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The Editorial on the Research Topic

Integrated Multi-modal and Sensorimotor Coordination for Enhanced Human-Robot

Interaction

With the widespread application of intelligent robots and all kinds of sensors in our lives,
human-robot interaction has become a significant research direction. Traditional human-robot
interaction is often based on a single modality through a few sensors. However, with the increasing
complexity of application scenarios, it is difficult to improve the interaction performance based
on a single modality. Therefore, it is necessary to study human-robot interaction based on
multi-modal approaches.

Integration of the sensory and motor systems allows human beings to make full use of
sensory information to take meaningful motor actions. Multi-modality is often needed to gather
various types of sensory information to better understand the context of complicated tasks in an
ever-changing environment; for example, a cognitive or physical human-robot interaction scenario.
Integratedmulti-modal and sensorimotor coordination are therefore crucial for humans in tackling
complex tasks requiring interactions or collaborations between humans and robots, as can be
increasingly observed in many different domains, such as industry, healthcare, and rehabilitation.

The new generation of robots are meant to gradually participate in our lives and coexist in
human living environments. This has encouraged investigation into technologies enabling effective
interactions between humans and robots. The goal of human-robot interaction research is to
make robots capable of operating in human-centered spaces to enhance work efficiency, introduce
flexibility and adaptability in solutions, and improve the quality of human life.

Investigating the underlying mechanisms of multi-modal sensorimotor integration and
coordination in humans will provide insight into the adaptability and compliance of human
intelligence with biomechanical sensorimotor control. It will also advance the development of an
equivalent robot partner through the transfer and deployment of knowledge learned from humans
toward enhanced human-robot interaction. In this challenging scenario, both human and robot
partners are expected to perceive their own state and that of their partner during interaction in a
multi-modal manner. This involves observing the posture of the partner, monitoring the forces
transmitted through a commonly operated object, communicating verbally to understand the
intention of the partner, adjusting the collaboration to accomplish the task in an ergonomic and
efficient way, and assigning the task roles according to the cognitive and physical strengths of the
human and robot partners.
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This special issue contains 16 research articles that fourteen
research articles focusing on human-robot tasks, one on the
object recognition and one on the systematic review.

He and Mathieu studied the extraction of different signals
from a single muscle, with the potential to control the
origin of multiple degrees of freedom in modern upper
limb electromyography (EMG) prosthesis, demonstrating that
the characteristics of biceps muscle synergy may promote
the control of upper limb EMG prosthesis. In order to
improve the quality of life in patients with severe dyskinesia,
a brain-computer interface (BCI) for manipulator control
was studied by Zhu et al., who proposed an asynchronous
hybrid BCI with the ability to complete complex manipulator
control tasks.

Wen et al. proposed a feature classification method based on
visual sensors in dynamic environments. For detecting objects,
a double projection error algorithm is proposed that combines
texture and region constraints to achieve accurate feature
classification in four different environments. The algorithm
can classify static and dynamic feature objects and optimize
the conversion relationship between frames only through
visual sensors.

With the aging population and consequent increase
in hemiplegic patients due to accidents, the provision of
rehabilitation training has become a meaningful topic. Bong
et al. developed a novel robotic system with a muscle-to-
muscle interface to enhance the rehabilitation of post-stroke
patients. The system can customize and adjust the rehabilitation
training according to the different stages of motor recovery
in stroke patients and can run in three different modes,
allowing passive and active exercise for effective rehabilitation
training. Zuo et al. proposed a structure of wearable parallel
mechanisms with sufficient motion isotropy, high force transfer
performance, and large maximum torque performance to
cover all possible motion ranges in the human ankle joint
complex, making it suitable for ankle joint rehabilitation. In
terms of rehabilitation training equipment, the exoskeleton
has been studied by many researchers. Peng et al. proposed
a new data-driven optimal control strategy for adapting
to the unpredictable disturbance of different hemiplegic
patients. Fang et al. proposed a temporal convolutional
network based gait recognition and prediction model to
recognize and predict the actions of the exoskeleton wearer.
Shi et al. first linearized and discretized the constraint
conditions of model predictive control by using a third-
order Taylor-type numerical differential formula, extending
it to a lower limb rehabilitation robot to realize human-
computer interaction control and intention recognition in active
rehabilitation training.

Jin et al. proposed a container target recognition framework
based on acoustic signals in an open environment using the
kernel k-nearest neighbor algorithm. The dynamic contact
method was used to collect the acoustic signal in the container
to solve the problem of object recognition (Jin et al.).

Jiao et al. combined the attitude estimation system with
an intelligent control structure to make the unmanned aerial
vehicle (UAV) perform the detection task stably, and proposed

an intuitive end-to-end interaction system, which could control
the UAV according to the natural posture of the human body.

In order to make robot learning surpass human
demonstration and task completion under unknown
conditions, Cao et al. proposed the evolutionary
strategy gradient. Through goal-oriented exploration,
robot learning skills were extended to cover different
parameter environments.

Li et al. proposed a multi-modal incremental learning
framework based on the teleoperation strategy to reduce the error
between the reconstructed and expected trajectories, enabling the
robot to accurately reproduce the demonstration task.

Duque-Domingo et al. proposed a novel method for
deciding who the robot should pay attention to when
interacting with multiple people during the process
of interaction. The method is based on the receipt of
different stimuli by a competitive network (see, say, pose,
hoard talk, habituation, etc.), and then competing with
each other to decide who to focus on (Duque-Domingo
et al.).

The article by Navarro-Alarcon et al. presents a new scheme
for approximating unknown sensorimotor robot models by using
feedback signals only.

Cherubini et al. systematically reviewed the existing sensor-
based control methods, and then discussed the problems,
potential applications, and future research directions.

Ergonomics have a significant impact on productivity as
well as the chronic health risks caused by inappropriate
work postures and conditions. Peternel et al. proposed a new
method for estimating and transferring ergonomic working
states called a Binary Work-Condition Map to provide visual
feedback on the working state of different arm structures. As
well as combining the advantages of both the binary map
and continuous map, these researchers proposed a Hybrid
Work-Condition Map for ruling out unsuitable workspaces
using the binary map approach, while rendering suitable
workspaces by applying the continuous map approach (Peternel
et al.).

All thesemethods help to improve the performance of human-
robot interaction. The studies demonstrate the significant
potential of combining machine-learning methods and sensor
technology to visualize and interpret data, ultimately enhancing
the ability of human and robot cooperation to complete
related tasks.

AUTHOR CONTRIBUTIONS

BF wrote the manuscript. CF, LW, and PM helped to improve the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by the National Key Research and
Development Program of China (Grant no. 2017YFB1302302)
and Tsinghua University Department of Computer

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2021 | Volume 15 | Article 6736596

https://doi.org/10.3389/fnbot.2019.00100
https://doi.org/10.3389/fnbot.2020.583641
https://doi.org/10.3389/fnbot.2019.00105
https://doi.org/10.3389/fnbot.2020.00003
https://doi.org/10.3389/fnbot.2020.00009
https://doi.org/10.3389/fnbot.2020.00037
https://doi.org/10.3389/fnbot.2020.00058
https://doi.org/10.3389/fnbot.2020.559048
https://doi.org/10.3389/fnbot.2019.00096
https://doi.org/10.3389/fnbot.2019.00096
https://doi.org/10.3389/fnbot.2019.00117
https://doi.org/10.3389/fnbot.2020.00021
https://doi.org/10.3389/fnbot.2020.00055
https://doi.org/10.3389/fnbot.2020.00034
https://doi.org/10.3389/fnbot.2020.00034
https://doi.org/10.3389/fnbot.2020.00059
https://doi.org/10.3389/fnbot.2020.576846
https://doi.org/10.3389/fnbot.2020.590241
https://doi.org/10.3389/fnbot.2020.590241
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Fang et al. Editorial: Human-Robot Interaction

Science and Technology) - Siemens Ltd., China Joint
Research Center for Industrial Intelligence and Internet
of Things.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Fang, Fang, Wen and Manoonpong. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2021 | Volume 15 | Article 6736597

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


METHODS
published: 22 November 2019

doi: 10.3389/fnbot.2019.00096

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2019 | Volume 13 | Article 96

Edited by:

Cheng Fang,

University of Southern Denmark,

Denmark

Reviewed by:

Dongfang Yang,

Xi’an Research Institute of High

Technology, China

Xiaojun Chang,

Monash University, Australia

*Correspondence:

Huaping Liu

hpliu@tsinghua.edu.cn

Received: 07 August 2019

Accepted: 01 November 2019

Published: 22 November 2019

Citation:

Jin S, Liu H, Wang B and Sun F (2019)

Open-Environment Robotic Acoustic

Perception for Object Recognition.

Front. Neurorobot. 13:96.

doi: 10.3389/fnbot.2019.00096

Open-Environment Robotic Acoustic
Perception for Object Recognition

Shaowei Jin 1,2, Huaping Liu 3*, Bowen Wang 1,2 and Fuchun Sun 3

1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China,
2 Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of

Technology, Tianjin, China, 3Department of Computer Science and Technology, Tsinghua University, Beijing, China

Object recognition in containers is extremely difficult for robots. Dynamic audio signals

are more responsive to an object’s internal property. Therefore, we adopt the dynamic

contact method to collect acoustic signals in the container and recognize objects in

containers. Traditional machine learning is to recognize objects in a closed environment,

which is not in line with practical applications. In real life, exploring objects is dynamically

changing, so it is necessary to develop methods that can recognize all classes of objects

in an open environment. A framework for recognizing objects in containers using acoustic

signals in an open environment is proposed, and then the kernel k nearest neighbor

algorithm in an open environment (OSKKNN) is set. An acoustic dataset is collected,

and the feasibility of the method is verified on the dataset, which greatly promotes the

recognition of objects in an open environment. And it also proves that the use of acoustic

to recognize objects in containers has good value.

Keywords: open environment, interactive perception, objects in containers, acoustic features, object recognition,

kernel k nearest neighbor

1. INTRODUCTION

With the development of intelligent robots and artificial intelligence, the demand for intelligent
service robots in society is increasing. For example, intelligent service robots can take care of the
elderly. But intelligent service robots live with older people and must have the same perceptual
abilities as people, such as being able to see, touch, or hear what is happening in the world around
them. These perceptual abilities will enable robots to perform various tasks, among which object
recognition is one of the most common and important tasks. To accomplish this task, intelligent
service robots can be equipped with multiple types of sensors, each of which can reflect the
properties of an object from different aspects. Currently, the most widely used sensor is the camera,
because a large amount of information about an object can be obtained from a single image.
Therefore, the study of vision in object recognition has attracted great attention. For example, color
(Forero et al., 2018), texture (Kaljahi et al., 2019), and appearance (Liu et al., 2010) can be classified
by visual images. However, the vision is sometimes affected by factors such as illumination, object
color, occlusion, and posture of objects. It is difficult to find some intrinsic properties of objects,
such as softness, stiffness, and material properties.

In addition, the force sensor responds to some object properties according to the contact force
when contacting the object, for example, by directly contacting the object for shape recognition
(Luo et al., 2016), category recognition (Gandarias et al., 2018), material retrieval (Strese et al.,
2017), and surface roughness recognition (Yi et al., 2017). By simply touching an object that only
recognizes the object being touched, it is impossible to perceive objects in the container, such

8
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as food in a kitchen container or medication in a bottle.
Interactive perception is a common human exploration strategy.
If humans cannot recognize objects by vision and touch, they
will take different interactions to obtain information about other
sensory channels. For example, shaking a hollow object produces
auditory information that can determine whether the object is
empty or full, what material is contained inside, and how much
material is inside.

Sound-based object recognition is less studied than object
recognition based on visual and tactile information. Despite
this, hearing is as important as touch and vision, especially
in the dark or dangerous environments. Hearing has a unique
advantage. Sound and structural vibration signals provide a
rich source of information for manipulating objects. Humans
use this feedback to detect mechanical events and estimate the
state of the manipulated object. Hearing allows us to infer
events in the world that often go beyond the scope of other
sensory modes. Studies have shown that humans are able to
extract the physical properties of objects and distinguish between
different types of events from the sound produced (Grassi,
2005; Beran, 2012). There has been some research that uses
sound for positioning (Brichetto et al., 2018), cup material
recognition (Griffith et al., 2012), pouring height (Liang et al.,
2019), family event recognition (Chang et al., 2016; Do et al.,
2016), object material recognition (Neumann et al., 2018),
contact position recognition and qualitative size of contact force
(Zöller et al., 2018).

The ability to sense and process vibrations during interactive
contact with an object will allow the robot to detect anomalies in
the interaction process and perform object recognition based on
the vibration signals. The interaction between objects produces
a vibration signal that propagates through the air and can
be perceived by the acoustic sensor. The cost of collecting
and processing vibration feedback is relatively low relative to
other sensory modes (such as vision). Object recognition is a
fundamental skill that occurs during the early development of
human beings. When interacting with objects, it will try a variety
of interactive ways to complete the task of recognizing objects.
At the same time, when contacting an object, it is necessary to
detect whether the object in contact has been encountered before,
that is, the object being explored is an object of unknown classes.
Making a robot separate objects of unknown classes from objects
of known classes like a human, then relearn the information of
the unknown classes. Therefore, it is very important for robots to
develop a system that can recognize objects of unknown classes
and reach the recognition of all objects by continuously learning
the properties of unknown classes. Themain contributions of this
paper are as follows:

1. A framework for recognizing objects in containers using
acoustic signals in an open environment is proposed.

2. The kernel k nearest neighbor algorithm (OSKKNN) in
an open environment is proposed to solve the problem of
recognizing all class objects in an open environment.

3. The acoustic dataset was collected using the UR5 arm
with the microphone and verified the effectiveness of
our method.

The remainder of the paper is organized as follows. In section
2, the related work of collecting sound to recognize objects is
reviewed. In section 3, a framework for recognizing objects using
sound is introduced, and an OSKKNN algorithm is proposed.
Acoustic dataset collection and data analysis and processing are
in section 4. Section 5 conducts experiments and experimental
analysis. Finally, the paper is concluded in the last section.

2. RELATED WORK

It is very challenging to recognize objects contained in containers
and objects of different weight in containers. These studies are
few. When the visual and tactile constraints are limited, the
perceptual information generated by the simple static contact is
also difficult to recognize objects in containers. We naturally use
dynamic contact methods to obtain information about objects.
Berthouze et al. (2007) and Takamuku et al. (2008) pointed out
that dynamic contact (shaking) is more conducive to recognizing
objects than static contact (grasping), which is not easily affected
by the shape, size and color of objects.When shaking the object, it
will produce the sound signal of vibration, which can be collected
by a microphone. There is related research on the use of shaking
to collect sound signals (Nakamura et al., 2009, 2013; Araki et al.,
2011; Taniguchi et al., 2018).

Interactive contacts with objects in different ways and
acquisition of sound information to recognize objects are studied
as follows: Clarke et al. (2018) used the actions of shaking and
pouring to obtain the sound signal of the granular object and
combined this with deep learning to recognize five different types
of granular objects. Luo et al. (2017) used a pen to hit objects to
collect sound information, and used the Mel-Frequency Cepstral
Coefficients (MFCCs) and its first and second differential as
features; stacked denoising autoencoders are applied to train
a deep learning model for object recognition. Sinapov et al.
(2009) and Sinapov and Stoytchev (2009) used humanoid robots
to perform five different interactive behaviors (grasp, shake,
put, push, knock) on 36 common household objects (such as
cups, balls, boxes, cans, etc.) and used the k nearest neighbor
algorithm (KNN), support vector machine algorithm (SVM)
and unsupervised hierarchical clustering to recognize objects.
Sinapov et al. (2011) collected the joint torque of the robot
and sound signals, and combined with the k nearest neighbor
algorithm (KNN) to recognize 50 common household objects.

Sinapov et al. (2014) and Schenck et al. (2014) used ten kinds
of interactions (such as grasp, shake, push, lift, etc.) to detect
four classes of large-particle objects of three colors and three
weights. They not only learn categories describing individual
objects, but also learn categories describing pairs and groups
of objects, and the C4.5 decision tree algorithm is used to
classify and the robot learns new classes based on the similarity
measurement method. Chen et al. (2016) tested four kinds of
containers (glass, plastic, cardboard and soft paper) with 12
kinds of objects and collected sound signals through shaking
using Gaussian naive Bayes algorithm (GNB), support vector
machine algorithm (SVM) and K-means clustering algorithm (K-
Means) to classify and recognize objects. And it is proved that
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FIGURE 1 | Acoustic recognition framework in open environment.

the sound of shaking can be used for object recognition in many
places such as shopping malls, workshops and home. Eppe et al.
(2018) used a humanoid robot to perform auditory exploration
of a group of visually indistinguishable plastic containers filled
with different amounts of different materials, proving that deep
recursive neural structures can learn to distinguish individual
materials and estimate their weight.

The above research focuses on object recognition in multiple
occasions and closed environments and does not pay attention
to recognizing objects in specific applications and open
environments. There are some studies on different recognition in
the open environment, such as the following literature (Bendale
and Boult, 2016; Bapst et al., 2017; Gunther et al., 2017; Moeini
et al., 2017; Bao et al., 2018), these studies recognize known
classes and detect unknown classes in an open environment,
but do not recognize all classes. In the real world, objects
touched by robots are constantly changing. How can the robot
system be made to be like human beings? When encountering
unknown objects, it can be well separated from known objects
and relearn relevant knowledge of unknown objects. Therefore,
it is very important for robots to develop a systematic framework
that can detect objects of unknown classes and recognize
all objects through continuous learning of the properties of
unknown classes. This paper mainly studies the use of sound to
recognize household food objects in containers and focuses on
the recognition of all class objects in containers using sound in
an open environment.

3. KERNEL K NEAREST NEIGHBOR
METHOD FOR ACOUSTIC RECOGNITION
IN OPEN ENVIRONMENT

The open environment no longer assumes that the test set
classes and the training set classes are identical, and the open
environment is more in line with the actual process of exploring
objects. The open environment points out that the classes of

the test set will present classes never seen on the training
set. Traditional machine learning is carried out in a closed
environment and cannot solve the object recognition problem
in the actual open environment. If there are unknown classes in
the test set, the objects of these unknown classes will be marked
as some classes in the training set by using traditional machine
learning, which is not in line with the actual classification
recognition process and human learning process. This paper
develops a systematic framework for recognizing objects using
audio in an open environment.

3.1. Open Environment Acoustic
Recognition Framework
In the actual learning process, people can recognize the object
well when they encounter an object that needs to be recognized.
On the other hand, even if the people do not know it they will
say that this is an unknown class that they had not seen. If the
people want to recognize what this object is, they must recognize
it by looking up a book or asking someone who recognizes it to
relearn. The system framework is proposed in this paper, which
uses audio to recognize objects in an open environment. It is
similar to the human learning process. The system framework is
shown in Figure 1.

The acoustic recognition process in an open environment is
shown in Figure 1. Under this framework, the acoustic data are
collected by the robot platform, and the data set is divided into
a test set and a training set, but the test set contains classes
not seen in the training set. First, acoustic feature extraction
is performed on the data, and then the classifier 1 recognizes
known object classes of a test set through training a training
set, and the classifier 1 detects unknown object classes of a test
set. These data of unknown classes are collected and manually
labeled. Finally, these data of unknown classes are relearned and
trained by the classifier 2. The key part in the acoustic recognition
framework is the role of classifier 1. It not only needs to recognize
accurately objects of known classes but also needs to detect
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objects of unknown classes. Only objects with unknown classes
can be detected for better relearning and recognizing.

3.2. Kernel k Nearest Neighbor in an Open
Environment
The k nearest neighbor algorithm is themostmature and simplest
classification algorithm, with low training time complexity. It is
widely used in various fields, such as text classification (Yong
et al., 2009), face recognition (Weinberger et al., 2006), image
classification (Zhang et al., 2006; Boiman et al., 2008; Guru et al.,
2010), object recognition (Sinapov et al., 2009, 2011), etc. In order
to solve different problems, relevant research has been done to
improve and optimize the k nearest neighbor algorithm, as in the
literature (Weinberger et al., 2006; Zhang et al., 2006; Boiman
et al., 2008; Yong et al., 2009; Guru et al., 2010; Kibanov et al.,
2018; Liao and Kuo, 2018). This paper uses acoustic properties
to recognize objects. The properties of these objects are very
close, such as particle size, density, so collected acoustic data are
linearly inseparable. If the training test data set has the problem
of linear inseparability, then the k nearest neighbor algorithm’s
similarity measurement effect dependent on distance will become
worse and the recognition accuracy will be reduced. To solve this
problem, kernel function can be introduced into the k nearest
neighbor algorithm to improve the recognition effect of the
nearest neighbor algorithm (Yu et al., 2002).

Traditional machine learning is classified and recognized in a
closed environment. The open environment recognition problem
is a class that does not exist in the training sample in the test
sample. It is very difficult to use the kernel k nearest neighbor
algorithm in an open environment for this problem. Therefore,
based on the kernel k nearest neighbor algorithm, this paper
proposes OSKKNN algorithm to recognize objects of all classes
in an open environment.

Kernel function includes linear kernel function, polynomial
kernel function and radial basis kernel function. Among them,
the radial basis kernel function is the most commonly used
kernel function, which can map data to infinite dimensions and
is a scalar function with radial symmetry. In this paper, the
radial basis kernel function is introduced into the k nearest
neighbor algorithm.

Definition of radial basis function: X1 and X2 represent the
eigenvectors of input space, the radial basis kernel function is
as follows:

K(X1,X2) = exp(−
(‖X1 − X2‖)

2

2σ 2
) = exp(−γ (‖X1−X2‖)

2) (1)

Where σ is the hyperparameter of RBF kernel, and the
characteristic length-scale of learning samples’ similarity is
defined, that is, the proportion of the distance between samples
before and after feature space mapping in the perspective of
weight space (Chang and Lin, 2011; Liao and Kuo, 2018), which
can be simplified into a more general form when γ = 1

2σ 2 .
The OSKKNN algorithm is described as follows:

(1) Convert training samples and test samples into kernel
matrix representations by kernel function;

(2) Calculate the distance from the test set sample to each
training set sample by the kernel matrix representation;

(3) Sort by distance from near to far;
(4) Selecting a training set sample of k closest to the current

test set sample as a neighbor of the test sample;
(5) Count the class frequencies of the k neighbors;
(6) Calculate the average value of the nearest k neighbor

distances, compare the size of the average value and the
threshold value T;

(7). If it is less than this threshold value T, the class with the
highest frequency among the k neighbors is the class of the
test sample;

(8) If it is greater than this threshold value T, the test sample is
of unknown classes;

(9) Collect these unknown class samples and divide them into
training set and test set;

(10) Use the kernel k nearest neighbor algorithm to train and
recognize these unknown objects.

4. ACOUSTIC DATASET COLLECTION

Our dataset is obtained through the robot experiment platform
shown in Figure 2. The robot experiment platform is mainly
composed of five parts: Fixed platform, UR5 robot arm
(Universal Robots), AG-95 manipulator (DH Robotics),
microphone (acquisition frequency 44. 1 kHz, the sound is
collected through a standard 35 mm plug into the computer
interface, and the sound data are read and saved using the Matlab
program) and object placement table. The AG-95 manipulator
and UR5 robot arm are connected structurally through a flange
and communicate with UR5 through a network wire. Moreover,
the grabbing experiment of objects can be easily realized through
programming tools equipped with UR5. In order to reduce the
impact of environmental noise, we fixed the microphone to
the palm of the AG-95 manipulator. During the experiment,
the UR5 robot arm drives the AG-95 manipulator to grab the
container with different objects on the object placement table
according to the planned path, completes the specified shaking
action in the air, collects the acoustic signal during the shaking
process, and then puts the container back to the original position
and returns the UR5 robot arm and AG-95 manipulator to the
original position.

4.1. Interaction Actions
When the robot interacts with the object, the container is shaken
and the object in the container collides with the wall of the
container to generate a sound waveform. The time for collecting
the contact object is 6 s, and the sampling frequency is 44.1 kHz.
In order to test which acquisition method is more suitable for
robots and recognition, we use the following four actions, which
can be implemented by the programming tool of UR5 robot
arm configuration.

(1) Rotate 90◦: As shown in Figure 3A. Turn clockwise 90◦

from the direction of the AG-95 manipulator’s finger. At
the beginning, the container mouth is up before rotating
AG-95 manipulator, as shown in the position on the left
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FIGURE 2 | Robot experiment platform.

FIGURE 3 | Interaction actions.

side of Figure 3A. The container mouth is to the right after
rotating AG-95 manipulator, as shown in the position on
the right side of Figure 3A. Turn on the sound collection
device before rotating, turn off the sound collection device
after rotating, and then save the data.

(2) Rotate 180◦: Same as rotate 90◦, except that the angle
of rotation is different. Rotate clockwise 180◦ from the
direction of the AG-95 manipulator’s finger, as shown in
Figure 3B.

(3) Rotate 180◦ horizontally: As shown in Figure 3C. Turn 180◦

clockwise from the direction of the finger of the AG-95
manipulator. At the beginning, the mouth of the container
is on the left before rotating the AG-95 manipulator, as
shown in the position on the left side of Figure 3C. The
mouth of the container is to the right after rotating the AG-
95 manipulator, as shown in the position on the right side
of Figure 3C. Turn on the sound collection device before
rotating, turn off the sound collection device after rotating,
and then save the data.

(4) Shift from the bottom up: As shown in Figure 3D. Move
parallel from bottom to top in the air. Before moving, the
AG-95 manipulator is in the lower position on the left side
of Figure 3D, wait to open the sound collection device. After
the end of the movement, the position on the right side of
Figure 3D is at a higher position. Then turn off the sound
collection device and save the data.

4.2. Objects Selections
In order to be applied to household food recognition, 20 kinds
of food materials and medicines are selected as shown in
Figure 4, and the selected objects are difficult to distinguish. Data
acquisition is performed using the interactive methods of section
4.1, and each object is subjected to sound collection 30 times.
The sound data are collected on a 16-bit mono at a sampling
frequency of 44.1 kHz and saved as a waveform file. The sample
data collected by each method are 20× 30= 600, and the sample
data are collected by the four interactionmethods. So, an acoustic
dataset of 2,400 samples was established.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2019 | Volume 13 | Article 9612

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jin et al. Open-Environment Robotic Acoustic Recognition

FIGURE 4 | Objects and bottles used.

Figure 4 shows different objects and corresponding plastic
bottles. The plastic bottles used are made of polyethylene. The
volume of the plastic bottle is as follows: 200 ml (bottom
diameter: 6.1 cm, bottle height: 8.9 cm), 100 ml (bottom
diameter: 5.1 cm, bottle height: 5.6 cm), 50ml (bottom diameter:
4.1 cm, bottle height: 4.4 cm). Plastic bottles of different volumes
are chosen because the volume of containers required to hold
different objects in real life is different.

Figure 4 shows order of the items (weight, volume of the
container): barley rice (50 g, 200 ml), black bean (50 g, 200 ml),
black rice (50 g, 200ml), brown rice (50 g, 200ml), sorghum (50 g,
200ml), grits (50 g, 200ml), mung bean (50 g, 200ml), peanut (50
g, 200 ml), red bean (50 g, 200 ml), red jujube (50 g, 200 ml), salt
(50 g, 100 ml), soy powder (50 g, 200 ml), soybean (50 g, 200 ml),
white granulated sugar (50 g, 100 ml), yellow millet (50 g, 200
ml), acetaminophen tablet (10 g, 50 ml), bazaar supernatant pill
(18 g, 100 ml), fruited sterculia (20 g,100 ml), green tea (12 g, 100
ml) and omeprazole capsule (8 g, 50 ml).

4.3. Data Analysis and Processing
The sound signals are collected by objects in the container in
different interactive methods. Figure 5 shows four representative
objects and collected acoustic signals. By longitudinal
comparison, it can be concluded that a sound signal can be
used for recognition research. By horizontal comparison, it
can be concluded that the sound signals collected by different
interactive methods are different, and the recognition effects will
be different. In the process of sound collection, a wiener filter
needs to be firstly adopted to reduce noise due to the large noise
of the environment and UR5 robot arm.

Wiener filtering is a wiener filtering algorithm based on a
priori SNR proposed by Scalart and Filho (1996). It is an optimal
estimator for stationary processes based on the minimum mean

square error criterion. Themean square error between the output
of this filter and the desired output is minimal, so it is an
optimal filtering system. It can be used to extract signals that are
contaminated by stationary noise (Le Roux and Vincent, 2012).

In order to reflect better the properties of the object, it is
necessary to propose better features from the noise signal after
noise reduction. There are other methods of dimensionality
reduction (Li et al., 2017), but the Mel-Frequency Cepstral
Coefficients(MFCCs) can not only reduce the data dimension
but also the dynamic properties of the sound. The MFCCs are
one of the most commonly used features in speech processing.
The feature extraction method can also effectively reduce
the dimension, thus reducing the computational cost. Related
studies have successfully applied the Mel-Frequency Cepstral
Coefficients (MFCCs) to speech feature extraction and object
recognition, as in the literature (Nakamura et al., 2013; Luo et al.,
2017; Eppe et al., 2018). The standard MFCC feature can only
propose the static characteristics of the sound (Cao et al., 2017).
In order to better reflect the dynamic characteristics of the sound,
this paper uses the first-order and second-order different features
of the static 12-order MFCCs to obtain the dynamic features of
36-dimensional MFCCs.

5. EXPERIMENT

5.1. Object Recognition in Closed
Environment
5.1.1. Comparison of Learning Algorithms and

Comparison of Interaction Methods
The classification problem in a closed environment assumes that
the training set and the test set have the same classes of objects.
In this section, we selected four supervised learning algorithms
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FIGURE 5 | Acoustic waveforms of four kinds of objects (Barley rice, Mung bean, Granulated sugar, Omeprazole capsules) were collected by interactive methods.

for comparison, namely the traditional k nearest neighbor
algorithm (KNN), the support vector machine algorithm (SVM)
of radial basis kernel function (Chang and Lin, 2011), the sparse
representation classification algorithm (SRC) (Patel et al., 2011;
Pillai et al., 2011), and the kernel k nearest neighbor algorithm
(Kernel-KNN) (Yu et al., 2002). We first determined the K-
values of KNN and Kernel-KNN through experiments. The
experimental results were better in the K range of 8–16. We took
K = 14 in OSKKNN. We used four different interactive methods
when collecting data, so we conducted recognition experiments
on four data sets. The proportion of the data in the training
set and test set is 2:1, and the experimental results are shown
in Table 1.

Firstly, the influence of the data interaction method on object
recognition accuracy is compared with the experimental results
in Table 1. The experimental results in Table 1 show that the
interactive method of rotating 180◦ horizontally has a good
recognition effect on objects, with the recognition accuracy
reaching 85.5%. The recognition effect of rotating 180◦ is close
to that of rotating 180◦ horizontally, with a difference of 0–5%
in recognition accuracy. Therefore, it is appropriate to use the
wrist rotation of 180◦ when the robot collects sound data. By
comparing rotate 90◦ and rotate 180◦, it can be inferred that
the larger the rotation angle is in the same direction, the more
information about object properties is reflected in the collected
data, and the higher the recognition accuracy is. Rotate 180◦ and
rotate 180◦ horizontally, and rotate 90◦ are rotated around the
wrist of the UR5 robot arm. The noise of the UR5 robot arm itself
is small, so the data collection can better reflect the attributes
of the object. The single joint rotation method can be used to

TABLE 1 | The recognition accuracy of different interactions and supervised

learning methods.

Acquisition methods KNN% SVM% SRC% Kernel-KNN%

Rotate 90◦ 56 62.5 48.5 65.5

Rotate 180◦ 75 78.5 60.5 82.5

Rotate 180◦ horizontally 74.5 79.5 75 85.5

Shift from the bottom up 33 34.5 32.5 33.5

explore the attributes of the object interactively and achieve better
recognition effect. The way of shifting from the bottom up, the
multi-joint movement of the UR5 robot arm and the loud noise
of the UR5 robot arm itself completely cover the sound of the
interaction between the AG-95 manipulator and object, and the
sound reflecting the object properties cannot be collected. The
data set is full of noise, so the object recognition accuracy is
very low.

By comparing the four supervised learning algorithms, the
experimental results in Table 1 are as follows: the kernel k
nearest neighbor algorithm has the best recognition effect and is
more suitable for multi-classing. Therefore, the recognition effect
after combining the kernel function exceeds the support vector
machine algorithm. The k nearest neighbor algorithm combined
with the kernel function improves the recognition performance
compared with the traditional k nearest neighbor algorithm, and
better solves the problem of linear indivisible object recognition.
Sparse representation classification was first proposed for image
recognition, and the recognition of sound information and small
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data sets is not good. Therefore, this paper extends the Kernel-
KNN algorithm to solve the problem of recognizing unknown
class objects in an open environment.

We consider the influence of the kernel function on the
KNN algorithm. We compare the linear kernel, the polynomial
kernel, the Sigmoid kernel, the rational quadratic kernel, and the
radial basis kernel on a horizontally rotated 180◦ data set. The
experimental results are shown in Table 2. Experiments show
that the KNN algorithm with radial basis kernel is better.

5.1.2. Comparison of Weight
When the object is in constant use, the weight is decreasing. For
the same object, regardless of the weight, it must recognize the
same object. Therefore, we conducted the following experiments,
the first interactive method (rotate 180◦) is used to collect sound

TABLE 2 | Recognition accuracy of different kernel functions.

Dataset Linear% Polynomial% Sigmoid% Rational

quadratic%

Radial

basis%

Rotate 180◦

horizontally

72.5 75 71 85 85.5

TABLE 3 | The recognition accuracy of different weights and different supervised

learning methods.

Weight (g) KNN% SVM% SRC% Kernel-KNN%

50 70 72 68 78

100 66 73 50 74

Mixture of 50 and 100 64.5 68 50 73

data of 10 objects for verification. The 10 kinds of objects are
barley rice, black bean, black rice, brown rice, sorghum, grits,
mung bean, red bean, soybean, and yellow millet; the plastic
bottles used in these 10 objects are the same plastic bottles as the
corresponding ones in section 4.2, but weight 100 g.

The experimental results are shown in Table 3. It can be
concluded from Table 3 that the Kernel-KNN algorithm has a
better recognition effect when the object in the plastic bottle
is 50 g. This is because the generated sound is larger when
the weight of the object in the bottle is 50 g, and it can be
inferred that the recognition accuracy of the internal object
recognition rate decreases with the increase of weight when the
bottle volume is the same. For mixed recognition of 50 and 100
g, the confusion matrix of recognition is shown in Figure 6.
Although the recognition effect decreases by 0.5 to 5%, the object
in a container can still be well recognized. It proves that nomatter
what the weight of the object in a container is, the object in the
container can also be well recognized by using sound. At the same
time, it shows that the sound has a valuable application value for a
home intelligent service robot to recognize objects in containers.

5.2. Object Recognition in Open
Environment
Object recognition in an open environment is that the classes
of test set and training set are not the same, and the number of
classes of the test set is greater than that of the training set. Object
recognition in an open environment is more suitable for practical
application and the human learning process. Object recognition
in an open environment requires two steps. Firstly, samples of
known classes are recognized in the open environment, samples
of unknown classes are detected and collected in an open
environment. Then, these unknown classes are re-learned, which
is in line with the continuous learning process of human beings.

FIGURE 6 | Kernel-KNN recognition confusion matrix of mixed 50 and 100g.
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FIGURE 7 | OSKKNN recognition confusion matrix on the data of rotate 180◦.

FIGURE 8 | OSSRC recognition confusion matrix on the data of rotate 180◦.

5.2.1. Detection of Unknown Class Objects in Open

Environment
In the open environment, the known classes are recognized and
the unknown classes are detected, and then the objects of the
unknown classes are collected. In other words, no matter how
many classes the unknown classes are, it is not recognized as long
as the unknown classes are detected.

We compared the open set sparse representation classification
method for recognizing faces in an open environment (Moeini
et al., 2017). This method only recognizes known classes in
an open environment, detects unknown classes, and does not
recognize unknown classes, so the OSKKNN algorithm is set up
in the same way. The experiment was compared on a data set of

rotating 180◦ and rotating 180◦ horizontally. We set up a training
set of 10 classes and test sets of 20 classes (including 10 of the
training set).

Figures 7, 8 are, respectively, the confusion matrix of

OSKKNN and OSSRC on the dataset of rotating 180◦.

Figures 9, 10 are, respectively, the confusion matrix of OSKKNN
and OSSRC on the dataset of rotating 180◦ horizontally. By
comparing Figures 7–10, it can be concluded that OSKKNN
has a better effect than OSSRC in separating known classes
and unknown classes, and has a better effect in recognizing
known classes. Only by separating sample data from unknown
classes can you better collect this data and prepare to continue
learning these unknown classes. As far as we know, there is
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FIGURE 9 | OSKKNN recognition confusion matrix on the data of rotate 180◦ horizontally.

FIGURE 10 | OSSRC recognition confusion matrix on the data of rotate 180◦ horizontally.

no research on the object recognition of unknown classes in
an open environment at present.There are only similar studies
(Moeini et al., 2017) that recognize objects of known classes
in the open environment and detect unknown classes without
recognizing objects of unknown classes. OSKKNN can recognize
objects of unknown classes detected, and finally recognize objects
of all classes.

5.2.2. Recognition of All Class Objects in Open

Environment
The threshold value T is an important factor affecting the
recognition of all class objects in an open environment. A
reasonable threshold value T setting can successfully separate
objects of known classes from objects of unknown classes.

The influence of unknown classes on the recognition accuracy
of known classes can be reduced and the overall recognition
accuracy can be increased only by separating known classes from
unknown classes in the test set.

The threshold value T selection is different for different
dataset thresholds and needs to be determined experimentally.
We experimented on rotate 180◦ data and rotate 180◦

horizontally data. The number of classes in the experimental
training set was randomly selected from 10 classes. The test
classes included all classes.

The experimental results are shown in Figures 11, 12. It can
be seen from Figures 11, 12 that the recognition accuracy of the
known classes is decreasing as the threshold is increased. This
is because the larger the threshold value T is, the more samples
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FIGURE 11 | The influence of OSKKNN threshold value T on the recognition accuracy of rotate 180◦ data.

FIGURE 12 | The influence of OSKKNN threshold value T on the recognition accuracy of rotate 180◦ horizontally data.

of unknown classes appear in the known classes test data, the
more difficult it is to recognize the samples of known classes.
As the threshold value T increases, the recognition effect of the
unknown classes is better. This is because the larger the threshold
value T is, the fewer the samples of known classes are in the
unknown classes. The recognition accuracy is no longer affected
by the sample classes, but only depends on the performance of
the classifier 2 (Kernel-KNN). The overall recognition accuracy
rate has an inconspicuous upward trend, followed by a significant
downward trend. This is because the rising stage, the recognition
accuracy rate of known classes decreases slightly, while the
recognition accuracy rate of unknown classes has an insignificant
rising trend, and the rising range is larger than the falling range

of the known classes. The obvious downward trend is because
the decline rate of the recognition accuracy rate of known classes
is greater than the increase of the unknown classes, and the
decline rate of known classes has a greater impact on the overall
recognition accuracy rate.

It can be concluded from the experiment that the threshold
value T of the data set on rotate 180◦ is in the range of 3.2–3.6,
and the overall recognition effect of OSKKNN is better. For the
data set of rotating 180◦ horizontally, the threshold value T is
in the range of 2.8–3.2, and the overall recognition effect of
OSKKNN is better.

When the threshold value is set to 3.3, the classification
confusion matrix of the rotate 180◦ dataset is obtained as shown
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FIGURE 13 | OSKKNN recognition confusion matrix on rotate 180◦ data when threshold value T = 3.3.

FIGURE 14 | OSKKNN recognition confusion matrix on rotate 180◦ horizontally data when threshold value T = 2.9.

in Figure 13, where black rice, brown rice and sorghum are
hard to distinguish. 25% of salt was recognized as sorghum,
25% of salt was recognized as brown rice, 30% of yellow
millet was recognized as black bean, and 25% of bazaar pill
was recognized as red bean. When the threshold value is
set to 2.9, the classification confusion matrix of rotate 180◦

horizontally can be obtained, as shown in Figure 14. Brown
rice and sorghum are hard to distinguish. 68% of mung bean
was recognized as grits, and the error rate was higher. 29%

of red bean was recognized as green tea, 29% of salt was
recognized as brown rice, 14% of white sugar was recognized
as peanut, 14% of white sugar was recognized as bezoar pill,
and 30% of green tea was recognized as bezoar pill. The overall
recognition effect is better, and the recognition effect is equivalent
in a closed environment. It shows that the method proposed
in this paper can solve the problem of recognizing unknown
class objects in an open environment and finally recognize all
class objects.
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FIGURE 15 | The influence of known classes and unknown classes on the overall accuracy of recognition.

5.2.3. Performance Evaluation for Recognizing All

Class Objects in Open Environment
The proposed framework mainly addresses the recognition of
all class objects in an open environment, so the effectiveness of
the method can be assessed using the openness to the overall
recognition accuracy. Openness refers to the ratio of known
classes and unknown classes, so the factors affecting the accuracy
of recognition are the number of unknown classes and the
number of known classes. Set 10 classes of known classes and 10
classes of unknown classes, rotate 180◦ data set at a threshold of
3.3 for experimentation, and rotate 180◦ horizontally data set at
a threshold of 2.9 for experiments.

Experimental results are shown in Figure 15. From the
test results, it can be concluded that the more known the
classes, the worse the recognition effect is. In other words,
the recognition accuracy decreases with the increase of the
number of known classes, and the performance is stable. For
the number of unknown classes, the recognition accuracy of
rotating 180◦ horizontally fluctuates less, while that of rotating
180◦ fluctuates more. This is because there are some confusing
categories and different interactionmethods, but a relatively good
recognition effect is reached. Therefore, the proposed method
can solve the problem of audio recognition for all classes in an
open environment.

6. CONCLUSION

With the rapid development of intelligent service robots and the
increasing demand, intelligent robots can detect the objects in
the container. Because of the limitations of vision and touch, the
objects in the container cannot be detected. Therefore, different
interaction methods are used to collect the auditory information
(sound) for recognizing objects in containers. The experiment
proves that the robot can recognize objects in containers well
with audio, and the recognition effect is better with the single

joint rotation of 180◦ or horizontal rotation of 180◦. It provides
a good way for the intelligent service robot to recognize objects
in containers when interacting with these containers, which has
high application value.

In real life, people are constantly learning and exploring
unknowns. Traditionalmachine learning is carried out in a closed
environment, which does not conform to the mode of intelligent
robots and people. Therefore, the Kernel-KNN algorithm is
improved and extended to solve the problem of audio recognition
in an open environment in this paper. Experiments show that the
proposed OSKKNN algorithm has a good recognition effect and
can solve the problem of using audio to recognize objects in an
open environment. It also provides a feasible idea for other fields
such as tactile and visual fields.

However, there is still the problem of object confusion in
the recognition process, and several classes of object recognition
effects are not ideal. Therefore, more economical, simple and
convenient multi-modal sensors need to be developed in the
future to collect information of multiple modes for better
recognition. Develop the more stable, fast and low running
cost algorithm. Develop more modal fusion and modal pairing
algorithms (Zheng et al., 2019a,b). Combine visual and tactile
matching for recognition (Liu et al., 2017, 2018a,b). In the case
of reducing the noise of the robot itself, data collection through
the integration of multiple interactive actions can improve the
recognition accuracy. Recognizing in an open environment is a
new research problem that requires more in-depth theoretical
research and the development of open recognition methods
suitable for all modalities.
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Biceps Brachii Muscle Synergy and
Target Reaching in a Virtual
Environment
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Canada

A muscular synergy is a theory suggesting that the central nervous system uses few

commands to activate a group of muscles to produce a given movement. Here, we

investigate how a muscle synergy extracted from a single muscle can be at the origin

of different signals which could facilitate the control of modern upper limb myoelectric

prostheses with many degrees of freedom. Five pairs of surface electrodes were

positioned across the biceps of 12 normal subjects and electromyographic (EMG) signals

were collectedwhile their upper limbswere in eight different static postures. Those signals

were used to move, within a virtual cube, a small red sphere toward different targets. With

three muscular synergies extracted from the five EMG signals, a classifier was trained to

identify which synergy pattern was associated with a given static posture. Later, when a

posture was recognized, the result was a displacement of a red sphere toward a corner

of a virtual cube presented on a computer screen. The axes of the cube were assigned

to the shoulder, elbow and wrist joint while each of its the corners was associated with

a static posture. The goal for subjects was to reach, one at a time, the four targets

positioned at different locations and heights in the virtual cube with different sequences

of postures. The results of 12 normal subjects indicate that with the muscular synergies

of the biceps brachii, it was possible, but not easy for an untrained person, to reach a

target on each trial. Thus, as a proof of concept, we show that features of the biceps

muscular synergy have the potential to facilitate the control of upper limb myoelectric

prostheses. To our knowledge, this has never been shown before.

Keywords: biceps brachii, muscle synergy, upper limb posture classification, target reaching, virtual cube,

myoelectric prosthesis

INTRODUCTION

Important progress has recently been made in the design of multiple degrees of freedom
(DoF) upper limb myoelectric prosthesis (Lenzi et al., 2016) and this has led the production
of commercially available units, such as the Luke Arm (Mobius Bionics, 2017). Such
advanced prostheses can be most valuable to amputees in their daily living. Multiple
DoFs implies that multiple control signals have to be derived from EMG signals. To
that end, Daley et al. (2012) used a linear discriminant analysis (LDA) to classify 12
different wrist and hand movements of normal subjects using eight optimally placed
electrodes on the forearm. Similarly, Ameri et al. (2014) used an artificial neural network
(ANN), where visual training was considered better than force training to simultaneously
estimate intended movements of multiple joints. Comparing the classifiers performance,
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Adewuyi et al. (2016) found for non-amputees and partial-hand
amputees that LDA and ANN perform better than the quadratic
discriminant analysis. Betthauser et al. (2018) developed a
robust sparsity-based adaptive classification method to get a
classification system which is appreciably less sensitive to signal
deviations between training and testing. When they tested it on
eight able-bodied and two transradial amputee subjects with eight
electrodes pairs regularly spaced around the proximal forearm, it
was found that their approach significantly outperformed other
movement classification methods.

In addition to such approaches, the concept of muscle
synergy was proposed to examine how the brain could efficiently
command various muscles to produce different movements.
For instances, to understand the posture balancing reaction
of humans on a platform submitted to various perturbations
in the horizontal plane, Torres-Oviedo and Ting (2007) used
muscle synergies between 16 leg and lower-back human muscles.
Muceli et al. (2010) found synergy among 12 muscles of the
upper limb of eight subjects when reaching tasks were performed
in the horizontal plane. To extract muscle synergies, various
approaches can be used such as principal component analysis
(PCA), independent component analysis (ICA) and non-negative
matrix factorization (NMF). Amongst those, Tresch et al. (2006)
considered that the NMF algorithm (Lee and Seung, 2001) was
more physiologically relevant than the others given that a muscle
can only be active at various contraction levels (positive) but
never below rest (negative).

Features of muscle synergies are often used for classification
purposes (Delis et al., 2013). For instance, Naik and Nguyen
(2015) used NMF processed data to classify the finger gesture of
two forearmmuscles. Similarly, Rasool et al. (2016) used forearm
muscles for real-time classification of hand open/close, wrist
flexion/extension and forearm pronation/supination. Antuvan
et al. (2016) used extreme learning machines and muscle synergy
features to classify upper limb postures involved in elbow
flexion/extension and shoulder flexion/protraction/retraction
and rest posture. Muscle synergy has also been applied to
upper limb muscles for proportional control related to prosthetic
applications (Jiang et al., 2009; Ma et al., 2015).

As for our research it is focused on the multifunctional
biceps brachii muscle which is involved in shoulder elevation,
elbow flexion, and forearm supination (Landin et al., 2008;
Jarrett et al., 2012). There is also anatomical evidence to support
its multifunctionality: besides its division into two heads, its
inner surface appears to be further divided into up to six
compartments which are each innervated by a branch of the
musculocutaneous nerve (Segal, 1992)1. Multifunctionality is
also supported by physiological evidence: ter Haar Romeny
et al. (1984) found that during different functional tasks of the
upper limb, motor units of the biceps were activated at different
locations within the muscle, probably due to activity in different
compartments. These individual compartments can then be
considered as muscles within a muscle working together to

1Anatomically, compartments are not unique to the biceps brachii. They are also

present in the deltoid, the pectoralis major and the latissimus dorsi at the shoulder

level (Brown et al., 2007) which are less frequently studied than the biceps.

TABLE 1 | Information on our 12 subjects with their body mass index (BMI) and

mid-upper arm circumference (MUAC).

Subject ID Height

(cm)

Weight

(kg)

BMI MUAC

(cm)

S1 169 50 17.5 23

S2 163 48 18.1 22

S3 167 55 19.7 24

S4 157 52 21.1 25

S5 160 58 22.7 24

S6 172 80 27.0 29

S7 183 70 20.9 28

S8 180 75 23.1 30

S9 170 72 24.9 28

S10 173 77 25.7 28

S11 179 83 25.9 32

S12 183 112 33.4 37

MEAN 171.3 69.3 23.3 27.5

±SD 8.7 18.3 4.4 4.3

accomplish functional roles. This situation is somewhat similar to
the one where anatomically differentmuscles work synergistically
together (Bizzi and Cheung, 2013).

This paper reports on an experimental study where the biceps
EMG signals are the only ones used to identify a static arm
posture, out of five or eight. The study examines how successive
postures could be used to develop a trajectory so as to reach a
specified target in a virtual environment.

MATERIALS AND METHODS

The study was approved by the ethical committee of the Faculty
of Medicine at the Université de Montréal and the 12 subjects
signed a written informed consent form in accordance with
the Declaration of Helsinki. To participate to the project, the
inclusion criteria for each subject were: to be without any known
history of neuromuscular disorders, be right-handed and aged
between 20 and 35 years old; additional personal information is
presented in Table 1.

For each subject, the borders of the biceps brachii were
identified by palpation and the mid-point considered separating
the short head (SH) from the long head (LH). As shown
in Figure 1A, three pairs of surface electrodes were placed
across the SH and two pairs across the LH while a reference
electrode was placed over the acromion. To avoid the muscle’s
innervation zone, the upper row of electrodes was positioned
10mm below the middle of the biceps. Ag/AgCl disc electrodes
of 10mm in diameter (Kendall H69P) were used with a
2 cm vertical and horizontal distance between center to
center distances. Acquisition of the five EMG signals was
done with customized electronic circuits using a differential
amplifier (AD8226, Analog Devices) with a gain of 200. The
amplified signals were rectified with an op amp (TL084,
Texas Instruments), high-pass (6.67Hz) and low-pass (1,240Hz)
filtered. Following the low-pass filter, a second gain of 10
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FIGURE 1 | (A) Five bipolar surface electrodes were placed across the biceps brachii: two over the long head (LH) and three across the short head (SH). (B) Eight

different static postures of the right upper arm were used. They are identified with a 3-tuple system [*,*,*] respectively representing shoulder, elbow, and wrist joints.

For the first * it can be F (flexion) or E (extension) for shoulder joint posture, second * can be F or E for elbow joint posture, and third * can be P (pronation) or S

(supination) for wrist joint posture.

FIGURE 2 | (A) Each of the eight chosen static postures is assigned to a corner of a virtual cube displayed on a computer screen. Each axis of the cube represents

the normalized angular changes at the shoulder, the elbow, and the wrist joint. Experiments were done with the eight illustrated postures and with a subset of five

postures which are identified with a blue font. On the Elbow axis, the distance between 0 and 1 is used as the reference length to which distance, length and diameter

measures are compared. (B) 3D view of the 5 targets within the cube. In each trial, the initial position of the red sphere is in the center of the cube and subjects have

to move it so that it reaches one of the targets, which have a diameter of 0.2 including their grayed surrounding. The red sphere is only a point in the program, but it is

displayed with a given diameter to make it visible to the subjects. (C) 3D coordinates of the five targets.

was obtained using the same TL084 op amp. Following this
analog processing, signals were digitized (2,000Hz, 12 bits)
with a microcontroller (ROBOTIS OpenCM9.04). On an ARM
Cortex-M3 processor (72 MHz clock), a root mean squared
(RMS) function was implemented with a window width of

250ms and a large 70ms step size due to the communication
rate of 15Hz between the microcontroller and a laptop which
hosted the MATLAB software that provided data processing
and a graphical user interface (GUI) for interaction with
the subject.
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FIGURE 3 | Five raw EMG signals from the biceps are smoothed ① with a RMS filter. ② sEMG signals from paired postures are concatenated before extracting

muscle synergy with a non-negative matrix factorization (NMF) program. ③ Cluster mean values of the muscle synergy from pairwise postures are used to train a

classifier. ④ To improve the classification accuracy, the clusters formation is evaluated with the Silhouette clustering index. ⑤ Classification of paired postures is

obtained using the minimum Euclidean distance between them. In stage ⑤ a “winner takes all” method is used to make simultaneous posture classifications. In ⑥, the

virtual cube, a switched system is used to move the red sphere toward a target within the cube.

While seated, subjects had to take one of eight different static
postures (Figure 1B) while facing a computer screen where a
cube was displayed. As shown in Figure 2A, each corner of the
cube was assigned to one of the eight static postures (SP). The
normalized axes of the cube were defined so the [−1 to 1] range
represented the full excursion of the shoulder and elbow joints
which were either extended or flexed and to the wrist joint which
had the hand set either in pronation or in supination. Each
intermediate position in the three axes is interpolated linearly.
The distance measured between 0 and 1 on the vertical elbow
axis is used as the unit against which each trajectory length
and distance is measured within the cube. Before each trial
(Figure 2B) the red sphere was positioned at the center of the
cube and it has to be moved toward one of the targets and touch
its grayish sphere (diameter: 0.2) within 120 s to be a success
otherwise the trial is a failure. The coordinates of each target
are shown in Figure 2C. Each subject made three trials to reach
a target.

Figure 3 presents a flow chart of the MATLAB program used
from EMG pre-processing up to displaying the position of the
red sphere within the virtual cube. An NMF algorithm was
used to extract muscle synergies from pairwise postures as done
previously (He and Mathieu, 2018); details of the method are
presented inAppendix 1, 2. Themuscle synergy is extracted from
concatenated EMG signals of two different postures and since
no labeling information of the data is required, when a muscle

synergy is extracted from concatenated EMG, the classifier
should have the power to detect a difference between each paired
posture. This power is determined by a signal-to-noise ratio
(SNR) where the signal is the difference between paired postures
and noise is the dissimilarity of the clusters associated to each
posture in the pair. The silhouette index of Rousseeuw (1987) was
used to measure the discrimination power of the muscle synergy
(i.e., how easy to identify different clusters). Some details of the
silhouette index are also presented inAppendix 1. In the absence
of a unique solution, the NMF algorithm was applied many times
(n = 30) on the same pairwise posture of EMG data to find the
best solution, as shown in Appendix 2.

For an online classification of the eight SPs of the upper limb,
binary classifiers (Fürnkranz, 2002) were used with a round robin
method (Park and Fürnkranz, 2007) which transforms binary
classifiers into a posture classifier. The number of postures to
be classified is a parameter of the classifier which determines
the number of binary classifiers. With eight static postures, the
number of pairwise posture classifiers needed to obtain a posture
classification is 8 × (8–1)/2 = 28. The governing equation in the
binary classifier is the measured Euclidean distance between the
tested pattern and the learned class reference (equations A1.3,
A1.4 in Appendix 1). In Figure 4, the 21 thin lines connecting
a pair of eight postures represent a trained binary classifier and
the seven thick lines related to the round robin method are used
to identify a posture such as FFS. For the five SP condition (a
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FIGURE 4 | Posture classification example where the maximum number of

paired posture classification is 8*(8–1)/2 = 28. Out of those there are 21 thin

blue lines representing paired posture classifier associated with postures other

than FFS which were taken by a subject. Associated with FFS are seven

paired classifiers (large blue lines) which make correct classification with FFS.

subset of the eight SPs), 10 pairwise posture classifiers are used.
The posture identified with the posture classifier is fed to an
intermittent controller.

Intermittent Controller
For each trial, the initial location of the red sphere is at the center
of the cube and when a first static posture taken by the subject
to reach a target is identified by the classifier (Figure 5), the
intermittent controller (Gawthrop et al., 2011) moves the red
sphere toward the corner of the cube associated to the detected
posture. If the target is not reached, additional posture changes
are produced up to when the target is reached or when a 120 s
time limit expires. Within the intermittent controller a discrete
state switch control is used to compare the new joint posture
with the previous one. Then, the activated joints are only those
where a change had occurred. For example, in a FFS to FEP
posture change, the shoulder joint (first F in both postures) will
be inactivated and the red sphere will move, from flexion (F) to
extension (E) along the elbow axis, and simultaneously on the
wrist axis, from supination (S) to the pronation (P). When a
change occurs simultaneously at the three joints as from EFS to
FEP, the shoulder joint will only be activated and the red sphere
will move, along the shoulder axis from extension (E) to flexion
(F). As for the two other joints, they will remain inactive until the
subject makes another posture change which does not involve
the shoulder joint.

FIGURE 5 | The input of an arm posture classifier is fed to an intermittent controller that determines which switch to close in order to move the red sphere accordingly

with the subject’s posture. The movement of the red sphere in each of the three joint axes is produced with a 2nd order system whose transfer function is given by

Equation 1. The subject used the movement of the red sphere within the cube as visual feedback to produce sequential posture changes, and the objective was to

reach a target in the cube.
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Red Sphere Displacement
The position of the red sphere in the cube corresponds to the
position of the three joints of the upper limb of a subject and a
static posture change is associated with a step function input to a
second-order system and the output is a continuous displacement
of the red sphere toward the appropriate corner. For this second-
order system (Equation 1), the resistance to the movement of
the red sphere is associated with ωn (a large value produces a
larger resisting force to the displacement) and resistance to speed
change of the red sphere is associated with δ (a larger value
produces a larger resisting force). The transfer function of the
second-order system is:

C(s)

R(s)
=

ωn
2

s2+2δωns+ωn
2

(1)

where C(s) is the output to the red sphere and R(s) is a step
function associated with each static posture change made by the
subject. The dynamic parameters of the red sphere’s movement
(ωn = 0.39 and δ = 1) were the same for each subject.
When a new posture is identified while the red sphere is still
moving; the red sphere immediately changed its direction under
the actuation of the intermittent controller. To move the red
sphere anywhere within the cube, at least four static postures
are needed.

Protocol
The day before the experiment, each subject came to the
laboratory to view a short video demonstrating how to produce
each of the eight static postures illustrated in Figure 1B and
during ∼150min, they practiced controlling the movements of
the red sphere. The next day, during the experiment, targets
1, 2, 3, 4 had to be reached in succession with five SPs and
targets 1, 2, 3, 5 with eight SPs. Targets 1, 2, 3 were thus
considered with both the five and eight SP groups for comparison
purposes. Performance of target reaching wasmeasured with four
measures: (1) time in seconds to reach a target; (2) trajectory
length made by the red sphere from its initial position up to
reaching a target, or in a failed trial, up to its end position
when 120 s was reached; (3) number of posture changes taken
to reach a target or to reach the 120 s for a failed trial; (4) the
distance between the red sphere and the target when 120 s was
reached for a failed trial. The Runge-Kutta 4 (RK4) method is
used to obtain the trajectory length of the red sphere, which is
obtained from the cumulative sum of Euclidean distances along
the numerical solutions.

During the classifier training and evaluation, subjects kept
their arm in each of the eight static postures for 10 s, from which
themuscular synergies were extracted for classifier training. Next,
they kept three times each of the five or eight static posture for 5 s,
from which the obtained synergies were compared online with
the trained classifier. For each trial, 30 iterations were produced
by the classifier and a percentage of good classification was
obtained and a mean value obtained for each subject for the five
and eight SPs condition.

The NASA task load index (TLX) survey form (Appendix 3)
was filled by each subject after the experiment. This is a

self-evaluation of six items: mental, physical, temporal demand,
and level of effort, frustration, and performance during the
experiment. That feedback could provide valuable information to
improve the experimental protocol and software programs used
to process the information.

Statistics
A paired t-test was used to compare mean results obtained by
the 12 subjects when five or eight SPs were used. The tested
hypothesis was that with five SPs, the mean classification results
and the number of targets reachedwould be better thanwith eight
SPs because remembering how to reproduce with some fidelity
eight different postures is more mentally demanding than for
only five. Where numbers of subjects were different for targets or
postures (Figures 7, 8), independent sample t-test were used to
test the difference between the compared results. A difference was
considered significant when p < 0.05 and the IBM SPSS Statistics
software was used.

RESULTS

Classification % obtained during the training with five and eight
SPs are shown in Table 2A. With five SPs, the classification
of four subjects was very good (>90%), although it was quite
poor for S12 (31%). With eight SPs, the mean classification
value (of 72 ± 20%) was significantly lower (p = 0.001) than
with five SPs (82 ± 19 %). In Table 2B, each subject’s ratio of
the number of reached targets out of 12 (3 trials × 4 targets)
is presented. It can be observed that a good classification %
in the training session was not always associated with a large
ratio of reached targets. For instance, S2 and S8, who were
among the five subjects with high classification performance,
did not reach a single target in the eight SP condition. As
expected however, S12 with the lowest classification results
could only reach one target with five SPs and 0 with eight SPs
(ratio: 0.08 and 0.00). For the group, the mean ratio of target
reached was higher with five SPs (0.29 ± 0.18) than with eight
SPs (0.24 ± 0.23) but this difference was not significant (p
= 0.281).

Figure 6 illustrates two trajectories of the red sphere which
was controlled by S3 trying to reach target two with five SPs. In
Figure 6A, an example of a failed trial is shown, where in spite
of 72 posture changes made during 120 s, the red sphere was still
at a distance of 0.682 from target two after a trajectory length of
14.72. The same subject was far more successful in another trial
(Figure 6B) where the same target was reached with only four
posture changes within 9 s.

The mean time to successfully reach the targets is shown
in Figure 7A. Target one was the easiest to reach with a
mean time of 38 and 20 s for the five SP and eight SP
condition, respectively, and target three was the most difficult
to reach with 59 and 55 s. These mean values are the results
of significant variations among the subjects and no significant
difference was found between those results. Reaching target
one was achieved with a smaller number of posture changes

2Length is referenced to the 0 to1 distance on the elbow axis (Figure 2A).
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TABLE 2 | (A) In the training session, mean (± SD) classifier accuracy (%) for the 5 and 8 static postures (SP) conditions.

Subjects 5 SP 8 SP Subjects 5 SP 8 SP

Mean ± SD Mean ± SD Ratio Ratio

A B

S5 99 ± 2 87 ± 20 S3 0.67 0.75

S11 95 ± 4 68 ± 35 S8 0.50 0.00

S1 94 ± 6 88 ± 25 S7 0.50 0.25

S2 90 ± 10 83 ± 20 S1 0.42 0.58

S8 89 ± 9 79 ± 21 S6 0.33 0.33

S3 87 ± 14 75 ± 43 S5 0.25 0.25

S4 87 ± 21 90 ± 11 S9 0.25 0.25

S7 87 ± 15 85 ± 13 S11 0.17 0.17

S9 85 ± 15 72 ± 26 S4 0.17 0.17

S10 76 ± 16 64 ± 26 S2 0.08 0.00

S6 60 ± 36 49 ± 45 S10 0.08 0.08

S12 31 ± 45 22 ± 42 S12 0.08 0.00

Mean ± SD 82 ± 19 72 ± 20 Mean ± SD 0.29 ± 0.18 0.24 ± 0.23

Mean values of each subject are obtained from three trials of 5 s in each of the five or in each of the eight static postures. The subjects are sorted from highest to lowest performance

in the 5 SP condition. The difference between 5 and 8 SP results is significant (p < 0.05). (B) Success ratio [number of successful trials over 12 trials (4 targets × 3 times)] by each

subject. The subjects are sorted from highest to lowers performance in the 5 SP condition. S3 was the best performer. Between the 5 and 8 SP results the paired t-test value is 0.28.

FIGURE 6 | Trajectories taken by S3 to move the red sphere toward target 2 in the 5 SP condition. (A) An unsuccessful 1st trial in spite of 72 posture changes where

the final red sphere position after 120 s was at a distance of 0.68 (small black circle) from the target. (B) In the 3rd trial, the target was reached within 9 s with only 4

posture changes.

(Figure 7B) than for the other targets. With eight SPs, a
significant difference was found between targets one and two
and between one and five. For trajectory length (Figure 7C),
a significant difference was obtained with eight SPs between
targets one and three and with five SPs between targets two
and three.

Results for failed trials are shown in Figure 8. In Figure 8A,
it is seen that mean distances separating the red sphere from
target two at the end of 120 s are smaller than those for the other
targets. For the five SP condition the differences are significant
between targets 1 2, 3, and 4 while for the eight SP condition the
difference is only significant between targets two and three.While
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FIGURE 7 | For successful trials, mean results (+sd) of the 12 subjects with 5 (blue bars) and with 8 static postures (orange bars). (A) Mean time needed to reach

each target. Number of subjects who reached a target at least once is shown in white. (B) Mean number of posture changes needed to reach each target. For 8 static

postures, there is a significant difference in the number of posture changes between targets 1 and 2 as well as between target 1 and 5. (C) Mean trajectory length

needed to reach each target. Differences between targets 1 and 3 are significant for 8 static postures as well as targets 2 and 3 for five postures. Significance of

independent samples t-test level is p ≤ 0.05.

mean distance varied between 0.8 and 1.3, the smallest distance
(0.1) was found with five SPs for target two and with eight SPs
for target one and the largest was 0.8 (white number) for the
eight SPs condition at target three. As for the number of mean
posture changes (Figure 8B), they were always smaller with five
SPs than with eight SPs and the only significant difference was for
five and eight SPs at target three. The mean trajectory lengths of
the red sphere (Figure 8C) were all equally elevated for five and
eight SPs.

The results of the NASA task load form are presented in
Table 3. As a group, subjects considered that physical and mental
demands to identify which static posture to choose to move the
red sphere were high (15.3/20 and 14.0/20). As for the temporal
demand, the limit of 120 s appeared adequate and the time spend

in the lab not too long (10.4/20). In general, subjects were not
very satisfied with their performance (7.2 ± 3.7) and somewhat
frustrated (12.8 ± 4.9) from not having reached the targets more
often. At the individual level, the best performer (S3) ranked
both the physical and mental demands at a high 17/20 and
frustration at the highest score of 20/20, for not being able to
reproduce the postures correctly in order to reach more targets.
While S2 got over 80% for the training classifier accuracy results
(Table 2A), this subject could only reach one target (Table 2B).
This subject considered the performance quite low (4/20) and
was very frustrated (16/20). While the other low performer (S12)
missed most of the targets, this subject considered, unexpectedly,
that the experiment was not very mentally demanding and was
not frustrating.
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FIGURE 8 | Results of failed trials. (A) Mean distance (+sd) between the red sphere and a target at 120 s for 5 (blue bars) and for eight static postures (orange bars).

White numbers represent the minimum distance between the red sphere and a target at 120 s. For the 5 SP condition, differences between targets 1 and 2, targets 2

and 3, and targets 3 and 4 are significant. For the 8 SP condition, the difference between targets 2 and 3 is significant. (B) Mean number of posture changes at the

end of each trial. For target 3 the difference between 5 and 8 SP conditions is significant. (C) For each target, the mean trajectory length of the red sphere during

120 s (independent samples t-test significance is p ≤ 0.05).

DISCUSSION

Modern upper limb myoelectric prostheses are now able to

produce many different movements. However, following an

amputation, the number of available muscles to control them

is reduced and strategies to alleviate that shortage have to

be developed. When the biceps brachii is still functional, one

strategy could be the extraction of more than one control signal

from that muscle. To investigate that possibility with non-
amputee subjects, five pairs of surface electrodes were put across

this multifunctional muscle.With two postures for each shoulder,

elbow and wrist joints eight different static postures in the

sagittal plane were used to control the displacement of a cursor

toward different targets placed within a virtual cube. Results were

obtained in two experimental conditions: one with five out of the
eight static postures and one with all eight static postures.

To associate a red sphere direction to each of the eight static
postures, a training phase was used. After having done that with
each subject, we verified the ability of a classifier to correctly
recognize each of the eight SPs. As shown in Table 2A, an
important difference is observed between results of S5 at the top
of the table and S12 at its bottom. Ability to remember how
to reproduce with high fidelity five or eight different static arm
postures was thus quite variable among our subjects. With, a
group mean value with five SPs being significantly larger than
with eight SPs (p = 0.001), this confirms that remembering how
to duplicate five postures is significantly easier than duplicating
eight SPs.
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TABLE 3 | NASA task load index (TLX) rates six factors (left column of the table)

that are used to assess the subjective workload associated with the experiment.

TLX Mean ± SD

(n = 12)

Best

performer

(S3)

Lowest

performer 1

(S2)

Lowest

performer 2

(S12)

Physical demand 15.3 ± 2.8 17 14 13

Mental demand 14.0 ± 3.6 17 15 9

Temporal demand 10.4 ± 6.0 11 14 13

Own performance 7.2 ± 3.7 15 4 5

Own frustration 12.8 ± 4.9 20 16 8

Own effort 12.4 ± 3.4 15 13 11

The three top factors are related to constraints associated with the tasks to be realized

(demand) and the three bottom factors are related to the feelings associated with those

tasks (own). Each factor is scaled from 0 to 20: higher values represents higher demand

or higher performance. Mean values of the 12 subjects are shown in the second column

of the table. Individual results are shown for the best performer and for the two lowest

performing subjects.

Since the classifier accuracy of the above results were obtained
online, no data was available for an offline cross-validation.
However, the classifier training was with unsupervised synergies
and their features formed non-overlapping clusters. Thus, the
discrimination capacity of the learned linear classifier is not an
important concern since the receiver operating characteristic
curve (ROC) of those features always occupies the upper
half triangle. However, it is still possible that when a subject
chooses a static posture, a misclassification occurs, causing the
cursor to move in an unexpected direction, which is confusing
for the subject. To prevent such situations, the use of a
sparse representation of the classified postures as proposed by
Betthauser et al. (2018) has to be added to our programs.

From the starting position of the red sphere (Figure 2B),
targets one and five (which are located near a corner of the
cube) could easily be reached by taking the FFS or EFS posture,
respectively because the initial posture that starts the movement
of the red sphere actives movement in all three joint axes toward
the corner corresponding to that posture. Those easy reaching
strategies were used by only few subjects. Targets located at a
distance from a corner were more difficult to reach since different
postures had to be sequentially taken to reach them.

Among the eight SPs, different subsets of five postures could
have been chosen. The present choice was based on the main
contribution of the biceps to the elbow flexion and forearm
supination. As for the low mean target reaching ratios (<0.30,
Table 2B) and especially for subjects S2 and S12 who reached
only one target over 12 trials with five SPs and 0 targets with
eight SPs, classification accuracy could be improved by replacing
the present classifier by a support vector machine or an artificial
neural network classifier. Also, the short training period the
day before the experiment could be replaced by more training
sessions as illustrated by one person of the lab who, having
repeated the protocol four times, reached a 90% success rate with
five SPs and 58% with eight SPs (unpublished results).

Classification results could also be improved by the addition
of anatomical information on the biceps when the upper limb
is in different postures. With an ultrasound probe placed at
the biceps level where recording electrodes had been previously
placed, changes in its shape and displacements relative to the skin

surface were observed (unpublished results). In the future, with
ultrasound images obtained before an experiment, position of the
electrodes over the biceps could be optimized.

From the results of the NASA task load index, physical
and mental demands have the highest scores indicating that
our present approach to reach targets is not very intuitive.
The difficulty of controlling their prostheses frequently leads
amputees to leave them in a closet. Thus, it is suggested to replace
the step by step cursor control of a red sphere in a virtual cube
by a more realistic situation where the biceps’ synergy would
control a small humanoid robot for reaching objects within an
arm’s length. This would be a more realistic situation to the
one shown in a video where the experimented person of the lab
controlled a small humanoid robot arm with muscular synergies
of the biceps (http://www.igb.umontreal.ca/).

CONCLUSION

We present a proof of concept that the muscular synergy
extracted from a single muscle, the biceps brachii, could facilitate
the control of an upper limb prosthesis. This was demonstrated
by collecting five surface EMG signals of the biceps of 12 normal
subjects who put their arm in eight different static postures. Using
a non-negative matrix factorization program, three muscular
synergies were extracted and following a training session, a
classifier could identify each of those eight postures. Then, within
a virtual cube displayed on a screen, subjects could, with five
and eight different static postures, move a red sphere toward
the targets. The number of targets reached was higher with five
choices of posture than with eight choices. The reasons for a low
mean number of reached targets (around 30%) were a lack of
training of our subjects before the experiment and a classifier that
was not lenient enough.While the biceps may not be available for
above elbow amputees, a muscular synergymay then be extracted
frommuscles near the shoulder such as the deltoid, the pectoralis
major and the latissimus dorsi, which are also multifunctional.
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This paper presents a feature classification method based on vision sensor in dynamic

environment. Aiming at the detected targets, a double-projection error based on orb

and surf is proposed, which combines texture constraints and region constraints to

achieve accurate feature classification in four different environments. For dynamic targets

with different velocities, the proposed classification framework can effectively reduce

the impact of large-area moving targets. The algorithm can classify static and dynamic

feature objects and optimize the conversion relationship between frames only through

visual sensors. The experimental results show that the proposed algorithm is superior to

other algorithms in both static and dynamic environments.

Keywords: feature target, classification, dynamic environments, SLAM, re-projection error

INTRODUCTION

Simultaneous localization andmapping (SLAM) is a basic problem and research hotspot in the field
of mobile robot research (Klein and Murray, 2007; Mur-Artal et al., 2015; Mur-Artal and Tardos,
2016; Saeedi et al., 2016). It is also one of the important conditions for mobile robot to realize
autonomous navigation. The existing SLAM algorithm is mainly applied to static environment
(Wen et al., 2015). However, the real environment is complex and changeable, such as people
walking, door switching, changes of lighting, etc. They will bring unpredictable noise for modeling
and positioning of the environment, so the existing SLAM algorithm is not very suitable for
dynamic environment.

There are three main problems for SLAM of mobile robots in dynamic environment: SLAM
solution, data association, and dynamic target processing.

For processing dynamic targets, there are some methods with good robust performance. For
example, detected dynamic points and uncertain points regarded as abnormal points are discarded
(Saeedi et al., 2016). But the traditional SLAM algorithm will result in a large deviation or even
failure when the moving object is too large and the moving speed is too fast or too slow.

So, this paper studied detection method of the target with different speed and different size in
dynamic environment. The feature targets are classified and the relationship between frame and
frame is optimized only by a visual sensor. The classification method proposed in this paper can
adapt all kinds of dynamic environment, and it can process for dynamic objectives with different
speed and reduce the impact of moving objects with large area. The visual sensor can be used in
hand or in different platforms.
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The proposed algorithm in the paper can be applied to
the following field: wearable equipment, intelligent mobile
terminal equipment, micro-aircraft, and intelligent robots. In
the paper, a novel second re-projection error algorithm based
on the texture detection is proposed. The texture detection
is integrated into a target classification algorithm, which can
optimize the re-projection error algorithm. The main idea of
the re-projection error algorithm is that the projection point
should be moved away from the corresponding feature point
when dynamic feature point of the previous frame is projected
onto the current frame image. For static feature points, this
re-projection error should be small. In addition, the texture
detection proposed in this experiment mainly adopts the idea
of interframe difference. According to the different attributes
of static and dynamic feature targets, the continuous frame
information of the environment is scanned and captured by using
the visual sensor, and the difference and weighted information
is used to complete the target detection. In the paper, the two
algorithms are optimized and fused with the corresponding
constraints, which can realize the classification of static and
dynamic feature target points and the optimization of the
relationship between frame and frame. In order to verify the
real-time and validness of the proposed algorithm, the ORB and
SURF feature algorithms is used to extract the environmental
information. The experiments are done under four different
dynamic environments, including near distance targets under
static background, far distance targets under static background,
one dynamic target under dynamic background and multiple
dynamic targets under dynamic background. The experiment
results show that the proposed targets separation method of
the feature points integrated with the texture detection in this
experiment can successfully separate dynamic targets from static
targets based on ORB and SURF feature extraction methods
under four different dynamic environment. It can also complete
the optimization of the relationship between frame and frame.
The proposed separation method of the feature points in the
paper can obtain good effect in different dynamic environments.

The remainder of the paper is organized as follows. In section
Related Work, the background studied in this paper and related
work are introduced. The overview of the system is presented
in section System Overview. The static feature detection and
pose optimization algorithm proposed in the paper are detailed
in section Static Feature Detection and Pose Optimization. The
realization of dynamic target detection algorithm is introduced in
section Constraint. In section Experiment Results, experiments
and results in different environment are given. Concluding
remarks are given in section Conclusion and Future Work.

RELATED WORK

Moving object detection is one of the hotspots in machine
vision research (Zhang et al., 2014, 2016; Choi and Maurer,
2016; Naiel et al., 2017). Fischler and Bolles (1981) proposed a
paradigm for model fitting with applications to image analysis
and automated cartography. According to the status of a camera,
it can be divided into the static background detection and
the dynamic background detection. In the static background

detection, the camera is always stationary, so the moving target
detection is easy. It has been widely used in scene monitoring
of fixed environment, such as factory, road, and airport. The
common background models have an adaptive background
model based on the kernel density estimation, the Gaussian
background model and the hidden Markov background model.
In the dynamic background detection, the position of the camera
changes, which can result in the change of the background
and object in the image at the same time. So it increases
the difficulty of moving target detection, which is the focus
of the current research for moving target detection. There are
three main categories about dynamic background detection of
moving objects (Xu et al., 2011; Yin et al., 2016): optical flow,
background comparison, and interframe difference method. For
the optical flowmethod, because the background and the moving
speed of the detected target is different, it can result in a large
difference in optical flow. So moving objects can be identified
according to it. The calculation of the optical flow is large,
and there exists pore size problem. The comparison method
of the background adopts image registration to dynamically
update the background model, and it can compare the actual
image with updated the background model to obtain the moving
target. The interframe difference method is used to register the
background of several successive images. The target detection
is transformed into the moving object detection problem in the
static background, and the moving object is separated by the
difference image of the front and rear frames. The background
image registration method includes texture algorithm, Fourier
transform method, and feature matching method (Naiel et al.,
2017). The feature matching method is simple and fast, but the
matching error of the existing matching method is influenced by
the changing environment.

Some previous research didn’t consider the dynamic scene,
and the detected dynamic or uncertain points were discarded as
abnormal values (Williams et al., 2007; Paz et al., 2008; Liang
and Min, 2013; Zhang et al., 2015; Zhou et al., 2015). However,
when some of the dynamic objects are large, they would have
large error, or even failure. In the dynamic environment, the
existing research mainly adopts the filter approach (Hahnel et al.,
2003) and has been successfully applied to solve the problems of
SLAM based on laser scanner and radar system, but the research
of applying to visual SLAM is seldom studied. Fang et al. (2019)
detect and recognize the target through visual tactile fusion. Gao
and Zhang (2017) explains the basics of SLAM. In Chen and Cai
(2011), the visual sensor and the radar were used to detect the
dynamic object. The uncertain factor is detected by using the
eight-neighborhood rolling window method based on the map
difference method. But the long-time static target is difficult to
be detected out accurately. Zhang et al. (2018, 2019), Afiq et al.
(2019) applied dynamic target detection to crowd action and
emotion recognition. In addition, the lack of laser radar can bring
instable judgment for some obstacles with special material (such
as glass doors), which can affect the accuracy of themap (Einhorn
and Gross, 2015), achieved estimation tracking of the dynamic
object by combining the normal distribution transformation with
the grid map. But there are some restrictions on the scope of
adaptation. In Sun et al. (2017), a novel movement removal
method based on RGB-D data was proposed, which enhanced
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the application in dynamic environment. The work of Lee and
Myung (2014) and Wang et al. (2016) used the posture structure
diagram and the RGB-D sensor to complete the detection of
the low speed target, and re-optimized the structure of posture
to obtain the corrected location and mapping results. These
dynamic separation methods are still not suitable very well for
the detected target with speed and volume. And the judgment
is still not accurate enough or they require a high economy. In
Zou and Tan (2013), the cooperation of multiple cameras is used
to detect dynamic points. The separation between static feature
points and uncertain points is made by a camera at first. Then
multiple cameras are used to further determine the uncertainty
points. The method reduces the impact of the large-scale moving
objects on the system, and it is suitable for high dynamic object.
The method proposed in this paper is based on Zou and Tan
(2013).

In this experiment, a camera is used to solve classification
problem of the feature points. Comparing with other sensors,
the camera is passive, compact, and energy-saving. It has an
important advantage for intelligent platforms with limited weight
and energy capacity. The proposed algorithm in this experiment
can achieve the detection classification of the moving objects
with different speeds in a variety of complex environment,
and complete the pose transformation optimization only by a
visual sensor.

SYSTEM OVERVIEW

In this experiment, a visual sensor can be used to obtain the
environment information. The frame image obtained by the
visual sensor is regarded as the input of the whole system
framework. By calculating the transformation matrix between
frame and frame, the dynamic feature points and static feature
points are finally judged by the re-projection error. The
framework of this system is divided into three parts shown
in Figure 1. The first part is the initialized process, in which
the feature of each frame image is extracted and the image
relationship between frame and frame is calculated. The feature
extraction of image frames has twomethods. One is SURF feature
extraction (Bay et al., 2006). SURF algorithmwith robustness and
fast speed is an enhanced version of the SIFT algorithm (Lowe,
2004). The other is ORB feature extraction algorithm (Rublee
et al., 2011), which combines the FAST feature detection method
with the BRIEF feature descriptor. It improves and optimizes
the original two algorithms. It has a invariable scale, and the
speed is faster 10 times than SURF. Different feature extraction
is chosen according to the different scenes. After obtaining
the feature points, the feature points can be matched by the
existing Brute Force method. The matched result is passed to the
homography matrix frame to obtain the transformation relation
between frame and frame. By this transformation relation, the re-
projection error is calculated to obtain an initialized static feature
point and dynamic feature point. And the next two parts is based
on the initial work.

In the paper, the dynamic and static region constraintmethods
are proposed for different feature attributes, and the texture
detection is incorporated to realize screening data. The re-
projection error method is used again when the dynamic feature

point is judged, which is also the second re-projection error
method proposed in this paper. It can realize the classification
of dynamic target and the relationship optimization between
frame and frame. The second part is filtered out static point
in the second frame and the static region constraint is used
to reduce false matching. The second judgment based on the
texture detection is used to process the determined static point,
which can achieve the separation of static points finally. After
the separation of the static points, the exact static matching
point is given to the homography matrix again, and then
an optimal relation matrix between the frame and frame is
obtained. Through this relation matrix, the uncertain points can
be judged twice. The results will be used in the third part of
the system. Thus, the separation of static points, the relationship
optimization between frame and frame and the second judgment
of uncertain points are finished, which realizes a rough judgment
for the dynamic points. The third part is the separation of the
dynamic feature points. The main modules are divided into
dynamic region constraints and double texture detection fusion.
Although the dynamic points and static points separation have
the similar principle, the means of implementation are different.
In the next section, the principles, methods, and parameters of
each frame will be introduced.

STATIC FEATURE DETECTION AND POSE
OPTIMIZATION

For each frame of the image, dynamic points and the static points
from background image are distinguished. Because of the change
of the three-dimensional position of the dynamic feature point,
the projection point should be far away from the corresponding
feature point when dynamic feature point of the (n-1)th frame is
projected onto the nth frame picture. For the static feature point,
the re-projection error should be small. Based on this principle,
an algorithm is designed to distinguish dynamic feature points
from static feature points.

Initialization
The first step of the proposed algorithm is the initialization
process. The image feature of each frame is extracted by using
the ORB and SURF feature extraction algorithm, respectively,
under a variety of complex environment. For the both methods,
the feature points extracted using ORB are less than that of
SURF but the speed is faster. The two extraction methods can
be selected according to application background and real-time
requirements. The extracted feature points are used as the data
source for the whole system. These data can be analyzed and
the dynamic feature points and the static feature points can
be distinguished.

Firstly, after extracting the image feature information of each
frame, the data association of the adjacent frame is realized by
using the existing matching algorithm, that is, the corresponding
feature points between the two frames are found. For example,
there is the feature pointA in the (n-1)th frame, then the position
of A will be at the position of the feature point B in the nth frame
after one frame changes, which is shown in Figure 2. Although
there exits the mismatching result, the matching result is not
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FIGURE 1 | System structure.

FIGURE 2 | The corresponding feature.

FIGURE 3 | The re-projection error.

processed here. The result is directly passed to the homography
matrix. According to P2 = HP1, homography matrix between
two frames is obtained easily by using RANSAC.

Then the static feature points and the dynamic feature points
obtained by Brute force method will be separated by using the re-
projection error method. The re-projection error is shown in the
Figure 3. Its expression is as follows.

d
(

x, x̂
)2

+ d
(

x′, x̂′
)2

(1)

According to the re-projection error, the feature points extracted
from the (n-1)th frame are projected onto the nth frame
image, and the distance between the corresponding point and

the projection point of the (n-1)th frame image at the nth
frame image is compared. The feature point obey the Gaussian
distribution. The Mahalanobis distance between the projection
point and the corresponding point is less than a certain value.
If the feature point is greater than the Mahalanobis distance, this
feature point may be a dynamic point or a mismatch point, which
is called an uncertain point. If the feature point is less than the
Mahalanobis distance, this feature point may be a static point.
It will be regarded as an initial value of a static point which is
prepared for the next step. So the whole initialization process is
completed, and the process is shown in Table 1.

Texture Constraint
In adjacent frames, the static point and its re-projection point
change very little, and the texture difference is very small, while
the dynamic point and its re-projection point change greatly, and
the texture difference is large.

The interframe difference method is used to register the
background of several successive images, compensate the
difference of moving background. The problem of target
detection is transformed into the problem of moving target
detection in static background, and the moving object is
separated by the difference images of adjacent frames. Let the
binary image Ik−1(x,y) and Ik(x,y) be the registered image of
the two adjacent frames, and the binary image of the moving
object can be obtained by processing the interframe difference
and threshold.

dk−1,k

(

x, y
)

=

{

1,
∣

∣Ik
(

x, y
)

− Ik−1
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x, y
)∣

∣ > T
0, otherwise

(2)
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TABLE 1 | Initialization process.

Initialization process (dynamic feature points, static feature points, the

relationship between frame and frame)

Feature point extraction: keypoints_1,keypoint_2

Feature descriptor: descriptors_1,descriptors_2

Feature matching by Brute Force method: good_matches

The Homography matrix is obtained by giving the matching result to the

Homography matrix frame: Initial_H

Initial_H(that is, the relationship between the frame and the frame is initialized)

To find the projection point by H

Compare the projection point with the corresponding point of Maha distance: diff

Define an error threshold: θ

For i=1: diff.rows

If (diff < θ )

The feature point is a static point

—>initial_S_point

Else

The feature point is the dynamic point

—>Initial_D_point

End for

Theoretically in the difference binary image dk−1,k(x,y), only
the pixel position in the area covered by the moving object
is not zero. However, in practice, because there exist high
frequency noise, illumination change and the subtle change of the
background in the image and registration will also cause errors
at the same time, many pixels are non-zero in the binary image
besides moving objects, that is, there exist noisy points. And the
method can only segment the contours of the moving objects.

In this paper, frame difference method is used to complete the
texture constraint of feature points. The collected picture is RGB
three-channel map, the texture constraint will be completed by
using three-channel (RGB). The two adjacent frames are sampled
in three channels, and the different weighted processing is used
according to the sensitivity of each channel. The weighting ratio
is set to be 1 and sum operation is done. Let the threshold value be
T. If the value of three-channel doing the difference and weighted
summing is greater than this threshold T, it demonstrates that
the two points do not correspond to the same point. Otherwise,

f (Pn, Pn−1) =

{

Correct correspondence |un − un−1|< θUmax and vn − vn−1|< ηVmax

Error correspondence otherwise
(5)

the two points correspond to the same point. The equation is
as follows.

dn(x, y) = α(|Rn(x, y)− Rn−1(x, y)|)+ β(|Gn(x, y)

−Gn−1(x, y)|)+γ (|Bn(x, y)− Bn−1(x, y)|) (3)

α + β + γ = 1 (4)

If d < T, it means that the two points correspond to the
same spatial point, and vice versa, it means that the two points
correspond not to the same spatial point. Where dn is the texture
error of two frames, α,β,γ are the weight parameters.

The original frame difference method is no longer used
to traverse the whole image pixel, but the feature point.

FIGURE 4 | Area constraint diagram.

Compared with million pixels of each frame, the feature
points are only a few thousand or hundred of feature
points, the amount of the calculation is greatly reduced.
So the designed texture constraints can be integrated
into the feature point classification system proposed in
this paper.

Area Constraint
In order to reduce the mismatch, a region constraint method
is designed based on the principle of the constraint line in
this paper (Zou and Tan, 2013). Block constraint is mainly
used. Assume that there are two candidate points on the
nth frame image corresponding to the (n-1)th frame image.
In this paper, a constraint window is set, which is shown
in Figure 4.

When v and u are in the same window, v and u are matched

each other. When k is beyond this window, k and u do not

match. In order to adapt a variety of environment, the size of
this active window is changed. It not only improves the accuracy

of matching, but also ensures the matching points not to be too
sparse. The difference square of the pixel coordinates u and v

between each matching point of the adjacent image frame are
solved when a window is created. Because the difference between
the matching point may be negative, the square operation is
added. The maximum square of difference value between the
adjacent frame u and v is obtained by traversing the image
frame, respectively. The active window with region constraint
is built by obtaining the maximum value, and the length
and width of the window are determined by the maximum
value of u and v, respectively. The expression is as follows:

Where Pn(un,vn) and Pn−1(un−1,vn−1) are the corresponding
points between the adjacent frames, Umax and Vmax are
the square of the maximum difference, θ and η are the
proportional coefficient. In Equation (5), a window with
length Umax and width Vmax is established which realizes
the region constraint for the matching point. Here, the size
of the active window is automatically adjusted according to
corresponding points between frame and frame influenced by
the noise, while the proportional coefficient is set in order
to ensure the sparseness between frame and frame. So the
whole system automatically adjusts the size of the window in
different environment, which can ensure the adaptability of
the system.
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TABLE 2 | The steps of the static target processed.

The separation process of static feature points

Initialize static feature points: Initial_S_point

Static Constraints:

Set up θ , η

Traverse the image Umax, Vmax

For i=1: matches.size()

If the difference square of the adjacent coordinate

points

XX2
<θUmax,YY

2
< ηVmax

Two points correspond

Generate a new match pair: matches1

Else

If two points are mismatched, eliminated

End if

End for

Texture Constraints:

Set up α,β,γ

Traverse the image to get the texture error dn
For i=1: matches.size()

If dn <T

Two points correspond

Generate a new match pair matches2, get the

final static feature point

Static_point

Else

If two points are mismatched, eliminated

End if

End for

The final static match point is given to the homography matrix

Perform RANSAC algorithm

Get the conversion relationship between frame and frame Homography

Static Feature Detection
According to the initialization process in section Initialization,
the initial homography matrix H, the initial static points and the
uncertain points can be obtained. In this section, the initial static
feature points are filtered by using the proposed method. The
spatial position represented by the static point does not change,
so the interference is very small in the short frame time. The
change of three color channels is also very small, so the judgment
is more accurate. The overall process of the static target is shown
in Table 2.

First, the initialized static point is used as input. Because the
attributes of static features do not change much, the static region
constraints are combined with the region constraints module
in section Initialization. And the region constraint window
is relatively small, which is more accurate for mismatches.
However, there are still some mismatches, and the screening
results can not meet the actual requirements. Therefore, this
paper introduces the method of texture constraints.

The three color channels can greatly reduce the error caused
by illumination because of the change of pose. Secondly, the
whole frame is processed by a frame and a frame. The pose of
the static target is changed a little in the view angle. So the texture
constraint is added, which can greatly reduce the mismatching
result. According to the two screening steps proposed in this
paper, a set of accurate static feature points can be obtained.
Then the extraction of static feature points is completed. The
extracted static points can be pass to the homography matrix

FIGURE 5 | Double texture.

again and the homography matrix is solved by the RANSAC
algorithm. In this case, the homographic matrixH can accurately
express the transformational relation between the two frames,
and the homographic matrix can be decomposed to obtain the
transformation matrix R and translation matrix T between the
frame and frame. It can achieve the function of visual odometer.
But in this experiment, only the change of the relationship
between the two frames is needed, so the homographic matrix
H doesn’t need to be decomposed. The homography matrix
obtained again will be used in the dynamic target separation.

CONSTRAINT

Double Texture Constraint
The texture problem of dynamic feature points is different from
that of static feature detection. Each dynamic point has two
points, one is the projection point, the other is the matching
point. In Figure 5, i is a dynamic feature point, then j is the point
which i is projected by the homography matrix in section Static
Feature Detection, and p is obtained by descriptor matching of
the adjacent two frames.

In the two frame images, i and j correspond to the same spatial
position. The dynamic point i is moved from the projection
position j to p. The difference between i point of the (n-1)th frame
and the p point of the nth frame is small, while the difference
of the texture between the i and j points is very big (although
sometimes the background is similar to the texture of the moving
object). According to this principle, a double texture constraint
is designed to separate dynamic feature points by the texture
constraint in section Area Constraint.

According to section Texture Constraint, the first texture
constraint is the same as the static texture constraint, and
the texture check between matching points is done. In the
second texture constraint, the texture constraint between the
re-projection points is compared. The expression is as follows.

ddn = α(|i(x, y)− j(x, y)|)+ β(|i(x, y)

−j(x, y)|)+γ (|i(x, y)− j(x, y)|) (6)

f
(

x, y
)

=

{

Dynamic point dn < T and ddn > T
Error correspondence otherwise

(7)

Where ddn is the dynamic texture error of two frames, f(x,y)
completes the judgment of the nature of the point (x,y).

In Figure 7, j(x,y) is the projection point of the previous frame
image i(x,y), where the coordinates j can be calculated from the
obtained homography matrix. Other parameters can be given by
static texture constraint.
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TABLE 3 | The separation process of the dynamic target.

The initialization process of the feature points

Initial value: ID_point Homography

Second re-projection error

Double texture constraint

Set up α,β,γ

Traverse the image to get the texture error dn,ddn
For i=1: matches.size()

If dn<T and ddn>T

Get the final static feature point Dynamic_point

Else

If two points are mismatched, eliminated

End if

End for

Dynamic Detection
This section will introduce the separation of the dynamic feature
points. The initialization of the dynamic feature points can be
obtained by the initialization process in section Initialization,
and the homographic matrix H between frame and frame can
be obtained by separating the static feature points. The two data
sets are regarded as the input values of the dynamic separation.
The initial dynamic points contain the dynamic points and
the mismatch points. In this paper, the mismatch points will
be filtered by the proposed method in section Double Texture
Constraint and the accurate dynamic points are separated. Firstly,
uncertain points can be filtered out by the second re-projection
error method proposed in this paper. The accurate dynamic
feature points can be obtained because the filtering is performed
by an accurate homographic H. But the accuracy is not good
enough to cause the converge. So a dynamic region constraint
method similar to the static region constraint is introduced.
But the dynamic feature points in the actual space will change
greatly, so the ratio parameters of regional window will be
changed greatly. Otherwise the real dynamic feature points will
be regarded as mismatch points and removed, and the separation
of dynamic points can not be completed. The size of the window
is decided by the distance of all dynamic feature points, which
can ensure a certain number of dynamic points. Some of the
dynamic points that does not meet the region are removed by the
constraints of dynamic region, but some of the error points are
still retained. According to the dual texture constraint method
in section Double Texture Constraint, the three color channels
are performed weighted constraint at the same time. Uncertain
points and their own projection points are compared with the
texture of the corresponding point. This method can realize the
interaction of features and texture, and achieve the separation of
dynamic feature points. The process is shown in Table 3.

Both the separation of the static points in section Static
Feature Detection and Pose Optimization and the separation of
the dynamic points in section Experiment Results use the region
constraint and texture constraint. Although the two separation is
similar in principle, the implementation method is different. The
two constraint methods in the static region play an important
role, while the filtering effect of the region constraint in the

FIGURE 6 | Bumblebee binocular camera.

dynamic separation is not obvious, which is mainly caused by the
attribution of the dynamic points. Because the feature matching
coordinate is computed by the two constraint methods and the
descriptor is not involved, so the computation time is not long.
The experiment will be performed in the next section.

EXPERIMENT RESULTS

The computer operated in the experiment is Windows 64-bit,
operating system AMD A6-6400 APU with Radeon (tm) HD
Graphics (3.90 GHz), 4GB RAM. The visual sensor in this paper
is used Bumblebee binocular camera shown in Figure 6. Please
note that Bumblebee has two cameras, but only one of them is
used in the experiment.

The frame sequence of the environment is obtained off-line.
The resolution of the frame image is 1,024 × 768, 15 frames/s.
The obtained image frame is directly used in the experiment.
Four experiment scene is designed to test the effect of the
extracted feature by using the proposed method based on ORB
and SURF. The blue dot in the experiment represents the static
points obtained by the experiment and the red dot represents the
dynamic points, which are shown in the video.

Experiment 1: An object with a large area moves in a static
background. In the experiment, the camera keeps stationary,
that is, the environment background does not change, and the
person moves as a dynamic target at a relatively close distance of
the camera, the close distance is within 1m. In this scene, the
classification effect of the environment feature is tested by the
proposed method in this paper when the object with a large area
(the object with a large area is the person in this experiment)
moves close to the camera.

In Figure 9, the image on the left is the experiment result
of the classification by using the proposed method based on
ORB, and the image on the right is the experiment result of
the classification by using the proposed method based on SURF.
At the same time, the average consuming time of each step
is summarized, which is shown in Table 4. The extraction of
the environment feature is completed by using the second re-
projection error integrated with the texture detection based on
ORB algorithm and SURF algorithm. The experiment results
show that the two proposed methods in this paper can complete
the Feature classification of the environment feature. Table 4
shows the speed of the feature classification by using the second
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TABLE 4 | The experiment 1 results using the proposed method based on ORB

and SURF.

Time (ms/frame) Feature point

extraction

Feature point

matching

Feature

classification

ORB 527.17 26.57 10.96

SURF 8378.05 422.55 24.88

FIGURE 7 | An object with a large area moves close to the camera in the

static background. (A) The proposed method based on ORB. (B) The

proposed method based on SURF.

FIGURE 8 | Multiple moving objects with far distance in a static background

(1). (A) ORB method. (B) SURF method (One student). (C) ORB method. (D)

SURF method (One student).

re-projection error integrated with the texture detection method
based on ORB is much faster than that of the proposed method
based on SURF. However, Figure 7 shows the classification error
by using the proposed method based on ORB is smaller than that
of the proposed method based on SURF.

Experiment 2: Multiple objects in the far distance move
in a static background, the far distance is about 5–8m. The
longest distance in the experiment is about 8 meters, which
can ensure the experiment effect. In the experiment, the
camera remained stationary, so the environment background
also remains stationary. Four students in the far distance walk
through the camera in turn, while the camera collects the

FIGURE 9 | Multiple moving objects with far distance in a static background

(2). (A) ORB method. (B) SURF method (Three student). (C) ORB method. (D)

SURF method (Four student).

TABLE 5 | The experiment 2 results using the proposed method based on ORB

and SURF.

Time (ms/frame) Feature point

extraction

Feature point

matching

Feature

classification

ORB 794.78 26.46 9.86

SURF 8229.56 362.00 23.24

dynamic scene with far distance from one dynamic object to
multiple dynamic objects. When the crowd has displacement
in the plane direction of the camera, the effect of this method
is acceptable, but when the direction of crowd movement
is perpendicular to the camera, the moving person may be
misjudged as a static point.

Figures 8A,C, 9A,C are the experiment results in the far
distance from one dynamic object to multiple dynamic objects by
using the proposed method based on ORB. Figures 8B,D, 9B,D
are the experiment results in the far distance from one dynamic
object to multiple dynamic objects by using the proposedmethod
based on SURF. At the same time, the average consuming time
of each step is summarized, which is shown in Table 5. The
experiment results demonstrate that the proposed method in
this paper can realize the feature classification whether or not
there exist one or multiple moving objects with far distance in
a static background. And Table 5 shows the speed of each step
for Experiment 2.

Experiment 3: An object with a large area moves in a dynamic
background. The pose of the camera changes when the camera
extracts the frame image. The camera and the moving object can
move without the limitation of position and speed.

The experimental results are shown in Figure 9.
Figures 10A,C are the experiment results of the classification by
using the proposed method based on ORB, and Figures 10B,D
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FIGURE 10 | One object moves close to the camera in the dynamic

background. (A) ORB method. (B) SURF method. (C) ORB method. (D) SURF

method.

TABLE 6 | The experiment 3 results using the proposed method based on ORB

and SURF.

Time (ms/frame) Feature point

extraction

Feature point

matching

Feature

classification

ORB 627.58 24.47 84.03

SURF 7767.62 265.42 106.13

are the experiment result of the classification by using the
proposed method based on SURF. The Figures 10A,B are the
results of the initial state of the environment by using the
proposed method based on ORB and SURF in this paper. At
the same time, the average consuming time of each step is
summarized, which is shown in Table 6. The experimental
results demonstrate that both of the methods can identify the
static point. Figures 10C,D is the experiment results of one
dynamic object by using the proposed method based on ORB
and SURF in the paper. Both of the two proposed methods
based on ORB and SURF can successfully identify the static
and dynamic feature points. Figure 10 shows the classification
feature by using the proposed method based on SURF is more
than that of the proposed method based on ORB. And Table 6

shows the speed of the feature classification using the two
proposed methods based on ORB and SURF.

Experiment 4: Multiple objects in the far distance move in
a dynamic background. The pose of the camera changes when
the camera extracts the frame image. The camera and all the
moving objects can also move without the limitation of position
and speed.

The experimental results are shown in Figure 11. Figure 11A
is the experiment result of the classification by using the
proposed method based on ORB, and Figure 11B is the
experiment result of the classification by using the proposed

FIGURE 11 | Multiple moving objects with far distance in a dynamic

background. (A) ORB method. (B) SURF method.

TABLE 7 | The experiment 4 results using the proposed method based on ORB

and SURF.

Time (ms/frame) Feature point

extraction

Feature point

matching

Feature

classification

ORB 645.76 24.60 91.87

SURF 10052.98 512.76 131.22

method based on SURF. At the same time, the average
consuming time of each step is summarized, which is shown
in Table 7. Figure 11 shows the experiment results show that
both of the two proposed methods can complete the feature
classification of the environment. However, Table 7 shows the
speed of the classification by using the second re-projection
error integrated with the texture detection method based on
ORB is much faster than that of the proposed method based
on SURF.

The experiments show that the feature points can be classified
accurately for one object or multiple objects whether or not in the
static environment or in the dynamic environment.

In addition, the number of static points and dynamic points
are counted based on the classification of each frame image in
experiment 2 (shown in Figure 12) and experiment 4 (shown
in Figure 13). The consumed time for each frame classification
algorithm (excluding feature extraction and matching time) is
also compared. Here the time of the feature points processed is
considered because the classification algorithm is proposed in
this paper. Feature extraction and matching are the application
of existing methods. At the same time, the average consuming
time of each step in experiment 4 is summarized, which is shown
from Table 4 to Table 7. Then the real-time performance of the
four environment by using the proposedmethod in the paper can
be compared.

In Zou and Tan (2013), the KLT tracker is used to complete
the feature extraction by using multiple visual sensors. And
the feature classification is realized by using the re-projection
error under the GPU acceleration, which is more suitable for
the feature detection of the high-speed dynamic environment.
The results in Zou and Tan (2013) is shown in Figure 14. This
paper is based on the study of Zou and Tan (2013). Different
from Zou and Tan (2013), this paper only uses a sensor to
achieve the feature classification, which is more practical and
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FIGURE 12 | The number of feature points of multiple moving objects in the far distance and the time of each frame in the static background. (A) The classification

number of the static and dynamic points based on ORB. (B) The classification number of the static and dynamic points based on SURF. (C) The processing time

based on ORB and SURF, Red curve is ORB, blue curve is SURF.

FIGURE 13 | The number of feature points of multiple moving objects in the far distance and the time of each frame in the dynamic background. (A) The classification

number of the static and dynamic points based on ORB. (B) The classification number of the static and dynamic points based on SURF. (C) The processing time

based on ORB and SURF, red curve is ORB, blue curve is SURF.

convenient for the SLAM. Figures 12, 14A shows the number
of classification is much more than that of Zou and Tan (2013)
when SURF is used to extract the feature of the environment.

Although, the number of feature classification using ORB to
extract the feature of the environment is less than that of
using SURF, the running time using ORB is only a dozen
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FIGURE 14 | The experiment results of Zou and Tan (2013). (A) The classification number of the static and dynamic points in Zou and Tan (2013). (B) The running

time of the static and dynamic points in Zou and Tan (2013).

milliseconds. Tables 4–7 shows that the time of processing
feature extraction using SURF is 130ms average per-frame. But
the time of processing feature extraction using ORB is 91.87ms
average per-frame. At the same time, Figures 12, 14B also shows
it conforms to the require of real-time just as Zou and Tan
(2013). The proposed algorithm in this paper can adapt to the
dynamic environment with all kinds of speed, and has good
effect for the moving objects with large area. So the second re-
projection error method integrated with the texture detection
proposed in the paper can obtain good performance for the
feature classification of the dynamic environment by using a
vision sensor.

Figures 12A,C show the number of feature points and
processing time for each frame using the proposed method
based on ORB in the static background. Figures 12B,C show
the number of feature points and processing time for each
frame using the proposed method based on SURF in the
static background.

Figures 13A,C show the number of feature points and
processing time for each frame using the proposed method
based on ORB in the dynamic background. Figures 13B,C

show the number of feature points and processing time for
each frame using the proposed method based on SURF in the
dynamic background.

CONCLUSION AND FUTURE WORK

This paper presented a new classification algorithm of feature
points in dynamic environment by using a visual sensor.
The designed three framework is initialization, static targets
detection and dynamic targets detection, which can complete
the classification of dynamic feature points and static feature
points in various complex environments. And the transformation
relationship between frame and frame is optimized. The
experiment results demonstrate that the feature points can
be classified accurately for one object or multiple objects
whether or not in the static environment or in the dynamic
environment. And the proposed algorithm in this paper has
good effect for the moving objects with large area. So the

second re-projection error method integrated with the texture
detection proposed in the paper can obtain good performance
for the feature classification of the dynamic environment
by using a vision sensor. The experiment was carried out
indoors, and the method can work normally under sufficient
sunshine or light. In order to improve the illumination
adaptability of this method, RGB three-channel can be optimized
to RGB-HSV six-channel in subsequent experiments, and
the weight of H-channel can be increased to improve the
illumination adaptability.

In future work, we will further study the image processing and
screening, and apply the proposed algorithm to the SLAM.
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This paper presents an intuitive end-to-end interaction system between a human and a

hexacopter Unmanned Aerial Vehicle (UAV) for field exploration in which the UAV can

be commanded by natural human poses. Moreover, LEDs installed on the UAV are

used to communicate the state and intents of the UAV to the human as feedback

throughout the interaction. A real time multi-human pose estimation system is built

that can perform with low latency while maintaining competitive performance. The UAV

is equipped with a robotic arm, kinematic and dynamic attitude models for which

are provided by introducing the center of gravity (COG) of the vehicle. In addition,

a super-twisting extended state observer (STESO)-based back-stepping controller

(BSC) is constructed to estimate and attenuate complex disturbances in the attitude

control system of the UAV, such as wind gusts, model uncertainties, etc. A stability

analysis for the entire control system is also presented based on the Lyapunov stability

theory. The pose estimation system is integrated with the proposed intelligent control

architecture to command the UAV to execute an exploration task stably. Additionally,

all the components of this interaction system are described. Several simulations and

experiments have been conducted to demonstrate the effectiveness of the whole system

and its individual components.

Keywords: UAV, intuitive interaction, pose estimation, super-twisting, extended state observer, back-stepping

1. INTRODUCTION

UAVs, which have been increasingly used as human assistants in various contexts in recent years,
are developing very rapidly. They can be applied in areas to which humans cannot reach, such as for
aerial photography, field exploration, etc. Also, human-robot interaction (Fang et al., 2019) has also
been focused on recently, including human-UAV interaction technology. However, a traditional
approach to the interaction between UAVs equipped with remote devices and a human is not
convenient when that human is busy with other tasks during field exploration. This paper aims to
build an intuitive end-to-end human-UAV interaction system for field exploration where mutual
attention between the human and UAV is established in the process.

The interface used to control UAVs is an important part of the whole interaction system. It
can be classified into two kinds, traditional human-computer interfaces and direct interfaces. As to
the former, Rodriguez et al. (2013) designed ground control station software that is fully based on

46
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open-source libraries and developed it for a platform composed
of multiple UAVs for surveillance missions. Moreover, utility
software designed by McLurkin et al. (2006) for interacting with
hundreds of autonomous robots without having to handle them
individually enables centralized development and debugging.
In addition, several principles of swarm control are studied
in Kolling et al. (2012) and are used in a simulated robot
environment to enable a human operator to impose on and
control large swarms of robots. Of the direct interfaces, many
of them have been applied in human-UAV interaction systems
in recent years. Pourmehr et al. (2013b) presents a multi-model
system to create, modify, and command groups of robots, in
which groups of robots can be created by speaking their numbers.
Additionally, a whole system in which multiple humans and
robots could interact with each other using a combination of
sensing and signaling modalities was built by Pourmehr et al.
(2013a). In our work, we use the direct interaction mode for the
design of a natural and intuitive human-UAV interaction system
as an assistant for field exploration. Similar to the interaction
system mentioned by Monajjemi et al. (2013), human poses
are used to give commands to the UAV in our interaction
system. Therefore, the human detection system should be
built first.

We intend to use several different natural human poses to
communicate with the UAV. Previous research has looked into
detecting serial human poses. A method based on Lagrangian
particle trajectories, which are a suite of dense trajectories
obtained by advecting optical flow over time, is proposed
to capture the ensemble motions of a scene by Wu et al.
(2011). Moreover, Bin et al. (2018) proposes a novel data
glove for pose capturing and recognition based on inertial and
magnetic measurement units (IMMUs). Additionally, Ran et al.
(2007) proposes two related strategies. The first estimates a
periodic motion frequency with two cascading hypothesis testing
steps to filter out non-cyclic pixels, and the second involves
converting the cyclic pattern into a binary sequence by fitting
the Maximal Principal Gait Angle. Pishchulin et al. (2016)
proposes a method to jointly solve the tasks of detection and
pose estimation in which the number of persons in a scene can
be inferred, occluded body parts can be identified, and body
parts between people in close proximity of each other can also
be disambiguated. However, it cannot be performed with low
latency and cannot be applied in an embedded device and used
for a UAV.

Once the human pose is detected, under the control of the
human pose and referring to the interaction regulation scheme
developed in this paper, the UAV would respond and approach
the human for further particular commands. However, the UAV’s
positional motion is coupled with rotary movement, and both
of them can be influenced easily. When performing tasks, it is
normal for a UAV to encounter wind gust disturbance, which
would affect the stability of the whole system. Moreover, to
carry out exploration tasks that may be encountered in the
future, the UAV is equipped with a 2-DOF robotic arm, which
would bring more model uncertainties to the overall system. The

disturbance estimation and attenuation are thus the next problem
to overcome. Several similar works have been carried out, such
as on disturbance and uncertainty estimation and attenuation
(DUEA) strategy, which has been widely used and explored in
recent years (Yang et al., 2016). Also, numerous observers have
been designed to solve this problem, for example, a disturbance
observer (DO) (Zhang et al., 2018; Zhao and Yue, 2018) and
extended state observer (ESO) (Shao et al., 2018). Moreover,
Mofid and Mobayen (2018) proposes a technique of adaptive
sliding mode control (ASMC) for finite-time stabilization of
a UAV system with parametric uncertainties. Additionally, a
higher-order EDOwas applied for attitude stabilization of flexible
spacecraft while investigating the effects of different orders on
the performance of the EDO (Yan and Wu, 2017). It has been
proved that the estimation accuracy can be improved with an
increase in the observer order via choosing suitable observer
gains. Nevertheless, a higher order of the observer will lead to
both high implementation cost and the problem of high gain
for observers.

In this paper, an intuitive, natural, end-to-end human-UAV
interaction system is built for field exploration assistance. The
entire attitude dynamic model of the hexacopter UAV equipped
with a robotic arm is presented considering the robotic arm
as an element affecting the COG of the vehicle. Moreover,
through replacing the backbone network VGG-19 in Cao et al.
(2017) by the first twelve layers of MobileNetV2, a real time
multi-human pose estimation system, which can be performed
with lower latency, maintaining the competitive performance,
is built for humans to communicate with the UAV under a
proposed interaction regulation. Both target flight direction and
distance commands can be transmitted to the UAV easily and
naturally. In addition, as a UAV equipped with a robotic arm
has more model uncertainty than traditional UAVs and wind
gust cannot usually be avoided when carrying out exploration
tasks, a composite controller is designed by combining STESO
(Shi et al., 2018b) and a back-stepping control method. As
most of the disturbances, including wind gust and model
uncertainties, are compensated by the feedforward compensator
based on STESO, only a small switching gain is required in
the controller. Thus, high-accuracy UAV attitude tracking can
be realized, and chattering can be alleviated in the presence
of several disturbances. Moreover, depth estimation with a
binocular camera was developed according to the work of Zhang
(2000). The effectiveness of the proposed interaction system and
its individual components is demonstrated in several simulations
and experiments.

The outline of this work is as follows. Some preliminaries,
including quaternion operations and the kinematic and dynamic
attitude models of the whole hexacopter UAV are presented
in section 2. In section 3, several methods such as human
pose estimation, depth estimation, STESO construction, attitude
controller, and interaction regulation scheme are formulated.
Several simulations and experiments are then given in sections
4 and 5, respectively. Finally, the conclusion is summarized
in section 6.
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2. PRELIMINARIES

2.1. Notation
The maximal and minimum eigenvalues of matrix H are given
by λmax(H) and λmin(H), respectively, and ‖·‖ represents the
2-norm of a vector or a matrix. Additionally, the operator

S(·) denotes a vector κ =
[

κ1 κ2 κ3

]T
to a skew symmetric

matrix as:

S(κ) =





0 −κ3 κ2

κ3 0 −κ1
−κ2 κ1 0



 (1)

The sign function can be described as:

sign(κ) =

{

κ

|κ|
, |κ| 6= 0

0, |κ| = 0
(2)

2.2. Quaternion Operations
As traditional methods used for representing rotation of the UAV,
for instance, the Euler angles, may lead to the singularity problem

of trigonometric functions, the unit quaternion q =
[

q0 qv
]T

∈

R4,
∥

∥q
∥

∥ = 1 is utilized in this work Shastry et al. (2018). Several
corresponding operations are defined as follows.

The quaternion multiplication:

q⊗ σ =

[

q0σ0 − qTv σv

q0σv + σ0qv − S(σv)qv

]

(3)

The relationship between rotationmatrixCB
A and unit quaternion

q is described as:

CB
A = (q20 − qTv qv)I3 + 2qvq

T
v + 2q0S(qv) (4)

The time derivative of Equation (4) is:

˙CB
A = −S(ω)CB

A (5)

where the details of coordinate systems A and B will be given
in the next section. Then, the derivative of a quaternion and the
quaternion error qe are given as follows, respectively:

q̇ =

[

q̇0
q̇v

]

=
1

2
q⊗

[

0
ω

]

=
1

2

[

−qTv
S(qv)+ q0I3

]

ω (6)

qe = q∗

d ⊗ q (7)

where qd denotes the desired quaternion whose conjugate is

represented by q∗

d =
[

qd0 −qdv
]T
, ω is the angular velocity of

the system.

2.3. Kinematic and Dynamic Models of
Hexacopter UAV
As depicted in Figure 1, The whole UAV system used for
interaction with humans is a hexacopter equipped with a 2-DOF
robotic arm. The robotic arm is fixed at the geometric center of
the hexacopter. The kinematic and dynamic models of the system
are detailed below.

FIGURE 1 | Illustration of the hexacopter and robotic arm system with related

coordinate reference frames.

2.3.1. Kinematic Model
The kinematic model of the UAV system can be achieved with
several related reference coordinates in Figure 1, which are
defined as follows:

OI : world-fixed inertial reference frame
Ob: hexacopter body-fixed reference frame located at the

geometric center of the vehicle
Od: desired reference frame located at the geometric center of

the vehicle
Oi: frame fixed to link i in the robotic arm. i = {1, 2}.

Additionally, several coefficients are used to describe the overall
system. Ŵ = [x, y, z]T represents the absolute position of Ob with
reference to OI . The UAV attitudes are described by Euler angles
9 = [ϕ, θ ,ψ]T whose components represent roll, pitch, and yaw
angles, respectively. In addition, the absolute linear velocity of the
hexacopter with respect toOb is denoted byV = [vx, vy, vz]

T , and

ω = [ωx,ωy,ωz]
T represents the vector of the absolute rotational

velocity of the hexacopter with respect to Ob. The relation can be
described as:

ω = Rr9̇ (8)

where

Rr =





1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ



 (9)

where c(·) and s(·), mentioned above, are the abbreviations of
cos(·) and sin(·).

2.3.2. Dynamic Model
A traditional UAV with a constant COG at its geometrical
center can be described with simple dynamic model
equations (Bouabdallah and Siegwart, 2005). However, the
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motion of a robotic arm will affect the position of the vehicle.
To consider the robotic arm as an element leading to the
displacement of the COG from the geometric center of the
vehicle, a dynamic attitude model of the whole system is
provided in this subsection. Referring to our previous work Jiao
et al. (2018), it can be given as:







Jxω̇x = u1 − (Jz − Jy)ωyωz −mc1 + dx
Jyω̇y = u2 − (Jx − Jz)ωxωz −mc2 + dy
Jzω̇z = u3 − (Jy − Jx)ωxωy −mc3 + dz

(10)

where






c1 = yG(v̇z − vxωy + vyωx)− zG(v̇y − vzωx + vxωz)
c2 = −xG(v̇z − vxωy + vyωx)+ zG(v̇x − vyωz + vzωy)
c3 = −yG(v̇x − vyωz + vzωy)+ xG(v̇y − vzωx + vxωz)

(11)
We describe Equation (11) in a collective form:

Jω̇ = u− S(ω)Jω −mc+ d (12)

where vector J = diag(Jx, Jy, Jz) indicates that the inertia matrix is

diagonal, and d = [dx, dy, dz]
T denotes the lumped disturbances

caused by wind gusts, model uncertainties, etc. The COG of the
whole UAV system is described by CG = [xG, yG, zG]

T . m is
the total mass of the UAV. Additionally, we define vector c =

[c1, c2, c3]
T and vector u = [u1, u2, u3]

T , representing the control
torque inputs, in which the torques around x−, y−, and z−
generated by the six propellers are represented by u1, u2, and u3,
respectively. This has the following expression:

u = 4fv (13)

where fv = [ω2
1 ,ω

2
2 ,ω

2
3 ,ω

2
4 ,ω

2
5 ,ω

2
6]

T represents a positive
correlation vector with forces generated from the hexacopter
motors, in which ωi denotes the rotor speed of the hexacopter
(i = 1, 2, 3, 4, 5, 6). In addition, referring to the hexacopter model
in Figure 1, 4 can be expressed as follows:

4 =







l
23T l3T

l
23T − l

23T −l3T − l
23T

−
√
3
2 l3T 0

√
3
2 l3T

√
3
2 l3T 0 −

√
3
2 l3T

3C −3C 3C −3C 3C −3C







(14)
where 3T and 3C denote the thrust and drag coefficients,
respectively. Moreover, l represents the distance from eachmotor
to the center of mass of the hexacopter.

3. METHODS

3.1. Human Pose Estimation
Human pose estimation is a prerequisite component of the
human-UAV interaction system. It efficiently detects the 2D
poses of people in an image. The pose information serves as the
coded target within the human-UAV communication, in which
each pose form is designed as a special command, guiding the
UAV to perform desired tasks.

The challenges of human pose estimation are two-fold. First,
under uncertainties, each image may contain multiple people

in various positions and at different scales. Vision-based pose
estimationmay easily suffer from distraction by irrelevant people,
which requires us to design an identification algorithm. It must
ignore the non-target candidate people and thus choose the
right commander. Second, the above-mentioned commander
identification is under the premise that all candidate people can
be detected. If we equip each person with a pose detector, the
runtime is proportional to the number of people. This would
bring significant latency and severely deteriorate the stability
of interaction.

To build a time-consuming multi-human pose estimation
system, we follow Cao et al. (2017) to employ a bottom-up
pose predictor, which means that part locations are first detected
and then associated to limbs. Unlike top-down approaches that
infer the limb based on each person detection, the bottom-up
approach decouples time complexity from the number of people.
Specifically, we adopt a two-branch neural network to learn
part locations and their associations, respectively. Both of them
contribute to the subsequent multi-person parsing process.

The network architecture remains the same as that in Cao et al.
(2017), in which an image is taken as input and the connected
limbs, i.e., poses, of multiple people are outputs. The raw image
first passes through a stack of convolutional layers, generating a
set of feature maps. In this stage, we replace VGG-19 (Simonyan
and Zisserman, 2014) by the first twelve layers of MobileNetV2
(Sandler et al., 2018) to make it more lightweight, as VGG-
19 results in large computational costs and repeatedly employs
small-size (3 × 3) convolutional filters to enhance network
capacity. In contrast to VGG-19, MoblieNetV2 adopts a novel
depthwise separable convolution to reduce actual latency while
maintaining competitive performance. The feature maps can be
regarded as deep semantic representations of the image, which
are then fed into two convolutional branches. The confidence
maps and part affinity fields are produced from two branches
in parallel. The confidence map predicts the possibility that a
particular part occurs at each pixel location, and the part affinity
fields measure the confidence of part-to-part association. Finally,
the network implements multi-person parsing, which assembles
the parts to form the full-body poses of all of the people.

Through this pipeline, multi-human pose estimation can
be performed with low latency. The time efficiency is derived
not only from the bottom-up inference approach but also
from the backbone network used. The bottom-up inference
makes run time irrespective of the number of people, allowing
the potential for real-time multi-human pose estimation. The
selected MobilenetV2 further reduces the number of operations
during inference by avoiding large intermediate tensors. To
investigate the performance, we train our network on an MPII
Multi-person dataset (Andriluka et al., 2014) and test it on our
own datasets. During training, the image is resized to (432 ×

368). We apply the Adam optimizer (Kingma and Ba, 2014)
with default settings (ε = 10−3,β1 = 0.9,β2 = 0.999). The
learning rate is set to 0.001, and the batch size is 64. The result
for the human image is shown in Figure 2. It can be clearly seen
that all human poses are correctly detected. Notably, our system
achieves a frame-rate of about 6 fps running on an NVIDIA
TX2 and, when we adopt the VGG-19 as the backbone, the
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FIGURE 2 | Result of the human pose-estimation system. Written informed

consent for publication was obtained from the individuals in this image.

frame-rate drops to about 2 fps. This proves the suitability of
MobileNetV2 for mobile applications, especially our human-
UAV interaction system.

3.2. Depth Estimation
The depth estimation for the camera installed on the UAV is
conducted using a binocular stereo vision rangingmethod, which
is composed of four main parts, namely camera calibration,
stereo calibration, stereo rectification, and image matching. The
internal and external parameters of the camera are obtained in
the camera calibration step, referring to the method of Zhang
(2000). Stereo calibration is performed to get the pose and
position of one camera with respect to the other. In addition,
stereo rectification is used to align image rows between two
cameras. The disparity value, which is essential for determining
the distance between object and camera, can then be obtained
through only searching one row in the image matching step
for a match with a point in the other image after the target
point is determined. Obviously, this will enhance computational
efficiency. Both the stereo rectification and image matching steps
are conducted with the use of OpenCV functions. Then, referring
to Xuezhi (2014), the depth can be obtained after several works
mentioned above.

3.3. Super Twisting Extended State
Observer (STESO)
The UAV equipped with a robotic arm has more model
uncertainty than a traditional UAV. Moreover, other external
disturbances such as wind gusts cannot usually be avoided
when carrying out exploration tasks. In this section, all of the
disturbances exerted on a UAV are seen as a lumped disturbance,
and a STESO is built to estimate it in finite time.

The accelerated velocities v̇ and angular velocities ω can be
measured by a MEMS accelerometer and gyroscope, respectively,
and the lateral velocities can be obtained directly from GPS.

Regarding the dynamics (Equation 12) of the whole UAV system,
by importing the feedback linearization method, the original
control input can be reformulated as:

u = u∗ + S(ω)Jω +mc (15)

The linearized dynamic model can then be given as:

Jω̇ = u∗ + d (16)

When building the STESO, it is assumed that each channel
is independent, so only one portion is introduced in this
subsection and the other two are completely identical. Regarding
Equation (16), the one-dimensional dynamics of the UAV used
for building the STESO is given as:

Jiω̇i = u∗i + di (17)

By importing a new extended state vector ζi = [ζi,1, ζi,2]
T , in

which ζi,1 = Jiωi and ζi,2 = di,(i = x, y, z), the original dynamic
model can be constructed as follows:

{

ζ̇i,1 = u∗i + ζi,2
ζ̇i,2 = χi

(18)

where χ represents the derivative of di and it is assumed that
|χ | < ν

+, meaning that the lumped disturbance, is bounded.
As the system Equation (18) is observable, the STESO can

be designed for this system by introducing a super-twisting
algorithm (Yan and Wu, 2019):

{

ż1 = z2 + u∗i + ξ1|e1|
1
2 sign(e1)

ż2 = ξ2sign(e1)
(19)

where z1 and z2 represent estimates of ζi,1 and ζi,2, respectively.
e1 = ζi,1 − ζ̂i,1 and e2 = ζi,2 − ζ̂i,2 are estimate errors. The whole
system estimate errors e1 and e2 can be ensured to converge to
zero within finite time with appropriate observer gains ξ1 and ξ2.

Proof . According to Equations (18) and (19), the error
dynamics of the STESO can be obtained as:

{

ė1 = e2 − ξ1|e1|
1
2 sign(e1)

ė2 = χ − ξ2sign(e1)
(20)

Through defining δi = [δi,1
T , δi,2

T]T , δi,1 = |e1|
1
2 sign(e1), δi,2 =

e2, it can be derived that

{

δ̇i,1 = −
ξ1
2 |e1|

−1e1 +
1
2 |e1|

− 1
2 e2

δ̇i,2 = −ξ2|e1|
−1e1 + χ

(21)

Then, we define a positive definite matrix η1 =

1
2

[

4ξ2 + ξ1
2 −ξ1

−ξ1 2

]

and introduce the Lyapunov function as:

Vi = δi
T
η1δi (22)
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FIGURE 3 | Control schematic of the overall hexacopter UAV system.

We introduce η2 =
ξ1
2

[

2ξ2 + ξ1
2 −

2ν(ξ1+1)
ξ1

−ξ1

−ξ1 1− 2ν
ξ1

]

and take

the time derivative of Vi:

V̇i ≤ −2ξ1|e1|
− 1

2 [(ξ1
2 + 2ξ2)δi,1

2 − 2ξ1δi,1δi,2 + δi,2
2]

+ 2ξ1|e1|
− 1

2 (2δi,1
2 + 2ξ1

−1
δi,1

2 + 2ξ1
−1
δi,2

2)ν

= −2ξ1|e1|
− 1

2 δi
T
η2δi (23)

It can be found that V̇i is a negative definite in the case that η2 is
a positive definite. We can then obtain

{

ξ1 > 2ν

ξ2 >
ξ1

2

ξ1−2ν ν +
ξ1+1
ξ1
ν

(24)

Based on Lyapunov stability theory, we can obtain

|e1|
1
2 sign(e1) → 0 and e2 → 0. In this case, the estimate

errors e1, e2 will converge to zero.

3.4. UAV Controller Approach
The hexacopter, whose rotational motion is coupled with
translational motion, is difficult to control to perfection. In
Figure 3, a control scheme is presented that improves the
stability of the system. The control system is cascaded, being
composed of two stages, namely the position controller and
attitude controller. At the start of the control process, the desired
positions (xd, yd, zd) will be sent to the position controller, which
will then generate the desired attitudes (ϕd, θd) and transmit them

to the attitude controller. The outputs of the attitude controller,
which is responsible for guaranteeing that the attitudes track the
desired orientations in a finite time, are the desired actuation
forces generated by the hexacopter propellers. In addition, a COG
compensator is incorporated to work out the real COG and
transmit it to the whole control system.

In this section, a traditional PID controller is built for
position control. It is only used to generate desired attitudes
at translational directions, and the UAV will get to the desired
position if the actual attitudes can track the desired orientations
in a finite time.

3.4.1. Attitude Control
In order to achieve high-precision attitude tracking in the
presence of wind gusts andmodel uncertainties, some parameters
should first be defined. qd = [qd0, qdv]

T and ωd =

[ωdx,ωdy,ωdz]
T represent the attitude and desired angular

velocities, respectively. We can then obtain the tracking error
vector of the angular velocities ωe = [ωex,ωey,ωez]

T as:

ωe = ω − Cb
dωd (25)

We take the time derivative of ωe and substitute Equations (5),
(12), and (25) into ω̇e:

ω̇e = S(ωe)C
b
dωd −Cb

dω̇d − J−1S(ω)Jω + J−1u−mJ−1c+ J−1d

(26)
Also, the dynamics of the attitude tracking error can be obtained
according to Equations (6), (7), and (25):

q̇e =
1

2
qe ⊗

[

0
ωe

]

=
1

2

[

−qTev
S(qev)+ qe0I3

]

ωe (27)

The STESO-based backstepping controller for the attitude
tracking controller is then developed with reference to Shi et al.
(2018a). The backstepping is a very good fit for the cascaded
structure of the UAV dynamics. To insure that the attitude
tracking error qe converges to zero, we define the Lyapunov
function as:

VA1 = qev
Tqev + (1− qe0)

2 (28)

We take time derivative of VA1:

V̇A1 = 2qev
T q̇ev − 2(1− qe0)q̇e0 = qev

T
ωe (29)

By introducing a virtual control ωed = −M1qev, in which M1

is the gain matrix of the controller, when the angular velocity
tracking error ωe is equal to ωed, we can obtain:

V̇A1 = −qev
TM1qev ≤ 0 (30)

ω̃e = ωe + M1qev (31)

We then choose the Lyapunov function as:

VA2 = VA1 +
1

2
ω̃
T
e Jω̃e + Vx + Vy + Vz (32)
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We take the time derivative of VA2 according to Equations (25),
(30), and (31):

V̇A2 = qev
T
ω̃e − qev

TM1qev + ω̃
T
e (Jω̇e + JM1q̇ev)+ V̇x

+ V̇y + V̇z = −qev
TM1qev + ω̃

T
e

(

J(S(ωe)C
b
dωd − Cb

dω̇d)

−S(ω)Jω + u−mc+ d + JM1q̇ev + qev
)

+ V̇x + V̇y + V̇z

(33)

By introducing the control input vector u:

u = −J(S(ωe)C
b
dωd − Cb

dω̇d)+ S(ω)Jω +mc− JM1q̇ev

−qev −M2ω̃e − d̂ (34)

V̇A2 can be obtained by in substituting u.

V̇A2 = −qev
TM1qev − ω̃

T
e M2ω̃ + ω̃

T
e d̃ + V̇x + V̇y + V̇z

≤ −λmin(M1)
∥

∥qev
∥

∥

2
− λmin(M2)

∥

∥ω̃e

∥

∥

2
+

∥

∥ω̃e

∥

∥

∥

∥

∥
d̃
∥

∥

∥

−λmin(η1)(‖δx‖
2 +

∥

∥δy

∥

∥

2
+ ‖δz‖

2)

≤ −λmin(M1)
∥

∥qev
∥

∥

2
− λmin(M2)

∥

∥ω̃e

∥

∥

2
+

∥

∥ω̃e

∥

∥ ‖δ‖

−λmin(η1)(‖δx‖
2 +

∥

∥δy

∥

∥

2
+ ‖δz‖

2)

≤ −λmin(M1)
∥

∥qev
∥

∥

2
− (λmin(M2)−

1

2
)
∥

∥ω̃e

∥

∥

2

−(λmin(η1)−
1

2
)‖δ‖2 (35)

where
∥

∥

∥
d̃
∥

∥

∥
= ‖δ2‖ ≤ ‖δ‖,

∥

∥ω̃e

∥

∥ ‖δ‖ ≤ 1
2 (

∥

∥ω̃e

∥

∥

2
+

‖δ‖2), ‖δ‖2 = ‖δx‖
2 +

∥

∥δy

∥

∥

2
+ ‖δz‖

2, and λmin(M) denotes
the minimal eigenvalue of M. Thus, V̇A2 ≤ 0 whenever
λmin(η1), λmin(M2) ≥ 1

2 . In that case, it can be concluded
that the attitude error qe, angular velocity tracking error ωe,
and estimation errors δx,δy,δz would be uniformly ultimately
bounded and exponentially converge to zero.

3.4.2. COG Compensation System
As shown in Figure 1, positional variety in the COGof the vehicle
will occur when the UAV conducts tasks that involve the motion
of the robotic arm. The dynamic model of the whole system
will then be changed during the flight referring to Equation
(10). Additionally, the stability of the UAV will be impacted.
To overcome this problem, a COG compensation system, which
will not be shown here due to the limitations of article length
but is detailed in our previous work Jiao et al. (2018), can
be implemented. However, the real COG cannot be calculated
accurately through this system due to several measuring errors.
It will also play a part in the model uncertainties included by the
lumped disturbance, which will be estimated by the STESO.

3.5. Interaction Between UAV and Human
3.5.1. Interaction Regulation From Human to UAV
An interaction regulation scheme from human to UAV is
developed in this section using the human pose. According to
the given interaction regulation, the UAV can be attracted by a
distant human by their holding a constant pose, which should

FIGURE 4 | Prototype of human joint.

TABLE 1 | Meanings of different coefficient combinations.

Combination Meaning

80 < 2l < 100 and 80 < 2r < 100 Interaction initiation

100 < 2l < 150 and Lr < Ll Flight direction command 1: right

front with respect to the human

30 < 2l < 80 and Lr < Ll Flight direction command 2: right rear

with respect to the human

100 < 2r < 150 and Ll < Lr Flight direction command 3: left front

with respect to the human

30 < 2r < 80 and Ll < Lr Flight direction command 4: left rear

with respect to the human

100 < 2l < 180 and

100 < 2r < 180

Flight distance command: based on

positions of two wrist joints

0 < 2l < 30 and 0 < 2r < 30 End flag

last more than 5 s, to initiate the interaction. After the interaction
initialization is completed, an LEDwill begin flashing as feedback
to the human. Moreover, both target flight direction and distance
commands can be communicated to theUAV in a very simple and
direct way through human pose changes. As depicted in Figure 4,
some given straight lines compose a nonobjective human, in
which the colorized points, representing the joints of the human
body, can be detected and signed by the pose estimation system
mentioned in section 3.1. The whole interaction regulation
scheme is based on the coefficients (Ll,Lr ,2l and 2r) given in
Figure 4. The meanings of different combinations of coefficient
values are listed in Table 1.

Specifically, the human who is executing search tasks in the
field can attract the UAV for search assistance by conducting the
interaction initiation action, keeping parallel to the UAV camera,
for more than 5 s until the UAV responds by flashing its LED.
Moreover, to control the UAV more easily and intuitively, the
target command flight direction is just parallel to the human arm,
and the target command flight distance is based on the distance
between the two wrist joints. As shown in Figure 5, the particular
flight direction and distance command methods are given, and
a nonobjective aerial view of the human, which represents flight
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FIGURE 5 | Aerial view of nonobjective human.

Algorithm 1: The Whole Interaction Procedure.

1: Execute human pose estimation system initially and record
video from camera;

2: if Detect interaction initiation action for more than 5 s then
3: Measure depth information of the detected human and

approach him immediately;
4: Continue to execute human pose estimation system;
5: if interaction initiation then

6: if Detect flight direction command then

7: Record target flight direction;
8: if Detect flight distance command then

9: Record target flight distance;
10: if End flag then
11: Execute flight command from human and return

to the first line in the procedure;
12: end if

13: end if

14: end if

15: end if

16: else

17: Continue execute human pose estimation system and
record the video from camera;

18: end if

direction command 1mentioned in Table 1, is provided. The two
red straight lines are human arms.We can easily obtain the target
flight direction with respect to plane P′, which is parallel to the
UAV camera plane:

κ
′ = arccos

L′

Lr
(36)

The case with other flight direction commands is similar to
that mentioned above. Additionally, the target flight distance
command transmitted to the UAV is proportional to the distance
between two detected wrist joints. The constant length of a fully
stretched human arm, Ll in the picture, represents the unit used
as a reference for the distance command. The unit depends on
the character of the performed task and would be defined in
advance. Moreover, the interaction procedure in the automated
exploration task is given in Algorithm 1.

TABLE 2 | Coefficients in the simulation system.

Coefficients Particulars Value

m Mass of the whole UAV system 10.5 kg

Jx Roll inertia 4.557× 10−1kg ·m2

Jy Pitch inertia 4.557× 10−1kg ·m2

Jz Yaw inertia 7.724× 10−1kg ·m2

l Motor moment arm 0.5 m

3.5.2. Communication From UAV to Human
As shown in Figure 8, a vertical column of RGB LEDs, which are
used to communicate the state and intents of the UAV to the user
as feedback, are fixed on the left undercarriage of the hexacopter.
It is controlled by a combination of a pixhawk and an STM32-
based board with three colors (red, blue, and green). By changing
the color and flicker frequency of the RGB LEDs through the
communication regulation formulated in advance, the state and
intents of the UAV can be transmitted to the user.

4. SIMULATION RESULTS AND
DISCUSSION

To demonstrate the validity and performance of the proposed
STESO and corresponding control scheme, several simulations
of attitude tracking under external disturbance torque will
be conducted using a MATLAB/SIMULINK program with a
fixed-sampling time of 1 ms in this section. As a contrast,
a traditional second-order ESO is built combined with the
proposed attitude controller in the same simulation progress.
In addition, we assume that the three-axis components of the
external disturbance torques exerted on the UAV are the same
and that one of them can be described as:

d = 0.9 sin(2.5π t − 1)+ 1.2 sin(2π t + 2)+ 1.95 sin(0.3π t)

+ 0.45(0.2π t + 6)+ 0.15 sin(0.1π)

+ 0.75 sin(0.05π − 3.5)+ 1.05 sin(π t − 0.9)

+ 1.5 sin(0.01π + 1)− 1.185 (37)

Moreover, the dynamic model built in section 2.3 is taken as the
basis of the simulation of the proposed observer and controllers.
The simulation parameters, which are verified to be very close
to the reality of the single multi-copter and are listed in Table 2,
are generated by the online toolbox of Quan (2018). Although
this is a list of coefficients for a single multi-copter without
a robotic arm, it is also useful in our simulation system, as
the rest of the model uncertainty can also be included in the
lumped disturbance and estimated by the proposed observer.
Additionally, we choose the BSC gains asM1 = 10I3,M2 = 3I3,
the STESO gains as ξ1,i = 28, ξ2,i = 58, and the traditional
second-order ESO gains as L = [ 35 380 600 ]T .

It can be seen from Figure 3 that an effective attitude
controller is the foundation of UAV motion and needs to work
well during a UAV exploration task with unknown external
disturbances. As shown in Figure 6, several attitude tracking
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FIGURE 6 | Simulation results of roll, pitch, and yaw angle-tracking with unknown external torque disturbance. Without observer (Up), traditional ESO (Middle), and

STESO (Down).

simulations have been conducted based on the proposed back-
stepping controller with the STESO and traditional ESO. The
desired attitude references are given as:

2d = [12 sin(0.5π t) 12 cos(0.3π t) 0 ]T deg (38)

From these figures, we can easily determine that the tracking
errors are largest in all of the channels (roll, pitch, and yaw)
without any observers. The tracking trajectories are influenced
seriously. Moreover, we also find that it is obviously improved
with observers to estimate and then attenuate the disturbance
directly, even though the disturbance is not estimated completely.
Compared to being equipped with the traditional ESO, the
tracking error is also further reduced by using the STESO.
Further, the disturbance estimate errors of the STESO and
traditional ESO in all channels are shown in Figure 7, showing
that the STESO could make a better estimation than the
traditional ESO. Thus the UAV can attain better attitude tracking
performance under the control of the proposed controller with
an STESO.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

This section details several experiments, including hovering
with wind gusts and a synthetic interaction experiment between
humans and a UAV, that were conducted in a playground to
validate all the above-mentioned theories.

5.1. Hardware Platform
Figure 8 shows the UAV platform suitable for our interaction
system that was constructed. It is a hexacopter with a 143-cm
tip-to-tip wingspan, six 17-inch propellers, a height of 58 cm,
and a total mass of 10.5 kg including the robotic arm, which is
fixed under the vehicle. Each rotor offers lift force of up to 4.0
kg, which is enough for the whole system. In addition, Open-
source PIXHAWK hardware (Meier, 2012), which includes an
STM32 processor and two sets of IMU sensors, is fastened to
the top of the UAV and is used for sensor data integration,
attitude computation, mode switching, state assistant feedback,
controller and STESO operation, emergency security protection,

FIGURE 7 | Disturbances estimate errors (d̃x , d̃y , d̃z ) of the STESO and

traditional ESO.

etc. Moreover, an NVIDIA TX2 equipped with six CPU cores
and 256 CUDA cores is utilized in the interaction system in
which the human pose estimation and depth computation tasks
are loaded. A binocular stereo camera, which offers 720P video
transmission of up to 60 fps, is placed at the front of the vehicle to
obtain the three-dimensional position of the target with respect
to the UAV. Additionally, to ensure the safety of the experimental
partner during close-range interaction, a high-precision GPS
is utilized to supply accurate information on the absolute and
relative position of the vehicle, which can also enable stable UAV
hovering. Moreover, the vehicle uses HRI-LEDs to communicate
its state and intents to the user, and a compass is placed at the
highest point of the UAV to prevent electromagnetic interference.

5.2. Hovering With Wind Gusts
To demonstrate the performance of the developed method for a
UAV subject to lumped disturbances including wind gusts and
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FIGURE 8 | Prototype of the proposed interactive UAV.

FIGURE 9 | Experimental curves of attitude angle ϕ and angular rate ωx during

hovering with wind gusts.

model uncertainties, a hovering experiment was conducted with
wind disturbance generated by several electrical fans. We set the
BSC gains at M1 = diag(10, 10, 4) and M2 = diag(0.2, 0.2, 0.28)
and the STESO gains at ξ1,i = 1.2, ξ2,i = 0.3. The results
for attitude angle ϕ and angular velocity ωx under STESO-BSC
and a traditional PD controller can be found in Figure 9. It
can be observed that the chattering is markedly reduced under
STESO-BSC compared to PD. In particular, the peak values of

FIGURE 10 | Interaction between human and UAV. Written informed consent

for publication was obtained from the individuals in this image.

FIGURE 11 | Interaction initiation. Written informed consent for publication

was obtained from the individuals in this image.

the attitude ϕ under PD and STESO-BSC are no more than
4◦ and 2◦, respectively. Additionally, under control of PD, the
UAV has more drastic chattering with angular velocity varying
more quickly.

5.3. Human-UAV Interaction
As shown in Figure 10, in this section, an automated
exploration task with the proposed interaction system
was conducted in a playground. It includes interaction
initiation and particular commands, which contain UAV
flight target direction and distance, communicated from human
to UAV.

5.3.1. Interaction Initiation
As shown in Figure 11, the interaction initiation action of a
human was detected by the UAV at a distance in the playground.
Meanwhile, another person who walked around served as a
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FIGURE 12 | Target direction and distance communication to the UAV. (1) Beginning. (2) Target direction command. (3) Target distance command. (4) End. Written

informed consent for publication was obtained from the individual in this image.

FIGURE 13 | Trajectory in automated exploration task.

disturbance term during the whole interaction initiation process.
It had been verified that the UAV can discriminate these poses
from human walking and other human motions. All the key
joints of the human were obtained from the human pose
estimation system. The average inference time per image is about
0.167 s. After the interaction initiation process was finished, the
UAV approached human, while flashing its light as feedback, for
further command information.

5.3.2. Automated Exploration Task
After the interaction initiation process was completed, the human
received the UAV’s feedback information and was ready to give
the next command to the UAV. The specific steps of close
interaction can be seen in Figure 12, in which parts (2) and
(3) represent direction and distance commands, respectively,
as outlined in section 3.5.1. According to the positions of the
human joints and Equation (36), the target direction with respect
to the camera plane was determined to be 36.5◦. Meanwhile,
using the reference unit for the distance command set in this
experiment, 10 m, the final target distance was determined to
be 17.4 m. The flight trajectory was recorded and is shown in
Figure 13. The actual direction angle and distance are 35.4◦ and
16.9 m, respectively, the errors of which are small enough for
field exploration. However, owing to the limitations of figure
space, the trajectory to the destination is shown only partially.
We could conclude from the experiment that the proposed
interaction system is qualified to complete the field exploration
task. However, through the whole experiment, we also found that

the process of the interaction between UAV and human was not
quick enough. As the frame-rate of pose estimation is still limited
in spite of its improvement through our work, the human has to
wait for a while for the response from the UAV at every step of
the interaction, which will influence the interactive efficiency and
experience. More attention should thus be paid to developing this
state-of-art interaction technique in the future.

6. CONCLUSION

In this study, an intuitive end-to-end human-UAV interaction
system, in which a UAV can be controlled to fly to a
corresponding direction and distance by human poses, was
built to assist in field exploration. Moreover, a real time
multi-human pose estimation system, which performs with
low latency while maintaining competitive performance, was
built with which a human can communicate with the UAV
under a proposed interaction regulation scheme. By introducing
the super-twisting algorithm, an STESO was constructed and
applied to the UAV attitude control system to estimate and
attenuate complex disturbances, such as wind gusts, model
uncertainties, etc. Based on the STESO, a back-stepping attitude
controller was built that was proved through several simulations
and experiments to have a better performance than a back-
stepping controller with a traditional ESO. Finally, an integrated
human-UAV interaction experiment was conducted in which the
effectiveness of the whole system and its individual components
were demonstrated.
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Repetitive and intensive physiotherapy is indispensable to patients with ankle disabilities.

Increasingly robot-assisted technology has been employed in the treatment to reduce

the burden of the therapists and the related costs of the patients. This paper proposes a

configuration of a wearable parallel mechanism to supplement the equipment selection

for ankle rehabilitation. The kinematic analysis, i.e., the inverse position solution and

Jacobian matrices, is elaborated. Several performance indices, including the reachable

workspace index, motion isotropy index, force transfer index, and maximum torque

index, are developed based on the derived kinematic solution. Moreover, according to

the proposed kinematic configuration and wearable design concept, the mechanical

structure that contains a basic machine-drive system and a multi-model position/force

data collection system is designed in detail. Finally, the results of the performance

evaluation indicate that the wearable parallel robot possesses sufficient motion isotropy,

high force transfer performance, and large maximum torque performance within a large

workspace that can cover all possible range of motion of human ankle complex, and is

suitable for ankle rehabilitation.

Keywords: ankle rehabilitation, parallel robot, mechanical design, performance indices, performance evaluation

INTRODUCTION

As the population ages, increasingly more individuals experience ankle disabilities caused by stroke
and cerebral palsy, which may lead to lack of mobilization, irregular pain of body, insufficient
capacity to support weight, and chronic joint instability. During the conventional manually
physiotherapy, human ankle complex (HAC) is moved by a physical therapist with its range of
motion (ROM). However, it possesses many limitations such as, the duration inconsistency and
frequency indetermination of the treatment procedures, the physical demand, and experience
requirement of the therapist, and the subjective evaluation of the therapeutic results (Meng et al.,
2015; Hussain et al., 2017). In view of this situation, to provide high-quality rehabilitation treatment
with repetitive sessions, quantitative measurements, scientifical therapy, and systematic operation,
robot-assisted rehabilitation has become a field that receives more, and more research attention.
To date, various ankle rehabilitation devices have been introduced based on different concepts that
can be mainly divided into two categories: ankle exoskeleton and parallel platform-based robots.

Focusing on walking gait treatment on treadmill or over-ground, ankle exoskeletons are
wearable with mechanical parts attaching to the human limb. A typical instance is the active
ankle-foot orthosis proposed by Blaya and Herr (2004), by employing series elastic actuator (SEA),
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rotary potentiometer, and ground reaction force sensors, a gait
pathology known as drop-foot can be treated via variable-
impedance control. Similarly, exoskeletons (Kim et al., 2011; Zhu
et al., 2011; Lopez et al., 2013; Meijneke et al., 2014; Witte et al.,
2015; Dijk et al., 2017; Erdogan et al., 2017) were also developed
with the concept of SEA to provide push-off assistance.Moreover,
robotic tendons, i.e., a DC motor in series with a spring, were
used in ankle-foot orthoses (Hollander et al., 2006; Boehler et al.,
2008; Oymagil et al., 2008; Ward et al., 2011) to provide sufficient
energy and peak power saving for systems; pneumatic muscle
actuators (PMA), due to their intrinsically compliant and high
power/weight ratio, were also widely selected as the actuation
technology of the ankle exoskeletons (Ferris et al., 2006; Gordon
et al., 2006; Kinnaird and Ferris, 2009; Sawicki and Ferris, 2009;
Park et al., 2014). Additionally, directly aligning several types of
actuators, including rotating actuator assembly (Ren et al., 2017),
servo motor (Yoshizawa, 2010; Yao et al., 2018) and bidirectional
pneumatic actuator (Shorter et al., 2011), to the joint axis is
another option for researchers.

The aforementioned exoskeletons possess one degree of
freedom (1-DOF) for assisting plantarflexion/dorsiflexion
(PL/DO) motion. By applying parallel mechanism-based
design, more DOFs can be performed by exoskeletons. A
well-known example is the Anklebot proposed by Roy et al.
(2009). Two linear actuators were arranged in parallel to aid
recovery of PL/DO and inversion/eversion (IN/EV), while
the adduction/ abduction (AD/AB) can be achieved via the
rotation of the leg. Subsequently, a scaled down version
called pediAnklebot (Michmizos et al., 2015) is developed for
pediatric rehabilitation. Fan and Yin (2009) presented an ankle
exoskeleton with a 3-RPS (revolute-prismatic-spherical) parallel
mechanism as the main mechanical structure in cooperation
with an electromyographic-based neuro-fuzzy controller. A
reconfigurable ankle exoskeleton (Erdogan et al., 2017) was
proposed for multiple phases of treatment, in which the 3-
RPS structure and the 3-UPS (universal-prismatic-spherical)
structure can be interconverted via lockable joints. Stewart
platform (Takemura et al., 2012; Nomura et al., 2015) was also
utilized for ankle exoskeletons.

In the early stage of rehabilitation, the movements of ankle
are weak and stiff due to the muscle atrophy or the loss of
physiological muscles synergies. Thus, before performing gait
treatment using wearable exoskeleton, a parallel platform-based
robot, due to the features of superior adaptability, excellent
accuracy and high stiffness, is a more suitable option to ensure
reliability and safety in the process of rehabilitation treatment.
Moreover, by fixing the foot on the platform, three rotational
DOFs (i.e., PL/DO, IN/EV, and AD/AB) of the HAC can be all
provided treatment.

Girone et al. (1999) proposed a pneumatically actuated ankle
rehabilitation robot (Rutgers Ankle) with a force feedback
system. A virtual reality environment has been developed to
make rehabilitation more effective and enjoyable. By employing
passive central struts in the mechanical structure to determine
the number of DOFs and increase the payload capability,
lower-mobility parallel robots (Dai and Zhao, 2004; Liu et al.,
2006; Saglia et al., 2009) have been proposed for ankle

rehabilitation with their DOFs better matching with that of
the HAC.

Tsoi et al. (2009) replaced the central strut with the lower-limb
of the patient (i.e., the HAC is directly adopted to constrain the
motion of the platform). In comparison of the aforementioned
platform-based robot, this robot realizes an aligned rotation
center between the platform and the HAC in the process of
rehabilitation. To avoid the safety issue caused by excessive load
in this method, physical rotation axes (i.e., kinematic constraint
mechanisms) were specially designed. Specifically, Jamwal et al.
(2014) proposed a compliant parallel robot by arranging four
PMAs parallel to the shank of the patient. Three bearings were
setting into the platform as kinematic constraint. Thanks to
the inherent muscle-like behavior, compliant motions can be
achieved during different treatment modes with the help of a
fuzzy logic controller. Analogous to Jamwal et al. (2014), in
Zhang et al. (2017), The University of Auckland developed the
other compliant robot powered by four PMAs that arranged in a
tilted manner. A three-linkage serial mechanism was set as the
kinematic constraint of this robot, and the connection points
(i.e., spherical joints) can be adjusted along certain directions
to achieve reconfigurable workspace and torque capacity. By
selecting two types of identical active branches, i.e., 3-UPS
structure and 3-RUS (revolute-universal-spherical), to produce
obliquity of the platform and using serial equivalent spherical
mechanisms to satisfy all 3-DOF rotational ankle rehabilitation,
actuated parallel mechanisms introduced by Wang et al. (2013,
2015) are another typical instance.

Notably, the arrangement of the physical rotation axes
has become an effective method for a parallel platform-based
ankle rehabilitation robot to actualize the required treatment
action, realize aligned rotational center and ensure primary
safety. Redundant actuation technology, despite having received
widespread application, may present a complicated structure
and control scheme, and then increase the manufacturing
and operation cost. Moreover, a totally relaxed lower-limb
may prevent the HAC from fully stretching into the extreme
position, which limits the improvement and functional recovery
of muscle strength. Meanwhile, repeatedly changes in sitting
posture caused by a loose shank may lead to re-injury to
the patient. This paper put forth a novel parallel robot
for ankle rehabilitation with a wearable design concept to
provide maximum safety protection. A simple configuration is
adopted to realize actuator non-redundancy and reduce the
relatively cost.

The remainder of this paper is organized as follows: The
HAC anatomy and configuration design are presented in section
HAC Anatomy and Configuration Design. In section Kinematic
Analysis, the kinematic analysis, including inverse position
solution and velocity Jacobian matrices, are derived, based
on which several performance indices are defined in section
Performance Indices. Section Mechanical Design describes the
mechanical design in detail. Section Performance Evaluation
analyzes the performance including reachable workspace, motion
isotropy, force transfer performance and maximum torque
performance. Finally, we discuss the main findings and draw the
main conclusions of the study.
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MATERIALS AND METHODS

HAC Anatomy and Configuration Design
Considering HAC anatomy in the design process of an ankle
rehabilitation robot is a basic guarantee to ensure the comfort
and safety of patients during rehabilitation. Thus, it is necessary
to carry out the anatomical analysis before determining the
configuration of the robot. As one of the most complicated
joint in the human body, the HAC (Figure 1A) contains
two anatomically separate joints, namely, the ankle joint and

the subtalar joint (Dai and Zhao, 2004; Khalid et al., 2015).
Specifically, the ankle joint consisting of the tibia, fibula and

talus, is located above the subtalar joint which is formed

by the talus inferiorly and the calcaneus superiorly (Dai and
Zhao, 2004). Moreover, three rotational motions, i.e., PL/DO,
IN/EV, and AD/AB, resulted from the interaction between
the articulating joint surfaces and the constrained ligament
constitute the basic motion form of the HAC (Isman and
Inman, 1969). The rotation axis of the ankle joint (i.e., PL/DO)
passes through the tips of the medial and lateral malleolus
(Figure 1B), and the orientation of IN/EV (i.e., the rotation
axis of the subtalar joint) is approximated by the line between
the superior point of the navicular and the posterolateral point
of the calcaneus (Figure 1C; Dul and Johnson, 1985; Dettwyler
et al., 2004). The combined motion of the ankle joint and
the subtalar joint, as well as the rotation between the tibia
and fibula contribute to the AD/AB (Khalid et al., 2015).
In biology, the aforementioned skewed rotation axes produce
rotational motion in all three orthogonal planes (i.e., sagittal,
coronal, and transverse planes; Feuerbach et al., 1994). Thus,
when considering the kinematic model of the HAC from the
perspective of mechanism, the two separate subjoints can be

simply regarded as a 3-DOF spherical joint in a combined
manner (Figure 1D).

According to the kinematic model of the HAC, a serial
constraint branch (Figure 2A) with a three axes-intersected
revolute joints (R1, R2, and R3) structure is selected as an
equivalent spherical joint to imitate the 3-DOF rotational motion
of the HAC and determine the rotation center of the robot. By
using this constraint branch, the ankle rehabilitation treatment
can be performed under a human-robot compatible situation
with fixed rotation center and precise DOFs. Moreover, two
identical non-constraint rods with UPS structure are selected
as the kinematic branches. Based on the aforementioned
consideration, a 2-UPS/RRR parallel mechanism is proposed
as the basic configuration of the ankle rehabilitation robot.
Joints P1, P2, and R1 are active, whereas all others are
passive. For patients with ankle disabilities, the movement of
the HAC becomes weaker and stiffer, and even with ankle
spasticity/contracture (Zhou et al., 2014). Thus, to protect the
already fragile ankle from secondary injury, the position of
the shank and the HAC should remain stationary with respect
to the foot. Additionally, a follow-up shank makes it difficult
to perform treatment at the extreme position of the HAC,
thus affecting the full recovery of function. By inverting the
2-UPS/RRR parallel mechanism (i.e., the base is positioned
above the moving platform), and inserting the shank of the
patient into the mechanism as a part of the base via an
accessory wearable binding mechanism, decoupled foot-shank
motion (i.e., the shank will not move with the foot) and the
maximum safety guarantee can be achieved during different
treatment modes.

The formed human-robot system consisting of the HAC and
the wearable parallel robot is presented in Figure 2B. Analogous

FIGURE 1 | The HAC anatomy. (A) The structure of the HAC. (B) Rotation axis of PL/DO. (C) Rotation axis of IN/EV. (D) Motion form of the HAC.
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FIGURE 2 | (A) Constraint branch. (B) Human-robot system.

TABLE 1 | Line graph of the constraint spaces and freedom spaces.

Structure Constraint space Freedom space

UPS branches No constraint

Three-dimensional rotation and three-dimensional translation

RRR branch

Three-dimensional constraint force Three-dimensional rotation

Moving platform

Three-dimensional constraint force Three-dimensional rotation

to the known Tricept mechanism, two unconstrained UPS
branches provide six DOFs to the moving platform while three
constraint force line vectors that through one point in space are
acted in the platform wrench system via the properly constrained
RRR branch, and thus retain three rotational ones of six DOFs.
The line graph of the constraint spaces and freedom spaces
of the branches and moving platform is presented in Table 1

based on Grassmann line geometry, in which the green solid
lines, green solid double arrow lines, and blue dotted lines
indicate the rotational DOF, translational DOF, and constraint
force, respectively.

The K-G formula (Huang et al., 2013) is used to verify the
number of DOFs obtained from the aforementioned analysis. The
wearable parallel robot consists of a base, a moving platform, a
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constraint branch and two kinematic branches:

F = 6(n− g − 1)+

g
∑

i=1

fi (1)

where F is the DOFs of the robot, n indicates the number of links
included in the frame, g represents the number of joints, and fi is
the DOFs permitted by joint i.

Since n= 6, g = 7,Σ fi= 15 (the robot contains three spherical
joints, two universal joints and two prismatic joints), the DOFs of
the parallel mechanism can be obtained by equation 1 as F = 3.

Kinematic Analysis
The schematic diagram of the parallel robot is presented in
Figure 3. Several reference frames, i.e., O-xoyozo, O-xpypzp, Bi-
xi1yi1zi1, Bi-xi2yi2zi2, and Ai-xi3yi3zi3, are established. Reference
frames O-xoyozo and O-xpypzp (Figure 3A), which attached to
rotation center O of the moving platform, are the base frame
and themoving platform frame, respectively. These two reference
frames are parallel in their initial configurations. As shown in
Figure 3B, a local fixed reference frame Bi-xi1yi1zi1 (i = 1, 2)
and a movable reference frame Bi-xi2yi2zi2 (i = 1, 2) are both
assigned at the center Bi of joint Ui. Axes xi1, yi2, zi2 are
collinear to the two revolute axes (ri1 and ri2) of joint Ui and
the lower link of the kinematic branch, respectively. In the set-
up configuration, the axis yi1 coincides with the axis ri2 of joint
Ui, and initial angles appear between the frames Bi-xi1yi1zi1 and
Bi-xi2yi2zi2. Moreover, reference frame Ai-xi3yi3zi3 (i = 1, 2) in
joint Si location is assigned at the center Ai, and the directions
of its three coordinate axes coincide with those of the frame Bi-
xi2yi2zi2. In this paper, due to the three rotational DOFs of the
wearable parallel robot, the posture of the moving platform can
be described by its orientation with respect to the base.

Considering the characteristics of the constraint branch,
the Z-X-Y typed Euler angles can be utilized to express the
orientation of the moving platform. The angles rotating about
axis zp (AD/AB), axis xp (PL/DO) and axis yp (IN/EV) are

FIGURE 3 | Parametric description of (A) the robot and (B) kinematic branch.

denoted as γ , α, and β , respectively. The transformation from
reference frame O-xpypzp to O-xoyozo, denoted as matrix Rop, is
given as:

Rop = R(γ )R(α)R(β) (2)

Inverse Position Solution
The inverse kinematics problem posed by a parallel mechanism
is easy to manage (Li et al., 2018), in which a desired posture
of the moving platform is given, and the drive variables can be
calculated to achieve this task.

The coordinates of point Ai (i = 1, 2) can be computed
simultaneously as follows:

oAi = Rop
pAi (3)

oAi = dizi2 +
oBi = diRo2(0, 0, 1)

T
+ oBi (4)

where
◦

Ai and
pAi are the position vector of point Ai with respect

to reference framesO-xoyozo andO-xpypzp, respectively.
◦

Bi (i=
1, 2) denotes the position vector of point Bi expressed in reference
frame O-xoyozo. di is the displacement of joint Pi, whereas zi2 is
the direction vector of axis zi2. The transformation matrix Ro2

that transfers the coordinates from reference frame O-xoyozo to
Bi-xi2yi2zi2 can be expressed as follows:

Ro2 = Ro1R12 (5)

where Ro1 and R12 represent the transformation matrices
between reference frames O-xoyozo and Bi-xi1yi1zi1, Bi-xi1yi1zi1,
and Bi-xi2yi2zi2, respectively, and are given as follows:

Ro1 =





0 −1 0
1 0 0
0 0 1



 ,

R12 =





cos(θi2) 0 sin(θi2)
sin(θi1) sin(θi2) cos(θi1) − cos(θi2) sin(θi1)

− cos(θi1) sin(θi2) sin(θi1) cos(θi1) cos(θi2)



 (6)

where θi1 and θi2 denote the rotation angles of joint Ui around
axes ri1 and ri2, respectively.

By substituting the first half of Equation (4) into Equation
(3), individual limb length di can be mathematically expressed
as follows:

di = |Rop
pAi −

oBi| (7)

The rotation angle θ3 around axis R1 can be simply obtained as:

θ3 = γ (8)

Equations (7) and (8) give the inverse position solution of
the robot.

Substituting the second half of Equation (4) into Equation (3),
and using Equations (5–7), the following equation can be derived:

R−1
o1 (Rop

pAi −
oBi)

|Rop
pAi −

oBi|
=





sin(θi2)
− cos(θi2) sin(θi1)
cos(θi1) cos(θi2)



 (9)
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Let ki1, ki2, ki3 indicate the three components of the left vector in
equation 9, the following equations can be obtained as follows:

θi2 = arcsin(ki1), θi1 =
1

2
arccos(

k2i2 − k2i3
1− k2i1

) (10)

Velocity Jacobian Matrix
According to the schematic diagram of the robot presented in
Figure 3, the velocity vector VAi of center Ai can be written as:

VAi = ω × (R0p
pAi) (11)

where ω indicates the angular velocity of the moving platform.
Projecting the velocity vector VAi onto the reference frame

Ai-xi3yi3zi3 leads to:





Vxi3

Vyi3

Vzi3



 =





xTi3
yTi3
zTi3



VAi (12)

where xTi3, y
T
i3, and z

T
i3 denote the direction vectors of axes xi3, yi3,

and zi3, respectively, and can be written as follows:

xi3 = xi2 = Ro2(1, 0, 0)
T, yi3 = yi2 = Ro2(0, 1, 0)

T,

zi3 = zi2 = Ro2(0, 0, 1)
T (13)

where xi2, yi2, and zi2 represent the respective direction vectors
of axes xi2, yi2, and zi2.

The velocity of the linear actuator can be calculated based on
the structural feature of the kinematic branch as:

ḋi = Vzi3 = zTi3VAi = zTi3Qω (14)

where Vzi3 indicates the velocity component of VAi in the axis zi3
direction, ḋi is the linear velocity of joint Pi. Moreover, coefficient
matrix Q of VAi can be derived as follow:

Q =































0





0

0

1





T

(Rop
pAi) −





0

1

0





T

(Rop
pAi)

−





0

0

1





T

(Rop
pAi) 0





1

0

0





T

(Rop
pAi)





0

1

0





T

(Rop
pAi) −





1

0

0





T

(Rop
pAi) 0































(15)

The angular velocity θ̇3 can be simply obtained as follows:

θ̇3 = γ̇ (16)

Combining Equation (14) and Equation (16), the velocity
mapping relationship between active joint space and task space
can be expressed as follows:





ḋ1
ḋ2
θ̇3



 =





zT13Q

zT23Q

0 0 1



 ω = J−1
o ω (17)

where Jo is the original velocity Jacobian matrix of the robot.
Notably, the input end contains two linear motions and one

rotational motion, while the output end consists exclusively
of rotational motions (i.e., the velocity Jacobian matrix is
dimensionally inhomogeneous). Thus, a non-dimensional form
(Angeles, 1992) of the homogeneous Jacobian matrix Jv is
required to be introduced:

J-1v =





zT13Q
∗

zT23Q
∗

0 0 1



 (18)

where:

Q∗ =































0





0

0

1





T

(Rop
pA∗

i ) −





0

1

0





T

(Rop
pA∗

i )

−





0

0

1





T

(Rop
pA∗

i ) 0





1

0

0





T

(Rop
pA∗

i )





0

1

0





T

(Rop
pA∗

i ) −





1

0

0





T

(Rop
pA∗

i ) 0































,

pA∗
i = k∗

pAi

rsp
(19)

where pAi ∗ is the position vector of point Ai with respect to the
reference frame O-xpypzp, expressed in non-dimensional form.
A scalar rsp indicates the distribution radius of the spherical
joint with respect to the moving platform and is utilized to
homogenize the original velocity Jacobian matrix (Zanganeh and
Angeles, 1997). k∗ represents the scaling factor between the linear
motion and rotational motion (generally, k∗= 1).

Performance Indices
Reachable Workspace Index
The reachable workspace of an ankle rehabilitation robot must
contain the ROM of the HAC summarized (Siegler et al., 1988)
in Table 2. Meanwhile, to ensure that the safety issue will not
occur in the process of treatment, the maximum allowable
workspace (MAW) of the ankle rehabilitation robot should be
constrained in a certain range (Table 2). By using the numerical
searching method based on derived inverse position solution
while considering the stroke constraint of the linear actuator,
the feasible points in the reachable workspace of the ankle
rehabilitation robot with certain dimension parameters can
be obtained, and then the set of the reachable points forms
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TABLE 2 | ROM of the HAC and MAW of the robot.

Type of motion ROM/(◦) MAW of the robot /(◦)

Plantarflexion 37.6–45.8 45.0

Dorsiflexion 20.3–29.8 30.0

Inversion 14.5–22.0 22.0

Eversion 10.0–17.0 22.0

Adduction 22.0–36.0 36.0

Abduction 15.4–25.9 36.0

the overall workspace. To evaluate the workspace, a reachable
workspace index IRW can be written as follows:

IRW =
vRW

vMAW
, (20)

vRW =

∫

w
dw, (21)

vMAW = 1α1β1γ , (22)

where vRWand vMAW are the volume of the reachable workspace
and the MAW, respectively, 1α, 1β, and 1γ denote the ranges
between the minimum and maximum α, β, and γ , respectively,
which can be given as follows:

1α = αmax − αmin, (23)

1β = βmax − βmin, (24)

1γ = γmax − γmin, (25)

where αmax, αmin, βmax, βmin, γmax, and γmin can be obtained
according to Table 2. The IRW can reach values from 0 to 1. The
value is equal to 1 (or 0) mean that the robot possesses the largest
(or smallest) workspace.

Motion Isotropy Index
The inverse value of the condition number of robot’s velocity
Jacobian matrix, ranges between 0 and 1 (denote singular
and isotropic configuration, respectively), is an important local
performance index to evaluate the motion isotropy in one
posture or over its full workspace of a parallel robot (Wu et al.,
2013; Enferadi and Nikrooz, 2017). Its physical meaning can be
expressed as a velocity ellipsoid and define as Equation (26).
For a rehabilitation device, as many areas as possible in the
reachable workspace are desired to possess relatively uniform
motion isotropy. That is, condition number’s inverse value of
most of the feasible points should be closer to 1. To measure the
global behavior of the condition number of the robot, a motion
isotropy index IMI can be presented via computing the average of
the inverse value of the condition number within the reachable
workspace, and is written as follows:

ṠTṠ = ω
T
(

JvJ
T
v

)−1
ω ≤ 1 , (26)

IMI =

∫

w ηJdw

vRW
, (27)

ηJ = lvsp/lvlp (28)

where Ṡ=
(

ḋ1, ḋ2, θ̇3

)T
; w denotes the reachable workspace of

the ankle rehabilitation robot; ηJ is a local index indicating the
inverse value of the condition number of robot’s velocity Jacobian
matrix in a given posture within the reachable workspace; lvlp
and lvsp are the lengths of the long and short principal axes of
the velocity ellipsoid, respectively. The value range of the IMI is
between 0 and 1, and the value of which is desired to be larger.

Force Tansfer Index
As a human-robot system for ankle rehabilitation, the force
is required to be transferred from robot’s active joint space
to patient’s ankle space as sufficient torque which is an
important condition for an ankle rehabilitation robot to achieve
passive/active treatment. A force unit sphere f Tf ≤ 1 is set up in
active joint space. Subsequently, this sphere can be transferred
into task space as a force ellipsoid via the force mapping
relationship, and can be defined as follows:

f = Jfτ = JTv τ , (29)

f Tf=τ
T(JTf Jf)τ = τ

T(JvJ
T
v )τ ≤ 1, (30)

where f=(f1, f2, τ3)
T and τ=(τα, τβ, τγ)

T; f 1 and f 2 are the driving
forces of joints P1 and P2, and τ 3 is the driving torque of joint R1;
τα, τ β, and τγ indicate the torques applied on the axes of PL/DO,
IN/EV, and AB/AD, respectively; Jf denotes the force Jacobian
matrix, and is the transpose of Jacobian matrix Jv.

The robot possesses a better (or worse) force transfer
performance along a particular operation direction when the
length of the force ellipsoid’s radius along the directional vector
is longer (or shorter). Moreover, the long (or short) principal
directions of the force ellipsoid means the greatest (or least) force
transfer performance. Thus, the length lfsp of the short principal
axis of the force ellipsoid can be regarded as a local evaluation
index of force transfer performance, and the corresponding
global force transfer index IFT is given as follows:

IFT =

∫

w lfspdw

vRW.
(31)

Maximum Torque Index
To evaluate the force capability of the ankle rehabilitation robot
while considering the real physical capability of robot’s actuators,
a set Tτ (or convex polyhedrons) of allowable forces and torques
of the actuators should be defined based on the force Jacobian
matrix in the task space. The radius ris of the inscribed sphere
contained in the set indicates the largest real torque that can be
realized by the ankle rehabilitation robot along all directions in
the ankle space, i.e., this radius reflects the maximum torque in a
given posture. According to the aforementioned analysis and the
force mapping relationship, the set Tτ , and a global maximum
torque index IMT of the ankle rehabilitation robot can be written
as follows:

Tτ =
{

τ | τ = (Jf)
−1f f ∈ Tf

}

, (32)
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Tf =
{

f
∣

∣

∣

∣fi
∣

∣ ≤ fimax i = 1, 2; |τ3| ≤ τ3max} , (33)

IMT =

∫

w lrisdw

vRW
, (34)

where Tτ is the generalized set of torques in the ankle space; Tf is
the allowable forces and torques of the actuator; lris is a local index
denoting the length of the ris, and is actually a local performance
index. Without loss of generality, the force and torque limits of
the driven system are assumed to be f 1max = f 2max = τ 3max =

1. Thus, the IMT ranges from 0 to 1, a larger (or smaller) value
of IMT indicates a better (or worse) force capability of the ankle
rehabilitation robot.

RESULTS

Mechanical Design
Based on the proposed kinematic configuration (i.e., 2-
UPS/RRR parallel mechanism) and wearable design concept, the
mechanical design of the wearable parallel robot (Figure 4) is
detailed. Two sub-systems, i.e., a basic machine-drive system and
a multi-model position/force data collection system, constitute
the whole physical system of the robot.

The machine-drive system exhibits a parallel main structure,
in which two kinematic branches and one constraint branch
both connect the base to the moving platform. The base consists
of a base plate and a supporting column. An adjustable lower-
limb binding mechanism is established between the supporting
column to maintain the stability of the lower-limb during
rehabilitation and accommodate patients with different body
sizes (Figure 5), double linear guide rails with double-slider,
single-connection platform and locking function are employed to
fix the thigh and adjust the up/down position of the patient, while
the calf is fixed by a special leg holder and its forward/backward
position can be fine-tuned by single linear guide rail with single-
slider and locking function. Subsequently, the base and two

FIGURE 4 | Wearable parallel robot.

identical kinematic branches are connected via the joint U1 and
U2. Two linear actuators (CAHB-10, SKF, Sweden) are employed
as joint P1 and P2 to adjust the lengths of the kinematic branches
from 413 to 713mm. As illustrated in Figure 6, joint S1 (S2) that
located below the joint U1 (U2), and P1 (P2) is equivalent to a
universal joint and a revolute joint with three axes intersecting at
the same point, this combination design can reduce the cost and
realize free-interference on workspace. Moreover, by loosening
the screw bolt connecting the lower end of the linear actuator
and joint S1 (S2), the kinematic branches can be separated from
the constraint branch (i.e., the 2-UPS/RRR parallel robot is
translated into an RRR serial robot). As shown in Figure 7, three
lockable binding bands secure the patient’s foot to the upper
part of the moving platform (i.e., the upper platform) without
large misalignment during combined motion. In addition to
joint S1 and S2, the lower platform is also connected to joint
R3 via an “L” shaped frame. As the active vertical-revolute joint

FIGURE 5 | Lower-limb binding mechanism.

FIGURE 6 | Joint S1 (S2).
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of the constraint branch, joint R1 is driven by a servo motor
(Figure 8), i.e., the combination of a frameless motor (KBM,
Kollmorgen, America) and an incremental encoder (HKT30-301,
REP, China), and is transmitted via a harmonic reducer (CSG-17-
100, HarmonicDrive, Japan). Notably, the distance between the
moving platform and the base plate determines the height of the
patient’s seat, and a higher seat may produce fear emotions that
lead to negative treatment results on patient. Thus, to reduce the
height of the moving platform, the axis R1 and its driving unit
(i.e., the servo motor and the incremental encoder) are arranged
in parallel and are connected to each other by a synchronous belt
with a 1:1 reduction ratio. Additionally, as shown in Figure 8,
screw bolts are installed as mechanical limits on joint R1, and
two suspended revolute joints (i.e., joints R2 and R3) for safety.
As mentioned above, the limits for the rotation angles are set
according to the MAW in Table 2, and the maximum allowable
angles of the PL/DO (αmax/αmin), IN/EV (βmax/βmin), and
AD/AB (γmax/γmin) are set at 45

◦/30◦, 22◦/22◦, and 36◦/36◦ to
ensure that the robot is suitable for both the left and right foot.

FIGURE 7 | Moving platform.

A multi-model position/force data collection system
is installed in the robot to realize various rehabilitation
strategies, including ROM treatment based on position
control, strength treatment based on impedance control
and proprioceptive treatment base on intention recognition.
Specifically, as illustrated in Figure 8, three absolute rotary
encoders (HAN28U5, China) are arranged to measure the
rotation angles of joints R1, R2, and R3 (i.e., real-time position
information of the moving platform); two of them are connected
in series with joints R2 and R3, as shown in the detailed view
(Figure 9), joints R2 and R3 possess similar structure: the base,
“C” shaped frame#1, “C” shaped frame#2, and “L” shaped frame
are arranged in sequence, the latter rotates with respect to the
former, and the “L” shaped frame drives the moving platform
together with the “V” shaped part of the lower platform; another
one is placed on the base plate and arranged in parallel with
joint R1. Additionally, the force/torque information of the
rehabilitation process, i.e., the interaction force and torque
between the foot and moving platform, can be collected by a
six-axis sensor installed between the upper and lower platform
(Figure 7). In general, the encoders and sensor form a complete
information collection system, which can produce real-time
feedback in the process of treatment and lay a foundation for
various control schemes and rehabilitation strategies.

Performance Evaluation
The geometrical parameters of the wearable parallel robot are
presented inTable 3, where the absolute values of the coordinates
of joint Ui are expressed with respect to reference frame O-
xoyozo, the absolute values of the coordinates of joint Si are
expressed with respect to reference frame O-xpypzp.

The reachable workspace (the set of the solid points) of the
wearable parallel robot is calculated in Figure 10A. For this
robot, the constraint condition is the stroke constraint of the
linear actuators and the arrangement of the mechanical limits.
According to the calculation results, the appearance of the
reachable workspace is a cube, suggesting that the robot can reach
any posture in MAW, i.e., the volume of the reachable workspace

FIGURE 8 | Mechanical limits, joint R1 and absolute rotary encoders.
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FIGURE 9 | Detailed view of joints R2 and R3.

TABLE 3 | The geometrical dimensions of the robot.

Robotic dimensions Absolute values

of coordinates

X Y Z

Center Bi of joint Ui 120mm 70mm 520 mm

Center Ai of joint Si 90mm 215mm 107 mm

is equal to that of the MAW, and thus IRW = 1. Additionally,
when the mechanical limits are removed, the workspace of the
robot is represented by a high transparency shadow (Figure 10A)
which covers the set of the solid points, indicating that the
mechanical limits can effectively restrict the workspace to a
safe range.

The ηJ, lspa, and lris are evaluated within the calculated
reachable workspace. Subsequently, trends of their
corresponding values are illustrated in Figures 10B–D,
respectively, with values represented by the color map shown
in the color bar and trends represented by the color variation
in the color map. The distribution volume proportions of the
corresponding values in the reachable workspace are shown in
Figures 11A–C, while the proportion that indices ηJ, lfsp, and lris
superior to indices IMI, IFT, and IMT is shown in Figure 11D.

As shown in Figure 10B, the values of ηJ change smoothly
with no mutation within overall reachable workspace, indicating
that the robot has no singularity configuration. Moreover, the
robot exhibits better motion isotropy performance in the central
part of the reachable workspace, since the values of the ηJ are
relatively small in the boundary area and increases gradually
toward the central section. As shown in Figure 11A, the value of
ηJ is mainly distributed between 0.3 and 0.6, and the minimum
value, varies from 0.24 to 0.3, accounted for 6.5552% in the
reachable workspace. Thus, the robot is sufficiently kinematically
isotropic for ankle rehabilitation.

Analogous to ηJ, both lfsp and lris possess better performance
in the central part (Figures 10C,D). As illustrated in
Figures 11B,C, the values of lfsp and lris are mainly distributed
between 0.5 and 0.69, 0.6, and 0.91, respectively. Moreover, the
proportions of the worst-performing postures of lfsp and lris
are 3.5050 and 10.7826%. Thus, the robot possesses high force
transfer performance and large maximum torque performance,
especially in the central part.

The values of IMI, IFT, and IMT are calculated as IMI = 0.5573,
IFT = 0.5565, and IMT = 0.6744, demonstrating sufficient global
performances. As shown in Figure 11D, the proportion of ηJ, lfsp,
and lris exceeded IMI, IFT, and IMT in magnitude are 41.2040,
56.5151, and 54.1271%, mainly located in the central section
(i.e., main treatment area), suggesting that most postures within
the reachable workspace are well-performed enough (although
the proportion of ηJ superior to indices IMI is failure to reach
50%, most postures that do not meet the condition exceed 0.5 in
magnitude, as shown in Figure 10B).

To verify the calculation correctness and obtain a detailed
view, velocity ellipsoids, force ellipsoids, sets Tτ and their
inscribed spheres in two stochastic configurations ([α = −30◦,
β = 20◦, γ = 5◦], [α = 10◦, β = −10◦, γ = −2◦]) of the
reachable workspace are provided in Figure 12. Figures 12A–D
report that due to the duality between the velocity ellipsoid and
the force ellipsoid (Chiu, 1988), the principal axial directions of
the two ellipsoids are coincident and the lengths, i.e. lvsp and
lflp (the length of the long principal axis of the force ellipsoid),
lvlp and lfsp, are reciprocal. Index ηJ are calculated as 0.4081 and
0.3866 in these two configurations, while index lspa are obtained
as 0.4477 and 0.6153, respectively. Figures 12E,F indicate that
the cube in active joint space maps to an irregular polyhedron
in task space with an inscribed sphere tangent to the colored
surfaces, and index lris are, respectively calculated as 0.4790
and 0.7797.

DISCUSSIONS

We introduced a novel robot with the features of a wearable
design concept and parallel platform-based form. The salient
advantages of this robot are its simple configuration and safety
guarantee.Moreover, we evaluated and analyzed the performance
of this robot within the overall reachable workspace. Results
showed that the proposed robot possesses sufficient motion
isotropy, high force transfer performance and large maximum
torque performance.

In comparison with the ankle rehabilitation robot applying
redundant actuation, by adopting a simple kinematic
configuration (i.e., 2-UPS/RRR parallel mechanism) as the
main mechanical structure, actuator non-redundancy and easy
operation can be realized on this wearable parallel robot, and
then the cost of the robot manufacturing, the difficultly of the
control system development, and the burden of the therapists
can also be effectively reduced. Additionally, according to
the performance evaluation and analysis, the proposed robot
satisfies the conditions of performing ankle rehabilitation
treatment for patients.
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FIGURE 10 | Performance indices calculation. (A) The reachable workspace of the robot. (B) Trend in value of ηJ. (C) Trend in value of lfsp. (D) Trend in value of lris.

FIGURE 11 | Performance evaluation. (A) Performance distribution of ηJ. (B) Performance distribution of lfsp. (C) Performance distribution of lris. (D) Performance

comparison between the local indices and the global indices.

This wearable parallel robot is designed with several safety
precautions to protect the patients from secondary injury in
the process of treatment. Specifically, this robot possesses the
lowest moving platform under the premise of meeting the ROM
requirement, and then correspondingly reduces the height of
the patient’s seat. An excessively high seat increases the risk of
injury and easily results in patients’ contravene mood. Moreover,

the arrangement of the lower-limb binding mechanism and
three lockable binding bands, respectively fix the thigh/calf
and the foot with the base and the moving platform. With
this wearable design concept, the foot moves in the form of
platform-base with respect to the lower-limb, and thus avoiding
the coupled foot-shank motion. Additionally, the supporting
column is narrow in width to allow the patient to place the

Frontiers in Neurorobotics | www.frontiersin.org 11 February 2020 | Volume 14 | Article 969

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zuo et al. Ankle Rehabilitation Robot Design, Evaluation

FIGURE 12 | (A,B) Velocity ellipsoids, (C,D) force ellipsoids, (E,F) sets Tτ and their inscribed spheres for [α = −30◦, β = 20◦, γ = 5◦], [α = 10◦, β = −10◦, γ = −2◦]

configurations.

non-rehabilitation leg conveniently. Demountable mechanical
limits are implemented to constrain the workspace of the robot
in a safe range.

In terms of information collection, the proposed robot is
equipped with multi-model position/force data collection system
containing a six-axis sensor and three absolute rotary encoders.
Based on the collected kinematic and dynamic information,
passive treatment mode and active treatment mode can be
achieved. By separating the spherical joint from the upper
end of the linear actuators, the 2UPS/RRR parallel robot can
be translated into an RRR serial robot. Therapists can bind
the patient’s foot on the moving platform in advance and
plan the treatment trajectory by manually moving the RRR

serial robot according to the joint characteristics and the
severity of impairment among different patients. The trajectory
can be recorded by the three absolute rotary encoders, and
the robot can provide repetitive treatment on the basis of
this trajectory.

It should be highlight that the indices are not applied
to design the geometrical parameters of the mechanism in
this study. A low height of the moving platform, a narrow
width of the overall mechanism and a sufficient volume of
the reachable workspace are more considered at current stage.
Moreover, by applying the transmission angular theory and
screw theory to evaluate the motion/force transmissibility (i.e.,
essential function) of the parallel mechanism, a more convincing
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kinematic performance evaluation system (Liu et al., 2008; Wu
et al., 2010, 2011; Xie et al., 2010) was proposed compared with
the utilization of the Jacobian matrix in evaluation of parallel
mechanism. Based on the defined motion/force transmission
indices, dimensional synthesis (optimal design) was also carried
out using performance charts. In future studies, dimension
optimal design according to the aforementioned method will be
carried out before prototype construction. Additionally, based
on the multi-model position/force data collection system, future
work could go in the direction of the development of the control
schemes to achieve various rehabilitation protocols.

CONCLUSION

This paper presented a novel wearable parallel robot for
ankle rehabilitation in which the intended simple configuration
is determined according to the HAC anatomy and safety
consideration. Based on the performance evaluation, the
proposed robot possesses relatively uniform motion isotropy,
high force transfer performance and large maximum torque
performance within a large reachable workspace. Equipped with
a multi-model position/force data collection system, both passive
and active treatment mode can be achieved. And the robot
has the potential to be used for the rehabilitation treatment of
ankle disabilities.
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In this study, we developed a novel robotic system with a muscle-to-muscle interface
to enhance rehabilitation of post-stroke patients. The developed robotic rehabilitation
system was designed to provide patients with stage appropriate physical rehabilitation
exercise and muscular stimulation. Unlike the position-based control of conventional
bimanual robotic therapies, the developed system stimulates the activities of the target
muscles, as well as the joint movements of the paretic limb. The robot-assisted motion
and the electrical stimulation on the muscles of the paretic side are controlled by on-line
comparison of the motion and the muscle activities between the paretic and unaffected
sides. With the developed system, the rehabilitation exercise can be customized and
modulated depending on the patient’s stage of motor recovery after stroke. The system
can be operated in three different modes allowing both passive and active exercises.
The effectiveness of the developed system was verified with healthy human subjects,
where the subjects were paired to serve as the unaffected side and the paretic side of a
hemiplegic patient.

Keywords: wearable robot, human-human interface, electromyogram, functional electrical stimulation, lower limb
rehabilitation

INTRODUCTION

A large number of patients suffer from lower limb hemiplegia after experiencing a stroke. Post-
stroke hemiplegic patients have impaired gait pattern and must undergo rehabilitation exercises
to restore their normal gait pattern. Intensive rehabilitation exercises must be conducted within
a golden period, between 3 and 6 months following the stroke within which most functional
restoration takes place. However, rehabilitation processes often do not begin in a timely manner due
to the limited number of therapists available to conduct the exercises. The process of rehabilitation
requires significant time and effort for the therapists and therefore the number and duration
of rehabilitation sessions hardly meet the demand. It is crucial that this problem be addressed
as studies have indicated that increasing the amount of physiotherapy has a positive effect on
functional recovery (Kwakkel et al., 2008; Huang and Krakauer, 2009; Kollen et al., 2009; Kwakkel,
2009; Marchal-Crespo and Reinkensmeyer, 2009).

In order to reduce the therapists’ workload and thus increase the patients’ accessibility of
rehabilitation sessions, multiple kinds of robotic rehabilitation systems have been developed.
However, some studies have raised concerns regarding robot-assisted rehabilitation systems due
to the patient’s passivity in conducting the exercise (Israel et al., 2006; Hornby et al., 2008;
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Hidler et al., 2009). The degree of functional recovery during
rehabilitation depends on the level of task difficulty and the
amount of exercise actively conducted by the patient. In
order to maximize the efficacy of rehabilitation exercises and
thus functional recovery, patients must actively contract their
appropriate muscles rather than passively depend on the robot to
conduct the pre-programed motions (Hornby et al., 2008; Hidler
et al., 2009). Studies have shown that low patient involvement and
ease of exercise compromise the speed and outcome of functional
recovery (Israel et al., 2006). Leaving the patient idle during the
rehabilitation exercise risks wasting the golden period. In order
to effectively make use of the golden period, patient involvement
in the rehabilitation exercise must be maximized in a timely
manner. Passive and active rehabilitation methods should be
selected depending on the patient’s recovery phases. In the early
stage of rehabilitation, the passive exercise is essential to provide
the reference trajectories of the motion to patients in order to
improve the movability and to reduce muscle atrophy (Jamwal
et al., 2014). After recovering a certain degree of muscle strength,
the active exercise is necessary to encourage voluntary muscle
activation by the patient.

There are three types of control modes that are commonly
used for robot-assisted rehabilitation: passive mode, active
assist mode, and active resist mode (Marchal-Crespo and
Reinkensmeyer, 2009; Pittaccio and Viscuso, 2011). In the passive
mode, the patient solely depends on the robot movements that
follow the reference trajectories generated by using a position-
based trajectory tracking control method (Emken et al., 2008;
Beyl et al., 2009; Vallery et al., 2009; Duschau-Wicke et al., 2010;
Saglia et al., 2012; Hussain et al., 2013b; Jamwal et al., 2014). The
reference trajectories are generated from the movements of the
unaffected limb as in bimanual rehabilitation (Lum et al., 2004).
Bimanual rehabilitation is a treatment method, in which the
patient moves both paretic and unaffected limbs simultaneously.
It has been reported that training both limbs in identical
motion aids recovery by coupling symmetric proprioceptive
feedback in both sides of the ipsilateral corticospinal pathway
(Wolf et al., 1989; Burgar et al., 2000). In the active assist
mode, the robot provides partial assistance to the patients who
recovered muscle strength to produce a voluntary motion. The
active resist mode is used to help strengthen the muscle forces
of the patients by performing the exercise against a resistive
force exerted by the robot (Poli et al., 2013). A number of
rehabilitation robots employ the well-known impedance control
strategy for the active assist mode and the active resist mode
to encourage active participation of the patient and to adjust
the dynamic relationship between robot position and contact
force (Emken and Reinkensmeyer, 2005; Agrawal et al., 2007;
Veneman et al., 2007; Wolbrecht et al., 2008; Roy et al., 2009;
Duschau-Wicke et al., 2010; Hussain et al., 2013a; Koopman
et al., 2013). In active operation modes with impedance control,
it is difficult to stimulate and control the contraction of
the specific target muscles that are necessary to generate the
movement. In their meta-analyses for the effects of robot-assisted
rehabilitation, Veerbeek et al. (2017) reported that robot-assisted
rehabilitation can improve motor control ability and muscle
strength in the paretic side, while the improvement does not

appear significant. This issue may be alleviated with the aid of
functional electrical stimulation (FES) that delivers low intensity
electrical stimulation to a specific nerve or muscle to induce
muscle contraction artificially. FES is known to be beneficial for
improving motor ability and inducing changes in motor cortex
excitability and functional cortical reorganization (Maffiuletti
et al., 2011; Popović, 2014).

In this study, we aim to develop a robot-assisted rehabilitation
system combined with the application of FES on the muscles in
the lower limb to enhance the recovery process for hemiplegic
stroke patients. Several studies have attempted to provide robotic
rehabilitation therapies by using hybrid robotic rehabilitation
systems (HRRS), where FES is applied in addition to volitional
muscle contraction in order to induce further muscle contraction
and thus muscle forces (Langzam et al., 2006a,b; Bulea et al.,
2013; Chen et al., 2013). In those studies, the intensity of FES is
controlled either by predefined stimulation pattern (Bulea et al.,
2013) or by feedback control (Chen et al., 2013), which takes into
account of the states of the paretic side only. The robotic system
developed in this study employs electromyography (EMG)
biofeedback signals from both unaffected and paretic sides to
control the motion and muscle activities of the paretic limb.
Unlike the position-based control of conventional bimanual
robotic therapies, this feature aims to exploit the functional
bimanual synergies at the level of muscle activities, as well as at
the level of joint movements.

The HRRS developed in this study provides the patient with
the passive and active exercises. During the passive exercise, a
one-DOF rehabilitation orthosis for knee movement is controlled
by a proportional-derivative (PD) controller to provide isokinetic
exercise for the paretic leg. The desired position of the paretic
leg is set to be the position of the unaffected leg, while the
desired velocity is set constant. During the active exercise,
both the orthosis motion and the FES intensity on the paretic
side are controlled. The orthosis is controlled by admittance
controller to generate a target interaction force between the
orthosis and the paretic leg. FES applied to the paretic leg is
modulated to generate appropriate muscle contraction to follow
the knee joint motion of the unaffected leg. FES intensity is
controlled by comparing the muscle activities of the paretic
and unaffected legs. EMG is measured from Rectus Femoris
(RF) – one of the knee extensor muscles. The measured EMG
signals from both paretic and unaffected sides are processed and
compared to modulate the FES intensity to induce the muscle
activity for the RF on the paretic side close to that on the
unaffected side. The passive and active operation modes can
be selected depending on the patient’s stage of motor recovery
after stroke. It was reported that the functional restoration of
knee extensor muscles, such as RF, plays an important role
in regulating comfort and gait speed of hemiplegic patients
(Hsu et al., 2003).

This paper is organized as follows: section “Materials and
Methods” describes the developed rehabilitation system. Section
“Experiments and Results” explains the experimental setup and
shows performance evaluation of the developed rehabilitation
system. Section “Conclusion” summarizes the major points of the
system performance and concludes the study.
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MATERIALS AND METHODS

System Overview
The HRRS developed in this study consists of four major
components: an exoskeleton robot (ATO, KIST, Seoul,
South Korea), sEMG sensors with wireless transmission
devices (Trigno Lab, Delsys Inc., United States), a FES device
(Rehastim, Hasomed GmbH, Germany), and a self-designed
knee angle measurement device.

ATO system developed in the previous study (Lee et al., 2013)
is an exoskeleton-type robotic orthosis for one-DOF sagittal knee
motion (extension-flexion). The patient’s leg is attached to ATO
system by a brace at the calf. As shown in Figure 1, the joint
angle θ is defined 0◦ when the patient’s knee is fully extended
along with ATO (Figure 1A). While ATO moves in the direction
of knee flexion, the joint angle θ is increased as depicted from
Figures 1A–D. For actuation of the joint angle θ ranging from
0◦ (Figure 1A) to 90◦ (Figure 1D), a linear actuator equipped
with a ball screw and a BLDC motor (Maxon EC-4pole 200W)
is implemented (see Figure 2A). The linear actuator changes the
length x in Figure 2A, which results in joint angle (θ) regulation.
The load cell equipped at the brace measures the interaction force

FIGURE 1 | The joint angle (θ) configuration of ATO: (A) θ = 0
◦

when ATO is in
the position of full knee extension, (B–D) increasing of θ to the 90

◦

while ATO
operating in clockwise by changing the linear length of x.

FIGURE 2 | Actuator and sensor in ATO system: (A) Linear actuator with a
ball screw and a BLDC motor, (B) load cell to measure interaction force
between the paretic leg and ATO.

between the patient’s leg and ATO (see Figure 2B). The patient’s
leg is strapped tightly to the brace so that the load cell can measure
both tensile and compressive interaction forces. The muscle force
including volitional portion and FES induced portion is observed
by the measured interaction force. For instance, observation of
large tensile interaction force means the patient generates the
large muscle force in the direction of knee extension. As another
example, observation of compressive interaction force same as
leg weight means the patient fully relies on ATO and does not
generate any muscle force. The measured interaction force is
also used to control the sagittal knee motion of ATO through
admittance control (see section “Active Assist Mode” and section
“Active Resist Mode”).

As illustrated in Figure 3, the developed system employs
two types of interfaces between the unaffected and paretic
sides of the patient: muscle-to-muscle Interface and motion-to-
motion Interface. The muscle-to-muscle Interface, described in
Figure 3A, modulates the amplitude of FES on the paretic leg
based on the difference in the readings from sEMG sensors on
the unaffected and paretic legs. The motion-to-motion Interface,
described in Figure 3B, controls the sagittal knee motion of ATO
and thus guides the knee joint motion of the paretic side based on
the knee joint motion of the unaffected side and the interaction
force between ATO and the paretic leg. The knee joint motion
of the unaffected side was measured by the self-designed knee
angle measurement device consisting of a hard-type commercial
knee brace and a goniometer. The goniometer was attached
on the side of hard-type commercial knee brace to measure
the knee motion.

FIGURE 3 | Interfaces between unaffected and paretic legs:
(A) Muscle-to-Muscle Interface and (B) Motion-to-Motion Interface.
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Muscle-to-Muscle Interface
The muscle-to-muscle interface compares the EMG data from the
RF on the paretic and unaffected legs to adjust the amplitude
of FES applied on the paretic leg. The EMG records electrical
activity in a muscle, which reflects degree of muscle activation.
The EMG data from the RF on the paretic and unaffected legs are
measured and processed. Based on the difference between the two
processed EMG readings, the intensity of FES is modulated and
applied to the RF on the paretic leg. Through FES, the patients
can train to learn their appropriate amount and timing of muscle
activation of the RF on the paretic leg.

Since the raw EMG readings from different muscles show
different characteristics in amplitude and frequency, it is difficult
to compare the raw EMG signals without preprocessing (De
Luca, 1997). Moreover, the EMG data from the paretic side
contains stimulus artifacts induced by FES. In this study, the
EMG signals are processed using filtering, feature extraction,
and normalization techniques. The filter was designed using
a combination of a blanking window and a comb filter. The
blanking window is used for the EMG signal from the paretic
side to nullify stimulation artifacts from the first 25 ms of the FES
pulse (Frigo et al., 2000). After applying the blanking window,
the comb filter removes harmonic artifacts and thus isolates the
volitional component of the EMG signal (Frigo et al., 2000). The
comb filter is a finite impulse response (FIR) filter and can be
expressed as follows:

y (t) =
x (t)− x (t − T)

√
2

(1)

In equation (1), x(t) and y(t) are the raw EMG and the filtered
EMG at time t. T denotes a time period of FES.

Feature extraction technique is applied on the filtered EMG
using waveform length, which is effective for extracting time-
domain features including waveform amplitude, frequency, and
duration (Phinyomark et al., 2010; Negi et al., 2016; Veer and
Sharma, 2016). The waveform length can be expressed as follow:

y =
N−1∑
i=0

|xi+1 − xi| (2)

In equation (2), x and y are the filtered EMG and the waveform
length, respectively. N is a constant related to the number of
samples to be used for calculating waveform length. In this paper,
N was used for 160.

As a common normalization method, EMG signals are divided
by a reference value. The reference value was taken by the
maximum EMG value (Halaki and Ginn, 2012). Maximum
activation for each subject was obtained beforehand while
performing the task under maximum effort.

After the signal is processed according to procedures
mentioned above, the difference between the processed EMG
signals from RF on the paretic and unaffected legs is calculated.
Based on the EMG difference, the amplitude of FES applied on
the paretic leg is determined. If the EMG difference is less than
0.01, the FES amplitude is maintained. If the EMG difference
is greater than 0.01 and the EMG signal from the RF on the

unaffected leg is larger than that from the RF on the paretic leg,
the FES amplitude is increased by 2 mA. If the EMG difference
is greater than 0.01 and the EMG signal from the RF on the
unaffected leg is smaller than that from the RF on the paretic
leg, the FES amplitude is decreased by 2mA. Altogether, the FES
amplitude is determined as follows:

EMG = EMGunaffected − EMGparetic (3)

FESi =


FESi−1 + 2 (EMG > 0.01)

FESi−1 (|EMG| ≤ 0.01)

FESi−1 − 2 (EMG < −0.01)

(4)

In equation (3), EMGunaffected and EMGparetic indicate the
processed EMG signals from RF on the unaffected and paretic
legs, respectively. In equation (4), FESi is the amplitude of ith FES
applied to the RF on the paretic leg.

Motion-to-Motion Interface
The motion-to-motion interface maps the knee joint motion of
the unaffected leg to the motion of joint movement of ATO worn
on the paretic leg. The motion-to-motion interface can provide
the patient with three types of control modes: passive mode,
active assist mode, and active resist mode. In the passive mode,
the interface conducts robotic motion assistance for the patient
incapable of generating volitional muscle contractions. While the
joint angle (θ) of ATO is controlled by the knee angle of the
unaffected leg, the joint velocity of ATO is kept constant during
extension and flexion. This type of isokinetic exercise has been
reported to be appropriate in the early phase of rehabilitation
(Cabri and Clarys, 1991). Two different active modes, the active
assist mode and the active resist mode, are combined with
the muscle-to-muscle interface described in section “Muscle-to-
Muscle Interface.” The interface provides assistive or resistive
forces to the paretic leg using admittance control based on the
knee joint motion of the unaffected leg and the interaction force
between the paretic leg and ATO.

Figure 4 shows the block diagram of the admittance controller
used for the two active modes. First, the target interaction force
between the paretic leg and the exoskeleton is calculated based on
the difference between the knee joint angles of the unaffected leg
and the joint angle of ATO worn on the paretic leg (Figure 4A).
The target interaction forces are set differently for the active
assist mode and the active resist mode. Detail of setting for
the target interaction force in each active mode is described in
section “Active Assist Mode” and section “Active Resist Mode.”
The difference between the target interaction force and the actual
interaction force is calculated. Then, the target joint velocity for
PD controller is calculated to reduce the difference between the
target and actual interaction force (Figure 4B). The calculation
of the target joint velocity has following expressions:

θ̇T = f (1F) =
1F
b

(5)

1F = IFT − IFC (6)
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FIGURE 4 | Block diagram of admittance control. (A) Calculation of the desired interaction force and (B) calculation of the desired angular velocity of ATO.

In equation (5), b is a constant coefficient between the force
difference (4F) and the target joint velocity (θ̇T). In this paper,
b was used for 30. In equation (6), the force difference (4F)
is calculated by difference of the target interaction force (IFT)
and the actual interaction force (IFC). As the force difference
increases, the joint velocity increases in the direction of force
difference, which in turn will decrease the interaction force and
thus the joint velocity.

Operation Modes
The developed HRRS can operate in three different levels
of difficulty by combining the motion-to-motion interface
and the muscle-to-muscle interface. Three operation modes
in the developed HRRS is named after the three different
control modes in the motion-to-motion interface. Depending
on the patient’s stage of motor recovery after stroke (Gowland
et al., 1993), the operation mode can be adjusted to provide
appropriate amount of support and also encourage maximum
involvement by the patient.

Passive Mode
In the passive mode, only the motion-to-motion interface is used
to provide isokinetic exercise for the paretic leg. Flexion and
extension of the paretic leg are commanded by the motion of
the unaffected leg through position-based control. The muscle-
to-muscle interface is not used in this mode, since the exoskeleton

robot produces the movements even without volitional muscle
contractions in the paretic leg.

Active Assist Mode
In the active assist mode, both the muscle-to-muscle interface and
the motion-to-motion interface are used to assist active exercise
for the paretic leg through hybrid muscle activation and robotic
assistive force.

With the muscle-to-muscle interface, the FES on the paretic
leg is modulated by feedback of the EMG signals from both
unaffected and paretic legs. The motion-to-motion interface
controls the joint displacement and the joint velocity of ATO
based on the knee motion of the unaffected leg and the interaction
force between the paretic leg and ATO using admittance control.

In this mode, the patient needs to activate one’s RF for
knee extension, while muscle activation of the RF is not
necessary during knee flexion. The muscle-to-muscle interface
compensates for the deficiency in muscle activation of RF on the
paretic leg. The motion-to-motion interface assists the motion of
the paretic leg based on admittance control as described in section
“Motion-to-Motion Interface.”

Figure 5 plots the target interaction force for admittance
control (solid line). The target interaction force is determined
based on the gravity compensation force to counterbalance the
weight of the paretic leg and ATO worn on the leg (dashed line).
In this figure, the compressive force measured by the load cell
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FIGURE 5 | Target interaction force for the robotic force assistance in the
active assist mode.

is positive, while the tensile force is negative. In this mode, the
target interaction force during whole knee movement is set to
be compressive to assist the paretic leg in the direction of knee
extension. The gravity compensation force, G (θ), related to the
joint angle, θ (see Figure 1), has following expression:

G (θ) = (WLeg +WATO) cos (θ) (7)

In equation (5), WLeg and WATO are weights of the paretic leg and
the ATO. As shown in the Figure 5, the gravity compensation
force, G (θ), increases as the joint angle (θ) changes from 90◦
(Figure 1D) to 0◦ (Figure 1A), and it decreases as the joint
angle changes from 0◦ (Figure 1A) to 90◦ (Figure 1D). From
90◦ (Figure 1D) to 60◦ (Figure 1C) during knee extension
motion, an assistive force larger than the gravity compensation
force is applied so that the paretic leg can start the extension
motion without any muscle force. From 60◦ (Figure 1C) to 0◦
(Figure 1A) during the rest of knee extension motion, an assistive
force equal to the gravity compensation force is applied, and FES
is applied to the RF on the paretic leg through the muscle-to-
muscle interface in case of muscle activation deficiency in the
paretic leg. From 0◦ (Figure 1A) to 90◦ (Figure 1D) during
knee flexion, half of the gravity compensation force is applied to
prevent excessive joint velocity during knee flexion, which may
cause knee injury.

Active Resist Mode
In the active resist mode, both the muscle-to-muscle interface
and the motion-to-motion interface are used. With the muscle-
to-muscle interface, the FES on the paretic leg is controlled by
the difference between the EMG signals from the unaffected leg
and the paretic leg.

This mode differs from the active assist mode in that the
motion-to-motion interface applies resistive force against the
direction of hybrid muscle activation.

In this mode, the patient needs to activate the RF on the
paretic leg to overcome the robotic resistive force during both
knee extension and knee flexion. This kind of resistance exercise
is highly effective for hemiplegia patients in re-gaining muscle
strength in their lower limbs (Wist et al., 2016).

The muscle-to-muscle interface compensates for the
deficiency in muscle activation of the RF on the paretic leg to
overcome the resistive force generated by ATO. During knee
extension, the hybrid muscle activation serves for concentric
contraction of the RF to overcome the load in the direction of
knee flexion. During knee flexion, the hybrid muscle activation
serves for eccentric contraction of the RF, while ATO constrains
the paretic leg to make knee flexion movement.

In this mode, the target interaction force for the motion-
to-motion interface is set to be tensile and constant against
the contraction of RF on the paretic leg during knee
extension and flexion.

EXPERIMENTS AND RESULTS

Experimental Setup
A total of six healthy subjects aged 25 – 32 participated in this
study. The developed system was tested five times, each with
two subjects. Each time, one subject (Subject A, B, C, D, or E)
served as the paretic side of a hemiplegic patient, while the other
subject (Subject G) served as the unaffected side (Figure 6). Each
pair of subjects performed the exercise with the three operation
modes in same order of (1) Passive Mode, (2) Active Assist Mode,
and (3) Active Resist Mode. Each pair of subjects performed
each operation mode in different 3 days to minimize learning or

FIGURE 6 | Experimental setup with two healthy subjects. A written informed
consent for the publication was obtained from the individuals in this image.
(A) The exoskeleton robot, ATO, (B) the electrodes for the FES, (C) sEMG
sensors, and (D) the self-designed knee angle measurement device.
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fatigue effect. Thus, each operation mode was tested five times by
five different pairs of subjects in different days.

The knee angle measurement device and the sEMG sensor
were attached to the subject on the unaffected side. The
exoskeleton robot, sEMG sensor and FES electrodes were
attached to the subject on the paretic side. The subject on the
paretic side was blindfolded to prevent any inadvertent muscle
activation caused by observing the movement of the subject on
the unaffected side. The maximum amplitude of FES applied
on the paretic side was limited to 2mA lower than the pain
threshold of each human subject. The range of knee movement
for the unaffected side which has the same configuration as the
joint angle (θ) of ATO (shown in Figure 1) was limited to 5◦ to
85◦ for safety.

In the experiment using the Passive Mode, the subject on the
paretic side was instructed to neither generate volitional muscle
force nor resist the motion of the exoskeleton robot. This is to
imitate the state of post-stroke patients in early stages of motor
recovery. The subject on the unaffected side was instructed to
firstly carry out the knee extension and then to confirm visually
that the subject on the paretic side finished the knee extension
prior to conducting knee flexion.

In the experiment using the Active Assist Mode, the subject
on the paretic side was instructed to generate volitional muscle
force only when FES was applied to the RF. The instruction for
the subject on the unaffected side was the same as described in
the first experiment using the section “Passive Mode.”

In case of the Active Resist Mode, for knee extension, the
subject on the paretic side was instructed to generate volitional
muscle force only when FES was applied to the RF. For knee
flexion, the subject was instructed to volitionally contract the
muscle with or without FES application. For the subject on
the unaffected side, additional weight was attached to the leg,
so that the subject can generate a muscle force larger than
that in other operation modes. During knee extension, the
subject was required to produce a larger muscle force (concentric
contraction) to overcome the extra weight. Also, the subject on
the unaffected side was instructed to perform the knee flexion
slowly. Due to the extra weight, the subject was required to
maintain the muscle activation of the RF during knee flexion
(eccentric contraction).

The experiments involving human subjects were approved
by the Institutional Review Board at Korea University in Seoul,
South Korea (KUIRB-2019-0061-01).

Comparison of Experimental Results
Among the Operation Modes
Figure 7 shows the results from one experimental session in
three different operation modes described in section “Operation
Modes”: the passive mode (shown in the first column), the active
assist mode (shown in the second column), and the active resist
mode (shown in the third column).

Experiments Using Passive Mode
The first column in Figure 7 shows the results from a pair of
subjects in the passive mode. Graphs (A) and (B) plot the knee
joint angles and velocities on the paretic side (solid line) and on

the unaffected side (dashed line), respectively. Graph (C) plots
the normalized EMG measurements from the recti femoris on
the paretic side (solid line) and the unaffected side (dotted line).
The bold line in Graph (C) indicates the EMG difference, which
is calculated by subtracting the normalized EMG of the RF on
the paretic side from that on the unaffected side. Graph (E) plots
the interaction force measured by the load cell. In Graph (A), the
knee joint angle of the paretic side follows that of the unaffected
side with a small delay. Graph (B) shows that the joint velocity of
the paretic side is kept constant owing to the isokinetic control
described in section “Passive Mode,” while the joint velocity of
the unaffected side is controlled arbitrarily by the subject on the
unaffected side.

As can be seen in Graph (C), the normalized EMG of the RF on
the paretic side is nearly zero, which indicates that the RF on the
paretic side is not volitionally activated unlike the unaffected side.

In Graph (E), the interaction force is kept compressive
(positive sign), since the exoskeleton robot counterbalances the
weight of the leg while assisting the motion.

The results show that the passive mode of developed HRRS
assisted passive exercises at constant joint velocity without any
volitional muscle activation from the subject on the paretic side.

Experiments Using Active Assist Mode
The second column of Figure 7 shows the results from a
pair of subjects in the active assist mode. Graph (A) plots the
knee joint angles on the paretic side (solid line) and on the
unaffected side (dashed line). Graph (C) plots the normalized
EMG measurements from the recti femoris on the paretic side
(solid line) and the unaffected side (dotted line). The bold line
in graph (C) indicates the EMG difference. Graph (D) plots the
amplitude of FES applied to the RF on the paretic side, which is
modulated based on the EMG difference, as described in section
“Muscle-to-Muscle Interface.” Graph (E) plots the interaction
force measured by the load cell. Graph (A) shows that the knee
joint angle of the paretic side follows that of the unaffected side
with a considerable time delay. The time delay mainly results
from the mechanism of the admittance controller, which tracks
the target interaction force rather than the target joint angle.
During knee extension [shaded box (1)] from 60◦ (see Figure 1C)
to 0◦ (see Figure 1A), additional muscle force is required to reach
full extension (joint angle 0◦ depicted in Figure 1A), since only
the gravitational force is compensated by the exoskeleton robot.
As can be seen in the Figure 7 [marked by the arrow in graph
(A)], the leg motion stops and waits until additional muscle force
is provided by FES.

During knee extension [shaded box (1)], the RF on the
unaffected side is activated, and thus the EMG difference
increases over the threshold of 0.01, which in turn raises the FES
amplitude as shown in graphs (C) and (D). The RF on the paretic
side is activated by hybrid muscle activation from both volitional
muscle contraction and FES. As the knee flexion [shaded box
(2)] starts, the RF on the unaffected side is deactivated, and the
EMG difference decreases under the threshold of−0.01, which in
turn lowers the FES amplitude. The EMG difference drops to the
value between−0.01 and 0.01 since the RF on both sides become
deactivated. During knee flexion, the FES amplitude applied to
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FIGURE 7 | Experimental results from three operation modes: the passive mode in the first column, the active assist mode in the second column, and the active
resist mode in the third column. (A) Knee joint angle, (B) knee joint velocity, (C) normalized EMG, (D) FES amplitude, and (E) interaction force (positive for
compression, negative for tension). Shading boxes (1) and (2) indicate the knee extension (from 90◦ to 0◦) and flexion (from 0◦ to 90◦), respectively.

the RF on the paretic side remains nearly zero with no hybrid
muscle activation on the paretic side.

During knee extension [shaded box (1)] from 90◦ (see
Figure 1D) to 60◦ (see Figure 1C), the interaction force is
compressive (positive sign) because the leg motion of the paretic
side is supported by ATO as shown in graph (E). The EMG
[solid line in graph (C)] and the FES amplitude [graph (D)] on
the paretic side are nearly zero, which indicates that the hybrid

muscle activation is not applied in this range. When the FES is
applied at around joint angle 60◦ (see Figure 1C), the RF on the
paretic side becomes activated. This muscle activation accelerates
the knee extension motion causing the leg motion to overshoot
the motion of ATO. In Graph (E), the tensile interaction force
(negative sign) is caused by this overshoot [shaded box (1)].
During knee flexion [shaded box (2)], the interaction force is
compressive (positive sign), and the normalized EMG of the RF
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FIGURE 8 | Means and standard deviations of knee joint velocities from five pairs of six subjects in the passive mode. (A) Knee extension and (B) knee flexion. Six
subjects are denoted by A–E,G.

on the paretic side is close to zero, because the weight of the leg
is supported by the exoskeleton robot and muscle activation to
counterbalance the weight is unnecessary during flexion.

Experiments Using Active Resist Mode
The graphs in the third column of Figure 7 show the results
from a pair of subjects in the active resist mode. Graph (A) plots
the knee joint angles on the paretic side (solid line) and on the
unaffected side (dashed line). Graph (C) plots the normalized
EMG measurements from the RF on the paretic side (solid line)
and the unaffected side (dotted line). The bold line in graph (C)
indicates the EMG difference. Graph (D) plots the amplitude of
FES applied to the RF on the paretic side. Graph (E) plots the
interaction force measured by the load cell. Graph (A) shows
that the knee joint angle of the paretic side follows that of the
unaffected side with a considerable time delay, as does in the
active assist mode (section “Experiments Using Active Assist
Mode”). As can be seen in the Figure 7, the leg on the paretic side
did not reach full extension (joint angle 0◦ depicted in Figure 1A)
because even the maximum amount of hybrid muscle activation
was not able to overcome the robotic force resistance applied
by ATO. As the knee extension starts [shaded box (1)], the RF
on the unaffected side produces a large force owing to the extra
weight imposed on the unaffected leg. This additional load on
the unaffected leg, in turn, increases the FES amplitude on the
paretic leg to its maximum value. The hybrid muscle activation
from volitional muscle contraction and FES activates the RF on
the paretic side during knee extension. Unlike in other operation
modes, the muscle on the paretic side is highly activated without
FES application during knee flexion [shaded box (2)]. As can be
seen in Graphs (C) and (D), the EMG difference shows negative
values during knee flexion with nearly zero FES amplitude, which
suggests that the RF on the paretic side is more activated than that

on the unaffected side to resist the robotic force applied in the
direction of knee flexion.

As can be seen in graph (E), the interaction force shows large
negative values (tensile force) for both knee extension and knee
flexion. The large tensile force is caused by the hybrid muscle
activation during the knee extension and the volitional muscle
activation during the knee flexion.

Comparison of Experimental Results
Among the Subjects
Figure 8 shows the means and standard deviations of the knee
joint velocities from the five pairs of six subjects during knee
extension (Figure 8A) and knee flexion (Figure 8B) in the passive
mode. While the mean velocities from the paretic and unaffected
sides are nearly the same, the standard deviations of the joint
velocities from the paretic side are much lower than those from
the unaffected side for all the pairs of subjects for both knee
extension and flexion.

These results indicate that joint motion on the paretic side is
kept isokinetic even if the joint motion on the unaffected side,
which commands the motion on the paretic side, shows varying
joint velocity. Also, the joint velocities of the subjects on the
paretic side show no statistically significant differences across
the subjects for both extension and flexion (one-way ANOVA
with Turkey-Kramer post hoc analysis, p = 0.71 >0.05 for knee
extension and p = 0.74 > 0.05 for knee flexion).

Figure 9 shows the min-mean-max values of the interaction
force for five subjects on the paretic side during knee extension
(Figure 9A) and knee flexion (Figure 9B) in the passive
mode (triangle), the active assist mode (square), and the active
resist mode (circle).

In the passive mode, the interaction forces are compressive
(positive sign) for both knee extension and flexion. This indicates
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FIGURE 9 | Min-Mean-Max values of interaction force from five subjects on the paretic side in three operation modes. (A) Knee extension and (B) knee flexion. Five
subjects are denoted by A–E.

FIGURE 10 | iEMG from five subjects on the paretic side in three operation modes. (A) Knee extension and (B) knee flexion. Five subjects are denoted by A–E.

that in this operation mode the subjects on the paretic side were
passively engaged in knee movement and were relying on robotic
motion assistance for conducting the movements.

In the active assist mode, the interaction forces range from
compressive (positive sign) to tensile (negative sign) values
during knee extension, while the mean interaction forces
are slightly compressive. The tensile interaction force can be
interpreted as the leg motion outpacing the motion of ATO. This
indicates that hybrid muscle contraction plays a considerable role
during knee movement with the aid of ATO in the direction of
knee extension. During knee flexion, however, the interaction
forces are compressive (positive sign), and the mean interaction
forces are lower than those in the passive assist mode. This shows
that the subjects on the paretic side did not solely rely on ATO
during knee flexion, while using the hybrid muscle activation to
partially counterbalance the weights of their legs.

In the active resist mode, the interaction forces were mostly
in the negative (tensile) range with large negative means for
both knee extension and flexion. It appears that in this operation

mode the hybrid muscle contraction plays a much larger role in
knee movement compared to the other two operation modes.
This indicates that the subjects on the paretic side were more
actively engaged in the knee movements to overcome the
resistive robotic force.

Figure 10 shows the means and standard deviations of
integrated EMG (iEMG) for five subjects on the paretic
side during knee extension (Figure 10A) and knee flexion
(Figure 10B) in the passive mode (triangle), the active assist mode
(square), and the active resist mode (circle). The iEMG is the time
integral of the EMG signal, and it is reported to represent the
volitional component of muscle force (Metral and Cassar, 1981).
For both knee extension and flexion, iEMG has the maximum
mean values in the active resist mode with robotic force resistance
(circle) and the minimum mean values in the passive mode with
robotic motion assistance (triangle).

Table 1 lists the p-values from t-tests among different
operation modes for each subject on the paretic side. As shown
in the table, for all the subjects, statically significant differences
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TABLE 1 | T-test results among different operation modes.

Comparing group pairs Subject Knee movement

Knee extension Knee flexion

Passive mode
V.S.
Active assist mode

A 8.9E-05* 0.00027*

B 0.0045* 0.0073*

C 0.0039* 6.5E-05*

D 0.0064* 0.0013*

E 0.0039* 0.0014*

Passive mode
V.S.
Active resist mode

A 2.5E-05* 0.00014*

B 0.0043* 0.0037*

C 0.00016* 0.00066*

D 4.3E-05* 4.5E-05*

E 1.9E-06* 0.0014

Active assist mode
V.S.
Active resist mode

A 0.29 0.00036*

B 0.0076* 0.27

C 5.2E-08* 0.049*

D 0.51 0.042*

E 0.0063* 0.04*

*Statistically significant difference with p < 0.05.

were observed in iEMG between the passive mode and the two
active modes for both knee extension and flexion. Between the
two active modes, the iEMG values from all the subjects except for
subjects A and D show statistically significant differences for knee
extension. For knee flexion, the differences in the iEMG values
were statically significant between the two active modes for all
the subjects except for subject B.

These results show that volitional muscle activity or active
engagement of the subjects on the paretic side can be effectively
controlled by the operation modes of the developed HRRS.

CONCLUSION

In this study, we developed an exoskeleton-type robotic
rehabilitation system for post-stroke patients. For proprioceptive
feedback from the unaffected side to the paretic side, the
developed robotic system is equipped with two types of interfaces:
muscle-to-muscle interface, and motion-to-motion interface.

Unlike the position-based control of conventional
bimanual robotic therapies, the developed system is capable
of simultaneously stimulating the muscle activities and the
joint movements of the paretic limb. Using biofeedback of
EMG and functional electric stimulation (FES), the developed
rehabilitation system was designed to provide patients with
appropriate muscular stimulation considering their stage of
motor recovery after stroke. Based on the patient’s condition,
the system can be operated in three modes with varying levels
of difficulty: the passive mode, the active assist mode and the
active resist mode.

The effectiveness of the developed HRRS was tested with five
different pairs of healthy human subjects, where one of the two
subjects participated as the unaffected side and the other as the
paretic side of a hemiplegic patient.

Through repetition of rehabilitation exercises with the
developed system, patients can naturally learn the timings at
which different muscle groups should be activated to make a
joint movement. The methodology developed in this study can
be extended to multi-joint rehabilitation systems, such as gait
rehabilitation and upper limb rehabilitation.

Further studies are required for clinical application of the
developed system. The real-time FES artifact removal technique
used in this study needs to be refined to accurately extract
volitional components of muscle activity. The efficacy of the
developed rehabilitation system should be evaluated with a
larger number of post-stroke patients in a clinical setup under
supervision of rehabilitation medicine physicians.
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There has been substantial growth in research on the robot automation, which aims to

make robots capable of directly interacting with the world or human. Robot learning

for automation from human demonstration is central to such situation. However, the

dependence of demonstration restricts robot to a fixed scenario, without the ability to

explore in variant situations to accomplish the same task as in demonstration. Deep

reinforcement learning methods may be a good method to make robot learning beyond

human demonstration and fulfilling the task in unknown situations. The exploration

is the core of such generalization to different environments. While the exploration in

reinforcement learning may be ineffective and suffer from the problem of low sample

efficiency. In this paper, we present Evolutionary Policy Gradient (EPG) to make robot

learn from demonstration and perform goal oriented exploration efficiently. Through goal

oriented exploration, our method can generalize robot learned skill to environments with

different parameters. Our Evolutionary Policy Gradient combines parameter perturbation

with policy gradient method in the framework of Evolutionary Algorithms (EAs) and can

fuse the benefits of both, achieving effective and efficient exploration. With demonstration

guiding the evolutionary process, robot can accelerate the goal oriented exploration to

generalize its capability to variant scenarios. The experiments, carried out in robot control

tasks in OpenAI Gym with dense and sparse rewards, show that our EPG is able to

provide competitive performance over the original policy gradient methods and EAs. In

the manipulator task, our robot can learn to open the door with vision in environments

which are different from where the demonstrations are provided.

Keywords: learning from demonstration, generalization, exploration, reinforcement learning, evolutionary

algorithms

1. INTRODUCTION

Hand-engineering of a controller is the basic approach to make robots autonomous for a certain
task. For tasks whose execution depends on the circumstances of the environment or the interaction
with human, robots must handle complex perception. However, the hand-engineering method
for such task is tired, especially for vision-based tasks which are exceptionally difficult. In order
to overcome those problems, a significant research area in contemporary robotics centers on
approaches where the robot controller is learned rather than programmed (Rahmatizadeh et al.,
2017). Learning from demonstration (LfD) allows humans to demonstrate a specific task to the
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robot without having any knowledge about the robot’s dynamic
model or programming the control commands. One direct
approach to learning from demonstration is Behavior Cloning,
where human demonstrates the desired behavior to the robot –
as supervisory signals of what the robot should do in the same
states. However, the demonstrations are expensive to acquire
and it is difficult to acquire complex manipulation skills just
from demonstration.

On the other hand, the learned behavior is restricted to
specific environment where human provide demonstrations.
In order to generalize robot learning from demonstration to
other scenarios, robot should to explore in the new situations.
Reinforcement learning, learning to control through exploration
by trial and error, provides a promising method for robot
learning with generalization. For exploration, novel control
policies are needed to gain diverse experience that is informative
about the environment. The diverse experience is used to
optimize the policies in return. In exploitation, the learning
procedure exploits the good policy to collect state-action pairs
with high rewards and further improve the performance of the
good policy. In contrary to the exploration that may find best
policy slowly and globally, exploitation aims to optimize the
policy more efficiently and locally. To generalize robot learning
and be sample efficient, preventing the mechanical wear, it
usually needs to trade-off between exploration and exploitation
in interaction with the real world. Proposing efficient and
effective robot learning method has always been the hot spot
in robotics.

Random perturbation of the agent’s action is the classic
method to induce novel behaviors, such as ǫ-greedy for Q-
learning (Sutton and Barto, 1998) and policy gradient with
action noise (Silver et al., 2014). However, action noise is usually
independent of states and in fact is local perturbation, which
generates unsmooth trajectories and is unlikely to produce
various large-scale behavioral patterns for effective exploration
(Osband et al., 2017). Recent works (Fortunato et al., 2017;
Plappert et al., 2017; Gangwani and Peng, 2018) have show
that exploration with parameter noise outperforms action noise,
especially in tasks where the reward is sparse. Instead of
promoting exploration with parameter perturbation, a lot of
other explore strategies rely on the state novelty to increase
the diversity of experience and obtain outstanding results in
computer games (Bellemare et al., 2016; Houthooft et al., 2016;
Pathak et al., 2017; Tang et al., 2017).

Evolutionary Algorithms (EAs) have been successfully used
to optimize policy represented with neural network (Such
et al., 2017) by perturbing and searching directly in the policy
parameter space. The policy parameter evaluation of EAs is based
on the cumulative reward received in the whole episode. Thus,
EAs optimize the policy with more comprehensive insight and
can solve the sequential decision making problems that have
sparse reward signals.

Policy gradient methods are usually used to search best policy
greedily, promoting better exploitation. As the original version of
policy gradient algorithm, REINFORCE (Williams, 1992) tends
to be of high variance due to the gradient estimation with
Monte Carlo method. Actor-critic methods (Mnih et al., 2016)

use the value function to reduce the variance and improve the
performance of policy gradient. In order to improve the accuracy
of gradient estimation and stabilize the learning procedure,
Schulman et al. (2015, 2017) constrained the step size of policy
gradient descent within a local area of previous policy. Results
from previous research show that policy gradient methods are
sample-efficient by taking advantage of the temporal structure
of the experience. However, those policy gradient methods with
action noise tend to converge to the local optimum, especially
when the exploration is insufficient.

In this paper, we introduce Evolutionary Policy Gradient
(EPG), incorporating the policy gradient methods with
Evolutionary Algorithms (EAs). In our framework of
evolutionary algorithm, population-based approach generates
different policies with parameter perturbation to improve
exploration. With demonstration guiding the evolutionary
procedure, our EPG guides the robot to behave similarly
to the demonstrations, which prevent robot exploring in
unpromising area. By selecting elites based on the fitness metric
that evaluates the cumulative reward of an entire episode,
EPG pushes the next generation of policy toward regions
that lead to higher probability of task accomplishment in the
current situation. Thus, our EPG can explore to generalize with
diverse policies and also prevent the ineffective exploration with
demonstration guiding.

2. RELATED WORK

In recent years, Learning from demonstration (LfD) has been
successfully used in the field of robotics for applications in
autonomous helicopter maneuvers (Abbeel et al., 2010), playing
table tennis (Calinon et al., 2010), multi-task manipulation
(Rahmatizadeh et al., 2017), and deformable object manipulation
(Matas et al., 2018). A major challenge in LfD is to extend
these demonstrations to unseen situations (Argall et al.,
2009). To mitigate this problem, one obvious way is to
acquire a large number of demonstrations covering as many
situations as possible. With limited demonstration data, Sylvain
et al. (2007) and Calinon et al. (2009) propose to hand-
engineer task-specific features. Different from those methods
we use smaller number of demonstrations, but change the
learning model by exploring in new situations to generalize
better. We resort to reinforcement learning and evolutionary
algorithm to learn from demonstration and generalize to unseen
situations. Rajeswaran et al. (2018) also combined reinforcement
learning with demonstration to accomplish complex dexterous
manipulation tasks in the same environment as where the
demonstrations come from. While our goal is to generalize the
learning behavior with the demonstration from one specific
situation to behave well in other situations. Nair et al. (2017)
avoided invalid exploration in reinforcement learning with
demonstration. Our experiments also present such benefits
of demonstration in comparison with pure reinforcement
learning, even though the demonstrations in our experiments
is coming from environment with different configurations. We
have not find any previous works focus on generalizing the
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skill learning from demonstration to other situations. But we
think the reinforcement learning after imitation learning can
accomplish such goal and we also compare our algorithm with
such method.

Exploration during learning from demonstration is the core
of our work. And the lack of effective exploration are also
the major challenges in Reinforcement Learning, especially in
the environments with long time horizon and sparse reward.
Many explore strategies, which rely on the state novelty,
have been proposed to improve the diversity of trajectories
(Bellemare et al., 2016; Houthooft et al., 2016; Pathak et al.,
2017; Tang et al., 2017). One common point of those works is
the need of complex supplementary structures to estimate the
novelty which will introduce some additional sensitive hyper
parameters and are suited mainly for exploration in video games.
However, our EPG, which explore with the framework of EAs,
is more general with an easy modification to the original policy
gradient method.

ES and PGPE which explore with parameter perturbation
can be regarded as Evolutionary Algorithm and are scalable
to be implemented in parallel. Salimans et al. (2017) have
demonstrated that ES is suited for the problem with long
time horizon and delayed reward and does not need the
approximation for the value function. PGPE (Sehnke et al., 2010)
performs gradient based search in parameter space with low
variance and is similar to ES. Wang et al. (2017) improve PGPE
with EM-based policy exploration and an adaptive mechanism.
To further improve exploration in ES, especially on sparse
or deceptive Reinforcement Learning problems, Conti et al.
(2017) hybrid novelty search and quality diversity algorithms
with ES. Unlike ES, NES, and PGPE which are gradient based
methods, recently, Such et al. (2017) evolve the weights of a deep
neural network with Genetic Algorithm to solve RL problems.
By comparing DDPG with CMA-ES, de Broissia and Sigaud
(2016) conclude that policy gradient methods are significantly
more sample-efficient than ES. And it is the same for other
EAs, without taking advantage of temporal structure in the
trajectories. Our EPG incorporates the policy gradient into the
framework of EAs to exploit the sample efficiency of policy
gradient methods.

Recent works (Fortunato et al., 2017; Plappert et al., 2017)
proposed to explore by adding noise to the parameter space
and optimizing policy with gradient descent. Their results
have shown that parameter perturbation can successfully be
combined with reinforcement learning algorithms and often
lead to improved performance compared to adding noise in
action space. Similar to those works, our EPG also combines
parameter perturbation with policy gradient methods. To further
improve the exploration and parallelizability, our EPG resorts
to the framework of EAs. Inspired by the Genetic Algorithms,
Gangwani and Peng (2018)mutate the policy with policy gradient
methods. However, without perturbing policy parameter vector
during policy evolution, the diversity of policies and exploration
in their method are limited. Our EPG retains themajor benefits of
the recent works, and the whole procedure can be approximated
to the optimization of an objective function that evaluates the
Gaussian distribution of policy parameter.

3. BACKGROUND

3.1. Learning From Demonstration (LfD)
With Behavior Cloning
In recent years, LfD was successfully used in the field of robotics.
Behavior cloning, as the simplest learning from demonstration
method, can be performed using standard, efficient supervised
learning methods. Compared with reinforcement learning
methods that learn from scratch, behavior cloning requires fewer
interactions with the environment.

Provided with the observation-action pairs, behavior
cloning can fit a stochastic policy with supervise learning,
mapping observations to distributions of action directly, just by
maximizing the log likelihood of the demonstrated actions:

L = −E(s,a)∼demo[logπ(a|s)]. (1)

where (s, a) represents the state-action pair from demonstrations,
E represents expectation over (s, a) and π is the stochastic policy
to be optimized.

3.2. Policy Gradient and Explore With
Action Noise
Reinforcement Learning (RL) is popular in solving sequential
decision making problems where a robot interacts with an
environment, sequentially choosing an action at according to a
policy π(a|s) based on the state st at time t. After taking the action
at , state st transforms to the next state st+1. And the robot receives
a scalar reward r(st , at) from the environment. In the Markovian
environment, the probability distribution over the next state st+1,
called transition probability, is satisfying Markov property, i.e.,
st+1 ∼ p(st+1|st , at). The objective of robot learning with RL is
to obtain a policy π which maximizes the expected discounted
cumulative reward, i.e., J(π) = Eτ

[
∑

t γ
tr(st , at)

]

, where γ is
the discounted factor that trade-off between shorter and longer
term rewards. Solving such problem can be modeled as Markov
Decision Process (MDP).

Policy Gradient method is one kind of reinforcement learning
algorithms. For exploration in action space, stochastic policy
samples from a Gaussian distribution πθ ∼ N (µ(s), σ (s)2I) with
µ(s) and σ (s) parameterized by θ , at each time step. Stochastic
policy gradient methods maximize the expected cumulative
reward by estimating the performance gradient ∇θ J(πθ ) based
on the Stochastic Policy Gradient Theorem (Sutton et al., 2000).
For deterministic policy gradient methods, such as DPG (Silver
et al., 2014) and DDPG (Lillicrap et al., 2015), the critic estimates
the state-action value functionQ(s, a) using off-policy data which
is sampled with a noisy policy. The noisy policy improves the
exploration by adding additive action noise to deterministic
policy: π̂θ (s) = πθ (s) + w, where w represents the action
noise with its variance annealing to trade-off between exploration
and exploitation.

3.3. Policy Search With Evolutionary
Algorithms
Most real-world problems can be modeled as MDP in which
agents or robots only receive a reward signal after a series of
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actions. In the MDP where rewards are sparse, it is difficult to
associate actions with rewards. This situation is often denoted
as the temporal credit assignment problem (Sutton and Barto,
1998).

Inspired by natural selection, Evolutionary Algorithms
(EAs) are a series of black box optimization methods which
are heuristic search procedures with several operators: new
solution generation, mutation, selection, crossover and so
on. Evolutionary Algorithms for sequential decision making
problems are invariant to sparse rewards with long time horizons
(Fortunato et al., 2017). Population-based approach in EAs
has the advantage of promoting exploration, by parameter
perturbation (mutation). The redundancy in a population and
the selection of elites improve the robustness and stability of
the heuristic search procedure. In computation complexity, EAs
outperform back propagation methods in optimizing neural
network with only forward evaluation of the parameter. Because
of these merits of EAs, a number of recent research in RL
problems have used EAs as an alternative to standard RL
algorithms. Such et al. (2017) use genetic algorithms (GAs) to
train deep neural networks for policy search. Conti et al. (2017)
and Salimans et al. (2017) indicate that evolutionary strategies
(ES) is scalable alternative to Reinforcement Learning and can
improve exploration in RL.

In policy gradient methods, after sampling on each time
step, the gradient is calculated by differentiating the policy
with respect to the parameters. However, the derivative of the
policy may not exist or be difficult to calculate. And sampling
from the noisy policy on each time step leads to the noisy
gradient estimation. Some EAs address such variance problem
by replacing the random action sampling with parameter vector
sampling, like natural evolution strategies (NES) (Wierstra et al.,
2008) and policy gradients with parameter-based exploration
(PGPE) (Sehnke et al., 2010). These algorithms represent the
population with a probability distribution p(θ |ρ) over policy
parameters θ , where ρ is the parameter of the distribution.
Instead of sampling action at each time step with stochastic
policy, PGPE samples a policy parameter vector from p(θ |ρ)
to construct a deterministic policy, from which actions are
taken. So PGPE addresses the variance in trajectory and noisy
gradient problems by generating an entire trajectory with only
one parameter vector sampled before exploration. The objective
function to be maximized by searching ρ with stochastic gradient
ascent is the expected cumulative reward over all parameter
vectors:

J(ρ) =

∫

θ

∫

τ

p(τ , θ |ρ)R(τ )dτdθ , (2)

where R(τ ) represents the cumulative reward in a trajectory τ .
Differentiating this objective function with respect to probability
distribution parameter ρ, the gradient can be estimated by
sampling θ from p(θ |ρ), then running the policy with parameter
θ to generate trajectory τ , which submits τ ∼ p(τ |θ). PGPE will
choose Gaussian distribution as the policy parameter probability
distribution, i.e., p(θ |ρ) = N (µ, σ 2I) with ρ = [µ, σ ].
Optimizing µ and keeping σ as a constant, PGPE (Sehnke et al.,
2010) reduces to evolution strategies (ES) (Salimans et al., 2017).

The ES, NES, and PGPE, introduced above, perform stochastic
gradient descent with the calculation of gradient similar to the
finite-difference methods, and are gradient-based algorithms. As
another kind of classical Evolutionary Algorithms (EAs), a truly
gradient-free method, Genetic Algorithm can also train deep
neural networks for policy to solve the challenging sequential
decision making problem. However, EAs for policy search
do not exploit the information of each state-action pair in
trajectories which make the policy gradient algorithms more
sample-efficient. Thus, EAs need more samples of environment
interaction (de Broissia and Sigaud, 2016).

4. METHOD: EVOLUTIONARY POLICY
GRADIENT

Based on the framework of EAs, in this work, we define the policy
with parameter vector θ and fixed neural network structure as
individual. The mutation operator in our EPG includes random
mutation and optimal mutation. EPG selects some elites, i.e.,
good policy parameter vectors according to the evaluation of
the fitness function. As most EAs for reinforcement learning
problems, the fitness function in EPG is defined as the average
cumulative rewards of several episodes, where the rewards are
received by robot after accomplishing tasks. Usually, EAs perform
crossover directly in parameter space (Floreano et al., 2008)
to increase the diversity of population. Instead, the crossover
operator in our EPG combines the elites in the action distribution
of the policies. And the combination is highly relied on the
demonstration guided imitation learning.

Evolutionary algorithms (EAs), usually regarded as black box
optimization processes, are heuristic and lack the theoretical
guarantee. Although EPG is based on the framework of EAs, in
this section, we will first derive the stochastic policy gradient
method for the perturbed policies in mathematics and then
propose our improvement to fit the framework of EAs with
demonstrations guiding its procedure.

4.1. Optimization of Perturbed Policies
With Policy Gradient
To achieve structured exploration, EPG will perturb current
policy parameter vector to form a set of policies by applying
additive Gaussian noise to the parameter vector of the current
policy: θ = θ

′ + N (0, σ 2I). The policy parameter perturbation
is actually sampling parameters from the probability distribution
p(θ |ρ) with ρ = [µ, σ ], and µ is equal to the current policy
parameter vector θ

′. EPG optimizes the mean of the probability
distribution of the parameters with gradient descent, while
initiates the variance of the distribution and anneals it during
the training procedure. The initial σ represents the capability of
exploration and can be tuned according to the sparsity of rewards.
The objective function here is the same as that of PGPE and ES
(i.e., Equation 2).

Now, we derivate the gradient of the same objective J(ρ) in a
different way as in PGPE (Sehnke et al., 2010). After rewriting
equation (2) in the discrete format, noting τ is conditionally
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independent of ρ given θ , so p(τ , θ |ρ) = p(τ |θ)p(θ |ρ), we have:

J(ρ) =
∑

ǫ∼N (0,I)

∑

τ

p(τ |ǫσ + µ)R(τ ). (3)

By sampling ǫ ∼ N (0, I) to construct policy parameters and
executing the policy to generate τ , the gradient of J(ρ) with
respect to probability distribution parameter ρ can be calculated:

∇ρ J(ρ) =
1

N

∑

ǫ∼N (0,I)
τ∼p(τ |ǫσ+µ)

∇ρ log p(τ |ǫσ + µ)R(τ ). (4)

For finite horizontal Markov decision process (MDP) with
trajectory τ = [s1 :T , a1 :T], in which s1 :T , a1 :T represents the
sequence of state and action pairs, we have:

log p(τ |θ) =

T
∑

t=0

log p(st+1|st; at)+ logπθ (at|st). (5)

Substituting equation (5) into (4) and noting that we only
optimize µ, we replace ρ with µ and denote πǫσ+µ with πµ

for clarity:

∇µJ(µ) =
1

N

∑

ǫ∼N (0,I)

T
∑

t=0

∇µ logπµ(at|st)R(τ ). (6)

To reduce the variance of the gradient estimation, the cumulative
reward R(τ ) can be substituted with the advantage function
Aπµ (st , at), which represents the improvement in cumulative
reward obtained so far by taking action at in state st . According to
the previous work (Mnih et al., 2016), we calculate the advantage
function with an approximated value function and the obtained
cumulative reward.

Proximal policy optimization algorithms (PPO) (Schulman
et al., 2017) optimizes a “surrogate” objective function including
a penalty term to constrain the size of the policy update. The
updating equation for optimizing equation (2) with PPO can be
derived as:

∇µJ(µ) =
1

N

∑

ǫ

[

∑

t

Aπµold (st , at)
∇µπµ(at|st)

πµold
(at|st)

− βKL
[

πµold
(·|st),πµ(·|st)

]

]

, (7)

where πµ,πµold
represent the current policy and the policy after

previous iteration, respectively. KL
[

πµold
(·|st),πµ(·|st)

]

is the
Kullback–Leibler divergence between the action distributions
of the two policies, and β works as the coefficient of the
penalty term.

4.2. The Framework of EPG
Our EPG algorithm is derived and approximated from the
optimization of perturbed policies with policy gradient methods,
by adding some heuristic of EAs. As EAs differ in how to perform
those operators, we define the mutation, selection and crossover
to form the framework of our EPG.

For exploration, EPG generates a population of N individuals
(policy parameter vector θi) by parameter perturbation, which
applies additive Gaussian noise to the parameter vector of the
current policy: θi = µ + σǫ, where ǫ ∼ N (0, I). The
parameter perturbation in EPG can be regarded as the random
mutation of the individual. After executing each perturbed policy
(individual) for several episodes, the fitness can be evaluated
by averaging the cumulative rewards received during those
episodes. Then EPG performs truncation selection, where the
top n individuals become the elites. For each elite individual,
EPG optimizes the policies with policy gradient algorithms,
which can be regarded as optimal mutation. Those policy
gradient optimization processes can be implemented in parallel
to accelerate the training procedure. After the optimal mutation,
it is easy to combine those elite optimal policies to one policy by
averaging their parameter vectors.

Using ∇µJ(µ), Equation (7), to update the mean of policy
parameter vectorµ, noting θi = ǫiσ+µ and ǫi ∼ N (0, I), we get:

θ̂ = µ+
1

N

N
∑

i=1

∑

t

Aπθi (st , at)∇µ logπǫiσ+µ(at|st)

≈
1

n

n
∑

i=1

[

µ+ ǫiσ +
∑

t

Aπθi (st , at)∇µ logπǫiσ+µ(at|st)

]

=
1

n

n
∑

i=1

[θi +1θi] .

(8)

where 1θi is calculated with policy gradient methods with
regard to policy parameter vector θi. Equation (8) shows that
the framework mentioned above is actually some kind of
approximation to the gradient descent procedure of optimizing
objective function (2).

The selection of n elites out of the population by choosing
n best policies is a technique called elitism in Evolutionary
Algorithms (EAs). The mutation in EPG includes random
mutation by policy parameter perturbation and optimal
mutation by policy optimization with policy gradient.
The crossover in the parameter space gives few reasonable
explanation. We resort to the ensemble learning to crossover
those elite policies by learning a classifier to choose which elite
policy to take action at every time step. Combining the classifier
and the optimized elite polices, we get a compound policy. In
order to generate the child policy for the next generation, we
first initialize the child policy with the average parameter vector
of elite polices, then minimize the KL divergence between the
action distributions of the child policy and the compound policy.
The overall crossover operator in our EPG can be regarded as the
crossover in the action space, which seems to be more reasonable
since the output of policy is action. The crossover operator is also
equivalent to imitation learning after ensemble, combining the
diverse elite policies. The objective of imitation learning can be
augmented with that of behavior clone to guide the evolutionary
process with demonstration. After the crossover, we get one
individual (child policy) on which random mutation (parameter
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FIGURE 1 | Framework of EPG.

perturbation) can be implemented. It means a new generation
(iteration) begins.

The whole EPG algorithm is scalable to be implemented in
parallel in different computer nodes with different random seeds.
Algorithm 1 illustrate the procedure in one single node of our
EPG. Figure 1 illustrates the complete learning procedure of
EPG. In the rest of this section, the mutation and crossover
operators will be detailed.

Algorithm 1: The procedure in node i of EPG.

1: repeat

2: Random mutate (perturb) πθ → πθi ;
3: Execute policy πθi for several episodes to collect rollout

trajectories τ ;
4: Optimize policy with policy gradient: πθi → π̂θi ;
5: Send the parameters of π̂θi , cumulative rewards Ri and

visited states Si in τ to every other nodes;
6: Calculate fitness(πθj ) by averaging Rj in every nodes;
7: Select optimized elite policies π̂θj according to

fitness(πθj ), j ∈ [1, n];
8: Child policy π

′
θ
← Crossover(π̂θ1 : n , S1 : n,R1 : n, demo) ;

9: until k times of evolution loop.

4.3. Mutation Operator in EPG
Similar to most EAs in solving sequential decision making
problems, EPG operates mutation by perturbing current policy to
generate a population of policies. Parameter perturbation, called
random mutation, is implemented on stochastic policy instead
of deterministic policy as policy gradients with parameter-based
exploration (PGPE) (Sehnke et al., 2010). The stochastic policy
outputs the mean and variance of a Gaussian distribution from
which action is sampled. The output variance of stochastic
policy and the variance of parameter perturbation determine

the exploration in action and parameter space, respectively. By
combining the exploration both in action space and parameter
space, EPG can avoid local minima more easily.

After selecting elites from the population, EPG modifies each
elite with policy gradient methods in parallel, which is regarded
as optimal mutation. The policy gradient is estimated with the
rollout samples collected by stochastic policy in environment
with different random seeds, thus induces randomness for elite
policies update. So the optimal mutation operator still maintains
sufficient diversity of the population and good exploration in
the state space. The optimal mutation improves EPG’s efficiency
in the usage of sampling data, by taking advantage of the
powerful gradient descent method and reusing the rollout
samples generated for elite selection.

Algorithm 2: Crossover operator in node i of EPG.

Require: π̂θj , Sj,Rj, j ∈ [1, n] of elite policies; Demonstrations
from one fixed environment: (s, a) ∼ demo

Ensure: Child policy π
′
θ
, generalized to a different situation as in

demonstrations;

1: For s in the k’th trajectory of elite j: ωs =
Rjk−minRj

maxRj−minRj
;

2: Send the gradient of (9): ∇cJ
ML
j to other nodes;

3: Train πc(π̂θj |s) with gradient: 1
n

∑

j ∇cJ
ML
j ;

4: Combine classifier and elite policies to form πexp(·|s)

5: Average θ = 1
n

∑n
j=1 θj to initialize child policy π

′
θ
;

6: Initialize data set:
{

τ̂i

}

;
7: repeat

8: Generate one trajectory τ with π
′
θ
;

9: Aggregate data set
{

τ̂i

}

with τ ;
10: Calculate the gradient of (10): ∇θ J

IL
j with

{

τ̂i

}

;

11: Send ∇θ J
IL
j to other nodes;

12: Update π
′
θ
with gradient: 1

n

∑

j ∇θ J
IL
j ;

13: until t times of imitate iterations.

4.4. Crossover Operator in EPG
The crossover operator mixes parent policies and produces a new
child policy. Those policies have identical network architectures.
Floreano et al. (2008) produced the child policy by averaging the
parameters of the parent policies, which called average crossover.
Such crossover operation in parameter space dose not has steady
performance, sometimes producing a worse policy than the
policies before averaging. In our EPG framework, the finite
number of population N usually results in the underestimation
of policy gradient (6). It is more intuitive to crossover the policy
in the distribution of action, since the output of policy is a
distribution of action dependent on the state.

In our framework of EPG, every elite policies are trained
independently with different random seeds, thus have distinct
state distributions encountered. So we propose to first combine
elite policies with ensemble learning, by learning a classifier
πc(π̂θj |s) to choose one elite policy π̂θj according to their visited
state s. The intuition is that given a state we choose the
elite policy, which encountered this state more often before,
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to take action. The objective of the classifier is weighted
maximum likelihood:

JML = −
∑

s



ωs log
∑

j

πc(π̂θj |s)1s∈τj



 , (9)

where 1s∈τj is the indicator function and ωs is the weight for
state s, been the same in one trajectory. The formulation of ωs is
detailed in Algorithm 2, where Rj represents the set of cumulative
rewards of several trajectories generated with elite j and Rjk is the
k’th element of Rj. With the classifier and the elite policies, we get
a compound policy: first select an elite policy and then take action
according to it.

To inherit the essence of the optimized elite policies, our
EPG crossovers them by imitating the compound policy, also
called expert, with imitation learning. The expert, represented
as πexp = πc(π̂θj (·|s)|s), includes a classifier and several elite
policies. Imitation learning is a method that develops new policy
bymimicking expert’s behaviors. The imitation is implemented in
the action distribution by minimizing the KL divergence between
the action distributions of the child policy and the compound
policy: KL[πθ ,πexp]. Then, the resulting πθ is an approximate
Gaussian I-projection of πexp which works as a good guiding
distribution. To improve the sample efficiency, we initialize the
child policy with the same architecture as elite policies and
the average elite policies’ parameter vectors. Moreover, in order
to direct the policy evolution to more likely accomplish the
task, especially at the beginning of exploration, we augment
the objective of KL divergence with the negative log likelihood
of demonstrated actions (Equation 1), resulting the objective
function to be minimized:

JIL(θ) =
∑

s

KL
[

πθ (·|s),πexp(·|s)
]

− λE(s,a)∼demo[logπθ (a|s)].

(10)
The λ in Equation (10) should decay to zero, promoting
generalization to new environments. If the new environment
is more different from where the demonstration is provided,
smaller initial λ or larger decay factor should be chosen. To
refine the result policy and avoid compounding errors due to
the visited state distribution mismatch between the compound
policy and the child policy, we run the result child policy for
one episode to collect new samples to aggregate training set.
With that training set, we optimize Equation (10) with the
compound policy as supervisor. Then, with new child policy, the
data collection and optimization processes can be executed again.
This procedure can be iterated for several times and generates
a final child policy that performs well under its own induced
state distribution. And it is similar to the imitation learning with
Dataset Aggregation (DAgger) algorithm (Ross et al., 2011). The
KL-divergence in Equation (10) promotes high entropy in result
policy, and thus encourages the exploration too. For Gaussian
distribution, the surrogate loss (Equation 10) is easily optimized
with stochastic gradient descent. The crossover operator in EPG
is very sample-efficient. In experiments, we only iterated the
Dataset Aggregation procedure for two or three times. The whole
procedure of crossover operator is shown in Algorithm 2.

5. EXPERIMENTS

In the first part of this experiment section, we present the
improved exploration capability of our method, comparing with
the state-of-the-art reinforcement learning methods, where no
demonstrations are provided. In the second part, we demonstrate
the generalization capability of our method to different
situations in robot learning from demonstration, where robot
accommodates to new environments with active exploration.
And we present that our method has better performance in
generalization, in comparing with other related methods which
combining imitation learning and reinforcement learning.

5.1. Exploration: Robot Control in State
Space
Reinforcement Leaning methods are well-known as its
capability of exploration in unknown environments without
any instruction or demonstration from “expert.” To present
the improved exploration of our EPG, we set λ = 0 in
Equation (10) and compare our EPG-PPO with the state-of-
the-art reinforcement learning methods, ES and DPPO, in
continuous control problems of OpenAI Gym (Brockman et al.,
2016) without demonstrations. For comparison with related
works and future research, we choose the average cumulative
rewards, provided by the simulator in OpenAI Gym, as the
evaluation criterion.

In our experiments we implement our EPG with PPO
(Schulman et al., 2017) as policy gradient method, called EPG-
PPO. DPPO is the abbreviation of “distributed proximal policy
optimization” method (Heess et al., 2017) which is popular with
its sample efficiency. In DPPO the distributed agents explore
in environments with different random seeds and calculate the
policy gradients which are averaged to update the policy. Our
implementation of DPPO has the same full connected neural
network structure as that of our EPG-PPO, composed with two
hidden layers and “tanh” activation function. The dimension of
each layer is ten times of the dimension of each robot’s action
space. And other major hyperparameters are similar, e.g., 2–5
nodes in parallel and learning rates within [0.0005, 0.001]. ES is
the abbreviation of “evolutionary strategy” (Salimans et al., 2017)
which is good at random exploration. In our implementation
the policy is perturbed to form 5-8 individuals in population to
generate experience and is updated according to the evaluation
of those experience.

In some standard OpenAI Gym environments, such as
“Reacher,” “Hopper,” “HalfCheetah,” and “Swimmer,” robots will
definitely receive a task-related reward signal at each state with
its value dependent on the state and action. Figure 2 illustrate
the scenes of robot control tasks in our experiments. In the first
picture, the goal of “Reacher” is to control a two-arm robot
with torque so as the end-effect approach the target point as
near as possible, in 50 time steps. In the other three pictures,
“Hopper,” “HalfCheetah,” and “Swimmer” are multi-joint robots
which get more rewards by running or swimming forward away.
Figure 3 depicts the comparative performance in environments
with dense rewards. Especially in “Swimmer,” our EPG avoids the
local minima which traps the PPO.
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FIGURE 2 | Environments for the Robot Control in State Space: “Reacher,” “Hopper,” “HalfCheetah,” and “Swimmer”.

FIGURE 3 | Depict the average cumulative rewards of the policy after the crossover in EPG-PPO, the distributed policies in DPPO and the updated policy in ES,

plotted over the episodes required during training. The solid lines represent the average performance in six repeated experiments with different random seeds and the

shades exhibit the standard deviation of the performance in those repeated experiments.

FIGURE 4 | In environments with sparse rewards, “HalfCheetah-v2-d4” and “HalfCheetah-v2-d5” provide reward signal until HalfCheetah’s position in x axis surpass 4

and 5 units, respectively. “Swimmer-v2-d1” and “Swimmer-v2-d1.5” are modified with rewards delayed for 1 and 1.5 units in x, respectively.

In many real-world problems, robots may only receive
rewards after the task accomplishment, where exploration play a
more important role in robot learning. To construct environment
with sparse reward, we modify the original gym environments,
“HalfCheetah-v2” and “Swimmer-v2,” to be with no reward at the
beginning until the robot walk forward to surpass a threshold. In
such situation robots must explore more to acquire reward signal
and learn to accomplish the goal which, here in our experiments,
is running forward as far as possible. The comparative results are
illustrated in Figure 4, which depicts the performance of EPG-

PPO, DPPO and ES, with the solid lines and shades representing

the mean and standard deviation in six repeated experiments. In
those environments with sparse rewards, the agents are initialized
with random orientations and acquire performance with high

variance in repeated experiments. Although three algorithms
all have worse performance than that in Figure 3 due to the
sparse reward, our EPG has more advantage with regard to the
sample efficiency.

5.2. Generalization: Learning Vision Based
Manipulation From Demonstration
To present the generalization of our EPG, in the complex
manipulation task, we use simulation environment
“Image48SawyerDoorPullHookEnv-v0” provided in
“multiworld”1. In this task, the demonstrations, including
images and corresponding displacements of the end effector, are

1https://github.com/vitchyr/multiworld
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collected in original environment, while robot is learning and
tested in different environments with distinct configurations of
the door. The goal of this task is to open the door in 100 time
steps. We train a neural network policy, which is composed with
two convolutional layers and two full connected layers with 100
units for each. And we use “tanh” as the activation functions in
hidden layers. The policy takes as input the images from the fixed
camera and outputs the next displacement of the end-effector.
The image viewed by the robot is with 48 × 48 pixels, shown in
Figure 5. The robot receives a binary reward when the angle of
door is above a threshold.

In the initial environment, we hand-engineer the robot to
open the door and collect only one trajectory including images
and the corresponding actions. We augment the demonstration
dataset by adding minor noises to the actions with the images
copied. Then, we change the configuration of the door, such
as the position, initial angle and its handle’s position. In the

FIGURE 5 | Robot view.

new situation and with our EPG-PPO, robot interacts with the
environment about thousands of time steps and learn from
demonstration at the same time, robot can open the door
with high success rate, as illustrated in Figure 6. While the
robot learned with behavior clone without exploration failed in
adapting to the new situation as depicted in Figure 7.

Even though we do not find any previous works aiming at
generalizing skill learning from demonstration to different
scenarios where the demonstrations are provided, the
reinforcement learning after imitation learning is a good thought
to accomplish such goal. To present the better generalization
capability of our method, we implement “BC + DPPO” as
baseline, where the robot is first trained with behavior clone to
learn from demonstration, then trained with DPPO to generalize
by exploration in new environments.

Figure 8 shows our experiments, where we change the
positions of the door and its handle with an offset relative to their
origins. In those experiments, we compare our EPG with “BC
+ DPPO.” It is obvious that with the same few demonstrations,
our EPG can learn from demonstration and generalize better.
Even though the robot learns from the binary reward signal
it receives, we evaluate our method by calculating the success
rate of the task accomplishment, i.e., door is open, in 100
independent tests during the process of training. Figure 8 shows
the mean values and standard deviations of the success rates in
five repeated experiments.

6. CONCLUSION AND DISCUSSION

In this paper we introduced a new learning from demonstration
method, Evolutionary Policy Gradient (EPG), with

FIGURE 6 | Neural network policy trained with our EPG accomplish the task.

FIGURE 7 | Neural network policy trained with behavior clone failed.
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FIGURE 8 | Success rate comparisons with other method in variant scenarios.

demonstration guiding the evolution of policy. Just providing
the demonstrations from one specific situation, our EPG can
generalize the robot learning from the demonstrations to
accomplish the same tasks in different environments.

With parameter perturbation and evolutionary framework,
our EPG explore in the new environment to accomplish the task.
With demonstration guiding and policy gradient optimization,
robot can acquire the skill to accomplish the task with fewer
interaction with the new environment. In the framework of
EAs, EPG is scalable in parallel to accelerate the training
process. Moreover, our EPG is a general framework and can
be implemented with all kinds of policy gradient methods.
The whole optimization procedure of EPG is based on the
stochastic policy gradient theorem and behavior clone, with a
little approximation to fit the framework of EAs.

Our aim is to improve the generalization of robot learning
skill from demonstration. As the main contribution of our work,
we present that the active exploration of robot can accomplish
the goal of generalization. Next, we discuss the rationality behind
our study from the perspectives of exploration, exploitation
and generalization.

6.1. About Exploration
As a well-known Evolutionary Algorithm, evolutionary strategy
(ES) only relies on exploring with parameter perturbation.
When the reinforcement learning problem is with dense
reward, our results shown in Figure 3 demonstrated that ES
has few advantage over DPPO which exploit the powerful
policy gradient methods. On the other hand, ES outperforms
DPPO in environment with sparse reward. Our results shown
in Figure 4 illustrate that parameter perturbation has more
advantage in exploration. And, our EPG-PPO explores with
parameter perturbation and retains the data efficiency of policy
gradient. Thus, our method combines the merits of both ES
and DPPO.

6.2. About Exploitation and Exploration
Trade-Off
Our policy parameter perturbation with Gaussian noise is also
a sample from Gaussian distribution with the optimized mean
and annealing variance. The policy parameter sampling after
every optimization step can be seen as a posterior sampling.

From this point of view, our EPG is an approximation
to Thompson Sampling (Thompson, 1933) in the policy
parameters. Thompson Sampling, originated from bandits
problems, provides an elegant approach that tackles the
exploration-exploitation dilemma. Previous works, inspired by
Thompson Sampling, focus on problem with discrete action
space by randomly selecting an action according to the
probability it is optimal. Our method are aiming at problems
with continuous action space. Improving our method toward
the Exploration and Exploitation trade-off is a promising
direction for future research. For example, we can take into
the parameter variance optimization into consideration, making
the parameter perturbation procedure bears more similarity to
Thompson Sampling.

6.3. About Generalization
In the unknown environment without demonstration, robot
trained with many state-of-the-art reinforcement learning
methods, including DPPO, can learn to accomplish many
complex tasks by interacting with the environment millions
of time steps. In our experiments, we find that DPPO can
not make robot explore to grasp the skill of opening the
door in thousands of interaction time steps, due to the sparse
reward. Exploration from scratch is sample inefficient and can
not be seen as generalization, though with adaption to new
environments. Our method learning from demonstration and
adapting to new environments with few interactions are actually
generalizing the learning skill from previous situation to new
situation. Our deep combination of learning from demonstration
and reinforcement learning presents a promising direction to
improve the generalization of learning from demonstration
and is worth further research. On the perspective of sample
complexity, it is the generalization from demonstration that
makes the reinforcement learning process more sample efficient.
Thus, our method can also provide a new method to improve the
sample efficiency of Reinforcement Learning methods.
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When there is an interaction between a robot and a person, gaze control is very important

for face-to-face communication. However, when a robot interacts with several people,

neurorobotics plays an important role to determine the person to look at and those to

pay attention to among the others. There are several factors which can influence the

decision: who is speaking, who he/she is speaking to, where people are looking, if the

user wants to attract attention, etc. This article presents a novel method to decide who

to pay attention to when a robot interacts with several people. The proposed method

is based on a competitive network that receives different stimuli (look, speak, pose,

hoard conversation, habituation, etc.) that compete with each other to decide who to

pay attention to. The dynamic nature of this neural network allows a smooth transition in

the focus of attention to a significant change in stimuli. A conversation is created between

different participants, replicating human behavior in the robot. The method deals with the

problem of several interlocutors appearing and disappearing from the visual field of the

robot. A robotic head has been designed and built and a virtual agent projected on the

robot’s face display has been integrated with the gaze control. Different experiments have

been carried out with that robotic head integrated into a ROS architecture model. The

work presents the analysis of the method, how the system has been integrated with the

robotic head and the experiments and results obtained.

Keywords: gaze control, gaze engagement, HRI, humanoid robot, robotic head, ROS, competitive network,

computer vision

1. INTRODUCTION

The gaze control of a robotic head represents an important field of research in robotics, since it
promotes higher evaluations of a robot’s comprehension and naturalness (Kousidis and Schlangen,
2015) in human-robot interaction. This gaze engagement represents a key factor in interaction
because humans feel more comfortable if robots behave like a person. Some robots look and track
people, but are not able to change between several interlocutors during a conversation. If someone
disappears from the field of view, the robot listens to a sound and turns its head, looking for
someone to follow. This behavior is not natural in a conversation of several people.

The method proposed in this article responds to the problem of several individuals interacting
with a robotic head. It replicates human behavior using a competitive neural network which
receives stimuli from each person who interacts with the robot. Different factors are taken into
account: look, who speaks, pose, hoard conversation, habituation, etc. These factors produce
stimuli which create a dynamic conversation, independently of whether several people appear and
disappear from the visual field. Different considerations have been taken into account:
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(i) There may be several people in front of the robot.
(ii) One or several people could speak at the same time.
(iii) People could enter and exit the visual field of the robot.
(iv) People could appear and disappear from the scene due to

occlusions or false detections.
(v) People may be looking at the robot or elsewhere.
(vi) People must be distinguishable from each other to facilitate

their monitoring.
(vii) People could request the robot’s attention in several ways

(entering their visual field, talking, moving in front of
the robot).

(viii) The robot should give more attention to new stimuli (e.g.,
a person starts talking, while another one has been talking
for a certain time).

(ix) People can be in different image planes (closer or farther
from the robot).

(x) The transition of the change between two
people should be smooth and weighted, avoiding
jerky movements.

The proposed method is based on a competitive network that
accurately combines a set of identification techniques, facial
monitoring, and behavioral rules to achieve the most natural
interaction. The system deals with the presence of different
stimuli and allows a stable determination of the focus of attention
that must be followed with the robot’s eyes. At the same time, the
system has principles of adaptation and stability. The robot must
be able to respond quickly to new stimuli, but at the same time the
response must be smooth and stable, avoiding erratic behaviors.

The robot’s gaze control not only falls on the movement of
the head. A projected virtual face, hereinafter referred to as the
agent, has been created to move the eyes and show expressions
based on such factors as the presence of people. As an example,
if there is no one in front of the robot, the agent will show a
sad expression and begin an exploratory movement. In Ishi et al.
(2010), an experiment with two different robots showed a more
natural behavior of one of them just because the ability to move
the lips.

The present paper is structured as follows: section 2
explores the state-of-art of the technologies considered in this
paper. Section 3 shows how the method works, exploring the
different steps: face recognition, people pose, speaking detection,
competitive network, etc. Section 4 explains how this method has
been integrated with a robotic head developed for this purpose.
In section 5, the different experiments and results obtained
with the robotic head are reported. An overall discussion on
the obtained results is stated. Finally, section 6 notes the
advantages and limitations of the presented system and suggests
future developments.

2. OVERVIEW OF RELATED WORK

Gaze control has been an important field of research over
the last few years since it contributes to the improvement
of communication with people. As stated by Kousidis and
Schlangen (2015), when a robot is a listener in a multi-party
conversation and tracks the conversation with its gaze, it

promotes higher evaluations of that robot’s comprehension and
naturalness than a robot performing random gazing between
speakers. Moreover, Garau et al. (2001) proposed that virtual
agents which use turn taking gaze during conversations are
evaluated as more natural and pleasant than agents that use
random gaze or none gaze control in their communication.
What is more, their conversation is rated as more engaging.
Boucher et al. (2012) studied the gaze effects of Human-human
interaction in a cooperation experiment and implemented a
heuristic capability to generate such gaze cues by a humanoid
robot. However, that work was mainly focused on the interaction
with just one user. In addition, as studied by Andrist et al. (2015),
the gaze behavior more effectively motivates users to repeatedly
engage in therapeutic tasks.

Neurorobotics plays an important role in Human–Robot
Interaction (HRI), a discipline that allows improving robots
which can communicate and respond to ongoing human
communications and behavior (Kiesler and Hinds, 2004). It
also plays an essential role in assistive and rehabilitation
robotics (Beckerle et al., 2017). Admoni and Scassellati (2017)
have recently presented a survey of the state of the art in
social eye gaze for HRI. The authors distinguish between
three different approaches to the problem: Human-focused,
centered on understanding the characteristics of human behavior
during interactions with robots; Design-focused, which studies
how the design of a robot impacts on interactions with
humans; and Technology-focused, with the aim of researching
how to build computational tools to guide the robot’s gaze
in human interaction. According to the authors, the main
challenges of conversation are managing attention and turn-
taking between partners, selecting the correct gaze for the
conversational content, and adopting the right conversational
roles. In addition, Thrun (2004) indicated that the shape of
the robot, specifically humanoid features, influences people’s
behavior toward the machine and their expectations about
its capabilities.

Regarding gaze control, an outstanding work was published
by Zaraki et al. (2014), where the authors created a system to
guide a robot’s gaze at multiple humans who were interacting
with the robot. The attention mechanism used features which
had been proven to guide human attention. The authors relied
on the use of a Kinect sensor to track people and obtain sound
direction. This system considers the maximum of the sum of
different elements: social features, proxemics values, orientation,
and a memory component. However, the stimuli considered
were limited and the maximum value could change abruptly
and could also lead to erratic changes in the focus of attention.
Our proposal does not need a 3D sensor and is able to work
with common RGB cameras, while a competitive neural network
provides soft transitions between different focuses of attention.
Another remarkable work was published by Alonso-Martín et al.
(2012), who used 8 different microphones in a social robot,
named Maggie, to determine which direction to look. Once the
orientation of the robot with respect to the user was obtained,
an infrared laser returned the distance with respect to him/her
to make the robot move forward/backward. That work was
able to guide the robot in the direction of a speaker, but did
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not consider face stimuli or a competitive behavior. A robot
equipped with two laser range-finders was also used by Schulz
et al. (2003) to probabilistically track the position of people with
a mobile robot, although it did not have a cognitive behavior.
Saldien et al. (2014) presented a robot focus on Robot Assisted
Therapy (RAT) which was able to perceive different stimuli
(visual, auditory, and tactile) and track a certain colored object,
a face or a directional voice. However, that work did not solve the
problem of who to pay attention. Vega et al. (2013) proposed a
dynamic visual memory to store the 3D processed information
from a moving camera on board the robot. The attention system
chose where to look, according to the principles of reobserving
objects in the visual memory and the need to explore new areas.
The visual memory was a collection of relevant task-oriented
objects and 3D segments. However, that work wasmainly focused
on creating a visual memory about objects and reobserving
them according to the basis of keeping the memory updated.
More recently, Viciana-Abad et al. (2014) have demonstrated the
benefits of fusing sensory information with Bayes inference. The
authors localize a person with a robotic head by simultaneously
processing visual and audio data. The authors mainly focus on
tracking a particular person instead of a conversation between
multiple participants.

Visual information represents an important aspect of HRI,
increasing the robot’s awareness. The robots must trade off
features which affect the utility of the visual information
(Gergle et al., 2013), such as the robot’s field of view (FOV),
alignment of perspective, degree of spatial resolution, frame rate
or synchronization with a voice stream. The Visual Focus of
Attention (VFOA) represents who or what people are looking
at. Massé (2018) presents a VFOA model based on a Bayesian
network to infer the relation between head poses and object
locations. That work exploits the concept of correlation between
eye gaze and head movements instead of using face landmarks.
The author uses a convolutional neural network to predict object
locations and a reinforcement learning method for robotic gaze
control. The robot autonomously learns a strategy for moving
its head using audio and visual observations. The author mainly
focuses on the relation between head poses and objects and
not the conversations between different participants. In Ghi̧tă
et al. (2018), the authors track people in a robot assistive
care scenario by using an Oriented FAST and Rotated BRIEF
detector (ORB) and comparing characteristics between frames.
According to their study, NAOqi functions, which are SO/API
for Pepper, NAO and Romeo robots, are improved, covering
more range, situations of occlusions and more orientations of a
person/face. Shiomi et al. (2004) develop a face to face tracking
of people, generating hypotheses about people position by using
peripheral vision. Even though a face may not be present in
the foveal vision of the robot when it is gazing at another
object, the robot keeps plausible hypotheses about the location
of the human faces. However, in Csapo et al. (2012), the authors
point out some problems with Nao platform about non-verbal
human-robot interaction, where some capabilities of detecting
faces or tracking people interfere with other modules that send
commands to the same motor, producing senseless movements
due to conflicting signals.

Regarding the identification of people, the feature-based
systems play an important role in both human and robotics
perception (Potapova et al., 2017). Different techniques have
been developed for face detection and recognition during the
last years. As stated by Zafeiriou et al. (2015), robust feature
extraction methodologies have been used for face detection, such
as Scale Invariant Feature Transform (SIFT) features (Lowe et al.,
1999; Geng and Jiang, 2009; Lenc and Král, 2015), Histograms of
oriented Gradients (HoGs) (Dalal and Triggs, 2005), Local Binary
Patterns (LBPs) (Ahonen et al., 2006), or Haar cascade classifiers
(Viola and Jones, 2004). Among the most advanced techniques,
Haar classifiers, HoG detector or Deep Learning based solutions
are widely used, as they are implemented in OpenCV or DLIB
libraries. Haar classifiers detect faces at different scales but do
not work with non-frontal faces and occlusions and return a
large number of false predictions. The HoG feature descriptor is
fast but does not detect small faces (less than 80 × 80 pixels).
It can work with some minor occlusions or non-frontal faces,
but returns a bounding box that often excludes part of the
forehead/chin. The DLIB library (King, 2009) implements a CNN
face detector using a Maximum-Margin Object Detector (King,
2015), which works for different face orientations and occlusions.
However, it does not return a precise bounding box real-time.
OpenCV offers a DNN Face Detector, based on a Single-Shot-
Multibox detector (Liu et al., 2016), which is very accurate, works
with different face orientations, scales and occlusions, and runs in
real-time on CPU. Another important aspect of face recognition
is the extraction of the face’s features. They are mainly obtained
using anActive AppearanceModel (Cootes et al., 2001;Milborrow
and Nicolls, 2008) or DLIB-68 model (Kazemi and Sullivan,
2014), which makes a face alignment with an ensemble of
regression trees before obtaining the corresponding landmarks.
Finally, the face recognition is mainly based on Deep Residual
Learning algorithms, which are very accurate. DLIB implements
a ResNet network with 29 convolution layers and uses a pre-
trained model which takes the 68 face landmarks obtained from
an image (Kazemi and Sullivan, 2014).

As in the case of facial recognition, human body recognition
relies on the use ofHaar filters (Viola et al., 2001), HoG (Dalal and
Triggs, 2005), or Deep Convolution Neural Networks (DCNN),
such as the Faster RCNN Inception V2 COCO Model (Ren
et al., 2015). All of them are available in OpenCV, working
simultaneously with TensorFlow. Systems based on DCNN offer
better results, detecting more people with a lower number of
false positives.

Lip activity detection has also been studied in different works.
Bendris et al. (2010) proposed a method to detect lip motion
by measuring the degree of disorder of pixel directions around
the lip using the optical flow technique (Saenko et al., 2005).
A rectangle around the lips was enlarged to be aligned with
a previous one by taking the region that minimized the mean
squared difference (MSD). Siatras et al. (2008) considered the
increased average value and standard deviation of the number of
pixels with the lowest intensities of the mouth region to detect
visual speech. They created a statistical algorithm that used two
detectors based on noise to characterize visual speech and silence
in video sequences.
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FIGURE 1 | Steps in the gaze control process.

Neural networks have played a major role in the interaction
of robots with people. An outstanding work was presented
by Bicho et al. (2010), who presented a control architecture for
human-robot collaboration which was formalized by a coupled
system of dynamic neural fields representing a distributed
network of neural populations that encode in their activation
patterns goals, actions, and shared task knowledge. This approach
was valid for inferring the response to user stimuli but was
only valid for the collaboration with one user. In our paper,
a competitive network is used to create a dynamic behavior
in the interaction between several participants. A competitive
network consists of a layer that is able to react to different stimuli
and decide a winner. This network has a progressive behavior
which does not switch sharply between consecutive winners. A
habituation layer avoids a participant from being the winner for
a long period of time when a new, different stimulus arrives.
For example, imagine that two people are talking and one of
them is monopolizing the conversation. The robot would gaze
at the person who monopolizes the conversation but, if the other
person says something, a more natural behavior is to gaze at the
new interlocutor.

3. ANALYSIS OF THE SYSTEM

The method proposed in this section analyzes how the gaze
control of a robotic head works. Figure 1 shows the different
steps needed to obtain the orientation angles of the robotic head.

There is a specific frame rate that determines how many
images are received per second. Whenever a frame is received,
there is a process of people detection and face landmarks are
obtained using the DLIB 68 model (Kazemi and Sullivan, 2014).
There is a temporal table which memorizes the people who
have interacted with the robot. If a person is new, a 128D
vector is obtained by techniques related to facial recognition,
as explained later. This vector allows a concrete person to
be identified. Once a person has been identified, the method
uses correlation tracking (Danelljan et al., 2014) to follow
the person during consecutive frames. If a person disappears
from the scene for a while, the method is able to keep
their 128D vector in its memory to make a subsequent re-
identification. Different stimuli, such as visual speaking detection
and pose estimation, are evaluated for each person, and they
represent the entry of a competitive network composed of three
different layers:

• Short Time Memory layer (STM), which extends the duration
of the concrete stimuli. As an example, if a person says a short
sentence, the systemmight not properly consider the stimulus.
This layer extends the duration of the stimuli to have more
value in the entry of the habituation layer.

• Habituation layer, which penalizes persistent stimuli against
new stimuli, e.g., it prevents someone from hoarding the
conversation. When a person is speaking continuously, if
someone says something, it makes it easier to pay attention to
the new interlocutor.
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• Competitive layer, which is the final step of the network. The
input to the competitive network includes stimuli for each
person in the memory, and decides who is the winner. This
layer is responsible for following a dynamic behavior, without
abrupt jumps.

Kalman filters are used to process the position of people over
time. These filters have been previously used on robotic heads,
such as Milighetti et al. (2011), who predicts the next state of the
moving target. In our work, 2D face positions obtained during
tracking are transformed into concrete angles of the robotic head
(ψc and θc). These angles are integrated in different Kalman
filters, one for each person in memory, giving the position of the
person independently of being in the robot’s FOV. After a winner
is provided by the competitive network, the new orientation of
the robotic head is that returned by its Kalman filter. Then, the
Kalman filters are updated with the last positions obtained.

The rest of this section is composed of different subsections:
section 3.1 explains the different stimuli considered and how they
are calculated. Section 3.2 presents how the competitive network
works. Section 3.3 shows how the face coordinates of a person
obtained from an image are transformed into the angles of the
robot. Finally, section 3.4 presents how the Kalman filter is used.

3.1. Entry Stimuli of Competitive Network
Each person, k, produces a set of stimuli, x. This set of stimuli are
introduced into the competitive network and defined Ikx. Several
stimuli that consider how people react in a conversation have
been used. The stimuli that can be present or absent are coded as
binary values and are balanced in importance by a weight, wkx:

• Ik1 is the stimulus associated to a person k who is situated in
the robot’s field of view (FOV). People situated in front of the
robot are candidates to be interacting with the robot.wk1 is the
corresponding weight associated to that stimulus.

• Ik2 is the stimulus associated to a person k who is considered
to be speaking. Lip movement detection is performed, based
on mouth landmarks. Moreover, in order for a person to be
considered as a speaker, incoming audio has to be detected in
its direction.

• Ik3 is the stimulus associated to a person k who is gazing
directly at the robot. The pose is an important stimulus which
indicates that a person is visually interacting with the robot.
This stimulus represents the mutual gaze, a kind of shared
looking which is related to the increase of the engagement in
the interaction (Sidner et al., 2004).

• Ik4 is the stimulus associated to a person kwho is continuously
moving. In a conversation with several people, an individual
tends to look at another restless person. This stimulus requires
the individual to be situated in the FOV of the robot. If
the sum of differences of a person’s position between several
frames is over a concrete threshold, the person is considered
to be restless.

• Ik5 is the stimulus associated to a person k who is not situated
in the robot’s FOV, but for whom audio has been detected.
When a person is interacting with a group of people and
someone is speaking at their left/right side, this individual
tends to turn the head in that direction looking for the person.

• Ik6 is the stimulus associated to a person k who is not situated
in the robot’s FOV, but who is the VFOA of another group of
people. When two or more people in the FOV are gazing in the
same direction, a stimulus is given to people in that direction.
In this situation, this stimulus considers the Visual Focus of
Attention (VFOA).

• Ik7 is the stimulus associated to a person k who is situated at
a certain distance, following a proxemic approach as in other
works (Alonso-Martín et al., 2012; Zaraki et al., 2014). This
stimulus is multiplied by an adjustment factor which depends
on the distance between the person and the robot.

Next, the calculus of each stimulus is explained.

3.1.1. Stimulus Ik1: Person in the FOV of the Robot
The robot detects faces in frames and persons are, first of all,
recognized and labeled. When the robot turns its head, if a new
face appears on the FOV, the robot can discern whether this
person was previously recognized. When a face is in the FOV
during a period of time, re-identification is not required since the
face is followed by tracking.

There are different techniques for face recognition, but those
based on Deep Residual Learning are very accurate. The library
DLIB implements a ResNet network with 29 convolution layers.
This model is similar to the ResNet-34 network (He et al., 2016)
with a few layers removed and the number of filters per layer
reduced by half. This library uses a pre-trained model and takes
the 68 face landmarks obtained from an image (Kazemi and
Sullivan, 2014), aligns the face and maps it to a 128 dimensional
vector space where images of the same person are close in
terms of distance. Once the 128D vector has been obtained, the
similarity of two faces is calculated, checking if their Euclidean
distance is small enough. Using a threshold of 0.6, the DLIB
model obtains an accuracy of 99.38% on the standard LFW face
recognition benchmark (Huang et al., 2008). This procedure
requires the use of GPU, due to the fact that obtaining the 128D
vector from a face takes more than 0.4 s with CPU. With an intel
i9-9900K and a GPU GeForce RTX 2080 Ti, the 128D vector is
obtained in less than 0.05 s.

When a person is identified, a tracker is used to follow the
person in the FOV. It increases the speed of the system, as
tracking is faster than face recognition. The DLIB library allows
a correlation tracker based on Danelljan et al. (2014) to be used.
This method considers the approach of Bolme et al. (2010) and
makes use of learning discriminative correlation filters based on
a scale pyramid representation. The authors use separate filters
for tracking, in real-time, objects that change in both translation
and scaling.

3.1.2. Stimulus Ik2: Person Speaking in the FOV of the

Robot
As stated in the overview of related work, there are different
works which have studied lip activity to discern whether a
person is speaking or not. Speaking detection is important in a
conversation because, when a person is looking at the robot but is
in silence, it is likely that another person who is speaking receives
the robot’s attention.
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FIGURE 2 | Visual speaking detection. (A) Points used for lip activity detection. (B) Points to normalize distance.

Instead of implementing a complete analysis of images as in
Bendris et al. (2010) or Siatras et al. (2008), and due to the fact
that DLIB 68 returns characteristic points of the mouth (points
49–68), the movement between lips is calculated in consecutive
frames using these points. The sum of distances between a group
of points (62 and 68, 63 and 67, 64 and 66, 49 and 55, 51 and 59,
52 and 58, 53 and 57) (see Figure 2A) is divided by the distance
between the middle point of the eyes, points 37 and 46, and the
end of the chin, point 9 (see Figure 2B). This division is done to
normalize the distance, regardless of whether the person is close
or far away.

Let dk be the result of the calculus of the separation of lips in
frame k, as shown in Equation (1).

dk =

∣

∣
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∣

∣
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∣

∣
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∣
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∣

∣
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∣
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∣

∣

(1)

dk is added during a few consecutive frames, say 5 frames. If the

result is over a threshold τS, that is
5
∑

k=1

dk ≥ τS, the person is

visually considered to be speaking.
After the visual speaking confirmation, it is necessary to

evaluate if there is audio in the direction of that person. A person
can move his/her lips, i.e., breathing, but in silence. An Audio
Activity Detection (AAD), combined with a Direction of Arrival
system (DOA) (Griffin et al., 2012), is used to detect the zone
where audio is originated (left, central, right). When the person
is visually speaking in the robot’s FOV and audio is detected in

the direction of the robot’s gaze (80◦), that person is considered
to be speaking.

3.1.3. Stimulus Ik3: Person Gazing Directly at the

Robot
The determination of people pose is an important stimulus
because, when a person is looking at the robot, there is a greater
interaction between both participants: person and robot.

Instead of developing a complete analysis of image, such as
Ba and Odobez (2008), where the authors study how to link
head position with the visual focus of attention, modeling the
pose observations with a Gaussian Mixture Model (GMM) or a
HiddenMarkovModel (HMM), the use of known face landmarks
is exploited. A Perspective-n-Points algorithm (PnP) associates
2D points of the DLIB 68 model (Kazemi and Sullivan, 2014)
with 3D points in a respective model. Using a standard 3Dmodel
of a head, with some characteristic points such as nose tip, chin,
left eye left corner, right eye right corner, mouth left corner or
mouth right corner, it is possible to calculate the respective pose
between the DLIB points and the 3D model. PnP is implemented
in different ways, but the solution DLT + Levenberg-Marquardt
Optimization has been chosen. A Direct Linear Transformation
(DLT) algorithm allows L, the projection matrix of the camera,
to be calculated. In the formula LXi = ui, 2D coordinates ui are
related to a 3D point Xi. To obtain L, the six different points
selected (nose tip, chin, etc.) and the 3D position of these points
in the model are introduced in the algorithm. The Levenberg-
Marquardt Optimization finds a pose that minimizes the re-
projection error, which is the sum of the squared distances
between the observed image points and the projection.

When the pose has been determined, and considering the nose
tip as the origin of coordinates, a 3D vector from the origin
is projected onto the 2D image: say x1(0, 0, 0)− x2(0, 0, 500)
projected as u1(x1, y1)− u2(x2, y2). The module of this vector,
∣

∣

−−−→u1, u2
∣

∣, which is represented in blue in Figure 3, is divided by
the distance between the middle point of the eyes, points 37 and
46, and the end of the chin, point 9 (red vector). This division
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FIGURE 3 | Pose module and distance between eyes and chin. (A) Pose of a person. (B) Pose vector and DLIB landmarks.

normalizes the module, making it independent of the distance
to the face. If the result is below a given threshold, τM < 5, the
person is considered to be looking at the robot and their stimulus
is increased in the entrance of the competitive network.

3.1.4. Stimulus Ik4: Person Continuously Moving
In a conversation with several people, a person tends to look at
another restless one. The angles associated to a person, ψc and θc,
are stored during 25 consecutive frames, as this number of frames
has produced the most accurate results. The difference between
each pair of consecutives angles is calculated and accumulated.
These differences are computed using the Euclidean distance. If
the accumulated distance is over a concrete threshold, τM , the
person is considered to be a restless person.

3.1.5. Stimulus Ik5: Person Not in the Robot’s FOV but

With Audio
In a conversation with several people, a person has to turn the
head left/right when other persons are speaking in that direction.
As explained before, the proposed method uses Kalman filters to
keep the last estimated position of each person in memory. The
DOA system (Griffin et al., 2012) indicates the direction of audio:
left, central, right. When nobody is speaking in the robot’s FOV,
all people situated to the left/right side of the robot, according to
the person’s angles and robot pose, receive stimulus if audio has
been detected in their zone.

In addition, there are two fictional persons who are situated
in the left/right zone of the robot, respectively. When a new
participant begins speaking, who has not been previously
detected by the robot, the corresponding fictional person receives
stimulus whenever audio is detected in their zone and nobody is
speaking in the robot’s FOV. This is used to integrate that person
in the competition and be able to get the robot’s attention.

The DOA system is also used when the robot has not
previously detected any person. When a sound arrives from a

concrete direction, the robot will begin an exploratory movement
in that zone to search for people.

3.1.6. Stimulus Ik6: Person in the VFOA of Other

People
As assumed by other authors (Massé, 2018), it is important to
consider the Visual Focus of Attention (VFOA). It represents
who or what people are looking at. If two persons situated in
the robot’s FOV are looking at someone who is situated to the
left/right of the robot (see Figure 4A), there is probably a reason
and the robot should consider looking in that direction.

To calculate this stimulus, if two or more people in the robot’s
FOV are not looking at the robot and there is a difference between
their pose vector below a given threshold, say 30◦, the stimulus is
increased for the people who are situated in the direction of the
gaze of these persons.

3.1.7. Stimulus Ik7: Proxemics of a Person
Proxemics is the study of the human use of space. As stated by
Hall et al. (1968), there are four distinct zones in the interpersonal
relations: (1) intimate space, (2) personal space, (3) social space,
and (4) public space. Following this proxemic approach, as in
other works (Alonso-Martín et al., 2012; Zaraki et al., 2014), the
distance between the robot and a person is estimated. In each
frame, this distance is proportional to the distance between the
middle point of the eyes, points 37 and 46, and the end of the
chin, point 9. A function that approximates this distance has been
obtained, as follows:

dpk = −0.02 ·
∣

∣

∣

−−−−−−−−−−→
Pm(P37, P46), P9

∣

∣

∣
+ 2.04 (2)

where dpk represents the distance between the robot and a person
k in meters. Stimuli increased are those of people situated at the
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FIGURE 4 | VFOA and proxemic. (A) VFOA of two people. (B) Considering region in the proxemic approach.

far phase of the personal space (0.76–1.22m) or at the social space
(1.22–3.70 m), as shown in Figure 4B.

This stimulus, Ik7, is multiplied by an adjustment factor
depending on the distance:

fk =

{

1 if dpk >= 0.76 & dpk <= 2.10
3.70−dpk

1.60 if dpk > 2.10 & dpk <= 3.70
(3)

People situated at the far phase of the personal space (0.76–1.22
m) or at the close phase of the social space (1.22–2.10m), multiply
their stimulus by fk = 1. People situated at the far phase of the
social space (1.22– 3.70 m) multiply their stimulus by a factor, fk,
which depends on the distance and is reduced until dpk = 3.70m.
These equations have been adjusted during experiments.

3.2. Competitive Network
When all stimuli have been obtained, a competitive network
decides which person to gaze at. The competitive network creates
a dynamic behavior between interlocutors. Instead of changing
the gaze between participants abruptly, the network softens the
change and avoids situations such as monopolizing attention.
It has three components: an STM layer, which increases the
duration of short stimuli; a Habituation layer, which penalizes
persistent stimuli against the novel ones through a dynamic gain;
and a Competitive layer, which creates a competition between
participants and decides a winner.

This network has one input and output for every possible
person, as seen in Figure 5. Thus, Iij corresponds to the stimulus
j for the person i andwij to its associated weight. The weights take
values between 0 and 1 and are chosen experimentally according
to the relevance of the stimuli. The selected person is the one with
the highest value in the output, Oi. The network is composed of
three interconnected layers.

One important aspect in this process is the configuration of
the different parameters of such a neural network. The weights
of the different stimuli have to be computed in order to achieve

behavior similar to humans. During an initial training, three
people follow a list of steps previously recorded. At the same time,
another person observes the interaction and annotates the time
instants when a person should be the focus of attention. When
all data have been obtained, stimuli from expected winners and
losers are separated based on the said manual annotation. The
process is modeled as an optimization problem, maximizing the
sum of the distances between the winners and the losers at each
time instant t, as shown in Equation (4). This procedure ensures
that the weights are optimal to make the selected persons winners
and separate them from the losers.

max

m
∑

t=1

(

∑

k∈losers

It,winner − Itk

)

= max

m
∑

t=1















∑

k∈losers















7
∑

x=1

wx · It,winner,x

−

7
∑

x=1

wx · It,k,x





























(4)

3.2.1. Short Time Memory Layer
An STM increases the duration of the stimulus to havemore value
in the entry of the habituation layer. It is based on the model
proposed by Grossberg (1982). The neuron activity is computed
using Equation (5), where xi is the activity of the neuron i and
A1 is the decay rate. The next term is the auto-reinforcement,
which makes neuron activity tend to its saturation value B1. C1

marks the growth rate. Si is the filtered stimulus and wi is the
STM weight for that stimulus.

dxi

dt
= −A1xi + C1(B1 − xi)[Siwi] (5)
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FIGURE 5 | Architecture of the competitive network.

Equation (5) is solved in real time using a trapezoidal integration
defined by the following equations:

xi(kh) = xi((k− 1)h)+
gi(kh)+ gi(k− 1)h

2
(6)

gi(kh) = −A1xi(kh)+ C1xi(kh)

+C1(B1 − xi(kh))[Siwi] (7)

where k represents an increasing value 0..n and h is the period
of time (0.1 in experiments). Figure 6A reflects the behavior of
the STM layer with parameters A1 = 0.2, B1 = 1, and C1 = 0.5.
When a short stimulus arrives, the layer maintains its value
during some time until it completely disappears.

3.2.2. Habituation Layer
The proposed method has habituation capabilities, that is, it loses
interest in permanent stimuli over time. Habituation networks
were proposed by Grossberg (1968). In this layer, stimuli decay
due to habituation allows the network to dynamically adapt
against permanent inputs, such as a person who is hoarding
the conversation. By using a habituation layer, those continuous
stimuli lose preponderance over time, allowing novel stimuli
to acquire more importance. Habituation is carried out by
multiplying the input stimuli with a dynamic gain that is updated
over time. The gain gi computation is calculated based on
Equation (8).

dgi

dt
= E(1− gi)− FS

′

igi (8)

In the same way as with the STM layer, the differential equation
is integrated trough the following numerical discrete equations:

gi(kh) = gi((k− 1)h)+
p(kh)+ p((k− 1)h))h

2
(9)

p(kh) = E[1− gi(kh)]− FS
′

i(kh)gi(kh) (10)

where S
′

i is the filtered stimulus and gi is the habituation gain for
that stimulus. When a stimulus is active, the habituation gain
decreases from the maximum value of 1 to a minimum value
given by E/(E+ FS

′

i), proportional to the stimulus value S
′

i. This
gain is recharged to its initial unity value when the stimulus ends.
Charge and discharge rates are determined by the parameters E
and F. Figure 6B shows the behavior of the Habituation layer
with parameters E = 0.5 and F = 0.02. When there is a long
stimulus in duration, the layer decreases its value to give more
possibilities to other new stimuli from other people.

3.2.3. Competitive Layer
The outputs of the habituation layer are the inputs of the
competitive layer. The competitive model used is on-center
off-surround (Grossberg, 1982) and is based on the model of
Hodgkin (1952), where each neuron is reinforced with its own
activity, but attenuated by the activity of the neurons it is
connected to. This attenuation is known as lateral inhibition
and makes people compete by means of the weight of their
corresponding stimulus. Neuron activity is computed using
Equations (11) and (12), where yi is the activity of neuron i andA2
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FIGURE 6 | STM, habituation, and competitive layer behavior. (A) STM layer behavior when there is a short duration stimulus. A1 = 0.2, B1 = 1, and C1 = 0.5. (B)

Habituation layer behavior when there is a long duration stimulus. E = 0.5, F = 0.02. (C) Behavior of competitive layer with 2 neurons. A2 = 1, B2 = 1, and C2 = 3, D =

1, E = 0.5, and F = 0.02.

is the decay rate. The next term is the auto-reinforcement, which
makes neuron activity tend to its saturation value B2. C2 marks

the growth rate and S
′′

i is the filtered stimulus. Finally, the last
term represents lateral inhibition (off-surround).

dyi

dt
= −A2yi + C2(B2 − yi)[S

′′

i + f (yi)]

−yi
∑

i6=j

f (yj) (11)

f (yi) = Dyi
2 (12)

As before, the differential equation is integrated trough the
following numerical discrete equations:

yi(kh) = yi((k− 1)h)+
qi(kh)+ qi(k− 1)h

2
(13)

qi(kh) = = −A2yi(kh)+ C2yi(kh)

+C2(B2 − yi(kh))[S
′′

i wi]

−
∑

i6=j

Dyj((k− 1)h)2 (14)

A parabolic function has been selected for f (yi), so the winner
neuron is reinforced against the rest. The competition schema is
a winner-take-all, as it is desirable that only one person prevails
over the complementary ones. Figure 6C shows the behavior of
the competitive and habituation layers. The competitive layer
has parameters A2 = 1, B2 = 1, C2 = 3, and D = 1, while the
habituation layer has E = 0.5 and F = 0.02.

There are two inputs of stimuli. One input receives a stimulus
of 0.7 that remains in time from t = 1 until t = 8. Another input
receives the same stimulus, 0.7, from t = 5 until t = 8, where
both stimuli disappear. The sequence of winners is: neuron 1
and neuron 2. Neuron 1 is the first winner, as it is the only
stimulus. Because of the habituation layer, neuron 1 reduces its
value and neuron 2 becomes winner, although the input stimuli
are similar.
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FIGURE 7 | Transformation of the coordinates of a face into angles of the robot.

3.3. Angles of the Robot
An important step of the method is the transformation of the
coordinates of a face into angles of the robot. These angles are
situated in a universal coordinate system (UCS) and they remain
in the robot’s memory regardless of whether it turns its head.
Kalman filters also use these angles to estimate the position and
the robot accepts angles to move its head up/down and left/right.

Initially, the robotic head is situated in angles ψO = 0◦ and
θO = 0◦. When it turns its head, ψc and θc represent the center
point of the image. This image is the robot’s FoV. As seen before,
DLIB returns a rectangle for each face detected in an image.
The midpoint of that rectangle is (xk, yk) and corresponds to the
person k.

From (xk, yk), it is necessary to calculate the angles (ψk, θk).
For that purpose, some fixed parameters are necessary. As seen
in Figure 7, ε1 represents the vertical angle of the FoV, while ε2
corresponds to the horizontal one. w and h are the respective
width and height of the image.

Equation (15) show the relation between (xk, yk) and (ψk, θk).

{

ψk =
[

ψc −
ε1
2

]

−
[

xk ·
ε1
w

]

θk =
[

θc −
ε2
2

]

−
[

yk ·
ε2
h

] (15)

Initially ψc = ψO = 0◦ and θc = θO = 0◦. When the robot turns
its head, the target angles are aligned with the center of the image
(xc, yc). Therefore, the robotic head moves to (ψk, θk) and, when
it finishes, ψc takes the value ψk and θc takes the respective θk. At
that moment, (ψc, θc) are the current situation of the robot until
the next movement.

3.4. Kalman Filter
The Kalman filter and the Extended Kalman filter (Rosales and
Sclaroff, 1998) are well-known techniques that allow the position

of a person to be estimated by means of positions known and
previously updated. The Kalman filter considers noise and other
inaccuracies and helps estimate the location. It uses Bayesian
inference and estimates a joint probability distribution over the
variables for each instant of time.

Several Kalman filters run simultaneously, one for each person
previously tracked by the robot. When a new person appears,
the proposed method considers an initial state vector with the
first known positions of the person. This vector is composed of
the corresponding angles of the robot calculated from the center
point of the person’s face, xk = (ψk, θk). The Kalman filters are

created with a posteriori error covariance matrix Pk =

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

(a

measure of the estimated accuracy of the state estimate).
An iteration is produced when the person has been detected

in a new frame and new positions/angles arrive. At that
moment, the Kalman filter is updated with the new angles.
Hk is the observation model which maps the true state space
into the observed space. Specifically, the observation model is

Hk =

∣

∣

∣

∣

0.1 0
0 0.1

∣

∣

∣

∣

, and the covariance of the observation noise is

Rk =

∣

∣

∣

∣

0.25 0
0 0.25

∣

∣

∣

∣

4. ROBOT CONSTRUCTION AND METHOD
IMPLEMENTATION

A complete robotic head has been designed and built, as shown
in Figure 8. The design considers the principle by which people
will collaborate more naturally and easily with humanoid robots
as compared with machine-like robots (Hinds et al., 2004), and
the idea of the anticipated acceptance of a social robot when
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FIGURE 8 | Robotic head developed.

it provides more enjoyable interactions (de Graaf et al., 2019).
This robotic head includes two servomotors for the orientation
(ψ and θ angles) and a wide angle camera located at the top of
the head. An ESP32 module has been programmed to move the
servomotors, which are also connected to a step-down voltage
regulator. The ESP32 module is connected to a computer, which
is responsible for the robot’s gaze control. The function developed
in the ESP receives the target where the head has to be moved as
ψ and θ angles. It moves the servos to that concrete position step
by step and, each step, publishes the current position of the head.

A projector situated at the back projects an agent on a 3D
printed display representing the robot’s face. The agent follows
an approach using the Facial Action Coding System (FACS)
(Ekman, 1997), which is a well-knownmethod for measuring and
describing facial behavior. In FACS, several Action Units (AUs)
are responsible for contracting groups of muscles in face changes.

The computer in charge of processing the gaze control is an
intel i9-9900K, with 32Gb of RAM and a GPUGeForce RTX 2080
Ti. It is connected to different elements: the ESP32 module, a
mini projector with HDMI, and the circular microphone array,
concretely a ReSpeaker Mic Array v2.0. This computer runs
the Robot Operating System (ROS) (Quigley et al., 2009) over
Linux, where the proposed method has been deployed. Several
independent nodes run simultaneously and different messages
are published and subscribed by these nodes. The architecture of
the developed system is shown in Figure 9.

There are several nodes:

• framePublisher, which directly receives frames using OpenCV
and publishes into a compressed image topic. It has a rate
of 20 Hz. The image is transformed into a grayscale image
and the dimensions are adjusted to an optimal value (500
pixels wide).

• audioDetection, which detects audio activity (AAD) and
the direction (DOA). This node publishes a message,

audioDetection, with a rate of 3 Hz, indicating both values.
Other nodes with a different rate, such as stimuliCalculation,
use the last received values, remaining in time until other,
new ones are published. Our experimentation showed that this
technique produced a better behavior in the recognition of a
person speaking.

• peopleTracking, which is responsible for different activities:

(i) Extracting people/faces/face landmarks from a frame
using DLIB libraries.

(ii) Tracking people using face identification and a
correlation tracker.

(iii) Obtaining people pose.
(iv) Keeping in memory a list of existing people, as well

as their position, depending on the angles of the
robotic head. The competitive network has 20 entries
corresponding to possible interlocutors during the last
activity of the robot. If the list is complete and a new
person appears, the person not detected for the longest
time is replaced by the new one.

(v) Based on the list of existing people, publishing a message,
faceLandmarks topic, with face characteristics (68 DLIB
points, coordinates, pose) for the stimuli calculation
and a message, peoplePosition topic, with new known
positions for the Kalman filters.

• stimuliCalculation, which calculates the value of the entries of
the competitive network using the information provided by
the faceLandmarks topic. The stimulus i can take the values
0 or 1 for a person k and is multiplied by a weight wi with the
values represented in Table 1.

All stimuli multiplied by their corresponding weights are
accumulated for each person k, being normalized between 0
and 1, and they are published as a stimuliVector topic, which is
the input of the competitive network.

This node performs another important task: when nobody
is speaking in the robot’s FOV, whenever there is audio in the
left or right zone, the stimulus I5 is increased for a fictional
person. There are two fictional persons who, respectively, have
Kalman filters with angles in the left/right zone of the robotic
head. This task is valid for situations where a new person
appears to the left/right of the robot. As they have not been
previously recognized by the robot, it does not take them into
account. The use of the competition network includes them in
the dynamic behavior process.

• competitiveNetwork, which implements the three previously
explained layers:

(i) Short Time Memory layer (STM), which extends the
duration of concrete stimuli.

(ii) Habituation layer, which penalizes persistent stimuli
against novel ones.

(iii) Competitive layer, which decides the winner.

This node publishes a message with the winner, winner topic,
which is in fact the stimuli vector processed by the network.
The output with the highest value represents the winner.

• Kalmanfilter, which implements a Kalman filter for each
different person. It receives the angles of the robot head for

Frontiers in Neurorobotics | www.frontiersin.org 12 June 2020 | Volume 14 | Article 34108

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duque-Domingo et al. Gaze Control of a Robotic Head

FIGURE 9 | ROS architecture.

TABLE 1 | Weights in stimuli calculations (obtained with the optimization problem).

Stimulus i Iki wi

1. Person k detected in the robot’s FOV 1/0 0.06

2. Person k speaking in the robot’s FOV 1/0 0.25

3. Person k gazing directly at the robot 1/0 0.06

4. Person k moving sharply between frames 1/0 0.16

5. Person k not in the robot’s FOV but with audio 1/0 0.25

6. Person k in the VFOA of other people 1/0 0.16

7. Proxemics of person k 1/0 0.06

tracking a person, who is in the robot’s FOV, and updates their
corresponding values.

• robotOrientation, which is in charge of combining information
received from the competitive network and the estimation of
the Kalman filter, peopleEstimation topic, and sends the new
angles to the robotic head. Another task is carried out by
this node: when nobody has been detected during the last
20 s, the robot begins an exploratory movement whenever new
audio is detected. The exploration initially moves the attention
to the zone where the audio has been detected (left, central,
right). During this exploration, the agent modifies the robot’s
expression from neutral to sad.

Based on the winner of the competition layer, the
robotOrientation node obtains the target angles (ψk and θk)
of the winner k, from the Kalman filter. Before sending them

to the ESP32 module, it makes some controls related to the
agent movements:

(i) If the distance between (ψk, θk) and (ψrobot , θrobot), the
current position of the robotic head, is lower than 10◦, the
node does not send the movement to the servos. Instead, a
movement of the agent’s eyes is produced in the direction
of the target. This step avoids servo gittering.

(ii) If that distance is over 10◦, the node sends the movement to
the servos and, at the same time, makes the agent smile and
move the eyes in the direction of the target.

It is also interesting to mention that a blinking eyes movement
has been given to the robot to show realism.

• visualization, which visually displays the results of the process
on the computer screen.

5. EXPERIMENTS AND RESULTS
DISCUSSION

An initial step consisted in determining the optimal parameters
of the system. This step was carried out by means of the
optimization problem previously described, where three people
followed a list of established actions. An external observer
followed the interaction and annotated the time instants when
a person should be the focus of attention. The complete list of
actions had 726 steps and the optimization problem was solved
in 18 iterations and 0.23 s (in an intel i9-9900K) using the SLSQP
algorithm (Kraft and Schnepper, 1989). The obtained results
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FIGURE 10 | Robot interaction with two people. (A) Input stimuli in a conversation. (B) Output stimuli in a conversation. (C) Input stimuli with different actions. (D)

Output stimuli with different actions.

were w1 = 0.06, w2 = 0.25, w3 = 0.06, w4 = 0.16, w5 = 0.25,
w6 = 0.16, and w7 = 0.06. It is important to mention that,
depending on the behavior expected by the observer, some
parameter may take slightly different values. After this step,
several situations involving two/three interlocutors and the
robotic head were considered. 13 interactions (with 31.200
frames) with two or three people were recorded, considering
different stimuli. 8 people participated in the experiments
repeating some of them with similar results. The results of 4 out
of them are shown next.

During the first experiment, two people situated in the
social space interacted with the robot. Figure 10A represents the
summation of input stimuli in the competitive network, while
Figure 10B shows the output. In this experiment, the two persons
looked at the robot and had a conversation. Person 2 began the
conversation (2–7 s), followed by 1 (6–12 s), 2 (12–15 s), and
finally 1 (17–18 s). At the end of the conversation, the habituation

capabilities appeared and person 2 became the winner (22–24
s). The output of the competition redirected the gaze of the
robot dynamically.

During the second experiment with two people, a preset
sequence of people’s behavior was evaluated, as shown in Table 2.
Depending on the stimuli obtained from both participants, the
result of the competition was dynamically modified. This table
shows the interval of time over which the stimulus takes place.
The results of the winning person are shown in Figures 10C,D.

The following experiments were carried out with three people,
as seen in Figure 11. In the case Figure 11A, there are two
individuals in the robot’s FOV. There is a conversation between
three people on the scene and the robotmoves its head depending
on the winner, but, at a specific time, the stimuli produced by
person C (speaking detection, gazing, proxemics, movement,
etc.) and the result of the competitive network makes this person
the winner and the robot turns its head to look at him/her.
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The second case, Figure 11B, is similar to the first situation but
the three individuals are in the robot’s FOV. The robot moves
its head or eyes as soon as a new winner is elicited from the
competitive network. As before, when person C becomes the
winner, the robot turns its head right to center the person. The
third case, Figure 11C, corresponds to a situation where the
robot had previously detected three people. At a certain time,
nobody is in the FOV, but the robot is detecting audio. The

TABLE 2 | Sequence of behavior of two people.

State Person

speaking

Person

gazing robot

Person

moving

Winner Time

1 2 1 2 1 2

1 2 2–10 s

2 1 10–16 s

3 1 16–23 s

4 2 23–33 s

5 1 33–37 s

6 2 45–48 s

competitive network returns winner A and the robot turns its
head left, according to the values returned by the Kalman filter
associated to that person.

The fourth case, Figure 11D, represents two persons who are
quiet in the robot’s FOV. A new person arrives and begins to
speak to the left. As soon as the robot detects sound in that zone,
the fictional input of the competitive network corresponding to
the left zone receives new stimulus. The competition evolves until
that fictional person becomes the winner and, finally, the robot
turns its head in that direction.

Figures 12A,B show the input and output values of the
competition for the speaking interaction between three people.
These three people were gazing at the robot and situated at the
close phase of the social space (1.22–2.10 m). Person 3 began
the conversation (10–17 s), followed by 1 (17–23 s), 2 (23–32
s), 3 (32–38s), 1 (38–42 s), 2 (42–48 s), 3 (48–53 s), 1 (53–60 s),
and finally, 2 (60–63 s). During the seconds 35-38, person 3 was
hoarding the conversation. However, person 1 began to speak and
became the winner due to the habituation capabilities.

Table 3 shows, as in the case of two people, a preset sequence
of people’s behavior. Figures 12C,D show the corresponding
input and output values for the competition, where several

FIGURE 11 | Different situations interacting with the robotic head. (A) Three people in the FOV. (B) Two people in the FOV. (C) Nobody in the FOV. (D) A new person

appear on scene.

Frontiers in Neurorobotics | www.frontiersin.org 15 June 2020 | Volume 14 | Article 34111

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Duque-Domingo et al. Gaze Control of a Robotic Head

FIGURE 12 | Interaction between three people. (A) Input stimuli in a conversation. (B) Output stimuli in a conversation. (C) Input stimuli with different actions.

(D) Output stimuli with different actions. (E) Result of the visualization node showing the winner.
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TABLE 3 | Sequence of behavior of three people.

State Detected/Proxemics Gazing at robot Moving Speaking Winner Time

1 2 3 1 2 3 1 2 3 1 2 3

1 2 0–18 s

2 2 18–22 s

3 1 22–28 s

4 2 28–42 s

5 3 42–52 s

6 1 52–62 s

7 2 62–75 s

8 1 75–83 s

9 3 83–94 s

10 2 94–100 s

stimuli were considered, such as gazing at the robot, proxemics,
speaking or moving. Figure 12E shows a moment of the
experiment which is displayed by the visualization node.

The proposed system reflects a successful result of 85.0%
in relation to the behavior of a person in the same situation.
To make this estimation, the result of the interaction has been
supervised by comparing the selection of the focus of attention
proposed by the system (winner nodes) and the one that would
have been determined by a person observing the scene. The
failures found were mainly due to errors in the perception of
stimuli such as external audio noises unrelated to the interaction,
and blurred images due to the effect of the movement of people
and the robot itself. It is difficult to make a comparison of the
results with other authors since there are no common datasets
and each author uses different sensors and stimuli. A research
work close to ours is that of Zaraki et al. (2014), where a precision
between 75.2 and 89.4% is obtained depending on saccadic
and non-saccadic movements. However, the conditions of the
experiments are very different. In that work, a Kinect RGB-D and
a DIK-ABLIS eye tracking system are used. In our experiments,
a common webcam and an inexpensive ReSpeaker Mic array
V2.0 are used. Moreover, in Zaraki et al. (2014) the interaction
between 2 people at a certain distance is analyzed prioritizing
gestural and postural acts, while our experimentation has been
carried out at a short distance with the participation of three
interlocutors (in fact, the number of interlocutors is not limited
in the proposed method) and prioritizing facial and audio stimuli
(where the people are looking, who is speaking, who is moving,
their distance to the robot and even if someone gets out of
the FOV).

Finally, mention that the program is available on the Internet
at the URL:
https://github.com/jaiduqdom/robotGazeControl.git.

6. CONCLUSIONS

This work presents a system to control the gaze of a robot
interacting with multiple people in conversations. Several

computer vision techniques have been used to obtain a set of
stimuli, which are received by a competitive network that decides
a winner and indicates where to look.

Different types of weighted stimuli have been considered,
allowing the robot to focus its attention on one interlocutor.
Thus, the proposed system identifies the interlocutors and
re-identifies them when they leave the robot’s FOV, tracks
them using correlation tracking and Kalman filters, determines
whether the person is speaking by identifying lip movement
in concurrence with a sound source, studies where people are
looking, monitors the person’s movements to see if they wish
to attract attention, and prioritizes close interlocutors over those
further away. Kalman filters keep the angular positions of each
particular person who has previously interacted with in the
robot’s memory, regardless of whether they are in the FOV or not.

The competitive network, by means of an adequate weighting
of weights, allows who the robot should look at in order to
create an interaction to be determined. The characteristics of the
network allow a smooth transition between the focus of attention
through the competition of stimuli. An important characteristic
is the habituation mechanism that tends to prioritize new stimuli
over existing ones and prevents a certain user frommonopolizing
the focus of attention.

Different experiments have been carried out in which two and
three people have interacted with each other and with the robot.
The results show how the competition of the network executed in
real time allows a behavior of the robot similar to a person when
choosing the focus of attention to be obtained.

A robotic head has been designed and built to evaluate the
system, where a virtual agent projected on a 3D printed display
has been used to represent the robot’s face. Depending on the
response of the gaze control system, the agent has shown different
expressions andmovement of the eyes. A ROS-based architecture
has been presented and the different experiments carried out have
been detailed.

The robot’s behavior looks natural and is perceived similar to
that of humans. The method has shown itself to be an important
improvement in robot gaze control, creating a more realistic
HRI system which is more acceptable to interlocutors than other
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robots that turn their heads without a dynamic and human-
oriented method. The response of the competitive network has
succeeded in producing soft transitions between different focuses
of attention.

Finally, it can be noted that: people need to be properly
detected by the face recognizer, which requires they are situated
within a given distance range from the robot (2.2 m in our
experiments); a GPUs is required for real-time processing (i.e.,
face recognition takes 0.4 s with CPU and 0.05 s with GPU in our
experiments); and complexity of the statistical data analysis to
perform inferential tests may differ from one person to another,
due to inherent criteria differences.

The future objectives of the project will be the development of
a conversational system, providing speech and voice recognition
capabilities, and the perception and generation of emotions.
These components, together with the developed gaze control
system, will offer a low-cost, intelligent robot with human-like
behavior. Simultaneously, the method will be available for other
existing robots, since the ROS architecture means it can be
integrated with other types of robots.
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More recently, lower limb exoskeletons (LLE) have gained considerable interests in

strength augmentation, rehabilitation, and walking assistance scenarios. For walking

assistance, the LLE is expected to control the affected leg to track the unaffected

leg’s motion naturally. A critical issue in this scenario is that the exoskeleton system

needs to deal with unpredictable disturbance from the patient, and the controller has

the ability to adapt to different wearers. To this end, a novel data-driven optimal control

(DDOC) strategy is proposed to adapt different hemiplegic patients with unpredictable

disturbances. The interaction relation between two lower limbs of LLE and the leg of

patient’s unaffected side are modeled in the context of leader-follower framework. Then,

the walking assistance control problem is transformed into an optimal control problem.

A policy iteration (PI) algorithm is utilized to obtain the optimal controller. To improve the

online adaptation to different patients, an actor-critic neural network (AC/NN) structure

of the reinforcement learning (RL) is employed to learn the optimal controller on the basis

of PI algorithm. Finally, experiments both on a simulation environment and a real LLE

system are conducted to verify the effectiveness of the proposed walking assistance

control method.

Keywords: walking assistance control, reinforcement learning, leader-follower multi-agent system, lower limb

exoskeleton, hemiplegic patients, actor-critic neural network

1. INTRODUCTION

With the increasing requirement of accomplishing complex or difficult tasks in the fields of
industry and human daily life, wearable devices/robots have attracted more attentions (Fang et al.,
2018, 2019). As one of wearable devices, the lower limb exoskeleton (LLE) integrates artificial
intelligence technologies, control and robotic theory, and has become a hot topic own to its practical
applications. Note that so many injuries caused by neuromuscular diseases, and accidents reduce
the walking ability, most assistive exoskeletons are developed to aid paraplegic patients (Dollar and
Herr, 2008; Strausser and Kazerooni, 2011). On the other hand, stroke has gradually become a
global health-care problem, which inspires many researchers to pay attention to walking assistance
or rehabilitation case for hemiplegic individuals (Ho et al., 2011; Bortole et al., 2015; Iqbal and
Baizid, 2015; Louie and Eng, 2016).

From the functions point of views, the LLE can be categorized in three classes of applications,
namely, strength augmentation (Walsh et al., 2006; Huang et al., 2016, 2019), walking
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assistance (Esquenazi et al., 2017; Zhang et al., 2017), and
rehabilitation (Sankai, 2010; Huo et al., 2014). For strength
augmentation, the wearers usually have walking ability, and the
influence of human-robot interaction force should be considered
in the controller designs. For walking assistance case, one
usually uses the LLE to assist patients’ walking/training in which
the patients lose their ability to walk. Thus, LLE has served
as a device for rehabilitation/walking training with paraplegia
and hemiplegia. In recent, some researchers have introduced
biological signals of human body into the controller designs, such
as Electromyography signal (EMG) (Kiguchi et al., 2004) and
Electroencephalogram signal (EEG) (Kilicarslan et al., 2013).

In the early research works of rehabilitation and gait recovery
of hemiplegia, researcher proposed Ankle-Foot Orthosis (AFO)
to achieve good recovery performance (Tyson and Thornton,
2001; Fatone et al., 2009). In order to provide active power
assistance for hemiplegic patients, many powered orthosis with
activemotors have been developed, such as active AFO developed
by Blaya and Herr (2004) and Series Elastic Remote Knee
Actuator (SERKA) developed by Sulzer et al. (2009). However,
these kinds of orthosis are designed for repairing local motion
function of hemiplegic patients in particular scenarios, such as
the SERKA is design for stroke patient with stiff-knee gait (SKG).

For the assistance control problem of LLE with hemiplegia,
one usually focus on how to derive the LLE to generate a normal
motion that aid the patients walking or recovering (Maciejasz
et al., 2014; Hassan et al., 2018). Sankai developed a single leg
exoskeleton system for hemiplegic patients based on the Hybrid
Assistive Limb (HAL) (Kawamoto et al., 2009). For the studies on
the HAL system with single leg case, motion information of the
unaffected side is generated to synchronize gait of the affected
side (Kawamoto et al., 2014). Note that the single leg based
HAL system should be re-designed as the wearer has different
disabled side. In Fisher et al. (2011), a powered exoskeleton
was used to improve patients with hemiparesis walking function
via robot assisted gait training. In Murray et al. (2014), the
authors proposed a control approach of a LLE to provide
walking assistance, without giving desired joint angle trajectory,
for facilitating recovery. More recently, the walking assistance
control problem for a LLE with hemiplegia was investigated via a
learning-based control method (Huang et al., 2018).

In most of the existing relevant works, the case of disturbances
caused by system or external environment has not been
taken into consideration in the designs of controllers. In fact,
disturbances caused by system or external environment will affect
the control performance of system, which should be considered
in controller designs. On the other hand, the precise system
dynamics of exoskeleton is difficult to establish, which decreases
the control performance of the model-based methods in real
systems. To solve this issue, the system identification is needed
that would introduce new approximation errors. Therefore, the
motivation of this paper aims to address these problems.

Motivated by the above-mentioned discussions and
observations. In this paper, a data-driven optimal control
(DDOC) strategy is proposed for walking assistance of lower
exoskeleton with hemiplegic patients. First, the interaction
communications between the both two low limbs of LLE and

hemiplegic patient are modeled as a leader-follower multi-agent
system (LFMAS) framework. Then, a policy iteration (PI)
algorithm is employed to compute the optimal assistance
controller. Further, in order to improve adaptive performance
for walking assistance with different hemiplegic patients, a
RL method, called actor-critic neural network (AC/NN), is
proposed to achieve better control performance, where the
learning process only relays on measurement data from the LLE
system. The main contributions of this paper can be summarized
as follows:

1. Different from most of the existing control method which is
designed in a model-based fashion, a DDOC strategy based
on PI algorithm is proposed to learn the optimal assistance
controller for walking. The proposed method is designed in a
model-free manner without the requirement of the complete
knowledge about the accurate dynamics of the exoskeleton
system and system identification.

2. An adaptive online-learning based AC/NN structure is
employed for the implementation of the controller design,
which aims to perform adaptability performance for different
patients and achieve good robust against disturbances.

Moreover, the proposed DDOC method is validated through
a two degree-of-freedom (2-DOF) simulation environment,
and then it is successfully applied on a real LLE system
with healthy subjects who simulate paraplegia. Both simulation
and experimental results verify that the proposed control
approach has robustness performance against disturbances and
has adaptive ability for different wearers or even the same wearer
with different gait patterns.

The rest of this paper is organized as follows. In section 2,
the modeling process of LFMAS for exoskeleton system with
hemiplegic patients is established, the system dynamics of the
exoskeleton and problem formulation are given. Then, section 3
proposes the PI based optimal assistance controller designs.
Section 4 proposes the data-driven adaptive control strategy by
making using of RL framework on the basis of the PI algorithm.
In section 5, the proposed control methods are illustrated in
simulation scenario and is applied to an actual exoskeleton
system with healthy people who simulate hemiplegic patients in
section 6. Section 7 gives the conclusions and future work.

2. MODELING AND PROBLEM
FORMULATION

In this section, the modeling process for the LLE with hemiplegic
patients, namely LFMAS, is given to describe the interaction
relations among both lower limbs of LLE and patients’ legs. An
information exchange rule is introduced for the LFMAS. Then,
the system dynamics and control problem are formulated.

2.1. Modeling Exoskeleton System as
LFMAS
In this paper, the focus is aim at designing an adaptive assistance
controller of a LLE system with both lower extremities to assist
hemiplegic individual walking. It should be noted that, for
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FIGURE 1 | The modeling of Leader-Follower Multi-Agent System. (A) The

schematic diagram of the LFMAS (The notations 0, 1, and 2 denote leader,

follower 1, and follower 2, respectively). (B) Communication topology network

of the LFMAS structure.

hemiplegic patients, one of the two legs usually loses walking
ability and the other one is normal. Therefore, before introducing
the controller designs, it is necessary to tackle how to model the
interaction relations among them appropriately such that both
low limbs and the LLE can achieve their mutual communication.

In light of the cooperative distributed control, leader-

follower mechanism has been wildly utilized in multi-agent
systems control (Hu and Feng, 2010), where the main idea is
that information interactions among agents are achieved in a
distributed way. In this paper, this mechanism is extended to
model the unaffected leg of the hemiplegic patients and the
both lower extremities of exoskeleton as a LFMAS, where the
structure of the LFMAS for exoskeleton system with hemiplegic
individuals is illustrated in Figure 1A. That is, the exoskeleton
with hemiplegia is divided into three components: one leader
agent and two follower agents. In other words, the unaffected
leg of patient is regarded as the leader of LFMAS, equipped with
an Inertial Measurement Unit (IMU) sensors for measuring its
joints’ states. Furthermore, both two lower extremities of the LLE
system are defined as two follower agents, i.e., follower 1 and
follower 2 which can be described as follows:

1. Follower 1 is the exoskeleton leg of unaffected side, which
synchronizes the leader agent’s (unaffected side of patient’s leg)
motion immediately.

2. Follower 2 is the other side of exoskeleton’s limb with the
disabled leg of patient, the patient’s disabled leg is tightly
connected with the exoskeleton.

In the framework of LFMAS, it should be pointed that there is
a phase difference between the motion of the affected side and
the unaffected side, naturally, In other words, follower 1 first
synchronize to the leader’s motion trajectory and then follower
2 is expected to track to the leader’s trajectory motion after half
gait cycle interval.

To guarantee walking assistance control performance, on the
basis of LFMAS, the information interaction scheme should be
designed for both lower extremities and patient’s legs, which
means that the information/data (LLE’s state and control signal)
can be transmitted among them. To this end, the following gives
an information exchange rule to describe the evolution of the
agents’ communication.

(i) Information Evolution Rule: The information update for
follower agent i (i = 1, 2) includes combining its own
information with those received from its neighbors, and
Leader can transmit its information to Follower. Assume that
each agent has a weight vector ai = [aij], in which each
element aij represents that agent i assigns to the information
obtained from a neighboring agent j. Figure 1B denotes
the communication topology network between agents where
arrows indicate the direction of information flow.

(ii) Weight Rule: LetN(i) be the neighbors set of the ith Follower
agent. For arbitrary i ∈ {1, 2}, if j ∈ N(i), aij > 0; if j /∈ N(i),
aij = 0. Let

∑

j∈N(i) aij = di be the sum of the neighbors’

weights for agent i.

2.2. Dynamics Model of LLE System
In this paper, the dynamics of the LLE system is described as a
second-order nonlinear mechanical system (i.e., Euler-lagrange
system). Therefore, the dynamics of the both lower extremities,
i.e., follower 1 (i = 1) and follower 2 (i = 2) of the exoskeleton
are described as follows:

Hi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi, i = 1, 2 (1)

where qi = (qih, qik)
⊤ ∈ R2 denotes the joints’ angle of

the LLE, qih and qik represent the hip joint and knee joint,
respectively. Hi(qi) denotes inertia matrix, Ci(qi, q̇i) represents
the centripetal and coriolis matrix. Gi(qi) denotes the gravitation
term, τi = (τiu, τid)

⊤ are the input torques generated by up and
down motors for hip and knee joint. Further, we can rewrite
Equation (1) as a state-space form:

[

q̇i
q̈i

]

=

[

q̇i
−Hi

−1(Ciq̇i + Gi)

]

+

[

0

Hi
−1

]

τi

or equivalently,

η̇i(t) = fi(ηi(t))+ gi(ηi(t))ui, (2)

where ηi(t) = [q⊤i , q̇
⊤
i ]
⊤, gi(ηi(t)) =

[

0

Hi
−1

]

, fi(ηi(t)) =
[

0 I
0 −Hi

−1Ci

]

ηi(t)+

[

0

−Hi
−1Gi

]

, τi = ui.

The dynamic of the leader (the motion trajectory of patient’s
unaffected leg) is given by:

η̇r(t) = f (ηr(t)), (3)

where ηr(t) indicates the joint angle collected from human via an
IMU sensors matched on the pilot’s leg.
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2.2.1. Design Objective
The goal is to generate the controller strategy ui to ensure the
trajectory ηi(t) generated by Equation (2) can track the trajectory
ηr(t) in Equation (3). That is, it is desired to make the following
tracking error index go to zero:

lim
t→∞
‖ηi(t)− ηr(t)‖ = 0. (4)

In order to achieve control objective, the local neighbor tracking
errors of dynamics (2) for follower i are defined as

ξi(t) =
∑

j∈N(i)

aij(ηi(t)− ηj(t))+ ci(ηi(t)− ηr(t)), (5)

where N(i) and aij have been defined in section 2.1. ci > 0
denotes the pinning gain, which means agent i can obtain the
Leader’s information.

Taking the derivation of Equation (5), combining Equation (2)
and Equation (3), the dynamics of the tracking errors are
written as

ξ̇i(t) = fξi + (di + ci)gi(t)ui(t)−
∑

j∈N(i)

aijgj(t)uj(t), (6)

where fξi (t) =
∑

j∈N(i) aij(fi− fj)+ ci(fi− f ), di indicates the sum

of the weights of the ith follower agent.

3. POLICY ITERATION BASED
CONTROLLER

Based on the system modeling and problem formulation, in
this section, the walking assistance control problem will be
transformed to an optimal control problem by introducing local
cost functions and using optimization theories. Then, the state-
of-the-art algorithm called policy iteration (PI) is proposed to
obtain the solution to the coupled Hamilton-Jacobi-Bellman
(HJB) equation, and thus the optimal controller u∗i (t) is obtained
for solving walking assistance problem.

From the perspective of optimal control (Vamvoudakis and
Lewis, 2010) and inspired by RLmethods (Mnih et al., 2015, 2016;
Sutton and Barto, 2018), we use a local cost function to assess
the long-term learning and control performance, which is defined
as follows:

Vi(ξi(t)) =

∫ ∞

t
ri
(

ξi(s), ui(s), u(j)(s)
)

ds, (7)

where u(j)(t) denotes the neighbors’ control of Follower agent

i, and ri
(

ξi(t), ui(t), u(j)(t)
)

= ξ
⊤
i (t)Qiiξi(t) + u⊤i (t)Piiui(t) +

∑

j∈N(i) u
⊤
i (t)Siju(j)(t) is the reward function, where the Qii > 0,

Pii > 0 and Sij > 0 are symmetric positive definite weighting
matrices, respectively. For the notation simplification, we set
ri(ξi(t), ui(t), u(j)(t)) = ri(ξi(t), ui(t)).

Till now, the walking assistance control problem is
transformed into an optimal control problem, which aims to
design a distributed controller to guarantee the Design Objective
as well as minimizing the local cost function (Equation 7).

Further, the Hamilton function is represented as

Hi

(

ξi(t), ui(t),Vi(ξi(t))
)

= ri(ξi(t), ui(t))+∇V
⊤
ξ

ξ̇i(t), (8)

where Vi(0) = 0, ∇Vξ = ∂Vi(ξi(t))/∂ξi(t) is a partial
differential part.

Using the stationary condition for Equation (8), i.e., let
∂Hi(t)/∂ui(t) = 0, the optimal controller u∗i (t) is obtained as

u∗i (t) = −
1

2
(di + ci)P

−1
ii g⊤i (t)∇Vξ . (9)

The optimal cost function V∗i (ξi(t)) satisfies the following
coupled Hamilton-Jacobi-Bellman (HJB) equation:

Hi

(

ξi(t), u
∗
i (t),V

∗
i (ξ (t))

)

= ri(ξi(t), u
∗
i (t))+∇V

∗⊤
ξ

ξ̇i(t) = 0.
(10)

Since the coupled HJB equation Equation (10) exists the
nonlinear item and partial differential part, which makes it hard
to be solved analytically. Therefore, the PI algorithm (Liu and
Wei, 2014; Wang et al., 2014), is introduced to approximate
the HJB equation and cope with this issue by a successive
iteration way.

Let uli(t) and V l
i (ξi(t)) represent iterative control and iterative

Q-function, respectively, with l is iteration index. There are two
components in PI algorithm, one is policy evaluation and the
other is policy improvement. The detailed iterative performing
process can be summarized as follows:

PI Algorithm: Start with admissible initial control u0i .

Step 1. Policy Evaluation: Given the control policy uli, solve for

value function V l
i (ξ (t)) by

Hi

(

ξi(t), u
l
i(t),V

l
i (ξ (t))

)

= ri(ξi(t), u
l
i(t))+∇V

l⊤
ξ

ξ̇i(t)=0.
(11)

Step 2. Policy Improvement: Compute the control law uli by

ul+1i (t) = −
1

2
(di + ci)P

−1
ii g⊤i (t)∇V

l
ξ
. (12)

Step 3. If ‖V l
i (ξi)−V

l−1
i (ξi)‖ ≤ ǫ (ǫ is a small positive constant),

end. Else, let l = l+ 1, go to step 1.

The PI algorithm is an effective method to solve the various
optimal control problems. It has been proved that the iterative
cost function and the iterative control strategy in PI will converge
to the optimal values V⋆

i (t) and u⋆

i (t) through iterations (Peng
et al., 2019, 2020).

It is worth noting from the above algorithm that the PI
algorithm requires the knowledge of system models, i.e., gi(t)
exists in the controller (Equation 12). In this sense, system
identification is needed normally (Ghan and Kazerooni, 2006),
but it is not suitable for the practical exoskeleton system with
different hemiplegic patient. Since for different wearers/patients,
the identification process needs to be reconstructed. To overcome
this difficulty, the following section will present a data-driven
adaptive control strategy with an online-learning fashion. It
should be emphasized that this method avoids needing the
knowledge of the accurate system dynamics, and no system
identification is introduced.
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4. IMPLEMENTATION OF CONTROLLER
DESIGN

In this section, we will present the DDOC algorithm base on
PI algorithm to achieve online-learning-based control and better
adaptive performance for different patients via a neural network
(NN) framework of RL called AC/NN. In the AC/NN, actor
network is used to approximate controller and critic network
is introduced to estimate cost function online, respectively. The
detailed descriptions are given as follows.

4.1. The Critic NN Modular
First, the critic networks are adopted to approximate the cost
function Vi(t) as follows:

V̂i(t) = ŵ⊤ci (t)ϕci(zci(t)), (13)

where zci is an input information of the critic modular
and information from ξi, ui, and u(j), ϕci(zci) denotes the

activation function, and Ŵci is the weight vector of the critic
network modular.

Then, at each time step, the Hamilton function (8) can be
approximated as follows:

eci(t) =

∫ t+△T

t
ri(ξi, ui)ds+ V̂i(t+ △ T)− V̂i(t)

=

∫ t+△T

t
ri(ξi, ui)ds+ ŵ⊤ci

(

ϕci(zci(t+ △ T))− ϕci(zci(t))
)

,

(14)
where △ T > 0 denotes the time interval.

Then, the Equation (14) is utilized to define the approximation
error for the critic NNs. Thus, the squared residual error function
to be minimized is defined as

Eci(t) =
1

2
‖eci(t)‖

2 =
1

2
e
2
ci(t). (15)

Then, by making use of gradient descent based weight update
rule (Si and Wang, 2001), the tuning weight law can be adopted
as follows

˙̂wci(t) =− ̺ci
∂Eci(t)

∂eci(t)

∂eci(t)

∂V̂i(t)

∂V̂i(t)

∂ŵci(t)

=− ̺ciϕci(zci)
(

ŵ⊤ci1ϕci(zci)+

∫ t+△T

t
ri(ξi, ui)ds

)

,

(16)

where1ϕci(zci) = ϕci(zci(t+ △ T))−ϕci(zci(t)), ̺ci is the learning
rate of the critic network modular for agent i.

4.2. The Actor NN Modular
Next, define the actor neural networks, which is employed to
estimate the control strategy, as follows:

ûi(t) = ŵ⊤ai(t)ϕai(zai(t)), (17)

where zai is an input vector of the actor network including ξi of
agent i, ϕai(zai) denotes the activation function, and ŵai is the
weight matrix.

Algorithm 1: Optimal Walking Assistance Control Algorithm.

1: Initialization

2: Initialize the values of critic weight ŵci(0) and actor weight
ŵai(0);

3: Set the learning rates of the critic network and actor network
to be ρai and ρci;

4: Choose a sufficiently small computation precision ǫ;
5: Let Qii, Pii and Sij be positive definite weighting matrices;
6: repeat

7: Calculate the actor network to estimate the control strategy
ûi ← (17);

8: Calculate the critic network to estimate the cost function
V̂i ← (13);

9: According to the available system data qi and qr , compute
the error ξi ← (5);

10: Calculate the objective function Eci;
11: Update the weights in the critic NNs using ŵci(t)← (16);
12: Calculate the objective function Eai;
13: Update the weights in the actor NNs using ŵai(t)← (20);

14: until ‖ŵ
′

ci − ŵci‖ ≤ ǫ (ŵci and ŵ
′

ci denote the weight of the
current time and previous time);

Then, in order to obtain the desired approximation optimal
controller to minimize the cost function V̂i, the error function of
the actor network is defined as

eai(t) = V̂i(ξi(t))− Uobj, (18)

where Uobj is the ultimate objective function. From perspective
of the RL, the value of the Uobj is selected according to different
purposes of applications.

The squared residual error function to be minimized in the
actor network is given by

Eai(t) =
1

2
‖eci(t)‖

2 =
1

2
e
2
ai(t). (19)

Similarly, with the aid of the gradient descent rule, the following
updating rule for the actor network is obtained

˙̂wai(t) =− ̺ai
∂Eai(t)

∂eai(t)

∂eai(t)

∂V̂i(t)

∂V̂i(t)

∂zci(t)

∂zci(t)

∂ ûi(t)

∂ ûi(t)

∂ŵai(t)

=− ̺aiϕai(zai)ŵ
⊤
ci∇ϕci(zci)ξiϕ

⊤
ci (zci)ŵci,

(20)

where ξi = ∂zci/∂ ûi, ∇ϕci(zci) = ∂ϕci(zci)/∂zci and ̺ai is a
learning rate of the actor NN for agent i.

The procedure of the data-driven adaptive control strategy
is presented in Algorithm 1. It should be noted that only the
measured system data, i.e., ξi and ui are required in the design of
the DDOC algorithm. Thus, this method is a data-driven/model-
free approach, which improves the potential application of the
proposed control method in real systems.

It is noted that in the neural network based approximated
structure, some common forms of the activation functions are
polynomial functions, tanh functions, sigmoid functions, and so
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on. Further, we found that the appropriate selection of activation
function is very important, which leads to the different size of the
NN weight parameters. In this paper, the selection of activation
function has the same dimension as the input data. These settings
can reduce a huge computation burden for implementation.

5. NUMERICAL SIMULATION

In this section, a 2-DOF manipulator system in simulation
scenario is first carried out to validate the effectiveness of the
proposed data-driven control strategy.

5.1. Dynamic Model of 2-DOF System
For simulation, the simulation environment is set up in
Simulink-Matlab. The dynamics of the two followers are the
same as Equation (1), where the system matrices are given as

follows: Hi =

[

mi1 +mi2 + 2mi3 cos(qi2) mi2 +mi3 cos(qi2)
mi2 +mi3 cos(qi2) mi2

]

,

Ci =

[

−mi3q̇i2 sin(qi2) −mi3(q̇i1)+ qi2 sin(qi2)
−mi3q̇i1 0

]

, and the Gi =

[

mi4g cos(qi1)+mi5g cos(qi1 + qi2)
mi5g cos(qi1 + qi2)

]

, τi = [τi1, τi2]
⊤, mip (p =

1, 2, 3, 4, 5) are themasses. Note that, in simulation case, the given
dynamic system can be used to product system data needed in
DDOC algorithm.

The leader system (desired trajectories) is expressed by

qr =

[

q1r
q2r

]

=

[

0.5cos(t)+ 0.2sin(3t)
0.3cos(3t)− 0.5sin(2t)

]

. (21)

We select the structure of the AC/NN as 3-layers back
propagation (BP) NN (Goh, 1995). The initial values of critic NN
weights and actor NN weights are set to be zero, and setting the
value of the computation precision as ǫ = 10−5. The weight
learning rates of the actor network and the critic network are
chosen as ρai = 0.03, ρci = 0.06. The activation functions
ϕai and ϕci are selected as the hyperbolic tangent functions, i.e.,
tanh(x) = (ex − e−x)/(ex + e−x).

5.2. Simulation Results and Analysis
As shown in Figure 2, we can see that after 2 s learning
process, the critic NN weights and the actor NN weights
are convergent, and thus the optimal weights parameters are
obtained. Therefore, the approximate optimal controller can be
obtained in Equation (17). On the basis of the optimal controller,
the trajectory of joint angles q1 = (q11, q12)

⊤ of follower 1
achieves a good tracking performance to the leader at 3 s < t < 6
s, which is illustrated in Figure 3.

In order to further verify the performance of adaption against
uncertainty, we add some disturbance signal (white noise) to
the system at t ∈ [6, 7] s. In Figure 2, the AC/NN weights
are retrained for learning again adaptively until converge from
t = 6 s to t = 8 s, and thus the optimal controller has been
modified correspondingly. With the help of the modified optimal
controller, from Figure 3, it is seen that joint angle trajectories of
two links of follower 1 are synchronized with the leader again
quickly after t = 8 s. These simulation results illustrate the

FIGURE 2 | Convergence of the AC/NN weights on 2-DOF simulation

platform. (A) Actor network. (B) Critic network.

better control performance of the proposed DDOC algorithm,
which has ability to respond to disturbances online in the system
operation. It is proved that our proposed control method has
good robustness against uncertainties.

6. EXPERIMENTS ON A REAL LLE SYSTEM

In this section, to further verify the control performance
of the proposed data-driven control strategy, walking
assistance experiments on an actual LLE system
are performed.

6.1. Experimental Setup
To demonstrate the effectiveness and adaptability of the proposed
control strategy, a practical LLE system, called AIDER, which is
shown in Figure 4, is designed for walking assistance case to help
hemiplegia. A distributed control system is embedded in AIDER
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FIGURE 3 | The trajectories tracking performance of joint angle of follower 1

on 2-DOF simulation platform. (A) Link 1. (B) Link 2.

which consists of a main controller and four node controllers.
The main controller is placed on the backpack to compute
the control algorithm. Node controllers are fixed near by the
corresponding active joints position of LLE robot which aims to
receive sensor data and execute control commands according to
the main controller.

During the experiments on the AIDER system, three healthy
subjects (1, 2, 3) with different heights (165, 176, 180 cm) are
selected to participate this experiment and operate the wearable
LLE robot. All wearers are simulated as hemiplegic patients, and
the right legs of the subjects are simulated as the affected leg. In
the walking assistance task for all wearers, each wearer is asked to
walk for 50 s via the AIDER system. All the pilot’s walking speed is
varying from 0.1 to 0.4m/s. Further, the AIDER is equipped with
accelerometer and the wearable sensory system for measuring
system data.

FIGURE 4 | The LLE system called AIDER for hemiplegic patient. 1. The

subject/wearer; 2. Smart shoes with plantar pressure sensors inside; 3. The

load backpack with embedded computer, IMU and power unit; 4. Active joints

with node controllers (hip joints and knee joints).

For the implementation of the proposed data-driven control
strategy on the AIDER system. Note that the proposed data-
driven control strategy DDOC has a learning process using the
online system data at the beginning, which aims to adapt different
subjects. After the learning stage, the optimal control policies can
be obtained, and then walking assistance can be realized for the
LLE system with pilots. We choose the AC/NN as 3-layer Back
propagation (BP) NNs structure (Goh, 1995), that is, input layer,
hidden layer and output layer. The initial values of weights ŵci

and ŵai of the critic and actor are all set to be zero, and the
activation functions ϕai and ϕci are chosen as hyperbolic tangent
functions tanh(x) = (ex − e−x)/(ex + e−x). The learning rates
are the same as in the simulation, that is ρai = 0.03, ρci = 0.06.

6.2. Experimental Results and Discussions
For participant 1, from Figures 5A,B, we can see that, after about
5 s training, the weights of AC/NN are bounded convergent,
i.e., uniformly ultimately bounded because of the disturbances
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FIGURE 5 | The trajectories of the AC/NN weights for AIDER with subject 1 in

the experiment: (A) Actor weights. (B) Critic weights.

and uncertainties always exist in LLE system. The tracking
performance of the hip joint and knee joint for the LLE system
with wearer 1 is depicted in Figures 6A,B, which states that with
the help of the learned optimal control policies, the hip joint
and knee joint of two limbs of the exoskeleton (follower 1, 2)
can achieve synchronization with the desired (leader’s) motion
trajectories. Moreover, it is noted that there are different walking
motion patterns in the procedure of walking, which means
our proposed method has capability of adapting different gait
patterns. It should be pointed out that the affected side of wearer
with exoskeleton’s side (follower 2) has a half gait cycle delay
to the side which has walking ability (leader), which is marked
with blue dashed line as shown in Figure 6. In summary, the
experimental results illustrate the effectiveness of the proposed
DDOC approach for walking assistance of the exoskeleton with
different pilots.

FIGURE 6 | The tracking control performance performance of the proposed

DDOC strategy on AIDER with subject 1 in the experiment: (A) Hip joint’s

angle. (B) Knee joint’s angle.

7. CONCLUSIONS

In this paper, a DDOC control strategy has been proposed for a
lower exoskeleton system to assist hemiplegic patient walking. A
LFMAS structure has been established to model the interaction
relation among LLE system and hemiplegic individual. The
walking assistance problem has been transformed to an optimal
control problem. The PI algorithm has been introduced to obtain
optimal assistance controller. On the basis of the PI algorithm,
in order to adapt different patients, the AC/NN framework has
been presented for the implementation of the proposed approach
in an online-learning manner. It highlights that the controller
design only relays on the measured system data, rather than the
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accurate system model. Finally, we have successfully validated
the proposed method on two situations: 2-DOF manipulator
in simulation environment and walking assistance experiment
on a real LLE system called AIDER. Experimental results have
confirmed the effectiveness of the proposed control method. In
the future, we will focus on more practical control issues, and
consider the RL-based controller designs for exoskeleton system
with actuator faults and input time-delay.
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Though a robot can reproduce the demonstration trajectory from a human demonstrator

by teleoperation, there is a certain error between the reproduced trajectory and the

desired trajectory. To minimize this error, we propose a multimodal incremental learning

framework based on a teleoperation strategy that can enable the robot to reproduce the

demonstration task accurately. The multimodal demonstration data are collected from

two different kinds of sensors in the demonstration phase. Then, the Kalman filter (KF)

and dynamic time warping (DTW) algorithms are used to preprocessing the data for the

multiple sensor signals. The KF algorithm is mainly used to fuse sensor data of different

modalities, and the DTW algorithm is used to align the data in the same timeline. The

preprocessed demonstration data are further trained and learned by the incremental

learning network and sent to a Baxter robot for reproducing the task demonstrated by

the human. Comparative experiments have been performed to verify the effectiveness of

the proposed framework.

Keywords: incremental learning network, teaching by demonstration, teleoperation, data fusion, robot learning

INTRODUCTION

With the development of control theory and sensor technology, robots have been widely applied in
various fields, especially in industry and social service. It plays an increasingly vital role in human
daily life, such as entertainment, education, and home service, etc. In most cases (Billard et al.,
2008; Yang et al., 2018; Fang et al., 2019), robots need to learn and execute many complex and
repetitive tasks, which include learning the motion skills from observing humans performing these
tasks, also known as teaching by demonstration (TbD). TbD is an efficient approach to reduce the
complexity of teaching a robot to perform new tasks (Billard et al., 2008; Yang et al., 2018). With
this approach, a human tutor demonstrates how to implement a task to a robot easily (Ewerton
et al., 2019). Then, the robot learns the key features from human demonstration and repeats it
by itself. Obviously, the main issue of robot learning is how to learn more critical features from the
demonstration to fulfill a certain task well. Therefore, it is essential to take account of some learning
methods to learn much more useful features effectively. In this sense, robot learning contains two
tasks: motion perception based on multiple sensors and features learning with efficient methods.
Different modalities of sensors can enable obtaining an accurate description of the target motions
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and enrich the information (Chavez-Garcia and Aycard, 2016),
and the learning methods promote to learn the desirable features.
In this paper, we developed a novel robot learning framework to
enhance the performance of TbD. This framework combines the
superiority of the incremental learning network and the multiple
sensors fusion.

Multimodal sensor fusion is a promising technique to create
more accurate, more complete, or more dependable data with less
uncertainty (Elmenreich, 2002; Haghighat et al., 2011) to enrich
the features of demonstration data. Compared with individual
sensor data, the multi-sensor fusion data have a distinctive
preponderance in four general aspects (Mitchell, 2007). First, a
higher resolution and richer semantic become possible for usage
in the representation of the data. Second, the fused sensory data
or data from disparate sources can reduce the uncertainty of
information than these sources are used individually. Besides, a
more all-sided view regarding the object is allowed for a coherent
space to enhance the completeness of the information. Last,
if the data are noisy or have errors, the fusion process will
reduce or eliminate noise and errors. Hence, the data through
the fusion process are possible to achieve the desired result
with enhanced reliability, extended parameter coverage, and
improved resolution (Fung et al., 2017). The systemwithmultiple
sensors provides immense opportunities for applications in a
wide variety of areas. Applications that benefit from the sensor
fusion technology cover many engineering fields which include
internet of things (Din et al., 2015; Bijarbooneh et al., 2016),
automation systems (Iyengar et al., 2003; Caterina et al., 2015),
computer vision (Eitel et al., 2015), target tracking (Smith and
Singh, 2006), health care (Medjahed et al., 2011; Koshmak
et al., 2016), mechatronics (Luo and Chang, 2012), and robotics
(Chung et al., 2011).

Recently, the multimodal sensor fusion is widely engaged
in human–robot interaction (HRI) to enhance the performance
of interaction (Gui et al., 2017; Argyrou et al., 2018; Deng
et al., 2018; Fang et al., 2019; Li C. et al., 2019). Gui
et al. (2017) designed a multimodal rehabilitation HRI system,
which combines the electroencephalogram (EEG)-basedHRI and
electromyography (EMG)-based HRI to assistant gait pattern, to
enhance active participation of users for gait rehabilitation and
to accomplish abundant locomotion modes for the exoskeleton.
Argyrou et al. (2018) proposed a human–robot collaborative
monitoring system that can fuse data from multiple sources
to estimate the execution status of the tasks more accurately.
Deng et al. (2018) proposed an improved HRI by fusing the
operator’s gesture and speech to control the movements of a
robot. The fusion of gesture and speech improved the accuracy,
efficiency, and naturalness of the proposed system. Li C. et al.
(2019) developed an augmented reality interface based on HRI
that the Kalman filter (KF) algorithm was used to fuse the
position and velocity signals from the Leap Motion sensor
and the Kinect sensor to improve the tracking performance,
aiming to provide an easier and accurate interaction. Wan et al.
(2017) developed an intelligent system to teach robots to do
object assembly through multimodal vision for next-generation
industrial assembly. Zeng et al. (2019) proposed a TbD system to
teach the robots to learn specific tasks based on multiple sensor

fusion. Compared with single modal data, the multimodal data
provide a more rich and complementary information source to
facilitate the diversity of robot TbD. These applications benefit
from sensor fusion technology because of multi-sensor-based
data fusion algorithms. Due to the varieties of the nature of
the fusion process, different algorithms are used to enable the
different levels of sensor fusion, such as KF (Kalman, 1960),
support vector machine (SVM) (Cortes and Vapnik, 1995; Waske
and Benediktsson, 2007), particle filter (Crisan and Doucet,
2002), Bayesian inference method (Khaleghi et al., 2013), fuzzy
sensor fusion approach (Gibson et al., 1994), and artificial neural
network (Hu, 2010), etc. Studies showed that the KF is ideally
suited to coping with multi-sensor estimation and data fusion
problems. This is mainly because the algorithm runs best with
well-defined state descriptions (such as positions, velocities) and
for states where observation and time-propagation models are
also well-understood. In this paper, the KF is used to fuse the
positions and velocities of a humanoid robot to achieve an overall
complete description of the joint positions with high accuracy
and fewer uncertainties.

Sensor fusion can enable to obtain more accurate
demonstration data, while effective learning methods can
learn more desired features of data. A deep learning neural
network, as a kind of popular feature learning algorithm, has
been successfully applied in various fields because of its powerful
approximation capability (Ciresan et al., 2012; Marblestone
et al., 2016; Sze et al., 2017). Although this advantage makes
it apply in amounts of areas, it often needs a large number of
datasets to train the network. Due to this, a complicated network
structure is needed to deal with them, and then the network
will suffer from a time-consuming process. Apart from that, the
network is also faced with the issue that entire retraining when
new samples are inputted. Considering these problems of deep
structure learning methods, Chen and Liu (2017) proposed an
incremental learning method, which provides an alternative way
for deep structure neural network (Liu and Chen, 2017). The
incremental learning network can rapidly learn and model the
target system without a retraining process if new samples are
fed into it. Also, the structure of this network can be expanded
flexibly in a wide sense. Like a deep structure neural network,
the approximation capability of an incremental learning network
is universal (Chen et al., 2018). Hence, it has been successfully
engaged in different fields employing efficient modeling and
fast learning ability. These applications mainly involved two
aspects: classification and regression. Most researchers employ
this algorithm in various kinds of classification (Zhang et al.,
2018; Li J. et al., 2019). For example, Zhang et al. (2018) applied
it to recognize facial expression to improve the accuracy of
recognition. Based on this method, Wang et al. (2018) integrated
it with the convolution neural network to classify EEG emotion
which achieves the highest average recognition accuracy. The
applications, which are involved in different curves fitting, were
seldom. Luo et al. (2019) used it to estimate human intention
by predicting the force of human hand. Chen et al. (2018) have
proved that compared with function approximation and time
series prediction, the incremental learning algorithm is superior
to other learning algorithms, such as SVM, least squared
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SVM, and extreme learning machine (ELM), on regression
performance. It is noted that the incremental learning network
and ELM algorithm (Huang et al., 2004) are similar among these
methods. Both networks have the structure of a single layer.
Also, both networks are thought to have potential advantages in
learning rate and generalization ability (Huang et al., 2006; Chen
et al., 2018). Apart from that, the incremental learning network
can be employed in other scenarios, such as fault diagnosis (Zhao
et al., 2019) and monkey oculomotor decision decoding (Shi
et al., 2020). However, this method is seldom used in HRI to
improve the performance of robot learning.

For the TbD system, we can teach a robot to move as the
desired trajectory. However, human movement is not always
necessarily optimal for the robot when it tries to repeat and
accomplish a task. Therefore, teaching a robot remotely, there
will be some deviations between the robot’s trajectory and
the target trajectory. Through learning based on a neural
network, the robot’s trajectory can approach the target trajectory.
To achieve that, the incremental learning algorithm is used
to learn the fused features of a certain task from different
sensors to enhance the learning performance. Then, experiments
are performed to verify the effectiveness of the proposed
multimodal framework.

The main contribution of this paper is to develop a framework
that integrates the advantages of the multiple modal information
fusion with the approximation capability of the incremental
learning algorithm to enhance the performance of the TbD
system. The remainder of the paper is organized as follows.
The System Outline section presents the whole architecture of
the proposed framework. The details of the data collection,
preprocessing, and learning methods are introduced in the
Methodology section. The Experiments and Results section
describes the experimental settings and explains the results of
the experiments. The experimental results are discussed in the
Discussion section. The Conclusions and Future Work section
concludes this work.

SYSTEM OUTLINE

System Description
The proposed framework of the TbD is shown in Figure 1, which
consists of three modules: the human demonstration module, the
learning module, and the robot execution module.

Human demonstration module: This module, which is a
virtual demonstration system, allows the human demonstrator
to control the Baxter robot in Virtual Robot Experimentation
Platform (V-REP) via human joint information. The human joint
information including joint angles and joint angular velocities is
recorded by the Kinect sensor and Myo armbands separately.

The learning module: This module includes two steps:
data preprocessing and incremental learning. The target of
data preprocessing is to align the time series information
of the demonstrated tasks in the same timeline. After
that, an incremental learning method is used to learn the
preprocessed data.

The robot execution module: The main function of this
module enables the robot to complete the task with the learned

data from the training module. To this end, a specific task
will be performed by a robot to verify the effectiveness of the
proposed framework.

System Principle
The principle of the overall system based on the proposedmethod
with multimodal sensor data fusion is presented in Figure 2.
As shown in Figure 2, it consists of a Kinect sensor, two Myo
armbands, and a Baxter robot. Kinect sensor is a motion capture
device which is used to capture the motion of the human body.
Myo armband, as a wearable device, is used to capture the human
joint angular velocities. Baxter is a versatile semi-humanoid robot
which is equipped with several advanced sensing technologies
(including force, position, and torque sensing) which allow it to
be applied in scientific research. V-REP is a powerful open-source
robot simulator with an integrated development environment,
distributed control architecture, and rich user interface to make
it be an ideal platform for robot simulations. The remote
application programming interface (API) in V-REP can control
the robot simulation from an external application or remote
hardware. This work will simulate the Baxter robot and control
it by two developed API clients in V-REP.

Figure 3 shows the communication links of the virtual TbD
system. It is noted that the data collected from the Kinect sensor
and Myo armbands are separately recorded by two computers.
Two sensors both can recognize human hand gestures. To
capture the joint angles and angular velocities simultaneously, the
hand state is used to control the start or end of the data collecting.
When the human demonstrator’s hand state is open, the data of
joint angles and angular velocities will be recorded and saved in
different files. Instead, the data collecting work will stop.

According to the designed human demonstration model,
joint angles and angular velocities are recorded from the
multiple demonstrations based on a specific task. Then, the raw
demonstration data will be preprocessed and learned by the robot
learning module. After that, the learned data are transferred to
the Baxter robot in V-REP by MATLAB for execution. We can
verify the effectiveness of the proposed method by the execution
result of the Baxter robot.

METHODOLOGY

The proposed incremental learning framework includes three
processes: data collection, data preprocessing, and data learning
method, which correspond to the three modules mentioned
above. In this section, the data collection and preprocessing
processes will be introduced, and the details of the incremental
learning network and the multi-sensor fusion algorithm KF also
will be given.

Data Collection
In this section, we will introduce how to capture the human joint
angles and angular velocities using a Kinect sensor and two Myo
armbands in detail, respectively.
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FIGURE 1 | Outline of the robot teaching by demonstration (TbD) system.

Calculation of Joint Angles Using the Space Vector

Approach
Since we can get the three-dimensional (3D) joint coordinates of
a human body using the Kinect sensor, the key to obtain the joint
angles is how to convert these coordinates into corresponding
angles. This problem can be addressed by the space vector
approach. As we know, the distance between two specified 3D
points A(xa,ya,za) and B(xb, yb, zb) can be calculated by the
following equation:

dAB =

√

(xb − xa)
2
+ (yb − ya)

2
+ (zb − za)

2 (1)

Essentially, the distance dAB is equal to the norm of the vector
−→
AB = (xb − xa, yb − ya, zb − za). In a 3D space, the law of cosines
can be used to calculate the angles between two known vectors. In
the Kinect coordinate, a joint can be expressed as a vector. So, the

angle between joint 1 (
−→
PO) and joint 2 (

−→
OQ) can be computed as:

cos
(

−→
PO,

−→
OQ

)

=

−→
PO ·

−→
OQ

∣

∣

∣

−→
PO

∣

∣

∣
·

∣

∣

∣

−→
OQ

∣

∣

∣

(2)
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FIGURE 2 | The principle of the whole system. The multimodal signals are collected by the corresponding sensors from human demonstration. Two sensors are

connected to different computers. Then, through incremental learning, the demonstration data are transmitted to the Baxter robot through the remote application

programming interface (API) indirectly. The Baxter robot is connected to the development workstation directly. Thus, the robot can execute the demonstrated task.

FIGURE 3 | The communication links of the robot virtual demonstration system. (A) The communication of data collecting. (B) The communication of robot simulation.

According to Equation (1), we can transform the coordinates
returned by Kinect into corresponding vectors. Then, the angles
of these vectors can be calculated by Equation (2).

The models of the full human body and the left arm are shown
in Figure 4. The coordinate system of Kinect in Cartesian space is
constituted by three directed straight lines AX, AY, andAZ, where
point A is the origin of the coordinate. According to Equation (2),

the shoulder pitch angle 6 AOC can be calculated by the vectors
−→
OA and

−→
OC from the position coordinates of points A, O, and

C. The elbow pitch angle 6 OCD is calculated using the same
method. We can get the shoulder yaw angle 6 JAK in a similar

way. The difference is that the vectors
−→
AJ and

−→
AK are obtained by

projecting vectors
−→
OB and

−→
OC to the XZ plane.
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FIGURE 4 | The models of human body skeleton and human left arm.

To calculate the shoulder roll angle, the cross product
is applied to get the normal vector of different planes.
The normal vectors of the BOC and OCD planes can be
calculated by:

{

−→
OM =

−→
OB×

−→
OC

−→
CH =

−→
CO×

−→
CD

(3)

Then, translating the vector
−→
CH along the vector

−→
CO to point O

can get the vector
−→
ON. So, the calculation of the shoulder roll

angle 6 MON is addressed. Using the same method, we can get
elbow roll angle 6 HCL, which is the angle between the planes of
OCD and CDE.

Here, only three joint angles of the human arm involving the
human shoulder and elbow are collected.

Calculation of Joint Angular Velocity From Myo

Armband
To obtain the joint angular velocity, two Myo armbands are
needed to wear on the user’s upper arm and forearm. The
quaternion method is used to obtain the joint angles. Then, the
joint angular velocities can be computed based the difference of
the joint angles. According to Yang et al. (2018), we can assume
that the joint angle of the initial position is zero. When the user’s
arm is moved from a pose T to a new pose P, the angle from
pose T to P is the rotation angle. For the pose P, pose T can
be regarded as the initial pose, and the rotation angel is the
joint angle.

Assume that the Myo armband’s orientation is expressed by
frame (x0, y0, z0) in the initial position, the current orientation is
expressed by frame (x1, y1, z1). Then, the angular velocities of the
shoulder roll, shoulder yaw, and shoulder pitch can be obtained
by the forearm armbands. The velocities of the elbow roll and
pitch angles are acquired by the armbands worn on the upper
arm. Thus, five joint angular velocities are obtained for each arm
from a pair of Myo armbands.

Thus, we can obtain two different modalities information of
human arm. After that, these joint angles and the joint angular
velocities will be fused by the KF algorithm.

Data Preprocessing
The demonstration data from the Kinect sensor and Myo
armband will be preprocessed before they are fed into the
incremental learning method. Firstly, the data fusion method
based on the KF is used to fuse the joint angles and joint
angular velocities to obtain a more accurate and smooth dataset.
Since the demonstration data are not matched in the timeline,
then the dynamic time warping (DTW) algorithm is applied
to align them. Here, the two preprocessing methods will be
introduced briefly.

Data Fusion by Kalman Filter
KF, as one of the most powerful sensor fusion algorithms, can
smooth noisy input data and optimize the estimation of the
current state based on current measurements and the previously
estimated state. These current measurements are often multiple
sequential measurements from several sensors with noise. The
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existing works have proved that the estimate of the system’s
state from multiple sensors is better than the estimate obtained
from only one sensor (Gui et al., 2017). Therefore, the sensor
fusion based on the KF is used to improve the accuracy
of data.

This algorithm uses a series of state prediction and
measurement update steps to update the state of the target
object. The prediction and update steps are presented below.
For a continuous simplified linear system, the dynamic model is
described as follows (Davari et al., 2016):

ẋ(t) = Fx(t)+ Gu(t)+Mn(t)
z (t) = Hx (t) + v (t)

(4)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the deterministic
input vector, z(t) ∈ R

p is the measurement vector, n(t) ∈ R
q

is the white noise term for the state vector with zero-mean and
covariance S, and v (t) ∈ R

p is the noise term for measurement
vector with zero-mean and covariance R. F ∈ R

n×n and G ∈

R
n×n are both system matrices.M andH are parameter matrices

related to the noise and measurement, respectively. The KF
model of the linear system can be expressed by the following
equations (Simon, 2006):

˙̂x (t) = Fx̂(t)+ Gu (t) + K (t)
[

z (t) −Hx̂ (t)
]

K (t) = 6 (t)HTR−1

6̇ (t) = F6 (t) + 6 (t) FT +MSMT − 6 (t)HTR−1H6 (t)

(5)

where K (t) is the filter gain, ˙̂x(t) is the state estimation of x, and
6 (t) is the estimation of covariance.

For the above equations, we assume that x(0), n, and v are
uncorrelated to each other, and all the KF parameters are first
order. If each joint of human arm is considered separately, we
have F = 0, G = 1, M = 1, and H = 1. Thus, Equations (4, 5)

can be simplified as:

ẋi = ui + ni
zi = xi + vi

(6)

˙̂xi = ui + K (t)
[

zi − x̂i
]

K = 6R−1

6̇ = S− 6R−1
6

(7)

where ui is the ith joint angular velocity of the human arm, zi is
the ith joint position (or the joint angles), and ˙̂xi is the fused data
of the ith joint. Note that the parameters K, 6, R, and S are scalar
values.

Data Preprocessing With Dynamic Time Warping
Through the human demonstration module, the angles and
angular velocities of the human joints are collected from
multiple demonstrations. As aforementioned, the time for every
demonstration is not the same. We employ the DTW algorithm
to align them in the same timeline.

DTW is a method to measure the similarity of two time series
with different lengths. It has been widely used in processing
the temporal sequences of video, audio, and graphics data. If
two given temporal sequences g and k satisfy the boundary,
monotonicity, and step size conditions, the objective of DTW
can be transformed into the optimal match path problem
between the two sequences. We expressed this optimal match
path as:

DTW (y1, y2) = min(d(y1, y2)) (8)

where d(y1, y2) represent the distance between sequences y1 and
y2. Then, the Dynamic programming is used to solve Equation
(8). At the same time, an accumulated cost matrix E with the
dimension of m × n is generated. The expression of matrix E is

FIGURE 5 | The architecture of incremental learning network.
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written as follows:

E
(

l1, l2
)

=
(

y1, y2
)

+































0 if l1 = 1 and l2 = 1

E
(

l1, l2 − 1
)

else if l1 = 1 and l2 > 1

E
(

l1 − 1, l2
)

else if l1 > 1 and l2 = 1

min(E
(

l1, l2 − 1
)

,

E
(

l1 − 1, l2
)

,

E
(

l1 − 1, l2 − 1
)

) otherwise

(9)

where l1 and l2 are the length of the sequences y1 and
y2, respectively.

Incremental Learning Method
The incremental learning algorithm is essentially a single-layer
neural network that the structure can be dynamically expanded
in a wide sense. It is constructed based on the random vector
functional link neural network (FLNN). The architecture of the
incremental learning network is shown in Figure 5.

The input of this network is composed of two parts: the
mapped features and the enhancement nodes. As shown in
Figure 5, the original inputs are first transformed into a group
of mapped features to extract the random features by some
linear feature mappings. Then, the mapped features are extended
to enhancement nodes by non-linear mappings. Further, the
mapping features and the enhancement nodes in the input layer
are both connected with the output linearly. Thus, the weights
between the input layer and the output layer can be calculated by
the ridge regression of the pseudo-inverse method.

The detailed process of the incremental network is presented
as follows. For a given input dataset {X} and m feature mapping
function fi, i = 1, 2, · · · ,m, the ith mapped features can be
calculated as:

Pi = fi
(

XWpi + bpi
)

, i = 1, 2, · · · ,m (10)

where X ∈ R
m×n, m is the number of training samples; n is the

size of each training sample; both the bias unit bpi and the weights
Wpi , which connect the original input and the mapped features,
are randomly generated. It is noted that the functions fi and fl
are equal for i 6= l. We denote the first ith groups of mapped
features as Pi ≡ [P1 P2 · · · Pi] and express the non-linear
mappings connected the mapped features with enhancement
nodes as hj, j = 1, 2, · · · , n. Then, using the non-linear function
hj, the relationship between the mapped features Pi and Qj, the
enhancement nodes can be built. The jth group of enhancement
nodes is expressed as:

Qj = hj(P
mWpj + bpj ), j = 1, 2, · · · , n (11)

where Wpj and bpj are randomly generated, and Wpj are the
weights connecting the mapped features and the enhancement
nodes. Likewise, the first jth group of enhancement nodes
is denoted as Qj ≡ [Q1 Q2 · · · Qj]. The enhancement
nodes Pi together with the mapped features Qj form the
actual input of the incremental learning network A ≡

[P1, · · · , Pm,Q1, · · · , Qn] = [Pm Qn]. Hence, the output O of
this network is computed as:

O = AWn
m, (12)

where the weights Wn
m connect the output layer and the input

layer. Since the target output O is given, we can calculate the
weightsWn

m as follows:

Wn
m = A+O, (13)

Here, the rigid regression learning algorithm is used to solve the
pseudo-inverse A in Equation (13). According to this algorithm,
the pseudo-inverse A is obtained by the following equation:

A = lim
λ→0

(λI + AAT)
−1

AT , (14)

Algorithm 1 presents the whole training process of the
incremental learning network.

Algorithm 1 The procedure of the incremental learning network.

Input: Demonstration dataset X, mapped feature group m, and
enhancement nodes group n.
Output: The parameter matrixW.
for i = 1 tom do

Randomly initialize the weightsWpi and bias unit bpi ;
Calculate Pi according to Equation (10).

end

Set mapped features group Pm ≡ [P1 P2 · · · Pm];
for j = 1 to n do

Randomly initialize the weightsWpj and bias unit bpj ;
Calculate Qj according to Equation (11).

end

Set the enhancement nodes group Qn ≡ [Q1 Q2 · · · Qn];
Calculate weightsWn

m according to Equation (13).

As aforementioned, the ELM method and the incremental
learning method both are single-layer neural networks, and the
learning speed of two methods is also fast. For the incremental
learning network, if the learning cannot reach the desired result,
it can be addressed by inserting additional enhancement nodes in
a wide sense not deep way to achieve a better performance. The
increase of the enhancement nodes will result in the recalculation
of weights. It is worth noting that only a part of the weights needs
to be recalculated, not all weights. The new weights are calculated
by the following equations:

Wn+1
m =

[

Wn
m − DBTO

O

]

, (15)

where C = hn+1

(

PmWpn+1 + bpn+1

)

− AnD, D =

(An)+hn+1(P
mWpn+1 + bpn+1 ), and

BT =

{

(C)+ if C 6= 0
(

1+ DTD
)

BT
(An

)
+ if C = 0

, (16)

Note that 0 is zero matrix, and O is the output of the network.
For the ELM network, the solution to improve performance

is to increase the number of hidden layer neurons, which
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results in more connecting parameters. Thus, a great number of
parameters including all weights need to be updated. It means
that the ELMnetwork suffers from a complete relearning process.
In this respect, the incremental learning network is different.
Besides, the incremental learning network is allowed to increase
the number of input samples without relearning all samples.
Likewise, only the newly added samples need to be learned by the
incremental learning network. It also implies that the incremental
learning network can adapt to new data without forgetting its
existing knowledge, instead of relearning all samples. This is the
difference in the structural expansion between the two networks.

Furthermore, the mapped features of the incremental learning
network are randomly generated from the original input dataset
{X}. In other words, the mapped features are the results of feature
representation for the original input data. Feature representation
can capture the efficient characteristics of the data to achieve
outstanding performance in supervised learning tasks (Chen
et al., 2018). It explains why the incremental learning network
can learn the desired features. Also, it shows that the actual input
data of the two networks are different. This implies the difference
between the two networks from another aspect.

As stated above, the motivation to use the incremental
learning algorithm is its convenience in a specific scene and
feature learning ability.

EXPERIMENTS AND RESULTS

Experimental Setup
We test our method on the Baxter robot. The experimental
system is shown in Figure 6. The hardware devices consist of a
Baxter robot, a Kinect sensor, and two Myo armbands. Based on

the platform, two tasks (wiping and pushing) are performed to
verify the effectiveness of the proposed TbD system.

In the wiping task, the robot in V-REP follows human motion
to raise his left arm, move toward the left, and then put it down
along the path it passed. The difficulty of this task is that the
trajectories of up and down motions should be consistent. The
repetitive processes with the same task are performed more than
16 times.

The wiping task is performed under the following
three conditions:

• Condition 1: with Kinect sensor data and incremental learning
method. The demonstration data are only collected from
the Kinect sensor but without Myo armbands. Through
processing of DTW, the incremental learning network is used
to learn it. There is no data fusion in this condition.

• Condition 2: with two sensors data (Kinect and Myo armband)
and incremental learning method. The demonstration data are
collected from both Kinect and Myo armbands. In this case,
the sensor fusion process is added before data preprocessing
with DTW algorithm. Later, the preprocessed data are learned
by the incremental learning network.

• Condition 3: with two sensors data (Kinect and Myo) and
ELM algorithm. The demonstration data collection and
processing processes are the same as the second condition.
The difference is that the learning method of these data is
ELM algorithm (Huang et al., 2004) instead of the incremental
learning network.

In summary, the first condition is to show the performance of
incremental learning network with only joint angle information
but without joint angular velocities. The second condition is set

FIGURE 6 | The experimental system. (A) The diagram of the experimental system. (B) The experimental platform of the demonstration phase. During demonstration,

the joint angles and joint angular velocities of the human arm are collected simultaneously by Kinect and Myo armband. Then, the raw demonstration data will be

fused and aligned in the same timeline by the Kalman filter (KF) and dynamic time warping (DTW) algorithms in turn. After that, the incremental learning network is

applied to learn the processed data. During the robot learning phase, the learned data are directly sent to the robot model in Virtual Robot Experimentation Platform

(V-REP) and the real Baxter robot.
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FIGURE 7 | The demonstration data of joint angles and joint velocities regarding the joints S0, S1, and E1.

to validate the proposed incremental learning framework with
sensor fusion, while the third condition is to test the performance
of the ELM network with sensor fusion.

To find the optimal number of feature mapping group m and
enhancement nodes group n, we change m and n from 1 to 50
for the incremental learning network. The result shows that the
highest accuracy appears whenm and n are 6 and 8, respectively.
A similar test is conducted for the ELM algorithm. We can get
that when the number of hidden layer neurons is 11, the ELM
network has the best accuracy.

Experimental Results
Results of the Wiping Task
The results of the wiping tasks are shown in Figures 7–10. In
the demonstration phase, the raw multimodal data are recorded
by different sensors. Figure 7 presents four randomly selected
samples of human demonstrations. The results of preprocessing
are shown in Figures 8, 9. Figure 8 shows the curves of the fusion
datasets. Note that there are deviations between the raw joint
angles and the fused data. Figure 9 displays the aligned results
of the fused datasets. Compared with the demonstration data
without alignment in the timescale, the aligned data also retain

the primary characteristics through the aligning process by DTW
algorithm. The aligned results prepare for the next training and
learning of the neural network.

The difference between the first and second conditions
is that the demonstration samples are different for the
incremental learning network. Since deviations between the
raw original joint angles and the fusion joint angles exist,
the results of DTW aligning will be different. We can
observe it from the images of the second and third rows in
Figure 9. The dimension of the original raw demonstration
data is 105. After processing by DTW, the dimensions of
these datasets are 367 and 355 for the raw data and fusion
data, respectively.

The trajectories learned by the incremental learning network
and ELM network are shown in Figures 10A–C with red dotted
lines. For the Baxter robot, all changes of seven joint angles are
aimed to obtain a desired trajectory of the end effector because
the robot execution eventually depends on the end effector. We
recorded the trajectory of the end effector in Cartesian space
during robot execution, which is shown in Figure 10D. Seven
joint angles of the real Baxter’s left arm are also recorded and
shown in Figure 10E.
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FIGURE 8 | The raw data and the fused data of joint angles S0, S1, and E1. The green lines are the raw joint angles, and the red lines are the fused data by Kalman

filter (KF) algorithm which fuses the joint angles and joint angular velocities.

Based on the learned results by the incremental learning
network, the Baxter robot can implement the wiping task.
The robot implementation includes a simulation experiment
of the Baxter robot in V-REP and an experiment for real
Baxter robot. And the wiping task covers four directions
of continuous and smooth movement: up, down, right,
and left.

Results of the Pushing Task
To test the generalization ability of the proposed method, a
pushing task is performed. The pushing task requires the robot
to push two square workpieces over on the desk in sequence. In
other words, the robot should firstly push the workpiece on the
right to the desk. During pushing, the robot cannot touch the
workpiece on the left. Then, the robot pushes the right one to
the desk. The short distance between the two workpieces makes
it more difficult for the robot to complete this task. Because
the aims of the pushing task and the wiping task are different,
the pushing task is only conducted under the above conditions

2 and 3. The experimental steps are the same as the wiping
task. The experimental results are ultimately reflected in the
trajectory of the robot end effector, which determines whether
the robot can complete the demonstrated task. Hence, Figure 11
only presents the trajectories of the real Baxter robot in the
simulation scene and real environment, but not the results of
data preprocessing.

As shown in Figure 11, the distance between the two tasks
is very close. Any deviation in the trajectory of the robot end
effector could result in the robot failing to complete the task.
Nevertheless, we can find that the Baxter robot can complete the
pushing task well from the experimental results. For this task, the
results can directly reflect the performance of the two learning
methods. Since the result of the robot end effector’s trajectory
under condition 3 is a failure to complete the pushing task,
the corresponding result is not displayed in Figure 11. Also, the
results for the wiping tasks are undiscussed in the next section.
These results illustrate that the proposed method can not only
improve the performance of TbD but also be applied in learning
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FIGURE 9 | The fused data and the aligned data by the dynamic time warping (DTW) algorithm. The figures in the first line and second line show the result of the raw

demonstration data fused by the Kalman filter (KF) method and alignment by the DTW algorithm, respectively. The images in the third line display the aligned result of

the data collected by the Kinect sensor. The three columns are the corresponding results of joints S0, S1, and E1, respectively.

different tasks for the robot. It implies that the proposed method
has good generalization ability.

DISCUSSION

The purpose of this work is to investigate the practical effect of
the proposed method on robot TbD, as well as to explore the
impact on the result considering the fusion of multiple modality
information. It is noted that only the results of the wiping task are
discussed in this section. Because the pushing task requires more

accurate execution for the Baxter robot, the performance of the
learning method can be directly judged by the execution results

of the Baxter robot. The experimental results of the pushing task
clearly illustrate that using the incremental learning method can

enable the robot to complete the pushing task well, while the ELM
algorithm cannot.

Firstly, we examine the effectiveness ofmultimodal data fusion
by comparing the results in Figures 10A,B under the first and

second conditions. It is clear that the bias between the reference
trajectories and the real trajectories of the first condition is much
larger than the second one, especially in the start phase of the
interval (0, 100). And the curves of the real trajectories are
inconsistent for the first and second conditions in Figures 10A,B.
For joints S0 and S1, the trend of reference trajectories is almost
the same under conditions 2 and 3. Concerning the joint E1, the
differences between the curves are especially evident under the
same conditions. In Figure 10A, the maximum difference value
between the reference and the real value is already close to 2.
But this value is not more than 0.6 under the second condition,
which can be observed from Figure 10B. The trajectories of the
real Baxter robot regarding the joints S0, S1, and E1 illustrate that
the multimodal data fusion can promote a result that is much
closer to the reference values.

Next, we discuss the superiority of the proposed method in
comparison with another robot learning method. Figures 10B,C
show the corresponding results by using the proposed method
and the ELM method. The red dotted lines are the learning
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FIGURE 10 | The execution results of the real Baxter robot. (A–C) The joint angles of the real Baxter robot under conditions 1, 2, and 3, respectively. (D) The

trajectories of Baxter end effector under the three conditions. (E) Seven joint angles of the real Baxter robot under the three conditions. In panels (A–C), the red dotted

line is the output of the network under the three conditions, and the green solid line is the real Baxter robot’s joint angles. The green solid dots are the start point of the

Baxter end effector, and the red solid dots are the end point in panel (D). The red, green, and purple solid lines, respectively, display the joint angles of S0, S1, and E1

in panel (E), and the other colored solid lines display the rest of the four joint angles.

FIGURE 11 | The execution results of the pushing task. The green lines in the four figures are the trajectories of the real Baxter robot. The trajectories of the real

Baxter robot are sent to the Baxter model in the Virtual Robot Experimentation Platform (V-REP), which is plotted out with green lines.
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FIGURE 12 | The errors of the root mean square error (RMSE) and mean absolute error (MAE) between the learned joint angles and the real Baxter robot joint values

under the three experimental conditions. (A) RMSE. (B) MAE. The area of each color square indicates the magnitude of two errors.

result of the two networks. Obviously, the trends of red reference
trajectories in Figures 10B,C are consistent. It indicates that
both of the methods can learn the features of the joint angles
to complete the wiping task. However, the biases between the
reference trajectories and the real trajectories of the two methods
are different. To analyze the result quantitatively, we calculate
the mean absolute error (MAE) and root mean square error
(RMSE), which are shown in the second and third columns of
Figures 12A,B. The RMSE is calculated as follows:

RMSE =

√

√

√

√

1

N

N
∑

t=1

(yt − ŷt)
2, (17)

whereN is the size of the demonstration sequences, ŷt is the value
fused by the KF algorithm, and yt is the value measured by the
Kinect sensor.

The calculation of MAE is as follows:

MAE =
1

N

N
∑

t=1

|yt − ŷt|, (18)

Noteworthy, RMSE and MAE are the errors between the
reference data (namely, the output of the incremental learning
network or the learned trajectories) and that of the real Baxter
robot data. The areas of the squares using the proposed method
are less than that of squares using the ELM method. The RMSE
andMAE results imply that the errors of the incremental learning
method are smaller. This shows that the experiment performance
of the proposed method is better than the ELM method. We can

also find that the maximum error under the three conditions is
from the result without data fusion. It also implies that through
data fusion, both errors are diminished notably.

As aforementioned, the difficulty of the wiping task is how
to ensure that the trajectories of upward and down motion are
consistent. We find that the result under condition 1 is worst, and
the trajectory is disordered in Figure 10D. On the contrary, the
trajectories under the second and third conditions are smooth
and orderly. Furthermore, the result of the second condition is
better than that of the third one. It also proves that data fusion can
improve the experiment performance in another way. Besides,
we compute the distance between the start point and the end
point for three conditions, which are 0.8825, 0.0135, and 0.0778,
respectively. For the results, the shorter the distance, the better
the performance. It is obvious that the distance for the second
condition is the shortest. That is to say, both the trajectories
of the end effector and the distance illustrate that the proposed
method is better. These results suggest that the proposed method
is superior to the ELM method, not only the joint angles but also
the trajectories of the end effector.

Lastly, we compare all recorded joint angles of the robot’s
left arm under the three conditions. The desired result is
that the other four joint angles are approximate to zero
except for S0, S1, and E1, which is shown in Figure 10E.
The four joint angles in the interval (0, 100) under the
first condition are much bigger than zero, and then they
gradually trend to zero. However, the four joint angles are much
closer to zero under the second and third conditions from
beginning to end. It also shows that sensor fusion can decrease
demonstration errors.
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To sum up, the demonstration data with multimodal
information can significantly improve the experiment
performance, and the proposed method can achieve a better
execution result with smaller errors. This is probably because
data fusion is beneficial to obtain a demonstration dataset close
to the real value. At the same time, the KF algorithm smooths
the raw data to some extent. All of these help the real robot move
smoothly and efficiently. On the other hand, the incremental
learning network can learn more effective features to enhance
TbD performance.

CONCLUSIONS AND FUTURE WORK

In this paper, we propose an incremental learning framework to
learn demonstration features by integrating different modality
data. Using the proposed method and the KF algorithm, the TbD
performance is remarkably improved. To verify the proposed
method, comparative experiments involving the incremental
learning network and ELM algorithm were conducted based
on a Baxter robot in a real physical environment. Through the
experiments, the robot achieved a better result with smaller
errors using the proposed network on the basis of two modality
information fusions. The effectiveness of the proposed method
was verified by analyzing the learned data and the real robot
data in comparison with ELM methods. As a result, the
proposed method can learn more critical features to get the
desired result. Since the TbD system is based on two modality
information fusions, we also verify the effect of multimodal
integration on the real robot. Compared with the results of
single-modality data, the multimodal data with sensor fusion
can achieve a better performance. It implies that the fusion

of modality information is beneficial to improve the accuracy
of data. To test the generalization of the proposed method, a
pushing task is performed. The successful experiment results
show that the proposed method has the generalization ability
in TbD. In the future, integrating modality information from
different types of sensors, e.g., force, will be addressed to perform
complex tasks online. We will further explore the complete
time of a specific task for the real robot by employing other
methods. Also, how to reduce the effect of demonstrations
from different people on the experimental results is taken
into account.
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In this article, we present a new scheme that approximates unknown sensorimotor

models of robots by using feedback signals only. The formulation of the uncalibrated

sensor-based regulation problem is first formulated, then, we develop a computational

method that distributes the model estimation problem amongst multiple adaptive

units that specialize in a local sensorimotor map. Different from traditional estimation

algorithms, the proposed method requires little data to train and constrain it (the

number of required data points can be analytically determined) and has rigorous stability

properties (the conditions to satisfy Lyapunov stability are derived). Numerical simulations

and experimental results are presented to validate the proposed method.

Keywords: robotics, sensorimotor models, adaptive systems, sensor-based control, servomechanisms, visual

servoing

1. INTRODUCTION

Robots are widely used in industry to perform a myriad of sensor-based applications ranging from
visually servoed pick-and-place tasks to force-regulated workpiece assemblies (Nof, 1999). Their
accurate operation is largely due to the fact that industrial robots rely on fixed settings that enable
the exact characterization of the tasks’ sensorimotor model. Although this full characterization
requirement is fairly acceptable in industrial environments, it is too stringent for many service
applications where the mechanical, perceptual and environment conditions are not exactly known
or might suddenly change (Navarro-Alarcon et al., 2019), e.g., in domestic robotics (where
environments are highly dynamic), field robotics (where variable morphologies are needed to
navigate complex workspaces), autonomous systems (where robots must adapt and operate after
malfunctions), to name a few cases.

In contrast to industrial robots, the human brain has a high degree of adaptability that allows
it to continuously learn sensorimotor relations. The brain can seemingly coordinate the body
(whose morphology persistently changes throughout life) under multiple circumstances: severe
injuries, amputations, manipulating tools, using prosthetics, etc. It can also recalibrate corrupted
or modified perceptual systems: a classical example is the manipulation experiment performed
in Kohler (1962) with image inverting goggles that altered a subject’s visual system. In infants,
motor babbling is used for obtaining (partly from scratch and partly innate) a coarse sensorimotor
model that is gradually refined with repetitions (Von Hofsten, 1982). Providing robots with similar
incremental and life-long adaptation capabilities is precisely our goal in this paper.

From an automatic control point of view, a sensorimotormodel is needed for coordinating input
motions of a mechanism with output sensor signals (Huang and Lin, 1994), e.g., controlling the
shape of a manipulated soft object based on vision (Navarro-Alarcon et al., 2016) or controlling
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the balance of a walking machine based on a gyroscope (Yu
et al., 2018). In the visual servoing literature, the model
is typically represented by the so-called interaction matrix
(Hutchinson et al., 1996; Cherubini et al., 2015), which is
computed based on kinematic relations between the robot’s
configuration and the camera’s image projections. In the general
case, sensorimotor models depend on the physics involved in
constructing the output sensory signal; If this information is
uncertain (e.g., due to bending of robot links, repositioning
of external sensors, deformation of objects), the robot may no
longer properly coordinate actions with perception. Therefore,
it is important to develop methods that can efficiently provide
robots with the capability to adapt to unforeseen changes of the
sensorimotor conditions.

Classical methods in robotics to compute this model (see
Sigaud et al., 2011 for a review) can be roughly classified into
structure-based and structure-free approaches (Navarro-Alarcon
et al., 2019). The former category represents “calibration-
like” techniques [e.g., off-line (Wei et al., 1986) or adaptive
(Wang et al., 2008; Liu et al., 2013; Navarro-Alarcon et al.,
2015)] that aim to identify the unknown model parameters.
These approaches are easy to implement, however, they
require exact knowledge of the analytical structure of the
sensory signal (which might not be available or subject to
large uncertainties). Also, since the resulting model is fixed
to the mechanical/perceptual/environmental setup that was
used for computing it, these methods are not robust to
unforeseen changes.

For the latter (structure-free) category, we can further
distinguish between two main types (Navarro-Alarcon et al.,
2019): instantaneous and distributed estimation. The first type
performs online numerical approximations of the unknown
model (whose structure does not need to be known); Some
common implementations include e.g., Broyden-like methods
(Hosoda and Asada, 1994; Jagersand et al., 1997; Alambeigi
et al., 2018) and iterative gradient descent rules (Navarro-Alarcon
et al., 2015; Yip et al., 2017). These methods are robust to
sudden configuration changes, yet, as the sensorimotor mappings
are continuously updated, they do not preserve knowledge of
previous estimations (i.e., it’s model is only valid for the current
local configuration). The second type distributes the estimation
problem amongst multiple computing units; The most common
implementation is based on (highly nonlinear) connectionists
architectures (Li and Cheah, 2014; Lyu and Cheah, 2018; Hu
et al., 2019). These approaches require very large amounts
of training data to properly constrain the learning algorithm,
which is impractical in many situations. Other distributed
implementations (based on SOM-like sensorimotor “patches,”
Kohonen, 2013) are reported e.g., in Zahra and Navarro-Alarcon
(2019), Pierris and Dahl (2017), and Escobar-Juarez et al.
(2016), yet, the stability properties of its algorithms are not
rigorously analyzed.

As a solution to these issues, in this paper we propose
a new approach that approximates unknown sensorimotor
models based on local data observations only. In contrast to
previous state-of-the-art methods, our adaptive algorithm has the
following original features:

• It requires few data observations to train and constrain the
algorithm (which allows to implement it in real-time).
• The number of minimum data points to train it can

be analytically obtained (which makes data collection
more effective).
• The stability of its update rule can be rigorously proved (which

enables to deterministically predict its performance).

The proposed method is general enough to be used with different
types of sensor signals and robot mechanisms.

The rest of the manuscript is organized as follows: section 2
presents preliminaries, section 3 describes the proposed method,
section 4 reports the conducted numerical study, and section 5
gives final conclusions.

2. PRELIMINARIES

2.1. Notation
Along this note we use very standard notation. Column vectors
are denoted with bold small letters m and matrices with bold
capital letters M. Time evolving variables are represented as
mt , where the subscript ∗t denotes the discrete time instant.
Gradients of functions b = β(m) :M 7→ B are denoted as
∇β(m) = (∂β/∂m)⊺.

2.2. Configuration Dependant Feedback
Consider a fully-actuated robotic system whose instantaneous
configuration vector (modeling e.g., end-effector positions in a
manipulator, orientation in a robot head, etc.) is denoted by
the vector xt ∈ R

n. Such model can only be used to represent
traditional rigid systems, thus, it excludes soft/continuum
mechanisms (Falkenhahn et al., 2015) or robots driven by elastic
actuators (Wang et al., 2016). Without loss of generality, we
assume that its coordinates are all represented using the same
unitless range1. To perform a task, the robot is equipped with
a sensing system that continuously measure a physical quantity
whose instantaneous values depend on xt . Some examples of
these types of configuration-dependent feedback signals are:
geometric features in an image (Tirindelli et al., 2020), forces
applied onto a compliant surface (Navarro-Alarcon et al., 2014;
Bouyarmane et al., 2019), proximity to an object (Cherubini
and Chaumette, 2013), intensity of an audio source (Magassouba
et al., 2016), attitude of a balancing body (Defoort andMurakami,
2009), shape of a manipulated object (Navarro-Alarcon and Liu,
2018), temperature from a heat source (Saponaro et al., 2015), etc.

Let yt ∈ R
m denote the vector of feedback features that

quantify the task; Its coordinates might be constructed with raw
measurements or be the result of some processing. We model the
instantaneous relation between this sensor signal and the robot’s
configuration as (Chaumette and Hutchinson, 2006):

yt = f (xt) :R
n 7→ R

m (1)

Remark 1. Along this paper, we assume that the feedback feature
functional f (xt) is smooth (at least twice differentiable) and its

1This can be easily obtained with constant kinematic transformations.
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Jacobian matrix has a full row/column rank (which guarantees the
existence of its (pseudo-)inverse).

2.3. Uncalibrated Sensorimotor Control
In our formulation of the problem, it is assumed that the robotic
system is controlled via a standard position/velocity interface
(as in e.g., Whitney, 1969; Siciliano, 1990), a situation that
closely models the majority of commercial robots. With position
interfaces, the motor action ut ∈ R

n represents the following
displacement difference:

xt+1 − xt = ut (2)

Such kinematic control interface renders the typical stiff behavior
present in industrial robots (for this model, external forces do
not affect the robot’s trajectories). The methods in this paper
are formulated using position commands, however, these can be
easily transformed into robot velocities vt ∈ R

n by dividing ut by
the servo controller’s time step dt as follows ut/ dt = vt .

The expression that describes how the motor actions result
in changes of feedback features is represented by the first-order
difference model2:

yt+1 = yt + A(xt)ut = yt + δt (3)

where the configuration-dependent matrix A(xt) = ∂f /∂xt ∈
R
m×n represents the traditional sensor Jacobian matrix of

the system (also known as the interaction matrix in the
visual servoing literature; Hutchinson et al., 1996). To simplify
notation, throughout this paper we shall omit its dependency on
xt and denote it as At = A(xt). The flow vector δt = Atut ∈ R

m

represents the sensor changes that result from the action ut .
Figure 1 conceptually depicts these quantities.

The sensorimotor control problem consists in computing
the necessary motor actions for the robot to achieve a desired
sensor configuration.Without loss of generality, in this note, such
configuration is characterized as the regulation of the feature
vector yt toward a constant target y

∗. The necessary motor action
to reach the target can be computed by minimizing the following
quadratic cost function:

J =
∥

∥λ sat(yt − y∗)+ Atut
∥

∥

2
(4)

where λ > 0 is a gain and sat(·) a standard saturation function
(defined as in e.g., Chang et al., 2018). The rationale behind the
minimization of the cost (4) is to find an incremental motor
command ut that forward-projects into the sensory space (via the
interaction matrix At) as a vector pointing toward the target y∗.
By iteratively commanding these motions, the distance ‖yt − y∗‖

is expected to be asymptotically minimized.
To obtain ut , let us first compute the extremum ∇J(ut) = 0,

which yields the normal equation

A
⊺

t Atut = −λA
⊺

t sat(yt − y∗) (5)

2This difference equation represents the discrete-time model of the robot’s

differential sensor kinematics.

FIGURE 1 | Representation of a configuration trajectory xt, its associated

transformation matrices At and motor actions ut, that produce the

measurements yt and sensory changes δt.

Solving (5) for ut , gives rise to the motor command that
minimizes J:

ut = −λA#
t sat(yt − y∗) (6)

where A#
t ∈ R

n×m is a generalized pseudo-inverse matrix
satisfying AtA

#
tAt = At (Nakamura, 1991), whose existence

is guaranteed as At has a full column/row rank (depending on
whichever is larger n or m). Yet, note that for the case where
m > n, the cost function J can only be locally minimized.

Note that the computation of (6) requires exact knowledge of
At . To analytically calculate this matrix, we need to fully calibrate
the system, which is too restrictive for applications where the
sensorimotor model is unavailable or might suddenly change.
This situation may happen if the mechanical structure of the
robot is altered (e.g., due to bendings or damage of links), or the
configuration of the perceptual system is changed (e.g., due to
relocating external sensors), or the geometry of a manipulated
object changes (e.g., due to grasping forces deforming a soft
body), to name a few cases. Without this information, the robot
may not properly coordinate actions with perception. In the
following section, we describe our proposed solution.

3. METHODS

3.1. Discrete Configuration Space
Since the (generally non-linear) feature functional (1) is smooth,
the Jacobian matrix At = ∂f /∂xt is also expected to smoothly
change along the robot’s configuration space. This situation
means that a local estimation ̂A of the true matrix At around
a configuration point xi is also valid around the surrounding
neighborhood (Sang and Tao, 2012). We exploit this simple
yet powerful idea to develop a computational method that
distributes the model estimation problem amongst various units
that specialize in a local sensorimotor map.

It has been proved in the sensor-based control community
(Cheah et al., 2003) that rough estimations of At (combined
with the rectifying action of feedback) are sufficient for guiding
the robot with sensory signals. However, note that large
deviations from such configuration point xi may result in
model inaccuracies. Therefore, the local neighborhoods cannot
be too large.
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Consider a systemwithN computing units distributed around
the robot’s configuration space (see Figure 2). The location of
these units can be defined with many approaches, e.g., with self-
organization (Kohonen, 2001), random distributions, uniform
distributions, etc. (Haykin, 2009). To each unit, we associate the
following 3-tuple:

zl =
{

wl
̂Al
t Dl

}

, for l = 1, . . . ,N (7)

The weight vector wl ∈ R
n represents a configuration xt of the

robot where wl = xt . The matrix ̂Al
t ∈ R

n×m stands for a local
approximation of At(w

l) evaluated at the point wl. The purpose
of the structureDl is to store sensor andmotor observations dt =
{xt , ut , δt}, that are collected around the vicinity of wl through
babbling-like motions (Saegusa et al., 2009). The structure Dl is
constructed as follows:

D
l =

{

d1 d2 · · · dτ

}

⊺
(8)

for τ > 0 as the total number of observations, which once
collected, they remain constant during the learning stage. Note
that xi and xi+1 are typically not consecutive time instances. The
total number τ of observations is assumed to satisfy τ > mn.

3.2. Initial Learning Stage
We propose an adaptive method to iteratively compute the
local transformation matrix from data observations. To this end,
consider the following quadratic cost function for the lth unit:

Ql =
1

2

τ
∑

k=1

hlk
∥

∥

∥

̂Al
tuk − δk

∥

∥

∥

2

=
1

2

τ
∑

k=1

hlk
∥

∥

∥
F(uk)̂a

l
t − δk

∥

∥

∥

2
(9)

for F(uk) ∈ R
m×mn as a regression-like matrix defined as

F(uk) =











u
⊺

k
0
⊺

n · · · 0
⊺

n

0
⊺

n u
⊺

k
· · · 0

⊺

n

...
...

. . .
...

0
⊺

n 0
⊺

n · · · u
⊺

k











(10)

FIGURE 2 | Representation of the lth computing unit and the neighboring data

used to approximate the local sensorimotor model. The black and red dashed

depict the Gaussian and its square approximation.

and a vector of adaptive parameters âlt ∈ R
nm constructed as:

âlt =
[

âl11t âl12t · · · â
lmn
t

]⊺

(11)

where the scalar â
lij
t denotes the ith row jth column element of

the matrix̂Al
t .

The scalar hlk represents a Gaussian neighborhood function
centered at the lth unit and computed as:

hlk = exp

(

−
‖wl − xk‖

2

2σ 2

)

(12)

where σ > 0 (representing the standard deviation) is used
to control the width of the neighborhood. By using hlk,
the observations’ contribution to the cost (9) proportionally
decreases with the distance to wl. The dimension of the
neighborhood is defined such that h ≈ 0 is never satisfied for any
of its observations xk. In practice, it is common to approximate
the Gaussian shape with a simple “square” region, which presents
the highest approximation error around its corners (see e.g.,
Figure 2 where the sampling point dτ+1 is within its boundary).

To compute an accurate sensorimotor model, the data points
in (8) should be as distinctive as possible (i.e., the motor
observations ut should not be collinear). This requirement can
be fairly achieved by covering the uncertain configuration with
curved/random motions.

The following gradient descent rule is used for approximating
the transformation matrix At at the lth unit:

âlt+1 = âlt − γ∇Ql (̂alt) (13)

= âlt − γ

τ
∑

k=1

hlkF(uk)
⊺

(

̂Al
tuk − δk

)

for γ > 0 as a positive learning gain. For ease of implementation,
the update rule (13) can be equivalently expressed in scalar
form as:

â
lij
t+1 = â

lij
t − γ

τ
∑

k=1

hlku
j

k

{(

n
∑

r=1

âlirt urk

)

− δ
i
k

}

(14)

where u
j

k
and δ

i
k
denote the jth and ith components of the vectors

uk and δk, respectively.

Remark 2. There are other estimation methods in the literature
that also make use of Gaussian functions, e.g., radial basis
functions (RBF) (Li and Cheah, 2014) to name an instance.
However, RBF (in its standard formulation) use configuration-
dependent Gaussians to modulate a set of weights (which provide
non-linear approximation capabilities), whereas in our case, the
Gaussians are used but within the weights’ adaptation law to
proportionally scale the contribution of the collected sensory-
motor data (our method provides a linear approximation within
the neighborhood). Our Gaussian weighted approach most closely
resembles the one used in self organizing maps (SOM) (Kohonen,
2013) to combine surrounding data observations.
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3.3. Lyapunov Stability
In this section, we analyse the stability properties of the proposed
update rule by using discrete-time Lyapunov theory (Bof et al.,
2018). To this end, let us first assume that the transformation
matrix satisfies:

A(wl) = ∂f /∂x(wl) ≈ A(xj) (15)

for any configuration xj around the neighborhood defined by Dl

(this situation implies that A(·) is constant around the vicinity
of wl). Therefore, we can locally express around wl the sensor
changes as:

δk = F(uk)a
l (16)

where al = [al11, al12, . . . , almn]⊺ ∈ R
mn denotes the vector of

constant parameters, for alij as the ith row jth column of the
unknown matrix A(wl). To simplify notation, we shall denote
Fk = F(uk).

Proposition 1. For a number mn of linearly independent vectors
uk, the adaptive update rule (13) asymptotically minimizes the
magnitude of the parameter estimation error ‖̂alt − al‖.

Proof: Consider the following quadratic (energy-like) function:

V l
t =

∥

∥

∥
âlt − al

∥

∥

∥

2
(17)

Computing the forward difference of V l
t yields:

V l
t+1 − V l

t =

∥

∥

∥
âlt+1 − al

∥

∥

∥

2
−

∥

∥

∥
âlt − al

∥

∥

∥

2

=

∥

∥

∥

∥

∥

[

I− γ

τ
∑

k=1

hlkF
⊺

k
Fk

]

(

âlt − al
)

∥

∥

∥

∥

∥

2

−

∥

∥

∥
âlt − al

∥

∥

∥

2
= −

(

âlt − al
)

⊺

�

(

âlt − al
)

for a symmetric matrix � ∈ R
mn×mn defined as follows:

� = I−

[

I− γ

τ
∑

k=1

hlkF
⊺

k
Fk

]2

= 2γ

τ
∑

k=1

hlkF
⊺

k
Fk − γ

2

[

τ
∑

k=1

hlkF
⊺

k
Fk

]2

= γ8
⊺
(

2H− γH88
⊺H
)

︸ ︷︷ ︸

C

8 (18)

with H = diag(hl1Iτ , . . . , h
lτ Iτ ) ∈ R

mτ×mτ as a positive-definite
diagonal matrix, Iτ ∈ R

τ×τ as an identity matrix and 8 ∈

R
mτ×mn constructed with τ matrices Fk as follows:

8 =
[

F
⊺

1 F
⊺

2 · · · F
⊺

τ

]

⊺
(19)

To prove the asymptotic stability of (13), we must first prove
the positive-definiteness of the dissipation-like matrix� (van der

Algorithm 1: Compute a suitable γ .

1: γ ← initial value < 1, µ← small step
2: repeat

3: γ ← γ − µ

4: until C > 0

Schaft, 2000). To this end, note that since the “tall” observations’
matrix 8 is exactly known andH is diagonal and positive (hence
full-rank), we can always find a gain γ > 0 to guarantee that the
symmetric matrix

C = 2H− γH88
⊺H > 0, (20)

is also positive-definite, and therefore, full-rank. Next, let us re-
arrangemn linearly independent row vectors from 8 as follows:
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⊺
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(21)

which shows that 8 has a full column rank, hence, the matrix
� = γ8

⊺C8 > 0 is positive-definite. This condition implies
that V l

t+1 − V l
t < 0 for any ‖̂alt − al‖ 6= 0. Asymptotic stability

of the parameter’s estimation error directly follows by invoking
Lyapunov’s direct method (Bof et al., 2018).

Remark 3. There are two conditions that need to be satisfied to
ensure the algorithm’s stability. The first condition is related to the
magnitude of the learning gain γ . Large gain values may lead to
numerical instabilities, which is a common situation in discrete-
time adaptive systems. To find a “small enough” gain γ > 0, we can
conduct the simple 1D search shown in Algorithm 1. An eigenvalue
test on C can be used to verify (20). The second condition is related
to the linear independence (i.e., the non-collinearity) of the motor
actions ut . Such independent vectors are needed for providing a
sufficient number of constraints to the estimation algorithm (this
condition can be easily satisfied by performing random babbling-
like motions).

3.4. Localized Adaptation
Once the cost function (9) has been minimized, the computed
transformation matrix ̂At locally approximates the robot’s
sensorimotor model around the lth unit. Note that the stability of
the total N units is analogous the analysis shown in the previous
section; A global analysis is out of the scope of this work.

The associated local training data (8) must then be released
from memory to allow for new relations to be learnt—if needed.
However, for the case where changes in the sensorimotor
conditions occur, the model may contain inaccuracies in some or
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all computing units, and thus, its transformation matrices cannot
be used for controlling the robot’s motion. To cope with this issue,
we need to first quantitatively assess such errors. For that, the
following weighted distortionmetric is introduced:

Ut = e
⊺

t Bet (22)

where B > 0 denotes a positive-definite diagonal weight matrix
to homogenize different scales in the approximation error et =
̂Asut − δt ∈ R

m. The scalar index s is found by solving the
search problem:

s = argmin
j
‖wj − xt‖ (23)

To enable adaptation of problematic units, we evaluate the
magnitude of the metric Ut , and if found to be larger than an
arbitrary threshold Ut > |ε|, new motion and sensor data must
be collected around the sth computing unit to construct the
revised structure Ds by using a push approach:

d1 ←
{

xt ut δt

}

(24)

that updates the topmost observation and discards the oldest
(bottom) data, so as to keep a constant number τ of data
points. The transformation matrices are then computed with the
new data.

3.5. Motion Controller
The update rule (13) computes an adaptive transformation
matrix ̂Al

t for each of the N units in the system. To provide a
smooth transition between different units, let us introduce the
matrix Lt ∈ R

m×n which is updated as follows3:

Lt+1 = Lt − η
(

Lt −̂A
s
t

)

(25)

where η > 0 is a tuning gain. The above matrix represents a
filtered version of ̂As

t , where s denotes the index of the active
unit, as defined in (23). With this approach, the transformation
matrix smoothly changes between adjacent neighborhoods,
while providing stable values in the vicinity of the active
unit; It can be seen as a continuous interpolation between
adjacent neighborhoods.

The motor command with adaptive model is implemented
as follows:

ut = −λL#t sat(yt − y∗) (26)

The stability of this kinematic control method can be analyzed
with its resulting closed-loop first-order system (a practice also
commonly adopted with visual servoing controllers; Chaumette
and Hutchinson, 2006). To this end, we use a small displacement
approach (motivated by the local target provided by the
saturation function), where we introduce the increment vector
i = − sat(yt − y∗) and define the local reference position
y = yt + i ∈ R

m. Let us consider the case when the N units
have minimized the cost functions (9). Note that the asymptotic

3For simplicity, we initialize L0 = 0n×n with a zero matrix.

minimization of ‖̂alt − al‖ implies that ̂As
t inherits the rank

properties of At , hence, the existence of the pseudo-inverse in
(26) is guaranteed; A regularization term (see e.g., Tikhonov et al.,
2013) can further be used to robustify the computation of L#t .

Proposition 2. For n ≥ m (i.e., more/equal motor actions than
feedback features), the “stiff” kinematic control input (26) provides
the local feedback error yt − y with asymptotic stability.

Proof: Substitution of the controller (26) into the difference
model (3) yields the closed-loop system:

yt+1 = yt − λ sat(yt − y∗) = yt + λi± λyt

= yt − λyt + λy = yt − λ(yt − y) (27)

Adding±y to (27) and after some algebraic operation, we obtain:

(

yt+1 − y
)

= (1− λ)
(

yt − y
)

(28)

which for a gain satisfying 0 < λ < 1, it implies local asymptotic
stability of the small displacement error (yt − y) (Kuo, 1992).

Remark 4. Note that the above stability analysis assumes that
robot’s trajectories are not perturbed by external forces and that the
estimated interaction matrix locally satisfies AtL

#
tAt ≈ At around

the active neighborhood.

4. CASE OF STUDY

In this section, we validate the performance of the proposed
method with numerical simulations and experiments. A vision-
based manipulation task with a deformable cable is used as
our case of study (Bretl and McCarthy, 2014): It consists in
the robot actively deforming the object into a desired shape
by using visual feedback of the cable’s contour (see e.g., Zhu
et al., 2018). Soft object manipulation tasks are challenging—
and relevant to the fundamental problem addressed here—since
the sensorimotor models of deformable objects are typically
unknown or subject to large uncertainties (Sanchez et al., 2018).
Therefore, the transformation matrix relating the shape feature
functional and the robot motions is difficult to compute. The
proposed algorithm will be used to adaptively approximate the
unknown model. Figure 3 conceptually depicts the setup of this
sensorimotor control problem.

4.1. Simulation Setup
For this study, we consider a planar robot arm that rigidly
grasps one end of an elastic cable, whose other end is static;
We assume that the total motion of this composed cable-
robot system remains on the plane. A monocular vision sensor
observes the manipulated cable and measures its 2D contour
in real-time. The dynamic behavior of the elastic cable is
simulated as in Wakamatsu and Hirai (2004) by using the
minimum energy principle (Hamill, 2014), whose solution is
computed using the CasADi framework (Andersson et al., 2019).
The cable is assumed to have negligible plastic behavior. All
numerical simulation algorithms are implemented in MATLAB.

Frontiers in Neurorobotics | www.frontiersin.org 6 September 2020 | Volume 14 | Article 59147

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Navarro-Alarcon et al. Adaptive Sensorimotor Models for Sensor-Based Control

FIGURE 3 | Representation of the cable manipulation case of study, where a

vision sensor continuously measures the cable’s feedback shape yt, which

must be actively deformed toward y∗.

FIGURE 4 | Various configurations of the visually measured cable profile (black

solid line) and its approximation with Fourier series (red dashed line).

The cable simulation code is publicly available at https://github.
com/Jihong-Zhu/cableModelling2D.

Let the long vector st ∈ R
2α represents the 2D profile of

the cable, which is simulated using a resolution of α = 100
data points. To perform the task, we must compute a vector of
feedback features yt that characterizes the object’s configuration.
For that, we use the approach described in Digumarti et al. (2019)
and Navarro-Alarcon and Liu (2018) that approximates st with
truncated Fourier series (in our case, we used four harmonics),
and then constructs yt with the respective Fourier coefficients
(Collewet and Chaumette, 2000). The use of these coefficients as
feedback signals enable us to obtain a compact representation of
the object’s configuration, however, it complicates the analytical
derivation of the matrix At .

4.2. Approximation of the Matrix At
To construct the data structure (8), we collect τ = 40 data
observations dt at random locations around the manipulation
workspace. Next, we define local neighborhoods centered at the
configuration points w1 = [0.3, 0.5], w2 = [0.5, 0.5], w3 =

[0.5, 0.3], and w4 = [0.5, 0.5]. These neighborhoods are defined
with a standard deviation of σ = 1.3. With the collected
observations, l = 1, . . . , 4 matrices ̂Al

t are computed using the
update rule (14).

Figure 4 depicts the measured shape (black solid line) of the
cable at the four pointswl and the shape that is approximated (red

FIGURE 5 | Profile of the function G that is computed along the circular

trajectory passing through the points in Figure 4; The “switch” label indicates

the instant when ̂Al
t switches to different one.

dashed line) with the feedback feature vector yt (i.e the Fourier
coefficients). It shows that four harmonics provide sufficient
accuracy for representing the object’s configuration. To evaluate
the accuracy of the computed discrete configuration space and its
associated matrices ̂Al

t , we conduct the following test: The robot
is commanded to move the cable along a circular trajectory that
passes through the four points wl. The following energy function
is computed throughout this trajectory:

G =
∥

∥

∥
δt −̂A

l
tut

∥

∥

∥

2
(29)

which quantifies the accuracy of the local differential mapping
(3). The index l switches (based on the solution of 23) as the robot
enters a different neighborhood.

Figure 5 depicts the profile of the function G along the
trajectory. We can see that this error function increases as the
robot approaches the neighborhood’s boundary. The “switch”
label indicates the time instant when Al

t switches to different
(more accurate) matrix, an action that decreases the magnitude
of G. This result confirms that the proposed adaptive algorithm
provides local directional information on how the motor actions
transform into sensor changes.

4.3. Sensor-Guided Motion
In this section, we make use of the approximated sensorimotor
model to guide the motion of a robotic system based on feedback
features. To this end, various cable shapes are defined as target
configurations y∗ (to provide physically feasible targets, these
shapes are collected from previous sensor observations). The
target configurations are then given to the motion controller (26)
to automatically perform the task. The controller implemented
with saturation bounds of | sat(·)| ≤ 2 and a feedback gain
λ = 0.1.

Figure 6 depicts the progression of the cable shapes obtained
during these numerical simulations. The initial y0 and the
intermediate configurations are represented with solid black
curves, whereas the final shape y∗ is represented with red dashed
curves. To assess the accuracy of the controller, the following cost
function is computed throughout the shaping motions:

E =
∥

∥yt − y∗
∥

∥

2
(30)
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For these four shaping actions, Figure 7 depicts the time
evolution of the function E. This figure clearly shows that the
feedback error is asymptotically minimized.

Now, consider the setup depicted in Figure 8, which has
two 3-DOF robots jointly manipulating the deformable cable.
For this more complex scenario, the total configuration vector
xt must be constructed with the 3-DOF pose (position and
orientation) vectors of both robot manipulators as xt =

A

B

C

D

FIGURE 6 | Initial and final configurations of four different shape control

simulations (A–D), using a single robot manipulator.

FIGURE 7 | Minimization process of the energy function E.

[ x
L ⊺

t , x
R ⊺

t ]
⊺ ∈ R

6. Training of the sensorimotor model is done
similarly as with the single-robot case described above; The
same feedback gains and controller parameters are also used in
this test.

Figure 9 depicts the initial shape y0 and intermediate
configurations (black solid curves), as well as the respective final
shape y∗ (red dashed curve) of the cable. Note that as more
input DOF can be controlled by the robotic system, the object
can be actively deformed into more complex configurations
(cf. the achieved S-shape curve with the profiles in Figure 6).
The result demonstrates that the approximated sensorimotor
model provides sufficient directional information to the
controller to properly “steer” the feature vector yt toward the
target y∗.

FIGURE 8 | Representation of a two-robot setup where both systems must

jointly shape the cable into a desired form.

FIGURE 9 | Initial and final configurations of the shape control simulation with

two robots.

FIGURE 10 | Minimization process of the energy function E.
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We now compare the performance of our method (using
the same manipulation task shown in Figures 8, 9) with two
state-of-the-art approaches commonly used for guiding robots
with unknown sensorimotor models. To this end, we consider
the classical Broyden update rule (Broyden, 1965) and the
recursive least-squares (RLS) (Hosoda and Asada, 1994). These
two methods are used for estimating the matrix A that is needed
to compute the control input (6). To compare their performance,

FIGURE 11 | The experimental robotic setup.

FIGURE 13 | Asymptotic minimization of the error functional E obtained with

the experiments shown in Figure 12.

FIGURE 14 | Control input (with normalized units of pixel/s) of the experiment

shown in Figure 12a.

FIGURE 12 | Snapshots of the initial (left) and final (right) configurations for two shape control experiments (a) and (b), where the red curve represents the target shape.
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FIGURE 15 | Control input (with normalized units of pixel/s) of the experiment

shown in Figure 12b.

the cost function E is evaluated throughout their respective
trajectories; The same feedback gain λ = 0.1 is used for
these three methods. Figure 10 depicts the time evolution of E
computed with the three methods. This result demonstrates that
the performance of our method is comparable to the other two
classical approaches.

4.4. Experiments
To validate the proposed theory, we developed an experimental
platform composed of a three degrees-of-freedom serial robotic
manipulator (DOBOT Magician), a Linux-based motion control
system (Ubuntu 16.04), and a USB Webcam (Logitech C270);
Image processing is performed by using the OpenCV libraries
(Bradski, 2000). A sampling time of dt ≈ 0.04 s is used in
our Linux-based control system. In this setup, the robot rigidly
grasps an elastic piece of pneumatic air tubing, whose other end
is attached to the ground. The 3-DOF mechanism has a double
parallelogram structure that enables to control the gripper’s
x-y-z position while keeping a constant orientation. For this
experimental study, we only control 2-DOF of the robot such
it manipulates the tubing with plane motions. Figure 11 depicts
the setup.

We conduct similar vision-guided experiments with the
platform as the ones described in the previous section. For these
tasks, the elastic tubing must be automatically positioned into
a desired contour. The configuration dependant feedback for
this task is computed with the observed contour of the object
by using two harmonic terms (Navarro-Alarcon and Liu, 2018).
The sensorimotor model is similarly approximated around four
configuration points (as in Figure 4), by performing random
motions and collecting sensor data.

Figure 12 depicts snapshots of the conducted experiments,
where we can see the initial and final configurations of the
system. The red curves represent the (static) target configuration
y∗. For these two targets, Figure 13 depicts the respective time
evolution profiles of the energy function E, where we can clearly
see that the feedback error is asymptotically minimized. The
control inputs ut used during the experiments are depicted in
Figures 14, 15. These motion commands are computed from raw
vision measurements and a saturation threshold of ±1 is applied
to its values. This results demonstrate that the approximated
model can be used to locally guide motions of the robot with
sensor feedback.

5. CONCLUSION

In this paper, we describe a method to estimate sensorimotor
relations of robotic systems. For that, we present a novel adaptive
rule that computes local sensorimotor relations in real-time;
The stability of this algorithm is rigorously analyzed and its
convergence conditions are derived. A motion controller to
coordinate sensor measurements and robot motions is proposed.
Simulation and experimental results with a cable manipulation
case of study are reported to validate the theory.

The main idea behind the proposed method is to divide
the robot’s configuration workspace into discrete nodes, and
then, locally approximate at each node the mappings between
robot motions and sensor changes. This approach resembles the
estimation of piecewise linear systems, except that in our case, the
computed model represents a differential Jacobian-like relation.
The key to guarantee the stability of the algorithm lies
in collecting sufficient linear independent motor actions
(such condition can be achieved by performing random
babbling motions).

The main limitation of the proposed algorithm is the local
nature of its model, which can be improved by increasing the
density of the distributed computing units. Another issue is
related to the scalability of its discretized configuration space.
Note that for 3D spaces, the method can fairly well approximate
the sensorimotor model, yet for multiple DOF (e.g., more than 6)
the data is difficult to manage and visualize.

As future work, we would like to implement our adaptive
method with other sensing modalities and mechanical
configurations, e.g., with an eye-in-hand visual servoing
(where the camera orientation is arbitrary) and with variable
morphology manipulators (where the link’s length and joint’s
configuration are not known).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

DN-A conceived the algorithm and drafted the manuscript. JQ
and JZ performed the numerical simulation results. AC analyzed
the theory and revised the paper. All authors contributed to the
article and approved the submitted version.

FUNDING

This research work was supported in part by the Research Grants
Council (RGC) of Hong Kong under grant number 14203917, in
part by PROCORE-France/Hong Kong Joint Research Scheme
sponsored by the RGC and the Consulate General of France in
Hong Kong under grant F-PolyU503/18, in part by the Chinese
National Engineering Research Centre for Steel Construction
(Hong Kong Branch) at PolyU under grant BBV8, in part by the
Key-Area Research and Development Program of Guangdong
Province 2020 under project 76 and in part by The Hong Kong
Polytechnic University under grant G-YBYT.

Frontiers in Neurorobotics | www.frontiersin.org 10 September 2020 | Volume 14 | Article 59151

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Navarro-Alarcon et al. Adaptive Sensorimotor Models for Sensor-Based Control

REFERENCES

Alambeigi, F., Wang, Z., Hegeman, R., Liu, Y., and Armand, M. (2018). A robust

data-driven approach for online learning and manipulation of unmodeled 3-

d heterogeneous compliant objects. IEEE Robot. Autom. Lett. 3, 4140–4147.

doi: 10.1109/LRA.2018.2863376

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019).

CasADi-A software framework for nonlinear optimization and optimal control.

Math. Prog. Comp. 11, 1–36. doi: 10.1007/s12532-018-0139-4

Bof, N., Carli, R., and Schenato, L. (2018). Lyapunov theory for discrete time

systems. CoRR abs/1809.05289. Available online at: https://arxiv.org/abs/1809.

05289

Bouyarmane, K., Chappellet, K., Vaillant, J., and Kheddar, A. (2019). Quadratic

programming for multirobot and task-space force control. IEEE Trans. Robot.

35, 64–77. doi: 10.1109/TRO.2018.2876782

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s J. Softw. Tools 25, 122–125.

Bretl, T., andMcCarthy, Z. (2014). Quasi-static manipulation of a Kirchhoff elastic

rod based on a geometric analysis of equilibrium configurations. Int. J. Robot.

Res. 33, 48–68. doi: 10.1177/0278364912473169

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous

equations.Math. Comp. 19, 577–593. doi: 10.1090/S0025-5718-1965-0198670-6

Chang, H., Wang, S., and Sun, P. (2018). Omniwheel touchdown characteristics

and adaptive saturated control for a human support robot. IEEE Access 6,

51174–51186. doi: 10.1109/ACCESS.2018.2869836

Chaumette, F., and Hutchinson, S. (2006). Visual servo control.

Part I: Basic approaches. IEEE Robot. Autom. Mag. 13, 82–90.

doi: 10.1109/MRA.2006.250573

Cheah, C. C., Hirano, M., Kawamura, S., and Arimoto, S. (2003). Approximate

Jacobian control for robots with uncertain kinematics and dynamics. IEEE

Trans. Robot. Autom. 19, 692–702. doi: 10.1109/TRA.2003.814517

Cherubini, A., and Chaumette, F. (2013). Visual navigation of a mobile

robot with laser-based collision avoidance. Int. J. Robot. Res. 32, 189–205.

doi: 10.1177/0278364912460413

Cherubini, A., Passama, R., Fraisse, P., and Crosnier, A. (2015). A unified

multimodal control framework for human-robot interaction. Robot. Auton.

Syst. 70, 106–115. doi: 10.1016/j.robot.2015.03.002

Collewet, C., and Chaumette, F. (2000). “A contour approach for image-

based control on objects with complex shape,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, Vol. 1 (Takamatsu),

751–756. doi: 10.1109/IROS.2000.894694

Defoort, M., and Murakami, T. (2009). Sliding-mode control scheme

for an intelligent bicycle. IEEE Trans. Indus. Electron. 56, 3357–3368.

doi: 10.1109/TIE.2009.2017096

Digumarti, K. M., Trimmer, B., Conn, A. T., and Rossiter, J. (2019).

Quantifying dynamic shapes in soft morphologies. Soft Robot. 1, 1–12.

doi: 10.1089/soro.2018.0105

Escobar-Juarez, E., Schillaci, G., Hermosillo-Valadez, J., and Lara-Guzman, B.

(2016). A self-organized internal models architecture for coding sensory–motor

schemes. Front. Robot. AI 3:22. doi: 10.3389/frobt.2016.00022

Falkenhahn, V., Mahl, T., Hildebrandt, A., Neumann, R., and Sawodny,

O. (2015). Dynamic modeling of bellows-actuated continuum robots

using the euler-lagrange formalism. IEEE Trans. Robot. 31, 1483–1496.

doi: 10.1109/TRO.2015.2496826

Hamill, P. (2014). A Student’s Guide to Lagrangians and Hamiltonians. New York,

NY: Cambridge University Press.

Haykin, S. (2009).Neural Networks and Learning Machines. Ontario: Prentice Hall.

Hosoda, K., and Asada, M. (1994). “Versatile visual servoing without

knowledge of true Jacobian,” in Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, Vol. 1 (Munich), 186–193.

doi: 10.1109/IROS.1994.407392

Hu, Z., Han, T., Sun, P., Pan, J., and Manocha, D. (2019). 3-D deformable

object manipulation using deep neural networks. IEEE Robot. Autom. Lett. 4,

4255–4261. doi: 10.1109/LRA.2019.2930476

Huang, J., and Lin, C.-F. (1994). On a robust nonlinear servomechanism problem.

IEEE Trans. Autom. Control 39, 1510–1513. doi: 10.1109/9.299646

Hutchinson, S., Hager, G., and Corke, P. (1996). A tutorial on visual servo control.

IEEE Trans. Robot. Autom. 12, 651–670. doi: 10.1109/70.538972

Jagersand, M., Fuentes, O., and Nelson, R. (1997). “Experimental evaluation of

uncalibrated visual servoing for precisionmanipulation,” in Proceedings of IEEE

International Conference on Robotics and Automation, Vol. 4 (Albuquerque,

NM), 2874–2880. doi: 10.1109/ROBOT.1997.606723

Kohler, I. (1962). Experiments with goggles. Sci. Am. 206, 62–73.

doi: 10.1038/scientificamerican0562-62

Kohonen, T. (2001). Self-Organizing Maps. Berlin; Heidelberg: Springer.

doi: 10.1007/978-3-642-56927-2

Kohonen, T. (2013). Essentials of the self-organizing map.Neural Netw. 37, 52–65.

doi: 10.1016/j.neunet.2012.09.018

Kuo, B. (1992). Digital Control Systems. Electrical Engineering. New York, NY:

Oxford University Press.

Li, X., and Cheah, C. C. (2014). Adaptive neural network control of robot based

on a unified objective bound. IEEE Trans. Control Syst. Technol. 22, 1032–1043.

doi: 10.1109/TCST.2013.2293498

Liu, Y.-H., Wang, H., Chen, W., and Zhou, D. (2013). Adaptive visual

servoing using common image features with unknown geometric parameters.

Automatica 49, 2453–2460. doi: 10.1016/j.automatica.2013.04.018

Lyu, S., and Cheah, C. C. (2018). “Vision based neural network control of

robot manipulators with unknown sensory Jacobian matrix,” in IEEE/ASME

International Conference on Advanced Intelligent Mechatronics (Auckland),

1222–1227. doi: 10.1109/AIM.2018.8452467

Magassouba, A., Bertin, N., and Chaumette, F. (2016). “Audio-based robot control

from interchannel level difference and absolute sound energy,” in Proceedings

of IEEE International Conference on Intelligent Robots and Systems (Daejeon),

1992–1999. doi: 10.1109/IROS.2016.7759314

Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization. Boston,

MA: Addison-Wesley Longman.

Navarro-Alarcon, D., Cherubini, A., and Li, X. (2019). “On model adaptation for

sensorimotor control of robots,” in Chinese Control Conference (Guangzhou),

2548–2552. doi: 10.23919/ChiCC.2019.8865825

Navarro-Alarcon, D., and Liu, Y.-H. (2018). Fourier-based shape servoing: a new

feedback method to actively deform soft objects into desired 2D image shapes.

IEEE Trans. Robot. 34, 272–279. doi: 10.1109/TRO.2017.2765333

Navarro-Alarcon, D., Liu, Y.-H., Romero, J. G., and Li, P. (2014).

Energy shaping methods for asymptotic force regulation of compliant

mechanical systems. IEEE Trans. Control Syst. Technol. 22, 2376–2383.

doi: 10.1109/TCST.2014.2309659

Navarro-Alarcon, D., Yip, H., Wang, Z., Liu, Y.-H., Zhong, F., Zhang, T.,

et al. (2016). Automatic 3D manipulation of soft objects by robotic

arms with adaptive deformation model. IEEE Trans. Robot. 32, 429–441.

doi: 10.1109/TRO.2016.2533639

Navarro-Alarcon, D., Yip, H. M., Wang, Z., Liu, Y.-H., Lin, W., and Li, P. (2015).

“Adaptive image-based positioning of RCM mechanisms using angle and

distance features,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (Hamburg), 5403–5409. doi: 10.1109/IROS.2015.7354141

Nof, S. (1999).Handbook of Industrial Robotics. New Jersey, NJ: JohnWiley & Sons.

doi: 10.1002/9780470172506

Pierris, G., and Dahl, T. S. (2017). Learning robot control using a

hierarchical som-based encoding. IEEE Trans. Cogn. Dev. Syst. 9, 30–43.

doi: 10.1109/TCDS.2017.2657744

Saegusa, R., Metta, G., Sandini, G., and Sakka, S. (2009). “Active motor babbling

for sensorimotor learning,” in International Conference on Robotics and

Biomimetics (Bangkok), 794–799. doi: 10.1109/ROBIO.2009.4913101

Sanchez, J., Corrales, J.-A., Bouzgarrou, B.-C., and Mezouar, Y. (2018).

Robotic manipulation and sensing of deformable objects in domestic

and industrial applications: a survey. Int. J. Robot. Res. 37, 688–716.

doi: 10.1177/0278364918779698

Sang, Q., and Tao, G. (2012). Adaptive control of piecewise linear systems:

the state tracking case. IEEE Trans. Autom. Control 57, 522–528.

doi: 10.1109/TAC.2011.2164738

Saponaro, P., Sorensen, S., Kolagunda, A., and Kambhamettu, C. (2015).

“Material classification with thermal imagery,” in IEEE Conference on

Computer Vision and Pattern Recognition (Boston, MA), 4649–4656.

doi: 10.1109/CVPR.2015.7299096

Siciliano, B. (1990). Kinematic control of redundant robot manipulators: a tutorial.

J. Intell. Robot. Syst. 3, 201–212. doi: 10.1007/BF00126069

Frontiers in Neurorobotics | www.frontiersin.org 11 September 2020 | Volume 14 | Article 59152

https://doi.org/10.1109/LRA.2018.2863376
https://doi.org/10.1007/s12532-018-0139-4
https://arxiv.org/abs/1809.05289
https://arxiv.org/abs/1809.05289
https://doi.org/10.1109/TRO.2018.2876782
https://doi.org/10.1177/0278364912473169
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1109/ACCESS.2018.2869836
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/TRA.2003.814517
https://doi.org/10.1177/0278364912460413
https://doi.org/10.1016/j.robot.2015.03.002
https://doi.org/10.1109/IROS.2000.894694
https://doi.org/10.1109/TIE.2009.2017096
https://doi.org/10.1089/soro.2018.0105
https://doi.org/10.3389/frobt.2016.00022
https://doi.org/10.1109/TRO.2015.2496826
https://doi.org/10.1109/IROS.1994.407392
https://doi.org/10.1109/LRA.2019.2930476
https://doi.org/10.1109/9.299646
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/ROBOT.1997.606723
https://doi.org/10.1038/scientificamerican0562-62
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1016/j.neunet.2012.09.018
https://doi.org/10.1109/TCST.2013.2293498
https://doi.org/10.1016/j.automatica.2013.04.018
https://doi.org/10.1109/AIM.2018.8452467
https://doi.org/10.1109/IROS.2016.7759314
https://doi.org/10.23919/ChiCC.2019.8865825
https://doi.org/10.1109/TRO.2017.2765333
https://doi.org/10.1109/TCST.2014.2309659
https://doi.org/10.1109/TRO.2016.2533639
https://doi.org/10.1109/IROS.2015.7354141
https://doi.org/10.1002/9780470172506
https://doi.org/10.1109/TCDS.2017.2657744
https://doi.org/10.1109/ROBIO.2009.4913101
https://doi.org/10.1177/0278364918779698
https://doi.org/10.1109/TAC.2011.2164738
https://doi.org/10.1109/CVPR.2015.7299096
https://doi.org/10.1007/BF00126069
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Navarro-Alarcon et al. Adaptive Sensorimotor Models for Sensor-Based Control

Sigaud, O., Salaün, C., and Padois, V. (2011). On-line regression algorithms

for learning mechanical models of robots: a survey. Rob. Auton. Syst. 59,

1115–1129. doi: 10.1016/j.robot.2011.07.006

Tikhonov, A., Goncharsky, A., Stepanov, V., and Yagola, A. (2013). Numerical

Methods for the Solution of Ill-Posed Problems.Mathematics and Its Applications.

Dordrecht: Springer Netherlands.

Tirindelli, M., Victorova, M., Esteban, J., Kim, S. T., Navarro-Alarcon,

D., Zheng, Y. P., et al. (2020). Force-ultrasound fusion: Bringing spine

robotic-us to the next “level”. IEEE Robot. Autom. Lett. 5, 5661–5668.

doi: 10.1109/LRA.2020.3009069

van der Schaft, A. (2000). L2-Gain and Passivity Techniques in Nonlinear Control.

London: Springer. doi: 10.1007/978-1-4471-0507-7

Von Hofsten, C. (1982). Eye-hand coordination in the newborn. Dev. Psychol.

18:450. doi: 10.1037/0012-1649.18.3.450

Wakamatsu, H. and Hirai, S. (2004). Static modeling of linear object

deformation based on differential geometry. Int. J. Robot. Res. 23, 293–311.

doi: 10.1177/0278364904041882

Wang, H., Liu, Y.-H., and Zhou, D. (2008). Adaptive visual servoing using point

and line features with an uncalibrated eye-in-hand camera. IEEE Trans. Robot.

24, 843–857. doi: 10.1109/TRO.2008.2001356

Wang, Z., Yip, H. M., Navarro-Alarcon, D., Li, P., Liu, Y., Sun, D.,

et al. (2016). Design of a novel compliant safe robot joint with

multiple working states. IEEE/ASME Trans. Mechatron. 21, 1193–1198.

doi: 10.1109/TMECH.2015.2500602

Wei, G.-Q., Arbter, K., and Hirzinger, G. (1986). Active self-calibration of robotic

eyes and hand-eye relationships with model identification. IEEE Trans. Robot.

Autom. 14, 158–166. doi: 10.1109/70.660864

Whitney, D. (1969). Resolved motion rate control of manipulators

and human prostheses. IEEE Trans. Man-Mach. Syst. 10, 47–53.

doi: 10.1109/TMMS.1969.299896

Yip, H. M., Navarro-Alarcon, D., and Liu, Y. (2017). “An image-based

uterus positioning interface using adaline networks for robot-

assisted hysterectomy,” in IEEE International Conference on Real-time

Computing and Robotics (Okinawa), 182–187. doi: 10.1109/RCAR.2017.

8311857

Yu, C., Zhou, L., Qian, H., and Xu, Y. (2018). “Posture correction of quadruped

robot for adaptive slope walking,” in IEEE International Conference on

Robotics and Biomimetics (Malaysia), 1220–1225. doi: 10.1109/ROBIO.2018.

8665093

Zahra, O. and Navarro-Alarcon, D. (2019). “A self-organizing network with

varying density structure for characterizing sensorimotor transformations

in robotic systems,” in Towards Autonomous Robotic Systems, eds K.

Althoefer, J. Konstantinova, K. Zhang (London: Springer), 167–178.

doi: 10.1007/978-3-030-25332-5_15

Zhu, J., Navarro, B., Fraisse, P., Crosnier, A., and Cherubini, A. (2018). “Dual-

arm robotic manipulation of flexible cables,” in IEEE/RSJ Int. Conf. on

Robots and Intelligent Systems (Madrid), 479–484. doi: 10.1109/IROS.2018.8

593780

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Navarro-Alarcon, Qi, Zhu and Cherubini. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 12 September 2020 | Volume 14 | Article 59153

https://doi.org/10.1016/j.robot.2011.07.006
https://doi.org/10.1109/LRA.2020.3009069
https://doi.org/10.1007/978-1-4471-0507-7
https://doi.org/10.1037/0012-1649.18.3.450
https://doi.org/10.1177/0278364904041882
https://doi.org/10.1109/TRO.2008.2001356
https://doi.org/10.1109/TMECH.2015.2500602
https://doi.org/10.1109/70.660864
https://doi.org/10.1109/TMMS.1969.299896
https://doi.org/10.1109/RCAR.2017.8311857
https://doi.org/10.1109/ROBIO.2018.8665093
https://doi.org/10.1007/978-3-030-25332-5_15
https://doi.org/10.1109/IROS.2018.8593780
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 29 October 2020

doi: 10.3389/fnbot.2020.00058

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 58

Edited by:

Fei Chen,

Italian Institute of Technology (IIT), Italy

Reviewed by:

Zha Fusheng,

Harbin Institute of Technology, China

Zhijun Li,

University of Science and Technology

of China, China

*Correspondence:

Fuchun Sun

fcsun@mail.tsinghua.edu.cn

Jianhua Shan

379751793@qq.com

Received: 01 June 2020

Accepted: 22 July 2020

Published: 29 October 2020

Citation:

Fang B, Zhou Q, Sun F, Shan J,

Wang M, Xiang C and Zhang Q (2020)

Gait Neural Network for

Human-Exoskeleton Interaction.

Front. Neurorobot. 14:58.

doi: 10.3389/fnbot.2020.00058

Gait Neural Network for
Human-Exoskeleton Interaction
Bin Fang 1, Quan Zhou 2, Fuchun Sun 1*, Jianhua Shan 2*, Ming Wang 3, Cheng Xiang 4 and

Qin Zhang 5

1Department of Computer Science and Technology, Beijing National Research Center for Information Science and

Technology, Tsinghua University, Beijing, China, 2 Anhui Province Key Laboratory of Special Heavy Load Robot, Anhui

University of Technology, Ma’anshan, China, 3North Automatic Control Technology Institute, Taiyuan, China, 4Department of

Physics & Astronomy, Iowa State University, Ames, IA, United States, 5 State Key Lab of Digital Manufacturing Equipment

and Technology, Huazhong University of Science and Technology, Wuhan, China

Robotic exoskeletons are developed with the aim of enhancing convenience and

physical possibilities in daily life. However, at present, these devices lack sufficient

synchronization with human movements. To optimize human-exoskeleton interaction,

this article proposes a gait recognition and prediction model, called the gait neural

network (GNN), which is based on the temporal convolutional network. It consists of

an intermediate network, a target network, and a recognition and prediction model.

The novel structure of the algorithm can make full use of the historical information from

sensors. The performance of the GNN is evaluated based on the publicly available

HuGaDB dataset, as well as on data collected by an inertial-based wearable motion

capture device. The results show that the proposed approach is highly effective and

achieves superior performance compared with existing methods.

Keywords: exoskeleton, interaction, gait neural network, gait recognition, prediction, temporal

convolutional network

1. INTRODUCTION

The development of lower-extremity robotic exoskeletons (Ackermann and van den Bogert, 2010)
has been found to have significant potential in medical rehabilitation (Zhang et al., 2015) and
military equipment applications. In these devices, human gait is captured in real time through
signals (Casale et al., 2011) that are then sent to a controller. The controller returns instructions
to the mechanical device on necessary adjustments or modifications. However, these exoskeletons
require more effective predictionmodules for joint gait trajectories (Aertbeliën and Schutter, 2014).
The main goal is to improve the synchronization between the exoskeleton and human movement
(Du et al., 2015). Essentially, the time gap between human action andmechanical device adjustment
must be reduced without sacrificing the precision and quality of the modification. To achieve this,
it is necessary to mine historical data and understand their intent (Zhu et al., 2016). Time series
analysis is a powerful tool for this purpose.

Gait signal collection is commonly performed via inertial measurement units (IMUs), tactile
sensors, surface electromyography, electroencephalograms, and so on. The majority of popular gait
datasets employ computer vision technology to improve efficiency (Shotton et al., 2011), such as
the Carnegie Mellon University Motion of Body dataset (Gross and Shi, 2001), the University of
Maryland Human Identification at a Distance dataset, the Chinese Academy of Sciences Institute
of Automation Gait Database (Zheng et al., 2011), and the Osaka University Institute of Science
and Industry Research Gait Database (Iwama et al., 2012). However, it is often difficult to obtain
accurate human gait information from such image-based prediction methods.
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The HuGaDB dataset of the University Higher School of
Economics contains highly detailed kinematic data for human
gait analysis and activity recognition. It is the first public human
gait dataset derived from inertial sensors that contains segmented
annotations for the study of movement transitions. The data were
obtained from 18 participants, and a total of about 10 h of activity
was recorded (Chereshnev and Kertesz-Farkas, 2017). However,
one limitation of the above-mentioned datasets is that they are
not adequate for extremely delicate exoskeleton control.

To achieve sufficiently dexterous and adaptive control, in
addition to statistical approximation by Markov modeling, deep
learning has been demonstrated to be an effective approach.
Recurrent neural networks, such as long short-term memory
(LSTM), have been widely used in the areas of time series
analysis and natural language processing. The cyclic nature of the
human gait has previously precluded the use of such networks
(Martinez et al., 2017; Ferrari et al., 2019). Nevertheless, a
novel LSTM-based framework has been proposed for predicting
the gait stability of elderly users of an intelligent robotic
rollator (Chalvatzaki et al., 2018), fusing multimodal RGB-D and
laser rangefinder data from non-wearable sensors (Chalvatzaki
et al., 2018). An LSTM network has also been used to model
gait synchronization of legs using a basic off-the-shelf IMU
configuration with six acceleration and rotation parameters
(Romero-Hernandez et al., 2019). Further, recent works have
reported the use of convolutional neural networks (CNNs)
for human activity recognition. CNNs use accelerometer data
for real-time human activity recognition and can handle the
extraction of both local features and simple statistical features
that preserve information about the global form of a time series
(Casale et al., 2011). A survey on deep learning for sensor-based
activity recognition is presented in Wang et al. (2018).

At present, the majority of gait prediction models are not
sufficiently precise or robust with respect to environmental
fluctuations. In this work, a gait neural network (GNN) is
proposed for gait recognition and prediction through wearable
devices. The data-processing component consists of two phases:
handling buffer data through an intermediate network and target
prediction. Experiments are performed on a public human gait
dataset, and the results obtained from the GNN are longitudinally
compared with those of other methods. Further, moremeticulous
gait signals are collected from the IMU to improve training
convergence and accuracy. Our model should also be helpful to
exoskeletons with inertial sensors.

2. MATERIALS AND METHODS

CNNs are often used for two-dimensional data-processing tasks,
such as image classification and target detection. Recently,
researchers have found that CNNs can be used to process
one-dimensional time series data, where both the convolution
kernel and the pooling window are changed from having
two dimensions to having just one dimension. In 2018,
a temporal convolutional network (TCN) architecture was
proposed (Bai et al., 2018). This architecture was deliberately
kept simple, combining some of the best practices of modern

convolutional architectures. When compared with canonical
recurrent architectures, such as LSTM and gated recurrent
units, the TCN can convincingly outperform baseline recurrent
architectures across a broad range of sequence-modeling tasks.
Some scholars have used TCNs in human action segmentation
with video or image data (Lea et al., 2016a,b) and medical
time series classification (Lin et al., 2019). The distinguishing
characteristics of TCNs are that the convolutions in the
architecture are causal, meaning that there is no information
“leakage” from future to past, and that the architecture can take a
sequence of any length and map it to an output sequence of the
same length, just as with a recurrent neural network. Therefore,
the TCN is used as the base model to handle sequence-modeling
tasks, such as obtaining inertial data on human gaits.

2.1. Standard Temporal Convolutional
Networks
Consider an input sequence x0, . . . , xT for which an output
prediction, such as y0, . . . , yT is desired for each time, where yT
depends only on x0, . . . , xT , with no future inputs xt+1, . . . , xT .
The sequence-modeling network is any function f : xT+1 →

yT+1 that produces the mapping

ŷ0, . . . , ŷT = f (x0, . . . , xT). (1)

This sequence-learning algorithm seeks a network f that
minimizes the loss L(y0, . . . , yT , f (x0, . . . , xT)), which measures
the difference between the predictions and the actual targets.
The TCN employs dilated convolutions to allow an exponentially
large receptive field. For a one-dimensional sequence input x ∈

R
n and a filter f :{0, . . . , k − 1} → R, the dilated convolution

operation on an element of the sequence is defined as

F(s) =

k−1
∑

i=0

f (i) · xs−d·i, (2)

where d is the dilation factor, k is the filter size, and s − d ·

i accounts for the past direction. Thus, dilation is equivalent
to introducing a fixed step between every two adjacent filter
taps. When d = 1, a dilated convolution reduces to a regular
convolution. By using a larger dilation, the outputs in the top
layer can have a larger receptive field and so represent a wider
range of inputs. The basic architectural elements of a TCN are
shown in Figure 1.

The output o of a layer is related to the input via an
activation function:

o = Activation(x+ Ŵ(x)). (3)

Within a residual block, the base model has two layers of
dilated causal convolution and non-linearity. For the non-
linearity, a rectified linear unit is used as the activation function.
For normalization, weight normalization is applied to the
convolutional filters. For regularization, a spatial dropout is
added after each dilated convolution. In a standard residual
network the input is directly added to the output of the residual
function, whereas in a TCN the input and output can have
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FIGURE 1 | Structure of the GNN.

different widths. To account for possibly different input and
output widths, an additional 1 × 1 convolution is used, which
ensures that the elementwise addition receives tensors of the
same shape.

For convenience, the GNN predicts only the acceleration and
gyro data.

Gait prediction is a type of time series prediction. Because it
has been shown that TCNs can be very effective sequence models
for sequence data (MatthewDavies and Bock, 2019), a TCN is
used for human gait analysis in the present work.

A TCN has two characteristics: dilated convolution and causal
convolution. The primary function of the dilated convolution
is to enable the network to learn more information in a long
time series. However, it has been observed that long time series
information does not significantly improve the accuracy of gait
prediction, because human gait data are periodic and excess
information is sampled repeatedly. Therefore, we disregard
dilated convolution in this study.

2.2. Gait Neural Network
The architecture of the GNN is shown in Figure 1.

Two TCNs are used for the basic model. The first is the
intermediate network, which uses the normalized inertial data as
input to predict the intermediate sensor data. Unlike traditional
methods, because of the response delay in the system, the GNN
reserves some buffer time, and the original, buffer, and target
data are represented, respectively by x, y, and z. Traditional
methods generally use x to predict z, and y remains unused. As
shown in Figures 2, 3, the GNN uses the original signals as the
intermediate network input x to predict the intermediate data y.
The second TCN in the model is the target vector network. The

original data x and the predicted data y are concatenated to make
the input to the target vector network, which then outputs the
encoded vectors.

Firstly, one TCN is used to process the original input, and then
the original input and the output of the first TCN are combined
into the input to the second TCN. To a certain extent, it can be
seen that the number of features of model learning is increased
and the ability to obtain historical information is enhanced.

Finally, a recognition model and a prediction model are added
to the network as two fully connected layers. The encoded vectors
obtained from the basic model are fed into these recognition
and prediction models to output the human action (walking,
standing, or running) and the predicted gait data z (whichmainly
includes acceleration and gyro data).

2.2.1. Loss Function
A loss function is used to evaluate the fitting effect of a deep
neural network. It is also used to compute gradients using a
back-propagation algorithm to optimize the parameters of the
network. The GNN has two loss functions to calculate: one for
measuring the prediction loss due to prediction error and the
other for measuring the loss of recognition accuracy.

The prediction loss function of the GNN is

Lpred = wy ∗ Ly(ŷ, y)+ wz ∗ Lz(ẑ, z), (4)

where Ly and Lz represent the loss functions of the intermediate
prediction network and the target vector network, respectively; ẑ
and z are the output vector and the target vector, respectively; and
wy andwz are the weight coefficients of Ly and Lz , respectively, for

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 58156

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Fang et al. Gait Neural Network

FIGURE 2 | Composition of the basic GNN model.

FIGURE 3 | Input data of the GNN.

which either L1 or L2 loss functions can be used:
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where NB denotes the batch size, which is in the range of {32, 64,
128, 256}, û is the predicted value of the network output, u is the
tag value of the network output, and j indicates the jth output
value of the network.

The recognition loss function of the GNN represents the
cross-entropy loss:

Lrec = −
1

n

∑

[y ln ŷ+ (1− y) ln(1− ŷ)], (7)

where ŷ is the model output.
The total loss of the GNN is

Ltotal = Lpred + αLrec, (8)

where α is the hyperparameter used to balance the loss function
in order to achieve high performance during the recognition and
prediction tasks.

2.3. Experimental Approach
In this study, the performance of the GNN was evaluated on two
datasets: the publicly available HuGaDB dataset and a human
gait dataset obtained using an inertial-based wearable motion
capture device.

The GNN was trained by an Adam optimizer with a learning
rate of 0.001 at 80 and 150 epochs, divided by 10. The maximum
epoch and batch size were 200 and 64, respectively. The dropout
rate of all dropout layers was set to 0.3. The GNN was
implemented by PyTorch and trained and tested on a computer
with an Intel Core i7-8750H processor, two 8GB memory chips
(DDR4), and a GPU (GeForce GTX 1060 6G).

2.4. Experiment on a Public Dataset
2.4.1. Gait Data Description
The human body has more than 200 bones. To simplify the
gait analysis process, motion analysis is often performed on
collected joint motion data. Gait analysis is one method used
to study an individual’s walking pattern. It aims to reveal the
key links and factors influencing an abnormal gait through
biomechanics and kinematics, in order to aid clinical diagnosis,
guide rehabilitation evaluation and treatment, evaluate efficacy,
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and inform research on the mechanisms involved. In gait
analysis, special parameters are used to assess whether the gait
is normal; these generally include gait cycle, kinematic, dynamic,
myoelectric activity, and energy metabolism parameters. To
improve the correspondence between the robotic exoskeleton
and the human body, motion data, such as joint velocity and
acceleration data must be collected.

Gait prediction in lower-extremity exoskeleton robots
requires highly accurate human gait data, so it is necessary
to utilize a gait dataset suitable for human gait prediction.
Therefore, we chose to evaluate the gait prediction and
recognition performance of the GNN on the publicly available
HuGaDB dataset (Chereshnev and Kertesz-Farkas, 2017), which
contains detailed kinematic data for analyzing human activity
patterns, such as walking, running, taking the stairs up and
down, and sitting down. The recorded data are segmented and
annotated. They were obtained from a body sensor network
comprising six wearable inertial sensors for collecting gait
data. Sensors were placed on the left and right thighs, lower
legs, and insteps of the human body; their distribution is
shown in Figure 4. Each inertial sensor was used to collect
three-axis accelerometer, three-axis gyroscope, and occasionally
electromyography signals of the corresponding body part,
providing data that can be used to evaluate the posture and
joint angle of the lower limbs. The data were recorded from 18
participants, and consist of 598 min and 2,111,962 samples in
total. The microcontroller collected 56.3500 samples per second
on average, with a standard deviation of 3.2057, and transmitted
them to a laptop through a Bluetooth connection (Chereshnev
and Kertesz-Farkas, 2017). Only the inertial data were taken as
input to the present model.

2.4.2. Data Analysis
In this work we analyze gait data from wearable sensors. Given
the similarity between the two legs, we use only the right leg as
an example. As seen in Figure 5, there is a certain relationship
between the sensor signals; hence it is preferable to conduct
training using all of the data as input rather than some subset. The
acceleration signals of three people were randomly sampled for

FIGURE 4 | Location of the sensors on the human body that collected data

for HuGaDB.

data analysis. As shown in Figure 6, the gait data are periodic, and
the patterns of the three people are similar, although the different
individuals have different walking gaits.

2.4.3. Data Pre-processing
The original data in HuGaDB can be converted to values of
the corresponding variables. To properly utilize the variables in
the GNN, data normalization is necessary. The normalization
formula is

xnorm =
x−mean(x)

max(x)
. (9)

By this formula, all gait data can be scaled to be between
−1 and 1, which can eliminate learning difficulties caused by
inconsistencies in data size and range.

2.4.4. Sample Creation
After preprocessing the gait data, the samples used for network
training were created. The gait data consist of the acceleration
and angular velocity of the inertial devices. In the experiment
we conducted, the lengths of x, y, and z were 10, 5, and 1,
respectively. To confirm the method of sample creation, samples
were selected from the HuGaDB gait data. The first 80% of
samples were used as the training dataset, the next 10% were
selected for the validation dataset, and the last 10% were taken
to be the test dataset.

2.5. Experiment on the Collected Data
To further evaluate the GNN, an inertial-based wearable motion
capture device was used to collect human gait data. The entire
motion acquisition system consists of seven inertial measurement
units, and only the signals from the lower limbs were selected
for the human gait prediction, as shown in Figure 7. Each unit

FIGURE 5 | Correlation between the HuGaDB sensor data.
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FIGURE 6 | Similarity in the acceleration data of three people.

FIGURE 7 | Collected human gait data.

measured the three-axis acceleration and the three-axis angular
velocity. The sampling frequency was 120Hz. The collected gait
data include data on walking, going up and down stairs, and
going up and down slopes.

3. RESULTS

As the predicted data can be collected by inertial sensors, the
model is used to predict the accelerations and angular velocities.
In the training of the model, multimodal data are used, and the
numerical distributions in different dimensions are different; but
since we need to use these data as input at the same time, we
normalize the data in each dimension. The input and output of
the model are multidimensional data, and the units in different

dimensions are different. The training of the model is based on
the normalized data, and the predicted value of the model is
also the accurate value after normalization. Therefore, the mean
squared error (MSE) and mean absolute error (MAE) in the
evaluation indexes are based on the normalized data, so the units
are not specified.

3.1. Evaluation Results Using HuGaDB
The network was first trained using the gait data from a single
wearer, and the results were compared with those obtained from
existing methods. Considering that the exoskeleton must adapt
to the movement of different wearers, to test the network’s
generalization ability, the gait data of three wearers were selected
for the training set, and the data of one wearer who was not
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included in the training set were used for the test set. It took
2.405 s to complete the recognition and prediction task on 2,249
samples in the test set, which means that the prediction and
recognition task on each sample took only 1ms.

3.1.1. Gait Prediction
The results inTable 1 show that the GNN achieves the best results
in the prediction task, with the exception of the maximum error
for one wearer. Compared with the other methods, the GNN has
the best generalization ability for new human gait data. Further,
when the hyperparameter α is set to 0.4 in the experiments, the
GNN shows the top performance. As displayed in Figure 8, the
gait data of one wearer, including x-, y-, and z-axis acceleration
data, were selected to make a prediction; the horizontal parts of
the curve represent standing posture, while the oscillating parts
represent the walking and running states. We find that the GNN
produced good results.

3.1.2. Gait Recognition
As shown in Table 2, for the single wearer’s motion data, all
methods achieved good recognition results. When the GNN that
was trained on three wearers’ data received a new wearer’s gait
data as input, although it did not achieve the best performance, it
did yield a promising accuracy rate of 98.04%.

Based on its performance in the human gait prediction and
recognition tasks, we can conclude that the GNN is highly
effective in the analysis of human motion.

TABLE 1 | Comparison of prediction results of different methods on the HuGaDB

data.

Prediction task

One-wearer test Generalization test

Method Learning

rate

Epochs MAE MSE Max

error

MAE MSE Max

error

GNN

(α = 0.4)

0.001 200 0.0427 0.0144 2.06 0.091 0.0277 1.760

LSTM 0.001 200 0.0428 0.01443 2.039 0.1001 0.035 2.126

CNN 0.001 200 0.055 0.0162 1.989 0.1424 0.0474 1.978

BP 0.001 200 0.0522 0.018 2.156 0.1159 0.0406 2.150

Bold values represent the best performance.

3.2. Evaluation Results Using the Collected
Data
To ensure the reliability and fairness of the experiment, all
parameters of the model are the same as those used for the
HuGaDB dataset.

3.2.1. Gait Prediction
As shown in Figure 9, the acceleration signal of the left tibia
was selected as the prediction object. It can be seen that the
GNN achieves good prediction performance, except for some
abnormal points, which could be caused by noise. It took 1.2332 s
to complete the recognition and prediction task on 674 samples
in the test set, which means that the prediction and recognition
task on each sample took only 1.8ms.

3.2.2. Gait Recognition
The GNN was compared with other methods on the collected
dataset; the results are shown in Tables 3, 4. Clearly, the GNN
achieved the best results in most tasks. Further, the MSE value is
observed to be larger than the MAE value in the prediction task,
as shown in Table 3, indicating that some extreme outliers occur
in the data. Again, the GNN achieved superior results in this case.

Through evaluation on collected datasets, we have verified
the feasibility of the model under different data settings. After
the model has been trained, it can be deployed on the relevant
equipment to achieve real-time and online gait prediction
and recognition.

TABLE 2 | Comparison of recognition results of different methods on the HuGaDB

data.

Methods One-wearer test Generalization test

accuracy (%) accuracy (%)

RECOGNITION TASK

GNN (α = 0.4) 100 98.04

LSTM 95.67 92.78

BP 97.5 78.49

CNN 96.39 79.24

LightGBM 99.76 99.33

SVM 100 98.62

Bold values represent the best performance.

FIGURE 8 | Gait prediction by the GNN based on one-wearer gait data.
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FIGURE 9 | Acceleration prediction result using left tibia data collected from one wearer.

TABLE 3 | Comparison of the prediction results of different methods using the

collected data.

Methods Learning rate Epochs MAE MSE Max error

PREDICTION TASK

GNN 0.001 200 0.1269 0.1314 7.28

LSTM 0.001 200 0.1647 0.2885 9.56

CNN 0.001 200 0.3308 1.4429 15.28

BP 0.001 200 0.1290 0.1391 7.77

Bold values represent the best performance.

TABLE 4 | Comparison of the recognition results of different methods using the

collected data.

Methods Accuracy (%)

RECOGNITION TASK

GNN 98.81

LightGBM 98.34

SVM 97.62

BP 91.68

LSTM 88.78

CNN 85.38

Bold values represent the best performance.

4. CONCLUSIONS

This article has proposed the GNN as a model for human-
exoskeleton interaction. Comparisons of the GNN and other
methods on theHuGaDB dataset show that the GNN consistently
achieves superior performance. The results further demonstrate
that the GNN’s generalization performance is better than that
of the other methods, despite the increase in the MAE and
MSE. Because of the size of the dataset, only three wearers’

gait data were used to test the generalization ability. Including
more gait data from different groups to train the network should
enable even better prediction results to be obtained. For further
evaluation of the method, gait data on complex movements
were collected using an inertial-based motion capture device. By
evaluating the GNN on the collected data, we find that it achieves
efficient human gait prediction performance even without strong
periodicity. Generally the GNN takes <2ms to complete the task
of gait recognition and prediction. Based on these results, it can
be concluded that the GNN model can effectively recognize and
predict human motion states.
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Brain-computer interface (BCI) for robotic arm control has been studied to improve the life

quality of people with severe motor disabilities. There are still challenges for robotic arm

control in accomplishing a complex task with a series of actions. An efficient switch and a

timely cancel command are helpful in the application of robotic arm. Based on the above,

we proposed an asynchronous hybrid BCI in this study. The basic control of a robotic arm

with six degrees of freedom was a steady-state visual evoked potential (SSVEP) based

BCI with fifteen target classes. We designed an EOG-based switch which used a triple

blink to either activate or deactivate the flash of SSVEP-based BCI. Stopping flash in the

idle state can help to reduce visual fatigue and false activation rate (FAR). Additionally,

users were allowed to cancel the current command simply by a wink in the feedback

phase to avoid executing the incorrect command. Fifteen subjects participated and

completed the experiments. The cue-based experiment obtained an average accuracy

of 92.09%, and the information transfer rates (ITR) resulted in 35.98 bits/min. The mean

FAR of the switch was 0.01/min. Furthermore, all subjects succeeded in asynchronously

operating the robotic arm to grasp, lift, and move a target object from the initial position

to a specific location. The results indicated the feasibility of the combination of EOG and

SSVEP signals and the flexibility of EOG signal in BCI to complete a complicated task of

robotic arm control.

Keywords: hybrid brain-computer interface (BCI), electrooculography (EOG), robotic arm control, steady-state

visual evoked potential (SSVEP), information transfer rates (ITR)

INTRODUCTION

Brain-computer interfaces (BCIs) are designed as a bridge to construct direct communication
between the brain and external devices without relying on normal peripheral nerves and muscle
tissue (Wolpaw et al., 2000). BCIs aim to provide people with severe motor disabilities an
alternative to communicate and control external devices. Robotic arm control is one of the popular
applications of BCI. Many studies have attempted to realize BCI for robotic arm control to improve
the life quality of people with motor impairment (Pfurtscheller et al., 2010b; Gao et al., 2017; Khan
and Hong, 2017). Considering the practical use of people with motor disabilities, the system design
should focus more on the accuracy of command execution and the convenience of operation.

Electroencephalography (EEG) is one of the most widely used non-invasive BCI for its low
cost, portability and high temporal resolution. Several types of physiological activation are usually
chosen to generate the output commands of the EEG-based BCI, such as motor imagery (MI)
(Wolpaw et al., 1991), P300 (Farwell and Donchin, 1988), and steady-state visual evoked potential
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(SSVEP) (Cheng et al., 2002). Single modality which uses only
one type of input signal usually has its own limitation in
the number of commands and the classification accuracy. To
promote the application of BCIs, several researches employed
multiple modalities to improve the performance of the system by
combing the advantages of different modalities, which is named
as hybrid BCI (Pfurtscheller et al., 2010a).

As for the convenience of the system operation,
electrooculography (EOG) is a good choice for its easy to execute
and detect. EOG is the depolarization and hyperpolarization
between retina and cornea caused by different eye movements,
forming a potential difference between retina and cornea
whose amplitude is larger than that of EEG and background
physiological signals. Therefore, EOG can be easily and
accurately detected using a few of electrodes around eyes.
Compared to the conventional hybrid BCI most of which
utilized the multiple types of EEG signals, the combination of
EEG and EOG signals to construct a hybrid BCI can reduce the
workload of users and makes the operation more convenient.
The eye movements often used are blinking, winking, frowning,
and gazing. Several studies used EOG in BCI to reflect the
intention of subjects and to transmit commands to external
devices. Nakanishi and Mitsukura proposed a wheelchair
control system by using the voluntary eye blink (Nakanishi
and Mitsukura, 2013). Ma et al. introduced a multithreshold
EOG detection method and combined the EOG and P300 for
robot control which used different eye movements to obtain
the control commands and turn the stimulus on and off to
enhance the performance of the system (Ma et al., 2015). He et al.
proposed a hybrid BCI based on MI and EOG signals to operate
a web browser (He et al., 2017). Wang et al. combined MI, P300,
and EOG signals to asynchronously control a wheelchair (Wang
et al., 2014). Huang et al. used EOG for button selection, MI
for directional control, and combined computer vision for the
control of an integrated wheelchair robotic arm system (Huang
et al., 2019). Tan et al. applied autoencoder-based transfer
learning in hybrid BCI for rehabilitation robot which composed
of MI-based rehabilitation action, SSVEP-based menu selection,
and EOG-based operation confirmation of cancellation (Tan
et al., 2019).

To achieve asynchronous SSVEP-based BCI system, several
studies distinguished the control state from idle state by using
threshold criteria during the stimulus flashing (Ortner et al.,
2011; Pan et al., 2013; Zhou et al., 2020). When the stimuli
kept flashing since the start of experiments including control
and idle states, asynchronous BCI used threshold criteria were
susceptible to be incorrect activated due to the implicit attention
to the flicker stimuli. Considering the effect of stimulus flicker on
asynchronous detection, other studies applied a switch to activate
or deactivate the stimulus flicker (Pfurtscheller et al., 2010b; Gao
et al., 2017; Li et al., 2018). Pfurtscheller et al. used sequential
MI-based brain switch to turn on or off the SSVEP-based BCI
(Pfurtscheller et al., 2010b). The low classification performance
of MI lead to a FAR with 1.46 per minute. Given the high signal-
to-noise ratio (SNR) of EOG signals, Li et al. applied a single
blink synchronized with a random flashing button as the switch
of wheel chair control (Li et al., 2018). They used two consecutive

intended blinks as a start command with no false option occurred
in static state and an intended blink as a stop command with a
FAR of 0.18 per minute in the motion state. Due to the switch
detection based on the synchronization of the flicker button and
a single blink, the button was required to flash in the idle state.

In present study, to further decrease the FAR of asynchronous
SSVEP-based BCI, we designed an EOG-based switch with no
need for stimulus in idle state and combined the switch with
a timely cancel command to effectively control a robotic arm.
Through using the EOG-based switch to activate and deactivate
the flicker stimuli, there was no need for extern stimulus in
idle state which decreased visual fatigue caused by flashing
and was more in line with perception of idle state. The FAR
of the proposed asynchronous SSVEP-based BCI related only
to the detection accuracy of EOG signals. Due to the high
SNR of EOG signals, the detection of EOG is more accurately.
We selected the triple blink as the EOG-based switch due to
its ease of completion and low probability of occurrence in
normal physiological situation. Moreover, we designed a cancel
command based on a wink to make the subject be able to cancel
the execution of a current command as needed. The control
commands of the robotic arm were obtained by a SSVEP-based
BCI, considering that SSVEP has gained a lot of attention in BCI
for the reason of less training, high classification accuracy and
information transfer rates (ITR). Fifteen buttons consist of the
graphical user interface (GUI) of the SSVEP-based BCI, subjects
were asked to focus on one of the fifteen buttons in a flash cycle
to transmit corresponding control commands to the robotic arm.
Given the relatively large number of stimuli, the default setting
is to execute the feedback command, which was only canceled
when the feedback stage recognized a wink from subject to helped
control the robotic arm to complete the action more effectively.
The algorithm of detecting SSVEP used was filter bank canonical
correlation analysis (FBCCA) method (Chen et al., 2015a) which
made use of the information in harmonic frequencies to improve
classification accuracy. A multi-threshold method (Ma et al.,
2015) was adopted to detect different eye movement waveforms.
The experimental results showed the feasibility of the proposed
system and the ability to complete a complicated task with a series
of actions through the combination of EOG and SSVEP signals
for robotic arm control.

MATERIALS AND METHODS

Subjects
Fifteen healthy volunteers (8 female; age 24.9 ± 2.5 years)
with normal or corrected-to-normal vision participated in the
experiments. Eleven subjects conducted two online experiments
to evaluate the performance of the proposed hybrid EOG-SSVEP-
based BCI. Six subjects conducted comparable experiments
to evaluate the effectiveness of using EOG for command
cancellation. All subjects are undergraduate and graduate
students, and three of them have some experience with MI-based
BCI experiments, while others are naive to BCI experiments.
Before the experiments, each subject read and signed an
informed consent form approved by the Human Subjects
Institutional Review Board of Huazhong University of Science
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and Technology. Subjects obtained a small compensation for
participating in the experiments.

Data Acquisition System
In this study, EEG and EOG signals were recorded at sampling
rate of 250Hz with high-pass and low-pass filters of 0.1 and
250Hz using a multichannel EEG system from Brain Products
(BrainAmp, Germany). A total of nine electrodes, HEOR, Fp1,
Pz, PO3, POz, PO4, O1, Oz, and O2 were placed according to the
International 10–20 system (see Figure 1). Electrodes Pz, PO3,
POz, PO4, O1, Oz, and O2 were used to collect SSVEP-based
EEG raw signal, and the electrodes HEOR and Fp1 were selected
to record the EOG signal. The electrode on the forehead (AFz)
was used as ground and the reference electrode was positioned
on the vertex (Cz). All electrodes impedances were maintained
below 10 K�.

The visual stimuli were presented on a 23.8-inch LCD screen
with a resolution of 1,650 × 1,080 pixels. The refresh rate of
the screen was 60Hz. All subjects were arranged to seat in a
comfortable chair in front of the visual stimulus computer at a
distance of∼70 cm in a quiet room. The visual angle between the
robotic arm and the monitor was 45◦. This arrangement allowed
subjects to look at both the monitor and the movement of the
robotic arm.

GUI
The GUI was designed to ensure the effective and accurate
control and operation of the robotic arm. As illustrated in
Figure 2, the GUI was composed of two sessions: the switch
interface which displayed “Please blink three times rapidly to
open/close the SSVEP-based interface” in the center of the
screen to prompt the subjects to use the EOG-based switch,
and the SSVEP-based interface consisted of a 3 × 5 flashing
stimulus matrix representing 15 commands which were designed
to control the robotic arm for the grasp and move actions. Visual
flashing buttons of the SSVEP-based interface were presented
using a sampled sinusoidal stimulation method (Manyakov
et al., 2013; Chen et al., 2014). The size of each button was
150 × 150 pixels. All buttons flashed between green and blue
under black background to reduce visual fatigue (Takano et al.,
2009; Chen et al., 2017; Floriano et al., 2018). The horizontal
and vertical distance of each adjacent buttons was 150 pixels.
The range of the stimulus frequency for the fifteen visual
flashing buttons in the proposed study was chosen from 8 to
15Hz with an interval of 0.5Hz because of its relatively high
response in their corresponding SSVEP signal (Chen et al., 2018).
The stimulus paradigm of the BCI was realized by using the
Psychophysics Toolbox Version 3 (Brainard, 1997) on MATLAB
(MathWork, Inc).

As shown in Figure 2B, there were two lines of text at the top
of the SSVEP-based interface to assist the subjects in getting the
real-time status of the robotic arm. The first line of text indicated
the current programmed moving step of the robotic arm, and
the second line of text displayed the corresponding configured
position of each axis of the robotic arm. The left four columns of
buttons corresponded to different directions of themovements of
the robotic arm. And the robotic arm had a total of six axis (S1,

S2, S3, S4, S5, and S6). For a specific direction, “S1” represented
the rotation of the robotic arm in the x-y plane, and “S2,” “S3,”
and “S4” allowed the robotic arm to move to different degrees
along the z-axis. “S5” was used to rotate the claws. “S6” drove
the robotic arm to clamp or loosen. Among them, “S1+” and
“S1–” indicated the opposite direction, respectively, and others
were the same. In order to make an effective operation, two
buttons (“step+” and “step–”) were added to change the moving
step of the robotic arm movements in different direction. “R”
was utilized to return the robotic arm to its original position.
Figure 2C showed the stimulation frequency of each target.

System Configuration Description
For practical use, the design of multitask makes the control
and operation of the BCI more flexible and versatile. This
study combined the eye movements and SSVEP to realize
an asynchronous hybrid BCI. As illustrated in Figure 3, the
proposed asynchronous EOG-SSVEP-based robotic arm control
system mainly consisted of four hardware components: an EEG
acquisition device, a visual stimulus computer, a robotic arm,
and a host computer used as data online processor. The EEG
signals were recorded and transmitted to the host computer
with synchronous event triggers sent from the visual stimulation
computer for real-time preprocessing and classification. The
visual stimulation computer was not only utilized to present
the stimulus paradigms and online visual feedback but also for
translating relevant commands to the robotic arm via serial
communication protocol. Six axis (ZX-361S) and an open source
STM32 control board composed of the robotic arm which was
able to be directly and easily controlled by the SSVEP-based
interface through serial port. The manipulating angle of each axis
was configured in the range of 0◦ to 180◦, and the rotation speed
of each axis could be adjusted according to themoving step which
was set by the subjects.

The system flowchart can be seen in Figure 4. After the start
of the experiment, EEG data recorded from the subject are
first preprocessed to remove the baseline drift and the influence
of the environment. And then the SSVEP interface can be
activated only when a triple blink from the subject is detected
by the system. Otherwise the system will maintain in the switch
interface. To effectively detect EOG signal when subjects blink
three times rapidly, a calibration process was conducted before
online experiment to determine the appropriate online threshold
for each subject. When the SSVEP-based interface is activated,
the SSVEP signal and the triple blink are detected in parallel.
Subjects are allowed to blink three times rapidly when they hope
to switch off the flash of the buttons and return to the EOG-based
switch interface. If no triple blink is detected, the classification
of the SSVEP signal will be transmitted to the visual stimulus
computer as a feedback to the subject. And a robotic control
command corresponds to the specific classification result. Once
the subject wants to cancel the command sending to the robotic
arm, he or she is asked to execute a wink after the occurrence
of the feedback. If no wink is detected at the feedback phase, the
robotic arm will execute the relevant command and then another
flashing cycle begin to generate another new command.
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FIGURE 1 | Location of nine electrodes for EEG recording.

Data Processing and Detection Algorithm
In this study, the EEG and EOG data were processed and fed
back in real time. The recording data were firstly preprocessed
to minimize the impact of external environment and motion
artifacts. The 50Hz interference of power supply was eliminated
by a notch filter. The EEG signals were then re-referenced to the
arithmetic average across all recording channels. The detection
algorithm was mainly composed of two parallel parts: EOG data
analysis and SSVEP data analysis.

EOG Data Analysis
The proposed asynchronous hybrid BCI allowed subjects to
decide when to start and stop the control of the system by an
EOG-based switch which was designed by the detection of a
triple blink from the Fp1 channel. The detection is conducted
every 100ms from the beginning of the experiment. For real-time
analysis, we use a sliding window with a length of 1,200ms with
an interval of 100ms. Furthermore, a wink was used to cancel the
command in feedback phase, and the detection for wink is based
on a segment data with a length of 2000ms which contained
the feedback and remind phase from the HEOR channel. The
length of data is set in consideration of the reaction time of
subjects. The detection method for the triple blink and wink is
based on a multithreshold method descripted in Ma et al. (2015).
For each detection, first, a segment data is extracted according
to the window set for different eye movements. Then, on the
purpose of removing physiological and environmental noise, the
extracted data are bandpass filtered within the range of 0.1 to
15Hz, after that the first-order difference operation is employed
to get features of the eye movements as follows:

f ′ (n) = f (n) − f (n− 1)

Where n is the sampled points, f(n) is the relevant original
value, and f ′(n) refers to the differential value of the original

data at point n. There are several features abstracted from the
differentiated waveform for later analysis, e.g., the maximum
peak value, the minimum peak value, the maximum amplitude,
and the duration of the eye blink. Figure 5 showed the raw
and differential EOG data from channel HEOR in a trial that
prompted the subject to wink during the calibration session. The
differential EOG data of a wink contained a positive and negative
wave, and its amplitude was much larger than the fluctuation of
the EOG when no wink is performed. In order to extract the
signal from a wink, we need to set a minimum value (Vp) for
a positive wave. The signal is considered to be a positive wave
when its voltage is greater than the Vp. Likewise, we need to
set a maximum value (Vn) for the negative wave. The signal is
considered to be a negative wave when its voltage is less than the
Vn.When a positive wave followed by a negative wave is satisfied,
to avoid recognizing the rest period signal as a wink, it is also
necessary to satisfy that the amplitude of the original EOG (A) in
the time period (D) from the beginning of the positive wave to
the end of the negative wave is greater than the amplitude (Amp)
of the initial setting, and the length of the time period (D) needs
to be greater than the limitedminimum duration (Dmin) and less
than the limited maximum duration (Dmax) of the initial setting,
then it is considered as a wink. The principle of a successful eye
blink detection are as follows:

i=

{

1, if A ≥ Amp, Dmin ≤ D ≤ Dmax

0, otherwise

Where i represents the detection result of a wink. If the features
of the EOG waveform satisfy all condition, i is equal to 1
which means a successful wink detection, otherwise i is equal
to 0 manifests no intentional wink was detected. Thus, the
recognition of a wink requires the initial setting of five thresholds,
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FIGURE 2 | The GUI of EOG-based switch (A) and SSVEP-based BCI (B). In (C), a 3 × 5 flashing stimulus matrixes labeled with different stimulus frequency

represents a total of 15 commands for the robotic arm control.
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FIGURE 3 | Schematic configuration of the proposed hybrid BCI for robotic arm control.

including Vp, Vn, Amp, Dmin, and Dmax. Since the duration of
a wink does not vary much between subjects, Dmin and Dmax
were set to 0.1 and 0.6 s for all subjects, respectively. The other
three thresholds are influenced by the way each subject winks, so
it is necessary to set specific thresholds for each subject in order
to accurately identify the wink of each subject.

The basic algorithm for identifying triple blink is the same
as the detection of a wink, except that it is considered as the
triple blink only when three consecutive blinks are recognized
within a limited time window length which is set to 1,200ms.
The Figure 6 showed the raw and differential EOG data from
channel Fp1 in a trial that prompted the subject to conduct
triple blink during the calibration session. Therefore, to effective
identify the intentional eye movements in online experiments,

a calibration process was asked to conduct for each subject first
to obtain the thresholds required in the detection algorithm
mentioned above.

SSVEP Data Analysis
In this study, the flash of the SSVEP-based interface was activated
by the EOG-based switch. Once activated, the data epochs
were extracted according to the event triggers for subsequent
classification and the control of the robotic arm. Previous
studies have shown that SSVEP induced by periodic visual
stimulus contains brain response at the stimulus frequency and
its harmonic and sub-harmonic frequencies (Herrmann, 2001).
This study adopted the filter bank canonical correlation analysis
(FBCCA) method (Chen et al., 2015a,b) which can effectively
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FIGURE 4 | Flowchart of the proposed system which consists of an SSVEP-based BCI with EOG-based switch.

utilize information in harmonic frequencies to enhance the
detection of SSVEP. FBCCAmethod is mainly composed of three
steps. First, a filter bank which consists of several bandpass filters
decomposes the SSVEP data epochs into sub-band components.
Second, an canonical correlation analysis (CCA) approach which
has been widely adopted in BCI for SSVEP detection (Bin
et al., 2009) is applied to get the correlation between sub-
band components and predefined sinusoidal reference signals.
Last, appropriate feature vectors are calculated for the target
identification. In this study, we used CCA and FBCCA methods
for the classification of SSVEP signals, and applied paired t-test
for statistical analysis to evaluate the performance of CCA and
FBCCA methods.

Classification accuracy and ITR were used to evaluate the
performance of the proposed system. ITR was calculated
according to the follow equation (Wolpaw et al., 2002):

ITR=
60

T

(

log2N + Plog2P+ (1-P) log2[
1− P

N − 1
]

)

Where T is the time it takes to output a command, including
the time of the gaze shift, stimulus flicker, and feedback phase,

N is the total number of targets (N = 15), and P is the
classification accuracy.

Calibration Process
For the purpose of effectively detecting the eye movements in real
time, a calibration process is acquired to determine thresholds
of different eye movements for each subject before online
experiments. Appropriate detection thresholds allow the system
to have short response time and high accuracy which make the
system more reliable and flexible. During the calibration process,
the paradigm of a trial consists of three parts. First, a fixation
cross appears in the center of the visual stimulation screen for
1 s to prompt the subject to get ready for the task, and then the
screen shows a text of “triple blink” or “wink” for 4 s to remind
the subject to blink three times rapidly or wink in task period,
after that 1 s black screen is displayed as a rest period. A total of
20 trials for triple blink and 20 trials for wink were designed for
each subject to collect the datasets for the calculation of respective
detection thresholds and to train subjects to be familiar with the
eye movements simultaneously.

For offline processing, the recording data for triple blink and
wink were extracted from all trials for thresholds calculation. We

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2020 | Volume 14 | Article 583641169

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhu et al. Hybrid BCI Controlled Robotic Arm

FIGURE 5 | The raw and differential EOG data of a wink.

used the detection algorithm described in the EOG data analysis
to get the specific thresholds of triple blink and wink for each
subject. Specifically, we calculated the first-order difference of
the bandpass filtered data. In order to identify eye movements
in task period, a predefined experiential threshold was used for
the sampled data. The features of the eye movement waveforms
were then computed. We removed the features of unqualified
samples which only contained themotion artifacts but did not eye
movements. The thresholds of online experiments was decided
by the remaining features. The main thresholds to be obtained
were Vp, Vn, and Amp.

Experiments
Before the online experiments, a calibration session mentioned
above was carried out to determine appropriate online thresholds
for each subject. Then two online experiments were performed
using our asynchronous hybrid BCI system. One was a cue-
based experiment, and the other was a self-paced operation of the
robotic arm to conduct with a complicated task.

The Cue-Based Experiment
This experiment contained eight blocks which was designed to
assess the performance of the proposed system and train subjects

to be familiar with the procedures of the system control. Each
block consisted of two parts: the operation of the EOG-based
switch and the gaze of the cue-based SSVEP interface for robotic
arm control. Besides, in order to evaluate the capability of the use
of winking to cancel the command in feedback phase, before the
flicker of SSVEP-based interface, the clue given in GUI requested

the subjects to wink or not to wink in the feedback phase of
the current block. The clue indicating the request of a wink
appeared every 2 blocks. A total of 4 blocks contained the data
of winks. At the beginning of each block, the screen displayed

the switch interface to prompt subjects to blink three times
rapidly to activate the flash of the cue-based SSVEP interface.
And then a cue with a red triangle appeared under one of the

fifteen buttons with a pseudo-random order. There were a total
of fifteen trials for the test of the SSVEP-based interface. Each

trial with a duration of 5.5 s consisted of a remind phase for 0.6 s

and a stimulation phase for 3 s and a feedback phase for 1.9 s.
Subjects were asked to shift their gaze to the button indicated

by the cue in the remind phase, and focus on the button in the
stimulation phase to ignore the influence of other buttons as

much as possible. In the feedback phase, a button was marked

in red color according to the real-time classification. Subjects
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FIGURE 6 | The raw and differential EOG data of triple blink.

decided whether to use a wink to cancel the command based on
the clue given in the start of the GUI. If there was no wink in the
feedback phase, the corresponding command was transmitted to
the robotic arm for motion control. When all buttons flickered
once, the switch interface was appeared to remind subjects to use
a triple blink to deactivate the flash of the SSVEP-based interface
and take a break before the next block.

Asynchronous Robotic Arm Operation
In this experiment, the commands were selected by subjects to
execute a series of sequential actions without visual cues. In order
to maintain the difficulty of the experiment, the start and end
location of the target object were consistent for each subject.
Moreover, the robotic arm was reset to its initial position before
the start of each operation. For the procedures of the experiment,
in the first step, subjects used a triple blink to activate the flash
of the SSVEP-based interface when they were ready to control
the robotic arm. The paradigm of the SSVEP-based interface
was mostly the same as the cue-based experiment except that
there is no visual cues in the remind phase. Each trial started
with the appearance of all stimuli in static state without visual
cues, which lasted 0.6 s for attention and gaze shifting. Then the
stimulus began to flicker with a duration of 3 s. Last, the screen

displayed the online feedback for 1.9 s, giving the subjects a
chance to decide whether he or she will cancel the corresponding
command or not. A wink after the appearance of the feedback
could be identified as a canceled intention. Subjects were asked
to operate the robotic arm to perform a series of actions of
moving, grasping, lifting, and placing by gazing the SSVEP-
based interface. After placing the target object to the specific
location, the reset command was used to reset the robotic arm by
gazing the “R” button twice before the next operation. The task
execution time was recorded by the host computer based on the
synchronous event triggers. To avoid misidentification, the reset
command was executed only when the “R” button was detected
in two consecutive trials. During the experiment, subjects were
able to use a triple blink to deactivate the flash of SSVEP-based
interface whenever they needed to rest and adjust.

RESULTS

As for the cue-based experiment, the classification accuracy and
ITR were calculated to evaluate the performance of the SSVEP-
based BCI. The false activation rate (FAR) which meant the rate
of false triggering (Wang et al., 2014) was used to assess the
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TABLE 1 | Results of EOG in cue-based experiment.

Subject Triple blink FAR (event/min) Wink TPR (%) Wink FPR (%)

S1 0 95.56 0

S2 0 95 0

S3 0 95 1.67

S4 0 100 0

S5 0 96.67 0

S6 0.068 96.67 0

S7 0 96.67 1.67

S8 0.066 93.33 0

S9 0 95 1.67

S10 0 86.67 0

S11 0 78.33 0

Mean ± SD 0.01 ± 0.03 93.54 ± 6.00 0.46 ± 0.78

efficiency of the EOG-based switch. The FAR was calculated by
dividing the number of false identifications of the triple blink
during the stimulus flicker by the duration time of the cue-based
experiment. The false positive rate (FPR) and true positive rate
(TPR) of the wink were computed to evaluate the reliability of
the cancellation of commands. There were four blocks in the cue-
based experiment that prompted the subject for a wink to cancel
the execution of the current command after feedback occurrence
in each trial, and the other four blocks did not require a wink
in the feedback phase. Thus, the TPR was calculated by dividing
the number of winks identified in the four blocks that required a
wink in the feedback phase by the total number of trials in those
four blocks. The FPR was calculated by dividing the number of
winks identified in the four blocks that did not require a wink
during the feedback phase by the total number of trials in the
four blocks. The results in Table 1 showed that the EOG-based
switch resulted in a very low FAR with average 0.01 event per
minute for all subjects which meant that the switch had good
stability and reliability. Subjects were able to use the switch by a
triple blink to stop the flicker of buttons in idle state to reduce
visual fatigue. The detection of a wink in the feedback phase
resulted in an average TPR of 93.54% and FPR of 0.46%, which
indicated the capability of using a wink to cancel the command.
The efficient detection of the wink in the feedback stage made
it more convenient and effective for the robotic arm control.
As for SSVEP-based BCI, the results in Table 2 showed that
the proposed system worked well in robotic arm control and
acquired an average accuracy of 92.09% and the average ITR was
35.98 bit/min. Therefore, the results of the cue-based experiment
illustrated the potential of the hybrid BCI to perform complex
tasks in practical applications.

After the cue-based experiment, subjects were familiar with
the procedures of the proposed hybrid BCI, and then they
were required to asynchronously utilize the proposed system to
operate the robotic arm to perform a complicated task three
times by grasping, lifting, and moving a target object (i.e., a little
doll) from the initial position to a specific location. Figure 7
showed the process of controlling the robotic arm to complete

TABLE 2 | Results of SSVEP in cue-based experiment.

Subject Accuracy (%) ITR (bit/min)

S1 96.67 39.56

S2 100 42.62

S3 86.67 31.19

S4 93.33 36.57

S5 100 42.62

S6 85.83 30.32

S7 100 42.62

S8 83.78 28.91

S9 97.5 40.33

S10 88.33 33.44

S11 80.83 27.61

Mean ± SD 92.09 ± 7.20 35.98 ± 5.88

the specified actions. In the experiment of self-paced operation
of the robotic arm, all subjects succeeded in asynchronously
grasping and moving the target object from the initial position
to the specific location by directly controlling the robotic arm
through the hybrid BCI system. To evaluate the efficiency of
the hybrid BCI in performing the complex tasks, we recorded
the completed time and total number of commands of each
subject in the operations of the robotic arm. Table 3 showed
the results of the asynchronous experiment for operating the
robotic arm through the hybrid EOG-SSVEP-based BCI. Since
it was a complicated task for subjects to conduct, the numbers of
commands and time required to complete the task were different
for each subject, which were related to lots of factors, such as the
classification accuracy, the focus and concentration on the task,
the planning and grasp strategy, and the proficiency in the robotic
arm operation.

DISCUSSION

This study attempted to realize an asynchronous hybrid BCI
for robotic arm control through the combination of an EOG
and SSVEP signals in BCI. Compared with synchronous BCI,
the proposed system used EOG-based switch to deactivate
the flash to rest or activate the flash to operate the robotic
arm whenever they wanted which made the system more
flexible and convenient. Additionally, EOG-based timely cancel
command allowed users to control the robotic arm to complete
a complicated task with a series of actions more effectively.
Previous studies which proposed asynchronous SSVEP-based
BCI mainly used a conventional threshold method to distinguish
the control state from idle state (Cheng et al., 2002; Pfurtscheller
et al., 2010b). In these studies, the buttons in the GUI continued
to flash from the beginning of the experiment even when subjects
were in idle state, which was easy to cause visual fatigue. Several
researches designed novel methods to improve the performance
of the asynchronous SSVEP-based BCI. Pan et al. proposed
asynchronous SSVEP-based brain switches using a pseudo-key-
based approach to improve the discrimination between control
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FIGURE 7 | The process of operating the robotic arm to grasp, lift, and move a target object from (a–f).

and idle states (Pan et al., 2013). Pfurtscheller et al. used an MI-
based brain switch to achieve self-paced operation of an SSVEP-
based orthosis control system (Pfurtscheller et al., 2010b). Tomita
et al. proposed of a bimodal BCI using simultaneously NIRS and
EEG signals to estimate whether the subject is in idle or active
mode (Tomita et al., 2014).

In this study, we chose EOG as the switch signals to either
activate or deactivate the flash of the SSVEP-based interface
for asynchronous operation of the robotic arm based on the
intention of subjects. EOG-based switch in asynchronous SSVEP-
based BCI did not need for stimulus in idle state when compared
with asynchronous system used the threshold criteria. No
stimulus in idle state help relieve fatigue. Moreover, compared
with MI-based brain switch and the use of fNIRS signals, the
EOG-based switch has the advantage of short response time
and high SNR which makes it accurately distinguish the control
state from idle state to decrease the FAR in the potential
applications. But EOG-based switch also has its limitations. For
the experiments lasting for a long time, the major challenge
is that subjects may confuse the intended and unintended eye
blinks when they get fatigue. Therefore, there is a need for
future work to design a simpler and special switch mode,
and the improvement of detection algorithm for different eye
movements is also helpful. Furthermore, the present study used
the SSVEP-based BCI to select specific actions performed by
the robotic arm. SSVEP has the advantage of less training
and relative high SNR, but the challenge for SSVEP is that
it is easy to cause fatigue. In order to reduce user fatigue,
we set the buttons to flash between green and blue under
black background.

Additionally, the proposed system allowed subjects to timely
cancel the command in feedback phase by a wink to effectively
operate the robotic arm to complete a series of grasping,
moving, and lifting actions. We implemented a comparable
experiment to evaluate the effectiveness of using a wink to
cancel command. Six subjects participated in the comparable

TABLE 3 | Results of asynchronous robotic arm operation.

Subject Total number of commands Completion time (s)

S1 71 394.26

S2 51 284.14

S3 83 473.53

S4 62 349.02

S5 55 305.37

S6 104 586.25

S7 36 197.54

S8 66 371.79

S9 58 324.27

S10 81 474.47

S11 89 500.04

Mean ± SD 68.73 ± 19.38 387.33 ± 112.43

experiment. Subject S9 and S11 also participated in the previous
cue-based experiment. After conducting the calibration process
to obtain the thresholds required for EOG detection, each subject
was trained to be familiar with using the hybrid SSVEP-based
BCI system to perform the grasping task described in the section
“Asynchronous Robotic Arm Operation.” And then each subject
was asked to perform the grasping tasks with and without the
capability of using a wink to cancel the feedback commands
three times each. Considering that the execution sequence of
tasks might influence the completion of the task, three subjects
conducted the grasping tasks with a wink to cancel commands
firstly, then without a wink to cancel commands, while the
other subjects performed the grasping tasks in reverse sequence.
The average number of commands executed by the robotic arm
during the grasping task with and without a wink to cancel
the commands for each subject was shown in Figure 8. The
results indicated that using a wink to cancel the inappropriate
commands in the grasping task significantly declined the number
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FIGURE 8 | The number of commands executed by the robotic arm for each subject in the grasping task with (blue bar) and without (orange bar) the use of a wink to

cancel the feedback command. Avg indicated the average result of all subject. The error bar indicated the standard deviation. We used the paired t-test. *indicated the

p < 0.05.

FIGURE 9 | The averaged classification accuracy for 11 subjects under different window length in the cue-based experiment. The blue bar shows the results of CCA

and the yellow bar shows the results of FBCCA. Error bars are standard deviations. The asterisk indicates 1% significance level between CCA and FBCCA methods

(t-test).
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FIGURE 10 | Individual classification accuracy of CCA and FBCCA in the cue-based experiment. Nine bars in a subject indicated nine window length from 1 s (Left)

to 3 s (Right) at a step of 0.25 s. The blue bar shows the results of CCA and the yellow bar shows the results of FBCCA.

of commands executed by the robotic arm. Therefore, the wink-
based cancel command helped to improve the effectiveness of
robotic arm control.

As for the classification of the SSVEP-based BCI, we used
the FBCCA method for classification, and we compared the
classification results of the FBCCA and CCAmethods in different
window length which was shown in Figure 9. The statistical
results revealed that the classification accuracy of the FBCCAwas
significantly better than the results of the CCA at each window
lengths (p < 0.01). For the same length of stimulation time,
the classification accuracy of FBCCA is better than CCA due
to the use of harmonic frequencies information (Chen et al.,
2015a,b). Figure 10 showed the individual classification accuracy
of CCA and FBCCA methods in the cue-based experiment. The
results showed that FBCCA outperformed CCA in each window
length for all subjects, especially for those subjects with lower
classification accuracy in CCA. However, the flash of buttons in
GUI is still easy to cause user fatigue. Recently, several studies
attempted to flash the buttons at high frequency to reduce user
fatigue (Allison et al., 2010; Diez et al., 2011). Furthermore,
several studies showed that BCI combined with technologies like
computer vision and deep learning also improve the performance
of BCI and reduce the workload of users (Tayeb et al., 2018; Chen
et al., 2019). The combination of the proposed asynchronous
hybrid BCI and new technologies as future research direction will
make the BCI more convenience and user friendly.

CONCLUSION

This paper proposed a hybrid BCI which combined SSVEP-based
BCI and an EOG-based switch for asynchronous control of the

robotic arm. To decrease the FPR in asynchronous BCI, we
designed the EOG-based switch to turn on and off the stimulus
and a cancel command to effectively accomplish complex tasks.
Two online experiments verified the feasibility of the subjects
to use the EOG-based switch by a triple blink to activate or
deactivate the flash of the SSVEP-based BCI which was used to
select the control commands for the operation of the robotic arm
to complete a series of complicated movements. And subjects
were allowed to timely cancel the current command in feedback
phase for more effective control of the robotic arm. All subjects
succeeded in asynchronously operating the robotic arm to grasp,
lift, and move a target object from the initial position to a
specific location. The experimental results suggested that effective
combination of EOG and SSVEP signals was able to realize
an asynchronous hybrid BCI which allowed user to directly
communicate with the external environment based on their
own intention.
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In this paper, a three-order Taylor-type numerical differentiation formula is firstly utilized to

linearize and discretize constrained conditions of model predictive control (MPC), which

can be generalized from lower limb rehabilitation robots. Meanwhile, a new numerical

approach that projected an active set conjugate gradient approach is proposed,

analyzed, and investigated to solve MPC. This numerical approach not only incorporates

both the active set and conjugate gradient approach but also utilizes a projective

operator, which can guarantee that the equality constraints are always satisfied.

Furthermore, rigorous proof of feasibility and global convergence also shows that the

proposed approach can effectively solve MPC with equality and bound constraints.

Finally, an echo state network (ESN) is established in simulations to realize intention

recognition for human–machine interactive control and active rehabilitation training of

lower-limb rehabilitation robots; simulation results are also reported and analyzed to

substantiate that ESN can accurately identify motion intention, and the projected active

set conjugate gradient approach is feasible and effective for lower-limb rehabilitation

robot of MPC with passive and active rehabilitation training. This approach also ensures

computational when disturbed by uncertainties in system.

Keywords: rehabilitation robot, model predictive control, intention recognition, conjugate gradient approach,

projected operator

1. INTRODUCTION

The number of limb impairment patients whowere injured by stroke has increased year by year, and
this disease has also been developing in the direction of youth, seriously endangering the health of
patients (Zorowitz et al., 2013). Recently, researchers have paid a great deal of attention to robotics
to promote the development of scientific and engineering fields (Jin et al., 2017; Jin and Li, 2018;
Xie et al., 2019, 2020; Zhang et al., 2020). Compared to traditional rehabilitation training methods
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that see problems like resource consumption, high costs, and
long rehabilitation period, lower-limb rehabilitation robots
can be deemed as a more effective method for recovering
patients’ movement function. In virtue of interaction generally
existing between the lower-limb rehabilitation robot and the
patient, to avoid the a second injury in the patient during
rehabilitation training, it is essential to propose a human–
machine interactive control method, which can be utilized
to investigate and analyze the lower-limb rehabilitation robot
(Fleischer and Hommel, 2008).

Intention recognition is one of the key points for realizing
human–machine interactive control methods with lower-limb
rehabilitation robots. Generally, motion intentions include joint
angles and angular velocities, which can be recognized by
decoding bioelectrical signals. Afterwards, the intentions are
referenced by the lower-limb rehabilitation robot to complete
interaction (Ding et al., 2016; Peng et al., 2018). An appropriate
alternative is to establish a relationship between biological signals
and movements for the patient. The surface electromyography
(sEMG) can be regarded as the biological signals, which is
a micro-electrical signal that appears 20–80 ms before the
muscle contraction (Fleischer and Hommel, 2008). Involving
two approaches to construct the relationship, one of which is a
physiological muscle model, such as the Hill muscle model and
the Hammerstein muscle model (Hunt et al., 1998; Buchanan
et al., 2004), muscle forces and joint motions can be estimated
by those models from sEMG signals; meanwhile, the unidentified
physiological parameters of those models affect their applications
in rehabilitation systems (Han et al., 2015). Another is the
regression model, which can be established to connect sEMG
signals to indicate intentions in a straightforward manner, rather
than considering physiological parameters (Ding et al., 2016).
For instance, a BP neural network was exploited to describe the
relationship between sEMG signals andmotion intentions, which
was verified on able-bodied subjects and patients (Zhang et al.,
2012); least squares support vector regression was proposed to
predict periodic lower-limb motions from multi-channel sEMG
signals (Li et al., 2015). Those approaches constitute a connection
between human’s bioelectrical signals andmotion intentions, and
intention recognition can thus be realized effectively.

During the rehabilitation training, the motion trajectory,
which is a predetermined curve or recognized by sEMG signals,
is known to the rehabilitation device, and the patient is assisted
by the lower-limb rehabilitation robot to recover. However, it is
very important to avoid the risk of second injury for patients
in rehabilitation, and a human–machine interactive control
method should therefore be considered to increase security and
stability of rehabilitation robots. Recently, some classical control
methods have been developed and applied to rehabilitation
robots, for example, the rehabilitative system was realized by an
adaptive control framework and a human–machine interactive
method; meanwhile, the potential conflicts between patient and
rehabilitation robot were rejected by position-dependent stiffness
and predetermined trajectory (Zhang and Cheah, 2015). Pehlivan
et al. (2016) presented a minimal assist-as-needed controller
for rehabilitation robots, which could provide corresponding
assistance for patients during rehabilitation training.

In recent years, model predictive control (MPC) not only
considered the constraints of a non-linear system but predicted
future states. People have therefore paid more attention to
investigating it and applying it to the aerospace, automobile,
economics, and robotics fields. As the patient should be assisted
by the lower-limb rehabilitation robot within a relatively safe
motion range and protected against accidents, the MPC method
is suitable for human–machine interactive control of the lower-
limb rehabilitation robot. Generally speaking, the MPC method
is designed to optimize multivariable and constrained control
systems. On the one hand, a control sequence is created by
minimizing an optimization objective function over a finite
prediction horizon within state and control constraints. On the
other hand, the first optimal solution of non-linear optimization
problem feeds back to the non-linear systems, which is utilized
to generate the next iteration (Mayne, 2014). A key issue for
MPC is that the computational burden of real-time optimization
should be reduced through neural networks (Yan and Wang,
2014). To solve this problem is to linearize non-linear systems
and discretize the differential term. More and more people have
consequently developed some classical methods. For example,
a neural network was utilized to identify the unknown non-
linear discrete system, and then one-order Taylor expansion
formula was used to linearize the MPC problem (Pan and Wang,
2012). For non-linear continuous systems, in order to discretize
the differential term and guarantee the higher precision, a
Taylor-type numerical differentiation formula was developed and
applied to solve non-linear time-varying optimization problem
(Zhang et al., 2019), non-linear time-varying equations (Jin et al.,
2019), time-varying matrix inversion (Guo et al., 2017), future
dynamic non-linear optimization problem (Wei et al., 2019),
time-dependent Sylvester equations (Qi et al., 2020), and so on.
As the MPC problem can be seen as an optimization problem, a
Taylor-type numerical differentiation formula is thus also suitable
for solving the MPC problem online.

Another key issue of MPC to be looked at further is online
optimization. In fact, an MPC problem can be converted to
a non-linear optimization problem with equality constraints
and bound constraints and be solved to obtain the control
sequence at each sample time. There are thus numerous
algorithms proposed and studied for this non-linear optimization
problem. A complex-valued discrete-time neural dynamics is
studied by Qi et al. (2019) for solving time-dependent complex
quadratic programming (QP), which possesses high accuracy
and strong robustness but is only suitable for linear constrained
QP problems. A trust region-sequential quadratic programming
approach attempts to solve a sequence of QP subproblems of
non-linear constraint optimization problems, which is based
on trust-region technology and applied by finding the Karush-
Kuhn-Tucker (KKT) points. It is noteworthy for the approach
that the compatibility of the QP subproblem and the Maratos
effect were overcome by adding several linear equations into
the traditional trust region-SQP algorithm (Sun et al., 2019).
However, the calculation of this algorithm is increased by
the added linear equations. In addition, some troubles maybe
emerge; for instance, one is the consistency of the coefficient
matrix and the other the computational burden. Similarly,
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conjugate gradient methods can also be regarded as an effective
optimization approach that utilizes an iteration point with a steep
descent direction to generate conjugate direction and compute a
global minimum point instead of solving linear equations of trust
region-SQP algorithm (Sun et al., 2019). Some classical conjugate
gradient methods include the Hestenes-Stiefel (HS) method
(Hestenes and Stiefel, 1952), the Fletcher-Reeves (FR) method
(Fletcher and Reeves, 1964), the Polak-Ribiére-Polyak (PRP)
method (Polak and Ribière, 1969; Polyak, 1969), the Dai-Yuan
(DY) method (Dai and Yuan, 2000a), the Liu-Storey (LS) method
(Liu and Storey, 1991), and the conjugate descent (CD) method
(Dai and Yuan, 2000b), but those methods were exploited
to solve unconstrained optimization problems off-line. The
MPC problem usually contains some constraint qualifications.
Some modified conjugate gradient methods, which consider the
constrained conditions, were thus proposed by modifying the
search direction and a projected operator (Dai, 2014; Sun et al.,
2018). Besides, a projected gradient method, which projected
the gradient into the feasible region, was proposed by Rosen
(1960), and some modified conjugate gradient methods were
extended by some researchers based on the mentioned methods
(Li and Li, 2013; Dai, 2014). Those modified conjugate gradient
methods were also applied in optimal robust controllers and
robots (Sun et al., 2018). In this paper, a modified conjugate
gradient method, which will simultaneously consider equality
constraints and bound constraints, will be utilized to solve MPC
problem. Furthermore, the proposed algorithm of this paper
is further applied to the lower limb rehabilitation robots with
passive and active rehabilitation.

There are three significant contributions to be developed in
this paper. The primary one is that a new projected active set
conjugate gradient approach is developed and investigated, and
rigorous proof of feasibility and global convergence is also given.
The second is that a relationship between sEMG signals and
motion intentions established by an echo state network (ESN)
model can identify human motion state. Finally, a numerical
simulation about passive and active rehabilitation training of
lower-limb rehabilitation robot is illustrated and solved by the
proposed method. Surprisingly, the studies on the rehabilitation
training of lower-limb rehabilitation robot for MPC problem
with projected active set conjugate gradient approach are scarce.
This motivates our present study.

The rest of this paper is organized as follows: In section
2, the MPC problem is introduced, and a three-order Taylor-
type numerical differentiation formula is proposed and utilized
to discretize MPC model. In section 3, a new projected active
set conjugate gradient algorithm is developed, analyzed, and
investigated for the MPC problem, which can be generalized
from non-linear systems and lower limb rehabilitation robots.
Furthermore, the feasibility and the global convergence of this
approach are also proven. The relationship of sEMG signals
and motion intentions is established by an ESN model in
section 5; meanwhile, passive and active rehabilitation training
of lower-limb rehabilitation robot is illustrated and simulated
by the proposed method, which is based on sEMG signals with
ESN model and MPC problem. Furthermore, the disturbance
of dynamic model is also considered through simulation in

section 4. Finally, section 6 summarizes the results of lower-limb
rehabilitation robot based on the MPC technique and expects
future work.

2. FROM MPC TO NON-LINEAR
CONSTRAINED OPTIMIZATION

2.1. Problem Description
In this subsection, consider the following non-linear
control system:

{

ẋk = A(xk)xk + B(xk)uk + C(xk),

yk = h(xk),
(1)

where xk ∈ Rn is a system state variable, uk ∈ Rm is a control
input signal, A(xk) ∈ Rn×n, B(xk) ∈ Rn×m, C(xk) ∈ Rn

are the state matrix, control input matrix and constant matrix,
respectively. yk ∈ Rn denotes the system output, and h(·) is a
non-linear function.

MPC for the non-linear control system is devoted to
generating a sequence of control signals by minimizing an
objective function repeatedly over a finite moving prediction
horizon with system state and input constraints satisfied
simultaneously. For the non-linear control system (1), the MPC
problem can be described as a non-linear discrete-time optimal
control problem within input and state constraints:

min
Xk ,Uk

N
∑

i=1

∥

∥r(k+ i|k)− y(k+ i|k)
∥

∥

2

Q
+

Nu−1
∑

j=0

∥

∥1u(k+ j|k)
∥

∥

2

R

s.t. ẋ(k+ i|k) = A(k+ i|k)x(k+ i|k)+ B(k+ i|k)u(k+ j|k)

+ C(k+ i|k),

y(k+ i|k) = h(x(k+ i|k)),

x(k+ i|k) ∈ [xmin, xmax], u(k+ j|k) ∈ [umin, umax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nu,
(2)

where r(k + i|k) and y(k + i|k) are the desired output and the
predicted output for ith step ahead from kth sampling instant;
1u(k + j|k) = u(k + j|k) − u(k + j − 1|k) denotes the control
increment; N and Nu are the prediction horizon and control
horizon, respectively;Xk = {x(k+1|k), x(k+2|k), . . . , x(k+N|k)},
U
k = {u(k|k), u(k + 1|k), . . . , u(k + Nu − 1|k)}; Q ∈ Rn×n

and R ∈ Rm×m are real positive definite matrix, ‖·‖Q and ‖·‖R

are Euclidean norms defined as ‖x‖A =
√
xTAx, where A is a

square matrix.

2.2. Three-Order Taylor-Type Discretization
for MPC
In this subsection, a three-order Taylor-type numerical
differentiation formula with truncation error of O(h2) is
constructed for the first-order derivative approximation and is
exploited to discretize MPC problem (Jin and Zhang, 2014).
To obtain the higher-order truncation error, Guo et al. (2017)
proposed a novel Taylor-type numerical differentiation formula
for the time-varying matrix inversion.
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Lemma 1. Assume that xk ∈ C4[a, b] and xk−4, xk−3, xk−2,
xk−1, xk, xk+1 ∈ [a, b], h denotes the sampling gap. Subsequently,
a three-order Taylor-type numerical differentiation formula can
be obtained as follows:

ẋk ≈
13xk+1 − 7xk + 2xk−1 − 10xk−2 + xk−3 + xk−4

24h
(3)

with a truncation error ofO(h3).
Proof. See Guo et al. (2017).
According to the Lemma 1, the non-linear control system (1)

can be discreted as







xk+1 = ( 2413hG
k + 7

13 I)x
k − 2

13x
k−1 + 10

13x
k−2 − 1

13x
k−3

− 1
13x

k−4 + 24
13hB

kuk + 24
13hZ

k

yk = h(xk),
(4)

where f = A(x)x+B(x)u+C(x),Gk = ∂f
∂x (x

k, uk), Bk = B(xk) =
∂f
∂u (x

k, uk), Zk = f(xk, uk)−Gkxk − Bkuk, I is an identity matrix.
Therefore, the MPC problem (2) can be rewritten in the

following form:

min
Xk ,Uk

N
∑

i=1

∥

∥r(k+ i|k)− y(k+ i|k)
∥

∥

2

Q
+

Nu−1
∑

j=0

∥

∥1u(k+ j|k)
∥

∥

2

R

s.t. xi+1 = (
24

13
hGi +

7

13
I)xi −

2

13
xi−1 +

10

13
xi−2 −

1

13
xi−3

−
1

13
xi−4 +

24

13
hBiuj +

24

13
hZi,

yi = h(xi),

xi ∈ [xmin, xmax], u
j ∈ [umin, umax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nu,
(5)

where xi = x(k + i|k), uj = u(k + j|k), and yi = y(k+ i|k), and
another symbols see Appendix.

In general, the MPC problem can be solved by the conjugate
gradient approach (Šantin and Havlena, 2011), and a sequence

u(i) : = [u
(i)
0 ; u

(i)
1 ; . . . ; u

(i)
Nu−1]

can be regarded as an initial control input sequence of the MPC
problem at Step i. In addition, the first element u∗0 of optimal
solution u∗ can be seen as a feedback control law for non-linear
control system (1).

For simplicity, the MPC problem (5) is equivalent to the
following non-linear optimization problem with linear equality
constrain and bound constrain:

min
x

Ŵ(x)

s.t. 3x = b, x ∈ �,
(6)

where x = (x, u), Ŵ(·) is a continuously differentiable function,
3 is a constant matrix, b is a constant vector, and � = {x =

(x, u)|xmin ≤ x ≤ xmax, umin ≤ u ≤ umax} is a bound
constrained set.

3. PROJECTED ACTIVE SET CONJUGATE
GRADIENT ALGORITHM FOR NON-LINEAR
CONSTRAINED OPTIMIZATION

In this section, a projected active set conjugate gradient
algorithm is proposed to solve the following non-linear
optimization problem:

min
x

Ŵ(x)

s.t. 3x = b,

x ∈ � = {x|s ≤ x ≤ t},

(7)

and the convergence of the proposed approach is developed,
investigated, and analyzed as follows.

3.1. Projected Active Set HS-Type
Conjugate Gradient Algorithm
To further analyze projected active set conjugate gradient
algorithm, some basic definitions and notions should be revisited
in this subsection. Let x∗ be a stationary point of (7), and consider
the following active set:

H∗ = {i : x∗i = si or x
∗
i = ti}.

Furthermore, define

L∗ = {1, 2, . . . , n} \H∗,

as a set of free variables, where L∗ is the complement of H∗.
Therefore, the KKT conditions for the problem (7) can be
converted as follows:

{

(si + ti − 2x∗i )∇Ŵi(x
∗) ≥ 0, if i ∈ H∗,

∇Ŵi(x
∗) = 0, if i ∈ L∗,

where ∇Ŵi(x) is the ith element of the gradient for Ŵ at x.
According to the literature (Kanzow and Klug, 2006), H(x) and
L(x), which approximate the active set and the free variables set
can be defined as follows:

H(x) = {i : si ≤ xi ≤ si + ψ(x) or ti − ψ(x) ≤ xi ≤ ti},

L(x) = {i : si + ψ(x) < xi < ti − ψ(x)},

where ψ(x) = min{ξ (x),ψ0} and ξ (x) =
√

∥

∥x− P�(x−∇Ŵ(x))
∥

∥, P�(·) is a projection function defined

as P�(x) = argmin
ω∈�‖x − ω‖2. ψ0 is a positive scalar, which

should be sufficiently small. Furthermore, it should satisfy the
following inequality:

0 < ψ0 < min
i=1,2,...,n

1

3
(si − ti).

In what follows, let xk be the point of iteration k, and for
simplicity, we abbreviate H(xk) and L(xk) as Hk and Lk.
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According to the literature (Cheng et al., 2014), the active set Hk

will be divided into the following three parts:

Hk
1 = {i : xki = si or x

k
i = ti, and (si + ti − 2xki )∇Ŵ

k
i ≥ 0},

Hk
2 = {i : si ≤ xki ≤ si + ψ(x

k) or ti − ψ(x
k) ≤ xki ≤ ti, and

(si + ti − 2xki )∇Ŵ
k
i < 0},

Hk
3 = {i : si < xki ≤ si + ψ(x

k) or ti − ψ(x
k) ≤ xki < ti, and

(si + ti − 2xki )∇Ŵ
k
i ≥ 0}.

(8)
It is inferred that a search direction dk can be constructed as a
feasible direction of Ŵ at xk if and only if dki ≥ 0, i ∈ {i : xki =

si and ∇Ŵk
i ≥ 0} and dki ≤ 0, i ∈ {i : xki = ti and ∇Ŵk

i ≤ 0}.

It is demonstrated that the active set Hk
1 can be seen as the

equality constraints of (7), and according to Rosen’s gradient
projection method (Rosen, 1960; Dai, 2014), an active set
projection matrix is given as follows:

P
k = Ik − (Mk)T(Mk(Mk)T)−1Mk,

Mk =

[

Ek

3

]

,
(9)

where Ek satisfies Ek
(L,·)

xk = sL and Ek
(U,·)

xk = −tU , L = {i : xki =

si and (si + ti − 2xki )∇Ŵ
k
i ≥ 0}, U = {i : xki = ti and (si + ti −

2xki )∇Ŵ
k
i ≥ 0},

Hence the search direction dk is defined by

dk =

{

−P
k∇Ŵk, if k = 0 or ∃i ∈ Hk

1 ∪Hk
2 ∪Hk

3 ,

−P
k∇Ŵk + βHS

k
dk−1 − ζkẑ

k−1, if k ≥ 1 and ∀i ∈ Lk,

(10)
where

β
HS
k =

(Pk∇Ŵk)Tzk−1

(dk−1)Tvk−1
, ζk =

(∇Ŵk)Tdk−1

(dk−1)Tvk−1
,

zk−1 = ∇Ŵk −∇Ŵk−1, ẑk−1 = P
kzk−1,

vk−1 = zk−1 + γwk−1, γ = γ0 +max{0,−
(wk−1)Tzk−1

(wk−1)Twk−1
},

wk−1 = xk − xk−1,

and γ0 is a positive constant. In what follows, the search direction
dk can be rigorously proved as a feasible descent direction of Ŵ at
xk for non-linear optimization problem (7).

Theorem 1. Suppose that xk ∈ {x|3x = b, x ∈ �} holds, and
xk is not a stationary point of (7), dk is defined by (10), then the
search direction dk is a feasible descent direction of Ŵ at xk for
non-linear optimization problem (7).

Proof. According to (8) and (10), and as per definition of the
projection matrix, the following two cases can be generalized.

Case 1. If k = 0 or ∃i ∈ Hk
2 ∪ Hk

3 , then the inequality can be
directly computed as follows:

(∇Ŵk)Tdk = (∇Ŵk)T(−P
k∇Ŵk) = −‖P∇Ŵk‖2 ≤ 0. (11)

Case 2. If k ≥ 1 and ∀i ∈ Lk, then the following inequality can
be directly obtained:

(∇Ŵk)Tdk = (∇Ŵk)T(−P
k∇Ŵk + βHSk dk−1 − ζkẑ

k−1)

= −‖Pk∇Ŵk‖2 +
(Pk∇Ŵk)Tzk−1

(dk−1)Tvk−1
(∇Ŵk)Tdk−1

−
(∇Ŵk)Tdk−1

(dk−1)Tvk−1
(∇Ŵk)TP

kzk−1

= −‖Pk∇Ŵk‖2 + (dk−1)T
∇Ŵk(∇Ŵk)TP

kzk−1

(dk−1)Tvk−1

−
(dk−1)T∇Ŵk

(dk−1)Tvk−1
(∇Ŵk)TP

kzk−1

= −‖Pk∇Ŵk‖2 ≤ 0.
(12)

The search direction dk is therefore a descent direction of Ŵ at xk.
Now, the proof of the feasibility for dk is shown as follows, and

it is further inferred that

Mk(Pk∇Ŵk) = Mk(I − (Mk)T(Mk(Mk)T)−1Mk)∇Ŵk = 0.

If Ek is not an empty set, it can be seen that

Mkdk = Mk(−P
k∇Ŵk) = 0. (13)

If Ek is an empty set, thenMk = 3. Owing to Equation (10), then
the following equation can be generalized as

Mkdk = Mk(−P∇Ŵk + βHSk dk−1 − ζkẑ
k−1)

= −3P∇Ŵk + βHSk 3dk−1 − ζk3P(∇Ŵk −∇Ŵk−1)

= β
HS
k 3dk−1.

(14)
If k = 0 or ∃i ∈ Hk

1 ∪Hk
2 ∪ Hk

3 , then

3dk = −3P
k∇Ŵk = 0. (15)

Owing to Equations (13)–(15), then we have Mkdk = 0 for all
k ≥ 0. It is also inferred that dk is a feasible descent direction for
non-linear optimization problem (7). 2

According to the above analysis and investigation, the
projected active set HS-type conjugate gradient algorithm
(PASHS) is developed, analyzed, and verified for non-linear
optimization problem (7).

Algorithm 1. (PASHS)

Step 0. Initialize x0 ∈ {x|3x = b, x ∈ �} and projection
matrixP

0, let k = 0 and positive constants ε,ψ0, γ0, η0, δ, ρ < 1.

Step 1. If
∥

∥

∥
P�(x

k − P
k∇Ŵk)− xk

∥

∥

∥
≤ ε or k > kmax, stop;

else go to Step 2.
Step 2. Compute dk by (10).
Step 3. Determine a stepsize ηk = max{η0ρ

j|j = 0, 1, 2, . . . }
by Armijio-type line search rule:

Ŵ(xk + ηkd
k) ≤ Ŵ(xk)+ δηk(P

k∇Ŵk)Tdk. (16)

Step 4. Let xk+1 = P�(x
k + ηkd

k), and k : = k+ 1, go to Step 1.
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Remark 1. A projected matrix P
k is computed by an active

set, which ensures iteration point satisfying equality and bounded
constraints of non-linear optimization problem (7). Assume that
if the component the active set Hk is not contained in the
previous iteration point xk, the search direction dk is updated
by the second formula of (10); otherwise, the search direction
dk is generated by the projected gradient method, which is the
first formula of (10). Furthermore, combining with Armijio-type
line search, it can be proved that the proposed PASHS algorithm
guarantees the feasibility and global convergence for non-linear
optimization problem (7).

3.2. Convergence Analysis
In this subsection, to further investigate the convergence of the
Algorithm 1 (PASHS) for non-linear optimization problem (7),
some basic assumptions should be revisited and introduced in
this subsection.

Assumption 1. The level set

D = {x ∈ �|Ŵ(x) ≤ Ŵ(x0),3x = b} (17)

is bounded.
Assumption 2. Given that the objective function Ŵ :Rn → R

is continuously differentiable on an open set N ⊆ D and its
gradient is Lipschitz continuous, there exists a positive constant
W > 0 that satisfies the following inequality:

‖∇Ŵ(x)−∇Ŵ(y)‖ ≤ W‖x− y‖, ∀x, y ∈ N. (18)

As {Ŵ(xk)} is a descending sequence, it is clear that the sequence
{xk} generated by Algorithm 1 (PASHS) is contained in D. In
addition, according to Assumption 1, it is inferred that the
gradient of Ŵ is bounded, i.e., there exists a positive constant
γ > 0 such that

‖∇Ŵ(x)‖ ≤ γ , ∀x ∈ D. (19)

Since thematrixP is a projectedmatrix, suppose that there exists
a positive constant C > 0, and the following inequality can be
obtained:

‖P∇Ŵ(x)‖ ≤ C, ∀x ∈ D. (20)

Lemma 2. Assume that the iterative sequence {xk} generated
by Algorithm 1 (PASHS). The step size ηk is obtained via the
Armijo line search rule (16), and then there exists a positive
constant c0 > 0 such that the following inequality holds

ηk ≥ c0
‖Pk∇Ŵk‖2

‖dk‖2
(21)

for sufficiently large k.
Proof. According to Armijio-type linear search rule (16), the

following inequality can be obtained:

∞
∑

i=1

−δηk(P
k∇Ŵk)Tdk ≤ Ŵ(x0)− Ŵ(x∗) < +∞. (22)

Combined (11) and (12), and the properties of the projected
matrix P

k, the inequality can be generalized as follows

∞
∑

i=1

ηk‖P
k∇Ŵk‖2 =

∞
∑

i=1

ηk(∇Ŵ
k)TP

k∇Ŵk

= −

∞
∑

i=1

ηk(P
k∇Ŵk)Tdk < +∞. (23)

Now, the following two cases can be taken into account and be
utilized to prove (21).

Case 1: If ηk = 1, according to Equations (11), (12), and
(23), and by applying the Cauchy-Schwarz inequality, we can
derive that

‖Pk∇Ŵk‖2 = |(Pk∇Ŵk)Tdk| ≤ ‖Pk∇Ŵk‖ · ‖dk‖.

Thus, the inequality (21) holds.
Case 2: If ηk < 1, assume that the Armijio-type line search

rule is not true, there thus exists a positive constant ρ−1
ηk such

that the following inequality holds true:

Ŵ(xk + ρ−1
ηkd

k)− Ŵ(xk) > δρ
−1
ηk(P

k∇Ŵk)Tdk. (24)

Using the mean-value theorem and Assumption 1, there exists a
positive constant ξk ∈ (0, 1) such that xk + ξkρ

−1
ηkd

k ∈ D and

Ŵ(xk + ρ−1
ηkd

k)− Ŵ(xk) =ρ−1
ηk∇Ŵ(x

k + ξkρ
−1
ηkd

k)Tdk

=ρ−1
ηk(∇Ŵ

k)Tdk + ρ−1
ηk(∇Ŵ(x

k

+ ξkρ
−1
ηkd

k)−∇Ŵk)Tdk

≤ ρ
−1
ηk(∇Ŵ

k)Tdk +Wρ
−2(ηk)

2‖dk‖2.
(25)

Combining inequality (24) and Theorem 1, the following
inequality can be directly computed as

ηk ≥
(1− δ)ρ

W

‖Pk∇Ŵk‖2

‖dk‖2
. (26)

Let c0 = min{1, (1− δ)ρ/W}, the conclusion is true. 2

Lemma 3. Suppose that Assumption 2 holds. The iterative
sequence {xk} is generated by Algorithm 1 (PASHS), and then the
search direction dk defined by (10) is bounded, in other words,
there exists a positive constantM ≥ 0 such that

‖dk‖ ≤ M,∀k ∈ N
∗. (27)

Proof.According to the Assumption 2 andAlgorithm 1 (PASHS),
the following inequality can be directly obtained:

(dk−1)Tvk−1
> γ0ηk−1‖d

k−1‖2.
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In addition, in term of the search direction (10) and Theorem 1,
the following inequality can be derived as

‖dk‖ ≤‖Pk∇Ŵk‖ + |βHSk | · ‖dk−1‖ + |ζk| · ‖P
kzk−1‖

≤‖P∇Ŵk‖ +
‖(Pk∇Ŵk)Tzk−1‖

γ0ηk−1‖dk−1‖2
‖dk−1‖

+
‖(Pk∇Ŵk)Tdk−1‖

γ0ηk−1‖dk−1‖2
‖Pkzk−1‖

≤‖Pk∇Ŵk‖ +
‖(Pk∇Ŵk)‖

γ0ηk−1‖dk−1‖
(‖zk−1‖ + ‖Pkzk−1‖)

≤‖Pk∇Ŵk‖ +
‖(Pk∇Ŵk)‖W(1+ λmax(P

k))

γ0

≤C(1+
W(1+ λmax(P

k))

γ0
).

(28)
where λmax(P

k) is the maximum eigenvalue of the projected
matrix P

k. 2

Theorem 2. Suppose that Assumption 1 holds. The iterative
sequence {xk} is generated by Algorithm 1 (PASHS), and then

lim
k→∞

inf ‖Pk∇Ŵk‖ = 0. (29)

Proof. According to (21), there exists a positive constant c0
such that

ηk‖d
k‖2 ≥ c0‖P

k∇Ŵk‖2. (30)

Combining Algorithm 1 with Lemma 3, it implies that

lim
k→∞

ηk‖d
k‖2 = 0.

The following inequality can be generalized as k → ∞,

0 = lim
k→∞

ηk

c0
‖dk‖2 ≥ lim

k→∞
inf ‖Pk∇Ŵk‖

2 ≥ 0. (31)

Hence limk→∞ inf ‖Pk∇Ŵk‖ = 0. 2

Remark. Owing to Theorem 2, it can be seen that the
Algorithm 1 (PASHS) is globally convergent for the non-linear
optimization problem (7). Combing the ESN learning algorithm
and Algorithm 1 (PASHS), the optimal controller of the MPC
problem can thus be solved rapidly; this is used for the patients
through a lower-limb rehabilitation robot with passive and active
rehabilitation training.

4. SIMULATIONS AND RESULTS

In this section, the proposed PASHS algorithm with MPC
technique is applied to the passive rehabilitation training of the
two-link lower-limb rehabilitation robot. Moreover, combining
the ESN model and intention recognition, the MPC and PASHS
algorithm also are utilized to active rehabilitation training.

FIGURE 1 | The schematic of two-link lower-limb rehabilitation robot.

4.1. Two-Link Lower-Limb Rehabilitation
Robot With MPC
The general dynamicmodel of two-link lower-limb rehabilitation
robot is shown as follows (He et al., 2015):

D(q)q̈+ C(q, q̇)q̇+ G(q) = τ , (32)

where q, q̇, q̈ ∈ R2 are angle, angular velocity and angular
acceleration of hip and knee, respectively; τ ∈ R2 is a torque
for the rehabilitation robot, which represents admissible control
inputs; D(q) ∈ R2×2 is a positive-definite inertia matrix;
C(q, q̇) ∈ R2×2 is a centrifugal and Coriolis term; and G(q) ∈ R2

is related to gravity term. The state space expression of (32) can
be described as























[

q̇

q̈

]

=

[

0 I2×2

0 −D−1(q)C(q, q̇)

] [

q

q̇

]

+

[

0

D−1(q)

]

τ

−

[

0

D−1(q)G(q)

]

,

y = h(q),

(33)

where y ∈ R2 is the end-effector position coordinates, h(·) is
a function mapping angles of the rehabilitation robot to the
position coordinates. The schematic of a two-link lower-limb
rehabilitation robot is shown in Figure 1.

As shown in Figure 3, θ1 = q1, θ2 = q2, C and r represent
the the hip joint angle, the knee joint angle, center, and radius
of the reference trajectory (which can be defined as a circle),
respectively. The lengths of the links are l1 = 0.35 m and
l2 = 0.32 m; the mass and inertia of two links are m1 = 1.8
kg, m2 = 1.65 kg and I1 = 1

4m1l
2
1 kg·m, I2 = 1

4m2l
2
2 kg·m,

respectively; the gravity constant is g = 9.801 m/s2. In addition,
the center and radius areC = (0.5, 0) and r = 0.1 m, respectively.

The parameters of the algorithm 1 (PASHS) are chosen
as follows:

ε = 10−6, ψ0 = 10−5, γ0 = 10−3, δ = 0.0001, ρ = 0.5, M0 = 3,

and the initial step size is selected as (Dai, 2011)

η0 =

∣

∣

∣

∣

∣

−γ0∇Ŵ
kTdk

dkT(∇Ŵ(xk + γ0dk)−∇Ŵk)

∣

∣

∣

∣

∣

.
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FIGURE 2 | The simulation results with passive rehabilitation training, (A) the angles of lower-limb rehabilitation robot with constraints (34), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (34).

FIGURE 3 | The simulation results with passive rehabilitation training, (A) the phase portraits for angles of lower-limb rehabilitation robot with constraints (34), (B) the

phase portraits for angular velocities of lower-limb rehabilitation robot with constraints (34).

Due to the proposed MPC model in section 3, the parameters of
the MPC will be defined as follows:

Q = R = I2×2,

the prediction horizon is N = 5 and the control horizon is
Nu = 5; the sampling time is h = 0.01s. The initial state
of end-effector position coordinates is y0 = (0.6, 0), and the
motion-task duration is 25 s with 5 s per cycle. The following
experiments are conducted under different constraints of torque:
while the hip joint angle and the angular velocity are constrained
in interval

[

− 2
3π ,

2
3π

]

, and [−π ,π], the knee joint angle and

the angular velocity are constrained in interval
[

− 4
3π , 0

]

, and

[−π ,π] (Jin and Zhang, 2011).

4.2. The Passive Rehabilitation Training
With Different Torques Constraints
Example 1: Consider the following control torques constraints

− 15 N·m ≤ τ1, τ2 ≤ 15 N·m, (34)

where τ1 and τ2 correspond to the torques of the hip joint
and the knee joint of a two-link lower-limb rehabilitation robot,

respectively. The numerical results of this situation are shown in
Figures 2–4.

Figure 2 represents the curves of angle and angular velocities
of the hip and knee for the two-link lower-limb rehabilitation
robot, and Figure 3 is the limit cycles of angle and angular
velocities. From Figures 2, 3, it is further inferred that the
angles and angular velocities of the lower-limb rehabilitation
robot present the periodic properties; it also verifies that the
proposed approach is feasible and effective. Figure 4A denotes
the control torque vs. time, and the hip joint and knee joint
of the rehabilitation robot can be controlled by torques τ1
and τ2, respectively. As shown in Figure 4A, it can be seen
that the control torques change periodically for two-link lower-
limb rehabilitation robot, which can help the injured patients
to do rehabilitation training stably via Algorithm 1 (PASHS)
with MPC technique. Figure 4B represents the tracking errors
of the real position of end-effector and desired trajectory,
while ex and ey are the tracking errors of horizontal ordinate
and longitudinal coordinates. As shown in Figure 4B, the
absolute value of the tracking errors is also smaller than 0.002
m, which also infers that the lower-limb rehabilitation robot
could implement the passive rehabilitation training efficiently
by the desired trajectory and MPC technique. It thus further
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FIGURE 4 | The simulation results with passive rehabilitation training, (A) the torques of lower-limb rehabilitation robot with constraints (34), and (B) the tracking errors

of lower-limb rehabilitation robot with constraints (34).

FIGURE 5 | The simulation results with passive rehabilitation training, (A) the angles of lower-limb rehabilitation robot with constraints (35), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (35).

demonstrates that the theoretical analyses are feasible and
reliable. Besides, it is very important to take into consideration
the energy consumption of rehabilitation training in real-world
rehabilitation implementations, therefore, control torques should
be constrained within relatively reasonable bounds. As shown
in Figure 4A, the optimal control input is obtained by online
solving of the MPC problem via Algorithm 1 (PASHS). However,
it can be seen from Figure 4A, that the bounded condition is too
large for non-linear optimization problem with MPCmodel, that
is, the real-time control torque τ1 is around 13 N·m. In other
words, to achieve the low-energy consumption, the boundary
constraints can be reduced to around 10 N·m, which are utilized
to control the two-link lower limb rehabilitation robot to realize
the rehabilitation cycle movement of the injured lower limb.

Example 2: Consider the following control torques with
constraint conditions

− 10 N·m ≤ τ1, τ2 ≤ 10 N·m. (35)

The numerical results of this situation are shown in Figures 5–7.
Figure 5 represents the curves of angle and angular velocities

for the two-link lower-limb rehabilitation robot, and Figure 6

shows the limit cycles of angle and angular velocities, respectively.
As can be seen from Figures 5, 6, the angular velocities of the

lower limb rehabilitation robot are affected by the control torques
with constraint conditions limited to−10–10 N·m. However, the
injured limb can stably complete rehabilitation training activities
via the algorithm 1 (PASHS) with MPC technique. Figure 7A
shows the control torque vs. time, and it can be seen that the
control input τ1 could be constrained in between −10 and 10
N·m, and the smoothness of angular velocities maybe influenced
by the constraint conditions. However, it further infers that
the stability can be maintained for the two-link lower limb
rehabilitation robot. Figure 7B plots the tracking errors of the
real trajectories of end-effector and desired trajectories, while
ex and ey are the same with the definition of Example 1. The
proposed approach is therefore suitable for passive rehabilitation
training of lower-limb rehabilitation robot.

Example 3: This example shows a comparison of different
algorithms with the MPC solution.

In order to compare the advantages of PASHS algorithm,
sequential quadratic programming (SQP) is selected to compare
with our algorithm (Sun et al., 2020). The simulation problem is
chosen as example 1, and the results are as follows:

Figure 8A represents the horizontal ordinate tracking errors
ex of lower-limb rehabilitation robots with passive rehabilitation
training, and Figure 8Bmeans the longitudinal ordinate tracking
errors ey. From those two figures, it can be seen that the
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FIGURE 6 | The simulation results with passive rehabilitation training, (A) the phase portraits for angles of lower-limb rehabilitation robot with constraints (35), and

(B) the phase portraits for angular velocities of lower-limb rehabilitation robot with constraints (35).

FIGURE 7 | The simulation results with passive rehabilitation training, (A) the torques of lower-limb rehabilitation robot with constraints (35), and (B) the tracking errors

of lower-limb rehabilitation robot with constraints (35).

FIGURE 8 | The simulation results with PASHS and SQP, (A) the tracking errors of horizontal ordinate, (B) the tracking errors of longitudinal coordinates, and (C) the

running time of algorithm at every time.

tracking errors of SQP are almost > 0.1 m at every iteration,
and sometimes the errors were closed to 1m. This is because
an optimal solution for SQP may not be in a feasible region.
However, the tracking errors of PASHS are always smaller
than 0.01 at every time. The optimal solution of the PASHS

algorithm was satisfied by the constraint conditions because
of the projective matrix and active set. PASHS was therefore
more suitable for the MPC of lower-limb rehabilitation robots.
Figure 8C is the running time of two algorithms at every
optimization; according to this figure, the running time of PASHS
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FIGURE 9 | The simulation results with 1.5 times parameters’ perturbation, (A) the angles of lower-limb rehabilitation robot with constraints (34), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (34).

FIGURE 10 | The simulation results with 1.5 times parameters’ perturbation, (A) the torques of lower-limb rehabilitation robot with constraints (34), and (B) the

tracking errors of lower-limb rehabilitation robot with constraints (34).

was nearly always smaller than 0.2 s, and the SQP running time
was around of 0.4 s. This can account for the real-time computing
capability of PASHS algorithm with the MPC technique.

Example 4: The example with parameters’ perturbation
1.5 times.

This example is reported the influence of uncertainties in
system, and the 1.5 times parameters’ perturbation is introduced
into lower-limb rehabilitation robots. During the simulation, the
parameters are selected as l1 = 0.35 m, l2 = 0.32 m,m1 = 2.7 kg,
m2 = 2.475 kg, I1 = 0.0827 kg·m, and I2 = 0.0634 kg·m. Other
conditions are the same as Example 1. The results of this example
are shown as follows.

Figures 9A,B represent the angles and angular velocities
of lower-limb rehabilitation robot with 1.5 times parameters’
perturbation, respectively. As can be seen from these figures,
the angles and angular velocities are changed periodically and
stably, although the model is disturbed. Figure 10A is the
torques of lower-limb rehabilitation robot which is subjected
to 1.5 times parameter perturbation, and Figure 10B represents
the horizontal ordinate tracking errors ex and the longitudinal
ordinate tracking errors ey of lower-limb rehabilitation robots
with 1.5 times parameters’ perturbation. From Figure 10A, we

can find that torques are limited between −15 and 15 N·m
because the mass of lower-limb rehabilitation robot is added.
However, the absolute value of tracking errors are smaller than
0.0015 m according to Figure 10B. The PASHS algorithm could
thus solve MPC problems of the lower-limb rehabilitation robot
with uncertainties in the model, and high accuracy could also
be guaranteed.

4.3. sEMG-Based Active Rehabilitation
Training
In this subsection, the active intention of injured patients is
regarded as one of the most important rehabilitation steps.
Furthermore, the joint trajectories of injured lower limb can
be identified via the mentioned ESN model based on the
active motion intention, which can be seen as the desired
trajectories of lower limb rehabilitation robots. A numerical
simulation is illustrated and analyzed for two-link lower limb
rehabilitation robot with ESN model and MPC technique. The
technical diagram of sEMG-based active rehabilitation training
and intention recognition is shown in Figure 11.

The active rehabilitation training consists of two parts. The
first one is intention recognition, which collects and preprocesses
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FIGURE 11 | The flowsheet of intention recognition and rehabilitation training.

raw sEMG signals, and then motion intention is identified by
the ESN model. The details of first part is described in the
following description.

During the data acquisition stage, a subject sits on a chair
and swings the shank periodically. The sEMG signals of seven
muscles of leg, which include the vastus rectus muscle (VR),
semitendinosus muscle (SM), tibialis anterior muscle (TA),
gastrocnemius muscle (GM), vastus lateralis muscle (VL), biceps
muscle of thigh (BM), and extensor pollicis longus (EP), need
to be recorded through data acquisition unit, respectively (Tong
et al., 2014). The acquisition device is BIOPAC MP160, which
can simultaneously capture eight channels of sEMG signals at
the default 2 kHz sample rate. Angles and angular velocities of
knee and ankle are recorded by inertial measurement unit (IMU),
which selects 100 Hz as the sample rate. Due to the sample rate of
sEMG signals is higher than IMU, the sub-sampling technology
should be implemented by (Zhang et al., 2012)

sEMGpre(k) = sEMG(20k− 19),

where sEMGpre(k) represents the sEMG signals after sub-
sampling at k times. The position of the electrodes and raw sEMG
signals are shown in Figure 12.

We then use neural network technology to establish the
relationship between sEMG signals and motion state. This is due
to the original sEMG signals being contaminated by different
measurement noises, such as direct current bias and baseline
noise (Law et al., 2011). The raw sEMG signals need to be
preprocessed, which includes a high-pass filter with 50 Hz high
cut-off frequency, full-wave rectification technology, low-pass
filter with 5 Hz low cut-off frequency and normalized technology
(Han et al., 2015). The sEMG signals can be seen as the input
signals of neural network when the noise of raw sEMG signals is
eliminated by the mentioned methods.

The ESN model is a kind of recurrent neural network that
is composed of an input layer, a hidden layer where neurons

interconnect randomly, and an output layer. The network
architecture is depicted in Figure 13.

The mathematical model of the ESNmodel can be obtained as

X
k+1 = F(MXX

k +MUU
k+1 +MFY

k),

Y
k+1 = MYX

k+1,
(36)

where F(·) is an activation function and commonly generates
from F(x) = tanh(x); MX ∈ Rl×l, MU ∈ Rl×n, MF ∈ Rl×m,
MY ∈ Rm×l are the internal connection weight of the hidden
layer, the input layer to the hidden layer connection weight
matrix, the output layer to the hidden layer feedback weight
matrix, and the hidden layer to the output layer connection
weight matrix; X and Y are the echo state and output vectors
of the ESN model, respectively. Assume thatMX ,MU , andMF

are unmodifiable during the ESNmodel training (Pan andWang,
2012). The ESN algorithm with off-line learning is summarized
as follows.

Algorithm 2. (ESN learning algorithm)

Step 0. Initialize echo state X 0 and randomly obtain a matrix

M. Normalize M̂ = M/|λmax| and generate MX = αX M̂,
MU ∈ Rl×n,MF ∈ Rl×m, where αX < 1 is a spectral radiuses of
MX and |λmax| is a spectral radius ofM.

Step 1. Compute the echo state by

X
k+1 = F(MXX

k +MU Û
k+1 +MF Ŷ

k)

for k = 0, 1, . . . ,N, where Ûk and Ŷk are the kth input and output
reference data from the training dataset.

Step 2. Collect the reservoir state X and target state Y

as follows:

X = [X 1, . . . ,XN],Y = [Ŷ1, . . . , ŶN].

Step 3. Off-line compute matrixMY = (X+Y)T , where X+ is
the pseudo-inverse of X.
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FIGURE 12 | The intention recognition experiment, (A) the sEMG signals sampling of the experiment procedure, (B) the raw sEMG signals of subject.

FIGURE 13 | The ESN diagram.

During the training process, the preprocessed sEMG signals
are recorded by the Biopac MP160 system with seven channels
from 0 to 46 s. Furthermore, the joint trajectories of injured lower
limb are recorded by IMU, the data set from 0 to 32 s is then
collected as a training set, and the remainder of the data set is
regarded as a test set. The training set is utilized to train the ESN
model, and the testing set is exploited to simulate lower limb
rehabilitation robots with active rehabilitation training. The real
angles and angular velocities are recorded by IMU, which aims at
demonstrating the accuracy of proposedmethod. The ESNmodel
has seven input neurons and four output neurons, the numbers
of ESN hidden layer neurons are 100, and the parameters are

selected as follows: αX = 0.5. The results of ESN training and
testing are shown in Figures 14, 15.

Figure 14 represents the intention recognition results of
injured lower limb via ESN model, where θ1 and θ2 mean
knee and ankle angles, respectively. Red solid lines denote real
joint trajectories of knee and ankle angles, and blue solid lines
represent training and testing results of ESN learning algorithm.
Figure 15 shows the training and testing results of knee and
ankle angular velocities through ESN learning algorithm. θ̇1 and
θ̇2 mean the angular velocities for knee and ankle, which are
shown by blue solid lines. Red solid lines represent real angular
velocities, which are recorded by IMU. As can be seen from
Figure 14, the injured lower limb swings the calf at the 5th
second, and then the knee periodically stretches and flexes about
at about 41 s. When the knee joint angle reaches 0 rad, the knee
joint swings to its maximum position. During the swing phase,
the knee joint can flex more than −1.8 rad. The angle of the
ankle joint is between 1.8 and 2.2 rad, which is always plantar
flexion. Figure 15 shows that the angular velocity of the knee
joint alternates between −2 and 2 rad/s with a cycle of about
4 s, while the angular velocity of the ankle joint varies slightly
between −0.5 and 0.5 rad/s. The motion intention of injured
lower limbs can be identified by the ESN learning algorithm
with multichannel sEMG signals from 32 to 45.3 s. Meanwhile,
it is also inferred that the proposed method shows superior
performance for intention identification of injured lower limb.

The second one is an MPC problem; the joint trajectories of
injured lower limb can be identified via an ESN model based on
active motion intention, which is viewed as desired trajectories
of the two-link lower limb rehabilitation robot. The control law

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2020 | Volume 14 | Article 559048190

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shi et al. MPC for Rehabilitation Robots

FIGURE 14 | Intention recognition results for angles, (A) the knee angle, which is recognized by the sEMG and ESN model, and (B) the ankle angle, which is

recognized by sEMG and ESN model.

FIGURE 15 | Intention recognition results for angular velocities, (A) the knee angular velocity, which is recognized by sEMG and ESN model, and (B) the ankle angular

velocity, which is recognized by the sEMG and ESN model.

generated by the Algorithm 1 (PASHS) is transmitted to two-link
lower limb rehabilitation robot, which aims at assisting patient
to do rehabilitation training. The next predictive state also can be

computed by the optimization results ofMPC problem (2), which
feeds back to the two-link lower limb rehabilitation robot system.
Meanwhile, the MPC problem can be seen as follows:
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FIGURE 16 | The simulation results with active rehabilitation training, (A) the angles of lower-limb rehabilitation robot based on active intentions, (B) the angular

velocities of lower-limb rehabilitation robot based on active intentions, and (C) the torques of lower-limb rehabilitation robot.

min
θ
k ,θ̇

k
,τ k

N
∑

i=1

∥

∥

∥
θ(k+ i|k)− θ

d(k+ i|k)
∥

∥

∥

2

Q
+

Nτ−1
∑

j=0

∥

∥1τ (k+ j|k)
∥

∥

2

R

s.t.

[

θ̇
ki

θ̈
ki

]

=

[

0 I2×2

0 −D−1(θki )C(θki , θ̇
ki
)

][

θ
ki

θ̇
ki

]

+

[

0

D−1(θki )

]

τ
kj

−

[

0

D−1(θki )G(θki )

]

,

θ(k+ i|k) ∈ [θmin, θmax], θ̇(k+ i|k) ∈ [θ̇min, θ̇max],

τ (k+ j|k) ∈ [τmin, τmax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nτ ,
(37)

where ki,j , k + i, j|k, and θ
k, θ̇

k
, and τ

k represent the angle
vector, angular velocity vector, and torque vector of two-link
lower limb rehabilitation robot at prediction horizon and control
horizon, respectively. θd(k + i|k) means the desired trajectory at
k+ i time, and1τ (k+ j|k) is the control input increment.Q = 5I
and R = I, where I is the identity matrix and the index N = 3
and Nτ = 3.

The trained ESN model can effectively identify the joint angle
and angular velocity of injured lower limb from the multichannel
sEMG signals. The lower limb rehabilitation robot takes the
results of recognition as the desired trajectories. Combining the
ESNmodel andMPC technique, the human–machine interactive
control method is developed, investigated, and analyzed for
lower limb rehabilitation robot and injured lower limb in
this paper. Besides, to design the human-machine interactive
controller, the joint angle and angular velocity that can be
regarded as desired trajectories are identified by ESN learning
algorithm from 32 to 46 s. The numerical results are shown
in Figure 16.

Figures 16A–C represent the numerical results of angles,
angular velocities, and torques of lower-limb rehabilitation robot
during rehabilitation training process. As shown in Figure 16,
the blue solid lines mean the results of knee and the red solid
lines represent the results of ankle, respectively. In light of
Figure 16, it can be seen that the patients can be stably driven
to do rehabilitation motion by lower limb rehabilitation robot,
which be oriented by a human’s active intention. It is also

inferred that the rehabilitation robot appropriately generates
torques, which assist patients to do rehabilitation training
and avoid the second injury. It is thus further demonstrated
that it is very practical to train the injured lower limb
through a human–machine interactive control method with
multichannel sEMG signals. In other words, it is also verified
that the ESN learning algorithm and Algorithm 1 (PASHS) are
feasible and effective for the rehabilitation training of injured
lower limb.

5. CONCLUSIONS

In this paper, to obtain an optimal controller of a non-
linear system, an MPC problem firstly solved by a new
PASHS algorithm has been proposed and analyzed by exploiting
the three-order Taylor discretization formula to linearize and
discretize the constraint conditions. Furthermore, the PASHS
approach not only takes advantage of a projected operator,
but it also integrates the active set into HS conjugate gradient
methods; the optimal controller can thus be rapidly solved for
a non-linear optimization problem. Moreover, the feasibility
and global convergence have been rigorously proved in this
paper. Some numerical results have been presented and analyzed
to substantiate the feasibility, effectiveness, and superiority
of the developed human–machine interactive control method
for passive/active rehabilitation training. The ESN model with
multichannel sEMG signals also has been proposed for intention
recognition, which could identify the joint angles and angular
velocities of the injured lower limb to realize active rehabilitation
training. In other words, passive rehabilitation makes patients
train through fixed-based trajectories of injured lower limb;
however, the desired trajectories of active rehabilitation training
are identified by ESN learning algorithm with multichannel
signals. Besides, combining withMPC technology and Algorithm
1 (PASHS), human-machine interactive control has been
developed, investigated, and analyzed for two-link lower limb
rehabilitation robot. The numerical results have inferred that the
proposed method could be effectively applied to passive/active
rehabilitation training. The proposed method has also solved a
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problem that creates uncertainty in the model. In future work,
more effective and real-time methods will be developed and
investigated in the solution of MPC problem and applied to
the rehabilitation of patients, such as upper limb rehabilitation
training, assisting patients to walk on the plane, or up and
down stairs.
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APPENDIX

Symbols of the Model and Algorithm

xk system state at kth sampling instant

uk control input at kth sampling instant

yk predicted output at kth sampling instant

rk desired output at kth sampling instant

Ŵ objective funtion

∇Ŵ gradient of objective function

3, b coefficient matrix and vector of equality

constraint

� bound constrained set

H(x) or H∗ active set

L(x) or L∗ free variables set

P�(x) projection function

P projection matrix

dk search direction of algorithm

η
k step size of Armijio-type line search rule

X echo state of ESN

U , Y inputs and outputs of ESN

MX , MU , MF , MY , matrixes of ESN
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The objective of this paper is to present a systematic review of existing sensor-based

control methodologies for applications that involve direct interaction between humans

and robots, in the form of either physical collaboration or safe coexistence. To this

end, we first introduce the basic formulation of the sensor-servo problem, and then,

present its most common approaches: vision-based, touch-based, audio-based, and

distance-based control. Afterwards, we discuss and formalize the methods that integrate

heterogeneous sensors at the control level. The surveyed body of literature is classified

according to various factors such as: sensor type, sensor integration method, and

application domain. Finally, we discuss open problems, potential applications, and future

research directions.

Keywords: robotics, human-robot collaboration (HRC), human-robot interaction (HRI), control systems (CS), visual

servoing (VS)

1. INTRODUCTION

Robot control is a mature field: one that is already being heavily commercialized in industry.
However, the methods required to regulate interaction and collaboration between humans and
robots have not been fully established yet. These issues are the subject of research in the fields of
physical human-robot interaction (pHRI) (Bicchi et al., 2008) and collaborative robotics (CoBots)
(Colgate et al., 1996). The authors of De Luca and Flacco (2012) presented a paradigm that specifies
three nested layers of consistent behaviors that the robot must follow to achieve safe pHRI:

• Safety is the first and most important feature in collaborative robots. Although there has been
a recent push toward standardization of robot safety (e.g., the ISO 13482:2014 for robots and
robotic devices; ISO 13482:2014, 2014), we are still in the initial stages. Safety is generally
addressed through collision avoidance (with both humans or obstacles; Khatib, 1985), a feature
that requires high reactivity (high bandwidth) and robustness at both the perception and
control layers.

• Coexistence is the robot capability of sharing the workspace with humans. This includes
applications involving a passive human (e.g., medical operations where the robot is intervening
on the patients’ body; Azizian et al., 2014), as well as scenarios where robot and human work
together on the same task, without contact or coordination.

• Collaboration is the capability of performing robot tasks with direct human interaction and
coordination. There are two modes for this: physical collaboration (with explicit and intentional
contact between human and robot), and contactless collaboration (where the actions are guided
by an exchange of information, e.g., in the form of body gestures, voice commands, or other
modalities). Especially for the second mode, it is crucial to establish means for intuitive control
by the human operators, which may be non-expert users. The robot should be proactive in
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realizing the requested tasks, and it should be capable of
inferring the user’s intentions, to interact more naturally from
the human viewpoint.

All three layers are hampered by the unpredictability of human
actions, which vary according to situations and individuals,
complicating modeling (Phoha, 2014), and use of classic control.

In the robotics literature, two major approaches for task
execution have emerged: path/motion planning (La Valle, 2006)
and sensor-based control (Chaumette and Hutchinson, 2006).
The planning methods rely on a priori knowledge of the future
robot and environment states over a time window. Although they
have proved their efficiency in well-structured applications, these
methods are hardly applicable to human-robot collaboration,
because of the unpredictable and dynamic nature of humans.
It is in the authors’ view that sensor-based control is more
efficient and flexible for pHRI, since it closes the perception-to-
action loop at a lower level than path/motion planning. Note
also that sensor-based control strategies strongly resemble the
processes of our central nervous system (Berthoz, 2002), and
can trace their origins back to the servomechanism problem
(Davison and Goldenberg, 1975). The most known example is
image-based visual servoing (Chaumette and Hutchinson, 2006)
which relies directly on visual feedback to control robot motion,
without requiring a cognitive layer nor a precise model of
the environment.

The aim of this article is to survey the current state of art
in sensor-based control, as a means to facilitate the interaction
between robots, humans, and surrounding environments.
Although we acknowledge the need for other techniques within
a complete human-robot collaboration framework (e.g., path
planning as mentioned, machine learning, etc.), here we review
and classify the works which exploit sensory feedback to directly
command the robot motion.

The timing and relevance of this survey is twofold. On one
hand, while there have been previous reviews on topics such
as (general) human-robot collaboration (Ajoudani et al., 2017;
Villani et al., 2018) and human-robot safety (Haddadin et al.,
2017), there is no specific review on the use of sensor-based
control for human-robot collaborative tasks. On the other hand,
we introduce a unifying paradigm for designing controllers with
four sensing modalities. This feature gives our survey a valuable
tutorial-like nature.

The rest of this manuscript is organized as follows: Section
2 presents the basic formulation of the sensor-based control
problem; Section 3 describes the common approaches that
integrate multiple sensors at the control level. Section 4 provides
several classifications of the reviewed works. Section 5 presents
insights and discusses open problems and areas of opportunity.
Conclusions are given in section 6.

2. SENSING MODALITIES FOR CONTROL

Recent developments on bio-inspired measurement technologies
have made sensors affordable and lightweight, easing their
use on robots. These sensors include RGB-D cameras, tactile
skins, force/moment transducers, etcetera (see Figure 1). The

works reviewed here rely on different combinations of sensing
modalities, depending on the task at stake. We consider the
following four robot senses:

• Vision. This includes methods for processing and
understanding images, to produce numeric or symbolic
information reproducing human sight. Although image
processing is complex and computationally expensive, the
richness of this sense is unique. Robotic vision is fundamental
for understanding the environment and human intention, so
as to react accordingly.

• Touch. In this review, touch includes both proprioceptive force
and tact, with the latter involving direct physical contact
with an external object. Proprioceptive force is analogous to
the sense of muscle force (Proske and Gandevia, 2012). The
robot can measure it either from the joint position errors or
via torque sensors embedded in the joints; it can then use
both methods to infer and adapt to human intentions, by
relying on force control (Raibert andCraig, 1981; Hogan, 1985;
Morel et al., 1998; Villani and De Schutter, 2008). Human tact
(somatosensation), on the other hand, results from activation
of neural receptors, mostly in the skin. These have inspired the
design of artificial tactile skins (Wettels et al., 2008; Schmitz
et al., 2011), thoroughly used for human-robot collaboration.

• Audition. In humans, localization of sound is performed by
using binaural audition (i.e., two ears). By exploiting auditory
cues in the form of level/time/phase differences between
left and right ears we can determine the source’s horizontal
position and its elevation (Rayleigh, 1907). Microphones
artificially emulate this sense, and allow robots to “blindly”
locate sound sources. Although robotic hearing typically uses
two microphones mounted on a motorized head, other non-
biological configurations exist, e.g., a head instrumented with
a single microphone or an array of several omni-directional
microphones (Nakadai et al., 2006).

• Distance. This is the only sense among the four that humans
cannot directly measure. Yet, numerous examples exist in
the mammal kingdom (e.g., bats and whales), in the form
of echolocation. Robots measure distance with optical (e.g.,
infrared or lidar), ultrasonic, or capacitive (Göger et al., 2010)
sensors. The relevance of this particular “sense” in human-
robot collaboration is motivated by the direct relationship
existing between the distance from obstacles (here, the human)
and safety.

Roboticists have designed other bio-inspired sensors, to smell
(see Kowadlo and Russell, 2008 for a comprehensive survey
and Russell, 2006; Gao et al., 2016; Rahbar et al., 2017 for 3D
tracking applications) and taste (Shimazu et al., 2007; Kobayashi
et al., 2010; Ha et al., 2015). However, in our opinion, artificial
smell and taste are not yet mature enough for human-robot
collaboration. Most of the current work on these senses is for
localization/identification of hazardous gases/substances. It is
also worth mentioning the increasing popularity of physiological
signals for controlling robots. These include, for example,
Electromyography and Brain-Computer Interfaces (Ajoudani
et al., 2017). Albeit promising, these technologies generally
provide unilateral (from human to robot) control, without
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FIGURE 1 | Examples of artificial sensors. Clockwise from the top left: Microsoft Kinect® and Intel Realsense® (vision and distance), Sony D-Link DCS-5222L® and

AVT GT® (vision), Syntouch BioTac® and ATI Nano 43® (touch), sound sensor LM393® and 3Dio Free Space Pro II® Binaural Microphone (audition), proximity sensor

Sharp GP2Y0A02YK0F®, Laser SICK®, Hokuyo URG®, and proximity sensor SICK CM18-08BPP-KC1® (distance). Note that Intel Realsense® and Microsoft Kinect®

provide both the senses of vision and of distance.

feedback loop closure. For these reasons, this review will focus
only on the four senses mentioned above, namely vision, touch,
audition, and distance.

3. SENSOR-BASED CONTROL

3.1. Formulation of Sensor-Based Control
Sensor-based control aims at deriving the robot control input
u (operational space velocity, joint velocity, displacement, etc.)
that minimizes a trajectory error e = e(u), which can be
estimated by sensors and depends on u. A general way of
formulating this controller [accounting for actuation redundancy
dim(u) > dim(e), sensing redundancy dim(u) < dim(e), and
task constraints] is as the quadratic minimization problem:

u = arg min
u

1

2
‖e(u)‖2

subject to task constraints.

(1)

This formulation encompasses the classic inverse kinematics
problem (Whitney, 1969) of controlling the robot joint velocities
(u = q̇), so that the end-effector operational space position x

converges to a desired value x∗. By defining the desired end-
effector rate as ẋ∗ = −λ (x− x∗), for λ > 0, and setting
e = Jq̇ − ẋ∗ for J = ∂x/∂q as the Jacobian matrix, it is easy
to show that the solution to (1) (in the absence of constraints) is
q̇ = J+ẋ∗, with J+ the generalized inverse of J. This leads to the
set-point controller1:

1Throughout the paper, λ is a positive tuning scalar that determines the

convergence rate of task error e to 0.

q̇ = −J+λ
(

x− x∗
)

. (2)

In the following sections, we show how each of the four senses
(vision, touch, audition and distance) has been used for robot
control, either with (1), or with similar techniques. Figure 2
shows relevant variables for the four cases. For simplicity, we
assume there are no constraints in (1), although off-the-shelf
quadratic programming solvers (Nocedal and Wright, 2000)
could account for them.

3.2. Visual Servoing
3.2.1. Formulation
Visual servoing refers to the use of vision to control the robot
motion (Chaumette and Hutchinson, 2006). The camera may be
mounted on amoving part of the robot, or fixed in the workspace.
These two configurations are referred to as “eye-in-hand” and
“eye-to-hand” visual servoing, respectively. The error e is defined
with regards to some image features, here denoted by s, to be
regulated to a desired configuration s∗ (s is analogous to x in the
inverse kinematic formulation above). The visual error is:

e = ṡ− ṡ∗. (3)

Visual servoing schemes are called image-based if s is defined
in image space, and position-based if s is defined in the 3D
operational space. Here we only briefly recall the image-based
approach (on its eye-in-hand modality), since the position-
based one consists in projecting the task from the image to the
operational space to obtain x and then apply (2).

The simplest image-based controller uses s = [X,Y]⊤, with
X and Y as the coordinates of an image pixel, to generate u that
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FIGURE 2 | Examples of four sensor-based servo controllers. (A) Visual

servoing: the user hand is centered in the camera image. (B) Indirect force

control: by applying a wrench, the user deviates the contact point away from a

reference trajectory. (C) Audio-based control: a microphone rig is automatically

oriented toward the sound source (the user’s mouth). (D) Distance-based

control: the user acts as a repulsive force, related to his/her distance from

the robot.

drives s to a reference s∗ = [X∗,Y∗]⊤ (in Figure 2A the centroid
of the human hand). This is done by defining e as:

ṡ− ṡ∗=

[

Ẋ − Ẋ∗

Ẏ − Ẏ∗

]

, with ṡ∗=−λ

[

X − X∗

Y − Y∗

]

(4)

If we use the camera’s 6D velocity as the control input u = vc, the
image Jacobian matrix2 relating [Ẋ, Ẏ]⊤ and u is:

Jv =

[

− 1
ζ

0 X
ζ

XY −1− X2 Y

0 − 1
ζ

Y
ζ

1+ Y2 −XY −X

]

, (5)

where ζ denotes the depth of the point with respect to the camera.
In the absence of constraints, the solution of (1) is:

vc = −J+v λ

[

X − X∗

Y − Y∗

]

. (6)

3.2.2. Application to Human-Robot Collaboration
Humans generally use vision to teach the robot relevant
configurations for collaborative tasks. For example, Cai et al.
(2016) demonstrate an application where a human operator
used a QR code to specify the target poses for a 6 degrees-of-
freedom (dof) robot arm. In Gridseth et al. (2016), the user
provided target tasks via a tablet-like interface that sent the
robot the desired reference view; here, the human specified

2Also known as interaction matrix in the visual servoing literature.

various motions such as point-to-point, line-to-line, etc., that
were automatically performed via visual feedback. The authors
of Gridseth et al. (2015) presented a grasping system for a tele-
operated dual arm robot, where the user specified the object
to be manipulated, and the robot completed the task using
visual servoing.

Assistive robotics represents another very common
application domain for visual servoing. The motion of robotic
wheelchairs has been semi-automated at various degrees. For
instance, Narayanan et al. (2016) presented a corridor following
method that exploited the projection of parallel lines. In this
work, the user provided target directions with a haptic interface,
and the robot corrected the trajectories with visual feedback.
Other works have focused on mobile manipulation. The authors
of Tsui et al. (2011) developed a vision-based controller for a
robotic arm mounted on a wheelchair; in this work, the user
manually specified the object to be grasped and retrieved by the
robot. A similar approach was reported in Dune et al. (2008),
where the desired poses were provided with “clicks” on an
screen interface.

Medical robotics is another area that involves sensor-based
interactions between humans and robots, and where vision has
huge potential (see Azizian et al., 2014 for a comprehensive
review). For example, the authors of Agustinos et al. (2014)
developed a laparoscopic camera, which regulated its pan/tilt
motions to track human-held instruments.

3.3. Touch (or Force) Control
3.3.1. Formulation
Touch (or force) control requires the measurement of one or
multiple (in the case of tactile skins) wrenches h, which are (at
most) composed of three translational forces, and three torques;
h is fed to the controller that moves the robot so that it exerts a
desired interaction force with the human or environment. Force
control strategies can be grouped into the following two classes
(Villani and De Schutter, 2008):

• Direct control regulates the contact wrench to obtain a
desired wrench h∗. Specifying h∗ requires an explicit model
of the task and environment. A widely adopted strategy is
hybrid position/force control (Raibert and Craig, 1981), which
regulates the velocity and wrench along unconstrained and
constrained task directions, respectively. Referring to (1), this
is equivalent to setting

e = S
(

ẋ− ẋ∗
)

+ (I− S)
(

h− h∗
)

, (7)

with S = S⊤ ≥ 0 a binary diagonal selection matrix, and I as
the identity matrix. Applying a motion u that nullifies e in (7)
guarantees that the components of ẋ (respectively h) specified
via S (respectively I− S) converge to ẋ∗ (respectively h∗).

• Indirect control (illustrated in Figure 2B) does not require
an explicit force feedback loop. To this category belong
impedance control and its dual admittance control (Hogan,
1985). It consists in modeling the deviation of the contact
point from a reference trajectory xr (t) associated to the
desired h∗, via a virtual mechanical impedance with adjustable
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parameters (inertia M, damping B, and stiffness K). Referring
to (1), this is equivalent to setting:

e = M(ẍ− ẍr)+ B(ẋ− ẋr)+ K(x− xr)− (h− h∗). (8)

Here, x represents the “deviated” contact point pose, with ẋ

and ẍ as time derivatives. When e = 0, the displacement x−xr

responds as a mass-spring-damping system under the action
of an external force h − h∗. In most cases, xr (t) is defined for
motion in free space (h∗ = 0). The general formulation in (1)
and (8) can account for both impedance control (x is measured
and u = h) and admittance control (hmeasured and u = x).

3.3.2. Application to Human-Robot Collaboration
The authors of Bauzano et al. (2016) used direct force
control for collaborative human-robot laparoscopic surgery. In
their method, the instruments are controlled with a hybrid
position/force approach. In Cortesao and Dominici (2017), a
robot regulated the applied forces onto a beating human heart.
Since the end-effector’s 3 linear dof were fully-constrained,
position control could not be performed, i.e., S = 0 in (7).

A drawback of direct control is that it can realize only the tasks
which can be described via constraint surfaces. If their location
is unknown and/or the contact geometry is complex—as often
in human-robot collaboration—indirect control is more suited
since: (i) it allows to define a priori how the robot should react
to unknown external force disturbances, (ii) it can use a reference
trajectory xr (t) output by another sensor (e.g., vision). In the next
paragraph, we review indirect force control methods.

By sensing force, the robot can infer the motion commands
(e.g., pushing, pulling) from the human user. For example,Maeda
et al. (2001) used force sensing and human motion estimation
(based onminimum jerk) within an indirect (admittance) control
framework for cooperative manipulation. In Suphi Erden and
Tomiyama (2010) and Suphi Erden and Maric (2011), an
assistant robot suppressed involuntary vibrations of a human,
who controlled direction and speed of a welding operation. By
exploiting kinematic redundancy, Ficuciello et al. (2013) also
addressed a manually guided robot operation. The papers (Bussy
et al., 2012; Wang et al., 2015) presented admittance controllers
for two-arm robots moving a table in collaboration with a
human. In Baumeyer et al. (2015), a human controlled a medical
robot arm with an admittance controller. Robot tele-operation is
another common human-robot collaboration application where
force feedback plays a crucial role; see Passenberg et al. (2010) for
a comprehensive review on the topic.

All these works relied on local force/moment measurements.
Up to this date, tactile sensors and skins (measuring the wrench
along the robot body, see Argall and Billard, 2010 for a review)
have been used for object exploration (Natale and Torres-
Jara, 2006) or recognition (Abderrahmane et al., 2018), but
not for control as expressed in (1). One reason is that they
are at a preliminary design stage, which still requires complex
calibration (Del Prete et al., 2011; Lin et al., 2013) that constitutes
a research topic per se. An exception is Li et al. (2013), which
presented a method that used tactile measures within (1).
Similarly, in Zhang and Chen (2000), tactile sensing was used

to regulate interaction with the environment. Yet, neither of
these works considered pHRI. In our opinion, there is huge
potential in the use of skins and tactile displays for human-
robot collaboration.

3.4. Audio-Based Control
3.4.1. Formulation
The purpose of audio-based control is to locate the sound source,
and move the robot toward it. For simplicity, we present the two-
dimensional binaural (i.e., with two microphones) configuration
in Figure 2C, with the angular velocity of the microphone rig as
control input: u = α̇. We hereby review the two most popular
methods for defining error e in (1): Interaural Time Difference
(ITD) and Interaural Level Difference (ILD)3. The following is
based on Magassouba et al. (2016b):

• ITD-based aural servoing uses the difference τ between the
arrival times of the sound on each microphone; τ must be
regulated to a desired τ

∗. The controller can be represented
with (1), by setting e = τ̇ − τ̇

∗, with the desired rate
τ̇
∗ = −λ (τ − τ

∗
) (to obtain set-point regulation to τ

∗).
Feature τ can be derived in real-time by using standard cross-
correlation of the signals (Youssef et al., 2012). Under a far
field assumption:

e = τ̇ − τ̇
∗ = −

(

√

(b/c)2 − τ 2
)

u− τ̇
∗ (9)

with c the sound celerity and b the microphones baseline.

From (9), the scalar ITD Jacobian is: Jτ = −
√

(b/c)2 − τ 2.
The motion that minimizes e is:

u = −λJ−1
τ

(τ − τ
∗), (10)

which is locally defined for α ∈ (0,π), to ensure that |Jτ | 6= 0.
• ILD-based aural servoing uses ρ, the difference in intensity

between the left and right signals. This can be obtained in
a time window of size N as ρ = El/Er , where the El,r =
∑N

n=0 γl,r[n]
2 denote the signals’ sound energies and the γl,r[n]

are the intensities at iteration n. To regulate ρ to a desired ρ
∗,

one can set e = ρ̇ − ρ̇
∗ with ρ̇

∗ = −λ (ρ − ρ
∗
). Assuming

spherical propagation and slowly varying signal:

e = ρ̇ − ρ̇
∗ =

ys(ρ + 1)b

L2r
u− ρ̇

∗ (11)

where ys is the sound source frontal coordinate in the
moving auditory frame, and Lr the distance between the
right microphone and the source. From (11), the scalar
ILD Jacobian is Jρ = ys(ρ + 1)b/L2r . The motion that
minimizes e is:

u = −λJ−1
ρ

(ρ − ρ
∗) (12)

where J−1
ρ

is defined for sources located in front of the rig. In
contrast with ITD-servoing, here the source location (i.e., ys
and Lr) must be known or estimated.

3Or its frequency counterpart: Interaural Phase Difference (IPD).
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While the methods above only control the angular velocity of
the rig (u = α̇), Magassouba extended both to also regulate 2D
translations of amobile platform (ITD inMagassouba et al., 2015,
2016c and ILD in Magassouba et al., 2016a).

3.4.2. Application to Human-Robot Collaboration
Due to the nature of this sense, audio-based controllers are
mostly used in contact-less applications, to enrich other senses
(e.g., force, distance) with sound, or to design intuitive human-
robot interfaces.

Audio-based control is currently (in our opinion) an
underdeveloped research area with great potential for human-
robot collaboration, e.g., for tracking a speaker. Besides the cited
works (Magassouba et al., 2015, 2016a,b,c), that closely followed
the framework of section 3, others have formulated the problem
differently. For example, the authors of Kumon et al. (2003, 2005)
proposed a linear model to describe the relation between the pan
motion of a robot head and the difference of intensity between its
two microphones. The resulting controllers were much simpler
than (10) and (12). Yet, their operating range was smaller, making
them less robust than their—more analytical—counterparts.

3.5. Distance-Based Control
3.5.1. Formulation
The simplest (and most popular) distance-based controller is
the artificial potential fields method (Khatib, 1985). Despite
being prone to local minima, it has been thoroughly deployed
both on manipulators and on autonomous vehicles for obstacle
avoidance. Besides, it is acceptable that a collaborative robot stops
(e.g., because of local minima) as long as it avoids the human user.
The potential fields method consists in modeling each obstacle
as a source of repulsive forces, related to the robot distance
from the obstacle (see Figure 2D). All the forces are summed up
resulting in a velocity in the most promising direction. Given
d, the position of the nearest obstacle in the robot frame, the
original version (Khatib, 1985) consists in applying operational
space velocity

u =

{

λ

(

1
‖d‖ − 1

do

)

d
‖d‖2

if ‖d‖ < do,

0 otherwise.
(13)

Here do > 0 is the (arbitrarily tuned) minimal distance required
for activating the controller. Since the quadratic denominator
in (13) yields abrupt accelerations, more recent versions adopt
a linear behavior. Referring to (1), this can be obtained by setting
e = ẋ− ẋ∗ with ẋ∗ = λ

(

1− d0/‖d‖
)

d as reference velocity:

e = ẋ− λ

(

1−
d0

‖d‖

)

d. (14)

By defining as control input u = ẋ, the solution to (1) is:

u = λ

(

1−
d0

‖d‖

)

d. (15)

3.5.2. Application to Human-Robot Collaboration
Many works have used this (or similar) distance-based methods
for pHRI. To avoid human-robot collisions, the authors of De

Santis et al. (2007) applied the controller (15) by estimating
the distance d between a human head and a robot with vision.
Recently, these approaches have been boosted by the advent of
3D vision sensors (e.g., theMicrosoft Kinect and Intel RealSense),
which enable both vision and distance control. The authors
of Flacco et al. (2012) designed a Kinect-based distance controller
(again, for human collision avoidance) with an expression similar
to (15), but smoothed by a sigmoid.

Proximity servoing is a similar technique, which regulates—via
capacitive sensors—the distance between the robot surface and
the human. In Schlegl et al. (2013), these sensors modified the
position and velocity of a robot armwhen a human approached it,
to avoid collisions. The authors of Bergner et al. (2017), Leboutet
et al. (2016), and Dean-Leon et al. (2017) developed a new
capacitive skin for a dual-arm robot. They designed a collision
avoidance method based on an admittance model similar to (8),
which relied on the joint torques (measured by the skin) to
control the robot motion.

4. INTEGRATION OF MULTIPLE SENSORS

In section 3, we presented the most common sensor-based
methods used for collaborative robots. Just like natural senses,
artificial senses provide complementary information about
the environment. Hence, to effectively perform a task, the
robot should measure (and use for control) multiple feedback
modalities. In this section, we review various methods for
integrating multiple sensors in a unique controller.

Inspired by how humans merge their percepts (Ernst and
Banks, 2002), researchers have traditionally fused heterogeneous
sensors to estimate the state of the environment. This can be done
in the sensors’ Cartesian frames (Smits et al., 2008) by relying
on an Extended Kalman Filter (EKF) (Taylor and Kleeman,
2006). Yet the sensors must be related to a single quantity,
which is seldom the case when measuring different physical
phenomena (Nelson and Khosla, 1996). An alternative is to
use the sensed feedback directly in (1). This idea, proposed for
position-force control in Raibert and Craig (1981) and extended
to vision in Nelson et al. (1995), brings new challenges to the
control design, e.g., sensor synchronization, task compatibility,
and task representation. For instance, the designer should take
care when transforming 6 D velocities or wrenches to a unique
frame. This requires (when mapping from frame A to frame B)
multiplication by

BVA =

[

BRA

[

BtA
]B

×
RA

03
BRA

]

(16)

for a velocity, and by BV⊤
A for a wrench. In (16), BRA is the

rotation matrix from A to B and
[

BtA
]

×
the skew-symmetric

matrix associated to translation BtA.
According to Nelson et al. (1995), the three methods for

combining N sensors within a controller are:
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FIGURE 3 | The most common scheme for shared vision/touch (admittance) control, used in Morel et al. (1998), Agravante et al. (2013, 2014). The goal is to obtain

desired visual features s∗ and wrench h∗, based on current image I and wrench h. The outer visual servoing loop based on error (3) outputs a reference velocity ẋr

that is then deformed by the inner admittance control loop based on error (8), to obtain the desired robot position x.

• Traded: the sensors control the robot one at a time. Predefined
conditions on the task trigger the switches:

u =



















arg min
u

‖e1(u)‖
2 if (condition 1) = true,

...
arg min

u
‖eN(u)‖

2 if (condition N) = true.

(17)

• Shared: All sensors control the robot throughout operation. A
common way is via nested control loops, as shown—for shared
vision/touch control—in Figure 3. Researchers have used at
most two loops, denoted o for outer and i for inner loop:

u = arg min
u

‖ei (u, uo) ‖
2 (18)

such that uo = arg min
uo

‖eo (uo) ‖
2.

In the example of Figure 3: u = x, uo = ẋr , eo = ev
applying (3) and ei = et applying (8).

• Hybrid: the sensors act simultaneously, but on different axes
of a predefined Cartesian task-frame (Baeten et al., 2003). The
directions are selected by binary diagonal matrices Sj, j =

1, . . . ,N with the dimension of the task space, and such that
∑N

j=1 S = I:

u = arg min
u

‖

N
∑

j=1

Sjej (u) ‖2. (19)

To express all ej in the same task frame, one should apply BVA

and/or BV⊤
A . Note the analogy between (19) and the hybrid

position/force control framework (7).

We will use this classification to characterize the works reviewed
in the rest of this Section.

4.1. Traded Control
The paper (Cherubini et al., 2016) presented a human-robot
manufacturing cell for collaborative assembly of car joints.
The approach (traded vision/touch) could manage physical
contact between robot and human, and between robot and
environment, via admittance control (8). Vision would take over

in dangerous situations to trigger emergency stops. The switching
condition was determined by the position of the human wrt
the robot.

In Okuno et al. (2001, 2004), a traded vision/audio controller
enabled a mobile robot to exploit sound source localization for
visual control. The robot head would automatically rotate toward
the estimated direction of the human speaker, and then visually
track him/her. The switching condition is that the sound source
is visible. The audio-based task is equivalent to regulating τ

to 0 or ρ to 1, as discussed in section 3.4. Paper (Hornstein
et al., 2006) presented another traded vision/audio controller
for the iCub robot head to localize a human speaker. This
method constructed audio-motor maps and integrated visual
feedback to update the map. Again, the switching condition
is that the speaker’s face is visible. In Chan et al. (2012),
another traded vision/audio controller was deployed on a mobile
robot, to drive it toward an unknown sound source; the
switching condition is defined by a threshold on the frontal
localization error.

The authors of Papageorgiou et al. (2014) presented a
mobile assistant for people with walking impairments. The
robot was equipped with: two wrench sensors to measure
physical interaction with the human, an array of microphones
for audio commands, laser sensors for detecting obstacles,
and an RGB-D camera for estimating the users’ state. Its
controller integrated audio, touch, vision, and distance in a traded
manner, with switching conditions determined by a knowledge-
based layer.

The work (Navarro et al., 2014) presented an object
manipulation strategy, integrating distance (capacitive proximity
sensors) and touch (tactile sensors). While the method did not
explicitly consider humans, it may be applied for human-robot
collaboration, since proximity sensors can detect humans if
vision is occluded. The switching condition between the two
modes is the contact with the object.

Another example of traded control—here, audio/distance—
is Huang et al. (1999), which presented a method for
driving a mobile robot toward hidden sound sources, via an
omnidirectional array of microphones. The controller switched
to ultrasound-based obstacle avoidance in the presence of
humans/objects. The detection of a nearby obstacle is the
switching condition.
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4.2. Shared Control
In applications where the robot and environment/human are
in permanent contact (e.g., collaborative object transportation),
shared control is preferable. Let us first review a pioneer
controller (Morel et al., 1998) that relied on shared vision/touch,
as outlined in Figure 3; Morel et al. (1998) addressed tele-
operated peg-in-hole assembly, by placing the visual loop outside
the force loop. The reference trajectory ẋr output by visual
servoing was deformed in the presence of contact by the
admittance controller, to obtain the robot position command x.
Human interaction was not considered in this work.

The authors of Natale et al. (2002) estimated sensory-
motor responses to control a pan-tilt robot head with shared
visual/audio feedback from humans. They assumed local linear
relations between the robot motions and the ITD/ILD measures.
This resulted in a controller which is simpler than the one
presented in section 3.4. The scheme is similar to Figure 3, with
an outer vision loop generating a reference motion, and audio
modifying it.

4.3. Hybrid Control
Pomares et al. (2011) proposed a hybrid vision/touch controller
for grasping objects, using a robot arm equipped with a hand.
Visual feedback drives an active camera (installed on the robot
tip) to observe the object and detect humans to be avoided,
whereas touch feedback moves the fingers, to grasp the object.
The authors defined matrix S in (7) to independently control arm
and fingers with the respective sensor.

In Chatelain et al. (2017), a hybrid scheme controlled an
ultrasonic probe in contact with the abdomen of a patient.
The goal was to center the lesions in the ultrasound image
observed by the surgeon. The probe was moved by projecting,
via S, the touch, and vision (from the ultrasound image) tasks in
orthogonal directions.

4.4. Other Control Schemes
Some works do not strictly follow the classification given above.
These are reviewed below.

The authors of Agravante et al. (2013, 2014) combined vision
and touch to address joint human-humanoid table carrying.
The table must stay flat, to prevent objects on top from falling
off. Vision controlled the table inclination, whereas the forces
exchanged with the human made the robot follow his/her
intention. The approach is shared, with visual servoing in
the outer loop of admittance control (Figure 3), to make all
dof compliant. However, it is also hybrid, since some dof are
controlled only with admittance. Specifically vision regulated
only the table height in Agravante et al. (2013), and both table
height and roll angle in Agravante et al. (2014).

The works (Cherubini and Chaumette, 2013; Cherubini
et al., 2014) merged vision and distance to guarantee lidar-
based obstacle avoidance during camera-based navigation. While
following a pre-taught path, the robot must avoid obstacles which
were not present before. Meanwhile, it moves the camera pan
angle, to maintain scene visibility. Here, the selection matrix
in (19) was a scalar function S ∈ [0, 1] dependent on the time-
to-collision. In the safe context (S = 0), the robot followed the
taught path, with camera looking forward. In the unsafe context

(S = 1) the robot circumnavigated the obstacles. Therefore,
the scheme is hybrid when S = 0 or S = 1 (i.e., vision and
distance operate on independent components of the task vector),
and shared when S ∈ (0, 1).

In Dean-Leon et al. (2016), proximity (distance) and tactile
(touch) measurements controlled a robot arm in a pHRI scenario
to avoid obstacles or—when contact is inevitable—to generate
compliant behaviors. The framework linearly combined the two
senses, and provided this signal to an inner admittance-like
control loop (as in the shared scheme of Figure 3). Since the
operation principle of both senses was complementary (one
requires contact while the other does not), the integration can
also be seen as traded.

The authors of Cherubini et al. (2015) enabled a robot to
adapt to changes in the human behavior, during a human-
robot collaborative screwing task. In contrast with classic hybrid
vision–touch–position control, their scheme enabled smooth
transitions, via weighted combinations of the tasks. The robot
could execute vision and force tasks, either exclusively on different
dof (hybrid approach) or simultaneously (shared approach).

5. CLASSIFICATION OF WORKS AND
DISCUSSION

In this section, we use five criteria to classify all the surveyed
papers which apply sensor-based control to collaborative
robots. This taxonomy then serves as an inspiration to drive
the following discussion on design choices, limitations, and
future challenges.

In total, we refer to the 45 papers revised above. These
include the works with only one sensor, discussed in section 3
(Maeda et al., 2001; Kumon et al., 2003, 2005; De Santis et al.,
2007; Dune et al., 2008; Suphi Erden and Tomiyama, 2010;
Suphi Erden and Maric, 2011; Tsui et al., 2011; Bussy et al.,
2012; Flacco et al., 2012; Youssef et al., 2012; Ficuciello et al.,
2013; Schlegl et al., 2013; Agustinos et al., 2014; Baumeyer
et al., 2015; Gridseth et al., 2015, 2016; Magassouba et al., 2015,
2016a,b,c; Wang et al., 2015; Bauzano et al., 2016; Cai et al.,
2016; Leboutet et al., 2016; Narayanan et al., 2016; Bergner et al.,
2017; Cortesao and Dominici, 2017; Dean-Leon et al., 2017) and
those which integrated multiple sensors, discussed in section 4
(Huang et al., 1999; Okuno et al., 2001, 2004; Natale et al.,
2002; Hornstein et al., 2006; Pomares et al., 2011; Chan et al.,
2012; Cherubini and Chaumette, 2013; Cherubini et al., 2014,
2015, 2016; Navarro et al., 2014; Papageorgiou et al., 2014; Dean-
Leon et al., 2016; Chatelain et al., 2017). The five criteria are:
sensor(s), integration method (when multiple sensors are used),
control objective, target sector, and robot platform. In Table 1,
we indicate these characteristics for each paper. Then, we focus
on each characteristic, in Tables 2–54.

Table 2 classifies the papers according to the sensor/s. Column
mono indicates the papers relying only on one sensor. For the
others, we specify the integration approach (see section 4). Note
that vision (alone or not) is by far the most popular sense, used
in 22 papers. This comes as no surprise, since even for humans,

4In the Tables, we have used the following notation: V, T, A, D for Vision, Touch,

Audition, and Distance, and sh., hyb., tra. for shared, hybrid, and traded.
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TABLE 1 | Classification of all papers according to four criteria: sense(s) used by the robot, objective of the controller, target sector, and type of robot.

References Sense(s) Control objective Sector Robot

Cai et al. (2016) and Gridseth et al. (2016) Vision Contactless guidance Service Arm

Gridseth et al. (2015) Vision Remote guidance Service Arm

Dune et al. (2008), Tsui et al. (2011), and Narayanan et al. (2016) Vision Contactless guidance Medical Wheeled

Agustinos et al. (2014) Vision Contact w/humans Medical Arm

Bauzano et al. (2016) Touch Contact w/humans Medical Arm

Remote guidance

Cortesao and Dominici (2017) Touch Contact w/humans Medical Arm

Maeda et al. (2001), Suphi Erden and Tomiyama (2010), Suphi Erden and

Maric (2011), and Ficuciello et al. (2013)

Touch Direct guidance Production Arm

Wang et al. (2015) Touch Carrying Production Wheeled

Bussy et al. (2012) Touch Carrying Production Humanoid

Baumeyer et al. (2015) Touch Remote guidance Medical Arm

Kumon et al. (2003, 2005), Magassouba et al. (2016b) Audition Contactless guidance Service Heads

Magassouba et al. (2015, 2016a,c) Audition Contactless guidance Service Wheeled

De Santis et al. (2007), Flacco et al. (2012), and Schlegl et al. (2013) Distance Collision avoidance Production Arm

Leboutet et al. (2016), Bergner et al. (2017), and Dean-Leon et al. (2017) Distance Collision avoidance Service Arm

Cherubini et al. (2016) V+T (tra.) Assembly Production Arm

Okuno et al. (2001), Okuno et al. (2004), and Hornstein et al. (2006) V+A(tra.) Contactless guidance Service Heads

Chan et al. (2012) V+A(tra.) Contactless guidance Service Wheeled

Papageorgiou et al. (2014) V+T+A+D Direct guidance Medical Wheeled

(tra.)

Navarro et al. (2014) D+T(tra.) Collision avoidance Production Arm

Huang et al. (1999) D+A(tra.) Collision avoidance Service Wheeled

Natale et al. (2002) V+A(sh.) Contactless guidance Service Heads

Pomares et al. (2011) V+T(hyb.) Collision avoidance Production Arm

Chatelain et al. (2017) V+T Contact w/humans Medical Arm

(hyb.) Remote guidance

Agravante et al. (2013, 2014) V+T Contact w/humans Production Humanoid

(sh.+hyb.)

Cherubini and Chaumette (2013), Cherubini et al. (2014) D+V Collision avoidance Production Wheeled

(sh.+hyb.)

Dean-Leon et al. (2016) D+T Direct guidance Service Arm

(sh.+tra.)

Cherubini et al. (2015) V+T Assembly Production Arm

(sh.+hyb.)

vision provides the richest perceptual information to structure
the world and perform motion (Hoffman, 1998). Touch is the
secondmost commonly used sensor (18 papers) and fundamental
in pHRI, since it is the only one among the four that can be
exploited directly to modulate contact.

Also note that, apart from Papageorgiou et al. (2014), no
paper integrates more than two sensors. Given the sensors wide
accessibility and the recent progress in computation power, this
is probably due to the difficulty in designing a framework capable
of managing such diverse and broad data. Another reasonmay be
the presumed (but disputable) redundancy of the three contact-
less senses, which biases toward opting for vision, given its
diffusion and popularity (also in terms of software). Touch—
the only sensor measuring contact—is irreplaceable. This may
also be the reason why, when merging two sensors, researchers
have generally opted for vision+touch (7 out of 17 papers). The

most popular among the three integration methods is traded
control, probably because it is the easiest to set up. In recent
years, however, there has been a growing interest toward the
shared+hybrid combination, which guarantees nice properties in
terms of control smoothness.

An unexploited application of shared control is the
combination of vision and distance (proximity sensors) to avoid
collisions with humans. This can be formulated as in Figure 3 by
replacing touch control error et with an admittance-like distance
control error:

ed = −(d− d∗)+M(ẍ− ẋr)+ B(ẋ− ẋr)+ K(x− xr), (20)

where d and d∗ represent the measured and desired distance
to obstacles. With this approach, the robot can stabilize at
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TABLE 2 | Classification based on the sensors.

Vision Dune et al., 2008; Tsui et al., 2011; Agustinos

et al., 2014; Gridseth et al., 2015, 2016; Cai

et al., 2016; Narayanan et al., 2016

Touch Maeda et al., 2001; Suphi Erden and

Tomiyama, 2010; Suphi Erden and Maric,

2011; Bussy et al., 2012; Ficuciello et al.,

2013; Baumeyer et al., 2015; Wang et al.,

2015; Bauzano et al., 2016; Cortesao and

Dominici, 2017

tra. (Cherubini et al., 2016),

hyb. (Pomares et al., 2011;

Chatelain et al., 2017)

sh.+hyb. (Agravante et al., 2013,

2014; Cherubini et al., 2015)

Audition Kumon et al. (2003, 2005), Youssef et al.

(2012), Magassouba et al. (2015, 2016a,b,c)

tra. Okuno et al. (2001, 2004),

Hornstein et al. (2006), Chan

et al. (2012), Papageorgiou et al.

(2014), sh. (Natale et al., 2002)

tra. (Papageorgiou et al.,

2014)

Distance De Santis et al., 2007; Flacco et al., 2012;

Schlegl et al., 2013; Leboutet et al., 2016;

Bergner et al., 2017; Dean-Leon et al., 2017

sh.+hyb. (Cherubini and

Chaumette, 2013; Cherubini

et al., 2014)

sh.+tra. (Dean-Leon et al.,

2016)

tra. (Huang et al., 1999;

Papageorgiou et al., 2014)

tra. (Navarro et al., 2014)

Mono Vision Touch Audition

a given “safe” distance from an obstacle, or move away
from it.

In the authors’ opinion, no sensor(s) nor (if needed)
integration method is the best, and the designer should choose
according to the objective at stake. For this, nature and evolution
can be extremely inspiring but technological constraints (e.g.,
hardware and software availability) must also be accounted for,
with the golden rule of engineering that “simpler is better.”

Table 3 classifies the papers according to the control objective.
In the table, we also apply the taxonomy of pHRI layers
introduced in De Luca and Flacco (2012), and evoked in
the introduction: safety, coexistence, collaboration. Works that
focus on collision avoidance address safety, and works where
the robot acts on passive humans address coexistence. For the
collaboration layer, we distinguish two main classes of works.
First, those where the human was guiding the robot (without
contact, with direct contact, or with remote physical contact
as in tele-operation), then those where the two collaborated
(e.g., for part assembly or object carrying). The idea (also in
line with De Luca and Flacco, 2012) is the lower lines in the
table generally require higher cognitive capabilities (e.g., better
modeling of environment and task). Some works, particularly
in the field of medical robotics (Agustinos et al., 2014; Bauzano
et al., 2016; Chatelain et al., 2017) cover both coexistence and
collaboration, since the human guided the robot to operate on
another human. Interestingly, the senses appear in the table
with a trend analogous to biology. Distance is fundamental for
collision avoidance, when the human is far, and his/her role in
the interaction is basic (s/he is mainly perceived as an obstacle).
Then, audio is used for contactless guidance. As human and robot
are closer, touch takes over the role of audio. As mentioned above,
vision is a transversal sense, capable of covering most distance
ranges. Yet, when contact is present (i.e., in the four lower lines),
it is systematically complemented by touch, a popular pairing as
also shown in Table 2 and discussed above.

TABLE 3 | Classification based on the control objective with corresponding pHRI

layer as proposed in De Luca and Flacco (2012) (in parenthesis).

Collision avoidance

(safety)

Distance (De Santis et al., 2007; Flacco et al., 2012;

Schlegl et al., 2013; Leboutet et al., 2016; Bergner et al.,

2017; Dean-Leon et al., 2017), distance+touch (Navarro

et al., 2014),

Distance+audition (Huang et al., 1999), vision+touch

(Pomares et al., 2011),

Vision+distance (Cherubini and Chaumette, 2013;

Cherubini et al., 2014)

Contact with passive

humans

(coexistence)

Vision (Agustinos et al., 2014), touch (Bauzano et al.,

2016; Cortesao and Dominici, 2017),

Vision+touch (Chatelain et al., 2017)

Contactless guidance

(collaboration)

Vision (Dune et al., 2008; Tsui et al., 2011; Cai et al.,

2016; Gridseth et al., 2016; Narayanan et al., 2016)

Audition (Kumon et al., 2005; Youssef et al., 2012;

Magassouba et al., 2015, 2016a,b,c)

Vision+audition (Okuno et al., 2001, 2004; Natale et al.,

2002; Hornstein et al., 2006; Chan et al., 2012)

Direct guidance

(collaboration)

Touch+audition+distance+vision (Papageorgiou et al.,

2014),

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama,

2010; Suphi Erden and Maric, 2011; Ficuciello et al.,

2013), touch+distance (Dean-Leon et al., 2016)

Remote guidance

(collaboration)

Vision (Agustinos et al., 2014; Gridseth et al., 2015),

touch (Baumeyer et al., 2015; Bauzano et al., 2016),

Vision+touch (Chatelain et al., 2017)

Collaborative assembly

(collaboration)

Vision+touch (Cherubini et al., 2015, 2016)

Collaborative carrying

(collaboration)

Touch (Bussy et al., 2012; Wang et al., 2015),

vision+touch (Agravante et al., 2013, 2014)

Table 4 classifies the papers according to the target (or
potential) sector. We propose three sectors: Production,Medical,
and Service. Production is the historical sector of robotics;
applications include: manufacturing (assembly, welding,
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TABLE 4 | Classification based on target/potential sectors.

Production

(manufacturing,

transportation,

construction)

Touch (Maeda et al., 2001; Suphi Erden and Tomiyama,

2010; Suphi Erden and Maric, 2011; Bussy et al., 2012;

Ficuciello et al., 2013; Wang et al., 2015), distance (De

Santis et al., 2007; Flacco et al., 2012; Schlegl et al.,

2013),

D+T (Navarro et al., 2014) V+T (Pomares et al., 2011;

Agravante et al., 2013, 2014; Cherubini et al., 2015,

2016),

V+D (Cherubini and Chaumette, 2013; Cherubini et al.,

2014)

Medical (surgery,

diagnosis,

assistance)

Vision (Dune et al., 2008; Tsui et al., 2011; Agustinos

et al., 2014; Narayanan et al., 2016), touch (Baumeyer

et al., 2015; Bauzano et al., 2016; Cortesao and

Dominici, 2017),

V+T+A+D (Papageorgiou et al., 2014), V+T (Chatelain

et al., 2017)

Service

(companionship,

domestic, personal)

Vision (Gridseth et al., 2015, 2016; Cai et al., 2016),

audition (Kumon et al., 2005; Youssef et al., 2012;

Magassouba et al., 2015, 2016a,b,c),

distance (Leboutet et al., 2016; Bergner et al., 2017;

Dean-Leon et al., 2017), V+A (Okuno et al., 2001, 2004;

Natale et al., 2002; Hornstein et al., 2006; Chan et al.,

2012),

D+A (Huang et al., 1999), T+D (Dean-Leon et al., 2016)

pick-and-place), transportation (autonomous guided vehicles,
logistics) and construction (material and brick transfer). The
medical category has become very popular in recent years,
with applications spanning from robotic surgery (surgical
grippers and needle manipulation), diagnosis (positioning of
ultrasonic probes; Tirindelli et al., 2020 or endoscopes), and
assistance (intelligent wheelchairs, feeding and walking aids).
The service sector is the one that in the authors’ opinion
presents the highest potential for growth in the coming years.
Applications include companionship (elderly and child care),
domestic (cleaning, object retrieving), personal (chat partners,
tele-presence). The table shows that all four sensors have been
deployed in all three sectors. The only exception is audition not
being used in production applications, probably because of the
noise—common in industrial environments.

Finally, Table 5 gives a classification based on the robotic
platform. We can see that (unsurprisingly) most works use
fixed base arms. The second most used platforms here are
wheeled robots. Then, the humanoids category, which refers
to robots with anthropomorphic design (two arms and biped
locomotion capabilities). Finally, we consider robot heads, which
are used exclusively for audio-based control. While robot heads
are commonly used for face tracking in Social Human Robot
Interaction, such works are not reviewed in this survey as they
do not generally involve contact.

6. CONCLUSIONS

This work presents a systematic review of sensor-based
controllers which enable collaboration and/or interaction
between humans and robots. We considered four senses:

TABLE 5 | Classification based on the type of robot platform.

Arms Vision (Agustinos et al., 2014; Gridseth et al., 2015, 2016; Cai

et al., 2016), touch (Maeda et al., 2001; Suphi Erden and

Tomiyama, 2010; Suphi Erden and Maric, 2011; Ficuciello

et al., 2013; Baumeyer et al., 2015; Bauzano et al., 2016;

Cortesao and Dominici, 2017), distance (De Santis et al.,

2007; Flacco et al., 2012; Schlegl et al., 2013; Leboutet et al.,

2016; Bergner et al., 2017; Dean-Leon et al., 2017),

V+T (Pomares et al., 2011; Cherubini et al., 2015, 2016;

Chatelain et al., 2017), D+T (Navarro et al., 2014; Dean-Leon

et al., 2016)

Wheeled Vision (Dune et al., 2008; Tsui et al., 2011; Narayanan et al.,

2016), touch (Wang et al., 2015), audition (Magassouba et al.,

2015, 2016a,b), V+A (Chan et al., 2012), V+T+A+D

(Papageorgiou et al., 2014), D+A (Huang et al., 1999),

V+D (Cherubini and Chaumette, 2013; Cherubini et al., 2014)

Humanoids Touch (Bussy et al., 2012), V+T (Agravante et al., 2013, 2014)

Heads Audition (Kumon et al., 2003, 2005; Magassouba et al.,

2016b), V+A (Okuno et al., 2001, 2004; Natale et al., 2002;

Hornstein et al., 2006)

vision, touch, audition, and distance. First, we introduce
a tutorial-like general formulation of sensor-based control
(Navarro-Alarcon et al., 2020), which we instantiate for visual
servoing, touch control, aural servoing, and distance-based
control, while reviewing representative papers. Next, with the
same formulation, we model the methods that integrate multiple
sensors, while again discussing related works. Finally, we classify
the surveyed body of literature according to: used sense(s),
integration method, control objective, target application,
and platform.

Although vision and touch (proprioceptive force rather
than tact) emerge nowadays as the most popular senses
on collaborative robots, the advent of cheap, precise, and
easy to integrate tactile, distance, and audio sensors present
great opportunities for the future. Typically, we believe that
robot skins (e.g., on arms and hands, Guadarrama-Olvera
et al., 2019; Navarro et al., 2020) will simplify interaction,
boosting the opportunities for human-robot collaboration. It is
imperative that researchers develop the appropriate tools for this.
Distance/proximity feedback is promising to fully perceive the
human operating near the robot (something monocular vision
cannot do). Audio feedback is key for developing robotic heads
that can interact in a natural way with human speakers.

Finally, some open problems must be addressed, to develop
robust controllers for real-world applications. For example, the
use of task constraints has not been sufficiently explored when
multiple sensors are integrated. Also, difficulty in obtaining
models describing and predicting human behavior hampers
the implementation of human-robot collaborative tasks. The
use of multimodal data such as RGB-D cameras with multiple
proximity sensors may be an interesting solution for this human
motion sensing and estimation problem. More research needs to
be conducted in this direction.
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Ergonomics of human workers is one of the key elements in design and evaluation of

production processes. Human ergonomics have a major impact on productivity as well

as chronic health risks incurred by inappropriate working postures and conditions. In this

paper we propose a novel method for estimating and communicating the ergonomic

work condition called Binary Work-Condition Map, which provides a visualized feedback

about work conditions of different configurations of an arm. The map is of binary

nature and is derived by imposing the desired thresholds on considered ergonomic and

safety related criteria. Therefore, the suggested arm postures in the map guarantee

that all considered criteria are satisfied. This eliminates the ambiguity compared to

state-of-the-art maps that uses continuous scales derived from weighted sum of multiple

ergonomics criteria. In addition, to combine the advantages of both the binary map

and the continuous map, we additionally propose a Hybrid Work-Condition Map that

rules out unsuitable workspace with the binary map approach and renders the suitable

workspace with the continuous map approach. The proposed approach was tested

in simulation for various tasks and conditions. In addition, we conducted subjective

evaluation experiments to compare the proposed methods with the state-of-the art

method regarding the usability. The results indicated that the binary map is simpler to

use, while the hybrid map is a good tradeoff between the binary and the continuous map.

In selecting the map, strong points of each map should be considered with respect to

the requirements of a specific application and task.

Keywords: Work-Condition Map, ergonomic human arm posture, biomechanical model, graphical user interface,

interactive exploration

1. INTRODUCTION

Robots have successfully supplemented human workers in modern manufacturing processes.
Nevertheless, in many cases, robots did not replace the human workers, who are still an essential
element at various production stages. While robots can work safely and efficiently without getting
tired for extended periods of time, human workers are prone to productivity degradation when
ergonomics is not taken into account. This is true both when the humans work on their own and
when they work with machines, such as collaborative robots.

One of the major issues regarding human ergonomics are improper working postures, which
can produce excessive joint torques that are detrimental to the current task efficiency, as well
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as to health and safety of the human in the long run
(Keyserling and Chaffin, 1986; Kumar, 2001). Earlier methods
of evaluating ergonomics of working postures, like Rapid Upper
Limb Assessment (RULA) (McAtamney and Corlett, 1993) and
rapid entire body assessment (REBA) (Hignett and McAtamney,
2000), used predefined heuristic tables that indicate a score
of particular joint configuration. The combination of scores
for all joints then gives the final score for the entire working
configuration of an arm or a body. Recently, RULA and
REBA have been applied to determine ergonomic postures in
human-robot collaboration (Busch et al., 2017; Marin et al.,
2018; Shafti et al., 2019). Other methods (Snook and Ciriello,
1991; Waters et al., 1993) used tables or equations to provide
physical limits that should not be exceeded in terms of load
during lifting tasks. Nevertheless, tables are more difficult to be
personalized for a specific worker, and are more difficult to be
generalized for different tasks and conditions. In addition, there
are other important underlying indicators that affect the human
ergonomics beyond kinematic posture and lifting load.

More recent methods included other indicators to optimize
human working configuration, such as muscle comfort (Chen
et al., 2018), physical fatigue (Maurice et al., 2016; Peternel
et al., 2018b), energy consumption (Kim et al., 2010; Maurice
et al., 2016), and arm manipulability (Jacquier-Bret et al., 2012;
Gopinathan et al., 2017; Peternel et al., 2017; Petrič et al.,
2019). In addition, they used personalized human body models
(Maurice et al., 2014; Maurice et al., 2016; Kim et al., 2018a),
which can be more easily integrated into collaborative robot
controllers and generalized for many tasks. When a human is
collaborating with a robot, we can use the robot to optimize the
collaborative task execution based on the dynamical models of
the human worker. Methods in Vahrenkamp et al. (2016)and
Peternel et al. (2017) allowed the robot to plan the optimal
handover of tools and objects between humans and robots
by considering various factors, such as human dexterity and
joint torques. Methods in Kim et al. (2018a) and Peternel
et al. (2017) enabled the robot to detect the overloading joint
torques in human body and then physically guide the human to
change configuration online during the working process. Other
methods in Peternel et al. (2018b, 2019) let the robot to estimate
the human worker’s muscle fatigue and then minimized it by
reconfiguration of task execution. A similar method was also
employed for ergonomic reconfiguration of human operator’s
arm in teleoperation (Peternel et al., 2020).

In Mansfeld et al. (2018), the authors proposed a concept
called SafetyMap, which used the information about robot inertia
in different states of the workspace in combination with human
injury data, to give workers a visual representation about the
safety of interaction. Nevertheless, this map only examined safety
in terms of possible collisions and gave no consideration to other
major factors that affect the human ergonomics, such as joint
torque, posture, and fatigue. Several methods used either one
of these factors as ergonomics criterion (Kim et al., 2018a,b;
Lorenzini et al., 2019; Peternel et al., 2019; Petrič et al., 2019).
The method in Maurice et al. (2016) considered multiple criteria,
but did not provide a combined overall ergonomics index. The
methods in Peternel et al. (2017) and Chen et al. (2018) combined

two ormore criteria to derive the optimal arm posture, but lacked
a visual interface to convey the information about ergonomic
suitability of the whole workspace.

In Vahrenkamp et al. (2016), the authors proposed a concept
called Interaction Workspace, which provided a visual color map
of the workspace that indicated what arm postures are most
suitable for task execution. Each posture had an index value
that depended on a combination of several ergonomics criteria,
such as human joint torque and dexterity. The index values were
represented by color spectrum (i.e., one side of color spectrum
for unfavorable values and the other side for favorable values).
Nevertheless, the overall index for each posture was calculated by
a weighted sum of all involved criteria (Vahrenkamp et al., 2016),
therefore the contribution of each individual criterion may be
unclear to users. Specifically, it may not be intuitive to a casual
worker (and even experts) what a specific overall index value
and its assigned color mean in terms of individual ergonomics
factors. Moreover, due to the weighted sum, the overall index
cannot guarantee that a given working posture does not exceed
ergonomic thresholds of any individual criteria. These problems
are also shared with RULA (McAtamney and Corlett, 1993)
and REBA (Hignett and McAtamney, 2000), which provide a
combined score from individual scores of different joints.

To resolve the above-mentioned issue, we propose a novel
concept called Binary Work-Condition Map. Unlike methods
that use weighted sum of various criteria (Vahrenkamp et al.,
2016), the proposed method uses a threshold based approach for
various criteria to obtain the overall ergonomics index at different
positions of the workspace. This index is therefore binary and
can potentially be more intuitive and easier to understand. For
example if the index is one (logical true) in a given position, it
means that all ergonomics criteria comply with the respective
thresholds, which can be defined by the established safety and
health standards and set by experts. If it is zero (logical false),
then it is clear to a casual worker that a given working position
does not satisfy all the standards and thresholds set by experts.
In multi-color map (Vahrenkamp et al., 2016), this is not clear,
because even in the safest "green" area, one of the thresholds
might be exceeded, if the other factors are predominately satisfied
due to the weighted-sum nature of derivation.

An additional contribution of the proposed work-condition
map method is a novel display feature that can indicate
ergonomic states of multiple arm postures sharing the same
endpoint position for human arms, which possess such intrinsic
kinematic redundancy. Such a feature is missing in the state-of-
the-art work-condition map methods.

2. METHODS

An interactive Binary Work-Condition Map guides human
workers to place their arms in appropriate postures for
performing quasi-static manipulation tasks in an ergonomic and
safe way. The method takes into account multiple task-related
parameters and upper limb dynamic model (Saul et al., 2015)
to create and if necessary update the binary map of suitable and
non-suitable working postures. This map can be used to provide
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FIGURE 1 | An overall diagram of the generation and usage of the proposed interactive task-oriented Binary Work-Condition Map.

human workers with posture guidance for accomplishing tasks
independently. Alternatively, it can be shared with collaborative
robots that are working together with human co-workers in order
to optimize the collaboration. The workflow framework of the
proposed interactive Binary Work-Condition Map is shown in
Figure 1.

When a human worker is assigned to perform a specific task
within the manufacturing process, the method categorizes the
task by its type. The type of the task is associated with either a
single criterion or multiple ergonomics criteria, which are used to
evaluate various ergonomics and safety related work conditions
during manipulation (e.g., joint torque, posture, fatigue, etc.).
Different task types have different sets of associated criteria
(see the top-right corner of Figure 1) and are represented in a
library that is predefined based on the task knowledge provided
by experts. For instance, in a task that requires a large force
production for a short duration (e.g., lifting an object), the key
criteria are joint torque and posture due to the large force,
while fatigue is not dominant due to the short duration. In a
task that requires a small force production for a long duration,
fatigue becomes dominant and instantaneous joint torques play
a lesser role.

The major types of criteria that we considered are joint
torque, endurance, and manipulability. Instantaneous joint
torque is important in terms of safety, as it can lead to various
short-term and long-term injuries (Keyserling and Chaffin,
1986; Kumar, 2001; Kim et al., 2018a). On the other hand,
integrated joint torque over time will lead to muscle fatigue
(Peternel et al., 2018a,b, 2019), which can degrade the human
worker’s performance and endurance (De Luca, 1984; Enoka
and Duchateau, 2008; Ma et al., 2009). The fatigue therefore

translates to endurance time, after which the worker cannot
perform the required task production forces. The posture affects
the manipulability of the human arm, which defines how well
it can produces motion or forces at the endpoint (i.e., hand) in
various directions of Cartesian space (Yoshikawa, 1985a,b; Petrič
et al., 2019). The manipulability measure can be either scalar or
vector. Scalar manipulabilitymeasure indicates how well the arm
endpoint can produce both motion and force in all directions.
For example, this measure is useful when the worker has to
perform complex assembly tasks, where both motion and force
are important in various directions to complete them. On the
other hand, vector manipulabilitymeasure indicates how easy the
arm endpoint can produce either motion or force in a specific
direction of Cartesian space. For example, this measure is useful
when the worker has to lift or carry a heavy object, where a
good force production capability is necessary in the direction of
the gravity.

Table 1 shows a library of considered tasks and criteria. For
this study we considered five common manipulation tasks and
four ergonomics criteria that are most relevant for manipulation
tasks. Drilling task usually requires holding a heavy tool and
producing relatively large forces for a prolonged time, therefore
joint torque and endurance time are critical. Furthermore, the
drilling force is in a specific direction, thus vector manipulability
should be considered. Cutting and lifting require large effort as
well, but only for a shorter time compared to drilling, therefore
endurance time is not as important. On the other hand, carrying
is typically a longer action than lifting and therefore requires
endurance time consideration. Finally, a typical part assembly
might not demand a lot of joint torque effort, however it may take
a while thus endurance time is important. In addition, complex
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TABLE 1 | A library of common manipulation tasks and ergonomics criteria that

are considered in this study.

Joint

torque

Endurance

time

Scalar

manipulability

Vector

manipulability

Drilling ✔ ✔ ✗ ✔

Assembly ✗ ✔ ✔ ✗

Cutting ✔ ✗ ✗ ✔

Lifting ✔ ✗ ✗ ✔

Carrying ✔ ✔ ✗ ✗

The marks ✔ and ✗ indicate whether a specific criterion is relevant for a specific task or

not, respectively.

assembly tasks require producing forces and motion in various
directions, therefore scalar manipulability is more important
than vector manipulability. Note that this is a general framework
and the considered tasks and criteria can be expanded. Certain
criteria may become relevant or irrelevant depending on the
specifics. For example, if an assembly task takes a lot of time,
endurance time is relevant, while if it can be done quickly, it
becomes irrelevant. When new tasks are added, a conceptual
analysis is necessary to determine which ergonomics criteria
are relevant.

When all the relevant criteria are determined according to
the associated task type, the experts can set the thresholds for
each ergonomics criteria. For example, if a certain amount torque
is known to cause injuries and long-term health problems, the
threshold is set conservatively below such limit. We should
stress again that thresholding approach is the key difference
compared to the existing methods that use weighted sum of
criteria (Vahrenkamp et al., 2016). The proposed approach can
guarantee that the preset thresholds for individual criteria will
not be exceeded when the worker maintain the posture in the
prescribed ergonomic area, while the continuous-conditionmaps
obtained by a weighted sum cannot guarantee that.

The threshold can be set as a fixed limit below or above which
the working arm posture is ergonomic as

ci =

{

1 if vi(q,P) < vth,i

0 if vi(q,P) ≥ vth,i
, (1)

where ci is the binary index of i-th criterion, vi is the i-th variable
(e.g., joint torque, endurance time, etc.), and vth,i is the respective
threshold. Variable vi depends on arm posture that is defined
by joint angles q and input parameters P, which include task
production force fref and other conditions. Note that inequality
signs in (1) can be reversed, depending whether the more
ergonomic state is below or above threshold. For example, in case
of joint torque, the more ergonomic state is naturally below the
threshold torque. In case of scalar manipulability, it is above the
threshold since the larger manipulability is more ergonomic.

Alternatively, the threshold can be set as a range when the
variable should be within some interval as

ci =

{

1 if vmin,i < vi(q,P) < vmax,i

0 if else
, (2)

where vmin,i and vmax,i are minimum and maximum threshold
of the range, respectively. For example, (2) can be used instead
of (1) when we want to make sure the joint torque does not
exceed the safe limits (upper threshold vmax), but on the other
hand, we do not want the worker to become too inactive (lower
threshold vmin).

The parameters are passed on to the Binary Work-Condition
Map generator that creates a workspace map for a given task by
calculating a binary ergonomic state for each arm posture within
the workspace as

ebink (qk) = c1 ∧ c2 ∧ ...cn, (3)

where ebin
k

is the combined overall binary index for k-th human
arm configuration qk, calculated by a logical AND operation ∧

among the individual binary indices of various criteria ci, i =

(1, 2, ...n). The considered criteria (joint torque, endurance
time, and scalar and vector manipulability) and Binary Work-
Condition Map generator are defined and described in the
following subsections.

For comparison, the proposed threshold based approach is in
contrast to the weighted-sum based approach in (Vahrenkamp
et al., 2016), which produces a continuous ergonomic state for
each arm posture as

econk (qk) = c1w1 + c2w2 + ... cnwn, (4)

where in this case criteria ci have continuous values and wi are
their respective weights.

The advantage of the binary map is to be able to guarantee that
the thresholds are met for all ergonomics criteria, however it has
only binary states and better configurations among the good ones
cannot be distinguished. On the other hand, the continuous map
has more states and can therefore distinguish between different
levels of good configurations, however it cannot guarantee that
the thresholds for all criteria are met, even if the configuration is
in the green section. That is because weighted-sum approachmay
produce a high score whenmajority of criteria are high, while one
of them is very low and below a threshold.

In order to exploit the advantages of both the binary map
and the continuous map, we also propose a novel hybrid map.
In this approach, the binary map is used as a mask over the
continuous map in order to filter out all configurations that do
not meet the thresholds of all criteria. The remaining suitable
sections of workspace are then colored by the continuous map
in order to provide the user with a distinction between different
levels of good configurations. The proposed hybrid map can be
mathematically formalized as

e
hyb

k
(qk) = ebink (qk) · e

con
k (qk), (5)

In practice, the section of workspace that is red in the binary map
remains red, while the green section can be recolored with a color
scale to indicate multiple levels of goodness. Note that if applying
very strict thresholds in the binary map, the border of the mask
might be already in the green sections of the continuous map. To
exploit the full color spectrum and better to distinguish different
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levels of goodness for different points, the continuous sections of
the hybrid map can be rescaled; for example, so that yellow color
will start at the border instead of green color.

2.1. Joint Torque
The quasi-static relation between the human arm joint torques
and endpoint force related to the task production is defined as

τ = JT(q)f+ g(q), (6)

where τ is the joint torque vector of the human arm, f is the
endpoint force vector, J is the geometric Jacobian matrix of the
human arm, qh is the joint angle vector, and gh is the gravity
torque vector of the arm. As it can be seen from (6), the joint
torque is affected by the force that is actively produced as a result
of task performance, and the gravity of the human arm itself. The
joint torque is calculated by using a human arm biomechanical
model from Fang et al. (2018), which is based on the model
developed in Holzbaur et al. (2005).

2.2. Endurance Time
Endurance time in which the human can perform the task with
a specified force f is related to physical fatigue. We estimated the
fatigue based on the model proposed in (Peternel et al., 2018b),
which follows first-order system dynamics as other established
models from the literature (Ma et al., 2009). Here we used joint
torque as an effort estimation parameter as in (Maurice et al.,
2016; Lamon et al., 2019). The fatigue model for each joint is
defined as a first-order system of differential equations as

dui(t)

dt
=

{

(

1− ui(t)
) |τi(q,t)|

λi
if |τi(t)| ≥ τth,i

−ui(t)
R
λi

if |τi(t)| < τth,i

, (7)

where ui ∈ [0 1] is the i-th joint fatigue index, τi is calculated
from (6) for a given time t and configuration q, λi is a
capacity parameter that determines the joint-specific fatigue
characteristics. The parameters λ are dependent on individual
human and joint. The higher the λ is, the more effort τ over time
it takes for the fatigue to occur. The parameterR is a recovery rate,
which determines the speed of fatigue reduction after the arm is
relaxed. In our experiments we used a conservative value R = 0.5,
as in (Peternel et al., 2018b) for all the joints. Other recovery
rates can be found in literature (Ma et al., 2010). We used the
threshold τth,i to determine when the arm joint is relaxed. When
the joint torque is larger than this threshold, the model is in
fatigue increasing mode, otherwise it is in recovery mode.

The values of fatigue capacity parameters λ of individual arm
joints can be estimated by themethod proposed in (Peternel et al.,
2018b). In this procedure, the human produces several reference
joint torques τcalib for the amount of time Tcalib, after which
the human cannot endure it anymore or feels uncomfortable. In
other words, one chooses τcalib and measures respective Tcalib.
Capacity λ for each reference torque τcalib is then derived by

λ = −
|τcalib| · Tcalib

ln(1− 0.993)
, (8)

where the full capacity is assumed to be reached after five time
constants, i.e., u = 0.993. The mean value of λ parameters,
calculated by (8) for different reference forces, is then used as the
final estimation of fatigue capacity for each joint separately.

The maximum endurance time T for an arbitrary joint torque
τ is then obtained by,

T = −
λ · ln(1− 0.993)

|τ |
. (9)

2.3. Scalar Manipulability
The scalar manipulability measures how well the arm endpoint
can produce both motion and force in all direction of Cartesian
space, and can be derived as Yoshikawa (1985b)

w =

√

det(J(q)J(q)T), (10)

where the higher value means more capacity to produce both
motion and force at the endpoint. If the task requires complex
manipulation that involves movements and force of the endpoint
in various directions (e.g., complex assembly), it should be
performed around the configuration where the manipulability w
is the highest.

2.4. Vector Manipulability
The manipulability can also be examined on a vector level by
using Eigen decomposition or singular value decomposing of arm
Jacobian matrix (Yoshikawa, 1985b). Velocity manipulability is
derived as

U6VT = J(q)J(q)T , (11)

where 6 are singular values, while U and V are left and right
singular vectors, respectively. 6 and U determine the size and
shape of velocity manipulability ellipsoid, respectively. The size
of a vector from the center of the ellipsoid to its surface in
any direction tells how well the arm endpoint can move in that
direction. Force manipulability is derived as

U6VT =

(

J(q)J(q)T
)−1

, (12)

where singular values and vectors have similar roles as in velocity
manipulability. The force manipulability ellipsoid is able to tell
how well the arm endpoint can produce or sustain forces in a
certain direction.

The major axes of force and velocity manipulability are
orthogonal; therefore if the arm in a given configuration can
produce large velocities in a certain direction, then a large
force cannot be produced in that direction, and vice-versa. For
example, if the task requires to produce or sustain high forces in
a certain direction (i.e., lifting a heavy object), the highest force
manipulability vector should be aligned with that direction [i.e.,
(12) should be used]. If we need to move the manipulated object
fast in a certain direction, the highest velocity manipulability
vector can be aligned with that direction [i.e., (11) should be
used]. In connection to the scalar manipulability from (10), high
w tends to make velocity and force manipulability ellipsoids
closer to a sphere.
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FIGURE 2 | Discretization of arm posture in terms of hand position in the proposed Binary Work-Condition Map by using human biomechanical model.

2.5. Binary Work-Condition Map Generator
To evaluate all possible arm postures, subject to selected
workspace and joint limits, the whole configuration space of
human arm is discretized in terms of the Cartesian-Posture-
Swivel-Angle (CPSA) representation of human arm configuration
(Fang et al., 2019). In this CPSA representation, a human arm
configuration is expressed by a 3-degrees-of-freedom (DoF)
position and 3-DoF orientation of human hand, plus 1-DoF
swivel angle of the elbow, which is determined by the angle
between a shoulder-elbow-wrist human arm plane and a vertical
plane (Tolani et al., 2000).

Figure 2 provides an example of the discretization of arm
posture in terms of hand (endpoint) position and Figure 3

provides two examples of the discretization of the arm posture in
terms of swivel angle. A hand position and swivel angle step sizes
are predefined in advance. Every possible arm posture is tested
under the desired external force required to produce the task
(e.g., F shown in Figure 2). This is done automatically through an
individual simulation using an OpenSim biomechanical model
(Saul et al., 2015; Seth et al., 2018). The collected data for each
posture is analyzed by (3) according to all the associated criteria
and predefined thresholds. If all the criteria are satisfied and
ek(qk) = 1, the arm posture qk will be labeled as a feasible
configuration, otherwise it will be labeled as an infeasible posture.

After the offline calculation stage, the tested hand positions are
visually presented to a worker through the developed graphical
user interface (GUI) as a binary map of Cartesian points, where
ergonomically feasible points are displayed by green color and
infeasible by red color. Prior to the interactive exploration
stage, the human worker attaches a set of pose-measurement
markers on the anatomical landmarks of his/her arm. During
the interactive exploration stage, the current arm posture is then
captured by an optical motion capture system and reconstructed
in a graphical user interface (GUI) in real time (Fang et al., 2018).
This enables the worker to interactively explore the workspace

in real time through the GUI and generated map in the online
exploitation stage.

Since there is a redundancy in the human arm, there are
multiple possible configurations for a single hand position. The
hand position is displayed as feasible (green color), if there is at
least one feasible configuration within that hand position. The
worker can then move the hand into that point and explore it by
changing the configuration through swivel angle and redundant
DoF in real time. If the configuration satisfies the criteria, the
elbow point of the simulated human arm on the interactive
map turns green, if not it turns red. Note that redundancy
was not considered in (Vahrenkamp et al., 2016), therefore the
proposed redundancy-display approach is novel in terms of
interactive maps.

The examples of maps created for two arms of different
dimensions are illustrated in Figure 3. Through interactive self-
supervised exploration manner, the worker is able to establish
an intuitive sense of how he/she should place the arm in
appropriate configurations for performing the specified task. This
self-supervised exploration can be further divided into practicing
in the air and practicing with the real tool to help the user
memorize the desirable arm configuration step by step. When
a feasible arm posture is selected and memorized after the
interactive exploration, the worker can execute the actual task
without the assistance of the GUI and motion capture system.

3. EVALUATION AND RESULTS

The evaluation was separated into concept demonstration
and experiments. The concept demonstration included
demonstration of all aspects that does not include subjective
factors of human worker (i.e., parts outside of blue area
in Figure 1). These included technical calculation of work-
condition maps taking a combination of different task
parameters and criteria into account. The additional experiments
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FIGURE 3 | A series of Binary Work-Condition Maps generated for five different tasks and two different human arm dimensions. Arm 1 had upper arm and forearm

lengths 0.250 and 0.266 m, repetitively. Arm 2 had upper arm and forearm lengths 0.323 and 0.232 m, repetitively. X-axis point right of the body, y-axis points in front

of the body and z-axis point vertically. The frame origin is at the right shoulder position. Green colored point indicates that if the endpoint is placed in it, at least one

arm configuration exist where all criteria are within thresholds. Red colored point indicates that there are no ergonomic configurations in that position.

then evaluated aspects that involve subjective perception of
human worker, i.e., usability factors of the developed binary and
hybrid maps compared to the existing continuous map.

3.1. Concept Demonstration
To evaluate the offline part of the method, we calculated a Binary
Work-Condition Map for each of the five considered tasks from
the library in Table 1. For each map, the associated relevant
ergonomics criteria were used to determine whether the available
arm postures within the workspace are suitable or not. A 0.16
x 0.12 x 0.16 m cuboid in front of the body was selected as the
workspace, with its center at (x, y, z) = (0.0, 0.3, 0.0) m with
respect to a base frame located at the right shoulder center. The
positive x-axis of the base frame points rightwards from the
shoulder, while the positive y-axis and z-axis points forwards
and upwards, respectively. The condition was calculated for every
point within the cuboid with resolution of 0.02 m. Note that
the workspace and resolution can be adjusted depending on
the scenario.

To demonstrate the effect of different arm dimensions on the
calculation of the map, we generated five maps for two right
arms of different dimensions. For the first human, the arm upper

arm length was 0.250 m and the forearm length was 0.266 m.
For the second human, the arm upper arm length was 0.323
m and the forearm length was 0.232 m. We used one average
and one extreme arm dimensions in order to highlight the
conceptual differences.

Ten maps are produced based on the calculated results shown
in Figure 3. By observing the maps on the figure, we can see that
tasks have major influence on the map layout. For instance, the
more demanding tasks in terms of physical effort, e.g., lifting and
carrying (fourth and fifth rows), have very few arm configurations
in green state that satisfy all selected ergonomics criteria. On the
other hand, tasks that require less physical effort, like cutting
(third row), have more arm configurations in green state. While
complex assembly (second) is not a physically demanding task,
it does have requirements from high manipulability; therefore
areas, where the arm has to be extended, are in red state. Note
that in order to highlight the differences between the tasks, we
intentionally used relatively strict thresholds.

The influence of arm dimensions is also clearly visible by
comparing the two columns. Different arm dimensions produced
noticeably different values of scalar manipulability for assembly
task (second row), and different values of velocity manipulability
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FIGURE 4 | A closer look at two of the maps from Figure 3 with the same human arm displayed in different configurations. The examples show the arm in the same

endpoint position (x, y, z) = (0.0, 0.28, 0.08) m, with four different configurations, for two different tasks. The shoulder is located at (x, y, z) = (0, 0, 0) m and is displayed

by a large black sphere. The elbow is displayed by either green or red sphere, which indicates whether the configuration satisfies the ergonomics criteria. Hand

(endpoint) is displayed by either green or red star, where there is at least one ergonomics configuration when it is colored in green.

for the cutting task (third row). In addition, the maps for the
drilling task were also considerably different because of a different
combination of force manipulability and joint torque results due
to different arm dimensions.

Figure 4 shows a closer look at two maps of the same
human arm for two different tasks from Figure 3. Four arm
configurations of evenly spaced swivel angles with the same
endpoint position are displayed on each map (the resolution of
swivel angle is 30 degrees). Since the work conditions are different
because of the different tasks, the ergonomic states are different.
In the cutting task (left plot) the endpoint position is in a green
state, since there are two out of four configurations that satisfy
all ergonomics criteria. Whether the configuration is ergonomic
or not is indicated by green or red elbow, respectively. On the
other hand, in the drilling task (right plot) the same endpoint
position is in a red state, since there are no configurations that
satisfy all ergonomics criteria. Therefore, all four configurations
have red elbow.

Note that in this example we used four configurations
for every endpoint position within the selected workspace.
The amount of configurations per endpoint can be arbitrarily
increased or decreased, depending on the use cases.

3.2. Experiments
The conceptual differences and advantages of the binary map
compared to the continuous map were highlighted in section 2,
and the main features of the proposed method were shown in
section 3.1. Additionally, we performed experiments to compare

the different types of maps in terms of usability factors. The
goal of the experiment was to evaluate subjective aspects of
the proposed binary and hybrid-condition maps, compared to
the continuous-condition map. We chose the continuous map
as a benchmark in the comparison since it is a state-of-the-
art method. Unlike the proposed method, the continuous map
method (Vahrenkamp et al., 2016) did not consider redundant
DoF of human arm and did not have any visualization solution
for the redundant DoF. Therefore, in order to make a fair
comparison, the experiments were performed using degenerate
maps constrained on a 2D vertical plane, which is parallel
to the human body sagittal plane and passes through the
shoulder center.

We used 15 male participants in the experiment with age
27.60±8.88 years, upper arm length 32.23±1.85 cm and forearm

length 27.93 ± 1.30 cm. The participants were briefed about
the experiment procedure and the purpose of the experiment,

and gave an informed consent to participation. We adapted the

biomechanical model and parameters based on each individual

participant during the calibration stage prior to the experiment.
The experiment setup (see Figure 5) included a motion

capture system (Optitrack) that measured human arm
configuration in real-time and a display (GUI) that showed
the ergonomics maps with respect to the virtual copy of the
human arm. The virtual copy of the arm moved in the same
manner as the real arm according to the measured configuration.

Before the actual experiment, the participant conducted a
familiarization experiment in order to get familiar with the
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MOTION CAPTURE SYSTEM

GRAFICAL USER INTERFACE

OPTICAL

MARKER

TOOL

BINARY MAP

CONTINUOUS MAP HYBRID MAP

FIGURE 5 | Experiment setup consists of a motion capture system (Optitrack) for tracking the human posture in real time and a graphical user interface (GUI) on a

monitor that provides on-line guidance for locating ergonomic arm postures to a human worker. Examples of binary, continuous and hybrid maps rendered by the GUI

are shown on the right side. Note that the difference between the maps arises from two completely different underlying concept of calculating the maps. The binary

map uses thresholding and binary AND operation between different criteria [i.e., (3)]. The continuous map uses weighted sum of those criteria [i.e., (4)]. The hybrid

map uses a combined approach [i.e., (5)].

setup and the methods. The experimenter explained to the
participant the implications of the different colors of the map
in layman terms (e.g., the green color indicates good arm
working posture and red indicates bad arm working posture).
During the actual experiment the participant was instructed
to explore workspace and to select an arbitrary suitable arm
working posture. After their selection, the participant had to
then produce the actual task, i.e., holding a heavy drilling
tool at the selected position for 1 min. This procedure was
sequentially done for all three maps. The order of maps as they
were performed in the experiments was randomized between
the participants.

After the experiments, we performed the subjective evaluation
by a Likert-type of questionnaire, where the participant had to
report the degree of agreement with the given statements:

• S1: The binary map is not ambiguous to indicate a good
working posture.

• S2: The continuous map is not ambiguous to indicate a good
working posture.

• S3: The hybrid map is not ambiguous to indicate a good
working posture.

• S4: I feel it took effort to place my arm in a good configuration
by binary map.

• S5: I feel it took effort to place my arm in a good configuration
by continuous map.

• S6: I feel it took effort to place my arm in a good configuration
by hybrid map.

• S7: I felt comfortable with the configuration selected by the
binary map.

• S8: I felt comfortable with the configuration selected by the
continuous map.

• S9: I felt comfortable with the configuration selected by the
hybrid map.

There were five possible levels of agreement (score is in the
brackets): strongly agree (2), agree (1), neutral (0), disagree (–
1), strongly disagree (–2). S1–S3 evaluate the initial phase of the
method, where the user has to visually search for and select a
suitable configuration on a given map. S4–S6 evaluate the middle
phase of the method, where the user has to explore and navigate
to the selected configuration. S7–S9 evaluate the final phase of the
method, where the user has to perform the task in the selected
configuration. Additionally, we asked the participants to rank the
methods according to their overall preference, where 3 points
were given to the best and 1 point the worse method in terms
of preference.

To check for significance of the differences between subjective
scores for the three methods, we performed a statistical analysis
using paired sample t-tests. The statistical significance was set to
0.05 and statistical power to 0.8. Power analysis indicated that
sample number of 14 was sufficient under the given parameters.
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FIGURE 6 | Results of subjective evaluation for usability. The statements are listed on x-axis, while the level of agreement in terms of score is shown on y-axis. Blue

color is associated with the statements related to the binary map, magenta color is associated with the statements related to the continuous map and cyan color is

associated with the statements related to the hybrid map. The dot represents mean score and the vertical line represents standard deviation. The individual data

points are marked by crosses. In essence, positive scores for S1–S3 indicate that the method was not ambiguous. On the other hand, negative scores for S4–S6

indicate that the method took less effort to use. Finally, positive scores for S7–S9 indicate that the task execution in the selected configuration was comfortable.

TABLE 2 | Results of subjective analysis of usability.

Aspect Statement Agreement

S1 (binary) 0.13±1.20

S2 (contin) -0.27±1.00

Not ambiguous to

indicate a good

working posture. S3 (hybrid) 0.73±1.06*

S4 (binary) -1.07±1.00*

S5 (contin) 0.27±0.93

It took effort to

place my arm in a

good configuration. S6 (hybrid) –0.20±1.33

S7 (binary) 1.00±0.97*

S8 (contin) 0.00±1.10
Comfortable with the

selected configuration.
S9 (hybrid) 0.13±1.09

The values represent the mean degree of agreement to the statements S1–S9 and

respective standard deviation. Positive value indicates agreement, while negative indicates

disagreement with the statement for a given map. Symbol * indicates whether there is a

significant difference with respect to the continuous map (benchmark).

The datasets were checked for normality by performing the
Shapiro-Wilk test. If the dataset did not pass this test, non-normal
distributed data was corrected by a rank-transformation before
the main test.

The results of the subjective evaluation for usability are shown
in Figure 6. Additionally, the average degree of agreement to

the statements S1–S9 is shown is Table 2. On average, the
participants rated the binary map less ambiguous compared to
the continuous map. However, the difference was not statistically
significant (p = 0.442). The hybrid map was also rated less
ambiguous compared to the continuous map. The difference was
statistically significant (p = 0.030).

On average, the participants felt that by using the continuous
map it took much more effort to explore and navigate to
the selected configuration compared to the binary map. The
difference was statistically significant (p = 0.006). The same
was true for the hybrid map when compared to the continuous
map. However, the difference was not statistically significant (p =

0.389).
On average, the participants felt that performing the task

in the selected configuration, by using the binary, was more
comfortable compared to the one selected by the continuous
map. The difference was statistically significant (p = 0.038).
The same was true for the hybrid map when compared to the
continuous map. However, the difference was statistically not
significant (p = 0.784).

The results of the subjective evaluation for overall preference
of maps are shown in Figure 7. The participants generally
preferred the binary map to either the hybrid map or the
continuous map, and most of them gave the binary map
the highest score. However, the preference difference between
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FIGURE 7 | Results of subjective evaluation for preference. The maps are listed on x-axis, while the preference score is shown on y-axis. Blue color is associated with

the statements related to the binary map, magenta color is associated with the statements related to the continuous map and cyan color is associated with the

statements related to the hybrid map. The dot represents mean score and the vertical line represents standard deviation. The individual data points are marked by

crosses. Score 3 is the best and score 1 is the worse in terms of preference.

the binary map and the continuous map was statistically not
significant (p = 0.077). Neither was significant the difference
between the hybrid map and the continuous (p = 0.433).

4. DISCUSSION

The main strength and advantage of the binary map compared
to the continuous map is that it can guarantee the thresholds for
all criteria are satisfied. This is not the case with the continuous
map, since it uses weighted sum to derive the overall index for
a given position. For example, the continuous map does not
guarantee that all criteria are within the ergonomic thresholds,
even in the high-value points (green color). This is a conceptual
advantage which was highlighted in the section 2. The hybrid
map uses the binary map concept to rule out the configurations
that do not satisfy all the thresholds; therefore it exploits the main
conceptual advantage of the binary map. On the other hand,
it uses continuous map concept to indicate the different levels
of ergonomy among the suitable ones in order to increase the
resolution for the user.

The results of experiments and subjective evaluation showed
that the participants found the binary map and the hybrid map
less ambiguous, compared to the continuous map. This can be
mostly likely attributed to the binary nature of the map, since
the map gives two distinct states and therefore it is clear to

the user whether the posture is either ergonomic or not (i.e.,
whether the thresholds set by the expert are satisfied or not).
On the other hand, the continuous map has multiple states and
gives a range of ergonomic values, which can be ambiguous.
Medium value (yellow color) in the continuous map can be
achieved by different combinations of criteria conditions, for
example: non-ergonomic torque and ergonomic manipulability,
or ergonomic torque and non-ergonomic manipulability, or
borderline ergonomic for both torque and manipulability. Just
by looking at the map, it is impossible even for an expert to
know for sure which combination produced the given color, let
alone a casual worker. However, the hybrid map was rated even
less ambiguous which might be attributed to the exploitation of
advantages of both the binary and the continuous map; a clear
division between unsuitable and suitable configurations areas,
but a continuous pattern within the suitable ones that permits
more resolution in the selection of the best among the good ones.
Therefore, this hints that the hybrid map and the binary map
might be more suitable for casual workers that are not experts
in ergonomics.

The results of subjective evaluation also showed that the
participants felt it took less effort to use the binary map to
explore and navigate to the selected configuration, compared
to the continuous map. This could potentially be attributed to
the binary map concept that rules out a considerable number
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of configurations for not satisfying all the thresholds. The
continuous map concept has continuous states across all the
workspace and therefore more options to navigate through. In
addition, more continuous states can take more attention from
the user in order to distinguish between the different tones of
color while exploring through the map. As the results showed,
the difference in perceived effort between hybrid map and the
continuous map is not as large, which can be attributed to hybrid
map taking aspects from both the binary map and the continuous
map. Based on this, we recommend using the binary map when
new working configurations are changing quickly in order to
minimize the perceived workload on the user. If that is not the
case, we recommend using the hybrid map in order to exploit
also the advantage of the continuous map.

The perceived better comfort in the configurations selected
by the binary map can be attributed to the binary map
guaranteeing that all ergonomic thresholds are being met
through the underlying thresholding approach. On the other
hand, the continuous map uses weighted-sum approach and
does not guarantee that all ergonomic thresholds are satisfied,
even for highly rated configurations. We recommend using
the binary map when satisfying thresholds for all criteria is of
primary importance.

Surprisingly, the participants did not perceive the same
comfort difference for the hybrid map. Different participants
might subjectively weigh different relevant criteria in different
ways (not equally), however equal weights among different
criteria were assumed in the experiments for the hybrid and
continuous maps. By using the binary map, the participants
could choose the configuration, which they felt it is the most
ergonomic, among several options in the green area. This implies
that they might have potentially used their "embedded" non-
equal weights to explore and search for their own customized best
configuration in the binary map. On the other hand, when using
the hybrid map, the equal weights among different criteria were
hard-coded and inherited from the continuous map.

Finally, the participants on average preferred the binary map
in overall sense. This might be attributed to the clear and easy-
to-read distinction between the suitable and unsuitable working
configurations by the binary states. Nevertheless, the differences
for the preference were not statistically significant; therefore
we recommend that subjective preference should be examined
individually for a specific user.

5. CONCLUSION

In conclusion, we recommend that the selection of map should
be primarily based on the different advantages of the maps with
respect to the specific requirements of a given application. If
maintaining the thresholds strictly is important, we recommend
using the binary map. Subjective aspects can be considered
as secondary reason for selection. For example, if easy-to-use
aspect is important, we recommend the binary map. If higher
resolution of states is require, the continuous map provides such
intrinsic advantage. Nevertheless, in such case we recommend
using the hybrid map instead of the pure continuous map,
since it combines the advantages of the binary and continuous
maps, at a slight expense of complexity compared to the
binary map.
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exoskeleton control based on human muscular manipulability. Front.

Neurorobot. 13:30. doi: 10.3389/fnbot.2019.00030

Saul, K. R., Hu, X., Goehler, C. M., Vidt, M. E., Daly, M., Velisar, A.,

et al. (2015). Benchmarking of dynamic simulation predictions in two

software platforms using an upper limb musculoskeletal model. Comput.

Methods Biomech. Biomed. Eng. 18, 1445–1458. doi: 10.1080/10255842.2014.

916698

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne,

J. J., et al. (2018). Opensim: Simulating musculoskeletal dynamics and

neuromuscular control to study human and animal movement. PLoS Comput.

Biol. 14:e1006223. doi: 10.1371/journal.pcbi.1006223

Shafti, A., Ataka, A., Lazpita, B. U., Shiva, A., Wurdemann, H. A., and Althoefer,

K. (2019). “Real-time robot-assisted ergonomics,” in 2019 International

Conference on Robotics and Automation (ICRA) (Montreal, QC: IEEE),

1975–1981.

Snook, S. H., and Ciriello, V. M. (1991). The design of manual handling tasks:

revised tables of maximum acceptable weights and forces. Ergonomics 34,

1197–1213. doi: 10.1080/00140139108964855

Tolani, D., Goswami, A., and Badler, N. I. (2000). Real-time inverse

kinematics techniques for anthropomorphic limbs.Graph. Models 62, 353–388.

doi: 10.1006/gmod.2000.0528

Vahrenkamp, N., Arnst, H.,Wachter, M., Schiebener, D., Sotiropoulos, P., Kowalik,

M., et al. (2016). “Workspace analysis for planning human-robot interaction

tasks,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots

(Humanoids) (Cancun), 1298–1303.

Waters, T. R., Putz-Anderson, V., Garg, A., and Fine, L. J. (1993). Revised niosh

equation for the design and evaluation of manual lifting tasks. Ergonomics 36,

749–776. doi: 10.1080/00140139308967940

Yoshikawa, T. (1985a). “Dynamic manipulability of robot manipulators,” in

Robotics and Automation. Proceedings. 1985 IEEE International Conference on,

Vol. 2 (St. Louis, MO: IEEE), 1033–1038.

Yoshikawa, T. (1985b). Manipulability of robotic mechanisms.

Int. J. Robot. Res. 4, 3–9. doi: 10.1177/027836498500

400201

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Peternel, Schøn and Fang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 January 2021 | Volume 14 | Article 590241222

https://doi.org/10.3389/frobt.2017.00058
https://doi.org/10.1016/S0003-6870(99)00039-3
https://doi.org/10.1007/s10439-005-3320-7
https://doi.org/10.1080/00140139.2011.633176
https://doi.org/10.1146/annurev.pu.07.050186.000453
https://doi.org/10.1109/LRA.2017.2729666
https://doi.org/10.1109/LRA.2018.2864356
https://doi.org/10.1080/00140130120716
https://doi.org/10.1109/LRA.2019.2926963
https://doi.org/10.1016/j.ergon.2008.04.004
https://doi.org/10.1080/17452759.2010.504056
https://doi.org/10.1109/LRA.2018.2801477
https://doi.org/10.1504/IJHFMS.2016.10000531
https://doi.org/10.1016/0003-6870(93)90080-S
https://doi.org/10.1016/j.rcim.2019.01.013
https://doi.org/10.1007/s10514-017-9678-1
https://doi.org/10.3389/fnbot.2019.00030
https://doi.org/10.1080/10255842.2014.916698
https://doi.org/10.1371/journal.pcbi.1006223
https://doi.org/10.1080/00140139108964855
https://doi.org/10.1006/gmod.2000.0528
https://doi.org/10.1080/00140139308967940
https://doi.org/10.1177/027836498500400201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Integrated Multi-modal and Sensorimotor Coordination for Enhanced Human-Robot Interaction
	Table of Contents
	Editorial: Integrated Multi-modal and Sensorimotor Coordination for Enhanced Human-Robot Interaction
	Author Contributions
	Funding

	Open-Environment Robotic Acoustic Perception for Object Recognition
	1. Introduction
	2. Related Work
	3. Kernel k Nearest Neighbor Method for Acoustic Recognition in Open Environment
	3.1. Open Environment Acoustic Recognition Framework
	3.2. Kernel k Nearest Neighbor in an Open Environment

	4. Acoustic Dataset Collection
	4.1. Interaction Actions
	4.2. Objects Selections
	4.3. Data Analysis and Processing

	5. Experiment
	5.1. Object Recognition in Closed Environment
	5.1.1. Comparison of Learning Algorithms and Comparison of Interaction Methods
	5.1.2. Comparison of Weight

	5.2. Object Recognition in Open Environment
	5.2.1. Detection of Unknown Class Objects in Open Environment
	5.2.2. Recognition of All Class Objects in Open Environment
	5.2.3. Performance Evaluation for Recognizing All Class Objects in Open Environment


	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Biceps Brachii Muscle Synergy and Target Reaching in a Virtual Environment
	Introduction
	Materials and Methods
	Intermittent Controller
	Red Sphere Displacement
	Protocol
	Statistics

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Walking Human Detection Using Stereo Camera Based on Feature Classification Algorithm of Second Re-projection Error
	Introduction
	Related Work
	System Overview
	Static Feature Detection and Pose Optimization
	Initialization
	Texture Constraint
	Area Constraint
	Static Feature Detection

	Constraint
	Double Texture Constraint
	Dynamic Detection

	Experiment Results
	Conclusion and Future Work
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	An Intuitive End-to-End Human-UAV Interaction System for Field Exploration
	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Quaternion Operations
	2.3. Kinematic and Dynamic Models of Hexacopter UAV
	2.3.1. Kinematic Model
	2.3.2. Dynamic Model


	3. Methods
	3.1. Human Pose Estimation
	3.2. Depth Estimation
	3.3. Super Twisting Extended State Observer (STESO)
	3.4. UAV Controller Approach
	3.4.1. Attitude Control
	3.4.2. COG Compensation System

	3.5. Interaction Between UAV and Human
	3.5.1. Interaction Regulation From Human to UAV
	3.5.2. Communication From UAV to Human


	4. Simulation Results and Discussion
	5. Experimental Results and Discussion
	5.1. Hardware Platform
	5.2. Hovering With Wind Gusts
	5.3. Human-UAV Interaction
	5.3.1. Interaction Initiation 
	5.3.2. Automated Exploration Task


	6. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation
	Introduction
	Materials and Methods
	HAC Anatomy and Configuration Design
	Kinematic Analysis
	Inverse Position Solution
	Velocity Jacobian Matrix

	Performance Indices
	Reachable Workspace Index
	Motion Isotropy Index
	Force Tansfer Index
	Maximum Torque Index


	Results
	Mechanical Design
	Performance Evaluation

	Discussions
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Development of a Novel Robotic Rehabilitation System With Muscle-to-Muscle Interface
	Introduction
	Materials and Methods
	System Overview
	Muscle-to-Muscle Interface
	Motion-to-Motion Interface

	Operation Modes
	Passive Mode
	Active Assist Mode
	Active Resist Mode


	Experiments and Results
	Experimental Setup
	Comparison of Experimental Results Among the Operation Modes
	Experiments Using Passive Mode
	Experiments Using Active Assist Mode
	Experiments Using Active Resist Mode

	Comparison of Experimental Results Among the Subjects

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Generalize Robot Learning From Demonstration to Variant Scenarios With Evolutionary Policy Gradient
	1. Introduction
	2. Related Work
	3. Background
	3.1. Learning From Demonstration (LfD) With Behavior Cloning
	3.2. Policy Gradient and Explore With Action Noise
	3.3. Policy Search With Evolutionary Algorithms

	4. Method: Evolutionary Policy Gradient
	4.1. Optimization of Perturbed Policies With Policy Gradient
	4.2. The Framework of EPG
	4.3. Mutation Operator in EPG
	4.4. Crossover Operator in EPG

	5. Experiments
	5.1. Exploration: Robot Control in State Space
	5.2. Generalization: Learning Vision Based Manipulation From Demonstration

	6. Conclusion and Discussion
	6.1. About Exploration
	6.2. About Exploitation and Exploration Trade-Off
	6.3. About Generalization

	Data Availability Statement
	Author Contributions
	Funding
	References

	Gaze Control of a Robotic Head for Realistic Interaction With Humans
	1. Introduction
	2. Overview of Related Work
	3. Analysis of the System
	3.1. Entry Stimuli of Competitive Network
	3.1.1. Stimulus Ik1: Person in the FOV of the Robot
	3.1.2. Stimulus Ik2: Person Speaking in the FOV of the Robot
	3.1.3. Stimulus Ik3: Person Gazing Directly at the Robot
	3.1.4. Stimulus Ik4: Person Continuously Moving
	3.1.5. Stimulus Ik5: Person Not in the Robot's FOV but With Audio
	3.1.6. Stimulus Ik6: Person in the VFOA of Other People
	3.1.7. Stimulus Ik7: Proxemics of a Person

	3.2. Competitive Network
	3.2.1. Short Time Memory Layer
	3.2.2. Habituation Layer
	3.2.3. Competitive Layer

	3.3. Angles of the Robot
	3.4. Kalman Filter

	4. Robot Construction and Method Implementation
	5. Experiments and Results Discussion
	6. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients
	1. Introduction
	2. Modeling and Problem Formulation
	2.1. Modeling Exoskeleton System as LFMAS
	2.2. Dynamics Model of LLE System
	2.2.1. Design Objective


	3. Policy Iteration Based Controller
	4. Implementation of Controller Design
	4.1. The Critic NN Modular
	4.2. The Actor NN Modular

	5. Numerical Simulation
	5.1. Dynamic Model of 2-DOF System
	5.2. Simulation Results and Analysis

	6. Experiments on a Real LLE System
	6.1. Experimental Setup
	6.2. Experimental Results and Discussions

	7. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	An Incremental Learning Framework to Enhance Teaching by Demonstration Based on Multimodal Sensor Fusion
	Introduction
	System Outline
	System Description
	System Principle

	Methodology
	Data Collection
	Calculation of Joint Angles Using the Space Vector Approach
	Calculation of Joint Angular Velocity From Myo Armband

	Data Preprocessing
	Data Fusion by Kalman Filter
	Data Preprocessing With Dynamic Time Warping

	Incremental Learning Method

	Experiments and Results
	Experimental Setup
	Experimental Results
	Results of the Wiping Task
	Results of the Pushing Task


	Discussion
	Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	A Lyapunov-Stable Adaptive Method to Approximate Sensorimotor Models for Sensor-Based Control
	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Configuration Dependant Feedback
	2.3. Uncalibrated Sensorimotor Control

	3. Methods
	3.1. Discrete Configuration Space
	3.2. Initial Learning Stage
	3.3. Lyapunov Stability
	3.4. Localized Adaptation
	3.5. Motion Controller

	4. Case of Study
	4.1. Simulation Setup
	4.2. Approximation of the Matrix At
	4.3. Sensor-Guided Motion
	4.4. Experiments

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Gait Neural Network for Human-Exoskeleton Interaction
	1. Introduction
	2. Materials and Methods
	2.1. Standard Temporal Convolutional Networks
	2.2. Gait Neural Network
	2.2.1. Loss Function

	2.3. Experimental Approach
	2.4. Experiment on a Public Dataset
	2.4.1. Gait Data Description
	2.4.2. Data Analysis
	2.4.3. Data Pre-processing
	2.4.4. Sample Creation

	2.5. Experiment on the Collected Data

	3. Results
	3.1. Evaluation Results Using HuGaDB
	3.1.1. Gait Prediction
	3.1.2. Gait Recognition

	3.2. Evaluation Results Using the Collected Data
	3.2.1. Gait Prediction
	3.2.2. Gait Recognition


	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control
	Introduction
	Materials and Methods
	Subjects
	Data Acquisition System
	GUI
	System Configuration Description
	Data Processing and Detection Algorithm
	EOG Data Analysis
	SSVEP Data Analysis

	Calibration Process
	Experiments
	The Cue-Based Experiment
	Asynchronous Robotic Arm Operation


	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A New Projected Active Set Conjugate Gradient Approach for Taylor-Type Model Predictive Control: Application to Lower Limb Rehabilitation Robots With Passive and Active Rehabilitation
	1. Introduction
	2. From MPC to Non-linear Constrained Optimization
	2.1. Problem Description
	2.2. Three-Order Taylor-Type Discretization for MPC

	3. Projected Active Set Conjugate Gradient Algorithm for Non-linear Constrained Optimization
	3.1. Projected Active Set HS-Type Conjugate Gradient Algorithm
	3.2. Convergence Analysis

	4. Simulations and Results
	4.1. Two-Link Lower-Limb Rehabilitation Robot With MPC
	4.2. The Passive Rehabilitation Training With Different Torques Constraints
	4.3. sEMG-Based Active Rehabilitation Training

	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References
	Appendix

	Sensor-Based Control for Collaborative Robots: Fundamentals, Challenges, and Opportunities
	1. Introduction
	2. Sensing Modalities for Control
	3. Sensor-Based Control
	3.1. Formulation of Sensor-Based Control
	3.2. Visual Servoing
	3.2.1. Formulation
	3.2.2. Application to Human-Robot Collaboration

	3.3. Touch (or Force) Control
	3.3.1. Formulation
	3.3.2. Application to Human-Robot Collaboration

	3.4. Audio-Based Control
	3.4.1. Formulation
	3.4.2. Application to Human-Robot Collaboration

	3.5. Distance-Based Control
	3.5.1. Formulation
	3.5.2. Application to Human-Robot Collaboration


	4. Integration of Multiple Sensors
	4.1. Traded Control
	4.2. Shared Control
	4.3. Hybrid Control
	4.4. Other Control Schemes

	5. Classification of Works and Discussion
	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Binary and Hybrid Work-Condition Maps for Interactive Exploration of Ergonomic Human Arm Postures
	1. Introduction
	2. Methods
	2.1. Joint Torque
	2.2. Endurance Time
	2.3. Scalar Manipulability
	2.4. Vector Manipulability
	2.5. Binary Work-Condition Map Generator

	3. Evaluation and Results
	3.1. Concept Demonstration
	3.2. Experiments

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Back Cover



