Increased carbon dioxide absorbed from the atmosphere is
also mixed throughout the water column, moving the CaCO3

saturation horizon upward and onto the continental shelf. pH
declines substantially, with corrosive bottom waters present in
both study regions. Beyond the continental shelf, there is gradual
downward penetration of excess heat and DIC that results in
shoaling of the isopleths of oxygen concentration and CaCO3

saturation state (e.g., Figure 9). Shoaling of corrosive and oxygen
poor waters gives rise to new potential impacts, as these waters
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FIGURE 15 | Annual minimum (A) pH, (B) oxygen concentration, and (C)

temperature and (D) annual maximum temperature for vertical profiles along

the 300 m isobath parallel to those shown in Figure 10A. For oxygen, the

x-axis has been truncated to emphasize the increase in frequency of

concentrations below 60mmolm−3.

can affect the biota of the continental shelf, especially during
upwelling events and storms.

Our experiments help to elucidate a dominant mechanism
by which changes in thermocline biogeochemistry along the
continental slope occur. There is no evidence of enhanced “uplift”
of isopycnal surfaces due to changes in wind stress. Rather, the
isopycnal surfaces are relocated to greater depths as warm and
fresh surface inputs are mixed downward, reducing the density
at each depth stratum. This mechanism is thermodynamic rather
than dynamic and changes the biogeochemistry associated with
each isopycnal.

This study provides an overview of the projected climate
impacts for the continental shelf focusing on general impacts for
a large geographical area that has complex bathymetric features
(Supplementary Figure 1) and circulation. Projected changes in
advection, upwelling, and downwelling have variable impacts
across the continental slope so the analysis presented here does
not preclude changes in the circulation for the region. Further
study of the localized impacts using higher resolution coastal
models is warranted.

By examining the change in oxygen concentration and its
deviation from that expected from saturation concentration
alone, we can estimate the remineralization contribution to
changes in nitrate and DIC. Remineralization dominates changes
in nitrate concentration on specific isopycnal surfaces, mainly
because the concentration increases with depth and there
is a relocation of isopycnal surfaces. Changes in DIC are
dominated by the downward penetration of anthropogenic CO2.

As previously noted by Feely et al. (2008), whatever other changes
in circulation or remineralization occur that affect e.g., the
CaCO3 saturation state, will be exacerbated by the contribution
of anthropogenic CO2.

An important limitation of this study is that runoff data for
the future climate simulations were not available. Changes in
surface freshwater flux are therefore solely due to evaporation
and precipitation. This bias is likely to be small along the
WCVI during the summer upwelling season, as runoff is mostly
precipitation driven and is low in summer. It is potentially
larger in the NC where runoff from melting snowpack plays
a larger role. If summer runoff declines substantially, it could
make the water column more unstable and lead to entrainment
of deeper oxygen poor or low pH into the surface layer in some
regions. In our experiments, the change is toward slightly greater
stratification (Figure 6), but this is a broad regional average. Less
springtime runoff along the WCVI region could result in a less
stable water column as the near-surface salinity is lowest during
spring (Figure 4).

Because of the augmented winds, this study provides evidence
that the high-frequency variability in the wind stress is essential
to realistically distributing the freshwater sources throughout
the model domain (e.g., Figure 2). Variations in the annual
pattern of high frequency wind stress, such as gale force winds
and storms, modify mixed layer depths, and the near surface
stratification (e.g., Figure 6) and affect the amount of nutrients
reaching the surface (e.g., Figure 8). The variability of the winds
also influences the depth of the oxygen minimum zone along the
continental shelf through its influence on the ocean circulation
(e.g., Figure 13), but has little effect on ocean acidification despite
its influence on gas exchange (e.g., Figure 14).

On the whole, total chlorophyll and primary productivity
increase (Figures 6, 8), and this is universally the case over
a larger set of smaller averaging regions (not shown). But
we caution that the biological model was developed for
the global domain and was applied to these simulations
with no parameter tuning. The main influence on
phytoplankton production is increased temperature, as the
region is relatively replete with nutrients and has shallow
mixed layers. Again, we generally expect stratification to
increase, although the opposite may occur locally in some
runoff-dominated regions. There is a slight increase in
N stress in some seasons (Figure 8). In general, we do
not expect any decline in productivity over the time scale
considered here, although we can not rule out changes
in species composition. Any increase in N limitation is
of concern in a region dominated by diatoms adapted to
nutrient-rich environments.

This study has shown that future climate under either
scenario exhibits more frequent and more extreme states
of warm temperature, hypoxia and acidification. While
changes in each of these stressors individually have important
consequences for ecosystem health, simultaneous shifts in
these three stressors can result in synergistic effects that
greatly exceed the effect of each in isolation (Gruber, 2011).
Together they threaten marine biodiversity and ecosystem
health by inhibiting growth, respiration, reproduction,
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and immune response as well as causing epigenetic
changes in organisms (Haigh et al., 2015; Breitburg et al.,
2018). More work is needed to understand the durations,
magnitudes, and locations of extreme events and their impacts
on ecosystems.

Our results are constrained between the bounds of the
two scenarios examined. While RCP 8.5 is the scenario with
the least mitigation, RCP 4.5 provides a more conservative
estimate of the extent of changes to marine ecosystems
that will occur by the 2050s. RCP 2.6 has even lower
emissions than RCP4.5, but it is unlikely to be achieved
given the amount of CO2 that has already accumulated
in the atmosphere (Arora et al., 2011). A newer set of
scenarios, and simulations conducted with them, are now
available via CMIP6, but are unlikely to substantially alter the
results shown.

This study has explored scenario uncertainty by looking
at RCP 4.5 and RCP 8.5. After scenario uncertainty, model
uncertainty is the next largest source of error (Frölicher et al.,
2016). To minimize this uncertainty, a range of climate models
(in addition to CanESM/CanRCM) should be explored; we
are presenting initial results from a single-model downscaling
study because the cost of ensembles is presently prohibitive.
The third source of uncertainty is natural variability (Deser
et al., 2012; Cheung et al., 2016); because our experimental
design uses climatological forcing for each time period, the
differences are almost entirely due to anthropogenic forcing
with little effect of natural variability. However, we caution
that our experimental design does not permit us to address
the effects that physical processes underlying natural climate
variability in this region may have on future changes in
ocean state.

The method for downscaling atmospheric climatologies
presented here introduced high frequency variability to the
climatological winds. Consequently, a relatively small amount
of interannual variability was also introduced to the model
solution through the wind fields. Examining the standard
deviation among these years is a useful hueristic for exploring
the role of the high frequency wind variability in the setting
the physical and biogeochemical oceanographic properties
for the North-Eastern Pacific continental margin. To analyze
the projected changes for the region we averaged the last
3 years of the model solution. The historical simulation
represents the climate from (1986 to 2005) with an acceptable
bias (Figure 5). All of the model solutions converge toward
a repeating annual cycle after several years of spinup
(Figure 4). Therefore, the difference between the historical
and future climates is much larger than the interannual
variability introduced through the high frequency wind
speed variability.

Forcing the model with climatological means (time-slice
approach) instead of running the model continuously through
the historical and future period reduces computational expense,
but it also limits the breadth of climate information that can be
provided. Estimates of “the rate of change” for modeled variables
presented in this paper are broad estimates using only two points
in time.

5. CONCLUSIONS

This paper has examined climate change projections along the
continental shelf of the Canadian Pacific Coast by dynamically
downscaling using the North-Eastern Pacific Canadian
Ocean Ecosystem Model (NEP36-CanOE). To circumvent
computational constraints, a new approach was introduced that
downscales using atmospheric climatologies (with augmented
winds) to project ocean circulation and biogeochemistry under
moderate mitigation (RCP 4.5) and high emissions (RCP
8.5) scenarios.

Comparisons with available observations showed that the
time-slice approach was able to reproduce the observed climate
state for the historical period. The model exhibited a cold bias
that was typically less than 1◦C (annual average bias is −0.4 ±

0.6◦C) and a freshwater bias of −0.2 ± 0.2 when compared to
shipboard observations. Including high-frequency wind forcing
reduces the salinity bias substantially and does not require
specific knowledge of how this component may change.

Over the 60 year period between the historical and future
climates, surface ocean temperatures will increase across the NC
and WCVI by between 1.8◦C and 2.4◦C depending on whether
a moderate or high emissions scenario is used. The projected
surface freshening is between −0.08 and −0.23, however future
changes in fresh water content will be strongly affected by
changes in wind stress. Changes in wind stress have a substantial
influence on freshwater distribution, and wind speeds may
change in the future in ways not fully captured by the RCM.

Stratification, primary production and total chlorophyll
are increasing along the continental margin and across the
continental shelf. There is some evidence of increased nutrient
limitation in summer and changes in species composition are
possible (e.g., a shift from diatoms to dinoflagellates, including
harmful algal bloom species), but our results suggest that changes
in overall productivity will be small over this time scale.

Low CaCO3 saturation state (corrosive) and low oxygen
waters are projected to rise up the continental shelf. In the
2055 climate, the saturation horizon and oxygen minimum zone
are projected to rise by ≃ 100m and ≃ 75m, respectively,
relative to the historical simulation. With corrosive and hypoxic
waters nearer to the surface, episodes of extremely acidic and
deoxygenated water become more likely along shorelines and
in regions important to fisheries and aquaculture and other
marine life.

By examining the maximum and minimum values within the
5 day averaging period, we showed that extreme states of hypoxic,
corrosive and warmwater are projected to becomemore frequent
and more extreme. In addition, extremely cold temperatures are
becoming rare.

The increase in temperature and acidity projected by the

2050s for both scenarios is substantially greater than the change

observed over the historical record (Cummins andMasson, 2014;
Feely et al., 2016) because increasing GHGs in the atmosphere are
accelerating the rate of change. Over this time-scale, there is little
difference in ocean acidification or deoxygenation between the
moderate mitigation scenario (RCP 4.5) and the high emissions
scenario (RCP 8.5).
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Given the ecological and economic importance of eastern boundary upwelling systems
like the California Current System (CCS), their evolution under climate change is of
considerable interest for resource management. However, the spatial resolution of global
earth system models (ESMs) is typically too coarse to properly resolve coastal winds and
upwelling dynamics that are key to structuring these ecosystems. Here we use a high-
resolution (0.1◦) regional ocean circulation model coupled with a biogeochemical model
to dynamically downscale ESMs and produce climate projections for the CCS under the
high emission scenario, Representative Concentration Pathway 8.5. To capture model
uncertainty in the projections, we downscale three ESMs: GFDL-ESM2M, HadGEM2-
ES, and IPSL-CM5A-MR, which span the CMIP5 range for future changes in both the
mean and variance of physical and biogeochemical CCS properties. The forcing of the
regional ocean model is constructed with a “time-varying delta” method, which removes
the mean bias of the ESM forcing and resolves the full transient ocean response from
1980 to 2100. We found that all models agree in the direction of the future change in
offshore waters: an intensification of upwelling favorable winds in the northern CCS, an
overall surface warming, and an enrichment of nitrate and corresponding decrease in
dissolved oxygen below the surface mixed layer. However, differences in projections of
these properties arise in the coastal region, producing different responses of the future
biogeochemical variables. Two of the models display an increase of surface chlorophyll
in the northern CCS, consistent with a combination of higher nitrate content in source
waters and an intensification of upwelling favorable winds. All three models display a
decrease of chlorophyll in the southern CCS, which appears to be driven by decreased
upwelling favorable winds and enhanced stratification, and, for the HadGEM2-ES forced
run, decreased nitrate content in upwelling source waters in nearshore regions. While
trends in the downscaled models reflect those in the ESMs that force them, the ESM
and downscaled solutions differ more for biogeochemical than for physical variables.

Keywords: downscaled ensemble projections, California Current System, future coastal changes, eastern
boundary upwelling system, climate change
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INTRODUCTION

The California Current System (CCS) is one of the four global
eastern boundary upwelling systems (EBUSs) characterized by
extraordinary biological productivity that supports a variety of
human uses including tourism, fisheries, and recreation (e.g.,
Checkley and Barth, 2009). As in other EBUS, the high level
of primary productivity in the CCS is primarily attributed to
wind-driven coastal upwelling, which delivers nutrient-rich deep
waters to the surface. However, upwelled waters also have low
pH, contain high concentrations of respired carbon, and are
moderately oxygen-poor, making this region prone to hypoxia
and acidification, conditions that can threaten both benthic and
pelagic marine life (e.g., Gruber et al., 2012; Turi et al., 2014; Feely
et al., 2016). Simulations of changes in the CCS that affect those
processes are therefore key to evaluate the direct ecological and
economic impact of the future climate on this dynamic ecosystem
(Vecchi et al., 2006; Bakun et al., 2010; Sydeman et al., 2014;
Rykaczewski et al., 2015; Howard et al., 2020b).

Under future climate scenarios, projected physical changes
in the CCS include enhanced stratification, shifts in the timing
and intensity of upwelling, and alteration of the properties
and relative contributions of source waters advected into the
region (e.g.,Rykaczewski and Dunne, 2010; Doney et al., 2012;
Rykaczewski et al., 2015; Bograd et al., 2019). Ocean warming
generally results in increased water column stability (Capotondi
et al., 2012), reducing vertical mixing, nutrient supply, and
primary productivity in the euphotic zone of subtropical regions
(Hoegh-Guldberg and Bruno, 2010). In EBUS regions, however,
it has been proposed that heterogeneous warming of the land
and ocean could intensify the surface atmospheric pressure
gradient and consequently enhance equatorward winds and
coastal upwelling (i.e., the Bakun hypothesis; Bakun, 1990;
Bakun et al., 2015). Global climate models suggest that the
Bakun hypothesis is overly simplified; projected changes in
upwelling are likely to be season- and latitude-dependent, with
intensification of CCS upwelling during spring, especially in the
southern CCS, followed by a significant weakening of upwelling
during the summer months, especially in the northern region of
the CCS (e.g., García-Reyes et al., 2015; Rykaczewski et al., 2015;
Wang et al., 2015). These anthropogenic trends in upwelling
are not likely to be emergent until mid-century (∼2050) in the
southern CCS and even later (∼2080) in the northern CCS (Brady
et al., 2017), as strong decadal variability remains the dominant
signal on shorter time horizons.

In the biogeochemical realm, reduced ventilation and
circulation of the North Pacific may increase nutrient
concentrations, lower pH, and decrease oxygen concentrations
in the deep source waters of the CCS (Rykaczewski and Dunne,
2010; Van Oostende et al., 2018; Xiu et al., 2018). These source
water changes could result in increased primary productivity
over the continental shelf, which, when the increased organic
matter is subsequently remineralized and combined with reduced
oxygen in source waters, would result in a significant expansion
of hypoxic areas (Dussin et al., 2019). Similarly, Hauri et al.
(2013) projected that, by 2050, the nearshore mean surface
pH of the CCS will move outside the envelope of present-day

variability and the aragonite saturation horizon of the central
CCS will shoal into the upper 75 m, causing near-permanent
undersaturation in subsurface waters. However, many of these
biogeochemical projections describe results from individual
climate models; biogeochemical responses to climate change in
the CCS vary considerably across models (Frölicher et al., 2016)
and the robustness of projected changes must be determined.

Earth system models (ESMs) are essential tools for future
climate studies. ESMs are atmosphere-ocean-land-sea ice
general circulation models (GCMs) that have been coupled to
biogeochemical models (Taylor et al., 2012). While the initial
motivation for global ESM development was resolving the
partitioning of anthropogenic carbon emissions between the
land, ocean, and atmosphere (e.g., Friedlingstein et al., 2006;
Arora et al., 2013, 2020), the inclusion of ocean biogeochemical
components provided new insights into ocean acidification,
deoxygenation, and productivity changes (Bopp et al., 2013;
Kwiatkowski et al., 2020). However, the utility of ESMs on
regional scales and especially in upwelling systems is limited
by their coarse resolution (Boville and Gent, 1998; Mote and
Mantua, 2002; Palmer, 2014). The ocean component in most
GCMs is too coarse to resolve fine-scale processes including
coastal upwelling, mesoscale eddy activity, and coastal trapped
waves (Stock et al., 2011). Their atmosphere component is also
too coarse to resolve nearshore structure in the winds, which
can exert a strong influence on the physical and biogeochemical
signature of coastal upwelling (e.g., Mote and Mantua, 2002;
Capet et al., 2004; Jacox and Edwards, 2012; Small et al., 2015;
Renault et al., 2016; Franco et al., 2018). Dynamical downscaling
(i.e., using coarse global fields to force a high-resolution regional
model) is one commonly used approach to produce high-
resolution ocean projections at regional scale (Drenkard et al., in
review). This approach has been used in other EBUS (Benguela
Upwelling, e.g., Machu et al., 2015; Humboldt Upwelling, e.g.,
Echevin et al., 2012, 2020; Iberian Upwelling, Miranda et al.,
2013), and in the CCS (Auad et al., 2006; Li et al., 2014; Xiu et al.,
2018; Arellano and Rivas, 2019; Dussin et al., 2019; Howard et al.,
2020a). For the CCS, these previous high-resolution projections
were conducted by downscaling single climate projections forced
by just one ESM, analyzed short future periods (10–30-year
time-slices), or applied idealized perturbations in some variables
that did not account for all physical and biogeochemical forcing.
They often do not consider inherent present-climate bias in
ESMs or capture the full envelope of future climate uncertainties,
which in the case of biogeochemistry projections significant
contribution comes from model uncertainties (Cheung et al.,
2016; Frölicher et al., 2016).

Dynamically downscaled projections allow us to recover
important regional-scale features that are missing or poorly
represented in their coarse-resolution parents models. But, the
high-resolution projection is tied to the large-scale forcing
from the ESMs, including their biases, and performing a bias
correction on the ESM forcing has the potential to significantly
improve dynamical downscaling simulations (Bruyère et al.,
2014; Machu et al., 2015; Xu et al., 2019; Drenkard et al.,
in review). Here we use a high-resolution regional ocean-
biogeochemical coupled model and apply a “time-varying” delta
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approach to dynamically downscale three different ESMs. The
selected ESMs span a wide range of potential future changes
in both the mean and variance of physical and biogeochemical
properties for the CCS. Our objectives are to produce and present
downscaled projections of climate change in the CCS at 0.1
degree. (i.e., mesoscale resolving) horizontal resolution from
1980 until 2100 under the Representative Concentration Pathway
(RCP) 8.5 scenario. We examine a range of ecosystem-relevant
variables including sea surface temperature (SST), chlorophyll,
and subsurface nitrate and oxygen. We analyze changes in those
variables for the middle and end-of century and the plausible
mechanisms associated with those changes. The remainder of the
paper is organized as follows: section “Materials and Methods”
describes the regional modeling approach, the ESM output used
and the bias correcting method applied to construct the forcing
of the regional model. Section “Results” describes the projected
changes in ecosystem-relevant variables, and discussion of the
results and conclusion are presented in sections “Discussion” and
“Concluding Remarks,” respectively.

MATERIALS AND METHODS

Coupled Physical-Biogeochemical
Model: ROMS-NEMUCSC
To produce the high-resolution future projections in the CCS,
we use the Regional Ocean Modeling System (ROMS) coupled
with a biogeochemical model (NEMUCSC) based on the
North Pacific Ecosystem Model for Understanding Regional
Oceanography (NEMURO). ROMS is a free-surface, hydrostatic,
primitive equation ocean model that uses stretched, terrain-
following coordinates in the vertical and orthogonal curvilinear
coordinates in the horizontal (Shchepetkin and McWilliams,
2005; Haidvogel et al., 2008). The model configuration,
developed by the University of California Santa Cruz, covers
the region 30–48◦N and 115.5–134◦W (midway down Baja
California to just south of Vancouver Island) with 0.1◦
(∼10 km) horizontal resolution and 42 vertical sigma levels
(Veneziani et al., 20091). NEMURO is a medium complexity
nutrient-phytoplankton-zooplankton (NPZ) model specifically
developed and parameterized for the North Pacific (Kishi et al.,
2007). The model includes three limiting macro-nutrients (i.e.,
nitrate, ammonium, and silicate), two phytoplankton groups
(nanophytoplankton and diatoms), three zooplankton groups
(micro-, meso-, and predatory zooplankton) and three detritus
pools (DON, PON, and opal). Here, we use a customized
version of NEMURO, called NEMUCSC, which is specifically
parameterized for the CCS and augmented with oxygen and
carbon cycling (Cheresh and Fiechter, 2020; Fiechter et al., 2018,
2020). The coupled ocean-biogeochemistry regional model will
be hereafter referred to as “ROMS-NEMUCSC.”

We first use ROMS-NEMUCSC to perform a historical control
simulation (CTRL) for 1980–2010. Initial and ocean lateral
boundary conditions are derived from the Simple Ocean Data
Assimilation version 2.1.6 (SODA; Carton and Giese, 2008) at

1https://oceanmodeling.ucsc.edu

monthly resolution. The atmospheric surface forcing is derived
from the global atmospheric reanalysis from European Centre for
Medium-Range Weather Forecasts version 5 (ERA-5; Hersbach
et al., 2020) at 1-h and ∼30 km resolution, with the exception of
surface winds, which were obtained from ERA-5 for 1980–1987
and from the 0.25◦ (∼25 km) Cross-Calibrated Multi-Platform
wind product (CCMP1; Atlas et al., 2011) for 1988–2010 at 6-
h resolution. In the nearshore region of the CCS, especially off
northern California and Oregon, we have found that CCMP1
more closely reproduces the observed magnitude of summertime
winds and leads to better representation of biogeochemical
processes near the coast. Air-sea fluxes are computed in ROMS
internally using bulk formulae (Fairall et al., 1996a,b; Liu et al.,
1979). Physical variables are stored daily and used to force
the biogeochemical component “offline” (i.e., NEMUCSC is run
independently and driven by daily surface atmospheric fluxes and
oceanic fields from ROMS). Initial and boundary conditions are
derived from the 2009 World Ocean Atlas (WOA) climatology
(Garcia et al., 2010a,b) for nutrients and oxygen, from the Global
Ocean Data Analysis Project (Key et al., 2004) for total alkalinity,
and from the empirical relationship of Alin et al. (2012) for DIC
using monthly temperature and oxygen. Initial and boundary
conditions for ammonium, phytoplankton, zooplankton, and
detritus are set to a small value (0.1 mmol N m−3), noting that
the evolution of these quantities is dominated by surface ocean
dynamics that adjust rapidly to simulated macronutrients in the
interior of the model domain.

Earth System Models
For the regional downscaling, we select three ESMs, from
a total of nineteen from phase 5 of the Coupled Model
Intercomparison Project (CMIP5) archive: the Geophysical Fluid
Dynamics Laboratory (GFDL) ESM2M, Institut Pierre Simon
Laplace (IPSL) CM5A-MR, and the Hadley Center HadGEM2-ES
(HAD). Key characteristics of the selected ESMs are summarized
in Table 1. We downscaled each ESM for the period from 1980
to 2100 using historical forcing (1980–2005) and the RCP8.5
climate change scenario (2006–2100). We focus on the RCP8.5
scenario since model uncertainty dominates scenario uncertainty
for biogeochemical (and to a lesser degree, physical) changes in
the CCS. Indeed, for biogeochemical variables in the CCS the
range of projections under the RCP2.6 and RCP4.5 scenarios is
fully contained within the model uncertainty under the RCP8.5
scenario (Supplementary Figure 1 same as Figure 8 in Drenkard
et al., in review).

The question of which ESMs to include in a multi-model
ensemble is an active research area. The models that best match
the observed historical climate are not necessarily the ones
that will most faithfully represent future climate sensitivity,
and more process-based model selection methods (e.g., with
emerging constraints) are being developed (Eyring et al., 2019;
Hall et al., 2019). Given the lack of definitive selection criteria,
we chose three ESMs that capture the CMIP5 range of projected
future changes in both the mean and variance of physical and
biogeochemical CCS properties. While they show agreement in
the sign of the projected SST change in the CCS, they differ in the
magnitude of warming and disagree on the sign of the primary
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TABLE 1 | Characteristics of the ESMs selected for regional downscaling.

Modeling center ESM model Atmospheric model
resolution

Ocean model resolution Biogeochemical model References

NOAA Geophysical Fluid Dynamics
Laboratory, United States,
GFDL-ESM2M (GFDL)

2.5◦ longitude 2◦ latitude
24 levels Monthly

MOM4p1 1◦ longitude ∼0.3–1◦

latitude 50 levels Monthly
TOPAZ2 (3Phyto, 3Zoo, N, P,
Si, Fe, O2) Annual

Dunne et al., 2012

Institut Pierre-Simon Laplace, France,
IPSL-CM5A-MR (IPSL)

2.5◦ longitude 1.25◦

latitude 39 levels Monthly
NEMOv3.2 2◦ longitude ∼0.5–2◦

latitude 31 levels Monthly
PISCES (2Phyto, 2Zoo, N, P, Si,
Fe, O2) Annual

Dufresne et al., 2013

Met Office Hadley Center,
United Kingdom, HadGEM2-ES (HAD)

1.25◦ longitude 1.875◦

latitude 24 levels Monthly
UM 1◦ longitude ∼0.3–1◦ latitude
40 levels Monthly

Diat-HadOCC (2Phyto, 1Zoo,
N, P, Si, Fe, O2) Annual

Collins et al., 2011

production (PP) change (Figure 1). HAD projects the warmest
SST anomalies by 2100 and a sharp decline in PP by around
2050. Relative to the CMIP5 ensemble mean, GFDL and IPSL
project weak and moderate increases in SST, respectively, and
both project increased PP by 2100 (Figure 1), counter to the
declining PP trend in the CMIP5 ensemble mean (Bopp et al.,
2013). Similarly, these three models have different projections for
changes in the magnitude of interannual variability under climate
change. The three models span the range of potential changes
in physical and biogeochemical variance, which may increase,
decrease, or remain unchanged depending on the variable and
model (Supplementary Figure 2).

Downscaling Approach
Output from the selected ESMs provide the surface and
ocean boundary conditions for ROMS-NEMUCSC in a one-
way downscaling approach. To reduce biases exhibited in the
ESMs historical simulations, we apply a “time-varying delta”
bias-correction method prior to downscaling the ESMs output.
We first estimate time-varying deltas (DELTA) for a forcing
atmospheric variable (ATM) by subtracting the ESM’s historical
monthly climatology (ESMCLM ; years 1980–2010) from the whole
period of interest (i.e., 1980–2100).

DELTA1980−2100 = ESM1980−2100 − ESMCLM,1980−2010 (1)

These monthly time-varying deltas are first bilinearly
interpolated in space and time to the resolution of the reanalysis
data used to force the control run (REAN), and then added to
the monthly reanalysis climatology (REANCLM). Finally, we
add high-frequency variability from the reanalysis (REANHF),
computed as the residual after removing a 30-day running
mean, as the absence of this high-frequency variability and
associated damping of upwelling can lead to a biased ecosystem
state (Gruber et al., 2006, 2011). The climatology and high-
frequency component from the reanalysis (i.e., REANCLM and
REANHF) are repeated (∼4 times) to cover the whole period of
interest. Thus, for each ATM, the bias-corrected forcing ATM′ is
computed as:

ATM′1980−2100 = REANCLM, 1980−2010 + REANHF, 1980−2010+

DELTA1980−2100 (2)

Bias correction for the ocean and biogeochemical variables
is handled similarly, but with several adjustments for the

lower frequency of available ESM output. The high-frequency
component (REANHF) is excluded, since the available ESM
output for 3D physical and biogeochemical variables have
monthly and annual temporal resolution, respectively. In
addition, the time-varying deltas for the biogeochemical variables
are calculated annually, again because the ESM biogeochemical
outputs are available at annual resolution (Table 1). Model
initialization is handled similarly to the ocean boundaries by
applying deltas from the year 1980 to our CTRL initial conditions.

The time-varying delta method for downscaling retains
the observed historical climatology and high-frequency (sub-
monthly) variability while inheriting the long-term change and
interannual variability of the parent ESM. Relative to a “fixed
delta” method that compares a historical period to a future one
(e.g., Alexander et al., 2019; Shin and Alexander, 2020), the
time-varying delta method has advantages of capturing projected
changes in interannual variability, and resolving the full climate
change evolution, including potentially non-linear impacts that
would be missed when the transient response is excluded. An
alternative method for prescribing the high-frequency variability
would be to use the daily ESM forcing, which may be modulated
by low-frequency variability (e.g., El Niño Southern Oscillation
events alter storm tracks in the CCS). We retain the observed
historical high-frequency variability from the reanalysis for
several reasons. First, it allows us to force the model with high-
resolution temporal forcing (6-hourly for the winds and hourly
for the rest of ATMs), which resolves the daily cycle and is
consistent with the historical forcing. Second, high frequency
variability is likely to differ substantially within the space of a
single ESM grid cell, particularly near the coast, and will not be
resolved by the ESMs. In other EBUS, previous works applied
statistical downscaling methods in the wind forcing to overcome
the limitation of the coarse resolution models (e.g.,Goubanova
et al., 2011; Machu et al., 2015; Bonino et al., 2019). While future
changes in high frequency atmospheric forcing is not the focus of
this study, it should be a topic of further research.

We refer to the downscaled simulations from ROMS-
NEMUCSC, driven by GFDL, IPSL, and HAD as ROMS-GFDL,
ROMS-IPSL, and ROMS-HAD, respectively, in the following
sections and figures.

Observation Data for Model Evaluation
To evaluate the CTRL and the historical period of the
downscaled simulations (i.e., ROMS-GFDL, ROMS-IPSL,
and ROMS-HAD), we use the Optimum Interpolation
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FIGURE 1 | Time series of yearly averages of the California Current sea surface temperature (SST, first row) and primary production (PP, second row) for the
1976–2099 period, averaged over the California Current Large Marine Ecosystem. The simulations are forced using historical emissions (1976 to 2005) and the
RCP8.5 scenario for future projection (2006 to 2099). Left panels show the mean values and right panels show the anomalies relative to the 1976–2005 climatology.
A 20-year running mean is applied. The figure is adapted from the NOAA climate website (https://www.psl.noaa.gov/ipcc).

SST data set, which combines in situ and satellite-based
observations, from the National Oceanic and Atmospheric
Administration (NOAA OISST v2; Reynolds et al., 2007) at
0.25◦ from 1982 to 2010 and for surface chlorophyll (chl),
we use data from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) obtained from the National Aeronautics and
Space Administration (NASA) Ocean Color Website (NASA
Goddard Space Flight Center, Ocean Ecology Laboratory,
Ocean Biology Processing Group; 2014) at ∼0.1◦ resolution
from 2000 to 2010. In addition, we evaluate simulated
physical and biogeochemical fields with climatological data

from the WOA derived from the World Ocean Database
(oxygen, Garcia et al., 2013a; nitrate, Garcia et al., 2013b;
temperature,Locarnini et al., 2013).

RESULTS

In the following sections, we describe projected changes in the
future physical and biogeochemical states of the CCS, first for the
long-term mean changes for the 2070–2100 period with respect
to the historical period (1980–2010) (i.e., Future – Historical)
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and then the time-dependent changes for the full transient
runs (1980–2100).

Model Evaluation
The historical CTRL reproduces many aspects of the CCS
physical and biogeochemical variability (Supplementary
Figures 3, 4). The simulated annual mean SST has a weak
warm bias over most of the domain and a weak cold bias along
the northern boundary. The Southern California Bight (SCB)
shows the largest SST bias (∼1.4◦C), which is comparable
with other numerical simulations of the CCS (e.g., Veneziani
et al., 2009; Renault et al., 2016) and is likely due to the poor
representation of cloud cover and the cross-shore gradient in
alongshore winds resulting from coarse spatial resolution in the
forcing reanalysis data (Renault et al., 2020). The annual mean
subsurface patterns of nitrate and dissolved oxygen in the CTRL
simulation are also well represented compared to climatological
values from the WOA. Although the observed and simulated
values of nitrate and oxygen differ near the coast, which cannot
be resolved by the coarse horizontal resolution of the WOA
grid (1◦ × 1◦), the model reasonably reproduces the offshore
spatial gradient and variability of climatological subsurface
nitrate and dissolved oxygen (Supplementary Figures 3, 4). The
observed and simulated annual mean chlorophyll exhibits similar
onshore-offshore gradients. However, the main differences are
located in the nearshore regions, where the model overestimates
chlorophyll between the northern San Francisco Bay (SFB) and
Cape Blanco, and underestimates it in the northern coastal
domain (>44◦N), SFB, and the SCB (Supplementary Figure 3).

Long-Term Mean Changes
Alongshore Wind Stress and Vertical Velocity
We use meridional wind stress as a proxy for the alongshore
or upwelling favorable winds. In general, the three ESM-
driven ROMS simulations exhibit an overall intensification (i.e.,
more negative) and a northern displacement (>39◦N) of the
meridional wind stress (Figure 2), consistent with prior analysis
(Rykaczewski et al., 2015; Xiu et al., 2018). These equatorward
wind stress anomalies oppose the mean wind stress (poleward)
at the northern latitudes. However, there are some notable inter-
model differences in the spatial variability. ROMS-GFDL and
ROMS-IPSL show a strong increase centered in the northern
nearshore regions (<200 km from the coast) of the CCS, while
ROMS-HAD shows the center of this intensification offshore
and in the northwest corner of the domain. While ROMS-
GFDL exhibits the strongest intensification across the CCS
domain, ROMS-IPSL exhibits a weaker intensification that is
confined along the coastal domain, and ROMS-HAD shows this
intensification confined to the northern part of the CCS. A strong
decrease in alongshore wind stress over the southern part of
the domain is projected in both ROMS-IPSL and ROMS-HAD,
offshore in the former and nearshore in the latter.

We use vertical velocity at 50 m as a measure for
upwelling (Figure 2). The projected increase in the equatorward
meridional wind stress over the northern coastal region of the
CCS enhances coastal upwelling (upward and positive vertical
velocity changes) in the three ESM-driven downscaled ROMS

simulations. While ROMS-GFDL and ROMS-IPSL projections
show an overall upward velocity all along the coast of the
domain, the intense weakening of the alongshore-wind stress
projected by ROMS-HAD reduces coastal upwelling in the
southern part of the domain.

Sea Surface Temperature
The SST response to projected climate change includes warming
over the entire domain in all three ESM-driven ROMS
simulations (Figure 2). Although the three ROMS simulations
agree on the warming of the CCS region, the magnitude of
change differs considerably among simulations. ROMS-GFDL
exhibits the weakest projected warming (<2.5◦C), ROMS-IPSL a
moderate warming (>3◦C), and the ROMS-HAD the strongest
warming (>3.5◦C). In addition to the differences in overall
climate sensitivity, there are differences among the spatial
warming patterns: in the ROMS-IPSL the warming offshore
of the SCB is relatively smaller, while ROMS-HAD presents
a more homogeneous warming pattern. In ROMS-IPSL, this
weaker warming extends north along the coast up to ∼43◦N.
In ROMS-GFDL, the warming is lessened in the northern
coastal waters (>39◦N), suggesting that increased wind-driven
upwelling may partially mitigate the warming locally, while the
strongest warming occurs in the offshore waters of the SCB.

Subsurface Nitrate
The ecological effects of upwelling critically depend on the
biogeochemical properties and composition of upwelled source
waters. To explore the subsurface biogeochemical properties, we
select a depth of 150 m (Chhak and Di Lorenzo, 2007), which
is deeper than the seasonal historical mixed layer depth (MLD)
which ranges from 30 to 100 m in the whole domain. All three
downscaled simulations project an increase of the subsurface
nitrate concentration in the offshore waters (>100 km from the
coast), with a larger increase by the end of the 21st century in
ROMS-GFDL (∼5 mmol/m3) than in the other two simulations
(∼2.5–3 mmol/m3) (Figure 3). However, the projections differ in
the coastal waters (<100 km from the coast). While ROMS-GFDL
shows a coastwide nitrate increase, the nitrate increase in ROMS-
IPSL is much weaker and limited to the southern and northern
CCS, and ROMS-HAD projects a decrease in subsurface nitrate
along the coast, which is strongest in the southern part of the
domain (Figure 3).

Subsurface Oxygen
Below the seasonal pycnocline, upwelling systems are
characterized by both high nutrient concentrations and low
oxygen concentrations. The projected dissolved oxygen changes
at 150 m depth mirror the nitrate changes described above – all
three models exhibit large-scale oxygen declines. ROMS-HAD
diverges from the others with a weak increase in dissolved oxygen
that extends in the coastal waters from the southern boundary
up to ∼40◦N (Figure 3). Other ecologically important measures
of the oxygen environment – bottom oxygen concentration and
depth of the hypoxic boundary – show similar changes. While
ROMS-GFDL and ROMS-IPSL projections feature a decline of
bottom dissolved oxygen on the shelf, which is more intense
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FIGURE 2 | Control run (1980–2010) mean and future changes (2070–2100 relative to historical) for the physical variables. Rows show from top to bottom:
meridional wind stress, vertical velocity at 50 m depth (w), and sea surface temperature (SST). Columns show data for the historical period in the control simulation
(CTRL, first column) and the future changes from the high-resolution downscaled projections: ROMS-GFDL (second column), ROMS-IPSL (third column), and
ROMS-HAD (fourth column). Negative values of wind stress changes correspond to an increase in equatorward wind stress. Black contour marks 100 km from
shore. Vertical velocity field has been spatially smoothed out for better representation.

(∼50 mmol m3) in the northern and southern coastal waters,
ROMS-HAD projects a weak increase (∼25 mmol m3) of the
bottom dissolved oxygen that extends from the southern coastal
waters up to 40◦N (Figure 3). Future changes in depth of the
hypoxic boundary layer have a similar spatial pattern as the
O2 at 150 m. The hypoxic boundary, defined here as the depth
at which dissolved oxygen = 1.43 ml/l (i.e., 63.86 mmol/m3),
is projected to shoal by up to ∼150 m in the offshore waters.
Along the coast there is a weak shoaling, up to ∼60–70 m, in
ROMS-GFDL and ROMS-IPSL, while ROMS-HAD projects
changes of similar magnitude but opposite sign off southern and
central California (Figure 3).

Phytoplankton Biomass
We present total phytoplankton biomass – the sum of
NEMUCSC’s small (nanophytoplankton) and large (diatoms)
phytoplankton groups – in units of chlorophyll concentration,

which is estimated from NEMUCSC’s nitrogen units using fixed
ratios for C:N (106:16) and C:Chl (50:1 and 100:1 for small
and large phytoplankton, respectively, Goebel et al., 2010). By
the end of the century, ROMS-HAD projects a decrease of
surface chlorophyll along the entire coast; ROMS-IPSL projects
a weaker decrease along most of the coast but a slight increase
in the northern regions; and in contrast, ROMS-GFDL projects
an increase centered in in the northern CCS (>39◦–45◦N),
coincident with the region of most pronounced increases in
upwelling favorable winds (Figure 4). Offshore, ROMS-IPSL
and ROMS-HAD project a decrease in surface chlorophyll
everywhere, while in ROMS-GFDL surface chlorophyll change
is mostly positive north of 35◦N. For ROMS-GFDL and ROMS-
HAD, projected changes in vertically integrated chlorophyll over
the upper 50 m exhibit similar patterns to surface chlorophyll
changes. However, for ROMS-IPSL the slight increase in
surface chlorophyll in the nearshore northern CCS is offset
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FIGURE 3 | Control run (1980–2010) mean and future changes (2070–2100 relative to historical) for the subsurface biogeochemical variables. Rows show from top
to bottom: nitrate (NO3) and dissolved oxygen at 150 m depth (O2), depth of 1.43 ml/l (i.e., 63.86 mmol/m3) O2 layer, and bottom oxygen. Columns show data for
the historical period in the control simulation (CTRL, first) and the future changes from the high-resolution downscaled projections: ROMS-GFDL (second column),
ROMS-IPSL (third column), and ROMS-HAD (fourth column). Black contour marks 100 km from shore.

by subsurface chlorophyll decrease such that the upper 50 m
integrated chlorophyll is projected to decline (Figure 4). In sum,
phytoplankton biomass is projected to decline throughout the
study domain with the exception of the northern CCS, where
enhanced biomass is projected in ROMS-GFDL and ROMS-IPSL,
though only for a shallow nearshore layer in the latter.

Vertical Sections
All three downscaled simulations show an overall increase in
temperature in the subsurface, with the warming being surface-
intensified such that there is also an increase in stratification (i.e.,
more tightly packed potential density contours or isopycnals)

by the end of the century (Figure 5). ROMS-HAD and ROMS-
IPSL project warming changes up to ∼2◦C at 300 m depth, and
warming of ∼1◦C extends to 500 m or more. As for SST, ROMS-
GFDL indicates less subsurface warming than the other two
projections, with weak warming in the northern latitudes, almost
no change in the southern latitudes, and even a slight cooling of
∼0.5◦C around ∼150 m depth in the nearshore southern CCS
(32◦N; Figure 5).

The inter-model consistency of the projected nitrate changes
is spatially dependent. All three projections show subsurface
increases in nitrate concentration offshore, though ROMS-GFDL
shows a stronger increase with greater horizontal and vertical
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FIGURE 4 | Control run (1980–2010) mean and future changes (2070–2100 relative to historical) for the surface (top) and integrated (0–50 m, bottom) chlorophyll
(Chl). Columns show data for the historical period in the control simulation (CTRL, first) and the future changes from the high-resolution downscaled projections:
ROMS-GFDL (second column), ROMS-IPSL (third column), and ROMS-HAD (fourth column). Black contour marks 100 km from shore.

FIGURE 5 | Vertical sections of mean temperature (1980–2010) from the control run (CTRL, first column) and of future temperature changes (2070–2100 relative to
historical) from the high-resolution downscaled projections: ROMS-GFDL (second column), ROMS-IPSL (third column), and ROMS-HAD (fourth column). Black
contours are potential density (kg m−3) relative to sea surface.

extent compared to the other models (Figure 6). However, the
changes diverge near the coast. At 32◦N and ∼200 m depth, in
the core of the California Undercurrent (CU; i.e.,∼26.5 kg m−3),
there is an increase of nitrate concentration in ROMS-GFDL
but a decrease in ROMS-HAD. In both models, the inshore
change in concentration extends north of 32◦N, but with reduced

magnitude (Figure 6). In contrast, ROMS-IPSL exhibits no
discernible change in nearshore nitrate concentrations.

The future changes of spatial patterns of dissolved oxygen
generally follow those of nitrate concentration with opposite
signs (Figure 7), though the oxygen declines are more
pronounced and widespread than the nitrate increases. There is
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FIGURE 6 | Vertical sections of mean nitrate (1980–2010) from the control run (CTRL, first column) and of future nitrate changes (2070–2100 relative to historical)
from the high-resolution downscaled projections: ROMS-GFDL (second column), ROMS-IPSL (third column), and ROMS-HAD (fourth column). Black contours are
potential density (kg m−3) relative to sea surface.

FIGURE 7 | Vertical sections of mean dissolved oxygen (1980–2010) from the control run (CTRL, first column) and of future nitrate changes (2070–2100 relative to
historical) from the high-resolution downscaled projections: ROMS-GFDL (second column), ROMS-IPSL (third column), and ROMS-HAD (fourth column). Black
contours are potential density (kg m−3) relative to sea surface. Magenta contour corresponds to the hypoxic boundary layer (1.43 ml/l or 63.86 mmol/m3 O2).

a strong decrease in dissolved oxygen nearly everywhere in all of
the projections, with the most pronounced decreases occurring
slightly deeper in the south than in the north. Accompanying the
nitrate concentration changes around the core of the CU, ROMS-
GFDL and ROMS-IPSL project a decrease in oxygen, which is
again stronger in ROMS-GFDL, while ROMS-HAD projects an
increase of oxygen in the CU core at 32◦N that vanishes quickly
to the north. The association of enhanced nitrate and decreased
oxygen is consistent with “older” subsurface waters adjacent to
the California Current upwelling (e.g., Rykaczewski and Dunne,
2010; waters adjacent to the California Current upwelling have

been isolated from the ocean surface for a longer period, allowing
more nitrate to accumulate and more oxygen to be lost through
aerobic remineralization of sinking organic material).

Coastal Trends and Long-Term Variability
Alongshore Wind Stress
Projections of wind stress across the three simulations share a
common meridional pattern with intensification of equatorward
(upwelling-favorable) wind stress in the northern CCS and
unchanged or slightly weakened winds in the southern and
central CCS (Figure 8). This pattern is consistent with previous
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FIGURE 8 | Hovmöller diagrams of 10-year running mean annual anomalies averaged from the coast to 100 km offshore of meridional wind stress (top row), SST
(second row), nitrate (third row) and dissolved oxygen (fourth row) at 150 and 0–50 m integrated chlorophyll (bottom row) with respect to the historical period
(1980–2010), from the high-resolution downscaled projections: ROMS-GFDL (left), ROMS-IPSL (center), and ROMS-HAD (right).

analysis of CMIP5 models (Rykaczewski et al., 2015), but there
are noticeable differences between simulations in the magnitude
and timing of change throughout the 21st century. In ROMS-
GFDL, the strongest intensification in upwelling favorable winds,
centered between 40 and 45◦N, becomes apparent by 2030 and
persists through the end of the century. ROMS-IPSL shows low
frequency variability without strong linear trends; in particular
there is a period of considerably weakened upwelling favorable
winds north of 35◦N from approximately 2060–2080 followed by
an intensification from 2080 through the end of the century. The
prominence of these signals throughout the projections suggests
the influence of decadal variability in this system, which can delay
the emergence of anthropogenic upwelling trends until the late
21st century (Brady et al., 2017). ROMS-HAD has a consistent
trend of equatorward wind stress intensification in northern
latitudes and weakening in southern latitudes, with the division
between increasing and decreasing upwelling favorable winds at
∼40◦N.

Sea Surface Temperature
Surface ocean warming is one of the most robust ocean responses
to climate change, and all three simulations project increases in

SST across all latitudes (Figure 8). SST continues to increase
with time in all simulations, with ROMS-GFDL projecting the
weakest increase (∼2.5◦C by 2090), ROMS-IPSL projecting a
stronger increase (∼4◦C by 2090), and ROMS-HAD projecting
the strongest increase (∼5◦C by 2090). ROMS-GFDL projects
slightly stronger warming at southern latitudes, while ROMS-
IPSL and ROMS-HAD project nearly uniform warming across
the meridional extent of the coastal domain.

Subsurface Nitrate Concentration
Regional Ocean Modeling System-Geophysical Fluid Dynamics
Laboratory projects a strong increase in subsurface nitrate
concentration, with a trend that emerges from the natural
variability (i.e., exceeds 1 standard deviation of the historical
variability) by ∼2050 and is strongest from 30◦ to 35◦N
(Figure 8). ROMS-IPSL exhibits a similar spatial pattern, but
with a reduced trend that exceeds decadal variability only in the
southern part of the domain and that is inherited from the parent
ESM. The nearshore decrease in nitrate concentration in ROMS-
HAD emerges clearly in roughly 2060 in the southern latitudes
and spreads northward across most of the domain by the end of
the century (Figure 8).
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Subsurface Dissolved Oxygen
Projected dissolved oxygen concentrations generally follow those
of the nitrate concentrations, with opposite signs, across all
three models (Figure 8). The tight coupling between nitrate
and oxygen is evident both in the decadal variability and in
the long-term trends, though the oxygen trends are even more
pronounced. While all three models project a strong decrease
in dissolved oxygen, particularly in the northern latitudes, the
time when the dissolved oxygen changes becomes prominent
differs among models. Trends emerge from the natural variability
across all latitudes by ∼2060 and ∼2040 in ROMS-GFDL and
ROMS-IPSL, respectively. In ROMS-HAD, an oxygen decrease
has already emerged in the northern latitudes (>43◦N), while
decadal variability remains the dominant signal in the rest of the
domain, and beyond 2070, a weak increase in dissolved oxygen
emerges in the southern part of the domain, consistent with the
decrease of nitrate there.

Vertically Integrated Phytoplankton Biomass
All three models project the main changes in chlorophyll,
vertically integrated over 0–50 m, along a latitude band between
35 and 45◦N, the most productive portion of the CCS (Figure 8).
ROMS-HAD and ROMS-IPSL project a chlorophyll decrease
starting in ∼2040 and ∼2050, respectively, near 37◦N, which
strengthens and extends across most of the coastal domain by
the end of the century in ROMS-HAD. In contrast, ROMS-
GFDL projects an increase of vertically integrated chlorophyll
(∼8 mg m2 that becomes distinct ∼2050), off Northern
California and Oregon (∼40–45◦N) and a decrease off Central
California (∼35–37◦N). These changes in ROMS-GFDL are likely
driven by both the intensification of the alongshore winds, which
increase the upwelling between 40◦ and 45◦N, and the strong
increase of the subsurface nitrate concentration. In ROMS-
HAD, the negative trends in vertically integrated chlorophyll are
largely consistent with trends in the weakening of the upwelling-
favorable wind stress and the decrease of subsurface nitrate
concentration along the southern (<39◦N) CCS coast. However,
along the northern (>39◦N) CCS coast, these negative trends
in chlorophyll indicate that the intensification of alongshore
winds cannot offset the depletion of subsurface nitrate. However,
the dynamics driving chlorophyll changes are not necessarily
straightforward, as phytoplankton biomass can be influenced by
changes in upwelling strength, subsurface nutrients, upper ocean
stratification, and top-down control by grazers. The relative
influence of these potentially competing drivers under historic
and future forcing continues to be a topic of interest, which we
discuss more in the following section.

Coastal Trends ESMs Comparisons
To highlight the impact of the downscaling process, we compare
coastal trends of key ecosystem variables with those of the
ESMs (Figure 9). All projections show a strong warming of
the coastal CCS. SST increases rapidly in the ROMS-IPSL and
in ROMS-HAD from the late 2020s, and late 2030s. By the
end of the century, SST increases in ROMS-IPSL reach ∼4◦C
and >3.5◦C in the northern and southern CCS, respectively,
while in ROMS-HAD warming reaches >4.5◦C in both the

northern and southern regions. ROMS-GFDL shows a moderate
increase in SST, starting later (∼2040), and reaching ∼2◦C and
>2.5◦C, in the northern and southern CCS, respectively, by the
end of the century. SST trends in the downscaled projections
strongly followed those from the ESMs, resulting in no significant
spread between the downscaled projections and their ESMs
counterparts. Compared to the evolution of the ROMS-ESM SST
means, the SST ESMs exhibit an offset of the trends due to
their different bias with respect to the historical period (∼1–2◦C,
Supplementary Figure 5).

Biogeochemical variables in ROMS-ESMs show different signs
in the trends along the CCS coast. These changes and their
meridional differences in magnitude are consistent with those
from ESMs (Figures 9, 10). In ROMS-GFDL and ROMS-HAD,
the evolution of subsurface nitrate and oxygen agree more
closely with their ESM counterparts. However, the evolution
of these anomalies in ROMS-IPSL separate from those in the
IPSL, showing a significant intra-model spread especially in the
southern coastal region.

Regional Ocean Modeling System-Institut Pierre Simon
Laplace and ROMS-HAD depict a moderate and a strong
decline of coastal chlorophyll along the coast, reaching −0.5 and
−10 mg m−2 by the end of the century, respectively. Meanwhile,
ROMS-GFDL depicts a moderate increase of chlorophyll in
the northern CCS coast. The evolution of the ROMS-GFDL
chlorophyll trends agrees more closely with those from GFDL,
showing a pronounced decadal variability. However, ROMS-IPSL
and ROMS-HAD show a larger spread in chlorophyll with respect
to their counterparts. While anomalies of chlorophyll in IPSL
remain unchanged during the century, the chlorophyll in ROMS-
ISPL declines, showing larger variability than the chlorophyll
projection in IPSL (Figure 9).

Because of the inherent ESM bias with respect to the historical
period, the evolution of the mean values of the biogeochemical
variables also exhibit an offset compared to those in the ROMS-
ESMs. Offset magnitudes are larger in subsurface nitrate and
oxygen in GFDL and IPSL, while chlorophyll offset is larger in
HAD (Supplementary Figure 5).

DISCUSSION

We used a coupled physical-biogeochemical model (ROMS-
NEMUCSC) at 0.1-degree (∼10 km) resolution to produce
downscaled projections of climate change in CCS from 1980 to
2100 under the high emissions RCP8.5 scenario. To capture the
spread of projections, we selected three ESMs, GFDL-ESM2M,
HadGEM2-ES, and IPSL-CM5A-MR, that span the CMIP5 range
for future changes in both the mean and variance of physical and
biogeochemical CCS properties. The downscaled runs provide
information on potential future physical and biogeochemical
states in the CCS at higher resolution than those available
from current generation ESMs. More importantly, they provide
insight into which future changes are robust (i.e., with different
projections agreeing on the sign of change, if not the magnitude)
and which are uncertain even in a qualitative sense (i.e., when
models diverge on the sign of changes). They also illustrate

Frontiers in Marine Science | www.frontiersin.org 12 April 2021 | Volume 8 | Article 612874179

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-612874 March 30, 2021 Time: 13:31 # 13

Pozo Buil et al. Dynamically Downscaled Projections for CCS

FIGURE 9 | From left to right time series of yearly averaged anomalies with respect to the historical period averaged from the coast to 100 km offshore of SST, NO3

and O2 at 150 and 0–50 m vertically integrated chlorophyll for the northern (top, >39◦N) and southern (bottom, <39◦N) CCS.

FIGURE 10 | Schematic table summarizing the main physical and biogeochemical variables future changes for the period (2070–2100), from the ESMs (left) and
ROMS-ESMs (right) projections for the nearshore (from a distance of 100 km to the coast) and offshore (from 100 to 300 km) for the northern and southern CCS
coast. The variables listed are: SST (◦C), NO3 and O2 at 150 (mmol/m3) and 0–50 m vertically integrated chlorophyll (mg/m2). For each variable, the mean change
and inter-model range change during the period are shown.

benefits and limitations of dynamical downscaling in the context
of climate change projection. We discuss these points below.

Similarities and Differences Among
ESM-Driven ROMS Projections
All three downscaled models show an overall intensification
of the meridional wind stress (i.e., equatorward wind stress

or upwelling-favorable winds) in the northern part of the
domain (>40◦N), consistent with previous work (Rykaczewski
et al., 2015; Wang et al., 2015; Xiu et al., 2018), with ROMS-
IPSL showing the weakest intensification and ROMS-GFDL the
strongest. In the southern region, ROMS-GFDL and ROMS-
IPSL show a weaker intensification of the upwelling-favorable
wind stress, while ROMS-HAD projects a weakening wind stress.
Although, ROMS-GFDL and ROMS-IPSL simulations project
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an intensification of the upwelling-favorable wind stress for
the last thirty years of the end of the century, ROMS-IPSL
projects a weakening of the meridional wind stress in coastal
waters from approximately 2060–2080. Since low frequency
variability in the dynamically downscaled surface winds remains
dependent on the overlying larger-scale wind, this period of
winds stress relaxation along the CCS coast in ROMS-IPSL may
reflect variability in the North Pacific represented by the ESM
model parent IPSL. Further analysis demonstrates that decadal-
scale variability in upwelling-favorable wind stress in all three
models is correlated with basin-scale climate oscillations (i.e.,
the Pacific Decadal Oscillation, PDO; Mantua et al., 1997). For
example, weakened upwelling-favorable wind stress in ROMS-
IPSL during 2050–2080 occurs during a positive phase of the
PDO (Supplementary Figures 6, 7, and Supplementary Table 1).
Without careful assessment, an analysis of the projections
from ROMS-IPSL for this particular and short period of
time (i.e., 2060–2080) could lead to misattributing this signal
to anthropogenic climate change instead of natural climate
variability (e.g., Deser et al., 2012). Thus, it is important
to consider the simulation’s full transient period, or longer
time-scales projections, as recommended in the downscaling
protocols by Drenkard et al. (in review). It also justifies our
approach of using a time-varying delta method to generate the
downscaled projections.

In the subsurface offshore, the three ESM-driven ROMS
simulations project similar enrichment of nitrate and a decrease
in dissolved oxygen as well as a shoaling of the hypoxic
boundary layer, all of which follow their ESM counterparts. In the
coastal regions, ROMS-GFDL and ROMS-IPSL biogeochemical
responses are similar in sign and aligned to those off the coast,
featuring an average of∼30–40% increase/decrease of subsurface
nitrate/dissolved oxygen, ∼25% reduction of bottom oxygen
on the shelf, and a ∼50 m shallower hypoxic boundary layer.
ROMS-HAD projects a different response featuring a decrease
of subsurface nitrate (∼20%) that by 2070 extends along the
entire coast, an increase of subsurface oxygen (30%) in the
southern region that extends to the bottom of the shelf, and a
deepening of the hypoxic boundary layer by ∼30 m. Changes
in subsurface nitrate and oxygen in our ROMS projections
are largely consistent with recent downscaling studies that
include these ESMs (Xiu et al., 2018; Howard et al., 2020a).
One exception is subsurface oxygen in ROMS-HAD along the
coast, for which we find an increase in oxygen coupled to
the decrease in subsurface nitrate. Howard et al. (2020a) find
that subsurface oxygen decreases in their downscaled HAD
projection, though that decrease is much weaker than in their
GFDL and IPSL projections. A plausible explanation for this
may be associated with the downscaling method and/or the
specific ensemble member from HAD used to force the high-
resolution projections.

Changes in nutrient concentrations and nutrient ratios have
already been observed in upwelling source waters of the CCS (e.g.,
Bograd et al., 2015). ROMS-GFDL and ROMS-IPSL projected
trends in nitrate enrichment and deoxygenation are consistent
with previous studies that suggest that biogeochemical changes in
upwelling source waters could be a first order effect in changes in

the biogeochemistry of the CCS, with the decrease in ventilation
of North Pacific interior waters, increase in stratification and
the subsequent deepening of the isopycnals, being the proposed
driving mechanisms (Rykaczewski and Dunne, 2010; Xiu et al.,
2018; Dussin et al., 2019; Howard et al., 2020a). Moreover,
deoxygenation of the upwelling source waters is the main driver
of changes in hypoxia and expansion of hypoxic areas on the
shelf (Dussin et al., 2019). Under the future RCP8.5 scenario,
HAD and IPSL project relatively small changes of Equatorial
Undercurrent (EUC) transport compared to GFDL, accompanied
by a slight compression of the oxygen minimum zones (OMZ)
in the former and expansion in the latter (Shigemitsu et al.,
2017). These models’ biases (i.e., representation of the EUC)
and discrepancies in the future projections of the complex
equatorial dynamics and the OMZ (Cabré et al., 2015; Busecke
et al., 2019) could explain the diverse trends in the downscaled
projections. The strong decrease of subsurface oxygen near
the southern boundary projected by ROMS-GFDL might be
associated with the weakening of the EUC and transport of
older waters (i.e., less oxygen and higher nutrient concentrations)
into the CCS from the south. In contrast, the increase of
subsurface oxygen in the projected ROMS-HAD might be
related to the compression of the OMZ and the transport of
younger waters to the CCS. Future changes in the equatorial
dynamics and their connections to the CCS source waters will be
explored in future work.

The projected enrichment of nutrients in subsurface waters,
combined with increased upwelling caused by the intensification
of the meridional wind stress, could be the driving mechanisms
for increases in the phytoplankton biomass of ∼50% in
ROMS-GFDL. Enrichment of nutrients near the depth of
upwelled source waters may increase primary productivity in
the CCS (Rykaczewski and Dunne, 2010), but our results
suggest that the increase in productivity is reinforced by
the intensification of upwelling favorable winds projected
to occur in the northern coastal CCS in ROMS-GFDL.
Conversely, nutrient-poor source waters combined with the
weakening of upwelling winds (15–18%) likely drive the
projected strong decrease of chlorophyll (∼50%) in the
coastal CCS by ROMS-HAD. This differing response of
ROMS-HAD could come from inheriting the large-scale
biogeochemical changes in HAD that propagate through
the CCS boundaries.

All the models show that future ocean warming in the
CCS is surface intensified, indicating enhanced stratification
(Figure 5 and Supplementary Figure 8). In the coastal
domain, ROMS-GFDL and ROMS-IPSL project the larger
stratification and reduced (i.e., shallower) MLD around ∼34–
40◦N (between Point Conception and Cape Mendocino),
while ROMS-HAD projects a weaker stratification and less
shoaling of the MLD in that region (Supplementary Figure 8).
Increased stratification can potentially counteract the effect of
intensifying winds and source water nutrient enrichment by
limiting the nutrient flux to the mixed layer and decreasing
PP (Di Lorenzo et al., 2005; García-Reyes et al., 2015; Jacox
et al., 2015). Thus, enhanced stratification, in combination
with weakened upwelling-favorable winds, could explain why
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phytoplankton biomass decreases are projected in the southern
CCS by ROMS-GFDL and along most of the coast by ROMS-
IPSL despite increasingly nutrient-rich subsurface waters. The
uncertainty related to the interplay between the thermal
stratification and intensification of upwelling winds should be
explored further.

Impact of Regional Downscaling
Given the added effort, computational cost, and storage required
associated with dynamical downscaling, it is worth considering
the added benefit relative to the uncertainties in the parent
model forcing. We compared the ROMS projections with those
from their ESM counterparts and showed that both SST and
chlorophyll trends are qualitatively consistent between ROMS
simulations and their ESM parents (Figure 9). ROMS-ESM
SST changes follow those of their ESM parents closely in
magnitude, producing a similar range of the uncertainties.
From the ESM parent models, GFDL and IPSL agree on
the sign of the NPP and surface chlorophyll change (i.e.,
increasing through the century), while the CMIP5 ensemble
mean projects declines in NPP in this region with the
same sign trend as HadGEM2-ES, but with much smaller
magnitude (Figure 1). Along the CCS coast, ROMS-GFDL
and ROMS-HAD also agree on the trend sign and the
latitudinal expressions of the chlorophyll changes compared to
their ESM parents, but not in the magnitude in the latter.
On the other hand, ROMS-IPSL projects a clear negative
trend in chlorophyll while the trend in IPSL is weaker
(Figure 9 and Supplementary Figure 9). Differences in the
sign and magnitude of the trends might be related to non-
linear interactions in the biogeochemistry as a response to the
upwelling dynamics that are better resolved in the downscaled
models. Compared to the SST changes, some ROMS-ESM
biogeochemical changes largely differ in magnitude from their
ESM parents, producing larger intra-model spread in particular
between ROMS-HAD and HAD in chlorophyll, and ROMS-
IPSL and IPSL in subsurface nitrate and oxygen. However,
there is an overall reduction of the uncertainty of the
biogeochemistry projections in the ROMS-ESMs, likely due to
using the same biogeochemical model and parameterization for
all three downscaled simulations. A summary of these main
physical and biogeochemical changes in the CCS is shown
in Figure 10.

The larger biogeochemical differences between ROMS
simulations and their ESM parent models illustrate the impact
of regional downscaling’s ability to resolve local processes
impacting productivity (Echevin et al., 2020). Various factors
may explain why biogeochemical variables are more sensitive
to regional downscaling than physical variables: (1) high-
spatial resolution for the circulation is needed to simulate
upwelling dynamics and their ecosystem responses; (2)
complex nonlinear interactions occur between the physical
changes and ecosystem responses; and (3) the formulation
of the biogeochemical component varies among ESMs and
is different than NEMUCSC, which has been specifically
calibrated for the CCS.

CONCLUDING REMARKS

The high-resolution downscaled projections presented here
belong to a broader end-to-end modeling project (Future
Seas2) that integrates climate, biogeochemical, ecosystem, and
socioeconomic models to evaluate the impacts of climate change
in the CCS and evaluate fisheries management strategies under
projected future conditions. The regional ocean models provide
the physical and biogeochemical foundation for higher trophic
level models of various types, including individual based models
and species distribution models (Smith et al., 2021), highlighting
the utility of high-resolution projections for regional marine
resource applications. However, given that differences between
downscaled models and their ESM parents can be small relative
to the differences between ESMs, any specific application should
consider the value of dynamical downscaling in the context of
other sources of uncertainty. Until large ensembles of eddy-
resolving global or regional models are computationally feasible,
we suggest that a fruitful approach is to combine coarser
resolution large ensembles with dynamical downscaling of select
runs informed by analyses like the one presented here to assess
how representative basin-scale changes are translated to shelf-
scale responses.
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Predicting changes in the abundance and distribution of small pelagic fish species
in response to anthropogenic climate forcing is of paramount importance due to
the ecological and socioeconomic importance of these species, especially in eastern
boundary current upwelling regions. Coastal upwelling systems are notorious for the
wide range of spatial (from local to basin) and temporal (from days to decades)
scales influencing their physical and biogeochemical environments and, thus, forage
fish habitat. Bridging those scales can be achieved by using high-resolution regional
models that integrate global climate forcing downscaled from coarser resolution earth
system models. Here, “end-to-end” projections for 21st century sardine population
dynamics and catch in the California Current system (CCS) are generated by coupling
three dynamically downscaled earth system model solutions to an individual-based
fish model and an agent-based fishing fleet model. Simulated sardine population
biomass during 2000–2100 exhibits primarily low-frequency (decadal) variability, and
a progressive poleward shift driven by thermal habitat preference. The magnitude of
poleward displacement varies noticeably under lower and higher warming conditions
(500 and 800 km, respectively). Following the redistribution of the sardine population,
catch is projected to increase by 50–70% in the northern CCS and decrease by 30–
70% in the southern and central CCS. However, the late-century increase in sardine
abundance (and hence, catch) in the northern CCS exhibits a large ensemble spread
and is not statistically identical across the three downscaled projections. Overall, the
results illustrate the benefit of using dynamical downscaling from multiple earth system
models as input to high-resolution regional end-to-end (“physics to fish”) models for
projecting population responses of higher trophic organisms to global climate change.

Keywords: climate projection, dynamical downscaling, California Current, sardine fishery, end-to-end ecosystem
model, upwelling system
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INTRODUCTION

In eastern boundary current upwelling regions, such as the
California Current System (CCS), sardines and other small
pelagic fish play a key role in the transfer of energy between
planktonic organisms and higher trophic levels species, such
as seabirds and marine mammals (Cury et al., 2000; Peck
et al., 2021). Healthy sardine populations also account for
a substantial fraction of the global fish catch (Fréon et al.,
2005) and support important commercial fishing activities
worldwide, yielding multimillion dollars ex-vessel revenues
(i.e., revenues from landed catch) off the west coast of the
United States alone (Pacific Fishery Management Council
(PFMC), 2011). The ecological and economic significance of
sardines in upwelling regions make them a prime candidate
to explore how populations may respond to changing climate
conditions (Cheung et al., 2015; Morley et al., 2018) and to
identify potential drivers (e.g., warming and prey availability) and
uncertainty sources (Frölicher et al., 2016) associated with shifts
in distribution and abundance.

Environmental variability in the CCS occurs over a wide
range of spatiotemporal scales and is seasonally driven by coastal
upwelling of cool, nutrient rich waters in response to prevailing
alongshore winds (Checkley and Barth, 2009). The combination
of coastal and curl-driven upwelling produces elevated levels of
new production along most of the west coast of the United States
and contributes to shaping the habitats of planktonic organisms
and forage fish (Rykaczewski and Checkley, 2008; Zwolinski
et al., 2011; Fiechter et al., 2020). Physical, biogeochemical and
ecosystem states in the CCS are further modulated by basin-
scale variability associated with ocean-atmosphere couplings,
such as the El Niño Southern Oscillation (Lynn and Bograd,
2002), Pacific Decadal Oscillation (Mantua et al., 1997) and North
Pacific Gyre Oscillation (Di Lorenzo et al., 2008). These decadal
changes in environmental conditions have been postulated
as the main drivers of low-frequency variability of sardine
and anchovy populations in the region (Chavez et al., 2003;
Lindegren et al., 2013).

The combined effects of basin-scale forcing, regional
processes, and local upwelling patterns on small pelagic fish
habitat pose a significant challenge for predicting how sardine
population dynamics will be affected by changing climate
conditions in the CCS and in other eastern boundary current
upwelling systems. Global projections from Earth System Models
(ESMs) typically lack the necessary atmospheric and oceanic
horizontal resolution to reproduce the full spectrum of processes
associated with wind-driven coastal upwelling (Stock et al.,
2011; Small et al., 2015). Higher-resolution regional models can
resolve finer-scale physical and biogeochemical coastal dynamics
but must be driven by realistic localized representations of
future climate forcing. Dynamical downscaling of low-resolution
(∼1◦ × 1◦) ESM solutions has emerged as a valuable method for
producing higher-resolution (∼0.1◦ × 0.1◦) regional projections
of environmental and ecosystem variability in eastern boundary
current upwelling systems under anticipated future conditions
(Echevin et al., 2012; Machu et al., 2015; Howard et al., 2020a;
Pozo Buil et al., 2021).

The focus of this study is to extend the dynamical downscaling
approach of Pozo Buil et al. (2021) to sardine population
dynamics and catch in the CCS by integrating a full life-cycle
individual-based model (IBM) for sardine and an agent-based
model for its fishing fleet into the projections. By nature, the
IBM allows for a mechanistic interpretation of environmental
drivers regulating growth, reproduction, survival, and behavior
of sardine (Fiechter et al., 2015; Rose et al., 2015), and it
is thus well-suited to explore which and how underlying
physical and biological processes will likely cause changes in
sardine abundance and distribution over the course of the 21st
century. While anthropogenic warming will undoubtedly play an
important role (Cheung et al., 2015; Morley et al., 2018), the IBM
projections can shed light on the relative extent to which future
temperatures will affect sardine population dynamics through
metabolism (growth, reproduction, and early life survival rates)
and movement behavior (shift in thermal habitat). The IBM also
offers insight into the possible influence on sardine of other
bottom-up drivers, such as coastal upwelling intensity and prey
availability, which may exhibit more subtle local and regional
responses to climate change (Rykaczewski et al., 2015; Checkley
et al., 2017) or whose trends have not yet emerged from natural
variability (Brady et al., 2017). Since climate models have inherent
physical and biogeochemical uncertainty (Frölicher et al., 2016),
the robustness of sardine population and catch projections are
assessed by downscaling three representative members of the
CMIP5 ensemble (Bopp et al., 2013).

MATERIALS AND METHODS

End-to-End Ecosystem Model
The numerical framework is an existing end-to-end ecosystem
model that has already been successfully implemented to study
historical sardine and anchovy population variability and their
environmental drivers in the CCS (Fiechter et al., 2015; Rose
et al., 2015; Politikos et al., 2018; Nishikawa et al., 2019) and in
the Canary Current upwelling system (Sánchez-Garrido et al.,
2018, 2021). The end-to-end model includes a regional ocean
circulation component, a nutrient-phytoplankton-zooplankton
(NPZ) component, a sardine population dynamics IBM
component, and an agent-based fishing fleet component. Since
detailed descriptions of the model can be found in Rose et al.
(2015) and Fiechter et al. (2015), only an abbreviated overview of
the different model components is provided here.

The ocean circulation model is an implementation of the
Regional Ocean Modeling System (ROMS) (Shchepetkin and
McWilliams, 2005; Haidvogel et al., 2008) for the broader
California Current region (30◦N to 48◦N and 116◦W to 134◦W),
with a horizontal grid resolution of 1/10◦ (ca. 10 km) and 42
non-uniform terrain-following vertical levels. The NPZ model
is a customized version of the North Pacific Ecosystem Model
for Understanding Regional Oceanography (NEMURO) (Kishi
et al., 2007) specifically parameterized for the CCS (Fiechter et al.,
2018, 2020). Physical transport of NPZ tracers is achieved by
solving an advection-diffusion equation at every time step using
archived daily velocities and mixing coefficients from ROMS. The
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IBM tracks sardine individuals on the ROMS grid in continuous
(Lagrangian) space and over their full life cycle.

Scaling from individuals to the population level is done
using a super-individual approach (Scheffer et al., 1995), where
each super-individual in the IBM represents a larger number
of individuals (called worth) with identical attributes (a super-
individual can be envisioned as a school of identical fish). Super-
individuals remain in the simulation until they either reach their
oldest allowed age (10 years) or mortality sources reduce their
worth to zero. All output from the IBM is scaled by the worths
of super-individuals (for example, population abundance is the
sum of the worths over all super-individuals, and mean length is
a weighted average of the lengths of super-individuals with the
weighting factors being their worths).

The IBM explicitly includes formulations for growth from
bioenergetics and feeding on zooplankton prey (from NPZ
component), reproduction, and natural and fishing mortality for
the following life stages (as appropriate): eggs, yolk-sac larvae,
feeding larvae, juveniles, non-mature adults, and mature adults.
The development of eggs and yolk-sack larvae is determined
uniquely by temperature; larvae transition to juveniles based
on a weight threshold; juveniles become non-mature adults on
January 1 of each model year; and adults reach maturity based
on a length threshold. Since mature adults produce eggs which
become the next spawning adults, recruitment is an emergent
property in the model (as opposed to being imposed annually or
defined a priori via a spawner-recruit relationship). Behavioral
movement for juveniles and adults includes temperature and
consumption cues using a kinesis approach that combines inertial
and random displacements based on a proximity to optimal
conditions (Humston et al., 2004; Watkins and Rose, 2013).
When temperature and feeding conditions experienced by an
individual are within a prescribed suitable range (defined here
as within one standard deviation from the optimal value), the
inertial component is weighted more heavily than the random
component, thereby allowing the individual to maintain itself
within a suitable thermal and foraging habitat by conserving its
current heading and slowing down.

The fishing fleet model simulates daily fishing trips of boats
out of 4 United States west coast ports (San Pedro, Monterey,
Astoria and Westport). Choice of fishing locations and associated
daily sardine catch are based on a simplified multinomial logit,
agent-based approach where boats maximize their expected net
revenue for each trip (e.g., Eales and Wilen, 1986). While the
fleet model incorporates effort in the sense that no fishing
occurs on a given day if a boat does not have access to fishing
locations yielding a positive revenue, it does not account for
specific fisheries management actions that have been imposed
historically. For example, the simulations do not include the
regulatory quotas imposed on the fishery during 1986–1991
following the sardine moratorium in California (Wolf, 1992) or
the lack of a recent commercial fishery in the Pacific Northwest
until 1999 (Emmett et al., 2005).

The version of the end-to-end model used here differs from
its earlier implementation in several ways. (i) For computational
efficiency, each component of the system is run in successive steps
(i.e., offline coupling), starting with the physical circulation, then

the NPZ component, and finally the fish and fleet components.
When using archived daily fields, the offline approach yields a
solution virtually identical to that of the fully coupled model, yet
it allows for larger time steps for the NPZ (dt = 30 min) and
fish and fleet (dt = 6 h) components compared to that of the
physical and, hence fully coupled model (dt = 10 min); (ii) The
fish IBM component includes only one coastal pelagic species,
sardine, and no migratory predator. Earlier results from Rose
et al. (2015) demonstrated that sardine and anchovy had small
direct effects on each other in the simulations (i.e., dynamics were
quasi-independent and therefore separable) and that predatory
mortality was small compared to the other sources of mortality
represented in the model; (iii) The diet for adult sardine has been
adjusted to include higher feeding preferences on copepods and
euphausiids. This modification yields a more realistic offshore
extent of the sardine population (food is one of the movement
cues) compared to that calculated in earlier implementations
of the model where adult sardine favored microzooplankton.
The new parameterization also leads to an emergent northward
summer feeding migration (albeit of reduced amplitude and
limited to older fish), thereby alleviating the need of a prescribed
seasonal migration as in Rose et al. (2015) and Fiechter et al.
(2015). (iv) The parameterization of the NPZ component was
revisited to improve the representation of key phytoplankton and
zooplankton functional groups in the CCS, especially euphausiids
(Fiechter et al., 2018, 2020). Specific parameter values for the
NPZ, sardine IBM, and fishing fleet models are provided as
supplementary material and references for parameter sources are
available in Rose et al. (2015).

Historical Simulation and Climate
Projections
Four different numerical simulations of the end-to-end model
were performed: a historical run for 1983–2010 and three
downscaled climate projections for 1983–2100 based on the
GFDL-ESM2M (Dunne et al., 2012), IPSL-CM5A-MR (Dufresne
et al., 2013), and Hadley-GEM2-ES (Collins et al., 2011) earth
system models under the Representative Concentration Pathway
(RCP) 8.5 emission scenario. These models were selected for
their inclusion of marine biogeochemical fields and to represent
the spread of physical and biogeochemical futures in the CMIP5
ensemble: GFDL has a low rate of warming and increased
primary production; Hadley has a high rate of warming and
decreased primary production; and IPSL corresponds to a
moderate scenario (Bopp et al., 2013; Pozo Buil et al., 2021).
The primary purpose of the historical simulation was to generate
a reference solution for the calibration and evaluation of the
sardine IBM and fishing fleet model.

For the historical simulation, initial and open boundary
conditions for physical variables are derived from the Simple
Ocean Data Assimilation (SODA) reanalysis (Carton and Giese,
2008), and surface atmospheric fields are based on version 1 of the
Cross-Calibrated Multi-Platform (CCMP1) winds (Atlas et al.,
2011) and version 5 of the European Centre for Medium-Range
Weather Forecasts (ERA5) reanalysis (Hersbach et al., 2020).
Initial and boundary conditions for nitrate and silicic acid are

Frontiers in Marine Science | www.frontiersin.org 3 July 2021 | Volume 8 | Article 685241188

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-685241 July 14, 2021 Time: 17:27 # 4

Fiechter et al. California Current Sardine Climate Projections

derived from the World Ocean Atlas (WOA) (Conkright and
Boyer, 2002), while other biogeochemical tracers are set to a
small value (0.1 mmol N m−3) for lack of better information.
Total sardine population biomass is initialized so that the biomass
contributed by mature (age-2 and older) adult individuals at the
beginning of the simulation roughly matched the mean spawning
stock biomass estimated for 1985–1999 (∼0.35 million metric
tons) (Hill et al., 2010). Sardine super-individuals are randomly
initialized within a subregion of the model between 30–35◦N and
within 100 km of the coast where surface temperatures and food
availability on 1 January 1983 are within one standard deviation
of their respective optimal values for kinesis.

For the downscaled projections, a “time-varying delta”
method is used to generate open boundary and surface
atmospheric forcing. For each ESM, time-varying deltas
(representing monthly open boundary and surface atmospheric
anomalies) are calculated relative to their respective 1980–2010
climatology and added to their corresponding climatology in
the historical simulation (SODA and WOA for physical and
biogeochemical open boundary conditions, and CCMP1 and
ERA5 for surface atmospheric forcing) (Pozo Buil et al., 2021).
The downscaled projections are generated for 1983–2100 using
historical forcing for 1983–2005 and the RCP8.5 emission
scenario for 2006–2100. The main advantage of using a time-
varying delta method is that it corrects for inherent biases in
the earth model solutions and produces continuous projections
reflecting climate change effects in the CCS throughout the 21st
century (as opposed to the more common “fixed delta” method
that considers only a specific period of the future climate,
e.g., 2070–2100). The initial location and biomass of sardine
individuals for the projections is determined using the same
approach as for the historical simulation.

Analysis
Evaluation of the end-to-end historical simulation includes sea
surface temperatures and surface chlorophyll concentrations
from the ROMS and NPZ models; sardine spawning stock
biomass, age-class structure, recruitment, and egg distribution
from the IBM; and regional annual catch from the fishing
fleet model. Simulated sea surface temperatures and chlorophyll
concentrations are respectively compared to NOAA’s OISST
AVHRR dataset1 and NASA’s SeaWiFS dataset.2 Simulated
sardine spawning stock biomass (age-2 and older individuals),
age-class structure and recruitment are compared to stock
assessment estimates from Table 10 in Hill et al. (2010); egg
distribution patterns are evaluated against in situ observations of
egg presence from Zwolinski et al. (2011); and simulated catch is
compared to reported regional United States west coast landings
from Table 1 in Hill et al. (2010). Recruitment is an emergent
property in the IBM and represents the number of eggs that
survive to enter the adult stage on January 1 of each year.

Analysis of the end-to-end model projections includes: (1)
total annual adult sardine biomass from each downscaled
solution and multi-model mean, as well as multi-model spread

1https://www.ncdc.noaa.gov/oisst
2https://oceancolor.gsfc.nasa.gov/data/seawifs

calculated as the standard deviation between the three projections
and the multi-model mean, (2) spatial distributions of adult
sardine abundance and egg production, (3) spatial maps of
suitable thermal and feeding habitats, and (4) total annual
catch in the southern (San Pedro), central (Monterey) and
northern (Astoria and Westport) CCS. Since sardines in the
model consume multiple prey types from the NPZ component,
a functional response is applied to combine them into a
single index (Rose et al., 2015). The functional response
uses the prey biomasses, and after accounting for feeding
preferences and efficiencies of sardine, generates the fraction of
maximum possible consumption rate that would be achieved
(hereafter referred to as “P”). The identification of thermal
and feeding habitats is purposedly based on the parameters
used in kinesis to weight inertial and random movement, so
spatial changes in projected sardine distributions are directly
relatable to future availability of suitable conditions in the
CCS as perceived by individuals in the IBM. Suitable thermal
and feeding habitats are thus defined as grid cell locations
where temperature and P values are, respectively, within one
standard deviation of their optimal value, (i.e., 11–16◦C for
temperature and greater than 0.75 for P). For these ranges, habitat
quality is highest and inertial movement (indicative of good
habitat) outweighs random behavior (indicative of poor habitat)
in kinesis.

Total biomass is calculated by multiplying the body weight
by the worth of a super-individual and summing over all super
individuals representing mature adult sardines; worth is the
number of actual fish represented by a super-individual and
body weight is identical for all fish within a super-individual.
Spawning stock biomass is further calculated by summing only
over super-individuals representing age-2 and older mature adult
sardines. Spatial distributions of abundance are calculated as
yearly averages of instantaneous (every 5 days) summed adult
worth in each grid cell, and egg production is determined by
annually summing the number of eggs spawned (scaled up for
the worths of spawners) in each grid cell. Adult abundance
and egg production are subsequently mapped to a coarser
30 km resolution grid, which helps smooth out spatial variability
in the model output not associated with coherent circulation
features. Total annual catch is calculated by summing daily
catch over all boats and all days of the year for each port.
An unpaired, two-sample Student’s t-test is also performed on
sardine abundances at each grid cell location to determine if the
means of the distributions are statistically identical across the
three downscaled solutions over the analysis period (2000–2100).
The projections are considered statistically “robust” at a grid cell
location if the pairwise (GFDL-Hadley, GFDL-IPSL, and Hadley-
IPSL) t-tests support the hypothesis of identical means at the 95%
confidence level.

RESULTS

Model Evaluation
The evaluation of the ROMS and NPZ models focuses on
sea surface temperatures and chlorophyll concentrations, as
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these two variables are intimately related to the presence of
suitable thermal and feeding habitats for sardine individuals
in the IBM. Despite a slight warm bias (∼0.5◦C or less),
simulated surface temperatures adequately reproduce observed
spatial patterns and temporal variability, including the transition
from a warmer to a colder regime in the northeast Pacific
Ocean in 1999 associated with a phase change of the Pacific
Decadal Oscillation (Peterson and Schwing, 2003) (Figure 1,
upper panels). Simulated surface chlorophyll concentrations
also demonstrate reasonable agreement with observed values in
the spatial extent of the coastal upwelling zone and in their
interannual variability and trend (Figure 1, lower panels).

Historical sardine spawning stock biomass from the
IBM exhibits low-frequency variability comparable to stock
assessment estimates, with a rapid increase in biomass starting in
the early 1990s, a period of peak biomass during the late 1990s
and early 2000s, and a decline in the late 2000s (Figure 2, upper
left panel). However, simulated values greatly underestimate
the difference between high and low biomass periods. Over the
28 years, simulated values vary by a factor of about 1.5 times
compared to an order of magnitude difference for observed
biomass. This discrepancy is partly explained by lower average
recruitment values (∼4,200 vs.∼7,400 million individuals during
1990–2010) and smaller interannual variability. The model
predicts a factor of 2–3 times between high and low recruitment
years, whereas the factor is 5–10 times for recruitment reported
in the stock assessment (Figure 2, lower left panel). However, the
IBM reasonably replicates periods of high and low recruitment in
the stock assessment, with correlation coefficients of 0.41 based
on annual values and 0.71 based on 3-year running mean values.
Furthermore, the IBM provides an acceptable representation
of the observed age-class structure of the population, and
adequately reproduces the observed latitudinal range (33–36◦N)
and offshore extent of sardine spawning based on in situ egg
presence reported by Zwolinski et al. (2011) for 1998–2009
(Figure 2, right panels).

The cause for the order of magnitude discrepancy between
the model and stock assessment during periods of higher and
lower spawning stock biomass is difficult to pinpoint exactly,
but prey availability and density-dependent mortality could
both play a role. The quadratic natural mortality term in the
NPZ component prevents large fluctuations in phytoplankton
and zooplankton biomasses [as identified for simulated krill in
Fiechter et al. (2020)], which could in turn have a stabilizing
effect on recruitment via larval and juvenile growth, and on
egg production via adult growth. Introducing density-dependent
processes (either via mortality such as predation or crowding
effects on prey availability and growth) would presumably
improve the IBM’s ability to reproduce observed population-
level patterns in spawning stock biomass. However, density-
dependence was ultimately not included in the IBM to maximize
simulated responses to variation in environmental variables
and prey availability, thereby enabling more easily interpretable
results in the projections. Including density-dependence would
dampen responses and, given the uncertainty in how to formulate
the density-dependence among processes and life stages (see
Rose et al., 2001), would require extensive testing of alternative

formulations of differing strength. An option for additional
analyses would be to calibrate the density-dependence to match
the historical spawner-recruit relationship (e.g., from stock
assessment estimates), but it is not clear how this relationship
may change under future conditions. Furthermore, since relative
changes in simulated sardine abundance and distribution are
comparable over an order of magnitude change in initial
population biomass (Supplementary Figure 1), discrepancies in
historical spawning stock biomass and recruitment should not
fundamentally alter the qualitative spatial and temporal patterns
identified in the IBM projections.

Comparing simulated catch to observed landings is obscured
by the fact that the fleet model does not account for the sardine
moratorium (1974–85) and subsequent period of limited fishing
quotas (1986–1991) in California (Wolf, 1992) and for the lack
of a recent commercial fishery in the Pacific Northwest until
1999 (Emmett et al., 2005). Excluding those periods and ramp-
up phase of the fishery, simulated catch reasonably reproduces
the magnitude and temporal variability of reported landings
in the southern CCS during 2000–2010 and northern CCS
during 2002–2010 (Supplementary Figure 2). However, the
model exhibits significantly less similarity with landings in the
central CCS, both in amplitude and year-to-year variation.
The agreement between simulated catch and landings (at least
for San Perdo, Astoria, and Westport) during the period of
high sardine abundance suggests that, despite the factor 2–3
difference between simulated spawning stock biomass and stock
assessment estimates, the model results are informative with
careful interpretation and caveats.

Downscaled Projections
All three downscaled climate projections display substantial low-
frequency variability in sardine biomass over the course of the
21st century, with a notable decrease in adult biomass during
2020–2040 and a rapid increase in adult biomass starting in the
2070s (Figure 3). However, the importance of the mid-century
low biomass period and the magnitude of the end of the century
increase differ markedly between the three projections. Based
on the multi-model mean, sardine biomass decreases by about
40% between historical (2000–2020) and mid-century (2040–
2060) values, with GFDL projecting a smaller decrease (∼15%)
than the multi-model mean, and Hadley and IPSL projecting a
larger decrease (up to 70% for IPSL). Comparatively, the change
in sardine biomass during the second half of the century is
more substantial, as evidenced by the 2.5–3 times increase in
the multi-model mean between mid-century and end of the
century values. Individual projections also exhibit greater spread,
with GFDL and Hadley projecting a lower increase (closer to
doubling), and IPSL projecting a much larger increase (∼7
times increase).

The projected changes in total biomass are also accompanied
by a regional redistribution of the sardine population over
the course of the 21st century, as illustrated by the poleward
shift in the multi-model mean between 2000–2020, 2040–2060,
and 2080–2100 (Figure 3). While the poleward displacement
of the sardine population is a common feature of all three
downscaled projections, the timing and magnitude of the shift
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FIGURE 1 | Historical surface temperatures (◦C) (top) and chlorophyll concentrations (mg/m3) (bottom) from the ROMS and NPZ models for 1983–2010. Left
panels: simulated and observed annual means. Right panel: monthly simulated (red) and observed (blue) spatial means. Observed temperatures are from NOAA’s
OISST AVHRR dataset (https://www.ncdc.noaa.gov/oisst) and chlorophyll concentrations are from NASA’s SeaWiFS dataset
(https://oceancolor.gsfc.nasa.gov/data/seawifs).

FIGURE 2 | Historical sardine population dynamics from the IBM for 1983–2010. Top left: simulated (red) and observed (blue) spawning stock biomass (adults
age-2 and older) (103 metric tons). Top right: simulated (red) and observed (blue) age-class distribution (percent of population). Bottom left: simulated (red) and
observed (blue) recruitment (millions of individuals). Bottom right: Annual mean simulated egg distribution (percent of total production contained in each grid cell).
Observed values are from Hill et al. (2010) stock assessment estimates.

differ substantially between the GFDL, Hadley and IPSL solutions
(Figure 4, upper panels). By mid-century, Hadley projects a
region of peak abundance (∼37–46◦N) on average 2◦ farther
north than those in the GFDL and IPSL projections (∼35–
44◦N). In contrast, by the end of the century, Hadley and IPSL
project that peak sardine abundance is limited to the northern

CCS (north of 40◦N), whereas GFDL suggests higher sardine
abundance still occurs in the central CCS between 37–40◦N.
This poleward shift in sardine abundance over the course of
the 21st century is accompanied by a similar displacement
of peak egg production (i.e., primary spawning grounds)
(Figure 4, lower panels).
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FIGURE 3 | Projected sardine spawning stock biomass (103 metric tons) for 2000–2100. The time series represent CCS-wide annual adult (age-2 and older)
biomass from the ensemble mean (black) and individual GFDL (red), Hadley (green) and IPSL (blue) solutions (gray shading denotes ensemble spread). Insets
represent the ensemble mean spatial biomass distribution (metric tons per km2) for 2000–2020 (left), 2040–2060 (center), and 2080–2100 (right).

FIGURE 4 | Projected spatial distributions of peak adult sardine abundance (top) and egg production (bottom) for 2000–2020 (red), 2040–2060 (blue), and
2080–2100 (green) from GFDL (left), Hadley (center), and IPSL (right) solutions. Regions of peak adult abundance and egg production are defined as locations
where individual and egg counts are greater than one standard deviation above the mean (based on all locations where individuals and eggs were present).

The cues for behavioral movement in kinesis are used to
identify whether temperature or food availability is the primary
driver for the projected poleward shift of the sardine population
(Figure 5). All three model solutions indicate that prey
availability, and thus consumption, remain optimal throughout

the 21st century in most coastal regions where sardines would
normally be found. In contrast, simulated optimal temperatures
for sardines become progressively limited in the southern and
central CCS. By 2100, the GFDL projection (lowest rate of
warming) retains a narrow coastal region of optimal temperature
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conditions in the central CCS (as far south as 34◦N), while
the Hadley projection (highest rate of warming) has virtually
no suitable thermal habitat for sardines equatorward of 40◦N.
Hence, the poleward shift of the sardine population in the end-
to-end model is primarily associated with a substantial reduction
of thermal habitat in the southern and central CCS by the
end of the century.

The progressive displacement of simulated peak sardine
abundance from the southern to the northern CCS has clear
implications for projected catch (Figure 6). All three model
solutions indicate a substantial decrease of total catch in the
southern and central CCS by the end of the century. The decrease
is more pronounced and occurs more rapidly in the Hadley
and IPSL projections, with catch in the southern and central
CCS being 50–70% lower by mid-century (2040–2060) relative to
historical conditions (2000–2020). Catch changes more gradually
in the GFDL projection, with a decrease of∼20% by mid-century
(2040–2060) and another∼10% by the end of the century (2080–
2100) in both the southern and central CCS. In contrast, catch
in the northern CCS consistently increases, reaching a factor of
2–3 times higher by the end of the century relative to historical
values for all three projections. On aggregate across the entire
CCS, simulated decadal variability in catch aligns closely with
changes in total sardine population biomass, as evidence by a
steady decrease during the first half of the 21st century, followed
by a sharper increase starting around 2070. This pattern is least
pronounced in the GFDL projection due to its reduced low-
frequency sardine biomass variability (notably the mid-century
minimum and end of the century maximum).

DISCUSSION

While the GFDL, Hadley, and IPSL projections each provide a
plausible outcome for climate change impacts on sardine biomass
and catch in the CCS, it is worth discussing their robustness
by considering whether the three downscaled solutions describe
statistically identical mean sardine populations. In general, mean
abundances are statistically “robust” in the southern and central
CCS, but not in the northern CCS where the downscaled
solutions predict a large increase in sardine biomass late in
the century (Supplementary Figure 3). The results also suggest
that the mid-century decline in abundance is confined to
the southern and central CCS and robustly predicted across
the three projections. Furthermore, the spread of the multi-
model ensemble over the entire domain is primarily determined
by the model spread associated with “robust” locations in
the southern and central CCS, until about 2090 when “non-
robust” contributions from the northern CCS become an equally
important source of uncertainty. The emergence of statistically
different mean abundances underscores the need to understand
not only physical and biological sources of uncertainty in the
downscaled projections, but also how they may lead to diverging
predictions of sardine population dynamics under future climate
conditions in the CCS. For instance, the lack of robustness in the
northern CCS could be associated with different representations
of the latitudinal position and poleward displacement of the

North Pacific Current bifurcation in the three ESM solutions
(Supplementary Figure 4). It is therefore conceivable that
the timing and magnitude of the simulated poleward shift
of the sardine population in the IBM is influenced by both
anthropogenic warming and basin-scale circulation patterns,
with the latter having a stronger impact on the robustness of
the projections.

The underlying physical, NPZ, and IBM models used here
are obviously not perfect, and the downscaled solutions are
only as valid as the assumptions made in the development and
implementation of each component. Uncertainty in the physical
response of the climate system to greenhouse gases occurs
due the emissions scenario used for anthropogenic forcing,
differences in the model physics (e.g., resolution, numerical
methods, parameterizations), and internal variability (Hawkins
and Sutton, 2009). Internal variability, caused by non-linear
processes, can lead to substantially different evolutions of the
climate system, even on long time scales (Deser et al., 2012a,
2020). Large ensembles of simulations using the same model
and scenario but different initial conditions, indicate that natural
variability could strongly influence regional trends, especially
for dynamic variables such as sea level pressure and upwelling
along the United States west coast (Deser et al., 2012b; Brady
et al., 2017). While uncertainty in environmental variability is
in part inherited from the earth system model solutions, some is
generated locally, such as the lack of large amplitude fluctuations
in phytoplankton and zooplankton biomass in the NPZ model.

Ignoring density-dependent processes in the sardine IBM
represents another source of uncertainty for adequately
reproducing the amplitude of historical and future fluctuations
in sardine abundance in the CCS. While density-dependent
mortality or crowding effects on food limitation may help
improve the accuracy of future projections, such additions to
the model would significantly increase uncertainty because of
alternative ways to combine larval and juvenile processes to
mimic the historical spawner-recruit relationship. Furthermore,
the historical spawner-recruit relationship for forage species like
sardine has its own uncertainties about how it affects population
dynamics (Canales et al., 2020), and the sardine relationship
for the CCS exhibits high variability, reflects past management
actions, and will likely change under future conditions. The
possibility of density-dependence in the adult stage must also be
considered (Lorenzen, 2008; Andersen et al., 2017). The choice
made here was to sacrifice some realism offered by including
density-dependence to the benefit of generating clear responses
to climate-induced environmental variation and avoiding over-
constraining the model solution based on historical conditions
(e.g., using density-dependent mortality to match observed
spawner-recruit relationships). Hence, the model results should
be considered as an exploratory interpretation about how climate
change can propagate through the physics and lower trophic
levels and affect sardine at the population level.

The degree of agreement between the IBM results and
empirical data for the historical period was sufficient to
support the analysis of the downscaled projections, as
the IBM reproduces periods of relatively higher and lower
sardine abundance and recruitment without density-dependent
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FIGURE 5 | Feeding and thermal habitat suitability for adult sardines during 2000–2020 (left), 2040–2060 (center), and 2080–2100 (right) from GFDL (top),
Hadley (middle), and IPSL (bottom) solutions. Shading denotes locations where temperature (magenta) and fraction of maximum consumption (P) (cyan) are within
one standard deviation of their respective optimal values (as defined in kinesis for horizontal behavior) at least 50% of the time.

processes (Figure 2). A sensitivity study was also performed
to confirm that the spatial and temporal patterns identified
in the projections are mostly unaffected by initial sardine
population biomass (Supplementary Figure 1). However,
the model-data discrepancies in the historical comparisons
of spawning stock biomass and recruitment are important to
consider when interpreting the implications of the projections.
The IBM results should be viewed in a relative sense as
the magnitude of change (trend) is likely overestimated,
while the amplitude of change (interannual variability) is
presumably underestimated.

The projected decadal variability of the multi-model mean
sardine population during the 21st century is to some extent
consistent with known changes that have occurred during the
20th century between 1930 and 2010 (Schwartzlose et al., 1999),
with a 10–20-year decline (1940–1950 vis-à-vis 2020–2040)

followed by a low abundance period of∼40 years (1950–1990 vis-
à-vis 2040–2080) and a subsequent 10–20-year increase (1990–
2010 vis-à-vis 2080–2100). In the projections, sardine biomass
initially declines in response to a decrease in prey availability
(i.e., zooplankton concentrations) affecting adult growth and
reproductive output. This decline is eventually compensated,
and outweighed toward the end of the century, by an increase
in recruitment associated with enhanced early life survival
(primarily eggs and yolk-sac larvae) caused by increasing near-
surface ocean temperatures. Hence, the results underscore the
fact that, while thermal tolerance primarily drives the spatial
redistribution of sardines in the IBM, interannual and decadal
variability in prey availability within a region of suitable habitat
still contribute to temporal fluctuations in population abundance.

The overall poleward shift of the sardine population occurring
in all three downscaled projections (albeit with different
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FIGURE 6 | Projected sardine catch (103 metric tons) for 2000–2100 in southern (red), central (green) and northern (blue) CCS from GFDL (top), Hadley (middle),
and IPSL (bottom) solutions. Left: cumulative annual catch (bars) and 20-year averages (dashed lines). Right: 20-year average catch by region during 2000–2020,
2040–2060, 2080–2100. The three subregions correspond to catch originating from Long Beach (southern CCS), Monterey (central CCS) and Astoria + Westport
(northern CCS).

magnitudes and spatial details) is generally consistent with
thermal displacements identified for marine heatwaves where
intensities of 1–3◦C resulted in 500–1,000 km poleward shifts of
species distributions in the CCS (Jacox et al., 2020). This range of
thermal heatwave intensities closely approximates the projected
range of sea surface temperature warming in the CCS by GFDL
(∼2◦C), Hadley (∼4◦C) and IPSL (∼3◦C) for the end of the 21st
century (Pozo Buil et al., 2021), which led to poleward population
displacements in the sardine IBM of ∼500 km for GFDL (36→
41◦N) and ∼800 km for Hadley and IPSL (36 → 44◦N) based
on regions of peak abundance (Figure 4). The associated shift
in sardine catch is also in agreement with the findings of Smith
et al. (2021) derived from the same set of downscaled projections
but using a different modeling framework based on a species
distribution model for sardine and a more realistic fisheries
model tuned to historical landings in the CCS. The results
presented here suggest a 30–70% decrease in the southern and
central CCS and a 50–70% increase in the northern CCS, which
is comparable to the 20–50% decrease and up to 50% increase
by 2080 projected by Smith et al. (2021). The agreement between
the two studies is primarily due to catch being overwhelmingly
affected by the projected poleward redistribution of the sardine
population, a predominant feature emerging in both the IBM and
species distribution model.

The exact magnitude of the thermal displacement sardines
will experience in the CCS is dictated by the amount of

warming that will occur during the 21st century and the
results presented here for the Hadley model under the
RCP8.5 scenario likely portray an upper bound. This shift
could be dramatically reduced under mitigation scenarios
(Morley et al., 2018) and fall closer to the GFDL solution
which represents a relatively low rate of warming under
RCP8.5 conditions. However, it should also be recognized
that “optimal” thermal conditions are identified here based
on fixed movement parameters from the IBM and, thus, do
not account for phenotypic plasticity, which could reduce
temperature constraints and expand habitat suitability. The
geographical extent of suitable sardine habitat could also be
further constrained by the expected decrease of oxygen levels
in the CCS (Bograd et al., 2008; Rykaczewski et al., 2015).
The mechanistic structure of the sardine IBM provides a
valuable framework to determine the compounding effects that
other stressors, such as hypoxia and hypercapnia, may have
on metabolic rates and behavioral movement (McNeil and
Sasse, 2016; Howard et al., 2020b). Such studies would not
only yield a better understanding of the relative impacts of
co-drivers associated with the redistribution of pelagic forage
fish species in the California Current region under changing
climate conditions, but also lead to more constrained estimates
of uncertainty sources which, ultimately, determine the value
of regional climate projections for marine ecosystem services to
coastal communities.
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Lőrinc Mészáros

lorinc.meszaros@deltares.nl

Specialty section:

This article was submitted to

Global Change and the Future Ocean,

a section of the journal

Frontiers in Marine Science

Received: 19 February 2021

Accepted: 14 July 2021

Published: 12 August 2021

Citation:

Mészáros L, van der Meulen F,

Jongbloed G and El Serafy G (2021)

Climate Change Induced Trends and

Uncertainties in Phytoplankton Spring

Bloom Dynamics.

Front. Mar. Sci. 8:669951.

doi: 10.3389/fmars.2021.669951

Climate Change Induced Trends and
Uncertainties in Phytoplankton
Spring Bloom Dynamics
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Spring phytoplankton blooms in the southern North Sea substantially contribute to

annual primary production and largely influence food web dynamics. Studying long-term

changes in spring bloom dynamics is therefore crucial for understanding future climate

responses and predicting implications on the marine ecosystem. This paper aims to

study long term changes in spring bloom dynamics in the Dutch coastal waters, using

historical coastal in-situ data and satellite observations as well as projected future solar

radiation and air temperature trajectories from regional climate models as driving forces

covering the twenty-first century. The main objective is to derive long-term trends and

quantify climate induced uncertainties in future coastal phytoplankton phenology. The

three main methodological steps to achieve this goal include (1) developing a data fusion

model to interlace coastal in-situ measurements and satellite chlorophyll-a observations

into a single multi-decadal signal; (2) applying a Bayesian structural time series model

to produce long-term projections of chlorophyll-a concentrations over the twenty-first

century; and (3) developing a feature extraction method to derive the cardinal dates

(beginning, peak, end) of the spring bloom to track the historical and the projected

changes in its dynamics. The data fusion model produced an enhanced chlorophyll-a

time series with improved accuracy by correcting the satellite observed signal with

in-situ observations. The applied structural time series model proved to have sufficient

goodness-of-fit to produce long term chlorophyll-a projections, and the feature extraction

method was found to be robust in detecting cardinal dates when spring blooms were

present. The main research findings indicate that at the study site location the spring

bloom characteristics are impacted by the changing climatic conditions. Our results

suggest that toward the end of the twenty-first century spring blooms will steadily shift

earlier, resulting in longer spring bloom duration. Spring bloom magnitudes are also

projected to increase with a 0.4% year−1 trend. Based on the ensemble simulation the

largest uncertainty lies in the timing of the spring bloom beginning and -end timing, while

the peak timing has less variation. Further studies would be required to link the findings

of this paper and ecosystem behavior to better understand possible consequences to

the ecosystem.

Keywords: regional climatemodel, climate change, uncertainty quantification, phytoplankton phenology, Bayesian

model, data fusion, non-parametric regression
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1. INTRODUCTION

Phytoplankton and their seasonally occurring blooms are vital to
marine ecosystems as they are a major source of energy input
for higher trophic levels (Smayda, 1997). Phytoplankton blooms
are natural phenomena occurring when phytoplankton growth
exceeds the losses (mortality, respiration, feeding, sinking, and
dispersive losses) and rapid accumulation takes place when
optimal abiotic and biotic conditions are present for the
growth. An early account of the bloom phenomenon is given
by Sverdrup (1953). Phytoplankton blooms can be identified
through chlorophyll-a concentration, which is an indicator for
algal biomass, though concerns were raised (Alvarez-Fernandez
and Riegman, 2014) about using chlorophyll as phytoplankton

biomass proxy in the North Sea. In the Dutch coastal zone,
phytoplankton mass seasonality is described by a prominent
spring bloom (diatom dominated) and a less pronounced late
summer bloom. This is partly driven by increased riverine
nutrient loads (melting snow and spring rains) and intensified
mixing by seasonal winds blowing over the shallow shelf sea.
The onset of spring blooms is usually initiated by correlated

changes in water temperature and the light availability (Winder
and Sommer, 2012) but coupled to and controlled by thermal
stratification, resource dynamics (e.g., nutrient availability) and
predator-prey interactions (e.g., grazing) (Behrenfeld and Boss,
2018). Temperate marine environments, such as the Dutch
coastal waters, are particularly sensitive to changes in spring

bloom initiation due to the fact that higher trophic levels
are greatly dependent on synchronized planktonic production
(Edwards and Richardson, 2004).

When studying the functioning of continental shelf
ecosystems, such as the southern North Sea, one should consider
various influencing elements. Regarding the hydrodynamics,
the southern North Sea is a tidally mixed region where tidal
fronts occur across the English Channel. The variability in
the tidal fronts influence stratification and mixing regimes
and have ecological consequences, or may even be the driving
force of regime shifts in the North Sea ecosystem (Longhurst,
2007). In addition to tidal fronts, along the Dutch coast,
other shallow water (e.g., Wadden Sea), coastal, and estuarine
fronts are impacting the system dynamics. These fronts are
characterized by turbidity and salinity gradients. Since the
study location is situated at the boundary of the North Sea
and the shallower Wadden Sea, in the Mardiep tidal inlet, the
coastal influence is an important factor. In the Dutch coastal
zone the observed gradients of phytoplankton biomass are
very steep and there is considerable natural variability in the
chlorophyll-a concentration. In these shallower coastal waters the
concentration of suspended inorganic matter, which influences
the extinction of light, is relatively high and dynamically varying.
According to Los and Blaas (2010) in Dutch coastal waters
25–75% of the light extinction is caused by suspended matter.
Further coastal influencing factor affecting the spring bloom
is the riverine nutrient loads. In the North Sea rivers provide
a significant portion of the total nitrogen and phosphorus
load (Los et al., 2014). Although the study site is not situated
at a river outflow, there are nine major rivers that affect the

Dutch coastal waters based on the nutrient composition matrix
derived by Los et al. (2014). The plumes of these major effluents,
especially the Rhine, are significant influencing factors to
phytoplankton dynamics.

Available climate models offer us a range of (atmospheric)
climate variables that could be considered as external drivers
influencing phytoplankton seasonality. The climate variables
include air temperature, precipitation, solar radiation, eastward
and northward wind, air pressure, humidity, and cloud cover.
In this study we focus on air temperature and solar radiation
that were found to be the most influential atmospheric variables
affecting coastal chlorophyll-a concentrations in the Dutch
coastal waters, along with wind speed (in shallow systems). This
conclusion was reached by applying various statistical techniques
to explore temporal, spatial, and functional correlations from
the historical atmospheric and chlorophyll-a time series at
this location.

In its recent comprehensive study of the Wadden Sea
eutrophication trends, van Beusekom et al. (2019) lists the
phytoplankton governing factors, both bottom-up (light,
nutrient) and top-down (grazing, filter feeding). Through the
review of various studies, it was concluded that light is the
dominating limiting factor, which is present all year long,
while nutrient limitation occurs during summer and toward
the end of the growth season. Moreover, a cross correlation
analysis was conducted by Blauw et al. (2018) in the North Sea
between environmental variables (tidal mixing, wind mixing,
solar radiation, air temperature, SST, salinity, turbidity) and
chlorophyll-a hourly time series, including various lags. At
the site with dynamics similar to our study area, the highest
correlations were found with solar radiation, air temperature,
turbidity, and tidal mixing. Additionally, Irwin and Finkel
(2008) reports that sea surface temperature is the best predictor
of chlorophyll-a concentration in the North Atlantic. In their
climate impact study, Richardson and Schoeman (2004) also
opted to use only mean annual sea surface temperature as an
environmental driver since it acts as a useful proxy for other
physical processes and influences seasonal and regional changes
in vertical stratification, nutrients, and winds. We should also
note that there is relationship between air temperature, solar
radiation, and mixing. Blauw et al. (2018) indicated that in
the North Sea air temperature and solar radiation influences
phytoplankton biomass through diurnal variation in convective
mixing and diurnal vertical migration of motile phytoplankton.
Supporting this, Van Haren et al. (1998) reported that the diurnal
variation in convective mixing is attributed to the sinking of
phytoplankton during daytime (thermal micro-stratification)
and resuspension at night (surface cooling). Irwin and Finkel
(2008) also confirmed that temperature is correlated with
stratification, mixed layer depth, and nutrient availability and
their temporal changes.

The thermal structure of the North Sea as a whole is
characterized by a well-developed thermocline during summer
and well-mixed water column during winter (Gräwe et al., 2014).
Nevertheless, there are important regional differences. In the
central North Sea the water column can be strongly stratified
and the tidal-induced mixing is less important. In these regions
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wind-driven mixing and convective cooling have a greater
impact on phytoplankton biomass (Blauw et al., 2018). This
seasonally stratified condition is in stark contrast with the highly
dynamic coastal systems where tidal mixing is themost dominant
physical factor. McQuatters-Gollop and Vermaat (2011) also
documented important differences between the offshore and
coastal North Sea regarding the impact of climatic conditions and
nutrient availability. It was found that inter-annual variability
in phytoplankton dynamics of the offshore regions was mainly
regulated by temperature, Atlantic inflow, as well as co-varying
wind stress and North Atlantic Oscillation (NAO). Contrarily,
in coastal waters solar radiation and sea surface temperature,
as well as Si availability was dominant (McQuatters-Gollop and
Vermaat, 2011). In addition to the regional differences, the
influence of environmental drivers of phytoplankton biomass
also differs at different temporal scales (Blauw et al., 2018). At
short time scales, the physical transport of phytoplankton cells
by wind-driven or tidal mixing is the dominant. On the other
hand, focusing on the seasonal time scales it is solar radiation
and air temperature, together with associated changes in thermal
stratification, nutrient availability and grazing, that dominate
phytoplankton dynamics (Sverdrup, 1953; Sommer et al., 2012;
Blauw et al., 2018). Finally, at longer inter-annual and decadal
time scales climatic variation and long-term human impacts on
the eutrophication status will become influential (Richardson
and Schoeman, 2004; Blauw et al., 2018). Consequently, we
acknowledge that in other regions physical processes play a
dominant role in coastal chlorophyll-a concentrations, especially
through the mixing (e.g., wind-driven) of nutrients into the
euphotic layer during stratified conditions. Although this is
particularly important in oligotrophic regions where solar energy
is abundant and phytoplankton dynamics is mainly limited
by nutrient availability (Yu et al., 2019), it is less influential
in our case.

Our study ismotivated by the fact that climate-induced regime
shifts reportedly took place in the North Sea (Alvarez-Fernandez
et al., 2012; Beaugrand et al., 2014). Consequently, seasonal
variability of phytoplankton biomass in relation to light and
temperature is particularly important aspect in the North West
Shelf Seas (Tulp et al., 2006; Llope et al., 2009). The interactive
effects of temperature and solar irradiance on phytoplankton
have been extensively studied without clear consensus. This
may be partly due to the fact that phytoplankton response
to temperature change greatly varies between individual and
aggregate level. Considering the individual level phytoplankton
responses to temperature are exponentially or linearly increasing
until the optimum, and declining above that (Edwards et al.,
2016). On the other hand, looking at the aggregate level,
species can replace one another along a temperature gradient via
competition resulting in monotonically increasing growth rates.
However, temperature also influences predator-prey interactions,
not only phytoplankton growth. The intensity of grazing (or
zooplankton ingestion) is partly determined by temperature,
along with the available phytoplankton biomass and the
zooplankton biomass (Townsend et al., 1994).

Due to the complex interactions of physical forcing
conditions with food web processes, phenological responses

of phytoplankton to climate change are not trivial to estimate.
Nevertheless, according to Rolinski et al. (2007), focusing
on the spring season may help to reduce the complexity. It
was suggested that in temperate marine systems the impact
of physical environment and the response of the biological
system can be best studied in spring. During spring, the physical
limiting factors like temperature, light availability, and mixing
are more prominent than the non-physical ones, such as trophic
interactions (e.g., grazing). While in the spring period trophic
interactions may not be limiting, later on in the year, they
become more important and may dominate over the physical
factors (Sommer et al., 1986, 2012). Thus, we acknowledge
the complexity of physical and trophic interactions and do
not dismiss their influence on the phytoplankton phenology.
Nevertheless, this study aims to focus on the physical drivers,
or more precisely on the climatic ones. Consequently, to limit
the masking effect of trophic interactions, as far as this may
be possible, we focus on the spring phytoplankton bloom to
study the impact of changing climatic conditions in the Dutch
coastal zone.

Changing climatic conditions directly affect the
photosynthetic metabolism of phytoplankton, but also indirectly
impact them by modifying their physical environment (D’Alelio
et al., 2020). Climate change impacts on phytoplankton are
manifested as shifts in seasonal dynamics, species composition,
and population size structure (Winder and Sommer, 2012). Since
in the current study we only use chlorophyll-a concentration as
response variable, we can only draw conclusions on the seasonal
dynamics of the aggregate level, not on species composition
or population structure. As an indicator of climate change
impacts on seasonal phytoplankton dynamics, we selected the
long term changes in spring bloom dynamics. There is, however,
no single definition of phytoplankton blooms in the literature
or in policies, for instance based on the rate of change or the
threshold of concentration, as this is highly dependent on
the type of ecosystems (e.g., inland or marine, local species,
climate, bathymetry). In this study we describe the spring bloom
dynamics by their cardinal dates (bloom initiation, -peak, and
-ending) using log-concave regression. Alternatives methods of
deriving cardinal dates and the benefits of using log-concave
regression are presented in the section 2.4.

A range of studies investigating climate change induced
shifts in phytoplankton bloom dynamics in the North Sea
already exist. Most of these studies derive their findings from
historical chlorophyll-a data, measured either by in-situ sensors
or remote sensing (Edwards and Richardson, 2004; Philippart
et al., 2010; Friedland et al., 2015; Hjerne et al., 2019; Desmit
et al., 2020), or from laboratory experiments (Lewandowska and
Sommer, 2010; Winder et al., 2012). Climate impact studies
which focus on future developments of phytoplankton bloom
dynamics generally use few climate change scenarios from global
or regional climate models and traditionally use physically-
based models (Friocourt et al., 2012; Holt et al., 2014, 2016;
Pushpadas et al., 2015; Schrum et al., 2016). We acknowledge
that previous papers already introduced ways to characterize
phytoplankton blooms (Rolinski et al., 2007; Wiltshire et al.,
2008; Lewandowska and Sommer, 2010; Philippart et al., 2010;
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Hjerne et al., 2019). Nevertheless, uncertainty quantification in
the shift of phytoplankton dynamics in these studies is not a
central topic.

There are, however, existing studies that address uncertainty
in bloom detection. Cole et al. (2012) investigates the impact of
missing data on phytoplankton phenology metrics (threshold-
based definition) using satellite observed chlorophyll-a; Ferreira
et al. (2014) compares the accuracy and precision of three bloom
metrics (biomass-based threshold method, cumulative biomass-
based threshold method, rate of change) on biogeochemical
model outputs and satellite observed chlorophyll-a; while
González Taboada and Anadón (2014) performs probabilistic
phytoplankton phenology characterization using Bayesian
harmonic regression and a threshold-based definition of
bloom metrics based on satellite observed chlorophyll-a. Major
advantage of these studies is the quantification of errors or
uncertainties in the computation of the bloom metrics. Our
research deviates from these studies in that we do not focus on
historical data but aim to quantify future projected uncertainties
in spring bloom dynamics. In fact, in our analysis the bloom
detection algorithm is the only step where “model uncertainties”
are not quantified and instead all other steps involve uncertainty
estimates. The reason for this is that in future climate change
studies the main source of uncertainty does not arise from the
derivation of the bloom metrics but from the climate forcings
and from the projection of the chlorophyll-a signal. Our method
does provide uncertainty ranges for the bloom metrics but
that is derived from the ensemble of generated chlorophyll-a
projections. The benefit of reconstructing a range (> 100) of
full seasonal cycles is therefore to obtain predictive uncertainty
estimates on bloommetrics from the input data rather than from
the bloom detection itself.

Considering the above, the novelty of our work lies in the
following features. In our research we make use of both in-
situ and satellite observations jointly by applying a data fusion
algorithm to get a more complete, more accurate, and longer
data record. While a range of possibilities already exist to
describe phytoplankton blooms, in our research we propose a
new way of extracting the cardinal dates of the phytoplankton
spring blooms. We use non-parametric shape constrained (log-
concave) regression, which provides a flexible formulation
without tuning parameters and assumptions on the distribution
patterns and can be directly applied on the annual bi-modal time
series without any pre-processing. Consequently, our proposed
method is less sensitive to bloom amplitude, missing data, and
observational noise.

Moreover, we augment existing climate change scenarios with
synthetically generated ones, thus supplying numerous (> 100)
trajectories for air temperature and solar radiation development.
In addition to this, our proposed method complements the
computationally expensive numerical models for chlorophyll-
a simulation with a data driven approach, using a Bayesian
structural time series model. Complementing physically-based
prediction models with statistical ones allows us to compute a
large number of simulations and achieve better characterization
of predictive uncertainties. These methodological advances
enable the combination of different chlorophyll-a data sources,

the incorporation of climate covariates and the propagation
of uncertainty from observations to nonlinear estimates of
projected changes in spring bloom metrics under an enriched
number of climate change scenarios (associated to future
development and emission pathways).

2. MATERIALS AND METHODS

In this chapter we describe the data sources and introduce the
main methods that were developed and/or applied within the
framework of this study. When new methods are proposed, such
as the data fusionmodel and the shape constraint model to derive
bloom metrics, we aim to sufficiently document those to allow
replication studies.

Figure 1 presents the methodological framework and
summarizes the connections between elements. Our research
aims to study changes in phytoplankton phenology based
on historical data and future climate projections. Given the
historical records of chlorophyll-a concentrations obtained
from various data sources, one can extract the cardinal dates
of the spring bloom for the past decades using the proposed
feature extraction technique. Furthermore, changes in the
spring blooms may be projected for the future by utilizing
the correlation between climatic factors, represented by air
temperature and solar radiation, and the ecological response,
indicated by the chlorophyll-a concentration. This correlation
can be inferred from past records since air temperature and
solar radiation were measured by field sensors for the past
decades. Though future chlorophyll-a concentrations are not
available to us, we attempt to make projections using the trends
and seasonality from historical observations and taking into
account the correlations with projected air temperature and
solar radiation, produced by regional climate models. While
this methodological framework allows us to investigate past and
projected spring bloom dynamics, we note that there are several
sources of uncertainties, both data and model related ones, which
are propagated through the steps. These uncertainty sources
(±U) are marked in Figure 1. In order to address this issue, we
aim to use transparent statistical approaches that allow us to
quantify intrinsic uncertainties. Noting that the projected trends
in bloommetrics constitute the main findings of the research, the
importance of the uncertainty quantification framework should
also be emphasized, which should always go hand-in-hand with
climate change impact studies.

2.1. Data Sources
This research is based on amultitude of data sources from sensors
and numerical models of various types. The environmental and
climate variables in this study are chlorophyll-a concentration,
air temperature, and solar radiation. In order to investigate
past trends and obtain the correlation between these variables,
we make use of historical measurements, whereas to anticipate
future climate change impacts, climate model outputs are used.

2.1.1. Chlorophyll-a Concentration Measurements
Available historical chlorophyll-a data includes field observations
at Marsdiep Noord station (see Figure 2), from the Dutch
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FIGURE 1 | Methodological framework including three main elements with causal and temporal relations: (1) climatic factors, (2) ecological response, and (3) spring

bloom dynamics.

FIGURE 2 | Location of the study area and the monitoring point together with the pixels of the matching Euro-CORDEX climate model output and CMEMS satellite

measured chlorophyll-a.
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FIGURE 3 | Overview of data sources. The description includes variable name, data type, data source, data frequency, and spatial resolution.

Directorate-General for Public Works and Water Management
(Rijkswaterstaat), covering more than 40 years from 1976 to
2018, but measured rather sparsely. To complement these
field measurements, processed, and validated satellite observed
chlorophyll-a concentration (extracted at the same location)
was used from the Copernicus Marine Environment Monitoring
Service (CMEMS) from 1997 to 2019 (see Figure 3). We should
note that satellite observation of phytoplankton biomass in the
Dutch coastal waters is complex since the chlorophyll-a signal
may be mixed with the relative distribution of suspended matter
andCDOM instead of phytoplankton biomass (Longhurst, 2007).

The specific product in use is the North
Atlantic Chlorophyll-a, daily interpolated and
reprocessed product with one km spatial resolution
(OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_
009_098). The satellite product is limited to the surface depth.
This chlorophyll-a product is produced using multiple sensors
(multi-sensor product), multiple chlorophyll-a algorithms and
a daily space-time interpolation scheme (Saulquin et al., 2019).
The interpolation scheme includes a combination of a water-
typed merge of chlorophyll-a estimates and kriging interpolation
method with regional anisotropic covariance models at the shore,
as described in Saulquin et al. (2019). This product uses the
Copernicus-GlobColor processor and it is obtained by merging
the following sensors: SeaWIFS, MODIS Aqua, MODIS Terra,
MERIS, VIIRS NPP, VIIRS-JPSS1 OLCIS3A, and S3B. For coastal
waters the product uses the standard OC3-OC4 (Antoine and
Morel, 1996; O’Reilly et al., 1998, 2000) and OC5 (Gohin et al.,
2002) algorithms. The latest product validation results against
in-situ measurements show an r2 of 0.73 with N = 11, 502 data

points (Garnesson et al., 2020). For a more in-depth description
of this satellite product the reader is referred to the QUality
Information Document (QUID) (Garnesson et al., 2020).

The chlorophyll-a concentration seasonality from in-
situ observation is shown in Figure 4A, and from satellite
observations in Figure 4B. Naturally these data sources have
different sampling methods and associated uncertainties. The in-
situ observations are point samples taken by the Dutch national
in-situmonitoring programme (MWTL) https://waterinfo-extra.
rws.nl/monitoring/. It should be noted that the samples are
taken close to the water surface, usually in the upper 3–5 m
of the water column. These observations are often considered
as ground truth and are the most reliable, however, in the case
of chlorophyll-a concentration the temporal frequency of the
observations is relatively low, around 10-20 observations per
year. This amount of field observations poses a limitation to
assess annual phytoplankton bloom cycles (Winder and Cloern,
2010). Thus, the more frequently sampled satellite images are
also used to complement the in-situ measurements for a better
assessments of bloom characteristics. This complementary data
source is used noting that satellite derived chlorophyll-a is
only available at the water surface (lack of vertical resolution),
has a coarse 1 km resolution and suffers from algorithmic
and interpolation errors, consequently having a higher level of
associated uncertainty.

Since the two types of chlorophyll-a measurements describe
the same underlying process, we propose a data fusion model to
combine them. This data fusion model interlaces the in-situ and
satellite observations into a single chlorophyll-a concentration
signal, which is more complete then the individual observations
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FIGURE 4 | Historical chlorophyll-a concentrations measured in the Dutch Wadden Sea using in-situ data between 1976 and 2018 (A) and satellite images between

1997 and 2019 (B). Climatological median (solid black line) per calendar is also shown.

and covers a longer time period. The data fusion model is
described in section 2.2.

2.1.2. Solar Radiation and Air Temperature

Measurements
The historical daily solar radiation and air temperature
records are obtained at the nearest weather station (De

Kooy) from the Royal Netherlands Meteorological Institute
(KNMI) for the matching period (1976–2019). Apart from
historical data, future projected values of air temperature

and solar radiation are acquired from the high resolution

0.11◦ (∼ 12.5 km) EURO-CORDEX Coordinated Regional

Downscaling Experiment (Jacob et al., 2014), which uses
the Swedish Meteorological and Hydrological Institute Rossby

Frontiers in Marine Science | www.frontiersin.org 7 August 2021 | Volume 8 | Article 669951204

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mészáros et al. Uncertainties in Phytoplankton Bloom Dynamics

Centre regional atmospheric model (SMHI-RCA4). In order
to produce various regionally downscaled scenarios, EURO-
CORDEX applies a range of General Circulation Models
(GCMs) to drive the above mentioned Regional Climate Model
(RCM). In addition to the driving models, further scenarios
are obtained by considering different socio-economic changes
described in the Representative Concentration Pathways (RCPs).
RCPs are labeled according to their specific radiative forcing
pathway in 2100 relative to pre-industrial values. The EURO-
CORDEX scenario simulations use the RCPs defined for the Fifth
Assessment Report of the IPCC. In this study we include RCP8.5
(high), and RCP4.5 (medium-low) (van Vuuren et al., 2011) and
four driving GCMs.

In the upcoming Sixth Assessment Report new scenarios
and pathways will also be included, which are called Shared
Socioeconomic Pathways (SSPs) (Abram et al., 2019). SSPs
describe five alternative socioeconomic pathways (SSP1–
SSP5) for future society enhancing the existing RCPs with
socioeconomic challenges to adaptation and mitigation. Such
socioeconomic challenges are population, economic growth,
urbanization, or technological development for instance (O’Neill
et al., 2017). It should be emphasized that SSPs are not replacing
but complementing RCPs. In the Sixth Assessment Report the
RCP-based climate projections and SSP-based socioeconomic
scenarios are combined to achieve an integrative framework for
climate impact and policy analysis (Abram et al., 2019). From the
SSP scenarios SSP5-8.5 corresponds to RCP8.5 and represents
the high end of the range of future forcing pathways, while
SSP2-4.5 represents the medium part and corresponds to RCP4.5
(Abram et al., 2019).

Together the four different driving GCMs and two RCPs that
are applied in this study provide us with an ensemble of eight
future solar radiation and temperature trajectories. Since the
RCM simulations are subject to climate model structural error
and boundary errors from the driving GCMs (Navarro-Racines
et al., 2020), they should be bias corrected before applying them
in impact studies (Luo, 2016). For this reason, quantile mapping
bias correction (Amengual et al., 2012) was applied using the
RCM simulations for the reference period (1976–2005) and daily
historical field measurements from KNMI for the same period,
as described in Mészáros et al. (2021). The quantile-quantile
mapping transfer functions were established for the reference
period and separately for each RCM simulation. The transfer
functions were then applied for the bias correction of each future
projections (2006–2100) separately.

This ensemble of climate trajectories is used to simulate
a range of possible phytoplankton seasonality shifts and the
associated uncertainty described by the predictive distribution
of the phytoplankton bloom cardinal dates. It should be noted
that applying only eight climate projections reduces the ability
to adequately resolve the unknown predictive distribution that
one tries to estimate, hence, higher number of climate trajectories
providing sufficient resolution in terms of probabilities is
required (Leutbecher, 2019). Consequently, to better characterize
uncertainties, an enriched set of climate change projections
is employed. This set of air temperature and solar radiation
projections was produced using a Bayesian stochastic generator

(Mészáros et al., 2021), which builds on the above mentioned
Regional Climate Model scenarios provided by the EURO-
CORDEX experiment and generates further synthetic scenarios
using a hierarchical Bayesian model. The generated ensemble
of air temperature and solar radiation projections include 120
members and their statistical properties are similar to the input
projections. Both the EURO-CORDEX and synthetic projections
are shown for air temperature in Figure 5A and for solar
radiation in Figure 5B. At this specific location we can observe
a consistently increasing temperature trend over the twenty-
first century and a slightly decreasing solar radiation trend.
While increasing air temperatures are in line with expectations,
decreasing solar radiation trends may need further explanation.
The main cause of this negative trend is the fact that total cloud
cover at this site is projected by EURO-CORDEX to increase,
hence, limiting surface downwelling shortwave radiation. This
is a region specific feature, and the difficulty of projecting
cloud cover and solar radiation changes in coastal areas with
sea-land-atmosphere boundaries, such as the study site, has
been previously highlighted by Bartók et al. (2017), along with
discrepancy between RCMs and their driving GCMs in their solar
radiation projections over Europe.

2.2. Data Fusion of Chlorophyll-a
Measurements
2.2.1. Statistical Model
In order to describe the chlorophyll-a concentration, we assume
that there is a continuously evolving latent signal (Xt , t ∈ [0,T])
that satisfies the stochastic differential equation (sde)

dXt = −α(Xt − µ(t)) dt + σ dWt . (1)

The underlying idea is to model a stochastic process that is
mean reverting (with strength α) toward the deterministic signal
t 7→ µ(t). We will take µ to be periodic with period 1. We start
off from a continuous time description as in-situ measurements
are not collected at regular times. Observations can be of three
types

1. Yi ∼ N(Xti ,ψ1);
2. Yi ∼ N(Xti ,ψ2);

3. Yi ∼ N2

([

1
1

]

Xti ,

[

ψ1 0
0 ψ2

])

.

This reflects having two types of measurements (in-situ and
satellite) with different accuracies. Sometimes one measurement
is obtained, sometimes the other one, and sometimes both are
available. We take Yi to be the log of the measured concentration
(component-wise) to ensure the model only predicts non-
negative concentrations. While we acknowledge that there are
other mapping functions to achieve non-negativity, taking the
log of chlorophyll-a concentration is often used in practice
(Campbell, 1995).

Assuming successive observations are obtained closely in
time, i.e.,1i : = ti − ti−1 being small for all i, we have

Xti ≈ Xti−1 − α(Xti−1 − µ(ti−1))1i + σ
√

1iǫi,
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FIGURE 5 | Eight EURO-CORDEX (darker solid line) and 120 generated synthetic (shaded dashed line) climate change projections for solar radiation (A) and air

temperature (B), grouped by RCP scenarios (blue—RCP4.5, red—RCP8.5). Plot of the yearly averages based on the daily data.

where {ǫi}i is a sequence of independent standard Normal
random variables. Ignoring discretization error, the resulting
equation can be rewritten and combined with the observation
scheme:

Xi = (1− α1i)Xi−1 + αµ(ti−1)1i + σ
√

1iǫi

Yi = N(LiXi,ϒi),

where Xi ≡ Xti . For numerical stability, it is better to discretize
(1) using an implicit scheme on the deterministic part. This leads
to the dynamical system

Xi =
Xi−1 + αµ(ti)1i

1+ α1i
+ σ

√

1iǫi

Yi = N(HiXi,Ri),

We write the model in state-space form, sticking to the notation
in Särkkä (2013),

Xi = Ai−1Xi−1 + ai−1 + N(0,Qi−1)

Yi = HiXi + N(0,Ri)
(2)

Here

Ai−1 = (1+α1i)
−1 ai−1 =

α1i

1+ α1i
µ(ti) Qi−1 = σ 21i,

Ri =



















ψ1 if only in-situmeasurement

ψ2 if only satellite measurement
[

ψ1 0

0 ψ2

]

both in-situ and satellite measurements

and

Hi =







[

1
]

if only 1 measurement is available at time ti
[

1 1
]′

if both measurements are available at time ti
.

Note that (2) specifies a linear Gaussian state-space model. The
equation for Y is the observation equation, that for X the state-
equation. We will parameterize ψ1,ψ2 by taking

ψ1 = ηψ̄ψ ψ2 = ψ ,
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where η ∈ (0, 1) is fixed and ψ̄ will get assigned a prior
distribution supported on (0, 1). This reflects apriori knowledge
that the in-situ measurements are believed to be more accurate.
The in-situ chlorophyll-a observations are obtained from
sampling campaigns (bucket water samples from a sampling
jetty) and therefore considered as the true values (ground truth).
While the satellite product is calibrated with many in-situ
observations in the North Sea, it does not produce perfect match
with the in-situ observations at the study location. Moreover, the
number of satellite observations is much higher than the in-situ
observations. This over-representation is counter balanced by
the fusion model otherwise the reconstruction would be mostly
determined by the satellite measurements.
We model the mean trend using the series expansion of the form

µ(x) =

K
∑

k=1

ξkϕk(x),

where K is fixed, and ξ : = (ξ1, . . . , ξK) ∼ NK(0, σ
2
ξ I). This term

allows us to account for a varying shape of the seasonal cycle. The
functions ϕk are taken as follows: ϕ1 = 1[0,1] and for j ∈ {1, . . . , J}

ϕjk(x) = j−1ϕ0(2
j−1x− k), with k ∈ {0, . . . , 2j−1 − 1}.

We take

ϕ0(x) =
9

2
x21[0,1/3](x)+

(

3

4
− 9(x− 1/2)2

)

1[1/3,2/3](x)

+
9

2
(1− x)21[2/3,1](x),

which is the quadratic B-spline function scaled to have
support [0, 1]. Note that ϕ0 is continuously differentiable. The
hierarchical structure of the basis is exactly like the Schauder
basis, but uses a smoother basic element than the traditional
“hat”-function.

2.2.2. Inference
Let θ = (α, ξ , σ 2,ψ , ψ̄). Inference can be carried out by
initializing θ and iterating the following steps (Robert and
Casella, 2004):

1. conditional on θ ,Y1, . . . ,Yn, run the Forward Filtering
Backwards Sampling (FFBS)-algorithm (see Appendix) to
reconstruct X1, . . . ,Xn;

2. draw from the posterior of θ , conditional on X1, . . . ,Xn, and
Y1, . . . ,Yn (note that the likelihood is simple, once we know
the latent path X1, . . . ,Xn).

For updating parameters we use Gibbs sampling. Note that the
updates for ψ̄ and ψ only depend on Y1, . . . ,Yn, and updates for
all other parameters only depend on X1, . . . ,Xn.

• The updates steps for σ 2 and ψ are trivial when using
independent InverseGamma distributions as prior due to
partial conjugacy.

• For ψ̄ we assume the Unif (0, 1)-prior. A Metropolis-Hastings
step is implemented where we use random-walk type
proposals (Robert and Casella, 2004) of the form

log
ψ̄◦

1− ψ̄◦
: = log

ψ̄

1− ψ̄
+ N(0, τ 2

ψ̄
),

which implies that the proposal ratio equals

q(ψ̄ | ψ̄◦)

q(ψ̄◦ | ψ̄)
=
ψ̄◦(1− ψ̄◦)

ψ̄(1− ψ̄)
.

Note that ψ̄◦ = ψ̄/(ψ̄ + (1− ψ̄)τψ̄Z), where Z ∼ N(0, 1).
• For updating α we use a Metropolis-Hastings step of the form

logα◦ : = logα + N(0, τ 2α ).
• The “full” conditional density for ξ is proportional to

exp

(

−
1

2σ 2
ξ

‖ξ‖2 −
1

2σ 2

n
∑

i=2

1−1
i (Xi − Ai−1Xi−1

−
α1i

1+ α1i

K
∑

k=1

ξkϕk(ti)

)2




= exp



−
1

2σ 2
ξ

‖ξ‖2 −
1

2σ 2

n
∑

i=2

(

Ui − ᾱi

K
∑

k=1

ξkϕk(ti)

)2


 ,

where

Ui = 1
−1/2
i (Xi − Ai−1Xi−1) ᾱi =

α
√
1i

1+ α1i
.

This is proportional to

exp

((

−
1

2
ξ ′(σ−2V + σ−2

ξ IK)ξ + σ−2
v
′ξ

))

with

vk =

n
∑

i=2

Uiᾱiϕk(ti) Vkℓ =

n
∑

i=2

ᾱ2i ϕk(ti)ϕℓ(ti).

Hence, the update step for ξ boils down to sampling from a
multivariate normal distribution with precision σ−2V+σ−2

ξ IK

and potential vector σ−2
v (the potential vector is the product

of the precision matrix with the mean vector).

Details on the prior specification: for both σ 2 and ψ we
took (independently) InverseGamma priors, parameterized with
shape and scale, with both parameters equal to 0.1. For α we took
the Exponential distribution with mean 10. We took σ 2

ξ = 10
and tuned the step-sizes τψ and τα such that the corresponding
random-walk Metropolis-Hastings steps were accepted with
probability in between 25 and 50%. In the series expansion we
took a fixed value for K = 5. We took η = 658/8, 005, which is
the ratio of the in-situ and satellite measurements.
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2.3. Long Term Projection Using Bayesian
Structural Time Series Models
After the fused historical chlorophyll-a concentration signal has
been derived, it is used to train the time series model for
scenario analysis. It was previously argued that variability in the
spring bloom dynamics occur due to changing environmental
conditions. Consequently, apart from historical trends and
seasonality in the observed chlorophyll-a concentration time
series, projected solar radiation and air temperature are also used
to drive future chlorophyll-a concentration trajectories. These
simulated trajectories are then utilized to extract the bloom
characteristics applying the feature extraction methodology
described in section 2.4.

In this study an existing Bayesian structural time series
modeling framework is customized to our purpose, which is the
Prophet forecasting model (Taylor and Letham, 2017). This is
a decomposable time series model with trend, seasonality, and
additional regressor component, as well as error term as the main
model components:

y(t) = g(t)+ l(t)+ ǫ(t).

where, at time t, y(t) is the response variable (chlorophyll-
a concentration), g(t) is a piecewise linear trend model, l(t)
is a linear component representing seasonality and additional
regressors, and ǫ(t) is the error term (independent and identically
distributed noise). In order to avoid negatively predicted
values, the natural logarithm of the response variable was
taken in the model, and the prediction was then transformed
back to its original scale by using the exponential function.
An advantage of the Prophet model is that it can handle
irregular intervals, which is important as our fused chlorophyll-
a observations are not regularly spaced. Prohpet is similar to
other decomposition based approaches to time-series forecasting
except that it uses generalized additive models instead of a state-
space representation to describe each component. Using state
space models would offer a more generic model formulation,
whereas this approach explicitly models features common to
the chlorophyll-a time series at hand, such as multi-period
seasonality. The structural time series model could alternatively
be put into state-space format, but rewriting it into that form
would not alter the results.

Bayesian structural time series models possess further key
features for modeling time series data that are favorable for long-
term chlorophyll-a scenario analysis studies. The main feature
is uncertainty quantification, as they allows us to quantify the
posterior uncertainty of the individual components, control the
variance of the components, and impose prior beliefs on the
model. This is crucial as uncertainties increase over time in
the future, especially in long-term projections. The second key
feature is transparency, since the model is decomposed into
simple time series components, which can be visually inspected.
Moreover, they do not rely on differencing or moving averages,
which make them more transparent than other autoregressive
moving average models. The third key feature is the ability to
incorporate regressors (covariates) as explanatory variables in
the model. This feature is beneficial to include climate change

impacts on chlorophyll-a trajectories from solar radiation and
air temperature.

Here we briefly introduce the model without aiming
completeness; for the full model formulation the reader is
referred to Taylor and Letham (2017). We use a piecewise linear
model with a constant rate of growth and change points. Suppose
there are S change points, over a history of T points, at times
sj, j = 1, . . . , S. We define a vector of rate adjustments δ ∈ R

S,
where δj is the change in rate that occurs at time sj. The rate at any
time t is then the base rate k, plus all of the adjustments up to that
point, which is represented by a vector a(t) ∈ {0, 1}S such that

aj(t) =

{

1, if t ≥ sj,
0, otherwise.

The piecewise linear trend model with change points is then

g(t) =
(

k+ a(t)Tδ
)

t +
(

m+ a(t)Tγ
)

where k is the growth rate, a(t) is a change point indicator as
defined above, δ is the vector of rate adjustments, m is the offset
parameter, and tomake the function continuous, γj is set to−sjδj.
We employ the following prior on δ = (δ1, . . . , δS).

δj ∼ Laplace (0, τ)

where τ controls the flexibility of the model in alternating its rate.
While the model automatically detects change points and allows
the trend to adapt appropriately, we have control over the trend
flexibility by adjusting the strength of the sparse prior using the
change point prior scale τ . In this application trend flexibility is
significantly reduced by decreasing the change point prior scale
to one fifth of its default value. The value was fined tuned by
balancing between the training error (which is lower with more
flexibility) and the prediction error, while keeping the width of
the projected uncertainty interval reasonable.

When themodel is used for forecasting, the trend has constant
rate and the uncertainty in the forecast trend is estimated. Future
rate changes are simulated that emulate those of the past. In a
fully Bayesian framework this can be done with a hierarchical
prior on τ to obtain its posterior. In long-term projections,
which is our purpose, one of the most influential factors is the
uncertainty in the future trend. In this model, the uncertainty in
the forecast trend is estimated by assuming that in the future the
same average frequency andmagnitude of rate changes will occur
as observed in the past:

for all j > T,

{

δj = 0 with probability T−S
T

δj ∼ Laplace (0, λ) with probability S
T .

Once λ has been inferred from the data, we use this model
to simulate possible future trends and to compute uncertainty
intervals. Due to the assumptions in the trend forecasting
(matching historical frequency and magnitude) the trend
intervals may not be exact, nevertheless they provide an
indication of the level of uncertainty and also reveals trend
model overfitting.
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In the seasonality model we approximate seasonal effects with
a standard Fourier series expansion with chosen periodicity P,
and Fourier order n. The seasonality model is:

s(t) =

N
∑

n=1

(

an cos

(

2πnt

P

)

+ bn sin

(

2πnt

P

))

.

In this model the following periods are used, P = 3652.5 for
decadal periodicity, P = 365.25 for yearly periodicity, P =

182.625 for half-yearly periodicity, and P = 91.3125 for quarterly
periodicity (in days). The Fourier order was chosen as N = 10
after tuning such that under-fitting and over-fitting is avoided by
minimizing the test error. The linear component then becomes

l(t) = X(t)β

where X(t) = [cos
(

2π1t
P

)

, sin
(

2π1t
P

)

, . . . , cos
(

2πNt
P

)

,

sin
(

2πNt
P

)

,R1(t), . . . ,RJ(t)] is a matrix of seasonal
components s(t) and additional vectors of regressors, while

β =
[

a1, b1, . . . , aN , bN , r1, . . . , rJ
]T

includes the 2N parameters
of the Fourier series expansion and theR regression coefficients of
the additional explanatory variables. The following β ∼ N(0, σ 2)
prior is imposed independently on each component of β . By
default the linear component of the model only contains features
for modeling seasonality but through specifying covariates
(“regressors”) we can include additional arbitrary vectors to
X(t) whose regression coefficients will be inferred. Combining
the trend, seasonality, and error components the final model
becomes:

y(t) m, δ,β , σ ∼ N
(

g(t)+ l(t), σ
)

In order to construct an appropriate structural time series model,
the selection of model components was facilitated by exploratory
analysis steps, such as seasonal shape extraction, investigating
the correlation of explanatory and response variables (Figure 6),
produce periodogram and wavelet analysis to explore periodicity,
and perform time series decomposition. Apart from chlorophyll-
a, the solar radiation regressor data is also log transformed,
since that produces a correlation structure to log chlorophyll,
which is closer to linearity (see Figure 6). The temperature data
could not be log transformed as it contains negative values.
The continuous wavelet power spectrum revealed a persistent
12-month periodicity, which explained the largest amount of
variability over the sampling period, while the rest of the
variability is attributed to 6 and 3 month periodicity. This is in
line with previous research findings of wavelet analysis for the
same observation station (Winder and Cloern, 2010).

In the current structural time series model implementation
the following components are used. Linear trend with
change points (change point prior scale is defined), multi-
period seasonality: decadal, yearly, half-yearly, and quarterly
(periodicity, Fourier order, and prior scale are defined), as
well as four additional regressors (air temperature, solar
radiation, and their lag1). It should be noted, that adding
more than lag1 of the regressors did not improve the
prediction further. The parameter inference can be either

done by optimization, using Limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS) to find a
maximum a posteriori estimate, or through full posterior
inference to include model parameter uncertainty in the
forecast uncertainty.

2.4. Tracking Phytoplankton Spring Bloom
Dynamics
In order to track phytoplankton spring bloom dynamics, the last
step of the methodological framework focuses on deriving spring
bloom metrics obtained from the chlorophyll-a concentration
time series. We must emphasize that uncertainty in the previous
methodological steps (data fusion and long term projection) is
being propagated to the estimates of cardinal dates and bloom
magnitude. Although efforts have been dedicated to quantify
these uncertainties, propagated uncertainty carries implications
for the accuracy of the calculated cardinal dates.

Several existing methods are available to characterize
phytoplankton blooms. Ji et al. (2010) provides an exhaustive
list of timing indices for quantifying phytoplankton phenology
with advantages and disadvantages. These can be classified
as biomass-based threshold methods, rate of change methods,
and cumulative biomass-based threshold methods (Brody et al.,
2013). One might use the number of consecutive days that
exceed a given threshold (elevated assessment level) defined
by the literature. In the case of Dutch coastal waters this is
around 12–15 and 22–24 mg/m3 for the Wadden Sea (Peters
et al., 2005). Alternatively, a low-pass method could be used
for determining the start of the bloom (Wiltshire et al., 2008),
which is a temporal averaging algorithm acting as a low-pass
filter, reducing the short-term fluctuations. Philippart et al.
(2010) suggested using the date of the maximum and minimum
values of daily change rates in the interpolated chlorophyll-a
concentrations for the timing of the annual onset and breakdown
of the phytoplankton bloom. The timing of the bloom can
also be represented by another quantity, the center of gravity
(COG) of the carbon content within the typical spring bloom
period (Hjerne et al., 2019). Another possibility to characterize
the spring bloom is to derive the cardinal dates of the mass
development (Rolinski et al., 2007). The cardinal dates are the
beginning of the spring phytoplankton mass development, the
maximum of the spring bloom (bloom peak), and the end
of the spring mass development. Mathematical methods of
describing cardinal dates were proposed by Rolinski et al. (2007),
such as finding the points of inflexion in the smoothed, log
transformed, and differenced (1-week lag) data, deriving them
from four linear segments (constant–increasing–decreasing–
constant) fitted to the logarithmic values, or extracting the
cardinal dates from the quantiles of a fitted parametric function
(Weibull function). Similarly, Lewandowska and Sommer (2010)
transformed phytoplankton biomass according to standard
normal variation and took the first and third quartiles as
cardinal dates, the beginning and the end of the spring
bloom, respectively.

Several of the above mentioned methods (or listed by
Ji et al., 2010) cannot properly deal with bi-modal data
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FIGURE 6 | Pair plots of the log transformed response variable (fused chlorophyll-a), and the explanatory variables (log transformed radiation and temperature).

Scatter plots are shown together with Kernel Density Estimates (black) and linear regression (red).

(require separation of the spring bloom) or large fluctuations in
amplitude, some methods need parametric fitting (e.g., Vargas
et al., 2009), and most methods cannot deal with noisy data,
hence require smoothing to pre-process the seasonal data before
deriving the cardinal dates. As summarized by Ji et al. (2010)
if the seasonal time series is uni-modal, from densely sampled
and without noise, most methods will perform well. This is
rarely the case, unless the data is interpolated and denoised.
If that is not the case, more flexible approaches perform

better which use less assumption on distribution patterns.
For this reason to track long term changes in phytoplankton
spring blooms we propose to derive the cardinal dates using
a non-parametric shape constrained method, namely log-
concave regression (Groeneboom et al., 2001; Groeneboom and
Jongbloed, 2014; Doss, 2019). Log-concave regression meets
this flexibility requirement as it does not require any tuning
parameters and can be directly applied on the annual bi-
modal time series without any pre-processing. Consequently, our
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proposed method is less sensitive to bloom amplitude, missing
data, and observational noise.

In summary, determining a mode of a unimodal (part of a)
function, sometimes called “bump hunting” is classically done
using smoothing techniques, assuming some level of smoothness
(which is reasonable) of the function. The advantage of using log-
concave regression compared to techniques based on smoothing,
is that it does not require tuning parameters (such as bandwidths)
that heavily influence the outcome of the analysis. An alternative
method one could use, would be unimodal regression, where no
smoothness is used at all, resulting in discontinuous unimodal
step functions as estimate of the regression function. The large
class of log-concave functions contains unimodal functions that
are continuous. Moreover, estimation of these can be done in a
stable manner.

In order to track long term changes in phytoplankton
spring blooms we propose to derive the cardinal dates
using a non-parametric shape constrained method, namely
concave regression (Groeneboom et al., 2001; Groeneboom and
Jongbloed, 2014; Doss, 2019). The concave or convex regression
setup for a data set of size {n :(xi, yi) : i = 1, . . . , n} where x1 <
x2 < . . . < xn is the following:

Yi = r0(xi)+ ǫi

for a concave function r0 on R, where {ǫi : i = 1, . . . , n} are
independent and identically distributed random variables and Yi

is the log chlorophyll-a concentration. Then, we apply concave
regression on the log chlorophyll-a concentration data. We
assume that the target of the estimation, r0 :R → R, is concave.
WritingK for the set of concave functions onR, the least squares
estimate of r0 is

argmin
r∈K

8(r), where 8(r) =
1

2

n
∑

i=1

(

yi − r(xi)
)2

Utilizing this concave regression setup, the following two
methodological steps are taken to identify the spring bloom
cardinal dates (see Figure 7). The cardinal dates are the spring
bloom beginning (B), -peak (P), and -end (E) dates expressed as
the day of the year.

2.4.1. Isolating the Spring Bloom
We take yearly time series of log chlorophyll-a concentrations
(yt), and assume that it is bi-modal separated by a boundary point
tb. In order to reduce computation time of the first step, we omit
the first 2 months (t1 = 60) and last 2 months (t2 = 300) of the
dataset since we know that the boundary that separates the spring
and summer bloom will not be found there. It should be noted
that omitting a portion of the yearly time series is only done in
the first step during the identification of the boundary point. In
the latter step, during the derivation of the spring bloom cardinal
dates all dates on the “left side” of the boundary point are used

[0, t
opt

b
]. Omitting a portion of the yearly time series is optional.

Then we fit8(t) on the data:

8(t) =

{

ϕtb (t) t ≤ tb

ϕ̃tb (t) t > tb

where ϕtb (t) is the concave regression of (xi, yi) : xi ≤ tb on
[t1, tb], the “left side,” and ϕ̃tb (t) is the concave regression of
(xi, yi) : xi > tb on [tb + 1, t2], the “right side.” Therefore, both

ϕtb (t) and ϕ̃tb (t) are concave. The optimal boundary t
opt

b
is found

where the mean squared error of8(t) is minimal:

t
opt

b
→ argmin

tb

MSEtb +
˜MSEtb

MSEtb =
1

tb

tb
∑

j=t1

(

yj − ϕtb (tj)
)2

˜MSEtb =
1

t2 − tb

t2
∑

j=tb+1

(

yj − ϕ̃tb (tj)
)2

This process of determining the boundary of spring and summer
bloom is visually depicted in Figures 7A,B.

2.4.2. Derive Cardinal Dates of the Spring Bloom

After finding the boundary (t
opt

b
) only the spring bloom (“left

side”) of the data is considered for further analysis where t ∈

[0, t
opt

b
]. Then we take a continuous function 8∗(t) which is

defined as follows:

8∗(t) =











cl = mean
(

yt : t ∈ [0, tl]
)

t ≤ tl

ϕ(t) tl < t ≤ tr

cr = mean
(

yt : t > tr
)

t > tr

where cl and cr are constant and ϕ(t) is the concave regression of
(xi, yi) : tl < xi ≤ tr . The points where the left constant function
ends and the right constant function starts (tl and tr) will become
the beginning and the end of the bloom (cardinal dates B and
E). The third cardinal date, the peak of the bloom, is where ϕ(t)
takes its maximum. The points tl and tr are foundwhere themean
squared error of8∗(t) is minimal:

(tl, tr) → argmin
tl ,tr

MSEcl +MSEcr +MSEϕ

MSEcl =
1

tl

tl
∑

j=0

(

yj − cl(tj)
)2

MSEcr =
1

tJ − tr

tJ
∑

j=tr

(

yj − cr(tj)
)2

MSEϕ =
1

tr − tl

tr
∑

j=tl

(

yj − ϕ(tj)
)2

This final methodological step to identify tl and tr is shown
in Figures 7C,D. Finally, the cardinal dates together with
the concave regression and the chlorophyll-a time series
(transformed back to original values by taking their exponential
function) are depicted in Figure 7E.
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FIGURE 7 | Steps to derive the cardinal dates of phytoplankton spring blooms: (1) Determining the boundary (tb) for isolating the spring bloom (A,B), and (2) concave

regression to spring bloom (C,D). The cardinal dates of the spring bloom are shown in (E).

3. RESULTS

3.1. Fused Chlorophyll-a Concentration
Signal
The fused chlorophyll-a concentration signal, together with

satellite observations, is depicted in Figure 8A and with in-situ

observations in Figure 8B. One can observe that the fused signal
almost perfectly follows the in-situ (“water”) observations over
the period in which only that type of measurements are available.
From the moment that both in-situ and satellite date are available
(1998), the fused signal lies between the two types but being closer
to the in-situ observations according to the model formulation,
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FIGURE 8 | Data fusion results. The mean fused chlorophyll-a concentration signal (green) with uncertainty (gray) compared with satellite observations (blue) in (A),

and in-situ “water” observations (red) in (B). Quantile-quantile plot of the fused signal compared to both in-situ and satellite observations in (C) and scatter plot in (D).

since we have higher confidence in the field data. This is also
reflected in the quantile-quantile plot and scatter plot of the
fused signal compared to the in-situ data in Figures 8C,D, which
lies almost perfectly on the diagonal, whereas the plot of the
fused signal against the satellite observations deviates more from
the diagonal. This enhancement of the historical chlorophyll-a
signal has benefits for the projection step. Since the long-term

projection is largely based on the observed correlations, if the
input chlorophyll-a concentration time series is less accurate the
statistical model will misrepresent the processes.

3.2. Long Term Chlorophyll-a Projection
The Bayesian structural time series model (introduced in section
2.3) was trained (1976–2010) and tested (2010–2018) on the fused
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FIGURE 9 | Time series forecasting validation against fused observations. Model fit between 1976 and 2010 (blue) and forecast between 2010 and 2018 (red).

Predictive uncertainties in shaded area.

FIGURE 10 | Scatter plot of predicted chlorophyll-a concentration against

fused observations. Model forecast between 2010 and 2018 with N = 3,287

data points.

chlorophyll-a concentration signal and the historical measured
solar radiation and air temperature data. Figure 9 visually depicts
the validation of the in-sample forecast (1976–2010) and the
forecast (2010–2018) against the fused data. The figure shows that
most measurements (75%) lie within the predictive uncertainty
band, indicating the model’s reliability. The scatter plot of
predictions is shown in Figure 10 whereas the performance
metrics can be found in Table 1.

While long-term data driven chlorophyll-a concentration
prediction for climate impact assessment is not widespread,
there have been few studies conducted on both inland water
systems (Cho et al., 2018; Keller et al., 2018; Liu et al., 2019;
Luo et al., 2019) and marine systems (Irwin and Finkel, 2008;

Blauw et al., 2018; Krasnopolsky et al., 2018; de Amorim
et al., 2021) that performed short term predictions. Blauw et al.
(2018) predicted chlorophyll-a in the North Sea at different sites
applying Generalized Additive Models (GAMs) with accuracies
(R2 values) ranging from 0.25 to 0.51 for hourly time scale,
0.15–0.22 for daily time scale, and 0.27–0.63 for bi-weekly
time scale. Higher accuracy (R2 = 0.83) was obtained in
the North Atlantic, using a spatial GAM to predict month-to-
month variation (Irwin and Finkel, 2008) or in a recent study
by de Amorim et al. (2021) where an R2 value of more than
0.7 was achieved for a longer-term prediction (multi-year) with
three different algorithms: Support Vector Machine Regressor
(SVR), Random Forest, and Multi-layer Perceptron Regressor
(MLP). SVR performed the best (R2 = 0.78) with 17 predictor
variables. Similar accuracies (R2 values) were achieved in short-
term prediction studies for lakes or reservoirs using Random
Forest algorithm on monthly (0.2–0.6) and daily (0.6–0.8) data
(Liu et al., 2019), as well as using Multiple-Layer Perceptron
Neural Network (MLPNN) and Adaptive Network-based Fuzzy
Inference System (ANFIS) 0.52–0.85 (Luo et al., 2019). In
comparison with these studies, we conclude that our model has
acceptable accuracy, especially considering that we predict on
a daily scale and 8 years ahead, while most of the cited work
focuses on much shorter prediction time frame. It should be
noted that model comparability with other studies is hampered
not only by the differences in ecosystem types (fresh water or
open ocean instead of coastal waters) but also due to the fact that
the predictor variables differ, and so as the experimental setup
such as data splitting strategies, and prediction time frames.

After the calibration of hyperparameters and initial validation,
the time series model was retrained using the entire historical
period (1976–2018), to better capture historical trends, and used
for long-term chlorophyll-a concentration projection (2019–
2089). Since the model contains log transformed solar radiation
and air temperature as regressors, they need to be provided
for the entire projection period. Consequently, after 2019 the
bias corrected climate change projections are applied instead of
the field observations. Given the numerous generated climate
change projections (120 were used), the same number of
future chlorophyll-a concentration trajectories were simulated,
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TABLE 1 | Time series forecasting validation metrics against fused observations.

Performance metric Value

N 3287.00

MAPE 0.38

RMSE 3.78

R2 0.51

% of obs in uncertainty band 75.63

Model forecast between 2010 and 2018 with N = 3,287 data points.

as shown in Figure 11. One can observe that the predictive
uncertainty increases over time as we get farther from the
projection start date. This predictive uncertainty originates from
the trend component as explained in section 2.3, and the
modeling choices (e.g., changepoint prior scale) will influence
it. We should emphasize that such long term projection is only
a simplified approximation of the future chlorophyll-a signal,
which follows a piecewise linear trend and continues to repeat
its multi-seasonal behavior, learnt from the past data, moreover
includes linear effects of the two climate variables. These
assumptions guarantee fast computation time, thus allowing
numerous simulations for uncertainty quantification, which is
the objective of this study. Nonetheless, it does not replace
complex physically-based numerical models that are capable of
simulating a wide range of ecological processes.

3.3. Changes in Phytoplankton Bloom
Dynamics
The feature extraction step to derive the spring bloom cardinal
dates (see section 2.4) is first applied to the mean fused
chlorophyll-a data to obtain the historical changes in spring
bloom dynamics. Unfortunately, the cardinal dates could only
be derived starting from 1998. This is due to the fact that
between 1976 and 1998 only in-situmeasurements were available
which had a sparse temporal sampling frequency (10–20 per
year). As previously argued, this number of yearly data points
is insufficient to extract the cardinal dates. The historical
phytoplankton bloom dynamics from 1998 to 2018 is depicted
in Figure 12. The figure displays the three cardinal dates
(beginning—green, peak—red, end—blue), the bloom duration
(shaded blue area), and the bloom duration anomaly from the
long-term mean bloom duration (bar chart). It can be observed
that for certain years (2002, 2012, 2013) the bloom peak and
bloom end cardinal dates lie very close to each other. These
instances were visually confirmed. It was found that for 2002
and 2012 the feature extraction algorithm was accurate as a fast
decay followed the bloom peak. On the other hand, in 2013 there
was visibly no spring bloom observed, only a dominant summer
bloom. This led the algorithm to falsely identify the spring bloom
peak and end. This finding suggests that years where no spring
bloom is observed should be removed from the dataset prior
to applying the spring bloom cardinal detection algorithm. A
possible extension of the method could be to report the type of
seasonality (spring bloom, summer bloom, bi-modal, no bloom)
(González Taboada and Anadón, 2014) since changes in the type

of seasonality are of interest, nevertheless, this is not part of the
current implementation.

The feature extraction steps are then repeated on the projected
future chlorophyll-a concentration between 2019 and 2089. The
projected future spring bloom cardinal dates are depicted as
boxplots in Figure 13A and as histograms in Figure 13B. The
results indicate a relatively small variation, ∼ 6 days, in the
projected bloom peak timing (see Figure 14B), while a much
higher level of uncertainty is observed for the bloom beginning,
∼ 25 days, (see Figure 14A) and end timing, ∼ 20 days
(see Figure 14C). Bloom beginning and -peak resemble normal
distributions, in the case of the bloom peak with a lower
variance (higher peakedness). On the other hand, the bloom end
resembles a right skewed log-normal distribution with relatively
heavy tale due to the high number of outliers.

The bloom beginning is projected to slightly but consistently
shift earlier, resulting in longer bloom duration toward the end
of the century (see Figure 15A). The earlier spring bloom as
an effect of climate change is in line with previous findings
by Lewandowska and Sommer (2010) and Winder et al. (2012)
in laboratory trials (mesocosm experiments), by Desmit et al.
(2020), Hjerne et al. (2019), Philippart et al. (2010), and Edwards
and Richardson (2004) using historical data, or by Friocourt
et al. (2012) using numerical (hydrodynamic and ecological)
prediction models forced by future climate change scenarios.
Many of these studies found an even higher rate of spring bloom
forward shift but in our case the accelerating effect of temperature
rise might be moderated by the decreasing solar radiation trend.
Despite the considerable uncertainty in the bloom end timing,
no apparent trend can be observed. We emphasize that the
actual day of the year of the derived cardinal dates may not be
comparable to other findings in literature, since we used another
method to obtain these cardinal dates. Thus, the projected trends
and uncertainties carry the most value. We should also point
out that the projected earlier spring blooms may not be a
simple climatic response but could be the result of complex
processes (physical and non-physical). Further investigation of
these processes is necessary to fully understand the underlying
mechanisms causing shifts in phytoplankton dynamics (Hjerne
et al., 2019).

Apart from the cardinal dates, the chlorophyll-a concentration
magnitude was also investigated. As Figure 15B shows, at the
end of the twenty-first century higher spring bloom peak
magnitude can be expected. Considering the ensemble mean
values, a 0.4%year−1 trend is projected. This trend magnitude is
comparable with the latest findings on chlorophyll-a historical
trends in the North-West Shelf regions (0.4–0.96% year−1)
Hammond et al. (2020), noting that this estimate was considering
offshore marine waters, not coastal zones. It is also comparable to
Xu et al. (2020) who found nearly 20–30% chlorophyll increase in
the same study area between 1987 and 2012. Various numerical
studies using climate models also project moderate increase in
daily mean net primary production between 1980–1999 and
2080–2099 in the shallower southern North Sea (Holt et al.,
2014, 2016; Pushpadas et al., 2015). We must emphasize that
increasing chlorophyll concentration due to climate change is
highly region specific (only occurring in some coastal areas) and
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FIGURE 11 | Long term chlorophyll-a concentration time series projection with radiation and temperature explanatory variables from generated climate projections

(based on EURO-CORDEX). One hundred and twenty solar radiation and air temperature projection scenarios were used to produce the 120 chlorophyll-a

trajectories. Model fit between 1976 and 2018 (blue) and projection between 2019 and 289 (red). Predictive uncertainty in shaded area.

FIGURE 12 | Historical spring bloom cardinal dates (beginning—green, peak—red, end—blue) and bloom duration (shaded blue area). The bar chart shows the yearly

deviation (anomaly) from the long-term mean bloom duration.

very much debated (Xu et al., 2020). In fact, some studies only
report shift in spring bloom timing and species composition, but
not in magnitude. In our study the projected positive trend is
most probably driven by the linear trend component of the time
series model and the rising air temperature as regressor, which
have positive correlation to chlorophyll, based on the historical
data. It should be noted, that in reality the correlation between
air temperature and chlorophyll-a is non-linear and seasonally

varying, moreover, it is different on a species or aggregate
level. As the time series model could not incorporate non-linear
correlations, it is assumed linear, hence, simulated interactions
are only approximations of the real conditions. Nevertheless, in
the season of interest (spring), when air temperature and solar
radiation values did not reach their peak, this correlation is
positive and the linearity assumption is a good approximation
(see Figure 6). Furthermore, with chlorophyll-a concentration
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FIGURE 13 | Range of projected future bloom cardinal dates (A) and their distributions (B) under 120 generated radiation and temperature projections (based

EURO-CORDEX) (2019–2089). The statistics are grouped based on the generated projections corresponding to RCP scenarios (G-RCP4.5 and G-RCP8.5).

as a proxy we aim to describe aggregate level response, rather
than species level response. We also emphasize that bloom
magnitude is heavily influenced by nutrient concentration in the
mixed layer depth (Sverdrup, 1953; Behrenfeld, 2010). Although
nutrient concentration was not used as an explanatory variable
in this study we may expect that the correlation between air
temperature and chlorophyll-a captured in historical data may
include indirect effects such as thermal stratification, which
influences nutrient availability in the mix layer depth.

The projected cardinal dates in Figures 13–15 are also
grouped based on the generated projections corresponding to
RCP scenarios. One observed difference is that in the last
two decades bloom peak magnitudes are somewhat higher
for RCP8.5. Perhaps counter intuitively, no other structural
differences are visible between the RCP scenarios. The similarity

between projected cardinal dates corresponding to RCP scenarios
could be attributed to few reasons. Firstly, we must investigate
the differences in solar radiation and air temperature projections
between the RCP scenarios from Euro-CORDEX. As Figure 5

depicts, these differences for solar radiation are not apparent.
For air temperature projections we see similar behavior until
the end of the century and differences in the last two decades
become more articulate (RCP8.5 being higher), although few
GCMS from both RCPs remain entangled and only one GCM
from the RCP8.5 scenarios presents more extreme behavior. This
leads us to the second reason which might explain the lack
of difference in cardinal dates between RCPs. The generated
scenarios have been produced with a Bayesian stochastic
generator introduced in Mészáros et al. (2021). This model
assumes that Euro-CORDEX scenarios are exchangeable rather
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FIGURE 14 | Projected future phytoplankton spring bloom beginning (A), peak timing (B), and end (C) under generated (G) radiation and temperature projections

(based EURO-CORDEX) (2019–2089). The cardinal dates are grouped based on all generated projections (G), and generated projections corresponding to RCP

scenarios (G-RCP4.5 and G-RCP8.5).
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than independent, due to the fact that they originate from a
common genealogy (Steinschneider et al., 2015). Consequently,
the model formulation induces the phenomenon of “borrowing
strength” where estimates for parameters over different scenarios
are combined (“pooled”). This can correct outlier-like behavior
and makes the estimates statistically more robust (Gamerman
and Lopes, 2006; Gelman and Hill, 2006). Thus, synthetic
projections from this stochastic generator relax some of the
distinct characteristics that input Euro-CORDEX RCP scenarios
had. Although, new synthetic scenarios are generated per
Euro-CORDEX scenario, due to the intentionally propagated
uncertainty, the differences between synthetic scenarios of
different RCP “families” may be less prominent. Additionally,
the lack of clear response to the evident temperature difference
increase in the past two decades may be attributed to a delayed
feedback caused by ecosystem resilience (Atkinson et al., 2015).
Finally, and perhaps most importantly, it should be emphasized
that generated scenarios serve as input into the structural time
series model, which then feeds into log-concave regression step to
derive the bloom metrics. As mentioned above, this adds further
layers of uncertainties and the impacts of the various non-linear
transformations may not be easily explained.

4. DISCUSSION

This paper presents an approach to study observed past and
projected future marine phytoplankton phenology making use
of statistical techniques, rather than physically-based models.
The Bayesian setup in the data fusion and time series
prediction models offer flexibility in model formulation and
allow characterization of predictive uncertainties, which is
crucial in climate change impact studies. In addition, for
the extraction of phytoplankton cardinal dates we proposed
a non-parametric regression model under shape constraints
which has not been used before for such purposes, to our
knowledge. Regarding the applied data, we aimed to make best
use of the cross-disciplinary and multi-sourced measurements,
covering marine biogeochemistry and atmospheric variables
from field measurements, satellite imagery, numerical models,
and synthetic generated scenarios.

We acknowledge the various sources of uncertainties in the
data andmodels, which are considered and statistically quantified
where possible. Firstly, uncertainty in the fusion of chlorophyll-a
observations is quantified by the posterior distributions obtained
through Bayesian parameter inference. Secondly, uncertainties in
the climate projections are addressed using a large ensemble of
generated stochastic scenarios, which cover numerous possible
trajectories. Thirdly, in the Bayesian time series model we
quantify uncertainties in two ways. On the one hand, uncertainty
intervals of the future trend are computed individually for
each projection, and on the other hand, this is repeated for a
large number of projections, resulting in predictive uncertainty
bands for each trajectory and for the entire ensemble. Lastly,
uncertainty quantification in the feature extraction step is not
possible explicitly, nevertheless, thanks to the ensemble approach

a range of potential phytoplankton phenologies are simulated
over the course of the twenty-first century.

The main findings regarding phytoplankton phenology, the
projected uncertainties in the beginning and the end of the
spring bloom, as well as the prolonged bloom duration, increased
peak magnitude and its forward shift (earlier bloom), may have
repercussions on the marine food web. Friedland et al. (2015)
found the same trends and attributed them to phenological
mismatch between bloom timing and grazing pressure. When
grazing pressure is shifted and predator-prey interactions are
perturbed the phytoplankton loss by grazing is reduced resulting
in higher bloom magnitude (van Beusekom et al., 2009). The
forward shift in phytoplankton bloom phenology may also be
explained by several other factors. These include increased early
spring temperatures that accelerate phytoplankton cell division
rates (Beaugrand and Reid, 2003; Tulp et al., 2006; Hunter-Cevera
et al., 2016), change in stratification driven by temperature and/or
wind trends, or change in the underwater light climate. Although,
in our study slightly negative radiation trends are projected light
availability can also be influenced by turbidity.

A consequence of these projected trends could be that
energy transfer to higher trophic levels is disrupted as there
is a tight coupling between the plankton trophic levels in
marine pelagic ecosystems (Richardson and Schoeman, 2004).
Such consequences are often described with the trophic match-
mismatch hypothesis of Cushing (1990). Based on this hypothesis
the reproductive success of higher trophic levels will be best
when the phytoplankton phenology matches their requirements.
Phenological shifts may therefore cause a temporal mismatch
between zooplankton consumption (grazing) and phytoplankton
production peak leading to higher mortality of the zooplankton,
causing cascading effects toward the higher members of the food
web (Richardson and Schoeman, 2004; Tulp et al., 2006; Sommer
et al., 2012; Blauw et al., 2018). This has been documented in the
North Sea (Beaugrand et al., 2003), and other parts of the North
Atlantic (Platt et al., 2003; Koeller et al., 2009). The severity of
these adverse effects in temperate productive systems is, however,
debated (Atkinson et al., 2015). Due to already high natural
variability in the timing of predator consumption and its prey
in temperate marine systems, compensating mechanisms may
exist that could potentially reduce the impact of the projected
planktonic phenological shift (Atkinson et al., 2015; Desmit et al.,
2020).

Our study aimed to quantify how uncertainty in
environmental forcing, that influences the formation mechanism
of spring blooms (through thermal stratification, mixed-layer
temperatures, phytoplankton metabolic rates, and grazing)
will impact the uncertainty in spring blooms dynamics. Since
uncertainties in the spring bloom dynamics (especially timing;
Townsend et al., 1994) are closely tied to uncertainties in
secondary production, in the survival of larval populations, and
ultimately in the recruitment to the adult stock (Longhurst,
2007), our results can inform further studies that attempt to
propagate phytoplankton phenology related uncertainties to
ecosystem response in higher trophic levels. An enhanced
understanding of the variability of phytoplankton blooms
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FIGURE 15 | Projected future phytoplankton spring bloom duration (A) and peak magnitude (B) under generated radiation and temperature projections (based

EURO-CORDEX) (2019–2089).

is therefore a crucial step to estimate the impact on marine
ecosystem functioning (Winder and Cloern, 2010).

For future research the authors recommend to merge three
components of the methodological framework into a single
model. Integrating the Bayesian stochastic climate generator, the

Bayesian data fusion model, and the Bayesian structural time
series model would provide a consistent Bayesian hierarchical
model that eliminates redundancies and offers a more elegant
solution. It is worth noting that this integrated solution would
be harder to re-use for researchers who are interested to take

Frontiers in Marine Science | www.frontiersin.org 23 August 2021 | Volume 8 | Article 669951220

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Mészáros et al. Uncertainties in Phytoplankton Bloom Dynamics

advantage of only a part of the model (stochastic generator,
data fusion, or projection) rather than the full chain. A further
recommendation is to extend the approach to include spatial
correlations, since currently only one location is considered.
Extending the methodology in this way would allow us to make
better use of the multi-dimensional data structure and include
spatial gradients from coast to offshore locations.

As previously mentioned, chlorophyll-a concentration
may not be an accurate proxy of phytoplankton biomass in
the Southern North Sea (Alvarez-Fernandez and Riegman,
2014). In order to address this shortcoming, a potential
avenue would be to apply novel satellite-derived products
that consider phytoplankton functional types (Xi et al.,
2020) or use phytoplankton carbon (Bellacicco et al., 2020)
instead of chorophyll-a. Although less frequently measured
phytoplankton historical in-situ data is available in the North
Sea, that could complement satellite derived indicators. In
future research it should be evaluated if these indicators could
better assess phytoplankton response to climate change.
Another natural extension of the research is to further
propagate uncertainties in spring bloom metrics to ecosystem
behavior. This could be achieved using statistical techniques
or numerical models for predictive habitat distribution
modeling (e.g., artificial neural networks, classification, and
regression trees).

An important limitation of the study is to only use air
temperature and solar radiation as environmental covariates.
Even though we confirmed that air temperature and solar
radiation are the most dominant predictors for the study area
and for the targeted temporal scale, inclusion of additional
environmental factors impacting vertical mixing and bloom
formation, such as nutrients, wind, salinity, dissolved oxygen, or
mixed layer depth could improve the scenario analysis. Noting
that the availability of long-term climate projections of any
additional covariate is a prerequisite. Precipitation as a process
related to ocean salinity has not been included for the following
reason. According to van Aken (2008) the salinity in theWadden
Sea is determined by fresh water input and its mixing with
the North Sea and the influence of local climatic variations
in precipitation can be ignored. Long-term variability of the
salinity in our study area is in fact due to climatic variations
in the precipitation over the river catchment areas (particularly
the river Rhine) along with other human induced changes and
operation of waterways and sluices. Therefore, precipitation data
at this site was not considered. Nevertheless, the air temperature
and solar radiation variables indirectly impact ocean salinity
through evaporation rates. Excluding vertical mixing processes
such as wind can also be justified. While vertical mixing
indeed affect nutrient conditions for phytoplankton blooms,
the impacts depend on whether the area is already stratified
(Tulp et al., 2006). According to Groeskamp et al. (2011),
at the study location the water column is usually vertically
well-mixed due to strong tidal mixing processes (strong flood
and ebb currents) and persistent wind, which is a common
feature here. This makes wind less relevant at this particular
location. This was confirmed by both literature and our own
data analysis.

Along with these points, we should also mention another
important source of uncertainty in future climate studies
focusing on the coastal zone, which is the role of anthropogenic
interventions. Such interventions in the southern North Sea
include coastal zone management efforts, aquaculture activities,
sand mining, oil drilling, or fishing. Especially, large dredging
and replenishment activities, like the major extension of
the Port of Rotterdam (Maasvlakte 2) cause resuspension of
buried inorganic nutrients into the water column and alter
phytoplankton seasonality. In shallow coastal locations these
uncertainties from anthropogenic impacts may outweigh the
climate change induced ones, while moving toward transitional
and offshore waters the effects are less prominent. Nonetheless,
in this research human impacts are not addressed, only
climatic ones.

Finally and most importantly, we recognize that our results
related to climate change impacts on spring bloom dynamics
will not resolve the ongoing debate on the complex and
often contradictory findings. Especially, given the fact that
the proposed data driven approach neglects the complicated
and often non-linear ecological processes on species level.
We reduced the marine biogeochemical response to climate
change into a simple cause-effect relationship between two
climate variables and chlorophyll-a concentration. As a
consequence, our results are only an extrapolation of the
observed correlations given projected changes in the climate
using statistical models and giving appropriate attention to
uncertainty quantification.

Despite the limitations, we believe that our proposed approach
contributes to an integrated understanding of ecological
responses to variable climate change through expressing future
likelihoods of projected spring bloom dynamics and through the
enhanced characterization of uncertainties associated to data and
statistical methods.
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5. APPENDIX

The Forward Filtering Backwards Sampling (FFBS)-algorithm
steps (Carter and Kohn, 1994; Särkkä, 2013) are defined as
follows, where the dynamic and measurement models are:

xk = Ak−1xk−1 + ak−1 + N(0,Qk−1)

yk = Hkxk + N(0,Rk)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement,
N(0,Qk−1) is the process noise, N(0,Rk) is the measurement
noise, Ak−1 is the transition matrix of the dynamic model, Hk

is the measurement model matrix, and the prior Gaussian x0 ∼

N(m0, P0). The model can be written in probabilistic terms:

p(xk xk−1) = N(xk Ak−1xk−1 + ak−1,Qk−1)

p(yk xk) = N(yk Hkxk,Rk).

This implies that there exist vectorsm−
k
andmk, andmatrices P−

k
,

Pk, S
−
k
such that

p(xk y1 : k−1) = N(xk m−
k
, P−

k
)

p(xk y1 : k) = N(xk mk, Pk)

p(yk y1 : k−1) = N(yk Hkm
−
k
, S−

k
)

Then the prediction and update steps are the
following, where the the recursion is started
from the prior mean m0 and covariance
P0.

For k ≥ 1 Prediction steps

m−
k
= Ak−1mk−1 + ak−1

P−
k
= Ak−1Pk−1A

T
k−1 + Qk−1

Update steps

vk = yk −Hkm
−
k

Sk = HkP
−
k
HT
k + Rk

Kk = P−
k
HT
k S

−1
k

mk = m−
k
+ Kkvk

Pk = P−
k
− KkSkK

T
k

Backward sampling:

Gk = PkA
T
k [P

−
k+1

]−1

ms
k = mk + Gk[yk+1 −m−

k+1
]

Psk = Pk − GkP
−
k+1

GT
k
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