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Editorial on the Research Topic

Inter- and Intra-subject Variability in Brain Imaging and Decoding

Pervasive and elusive human variability, both across andwithin individuals, poses amajor challenge
in interpreting and decoding human brain activity. Individual differences in brain anatomy and
function contribute to inter-subject variability. A variety of factors may contribute to intra-
subject variability, including neural processing, brain activity non-stationarity, neurophysiological
mechanisms, and certain unknown factors.

Studies have recently focused on embracing variability rather than disregarding it. By
focusing on variability, they have improved insights into individual differences and cross session
variations, enabling precise mapping and decoding of functional brain areas based on individual
variability and similarity. For instance, transfer learning techniques have enhanced brain decoding
performance by dealing with variations in data collected from different subjects over a wide range of
sessions and days. The applicability of a neurophysiological biometric is determined by its manifest
inter-subject variability andminimal intra-subject variability. As a result, questions arise about how
to observe, analyze, and model inter- and intra-subject variability, what researchers might gain or
lose from this variability, and how to cope with the variability in brain imaging and decoding.

This Research Topic emphasizes the need to account for both inter- and intra-subject variability
in brain imaging and decoding. The present collection contains an expanded overview of related
fields and can shed light on future endeavors in those fields. We highlight three domains in this
editorial that emerge from the sixteen contributions of this topic:

(1) Characterizing inter- and intra-subject variability in neural observations
(2) Analyzing and assessing the variability of neural data
(3) Methods for eliminating inter- and intra-subject variability in brain imaging and decoding

Our editorial cannot fully encapsulate all the details and depth of this Research Topic. As such, we
encourage you to peruse these articles to gain a fuller understanding of the research field of brain
imaging and decoding.

1. Characterizing inter- and intra-subject variability in neural observations

5
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A collection of contributions exhibits a wide range of
characteristics of inter- and intra-subject variability in
various types of neural observations including sensorimotor
electroencephalographic (EEG) pattern, cerebral metabolism,
clinical neuromarkers, brain structure, etc. Ma et al. assessed the
cerebral structural changes associated with the effect of chronic
pain on empathy, and identified multiple structural brain
abnormal pathways connected to anterior insula in a population
of patients suffering from chronic lower back pain. Shen and
Lin showed that emotional responses exhibited salient intra-
and inter-individual differences and considerably modulated
the spatio-spectral EEG oscillations. Such EEG variability may
lead to a great challenge for the development of a generalized
emotion-classification model for real-life applications.

The presence of inter- and intra-subject variability has a
significant impact on the findings in neurobiological studies.
Sundar et al. investigated whether or not functional connectivity
can be integrated to reduce the variability of absolute values of
the cerebral metabolic rate of glucose (CMRGlc) and showed
that functional connectivity among six major brain networks
was not suited for standardization of CMRGlc values. Cai
et al. measured the interaction effect on frontal-striatum-
thalamus by rs11146020 and rs3813296 from GRIN1 and
GRIA2 genes in first-episode negative schizophrenia patients.
Their results suggested a modulation on the glutamic frontal-
striatum-thalamus pathway by rs11146020 and rs3813296
gene polymorphism. According to the findings, patients with
different genotypes have different neuroimaging characteristics
on causality connections and structural characteristics in the
frontal-striatum-thalamus pathway, implying the importance of
personalized clinical interventions.

The performance of using brain-computer interfacing (BCI)
systems varies greatly across subjects. Saha and Baumert
addressed an important issue of varying neurophysiological
processes in sensorimotor rhythms over time and across
subjects. They found that time-variant and individualized
neurophysiological characteristics could have a significant impact
on BCI performance. Lee et al. applied a dynamic causal
modeling method to study how motor networks measured by
EEG during the resting state could predict the performance of
motor imagery. They discovered a significant difference in the
connectivity strength from the supplementary motor area to the
right dorsolateral prefrontal cortex between the low- and high-
performance groups. These findings advanced the understanding
of the inefficiency of BCI and the prevention of ineffective use
of BCI.

2. Evaluation and assessment of the variability in neural data
Following the papers that characterize inter- and intra-subject

variability in neural observations, another set of papers focuses
on evaluating and assessing the variability in their neural data.
Goodman et al. assessed the stability of a mildly stress-inducing
math calculation task to evaluate its usability in clinical trials
aimed at reducing stress responses. They found good stability
in most of the functional magnetic resonance imaging (fMRI)
measures performed twice, 13 weeks apart. The authors measure
and show significant test-retest reliability of neuronal activation
and physiological responses associated with acute psychosocial

stress using Montreal Imaging Stress Tasks. Wriessnegger
et al. evaluated inter-individual differences in event-related
desynchronization/synchronization (ERD/S) patterns during
sports motor imagery. The correlation distance of ERD/S values
in six region-of-interests between pairs of participants was used
to assess inter-individual differences. Mikkelsen et al. addressed
the variability between EEG recordings collected in lab and
at home locations. Thanks to the emergence of wearable EEG
devices, EEG data collection could be performed outside the
lab. They concluded that while an experimental environment
can affect the quality of EEG data, the effect is smaller than the
natural inter-individual variances. The data is thus valid to use
from an experimental perspective. The findings would encourage
researchers to collect EEG measurements at home.

3. Methods for obviating inter- and intra-subject variability in
brain imaging and decoding

The last group of contributions sheds light on techniques
for obviating inter- and intra-subject variability in analyses
of brain imaging and/or decoding brain activities. Yang et al.
proposed a neural network with error feedback to improve
the stability of neural signal decoding, which is critical for the
performance of brain-machine interfaces. The results showed
that using an evolutionary network with error feedback could
improve decoding stability significantly, compared to either
the same network without error feedback. Xu et al. addressed
the problem of variability across EEG datasets, which led
to a model generalization in EEG classification. To address
the aforementioned issue, a pre-alignment strategy, in which
covariance matrices were aligned, was proposed to mitigate the
variability problem. The alignment used in the study effectively
reduced the variability across EEG datasets and improved the
performance of cross-dataset classification. The comparison
results demonstrated that this strategy could be promising for
improving EEG classification accuracy across datasets.

Liang and Liu studied how emotions perceived from whole-
person (all facial and body parts included) stimuli could be
decoded using motion-sensitive areas. Results revealed that
emotions could be successfully decoded based on the activation
patterns in dorsal motion-sensitive areas. Furthermore, results
from the cross-subject classification analysis showed thatmotion-
sensitive areas supported the classification of individual emotion
representation across subjects. Their findings provide new
evidence for the involvement of motion-sensitive areas in
emotion decoding, and they also suggested that there exists
a common emotion code in the motion-sensitive areas across
individual subjects. Kanoga et al. presented an automatic
artifact reduction technique based on independent low-rank
matrix analysis (ILRMA), which was compared to independent
component analysis (ICA) and independent vector analysis (IVA)
on a public EEG dataset containing various BCI paradigms. The
results suggested that ILRMA has the potential to achieve higher
discriminability than ICA and IVA for BCIs.

Nonetheless, the presence of variability in brain
imaging/decoding gives rise to a new class of techniques
that leverage the variability to gain insight into their neural
data. Wang et al. proposed a novel method using individual
template-based multivariate synchronization index and adaptive
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threshold strategy for high-speed SSVEP-BCI. Trinh et al.
investigated the use of task-induced intra-subject variability
of resting-state EEGs for the classification and early detection
of individuals with mild cognitive impairment (MCI) and
Alzheimer’s disease (AD). The results showed that the between-
run spectral power similarity/variability could provide better
performance than single-run resting-state EEGs. Qiao et al.
used machine-learning approaches to extract biomarkers from
resting EEG signals and identify the differences between
major depression disorder (MDD) and healthy control
(HC) groups.
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Boğaziçi University, Turkey
Pekcan Ungan,

Koç University, Turkey

*Correspondence:
Yuan-Pin Lin

yplin@mail.nsysu.edu.tw

Specialty section:
This article was submitted to

Brain-Computer Interfaces, a section
of the journal Frontiers in Human

Neuroscience

Received: 30 July 2019
Accepted: 27 September 2019
Published: 30 October 2019

Citation:
Shen Y-W and Lin Y-P

(2019) Challenge for Affective
Brain-Computer Interfaces:

Non-stationary Spatio-spectral EEG
Oscillations of Emotional Responses.

Front. Hum. Neurosci. 13:366.
doi: 10.3389/fnhum.2019.00366

Challenge for Affective
Brain-Computer Interfaces:
Non-stationary Spatio-spectral EEG
Oscillations of Emotional Responses
Yi-Wei Shen and Yuan-Pin Lin*

Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan

Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have
been attracting ever-growing interest and research resources. Whereas most previous
neuroscience studies have focused on single-day/-session recording and sensor-
level analysis, less effort has been invested in assessing the fundamental nature
of non-stationary EEG oscillations underlying emotional responses across days and
individuals. This work thus aimed to use a data-driven blind source separation method,
i.e., independent component analysis (ICA), to derive emotion-relevant spatio-spectral
EEG source oscillations and assess the extent of non-stationarity. To this end, this
work conducted an 8-day music-listening experiment (i.e., roughly interspaced over
2 months) and recorded whole-scalp 30-ch EEG data from 10 subjects. Given the large
size of the data (i.e., from 80 sessions), results indicated that EEG non-stationarity was
clearly revealed in the numbers and locations of brain sources of interest as well as
their spectral modulation to the emotional responses. Less than half of subjects (two to
four) showed the same relatively day-stationary (source reproducibility >6 days) spatio-
spectral tendency towards one of the binary valence and arousal states. This work
substantially advances the previous work by exploiting intra- and inter-individual EEG
variability in an ecological multiday scenario. Such EEG non-stationarity may inevitably
present a great challenge for the development of an accurate, robust, and generalized
emotion-classification model.

Keywords: affective brain-computer interface, EEG, intra-individual difference, inter-individual difference,
independent component analysis

INTRODUCTION

Electroencephalogram (EEG)-based affective brain-computer interfaces (aBCIs) have been
attracting ever-growing interest and research resources. The aBCI represents an external device
with a capacity for emotional awareness based on its interaction with a user’s emotional responses.
Recent availability of user-friendly wearable EEG sensing technologies and their market profitably
bring laboratory-oriented aBCI research closer to practical applications in multidisciplinary
domains such as NeuroMarketing, NeuroRehabilitation, and NeuroGaming. To this end, an
embedded framework in aBCI that enables the accurate and reliable recognition of emotional
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states of interest from time-varying, spatio-spectral EEG
oscillations is of tremendous interest. Considerable work has
been carried out to develop a machine learning framework to
this end. The leveraged framework typically combines signal
processing, feature engineering, and feature classification (Lin
et al., 2010b; Jenke et al., 2014; Zheng, 2017; Xing et al., 2019).
This research in machine-learning has rapidly progressed and
contributed to our understanding of EEG oscillation modeling
underlying emotional responses in general.

Nonetheless, the brain often switches between different
operational modes while engaging in a task in realistic
environments (Lance et al., 2015). This may be attributed to
changes in several behavioral and/or psychophysiological states
such as attention, stress, anxiety, or sleep quality. For an
individual, the task-relevant EEG oscillations of interest may
change on a daily basis, especially in emotional perception and
experience. The EEG patterns are thus likely to be different
on different days, considered to be reflective of inter-day
non-stationarity or intra-individual variability. Some work has
focused on empirically assessing such day-to-day variability
and its negative impact on machine-learning proficiency in
affective computing (Chai et al., 2017; Lin et al., 2017; Liu
et al., 2018). In other words, the same emotion across days
tended to be more widely scattered than the data clusters of
different emotions within the same day (Lin et al., 2015). Such
inter-day non-stationarity inevitably makes emotion prediction
by a pre-trained emotion-aware model more difficult given
the discrepancy between EEG distributions from different
days. Until now, recent endeavors have focused on integrating
advanced signal processing techniques or additional data
calibration (Chai et al., 2017; Lin et al., 2017; Liu et al., 2018)
to tackle this intra-individual variability, though the proposed
scenario or the corresponding improvements still remain limited
in their ability to perform robust predictions.

In addition, substantial non-stationary EEG correlates
of emotional responses also exist between individuals,
reflective of, namely, inter-individual non-stationarity or
inter-individual variability. Due to intrinsic differences in
personality, culture, gender, educational background, and/or
living environment, individuals may have distinct behavioral
and/or neurophysiological responses even while perceiving
the same event. They are thus not likely to share common
EEG distributions corresponding to the same emotional states,
meaning that the performance of a generic machine-learning
model will either be compromised or fail for certain individuals.
Some related work has explored the negative impact of inter-
individual non-stationarity on affective computing (Lin et al.,
2010b; Soleymani et al., 2012; Lin and Jung, 2017; Li et al., 2019;
Xing et al., 2019). In other words, a subject-independent model
(i.e., in which learning has been carried out on the aggregated
data of all available individuals) did not exclusively outperform
a subject-dependent counterpart due to the increased amount
of training data. Taken together, EEG non-stationarity (intra-
and inter-individual counterparts) represents a great challenge
to the development of an accurate, robust, and generalized
emotion-classification model, and thereby considerately hinders
the practical applicability of an aBCI to a realistic environment.

While most work has searched for better cross-day or cross-
individual prediction by means of novel signal processing and
machine learning frameworks, less effort has been directed
at pinpointing the fundamental nature of the non-stationary
EEG oscillations underlying emotional responses across both
days and individuals. This work is thus devoted to using a
data-driven blind source separation method, i.e., independent
component analysis (ICA), to exploit emotion-relevant spatio-
spectral EEG source oscillations and assess the extent of the
non-stationarity in terms of the spatial configuration of cortical
sources and the statistical properties of their tempo-spectral
activities. To this end, this work conducted an 8-day music-
listening experiment (i.e., roughly interspaced over the course
of 2 months) and recorded whole-scalp 30-ch EEG data from
a group of 10 subjects. This big dataset (80 sessions) allowed
us to systematically investigate intra- and inter-individual EEG
non-stationarity through source-level analysis. The empirical
outcomes of this work not only advance previous work in EEG
neuroscience that focused on single-day/-session recordings (Lin
et al., 2010a; Rogenmoser et al., 2016) and sensor-level analysis
(Schmidt and Trainor, 2001; Sammler et al., 2007; Daly et al.,
2014), but also empirically demonstrate how challenging it is
to deploy a robust emotion-aware analytical infrastructure given
ecological EEG non-stationarity.

MATERIALS AND METHODS

Participants
Ten healthy subjects (six males, four females; age
23.3 ± 0.82 years) participated in an 8-day music-listening
experiment interspaced over the course of 2 months
(approximately once per week with an average time interval
of 7.94 ± 1.76 days). All subjects were undergraduate or
graduate students in the College of Engineering or Science.
They had not received professional training on musicology
or musical instruments and were thus considered to be non-
musicians. They read and signed a consent form prior to
the longitudinal experiment, which was approved by Human
Research Protections Program of the local ethics committee.
All subjects completed the entire eight-session experiment
even though they were allowed to voluntarily withdraw at any
time. The experiment facilitated an EEG analysis of emotional
responses from a total of 80 day-sessions.

Experimental Design and Procedure
Prior to themusic-listening experiment, all subjects were asked to
provide a list of their favorite songs which, in their daily life, are
able to emotionally arouse them. They were instructed, following
the 2D valence-arousal emotion model (Russell, 1980), to select
five songs from each of the four emotion quadrants (i.e., positive
valence–high arousal, negative valence–high arousal, negative
valence–low arousal, and positive valence–low arousal states) and
further extract from each song a 60-s excerpt for use in the
EEG-recording experiment. In order to avoid startling effects, the
beginning and end of each excerpt were each faded in and out
over the course of 10 s. The finalized 60-s song highlights were
confirmed by each subject prior to the experiment. In addition,
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along with a self-selected set per subject, this study randomly
recruited extra four excerpts (one per quadrant) from other
subjects to form his/her music procedure. This was intended
to explore the relationship between familiarity and emotional
responses in a longitudinal experiment, though this was not the
analytical focus of this study.

The 24 song excerpts from each subject were separated into
six four-trial blocks. Each block contained an excerpt for each
emotional quadrant in random order. Each trial began with
a 30-s resting phase followed by a 60-s music listening phase
and ended with a self-reported rating task. In the rating task,
subjects were required to rate songs on a five-point scale of
emotional valence (from negative to positive), emotional arousal
(from calm to excited), preference (from dislike to like), and
familiarity (from never heard to knew well) based on what they
had felt on each day. They did not necessarily assign the same
scores as those assigned previously or as those provided in the
selection of the songs. The experimental protocol was entirely
self-paced such that each subject decided the amount of rest time
before proceeding to the next trial or block. The music-listening
experiment took place in a dimly lit room. The subjects were
instructed to remain seated, keep their eyes closed (an auditory
cue for every self-rating task), minimize their body movements,
and fully attend to the song excerpts played through speakers
during the entire experiment. Each subject listened to his/her
unique set of 24 60-s songs in a shuffled order on each of
the 8 days.

EEG Acquisition
EEG signals were recorded using a 36-channel EEG system
(Neuroscan, Compumedics Ltd., Abbotsford, VIC, Australia).
The 30 scalp electrodes were placed according to the
International 10–20 system, with the linked mastoids (average
of A1 and A2) and forehead as reference and ground sites,
respectively. Four auxiliary electrodes were also placed to
monitor electrooculogram (EOG) activity (two for above and
below the left eye and another two on the outer canthi). All
electrode impedance values were kept below 15 kΩ for better
signal quality. EEG signals were sampled at 500 Hz and in a
bandwidth of 1–100 Hz with a 60 Hz notch filter to remove
powerline contamination.

Exploring Stationary Spatio-spectral EEG
Oscillations
The adopted analytical framework included a number of
steps to explore stationary spatio-spectral EEG oscillations of
emotional responses for the 8-day dataset of each subject,
including artifact suppression, ICA and clustering, and statistical
assessment of emotional valence and arousal states. Data
analysis and visualization were performed using the open
source EEGLab toolbox/scripts (Delorme and Makeig, 2004) and
MATLAB functions/scripts (The Mathworks, Inc., Natick, MA,
USA). Details of technical procedures and implementation are
provided below.

EEG data of each single-day session were band-passed filtered
to 1–50 Hz to suppress low-frequency drifts and high-frequency
artifacts. Artifact subspace reconstruction (ASR; Kothe and Jung,

2015) was then used to compensate for high-variance artifacts
from the filtered EEG signals (Mullen et al., 2015; Artoni et al.,
2017; the user-defined threshold was set to 5 standard deviations
in this study), followed by a visual inspection to ensure data
quality prior to the subsequent ICA analysis. Given the available
80 sessions (10 subjects × 8 sessions), only ∼1% on average
(within a range of 0.1%–7%) of data from a single-day session
was removed prior to further analysis.

The preprocessed single-day EEG data was submitted to ICA
separately to parse the multichannel signals into independent
components (ICs) via an extended infomax ICA algorithm. To
localize the sources of the decomposed ICs, a single-dipole source
model best fitted to the IC’s scalp projection was calculated
using a boundary element head model (BEM) based on the
MNI brain template (Montreal Neurological Institute, MNI,
Montreal, QC, Canada) implemented using the DIPFIT routine
(Oostenveld and Oostendorp, 2002). Among the 30 derived
ICs (four EOG and two reference channels excluded), this
study evaluated scalp maps, spectral profiles, single dipole-fitting
efficiency (explaining >85% of variance of the IC scalp map, as
in Onton andMakeig, 2006), and within-brain dipole locations to
retain cortical brain sources yet discard stereotyped non-cortical
artifactual counterparts (e.g., eye movements, sporadic muscle
tensions) prior to further analysis. The above ICA procedures
and screening criteria are commonly used in other studies
(Delorme et al., 2012; Wagner et al., 2016). On average,
88.50 ± 16.28 cortical ICs were retained in each subject in the
8-day dataset (11.20 ± 1.96 ICs per single-day session). Next,
to assess stationary spatio-spectral sources across days, a K-
means clustering algorithm was used to categorize similar ICs
across 8 days into distinct IC clusters for each individual based
on the attributes of their power spectral densities, scalp maps,
and 3D dipole locations. ICs with distance values more than
3 standard deviations from the mean of their cluster centroids
were relocated to another suitable one or classified as outliers.
Such a semi-automatic IC clustering procedure allowed for the
aggregation of neurophysiologically interpretable brain sources
featuring homogeneous scalp maps and spectral profiles, thereby
facilitating the assessment of their stationarity over the course of
multiple days. This work adopted two objective measurements,
namely dipolarity (Delorme et al., 2012) and reproducibility, to
quantify both how well dipolar brain sources of interest were
exploited on each single day and how frequently they emerged
across days. The dipolarity value in this study represented the
percentage of data variance accounting for a single dipole-fitting
of the IC scalp map. The higher the dipolarity value, the more
dipolar and prone to neurophysiological assessment of the brain
source. Reproducibility was intuitively defined as the percentage
of day sessions yielding the same dipolar ICs. In other words, a
dipolar IC with 100% reproducibility means it is present in each
of the 8 days.

In order to further assess spectral correlations between the
derived ICs and emotional responses in distinct frequency bands,
the short-time Fourier transform with a 50% overlapped 2-s
Hamming window was used to estimate their spectrograms. The
spectra were then grouped into five typical bands, namely delta
(1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
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and gamma (31–50 Hz) bands. Each logarithmic band-power
time series belonging to a 60-s music excerpt was normalized
by subtracting the mean power and dividing by the standard
deviation of its preceding 30-s resting phase, followed by the
single-trial baseline normalization manner in Grandchamp and
Delorme (2011).

Statistical Assessment of Spatio-spectral
Oscillations vs. Emotional States
This work attempted to exploit stationary spatio-spectral EEG
correlates of emotional responses. All neurophysiological and
behavioral responses regarding self-reported valence and arousal
ratings were evaluated across multiple days for each individual.
To this end, the 60-s band-specific spectral time series of
the grouped ICs were categorized according to their assigned
dichotomized valence (positive vs. negative) and arousal (high
vs. low) states and assessed for whether there was a set of
relatively day-stationary spatio-spectral oscillations modulated
by emotional responses. The dichotomization was determined
by setting a threshold at the middle of the five-point rating
scale, i.e., <3 for negative valence/low arousal and >3 for
positive valence/high arousal labels. This may have led to an
imbalance in the classification of samples according to this
binary classification scheme in each daily session. This work
thus employed an unpaired t-test to assess the relationship
across days between 8-day spatio-spectral EEG oscillations and
emotional responses in each individual. For the daily association,
a non-parametric permutation test was adopted since the limited
24 dichotomized trials per day may not comply with the
assumption of a parametric approach. The permutation was done
by iteratively shuffling the labels (n = 20,000) over trials and
computing the test statistic, forming a distribution of test statistic
values under the null hypothesis. Statistical assessment was then

conducted by comparing the observed test statistic value (without
shuffled data) against the distribution of null-hypothesis test
statistic values. This work further stressed the behavior of
emotion response-categorized EEG oscillations on each day
as a reference.

RESULTS

Behavioral Ratings
Figure 1 depicts the daily self-reported ratings of 10 subjects
while participating in the 8-day music-listening experiment.
The dichotomization (=3) on the five-point scale of valence
and arousal states led to averaged trials of 10.70 ± 0.25 vs.
11.30± 0.44 (positive vs. negative valence) and of 12.40± 0.47 vs.
9.40 ± 0.58 (high vs. low arousal) for each day session, and
corresponded to a total of 85.70 ± 12.70 vs. 90.70 ± 18.57 and
114.50 ± 28.30 vs. 56.70 ± 34.35 for binary valence and
arousal classes on average, accounting for eight sessions in each
individual. However, the data of two subjects who happened to
assign fewer labels with low arousal over the course of the eight
sessions (<mean-standard deviation) were excluded from the
arousal analysis. As can be seen, according to the unpaired t-
test, the valence ratings differed significantly between positive
and negative outcomes on each day session (p < 0.01). All
eight sessions resulted in mean scores of 4.49 ± 0.08 and
1.69 ± 0.04 for positive and negative states, respectively. On
the other hand, daily high arousal ratings were consistently
higher than the low ones (p < 0.01), yielding 8-day mean
ratings of 4.45 ± 0.05 and 1.68 ± 0.05 for high and low
arousal states, respectively. The derived 8-day EEG trials and
their self-reported binary labels from 10 subjects facilitated the
subsequent exploratory assessment of (non)stationary spatio-
spectral EEG dynamics of emotional responses.

FIGURE 1 | Daily self-reported ratings of emotional (A) valence and (B) arousal states. Ratings were summarized from 10 subjects participating in an 8-day
music-listening experiment. The symbols are color-coded according to the adopted dichotomized threshold (= 3) in the five-point scale. Red symbols (>3) indicate
positive valence/high arousal ratings, whereas blue symbols (<3) indicate negative valence/low arousal ratings. ∗∗ Indicates a statistical significance of p < 0.01.
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Demonstrating Day-Stationary
Spatio-spectral EEG Oscillations and Their
Associations With Emotional Responses
From a Representative Subject
Figure 2 illustrates the neurophysiologically plausible IC clusters
commonly exploited in the 8-day dataset from a representative
subject. Nine ICs appeared to be relatively reproducible across
days (reproducibility >75%, at least 6 of 8 days) and returned
high estimated single-dipole brain sources (dipolarity >91%)
that were spatially located in left frontal, frontal central, right
frontal, left sensorimotor, central midline, right sensorimotor,
left occipital, superior parietal, and right occipital brain
regions. Each aggregated IC cluster corresponded to similar
characteristics in terms of their logarithmic spectral profiles
and 3D dipole source locations on the MNI brain template.
Among them, the three frontal clusters and central midline
cluster demonstrated a major peak in the theta band, and the
others demonstrated a prominent alpha peak, in which the

sensorimotor and superior parietal counterparts accompanied a
minor beta peak.

Figure 3 explores the association of the spectral oscillations
of the nine exploited IC clusters with the binary valence states
from the same representative subject (as shown in Figure 2). The
cross-day outcome was summarized by leveraging the trials of all
eight sessions together to benchmark the within-day counterpart.
As shown in Figure 3A, the cross-day analysis demonstrated
that four spatio-spectral oscillations were significantly altered
according to positive vs. negative valence (p < 0.05), consisting
of central midline beta, right frontal alpha, and frontal central
beta and gamma bands. A valence-irrelevant outcome of right
occipital alpha (p = 0.869) was also provided in the last row
as a technical control. As can be seen, after the eyes-closed
baseline, the state-wise spectral time series notably diverged
from one another over the course of the 60-s excerpt. The
negative valence led to a major drop in central midline beta
and right frontal alpha (p < 0.01) and a marginal drop in
frontal central beta (p = 0.049), whereas the positive valence

FIGURE 2 | Eight-day cortical source reproducibility from a representative subject. Each surrounding subplot refers to an aggregated independent component (IC)
cluster. Averaged and individual IC log-power spectra (dB) are plotted in red and gray lines, respectively, and the corresponding mean scalp maps of clusters are
superimposed. Rep and Dip indicate reproducibility and mean dipolarity per IC cluster, respectively. The centered subplot represents a 3D overview of the equivalent
dipole locations of the nine clusters and their projections onto the MNI brain template. Dots in the same color represent the ICs grouped into the same cluster, in
which bigger dots represent the cluster centroids.
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FIGURE 3 | Valence-relevant spatio-spectral oscillations using (A) cross-day and (B) within-day analyses from the same representative subject shown in Figure 2.
The cross-day analysis led to four meaningful spatio-spectral oscillations from the nine IC clusters. The insignificant right occipital alpha in the last row was also
provided as a technical control. Red and blue profiles represent the spectral oscillations associated with a positive and negative valence, respectively. ∗ and ∗∗ refer
to a statistical significance of p < 0.05 and p < 0.01, respectively.

accompanied a gamma decrease over the frontal central region
(p < 0.05). Moreover, the cross-day analysis reflected a similar
spectral tendency for most single days that were obtained by
the within-day analysis. However, certain days happened to
present reciprocal or distinctive outcomes. Taking the central
midline beta as an example, 5 of 8 days (days 3, 4, 5, 6,
and 8) exhibited a consistent decrease in negative compared
to positive valence (days 4, 6, and 8 with p < 0.05), on day
2 there was a tendency towards a drop in positive valence, on
day 7 positive valence tended to increase, and on day 1 spectral
distinction was barely re-established. Such discrepancies in the
cross- and within-day analysis more or less emerged in the
other three informative spatio-spectral oscillations of interest
from this representative subject. As the technical benchmark,
the cross-day outcome of the right occipital alpha did reflect a
common tendency towards indistinguishable spectral profiles on
each individual day.

Figure 4 further demonstrates the validity of the exploited
emotional valence-relevant spatio-spectral oscillations on the
initial five-point scale from the same representative subject,
as shown in Figures 2, 3. With respect to the baseline, the
spatio-spectral fluctuations of interest tended to be statistically
modulated by the rating scale. Stronger negative ratings resulted
in accentuated power attenuation in central midline beta
(r = 0.26, p < 0.01), right frontal alpha (r = 0.25, p < 0.01), and

frontal central beta (r = 0.16, p = 0.05) frequencies. In contrast,
stronger positive ratings were linked to attenuated frontal central
gamma deterioration (r = −0.21, p < 0.01). According to the
empirical demonstration on the representative subject, this work
as such applied the cross-day ICA analytical framework to each of
the 10 subjects separately, exploring inter-subject commonality
of the relatively day-stationary spatio-spectral EEG oscillations
associated with emotional responses.

Exploring the Inter-subject Commonality of
the Day-Stationary Spatio-spectral EEG
Oscillations and Their Associations With
Emotional Responses
Figure 5 summarizes the dipolarity and reproducibility of the
exploited 8-day aggregated nine IC clusters from 10 subjects.
Each IC cluster yielded a mean dipolarity of >94.28%, and
their grand mean dipolarity was 95.99 ± 1.04%, indicating
their neurophysiological adequacy for the sequential spectral
assessment of emotional responses. In contrast, mean
reproducibility in the nine clusters varied from 60.89 ± 28.36%
(in the left occipital cluster) to 88.57 ± 10.98% (in the frontal
central cluster) and the grand mean reproducibility was
76.03 ± 10.40%. In the worst-case scenario, some of them
happened to be completely absent from distinct subjects, such
as in the right frontal, central midline, left sensorimotor, left
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FIGURE 4 | The relationship between valence-relevant spatio-spectral oscillations and self-reported ratings from the same representative subject shown in
Figures 2, 3. The five-point scale of emotional valence was divided into two groups corresponding to scores below and above 3. Red and blue profiles represent
positive (>3, more positive) and negative valences (<3, more negative), respectively. The gray lines depict the linear relationship as assessed by linear regression
analysis. The mean scalp maps of the informative IC clusters are superimposed on each subplot.

FIGURE 5 | The mean dipolarity and reproducibility of the 8-day aggregated nine IC clusters for 10 subjects and their inter-subject commonality. Each surrounding
subplot refers to the mean of an IC cluster summarized across subjects. The centered subplot represents a 3D overview of the dipole centroids of the nine clusters
and their projections onto the MNI brain template, where the dipole size was scaled by the inter-subject commonality of the relatively day-stationary ICs (the
percentage of subjects with consistently the same IC appeared in 6 of 8 days).
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occipital, and superior parietal sources (extreme outliers are
shown in the boxplot). In order to evaluate the commonality of
relatively day-stationary ICs for most subjects, this work defined
a criterion by empirically counting ICs that were consistently
present at least over the course of N days in the 8-day recording
setting. N was set to six in this work due to the resultant
nine-cluster mean reproducibility (i.e., 75% represents 6 of
8 days). Given the 6-day criterion, the inter-subject commonality
(i.e., the percentage of the recruited 10 subjects with the same ICs
over 6 days) was found to vary from 50% to 100%. The frontal
central source was presented for each subject (100%), followed
by the central midline source (90%), the right sensorimotor and
the right occipital sources (80%), the left sensorimotor and the
superior parietal sources (70%). The remaining three sources
located in the left and right frontal regions and the left occipital
regions had lower commonality (50%). The mean inter-subject
commonality for the nine clusters was 71.11 ± 18.33% with
cross-day reproducibility >6 days. The discernible cluster-to-
cluster reproducibility and their inter-subject commonality
reflected the non-stationarity of IC sources for each day and for
each subject.

Figure 6 shows how the relatively day-stationary, subject-
common ICs behaved in accordance with the emotional
responses and whether they demonstrated the same spectral
tendency towards the same binary state. Two main findings are
mapped onto the MNI brain template in Figure 6A, including
the percentage of subjects with the same ICs whose spectral
oscillation statistically differed between the two binary states
(p < 0.05) and the percentage of subjects with the same
spatio-spectral tendency towards one of the two binary states
(p < 0.05). The use of a large and more solid dipole means
that analogous day-stationary spatio-spectral EEG correlates
of an emotional state can be seen across more subjects. The
Talairach coordinates of the centroids of the dipole distribution
for each IC cluster and the relatively stationary outcomes
for each emotion category are represented in Table 1. In
general, the valence category yielded a higher inter-subject
commonality for the spatio-spectral association across days.
Four of 10 subjects similarly possessed central midline beta
oscillations that significantly differed between the two binary
states (i.e., the same emotion-related IC: 40%). They further led
to more beta suppression for the negative valance compared

FIGURE 6 | The relatively day-stationary, subject-common spatio-spectral oscillations in response to the binary valence and arousal states. Panel (A) refers to a 3D
overview of emotion-relevant IC cluster centroids and their projections onto the MNI brain template (FC: frontal central, CM: central midline, RO: right occipital, SP:
superior parietal). Sphere size was scaled to indicate the percentage of subjects with the same day-stationary IC significantly related to emotional responses
(p < 0.05), and transparency further represents the percentage of subjects with the same spectral tendency towards an emotional label of the target ICs (annotated
%). Only results above 20%, i.e., with at least two subjects in common, are shown. Red and blue colors represent the power suppression associated with positive
valence/high arousal and negative valence/low arousal states, respectively. Panel (B) demonstrates valence and arousal outcomes with the highest inter-subject
commonality. ∗ and ∗∗ refer to a statistical significance of p < 0.05 and p < 0.01, respectively. Two subjects with highly imbalanced labels were excluded from the
arousal analysis.
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TABLE 1 | Major day-stationary independent component (IC) clusters and their inter-subject commonalty to the binary valence and arousal states.

Emotional category Source Talairach BA Band power Subjects (%) with Label Subjects (%) with the
coordinates the same emotion- same spatio-spectral

x y z related IC (>6 tendency
days)

Valence Frontal central 0 52 6 10 Beta 40 Negative 30

Gamma 40 30

Central midline 3 1 49 6 Beta 40 Negative 40

Delta 30 30

Right occipital 20 −56 −6 19 Beta 40 Positive 30

Arousal Superior parietal 3 −42 58 5 Beta 25 Low 25

The percentage of subjects with the same relatively day-stationary spatio-spectral oscillations correlated with the binary states and with the same tendency towards one of the binary
states are identified.

to the positive counterpart (i.e., spatio-spectral tendency:
40%), as shown in Figure 6B. The negative valence also
manifested the suppression in central midline delta power and
frontal central beta and gamma power (i.e., spatio-spectral
tendency: 30%). In addition, the positive valence tended to be
associated with more right occipital beta suppression (30%).
Other spatio-spectral tendencies typically had less commonality
(20%). Unlike the valence outcome, the arousal category had
worse inter-subject commonality. Only two of eight subjects
(25%) were found to have similar superior parietal beta
suppression in low arousal compared to high counterpart.
Other spatio-spectral oscillations behaved quite inconsistently
across individuals (<20%, with no consensus found between
two subjects).

DISCUSSION

This work explored the extent of intra- and inter-individual
EEG non-stationarity associated with emotional responses using
the data-driven approach of an ICA. For the analysis of the
8-day EEG sessions of 10 subjects, an ICA-based analytical
framework was conceived to identify the neurophysiologically
interpretable spatio-spectral source oscillations for each
single-day session, exploit their statistical link to the
dichotomized emotional states, and assess the (non)stationary
emotion-related EEG patterns along days and their inter-
subject commonality. Results indicated substantial salient
EEG non-stationarity in the numbers and locations of brain
sources of interest as well as their spectral modulations to
the emotional responses. However, this work did not attempt
to disentangle the underlying neural mechanisms driving
such vivid non-stationarity; rather, it sought to empirically
demonstrate how clearly they emerge through source-level
analysis. Leveraging neuroscience and machine-learning
approaches, previous studies have yielded many important
insights regarding affective computing, yet they mostly focused
on single-day analysis given a group of subjects. This work
substantially advanced the previous work by addressing
the EEG non-stationarity in an ecologically valid multiday
scenario that is considered to be a great challenge to the
development of a robust, accurate, and generalized aBCI model
for realistic applications.

Integrity of the ICA for Exploring
(Non)stationary Sources
In this work, we used ICA to parse scalp channel data
into spatially fixed and temporally independent sources and
evaluate their association with emotional responses. Unlike
channel-level analysis which may be compromised by volume
conduction (Jung et al., 2000; Onton and Makeig, 2006), the ICA
algorithm theoretically isolates cortical and non-cortical source
signals, such as muscle tension and eye movements, from the
spontaneous signal mixtures recorded from the scalp sensors.
Once the respective best-fitting equivalent dipoles of the derived
ICs have been localized, the source-level outcomes enable a better
understanding of brain source-specific neural oscillations and
their behavior over time and across individuals. Nevertheless, the
number of resolved ICs is the same as the number of sensors
used to record the signal mixtures. Using a limited number
of sensors is not likely to fully reflect the underlying sources,
which could be unlimited (Onton andMakeig, 2006). In addition,
among the decomposed sources, only a few of them, with
homogeneous scalp maps, within-brain dipoles, and meaningful
spectral oscillations, explain the relatively large data variance
of the signals, potentially leading to more neurophysiologically
accessible associations. The remaining ones, which either have
stereotypical artifacts or low-energy non-dipolar scalp maps, are
less relevant and can be omitted. The analytical rationale of
an ICA has been successfully demonstrated for the analysis of
various phenomena using different numbers of scalp channels
(e.g., 32–250), such as motor imagery (Wang et al., 2012),
motion sickness (Chuang et al., 2012), music appreciation
(Cong et al., 2013; Lin et al., 2014), walking locomotion
(Wagner et al., 2016; Artoni et al., 2017), stress level (Schlink
et al., 2017), and affective state (Onton and Makeig, 2009;
Rogenmoser et al., 2016; Banaei et al., 2017). Comparing
previously reported IC outcomes in terms of the number of
cortical ICs vs. the number of channels, e.g., 5–15 ICs with
31 channels (Onton and Makeig, 2006), 8–15 ICs (mean: 11.2)
with 32 channels (Wang et al., 2012), 12–29 ICs (mean: 20.3)
with 128 channels (Banaei et al., 2017), 15–25 (mean: 18.4)
with 248 channels (Gramann et al., 2010), and 9–31 ICs (mean:
16.0) with 250 channels (Onton and Makeig, 2009), this work,
yielding an average of 11.20 ± 1.96 interpretable cortical ICs
from 30-channel EEG signals across 80 single sessions, was
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deemed acceptable. Moreover, the meaningful brain ICs derived
from this work were all located in frontal, central, sensorimotor,
parietal, and occipital regions of the cortex, consistent with
previous findings (Onton and Makeig, 2006; Chen et al., 2010;
Lin et al., 2014; Rogenmoser et al., 2016; Wagner et al., 2016;
Banaei et al., 2017; Schlink et al., 2017), regardless of the channel
set up used. No ICs located in deeper sub-cortical regions
were resolved. This may be attributed to the fact that scalp
EEG signals are less sensitive to neural activation stemming
from deep subcortical structures. This work therefore cannot
draw any conclusions on whether deeper structurers behave
more (non)stationarily compared to the explored cortical ICs,
especially for limbic and paralimbic areas involved in emotion
processing revealed by other neuroimaging modalities, such as
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET; Blood et al., 1999; Phan et al., 2002;
Trost et al., 2015). Accordingly, this issue needs to be taken into
account during the interpretation of the stationary EEG sources
in the present work.

From the 8-day EEG signals of 10 subjects, each subject
returned an 8-day average of 88.50 ± 16.28 cortical ICs, from
which was assessed which ICs were relatively reproducible across
the 8 days. Nine aggregated cortical IC clusters located in
frontal (left, right, and central), central midline, sensorimotor
(left and right), superior parietal, and occipital (left and
right) regions showed an average 8-day reproducibility of
76.03 ± 10.40 (min: 60.89 ± 28.36, max: 88.57 ± 10.98%) over
10 subjects (mean dipolarity: 95.99 ± 1.04%, see Figure 5).
In other words, the nine identified ICs appeared at least, on
average, for four (50%) and six (75%) of the 8 days. In an
attempt to further quantify inter-subject commonality across
the 10 subjects (as reflected in an IC present over 6 days,
i.e., with a reproducibility >75%), 5 to 10 subjects possessed
the same distinctive relatively day-stationary sources with a
mean inter-subject commonality of 71.11 ± 18.33%. In all
subjects, the frontal central source could be repeatedly seen on
at least 6 days. If the criterion for cross-day reproducibility
became more stringent (not presented in Results), the range
and mean of inter-subject commonality considerably decreased
towards the value reached at 8 days (7 days: 20%–90% (mean:
54.44 ± 23.51%), 8 days: 0%–70% (33.33 ± 22.91%). Among
these cross-day criteria, the central midline source, rather
than the frontal central source, was found relatively stationary
across days and individuals (6 days: 90%, 7 days: 90%, and
8 days: 70% vs. 6 days: 100%, 7 days: 70%, and 8 days:
40%, respectively). Such varied cluster-to-cluster reproducibility
indicated that the cortical EEG sources of interest behaved
distinctly across multiple days, precisely considered to reflect
intra-individual non-stationarity. The absence of the ICs on
certain single-day sessions may be in part due to the source
origins whose projected signals were neither strong nor distinct
enough to be detected at the scalp and subsequently resolved
by ICA (Onton et al., 2006). Previous EEG-ICA studies
mostly assessed task-related spatio-spectral EEG oscillations
by summarizing single-day analyses from a group of subjects
(Onton and Makeig, 2006; Chen et al., 2010; Gramann et al.,
2010; Chuang et al., 2012; Wang et al., 2012; Lin et al., 2014;

Rogenmoser et al., 2016; Wagner et al., 2016; Banaei et al.,
2017; Schlink et al., 2017). Less effort was invested in the issue
of intra-individual differences across EEG sources. We believe
that the qualitative IC outcomes from the 8-day sessions in
this work have provided an opportunity to better understand
EEG non-stationarity.

Intra- and Inter-individual Differences in
Spatio-spectral Correlates of Emotional
Responses
Even though the nine cortical IC clusters were significantly
compromised by EEG non-stationarity, some remained relatively
consistent across days and individuals in response to the
dichotomized emotional states (see Figure 6 and Table 1),
especially in the valence category. Four of 10 subjects possessed
the central midline source (BA 6, premotor cortex) on 6
of the 8 days, accompanying the beta suppression with the
negative valence. Other outcomes included negative valence-
induced beta and gamma suppression over the frontal central
region (BA 10, anterior prefrontal cortex), negative valence-
induced delta suppression over the central midline region,
and positive valence-induced beta suppression over the right
occipital region (BA 19, visual cortex), as derived from three
subjects. In contrast, only two of eight subjects (2 of 10 subjects
were excluded due to highly imbalanced labels) showed beta
suppression in the superior parietal region (BA 5, superior
parietal lobule) in low arousal. To the best of our knowledge,
this work represents the first attempt to extract information
from spatio-spectral EEG oscillations of emotional responses
in the context of a longitudinal experiment (i.e., in the form
of 8-day music-listening recordings interspaced over 2 months,
roughly once per week). Due to a lack of direct evidence,
the obtained outcomes were related to previous single-day
work in terms of the localized brain regions and spectral
oscillations. A meta-analysis study (Phan et al., 2002) that
aggregated the findings of emotional activation from 55 PET
and fMRI studies summarized the role of medial prefrontal
cortex in emotional processing (reported by at least 40% of
the included studies), which may support our findings on
frontal central ICs. Further, it is plausible that emotional states
reached during exposure to consonant music stimulate the
additional drive of the motor system (Sammler et al., 2007;
Lin et al., 2014). Several neurophysiological studies have also
found that some music-modulated brain activity intervenes in
emotion processing (Blood et al., 1999; Khalfa et al., 2005).
Similarly, our results demonstrated informative IC sources
located around the premotor cortex. Posterior (parietal and
occipital) regions have been reported to be associated with
emotional affect and intensity (Heller, 1993; Schmithorst, 2005),
which may explain the engagement of parietal and occipital
sources in this work. Engagement of multiple brain sources was
ecologically true since music-induced emotion was accompanied
by a rich involvement of reward, memory, self-reflective, and
sensorimotor processes and engaged distributed brain networks
across both cortical and subcortical regions (Trost et al.,
2015). In contrast, with regards to the distinguishable spectral
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oscillations, most of them were seen in the beta band (frontal
central, central midline, superior parietal, and right occipital
regions), with fewer in the delta (central midline region) or
gamma (frontal central region) bands. Previous EEG findings
may provide partial support to these findings, notably those
related to prefrontal beta and gamma asymmetry in valence
(Daly et al., 2014), parietal beta asymmetry for motivation
and emotion (Schutter et al., 2001), and widespread delta
synchronization formusic processing (Bhattacharya and Petsche,
2005). However, this work did not replicate certain representative
spectral outcomes, such as fronto-midline theta enhancement
for the positive valence (Sammler et al., 2007; Lin et al.,
2010a) or frontal alpha asymmetry for valence distinction
(Schmidt and Trainor, 2001; Davidson, 2004). Frontal central
theta was sparsely observed in two subjects (yet did not result
in an augmentation in positive valence), while frontal alpha
modulation was only seen in the representative subject (see
Figures 3, 4). This may be partly attributed to inter-day
variability due to changes in mental states over the course of
a multiday recording, such as in the form of mental fatigue
modulating the lower frequency power of delta, theta, and alpha
bands (Lal and Craig, 2002).

With regards to the within- vs. cross-day analysis of
the representative subject (see Figure 3), it may be that
the emotion-discriminative sources analyzed in the cross-day
analysis could have been absent, and their spectral associations
to the binary states could have behaved either reciprocally
or even indiscriminately on certain days. Such day-to-day
spectral variability was similar to findings using peripheral
bio-signals (Picard et al., 2001) and in other EEG-related topics
(Christensen et al., 2012). The underlying mechanisms of this
cross-day discrepancy remain unclear based on this study’s
outcomes, but could be partly attributed to the physiological
modulation of behavioral and mental states, such as attention,
stress, anxiety, and sleep quality. Previous EEG studies have
reported that these factors indeed somehow modulate tasked-
related EEG patterns. For example, neurophysiological correlates
of mental fatigue differed between sleep-deprived and well-rested
controls (Ahn et al., 2016), spectral oscillations fluctuated
according to attentional demands (Wang et al., 2018), and
acute stress affected the cognitive ability of brain-computer
interface control (Garcia et al., 2019). It is reasonable to
conclude that each of the aforementioned factors and their
plausible interactions more or less concurrently confound the
EEG patterns, leading to non-stationarity on different days.
As such, exploring inter-subject commonalty for the relatively
day-stationary sources is presumably more challenging. Given
the criterion for IC’s cross-day reproducibility (>6 of 8 days),
only a few subjects demonstrated same day-stationary ICs with a
significant relationship to emotional responses (valence: 3–4 of
10 subjects, arousal: two of eight subjects). The inter-subject
commonality more or less deteriorated if the same spectral
tendency was involved (see Table 1). Previous neuroimaging
studies have proven that individual differences associated with
morphological differences in brain anatomy (e.g., gray and white
matter volume), exhibiting a wide range of basic and higher
cognitive functions (Kanai and Rees, 2011). The distinctive brain

structures and functional patterns involved may serve as a useful
source of information to study their links to human personality,
behavior and cognition (Kanai and Rees, 2011; Liu et al.,
2019). Particularly, personality is considered a dominant factor
contributing to individual differences in emotion perception
and experiences (Eysenck, 1998) and regulation strategies (Gross
and John, 2003). These data could thus serve as a physiological
indicator, for example, to correlate with stress resilience
(Brouwer et al., 2015) and emotional states (Subramanian et al.,
2018). In addition, recent work has demonstrated that the EEG
variability was considerably larger across individuals than across
repeated sessions. Such inter-subject variability may be increased
while engaging in a more cognitive-oriented task (Melnik et al.,
2017). In contrast, with regards to the ICA, the non-identical
cortical and subcortical brain volumes likely make the size
and/or orientation of EEG sources quite variable. Therefore,
all individuals may not contribute the same ICs located in
brain regions of interest (Onton and Makeig, 2006). Taken
together with intra-individual variability, this low inter-subject
commonality for the same tendency of day-stationary spatio-
spectral correlates of psychophysiological emotional responses
seems reasonable and realistic.

Negative Impact of Nonstationary
Spatio-spectral Oscillations to aBCI
This work has empirically demonstrated strong intrinsic intra-
and inter-individual variability in emotional responses using
source-level analysis. The numbers and locations of EEG sources
of interest and their discriminative spectral profiles were found
to be different across days and individuals. As such, EEG
signals recorded from the scalp may be more substantially
different from one another since they consist of linear mixtures
projected from multiple non-stationary cortical sources (in
addition to non-cortical artifactual sources). This source-to-
channel projection may explain why the inter-day data clusters
of the same emotion had more variability more than the
inter-emotion data clusters within one day, as revealed by
the channel-level analysis (Lin et al., 2015). Our exploratory
findings also demonstrate why the day-independent (Chai
et al., 2017; Lin et al., 2017; Liu et al., 2018) and subject-
independent (Soleymani et al., 2012; Li et al., 2018, 2019)
emotion prediction scenarios (i.e., a single generic model
works on multiple days or on multiple subjects) were more
challenging than their day-dependent and subject-dependent
counterparts. Accordingly, this work highlights an urgent need to
incorporate typical machine-learning frameworks with advanced
signal processing [e.g., robust principal component analysis
(Lin et al., 2017) stationary subspace analysis (Kaltenstadler
et al., 2018)] and model calibrating steps (Chai et al., 2017; Liu
et al., 2018; Li et al., 2019) to obviate the negative interference
of discrepant EEG distributions across sessions obtained on
different days or from different individuals. Furthermore,
alternative to leveraging a unique model for the prediction
of different days or individuals, future effort can be devoted
to evaluate an ensemble learning framework (Chuang et al.,
2014) that generates multiple classifiers to learn distinctive EEG
distributions of emotional responses and strategically combines
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their multiple decisions. Thus, effectively monitoring/alleviating
the EEG non-stationarity and adapting an existing model(s)
accordingly will facilitate the translation of laboratory-oriented
demonstrations to real-life aBCI applications.

CONCLUSION

This work exploratorily demonstrated the extent of intra-
individual and inter-individual EEG non-stationarity associated
with emotional responses using the data-driven approach of
an ICA. To this end, this work conducted an 8-day music-
listening experiment (i.e., roughly interspaced over 2 months)
and recorded whole-scalp 30-ch EEG data from a group of
10 subjects. Results from this large dataset (i.e., 80 sessions)
indicated substantial EEG non-stationarity in the numbers
and locations of brain sources of interest as well as their
spectral modulations to emotional responses. Only less than
half of subjects (two to four) demonstrated the same relatively
distinct day-stationary (source reproducibility >6 days) spatio-
spectral tendency towards one of the binary emotion states.
Since previous works mostly focused on single-day/-session
recordings and sensor-level analysis, this work substantially
advances the work of these previous studies by exploiting
EEG non-stationarity in an ecological multiday scenario.
This is considered a great challenge to the development of
a robust, accurate, and generalized aBCI model aimed at
realistic applications.
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Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit
sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the
neurophysiological processes underpinning the SMR often vary over time and
across subjects. Inherent intra- and inter-subject variability causes covariate shift
in data distributions that impede the transferability of model parameters amongst
sessions/subjects. Transfer learning includes machine learning-based methods to
compensate for inter-subject and inter-session (intra-subject) variability manifested
in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer
learning approaches, recent studies have explored psychological and neurophysiological
predictors as well as inter-subject associativity assessment, which may augment
transfer learning in EEG-based BCI. Here, we highlight the importance of measuring
inter-session/subject performance predictors for generalized BCI frameworks for both
normal and motor-impaired people, reducing the necessity for tedious and annoying
calibration sessions and BCI training.

Keywords: electroencephalography, brain computer interface, sensorimotor rhythms, transfer learning, inter-

subject associativity

1. INTRODUCTION

Brain computer interfaces (BCI) exploiting sensorimotor rhythms (SMR) have shown promise for
both the improvement of motor performance in normal subjects and the rehabilitation of motor
function in patients (Dobkin, 2007; Wang and Jung, 2011). The SMR can be elicited by motor
imagery (MI) that shares common neurophysiological mechanisms with overt motor execution
(ME), the former being more convenient for BCI users who cannot perform an overt ME task due
to some degree of motor disability (Jeannerod, 1995; Lotze and Halsband, 2006; Zich et al., 2015;
Vyas et al., 2018). ME supplements the MI-based motor learning process for people with intact
cognitive functions (Allami et al., 2008; Ruffino et al., 2017).

Since the motor learning processes differ across individuals (Herzfeld and Shadmehr, 2014; Wu
et al., 2014), significant inter-subject variability in motor behavior is anticipated that manifests in
the task-specific electrical activities in the cortico-subcortical networks (Seghier and Price, 2018).
Consequently, the cortical activity observed in electroencephalogram (EEG) varies across subjects
during MI, impeding its utility for BCI applications (Saha et al., 2017b). A study has suggested that
time-variant brain functions cause unreliable EEG signatures with poor reproducibility even within
a particular subject (Meyer et al., 2013). Such inter-session, intra-subject variability together with
even larger inter-subject variability confounds BCI using SMR. This review discusses how inter-
session and inter-subject performance predictors could potentially augment transfer learning to
improve SMR-based BCI performance while reducing calibration efforts significantly.
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2. SENSORIMOTOR DYNAMICS AND BCI

2.1. Motor Learning Process and Brain
Function
Motor variability due to variability in human kinematic
parameters, e.g., force field adaptation, speed and trajectory, and
motivational factors such as level of user engagement, arousal
and feelings of competence, necessary for performing a motor
task is an integral part of the motor learning process (Duarte and
Reinkensmeyer, 2015; Úbeda et al., 2015; Edelman et al., 2019;
Faller et al., 2019). Such variability does not necessarily represent
noise contents only, but may potentially be a manifestation
of motor and perceptual learning processes. Motor variability
may augment reinforcement-based motor learning (Herzfeld
and Shadmehr, 2014; Wu et al., 2014; Singh et al., 2016).
Individuals with higher motor variability may learn a skill
faster than individuals with lower motor variability (Wu et al.,
2014; Singh et al., 2016). The EEG patterns associated with
motor variability could therefore partly explain intra-individual
variability in SMR-based BCI (Bradberry et al., 2010; Úbeda
et al., 2015; Ostry and Gribble, 2016). Furthermore, structural
and functional differences between subjects are associated with
motor learning process, which might explain the motor learning
variability (Tomassini et al., 2011). On the other hand, motor
variability could be leveraged to augment the motor learning and
rehabilitation (Krakauer, 2006; Singh et al., 2016). A study has
demonstrated that alterations in EEG signatures due to motor
training are dependent on intra- and inter-subject variability
(Jochumsen et al., 2017).

2.2. Motor Imagery vs. Motor Execution
Motor imagery is the kinesthetic anticipation of corresponding
overt ME without producing an actual motor output.
Jeannerod stated that MI is functionally equivalent to its
ME counterpart (Jeannerod, 1995). More specifically, MI is
related to the preparation of ME and represents meaningful
neurophysiological dynamics of human motor functions
(Zich et al., 2015). Consequently, both MI and ME share
common sensorimotor areas such as primary motor area
(M1), supplementary motor area (SMA) and premotor cortex
(PMC) (Jeannerod, 1995; Lotze and Halsband, 2006; Zich et al.,
2015).

The neurophysiology underlying MI may differ in healthy
people and patients with motor-impairing conditions (Lotze
et al., 2001). MI-based BCI may augment the motor learning
process in healthy subjects (Ruffino et al., 2017). In patients
with impaired motor functions, MI is often the only viable
option to drive rehabilitative BCI due to users’ inability to
perform overt ME (Jackson et al., 2001; Lotze and Halsband,
2006). The individuality and severity of motor impairments
impact the underlying neurophysiology, for example, post-stroke
neurophysiology relies on the lesion locations (Niazi et al., 2013).
Studies are essential to further delineate the roles of MI and ME
in motor learning or relearning for both healthy and impaired
subjects to refine the design of BCI for supplementing the motor
learning process.

2.3. Neuroplasticity and BCI-Driven Motor
Rehabilitation
Rehabilitative BCI designs either attach neural prostheses to
the impaired upper/lower limb or restimulate the damaged
synaptic networks. In either case, the idea is to exploit and
promote neural plasticity (Dobkin, 2007; Wang et al., 2010).
The plastic characteristics of the brain are created by the
time-variant behavior of the synapses within complex neural
networks, first illustrated by Hebb, 1949 (Brown and Milner,
2003). The motor learning process and associated variability
promote plasticity in the sensorimotor networks and adjust both
motor and perceptual skills (Ostry and Gribble, 2016). This
inherent plasticity is exploited by BCI systems to rehabilitate
impaired motor functions (Dobkin, 2007). Ruffino et al.
demonstrated that MI-based mental training can contribute
to corticospinal plasticity (Ruffino et al., 2017). This might
lead to BCI-driven rehabilitation systems for stroke and spinal
cord injury patients (Niazi et al., 2013; Müller-Putz et al.,
2014). Recent studies showed that BCI skill acquisition and
associated physiological changes may improve BCI performance
in both patients and healthy users (Perdikis et al., 2018;
Edelman et al., 2019). Complex or cognitively entertaining
tasks that require greater user engagement or motivation can
compensate for intra- and inter-subject variability, leading to
enhanced BCI learning in adverse operating conditions (Perdikis
et al., 2018; Edelman et al., 2019; Faller et al., 2019; Li et al.,
2019).

BCI-driven prostheses can extend the degree of freedom of
users with motor impairments. The success of BCI control and
rehabilitation depends on the user’s capacity to modulate the
intact neural ensembles (Dobkin, 2007). Substantial changes
in neural substrates that were observed following closed-loop
BCI-driven motor learning of prosthesis control provide
evidence of neuroplasticity (Orsborn et al., 2014). In stroke
patients, post-rehabilitation electromyographic recordings
showed increased activity in the paretic finger following
BCI-driven rehabilitation using an orthosis, which exhibits
improvement in neuromuscular coherence for movement
control (Ramos-Murguialday et al., 2013). Furthermore, BCI-
driven proprioceptive feedback-based and functional electrical
stimulation-based rehabilitation strategies could reinforce motor
control (Zhao et al., 2016; Darvishi et al., 2017; Selfslagh et al.,
2019).

The structural and functional changes in neural substrates
induced by MI-based training with transcranial direct current
stimulation or transcranial magnetic stimulation provide
further evidence for the induction of neuroplasticity that is
essential for motor recovery (Hong et al., 2017; Johnson et al.,
2018). Because the induction of plasticity by rehabilitation
varies across subjects (Leamy et al., 2014; Vallence et al.,
2015), subject-specific training sessions may be required.
Since the neurophysiology associated with SMR dynamics
varies between individuals, quantification of variability
in healthy user groups could be beneficial first step that
may guide the interpretation of altered neurophysiology in
diverse conditions of motor-impairment (Müller-Putz et al.,
2014).

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2020 | Volume 13 | Article 8723

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Saha and Baumert Intra- and Inter-subject BCI Performance Predictors

3. BRAIN TOPOGRAPHY AND BCI
PERFORMANCE PREDICTORS

3.1. Intra- and Inter-subject Variability in
Brain Topography
The functional relevance of brain topographical variability
with the anatomical boundaries is still not fully understood;
however, significant structure-function correspondences may
be derived at the aggregate level (Honey et al., 2009, 2010).
Smith et al. delineated structural differences, suggesting that the
number of folds and thickness of the cortex could be associated
with whole-brain functional networks (Smith et al., 2019).
Furthermore, inter-subject variability in topography occurs due
to subject-specific cognitive style and strategy to perform a
task over time (Seghier and Price, 2018), which could augment
the underlying learning processes, e.g., motor and perceptual
learning (Krakauer, 2006; Baldassarre et al., 2012; Herzfeld and
Shadmehr, 2014; Wu et al., 2014; Singh et al., 2016).

Intra- and inter-subject variability can be explained by scale-
dependent brain networks in spatial, temporal and topological
domains (Betzel and Bassett, 2017; Betzel et al., 2019). For
example, diversity in spatial organization of the brain networks
can be investigated either at cellular or system level. The sources
of intra- and inter-subject variability in brain dynamics may be
identifiable using multi-scale analysis tools (Betzel et al., 2019)
although the interpretation of brain connectivity networks at
different scales may not be straightforward (Raichle, 2009).

Integrating intrinsic brain activities (i.e., resting state
activities) into BCI design could offer experimental and
methodological advantages for scrutinizing task-specific brain
dynamics (Northoff et al., 2010). While it has been argued that
the brain is primarily reflexive, responding according to external
stimuli/environmental demand, the brain also performs many
intrinsic functions including signal acquisition, maintenance,
and interpretation (Raichle, 2009, 2010). Supporting the critical
role of intrinsic brain activity, it consumes 20% of the body’s
energy (Clarke, 1999). Thus, understanding the role of resting
EEG might supplement BCI performance (Northoff et al., 2010;
Suk et al., 2014; Morioka et al., 2015).

3.2. BCI Performance Predictors
Around 15–30% users are inherently unable to produce task-
specific signature robust enough to control a BCI (Blankertz
et al., 2009; Vidaurre and Blankertz, 2010). The underlying causes
of this BCI illiteracy are not well-understood; however, diverse
psychological and neurophysiological predictors appear to be
associated with BCI performance (Blankertz et al., 2009; Vidaurre
and Blankertz, 2010; Jensen et al., 2011; Hammer et al., 2012; Ahn
and Jun, 2015; Jeunet et al., 2015; Reichert et al., 2015; Zhang
et al., 2015; Acqualagna et al., 2016; Vasilyev et al., 2017; Sannelli
et al., 2019).

Cognitive and neurological factors including functions and
anatomy along with emotional and mental processes give rise
to intra- and inter-subject variability affecting the performance
of SMR-based BCI (Wens et al., 2014; Reichert et al., 2015;
Zhang et al., 2015; Acqualagna et al., 2016; Betzel and Bassett,
2017; Vasilyev et al., 2017; Seghier and Price, 2018; Betzel et al.,

2019; Smith et al., 2019). Time-variant cognitive factors such
as fatigue, memory load, attention and reaction time modulate
instantaneous brain activity, and can cause inconsistent SMR-
based BCI performance (Hammer et al., 2012; Ahn and Jun,
2015; Fox et al., 2015; Jeunet et al., 2015; Darvishi et al., 2018;
Sannelli et al., 2019). Furthermore, users’ characteristics such as
lifestyle, gender, and age can influence BCI performance (Ahn
and Jun, 2015). Kasahara et al. illustrated that a neuroanatomical
feature i.e., graymatter volume is associated with SMR-based BCI
performance (Kasahara et al., 2015).

The structural and functional differences may characterize
dynamic baseline activities manifested in resting-state network
(RSN) dynamics. RSNs represent large-scale spatiotemporal
structures exhibiting intrinsic brain activities that are thought
to be functionally relevant (Deco et al., 2011). Studies have
shown intra- and inter-subject variability in sensorimotor RSN,
which may have implications for BCI performance variability
(Jensen et al., 2011; Wens et al., 2014; Reichert et al., 2015;
Zhang et al., 2015; Acqualagna et al., 2016; Vasilyev et al., 2017).
It has been hypothesized that SMR-based BCI performance
predictor is reliable for people who display strong resting EEG
amplitudes (Blankertz et al., 2010; Suk et al., 2014; Sannelli
et al., 2019). Table 1 shows a list of intra- and inter-subject BCI
performance predictors.

4. TRANSFER LEARNING

4.1. Covariate Shift and Transfer Learning
Transfer learning techniques originating from the field of
machine learning have been adopted to compensate BCI systems
for inter-subject and inter-session variability of EEG feature
distributions (Fazli et al., 2015; Jayaram et al., 2016). A key
idea is to regularize BCI model parameters for covariate shift
adaptation. Covariate shift occurs when distributions of training
and test data differ significantly although their conditional
distributions may remain unchanged (Krusienski et al., 2011).
Figure 1 schematically illustrates the idea of covariate shift
when the training and test data distributions are different.
The underlying time-variant and subject-specific brain dynamics
depends on associated psychological and neurophysiological
factors (Blankertz et al., 2009; Vidaurre and Blankertz, 2010;
Jensen et al., 2011; Hammer et al., 2012; Ahn and Jun, 2015;
Jeunet et al., 2015; Reichert et al., 2015; Zhang et al., 2015;
Acqualagna et al., 2016; Vasilyev et al., 2017; Sannelli et al., 2019)
and cause covariate shift in EEG-derived feature distributions
(Krusienski et al., 2011; Fazli et al., 2015; Jayaram et al., 2016).

The earliest attempts to overcome inter-session variability
include preliminary training sessions to enhance the user’s ability
to modulate brain signals robust enough to control BCI (Wolpaw
et al., 1991; Wolpaw and McFarland, 1994; Birbaumer et al.,
1999). The training sessions required for users are tedious and
inconvenient. Therefore, machine learning-based BCI models
were introduced to reduce individual training session for each
BCI use, in which a model has to be calibrated based on the data
at the beginning of each session (Ramoser et al., 2000; Blankertz
et al., 2002). Recent studies have proposed SMR-based BCI
without any session- and subject-specific calibration utilizing the
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TABLE 1 | Intra- and inter-subject BCI performance predictors.

Study Subject* Task type Task description Predictor

Edelman et al. (2019) 68 MI, Rest

LH, RH, LH+RH

User engagement(Continuous cursor or

robotic arm control)

Faller et al. (2019) 40 Visuo-motor
Virtual reality-based

Arousal
plane control

Sannelli et al. (2019) 80 MO, ME, MI

MO: LH, RH, Foot Tiredness, imagination

ME: LH, RH, RF strength, motivation,

MI: LH, RH, RF uneasiness

Saha et al. (2019) 5 MI RH, RF
Cortical regions

of interest

Perdikis et al. (2018) 2 (SCI) MI

Mutual learning

(parameters derived

LH, RH, LH+RH, from interface-

LF+RF, Rest application, BCI output,

and EEG)

Darvishi et al. (2018) 10 MI LH, RH Reaction time

Jochumsen et al. (2017) 47 ME Palmar grasp

Motor training

(laparoscopic surgery

training using a

simulator)

Saha et al. (2017a) 5 MI RH, RF

Optimal Channels

Saha et al. (2017b) 9 MI
LH, RH, LF+RF,

Tongue

Úbeda et al. (2015) 5 ME Continuous Cursor Kinematic parameters,

control i.e., speed, trajectory

Jeunet et al. (2015) 18

Personality and

Motor: LH Cognitive Profile;

Mental Non-motor: mental Neurophysiological

Imagery rotation and markers, including

mental subtraction parietal θ-power

and frontal and

occipital α-power

Kasahara et al. (2015) 30 MI
LH, RH (Finger- Gray matter

thumb opposition) volume

Morioka et al. (2015) 51

Visuo-spatial Attend-left

Resting EEG

attention or

task Attend-right

Suk et al. (2014) 83
Attention LH, RH,

task Foot

Hammer et al. (2012) 83 MI

Visuo-motor

LH, RH, coordination,

RF ability to concentrate

*Subjects were healthy unless specified otherwise; SCI, spinal cord injury; MI, motor imagery; ME, motor execution; MO, motor observation; LH, left hand, RH, right hand; LF, Left Foot;

RF, right foot.
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FIGURE 1 | A schematic illustration of covariate shift in the feature space and application of transfer learning methods for covariate shift adaptation.

concept of transfer learning (Kang et al., 2009; Li et al., 2010; Lu
et al., 2010; Niazi et al., 2013; Kang and Choi, 2014; Fazli et al.,
2015; Lotte, 2015; Jayaram et al., 2016; Saha et al., 2017a,b, 2019;
Fahimi et al., 2018; He and Wu, 2019).

4.2. The Concept of Inter-subject
Associativity
Most of the existing transfer learning approaches are based
on regularization or inter-session/subject transfer of model
parameters, indirectly transferring knowledge pertaining to the
sources of intra- and inter-subject variability (Samek et al.,
2013; Lotte, 2015). Many works on transfer learning for SMR-
based BCI proposed the use of a very few training samples
from the target subject (Kang et al., 2009; Lu et al., 2010;
Kang and Choi, 2014; Fahimi et al., 2018; He and Wu, 2019).
Recent studies have utilized resting EEG from the target subject
incorporated into transfer learning model before proceeding to
the actual experiment (Suk et al., 2014; Morioka et al., 2015).
While time and effort for building those models could be
significantly reduced, they still require training session. Others
have recently demonstrated the feasibility of inter-subject BCI
models without any training trial from the target subject (Saha

et al., 2017a,b, 2019). However, the performance requires to be
improved significantly prior to real-life use of such BCI systems.

A transfer learning method is worthwhile if the subjects
share non-stationarities that can be modeled in an inter-
subject context, but ineffective if the subjects exhibit unlike
non-stationarities (Samek et al., 2013). The term inter-subject
associativity refers to potential inter-subject BCI performance
predictors, which could be incorporated into BCI design to
augment transfer learning (Kang and Choi, 2014; Wronkiewicz
et al., 2015; Saha et al., 2017a,b, 2019). Source-space analysis
for detecting inter-subject associative EEG channels can improve
SMR-based BCI performance (Wronkiewicz et al., 2015; Saha
et al., 2017a, 2019). For example, the classification accuracies for
two different subject pairs are 90.36± 5.59% and 63.21± 8.43%,
respectively, suggesting not both subject pairs can be used to
achieve a good performance (Saha et al., 2019).

A set of generalized BCI frameworks would be more feasible
to implement as compared to a common BCI framework for
all users. Because, it is evident to observe significant inter-
subject variability in EEG signals (Saha et al., 2017b). Successful
quantification of inter-subject associativitymay suggest clustering
of subjects, each cluster having subjects with EEG signal
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characteristics that are similar or can be interpreted in an inter-
subject context. Considering the increasing volume of EEG-
BCI databases, it may become feasible to quantify the exact
sources of inter-subject/session variability as well as indicators
of inter-subject associativity allowing to reduce training sessions
to a minimum (Lotte, 2015). Recent advances in deep learning
methods demonstrate a potential application that alleviates intra-
and inter-subject variability in BCI settings (Chiarelli et al.,
2018; Fahimi et al., 2018). Meanwhile, recent studies suggest
that the quantification of inter-subject associativity could be
equally important to increase the efficacy of exclusively machine
learning-based transfer learning strategies for covariate shift
adaptation (Kang et al., 2009; Kang and Choi, 2014;Wronkiewicz
et al., 2015; Saha et al., 2017b, 2019; Perdikis et al., 2018).

5. CONCLUSION

Intra- and inter-subject variability is undeniable due to
time-variant factors related to the experimental setting and
underlying psychological and neurophysiological parameters.
Besides the extensive use of transfer learning methods for

the covariate shift adaptation, many recent works sought to

find suitable psychological and neurological predictors for
BCI performance. The assimilation of such predictors into
a subject independent context may reduce or eliminate the
tedious session or subject-specific training by supplementing
the performance of existing transfer learning methods.
However, collecting a priori information related to BCI
performance predictors could be challenging. Inter-subject
topographical associativity characterized by resting EEG
could provide a viable alternative solution to reduce the
calibration time to a minimum (Northoff et al., 2010; Suk
et al., 2014; Morioka et al., 2015) assuming we understand
the significance of intrinsic brain activities, i.e., resting EEG
signals, and the role of RSN topographies on SMR-related
brain functions.
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In the past, determination of absolute values of cerebral metabolic rate of glucose
(CMRGlc) in clinical routine was rarely carried out due to the invasive nature of arterial
sampling. With the advent of combined PET/MR imaging technology, CMRGlc values
can be obtained non-invasively, thereby providing the opportunity to take advantage
of fully quantitative data in clinical routine. However, CMRGlc values display high
physiological variability, presumably due to fluctuations in the intrinsic activity of the
brain at rest. To reduce CMRGlc variability associated with these fluctuations, the
objective of this study was to determine whether functional connectivity measures
derived from resting-state fMRI (rs-fMRI) could be used to correct for these fluctuations
in intrinsic brain activity. Methods: We studied 10 healthy volunteers who underwent
a test-retest dynamic [18F]FDG-PET study using a fully integrated PET/MR system
(Siemens Biograph mMR). To validate the non-invasive derivation of an image-derived
input function based on combined analysis of PET and MR data, arterial blood samples
were obtained. Using the arterial input function (AIF), parametric images representing
CMRGlc were determined using the Patlak graphical approach. Both directed functional
connectivity (dFC) and undirected functional connectivity (uFC) were determined
between nodes in six major networks (Default mode network, Salience, L/R Executive,
Attention, and Sensory-motor network) using either a bivariate-correlation (R coefficient)
or a Multi-Variate AutoRegressive (MVAR) model. In addition, the performance of a
regional connectivity measure, the fractional amplitude of low frequency fluctuations
(fALFF), was also investigated. Results: The average intrasubject variability for CMRGlc
values between test and retest was determined as (14 ±8%) with an average inter-
subject variability of 25% at test and 15% at retest. The average CMRGlc value
(umol/100 g/min) across all networks was 39 ±10 at test and increased slightly to
43 ±6 at retest. The R, MVAR and fALFF coefficients showed relatively large test-
retest variability in comparison to the inter-subjects variability, resulting in poor reliability
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(intraclass correlation in the range of 0.11–0.65). More importantly, no significant
relationship was found between the R coefficients (for uFC), MVAR coefficients (for
dFC) or fALFF and corresponding CMRGlc values for any of the six major networks.
Discussion: Measurement of functional connectivity within established brain networks
did not provide a means to decrease the inter- or intrasubject variability of CMRGlc
values. As such, our results indicate that connectivity measured derived from rs-
fMRI acquired contemporaneously with PET imaging are not suited for correction of
CMRGlc variability associated with intrinsic fluctuations of resting-state brain activity.
Thus, given the observed substantial inter- and intrasubject variability of CMRGlc values,
the relevance of absolute quantification for clinical routine is presently uncertain.

Keywords: resting-state fMRI, Cerebral metabolic rate of glucose, integrated PET/MRI, glucose metabolic rate
variability, standardization of psychological state, real-time fMRI

INTRODUCTION

Pioneering studies in the early days of PET imaging have
demonstrated the potential of absolute quantification of
glucose metabolic rate using [18F]-labeled deoxy-glucose
(FDG) (Lammertsma, 2017). Absolute quantification studies
typically mandate lengthy dynamic imaging protocols, along
with the measurement of arterial blood samples (Schmidt and
Turkheimer, 2002). Due to the complexity associated with the
imaging protocols and surprisingly large inter- and intra-subject
variability (in the range of 15–25%) of the cerebral metabolic
rate of glucose (CMRGlc) (Chang et al., 1987; Tyler et al., 1988;
Camargo et al., 1992), absolute quantification studies have not
been clinically viable.

Under normal physiological conditions, the brain derives
most of its energy from glucose metabolism (Raichle and Mintun,
2006). The observed substantial variability of glucose metabolic
rate was mostly unexpected, especially as it was shown that
changes in moment-to-moment energy demands may contribute
as little as 0.5–1% to the total energy budget (Raichle and
Mintun, 2006). This implies that intrinsic brain activity may
be an important factor in terms of overall brain function. It is
believed that this intrinsic activity is an expression of recurrent
excitatory and inhibitory connections between and within layers
of the cerebral cortex that are fundamental to the operation of
local cortical circuits (Haider et al., 2006).

Currently the underlying factors that give rise to the observed
variability in intrinsic brain activity are unknown. However, it
has been speculated that it might be an expression of fluctuations
in vigilance and conscious awareness, which is strongly tied to
electrical and chemical signaling at neuronal synapses (Fukunaga
et al., 2008). Thus, the brain’s intrinsic energy consumption,
as measured using FDG-PET imaging might be closely linked
to the function of neural regulatory networks that underlie
affective and cognitive processes. These processes are known to
be associated with the hemodynamic response that can be studied
based on spontaneous oscillations captured during resting-state
fMRI (rs-fMRI) (Logothetis et al., 2001). With the advent of
fully integrated PET/MR imaging (PET/MRI), both CMRGlc,
as well as rs-fMRI can be acquired contemporaneously, paving

the way for the study of the relationship between moment-to-
moment blood flow changes and longer-lasting states of brain
energy consumption. Here, we investigate whether a relationship
exists between CMRGlc values and the functional connectivity
between major nodes within the larger brain network. Such a
relationship would allow standardization of CMRGlc values to
a subject’s resting-state intrinsic activity, which may provide a
means to decrease test-retest variability of CMRGlc values and
may improve the relevance of absolute quantification of glucose
metabolic rates in clinical routine.

MATERIALS AND METHODS

Subjects
Ten healthy volunteers (27 ± 7 years, 5M/5F) were included in
this study. The study was approved by the Ethics Committee
of the Medical University of Vienna (EK1960/2014) and was
performed in accordance with the Gandavia and Tovella (1964),
including current revisions. Volunteers were deemed to be
healthy based on their medical history, physical examinations,
and vital signs. Written informed consent was obtained from all
the subjects before the examinations.

PET/MR Imaging Protocol
This study was part of an ongoing project with the goal to validate
methodology that allows the determination of an accurate image-
derived arterial input function (AIF) (Sundar et al., 2019).
All volunteers underwent test-retest examinations (mean time
difference = 17 ± 44 days) in a fully integrated PET/MR system
(Siemens Healthineers Biograph mMR, Erlangen, Germany).
Examinations were conducted in the afternoon and subjects were
asked to keep their eyes open and to relax without thinking of
anything in particular.

Subjects were fasted for at least 6 h prior to the PET imaging
procedure. Before each scan, blood glucose levels (mmol/l) were
measured and a venous line was established for the injection
of the FDG tracer. In addition, an arterial line was established
in the contra-lateral arm of the subjects for manual arterial
blood sampling. After positioning the subject in the PET/MR
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system with the brain in the field-of-view (FOV), a 60-min
PET list-mode acquisition was initiated simultaneously with an
intravenous injection of (352 ± 66 MBq, 5.2 MBq/kg) FDG
administered manually as a slow bolus over 40 s.

Parallel to the PET data acquisition, multiple MR sequences
were acquired: a T1-w MR sequence (TR: 2200 ms, TI: 778 ms,
TE: 3 ms, flip-angle = 13◦, FOV: 256 mm × 256 mm, 256
axial slices of thickness = 1.0 mm, matrix = 256 × 256, scan-
time = 5 min 22 s) for anatomical localization as well as a rs-fMRI
sequence (TR: 2.44 s, TE: 29 ms, FOV: 256 mm × 256 mm,
acquisition matrix: 128 × 128, 36 axial slices, voxel dimensions:
2 mm × 2 mm × 3 mm, 170 images for a total of 7 min). The
fMRI sequence was initiated at 30 min post injection of the FDG
tracer to match the linear component of the Patlak-transformed
time-activity curves (see below). In addition, sparsely sampled
MR navigators (2D EPI 3.0 mm × 3.0 mm × 3.0 mm voxels,
64 × 64 matrix, 36 slices, TE = 30 ms, TR = 3000 ms) were
interleaved between clinical MR sequences with the following
time intervals: 0, 2.5, 5, 7.5, 10, 14, 17, 21, 26, 33, 38, 42, 44, and
50.5 min post-injection.

Following the PET/MR examination, the controls were moved
to the PET/CT for a low-dose CT scan (120 kVp, 50 mAs) of
the brain. The PET list-mode data was re-binned into a dynamic
frame sequence (24 × 5 s, 1 × 60 s, 1 × 120 s, 11 × 300 s) and
was reconstructed (Siemens e7 tools) into a 344 × 344 × 127
matrix (voxel size 2.08 mm × 2.08 mm × 2.03 mm) using the
ordinary Poisson ordered subset expectation-maximization (OP-
OSEM) 3D algorithm (3 iterations, 21 subsets, 2 mm Gaussian
filter). Brain attenuation correction was performed using a CT-
derived mu-map (Carney et al., 2006), which was co-registered to
the navigator image volumes, yielding dynamic AC-maps along
with scatter correction.

Blood Sampling
To obtain the AIF, blood samples were collected manually at
different time points (24 × 5 s, 1 × 60 s, 1 × 120 s, 1 × 300 s,
1 × 600 s, 2 × 1200 s post injection) from the radial artery.
The blood sampling was performed manually using vacuum
test tubes via an arterial cannula fitted with an adapter. Before
every arterial sample, the line was flushed with 5 mL sodium
chloride solution to prevent clotting and sampling stagnant
blood. To avoid dilution of the actual sample, a 1 mL of
discard was drawn followed by the sampling of the arterial
blood sample. Whole-blood radioactivity concentrations were
measured using a gamma counter (PerkinElmer, 2480 Automatic
Gamma counter, Wizard23). To obtain the AIF, whole blood
samples were centrifuged to separate the plasma component,
followed by the measurement of radioactivity in the plasma.

MR-Driven Motion Correction
Sparsely sampled MR navigators interleaved between MR
sequences were used to perform motion correction of PET
images (Keller et al., 2015). The initial navigator (Nav-0)
was considered as the reference volume, and all subsequent
navigators (Nav-1 to Nav-13) were rigidly aligned to Nav-
0 using SPM 12 (Wellcome Trust Center for Neuroimaging,
UCL), yielding a set of motion vectors (MV-1 to MV-13, three

translations, and three rotation parameters). A correspondence
between the MR navigators and PET emission data was
assumed based on the least temporal difference between the
MR navigator acquisition time and the PET frame mid-
scan time. To account for spatial misalignment between the
static CT-derived AC map and the PET emission data, the
inverse of the MVs (iMVs) were applied to the AC map,
which resulted in a set of motion-corrected AC maps (MoCo-
AC). The obtained MoCo-AC maps were then employed for
reconstruction of the dynamic PET emission data using the
Siemens e7 tools.

PET Quantification
Motion vectors (MVs) derived from the MR navigators were
applied to the corresponding PET frames, resulting in motion-
corrected PET frames (MoCo-PET). Following the spatial
alignment, a voxel-wise Patlak graphical analysis (lumped
constant, LC = 0.65) (Wu et al., 2003) was performed using time-
activity curves derived from MoCo-PET frames in combination
with the sampled AIF. The analysis was performed using an
in-house developed Matlab tool (Matlab R2018a, MathWorks,
United States) that generated parametric images representing
the CMRGlc in units of umol/100 g/min. To be specific,
a linear function was fitted to the Patlak-transformed data,
including data from 25 min p.i. until the end of the study (8
data points). The resulting slope was then multiplied with the
subject’s plasma glucose level (umol/L) and divided by the LC
(Supplementary Figure S2).

fMRI Preprocessing
The fMRI images were analyzed using SPM12 (Wellcome
Department of Cognitive Neurology, Institute of Neurology,
London, United Kingdom). In all analyses, the first four images
were discarded to account for echo planar imaging (EPI)
equilibration effects (Haacke, 2014). The remaining images in
the sequence were realigned to correct for head movements,
corrected for slice timing, and subsequently spatially normalized
based on the transformation matrix derived between the co-
registered (to the mean EPI image) T1-weighted image and the
MNI template brain. The images were then smoothed spatially
with a 3D Gaussian kernel of 6 mm FWHM and re-sampled
(2 mm× 2 mm× 2 mm).

fMRI Time Series Extraction
A subset of six pair-wise nodes was selected for our analysis [see
Supplementary Figure S3 in Biswal et al. (2010)]. These nodes are
defined by their peak coordinates and correspond to the following
major networks: the default mode network (DMN) including the
medial prefrontal cortex (MPFC, MNI coordinates [0/60/−6])
and the posterior cingulate cortex (PCC, MNI [3/−42/27]), the
R/L executive network connecting the right/left superior frontal
gyrus (SFG, MNI [±30/21/51]) with the right/left inferior parietal
lobe (IPL, MNI [±48/−57/42]) within each hemisphere, the
salience network connecting the L and R anterior insula cortex
(AIC, MNI [−36/18/3] ↔ [42/15/−3]), the attention network
connecting the L and R IPL (MNI [−54/−30/42]↔ [42/−36/48])
and the sensory-motor cortex connecting the L and R superior
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central sulcus (MNI [−57/−9/33] ↔ [60/−9/33]). For each
peak location, the time series of all voxels within a radius of
6 mm were averaged. These averaged time-series were then
used to determine both the directed and undirected functional
connectivity (FC) between pair-wise nodes constituting the
selected networks (Figure 1). Specifically, the directed functional
connectivity (dFC) model is well suited for assessing (possibly)
asymmetrically directed interactions between any nodes in any
class of network with quantifiable dynamics (Granger, 1969;
Bressler and Seth, 2011; Friston, 2011). Moreover, in order
to assess local functional connectivity (which characterizes the
extent of temporal coherence between neighboring voxels)
we also calculated the fractional amplitude of low frequency
fluctuations (fALFF). This measure of local connectivity has been
shown to be associated with brain activity (Yu-Feng et al., 2007;
Zhou et al., 2010).

Undirected Functional Connectivity
Analysis
Undirected functional connectivity (uFC) analysis was
performed using previously published methods (Whitfield-
Gabrieli and Nieto-Castanon, 2012). Segmentation of structural
(T1-w) images was performed and the resulting gray matter
and cerebrospinal fluid (CSF) images were co-registered with
the functional (T2-w) scans. The BOLD signals from white
matter and CSF masks as well as the motion regressors were
set as confounds, using the default orthogonal time series. The
temporal confounding factors were then regressed from the
BOLD time series at each voxel and the residual time series’ were
band-pass filtered (0.01–0.1 Hz) to eliminate low frequency drifts.
ROI time series’ were extracted by averaging across all the voxels
within each individual ROI. Finally, uFC between two regions
was computed using a zero-lagged bivariate-correlation R-value),
estimating the linear association between two BOLD signals.

Directed Functional Connectivity
Analysis
Directed Functional Connectivity was estimated using Multi-
Variate AutoRegressive (MVAR) models. These models provide
a measure of the causal influence of each anatomical node on
every other node in the network and are equivalent to Granger
Causality (GC) (Granger, 1969). In brief, GC relies on the notion
of “prediction” to generate influences regarding “causality.” A
constituent “X” within a complex dynamic system exerts a
“causal” effect on another constituent “Y” within the system if
the predictability of “Y” decreases when “X” is removed from
the set of all possible causative variables. The most typically
used framework relies on auto-regressive models (Bressler and
Seth, 2011). Thus, the MVAR model was used to estimate the
strength of the causal influence between nodal pairs (A, B:
A → B, B → A), with the model coefficient encoding the
magnitude of this strength (Bressler and Seth, 2011; Tang et al.,
2012; Asemi et al., 2015; Diwadkar et al., 2017; Morris et al.,
2019). The number of previous time points in the model that
was used to estimate the current time point was restricted
to one (Tang et al., 2012), since network interactions at time

scales that are proximate to the cognitive neuro-dynamics of
the brain networks are in the time range of milliseconds
(Singh, 2012).

All modeling was performed using specifically written scripts
(R software suite). For each nodal pair (A, B) two MVAR
coefficients were estimated for each subject characterizing the
direction of the pair (A→ B and B→ A). Thus, each participant
contributed 24 coefficients to the group level analyses (6 pairs
from 12 nodes; two directions for each pair over the test and
retest conditions).

Fractional Amplitude of Low Frequency
Fluctuations Analysis
Fractional amplitude of low frequency fluctuations (Zou et al.,
2008) is defined as the power within the low-frequency range
(0.01–0.08 Hz) divided by the total power in the entire detectable
frequency range and is calculated for the time course of each voxel
within a ROI. These values were averaged to yield one regional
value for the 10 nodes. The rationale for using this measure is
based on the assumption that slow fluctuations in activity are a
fundamental feature of the resting brain, and their presence is
crucial for determining correlated activity between brain regions
that constitute resting state networks.

Multimodal Analysis
In order to determine the relationship between CMRGlc and
functional connectivity of major brain networks (Figure 1),
CMRGlc values were derived from the same coordinate locations
as were used for the fMRI data analysis. Specifically, parametric
images representing CMRGlc were co-registered with the
corresponding T1-w images and following spatial normalization
of the T1-w images to MNI space using DARTEL (Diffeomorphic
Anatomic Registration Through Exponentiated Lie algebra)
software, these normalization parameters were also applied
to parametric CMRGlc images. Thereafter, CMRGlc values
were extracted from spheres with a 6 mm radius centered
at the same location as was used for the extraction of the
fMRI time series. Next, CMRGlc values obtained from the 12
nodes were averaged separately for each network, yielding for
each subject six network-specific regional CMRlc values for
both the test (rCMRGlctst) and retest (rCMRGlcretst) condition.
A correlation analysis was then performed in order to determine
whether the magnitude of the uFC (expressed by Pearson’s R
coefficients), dFC (expressed by the MVAR coefficients) of local
connectivity (characterized by fALFF) is predictive of CMRGlc
values at rest and retest conditions. In case of a significant
correlation between CMRGlc values and the R/MVAR/fALFF
coefficients (COEF), these coefficients could be applied to
account for CMRGlc variability by adjusting the retest CMRGlc
values to the psychological state during the test condition as

CMRGlc′retest = CMRGlcretest ×
[
COEFtest

/
COEFretest

]
(1)

where CMRGlc’retest represents the adjusted glucose
metabolic rate.
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FIGURE 1 | Transaxial planes showing the location of spherical regions in MNI space from where the CMRGlc values and rs-fMRI time series’ were extracted. For
MNI coordinates of regions, see text. Red: default mode network (DMN) connecting the medial prefrontal cortex (MPFC) with the posterior cingulate cortex (PCC).
Yellow and Cyan: L/R Executive networks, connecting the L/R superior frontal gyrus (SFG) with the anterior portion of the inferior parietal lobe (IPL_ex), respectively.
Green: salience network connecting the R/L anterior insular cortex (AIC). Magenta: attention network connecting the L and R posterior portion of the inferior parietal
lobe (IPL_att). Blue: sensory-motor cortex connecting the L and R sensory motor cortex (SMC).

Statistical Analysis
Descriptive statistics was used to characterize the average and the
variance of outcome measures (CMRGlc values, R, MVAR, and
fALFF coefficients) determined at test and retest condition for
the six major networks. Moreover, the test-retest repeatability of
each outcome measure was assessed using the two-way random
effects model intraclass correlation coefficient [ICC (2,1)]. To
determine whether there is a significant difference with respect to
outcome measures across time and network, a (2 × 6) repeated
measures ANOVA was applied, where the two within-subjects
factors represent time with 2 levels (test, retest) and networks
with 6 levels (DMN, Salience, L/R Executive, Attention, Sensory-
motor). All tests were performed 2-sided and a p-value of <0.05
was assumed to represent significance. Pearson’s correlation
was used in order to assess whether a significant correlation
exists between CMRGlc values and the R or MVAR coefficients.
For correlation analyses, individual values were transformed to
z-scores prior to correlation computation. Statistical analysis was
performed using SPSS version 25 (SPSS, Inc.).

RESULTS

Cerebral metabolic rate of glucose values at rest and retest
condition obtained for the six major networks are shown in
Table 1. The average intrasubject variability between rest and
retest was determined as (14 ±8%) with an average inter-subject

TABLE 1 | CMRGlc values determined for the test (Test) and retest (Retest)
condition in each of the six major brain networks.

Network Test (COV)
CMRGlc

(umol/100 g/min)

Retest (COV)
CMRGlc

(umol/100 g/min)

Intrasubject
variability

DMN 41 ± 10 (24) 45 ± 6 (12) 14 ± 8

L executive 41 ± 11 (24) 44 ± 8 (17) 14 ± 8

R executive 40 ± 10 (26) 42 ± 7 (16) 13 ± 7

Salience 41 ± 10 (25) 45 ± 6 (13) 14 ± 9

Attention 36 ± 9 (26) 39 ± 6 (12) 15 ± 8

Sensory-motor 35 ± 8 (24) 37 ± 6 (12) 15 ± 8

Average 39 ± 10 (25) 43 ± 6 (15) 14 ± 8

The coefficient of variation (COV = mean/SD) is provided in brackets. “Average”
represents the overall mean derived from all nodes across all subjects.

variability of 25.4% at rest and 15.1% at retest, representing a
trend toward a significant decrease in variability during retest
(F = 2.7, p = 0.08). The intraclass correlation coefficient (ICC)
for CMRGlc values determined in the six networks was in the
range of 0.68–0.78, indicating a moderate agreement between the
two time points. The average CMRGlc value over all networks
was (39 ±10) umol/100 g/min at test and increased slightly
to (43 ±6) umol/100 g/min at retest (p = 0.11) (Figure 2).
As expected, the repeated measures ANOVA showed a highly
significant main effect for the network variable (p < 0.001),
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FIGURE 2 | The panel displays whole brain CMRGlc values at test and retest
condition (N = 10). Although the average CMRGlc value across the two
conditions is similar, the variability is decreased during the retest condition
(see Table 1).

indicating significant differences of CMRGlc values in the
individual networks. Despite the significant differences in
absolute CMRGlc values between test and retest condition, the
ratio between CMRGlc values in individual regions was preserved
across the two time points (as verified by a non-significant
(time× network) interaction of p = 0.47).

Reliability of Functional Connectivity
Measures
The R coefficients at test and retest conditions for all six networks
are shown in Figure 3A, indicating a relatively large test-retest
variability in comparison to the between-subjects variability.
This was reflected in the poor network ICC values that were
determined in the range of 0.11–0.36. Nevertheless, the repeated
measures ANOVA showed a non-significant effect both with
respect to the main effect for time (p = 0.95) as well as for
the (time × network) interaction (p = 0.89). A similar result
was determined for the MVAR coefficients (Figure 3B). The
network ICC values were determined in the range 0.14–0.55,
with the repeated measures ANOVA again showing a non-
significant time effect (p = 0.71) and (time× network) interaction
(p = 0.67). For both analyses, the highest overall connectivity
was determined for the Sensory-motor network (R = 0.97 and
MVAR = 0.59 for uFC and dFC, respectively) while the DMN
displayed lowest connectivity (R = 0.88 and MVAR = 0.41).
Finally, the network ICC values for the fALFF parameter were
determined in the range of 0.33–0.65 with a non-significant time
(p = 0.92) and (time × region) interaction effect (p = 0.87) based
on a repeated measures ANOVA.

Relationship Between CMRGlc and
Functional Connectivity
No significant correlation was found between corresponding
CMRGlc values and either of the R, MVAR or fALFF coefficients
for any of the six major networks. Correlation analysis showed a
very poor correlation between CMRGlc values and R coefficients

with an r2 value of <0.02 for all individual networks. A similar
result was determined for the MVAR coefficients characterizing
dFC for all networks and directions as well as for the fALFF
parameter. Figure 4 shows representative correlation graphs
between CMRGlc values and the R, MVAR and fALFF coefficients
collapsed over all six networks, demonstrating the absence
of any meaningful correlation between functional connectivity
measures and regional CMRGlc. Accordingly, application of
(Eq. 1) did not improve the reproducibility of CMRGlc values
between test and retest conditions. The variability of adjusted
CMRGlc values was either similar (13 ±6% vs 13 ±8%, sensory-
motor cortex) or was significantly worse (24 ±18% vs 16 ±10%,
DMN network) as compared to the measured CMRGlc values.

Figure 5 provides representative CMRGlc images of two
subjects with good reproducibility across time (<5% difference
in whole brain CMRGlc values) and two subjects with
poor reproducibility (>15% difference) together with the
corresponding MVAR coefficients for the three selected networks.
Although the changes in absolute CMRGlc values differ
between the two groups, changes in functional connectivity (as
characterized by the MVAR coefficient) between test and retest
condition are similar, as indicated in the figure for the DMN and
Sensory-motor network. The poor agreement between temporal
changes in whole brain CMRGlc values and changes in the
MVAR coefficient in two representative brain networks can be
clearly appreciated.

DISCUSSION

The main result of our study is the absence of a relevant
relationship between absolute metabolic rate of glucose values
and measures of functional connectivity in six major brain
networks (Figure 4). Our results indicate that functional
connectivity between major network nodes (as quantified using
R, MVAR or fALFF coefficients derived from rs-fMRI) is not
suited for standardization of CMRGlc values with respect to the
subject’s intrinsic network activity (Figure 5). Thus, given the
substantial intra- and intrasubject variability of glucose metabolic
rate, the usefulness of absolute quantification in clinical routine
remains to be determined.

The current study confirms the poor test-retest reliability of
functional connectivity measures reported in recent literature
(Noble et al., 2019). These investigators performed a meta-
analytic estimate of the reliability of fMRI based functional
connectivity in 44 studies, stating an overall poor ICC of 0.29
(95% CI = 0.23–0.36). One potential reason for the observed
low ICC of functional connectivity measures is the relatively
large intra-subject variability compared to a comparatively low
inter-subject variability (see Figure 3).

Moreover, our results both complement and extend the
findings of a recent study (Parker and Razlighi, 2019) that
demonstrates that consistent and robust deactivations in
task-based fMRI studies can be significantly altered without
causing any changes in their overlapping intrinsic functional
connectivity. These authors present compelling evidence
for a disassociation between task-evoked deactivations
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FIGURE 3 | (A) Test-retest values of R coefficients in six major networks: Default Mode network (DMN), Salience network (Salience), R/L Executive network (R
Exec/L Exec) and Attention network (Attention) and Sensory-motor network (Sens_Mot). (B) Corresponding test-retest values of MVAR coefficients in the same six
major networks. R, bivariate-correlation coefficient; MVAR, Multi-Variate Auto-Regressive model coefficient.

FIGURE 4 | Correlation between z-transformed CMRGlc values and z-transformed R (left), MVAR (middle) and fALFF (right) coefficients for all subjects in six
networks at test and retest conditions. The R-value represents the Pearson’s correlation coefficient between the measures. R, bivariate-correlation coefficient; MVAR,
Multi-Variate Auto-Regressive model coefficient; fALFF, fractional amplitude of low frequency fluctuations.

and functional connectivity, both extracted from the same
DMN regions. Moreover, they demonstrate that task-based
deactivations are more closely related to task performance
than is functional connectivity. Based on this data the authors
conclude that functional connectivity represents a distinct
and ongoing neuro-physiological process whose coherence
and magnitude is not altered by task-performance, but is
taking on a more basic role in the hierarchical functional
architecture of the brain.

Recent studies have demonstrated that task-related changes
in brain activity levels are associated with changes in glucose
consumption (Riedl et al., 2014; Jamadar et al., 2019), presumably
due to altered energy demand of the underlying synaptic
transmission processes. Using simultaneous acquisition of both
FDG-PET and fMRI data, these investigators have shown a
close relationship between task-based functional connectivity and
local glucose metabolism in the visual network, consistent with

results obtained in non-simultaneously acquired data (Di and
Biswal, 2012; Tomasi et al., 2017). Thus, as CMRGlc is closely
tied to task-performance, our results showing a poor correlation
between glucose metabolic rate and non-task based functional
connectivity, directly corroborate Parker and Razlighi (2019)
interpretation. Finally, our results are also in partial agreement
with a study by Marchitelli et al. (2018), who set out to investigate
the coupling between FDG tracer uptake and intrinsic functional
activity in both patients (Alzheimer Disease) and a control
group. These investigators showed only a modest across-subjects
correlation between FDG tracer uptake and intrinsic functional
activity, indicating that the variability observed with functional
connectivity measures is at least as large as the variability of
glucose consumption. Thus, both studies indicate that functional
connectivity measures cannot provide added information that
could be used to account for the observed physiological variability
in glucose metabolic rate.
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FIGURE 5 | Representative CMRGlc images with low (top row, panels A,B) and high (bottom row, panels C,D) test-retest variability. Each of the four panels (A–D)
corresponds to a different subject at rest and retest condition. Each panel renders a trans-axial cross-section through the subject’s brain at the level of the caudate
head obtained at rest and retest condition, together with bar graphs representing test-retest changes in MVAR coefficients for the DMN and Sensory-motor (SM)
networks. The figure demonstrates a similar distribution of MVAR coefficient changes for subjects with low (top row) and high (bottom row) CMRGlc variability across
time. WB, whole brain values.

Physiological Variability of CMRGlc
Values
Fully quantitative assessment of CMRGlc provides valuable and
detailed information about the regional metabolic state of brain
tissue, but this advance in methodology brings its own set of
issues that need to be carefully considered. Early studies that have
investigated absolute CMRGlc in control subjects have revealed a
surprisingly large physiological variability that was in the range
of 15–25%, even for large regions and the same subject being
scanned only a few days apart (Camargo et al., 1992; Schaefer
et al., 2000). Our own data confirms these earlier findings
(Figure 2). Consequently, in the absence of improved data
acquisition or analysis protocols that are able to standardize the
resting-state metabolism of the subjects, sensitivity to detect areas
of significantly increased or decreased CMRGlc will be relatively
low, requiring about 30% deviations from baseline (Sundar et al.,
2019). This compares unfavorably with the visual assessment of
regional asymmetries between homotopic brain areas, which can
be quite easily detected at the 10% level (Niimura et al., 1999).
Thus, in order to improve the relevance of absolute quantification
in clinical applications, standardization of the subjects’ resting-
state activity will be mandatory. Unfortunately, it is currently
unclear how such a standardization could be achieved.

Our previous work showed that the observed physiological
variability does not correlate with the time duration between the
two PET scans (Sundar et al., 2019), suggesting that variability
is not due to a slow drift of brain metabolism across time,
but appears to be an inherent characteristic of the underlying
neural network. This effect has been extensively studied in
the context of the DMN, originally proposed by Raichle et al.
(Gusnard et al., 2001; Raichle and Snyder, 2007). The DMN

displays fluctuation of brain activity during times when a subject
is not performing any task but is left in an “idle” state. These
fluctuations are believed to be the result of unconstrained,
spontaneous cognition - daydreams or, more technically,
stimulus-independent thoughts (McGuire et al., 1996; Mason
et al., 2007), which recently led to the realization that a truly
“resting” state of the brain probably does not exist (Gusnard et al.,
2001). Moreover, such a state is in general undefined as various
neural processes that are currently uncontrollable are likely to
contribute to the observed variability in CMRGlc. As a case in
point, our data suggests that higher-order brain networks (such
as the DMN and R/L executive networks) show higher temporal
variability than does the sensory-motor network. A possible
reason for this surprising finding might be the fact that intrinsic
flexibility in these high-order brain networks in combination
with complex between-network interactions (Calhoun et al.,
2014) may increase their sensitivity to transient environmental
factors that play an important role in the mental state of a patient.
In contrast, the functional connectivity within the sensory-motor
system is relatively independent of transient factors and as a
result, might more stably reflect the baseline state of the brain.

Temporal Relationship Between CMRGlc
and rs-fMRI
In order to calculate CMRGlc values, dynamic PET data over
an extended time period (∼60 min) is acquired. Moreover, to
derive CMRGlc values from such data, a three-compartment
model (consisting of a vascular, intracellular and metabolic
compartment) is applied. Analysis of such a compartmental
model indicates that after ∼25 min post injection a dynamic
equilibrium is reached between the compartments which, under
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resting conditions, is maintained until the end of the study
(∼60 min). The presence of such a dynamic equilibrium suggests
that during this time the CMRGlc is unchanged and can be
therefore uniquely identified from the data. This assumption is
well supported by the observation that the Patlak-transformed
dynamic time-activity curves display a linear behavior during
the dynamic equilibrium phase, allowing a simplified analysis
based on linear fitting. Thus, it appears reasonable to assume that
during dynamic equilibrium the functional EPI data should also
reflect a stable network configuration commensurate with the
measured CMRGlc values (see Supplementary Figure S1 in the
Supplementary Material).

Neurovascular Coupling
It is reasonable to assume that resting-state glucose is
physiologically related to baseline neural activity as well as
to resting cerebral blood flow (Attwell and Iadecola, 2002).
Although rs-fMRI is considered to represent an indirect
measure of neural activity in specified neural networks,
several issues prevent a straightforward application of rs-fMRI
derived parameters to yield information about overall energy
consumption in these networks.

Firstly, the mechanisms underlying neurovascular coupling
and neuronal function are still not completely understood
(Leithner and Royl, 2014). For example, it is not fully understood
what function moment-to-moment changes in blood flow serve.
The delivery of oxygen and glucose are indeed an important
factor, but the availability of reserves (i.e., unextracted oxygen in
circulating blood and glucose and glycogen in astrocytes) make
a simple relationship unlikely. Possible other mechanisms that
have been proposed are the removal of excess lactate produced
during an increase in activity or the adjustment of the acid-
base/ionic balance of the tissue. However, these mechanisms do
not lend themselves easily to a transparent relationship with
functional connectivity.

Secondly, established measures of local connectivity such as
Regional Homogeneity (ReHo, Zang et al., 2004) and fractional
Amplitude of Low Frequency Fluctuations (fALFF, Zou et al.,
2008) represent local variables closely related to small (<3%)
moment-to-moment regional blood flow changes, but not
to absolute blood flow values (which can be non-invasively
measured using 15O-water PET imaging). Both these parameters
have been shown to correlate with local FDG uptake (Tomasi
et al., 2013; Aiello et al., 2015; Savio et al., 2017; Rajkumar et al.,
2018), but a relationship with absolute glucose metabolic rates
could not be demonstrated.

Finally, Zuo et al. (2012) defined a direct connectivity (DC)
parameter which provides a measure of information flow within
a network. DC is a local measure of functional connectivity that
indexes the number of direct connections for a given node and is
calculated as the Pearson’s correlation coefficient between remote
voxels (Buckner et al., 2009). Conceptually, a node has high DC
if it has numerous direct connections to other nodes and such a
node would be expected to be more active than a node with low
DC. Surprisingly, DC has been shown to correlate poorly with
FDG tracer uptake (Aiello et al., 2015), corroborating our results.
Our findings suggest that fluctuations in blood flow measured
with rs-fMRI are superimposed on a much larger blood flow

baseline that cannot be assessed using fMRI measures. However,
it is this (unknown) blood flow baseline, that determines overall
energy consumption in the brain (Sokoloff, 1980).

PET/MR: The Sum Is Greater Than Its
Parts
In accordance with the finding that task-based deactivations
are more closely related to task performance than is functional
connectivity (Parker and Razlighi, 2019), it is reasonable to
assume that a subject’s psychological state could be influenced
by performing a specific task. There is evidence that task-related
psychological states in different patients are more similar than
during resting state (Duara et al., 1987). These investigators
have demonstrated that by involving the subjects in a picture
preference test during the FDG uptake period decreases the
variability of CMRGlc values by 60–80%. Interestingly, the
same task performed in mild to moderately demented patients
(with Mini-Mental-State >15) did not result in any appreciable
decreases of CMRGlc variability, indicating that subjects need to
have a certain level of engagement with the performed task in
order to achieve standardization.

Obtaining a measure of task performance might be an
excellent parameter that can be used to characterize a particular
psychological state. In this context, combined PET/MRI
methodology might provide a highly efficient means to monitor
task performance by taking advantage of advanced fMRI
protocols. For example, a real-time fMRI (rt-fMRI) neuro-
feedback protocol could be applied to regulate the psychological
state of the subjects under study (Caria et al., 2012; Weiskopf,
2012; Sulzer et al., 2013; Gerin et al., 2016). In fact, numerous
studies have established the effectiveness of the rt-fMRI neuro-
feedback approach in being able to change the activity of
specific brain regions and even to improve emotion regulation
through the willful increase of prefrontal control over the
amygdala complex (Young et al., 2017; Mehler et al., 2018;
Sorger et al., 2018; Watanabe et al., 2018). Thus, although
speculative, a protocol that uses an rt-fMRI neurofeedback
paradigm during the FDG uptake period could generate
a very similar psychological state in the studied subjects,
potentially resulting in excellent temporal reproducibility of
PET-derived CMRGlc values.

Study Limitations
There are several possible issues associated with our study
that deserve mentioning. Our study includes a relatively low
number of participants (N = 10) that were, however, imaged in
a test/retest design. As such, our data includes 20 measurements,
allowing assessment of both between- and within-subjects effects.
Moreover, standardization of MRGlc values to psychological state
will need to be applied to individual measurements, rendering
statistical averages of lesser importance. Another possible
limitation is the relatively heterogenous time difference between
the test/retest imaging sessions, with a mean time difference
between scans being 17 ± 44 days (range 3 days to 2 months).
However, our previous analysis (Sundar et al., 2019) showed no
significant correlation between test/retest differences in MRGlc
values and the length of time separating the two acquisitions
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(R2 = 0.03). These results suggest that time effects are most
likely not responsible for the observed variability in the observed
MRGlc values. Finally, we observed a relatively large (but not
statistically significant) decrease in inter-subject variability from
the test to the retest condition (from 25% to 15%). This decrease
in CMRGlc variability represents a confound that might be due to
increased familiarity of the subjects with the imaging procedure
at the second scan, thereby decreasing uncertainty and anxiety
levels. It is conceivable that the so generated expectations allowed
the subjects to enter a state of mind that was conducive to the
task ahead, in essence standardizing their psychological state and
resulting in decreased CMRGlc variability. Although speculative,
this observation supports our notion that exerting influence over
a subject’s psychological state might be effective in decreasing
CMRGlc variability.

Future Directions
In future studies we expect to build upon the results presented
herein. In particular, we will seek to combine the current
approach with various metrics that focus on local functional
connectivity for the purpose of CMRGlc standardization, such as
regional homogeneity (ReHo), ALFF as well as a more systematic
investigation of the potential of an independent component
analysis (ICA) for this purpose. All these measures have been
shown to possess excellent test-retest reliability (Zuo and Xing,
2014), leaving open the possibility that a hybrid approach that
takes into account both long distance as well as local functional
connectivity measures might provide a means to significantly
decrease test-retest variability of glucose metabolic rates.

CONCLUSION

Although high expectations have been pinned upon the absolute
glucose metabolic rates in a clinical setting, these have not been
matched by the results of fully quantitative FDG-PET imaging
due to the large intra- and intersubject variability. Presumably,
this variability appears to be caused by changes in patients’
intrinsic brain activity, of which the underlying mechanisms
are currently poorly understood and as a result are being
inadequately controlled for. Our attempt to standardize glucose
metabolic rates based on functional connectivity measures
determined within six major brain networks was unsuccessful,
rendering the clinical relevance of absolute quantification of
cerebral glucose metabolism uncertain at present.
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Objective: In brain machine interfaces (BMIs), the functional mapping between neural

activities and kinematic parameters varied over time owing to changes in neural recording

conditions. The variability in neural recording conditionsmight result in unstable long-term

decoding performance. Relevant studies trained decoders with several days of training

data to make them inherently robust to changes in neural recording conditions. However,

these decoders might not be robust to changes in neural recording conditions when

only a few days of training data are available. In time-series prediction and feedback

control system, an error feedback was commonly adopted to reduce the effects of model

uncertainty. This motivated us to introduce an error feedback to a neural decoder for

dealing with the variability in neural recording conditions.

Approach: We proposed an evolutionary constructive and pruning neural network

with error feedback (ECPNN-EF) as a neural decoder. The ECPNN-EF with partially

connected topology decoded the instantaneous firing rates of each sorted unit into

forelimbmovement of a rat. Furthermore, an error feedback was adopted as an additional

input to provide kinematic information and thus compensate for changes in functional

mapping. The proposed neural decoder was trained on data collected from a water

reward-related lever-pressing task for a rat. The first 2 days of data were used to train

the decoder, and the subsequent 10 days of data were used to test the decoder.

Main Results: The ECPNN-EF under different settings was evaluated to better

understand the impact of the error feedback and partially connected topology. The

experimental results demonstrated that the ECPNN-EF achieved significantly higher daily
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decoding performance with smaller daily variability when using the error feedback and

partially connected topology.

Significance: These results suggested that the ECPNN-EF with partially connected

topology could cope with both within- and across-day changes in neural recording

conditions. The error feedback in the ECPNN-EF compensated for decreases in

decoding performance when neural recording conditions changed. This mechanism

made the ECPNN-EF robust against changes in functional mappings and thus improved

the long-term decoding stability when only a few days of training data were available.

Keywords: brain machine interfaces, neural decoding, error feedback, evolutionary algorithm, recurrent neural

network

INTRODUCTION

Brain machine interface (BMI) technology converts the brain’s
neural activity into kinematic parameters of limb movements.
This allows controlling a computer cursor or prosthetic devices
(Kao et al., 2014; Slutzky, 2018), which can greatly improve
the quality of life. Intracortical BMIs have used microelectrodes
implanted in the cortex to decode neural signals. These signals
have then been converted into motor commands to control
an anthropomorphic prosthetic limb, thereby restoring natural
function (Collinger et al., 2013; Roelfsema et al., 2018).

The decoder was the most crucial component of a BMI; it
modeled the functional mapping between neural activities and
kinematic parameters (e.g., movement velocity or position), and
assumed that this functional mapping was time-invariant (i.e.,
a stationary statistical assumption) (Kim et al., 2006). However,
under real neural recording conditions, there existed a high
degree of within- and across-day variability (Simeral et al., 2011;
Perge et al., 2013, 2014; Wodlinger et al., 2014; Downey et al.,
2018) that prevented satisfaction of the stationary statistical
assumption. This variability consisted of the relative position of
the recording electrodes—and surrounding neurons, electrode
properties, tissue reaction to electrodes, and neural plasticity—
andmight affect the functional mapping between neural activities
and kinematic parameters (Jackson et al., 2006; Barrese et al.,
2013; Fernández et al., 2014; Salatino et al., 2017; Michelson et al.,
2018; Hong and Lieber, 2019). The variability in neural recording
conditions resulted in unstable long-term decoding performance
and led to frequent decoder retraining (Jarosiewicz et al., 2013,
2015).

Conventional decoder retraining required the subject to
periodically perform a well-defined task to collect new training
data for preventing model staleness (Jarosiewicz et al., 2015).

Abbreviations: MI, brain machine interface; ECPNN-EF, evolutionary

constructive and pruning neural network with error feedback; NN, neural

network; RNN, recurrent neural network; ESN, echo-state network; TDNN,

time-delay neural network; EA, evolutionary algorithm; ECPA, evolutionary

constructive and pruning algorithm; CBP, cluster-based pruning; ABSS, age-

based survival selection; BPTT, backpropagation through time; ECPNN-EFWC,

ECPNN-EF only with CBP; ECPNN-EFWA, ECPNN-EF only with ABSS; RNN-

EF, fully-connected RNN with error feedback; ECPNN, ECPNN-EF without

error-correction learning; PCNN, partially connected NN; FCNN, fully connected

neural network.

This manner may lead to additional training time before the
BMI can be used. Traditional linear neural decoders did not
need frequent retraining but possessed limited computational
complexity to deal with neural recording condition changes
owning to linear properties (Collinger et al., 2013). It is known
that the newly encountered neural recording conditions in
chronic BMI systems have some commonality with past neural
recording conditions (Chestek et al., 2011; Perge et al., 2013;
Bishop et al., 2014; Nuyujukian et al., 2014; Orsborn et al.,
2014). Therefore, computationally powerful non-linear decoders
were proposed to learn a diverse set of neural-to-kinematic
mappings corresponding to various neural recording conditions
collected over many days before BMI use (Sussillo et al., 2016).
This approach avoided BMI interruption by keeping model
parameters fixed during BMI use and made BMI inherently
robust to changes in neural recording conditions by exploiting
the similarities between newly encountered and past neural
recording conditions. Therefore, the BMIs were trained with

several days of data in order to learn various neural recording

conditions and achieve stable long-term decoding. However, they
heavily relied on the huge training data where a large training
set may not be available for both non-human primates and
rodent models.

The limited training data have become an issue for BMI

application in long-term performance. A chronic inflammatory

reaction results in neural signal loss and decrease in quality over
time (Chen et al., 2009). Also, the number of implanted electrodes
is limited by the size of the neural nuclei in the rodent brain.
Therefore, limited neurons and limited recording times lead to
limited training data.

Rodent models with small numbers of implanted electrodes

have been widely used to investigate state-of-the-art neural

prostheses. Previous studies have demonstrated the decoding

performances of various methods at the motor cortex (Zhou
et al., 2010; Yang et al., 2016), somatosensory cortex (Pais-
Vieira et al., 2013), and hippocampus (Tampuu et al., 2019)
in rodent models. The results indicated that good decoding

methods should be considerably more robust to small sample

sizes caused by limited neurons or limited recording times. In

general, a limited amount of training data made traditional
decoding methods inaccurate, because they usually required
a large number of neurons to achieve desirable levels of
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performance. Furthermore, small amounts of data have made
modern decoding methods unreliable, because their increasing
model complexities required a large amount of training data
(Glaser et al., 2017). Whether the BMIs could deal with the
scenario in which only a few days of training data were available
is unknown. This motivated us to develop a neural decoder that
could learn from limited training data based on rodent models.

In time-series prediction applications, neural networks (NNs)
usually employed prediction error as an additional input of the
networks. This has been proven to yield superior performance
compared with that without error feedback (Connor et al.,
1994; Mahmud and Meesad, 2016; Waheeb et al., 2016). The
error feedback determined the difference between the network
output and the target value. This information could provide
the network with information concerning previous prediction
performance and might thereby guide the network to accurate
prediction. In a feedback control system, the output signal was
fed back to form an error signal, which was the difference
between the target and actual output, in order to drive the
system. Using feedback could reduce the effects of model
uncertainty (Løvaas et al., 2008). Furthermore, feedback control
could cope with trial-to-trial variability caused by complex
dynamics or noise in motor behavior (Todorov and Jordan,
2002). Based on the contemporary physiological studies in
the human cortex (Miyamoto et al., 1988), a feedback motor
command has been used as an error signal for training an NN
(Kawato, 1990). One study hypothesized that the user intended
to directly move toward the target when using BMI. This study
fitted the neural decoder by estimating user’s intended velocity
which was determined from target position, cursor position,
and decoded velocity (Gilja et al., 2012). A recent study took
into account how the user modified the neural modulation to
deal with the movement errors caused by neural variability
in the feedback loop (Willett et al., 2019). Their framework
simulated online/closed-loop dynamics of an intracortical BMI
and calibrated its decoder by an encoded control signal, which
was the difference between target position and cursor position.
The encoded control signal using target position was first
transformed into neural features which were then mapped to a
decoded control vector for updating decoder output, i.e., cursor
velocity. This motivated us to introduce an error feedback into a
neural decoder for dealing with the variability in neural recording
conditions because the error feedback might compensate for
the changes in neural recording conditions. Then, the neural
decoder did not need retraining and was expected to be robust to
various neural recording conditions when only using a few days
of training data.

Several characteristics make NNs computationally powerful
decoders in BMIs. First, an NN with a sufficient number
of hidden neurons can approximate any continuous function
(Hornik et al., 1989). This makes an NN well-suited to learn
the functional mapping between neural activity and kinematic
parameters. Second, several types of NNs can successfully control
motor movement in BMIs. These include recurrent NN (RNN)
(Haykin, 1994; Shah et al., 2019), echo-state network (ESN)
(Jaeger and Haas, 2004), and time-delay NN (TDNN) (Waibel
et al., 1989). RNNs have feedback connections that are capable

of processing neural signal sequences. Their feedback loop is
applicable to system dynamics modeling and time-dependent
functional mapping between neural activity and kinematic
parameters (Haykin, 1994). ESN was developed as an RNN that
only trains connections between the hidden neurons and the
output neurons for a simple learning process (Jaeger and Haas,
2004). TDNNs are feedforward NNs with delayed versions of
inputs that implement a short-termmemory mechanism (Waibel
et al., 1989). Of these NNs, RNNs are highly accurate in BMI
applications (Sanchez et al., 2004, 2005; Sussillo et al., 2012;
Kifouche et al., 2014; Shah et al., 2019). Therefore, the present
work designed an RNNwith error feedback as the neural decoder.

Because the performance of an NN relied heavily on its
network structure, structure selection is a crucial concern.
An NN with an excessively large architecture may overfit the
training data and yield poor generalization. Furthermore, it often
exhibited rigid timing constraints. By contrast, an NN with an
excessively small architecture may underfit the data and fail to
approximate the underlying function. The four most frequently
used algorithms to determine a network’s architecture are
constructive, pruning, constructive-pruning, and evolutionary
algorithms (EAs). Constructive algorithms (Kwok and Yeung,
1997) began with a simple NN and then increased the number
of hidden neurons or connections to that network in each
iteration. However, an oversized networkmay be constructed due
to inappropriate stopping criterion. In other words, the matter
of when to stop constructing networks lacked consensus. The
pruning algorithm (Reed, 1993) began with an oversized NN
and then removed insignificant hidden neurons or connections
iteratively. However, it was difficult to initially determine an
oversized network architecture for a given problem (Kwok and
Yeung, 1997). The constructive-pruning algorithm (Islam et al.,
2009; Yang and Chen, 2012) combined both a constructive
algorithm and pruning algorithm to build an NN. Starting with
the simplest possible structures, the NN was first constructed
using a constructive algorithm and then removed trivial hidden
neurons or connections by using a pruning algorithm to achieve
optimal network architecture. Several works have designed NNs
using EAs (Huang and Du, 2008; Kaylani et al., 2009; Masutti
and de Castro, 2009). EAs were developed as a biologically
plausible strategy to adapt various parameters of NNs, such
as weights and architectures (Angeline et al., 1994). However,
encoding an NN into a chromosome depended on the maximum
structure of the network, which is problem-dependent and must
be defined by user. This property limited the flexibility of problem
representation and the efficiency of EAs. One study (Yang
and Chen, 2012) proposed an evolutionary constructive and
pruning algorithm (ECPA) without predefining the maximum
structure of the network, which made the evolution of the
network structure more efficient. Because the NNs used in BMIs
were designed in a subject-dependent manner, the automatic
optimization of the NN for a specific task is a desired feature.
This study adopted the ECPA (Yang and Chen, 2012) to develop
an NN with an appropriate structure as a neural decoder for each
subject in BMI applications.

This work proposed an evolutionary constructive and pruning
neural network with error feedback (ECPNN-EF) to decode
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neural activity into the forelimb movement of a rat by
using only a few days of data to train the neural decoder.
A lever-pressing task for the rat was designed to evaluate
the effectiveness of the proposed neural decoder. The error
feedback providing the difference between the decoded and
actual kinematics might compensate for decreases in decoding
performance when the neural recording conditions change.
Thus, the ECPNN-EF might achieve stable and accurate long-
term decoding performance. The rest of this paper is organized
as follows. First, we describe the experimental setup and
the proposed decoder. Second, we demonstrate the influence
of several parameters, namely the probabilities of crossover
and mutation. Furthermore, the effects of evolution progress,
cluster-based pruning (CBP) and age-based survival selection
(ABSS) on the performance of the proposed decoder are
also shown and discussed. Finally, we describe how partially
connected topology and error feedback improve the long-term
decoding performance.

MATERIALS AND METHODS

Animals
Four male adult Wistar rats were aged 8 weeks old, weighed
between 250 and 350 g, and were kept in the animal facility with
well-controlled laboratory conditions (12: 12 light/dark cycle
with light at 7 AM; 20◦ ± 3◦C) and fed on ad libitum. The care
and experimental manipulation of the animals were reviewed and
approved by the Institutional Animal Care andUse Committee of
the National Yang Ming University.

Surgery for Neural Implantation
Animals were anesthetized with 40 mg/kg Zolazepam and
Tiletamine (Zoletil 50, Virbac., Corros, France) and 8
µg/kg dexmedetomidine hydrochloride (Dexdomitor R©,
Pfizer Inc., New York, NY, USA) through intramuscular
injections. Rats were positioned in a stereotaxic frame
(Stoelting Co. Ltd., Wood Dale, IL, USA) and secured
with the ear bars and tooth bar. An incision was made
between the ears. The skin of the scalp was pulled back
to expose the surface of the skull from the bregma to the
lambdoid suture. Small burr holes were drilled into the skull
for the microwire electrode array implanted and for the
positioning of screws (Shoukin Industry Co., Ltd., New Taipei
City, Taiwan).

For each rat, an 8-channel laboratory-made stainless
microwire electrode array (product # M177390, diameter of
0.002 ft., California Fine Wire Co., Grover Beach, CA, USA;
the electrodes were spaced 500µm apart) was vertically
implanted into the layer V of the forelimb territory of
the primary motor (M1) cortex (anterior-posterior [AP]:
+2.0mm to −1.0mm, medial-lateral [ML]: +2.7mm,
dorsal-ventral [DV]: 1.5mm. For determining the location
of the forelimb representation of M1 for the electrode
implantation, the intracortical microstimulation was applied
to confirm via forelimb muscle twitches observed (Yang
et al., 2016). Following a 1-week post-surgery recovery

period, the animals received the water reward-related
lever-pressing training.

Behavioral Training
The rats were trained to press a lever with their right forelimb
to obtain a water reward. Before reward training, the rats were
single-housed and deprived of water for at least 8 h. During
reward training, the rats were placed in a 30 × 30 × 60 cm3

laboratory-designed Plexiglas testing box, and a 14 × 14 × 37.5
cm3 barrier was placed to construct an L-shaped path for the
behavioral task. A lever (height of 15 cm from bottom) was set
at one end of the path, and an automatic feeder with a water
tube that provided water on a plate was set at the other end of
the path. The rats could obtain 0.25-ml water drop as a reward
on the plate after pressing the lever. Thirsty rats were trained to
press a lever in order to receive water reward without any cues
because they learned to make an operant response for positive
reinforcement (water reward). Rats were trained to press a lever
on the left side of the box then freely move along the U-shaped
path to the right side of the box. This had to be completed within
3 s to receive a reward. The experimental time course included the
behavioral training and data collection phases. In the behavioral
training phase, implanted rats learned the lever pressing and
water reward association within 3–5 d without neural recordings.
To meet criteria for successful learning of the behavioral task,
the rats had to complete continuous repetition of five successive
trials of associated lever pressing and water reward without
missing any trial between successive trials (Lin et al., 2016). Once
reaching the criteria, animals entered the data collection phase.
During this 12-d phase, forelimb movement trajectories were
simultaneously acquired with corresponding electrophysiological
recordings of neural spikes as they performed the water
reward task.

Data Recording
In this study, forelimb kinematics and neuronal activity were
simultaneously recorded while the animal performed the water
reward-related lever pressing as shown in Figure 1. During
the behavioral task, a blue-colored marker made of nylon was
mounted on the right wrist of the rat to track forelimb trajectory.
The trajectory of the rat’s forelimb movement was captured by
a charge-coupled device camera (DFK21F04, Imaging Source,
Bremen, Germany) that provided a 640 × 480 RGB image at
30Hz and then analyzed by a video tracking system (CinePlex,
Plexon Inc., Dallas, TX, USA). When the lever was pressed, it
triggered the micro-switch of the pull position to generate a
transistor–transistor logic pulse to the multichannel acquisition
processor (Plexon Inc., Dallas, TX, USA) which allowed the
neuronal data to be accurately synchronized to the lever pressing
event and then water reward was delivered through a computer-
controlled solenoid valve connected to the laboratory-designed
pressurized water supply.

Neuronal spiking activity of the rat was sampled at 40 kHz and
analog filtered from 300 to 5,000Hz. A spike-sorting algorithm
was used to determine single-unit activity. First, an amplitude
threshold with four standard deviations of filtered neuronal
signals was set to identify spikes from the filtered neuronal
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FIGURE 1 | System architecture and experimental setting of the water-reward lever-pressing task. While the rat was pressing the lever to obtain the water reward, the

neural recording system recorded and preprocessed the neuronal spiking activity from the electrode array implanted in the rat’s cortex. The trajectory-tracking system

acquired the corresponding forelimb trajectory from the camera.

signals. Then, spikes were sorted by a trained technician through
principal component analysis using a commercial spike-sorting
software (Sort Client, Plexon Inc., Dallas, TX, USA).

Neural Decoder: ECPNN-EF
The firing rates of each sorted unit from M1 cortex of rat
were decoded into the instantaneous velocity of the forelimb
trajectory. Both horizontal and vertical velocities were estimated
from the position of the blue-colored marker by a two-
point digital differentiation. The firing rates of each sorted
neuron was determined by counting spikes in a given time
bin whose length was 33ms and was equal to the temporal
resolution of the video tracking system. Figure 2 showed an
example of the rat forelimb movement while pressing the
lever and corresponding neural spike trains. A time-lag was
known to exist between neuronal firing and the associated
forelimb state because of their causal relationship (Paninski
et al., 2004; Wu et al., 2004; Yang et al., 2016). Furthermore,
the decoding accuracy was improved when the optimal time-
lag is considered. Here, the water-restricted rats easily learn
a lever pressing behavior within a few training sessions,
allowing for recording neuronal activity during acquisition of
a motor sequence as shown in Figures 2A,B showed some
M1 neurons displayed increased activity for sequential motor
behavior prior to the lever-pressing event, which presented
the maximum firing rate at the third time-bin (with 99ms
lag). Therefore, we empirically choose 363ms of spike train
over 11 time-bins (8 bins before and 2 bins after the 3rd
time-bin prior to the lever pressing) to predict a series of
movement velocities.

The spike train was discretized in 11 time-bins for each trial,
corresponding to each entire trajectory of forelimb movements
during the lever reaching task. With total k neurons sorted
from all channels, we defined N (t) = {ni (t)}

k
i=1 as a

set of neuronal features, where t denoted time step which
was time bin in this study, ni (t) represented as spike count
of sorted neuron in current bin, and i denoted index of
sorted neuron from 1 to k. In this study, we used both
concurrent and preceding bin as neuronal features, which is
N (t) and N

(

tpre
)

, to predict current velocity v̂(t), where t
and tpre represented current time bin and preceding time
bin, respectively. The step of data processing was shown in
Figure 3.

The ECPNN-EF is an RNN-based neural decoder
designed using the ECPA as proposed in Yang and Chen
(2012). The input–output function of the ECPNN-EF was
denoted by:

v̂(t) = fW
(

N (t) ,N
(

tpre
)

, verror
)

(1)

where v̂(t) represented the predicted velocity andW represented
the weights of the ECPNN-EF. The prediction error verror was
adopted as the error feedback which was the absolute value of
difference between the actual velocity and predicted velocity, and
was calculated by verror =

∣

∣v(tpre)− v̂
(

tpre
)∣

∣ where tpre denoted
as preceding time bin.

The structure of ECPNN-EF was showed in Figure 4. Note
that there was only one output neuron representing the predicted
velocity in the neural decoder. The vertical and horizontal
velocities were predicted in two separate neural decoders.

Mean squared error was adopted as loss function due
to its wide use in regression application and was defined
as follows:

L =
∑

t

(

vt − fW
(

N (t) ,N
(

tpre
)

, verror
))2

(2)
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FIGURE 2 | Simultaneous forelimb movement trajectory and spike train recordings during the water-reward-related lever-pressing task. (A) Stop-motion animation

representing forelimb movement from the video-tracked time-series data (see Supplemental Video). Six consecutive photographs showed a rat in the test cage

successfully reaching and pressing the lever (marked with green) while the forelimb movement trajectories and neural activity were simultaneously recorded. (B)

Neuronal activities recorded from eight neurons during one movement displayed as spike trains and the neuronal activity histogram (a bin size of 33ms). The red line

indicates the moment when the rat pressed down the lever with its right forelimb.

The optimal weights of the ECPNN-EF were obtained by
minimizing the loss as follows:

W∗ = argmin
W

L (3)

This study applied backpropagation through time (BPTT) to find
the optimal weights of the ECPNN-EF by iteratively determining
the gradient of the loss with respect to the weights as follows:

W ←W − η∇WL (4)

where η is learning rate. Details of the BPTT (Werbos, 1988)
are described in the Supplementary Note 1. The details of
designing structure of the ECPNN-EF are described in the
Supplementary Note 2.

The ECPNN-EF adopted a hyperbolic tangent sigmoid
transfer function for all hidden neurons and the output neuron.
Skip connections existed between discontinuous layers, such

as from the input layer to the output layer. Furthermore, the
hidden layer possessed self-recurrent connections. After both
the structure and weights of the ECPNN-EF had been trained,
the fixed model was adopted to predict the velocity of the rat’s
forelimb without the additional cost of training.

The pseudo code of ECPNN-EF training algorithm appears
in Algorithm 1. The initial population started with a set of
initial NNs, each NN of which had a single hidden neuron.
A single connection was generated from one non-error-related
input neuron to the hidden neuron. A skip connection was
generated from one non-error-related input neuron to the output
neuron. A single connection was generated from one error-
related input neuron to the hidden neuron or to the output
neuron. The detail description of population initialization was
in the Supplementary Note 3. Furthermore, a self-recurrent
connection was constructed in the hidden neuron with a
probability of 0.5. Here, the error-related input neuron received
the prediction error, as indicated in Figure 4, whereas non-
error-related input neurons received the instantaneous firing
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FIGURE 3 | The data structure of input for the ECPNN-EF decoder. The input of the decoder was consisted of (t), N
(

tpre
)

and verror , whose length was 2k + 1,

including 2k spike counts of both concurrent and preceding bin, and an error feedback calculated by
∣

∣v(tpre)− v̂
(

tpre
)
∣

∣. To predict a whole forelimb movement in a trial,

11 bins were used and decoded to v̂(t) in the time series.

rate of each unit. This mechanism of separately generating
connections of error-related input neuron and non-error-related
input neurons ensures that the initial NNs can immediately
process error feedback. As a result, a set of initial NNs with
partially connected topology was generated.

The purpose of the network crossover operator was to explore

the structural search space and thus improve the processing

capabilities of the ECPNN-EF. The network crossover operation

randomly selected two parent NNs through tournament selection

and then combined their structures to generate an offspring

NN with a crossover probability, pc (see Supplementary Note 4).
The network mutation operator exploited the structural search
space to achieve a small perturbation of structure by randomly
generating a new connection from the input to the hidden
neuron. Furthermore, the network mutation operation randomly
constructed a self-recurrent connection of a hidden neuron or a
new skip connection from the output or the hidden neuron to its
previous consecutive or non-consecutive layer with a mutation
probability, pm (see Supplementary Note 5).

CBP mainly pruned insignificant hidden neurons to avoid

an excessively complex ECPNN-EF with poor generalization

performance owing to the use of network crossover operation. It

first clustered the hidden neurons into two groups (i.e., better
and worse groups, depending on their significance in the NN)

and then removed the hidden neurons in the worse group in a
stochastic manner. The detailed description of CBP was in the
Supplementary Note 6.

ABSS prevented the ECPNN-EF from achieving a fully
connected structure. It selected NNs for the next generation
according to age, which indicated how many generations
the NN had survived. Older NNs tended to have a fully
connected structure because of the use of network mutation
operation. ABSS replaced old age NNs with initial NNs
(see Supplementary Note 3) in a stochastic manner and thus
prevented the population from achieving a fully connected
structure. ABSS mainly removed fully connected networks and
made the rest of the NNs survive to the next generation through
a stochastic mechanism. The detailed description of ABSS was
in the Supplementary Note 7. The evolution process terminated
when a generalization loss (GL) met an early stopping criterion
or the maximum number of generations was reached. The early
stopping criterion motivated from Islam et al. (2009) evaluated
the evolution progress using training and validation errors in
order to avoid overfitting. It first defined the GL at the τ th
generation as:

GL (τ ) =
Eva(τ )

Elow(τ )
− 1 (5)
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where Eva(τ ) is a validation error of the NN with the best fitness
at the τ th generation and Elow(τ ) is the lowest Eva(τ ) up to the
τ th generation. The difference between the average training error
and the minimum training error at the τ th generation of a strip k
was defined as:

Pk (τ ) =

∑τ
ω=τ−k+1 Etr(ω)

k×minτ
ω=τ−k+1

Etr(ω)
− 1 (6)

where Etr(ω) is the training error of the NN with the best fitness
at the ωth generation and k is the strip length. k was set to 5 in
this work. Note that GL (τ ) and Pk (τ ) were determined using
the validation and training sets, respectively. Eva(τ ) and Etr(ω)
were calculated by the loss function provided in (2). The ECPNN-
EF training algorithm terminated when GL (τ ) > Pk (τ ). The
optimal NN with a partially connected topology was selected as
the neural decoder.

In summary, network crossover andmutation evolved NNs in a
constructive manner to improve their processing ability, whereas
CBP and ABSS evolved NNs in a destructive way that enhanced
their generalization capabilities and reduced hardware costs
(Yang and Chen, 2012). An early stopping criterion was adopted
to terminate the evolution process by observing both training
and validation errors to avoid overfitting during training phase,
which reduced the training time and retained generalization
capability (Islam et al., 2009). The ECPNN-EF was implemented
and trained in MATLAB (MathWorks, Natick, MA, USA).

Data Sets and Optimizing the Structure of
Neural Networks
Data collected in a recording session were divided into a training
set for developing the neural decoder, a validation set for avoiding
overfitting during training phase, and a testing set for evaluating
the generalization ability of the neural decoder. For each rat, the
experimental trials of the first 2 days were used as training and
validation sets, and the remaining 10 days were used as testing
set. The number of trials used for each rat was shown in Table 1.

The present study evaluated the prediction accuracy
(decoding performance) of the proposed neural decoder
using Pearson’s correlation coefficient (r), which measured

TABLE 1 | Experimental data characteristics.

Animal no. Number of trials

for training in

day 1 and day 2

Number of trials

for testing per day

Number of neurons

used per trial

Rat #11 70 24 8

Rat #14 80 33 12

Rat #16 140 41 8

Rat #17 95 36 8

Experimental data recorded from four rats were used in this study. The decoder of each

rat was trained and tested only by its own experimental trials. The experimental data of

the first 2 days and subsequent 10 days were used for training and testing, respectively.

The criteria for selecting neurons into neural decoder as the input were described in the

Supplementary Note 8.

FIGURE 4 | Structure of ECPNN-EF. Network included input, hidden, and output layer. ECPNN-EF took the neuronal feature from combination of concurrent bin N (t),

preceding bin N
(

tpre
)

and prediction error (error feedback) verror to predict velocity v̂(t).
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the strength of a linear relationship between the observed
and predicted forelimb trajectories (Manohar et al., 2012;
Shimoda et al., 2012). When evolving ECPNN-EF with good
generalization ability and compact structure, a 5-fold cross
validation was adopted to determine the optimal pc, pm and
terminated generation. For each given pair of pc and pm, the
experimental trials of the first 2 days were randomly partitioned
into five equal-sized disjoint sets where four sets were used as
the training set to evolve ECPNN-EF and one set was used as
the validation set to evaluate the decoding performance of the
evolved ECPNN-EF during training phase. Once the ECPNN-EF
was evolved through the optimal pc and pm, the validation set
also was used to determine the best terminated generation of the
evolved ECPNN-EF.

To investigate the effects of CBP and ABSS on the ECPNN-EF
evolution, two variants of ECPNN-EF that only adopted either
CBP or ABSS were implemented. One variant of ECPNN-EF
only with CBP was referred to as ECPNN-EFWC, and the other
variant of ECPNN-EF only with ABSS was referred to as ECPNN-
EFWA. The decoding performances of ECPNN-EF, ECPNN-
EFWC, and ECPNN-EFWA were compared using the validation
set in terms of r, number of hidden neurons (Nh), number
of connections (Nc), connection ratio (Rc), and termination
generation (GT). The Rc was defined as follows:

Rc =
Nc

Nf
(7)

where Nf is the number of connections in a network with a fully
connected topology. The network had fully connected topology
when Rc = 1; however, the network had partially connected
topology when Rc < 1.

Statistical Analysis
In this study, we investigated the decoding performance
dependency on the parameters of pc and pmby employing
the statistical method, two-way analysis of variance (ANOVA)
followed by Tukey’s post-hoc test and adjusted the P-value
by multiple comparison using Bonferroni correction, on the
validation set. We set pc at 7 levels (0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
and 0.9). In addition, 7 levels of pm (0.6, 0.65, 0.7, 0.75, 0.8,
0.85, and 0.9) were employed for each pc to determine whether
the algorithm found the near-optimum solution. This evaluated
whether there were any significant differences in decoding
performance according to the parameters used. Additionally,
we analyzed the effects of CBP and ABSS on the ECPNN-EF
reconfiguration, and then assessed the decoding performance
comparison of ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA
on the validation set by one-way ANOVA with post-hoc Tukey’s
HSD test.

In order to investigate the decoding performance and stability
of ECPNN-EF as well as impact of the prediction error feedback
on enhancing the prediction accuracy of ECPNN-EF without
error-correction learning (ECPNN), a mixed model ANOVA
with three decoders [ECPNN-EF, a fully connected RNN with
error feedback (RNN-EF), and ECPNN] as fixed factors and
the repeated measure of daily testing set over 10 testing days

followed by Tukey’s post-hoc test and then adjusted the P-value
by Bonferroni multiple comparison correction. The decoding
performances of the four rats were presented as means ±
standard deviation (SD). The data analysis was performed in
SPSS version 20.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

On the Decoding Performance of Different
Crossover and Mutation Probabilities
The decoding performances of the ECPNN-EF evolved under
different pc and pm values were evaluated by the validation set
as shown in Figure 5. The results demonstrated that the more
increasing in pc and pm and the worse decoding accuracy (r).
A simple main effects analysis which examined the effects of 7
levels of pm at the fixed level of pc = 0.75 and 0.8 was provided
in the Supplementary Note 9. The best decoding performance (r
= 0.912 ± 0.019) was achieved using pc = 0.75 and pm = 0.75
(compared to other combinations of pc and pm, P< 0.05 analyzed
by ANOVA for multiple comparisons).

Evolution Progress of ECPNN-EF
Figure 6 presented the evolution progress of the ECPNN-EF
using the optimal probabilities of crossover and mutation (pc =
0.75 and pm = 0.75) obtained in Figure 5. The results showed
that the GL and the difference between the average training
error and minimum training error (Pk) were almost zero in the
early generations. Afterward, the GL slightly increased but the
Pk varied. Notably, the GL was not consistently larger than the
Pk. Most GLs dramatically increased and were larger than the
Pk after the 33th generation marked by a black vertical dashed
line. This potentially indicated the overfitting problem that

FIGURE 5 | Decoding performance of the ECPNN-EF under various pc and

pm. We performed the post-hoc analysis based on the estimated marginal

means of correlation coefficient (r) and adjusted the P-value by multiple

comparison using Bonferroni correction (see the Table S2 in the

Supplementary Note 8). We found that the highest r was observed when the

pm= 0.75 and the pc = 0.75 (r = 0.912 ± 0.019) and showed significant

differences in r of pc = 0.8 and pm = 0.75. Therefore, the near-optimum

solution of the algorithm was pc= 0.75 and pm = 0.75.
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FIGURE 6 | Evolution progress of the ECPNN-EF. The shaded regions represented SD. The vertical axis on the left represented Pk (blue line). The vertical axis on the

right represented GL (red line). Most GLs met the early stopping criterion in the mean terminated generation (GT = 33.2 ± 1.1) indicated by a black vertical dashed line.

might lead to worse evolutions. Therefore, the ECPNN-EF was
suggested to terminate evolution in this generation according to
an early stopping criterion in order to maintain stable decoding
performance. The mean termination generation was 33 in this
study (GT = 33.2± 1.1).

Effects of CBP and ABSS on Decoding
Performance
Table 2 showed the decoding performance of the ECPNN-
EF, ECPNN-EFWC, and ECPNN-EFWA. ECPNN-EF achieved
significantly higher decoding performance (r = 0.912 ± 0.019)
than did the ECPNN-EFWC (r = 0.602 ± 0.083) and ECPNN-
EFWA (r = 0.708 ± 0.066) (P < 0.05 analyzed by one-
way ANOVA with post-hoc Tukey’s HSD test). The ECPNN-
EF possessed a more compact structure (Nh = 4.2 ± 2.7
and Nc = 20.6 ± 7.2) than both ECPNN-EFWC (Nh = 4.6
± 3.8 and Nc = 23.0 ± 10.1) and ECPNN-EFWA (Nh =

14.4 ± 14.4 and Nc = 57.9 ± 52.1). Moreover, the ECPNN-
EFWA had a greater standard deviation than the other two
methods. All three methods possessed almost the same Rc.
The ECPNN-EF (Rc = 0.12 ± 0.02) and ECPNN-EFWA
(Rc = 0.12 ± 0.01) produced slightly more sparse structures
than ECPNN-EFWC (Rc = 0.13 ± 0.01). All three methods
terminated the evolution before 38th generation. The ECPNN-EF
terminated slightly earlier (GT = 33.2 ± 1.1) than did the other
two decoders.

Decoding Performance Comparison
We applied a mixed model ANOVA with three decoders
(ECPNN-EF, RNN-EF, and ECPNN) as fixed factors and
the repeated measure of time, then adjusted the P-value by
multiple comparison using Bonferroni correction. The three
decoders reconstructed movement trajectories similar to the
actual movement trajectories (Figure 7). However, the ECPNN-
EF decoder showed the best reconstruction and stability and was

significantly better than the ECPNN and RNN-EF decoders over
10 test days.

To investigate the effectiveness of the partially connected
topology of ECPNN-EF, the ECPNN-EF was compared with
RNN-EF using the post-hoc analysis. Here, the number of
hidden neurons of the RNN-EF was the same as that in the
ECPNN-EF for fair comparison [the weights were adjusted by
the BPTT] (Werbos, 1988). Figure 8 statistically showed the
daily r comparison between the decoders of ECPNN-EF and
RNN-EF. The mean r of the decoder of RNN-EF monotonically
decreased with gradually increasing in the variability of r over
10 test days. The result showed that the RNN-EF could not
offer a stable long-term decoding performance. By contrast, the
decoding performance of the ECPNN-EF decreased slightly in
each day and achieved r = 0.740 ± 0.042 at Test Day 10.
Moreover, the variation in neural decoding performance (SD) of
the ECPNN-EF was smaller than that of the RNN-EF in each day.
The decoding performance of the ECPNN-EF was significantly
higher than that of RNN-EF (P < 0.05 analyzed by repeated
measures analysis using mixed model ANOVAwith post-hoc test,
N = 4) in each day.

To investigate the effect of the error-correction learning (error
feedback) in the decoder, the ECPNN-EF was compared with
ECPNN using the post-hoc test. As depicted in Figure 8, the
ECPNN-EF decoder performed higher and more stable accuracy
of predicted trajectories in comparison with those of the ECPNN
decoder over 10 test days. The mean r of the decoder of ECPNN
dropped noticeably and the corresponding variability of r became
huge after Test Day 5. By contrast, the ECPNN-EF’s daily r slowly
decreased, and the daily variability of r did not considerably
change over 10 days. The ECPNN-EF’s r was significantly higher
than that of the ECPNN in each day (P < 0.05 analyzed by
repeated measures analysis using mixed model ANOVA with
post-hoc test, N = 4), and the corresponding variation (SD) in
daily r of the ECPNN-EF was smaller than that of the ECPNN.
The lowest r of the ECPNN-EF (r = 0.740 ± 0.042) and ECPNN
(r = 0.413± 0.158) was observed at Test Day 10.
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TABLE 2 | Evolutionary results of ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA.

Decoder R Nh Nc Rc GT

ECPNN-EF 0.912 ± 0.019* 4.2 ± 2.7 20.6 ± 7.2 0.12 ± 0.02 33.2 ± 1.1

ECPNN-EFWC 0.602 ± 0.083 4.6 ± 3.8 23.0 ± 10.1 0.13 ± 0.01 37.5 ± 7.9

ECPNN-EFWA 0.708 ± 0.066 14.4 ± 14.4* 57.9 ± 52.1* 0.12 ± 0.01 37.3 ± 3.5

The symbol * indicated statistical significance among the three decoders (P < 0.05 analyzed by one-way ANOVA with post-hoc Tukey’s HSD test).

FIGURE 7 | Data visualization of average predicted trajectories of the ECPNN-EF, ECPNN, and RNN-EF. Representative daily reconstructed trajectories of the test

trials in Rat #16. The average reconstructed trajectories of the ECPNN-EF (red line) were more similar to the actual ones (black line) and exhibited less variance than did

those of the ECPNN (green line) and RNN-EF (blue line) over 10 test days, where shadow regions represented their corresponding SDs of the predicted trajectories.

FIGURE 8 | Comparison of daily r of the ECPNN-EF, ECPNN, and RNN-EF. The decoding performance of ECPNN-EF at the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th,

and 10th. Test Day was significantly higher than those of ECPNN and RNN-EF (also see the post-hoc analysis of the comparison of decoding performance in the

Table S3 in the Supplementary Note 10), and the corresponding variation of r was smaller than that of the ECPNN and RNN-EF after Test Day 4. The symbols * and
# indicate P < 0.05, as analyzed by the repeated measures analysis using mixed model ANOVA with Bonferroni correction for multiple testing.

DISCUSSION

Best Performance With NN Structure
Determined by Near Optimal Probabilities
of Crossover and Mutation
The pc and pm affected the evolution of the network structure
and thus involved neuronal contributions to forelimbmovement.

Both crossover and mutation operators increased the model
complexity. The crossover provided a chance to add hidden
neurons while the mutation achieved a small perturbation of
model structure by adding connections. Previous paper Schwartz
et al. (1988) has reported that individual neuron in the motor
cortex discharges with movements in its preferred direction. A
high pc led to large network structure which possessed sufficient

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2020 | Volume 14 | Article 2252

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yang et al. Neural Decoding With Error-Correction Learning

information processing capability but might result in overfitting.
On the contrary, a low pc led to simple network structure which
might result in underfitting. A high pm allowed the hidden
neurons to have more connections from the neuronal inputs
which led to fully connected topology. Increasing pc and pm
may not consistently improve the decoding performance of the
evolved neural decoder. Increasing pc and pm from 0.6 to 0.75
enlarged the computational complexity of the neural decoder so
that relevant neuronal inputs could be accurately decoded into
forelimb movement. However, frequent crossover or mutation
(high pc and pm, respectively) in the 0.8–0.9 range may introduce
redundant connections from irrelevant neurons with firing rates
that did not contribute to the kinematic parameters. Conversely,
a low pm allowed the hidden neurons to have few connections,
resulting in sparse topology. However, some neuronal inputs
had a lower likelihood of being processed. Low pc and pm may
reproduce a topology that is too sparse to build connections
between kinematic parameters and relevant neurons, resulting
in less accurate neural decoding. Our experimental results
showed that pc = 0.75 and pm = 0.75 could achieve the best
decoding performance. The evolved ECPNN-EF possessed not
only sufficient hidden neurons to decode neuronal activities, but
appropriate topology which selected forelimb movement related
inputs to the hidden neurons.

Early Stopping to Counteract Overfitting in
Evolutionary Progress of ECPNN-EF
Most evolutions of the ECPNN-EF terminated around the mean
termination generation because the early stopping criterion
was met. The early stopping criterion employed both training
and validation errors. In the early generations, the GL was
almost zero, which indicated that the validation error was
almost the same with the lowest validation error among the
recent generations. This indicates that the validation error did
not increase. Although the functional mapping between neural
activity and kinematic parameters varied across days due to
variability in the neural recording conditions, the training set
may have similar neural recording conditions as the validation
set. The ECPNN-EF learned the common functional mapping
of the training and validation sets in the early generations,
allowing for its evolved sparse topology to gradually learn to
decode common firing patterns into forelimb movements in
the validation set. Furthermore, the Pk was almost zero, which
indicated that the average training error was not larger than
the minimum training error among the recent generations.
This demonstrated that the training error gradually decreased.
Both the GL and Pk indicated that the evolution improved the
generalization ability of the ECPNN-EF in the early generations.
Before the mean termination generation, the slight increase of
the GL might indicate overfitting, but the GL was not always
higher than the Pk. This implied that the generalization ability
of the ECPNN-EF had a chance to be repaired by the evolution
as illustrated in Prechelt (1998), Sussillo et al. (2016). Most GLs
dramatically increased and were consistently higher than the Pk
after the mean termination generation. This demonstrated that
the validation error increased, indicating overfitting. Previous

work (Kao et al., 2015) has suggested that a neural decoder with
too many parameters may result in overfitting. The evolution
tended to construct a more complex neural decoder with
several weights, potentially contributing to overfitting in the
later generations. Therefore, the evolution terminated to prevent
decreased generalization ability from overfitting the training set
and to save computational time.

Best Performance Based on NN With Good
Generalization Ability and Compact
Structure
The fact that the ECPNN-EF significantly outperformed the
ECPNN-EFWC and ECPNN-EFWA in terms of r suggested that
both CBP and ABSS were essential to evolve the neural decoder
with generalization ability. The CBP pruned insignificant hidden
neurons and led to lower Nh and Nc in ECPNN-EF and ECPNN-
EFWC. This mechanism made the network more compact
and prevented the network from excessively complex structure
caused by the network crossover through many generations.
On the other hand, the ECPNN-EFWC’s Rc was expected to
be considerably larger than those of ECPNN-EF and ECPNN-
EFWA because the ABSS tended to select network with sparsely
connected topology. However, the difference of Rc among
the ECPNN-EF, ECPNN-EFWC, and ECPNN-EFWA was not
significant because of the effect of early stopping. All the
three approaches stopped evolution before 38 generations. The
networks in the population underwent only few crossovers and
mutations, and thus their network structures were less complex.
Nevertheless, the poor r in the ECPNN-EFWC suggested that
although early stopping led to lower Rc, the evolution without
ABSS would evolve a neural decoder with poor generalization
ability. ABSS selected networks without redundant connections
into next generation and thus prevented the network from fully
connected topology caused by the network mutation. Excessively
complex neural decoders may include redundant hidden neurons
that overfit the training set. This can disrupt accurate decoding
of neural activity in the testing set, which may have different
neural recording conditions from the training set. Furthermore,
redundant weights may connect to neurons with preferred
directions that are irrelevant to vertical or horizontal velocities.

The ECPNN-EF terminated and obtained near-optimum
neural decoder earlier than the ECPNN-EFWC and ECPNN-
EFWA. The validation error in these three models increased
after their termination generation. This resulted in overfitting
because their evolved structures were more complex than the
near-optimum neural decoders. Evolution of the ECPNN-EF
was more efficient than the ECPNN-EFWC and ECPNN-
EFWA, indicating that it obtained near-optimum neural decoder
faster than its reduced models. Thus, ECPNN-EF’s termination
generation was earlier than its reduced models. These results
indicate that CBP and ABSS helped evolve a neural decoder with
less complex structure and better generalization ability. Power
efficiency and power management are extremely important
concerns for fully implantable neural decoders in BMIs. Due
to its sparse topology, ECPNN-EF offers a practical approach
to computationally efficient neural decoding by reducing the
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number of hidden neurons and interlayer connections, resulting
in less memory usage and power consumption (Chen et al.,
2015). Less power consumption results in a longer battery
lifetime, which could facilitate brain implantation of neural
decoders (Sarpeshkar et al., 2008).

Best Performance Based on Appropriate
Connected Topology-Based Network
Several studies have shown that a partially connected NN
(PCNN) achieves better performance than does a fully connected
neural network (FCNN) (Elizondo and Fiesler, 1997). The
ECPNN-EF, a type of PCNN, achieved significantly higher
daily mean r than does the RNN-EF, which is a type of
FCNN; this suggests that an FCNN might consist of a large
amount of redundant connections and lead to overfitting with
poor generalization when compared to a PCNN (Elizondo
and Fiesler, 1997; Wong et al., 2010; Guo et al., 2012). Some
information, which was irrelevant to the forelimb movement and
was processed by the redundant connections, may hamper the
performance of the neural decoder and increase the likelihood
of NNs being stuck in local minima. Furthermore, the variation
in decoding performance of the RNN-EF from Test Day 3
to Test Day 10 was larger than that for Test Day 1 and
Test Day 2, whereas the variation in decoding performance of
the ECPNN-EF did not change dramatically. This suggested
that the redundant weights in the RNN-EF could not deal
with the variation of the neural recording conditions and
thus led to unstable decoding performance. The ECPNN-EF
outperformed the RNN-EF due to the use of the partially
connected topology. The trends observed in the present study
followed the suggestion that the number of connections is not
the key aspect of an NN but rather of an appropriate connected
topology (Yang and Chen, 2012).

Comparing Linear Neural Decoder-Based
Error-Correction Learning
Our prior work demonstrated a linear decoding model of the
relationship between neural firing and kinematic parameters
(Yang et al., 2016). A sliced inverse regression (SIR) with error-
feedback learning (SIR-EF) was implemented based on an SIR
linear neural decoder to fairly compare to the ECPNN-EF
algorithm (see Supplementary Note 11). Because the ECPNN-
EF had to process changing neural recording conditions over
time, it possessed more processing capabilities than the linear
model. The SIR-EF could not deal with long-term variability
in neural recording conditions because of linear properties and
limited computational complexity. The SIR-EF assigned weights
to the slices with neurons that had a similar contribution to
the lever-pressing forelimb movement. However, variations in
neural recording conditions due to the tissue’s reaction to neural
implants or micromotion of the electrodes across days resulted
in firing pattern variations (Barrese et al., 2013; Sussillo et al.,
2016). Thus, the decoding performance decreased because the
weights calculated using the training data over the first 2 days
could not predict velocity in the subsequent testing days with
different neural conditions.

NN-Based Error-Correction Learning to
Improve Long-Term Decoding Stability
It has been revealed that the functional mapping between
instantaneous firing rate and kinematic parameters might vary
in chronic recording due to the changes of neural recording
conditions (Sussillo et al., 2016). A relative increase in ECPNN’s
mean r at Test Day 3 and Test Day 5 might exhibit that
the recording conditions probably had some commonality with
those in the training phase. Therefore, the non-linear model of
ECPNN, which learned the time-dependent functional mapping
from the training set, could accurately decode the instantaneous
firing rate into kinematic parameters. The error feedback played
a subsidiary role of the neural decoding in this situation. A
considerable decrease in ECPNN’s mean r after Test Day 5 might
indicate that the neural recording conditions were different from
those in the training phase. The learned functional mapping
between instantaneous firing rate and kinematic parameters
was of no use for making ECPNN’s long-term decoding
performance stable.

In contrast, when the neural recording conditions changed
after Test Day 5, ECPNN-EF′ error feedback provided immediate
kinematic information and thus compensated for across-day
changes in functional mapping between instantaneous firing rate
and kinematic parameters. The ECPNN-EF could achieve not
only more robust within-day decoding (smaller SD) but also
more robust across-day decoding (smaller fluctuations in daily
mean r) than those of the ECPNN. This demonstrated that
employing error feedback in the ECPNN-EF improved the long-
term decoding stability when only a few days of training data
were available.
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Frontal-Striatum-Thalamus by
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Jijun Wang3*
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University, Xi’an, China, 3 Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China

Objectives: The frontal-striatum-thalamus pathway is important in the glutamic neural
circuit. The hypofunction of GRIN1 and GRIA2 subunits from glutamic receptors has
been hypothesized as the primary process in the etiology of schizophrenia. Identified
gene polymorphism involved in the pathogenesis of schizophrenia may uncover relevant
mechanism pathways.

Methods: We selected two loci of rs11146020 and rs3813296 distributed in GRIN1
and GRIA2 genes and tested their main and interaction effects on causality connections
and structural characteristics in the frontal-striatum-thalamus pathway in 55 Han
Chinese first-episode negative schizophrenia patients.

Results: We found that: (1) rs11146020 has a significant main effect on the causality
connections between the bilateral dorsolateral prefrontal cortex, and rs3813296 mainly
influences those of the descending pathway from the prefrontal cortex to the striatum;
(2) interaction effect of rs11146020 and rs3813296 on causality connections are located
in the ascending pathway from the pallidum to the dorsolateral prefrontal cortex; and (3)
the two loci have effects on the volumes of several regions of this pathway.

Conclusion: Our results suggested there is modulation on glutamic frontal-striatum-
thalamus pathway by rs11146020 and rs3813296 gene polymorphism. Patients
with different genotypes have different neuroimaging characteristics, which indirectly
reminded clinicians those patients should receive different clinical interventions.

Keywords: single nucleotide polymorphism, magnetic resonance imaging, glutamic pathway, causality
connection, schizophrenia

INTRODUCTION

Traditionally, abnormal dopamine has been considered the major underlying cause of
schizophrenia (Gründer and Cumming, 2016). However, this conventional hypothesis does
not readily elucidate the negative symptoms and cognitive deficits that are often observed in
schizophrenia (Yang and Tsai, 2017). Glutamate, an important excitatory neurotransmitter in the
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brain, is necessary for neuronal growth, maturation, and synaptic
plasticity (Garthwaite and Balazs, 1978; Choi, 1988; Derkach
et al., 2007; Lau and Zukin, 2007). Previous studies have
demonstrated that altered glutamate signaling may provide a
better explanation for the pathological basis of schizophrenia
(Stahl, 2007). One hypothesis declares that aberrant functioning
of glutamatergic synapses leads to an imbalance between
excitation and inhibition and, ultimately, to generate changes
in the neural circuitry, such as in the frontal-striatum-thalamus
pathway which is an important glutamic neural circuit, that
drives psychosis and the impairment of cognitive functions
(Schwartz et al., 2012).

N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid (AMPA) are two ionotropic
receptors of glutamate that have been proposed as mediators
of numerous common neuropsychiatric phenotypes such as
cognition deficit, psychosis, and degeneration (Nakanishi et al.,
1998). NMDA receptor is crucial for neuronal communication
and the formation of tetrameric complexes of its was encoded
by seven homologous subunits genes (Traynelis et al., 2010;
Zhu et al., 2016). Although all are good candidate genes for the
pathogenesis of schizophrenia, GRIN1 gene gets special attention,
which codes NMDA receptor subunit 1 (NR1). Reducing
expression of NR1 in mice gives rise to behavioral anomalies
which is similar to those observed in pharmacologically
induced animal models of schizophrenia (Mohn et al., 1999).
rs11146020 is located in the 5′ untranslated region (UTR) in the
GRIN1 gene, which may influence gene expression by affecting
transcription, stability of mRNA, and translation efficiency
(Meijer and Thomas, 2002; Wilkie et al., 2003). Liu et al. (2019)
have illustrated that single nucleotide polymorphism (SNP) of
rs11146020 in the promoter region of the GRIN1 gene are
associated with schizophrenia in a Chinese Han population.

α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
receptor is mainly located in excitatory synapses, where it
mediates the most of fast synaptic transmission and participates
in synaptic plasticity (Huganir and Nicoll, 2013). There are
four AMPA receptor subunits assembled into functional homo-
and hetero-tetrameric receptor complexes (Keinanen et al.,
1990). Four genes (GRIA1-4) encode these receptor subunits
which are expressed in several brain regions, such as the nucleus
accumbens, striatum and prefrontal cortex (Reimers et al.,
2011). Among the four receptor subunits, the Ca2+ permeability
of AMPA receptors is dependent on the encoding of GRIA2
gene and AMPA receptors not containing the GRIA2 subunit
are Ca2+ impermeable, increasing neuronal vulnerability to
excitotoxicity, which results in neuropsychiatric symptoms
(Isaac et al., 2007). GRIA2 is expressed on pyramidal cells and
GABAergic interneurons, the cellular source of the expression
difference would have a substantial effect on its physiological
consequences (Lake et al., 2016). Moreover, The association of
genotype rs3813296 T/T in the GRIA2 gene with a low efficacy
of antipsychotics against negative symptoms was demonstrated
when studying the association of polymorphisms of GRIA2
encoding a number of subunits of AMPA (Gareeva, 2018).

A previous study concluded that a series of glutamic
neurons that begin in the prefrontal lobe connect and project

into brainstem, midbrain, and limbic system (Schwartz et al.,
2012). By this means, neurons originating in the prefrontal
cortex may penetrate into deeper brain areas to control over
midbrain neurons that are primarily in charge of creating
and projecting neurotransmitter activities that are eventually
responsible for drive and affective initiation. These deeper brain
areas, such as the striatum and thalamus, play an important
role on creating appropriate perceptual balance versus psychosis
(Marx et al., 2015).

More importantly, twin and family studies indicated that
genetic factors contributed substantially to the possibility of
developing schizophrenia (Ripke et al., 2014). The extant data
suggested that schizophrenia involved complex interactions
between multiple genes, each exerting relatively small effects on
vulnerability. Several SNPs have been associated with increased
risk for developing schizophrenia, although few of these findings
have been replicated (Jagannath et al., 2018). If confirmed
in additional studies, these genetic markers would implicate
glutamatergic neurotransmitter pathways in the pathogenesis
of schizophrenia (Dauvermann et al., 2017; Saini et al., 2017;
Han et al., 2018).

Taken together, the modulation relationship between the
SNP variants in specific genes and glutamic neural circuits
remains a challenge to understand. If we obtained the
association relationship between them, it could potentially help
clinicians regulate intervention strategies for those patients
with some genotypes. Based on this challenge, in the present
study, we selected an important glutamic neural circuit, the
frontal-striatum-thalamus pathway, and two SNPs in GRIN1
and GRIA2 genes to explore their effects on the causality
connections and structural characteristics of this neural pathway
and then investigated the correlation between the causality
connection strength and clinical cognitive behavioral scores. The
hypothesis is that there is a modulation on glutamic pathway
of frontal-striatum-thalamus by rs11146020 and rs3813296 gene
polymorphism in first-episode negative schizophrenia.

MATERIALS AND METHODS

Participant Selection
We selected fifty-five first-episode negative schizophrenic
patients from the Shanghai Mental Health Center. All patients
met the inclusion criteria as follows: (1) they were first-episode
and had no medication history; (2) they were diagnosed as
schizophrenia by senior clinical psychiatrists using a structural
clinical interview from the DSM-IV-TR (patient edition); (3)
they did not present severe agitation or aggression; and (4) they
were 18–45 years old and right-handed.

Behavioral Measurement Scales
The patients were assessed using scales for the assessment of
negative symptoms (SANS), duration of untreated psychosis
(DUP), and education years (EDU). Intravenous peripheral blood
of each patient was drawn for the extraction genotype. More
importantly, the internationally recognized consensus version
of cognitive function tests for schizophrenia were measured,
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including the trail making test (TMT); brief assessment of
cognition in schizophrenia-symbol coding (BACS-SC); verbal
fluency (VF); continuous performance test-identical pairs (CPT-
IP); Wechsler memory scale, third edition: spatial span (WMS-
III SS); Hopkins verbal learning test, revised (HVLT-R); brief
visuospatial memory test, revised (BVMT-R); neuropsychological
assessment battery, mazes (NAB-M); and Mayer-Salovey-Caruso
emotional intelligence test, managing emotions (MSCEIT-ME).
All tests were confirmed by three experienced psychiatrists who
underwent consistency training for approximately 1 week, and all
scores were assessed objectively. For more detailed information,
please see Table 1.

Genotyping
Peripheral blood was drawn from a participant’s vein into a
sterile tube containing EDTA. We stored the plasma samples
at −80◦C. Genomic DNA was isolated from peripheral blood
leukocytes according to the manufacturer’s protocol (Thermo
Fisher Scientific, United States). DNA was also stored at −80◦C
for SNP analysis. Genotyping was performed for all SNPs
by SnaPshot using a 3730xl DNA Analyzer (Thermo Fisher
Scientific, United States).

Single nucleotide polymorphism rs11146020 from the GRIN1
gene and rs3813296 from the GRIA2 gene were genotyped in
all patients by allele-specific polymerase chain reaction primers.
The success rate of the genotyping in our study was 100%.
Information from the Hardy-Weinberg equilibrium (HWE) and
minor allele frequency (MAF) are shown in Table 1. In addition,
we have uploaded the SNP data to a publicly available repository1.
The link to the SNP data is https://www.synapse.org/#!Synapse:
syn21788916/tables/.

There were two genotypes for rs11146020 among the 55
schizophrenia patients: CG (23 patients) and GG (32 patients).
Analogously, there were three genotypes for rs3813296: GT (24
patients), TT (29 patients), and GG (2 patients). Because only two
participants were the carriers of genotype GG, we did not select
these participants. To further investigate the interaction effect
of rs11146020 and rs3813296, we divided the patients into four
subgroups (14 GG/GT, 17 GG/TT, 10 CG/GT, and 12 CG/TT) for
follow-up analysis.

Data Acquisition
All MRI images were scanned using a 3T Siemens Magnetom
Verio Syngo MR B17 scanner. Participants were informed
to keep their eyes closed, not to focus their thoughts on
anything and stay awake.

The parameters of functional MRI data are as follows: echo
time [TE] = 30 ms, repetition time [TR] = 3 s, flip angle
[FA] = 90◦, slice thickness = 3.0 mm, slices = 45, field of view
[FOV] = 220 mm × 220 mm, matrix size = 64 × 64, voxel
size = 3 mm× 3 mm× 3 mm and 170 slices.

Structural MRI data were obtained with a high-resolution
T1-weighted magnetization-prepared rapid gradient echo
(MPRAGE) sequence. The parameters used are as follows:
TE = 2.56 ms, TR = 2530 ms, FA = 7◦, FOV = 256 mm× 256 mm,

1https://www.synapse.org/

matrix = 256 × 256, slice thickness = 1 mm, inversion
time = 1100 ms, and 192 coronal slices.

Data Preprocessing
T1-Weighted Data Preprocessing
We performed T1-weighted data processing with the FSL-VBM
protocol with the FMRIB Software Library 4.1 (FSL2). More
detailed processing, please see our recent study (Cai et al., 2017a).
There were four steps: brain extraction; the segmentation of white
matter, gray matter and cerebrospinal fluid; image registration
to the standard template; and image smoothing with a Gaussian
kernel with 8 mm.

We segmented white matter and gray matter and divided the
images into four subgroups based on different genotypes
(GG/GT, GG/TT, CG/GT, and CG/TT) for follow-up
statistical analysis.

fMRI Data Preprocessing
fMRI data processing was performed using a MATLAB toolbox
called DPABI (Yan et al., 2016), which evolved from REST
(Song et al., 2011), and DPARSF (Chao-Gan and Yu-Feng,
2010). For more details on fMRI data processing, please see
our previous study (Cai et al., 2015). There were eight steps:
discarding the first ten time points, slice timing correction,
correcting for head motion (exclusion criteria: exceeding 1.5 mm
in any dimension of x, y, and z or 1.5◦ in any angular motion;
two participants were removed), normalizing to individual T1-
weighted anatomical images, smoothing images, removing linear
trends, filtering (0.01–0.1 Hz) and regressing the covariates (A
Friston-24 parameter, the global mean signal, cerebrospinal fluid
signal, and white matter signal were the nuisance covariates)
(Friston et al., 1996; Yan et al., 2013). We also examined if there
are any differences in head motion among groups as described in
the study of Power et al. (2012).

Data Processing and Statistical Analysis
Frontal-Striatum-Thalamus Pathway and Core
Regions Selection
At a molecular level, glutamate neurotransmitter release and
synaptic discharge circuit are mainly from the frontal lobe, and
go through the striatum to the basal ganglia (Carlsson et al., 1999;
Schwartz et al., 2012; Figures 1A,B). Based on these studies, we
concluded and focused on one of the glutamic neurotransmission
pathways: the frontal-striatum-thalamus pathway (Figure 1) and
selected 10 core brain regions in this pathway: left and right
dorsolateral prefrontal cortex (L/R. dLPFC), L/R. caudate, L/R.
putamen, L/R. pallidum, and L/R. thalamus (Schwartz et al.,
2012). We extracted these brain regions using an anatomical
automatic labeling (AAL) template implemented with REST
(Song et al., 2011). It should be noted that dLPFC is a functional
definition, thus we used dorsolateral superior frontal gyrus to
represent this region based on the AAL template. Ten brain
regions were resampled to the spatial resolution of fMRI images.

2http://fsl.fmrib.ox.ac.uk/fsl
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TABLE 1 | Genotypic, demographic, and clinical information of all participants.

SNP ID Alleles Location Call Rate (%) Test for HWE (P Value) MAF

GRIN1

rs11146020 C/G upstream 9:137138632 100 0.6142a C: 0.195

GRIA2

rs3813296 G/T Intron 4:157360371 100 0.1999a G:0.246

rs11146020 GG = 31 CG = 22 F value P value

rs3813296 GT = 14 TT = 17 GT = 10 TT = 12

Gender 6M/8F 8M/9F 6M/54F 7M/5F 1.14 0.79b

AGE 26.67 ± 6.08 23.87 ± 5.85 25.11 ± 7.41 25.11 ± 5.04 0.47 0.71c

EDU 12.42 ± 3.80 12.07 ± 2.81 12.78 ± 2.68 13.56 ± 2.40 0.48 0.70c

Head motion 0.36 ± 0.21 0.44 ± 0.24 0.29 ± 0.20 0.38 ± 0.19 0.51 0.63c

DUP 38.42 ± 44.01 26.47 ± 16.08 24.22 ± 18.44 36.89 ± 47.96 0.50 0.68c

SANS 14.75 ± 11.38 14.40 ± 13.14 14.00 ± 10.42 24.67 ± 13.30 1.69 0.18c

TMT 46.08 ± 18.83 31.07 ± 18.10 40.89 ± 16.10 52.56 ± 24.98 2.63 0.06c

BACS-SC 51.75 ± 10.06 52.33 ± 13.07 47.89 ± 14.22 47.56 ± 12.07 0.45 0.72c

HVLT-R 22.08 ± 5.18 24.00 ± 7.00 20.56 ± 6.15 24.00 ± 4.80 0.80 0.50c

WMS-III SS 14.58 ± 2.78 13.93 ± 4.51 13.11 ± 3.44 15.11 ± 3.66 0.50 0.68c

NAB-M 15.00 ± 7.06 14.13 ± 5.96 11.66 ± 7.90 12.22 ± 9.52 0.47 0.71c

BVMT-R 23.17 ± 7.25 25.27 ± 9.19 21.89 ± 8.40 20.44 ± 9.88 0.65 0.59c

VF 20.08 ± 6.65 18.53 ± 6.00 19.33 ± 5.98 23.56 ± 7.84 1.16 0.34c

MSCEIT-ME 86.92 ± 13.19 84.93 ± 15.11 81.56 ± 15.11 96.67 ± 19.98 1.58 0.21c

CPT-IP 2.42 ± 1.08 1.80 ± 1.01 2.33 ± 0.87 2.22 ± 0.83 1.07 0.37c

Head motion 0.34 ± 0.07 0.29 ± 0.06 0.37 ± 0.09 0.33 ± 0.08 0.70 0.55c

Data are given as mean ± standard deviation; aP value was obtained by hardy-weinberg equilibrium (HWE) test; bP value was obtained by an independence Pearson
chi-square test. cThe P and corresponding F values were obtained by a one-way analysis of variance test. MAF, minor allele frequency; EDU, education years; DUP,
duration of untreated psychosis; SANS, assessment of negative symptoms; TMT, trail making test; BACS-SC, brief assessment of cognition in schizophrenia-symbol
coding; HVLT-R, Hopkins verbal learning test, revised; WMS-III SS, Wechsler memory scale, third edition: spatial span; NAB-M, neuropsychological assessment battery,
mazes; BVMT-R, brief visuospatial memory test, revised; VF, verbal fluency; MSCEIT-ME, Mayer-Salovey-Caruso emotional intelligence test, managing emotions; CPT-IP,
continuous performance test-identical pairs.

Granger Causality Analysis
Granger causality analysis (GCA) is an approach used to
explore the dynamic causal relationship between two time series
(Granger, 1969). A brief introduction of the Granger procedure
is provided here. For two given fMRI time series x(t) and y(t),
x(t) is the Granger causing y(t) if the past information of x(t) can
improve the prediction of the current value of y(t). The Granger
causal relationship between the two series is often estimated
by vector autoregressive (VAR) modeling. Granger causality can
evaluate the direct linear influence from x(t) to y(t) (FXtoY ) and
the linear direct influence from y(t) to x(t) (FYtoX). Formula (1) is
the mathematic model of GCA:

x(t) = αx,0 +

p∑
αxx,ix(t − i)

+

p∑
αxy,iy(t − i) +

q∑
βx,izj(t) + εx(t)

y(t) = αy,0 +

p∑
αyx,ix(t − i)

+

p∑
αyy,iy(t − i) +

q∑
βy,izj(t) + εy(t) (1)

where zj(t) represents up to q exogenous processes (six
orthogonal motion estimates and physiological noise)
independent of the path network (j = 1,...., q). Contributions
of each lagged variable to the prediction of its respective
target are denoted by α; β corresponds to the covariate effect,
and prediction errors of individual models are denoted by ε.
A similar method was used in one of our previous studies
(Cai et al., 2017b).

We applied bivariate coefficient-based GCA to compute the
causality of the 10 brain regions for each participant. The average
time courses of each region were input to the GCA using REST
(Song et al., 2011). Then, we obtained the path coefficients
characterized by the direction and the strength of the temporal
relation among the 10 brain regions.

Main and Interaction Effect Analysis of rs11146020
and rs3813296
To understand the main and interaction effects of rs11146020
and rs3813296 on the frontal-striatum-thalamus pathway,
we performed multivariable general linear model (GLM)
analysis with gender, EDU, and age as regressors using IBM
SPSS Statistical 23. There are two main effect analyses of
rs11146020 and rs3813296 and one interaction effect analysis of
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FIGURE 1 | Diagram explaining the selection of the frontal-striatum-thalamus pathway. (A) Detailed cortex-striato-pallido-thalamus pathway at the molecular level,
this figure is from Carlsson et al. (1999); (B) several key glutamic pathways in synaptic release level, this figure from Schwartz et al. (2012); (C) selected
frontal-striatum-thalamus pathway. Abbreviations: Glu, Glutamate; DA, dopamine; GABA, gamma aminobutyric acid.

rs11146020∗rs3813296 in 90 (A2
10) causality connections. If there

are significant interactions, simple effect analysis was conducted
with a script embedded into IBM SPSS Statistical 23. We applied
the Mann–Whitney U test to test significance and false discovery
rate (FDR) to correct the multiple comparisons (P < 0.01).

Gray and White Matter Structural Analysis
To investigate the differences between four subgroups (GG/GT,
GG/TT, CG/GT, and CG/TT) in the gray and white matter
structure, we applied two-sample t-tests to assess structural
alterations in gray and white matter with gender, ages and EDU
as regressors. The statistical images were corrected by FDR for
multiple comparisons correction (P < 0.01).

Correlation Analysis Between
Connection Strength and Behavioral
Scores
The Spearman test for correlation was applied to
investigate the correlation between connection strength,

which showed significant group difference, and clinical
scales, including TMT, BACS-SC, VF, CPT-IP, WMS-
III SS, HVLT-R, BVMT-R, NAB-M, and MSCEIT-ME.
The significance levels were set at P < 0.01 (two-tailed,
FDR correction).

RESULTS

No Significant Subgroup Difference in
Demographic Information and Clinical
Scores
No significant difference were found in gender, age, gender, head
motion, EDU, DUP, SANS, TMT, BACS-SC, VF, CPT-IP, WMS-
III SS, HVLT-R, BVMT-R, NAB-M, and MSCEIT-ME among the
four subgroups (P > 0.05). There is no difference in head motion
among groups. All demographic information and clinical scores
are shown in Table 1.
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Main and Interaction Effects on Causality
Connectivity in the Frontal-
Striatum-Thalamus Pathway
Rs11146020 mainly affects the causality connectivity within the
dLPFC: L. dLPFC → R. dLPFC and L. dLPFC → R. dLPFC
(Figure 2A and Table 2). Rs3813296 mainly affects the causality
connectivity of the descending pathway from the dorsolateral
prefrontal cortex to thalamus and striatum: L. dLPFC → R.
caudate and R. dLPFC→ R. thalamus (Figure 2B and Table 2).

Rs11146020 and rs3813296 interactively affect the information
flow of the upstream pathway from striatum to dLPFC: L.
pallidum → L. dLPFC, L. pallidum → R. dLPFC, R. pallidum
→ R. dLPFC, and R. pallidum → R. caudate (Figure 3A
and Table 2).

Main and Interaction Effects on Gray and
White Matter Structures
There is no main effect of rs11146020 on gray and white
matter volumes and no main effect of rs3813296 on gray
matter volumes. Main effect of rs3813296 on white matter were
located in left/right superior corona radiata fiber (Figure 4B and
Table 3) (P < 0.01, FDR correction). The interaction effect of
rs3813296∗rs11146020 on gray and white matter volumes were
located in the left/right putamen, left/right caudate, left/right
thalamus (Figure 4A and Table 3) and left/right superior corona
radiata fiber (Figure 4C and Table 3), respectively (P < 0.01,
FDR correction).

Significant Correlation Between
Causality Connection Strength and
Behavioral Scales
We found that the strength of causality connection L. dLPFC
→ R. dLPFC has a significant positive correlation with DUP
(Figure 2C and Table 4); the connection strengths of R. dLPFC
→ R. caudate and R. dLPFC → R. thalamus have significant
positive correlations with BVMT-R scores (Figures 2D,E and
Table 4); and the connection strength of R. dLPFC → R.
thalamus has a significant positive correlation with VF test scores
(Figure 2F and Table 4). More interestingly, four ascending
causality connections interactively effected by rs11146020 and
rs3813296 were all significant negative correlation with MSCEIT-
ME scores (Figures 3B–E and Table 4).

DISCUSSION

The hypo-function of GRIN1 and GRIA2 subunits from glutamic
receptors has been hypothesized as a primary process in the
pathophysiology of schizophrenia. Identified gene polymorphism
involved in the etiology of schizophrenia may reveal relevant
mechanistic pathways. Whether the polymorphisms in the
subunit genes of GRIN1 and GRIA2 receptors contribute to
the risk of schizophrenia is still in question. In our study,
we selected two SNPs distributed in GRIN1 and GRIA2
genes and tested their effects on the causality connections
and structural characteristics of the frontal-striatum-thalamus

pathway in Han Chinese schizophrenia patients. There were
three major findings: (1) rs11146020 has a significant main
effect on the causality connections between the left and right
dLPFC and rs3813296 mainly influences the descending pathway
from the prefrontal lobe to the striatum; (2) the interaction
effect of rs11146020 and rs3813296 is mainly located in the
ascending pathway from the bilateral pallidum to the right
caudate and the bilateral dLPFC; and (3) the two SNPs
have main and interaction effects on the volumes of gray
and white matter in several regions of this pathway. Some
causality connection strengths affected by the two SNPs have
remarkable correlation with clinical cognitive performances in
VF, visuospatial memory and emotion management. The detailed
explanation is as follows.

Main Effect of rs11146020 on Causality
Connectivity in
Frontal-Striatum-Thalamus Pathway
Rs11146020 has a significant main effect on the causality
connections between the left and right dLPFC. The ancestral
and variant alleles of rs11146020 are G and C, respectively.
There is a significant difference between homozygous GG and
heterozygous GC in schizophrenia patients, indicating that
genotype influences functional connections. Zhao et al. (2006)
found that the C allele was expressed in a high frequency in
schizophrenia patients. rs11146020 is located in the GRIN1 gene,
which is a subunit of NMDAR. The gene responsible for its
expression is located at 9q34 in the promoter region (Begni
et al., 2003). The GRIN1 gene product plays a foundational
role in many brain functions, and its involvement in the
pathogenesis of schizophrenia has been widely investigated
(Hung et al., 2002; Zhao et al., 2006). Moreover, GRIN1
knockout animals showed abnormal behavior characteristics
which were commonly similar with patients with schizophrenia,
such as impairment of working memory, reduced “self-care”
(nest building) and social activity (Tatard-Leitman et al., 2015).
Gray et al. (2015) reported higher expression levels of the
majority of glutamatergic genes, especially GRIN1, were detected
in the dLPFC. The rs11146020 genotype has a significant
association with the causality connection between the left and
right dLPFC, which is opportunely proved the suggestion by
Zhao et al. (2006) that rs11146020 is a potential candidate to
alter the risk of schizophrenia and worth further replication and
functional investigation.

Interestingly, causality connection between the left and right
dLPFC in schizophrenia patients with ancestral genotype GG has
a significant positive correlation with DUP but was not found in
GC carriers. For patients who carried the GG genotype, Increased
connection strength could lead to protracted DUP in patients
who carried the GG genotype. Research shows that there is a close
relationship between longer DUP and poorer outcomes in first-
episode psychosis (Rubio and Correll, 2017). Hence, enhanced
connectivity between the left and right dLPFC is not an optimistic
phenomenon, especially in patients with the GG genotype.

In terms of brain structure, we did not find a remarkable
difference in the volumes of gray and white matter between

Frontiers in Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 35162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00351 April 17, 2020 Time: 19:20 # 7

Cai et al. Effects on Glutamic Pathway by Two SNPs

FIGURE 2 | Rs11146020 and rs3813296 main effects on causality connections and relationships with behavioral variables (P < 0.01, FDR correction).
(A) rs11146020 and (B) rs3813296 main effects on causality connections; (C) causality connection strength of L. dLPFC→ R. dLPFC has significant positive
correlation with duration of untreated psychosis in patients with the GG genotype; (D) causality connection strength of R. dLPFC→ R. caudate has a significant
positive correlation with BVMT scores in patients with the TT genotype; causality connection strength of R. dLPFC→ R. thalamus has a significant positive
correlation with BVMT-R scores (E) and verbal fluency test scores (F) in patients with the TT genotype. Abbreviations: dLPFC, dorsolateral prefrontal cortex;
BVMT-R, brief visuospatial memory test, revised.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 35163

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00351 April 17, 2020 Time: 19:20 # 8

Cai et al. Effects on Glutamic Pathway by Two SNPs

TABLE 2 | Main and interaction effects of rs11146020 and rs3813296 on causality connectivity in frontal-striatum-thalamus pathway.

rs11146020 main effect on causality connectivity in frontal- striatum- thalamus pathway

GG vs. CG

Causality connectivity Connection strength F(1) value P value

GG CG

L.dLPFCR.dLPFC −0.028 ± 0.022 0.047 ± 0.027 8.29 0.006

R.dLPFCL.dLPFC 0.02 ± 0.024 −0.085 ± 0.03 7.539 0.009

rs3813296 main effect on causality connectivity in frontal- striatum- thalamus pathway

GT vs. TT

Causality connectivity Connection strength F(1) value P value

TT GT

L.dLPFCR.Caudate 0.056 ± 0.016 0.015 ± 0.015 7.535 0.009

R.dLPFCR.Thalamus 0.008 ± 0.012 0.026 ± 0.013 9.147 0.003

rs11146020*rs3813296 inteaction effect on causality connectivity in frontal- striatum- thalamus pathway

CG/GT vs. GG/GT

Causality connectivity Connection strength F(1) value P value

GG/GT CG/GT

L.PallidumL.dLPFC −0.032 ± 0.06 0.116 ± 0.071 8.691 0.0043

L.PallidumR.dLPFC −0.078 ± 0.051 0.096 ± 0.06 9.487 0.0024

CG/TT vs. GG/GT

Causality connectivity Connection strength F(1) value P value

GG/GT CG/TT

R.PallidumR.dLPFC −0.08 ± 0.057 0.169 ± 0.068 9.366 0.0029

R.PallidumR.Caudate 0.036 ± 0.026 0.134 ± 0.025 8.662 0.0044

Data are given as mean ± standard deviation; P and corresponding F values were obtained from multivariable GLM analysis by applying the Mann–Whitney U test and
FDR correction (P < 0.01). GLM, general linear model; FDR, false discovery rate; dLPFC, dorsolateral prefrontal cortex.

GG and GC genotypes, suggesting that the association between
genotype and function was unrelated to cortex and subcortex
sizes. This is possibly because the mutation from allele G to C
is not enough to change brain volume.

Main Effect of rs3813296 on Causality
Connectivity in the
Frontal-Striatum-Thalamus Pathway
Rs3813296 mainly influences the causality connections of the
descending pathway from the prefrontal lobe to the striatum,
including L. dLPFC → R. caudate and R. dLPFC → R.
thalamus. The connection strength of L. dLPFC → R. caudate
in schizophrenia patients with the GT genotype is significantly
lower than those with the TT genotype. Rs3813296 is located
in the GRIA2 gene which is one subunit of the AMPA receptor
(Lu et al., 2009). The Ca2+ permeability of AMPA receptors
rely on the GRIA2 subunit and AMPA receptors without
the GRIA2 subunit are Ca2+ impermeable, which increases
the neuronal vulnerability to excitotoxicity and can result in
neuropsychiatric symptoms (Isaac et al., 2007). The lower

connection strength of L. dLPFC→ R. caudate in patients with
the GT genotype may be due to a deficit in Ca2+ permeability
from cortex to subcortex. Based on the current result regarding
to rs3813296, deficit Ca2+ permeability should be associated
with the variation of T to G. However, this variation has
significant relevance to the enhanced connection strength of
R. dLPFC → R. thalamus, which could be interpreted as
compensation phenomenon.

A literature study returned two studies containing rs3813296
(Crisafulli et al., 2012; Iamjan et al., 2018). Few studies
are similar with our study; thus, we tried to search for
supporting results from the current dataset and found that
the white matter volume of the superior corona radiata in
schizophrenia patients with the GT genotype is significantly
larger than those with the TT genotype. Corona radiata are
the most prominent projection fibers, and they are afferents
that carry information to the cerebral cortex and efferent
that carry information away from it (Morecraft et al., 2002).
Gray matter of the striatum and white matter of the corona
radiata are the main components of the basal ganglia. The
difference of the white matter volume of the superior corona
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FIGURE 3 | Interaction effect of rs11146020 and rs3813296 on causality connections and relationship with behavioral variables (P < 0.01, FDR correction).
(A) interaction effect of rs11146020 and rs3813296 on causality connections; causality connection strength of R. pallidum→ R. dLPFC (B), L. pallidum→ L. dLPFC
(D) and L. pallidum→ R. dLPFC (E) has a significant negative correlation with MSCEIT-ME in patients with the GG/GT genotype; causality connection strength of R.
pallidum→ R. caudate (C) has a significant negative correlation with MSCEIT-ME in patients with the CG/TT genotype; Abbreviations: dLPFC, dorsolateral prefrontal
cortex; MSCEIT-ME, Mayer-Salovey-Caruso emotional intelligence test (managing emotions).

radiata between GT and TT genotypes explains the lower
connection strength of L. dLPFC → R. caudate in patients
with the GT genotype: inflated volume of the superior corona
radiata indirectly causes dispersive connection strength between
the two regions.

Causality connection strengths of L. dLPFC → R. caudate
and R. dLPFC→ R. thalamus in patients with the TT genotype
have a significant positive correlation with scores in VF and brief
visuospatial memory tests. The functional anatomy of VF has
been well characterized in normal participants using positron
emission tomography (PET) (Spence et al., 1998). The study also
demonstrated that generating words beginning with a given letter
activates the dLPFC. Another study suggested that the thalamus
is involved in the encoding of verbal material and that thalamic
damage impairs verbal recall (Ruggeri, 2016). Benson et al. (2008)
hypothesized that cognitive impairments could be related to the
dysfunction of the physiological metabolic activity between the
dLPFC and subcortical regions. In particular, hypoactivation of
the dLPFC observed in schizophrenia patients could result in
hyperactivation of subcortical structures, such as the striatum and
thalamus (Groerewegen, 1991). Thus, the significant correlation
suggested that VF and brief visuospatial memory tests scores
have important clinical significance. As suggested in previous
studies, it is also closely associated with the degeneration
of the brain in schizophrenia patients (Zhang et al., 2012,
2014; Cetin-Karayumak et al., 2019). Further, recent research

mentioned that words and visuospatial memory information are
conveyed across aforesaid regions via the excitatory projections of
glutamatergic pyramidal neurons (Hoftman et al., 2017; Nikolova
et al., 2017). More importantly, the current results are especially
helpful for reminding clinical researchers to pay attention to
the first-episode negative schizophrenia patients with the TT
genotype. These patients are vulnerable to VF and visual spatial
memory. In the long run, patients with the TT genotype have
different characteristic and should be treated using different
clinical interventions.

Interaction Effect of
rs11146020∗rs3813296 on Causality
Connectivity in the
Frontal-Striatum-Thalamus Pathway
The interaction effects of rs11146020∗rs3813296 on the causality
connection are mainly located in the ascending pathway from
the bilateral pallidum to the right caudate and bilateral dLPFC.
After the interaction effect of the two SNPs, simple effect
tests showed that modulation by rs11146020 on the causality
connection of L. pallidum → R. dLPFC and L. pallidum →
R. dLPFC is influenced by the GT genotype in rs3813296.
Similarly, modulation by rs3813296 on the causality connection
of R. pallidum → R. caudate is influenced by the GG
genotype in rs11146020. Moreover, the interaction effect of the
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FIGURE 4 | Main and interaction effects of rs11146020 and rs3813296 on gray and white matter (P < 0.01, FDR correction). (A) rs11146020 and rs3813296
interaction effect on gray matter volume (GG/GT vs. GG/TT); (B) rs3813296 main effect on white matter volume (GT vs. TT); (C) rs11146020 and rs3813296
interaction effect on white matter volume (GG/GT vs. CG/TT).

two SNP is also on the gray and white matter volumes of
several regions in this pathway, such as parts of the caudate,
thalamus, putamen and fiber of the superior corona radiata.
Taken together, these results imply that the effect of two
SNPs on brain structure and function is greater than that
of a single SNP. It is consistent with a comment provided
by previous research that suggested that the risk of common
diseases is potentially determined by the complex interaction
between genetic factors, including SNPs (Lohmueller et al., 2003;
Mechanic et al., 2008).

Moreover, four causality connections, among those
mentioned, have a significant negative correlation with MSCEIT-
ME scores. To understand the negative correlation between
them, we investigated the literature and examined gamma
aminobutyric acid (GABA) interneurons, which are purported
to ultimately inhibit the generation of excessive mesolimbic
dopamine activity (Stahl, 2007). Disturbances in GABA
neurotransmission could represent a common pathophysiology
for different domains of cortical dysfunction in schizophrenia
(Hashimoto et al., 2008). For example, if the GABA interneuron
was dysfunctional, it would lead to excessive suppression and
produce decreasing activity. In the current study, the stronger the
connectivity strength of the ascending pathway from the bilateral
pallidum to the bilateral dLPFC, the stronger the inhibition
projecting onto the dLPFC, leading to restrained glutamate
release. Buzsáki and Draguhn (2004) demonstrated that the

regulation or stabilization of GABA interneurons is critical for
the coordination of cortical-mediated behaviors. The dLPFC is
activated in emotion tasks and is a main region in managing
emotion control (Aupperle et al., 2012). Thus, decreased release
of glutamate excitatory neurotransmitter in dLPFC indirectly
results in weak emotion management ability.

In addition, gray matter volumes of parts of bilateral
caudate, thalamus and putamen in patients with the GG/GT
genotype are larger than those with the GG/TT genotype. It
was suggested that the T allele in rs3813296 was indirectly
associated with inflated volume in these regions. In white
matter, the volume of the superior corona radiata fiber
in patients with the GG/GT genotype is lower than those
with the CG/TT genotype. As mentioned above, the white
matter of the corona radiata is the main joint component
of the basal ganglia and striatum. Combining the two results
regarding gray and white matter, we explained the opposite
phenomenon (larger vs. lower) as increscent gray matter
volumes (caudate, thalamus, and putamen) extruded contiguous
white matter (superior corona radiata fiber) in patients with
the GG/GT genotype. This interpretation is inspired by
Alliey-Rodriguez et al. (2017).

Until now, we noticed that dLPFC is a key region in
the frontal-striatum-thalamus pathway and has the strongest
association with other regions. In particular, the causality
connections of dLPFC exhibit a significant relationship with
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TABLE 3 | Main and interaction effects of rs11146020 and rs3813296 on gray and white matter volumes.

rs11146020*rs3813296 inteaction effect on gray matter volumes

GG/GT vs. GG/TT

Brain region MNI T value P value

X Y Z

L.Caudate/thalamus −15 14 6 4.563 0.005

R. Caudate/thalamus 17 17 6 4.288 0.005

L.Putamen/caudate −9 13 −4 4.892 0.004

R. Putamen/caudate 16 17 −4 5.184 0.002

rs3813296 main effect on white matter volumes

GT vs. TT

Brain region MNI T value P value

X Y Z

L. Superior corona radiata −26 −3 21 3.681 0.008

R. Superior corona radiata 26 −8 32 3.455 0.010

rs11146020*rs3813296 inteaction effect on white matter volumes

GG/GT vs. CG/TT

Brain region MNI T value P value

X Y Z

L. Superior corona radiata −16 −6 35 −3.47 0.009

R. Superior corona radiata 29 −10 35 −3.394 0.010

P and corresponding T values were obtained by two samples t-test (P < 0.01, FDR correction). X, Y, and Z from MNI (Montreal Neurological Institute) coordinates.

TABLE 4 | Significant correlation between causality connection strength and behavioral scales.

Causality connectivity Genotype SNP Clinical scales Rs value P value

L.dLPFC→ R.dLPFC GG rs11146020 DUP 0.508 0.005

R.dLPFC→ R.Caudate TT rs3813296 BVMT-R 0.516 0.01

R.dLPFC→ R.Thalamus TT rs3813296 BVMT-R 0.535 0.007

R.dLPFC→ R.Thalamus TT rs3813296 VF 0.52 0.009

R.Pallidum→ R.dLPFC GG/GT GG:rs11146020 GT:rs3813296 MSCEIT-ME −0.723 0.004

R.Pallidum→ R.Caudate CG/TT CG:rs11146020 TT:rs3813296 MSCEIT-ME −0.833 0.005

L.pallidum→ L.dLPFC GG/GT GG:rs11146020 GT:rs3813296 MSCEIT-ME −0.745 0.002

L.Pallidum→ R.dLPFC GG/GT GG:rs11146020 GT:rs3813296 MSCEIT-ME −0.672 0.009

Rs and P values were obtained from Spearman rank correlation test, P < 0.01, FDR correction. dLPFC, dorsolateral prefrontal cortex; DUP, duration of untreated
psychosis; BVMT-R, brief visuospatial memory test, revised; VF, verbal fluency; MSCEIT-ME, Mayer-Salovey-Caruso emotional intelligence test, managing emotions.

clinical behaviors. The current results verified that dLPFC is an
important region in the treatment or research of schizophrenia
(Olagunju et al., 2017; Schneider et al., 2017).

Limitations
Two limitations of this study should be considered. First,
there was a relatively small sample size in the four subgroups.
Currently, gene and neuroimaging data are being collected,
and we will replicate and verify these results using a larger
sample in the near future. Additionally, the lack of knowledge

about the relationships between the region-specific variation in
glutamic neurotransmission and temporal patterns of GRIN1
and GRIA2 expression is a common concern to studies of
neuroimaging genetics.

CONCLUSION

We investigated the main and interaction effects of rs11146020
and rs3813296 on causality connections and structural
characteristics in the frontal-striatum-thalamus pathway in
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Han Chinese patients with schizophrenia. Significant association
was found between them, and causality connection strengths
affected by two SNPs were remarkably correlated with clinical
cognitive performance. Our results suggested that patients with
different genotypes have different characteristics, and those
patients should receive different clinical interventions.
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Cross-subject variability problems hinder practical usages of Brain-Computer Interfaces.

Recently, deep learning has been introduced into the BCI community due to its better

generalization and feature representation abilities. However, most studies currently only

have validated deep learning models for single datasets, and the generalization ability for

other datasets still needs to be further verified. In this paper, we validated deep learning

models for eight MI datasets and demonstrated that the cross-dataset variability problem

weakened the generalization ability of models. To alleviate the impact of cross-dataset

variability, we proposed an online pre-alignment strategy for aligning the EEG distributions

of different subjects before training and inference processes. The results of this study

show that deep learning models with online pre-alignment strategies could significantly

improve the generalization ability across datasets without any additional calibration data.

Keywords: brain-computer interface, cross-subject variability, cross-dataset variability, deep learning, transfer

learning, EEG

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) enable humans to directly control machines via brain signals
without any physical intervention (Wolpaw et al., 2002). A typical BCI system consists of
three parts: paradigms, neuroimaging techniques, and decoding algorithms. Paradigms are
mental tasks that invoke brain activities while the corresponding brain signals are recorded
by neuroimaging techniques. Researchers prefer electroencephalography (EEG) among various
neuroimaging techniques because of its non-invasive, high temporal resolution, and low-cost
characteristics. Decoding algorithms further translate measured brain signals into commands to
control computerized devices.

Decoding algorithms are crucial to achieving an efficient and robust BCI system. Over the
past 20 years, many effective BCI decoding algorithms have been proposed due to advances in
machine learning. Most decoding algorithms extract discriminant features with well-designed
spatial filters for improving within-subject classification accuracy. Common Spatial Pattern (CSP)
and its variants (Ramoser et al., 2000; Grosse-Wentrup and Buss, 2008; Kai Keng Ang et al.,
2008; Lotte and Guan, 2011; Samek et al., 2012) are still most commonly used algorithms for
motor imagery (MI) paradigm. For the steady-state visually evoked potential (SSVEP) paradigm,
Canonical Correlation Analysis (CCA) (Lin et al., 2007) and Task-related Component Analysis
(TRCA) (Nakanishi et al., 2018) are able to improve the speed of SSVEP-based BCI spellers.
xDAWN (Rivet et al., 2009) and DCPM (Xu et al., 2018) algorithms are also perform well on P300-
based BCI applications. Recently, algorithms based on Riemannian geometry have been introduced
into the BCI community, and they provide a unified signal processing framework for decoding
brain signals (Barachant et al., 2010; Congedo et al., 2013, 2017a; Lotte et al., 2018). However, most
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algorithms are unable to reuse pre-trained models across subjects
or different sessions of the same subject. These two problems in
BCI are referred to as cross-subject and cross-session variability
problems. To reduce high variability in individual EEG data,
a calibration stage is required to collect training data at the
beginning of each session, which is inconvenient for both patients
and healthy subjects.

A natural idea for decoding brain signals is to use
deep learning models instead of handcrafted feature
extraction methods. Manual feature extraction reduces
the possibility of utilizing information across subjects.
Deep learning utilizes all information in data to train a
robust classifier, which often outperforms other machine
learning models in classification tasks. Some deep learning
models [e.g., Shallow ConvNet (Schirrmeister et al.,
2017), EEGNet (Lawhern et al., 2018)] can achieve better
performance than traditional methods in within-subject
classification task.

Deep learning is also able to ameliorate cross-session
and cross-subject variability problems with its robust feature
extraction architecture. However, deep learning models used in
BCI suffer the lack of data problem. It is hard to collect a
sufficient amount of high-quality training data for a specific BCI
task. The lack of data problems makes deep learning models
easily overfit. Some data augmentation methods may alleviate the
overfitting problem for within-subject classification tasks (Wang
et al., 2018; Dai et al., 2020). For cross-subject classification
tasks, an easier way is to train the model directly on the entire
dataset regardless of subject-specific information (Schirrmeister
et al., 2017; Lawhern et al., 2018). In practice, however, we
found that a pre-trained model from one public dataset may
fail to predict new data from another public dataset even if
the model performs well on its training dataset. The model
is highly specialized in its training dataset structure that a
minor change to the test data may make the model invalid. A
similar phenomenon was reported in Jayaram and Barachant
(2018), where the authors found that the performance of classical
supervised BCI algorithms depends on the specific dataset. A
public dataset is usually acquired under the same condition
in the same lab. Can an algorithm that performs well on one
dataset work on another dataset under different conditions?
Currently, most studies have only validated the use of deep
learning models for a specific dataset, and the generalization
ability for other datasets still needs to be further verified. The
cross-dataset variability problem in deep learning was proved in
our cross-dataset experiment.

In this work, we studied the cross-dataset variability problem
of deep learning models. We validated deep learning models
across multiple datasets and observed that the optimal model
trained for one dataset performs significantly worse on other
datasets. The results indicate that deep learning models for BCIs
are unable to generalize well outside the training dataset. To
alleviate the impact of cross-dataset variability, we introduced an
online pre-alignment strategy before the training and validation
processes. The results demonstrate that deep learning models
with online pre-alignment strategy have better generalization
ability across EEG datasets.

2. MATERIALS AND METHODS

2.1. Datasets
Eight MI datasets were used in our experiments (Schalk et al.,
2004; Leeb et al., 2007; Tangermann et al., 2012; Yi et al.,
2014; Zhou et al., 2016; Cho et al., 2017). All datasets are
publicly available and details of them are listed in Table 1.
CNBCIC2019004 and CBCIC2019004 datasets were downloaded
from the 3rd China Brain-computer Interface Competition
website. The rest of datasets were downloaded using the MOABB
package (Jayaram and Barachant, 2018).

Three channels (C3, CZ, C4) were used in this work.
These channels are located on sensorimotor area and exist
in all datasets. Only the left-hand and right-hand MI classes
were included in our experiments. Each trial was 3 s in
length and downsampled to 100 Hz such that the size of
a trial was 3 × 300. All trials were filtered with a 4-order
Butterworth bandpass filter of 3–40 Hz. Zero-phase forward and
reverse filtering was implemented using filter_data() function in
MNE (Gramfort et al., 2013).

For evaluating performance of models, trials were randomly
split into training, validation, and test sets. The training set
was 80% of the available data. The remaining 20% data were
equally partitioned and referred to as validation and test sets.
This splitting process was repeated 10 times on each subject,
producing 10 different folds.

2.2. Notation
In this section, we give the notation and assumptions used
throughout the paper. An overview of the notation is listed
in Table 2. We assume that the EEG data of each channel is
zero mean. This assumption is reasonable in the real world
which also widely adopted in many BCI algorithms (Ramoser
et al., 2000; Grosse-Wentrup and Buss, 2008). All algorithms
below are described with the two-class classification problem in
MI paradigm.

2.3. Traditional Decoding Methods
2.3.1. CSP

The goal of CSP is to find a projection matrix W =

[w1,w2, · · · ,wL], that leads to new time series Ê = WTE, which
maximizes the discriminance between classes. The CSP algorithm
solves the following optimization problem

w∗
= argmax

wi∈R
Nc ,i∈{1,2,··· ,L}

wT
i C̄

1wi

wT
i C̄

2wi

(1)

with C̄1, C̄2 are average normalized covariance matrices of each
class obtained from

C̄k
=

Nk
t

∑

i=1

Eki E
k
i

T

tr(Eki E
k
i

T
)

(2)

where Nk
t is the number of trials of class k, k ∈ {1, 2} and

tr(·) denotes the trace operator. Solutions to (1) are given by
eigenvectors of the generalized eigenvalue problem

C̄1wi = λiC̄
2wi (3)
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TABLE 1 | Details of datasets.

Dataset Classes Subjects Trials per class Trial duration (s) Channels Sampling rate (Hz)

BNCI2014001 Left/right/feet/tongue 9 144 4 22 250

BNCI2014004 Left/right 9 360 4.5 3 250

PhysionetMI Left/right/hands/feet 109 20–30 3 64 250

Cho2017 Left/right 52 100 3 64 512

Weibo2014 Left/right/hands/feet 10 80 4 60 200

Zhou2016 Left/right/feet 4 160 5 14 250

CBCIC2019001 Left/right 18 60 4 59 1000

CBCIC2019004 Left/right 6 40 4 59 250

TABLE 2 | Symbols and notations.

Symbol Description

Nt Number of trials

Nc Number of channels

Ns Number of samples

Ei EEG data matrix of a single trial, Ei ∈ R
Nc×Ns

Ci Covariance of Ei , Ci ∈ R
Nc×Nc

W Spatial filter matrix, W ∈ R
Nc×L, L ≤ Nc

wi A spatial filter vector, wi ∈ R
Nc ,W = [w1,w2, · · · ,wL]

where eigenvalues are sorted in descending order. CSP selects
eigenvectors with the L/2 largest/smallest eigenvalues to form
projection matrix W, which is also named spatial filters. The
feature vector fi ∈ R

L of Ei is given by

fi = log

(

var(WTEi)
∑

var(WTEi)

)

(4)

where var(·) denotes the variance operator on each row of Êi and
log(·) denotes the logarithm operator of elements. CSP is usually
followed by a linear or non-linear classifier to classify test data.

2.3.2. FBCSP

The Filter Bank Common Spatial Pattern (FBCSP) (Kai Keng
Ang et al., 2008) extends the CSP algorithm to EEG data with
multiple frequency bands. The goal of FBCSP is to address
the problem of manually selecting the subject-specific frequency
band for the CSP algorithm. The key step in FBCSP is feature
selection, which selects a subset of features that leads to the
smallest classification error. FBCSP estimates the importance of
each feature vector with mutual information and selects the L
most important w to form the projection matrixW used in (4).

2.3.3. MDRM

The Minimum Distance to Riemannian Mean (MDRM)
(Barachant et al., 2011) is an algorithm based on Riemannian
Geometry. Riemannian Geometry considers matrix Ci as a point
in a Riemannian manifold. MDRM computes the Riemannian
center of each class and compares Riemannian distances from

test points to centers. The Riemannian distance of two covariance
matrices C1,C2 is given by

δR(C1,C2) = ‖Log(C−1
1 C2)‖F =

[

Nc
∑

i=1

log2(λi)

]1/2

(5)

where Log(·) is the logarithm operator of a matrix, and λi is the
i-th eigenvalue of matrix C−1

1 C2. The Riemannian center C̄k
R of

each class is defined as follows

C̄k
R = argmin

C̄k
R

Nk
t

∑

i=1

δR(C̄
k
R,C

k
i ) (6)

with k ∈ {1, 2}. Although there is no closed form solution to
(6) when Nk

t > 2, the problem can be solved with iterative
algorithms (Moakher, 2005; Pennec et al., 2006; Congedo et al.,
2017b). With Riemannian centers, a new test covariance Ctest is
classified as follows:

argmin
k∈{1,2}

δR(C̄
k
R,Ctest) (7)

2.4. Deep Learning Models
2.4.1. ShallowNet

ShallowNet (Schirrmeister et al., 2017) imitates FBCSP’s design
in the deep learning structure. The architecture of ShallowNet
is listed in Table 3. The first convolution layer is designed to
convolve in a temporal direction, which is analogous to bandpass
filtering. The second convolution layer is designed to convolve
in a spatial direction, which is analogous to spatial filters in
CSP. Shallow ConvNet uses a squaring activation function and
average pooling layer to imitate feature mapping in (5). Instead of
mutual information selection in FBCSP, ShallowNet uses a fully
connected layer to combine all features and predict probabilities
of classes.

2.4.2. EEGNet

EEGNet is a CNN-based model proposed by Lawhern et al.
(2018). The architecture of EEGNet is listed in Table 4. EEGNet
is designed for general EEG recognition tasks. EEGNet retains
temporal and spatial convolution layers in Shallow ConvNet.
Instead of simple convolution in ShallowNet, EEGNet introduces
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TABLE 3 | ShallowNet architecture.

Layer Input size Output size Kernels Kernel size Stride Padding

Conv2d 1× 3× 300 10× 3× 300 10 (1, 21) (1, 1) (0, 10)

BatchNorm2d 10× 3× 300 10× 3× 300

Conv2d 10× 3× 300 15× 1× 300 15 (3, 1) (1, 1) (0, 0)

BatchNorm2d 15× 1× 300 15× 1× 300

Pow2 15× 1× 300 15× 1× 300

AvgPool2d 15× 1× 300 15× 1× 17 (1, 55) (1, 15) (0, 0)

Log 15× 1× 17 15× 1× 17

Dropout 15× 1× 17 15× 1× 17

Linear 255 2

TABLE 4 | EEGNet architecture.

Layer Input size Output size Kernels Kernel size Stride Padding

Conv2d 1× 3× 300 8× 3× 300 8 (1, 31) (1, 1) (0, 15)

BatchNorm2d 8× 3× 300 8× 3× 300

Depthwise Conv2d 8× 3× 300 16× 1× 300 16 (3, 1) (1, 1) (0, 0)

BatchNorm2d 16× 1× 300 16× 1× 300

Elu 16× 1× 300 16× 1× 300

AvgPool2d 16× 1× 300 16× 1× 75 (1, 4) (1, 4) (0, 0)

Dropout 16× 1× 75 16× 1× 75

Seperable Conv2d 16× 1× 75 16× 1× 75 16 (1, 15) (1, 1) (0, 7)

BatchNorm2d 16× 1× 75 16× 1× 75

Elu 16× 1× 75 16× 1× 75

AvgPool2d 16× 1× 75 16× 1× 9 (1, 8) (1, 8) (0, 0)

Dropout 16× 1× 9 16× 1× 9

Linear 144 2

depthwise separable convolution (Chollet, 2017) to reduce the
number of training parameters. EEGNet also replaces squaring
activation with ELU activation.

2.5. Online Pre-alignment Strategy
Recently, many Transfer Learning approaches have been
introduced into BCIs to reduce cross-subject variability (Zanini
et al., 2018; Rodrigues et al., 2019; Yair et al., 2019). An approach
named Riemannian Procrustes Analysis (RPA) was proposed
by Rodrigues et al. (2019). RPA takes three steps to match
data distributions of source domain and target domain: re-
centering, stretching, and rotation. The re-centering step aligns
the Riemannian center of covariance matrices to identity matrix.
The stretching step modulates dispersions of two domains to the
same level. The rotation step further rotates matrices from target
domain to match that of source domain with predetermined
markers. The re-centering step has also been mentioned in
Reuderink et al. (2011) and Zanini et al. (2018) as follows

Ĉi = M−1/2CiM
−1/2 (8)

where M is the Riemannian center of training covariances and
Ĉi is the aligned covariance matrix. In this work, we applied re-
centering step before the training and validation processes, and
this is named the pre-alignment strategy (PS). Instead of direct
operation on covariances, we transformed Ei+1 to aligned time
series Êi+1 by

Êi =
1

Ns
M−1/2Ei (9)

The above transformation has also been mentioned in He and
Wu (2020), where the authors used Euclidean mean covariance
instead of Riemannian mean covariance M here. Although PS
is an unsupervised method, they still require enough calibration
data of each subject to compute the expected Riemannian center
M. We implemented an online pre-alignment strategy (OPS) on
continuous EEG data for each subject. Assuming that Mi is the
Riemannian mean of previous available covariances, Ei+1 is the
EEG data of the next trial, and Ci+1 is the covariance of Ei+1. A
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FIGURE 1 | Pipelines of our methods. (A) The pipeline of pre-alignment

strategy. (B) The pipeline of online pre-alignment strategy.

recursive Riemannian mean update rule is given as follows

Mi+1 = geodesic

(

Mi,Ci+1,
1

i+ 1

)

= M
1/2
i

(

M
−1/2
i Ci+1M

−1/2
i

)
1

i+1
M

1/2
i

(10)

where M1 = C1. This recursive algorithm was proposed by Ho
et al. (2013), which asymptotically converges in probability to
the Riemannian mean expectation. OPS is efficient in practice
since it avoids the calibration stage and repeatedly recalculating
the Riemannian mean of the previous data. Figure 1 shows the
pipelines of our methods. The aligned time series are given by

Êi+1 =
1

Ns
M

−1/2
i+1 Ei+1 (11)

2.6. Experiments
Within-subject, cross-subject, and cross-dataset experiments
were carried out in this work. In the within-subject experiment,
we compared the subject-specific performance of both traditional
methods and deep learning models. In the cross-subject
experiment, the unsupervised transfer ability of two deep
learning models was verified in a single dataset. In the
cross-dataset experiment, we further validated deep learning
models on different datasets with/without online re-centering
transformation. The Wilcoxon signed rank test was used to
compare the performance of different methods.

In the within-subject experiment, a Linear Discriminant
Analysis classifier was used for CSP and FBCSP feature extraction
methods. In CSP method, the number of selected spatial filters
was set to two. The filter bank of FBCSP is 4–9, 8–15, and 15–
30 Hz. The number of selected spatial filters in FBCSP was set to

four. Both traditional algorithms and deep learning models were
trained on the training and validation sets for each subject. In the
cross-subject experiment, leave-one-subject-out cross-validation
was carried out on each dataset. One subject was chosen as a test
subject, and deep learning models were trained on the rest of
subjects in the same dataset. In cross-dataset experiment, deep
learning models were trained on all subjects of one dataset while
the rest of datasets were both test datasets.

Architectures of Shallow ConvNet and EEGNet in
experiments are listed in Tables 3, 4, respectively. Parameters of
models were mainly from original papers (Schirrmeister et al.,
2017; Lawhern et al., 2018) but were adjusted to fit our input size
and sampling rate of data. The dropout probability was set to
0.5. The optimizer was Adam with learning rate set to 0.001. The
batch size was 16 in within-subject experiment due to the limited
number of available trials. In cross-subject and cross-dataset
experiments, the batch size was 128. Instead of early stopping
used in Schirrmeister et al. (2017), we trained for 120 epochs
and selected the best model on validation set. Both models were
implemented in PyTorch framework (Paszke et al., 2017).

3. RESULTS

3.1. Within-Subject Classification Results
Within-subject classification accuracies of both traditional
methods and deep learning models on eight datasets are listed in
Table 5. Each method was tested under two conditions (with PS
and without PS). Both methods achieved accuracies beyond the
random level. The boldface in Table 5 shows that the accuracy of
method with PS is higher than that without PS. The Wilcoxon
signed rank test showed that the performance of EEGNet with
PS was significantly better than that of EEGNet without PS
(ShallowNet: p = 0.06; EEGNet: p = 0.008). No significant
improvement was observed between traditional methods with
PS and that without PS. In PhysionetMI and CBCIC2019004
datasets, the accuracies of deep learning models were lower than
that of traditional methods.

Figure 2 shows results of the Wilcoxon signed rank test
on each pair of methods. The dark square indicates that the
performance of row method is significantly better than that of
column method (p < 0.05). Under without PS condition, FBCSP
and ShallowNet were significantly better than CSP and MDRM.
Under with PS condition, all methods were significantly better
than CSP. FBCSP, ShallowNet and EEGNet were significantly
better than MDRM, whereas no significant differences were
observed between deep learning models and FBCSP.

3.2. Cross-Subject Classification Results
Figures 3, 4 show results of cross-subject classification on
eight datasets for ShallowNet and EEGNet, respectively. The
performance of deep learning models without OPS in cross-
subject classification was significantly higher than the random
level (ShallowNet: p = 0.008; EEGNet: p = 0.008). ShallowNet
with OPS was significantly better than that without OPS
(ShallowNet: p = 0.046; EEGNet: p = 0.062). Specifically,
for CNBCI2019004 dataset, ShallowNet with OPS increased
the accuracy by 19.8% and EEGNet with OPS increased the
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TABLE 5 | Within-subject Classification accuracies averaged on 10-folds.

CSP FBCSP MDRM ShallowNet EEGNet∗∗∗

w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS w/o PS w/ PS

BNCI2014001 0.68 0.66 0.70 0.72 0.68 0.68 0.76 0.77 0.78 0.79

BNCI2014004 0.70 0.69 0.74 0.75 0.69 0.69 0.79 0.79 0.79 0.80

PhysionetMI 0.56 0.56 0.59 0.61 0.57 0.57 0.53 0.56 0.51 0.56

Cho2017 0.57 0.57 0.60 0.59 0.58 0.58 0.68 0.68 0.65 0.66

Weibo2014 0.66 0.65 0.68 0.69 0.68 0.65 0.75 0.76 0.71 0.74

Zhou2016 0.81 0.82 0.89 0.88 0.80 0.82 0.83 0.87 0.84 0.88

CBCIC2019001 0.57 0.55 0.60 0.60 0.59 0.57 0.66 0.66 0.71 0.71

CBCIC2019004 0.69 0.69 0.74 0.73 0.70 0.70 0.65 0.65 0.62 0.65

Mean 0.65 0.65 0.69 0.70 0.66 0.66 0.71 0.72 0.70 0.72

Stars correspond to ∗∗∗p < 0.01. The boldface shows that the accuracy of method with pre-alignment strategy (w/ PS) is higher than that without pre-alignment strategy (w/o PS).

FIGURE 2 | Results of the Wilcoxon signed rank tests on pairs of methods. The dark square shows that the performance of row method is significantly better than

that of column method (p < 0.05). (A) Results of methods without pre-alignment strategy (w/o PS). (B) Results of methods with pre-alignment strategy (w/ PS).

accuracy by 14.3%. But for Cho2017 dataset, accuracies of
models with OPS both suffered a little decrease (ShallowNet: 4%,
EEGNet: 8%).

3.3. Cross-Dataset Classification Results
Figures 5, 6 show results of cross-dataset classification for
ShallowNet and EEGNet, respectively. The row label is the
name of training dataset and the column label is the name
of test dataset. The main diagonal element of each heatmap,
where the training dataset is also the test dataset, is the cross-
subject classification accuracy of the current dataset indicated
in Figures 3, 4.

Figure 5A shows that most cross-dataset accuracies of
ShallowNet without OPS were near the random level,
although their within-dataset accuracies (elements of the
main diagonal) were not. Figure 5B shows that cross-dataset
accuracies with OPS were significantly more improved than
that without OPS in all datasets (p < 0.05). Figure 5C

shows the difference between Figure 5A and Figure 5B.

Figure 6 shows similar results of EEGNet to that in
Figure 5.

4. DISCUSSION

To compare traditional methods and deep learning models, we
first validated three traditional methods and two deep learning
models in within-subject experiment. The results of within-
subject experiment are listed in Table 5 and Figure 2. The
performance of FBCSP was significantly better than that of
CSP and MDRM while no significant differences were observed
between deep learning models and FBCSP.

However, traditional methods are more robust in small
sample learning. The performance of deep learning models is
limited by the amount of data available. We observed that deep
learning models were unable to achieve the same performance
as traditional models in PhysionetMI and CBCIC2019004
datasets, which have relatively small number of trials per
subject (PhysionetMI: 44; CBCIC2019004: 80). We also observed
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FIGURE 3 | Results of cross-subject classification on eight datasets for ShallowNet with online pre-alignment strategy (w/ OPS) and without online pre-alignment

strategy (w/o OPS). Leave-one-subject-out validation was implemented on each dataset, and the validation for each subject was repeated 10 times.

FIGURE 4 | Results of cross-subject classification on eight datasets for EEGNet with online pre-alignment strategy (w/ OPS) and without online pre-alignment strategy

(w/o OPS). Leave-one-subject-out validation was implemented on each dataset, and the validation for each subject was repeated 10 times.

FIGURE 5 | Results of cross-dataset classification for ShallowNet. The model was trained using the row dataset and validated on column datasets. In (A) Results of

ShallowNet without online pre-alignment strategy (w/o OPS) and (B) Results of ShallowNet with online pre-alignment strategy (w/ OPS), the number in each square is

the validation accuracy and the element of main diagonal is the cross-subject accuracy in each dataset showed in Figure 3. (C) The difference between (B) and (A).

that pre-alignment strategy could significantly improve the
performance of deep learning models while no significant
improvement was found in traditional methods. The analysis of

within-subject experiment indicates that deep learning models
can achieve the same performance as traditional methods in
subject-specific classification tasks with enough training data.
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FIGURE 6 | Results of cross-dataset classification for EEGNet. The model was trained using the row dataset and validated on column datasets. In (A) Results of

EEGNet without online pre-alignment strategy (w/o OPS) and (B) Results of EEGNet with online pre-alignment strategy (w/ OPS), the number in each square is the

validation accuracy and the element of main diagonal is the cross-subject accuracy in each dataset showed in Figure 4. (C) The difference between (B) and (A).

Our second analysis considered the feasibility of using deep
learning models to solve cross-subject variability problems.
Leave-one-subject-out cross-validation was carried out on each
dataset. The results of the cross-subject experiment are shown
in Figures 3, 4. The performance of deep learning models
without OPS was significantly higher than the random level.
The results indicate that deep learning models are able to
transfer a pre-trained classifier to a new subject without
additional subject-specific calibration data. We also tested
deep learning models with OPS on eight datasets. Deep
learning models with OPS were significantly better than those
without OPS. The OPS aligns the data of each subject to
the similar distribution, which makes deep learning models
much easier to learn common patterns across subjects. We
also noticed that Cho2017 dataset suffers performance lost
in both deep models with OPS. This may due to different
motor imagery instructions. The authors in Cho et al. (2017)
asked subjects to imagine four sequential finger movements
instead of the clench of fist in other datasets. Imagining
finger movement, which is still an open problem, is much
harder to decode than imagining fist clenching. Besides, we
only used Cz, C3, and C4 channels to decode fist clenching
imagery, which are not sufficient to decode finger movements.
Using more channels around central area may improve the
performance of Cho2017 since they can cover much larger
motorsensory area.

Although deep learning models seem feasible in solving the
cross-subject variability problem as depicted in Figures 3, 4,
we note that deep learning models fail to generalize well in
practice. Our third analysis explored the generalization ability
of deep learning models on large datasets in the cross-dataset

experiment. The results indicate that the cross-dataset variability
problem reduces the generalization ability of deep learning
models. In our second analysis, two models indeed have the
ability to classify trials of a new subject without any calibration
data in the same dataset. However, the pre-trained model
in one dataset is unable to achieve the same performance
on other datasets, which suggests that the model is highly
specialized in its training dataset structure. Similar phenomenon
was reported in paper (Jayaram and Barachant, 2018), where
authors validated the use of traditional methods of different
datasets in within-subject classification experiment. They found
that the significance between algorithms depends on the specific
dataset and results of a single dataset need to be tested on
more datasets.

The reason for cross-dataset variability is still under exploring,
but it may be caused by model overfitting problem. In cross-
dataset classification scenario, a BCI dataset contains two
kinds of variability: physiological variability and environmental
variability. Physiological variability is responsible for the
cross-subject variability while environmental variability is
responsible for the environmental changes. Each dataset
has its own specific configurations, including the amplifier,
the electrode cap, the sampling rate, and the bandpass
filtering settings. Moreover, data of subjects in the same
dataset are acquired in the same laboratory environment.
Deep learning models are usually trained on the data of
all subjects of the same dataset. Since the distribution of
environmental variability is more stable than that of physiological
variability in the same dataset, deep learning models can
easily overfit on the environmental variability. When the pre-
trained model is validated on other datasets, which have
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different distributions of environmental variability, the model
loses its generalization ability since the model is not robust to
environmental changes.

One way to alleviate cross-dataset variability is to add
more subjects from different datasets into the training set.
However, cleaning data is hard due to different settings of
public datasets. Instead of adding more subjects, we use an
online pre-alignment strategy to reduce physiological variability
of each subject without any calibration data. OPS significantly
improves the generalization ability of deep learning models.
Zhou2016 is the dataset with the most significant improvement.
All models trained on other datasets can achieve more than
70% accuracy except for CBCIC2019004. The result is reasonable
since Zhou2016 is a biased dataset in which all subjects are
experienced subjects. We found that the classification accuracies
for some datasets are even higher than their within-subject
classification accuracies (comparing to FBCSP without PS).
For example, for PhysionetMI, nearly all models trained on
other datasets (except CBCIC2019001 and CBCIC2019004) can
achieve more than 60% accuracy, which is higher than its within-
subject accuracy (59%). This finding may suggest that deep
learning models can extract more stable feature representation
than traditional methods. We also found that different datasets
have different impacts on deep learning model training process.
The improvement of CNBCIC2019004 on other test datasets
is limited compared to other training datasets. This may be
due to one drawback of deep learning models. CBCIC2019004,
which only has 480 trials totally, does not have enough data
for training comparing to other datasets. In summary, we
recommend two tips that may be helpful for deep learning based
BCI research:

(1) Use OPS as a preprocessing step.
(2) Collect enough training data.

5. CONCLUSION

In this paper, we have validated deep learning models across
eight MI datasets. The analysis shows that the cross-dataset
variability would reduce the performance of deep learning
models, suggesting the need of validating models on different
datasets for future cross-subject studies. We also proposed the
online pre-alignment strategy to improve generalization ability
of deep learning models. The results demonstrate that deep
learning models with OPS could achieve high performance for
cross-subject classification without the calibration stage.

DATA AVAILABILITY STATEMENT

The datasets for this study, CBCIC2019001 and CBCIC2019004
can be found in the DataFountain website [https://www.
datafountain.cn/competitions/342]. The remaining datasets for
this study can be downloaded with MOABB package [https://
github.com/NeuroTechX/moabb]. The source code for this study
is available on request to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors contributed to manuscript revision, and they read
and approved the submitted version.

FUNDING

This work was supported by the National Key Research and
Development Program of China (No. 2017YFB1300302), the
National Natural Science Foundation of China (No. 61976152,
81630051), the Tianjin Key Technology R&D Program (No.
17ZXRGGX00020), and the Young Elite Scientist Sponsorship
Program by CAST (No. 2018QNRC001).

REFERENCES

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). Filter bak common spatial

pattern (FBCSP) in brain-computer interface? in 2008 IEEE International

Joint Conference on Neural Networks (Hong Kong: IEEE World Congress

on Computational Intelligence), 2390–2397. doi: 10.1109/IJCNN.2008.

4634130

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2010). Riemannian

geometry applied to BCI classification? in Latent Variable Analysis

and Signal Separation, eds V. Vigneron, V. Zarzoso, E. Moreau, R.

Gribonval, and E. Vincent (Berlin, Heidelberg: Springer), 629–636.

doi: 10.1007/978-3-642-15995-4_78

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2011). Multiclass

brain-computer interface classification by Riemannian geometry. IEEE Trans.

Biomed. Eng. 59, 920–928. doi: 10.1109/TBME.2011.2172210

Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. C. (2017). EEG

datasets for motor imagery brain-computer interface. GigaScience 6, 1–8.

doi: 10.1093/gigascience/gix034

Chollet, F. (2017). Xception: deep learning with depthwise separable convolutions,

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (Honolulu, HI), 1251–1258. doi: 10.1109/CVPR.2017.195

Congedo, M., Barachant, A., and Andreev, A. (2013). A new generation of

brain-computer interface based on Riemannian geometry. arXiv preprint

arXiv:1310.8115.

Congedo, M., Barachant, A., and Bhatia, R. (2017a). Riemannian geometry for

EEG-based brain-computer interfaces; a primer and a review. Brain Comput

Interfaces 4, 155–174. doi: 10.1080/2326263X.2017.1297192

Congedo, M., Barachant, A., and Koopaei, E. K. (2017b). Fixed point algorithms

for estimating power means of positive definite matrices. IEEE Trans. Signal

Process. 65, 2211–2220. doi: 10.1109/TSP.2017.2649483

Dai, G., Zhou, J., Huang, J., and Wang, N. (2020). HS-CNN: a CNN with

hybrid convolution scale for EEG motor imagery classification. J. Neural Eng.

17:016025. doi: 10.1088/1741-2552/ab405f

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,

C., et al. (2013). MEG and EEG data analysis with MNE-python. Front.

Neurosci. 7:267. doi: 10.3389/fnins.2013.00267

Grosse-Wentrup, M., and Buss, M. (2008). Multiclass common spatial patterns

and information theoretic feature extraction. IEEE Trans. Biomed. Eng. 55,

1991–2000. doi: 10.1109/TBME.2008.921154

He, H., and Wu, D. (2020). Transfer learning for brain-computer interfaces:

a Euclidean space data alignment approach. IEEE Trans. Biomed. Eng. 67,

399–410. doi: 10.1109/TBME.2019.2913914

Ho, J., Cheng, G., Salehian, H., and Vemuri, B. (2013). Recursive Karcher

expectation estimators and geometric law of large numbers, in Artificial

Intelligence and Statistics (Scottsdale, AZ), 325–332.

Jayaram, V., and Barachant, A. (2018). MOABB: trustworthy

algorithm benchmarking for BCIs. J. Neural Eng. 15:066011.

doi: 10.1088/1741-2552/aadea0

Frontiers in Human Neuroscience | www.frontiersin.org 9 April 2020 | Volume 14 | Article 10379

https://www.datafountain.cn/competitions/342
https://www.datafountain.cn/competitions/342
https://github.com/NeuroTechX/moabb
https://github.com/NeuroTechX/moabb
https://doi.org/10.1109/IJCNN.2008.4634130
https://doi.org/10.1007/978-3-642-15995-4_78
https://doi.org/10.1109/TBME.2011.2172210
https://doi.org/10.1093/gigascience/gix034
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1080/2326263X.2017.1297192
https://doi.org/10.1109/TSP.2017.2649483
https://doi.org/10.1088/1741-2552/ab405f
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1109/TBME.2019.2913914
https://doi.org/10.1088/1741-2552/aadea0
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Xu et al. Cross-dataset Variability in EEG Decoding

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C.

P., and Lance, B. J. (2018). EEGNet: a compact convolutional neural

network for EEG-based brain-computer interfaces. J. Neural Eng. 15:056013.

doi: 10.1088/1741-2552/aace8c

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., and Pfurtscheller, G. (2007).

Brain-computer communication: Motivation, aim, and impact of exploring

a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 473–482.

doi: 10.1109/TNSRE.2007.906956

Lin, Z., Zhang, C., Wu, W., and Gao, X. (2007). Frequency recognition based on

canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng.

54, 1172–1176. doi: 10.1109/TBME.2006.889197

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy,

A., et al. (2018). A review of classification algorithms for EEG-based

brain-computer interfaces: a 10 year update. J. Neural Eng. 15:031005.

doi: 10.1088/1741-2552/aab2f2

Lotte, F., and Guan, C. (2011). Regularizing common spatial patterns to improve

BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58,

355–362. doi: 10.1109/TBME.2010.2082539

Moakher, M. (2005). A differential geometric approach to the geometric mean of

symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26, 735–747.

doi: 10.1137/S0895479803436937

Nakanishi, M., Wang, Y., Chen, X., Wang, Y., Gao, X., and Jung, T.

(2018). Enhancing detection of ssveps for a high-speed brain speller using

task-related component analysis. IEEE Trans. Biomed. Eng. 65, 104–112.

doi: 10.1109/TBME.2017.2694818

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

et al. (2019). “PyTorch: an imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems

32, eds H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc,

E. Fox, and R. Garnett (Curran Associates, Inc.), 8024–8035. Available

online at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf

Pennec, X., Fillard, P., and Ayache, N. (2006). A Riemannian framework for tensor

computing. Int. J. Comput. Vis. 66, 41–66. doi: 10.1007/s11263-005-3222-z

Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G. (2000). Optimal spatial

filtering of single trial EEG during imagined hand movement. IEEE Trans.

Rehabil. Eng. 8, 441–446. doi: 10.1109/86.895946

Reuderink, B., Farquhar, J., Poel, M., and Nijholt, A. (2011). A subject-independent

brain-computer interface based on smoothed, second-order baselining, in 2011

Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (Boston, MA), 4600–4604. doi: 10.1109/IEMBS.2011.6091139

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xdawn algorithm

to enhance evoked potentials: application to brain-computer interface. IEEE

Trans. Biomed. Eng. 56, 2035–2043. doi: 10.1109/TBME.2009.2012869

Rodrigues, P. L. C., Jutten, C., and Congedo, M. (2019). Riemannian procrustes

analysis: Transfer learning for brain-computer interfaces. IEEE Trans. Biomed.

Eng. 66, 2390–2401. doi: 10.1109/TBME.2018.2889705

Samek, W., Vidaurre, C., Muller, K.-R., and Kawanabe, M. (2012). Stationary

common spatial patterns for brain-computer interfacing. J. Neural Eng.

9:026013. doi: 10.1088/1741-2560/9/2/026013

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw,

J. R. (2004). BCI2000: a general-purpose brain-computer interface (BCI)

system. IEEE Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.

827072

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M.,

Eggensperger, K., Tangermann, M., et al. (2017). Deep learning with

convolutional neural networks for EEG decoding and visualization.Hum. Brain

Mapp. 38, 5391–5420. doi: 10.1002/hbm.23730

Tangermann, M., Muller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner,

C., et al. (2012). Review of the BCI competition IV. Front. Neurosci. 6:55.

doi: 10.3389/fnins.2012.00055

Wang, F., Zhong, S.-h., Peng, J., Jiang, J., and Liu, Y. (2018). “Data

augmentation for EEG-based emotion recognition with deep convolutional

neural networks,” in MultiMedia Modeling, eds K. Schoeffmann, T. H.

Chalidabhongse, C. W. Ngo, S. Aramvith, N. E. O’Connor, Y.-S. Ho, M.

Gabbouj, and A. Elgammal (Cham: Springer International Publishing), 82–93.

doi: 10.1007/978-3-319-73600-6_8

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain-computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Xu, M., Xiao, X., Wang, Y., Qi, H., Jung, T., and Ming, D. (2018). A brain-

computer interface based on miniature-event-related potentials induced by

very small lateral visual stimuli. IEEE Trans. Biomed. Eng. 65, 1166–1175.

doi: 10.1109/TBME.2018.2799661

Yair, O., Ben-Chen, M., and Talmon, R. (2019). Parallel transport on the cone

manifold of spd matrices for domain adaptation. IEEE Trans. Signal Process.

67, 1797–1811. doi: 10.1109/TSP.2019.2894801

Yi, W., Qiu, S., Wang, K., Qi, H., Zhang, L., Zhou, P., et al. (2014). Evaluation of

EEG oscillatory patterns and cognitive process during simple and compound

limb motor imagery. PLoS ONE 9:e114853. doi: 10.1371/journal.pone.

0114853

Zanini, P., Congedo, M., Jutten, C., Said, S., and Berthoumieu, Y. (2018).

Transfer learning: a Riemannian geometry framework with applications

to brain-computer interfaces. IEEE Trans. Biomed. Eng. 65, 1107–1116.

doi: 10.1109/TBME.2017.2742541

Zhou, B., Wu, X., Lv, Z., Zhang, L., and Guo, X. (2016). A fully automated trial

selection method for optimization of motor imagery based brain-computer

interface. PLoS ONE 11:e0162657. doi: 10.1371/journal.pone.0162657

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xu, Xu, Ke, An, Liu and Ming. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 10380

https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1109/TNSRE.2007.906956
https://doi.org/10.1109/TBME.2006.889197
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.1137/S0895479803436937
https://doi.org/10.1109/TBME.2017.2694818
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s11263-005-3222-z
https://doi.org/10.1109/86.895946
https://doi.org/10.1109/IEMBS.2011.6091139
https://doi.org/10.1109/TBME.2009.2012869
https://doi.org/10.1109/TBME.2018.2889705
https://doi.org/10.1088/1741-2560/9/2/026013
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1002/hbm.23730
https://doi.org/10.3389/fnins.2012.00055
https://doi.org/10.1007/978-3-319-73600-6_8
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/TBME.2018.2799661
https://doi.org/10.1109/TSP.2019.2894801
https://doi.org/10.1371/journal.pone.0114853
https://doi.org/10.1109/TBME.2017.2742541
https://doi.org/10.1371/journal.pone.0162657
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


ORIGINAL RESEARCH
published: 09 June 2020

doi: 10.3389/fnhum.2020.00173

Frontiers in Human Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 173

Edited by:

Tzyy-Ping Jung,

University of California, San Diego,

United States

Reviewed by:

Erwei Yin,

China Astronaut Research and

Training Center, China

Dong Ming,

Tianjin University, China

*Correspondence:

Suguru Kanoga

s.kanouga@aist.go.jp

Specialty section:

This article was submitted to

Brain-Computer Interfaces,

a section of the journal

Frontiers in Human Neuroscience

Received: 25 February 2020

Accepted: 20 April 2020

Published: 09 June 2020

Citation:

Kanoga S, Hoshino T and Asoh H

(2020) Independent Low-Rank Matrix

Analysis-Based Automatic Artifact

Reduction Technique Applied to Three

BCI Paradigms.

Front. Hum. Neurosci. 14:173.

doi: 10.3389/fnhum.2020.00173

Independent Low-Rank Matrix
Analysis-Based Automatic Artifact
Reduction Technique Applied to
Three BCI Paradigms

Suguru Kanoga 1*, Takayuki Hoshino 1,2 and Hideki Asoh 1

1 Artificial Intelligence Research Center, Department of Information Technology and Human Factors, National Institute of

Advanced Industrial Science and Technology (AIST), Tokyo, Japan, 2Graduate School of Media and Governance, Keio

University, Kanagawa, Japan

Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) can potentially

enable people to non-invasively and directly communicate with others using brain

activities. Artifacts generated from body activities (e.g., eyeblinks and teeth clenches)

often contaminate EEGs and make EEG-based classification/identification hard.

Although independent component analysis (ICA) is the gold-standard technique for

attenuating the effects of such contamination, the estimated independent components

are still mixed with artifactual and neuronal information because ICA relies only on

the independence assumption. The same problem occurs when using independent

vector analysis (IVA), an extended ICA method. To solve this problem, we designed

an independent low-rank matrix analysis (ILRMA)-based automatic artifact reduction

technique that clearly models sources from observations under the independence

assumption and a low-rank nature in the frequency domain. For automatic artifact

reduction, we combined the signal separation technique with an independent component

classifier for EEGs named ICLabel. To assess the comparative efficiency of the proposed

method, the discriminabilities of artifact-reduced EEGs using ICA, IVA, and ILRMA

were determined using an open-access EEG dataset named OpenBMI, which contains

EEG data obtained through three BCI paradigms [motor-imagery (MI), event-related

potential (ERP), and steady-state visual evoked potential (SSVEP)]. BCI performances

were obtained using these three paradigms after applying artifact reduction techniques,

and the results suggested that our proposed method has the potential to achieve

higher discriminability than ICA and IVA for BCIs. In addition, artifact reduction using the

ILRMA approach clearly improved (by over 70%) the averaged BCI performances using

artifact-reduced data sufficiently for most needs of the BCI community. The extension

of ICA families to supervised separation that leaves the discriminative ability would

further improve the usability of BCIs for real-life environments in which artifacts frequently

contaminate EEGs.

Keywords: electroencephalogram, brain–computer interface, independent component analysis, artifact reduction,

independent low-rank matrix analysis
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1. INTRODUCTION

An electroencephalogram (EEG)-based brain–computer
interface (BCI) is a well-established technology that enables
communicating with others without performing actual body
movements by finding specific brain activity patterns from
EEGs and converting these into predefined commands (Wolpaw
et al., 2002). Several paradigms are used for eliciting robust
time-independent or -dependent potentials in EEGs, such
as motor imagery (MI) (Pfurtscheller and Da Silva, 1999),
event-related potential (ERP) (Squires et al., 1976), and steady-
state visual evoked potential (SSVEP) (Regan, 1966). Along
with these paradigms, developments in machine-learning-
based classifiers/identifiers have contributed to improvements
in finding specific (elicited) patterns. These paradigms, in
combination with signal processing modules and emerging
technologies (e.g., wearable sensing, mobile computing, and
virtual/augmented reality), have attracted increasing attention
in many domains, such as medicine and robotics for real-world
applications (Wang et al., 2018; Ogino et al., 2019; Vourvopoulos
et al., 2019).

Artifact potentials must be reduced in all EEGs in order
to realize robust real-world BCI applications because
strong artifact contamination effects can easily reduce BCI
performances (Kanoga et al., 2019b). During EEGmeasurements
in real environments, biological artifacts like muscular and
ocular ones cannot be avoided because it is difficult for people
to voluntarily control the number of their artifact-generating
activities. For example, healthy adult males blink ∼20 times
per minute (i.e., once every ∼3 s) to maintain the moisture
of their eyes (Karson, 1983). Most BCI paradigms provide
visual stimuli or cues for eliciting specific neuronal patterns,
and the abovementioned artifacts could contaminate the
resulting EEGs. Further, muscular and ocular artifacts will
contaminate all EEGs as long as the scalp has some conductivity.
These unavoidable artifacts have high-amplitude electrical
potentials and overlapping frequency characteristics compared
to EEGs (Halliday et al., 1998; Hagemann and Naumann,
2001); thus, contamination by such artifacts makes EEG-
based classification/identification hard. These contamination
effects can be attenuated by increasing the distance from the
source (Kanoga et al., 2016).

For denoising the contamination effects in EEG analysis,
the well-known and powerful blind source separation (BSS)
technique based on independent component analysis (ICA) has
been widely used for the last 20 years (Jung et al., 2000).
Usually, artifact reduction involves three steps: (1) training
a demixing matrix, (2) identifying the types of separated
independent components (ICs), and (3) remixing EEGs by
using only neuronal ICs and an inverse demixing matrix.
To improve both the computational cost and the accuracy
of training a demixing matrix, many ICA algorithms, such
as fast ICA (Hyvärinen and Oja, 1997), second-order blind
interference (SOBI) (Belouchrani et al., 1997), and information
maximization (infomax) ICA (Bell and Sejnowski, 1995), have
been proposed. The SOBI and infomax ICA algorithms are used
most commonly for EEG signal processing (Choi et al., 2005;

Urigüen and Garcia-Zapirain, 2015). For example, EEGLAB, an
enormous interactive toolbox for EEG analysis, implements the
infomax ICA algorithm (Delorme and Makeig, 2004). Recently,
ICLabel (Pion-Tonachini et al., 2019), an automatic IC classifier,
has been integrated into the EEGLAB toolbox for online
streaming EEG data. Overall, an ICA-based approach remains the
gold-standard for artifact reduction.

While real-world EEG-based BCI applications are being
developed steadily, ICA-based source estimation still poses
some problems. ICA algorithms comprehensively minimize the
reconstruction error with a linear combination for an entire
sequence of trials. However, this approach overestimates sources
for representing the latent waveform of an observation; thus, the
estimation leads to oversubtraction or spectral distortion of the
EEG power (Wallstrom et al., 2004; Castellanos and Makarov,
2006). Proposing a more rigorous representation of estimated
sources than ICA is a major challenge in EEG signal processing
for constructing effective classifiers/identifiers.

To represent meaningful waveforms from an observation,
we focused on the recurrent properties of an artifactual
waveform over trials. Biological artifacts are based on a
person’s organ structure. An organ system reproducibly and
unconsciously activates a non-cerebral source (e.g., eyeball) in
the same manner and generates similar electrical potentials (e.g.,
electrooculogram signals); therefore, person-specific artifacts
share a few basic functions for representing the waveforms
and can be considered low-rank matrices comprising multiple
short time segments. This study represents and removes such
waveforms using an independent low-rank matrix analysis
(ILRMA) that finds a low-rank non-negative matrix based on
statistical independence (Kitamura et al., 2016). To improve its
usability for EEG analysis, we used ICLabel for artifact reduction.
We investigated the discriminabilities of artifact-reduced EEGs
obtained by different methods by using OpenBMI, an open-
access EEG dataset that contains EEG data, through the three
abovementioned BCI paradigms (MI, ERP, and SSVEP). The BCI
performances with these three paradigms after applying artifact
reduction techniques were obtained. The results suggest that the
proposed method can potentially achieve higher discriminability
than ICA for BCIs.

2. ARTIFACT REDUCTION TECHNIQUES

2.1. Mixing and Demixing of EEGs
A typical approach to artifact reduction in EEG observations is
based on the following assumption: P-channel EEG observations
are overdetermined/determined and linear combinations of
unknown cerebral Q sources including artifactual and neuronal
ones and white noises. Neuronal cells have limited propagation
because the cortical connectivity is highly weighted toward short
(< 500 µm) connections (Budd and Kisvárday, 2001). Thus,
the electrical potentials of neuronal activities spread through a
contiguous cortical region with a high attenuation penalty in
proportion with the distance from the sources (Arieli et al.,
1996; Onton and Makeig, 2006). By matching the underlying
dynamics of the generation and propagation of EEG potentials,
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the aforementioned assumption can be represented as

x(n) = As(n)+ d(n), (1)

where x(n) = [x1(n), x2(n), . . . , xP(n)]
T is the EEG

observation at the nth sampling point (1 ≤ n ≤ N),
s(n) = [s1(n), s2(n), . . . , sQ(n)]

T is the unknown source,
A is the P × Q full-rank unknown mixing matrix, and
d(n) = [d1(n), d2(n), . . . , dP(n)]

T is the additive zero-mean
noise (T indicates the transpose).

Here, we have only an artifact-(un)contaminated EEG
observation matrix X = [x(1), . . . , x(N)] ∈ R

P×N . Because
source estimation through the inverse process is evidently
intractable, four additional assumptions are made (James and
Hesse, 2004; Vigario and Oja, 2008): (1) the noise is spatially
uncorrelated with the observed data (E[As(n)d(n)] = 0, where
E[·] is the expectation operator); (2) the noise is temporally
uncorrelated (E[d(n)d(n + τ )] = 0, where τ is the lag
time (∀τ > 0)); (3) the number of sources is equal to or
lower than the number of observations (P ≥ Q); and (4)
the mixing matrix A does not change over time. Under these
assumptions, we can simultaneously estimate both the source
matrix Ŝ = [ŝ(1), . . . , ŝ(N)] ∈ R

Q×N and the demixing matrix
W(= A−1) ∈ R

Q×P to blindly separate the observations into
artifactual/neuronal sources:

ŝ(n) =Wx(n). (2)

The linear mixing and demixing of EEGs shown in Figure 1

accounts for the comprehensive demixing matrix W(= W1W2)
because signal separation algorithms sometimes first decorrelate
the data by W1 and then demix them by W2, which is originally
learned from the algorithm. In this study, we decorrelated the

data before applying a matrix factorization technique; thus, the
following representation of W has the same meaning as W2 in
Figure 1.

In practice, artifact reduction requires three stages of
processing: (1) decomposing the input matrix; (2) identifying
whether the decomposed component is artifactual or neuronal;
and (3) reconstructing the artifact-reduced signals using only
neuronal components. In this case, we assumed that the EEG
observations are labeled signals; the dimensionality of the sources
and observations is the same (the value of P and Q is 20, 32,
or 10 for MI, ERP, or SSVEP paradigm. The value depends on
the number of selected channels in the BCI paradigm. More
detailed information is described in sections 3.1, 3.2, and 3.3).
In addition, we decomposed datasets using three BSS methods
for ICA families: ICA, independent vector analysis (IVA), and
ILRMA. Then, the decomposed components were automatically
identified using the ICLabel function in the EEGLAB toolbox
proposed by Pion-Tonachini et al. (2019). Based on the labels,
artifact-reduced signals were linearly reconstructed.

Although ICA algorithms handle time-series data, IVA
and ILRMA algorithms approximate a bin-wise instantaneous
mixturemodel in a short-time Fourier transform (STFT) domain.
An EEG time series is transformed into a sequence of complex-
valued signals by using STFT with a 50% overlapped 1-s
Hamming window. Thus, the observations and sources in each
time-frequency slot are described as xij = [xij1, xij2, . . . , xijP]

T
∈

C
P and ŝij = [ŝij1, ŝij2, . . . , ŝijQ]

T
∈ C

Q, where a couple of
(i, j) defines the ith frequency bin and jth time frame over STFT
(1 ≤ i ≤ I and 1 ≤ j ≤ J). IVA and ILRMA algorithms assume
the following mixing system:

xij = Ai sij, (3)

FIGURE 1 | Linear mixing and demixing of EEGs (Kanoga and Mitsukura, 2017).
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where Ai = [ai1, ai2, . . . , aiQ]
H
∈ C

P×Q is a frequency-wise
mixing matrix (aiq is the steering vector for the qth source, and

H

indicates the Hermitian transpose). In this paper, we set the value
of time length to 1 s because some frequency-domain artifact
reduction techniques translate EEG data into STFT domain based
on 1-s windows (Kanoga and Mitsukura, 2014; Mohammadpour
and Rahmani, 2017) and ILRMA showed its high separation
accuracy for 1-s time length data (Kitamura et al., 2017). This
mixing system is the rank-1 spatial model (Duong et al., 2010);
thus, the relationships between observations and sources can
be represented:

ŝij ≈ yij =W i xij, (4)

where yij = [yij1, yij2, . . . , yijQ]
T
∈ C

Q is the STFT of the

estimated signals andW i = [wi1,wi2, . . . ,wiQ]
H
= Ai

−1
∈ C

Q×P

is the demixing matrix. Note that the demixing matrices for IVA,
ILRMA, and ICA have different dimensionalities because of the
differences in the domain used (IVA and ILRMA: W ∈ R

Q×P×I ,
ICA:W ∈ R

Q×P).

2.2. Matrix Factorization Techniques
2.2.1. Independent Component Analysis
ICA is the most famous classical method for separating
multichannel EEG observations x(n) into statistically
independent sources ŝ(n) based on an estimated demixing
matrix W (Jung et al., 2000; Delorme et al., 2007). The sources
can be said to be statistically independent when the following
relationship holds:

p(ŝ) =

Q
∏

q=1

p(ŝq), (5)

where p(ŝ) and p(ŝq) are the joint and the marginal probability
distribution of the sources, respectively. Thus, ICA algorithms
optimize the demixing matrixW by minimizing the dependence
between these distributions. This study applied the extended
infomax ICA algorithm implemented by Lee et al. (1999) using
the runica function in EEGLAB to the observations. In this
algorithm, the dependence in the distributions is represented as
the mutual information (Kullback–Leibler distribution) between
the estimated sources and observations I(ŝ; x):

I(ŝ; x) = H(ŝ)−

Q
∑

q=1

H(ŝq), (6)

where

H(ŝ) = −

∫

p(ŝ) log p(ŝ)dŝ, (7)

H(ŝq) = −

∫

p(ŝq) log p(ŝq)dŝq. (8)

By applying the relationship p(x) = p(ŝ)/| detW| to Equation (7),
Equation (6) can be rewritten as a cost function for optimizing

the demixing matrix:

I(W) = const.−

Q
∑

q=1

H(ŝq)− log | detW|. (9)

The entropy of given observations H(x) is a constant.
In addition, a gradient update rule based on the natural
gradient (Amari, 1998) with learning rate η is used to solve the
optimization problem:

W ←W + η1W, (10)

where

1W = (I − E[ϕ(ŝ)ŝT])W. (11)

In every iteration, the distribution of the estimated source for the
score function ϕ(ŝq) is chosen from the super-Gaussian or sub-
Gaussian based on the sign of the fourth cumulant of each source

c4 = M4 − 3M2
2 , whereMk is the kth moment (Mk = E[ŝkq]).

ϕ(ŝq) = −(ŝq + sgn(c4)tanh(ŝq)). (12)

In a real environment, the expectation operator E[·] is the
expected value of the empirical distribution (the sample average
of the variable).

2.2.2. Independent Vector Analysis
IVA is an extension of the ICA algorithm to multivariate
components (vectorized signals) (Hiroe, 2006; Kim et al., 2006b).
Like ICA algorithms, IVA defines the dependence between
joint probability distributions and marginal probability products
using the Kullback–Leibler divergence; however, it introduces
a vector density model that has a variance dependency within
a source vector. This study applied the natural-gradient-based
IVA algorithm implemented by Kim et al. (2006b) based on
the ivabss function from an open-access toolbox available on
Github (https://github.com/teradepth/iva).

Two conditions are assumed: (1) elements of a source vector
are mutually independent of those of other source vectors; and
(2) within a source vector, the elements are highly dependent
on each other. Based on these assumptions, the cost function for
multivariate random variables to separate the components from
the observations can be written as

I(W) = const.−

Q
∑

q=1

H(ŝq)−

I
∑

i=1

log | detW i|. (13)

The cost function preserves the inherent dependency within
each source vector, though it removes the dependency between
different source vectors.

By differentiating the object function with respect to the
coefficients of demixing matrices W i and using the natural
gradient, we can derive a gradient update rule as

1W i ←W i + η1W i, (14)
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where

1W i = (I − E[ϕi(ŝ1, . . . , ŝI)ŝ
⋆
i )]W i, (15)

where a⋆ denotes the complex conjugate of a. Among a number
of possible function forms, one of the simplest and most effective
score functions is given as follows:

ϕi(ŝ1, . . . , ŝI) =
ŝi

√

∑I
i=1 |ŝi|

2
(16)

To define an optimal form of the function p(ŝq), which has
dependency within a source vector, IVA algorithms introduce a
vector density model as a scale mixture of a Gaussian distribution
with a fixed mean and a variable variance (Kim et al., 2006a):

p(ŝq) =

I
∏

i=1

p(ŝiq) = α

I
∏

i=1

exp

(

−

√

(ŝiq − µiq)
†
6iq
−1(ŝiq − µiq)

)

(17)
where α is a normalization term, µiq and 6iq are respectively the
mean vector and covariance matrix of the qth source signal in the
ith frequency bin, and a† is the conjugate transpose of a.

2.2.3. Independent Low-Rank Matrix Analysis
The ILRMA method unifies IVA and non-negative matrix
factorization (Lee and Seung, 1999; Sawada et al., 2013) by
considering the determined situation (P = Q) and a linear
time-invariant mixing system (Kitamura et al., 2016). This study
applied the ILRMA algorithm implemented by Kitamura et al.
(2016) using the ILRMA function from an open-access toolbox
available on Github (https://github.com/d-kitamura/ILRMA).
The algorithm estimates both the demixing matrix W i and the
STFT of the estimated signals yij by approximately decomposing

|yijq|
2 into the non-negative elements tik and vkj of the basis

matrix Tq ∈ R
I×K and the activation matrix Vq ∈ R

K×J with a
latent variable zqk of the partitioning function Z, which indicates
whether or not the kth basis (1 ≤ k ≤ K) belongs to the
qth source. For the decomposition, the ILRMA algorithm has the
following cost function:

I(W) =
∑

ij

{

∑

q

log
∑

k

zqktikvkj +
∑

q

|yijq|
2

∑

k zqktikvkj
− 2 log | detW i|

}

,

(18)

where yijq = wiq
Hxij. The cost function finds a low-

rank time-frequency structure for sources using the first and
second terms in Equation (18) and maximizes the statistical
independence between sources using the second and third terms
in Equation (18).

In this algorithm, the demixing matrix W i can be efficiently
updated through iterative projection based on the auxiliary
function technique (Ono, 2011):

Viq =
1

J

∑

j

1

rijq
xijx

H
ij , (19)

wiq ← (W iViq)
−1eq, (20)

wiq ← wiq(w
H
iqViqwiq)

−
1
2 , (21)

where rijq is the estimated variance of each source under the
complex Gaussian distribution and eq, a unit vector in which
the qth element is equal to unity. These update rules have been
reported to be faster and more stable than conventional update
rules (e.g., natural gradient). After the update, the separated
signal yij is also updated:

yijq← wH
iqxij. (22)

In addition, the basis matrix Tq, activation matrix Vq, and
partitioning function Z can be updated by the majorization-
minimization algorithm (Hunter and Lange, 2000):

zqk ← zqk

√

√

√

√

∑

ij |yijq|
2tikvkj(

∑

k′ zqk′ tik′vk′j)
−2

∑

ij tikvkj(
∑

k′ zqk′ tik′vk′j)
−1

, (23)

tik ← tik

√

√

√

√

∑

jq |yijq|
2zqkvkj(

∑

k′ zqk′ tik′vk′j)
−2

∑

jq zqkvkj(
∑

k′ zqk′ tik′vk′j)
−1

, (24)

vkj ← vkj

√

√

√

√

∑

iq |yijq|
2zqktik(

∑

k′ zqk′ tik′vk′j)
−2

∑

iq zqktik(
∑

k′ zqk′ tik′vk′j)
−1

. (25)

Finally, the estimated source model is represented as

rijq =
∑

k

zqktikvkj. (26)

Note that the demixing matrix W i and the estimated variance
rijq are normalized at each iteration to avoid the risk of diverging
as follows:

λq =

√

√

√

√

1

IJ

∑

ij

|yijq|2, (27)

wiq ← wiqλ
−1
q , (28)

yijq← yijqλ
−1
q , (29)

rijq← rijqλ
−2
q . (30)

The number of bases for all sources K and number of iterations
were set to J/10 and 200, respectively.

2.3. Component Identification
For identifying the estimated ICs obtained from ICA, IVA, and
ILRMA, we used the ICLabel (https://github.com/sccn/ICLabel)
classifier proposed by Pion-Tonachini et al. (2019) (freely
available as a package in EEGLAB; Delorme and Makeig, 2004;
Delorme et al., 2011). This classifier uses three artificial neural
networks (ANNs) (specifically, two “Classifier” networks and
one “Generator” network): (1) a convolutional neural network
(CNN) optimized by an unweighted cross-entropy loss, (2) a
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CNN optimized by a weighted cross-entropy loss and neuronal
IC classification errors, and (3) a semi-supervised learning
generative adversarial network (SSGAN) (Odena, 2016; Salimans
et al., 2016). The ICLabel classifier inputs, architectures, and
training paradigms are described in detail in Appendices B and
E in Pion-Tonachini et al. (2019). By using these three ANNs and
the three IC features, the ICLabel classifier classified unlabeled
EEG ICs into seven categories: (1) brain, (2) muscle, (3) eye,
(4) heart, (5) line noise, (6) channel noise, and (7) others. In
this study, because of the property of the epoch identification
method described in section 4, we removed ICs whose labels
were “muscle” or “eye.” Currently, the ICLabel classifier has been
trained using 6352 EEG recordings in storage drives collected
over the past 15 years at Swartz Center for Computational
Neuroscience (SCCN) at UC San Diego.

To accurately identify IC labels using the ICLabel classifier,
three discriminable features were calculated from each IC: (1)
32 × 32 pixel scalp topography using the topoplot function
in EEGLAB, (2) median power spectral densities (PSDs) from 1
to 50 Hz using a variation of the Welch method (Welch, 1967),
and (3) the autocorrelation function. The scalp topographies and
PSDs were scaled such that each had a maximum absolute value
of 0.99. Further, the autocorrelation vectors were normalized
such that the zero-lag value was 0.99. Note that the estimated
mixing matrix (W−1), channel locations in 3D space, and
channel labels were required to generate the scalp topographies.
We collected information about the channel locations in 3D
space from the sample_locs folder in EEGLAB toolbox. In
addition, the estimated demixing matrix has a 3D structure
except for ICA; thus, the corresponding frequency band (e.g.,
8–30 Hz) was extracted from whole frequency bins, and the
summation was computed to transform the matrix into a 2D
structure. Furthermore, the matrix was scaled by the number of
extracted frequency bins.

2.4. Signal Reconstruction
By performing the identification process using ICLabel, labels
are obtained for the estimated ICs. If the label is “eye” or
“muscle,” all components of the artifactual IC are set to zeros.
Based on the modified sources, artifact-reduced EEG signals in
EEG observations were reconstructed using the inverse linear
demixing process in ICA. While applying IVA and ILRMA, the
sources were translated into frequency components. Thus, all
frequency components of the artifactual ICs were set to zeros and
translated into time-series data by the inverse STFT. Then, the
artifact-reduced EEG signals were reconstructed, and the inverse
ICA linear demixing process was performed.

3. MATERIALS AND BASELINE METHODS

To assess the discriminability of artifact-reduced EEGs by ICA,
IVA, and ILRMA, we downloaded an open-access EEG dataset
published by Lee et al. (2019) from the webpage http://gigadb.
org/dataset/view/id/100542/File_page. The EEG data were
recorded using 62 electrodes according to the International 10-
20 system using BrainAmp (Brain Products; Munich, Germany)
with a sampling rate of 1,000 Hz. In the analysis procedures, we

commonly downsampled all EEG data to 100 Hz. The reference
and ground channels were nasion and AFz, respectively. The
impedance of the EEG electrodes was maintained below 10 k�.
Participants were instructed to comfortably sit in a chair with
armrests ∼60 cm in front of a 21-inch LCD monitor (refresh
rate: 60 Hz; resolution: 1, 600 × 1, 200). In addition, they were
asked to relax their muscles and minimize their eye and muscle
movements during the BCI paradigms. Before beginning the
experiments, five kinds of 10-s artifact-contaminated EEG data
were measured: (1) eye blinking, (2) repetitive horizontal eye
movements, (3) repetitive vertical eye movements, (4) teeth
clenching, and (5) flexing both arms.

The dataset has the following three properties: (1) a large
number of subjects (54 healthy participants; 29 males and 25
females; age: 24–35 years), (2) multiple sessions (two sessions
on different days), and (3) multiple paradigms (a binary-class
MI, a 36-symbol ERP, and a four-target-frequency SSVEP).
Each session consisted of training and testing phases. All BCI
paradigms were developed based on the OpenBMI toolbox (Lee
et al., 2016) and Psychtoolbox (Brainard, 1997). We used this
dataset because (1) EEGs in the three BCI paradigms were
collected from the same participants, (2) each paradigm was
conducted for 2 days, and (3) baseline analysis methods based on
Matlab functions in the OpenBMI toolbox (https://github.com/
PatternRecognition/OpenBMI) are available. A single dataset
having all these properties is very important for fairly comparing
algorithms to reveal general performances with intra- and inter-
subject/paradigm variabilities in BCI research. To verify the
change in the discrimination accuracy with artifact-reduced
EEGs, the baseline analysis methods, including feature extraction
and classification algorithms for each paradigm described in Lee
et al. (2019), were used. Each paradigm and processing stream are
described in detail in the following subsections.

3.1. MI Paradigm and Processing
The MI paradigm was designed based on a well-established
protocol (Pfurtscheller and Neuper, 2001): a training/testing
phase had 100 trials with 50 right and 50 left hand motion
imagery tasks resulting in binary classification. Each trial lasted
13 ± 1.5 s. In the first 3 s, a black fixation cross appeared at the
center of the monitor. After the preparation time, the participant
imagined a right or left grasping motion for 4 s depending on
whether a right arrow or left arrow was displayed, respectively,
and then remained in the resting state for 6 ± 1.5 s.

In the MI paradigm, 20 electrodes in the motor cortex region
(FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6) were
selected. The EEG data of the selected channels were band-pass
filtered between 8 and 30 Hz through a fifth order Butterworth
filter and further segmented into 2.5-s epochs, which are data
segments of 1.0 to 3.5 s after the cue onsets (Pfurtscheller and
Neuper, 2001; Fazli et al., 2009). We applied the filter bank
common spatial pattern (FBCSP) to the epochs, which has been
widely used in MI-based BCIs to maximize the discrimination of
the binary class (Ang et al., 2008). A subset of the top and bottom
two rows from the projection matrix was used for calculating
log-variance features. Based on the features, linear discriminant
analysis (LDA) classifiers were constructed and used.
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3.2. ERP Paradigm and Processing
The ERP paradigm was designed based on a typical row-
column speller system with random-set presentation (Yeom
et al., 2014) and face stimuli (Kaufmann et al., 2011). The
six rows and six columns were configured with 36 symbols
(alphabets A to Z, numerals 1 to 9, and underscore “_”). Each
trial sequence lasted 19.5 s. In the first 4.5 s, a target character
was highlighted for attracting the participant’s attention. After
the preparation time, all rows and columns were flashed
one by one (12 stimulus flashes) for 13 s and then remained
in the resting state for 2 s. The stimulus-time interval was
set to 80 ms and the interstimulus interval (ISI) to 135 ms.
The highlighted target character was estimated based on
data of five sequences (i.e., 60 flashes). In the training phase,
participants were asked to copy the 33 characters including
spaces in “NEURAL_NETWORKS_AND_DEEP_LEARNING”
by gazing at the target character on the monitor, resulting
in 1980 trials and binary classification (target or non-
target character). In the testing phase, participants
tried to copy the 36 characters including spaces in
“PATTERN_RECOGNITION_MACHINE_LEARNING,”
resulting in 2,160 trials.

In the ERP paradigm, 32 electrodes (Fp-1/2, F-7/3/z/4/8, FC-
5/1/2/6, T-7/8, C-3/z/4, TP-9/10, CP-5/1/2/6, P-7/3/z/4/8, PO-
9/10, and O-1/z/2) were selected. The EEG data of the selected
channels were band-pass filtered between 0.5 and 40 Hz through
a fifth order Butterworth filter and then baseline-corrected by
subtracting the average amplitudes of the prestimulus within
an interval of 200 ms with respect to the stimulus onset. In
addition, 0.8-s epochs after the onset were extracted for analysis.
From the epochs, the mean amplitudes (MAs) over eight non-
overlapping samples were calculated as the 320-dimensional
subject-dependent spatio-temporal features (10 dimensions,
32 channels). Based on the features, LDA classifiers were
constructed and used.

3.3. SSVEP Paradigm and Processing
The SSVEP paradigm was designed based on general
requirements for SSVEP-based BCIs that run over four
specific commands (Parini et al., 2009). Four flickers at 5.45,
6.67, 8.57, and 12 Hz were displayed at four positions (down,
right, left, and up) on a monitor. Each target frequency was
presented 25 times for both the training and the testing phases,
resulting in four target identification problems. Each trial lasted
10 s. In the first 4 s, the participant gazed in the box where the
target was highlighted (not flickering) in a different color, and
the target flicker was then presented for 4 s with an ISI of 6 s to
induce the target SSVEP.

In the SSVEP paradigm, 10 electrodes in the occipital region
(P-7/3/z/4/8, PO-9/10, and O-1/z/2) were selected. The EEG data
of the selected channels were segmented into 2-s epochs with
respect to the stimulus onset. We applied multichannel canonical
correlation analysis (CCA) (Lin et al., 2006) for identifying
the target frequency index by calculating the correlation values
between the input data and the prepared sinusoidal templates
of the corresponding frequencies (5.45, 6.67, 8.57, and 12 Hz).
Although this identification process does not need training data

owing to the use of an unsupervised classifier, only data from the
testing phase were used for evaluating the BCI performance.

4. ASSESSMENTS

In this study, we assumed that artifact-reduced epochs
are correctly classified if the artifact reduction technique
effectively reduced artifactual effects from artifact-contaminated
epochs. However, we do not know how many epochs of the
aforementioned paradigms were contaminated by artifacts
because the open-access EEG dataset does not provide such
information. Empirically, it is difficult to completely avoid the
generation of biological artifacts during EEG paradigms. Thus,
we expected that some epochs were contaminated by some
artifacts during each BCI paradigm. To identify the type of epoch
(not artifact-contaminated or artifact-contaminated), we applied
the detection of events in continuous time (DETECT) epoch
identification method proposed by Lawhern et al. (2013); this
method requires training data with clean and artifactual label
information to make a multiclass SVM model (https://github.
com/VisLab/detect). Usually, training data has a short time
length (e.g., less than 5 s). Thus, in this study, 10 1-s no artifact-
contaminated EEG data detected based on a manual inspection
and extracted from the training phase of each BCI paradigm as
“clean” epochs and five types of 10-s EEG data contaminated
by artifacts, such as eye blinking, horizontal/vertical eye
movements, teeth clenching, and flexing both arms, were
prepared as “artifactual” epochs because these are well-known to
generate ocular/muscular artifacts during EEG measurements.
For training an SVM model, each 10-s-length artifactual data
was separated into 10 1-s-length data without overlapping.
Based on the 60 1-s epochs (10 1-s epochs × 6 classes), a 6-class
SVM model was constructed. Note that segmented epochs of
the BCI paradigms have different time length (i.e., MI: 2.5,
ERP: 0.8, and SSVEP: 2.0 s). To apply DETECT based on a
processing strategy for 1-s-length data, we extracted first 1-s data
from the “clean” epochs if the target BCI paradigm was MI or
SSVEP. For the epochs of the ERP paradigm, 0.2-s data before
the stimulus onsets were concatenated to the “clean” epochs.
Then, autoregressive features were extracted from the epochs to
construct a multiclass SVM classifier of each BCI paradigm. The
classifier and hard thresholding for the estimated artifactual class
(certainty value obtained using the DETECT toolbox was over
0.5 or not) finally identified each epoch as being clean or artifact
contaminated. Table 1 lists the identification results. In all
paradigms, data recorded in session 2 (day 2) had less artifactual
data than data recorded in session 1 (day 1). In the MI and ERP
paradigms, the number of artifactual data recorded in day 2 was
significantly lower than data recorded in day 1 (p = 0.001, 0.009
for MI and ERP paradigms in t-test). However, in the SSVEP
paradigm, the number in day 2 was not significantly lower
(p = 0.172 in t-test). Note that we identify the epoch is neuronal
unless a certainty value of all classes exceeded the hard threshold;
thus, the thresholding process found an explicit artifactual class
over 6 class labels. If the certainty values distributed throughout
all classes and no one did not exceed the threshold, this modest
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TABLE 1 | Number of artifact-contaminated epochs in training and testing phases of each BCI paradigm and subject.

Subject MI ERP SSVEP

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

Train Test Train Test Train Test Train Test Train Test Train Test

s1 6 2 8 6 149 330 (36) 80 215 (33) 3 2 0 1

s2 2 0 0 1 95 5 (5) 38 115 (25) 0 0 0 0

s3 1 0 7 10 158 62 (20) 17 14 (9) 14 10 1 2

s4 0 0 0 0 32 34 (14) 7 10 (4) 9 18 0 0

s5 4 4 7 5 0 0 (0) 395 282 (25) 19 11 14 8

s6 4 2 4 3 159 113 (24) 171 146 (29) 25 26 5 6

s7 21 30 6 8 75 200 (25) 52 21 (10) 8 7 4 4

s8 2 0 4 1 427 325 (32) 35 87 (22) 3 2 9 5

s9 0 0 9 2 43 73 (24) 145 99 (25) 1 9 0 1

s10 0 2 0 0 94 15 (6) 61 78 (20) 0 0 2 4

s11 5 4 0 0 50 56 (15) 16 47 (17) 0 0 0 0

s12 0 16 2 6 75 94 (22) 98 185 (31) 0 1 1 7

s13 1 0 1 1 131 212 (29) 139 103 (26) 6 3 3 1

s14 1 0 2 1 18 35 (11) 234 190 (32) 4 6 13 22

s15 3 20 0 1 25 19 (11) 48 7 (5) 1 1 3 16

s16 0 2 13 10 492 322 (33) 113 92 (19) 0 0 8 9

s17 27 36 4 6 232 187 (30) 263 267 (34) 1 1 15 21

s18 1 11 13 9 166 404 (31) 92 122 (29) 3 2 2 4

s19 1 8 2 7 159 300 (33) 36 169 (30) 7 15 2 3

s20 0 7 1 1 236 240 (34) 112 323 (35) 2 2 1 2

s21 31 30 0 0 69 84 (29) 268 129 (26) 15 9 3 5

s22 2 8 2 0 131 128 (32) 11 48 (18) 9 2 0 1

s23 0 0 9 0 141 194 (29) 160 227 (26) 0 36 1 1

s24 0 1 8 4 65 106 (27) 87 158 (31) 2 1 1 5

s25 3 11 6 2 184 122 (24) 14 59 (15) 2 2 8 4

s26 0 1 0 0 447 552 (36) 196 265 (32) 20 22 7 6

s27 3 12 1 1 172 312 (34) 150 346 (32) 1 5 11 14

s28 2 6 0 0 93 63 (21) 37 52 (19) 6 4 2 1

s29 8 20 2 4 32 159 (25) 101 27 (9) 3 4 3 3

s30 3 9 4 0 141 171 (34) 38 30 (14) 0 1 0 0

s31 7 3 0 1 33 82 (23) 25 60 (29) 0 0 1 0

s32 33 67 0 2 122 339 (33) 80 32 (13) 13 34 19 21

s33 0 1 4 0 119 52 (17) 107 59 (15) 0 2 1 2

s34 32 18 8 19 254 181 (33) 142 441 (35) 13 21 18 16

s35 7 2 0 3 35 41 (13) 135 82 (22) 1 0 11 18

s36 3 2 6 17 178 189 (34) 110 159 (32) 3 4 0 4

s37 5 15 0 1 353 557 (36) 2 2 (1) 6 4 0 2

s38 11 8 0 0 194 119 (29) 53 29 (10) 17 11 11 11

s39 21 32 2 0 111 55 (22) 0 37 (11) 1 3 2 6

s40 1 2 1 0 145 206 (33) 11 56 (16) 31 26 3 7

s41 0 2 4 9 107 101 (28) 137 265 (31) 5 6 2 2

s42 0 0 9 10 121 191 (31) 35 62 (19) 10 15 10 2

s43 0 0 9 7 148 290 (35) 11 13 (7) 2 13 0 0

s44 3 7 3 13 293 392 (35) 32 76 (25) 10 7 7 0

s45 27 13 0 0 160 270 (34) 19 52 (19) 1 4 1 0

s46 0 1 6 11 226 307 (35) 52 175 (34) 1 4 2 4

s47 3 5 2 1 261 438 (36) 159 319 (36) 7 6 1 5

s48 6 1 0 2 25 52 (18) 41 35 (13) 2 5 20 12

(Continued)
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TABLE 1 | Continued

Subject MI ERP SSVEP

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

Train Test Train Test Train Test Train Test Train Test Train Test

s49 3 10 6 8 104 54 (15) 54 22 (7) 14 8 1 1

s50 23 48 4 9 48 229 (24) 2 0 (0) 0 0 5 6

s51 9 9 3 1 354 170 (31) 136 173 (29) 0 3 3 1

s52 0 0 2 1 20 74 (23) 57 139 (31) 3 8 0 2

s53 2 2 0 2 370 176 (30) 16 25 (8) 3 3 1 4

s54 3 14 1 0 149 107 (18) 66 51 (17) 7 6 7 4

Mean 6.11 9.33 3.43 3.81 152 178 (25.8) 87.0 116 (21.1) 5.82 7.31 4.54 5.30

Std 9.27 13.2 3.54 4.63 115 136 (8.99) 79.6 104 (10.1) 6.97 8.55 5.39 5.86

The total number of epochs in training and testing phases of the MI and SSVEP BCI paradigms is 100, respectively. The total number of epochs in training or testing phases of the ERP

paradigm is 1,980 or 2,160. Numbers in parentheses indicate that the number of target 36 characters including spaces in “PATTERN_RECOGNITION_MACHINE_LEARNING” have

been affected by artifact-contaminated epochs. When the number is 36, all copying processes contained the effect of artifacts.

identification method can not find artifact-contaminated epochs.
In Table 1, there was an outlier: subject 5 in the session 1
of ERP paradigm had no artifact-contaminated epoch. This
phenomenon might be caused by the above-mentioned reason.

Through the epoch identification process, artifact-
contaminated epochs in both the training and the testing
phases were detected. In the training phase, we also assumed
that artifact-reduced epochs contribute to the construction of an
effective classifier if the artifact reduction technique effectively
reduced artifactual effects from the artifact-contaminated
epochs. Therefore, the demixing matrix W was first trained by
using all epochs in the training phase, and artifactual ICs were
then removed from the artifact-contaminated epochs using the
artifact reduction process described in sections 2.2, 2.3, and 2.4.
After artifact reduction, the clean and artifact-reduced epochs in
the training phase were applied to the baseline analysis methods
described in section 3. For performance evaluation, the artifact-
contaminated epochs in the testing phase were used to compute
the classification accuracy of the artifact-reduced epochs:

Acc =
Ncorrect

Ntotal
× 100%, (31)

where Ncorrect is the number of correct predictions, and Ntotal is
the total number of artifact-contaminated epochs in the testing
phase, as listed in Table 1, when the BCI paradigm was MI or
SSVEP. Note that ERP data requires an averaging process for
finding obvious feature waveforms (e.g., N200 and P300), and the
averaged waveform relates to the classification performance. In
other words, we cannot calculate the classification accuracy for
each artifact-contaminated epoch in the paradigm. The numbers
in parentheses in Table 1 indicate the number of characters
affected by artifacts (Ntotal), which is directly related to the
assessment results. Figure 2 shows the block diagram of the
assessment procedure used in this study.

A three-way repeated measures analysis of variances
(ANOVAs) was applied to the classification accuracy to explore
the effect of the two sessions, three BCI paradigms, and

three artifact reduction methods. In addition, artifact-reduced
signals obtained using ICA, IVA, and ILRMA and that were
reconstructed from muscular or ocular artifact-contaminated
signals were visualized to qualitatively investigate the artifact
reduction performances.

5. RESULTS

5.1. BCI Performance Before/After
Applying Artifact Reduction Technique
Table 2 lists the classification accuracies for all subjects, sessions,
paradigms, and artifact reduction methods. In addition, Figure 3
shows the averaged classification accuracies over all subjects. A
three-way repeated measures ANOVA using the classification
accuracies of all subjects showed the significant main effects of
the BCI paradigms [F(2,829) = 113.09, p < 0.001] and artifact
reduction methods [F(2,829) = 3.05, p = 0.048]; however, it did
not show any significant main effect of the sessions [F(1,829) =
1.29, p = 0.256]. There were no interaction effects among them.
post-hoc analysis using Tukey test revealed that the ICA and
ILRMA results had a significant difference (p = 0.039).

The classification accuracies obtained using ILRMA in all
cases were always equal to or higher than the higher accuracy of
using ICA or IVA (see Table 2). In particular, ILRMA improved
the discriminability of artifact-reduced data for 31 subjects in
session 1 and 24 subjects in session 2. When there was a
difference in the artifact reduction performance, we highlighted
the superior results in bold in the table. The averaged accuracy
of using ILRMA in all BCI paradigms was also equal to or
higher than that of using ICA and IVA (Figure 3). Interestingly,
in some cases, artifact-contaminated data showed higher BCI
performance than ICA and IVA. However, ILRMA always
showed equal or higher performance compared to artifact-
contaminated situations. For these results, ILRMA salvaged
effective components for solving the classification problem from
artifact-contaminated signals in the MI and SSVEP paradigms.
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FIGURE 2 | Block diagram of assessment procedure.

Conversely, in the ERP paradigm, ICA was sufficient to remove
the artifactual components and achieved almost 100% accuracy.

5.2. Representation of Original and
Artifact-Reduced Signals
Figures 4, 5 show artifact-contaminated EEG epochs and
artifact-reduced EEG epochs obtained using ICA, IVA, and
ILRMA in the MI, ERP, and SSVEP paradigms. They were

qualitatively indicated that ILRMA could better remove artifact
effects compared to ICA and IVA. In addition, the task-
independent components were removed by ILRMA to leave
characteristic features in each paradigm (e.g., event-related
desynchronization caused by motor imagery and evoked
potential by steady-state visual stimulus) instead of the
attenuating power of all frequency components. This resulted in
improvements in these BCI performances.

Frontiers in Human Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 17390

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kanoga et al. ILRMA-Based Automatic Artifact Reduction

TABLE 2 | Classification accuracies for all subjects, sessions, paradigms, and artifact reduction methods.

Subject ICA IVA ILRMA

MI ERP SSVEP MI ERP SSVEP MI ERP SSVEP

Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2

s1 0 33.3 55.6 90.9 100 100 0 16.7 61.1 81.8 50.0 100 0 66.7 61.1 90.9 100 100

s2 – 0 100 100 – – – 100 100 100 – – – 100 100 100 – –

s3 – 100 100 100 80.0 50.0 – 100 100 100 90.0 100 – 100 100 100 90.0 100

s4 – – 85.7 100 100 – – – 85.7 100 100 – – – 85.7 100 100 –

s5 100 80.0 – 56.0 90.9 100 100 80.0 – 56.0 72.7 100 100 80.0 – 56.0 90.9 100

s6 100 66.7 100 100 92.3 100 100 66.7 100 100 92.3 100 100 66.7 100 100 96.2 100

s7 50.0 62.5 100 100 85.7 100 46.7 62.5 100 100 85.7 100 50.0 62.5 100 100 85.7 100

s8 – 100 81.3 100 50.0 40.0 – 100 87.5 95.5 50.0 20.0 – 100 87.5 100 50.0 40.0

s9 – 100 100 100 55.6 0 – 100 100 100 55.6 0 – 100 100 100 55.6 0

s10 0 – 100 100 – 100 50.0 – 100 100 – 100 50.0 – 100 100 – 100

s11 75.0 – 100 100 – – 100 – 100 100 – – 100 – 100 100 – –

s12 37.5 50.0 100 96.8 0 100 43.8 50.0 100 96.8 0 100 50.0 50.0 100 96.8 100 100

s13 – 0 100 100 100 0 – 0 100 100 100 0 – 0 100 100 100 0

s14 – 0 100 96.9 83.3 81.8 – 0 100 96.9 83.3 81.8 – 0 100 96.9 83.3 90.9

s15 70.0 0 100 100 100 87.5 70.0 0 100 100 100 87.5 70.0 0 100 100 100 93.8

s16 0 70.0 100 100 – 100 100 90.0 100 100 – 100 100 90.0 100 100 – 100

s17 86.1 50.0 93.3 91.2 0 81.0 86.1 33.3 90.0 91.2 100 81.0 86.1 50.0 93.3 94.1 100 85.7

s18 81.8 88.9 100 100 100 100 72.7 88.9 100 100 100 100 81.8 88.9 100 100 100 100

s19 100 71.4 100 100 73.3 100 100 85.7 100 100 73.3 100 100 85.7 100 100 80.0 100

s20 71.4 0 100 100 100 100 57.1 0 100 100 100 100 71.4 0 100 100 100 100

s21 86.7 – 100 100 100 100 93.3 – 100 100 88.9 100 96.7 – 100 100 100 100

s22 75.0 – 93.8 88.9 100 0 87.5 – 93.8 88.9 100 0 87.5 – 93.8 88.9 100 0

s23 – – 86.2 69.2 47.2 0 – – 72.4 73.1 52.8 0 – – 86.2 73.1 55.6 0

s24 0 25.0 100 90.3 0 80.0 0 75.0 100 93.6 0 80.0 0 75.0 100 93.6 100 80.0

s25 27.3 50.0 100 93.3 100 75.0 45.5 0 100 93.3 100 100 45.5 50.0 100 93.3 100 100

s26 100 – 83.3 87.5 90.9 100 100 – 80.6 87.5 90.9 100 100 – 83.3 90.6 90.9 100

s27 41.7 0 100 100 100 85.7 50.0 0 100 100 100 92.9 58.3 100 100 100 100 100

s28 83.3 – 100 94.7 100 100 100 – 100 94.7 100 100 100 – 100 94.7 100 100

s29 65.0 50.0 88.0 100 75.0 100 85.0 75.0 96.0 100 75.0 100 100 100 96.0 100 75.0 100

s30 55.6 – 82.4 92.9 100 – 55.6 – 82.4 92.9 100 – 55.6 – 85.3 92.9 100 –

s31 100 0 100 100 – – 100 0 100 100 – – 100 0 100 100 – –

s32 43.3 100 100 100 88.2 95.2 44.8 100 100 100 91.2 95.2 52.2 100 100 100 91.2 95.2

s33 100 – 100 93.3 100 0 100 – 100 93.3 100 0 100 – 100 93.3 100 0

s34 55.6 42.1 87.8 91.4 76.2 81.3 55.6 47.4 90.9 97.1 76.2 81.3 55.6 47.4 90.9 97.1 90.5 81.3

s35 50.0 66.7 100 95.5 – 83.3 0 66.7 100 95.5 – 83.3 50.0 66.7 100 95.5 – 83.3

s36 50.0 94.1 100 87.5 100 100 50.0 94.1 100 87.5 100 100 50.0 94.1 100 87.5 100 100

s37 86.7 100 69.4 100 100 100 100 100 72.2 100 100 100 100 100 75.0 100 100 100

s38 75.0 – 96.6 100 100 72.7 62.5 – 96.6 100 100 72.7 75.0 – 96.6 100 100 72.7

s39 62.5 – 86.4 100 100 83.3 62.5 – 86.4 100 100 50.0 62.5 – 86.4 100 100 83.3

s40 0 – 97.0 100 57.7 85.7 0 – 90.9 100 46.2 85.7 0 – 97.0 100 57.7 85.7

s41 50.0 66.7 100 100 83.3 100 50.0 66.7 100 100 66.7 100 50.0 66.7 100 100 83.3 100

s42 – 80.0 100 94.7 66.7 100 – 80.0 100 94.7 73.3 100 – 80.0 100 94.7 73.3 100

s43 – 85.7 100 100 100 – – 85.7 100 100 100 – – 85.7 100 100 100 –

s44 100 100 100 100 0 – 100 100 100 100 100 – 100 100 100 100 100 –

s45 76.9 – 91.2 94.7 100 – 92.3 – 91.2 94.7 100 – 92.3 – 91.2 94.7 100 –

s46 100 63.6 100 94.1 100 100 100 63.6 100 94.1 100 100 100 63.6 100 94.1 100 100

s47 80.0 100 100 100 33.3 80.0 80.0 100 100 97.2 33.3 80.0 80.0 100 100 100 33.3 80.0

s48 100 0 100 100 100 100 100 0 100 100 100 100 100 0 100 100 100 100

(Continued)
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TABLE 2 | Continued

Subject ICA IVA ILRMA

MI ERP SSVEP MI ERP SSVEP MI ERP SSVEP

Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2 Se1 Se2

s49 50.0 50.0 100 100 100 100 60.0 50.0 100 100 87.5 100 70.0 50.0 100 100 100 100

s50 60.4 55.6 87.5 – – 83.3 62.5 44.4 87.5 – – 83.3 68.8 66.7 91.7 – – 83.3

s51 44.4 0 87.1 89.7 66.7 100 44.4 100 90.3 89.7 66.7 100 44.4 100 90.3 89.7 66.7 100

s52 – 100 100 100 75.0 100 – 100 100 100 100 100 – 100 100 100 100 100

s53 0 100 96.7 100 100 100 0 100 96.7 100 100 75.0 0 100 96.7 100 100 100

s54 57.1 – 100 100 83.3 100 42.9 – 100 100 100 100 57.1 – 100 100 100 100

Mean 61.6 59.4 95.3 96.0 82.0 81.4 66.3 62.1 95.3 96.0 83.0 81.5 70.0 67.3 96.0 96.4 90.4 83.8

SE 4.91 5.98 1.22 1.08 4.01 4.66 4.93 6.09 1.17 1.06 3.70 4.78 4.65 5.80 1.04 1.03 2.40 4.65

Hyphens indicate that no artifact-contaminated epochs existed in the testing phase on the session. Bold values indicate that the accuracies over the three artifact reduction methods

have different values and the results were higher than the other ones.

FIGURE 3 | Averaged classification accuracies over all subjects for sessions, paradigms, and artifact reduction methods. Original indicates the results of using all data

without artifact reduction method.

6. DISCUSSION

6.1. Automatic Processing Architecture
ICA-based artifact reduction techniques have been widely used
in the field of EEG signal processing because of their powerful
signal separation accuracy, simplicity (low computational cost),
and ease of use (Delorme et al., 2007; Dimigen, 2019; Jiang
et al., 2019). The techniques for limiting ocular and muscular
artifacts (Chen et al., 2019; Tian et al., 2020) other than the
ICA family are useful if they are integrated in a cascade-
type processing module, which can automatically identify the
type of artifact contained in the EEG observation. A simple
filtering (linear combination) approach such as ICA, which
multiplies the demixing matrix W as a filter, is faster and user-
friendly. IVA and ILRMA use this property and can sufficiently
cope with online processing as long as they can learn the
demixing matrix. In addition, these algorithms can benefit
from the ICLabel classifier (Pion-Tonachini et al., 2019) for IC
identification to realize an automatic artifact reduction method.

Thus, the ILRMA-based artifact reduction technique (1) has
higher accuracy than ICA, (2) has low computational cost
(equivalent to ICA) in an online process, (3) is a changeable
module for the ICA decomposition function, and (4) can
simultaneously remove multiple types of artifacts. Note that the
ICLabel classifier is expected to be updated frequently in the
future. Although the EEGLAB toolbox keeps track of updates in
the run_ICL function, the label assignment results may change
depending on the updates. In this study, we selected the “default”
version for IC identification.

6.2. Efficacy of Artifact Reduction for BCIs
Researchers who propose original artifact reduction techniques
for BCIs should describe not only the signal quality but also
the discriminative performance of the extracted components
to demonstrate their efficacy in BCIs. The performances of
proposed artifact reduction techniques in most previous studies
were evaluated and ranked based on ametric (e.g., signal-to-noise
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FIGURE 4 | Artifact-contaminated EEG epoch and artifact-reduced EEG epochs estimated by ICA, IVA, and ILRMA in the (A) MI paradigm and (B) SSVEP paradigm.

ratio and correlation) that indicates how the signal quality of
the estimated neuronal sources was preserved (Islam et al.,
2016). We do not know the original (true) neuronal sources
of EEG observations; thus, synthetic data whose pseudo-
neuronal/pseudo-artifactual sources and mixing process are
known were usually used to calculate the metric (Chen et al.,
2019; Mucarquer et al., 2019). After the quantified evaluation

of signal quality in the estimated sources through the proposed
artifact reduction technique, the separation ability for real data
is qualitatively shown (Blum et al., 2019; Kanoga et al., 2019a).
However, the evaluation of the discriminative performance
of the remaining sources (extracted components) is not a
major/standard quantitative one in this field. To implement an
artifact reduction technique into the BCI framework, it is more
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FIGURE 5 | Artifact-contaminated EEG epoch and artifact-reduced EEG epochs estimated by ICA, IVA, and ILRMA in the ERP paradigm.

important to know which aspect of the technique is the most
crucial to the classification/identification performance. In this
study, we demonstrated improved MI- and SSVEP-based BCI
performances using our proposed technique, which represents
common and recurrent properties of artifactual waveforms into
trials over all classes in low-rank bases and automatically removes
them. Except for session 2 in the MI-based BCI performance,
our proposed method showed over 70% averaged accuracies
(Table 2), which is required for satisfactory BCI control (Sellers
et al., 2006). When we consider the time latency during an
MI period and change the starting time point of MI features
from fixed to flexible by using time window selection algorithm
such as correlation-based time window selection (Feng et al.,
2018), the average performance of the MI-based BCI might be
improved. Furthermore, using other kind of feature extraction
method such as sparse FBCSP (Zhang et al., 2015) is one of

good solution to improve theMI-based BCI performance because
the method automatically chose the filter bands with superior

accuracies compared with FBCSP. In the case of the ERP-based
BCI, ICA was already effective enough. Therefore, the superiority

of ILRMA could not be confirmed; however, its performance
is equivalent to that of ICA. Although this paper did not
present the quantitative signal quality of the estimated neuronal

sources because we did not prepare synthetic data to avoid the
artificial bias of neuronal characteristics (all EEG observations
have unclear individual differences such as amplitudes and
latencies, so we could not easily predict the features and generate
pseudo/synthetic data), the classification/identification results
obtained with three well-known BCI paradigms should be helpful
information for practitioners and implementers.

6.3. Limitations
The results obtained using the DETECT toolbox were treated
as the grand truth. However, the muscular label reflected
the characteristics of “clenching” and “flexing both arms.”
Other types of muscular artifacts, such as “changing head
direction,” may not be extracted as artifactual epochs. In
addition, the “100% accuracy” was sometimes calculated
using only one testing epoch although other accuracies were
calculated using more epochs (e.g., 20). The comparison of
artifact reduction techniques was fair because the number
of artifact-contaminated epochs was the same over the
factor. However, the comparisons of BCI paradigms and
multiday effects were not fair: each factor has different
numbers of artifact-contaminated epochs. Evaluating the
techniques as fairly as possible by using the DETECT
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toolbox is very difficult. For solving this problem, an
artifact-contaminated EEG dataset with multiple types of
intensity-manipulated artifacts is required in this research field
to enable rapid developments in artifact reduction techniques
for BCIs.

6.4. Future Works
Further improvement of ILRMA-based artifact reduction
techniques is expected through the introduction of an
identification algorithm for decomposed frequency components
and a soft-threshold-like wavelet-enhanced ICA (Castellanos
and Makarov, 2006). Despite the fact that ILRMA decomposes
the STFT of the original signals up to each frequency bin, our
automatic processing architecture reconstructs artifact-reduced
signals by replacing artifactual source(s) with zeros (replacing
entire frequency bins with zeros) to adapt the ICLabel classifier,
which needs time-series ICs. In other words, a lot of neural
information is lost in the reduction step. Signal reconstruction
should be made more sophisticated by considering the effective
frequency band adjusted to the BCI paradigm.

Moreover, we need further investigations of artifact reduction
methods in practical situations such as using wearable devices
that have small number of channels (in an extreme case, the
number of channels is only one) for EEG measurements. In
such situation, the performance of artifact reduction techniques
will change and might be decreased. Recent studies attempt
to propose a generic artifact removal algorithm (Chen et al.,
2019). Unlike the time-domain algorithm, frequency-domain
methods (i.e., IVA and ILRMA) can separate single-channel data
if the differences in data-driven spectral basis functions can be
learned well (Kanoga and Mitsukura, 2014; Kanoga et al., 2019a).
Thus, we will investigate our proposed algorithm in practical

situations and extend it as a generic and user-friendly algorithm
for reducing artifacts from EEG data.

The ICA family, including IVA and ILRMA, represents
EEG observations through linear combinations of sources
based on a time-invariant demixing matrix; the trained
demixing matrix may sometimes cause instability through inter-
/intrasubject variabilities. By integrating with a transfer learning
algorithm (Pan and Yang, 2009; Tan et al., 2018), relearning from
the general filter (demixing matrix) to the user-specific filter
according to the data while performing online processing could
potentially reduce the variability and provide more convenient
and practical BCIs.
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Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a
computer using the brain activity registered when a subject imagines—but does not
perform—a given movement. However, inconsistent MI-BCI performance occurs in
variations of brain signals across subjects and experiments; this is considered to be a
significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon
referred to as “BCI-inefficiency,” in which they are unable to generate brain signals
for BCI control. These subjects have significant difficulties in using BCI. The primary
goal of this study is to identify the connections of the resting-state network that affect
MI performance and predict MI performance using these connections. We used a
public database of MI, which includes the results of psychological questionnaires and
pre-experimental resting-state taken over two sessions on different days. A dynamic
causal model was used to calculate the coupling strengths between brain regions with
directionality. Specifically, we investigated the motor network in resting-state, including
the dorsolateral prefrontal cortex, which performs motor planning. As a result, we
observed a significant difference in the connectivity strength from the supplementary
motor area to the right dorsolateral prefrontal cortex between the low- and high-
MI performance groups. This coupling, measured in the resting-state, is significantly
stronger in the high-MI performance group than the low-MI performance group.
The connection strength is positively correlated with MI-BCI performance (Session 1:
r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression
based on this connection (r-squared = 0.31). The proposed predictors, based on
dynamic causal modeling, can develop new strategies for improving BCI performance.
These findings can further our understanding of BCI-inefficiency and help BCI users to
lower costs and save time.

Keywords: motor imagery, brain-computer interface, dynamic causal modeling, effective connectivity,
electroencephalography

INTRODUCTION

Motor imagery-based brain–computer interface (MI-BCI) systems allow users to control computer
applications by imagining a movement, without physically performing the muscle activity (Wolpaw
et al., 2002). For example, robot arms (Edelman et al., 2019), wheelchairs (Kim et al., 2016), and
exoskeletons (Jeong et al., 2020) can be controlled by the user’s brain activity. Thus, these systems
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have the potential for application in medical fields related
to disabled people and motor function rehabilitation. Many
researchers have recently sought to expand its application
to able-bodied people (Van Gerven et al., 2009; Lee et al.,
2016). Generally, MI-BCIs use electroencephalography (EEG)
to measure the voluntary modulation of brain rhythms.
One of the most representative features is event-related
desynchronization/synchronization (ERD/ERS), which reflects a
decrease or an increase of oscillatory activity pertaining to events,
respectively (Neuper et al., 2006). These changes in brain signals
are used as the fundamental characteristics of MI, which measure
the power decrease or increase at specific frequencies and in
certain brain regions. Many methods have been proposed to
improve the performance of MI-BCIs; however, considerable
issues must be addressed before MI-BCIs can be practically
implemented in real scenarios. The most prominent issue is the
inconsistent MI performance that results from the variations in
brain signals between different subjects and experiments (Lotte
et al., 2007; Lee et al., 2019a). Previous studies have reported that
subject performances fluctuate and 15–30% of subjects cannot
generate voluntary brain rhythms (Guger et al., 2003; Ahn and
Jun, 2015; Sannelli et al., 2019)—a phenomenon known as “BCI-
illiteracy” or “BCI-inefficiency” (Sannelli et al., 2019). Therefore,
understanding this phenomenon and performance variations is
considered an important issue in MI-BCI (Lotte and Jeunet,
2018). In addition, BCI-illiteracy is a methodologically improper
concept because it depends on faulty assumptions that BCI users
have functional or physiological characteristics that interfere with
their skilled BCI performance. Consequently, this term is an
inappropriate concept to describe the difficulties that users face
when operating a BCI system (Thompson, 2019). In this sense,
we use an alternative term, BCI-inefficiency.

Many studies have been performed to find pre-experimental
predictors of MI-BCI performance, to save resources and time
(Blankertz et al., 2009; Sannelli et al., 2019). Most of these
studies can be categorized into either (i) assessing a subject’s
condition through psychological questionnaires or (ii) assessing
their brain activity by taking EEG measurements directly
before the MI experiment. Among the psychological predictors,
fatigue is directly related to BCI performance. The feature was
extracted using dimension reduction and linear discriminant
analysis (LDA) classifier was trained. This BCI performance was
compared by quantifying into two groups according to the self-
reported rating about fatigue. As a result, BCI performance was
significantly high when self-reported fatigue was low during
BCI game. Because low fatigue showed effortless control of
BCI (Myrden and Chau, 2015). In addition, physical fatigue
recorded by physiological changes affected self-reported MI
ability. In specific, MI ability was significantly decreased after
intermittent exercise (Ferreira et al., 2020). One study surveyed
the questionnaire associated with kinesthetic imagery before
the MI experiment. Common spatial pattern (CSP) and Fisher
LDA were used in a conventional way. Consequently, users’
self-prediction responses to a questionnaire have been reported
to correlate with their MI-BCI performance (r = 0.64) (Ahn
et al., 2018). However, some psychological factors such as fatigue
are subjective and therefore are not suitable for describing

BCI-inefficiency. In addition, given the length of each training
session, limitations still exist in that mental state is unlikely to be
consistent overall.

Objective psychological factors such as spatial and
visuo-motor coordination abilities also were related to BCI
performance. The BCI performance measured from CSP
and shrinkage LDA and personality and cognitive profile
using psychometric questionnaires were compared. The
mental rotation test, which measures spatial ability, showed
significantly correlated with BCI performance (r = 0.69).
However, neurophysiological patterns such as alpha and beta
power did not relate to BCI performance (Jeunet et al., 2015,
2016). Similarly, MI performance was calculated using CSP
and LDA, and motor skills (r = 0.42) and concentration level
(r = 0.50) were explored as sensorimotor rhythm (SMR)
predictors (Hammer et al., 2012). This study focused on pattern
recognition rather than human learning for BCI control. So,
the next study explored these two psychological factors in the
neurofeedback training session. As a result, SMR could only
be modulated well by visuo-motor coordination ability, which
represents motor skills (r-squared = 0.082) in the neurofeedback
training session (Hammer et al., 2014). Another study had
reported the relationship with age and the average amount of
upper limb movement for modulating alpha power associated
with BCI. These two factors were positively correlated with
the strength of alpha power with 94% confidence using the
multiple linear regression (Randolph et al., 2010). The reliable
and reproducible predictors of BCI performance contribute
to a better understanding of the BCI control. However, these
predictors may be less practical because they cannot evaluate and
train potential BCI users in a locked-in state, in whose muscular
movement is impossible and BCI control is really necessary.

The SMR has been proposed as a neurophysiological indicator
(Blankertz et al., 2010), and it is calculated from the mu rhythms
(about 9–14 Hz) measured over sensorimotor areas in the C3
and C4 channels in resting-state EEG. These rhythms have
shown a significant correlation with MI performance trained
using CSP and LDA (r = 0.53). Furthermore, higher theta
and lower alpha powers were observed in the BCI-inefficiency
compared with the BCI-efficient subjects. As a result, this study
demonstrated a positive correlation between MI performance
using CSP and Fisher LDA and the alpha-theta ratio predictor
(r = 0.59) (Ahn et al., 2013). Some studies have indicated a
relationship between BCI-inefficiency and power spectral density
at different frequencies. In particular, gamma oscillations used to
infer a subject’s intention have a causal influence on a subject’s
BCI capacities. Consequently, BCI performance using spectral
power and support vector machine was significantly correlated
with predicted BCI accuracy using gamma power (r = 0.10)
(Grosse-Wentrup et al., 2011). However, these studies predicted
MI performance for a single session only. Given the variability
of brain signals across different conditions within the same
subject, it is necessary to investigate the effects of applying
these predictors across various sessions. In addition to the SMR,
other EEG features have been proposed to predict MI-BCI
performance. Spectral entropy in the C3 channel of eye closed
resting-state EEG has been found to correlate with SMR-BCI
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performance using CSP and LDA in both sessions (Session
1: r = 0.61; Session 2: r = 0.70) (Zhang et al., 2015a). This
predictor can apply for both intra- and inter-session conditions.
However, it has not been proven to be applicable to patients
such as stroke. In another approach, inter-region connectivity
was investigated, not simply the brain activity in a particular
region. One study used coherence and phase lag index as the
functional connectivity measure. Based on these two measures,
network properties were calculated. In the eye closed resting-
state, many network properties were directly related to BCI
performance. Specifically, mean functional connectivity, node
degrees, edge strengths, clustering coefficient, local efficiency, and
global efficiency were positively correlated with BCI classification
accuracy, whereas the characteristic path length was negatively
correlated with BCI classification accuracy. As a primary result,
a positive correlation with MI performance using CSP and
LDA was observed using a coherence-based clustering coefficient
across two sessions (Session 1: r = 0.29; Session 2: r = 0.42).
MI performance was predicted using coherence (except outliers)
in Session 2 [root mean square error (RMSE) = 12.2%] (Zhang
et al., 2015b). These studies applied the predictor to two sessions
and demonstrated that it had a significant correlation with MI
performance. However, the relationship was not sufficiently close
for the predictor to be employed as an MI-BCI performance
indicator in real life applications. Furthermore, these studies have
used only one classifier when calculating MI-BCI performance,
even though the performance variation depends on both classifier
and session. Therefore, a large public database should be used to
find possible predictors across a variety of classifiers and sessions,
to verify the utility of this MI predictor.

Brain connectivity describes the exchange of information
between brain regions (Zhang et al., 2017). The functional
connectivity is observable evidence that can be determined as a
measure of statistical dependencies. This measure of functional
connectivity between the two regions is the same, and it does
not indicate directionality (Friston, 2011). However, effective
connectivity explains how one region of the brain affects other
regions (Lee et al., 2019b). Therefore, it is useful to observe
interregional changes in brain networks when investigating
certain phenomena. Effective connectivity can be described using
a set of common measures that plot directionality between
brain regions. For example, there are the following measures:
Granger causality, partial directed coherence, and the direct
transfer function (Sakkalis, 2011). Above all, dynamic causal
modeling (DCM) reflects inferences about the couplings between
brain regions/sources and is based on a Bayesian approach
(Kiebel et al., 2008). As a consequence, in contrast to functional
connectivity and some causal model, DCM needs a defined
a priori knowledge and hypothesis-driven models (Kasess et al.,
2010). This Bayesian approach directly assesses the posterior
probability distribution of the estimated model parameters, given
measured EEG data and a specific priori model at the single-
subject level. For group-level analysis of model parameters, this
approach based on fixed-effects analysis as the inference method
has the advantage that the precisions of the subject-specific
multivariate parameter estimates are considered (Chen et al.,
2008; Kasess et al., 2010; Bönstrup et al., 2016). This approach

compares various hypothesis-based models and helps to select
an optimal specific model. Furthermore, volume conduction—
a problem for the conventional measurement methods—can
be avoided by including the source reconstruction to assess
directionality between brain regions (Lee et al., 2019b).

Many studies have used DCM to investigate the connections
between brain regions during MI. In a DCM study using
functional magnetic resonance imaging (fMRI), a forward
connection was found between the supplementary motor area
(SMA) and the primary motor cortex (M1). In particular, the
SMA exhibited a strong suppressive influence on M1 during
MI (Kasess et al., 2008). In addition, by using a combined
fMRI and EEG approach, the coupling between SMA and M1
was shown to contain significant information for MI (Bönstrup
et al., 2016). The SMA is considered to be the main active
region in MI generation and is involved in the preparation
of movements (Kuhtz-Buschbeck et al., 2003). Recent studies
have shown that effective connectivity is similar under motor
execution (ME) and MI tasks through DCM; furthermore,
these networks have been reported to include the dorsolateral
prefrontal cortex (DLPFC) and premotor cortex (PMC) in
addition to the SMA and M1 (Kim et al., 2018). These brain
regions are necessary to generate the rich MI sources used
to control BCIs (Hochberg et al., 2006; Aflalo et al., 2015).
The PMC exhibits overlapping between active and peripheral
regions during ME and MI, and it is employed in language
production, movement observation, and action recognition
(Lotze and Halsband, 2006). The DLPFC is closely connected
with the cortical control of movement and may be linked with the
SMA (Middleton and Strick, 1994). In this regard, certain brain
regions—though not directly related to the motor cortex—can be
associated with MI.

In this study, we investigate the correlations between MI-
BCI performance and the subject’s resting-state network before
the BCI experiment takes place. DCM was used to explore the
effective connectivity between two regions with directionality.
In particular, we considered the DLPFC in addition to the
conventional sensorimotor areas as the DCM region of interest
(ROI). We assessed the subjects’ psychological questionnaires
and band powers (from their resting-state EEG) before the
MI experiment, for comparison with previous studies. We
hypothesized that the coupling strength in the motor network
constructed using DCM would be correlated with the MI-BCI
performance. Finally, using linear regression, we predicted the
MI-BCI performance with the proposed coupling strength. These
findings could help build an understanding of the MI mechanism
and improve overall MI-BCI performances by investigating the
characteristics of poorly performing subjects.

MATERIALS AND METHODS

EEG Dataset
We used a public EEG dataset from GigaDB (Lee et al., 2019a).
These data contain EEG signals measured during MI experiments
focusing on left and right hand grasping motions. The subjects’
psychological and physical conditions were surveyed using

Frontiers in Human Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 321100

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00321 August 4, 2020 Time: 15:44 # 4

Lee et al. Predictor of Motor Imagery Performance

questionnaires and 1 min eye-open resting-state EEG data were
recorded before the MI experiments. The experiments were
conducted over two sessions, which took place on different days.
The data comprised 54 healthy subjects (24.8 ± 3.8 years; 25
females). Among the subjects, 38 were naive BCI users and the
remainder had previous experience. EEG signals were recorded
using 62 Ag/AgCl electrodes.

MI-BCI Performance and Group
Categorization
The EEG signals were processed using the OpenBMI toolbox
(Lee et al., 2019a); the data were band-pass filtered between 8
and 30 Hz—the frequency band relevant to motor movements.
A 5th order Butterworth filter was used for all band-pass filter
analyses; next, the continuous EEG signals were segmented from
1 to 3.5 sec (measured from stimulus onset) (Pfurtscheller and
Neuper, 2001). Moreover, 20 channels were selected in the motor
cortex region (FC1, FC2, FC3, FC4, FC5, FC6, Cz, C1, C2, C3, C4,
C5, C6, CPz, CP1, CP2, CP3, CP4, CP5, and CP6).

We used several popular methods to calculate MI
performance (Lee et al., 2019a). We extracted four features,
as follows: (i) CSP (Ramoser et al., 2000)—a spatial pattern
that maximizes the discrimination of the binary classes;
(ii) common spatio-spectral pattern (CSSP) (Lemm et al.,
2005)—a pattern using spectral information based on CSP;
(iii) filter bank common spatial pattern (FBCSP) (Ang
et al., 2012)—a pattern using optimal spatio-spectral filters
based on a filter bank composed of several frequency
bands; and (iv) Bayesian spatio-spectral filter optimization
(BSSFO) (Suk and Lee, 2012)—a pattern using subject-
dependent frequency bands within the Bayesian framework.
For the classifier, LDA was used to decode the left or
right hand imagery. Each experimental task comprised
a training phase and a testing phase. To validate the MI
performance, ten-fold cross-validation was used for all
data (training + testing data) (CSP-cv). In summary, we
achieved the MI-BCI performance with CSP-cv, CSP, CSSP,
FBCSP, and BSSFO.

To compare the MI performance against the resting-state
EEG, we divided them into two performance groups: high (good
MI performance group) and low (poor MI performance group).
The median performance in each five performance according to
classifiers was used to separate the subjects into high- or low-MI
performance groups (Zhang et al., 2016).

Relationship With MI-BCI Performance
Questionnaire Scores
We took seven response fields from the pre-experimental
questionnaire: comfort, motivation, concentration, eye fatigue,
drowsiness, physical condition, and mental condition. These
items were graded on a Likert scale from 1 to 5. For “comfort,” 1
signified relaxation, and 5 signified anxiety. Under “motivation,”
1 indicated excitement, and 5 indicated boredom. In the
“concentration,” “eye fatigue,” “drowsiness,” “physical condition,”
and “mental condition,” 1 and 5 indicated very good and very bad
or tired in intensity level, respectively.

Band Power of Resting-State EEG
We calculated the average power of the EEG signals, to
decompose them into functionally distinct frequency bands. We
further divided them into five regions: frontal (Fp1-2, AF3-4,
AF7-8, AFz, F3-4, F7-8, and Fz), sensorimotor (FC1-6, C1-6, Cz,
CP1-6, and CPz), temporal (FT9-10, T7-8, and TP7-10), parietal
(P1-4, P7-8, PO3-4, and POz), and occipital (O1-2, Oz, and PO9-
10) regions (Supplementary Figure S1). At the sensor level, EEG
signals were averaged according to five different cortical regions.
The band powers were also measured for the delta (1–4 Hz),
theta (4–8 Hz), alpha (8–15 Hz), beta (15–25 Hz), and gamma
(25–40 Hz) bands (Ahn et al., 2013).

Dynamic Causal Modeling of Resting-State EEG
Pre-processing
The continuous EEG signals were pre-processed using the
EEGLAB toolbox (Delorme and Makeig, 2004) based on
MATLAB. Data from 56 channels across the scalp surface
(using the international 10–10 system) were obtained to
implement DCM (Lee et al., 2017). The resting-state EEG
was band-pass filtered in the 4–45 Hz (Van de Steen et al.,
2019). The delta band in the 1–4 Hz range was excluded
because, unlike other frequency bands, it can be contaminated
relatively easily by artifacts such as eyeball movement and
blinking (Ahn et al., 2013). The continuous 1 min EEG
data were segmented from 1 sec without overlap (Van
de Steen et al., 2019). Then, the eye-blink correction was
manually performed using infomax, which is one of the
most widely used independent component analysis algorithm
to minimize the artifacts. Finally, the epoched data were
average-referenced.

3D source reconstruction
We used the statistical parametric mapping (SPM) toolbox
in MATLAB (Litvak et al., 2011). In the 3D channel location
information, EEG channel locations were transformed to
match the template head. This head model was assigned
to all subjects using 3D coordinate values. The boundary
element method (BEM) was used for building a head
model (forward model, mapping source signals to sensor
signals). Each source was also modeled by a single equivalent
current dipole (ECD) (Kiebel et al., 2006) for reconstructing
sources (inverse model, mapping sensor signals to the
source signals). To estimate the cortical sources, the
inversion index was set to 1 to trace different types of
forward models and inverse solutions. Mesh resolution
can be maintained at normal (approximately 4,000 vertices
per hemisphere).

DCM specification
M1, SMA, and PMC are well known to be linked to MI
(Kasess et al., 2008; Begliomini et al., 2015; Bönstrup et al.,
2016). Recently, the role of DLPFC in MI has been revealed
(Kim et al., 2018). Therefore, we selected the seven ROIs:
SMA, left/right M1, left/right PMC, and left/right DLPFC.
We also employed the Montreal Neurological Institute (MNI)
coordinates for both side regions, based on the source locations
reported in previous work (Kim et al., 2018). Table 1 lists
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TABLE 1 | Montreal Neurological Institute (MNI) coordinates for location
information.

ROI MNI coordinates

x y z

SMA 0 −4 65

Left M1 −38 −26 53

Right M1 38 −26 53

Left PMC −48 −15 50

Right PMC 48 −15 50

Left DLPFC −42 40 25

Right DLPFC 42 40 25

ROI, region of interest; SMA, supplementary motor area; M1, primary motor cortex;
PMC, premotor cortex; DLPFC, dorsolateral prefrontal cortex.

the MNI coordinates for seven ROIs. The prefrontal-dependent
regions were reported to have no physiologically specific
interactions with the M1 (Luppino et al., 1993; Rizzolatti
and Luppino, 2001). Therefore, we excluded the connection
between DLPFC and M1 and finally organized the eight
DCM models (Figure 1). In addition, for the resting-state, we
did not select an input from the neural model because no
external input exists.

Dynamic causal modeling uses a neural mass model to explain
the source activity of EEG signals (David and Friston, 2003). The
model imitates the source activity by using three neural sublayers
assigned to the three cortical layers, namely the granular sublayer,
the supra-granular sublayer, and the infra-granular sublayer.
This model has hierarchical features; forward connections start

in the infra-granular layer and end in the granular layer and
backward connections link agranular layers (Garrido et al., 2007).
All cortico-cortical connections are excitatory, so the DCM can
be identified in neuronal state equation by average synaptic
dynamics in each sublayer.

ẋ = f (x, u, θ) (1)

where ẋ indicates the evolution of neuronal state x parameterized
by θ of the state and input u.

y = L (θ) x0 + ε (2)

where x0 is output of specific states and L (θ) indicates the
local field indicating the location and orientation of sources (i.e.,
spatial forward model). In specific, θ includes the parameters
for forward and backward connections (coupling strength).
The ε refers to observation error. Finally, EEG signals y
connects the neuronal states to observed EEG channel data
(Kiebel et al., 2006).

Bayesian model selection (BMS)
Bayesian model selection (BMS) is an effective method of
deciding the most likely set of competitive hypotheses for
the models that generated the observed data (Stephan et al.,
2009). We applied BMS averaging with fixed-effects analysis to
determine the most likely model given the data.

The inversion of a particular DCM, m, coincides with an
approximation of the posterior probability on the several models.

p(θ |y,m) ∝ p
(
y|θ,m

)
p(θ |m) (3)

FIGURE 1 | Model specifications of effective connectivity based on the dynamic causal model. The regions of interest (ROIs) consist of the SMA, left/right PMC,
left/right M1, and left/right DLPFC. The resting-state has no external stimulus, thus no input is specified. The selected connection for each model is indicated by a
black arrow. SMA, supplementary motor area; PMC, premotor cortex; M1, primary motor cortex; DLPFC, dorsolateral prefrontal cortex.
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TABLE 2 | Statistical results for the differences in MI performance.

Classifier Session Group Session × Group

dof F p-value dof F p-value dof F p-value

CSP_cv 1 0.40 0.527 1 2.28 0.133 1 0.09 0.768

CSP 1 0.16 0.690 1 1.87 0.174 1 0.71 0.401

CSSP 1 0.16 0.692 1 0.81 0.369 1 0.04 0.835

FBCSP 1 0.16 0.694 1 1.51 0.221 1 0.02 0.899

BSSFO 1 0.20 0.658 1 0.29 0.592 1 0.24 0.626

The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and low-MI performance group. The session× group
represents the interaction between session and group factors. dof, degree of freedom; CSP_cv, common spatial pattern with cross-validation; CSP, common spatial
pattern; CSSP, common spatio-spectral pattern; FBCSP, filter bank common spatial pattern; BSSFO, Bayesian spatio-spectral filter optimization.

This approximation uses the Bayes factor based on
Expectation-Maximization algorithm. This aims to minimize
the free energy F = − ln p(y|m) as the negative marginal
log-likelihood. Then, the variational Bayes factor is used
as an approximation and the log-evidence is used for

FIGURE 2 | Averaged MI classification performance based on CSP-cv for
both sessions. The group was divided based on the median of MI
classification accuracy across all subjects. The p-values below 0.05 are
highlighted by an asterisk.

model comparison. Finally, the best model is the highest
log-evidence ln p(y|m) (Garrido et al., 2007). In our
study, eight DCM models were estimated and one was
selected using BMS.

Statistical Analysis
We first performed the one-way analysis of variance (ANOVA)
to investigate the differences in MI performance using CSP-cv,
CSP, CSSP, FBCSP, and BSSFO. Next, the correlation was used
to verify that the MI performance between the two sessions
was similar. To investigate the differences in resting-state
EEG between the high- and low-MI performance groups,
we performed the two-way ANOVA (session × group). In
all ANOVA, the two-sample t-test was used with Bonferroni
correction for multiple comparisons as post hoc analysis.
Pearson’s correlation was also used to examine the relationship
between MI performance and resting-state EEG. Similarly,
Bonferroni correction was applied to correlation analysis
for multiple comparisons. For the questionnaire and band
power, we used only the MI performance measured by CSP-
cv for a fair comparison with previous studies (Ahn et al.,
2013, 2018; Zhang et al., 2015b). We also predicted the
MI performance based on significantly selected coupling
strength, by applying linear regression to the MI-BCI
performance in the resting-state. The 10-fold cross-validation
was used to prevent overfitting (Lever et al., 2016). Then,

TABLE 3 | Statistical results for the differences in questionnaire scores according to MI performance using CSP-cv.

Questionnaire Session Group Session × Group

dof F p-value dof F p-value dof F p-value

Comfort 1 0.01 0.963 1 2.28 0.134 1 0.89 0.348

Motivation 1 0.01 0.922 1 0.16 0.692 1 0.01 0.906

Concentration 1 0.08 0.782 1 1.03 0.312 1 0.62 0.434

Eye fatigue 1 0.36 0.552 1 0.08 0.784 1 0.27 0.607

Drowsiness 1 0.04 0.838 1 0.50 0.481 1 0.20 0.655

Physical condition 1 0.28 0.597 1 2.80 0.097 1 2.40 0.124

Mental condition 1 0.64 0.423 1 0.49 0.486 1 0.26 0.608

The questionnaires consisted of seven questionnaires and were taken for each session before the MI experiment took place. The session factor indicates Session 1 and
Session 2, whereas the group factor indicates high-MI performance group and low-MI performance group. The session × group represents the interaction between
session and group factors. dof, degree of freedom.
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TABLE 4 | Statistical results for correlation in questionnaire scores according to MI
performance using CSP-cv.

Questionnaire Session 1 Session 2

r-value p-value r-value p-value

Comfort 0.043 0.758 −0.147 0.295

Motivation 0.042 0.764 −0.002 0.990

Concentration −0.020 0.888 −0.154 0.271

Eye fatigue 0.089 0.520 0.020 0.886

Drowsiness −0.133 0.379 −0.076 0.588

Physical condition −0.096 0.490 −0.197 0.158

Mental condition −0.144 0.300 −0.039 0.784

The questionnaires consisted of seven questions and were taken for each session
before the MI experiment took place.

we evaluated the predicted MI-BCI performance compared with
the actual MI-BCI performance based on CSP-cv, CSP, CSSP,
FBCSP, and BSSFO, using the r-squared and RMSE, where
r-squared is a statistical value of how close the data are to the
fitted regression line, and RMSE is a measure of the difference

between the actual and the predicted MI-BCI performance
(Varatharajan et al., 2018).

RESULTS

Differences in MI Performance
Using CSP-cv, CSP, CSSP, FBCSP, and BSSFO, we observed
a significantly positive correlation of the two-class MI
performances between two sessions on different days (CSP-
cv: r = 0.986, p < 0.001; CSP: r = 0.988, p < 0.001; CSSP:
r = 0.993, p < 0.001; FBCSP: r = 0.993, p < 0.001; BSSFO:
r = 0.993, p < 0.001). We also investigated the differences in MI-
BCI performances using five methods within each session. No
significant differences in MI performances using five methods
with Bonferroni correction were observed in both sessions
[Session 1: F(4,265) = 0.22, p = 0.929; Session 2: F(4,265) = 0.33,
p = 0.859].

We divided the high- and low-MI groups in each classifier.
There was no significant difference in MI performance with
Bonferroni correction according to session and group using

TABLE 5 | Statistical results for the differences in band power according to MI performance using CSP-cv.

Region Frequency Session Group Session × Group

dof F p-value dof F p-value dof F p-value

Frontal Delta 1 3.24 0.074 1 4.27 0.041 1 0.85 0.357

Theta 1 0.20 0.655 1 0.96 0.338 1 0.24 0.624

Alpha 1 0.45 0.505 1 0.01 0.942 1 0.77 0.383

Beta 1 0.06 0.814 1 0.75 0.389 1 0.46 0.497

Gamma 1 0.69 0.406 1 0.05 0.825 1 0.66 0.418

Sensorimotor Delta 1 1.08 0.301 1 2.20 0.141 1 0.01 0.950

Theta 1 0.36 0.552 1 2.12 0.148 1 0.09 0.762

Alpha 1 0.01 0.919 1 2.64 0.107 1 0.01 0.965

Beta 1 0.30 0.583 1 5.58 0.020 1 0.39 0.533

Gamma 1 1.09 0.299 1 1.39 0.241 1 0.01 0.996

Temporal Delta 1 0.45 0.504 1 1.15 0.286 1 0.13 0.715

Theta 1 0.19 0.661 1 1.74 0.189 1 0.13 0.719

Alpha 1 0.01 0.963 1 0.52 0.472 1 0.11 0.745

Beta 1 0.05 0.822 1 0.88 0.349 1 1.80 0.182

Gamma 1 0.32 0.573 1 0.44 0.506 1 1.38 0.243

Parietal Delta 1 0.95 0.330 1 0.77 0.381 1 0.06 0.813

Theta 1 0.64 0.426 1 0.36 0.551 1 0.07 0.790

Alpha 1 0.01 0.912 1 0.03 0.856 1 0.04 0.835

Beta 1 0.03 0.863 1 2.72 0.102 1 0.34 0.563

Gamma 1 0.13 0.717 1 0.72 0.399 1 0.53 0.467

Occipital Delta 1 0.76 0.386 1 0.28 0.596 1 0.14 0.705

Theta 1 0.26 0.608 1 0.04 0.837 1 0.06 0.805

Alpha 1 0.04 0.847 1 0.77 0.383 1 0.02 0.877

Beta 1 0.08 0.777 1 0.01 0.969 1 0.80 0.373

Gamma 1 0.01 0.996 1 0.01 0.911 1 0.51 0.476

The brain region was divided into five sub-regions, and the frequency was also divided into five bands as follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta
(15–25 Hz), and gamma (25–40 Hz) bands. The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and
low-MI performance group. The session × group represents the interaction between session and group factors. The p-values below 0.05 are highlighted in bold. dof,
degree of freedom.
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five methods (Table 2). Nevertheless, we compared the MI
performance of each group because the classification accuracy
in high-MI group was all higher than that in the low-MI
group by dividing each group based on the median of the
performance of all subjects. For MI-BCI performances based on
the CSP-cv, five subjects were displaced from a low-MI group
to a high-MI group; moreover, two subjects were displaced
from a high-MI group to a low-MI group between Sessions 1
and 2. The significant differences in MI performance observed
between the high- and low-MI groups were explored using CSP-
cv [Session 1: t(52) = 14.125, p < 0.001; Session 2: t(52) = 12.115,
p< 0.001] (Figure 2). As expected, the MI classification accuracy
for the higher group was greater than that for the lower group
during both sessions. Supplementary Figure S2 shows the
MI performances in high- and low-MI groups for CSP, CSSP,
FBCSP, and BSSFO. Similar to CSP-cv, there were significant
differences observed in MI performance across the other four
classifiers [CSP – Session 1: t(52) = 16.323, p < 0.001, Session
2: t(52) = 13.094, p < 0.001; CSSP – Session 1: t(52) = 17.833,
p < 0.001, Session 2: t(52) = 15.341, p < 0.001; FBCSP –
Session 1: t(52) = 19.320, p < 0.001, Session 2: t(52) = 15.509,
p < 0.001; BSSFO – Session 1: t(52) = 19.777, p < 0.001, Session
2: t(52) = 18.961, p < 0.001]. In addition, 7, 5, 6, and 7 subjects
changed from the low- to high-MI group between Sessions 1 and
2 under CSP, CSSP, FBCSP, and BSSFO, respectively; conversely,
3, 4, 6, and 5 subjects changed from the high- to low-MI group on
different days under CSP, CSSP, FBCSP, and BSSFO, respectively.
To summarize, the MI classification accuracy for the low-MI
group tended to not exceed 60%, whereas the high-MI group
showed an average classification accuracy greater than 80%.

Relationship With Questionnaire Score
We investigated differences in questionnaire score between the
high- and low-MI groups based on CSP-cv (Table 3). There were
no significant differences observed in any score according to
session and group with Bonferroni correction. In addition, we
calculated the correlation with MI-BCI performance (Table 4).
Similarly, no significant correlation with MI-BCI performance
with Bonferroni correction was found in either session.

Relationship With Band Power
Table 5 summarizes the statistical differences in band power
between the high- and low-MI groups according to session and
group. As a result, the beta power in the sensorimotor region
showed a significant difference between the high- and low-MI
groups in Session 1 with Bonferroni correction [t(52) = 2.67,
p = 0.009]. However, no significant power differences in
other frequency bands were found between the two groups in
either session. In addition, an only positive correlation was
observed between theta power in the parietal region and MI-BCI
performance based on CSP-cv (Table 6).

Relationship With Coupling Strength
Based on DCM
For Session 1, Model 4 was chosen through BMS and the
connectivity strengths of 20 connections were calculated. For

TABLE 6 | Statistical results for band power correlations according to MI
performance using CSP-cv.

Region Frequency Session 1 Session 2

r-value p-value r-value p-value

Frontal Delta 0.130 0.350 0.219 0.111

Theta 0.075 0.589 0.225 0.102

Alpha 0.032 0.817 0.231 0.093

Beta 0.014 0.920 0.233 0.089

Gamma −0.018 0.896 0.221 0.109

Sensorimotor Delta −0.022 0.876 0.089 0.523

Theta 0.067 0.633 0.093 0.503

Alpha 0.048 0.732 0.077 0.580

Beta −0.039 0.781 0.078 0.575

Gamma −0.050 0.719 0.033 0.813

Temporal Delta −0.108 0.438 0.147 0.289

Theta 0.224 0.104 0.246 0.073

Alpha 0.064 0.645 0.136 0.325

Beta 0.057 0.680 0.068 0.625

Gamma −0.004 0.980 −0.022 0.874

Parietal Delta 0.130 0.349 0.180 0.193

Theta 0.272 0.047* 0.106 0.446

Alpha 0.132 0.341 −0.029 0.837

Beta 0.147 0.289 0.134 0.335

Gamma 0.070 0.613 −0.038 0.786

Occipital Delta 0.192 0.165 0.106 0.445

Theta 0.137 0.323 0.025 0.855

Alpha 0.097 0.486 −0.046 0.742

Beta 0.047 0.737 0.057 0.680

Gamma 0.035 0.800 0.031 0.827

The brain region was divided into five sub-regions, and the frequency was also
divided into five bands as follows: delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz),
beta (15–25 Hz), and gamma (25–40 Hz) bands. The p-values below 0.05 are
highlighted in bold. ∗ with no correction.

Session 2, Model 2 was determined as a suitable model; this model
included 16 connections.

Difference Between High- and Low-MI Performance
Groups
Table 7 lists the differences across 20 connections between
high- and low-MI performance groups for MI-BCI performance,
based on CSP-cv. Figure 3 shows the significant connectivity
strength between the two groups in each session, based on
CSP-cv. In particular, the coupling strength from the SMA
to the right DLPFC in the high-MI group was significantly
higher than in the low-MI group in both sessions [Session 1:
t(52) = 2.71, p = 0.008 with Bonferroni correction; Session 2:
t(52) = 4.31, p < 0.001 with Bonferroni correction]. Additionally,
in Session 1, a higher coupling strength from left DLPFC to
SMA was observed in the high-MI group [t(52) = 2.76, p = 0.008
with Bonferroni correction], whereas a lower coupling strength
from right M1 to left M1 was observed in the high-MI group
compared with the low-MI group [t(52) = −2.78, p = 0.009 with
Bonferroni correction]. In addition, the differences in coupling
strength between high- and low-MI groups based on CSP
(Supplementary Table S1), CSSP (Supplementary Table S2),

Frontiers in Human Neuroscience | www.frontiersin.org 8 August 2020 | Volume 14 | Article 321105

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00321 August 4, 2020 Time: 15:44 # 9

Lee et al. Predictor of Motor Imagery Performance

TABLE 7 | The statistical differences in effective connectivity between high- and low-MI performance groups based on CSP-cv.

ROI Session Group Session × Group

From To dof F p-value dof F p-value dof F p-value

lM1 SMA 1 1.58 0.211 1 0.48 0.489 1 0.52 0.474

rM1 SMA 1 0.78 0.380 1 0.39 0.534 1 0.01 0.942

lPMC SMA 1 1.72 0.192 1 1.42 0.236 1 0.10 0.747

rPMC SMA 1 0.98 0.324 1 0.62 0.434 1 0.01 0.991

lDLPFC SMA 0 0 NaN 1 7.62 0.008 0 0 NaN

rDLPFC SMA 0 0 NaN 1 0.45 0.506 0 0 NaN

SMA lM1 0 0 NaN 1 0.56 0.455 0 0 NaN

rM1 lM1 1 3.43 0.067 1 4.79 0.030 1 1.38 0.242

lPMC lM1 1 1.34 0.250 1 2.65 0.106 1 0.69 0.409

SMA rM1 0 0 NaN 1 0.04 0.842 0 0 NaN

lM1 rM1 1 0.88 0.350 1 0.03 0.861 1 0.01 0.973

rPMC rM1 1 0.99 0.322 1 1.06 0.306 1 0.01 0.941

rPMC lPMC 1 3.53 0.062 1 0.36 0.547 1 0.14 0.709

lPMC rPMC 1 0.42 0.517 1 0.23 0.634 1 0.64 0.423

SMA lDLPFC 1 0.51 0.477 1 0.02 0.898 1 0.37 0.542

lPMC lDLPFC 1 0.14 0.704 1 2.33 0.130 1 2.47 0.119

rDLPFC lDLPFC 1 0.35 0.552 1 0.08 0.780 1 0.06 0.813

SMA rDLPFC 1 0.74 0.391 1 25.01 <0.001 1 1.66 0.200

rPMC rDLPFC 1 0.13 0.714 1 0.29 0.593 1 0.99 0.323

lDLPFC rDLPFC 1 1.59 0.210 1 0.21 0.648 1 0.01 0.974

In Session 1, Model 4 is selected and there are 20 connections. In Session 2, Model 2 is selected and there are 16 connections. Therefore, four connections in
Session 2 are excluded (‘NaN’). The session factor indicates Session 1 and Session 2, whereas the group factor indicates high-MI performance group and low-MI
performance group. The session × group represents the interaction between session and group factors. The p-values below 0.05 are highlighted in bold. ROI, region
of interest; dof, degree of freedom; l/rM1, left/right primary motor cortex; l/rPMC, left/right pre-motor cortex; l/rDLPFC, left/right dorsolateral prefrontal cortex; SMA,
supplementary motor area.

FBCSP (Supplementary Table S3), and BSSFO (Supplementary
Table S4) are listed. As with CSP-cv, the coupling strength
from the SMA to the right DLPFC in the high-MI group was
higher than in the low-MI group in two sessions based on
four classifiers in both Session 1 [CSP: t(52) = 3.26, p = 0.001
with Bonferroni correction; CSSP: t(52) = 3.96, p < 0.001 with
Bonferroni correction; FBCSP: t(52) = 2.93, p = 0.005 with
Bonferroni correction; BSSFO: t(52) = 2.76, p = 0.008 with
Bonferroni correction] and Session 2 [CSP: t(52) = 2.90, p = 0.005
with Bonferroni correction; CSSP: t(52) = 2.91, p = 0.005; FBCSP:
t(52) = 2.76, p = 0.008 with Bonferroni correction; BSSFO:
t(52) = 2.46, p = 0.017 with Bonferroni correction]. Similarly,
differences in coupling strength from left DLPFC to SMA
between two MI groups were observed in Session 1 based on four
methods [CSP: t(52) = 3.40, p = 0.001 with Bonferroni correction;
CSSP: t(52) = 2.64, p = 0.010 with Bonferroni correction; FBCSP:
t(52) = 3.12, p = 0.002 with Bonferroni correction; BSSFO:
t(52) = 3.07, p = 0.003 with Bonferroni correction]. However,
there was significant difference in coupling strength from right
M1 to left M1 in Session 1 using four classifiers, and in Session 2,
strength from left PMC and left DLPFC showed the significant
differences between two groups only in CSP [t(52) = −2.55,
p = 0.013 with Bonferroni correction].

Correlation With MI Performance
To verify the reliability of the proposed predictors, we
investigated their correlations with MI-BCI performance. Table 8

lists the correlations between 20 connections in a resting-
state EEG and MI-BCI performance, based on CSP-cv. Positive
correlation in connectivity strength from the SMA to right
DLPFC with Bonferroni correction was observed in both
sessions. In Session 1, strength from the left DLPFC to
SMA was positively correlated with the MI-BCI performance.
Furthermore, the strength from the left PMC to left DLPFC
was negatively correlated with MI performance in Session 2.
However, there was no correlation with the directionality from
right M1 to left M1 that had significant differences between the
two MI groups in Session 1. Similar results to those obtained
under CSP-cv were obtained when assessing MI performance
with CSP, CSSP, FBCSP, and BSSFO (Supplementary Table S5).
In particular, the coupling strength from the SMA to right
DLPFC was significant in both sessions, for all classifiers.
Thus, we depicted the correlation between coupling from
SMA to right DLPFC and MI-BCI performance through five
methods (Figure 4). In both sessions, this coupling strength was
significantly correlated. In Session 1, strength from left DLPFC
to SMA was correlated with MI-BCI performance using five
methods (Supplementary Figure S3).

Prediction of MI Performance Using
Coupling Strength
We predicted MI-BCI performance using the coupling strength
from SMA to right DLPFC in resting-state EEG. Table 9
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FIGURE 3 | Averaged connectivity strength in resting-state EEG between high- and low-MI performance groups based on CSP-cv. Each colored arrow represents a
connection with a significant difference between the high- and low-MI performance groups. SMA, supplementary motor area; PMC, premotor cortex; M1, primary
motor cortex; DLPFC, dorsolateral prefrontal cortex.

shows the r-squared and RMSE values between the predicted
and the actual MI classification accuracies, based on CSP-cv,
CSP, CSSP, FBCSP, and BSSFO. The predicted performance
had the highest r-squared with actual MI performance, based
on CSP and FBCSP in Sessions 1 and 2, respectively (Session
1: r-squared = 0.31; Session 2: r-squared = 0.17). The lowest
RMSE for actual MI performance was found under CSP-
cv in both sessions (Session 1: RMSE = 13.79%; Session
2: RMSE = 14.55%).

DISCUSSION

In this study, we investigated coupling strength as a new correlate
with MI-BCI performance, using the DCM of the resting-state
EEG. The MI-BCI performance was predicted by measuring
this coupling between brain regions. A connection from the
SMA to right DLPFC in the high-MI group was observed to be
significantly higher than in the low-MI group. Moreover, this
connection showed a significantly positive correlation with MI
performance in both sessions under five classifiers.

The MI involves a variety of brain regions and successfully
performs the information exchange for the integration of
relevant regions. Specifically, a resting-state network with an
efficient exchange of information facilitates MI-BCI performance

(Zhang et al., 2015b). Interestingly, our results show that the MI-
BCI performance can be predicted using the coupling strength
from the SMA to right DLPFC in resting-state EEG; during
MI, the SMA and DLPFC exhibited observable activations
(Mizuguchi et al., 2013). The SMA plays a central role in
the preparation of behavior, and it acts as a high-level motor
control prohibiting the execution of MI responses (Nachev
et al., 2008; Kim et al., 2018). These findings have already been
proved using the DCM (Kasess et al., 2008). The DLPFC has
been reported to be involved in the early phases of motor
training (Pascual-Leone et al., 1996). The frontal region is also
affected by cognitive events, and it is responsible for motor
planning and programming (Kim et al., 2018). In particular,
the right DLPFC plays a crucial role in cognitive controls such
as motor attention or inhibition (Mizuguchi et al., 2013). In
fact, it is already reported that right DLPFC in the resting-
state as a core region is correlated with MI-BCI performance
(Zhang et al., 2016). During MI, coupling from SMA to DLPFC
has been reported to play a critical role in the motor control
needed to move a finger (Kim et al., 2018). As a result of
fMRI, DLPFC was not connected to M1, but to SMA during
MI (Mizuguchi et al., 2013). The SMA is causally connected
into the DLPFC and this relates to higher-order cognitive
motor processes such as motor control and preparation (O’Shea
and Moran, 2017). Therefore, the coupling strength from the
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SMA to right DLPFC, which is already determined in the
resting-state, affects brain activity during MI; it influences MI-
BCI performance.

We observed changes in MI-BCI performance across different
sessions with various classifiers. This was motivated by the
variations observed in EEG (Lotte et al., 2007). We also
confirmed that different coupling strengths correlated with MI-
BCI performance (depending on the session or classifier), except
for the connections from the SMA to right DLPFC. Although
we did not observe a significant correlation with MI-BCI
performance across both sessions, coupling strength from the
left DLPFC to SMA, or from the left PMC to left DLPFC, may
also be important. Because there is no actual movement taking
place during MI, secondary motor areas such as the PMC and
SMA are more relevant to MI than M1 (Park et al., 2015b). We
found relations across several motor areas; however, none were
observed for M1. Even in stroke patients, the activity of the SMA
affects MI performance more than M1 (Park et al., 2015a).

The crucial relationship with MI-BCI performance was not
found using band power and questionnaires. Some studies
have reported that SMR such as mu rhythms in the resting-
state is related to MI performance (Blankertz et al., 2010;
Kwon et al., 2020). In fact, this argument seems plausible
because alpha and beta power are decreased during the MI
and used as typical features of the MI paradigm. However,
other studies did not observe the significant correlation between
spectral power and MI-BCI performance (Jeunet et al., 2015).
Interestingly, even though it turns out to be an obvious consistent
relationship between the MI-BCI performance and SMR, no
significant correlation has been revealed. This is probably
due to differences in experimental protocols. Previous studies
presented SMR as a reliable predictor were instructed to imagine
moving the hand itself. However, in other studies, the rotation
of hand can be imagined. In other words, it is a different
protocol. In our study, the subject imagines grasping their
hands. Therefore, the resting-state SMR is clearly associated
with brain changes during the MI, but their role as an MI-BCI
predictor may vary depending on the experimental protocol.
We also used the mu power based on a shorter baseline
period, whereas the mu rhythm predictor in another study was
computed as the maximum difference between the power spectral
density and the estimated noise floor over the Laplace-filtered
sensorimotor channels (Blankertz et al., 2010). In this regard,
different ways of extracting mu rhythm are likely to have had
these different observations. In addition, the brain activity—
such as band power during resting-state—simply indicates
the state of certain brain regions, but it cannot indicate the
interregional relationships (Lee et al., 2017); these connections,
in addition to the sensorimotor cortex associated with the motor
network, seem significant (Sharma et al., 2006). In fact, resting-
state connectivity is correlated with motor task performance
(Gregory et al., 2014). Previous studies have investigated several
networks enacting MI (Lorey et al., 2011). It appears that brain
connectivity is more relevant to MI performance than the brain
activity of certain regions. Furthermore, the questionnaires were
too subjective because each subject had different criteria for
predicting MI-BCI performance.

TABLE 8 | Correlations between connectivity strength and MI performance based
on CSP-cv.

ROI Session 1 Session 2

From To r-value p-value r-value p-value

lM1 SMA 0.054 0.698 0.018 0.898

rM1 SMA −0.084 0.546 0.034 0.805

lPMC SMA −0.193 0.163 −0.177 0.200

rPMC SMA −0.076 0.584 −0.069 0.618

lDLPFC SMA 0.381 0.005* NaN NaN

rDLPFC SMA −0.037 0.791 NaN NaN

SMA lM1 −0.117 0.398 NaN NaN

rM1 lM1 −0.217 0.115 −0.082 0.554

lPMC lM1 −0.173 0.212 −0.104 0.453

SMA rM1 0.010 0.940 NaN NaN

lM1 rM1 −0.055 0.694 −0.052 0.708

rPMC rM1 0.091 0.513 0.058 0.675

rPMC lPMC 0.175 0.206 −0.030 0.831

lPMC rPMC 0.073 0.599 0.076 0.586

SMA lDLPFC 0.010 0.943 −0.071 0.610

lPMC lDLPFC −0.061 0.659 −0.331 0.014*

rDLPFC lDLPFC 0.117 0.398 −0.211 0.125

SMA rDLPFC 0.536 <0.001** 0.419 0.002**

rPMC rDLPFC −0.020 0.883 0.154 0.266

lDLPFC rDLPFC 0.036 0.795 −0.017 0.906

In Session 1, Model 4 is selected and there are 20 connections. In Session 2, Model
2 is selected and there are 16 connections. Therefore, four connections in Session
2 are excluded (‘NaN’). The p-values below 0.05 are highlighted in bold. ROI, region
of interest; l/rM1, left/right primary motor cortex; l/rPMC, left/right pre-motor cortex;
l/rDLPFC, left/right dorsolateral prefrontal cortex; SMA, supplementary motor area.
* with no correction and **<Bonferroni correction.

By applying our results to the BCI-inefficiency problem,
it can be seen that a possible reason for BCI-inefficiency
is that subjects have a less active motor network in the
motor preparation regions related to cognitive processes in the
resting-state (Ahn et al., 2013). Therefore, improvement of MI
performance requires a new approach to activate the motor
network. Performing upper extremity exercises is a good way
to activate a motor network during the resting-state (Ma et al.,
2011). In stroke patients, upper extremity rehabilitation has
been shown to activate the resting-state effective connectivity of
the motor network (Andrew James et al., 2009). This implies
that MI-BCI performance can be improved by enhancing the
connectivity strengths associated with motor planning, such
as the coupling strength from the SMA to right DLPFC.
Therefore, if subjects had been asked about their exercise habits
in the pre-experimental questionnaire, the responses may have
shown some correlation with MI performance. As another
approach, the resting-state motor network can be improved
by the direct stimulation of the brain, through transcranial
direct current stimulation or transcranial magnetic stimulation
(Fischer et al., 2017).

This study had a few limitations. First, we did not check
whether ME performance was predictable using our proposed
coupling strength. ME and MI share a common mechanism
and motor circuit-related motor network (Lee et al., 2016;
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FIGURE 4 | Correlation between connectivity strength from SMA to right DLPFC and MI-BCI performance. Each colored dot represents an individual connectivity
strength from SMA to right DLPFC and MI performance. Blue and red indicate Session 1 and Session 2, respectively. SMA, supplementary motor area; DLPFC,
dorsolateral prefrontal cortex; CSP-cv, common spatial pattern with cross-validation; CSP, common spatial pattern; CSSP, common spatio-spectral pattern; FBCSP,
filter bank common spatial pattern; BSSFO, Bayesian spatio-spectral filter optimization.

TABLE 9 | Relationship between actual MI performance and predicted MI
performance using connectivity strength from SMA to right DLPFC.

Classifier Session 1 Session 2

r-squared RMSE (%) r-squared RMSE (%)

CSP_cv 0.28 13.79 0.11 14.55

CSP 0.31 15.78 0.10 16.73

CSSP 0.25 16.46 0.14 17.21

FBCSP 0.20 17.97 0.17 17.05

BSSFO 0.21 18.04 0.11 17.63

CSP_cv, common spatial pattern with cross-validation; CSP, common spatial
pattern; CSSP, common spatio-spectral pattern; FBCSP, filter bank common spatial
pattern; BSSFO, Bayesian spatio-spectral filter optimization.

Daeglau et al., 2020). In this regard, it would have been more
effective to examine the relationship with ME performance, to
enable the wider use of the predictor in the future. Second,
we used all brain regions when finding predictors through
the DCM. However, measuring the entire brain is impractical.
Therefore, based on our results, we need to use only a small
number of EEG channels to predict MI-BCI performance in
the future. Third, we used only grasping imagery, and brain
activity is known to vary depending on the type of action. For
example, the SMA activity depends on whether it executes a
large movement (e.g., wrist movements of hand rotation) or

a small movement (e.g., finger movements in hand grasping)
(Park et al., 2015b). Therefore, it is necessary to apply them
accordingly to different actions. Last, computation time is
very important in real applications. The model and specific
ROIs are already selected, so we can measure the proposed
strength in sec. Nevertheless, we did not directly compare the
existing paper with the computation time. Therefore, in the
future, it is necessary to compare the computing time for
this practicality.

CONCLUSION

We proposed an MI-BCI predictor from the resting-state
EEG using DCM. Our study is valuable in two ways. The
first is its investigation of the effective connectivity (with
directionality) related to MI performance; it facilitates a
more analytical understanding of why the performance
is lower in low-MI groups. Our results suggest that for
subjects with “BCI-inefficiency,” appropriate alternatives can
be implemented to improve MI-BCI performance. Second,
we show the possibility of predicting MI performance
using predictors measured before the time-consuming
MI-BCI experiment takes place. Therefore, our predictor
can be used to sort out BCI-inefficiency before subjects
perform a task in the real application. This can help prevent
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the unnecessary waste of time and resources when implementing
MI-BCI in practice.
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Objective: Many pieces of research have focused on pain within individuals, but little
attention has been paid to whether pain can change an individual’s empathic ability and
affect social relationships. The purpose of this study is to explore how chronic low back
pain changes empathy.

Methods: Twenty-four chronic low back pain patients and 22 healthy controls were
recruited. We set up an experimental pain-exposed model for each healthy subject.
All subjects received a painful-empathic magnetic resonance scan. After the scan, all
subjects rated the pain intensity and multiple empathy-related indicators. The clinical
assessment scale was the 20-item Basic Empathy Scale in Adults.

Result: The chronic low back pain patients reported lower scores on the total scores of
BES-A, the subscale scores of emotional disconnection and cognitive empathy, and the
discomfort rating. The fMRI results in the chronic low back pain patients showed that
there were multiple abnormal brain pathways centered on the anterior insula. The DTI
results in the chronic low back pain patients showed that there were reduced fractional
anisotropy values in the corpus callosum, bilateral anterior thalamic radiation (ATR), right
posterior thalamic radiation (PTR), right superior longitudinal fasciculus (SLF), and left
anterior corona radiate (ACR).

Conclusion: Our study found that patients with chronic low back pain have impaired
empathy ability. The abnormal functional connectivity of multiple brain networks, multiple
damaged white matter tracts, and the lower behavioral scores in chronic low back pain
patients supported our findings.

Keywords: empathy, chronic low back pain, functional magnetic resonance imaging, diffusion tensor imaging,
brain networks

Abbreviations: fMRI, functional magnetic resonance imaging; DTI, diffusion tensor imaging; FA, fractional anisotropy;
BES-A, Basic Empathy Scale in Adults; cLBP, chronic low back pain; VAS, visual analogue scale; TBSS, Tract-Based Spatial
Statistics; AI, anterior insula; FC, functional connectivity; CC, corpus callosum; ATR, anterior thalamic radiation; PTR,
posterior thalamic radiation; SLF, superior longitudinal fasciculus; ACR, anterior corona radiata; DLPFC, dorsolateral
prefrontal cortex; SPL, superior parietal lobule; PHP, parahippocampal gyrus; gCC, genu of corpus callosum; sCC,
splenium of corpus callosum.
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INTRODUCTION

Imagine that your hand was accidentally scratched. This
experience can lead to nociceptive pain, which originates in
the peripheral nociceptors. This stimulus eventually leads to
cerebral cortex, causing changes in brain network activity.
Now imagine that you saw someone else’s hand accidentally
being scratched. This experience typically produces empathy for
pain, a phenomenon that, despite differences in origin, has the
same characteristics of nociceptive pain and changes in brain
network activity.

Briefly speaking, empathy can be generated by directly
observing or imagining the emotions of the target. The
occurrence of empathy can lead individuals to altruistic and
prosocial behaviors towards the plight of others, and this ability
to perceive the distress of others also keeps individuals alert
to dangerous stimuli (Xiang et al., 2018). Therefore, empathy
is of great significance for maintaining social relations and
maintaining interactions with others. However, in the eyes of
ordinary people, the ability to empathize with others is so
common that it seems to be innate in everyone. Many pieces
of research have focused on pain, distress, and disability within
individuals (Goubert et al., 2005), but little attention has been
paid to whether diseases can change an individual’s empathic
ability and affect social relationships.

The importance of empathy is also evident in pain medicine.
Chronic pain is notorious for harming individuals in many ways.
It not only physically tortures patients, but it also stigmatizes
them (Cohen et al., 2011). When there is no objective evidence
of bodily injury, the subjective pain feeling expressed by patients
is often misunderstood as a mental disorder (Cohen et al.,
2011). Therefore, the stigmatization has led to the collapse of
interpersonal trust between chronic pain patients and others,
which is not conducive to social harmony due to the large group
of chronic pain patients. Furthermore, on the psychological
level, chronic pain can lead to pain catastrophizing and mood
disorders such as anxiety and depression. These problems further
isolate patients with chronic pain and inhibit the development
of prosocial behaviors. Therefore, it is urgent to study the
relationship between chronic pain and empathy. A pioneering
study by Singer et al. (2004) found that there is a partial overlap
between empathy for pain and original pain-activated brain
regions. Multiple pain-related brain regions in patients with
chronic pain were found to have decreased gray matter volume,
altered functional connectivity, and cortical thickness (Hubbard
et al., 2014; Seminowicz and Moayedi, 2017). These evidences
drive us to link the change of empathy ability to chronic pain.

Previous studies on empathy were mostly behavioral and
neuroimaging studies on normal people (Lamm et al., 2011).
A few studies have focused on changes in empathy (Roche
and Harmon, 2017). Our knowledge is very limited about how
empathy has changed in patients with chronic pain. Therefore,
the purpose of this study is to explore how chronic pain changes
empathy (i.e., what changes have taken place in the empathy
ability of patients with chronic pain).

The implicit measures, such as functional magnetic resonance
imaging (fMRI), may be a good method to explore empathy.

Previous studies have explored the neural brain network
mechanism of empathy in healthy adults through fMRI
technology and have gotten some excellent results (Engen and
Singer, 2013). However, the absence of structural image studies,
such as diffusion tensor imaging (DTI), makes the evidence chain
of these studies relatively weak, which is one of the limitations of
these studies.

Based on the above description, after designating the
chronic low back pain (cLBP) group (experimental group) and
experimental pain group (EP group), fMRI and DTI technology
will be jointly used in this study to explore the brain structural
abnormalities and the functional brain changes during empathy
state in patients with chronic pain. Diffusion tensor imaging is a
magnetic resonance technique that reflects the random diffusion
of water molecules in the brain. The Basic Empathy Scale in
Adults (BES-A) will be used to quantify the empathy ability
of all subjects (Carré et al., 2013). BES-A is usually divided
into three subscales, namely, emotional contagion, emotional
disconnection, and cognitive empathy. These three components
represent three dimensions of empathy. The picture-based
paradigm will be used to induce the subjects’ empathy state.

EXPERIMENTAL PROCEDURES

Recruitment of Subjects
To reduce confounding factors, we limit the patients included to
those with cLBP. We recruited 25 cLBP patients and 25 healthy
controls from Zhujiang Hospital of SouthernMedical University.
For the patients, inclusion criteria were as follows: (1) clinically
diagnosed as cLBP (Kreiner et al., 2020); (2) the results assessed
by the self-rating anxiety scale (SAS) and self-rating depression
scale (SDS) are normal; (3) no fMRI contraindication; (4) did not
receive psychological induction training; (5) no cerebral lesions;
and (6) no mental or neurological disease. For the controls,
inclusion criteria were the same as the patients except for the
diagnosis of cLBP, and the demographic characteristics of all
subjects (age, gender, and education) were collected.

This experiment was approved by the ethics committee of
Zhujiang Hospital of Southern Medical University (Ministry of
Health of the PRC, 2018). All subjects signed informed consent.
We explained the detailed instructions, experimental procedures,
possible risks and discomforts of the study to all volunteers, and
answered their questions in detail.

Procedures
Preparation of the Pain Model
To match the patient’s pain status, we set up an experimental
pain-exposed model for each healthy subject. The process was
as follows: With subjects in a lateral decubitus position, an
indwelling needle attached to a 2-ml syringe containing 2 ml
of sterile hypertonic (3%) saline was inserted into the lower
back muscles, 2 cm to the right of the 4th lumbar vertebra.
The time that was taken for the pain caused by the needle
puncture to subside ranged from 10 to 30 s in all subjects. After
the pain resolved, subjects turned from the lateral decubitus to
the supine position, and the hypertonic saline was injected into
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the lower back muscles of the subjects through the indwelling
needle at a speed of 0.15 ml/min, maintaining pain until all scans
were completed.

Scanning Materials Preparation
The best bottom-up input to produce emotional resonance
may be to observe the facial expression of the target directly
(Goubert et al., 2005). Besides, many previous studies used
photos of limbs with noxious stimuli as empathic stimuli (Gu
and Han, 2007; Gu et al., 2010). Consequently, photographs
related to pain with both facial expressions and body language
may be better experimental stimulus materials for empathy.
Before the experiment, we collected photographs that met the
above features from various online picture websites. We then put
more than 100 questionnaires into society to screen out photos
that can cause public empathy. The photos screening paradigm
through questionnaire survey was based on a previous pioneering
study (Jackson et al., 2005). We finally screened 24 photos as
experimental stimulus materials (see Supplementary Figure S1,
Table S4 for photo screening). The scanning process was fully
explained to each subject and they were instructed to focus on
the content of the stimululs materials rather than other things
during the scanning process.

Scanning Process
Brain scanning consisted of three sessions. First, the T1 sequence
was performed. Second, the brain functional sequence was
performed and the duration of this session was 6 min. In this
session, the stimulus materials were displayed in two consecutive
rounds for each participant, and each photo was presented for
7.5 s. Third, each subject underwent a DTI sequence scan lasting
8 min.

Postscan Tests
Immediately after the scan, each subject was asked to rate their
current pain intensity, discomfort ratings (‘‘How uncomfortable
were you when you saw these photos?’’), and the intensity of
pain suffered by the individual in each photo (‘‘How painful
do you think the person in the photo is?’’). The assessment of
pain intensity of oneself and others can be used to measure
the cognitive-evaluative dimension of subjects. The evaluation
of the degree of discomfort after receiving stimulation can be
used to measure the emotional dimension of empathy (Rutgen
et al., 2015). The visual analogue scale (VAS) ranging from 0 to
10was used to quantify these types of evaluations, for which 0was
painless or no discomfort, and 10 was the maximum intensity of
pain or discomfort. The subjects also completed the 20-item BES-
A. Each item had a score ranging from 1 to 5, for which one was
completely inconsistent, and five was completely consistent. The
20 items were equally divided into three subscales: emotional
contagion, emotional disconnection, and cognitive empathy, so
that the empathy capacity of subjects could be quantified from
different dimensions.

Data Acquisition and Processing
Data Acquisition
All image data were collected by a Philips 3.0 T Achieva
magnetic resonance imager in Zhujiang Hospital, Southern

Medical University, and scanned in a standard radio-frequency
head coil. T1 data were acquired with a T1-weighted rapid spin
echo sequence: repetition time (TR)/echo time (TE) = 25/3 ms;
flip angle = 90◦; field of view (FOV) = 220 mm × 220 mm;
matrix size = 256 × 256; 0.859 mm × 0.859 mm in-plane
resolution; slice thickness = 5 mm; 24 slices; slice gap = 0.7 mm.
FunctionalMRI data were acquired using a T2∗-weighted, single-
shot, gradient-recalled echo planar imaging (EPI) sequence,
TR/TE = 2,000/35 ms; field of view (FOV) = 230 mm × 230 mm;
matrix size = 64× 64; flip angle = 90◦; 3.4 mm× 3.4mm in-plane
resolution; slice thickness = 5 mm; 24 slices; slice gap = 0.7 mm;
number of signals averaged (NSA) = 1. DTI data were acquired
using a single-shot EPI sequence: TR/TE = 12,500/112 ms;
FOV = 256 mm × 256 mm; matrix = 128 × 128; 2 mm × 2 mm
in-plane resolution; number of slices = 75; slice thickness of
2 mm and no gap. There were 33 images acquired for each scan:
32 diffusion-weighted images (b = 1,000 s/mm2) and 1 non-
diffusion-weighted image (b = 0 s/mm2).

DTI Data Preprocessing
The Pipeline for Analyzing braiN Diffusion imAges toolbox
(PANDA1) was used to preprocess the DTI data (Cui et al., 2013).
PANDA is a toolbox designed for pipeline processing of diffusion
MRI images implemented in MATLAB. Pre-processing included
DICOM data conversion, skull removal (the threshold was 0.25),
correction of eddy current distortion, and head motion. A
voxel-wise tensor matrix map and fractional anisotropy results
were obtained for each subject after producing diffusion metrics.

Tract-Based Spatial Statistics
Tract-Based Spatial Statistics (TBSS; Smith et al., 2006) were
employed to evaluate voxel-based whole-brain white matter
measures and the values of fractional anisotropy (FA, one of
the important measures of water molecule diffusion, which
characterizes the anisotropy of water molecule diffusion and can
reflect the integrity of the myelin sheath and axon membrane).
The TBSS analysis was carried out using the FMRIB software
library (FSL 4.1.42). Briefly, all FA images were nonlinearly
registered to the FMRIB58_FA template space. The mean FA
image and the white matter tract skeleton (FA threshold was
0.2 to exclude non-WM voxels) were then created. Each subject’s
aligned FA image was then projected onto this skeleton. Finally,
the Johns Hopkins University ICBM-DTI-81 White-Matter
atlas3 provided in the FSL toolbox was overlaid on the white
matter skeleton, and the FA values of 50 WM regions of interest
(ROIs) defined in this standard space were extracted.

fMRI Data Preprocessing
The fMRI image data were pre-processed with the Data
Processing Assistant for Resting-State fMRI (DPARSF4) on the
MatlabR2014a platform. Pre-processing included DICOM data
conversion, removing the first 10 time points, correcting slice-
timing, realignment, nuisance regressors, spatial normalization,
smoothing, linear de-trending, and filtering. The first 10 volumes

1http://www.nitrc.org/projects/panda
2http://www.fmrib.ox.ac.uk/fsl
3http://cmrm.med.jhmi.edu/
4http://rfmri.org/DPARSF
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of each scan were discarded to eliminate the instability of the
machine magnetic field and the maladjustment of the subject.
The motion time courses were used to select subjects’ head
movements of <2 mm in translation and 2◦ in rotation, which
were used for further analysis. The nuisances including white
matter signals, cerebrospinal fluid signals, and global signal
were removed. The images of each subject were registered to
the standard plane echo imaging template and resampled at
a resolution of 3 mm × 3 mm × 3 mm. The normalized
functional images were smoothed spatially using a 6-mm full
width at half maximum (FWHM) Gaussian kernel. Finally, linear
de-trending was used to reduce the effects of very low-frequency
drift and filtering was used to retain the low-frequency band
(0.01–0.08 Hz).

Location of ROI in Functional Image
As the core brain region of pain empathy, the anterior insula
(AI) plays an important role in the emotion-cognitive empathy
network. Therefore, locating the ROI in the AI is an important
means to explore the joint nodes of the brain network of empathy
for pain. In our study, the specific ROI coordinate of AI (x =−32,
y = 25, z = 9) was based on our DTI data analysis (for detailed
information, see Supplementary Materials), and a spherical
ROI with a radius of 3 mm centered on the MNI coordinate
was generated.

Functional Connectivity Analysis
We used the functional connectivity (FC) function in the rest
toolkit5 to perform a functional connectivity analysis of the time
series of the ROI and the time series of each voxel within the
brain. Then, the Pearson correlation coefficients between the
time series of brain voxels were obtained, and the Fisher’s r-to-
z transform was used to convert the correlation coefficients into
Z-scores to obey the normal distribution. ROI-to-whole-brain
FC analysis was performed on the patients and healthy controls,
based on Gaussian random field theory (GRF) correction (voxel-
level p < 0.001, cluster-level p < 0.05), and the minimum voxel
threshold was set to 20. Finally, each subject’s brain Z-score
image was acquired (Figure 2).

Based on the results of voxel-wise analysis, each brain region
with abnormal functional connectivity to ROI in patients with
cLBP was included in the ROI–ROI analysis. These brain regions
were set to spherical ROIs with a radius of 3 mm centered
on the MNI coordinate point, and the time series of each
ROI (including the initial ROI) was extracted and incorporated
into the ROI-Wise analysis module in the rest toolkit. We
then calculated the correlation coefficient based on time series
between the ROIs, and generated an n × n FC matrix (n is the
number of ROI). Finally, the statistical analysis of the inter-group
FC matrix was carried out.

Statistical Analysis
The SPSS22.0 (SPSS, Chicago, IL, USA) software package
was used to conduct statistical analysis on the demographic
characteristics, BES-A scores, and behavior data of subjects
in both groups. Two independent sample t-tests were used

5http://www.restfmri.net/forum/rest

for comparing the data between groups. Non-parametric tests
were used for data that were not normally distributed. Pearson
correlation analysis was used to calculate the correlation
between the FC correlation coefficient with the behavioral
results (Spearman correlation analysis for data that did not
obey the normal distribution). Chi-square test was used for
comparing the dichotomous variables between groups. All
statistical assessments were two-tailed, and the significance
threshold was p< 0.05. The results satisfying normal distribution
were expressed as means ± standard deviations; otherwise, they
were expressed asmedian (InterQuartile Range). The effect of age
on behavioral data is shown in the Supplementary Tables S1, S2.

The FMRIB software library was used for statistical analysis
of DTI data, the significance threshold for intergroup differences
was p < 0.05 [family-wise error (FWE) corrected for multiple
comparisons performed by permutation test with threshold-free
cluster enhancement (TFCE)], and the number of permutations
was set to 5,000. The rest toolkit was used for statistical analysis
of fMRI data, and the significance threshold for intergroup
differences was also p < 0.05. The resulting images were shown
by the rest toolkit, and the FC correlation coefficient between
the brain areas was shown by Circlize (Gu et al., 2014). Age was
entered into the statistical analysis as a confound regressor in
both fMRI data and DTI data.

RESULTS

Demographic and Behavioral Data
One patient and three healthy controls were excluded due to poor
image quality. There were no significant differences between
the groups in education, gender, self-report pain intensity, and
others’ pain intensity distribution. The age (p < 0.001) and the
discomfort rating (p = 0.014) distribution between the groups
were significantly different (Table 1). For the BES-A scale, there
were no significant differences between the groups in the subscale
scores of emotional contagion. The total scores (p = 0.005),
the subscale scores of emotional disconnection (p = 0.017),
and cognitive empathy (p = 0.015) between the groups were
significantly different (Table 1).

Correlation Analysis
In the cLBP group, the functional connectivity between the AI
and right parahippocampal gyrus (PHP) showed a significant
correlation with the discomfort ratings (p < 0.001, r = 0.6456),
the functional connectivity between the AI and left dorsolateral
prefrontal cortex (DLPFC) showed a significant correlation with
the cognitive empathy scores (p = 0.0063, r = 0.5416), the
functional connectivity between the left superior parietal lobule
(SPL) and right precuneus showed a significant correlation with
the emotional disconnection scores (p = 0.0251, r = 0.4561), but
no correlation was found between the SPL-DLPFC functional
connectivity and the emotional disconnection scores (Figure 3).
No correlation was found between the BES-A scores and the FA
values (Supplementary Table S3).
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TABLE 1 | Demographic and clinical characteristics and behavioral scores of the participants.

Patients (n = 24) Controls (n = 22) Test statistics P-value

Demographic features
Age, years 39.17 ± 8.36 24.91 ± 2.96 7.567 <0.001
Education, years 13.17 ± 1.63 13.23 ± 1.72 −0.123 0.903
Sex ratio, male 9 (37.5%) 8 (36.4%) 0.006* 0.937
Clinical features
Duration of pain, months

3–6 months 4 (16.7%) NA NA NA
7–12 months 2 (8.3%) NA NA NA
>12 months 18 (75%) NA NA NA

Pain symptom severity
Pain intensity, by VAS 5 (2.5) 5 (3) −1.414** 0.157
Empathy rating
Discomfort, by VAS 7 (3.5) 5 (2.5) −2.425** 0.014
Other pain, by VAS 8.5 (1.75) 7.85 (2.58) −1.078** 0.281
BES-A scores
Emotional contagion 19.71 ± 4.51 21.55 ± 3.13 −1.592 0.119
Cognitive empathy 30.04 ± 6.58 33.95 ± 3.18 −2.530 0.015
Emotional disconnection 20.79 ± 5.55 23.95 ± 2.65 −2.500 0.017
Total 70.54 ± 13.17 79.45 ± 5.75 −3.017 0.005

**Non-parametric tests. *Chi-square test. The results satisfying normal distribution were expressed as means ± standard deviations; otherwise, they were expressed as median
(interquartile range). NA, not applicable; VAS, visual analogue scale (ranging from 0 to 10). Other pain = “How painful do you think the person in the photo is?” Discomfort = “How
uncomfortable were you when you saw these photos?”.

TABLE 2 | The fractional anisotropy values of the participants.

Regions Patients Controls t-value P-value

ATR.L 0.37 ± 0.03 0.39 ± 0.02 −2.897 0.006
ATR.R 0.36 ± 0.03 0.37 ± 0.01 −2.485 0.018
gCC 0.56 ± 0.03 0.59 ± 0.02 −3.921 <0.001
bCC 0.54 ± 0.04 0.58 ± 0.03 −3.977 <0.001
sCC 0.62 ± 0.03 0.65 ± 0.02 −3.621 0.001
PTR.R 0.51 ± 0.04 0.53 ± 0.02 −2.515 0.016
SLF.R 0.43 ± 0.03 0.45 ± 0.02 −2.536 0.015
ACR.L 0.36 ± 0.04 0.39 ± 0.02 −3.040 0.004

All the data satisfying normal distribution. ATR, anterior thalamic radiation; gCC, genu of corpus callosum; bCC, body of corpus callosum; sCC, splenium of corpus callosum; PTR,
posterior thalamic radiation; SLF, superior longitudinal fasciculus; ACR, anterior corona radiata.

fMRI and DTI Results
The cLBP group showed significantly reduced FA values in
the corpus callosum (CC), bilateral anterior thalamic radiation
(ATR), right posterior thalamic radiation (PTR), right superior
longitudinal fasciculus (SLF), and left anterior corona radiata
(ACR; Table 2 and Figure 1).

Compared with the EP group, the cLBP group showed
increased AI functional connectivity to the left DLPFC, left
fusiform gyrus, left SPL, right precuneus, left postcentral
gyrus, right PHP, and bilateral cerebellum. The left caudate
demonstrated a noticeably decreased connectivity to the AI.
The left SPL showed increased functional connectivity to the
left fusiform gyrus, left DLPFC, and right precuneus. The left
fusiform gyrus showed increased functional connectivity to
the left DLPFC. The left caudate showed increased functional
connectivity to the right parahippocampal gyrus (Table 3,
Figure 2).

DISCUSSION

The empathy for pain has long been a focus of social
psychology research. With the progress of research methods and

technologies, the study of empathy for pain has developed into
a multi-disciplinary and dynamic field, attracting great interest
from disciplines such as cognitive psychology, and emotional
and cognitive neuroscience. However, as a complex physiological
and psychological experience involving multiple dimensions, the
exploration of the neurogenesis and development mechanisms
of empathy for pain is still in its infancy. At present, there is
still a lack of research on whether the progress of some diseases
will affect a patients’ ability for pain empathy and then foster
social prejudice. In our study, the protocol was specially designed
for neuroimaging the change of pain empathy in patients with
chronic lower back pain. The behavior measure results showed
that there was a significant difference in self-experienced negative
emotions (as defined by ‘‘discomfort’’ rating) between the two
groups, which is considered to be one of the most specific
assessment methods of affective sharing (Singer and Lamm,
2009). For the evaluation results of the BES-A scale, cLBP not
only showed a weaker capacity for cognitive empathy but also
scored lower on emotional disconnection. The heterogeneity
of these behavioral measurement results may provide us with
the possibility to combine them with neural measurements for
further discussion.
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FIGURE 1 | Diffusion tensor imaging (DTI) results with significant difference
between groups. (A) White matter tracts with significant fractional anisotropy
(FA) values change between groups. The upper left number represents the
MNI coordinate slice position. Warm tone (red) represents white matter tracts
reference system, while cold tone (blue) represents white matter tracts with
significant FA values changes between groups. (B) The comparison of FA
values of white matter tracts with significant differences between groups.
Experimental = patients. Control = healty control. *p < 0.05; **p < 0.01;
***p < 0.001.

Broadly speaking, empathy is generally composed of cognitive
empathy and emotional empathy. Cognitive empathy includes
the abilities associated with ‘‘mentalizing,’’ such as ‘‘perspective-
taking,’’ ‘‘self-other distinction,’’ and ‘‘working memory.’’
Emotional empathy, on the other hand, involves responding
emotionally to the emotional states of others. This so-called
‘‘affective sharing,’’ which involves activation of the ‘‘empathy’’
brain network regarding a certain emotion that underpins the
first-hand experience of that emotion (Lamm et al., 2019). As the

core brain area of the empathy network, neuroimaging studies
have found that the AI plays a key role in the integration of pain,
negative emotion processing, affective sharing, sensory coding,
and cognitive control (Shackman et al., 2011; Decety et al.,
2012). Therefore, AI is activated in both emotional empathy and
cognitive empathy, which requires in-depth analysis.

In the field of cognitive empathy, ‘‘mentalizing’’ is an
aggregation of various cognitive functions. When cognitive
empathy is activated, the activity of several brain areas related
to cognitive function enables the brain to analyze the incoming
empathy information based on prior knowledge and previous
experience, infer the other’s intentions and thoughts, and read
the mental state of others without confusing the external
information with the own experience, thus producing the
top-down empathy regulation effect (Goubert et al., 2005).
In our study, cLBP had lower scores of cognitive empathy
subscale in BES-A, indicating that cLBP cognitive empathy
ability was impaired. However, the term ‘‘cognition’’ is too
broad, so it needs to be refined at the neuroscience level.
Our results showed that the cLBP’s FC correlation coefficient
between the caudate and AI decreased, while that of the AI
and DLPFC increased. The cLBP’s FC correlation coefficient
between the AI and DLPFC showed a significant correlation
with the cognitive empathy scores. Research has found that the
caudate is connected to the prefrontal lobe through multiple
parallel circuits. One of them, the dorsolateral loop, which
connects the DLPFC and caudate, is considered to be closely
related to executive function (Kemp et al., 2013). As a high-level
cognitive ability, executive function is regarded as the control
mechanism of the brain and covers the process of planning,
decision-making, judgment, self-regulation, and inhibition. It
is essential for goal-oriented behavior and for responding to
new events (Chung et al., 2013). Therefore, in this study,
we believe that the impairment of cognitive empathy ability
in cLBP is related to the low connectivity of the executive
function loop. Furthermore, the above discussion seems to be
supported by the structural MRI results. The DTI results showed
decreased FA values of ACR and genu of corpus callosum
(gCC) in cLBP. The damages of ACR and gCC have also been
reported in various pain diseases studies (DeSouza et al., 2014;
Chong and Schwedt, 2015). As white matter tracts radiate to a
wide area of the prefrontal lobe, the decrease of FA values of the

TABLE 3 | The brain regions with significant functional connectivity strength between groups.

Regions R/L BA Cluster size MNI z values

voxels x y z

Cerebellum posterior lobe L 42 −21 −75 −42 4.3892
Cerebellum anterior lobe R 87 6 −69 −15 4.5225
PHP R 35 21 24 −18 −27 4.7116
Fusiform gyrus L 37 38 −33 −54 −12 4.1623
Caudate L 22 37 −18 24 9 −4.2419
Precuneus R 39 274 9 −63 18 5.1913
DLPFC L 4/6 100 −48 6 54 5.0656
SPL L 7 27 −33 −54 63 4.8991
Postcentral gyrus L 1/2/3 23 −45 −27 66 4.9983

The minimum voxel threshold was set to 20, based on Gaussian random field theory (GRF) correction (voxel-level p < 0.001, cluster-level p < 0.05). BA, Brodmann areas; MNI,
Montreal Neurological Institute; PHP, parahippocampal gyrus; DLPFC, dorsolateral prefrontal cortex; SPL, superior parietal lobule.
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FIGURE 2 | Functional magnetic resonance imaging (fMRI) results with
significant difference between groups. (A) The brain map of voxel-wise
functional connectivity analysis results. The upper left number represents the
MNI coordinate slice position. Warm tone (red) represents brain regions with
increased functional connectivity strength between groups, while cold tone
(blue) represents brain regions with decreased functional connectivity strength
between groups. (B) Circlize map of functional connectivity between groups
from ROI–ROI analysis. The parameters represent the strength of the
functional connectivity. PG, postcentral gyrus; aCerebellum, anterior
cerebellum; pCerebellum, posterior cerebellum. The parameters represent the
functional connectivity (FC) correlation coefficient. Different colors represent
different brain regions. For example, yellow represents caudate, and yellow
curve represents the FC between caudate and parahippocampal gyrus (PHP).

ACR and gCC is related to abnormal myelination, axon loss, and
inflammation. This means that the functional connection and
information transmission between the prefrontal lobe and other
brain areas are damaged, which affects the top-down regulation
of empathy.

The current study also found that the cLBP had lower
scores of emotional disconnection subscale in BES-A. Emotional
disconnection is considered to be self-protection regulation
mechanism. When witnessing others being hurt, emotional
disconnection enables individuals to correctly distinguish the
boundaries between themselves and others and to protect
individuals against injury and emotional impact (Carré et al.,
2013). However, excessive self-protection and resistance to the
influence of the external environment will breed indifference.
Individuals can easily immerse themselves in their own world
and gradually lose the ability to turn their attention outward,

which eventually breeds emotional diseases (Hugdahl et al.,
2015). In this study, our results showed a circuit with
decreased functional connection, which is associated with
emotional disconnection, namely, SPL–precuneus–AI–caudate.
The cLBP’s FC correlation coefficient between the SPL and
precuneus showed a significant correlation with the emotional
disconnection scores. The main function of the precuneus
is related to ‘‘perspective-taking’’ (Lamm et al., 2011), which
allows subjects to generate empathy not only through direct
observation but also through imaging other people’s emotions.
Furthermore, the precuneus is also involved in the identification
and processing of emotional valences in others (Pires et al., 2018).
Therefore, we can make an inference in the current study: when
patients with cLBP are watching photos, the precuneus with
abnormal activities transfers the wrong evaluation information to
the executive network, thus affecting the ability to empathize. In
addition, the SPL andDLPFC are considered part of the attention
network (Corbetta and Shulman, 2002; Fritz et al., 2016). The
abnormal functional connection state of SPL and DLPFC caused
incorrect attention resources allocation. Although no correlation
was found between the SPL-DLPFC functional connectivity and
the emotional disconnection scores, there was still a tendency
towards statistical significance (r = 0.39, p = 0.0586). As a
result, we can still assume that the cLBP reduced the resource
distribution of external attention and allocated more attention
resources to self-regulation, which is one of the reasons for
the decreased scores of emotional disconnection in cLBP. For
structural MRI analysis, the DTI results showed a decreased
FA value of the right SLF in cLBP. Research has found that
the white matter tract of SLF underlying the temporoparietal
cortex and the right temporoparietal junction are considered
to be a component of the ventral attention network, a right-
lateralized supervisory system (Kucyi et al., 2012). Consequently,
the damage of the SLF tracts may affect the distribution of
attention resources and then affect the discrimination of self and
other emotional states.

A study has proposed that the discomfort ratings of watching
photos may be the most appropriate index to evaluate the
ability of affective sharing (Singer and Lamm, 2009). In our
study, higher discomfort ratings of cLBP represent an abnormal
increase in cLBP’s ability to share others’ emotions. The cLBP’s
FC correlation coefficient between the AI and PHP showed a
significant correlation with the discomfort ratings. The fMRI
results showed that the FC correlation coefficient between the
fusiform gyrus and AI and that between the AI and PHP were
both increased in cLBP. The fusiform gyrus is considered to be
an important brain area for facial recognition, and damage to
the fusiform gyrus usually results in long-term facial recognition
problems (Ghuman et al., 2014). Thus, the fusiform gyrus is
the primary activation area of the whole empathy process. The
increased functional connectivity between the fusiform gyrus and
other brain regions indicated that cLBP enhances the recognition
of the face, i.e., increases the bottom-up input. Research has
found that the main function of PHP is to extract emotional
memory (de Greck et al., 2013). Other studies have found that
an individual’s prior experience of pain makes them more likely
to develop an empathic response (Goubert et al., 2005), which we
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FIGURE 3 | Correlation analysis between the functional connectivity and the behavioral results in the chronic low back pain (cLBP) group. (A) Correlation analysis
between the subscale scores of emotional disconnection and the functional connectivity coefficient of superior parietal lobule (SPL)-precuneus. (B) Correlation
analysis between the subscale scores of cognitive empathy and the functional connectivity coefficient of dorsolateral prefrontal cortex-anterior insula (DLPFC-AI).
(C) Correlation analysis between the subscale scores of emotional disconnection and the functional connectivity coefficient of SPL-DLPFC. (D) Correlation analysis
between the subscale scores of discomfort ratings and the functional connectivity coefficient of AI-PHP.

consider may be related to deep pain memories. Therefore, in
this experiment, we infer that the increase of bottom-up input
and the enhancement of pain emotional memory extraction
made cLBP more willing to report unpleasant experiences. For
structural MRI analysis, the DTI results showed a decreased
FA value of ATR and splenium of corpus callosum (sCC) in
cLBP. Some studies have found that the ATR is related to the
memory and emotional response of autonomic arousal (Huang
et al., 2016), while the sCC is closely related to the processing of
somatosensory and external input information (Lieberman et al.,
2014). The decrease of FA values of these two white matter tracts
seems to contradict the fMRI results.

However, a large number of studies have reported that the
FA value of the white matter tracts related to somatosensory
in patients with chronic pain is decreased (DeSouza et al.,
2014; Chong and Schwedt, 2015; Leung et al., 2018), but many
patients with chronic pain have symptoms such as hyperalgesia
and catastrophizing. Thus, it is worth noting that although the
abnormality of the white matter tracts represents the abnormality
of related functions, it is not necessarily the decrease. In
this study, the damage of the ATR and SCC tracts seems to
be consistent with the abnormally enhanced affective sharing
ability of cLBP.

LIMITATIONS

Although the results of this study demonstrate the impaired
empathy ability of cLBP patients, we still need to pay attention

to some shortcomings in this study. First, the sample size was
small. The sample size of each group in this study is about
23 cases, which may decrease generalizability. It is necessary
to increase the sample size in future experiments. Second, the
covariate effect of the age gap on behavior data did not reach
statistical significance. However, the significant difference in age
distribution between the groups should be avoided in future
studies. Third, voxel-based morphometry is useful for studying
the damage of chronic pain to the volume of cerebral gray matter,
and it could be employed in future experiments. Fourth, selecting
multiple ROIs in the same brain area can detect the changes
of functional connectivity more thoroughly. Therefore, multiple
ROIs and even symmetrical ROIs in brain regions of interest need
to be considered in future studies.

CONCLUSION

In conclusion, we found that patients with cLBP have
impaired empathy ability, which involves cognitive empathy
and emotional empathy. We found that the impairment of
cognitive empathy is mainly related to the impairment of
attention network in patients with cLBP, while the damage of
emotional empathy is related to the pain emotional memory. The
lower behavioral scores, the abnormal functional connectivity
of multiple brain networks, the correlation between behavioral
scores and functional connectivity of brain regions, and multiple
damaged white matter tracts in chronic pain patients supported
our findings. These findings enrich the neural theory of the
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change of empathy in patients with cLBP. Moreover, we hope
that these findings will call attention to the impairment of
prosocial behavior in patients with chronic pain.
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The steady-state visually evoked potential (SSVEP) has been widely used in

brain-computer interfaces (BCIs). Many studies have proved that the Multivariate

synchronization index (MSI) is an efficient method for recognizing the frequency

components in SSVEP-based BCIs. Despite its success, the recognition accuracy has

not been satisfactory because the simplified pre-constructed sine-cosine waves lack

abundant features from the real electroencephalogram (EEG) data. Recent advances in

addressing this issue have achieved a significant improvement in recognition accuracy

by using individual calibration data. In this study, a new extension based on inter- and

intra-subject template signals is introduced to improve the performance of the standard

MSI method. Through template transfer, inter-subject similarity and variability are

employed to enhance the robustness of SSVEP recognition. Additionally, most existed

methods for SSVEP recognition utilize a fixed time window (TW) to perform frequency

domain analysis, which limits the information transfer rate (ITR) of BCIs. For addressing

this problem, a novel adaptive threshold strategy is integrated into the extension of

MSI, which uses a dynamic window to extract the temporal features of SSVEPs

and recognizes the stimulus frequency based on a pre-set threshold. The pre-set

threshold contributes to obtaining an appropriate and shorter signal length for frequency

recognition and filtering ignored-invalid trials. The proposed method is evaluated on a

12-class SSVEP dataset recorded from 10 subjects, and the result shows that this

achieves higher recognition accuracy and information transfer rate when compared

with the CCA, MSI, Multi-set CCA, and Individual Template-based CCA. This paper

demonstrates that the proposed method is a promising approach for developing

high-speed BCIs.

Keywords: brain-computer interface (BCI), steady-state visually evoked potentials (SSVEP), inter- and

intra-subject template-based multivariate synchronization index, transfer learning, adaptive threshold
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1. INTRODUCTION

The Brain-Computer Interfaces (BCIs) provide humans with
a direct communication and control channel between human
brains and external devices by utilizing brain signals produced
along the cerebral cortex within the brain to directly control
external devices without the aid of muscular movements
(Dornhege et al., 2007; Faller et al., 2010). People with disabilities,
such as limb loss, spinal cord injury, and amyotrophic lateral
sclerosis, can draw support from BCIs to assist with the activities
involved in daily life. Further research is being conducted
on developing the EEG-Based Brain-Computer Interfaces due
to its non-invasive nature, high temporal resolution, ease of
acquisition, and beneficial cost-effectiveness (Nicolas-Alonso and
Gomez-Gil, 2012; Al-Hudhud, 2016).

In recent years, several specific brain activity patterns,
including Slow Cortical Potentials (SCPs), P300 evoked
potentials, Steady-State Visually Evoked Potentials (SSVEPs),
Event-Related Desynchronization (ERD), and Synchronization
(ERS), have been investigated extensively, as these have served
as the source of stimulation signals for BCI control (Zhang
et al., 2014b). Among these, the SSVEP paradigm has become
a promising option in BCI applications due to its high signal-
to-noise ratio (SNR), high information transfer rate (ITR),
reliability, and design flexibility (Bin et al., 2009; Zhu et al., 2010;
Bakardjian et al., 2011). The SSVEP-BCIs rely on oscillatory
responses occurring in the occipital and the occipito-parietal
cortex that are elicited from a stimulus flickering at a specific
frequency (Vu et al., 2016; Georgiadis et al., 2018). While people
focus attention on a visual stimulation at a fixed frequency,
such as flashing lights or flickering icons on a computer screen,
the SSVEP signals can be observed at the same fundamental
frequency as the stimulation and also at higher harmonics
of the driving stimulus (Muller-Putz and Pfurtscheller, 2007;
Bakardjian et al., 2010; Zhang Z. et al., 2018). Hence, the
SSVEP signals are the inherent response of the brain, and the
SSVEP-based BCI systems required minimal to no training
(Bin et al., 2009).

In the past few decades, many studies have revealed that

the SSVEP pattern is effective for BCI control, and various
SSVEP-based brain-computer interface (BCI) systems have

been proposed by numerous laboratories and research groups
(Poryzala and Materka, 2014). It has been verified that four
driving rates in an evoked potential interface system are

distinguishable (Skidmore and Hill, 1991). In the study, the
stimulation frequency was set at 35.050, 23.367, 17.525, and
14.020 Hz, and it was found that the responses corresponding to
the stimulation frequencies were generated during the analysis.
The SSVEP-based BCI system with high transfer rates was
also used to help operators input phone numbers (Cheng
et al., 2002) in which four buttons flickering at different
frequencies represented the four directions. The operators could
move the cursor in different directions to the target position
by gazing at these buttons. Finally, eight of the 13 subjects
completed the task where subjects were asked to select the
correct number on the telephone keypad to input phone
numbers with the help of the SSVEP-based BCI system. In

another work, a new dual-frequency-SSVEP for BCI systems
was developed that could increase the number of selections
through different combinations of four frequencies, i.e., 16.4,
17.5, 19.1, and 20.2 Hz (Shyu et al., 2010). The result indicated
that this dual-frequency approach was effective for an SSVEP
BCI system.

Previous studies for SSVEP recognition focused on the
amplitude and spatial distribution of SSVEP responses (Zhang
et al., 2013a; Norcia et al., 2015). However, these traditional
methods using single-channel EEG data [e.g., Power spectral
density analysis (PSDA)] are sensitive to noise and require a long
period of recognition time to improve the accuracy of the results.
Moreover, these SSVEP recognition techniques cannot detect
and identify harmonic stimulation frequencies (Zhang et al.,
2011, 2015). Therefore, many advancedmultichannel approaches
have been developed to enhance the recognition performance of
SSVEPs. For frequency recognition, the Canonical Correlation
Analysis (CCA) algorithm was first introduced to find the
correlation between the multichannel EEG data and reference
signals consisting of sin-cosine waves at each of the target
frequencies (Lin et al., 2006). Recent work has already
validated that the CCA method could achieve better recognition
performance than the traditional power spectral density analysis
(Zhang et al., 2014c). Until now, there have been many methods
proposed to improve recognition accuracy further by optimizing
the pre-constructed sine-cosine reference signals, such as
Multiway Canonical Correlation Analysis (MCCA) (Zhang
et al., 2011), L1-regularized Multiway Canonical Correlation
(L1-MCCA) (Zhang et al., 2013b), and Multi-set Canonical
Correlation Analysis (Multi-set CCA) (Zhang et al., 2014c)—all
proposed as multiway extensions of standard CCA. Although
the sine-cosine reference signals usually perform well for specific
frequency components recognition, the simplified single or
multiple frequency signals are incapable of exactly representing
the complex neural responses, which are collaboratively created
by several neural populations in the visual cortex rather than a
single signal source. Recently, researchers constructed a laminar
microcircuits model consisting of two visual areas (V1 and V2)
to imitate the dynamics of neuronal population response in
the visual cortex, which revealed the modulation mechanism
of the SSVEP, confirming the hypothesis (Zhou et al., 2013;
Yang et al., 2019). Beside this, the new spatial filtering method,
known as Minimum Energy Combination (MEC), found a linear
combination of multichannel signals, which reduces the number
of channels, to minimize the noise energy (Friman et al., 2007;
Nan et al., 2011). Nakanishi et al. used multiple spatial filters to
remove the EEG background artifacts, enhance discriminability
and SNR of the signals (Nakanishi et al., 2017). Zhang et al.
introduced the Correlated Component Analysis (CORCA) to
find linear combinations of electrodes across subjects and
maximize correlation between them (Zhang et al., 2018a,b).
Recently, the Multivariate Synchronization Index (MSI) (Zhang
et al., 2014b) has attracted attention as a novel feature extraction
method, which calculates the synchronization index between
the multichannel EEG data and the pre-constructed reference
signals, showing better recognition performance than both
CCA and MEC.
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Although previous studies have demonstrated that the MSI
method is an efficient method for frequency component
recognition, the temporal features of the EEG signals have not
been explored yet. The analysis of Global Field Power highlighted
time periods results in the most robust performance (Jrad and
Congedo, 2012), showing the importance of time domain analysis
for recognizing the specific frequency in SSVEPs. Recent research
has also confirmed that considering temporal information of
EEG signals can improve the performance of the algorithm,
such as the temporal local structure of the signals (Wang and
Zheng, 2008), the time-delayed copy (Lemm et al., 2005), and
certain temporal features (Jrad and Congedo, 2012). To address
this issue, Zhang et al. proposed a temporally local MSI (TMSI)
method, which explicitly considers the time-local information of
the EEG signal, further improving the accuracy of the recognition
algorithm for SSVEP-Based BCIs (Zhang et al., 2016). The time
delay embedding method has also been employed to extend MSI
(known as EMSI), further enhancing the performance of SSVEP,
which combined the first-order time-delayed version of EEG
data during the calculation of the synchronous index (Zhang
et al., 2017). Zhang combined adaptive TWL selection strategy
with the MSI method, which is superior to fixed TWL in SSVEP
recognition (Zhang et al., 2014a).

In the present study, the reference signals of sine-cosine
waves are replaced with inter-subject and intra-subject template
signals. The intra-subject template signals, also termed as
the individual template signals, are obtained by averaging
multichannel EEG data of the individual training dataset
and provided more abundant subject-specific and inter-trial
information for correlation analysis. It has been shown that
the CCA based on the individual template signals significantly
outperforms the standard CCA (Bin et al., 2011; Nan et al., 2011).
Additionally, the inter-subject template signals are obtained by
averaging the partial trials selected from other subjects. Recent
studies have demonstrated inter-subject similarity in neural
responses occurs because subjects are instructed to perform
a specific task over time (Saha and Baumert, 2019). Yuan
et al. presented transfer template-based canonical correlation
analysis (tt-CCA) to enhance the detection of SSVEPs by
exploiting inter-subject information (Yuan et al., 2015).
Several studies attempted to apply session-to-session and
inter-subject transfer to simplify the training procedure
(Nakanishi et al., 2016; Waytowich et al., 2016). This paper
proposes an efficient way for transfer learning to improve
SSVEP-based BCIs performance. After this, an expanding
time window over time is used to extract temporal features of
SSVEP, and the stimulus frequency is recognized based on the
pre-set threshold. Dynamic window recognition algorithms are
often integrated into other algorithms to adaptively control
the recognition time while maintaining a high accuracy, which
significantly improves the information transfer rate (ITR),
and adaptability of systems to different individuals (Zhang
et al., 2014a; Cao et al., 2015; Yang et al., 2018). In the method
presented in this paper, the pre-set threshold obtained from
the training dataset of individual subjects makes the algorithm
shutdown at the appropriate data length and filters the potentially
invalid trial resulted from attention lapses (Russell et al., 2016)

or the reaction times of subjects considered to be too long. It has
been reported that attention lapses may lead to an increase of
reaction times and the number of incorrect responses because
irrelevant information cannot be effectively suppressed, shifting
attention to irrelevant visual stimuli (Ko et al., 2017; Wang et al.,
2018). The novel extension of multivariate synchronization
index method is verified with an SSVEP dataset involving 10
healthy subjects and compared to the CCA, standard MSI,
Multi-set CCA, and Individual Template-based CCA. The
results in this paper show that the proposed method significantly
enhances the individual recognition performance of SSVEP
frequency, resulting in an improvement in overall accuracy and
the information transfer rate.

2. METHODS

2.1. The Standard Multivariate
Synchronization Index
The MSI method aims to estimate the synchronization between
the multichannel EEG data and the reference signals for
frequency detection. Let X ∈ R

N1×M denote the multivariate
EEG signals and Y ∈ R

N2×M denote the reference signal, which
is constructed as follows:

Y =















sin(2π fit)
cos(2π fit)

...
sin(2πNhfit)
cos(2πNhfit)















, t =
1

Fs
,
2

Fs
, . . . ,

M

Fs
(1)

where Nh denotes the number of harmonics, Fs is the sampling
rate. N1 and N2 are the number of channels, respectively, and
M is the number of samples. X and Y are normalized to have
zero mean and unit variance without loss of generality. The
covariance matrix of concatenation of X and Y can subsequently
be calculated as

C =

(

C11 C12

C21 C22

)

(2)

where

C11 =
1

M
XXT (3)

C22 =
1

M
YYT (4)

C12 =
1

M
XYT
= CT

21 (5)

Because both the autocorrelation and cross-correlation of matrix
C, which is calculated from the concatenation of X and
Y , could influence the synchronization computing, a linear
transformation is employed:

U =





C
−

1
2

11 0

0 C
−

1
2

22



 (6)
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Then, the transformed correlation matrix can be described
as follows:

R = UCUT (7)

Assume λ1, λ2, . . . , λP are the eigenvalues of matrix R. Then, the
normalized eigenvalues are represented by

λ′i =
λi

∑P
i=1 λi

=
λi

tr(R)
(8)

where P = N1 + N2. Finally, the synchronization index
between two multivariate signals can be calculated using the
following formula:

S = 1+

∑P
i=1 λ′i log(λ

′

i)

log(P)
(9)

Based on the formula (9), the synchronization index of each
frequency fi(i = 1, . . . ,K) used in SSVEP-based BCI can be
calculated. The target frequency ft can now be computed by
the formula.

ft = max
fi

Si, i = 1, . . . ,K (10)

2.2. Inter- and Intra-subject
Template-Based Multivariate
Synchronization Index (IIST-MSI)
We propose a variant version of multivariate synchronization
index based on transferred inter- and intra-subject template
signals. Considering χi,h ∈ R

Nc×Nt , which is the h-th trial
from the individual training set corresponding to the stimulus
frequency fi, an individual template signal Yi ∈ R

Nc×Nt is
obtained by averaging training trials as

Yi =
1

Nn

Nn
∑

h=1

χi,h (11)

where Nc, Nt , and Nn are the numbers of channels, samples, and
trials, respectively. For structuring the transferred inter-subject
templates, the core issue is how to pick up credible trials. We
propose a threshold policy for supervised adaptation of trials.
Assume χp,i,h ∈ R

Nc×Nt is the h-th trial recorded from the subject
p corresponding to the stimulus frequency fi. The confidence of
this trial is defined as

Cp,i,h =
Sp,i,h

1
K

∑K
k=1 Sp,k,h

(12)

where K is the number of stimulus frequencies, Sp,i,h is
the multivariate synchronization index between EEG signals
and the sine-cosine reference signals at the labeled stimulus
frequency fi, and Sp,k,h is the multivariate synchronization index
between EEG signals and the sine-cosine reference signals at the
stimulus frequency fk. Only high-confidence trials are selected

for transfer learning, and the threshold function for confidence
is formulated as

f (Cp,i,h) =







1, Cp,i,h > 1+ ln(
Nt

Fs
),

−1, otherwise.

(13)

where Fs is the sampling rate. Suppose Ap,i is a set composed of
high-confidence trials belonging to subject p, and the initial set is
the empty set (Ap,i = ∅). The trial selection procedure establishes
an iterator to loop over all trials corresponding to the stimulus
frequency fi and pick up high-confidence trials:

Ap,i ←

{

Ap,i ∪ {χp,i,h}, f (Cp,i,h) > 0,

Ap,i, otherwise.
(14)

If P is the set of ideal subjects used for templates, the inter-
subject template is obtained by averaging high-confidence trials
across subjects:

Y∗i =
1

|P|

∑

p∈P

1

|Ap,i|

∑

χp,i,h∈Ap,i

χp,i,h (15)

Then, the sine-cosine reference signals of the standard MSI
can be replaced by the inter- and intra-subject template signals.
The multivariate synchronization index S∗i and Si between the
inter- and intra-subject template signals and the test trial can
be calculated with the formula (2–9), respectively. Finally, a
sum-of-squares γi based the multivariate synchronization index
represents the final detection score for the stimulus frequency fi:

γi = (Si)
2
+ (S∗i )

2 (16)

The target frequency ft can be recognized by the formula:

ft = max
fi

γi, i = 1, . . . ,K (17)

2.3. Dynamic Window-Based Adaptive
Threshold (AT) Strategy
In order to exploit the temporal features of EEG signal, a dynamic
window approach is incorporated into the IIST-MSI method. In a
trial where the EEG data is continuously received, the inter- and
intra-subject template-based multivariate synchronization index
of a small initial time window (ITW) corresponding to each
stimulus frequency can be first computed. The probability ratio
r1,i of the stimulus frequency fi can be then defined as

r1,i =

√
γ1,i

1
K

∑K
k=1
√

γ1,k
(18)

where K is the number of stimulus frequencies. The probability
ratio reflects the confidence of each stimulus frequency. When
the probability ratio of each stimulus frequency is less than the
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FIGURE 1 | The flowchart of the IIST-MSI-AT method for SSVEP frequency recognition. χ1,χ2, . . . ,χK , and χP,1,χP,2, . . . ,χP,K denote the individual training dataset

and that of other selected subjects corresponding to the stimulus frequency f1, f2, . . . , fK , respectively. Y
∗

1 ,Y
∗

2 , . . . ,Y
∗

K , and Y1,Y2, . . . ,YK are the inter- and

intra-subject templates. Then the synchronization index and the probability ratio of each frequency can be calculated. The probability ratio of each frequency is

multiplied, and the result is compared with the threshold. When the threshold is exceeded, the SSVEP frequency can be recognized by the formula (20).

pre-set threshold, it indicates that the current data length is not
enough to make a reasonable decision, so the algorithm requires
more data. A time window increment (TWI) is appended to the
last data segment, and the algorithm recalculates the probability
ratio of this new data segment corresponding to each stimulus
frequency. A joint probability of the new data segment and the
last data segment can then be computed. After m subsequences,
the joint probability Ji of the stimulus frequency fi is calculated as:

Ji ← Ji × rm,i (19)

where the initial value is set as Ji ← r1,i. The threshold Tc

serves as the cut-off condition for this method. To paraphrase,
ifmax{J1, . . . , JK} < Tc, the iterative process is continued. When
all EEG signals are depleted, and max{J1, . . . , JK} still is less than
Tc, the trial is regarded as an invalid trial. Once the method
reaches the threshold Tc, the target stimulus frequency ft can be
computed as follows:

ft = max
fi

Ji, i = 1, . . . ,K (20)

where K is the number of stimulus frequencies used
in SSVEP-based BCI. Figure 1 illustrates the frequency
recognition method.

2.4. Contrast Method
For validating effectiveness for frequency recognition in
SSVEPs, the classification performance of the proposed method
is compared with various algorithms, including Canonical
Correlation Analysis (CCA), the standard Multivariate
Synchronization Index (MSI), Multi-set CCA, and Individual
Template-based CCA.

2.4.1. Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a multivariable
statistical technique used to reveal the underlying correlation
between two multidimensional variables (Hardoon et al., 2004).
Given two sets of random variables X ∈ R

N1×M , Y ∈ R
N2×M .

Their linear combinations can be define as x̃ = w
TX and

ỹ = v
TX, respectively. The CCAmethod is aimed at finding a pair

of vectors w ∈ R
N1×1 and v ∈ R

N2×1, such that the correlation
between x̃ and ỹ is maximized. In other words, the following
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optimization problem is solved:

ρ = max
w,v

E
[

x̃̃y
]

√

E
[

x̃
2
]

E
[

ỹ
2
]

=
w
TXYT

v

wTXXTwvTYYTv
(21)

The maximum canonical correlation between the canonical
variates x̃ and ỹ is the maximum of ρ. Assume X represents
a multichannel EEG data, and Y is the reference signal
constructed according to the formula (1). The maximum
canonical correlation of each frequency fi(i = 1, . . . ,K) can thus
be calculated. Then, the target frequency ft can be recognized by
the formula.

ft = max
fi

ρi, i = 1, . . . ,K (22)

2.4.2. Multi-Set Canonical Correlation Analysis
Multi-set canonical correlation analysis (Multi-set CCA) is
developed as an extension of CCA to analyze linear relationships
between multiple sets of features. In order to improve the
classification accuracy of SSVEPs, The Multi-set CCA method
is implemented to optimize the reference signal, and the pre-
constructed sine-cosine waves, by learning from the joint spatial
filtering of training sets of EEG signals (Zhang et al., 2014c).

Assume the h-th training trial of EEG signals corresponding
to the stimulus frequency fi is χi,h ∈ R

Nc×Ns , and the spatial
filters used to extract common features of training sets are
w1, . . . ,wn. To maximize the sum of the pairwise correlation
between multiple sets of training data, the optimization problem
of Multi-set CCA is presented as follows:

w̃i,1, . . . , w̃i,n = argmax
w1 ,...,wn

n
∑

h1 6=h2

w
T
h1

χi,h1χ
T
i,h2

wh2

subject to
1

n

n
∑

h1=1

w
T
h1

χi,h1χ
T
i,h1

wh1 = 1

(23)

The objective function can then be transformed into
the following generalized eigenvalue problem with the
Lagrange multipliers:

(Ri − Si)w = ρSiw (24)

where

Ri =







χi,1χ
T
i,1 . . . χi,1χ

T
i,n

...
. . .

...

χi,nχ
T
i,1 . . . χi,nχ

T
i,n






,

Si =







χi,1χ
T
i,1 . . . 0

...
. . .

...

0 . . . χi,nχ
T
i,n






,

w =







w1

...
wn







After obtaining the multiple linear transforms w1, . . . ,wn and
utilizing the joint spatial filtering z̃i,h = w̃

T
i,hχi,h, the optimized

reference signal is constructed as

Zn = [z̃Ti,1, z̃
T
i,2, . . . , z̃

T
i,n]

T (25)

Next, the maximum canonical correlation between the test data
and the optimized reference signal can be calculated using CCA,
and the target stimulus frequency ft can be recognized with the
formula (22).

2.4.3. Individual Template Based CCA
To explore temporal features of EEG signals, the Individual
Template-based CCA (IT-CCA) approach was proposed for
SSVEP detection (Bin et al., 2011). For each stimulus frequency
fi, the individual template signal Yi ∈ R

Nc×Nt is obtained by
averaging training trials using the formula (11). The CCA process
can then be used to calculate the maximum canonical correlation
between the test data and the individual template signal, and
the target stimulus frequency ft can be recognized with the
formula (22).

2.5. Experiment and Data
To validate our proposed method, a 12-class joint frequency-
phase modulated SSVEP dataset from Nakanishi et al. (2015) is
used, which contains ten healthy subjects (nine males and one
female, the average age being 28 years old), each having 15 trials
corresponding to all 12 stimulus frequencies. In their experiment,
the 12-target stimuli were presented on an LCD screen with a
60 Hz refresh rate. These stimuli were placed in a 4 × 3 matrix
regarded as a virtual keypad, as shown in Figure 2A, and tagged
with different frequencies ranging from 9.25 to 14.75 Hz and
phases ranging from 0 to 1.5π , as shown in Figure 2B.

When conducting this experiment, the subjects were seated on
a comfortable chair within a dim room, with their eyes 60 cm
away from the LCD screen. The visual stimuli were presented
by the stimulus program in random order. At the beginning
of a trial, a red square emerged at the position of the target
stimulus for 1 s, which indicated that the subjects should shift
their gaze to the target. Afterward, all stimuli started to flicker
simultaneously and the subjects were required to stare at the
visual stimuli for 4 s. At the same time, EEG signals were recorded
with eight electrodes placed over the occipital area with reference
to the CMS electrode close to Cz. In this experiment, each subject
completed 15 trials corresponding to all 12 targets.

Considering that visual stimulation emerged at the 15th
millisecond, the data epochs were extracted from 0.15 to 4.15
s. Each epoch was band-pass filtered from 6 to 80 Hz with an
infinite impulse response (IIR) filter and was then used as the
input for recognition algorithms.

To determine ideal subjects used for templates, we selected
subjects in descending order of the MSI accuracy. For adaptive
threshold strategy, the initial time window ITW and the time
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FIGURE 2 | Stimulus design of the 12-target BCI system. (A) The user interface of the virtual keypad. (B) Frequency and phase values for each target.

window increment TWI were set to 0.5 s. The threshold Tc took
values from a range (d ≤ 1s: ranging from 1 to 2 with an interval
of 0.05; 1s < d ≤ 2s: ranging from 1 to 4 with an interval of
0.1; 2s < d ≤ 3s: ranging from 3 to 8 with an interval of 0.2;
and 3s < d ≤ 4s: ranging from 3 to 16 with an interval of
0.4). The number of harmonics pre-defined for reference signals
was 3 uniquely. During the process of performing parameter
optimization, the combination of parameters would be discarded
once the proportion of invalid trials was more than 20%. In
the end, an optimum set of parameters was obtained by tuning
the parameters to reach maximum recognition accuracy on the
training dataset, and the optimal parameters were then applied
to frequency recognition of the test dataset.

2.6. Evaluation Methods
The classification accuracy is estimated using three-fold cross-
validation to evaluate the proposed method. The sample dataset
is divided into the training set for choosing the optimal parameter
(i.e., the threshold Tc) and test set for estimating the performance
of the model for frequency recognition. The accuracy is defined
as the percentage of valid trials classified correctly. Thus, the
classification accuracy is calculated as follows:

acc =
1

3

3
∑

i=1

Pi

Ni
× 100% (26)

where Pi is the number of valid trials correctly classified and Ni is
the number of valid trials from the i-th fold.
In addition to the classification accuracy, the information transfer
rate (ITR) is adopted to evaluate the communication capacity of
the BCI system (Wolpaw et al., 2002):

B = logN + P log P + (1− P) log
1− P

N − 1
(27)

ITR = B× 60/T (28)

where P denotes the classification accuracy, N is the number of
possible selections, and T is the average time required to select
a command. Here, the ITR is calculated using different values of
T (Target gazing time: 0.5 to 4.0 s with an interval of 0.5 s; Gaze
shifting time: 1 s).

3. RESULTS

Since the number of subjects used for transfer |P| plays an
important role in the IIST-MSI method, we explore the effects
of varying |P| on the recognition performance firstly. As a special
case, the individual template-based MSI (IT-MSI) is the same as
the IIST-MSI with |P| = 0. Figure 3 shows the averaged accuracy
and ITR obtained by the IIST-MSI with the |P| varying from 0 to
6 and TWs from 0.5 to 4 s. When TW is <1 s, the method only
using the individual template performs better than that using
the combined inter- and intra-subject templates. When TW is
more than 2 s, the result is the contrary. For |P| = 4, the IIST-
MSI achieved the best recognition performance. In the following
analysis, the performance of the IIST-MSI with fixed |P| = 4 is
compared with that of other methods.

Figure 4 depicts the averaged SSVEP recognition accuracy of
ten subjects derived by CCA, MSI, Multi-set CCA, IT-CCA, IT-
MSI and IIST-MSI with different data epochs lengths, ranging
from 0.5 to 4 s, which shows that the recognition accuracy of
subject 2 and 7 is significantly improved by the IIST-MSI. The
one-way repeated-measure ANOVA results show that there is a
statistically significant difference in the accuracy between these
methods under the data length ranging from 0.5 to 3 s [d = 0.5 s:
F(5, 45) = 29.402, p < 0.001; d = 1s: F(5, 45) = 52.036, p < 0.001;
d = 1.5s: F(5, 45) = 11.894, p < 0.001; d = 2s: F(5, 45) = 5.269,
p < 0.01; d = 2.5s: F(5, 45) = 3.395, p < 0.05; d = 3s: F(5, 45) =
2.592, p < 0.05; d = 3.5s: F(5, 45) = 1.819, 0.1 < p; and d = 4s:
F(5, 45) = 1.396, 0.1 < p]. For a more intuitive comparison of
these methods, Figures 5A,B depict the averaged accuracy and
the ITR across all subjects with different data lengths from 0.5
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FIGURE 3 | Performance comparison of IIST-MSI with various |P|. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths from 0.5 to 4

s. Error bars show standard errors.

FIGURE 4 | Averaged SSVEP recognition accuracies of 10 subjects derived by CCA, MSI, Multi-set CCA, IT-CCA, IT-MSI, and IIST-MSI, with different length of data

epochs from 0.5 to 4 s.

to 4 s. In terms of the mean classification accuracies of all ten
subjects, from 1 to 4 s, the IIST-MSI method achieves a higher
accuracy than the other methods.

To investigate the superiority of adaptive threshold strategy,
the IIST-MSI using adaptive threshold (IIST-MSI-AT) is

compared with the basic IIST-MSI. Figure 6 depicts the mean
detection accuracy and ITR for the basic and the combined
version of IIST-MSI method. The paired-sample t-test shows
there are no statistical differences in the accuracy between them,
but there are significant differences in the ITR from 1.5 to 4 s.
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FIGURE 5 | Performance comparison between IIST-MSI and other methods. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths

from 0.5 to 4 s. Error bars show standard errors. The asterisk indicates the statistically significant differences (*p < 0.05; **p <0.01; ***p <0.001).

FIGURE 6 | Performance comparison between IIST-MSI and IIST-MSI-AT. (A) The averaged accuracy and (B) ITR across all subjects with different data lengths from

0.5 to 4 s. Error bars show standard errors. The asterisk indicates the statistically significant differences (paired t-tests, *p < 0.05; **p <0.01; ***p <0.001).

The experimental result coincides with the expectation that the
dynamic window algorithm can adaptively determine the shorter
time window, while maintaining high accuracy. Hence the IIST-
MSI-AT method significantly outperformed the other methods
in terms of ITR. The highest ITR obtained by the IIST-MSI-AT
method is 53.08± 3.65 bits/min.

Table 1 presents the recognition accuracy and ITR obtained
by CCA, MSI, Multi-set CCA, IT-CCA, and IIST-MSI-AT
for each subject with a 4 s data length. Here, the accuracy
of CCA, MSI, Multi-set CCA, and IT-CCA are the average

values computed over 180 trials for each subject. The accuracy
of IIST-MSI-AT is described as the average accuracy of
the test set in a three-fold cross-validation as formulated
in the equation (26). For the epoch length of 4 s, the
IIST-MSI-AT method gets the highest accuracy (99.23 ±
0.29%),which achieves an increase of 5.62% compared to CCA
(93.61 ± 3.48%), 6.06% compared to MSI (93.17 ± 3.82%),
2.90% compared to Multi-set CCA (96.33 ± 1.84%), and
2.34% compared to IT-CCA (96.89 ± 2.02%). These results
demonstrate that the proposed method is a promising way to
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TABLE 1 | Classification accuracy (%) and ITR (bits/min) of CCA, MSI, Multi-set CCA, IT-CCA, and IIST-MSI-AT for each subject with 4s data length.

Subject
CCA MSI Multi-set CCA IT-CCA IIST-MSI-AT

Accuracy ITR Accuracy ITR Accuracy ITR Accuracy ITR Accuracy ITR

S1 72.22 14.74 70.55 14.07 93.89 25.30 99.44 29.25 98.83 35.12

S2 71.11 14.29 67.78 13.00 84.44 20.16 91.11 23.66 99.32 33.38

S3 97.78 27.90 100.00 29.82 100.00 29.82 100.00 29.82 100.00 52.99

S4 99.44 29.25 99.44 29.25 100.00 29.82 100.00 29.82 100.00 53.04

S5 98.33 28.32 98.33 28.32 100.00 29.82 100.00 29.82 98.89 43.77

S6 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 57.53

S7 100.00 29.82 100.00 29.82 86.11 20.99 79.44 17.81 97.19 38.43

S8 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 55.91

S9 100.00 29.82 100.00 29.82 100.00 29.82 100.00 29.82 100.00 51.51

S10 97.22 27.5 95.56 26.36 98.89 28.77 98.89 28.77 98.11 34.17

Mean ± STD 93.61 ± 3.48 26.13 ± 1.85 93.17 ± 3.82 26.01 ± 2.00 96.33 ± 1.84 27.41±1.16 96.89 ± 2.02 27.84 ± 1.2 99.23 ± 0.29 45.58 ± 2.89

develop more high-performance SSVEP-based brain-computer
interface systems.

4. DISCUSSION

The most recent state-of-the-art methods for SSVEP recognition
use the individual calibration data as the template of correlation
analysis and significantly improve the detection performance
(Nakanishi et al., 2015). The individual templates can accumulate
the frequency components while maintaining the phase
information and, conversely, reduce the effect of the background
EEG artifacts. Furthermore, it contributes to improving the
individual adaptability of methods, as the individual templates
can learn spontaneous EEG signals from calibration data.
However, the training data collection process may be time-
consuming. The visual fatigue and attention lapses make the
training data not perfect enough for every subject. For addressing
this problem, inter-subject transfer learning is exploited to
provide inter-subject similarity and variability for enhancing
target recognition in SSVEP-based BCIs. For each subject, the
frequency components of SSVEPs induced by a specific target
frequency are similar, but the visual latencies in the visual
system are various. According to the superposition principle,
the averaged inter-subject transferred templates can contain the
same frequency and little phase differences (Yuan et al., 2015).
Based on this, this study replaces the commonly used sine-cosine
reference signals with the inter- and intra-subject templates
for improving adaptability and robustness of the MSI method.
Indeed, the experimental results show that the detection accuracy
of a few individuals is obviously improved.

On the other hand, this paper employs a dynamic time
window to explore the temporal features of SSVEP signals
neglected by the standard MSI method and a pre-set threshold
to determine when to stop the algorithm, which can balance
the recognition accuracy and data length. Hence, the proposed
method can significantly improve the information transmission
rate, which is critical to the development of high-speed BCIs.
Considering the limited reliability of short data, the threshold

not only acts as the stopping condition but assists in filtering
these invalid trials to avoid wrong commands. Accordingly, the
method will improve the effectiveness of the dry-electrode based
BCI system with a low signal-to-noise ratio by filtering invalid
trials, which can avoid mistakes and ensure the stability of BCI.

5. CONCLUSION

In this paper, we introduce a novel method based on the inter-
and intra-subject template and adaptive threshold strategy to
enhance the detection of SSVEPs for high-speed BCIs. The
experimental results on ten subjects indicate that our approach
obtains higher recognition accuracy and ITR than the CCA,
MSI, Multi-set CCA, and Individual Template-based CCA. The
results remind us that the inter-subject template transfer and the
threshold search based on other methods could further improve
the performance of BCIs, which will be investigated in our
future work.
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Emotional decoding and automatic identification of major depressive disorder (MDD) are

helpful for the timely diagnosis of the disease. Electroencephalography (EEG) is sensitive

to changes in the functional state of the human brain, showing its potential to help doctors

diagnose MDD. In this paper, an approach for identifying MDD by fusing interhemispheric

asymmetry and cross-correlation with EEG signals is proposed and tested on 32 subjects

[16 patients with MDD and 16 healthy controls (HCs)]. First, the structural features

and connectivity features of the θ-, α-, and β-frequency bands are extracted on the

preprocessed and segmented EEG signals. Second, the structural feature matrix of the

θ-, α-, and β-frequency bands are added to and subtracted from the connectivity feature

matrix to obtain mixed features. Finally, the structural features, connectivity features,

and the mixed features are fed to three classifiers to select suitable features for the

classification, and it is found that our mode achieves the best classification results using

the mixed features. The results are also compared with those from some state-of-the-art

methods, and we achieved an accuracy of 94.13%, a sensitivity of 95.74%, a specificity

of 93.52%, and an F1-score (f1) of 95.62% on the data from Beijing Anding Hospital,

Capital Medical University. The study could be generalized to develop a system that may

be helpful in clinical purposes.

Keywords: EEG, major depressive disorder (MDD), interhemispheric asymmetry, cross correlation, feature

INTRODUCTION

Major depressive disorder (MDD) is amajormental disorder and is characterized by loss of interest,
poor concentration, and even suicidal thoughts (Acharya et al., 2018).

It has been reported that more than 264 million people worldwide suffer from depression,
which heavily impacts quality of life (World Health Organization, 2020). An accurate diagnosis
of MDD is of great importance for early intervention and effective treatment. Traditional diagnosis
of MDD mainly depends on subjective evaluation of symptom intensity using interview sessions
and psychiatric scales. These methods are useful but time consuming and sometimes may lead
to misdiagnoses due to human and environmental factors. Thus, it is crucial to develop objective
approaches to help clinicians diagnose MDDmore effectively.
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Electroencephalography (EEG) is a noninvasive technique
with high temporal resolution; this technique is sensitive to
changes in the functional state of the human brain (Schmidt et al.,
2013). Resting-state EEG (rsEEG) reveals brain network activity
and can be applied to neurological evaluations (Tóth et al., 2014).
EEG signals can be viewed as a group of multivariate time series,
and extracting features is essential to tracking changes in EEG
signals (Ting et al., 2008). Studies of depression have found that
depressed patients show significant obstacles in interpreting fear,
anger, happiness, surprise, and sadness (Filomena et al., 2016).
Depressed patients are different from healthy subjects in the
decoding of negative emotions. In a study, it was found that
electroconvulsive therapy (ECT) could modulate the functional
connectivity of the left angular gyrus in patients with depression
(Wei et al., 2018). From the performance and treatment of
depression, it can be concluded that there may be differences
in brain structure between patients with depression and healthy
subjects. Various studies indicate that interhemispheric frontal
EEG α asymmetry is considered a key marker of structural
alteration of the human brain in MDD (Allen et al., 2004; Allen
and Reznik, 2015; Cantisani et al., 2015; Mumtaz et al., 2017a).
Except for the α frequency band, activity in other bands and
brain regions may also be associated with a disordered brain
state caused by MDD, and EEG signals confounded with noises
also influence the identification of specific signals. It has also
been investigated whether brain connectivity is altered in MDD
patients (Iseger et al., 2017). Therefore, connectivity should
be taken into consideration in the recognition of special EEG
signals. In real EEG data classification tasks, extracting reliable
EEG features is sometimes challenging, and EEG signals in
depression have both structural (Michalopoulos and Bourbakis,
2015) and connectivity features. Therefore, we propose a
mixture of structural features and connectivity features for
MDD classification; that is, we extract features from different
viewpoints and combine them together for MDD classification.

In recent years, as the main type of artificial intelligence,
deep learning (DL) has been widely used for the classification
and prediction of patterns in EEG signals. DL methods can
extract many abstract features from a large set of training
data without human supervision. In this paper, we utilize the
K-nearest neighbor (KNN) (Dasarathy, 1997), support vector
machine (SVM) (Cortes, 1995) and convolutional neural network
(CNN) algorithms to verify the effectiveness of the extracted
features for the classification of EEG signals for patients with
MDD and healthy controls (HCs).

In the literature, various features have been extracted from
EEG signals and have shown the importance of MDD diagnosis.
Mantri et al. (2015) reported a classification accuracy of 84%
based on the power spectrum, involving 13 patients with
depression and 12 HCs. In 2017, Mumtaz et al. (2017b) extracted
features using wavelet transform to achieve an accuracy of 87.5%.
Acharya et al. (2018) attained a high accuracy of 94% from the
left hemisphere and 96% from the right hemisphere. Despite all
of these research findings, the clinical applications of structural
features and connectivity features remain largely unclear.

In this paper, two types of features, including the
interhemispheric asymmetry value and cross-correlation

TABLE 1 | Demographic and clinical information.

Factors MDD HC

Age (years) 31.0 ± 1.0 26.1 ± 5.4

Sex (male/female) 7/9 7/9

Education (years) 12.5 ± 1.0 13.0 ± 2.6

HAMD 19.3 ± 8.9 -

value, are extracted from segmented EEG epochs, and the
extracted structural and connectivity changes are combined
using addition and subtraction rules for the classification.
Several classifiers are introduced to verify the effectiveness of the
extracted features and achieve emotion decoding.

The paper is organized as follows: in section materials and
methods, the dataset is described, preprocessing is performed,
and the main framework of the proposed approach is given. In
section results, the experimental results are given; the conclusion
and discussion are presented in section discussion and section
conclusion, respectively.

MATERIALS AND METHODS

Participants and Criteria
In this study, experimental data were acquired from 32 subjects
(16 patients with MDD and 16 HCs) recruited from Beijing
Anding Hospital, Capital Medical University. The experiment
was approved by the Ethics Committee of Beijing Anding
Hospital, Capital Medical University. All the participants signed
consent forms for participation and were fully informed of the
experimental and data acquisition procedures. The inclusion and
exclusion criteria are based on the symptoms of depression as
mentioned in the section in the Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) on depression (Hu, 2003). MDD
participants with psychotic symptoms, pregnant patients, people
with alcoholism and patients with epilepsy were excluded. The
HCs were screened for possible mental or physical illness and
were found to be disease free.

Independent samples t-test was used tomeasure the difference
in demographic and neuropsychological assessments between
the MDD and HC groups; the analysis was performed in SPSS
20.0 (IBM SPSS, Inc., Armonk, NY, USA). The significance level
was set to p < 0.05. The results are shown in Table 1. In the
descriptive analysis of the demographics, the two groups are
matched in age, sex, and education level.

Recording and Preprocessing of EEG
Signals
The rsEEG signal recordings were performed in Beijing Anding
Hospital, Capital Medical University. During the EEG recording
period, all the subjects sat in a comfortable armchair, were relaxed
and stayed awake for about 3min in a quiet, dim room, with
room temperature maintained at 23 ± 2◦C. The EEG headset
used to collect the data is shown in Figure 1.

The 3-min rsEEG data were recorded from 64-channel
brain products with the averaged mastoids (M1 and M2) as
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FIGURE 1 | The EEG headset used to collect the data.

FIGURE 2 | The distribution of the electrodes in the acquisition system.

the reference electrodes. The channel location is shown in
Figure 2. The EEG data were collected with electrode impedances
below 10 k�.

Framework
The MDD EEG analysis framework is shown in Figure 3, and
it mainly contains four parts: (1) EEG signal preprocessing and
segmentation; (2) feature extraction; (3) construction of the
feature matrix; and (4) classification.

EEG Signal Preprocessing and Segmentation
To comprehensively analyze the changes in patients with MDD,
28 pairs of electrodes from five brain regions (the frontal region,

temporal region, central region, parietal region and occipital
region) and three frequency bands [the θ-frequency band (4–
8Hz), the α-frequency band (8–13Hz), and the β-frequency band
(13–40Hz)] were used to conduct experiments to explore the
changes in interhemispheric asymmetry in MDD patients.

In this study, the recorded EEG data have a high temporal
sensitivity and are extremely susceptible to external interference
during collection. For example, eye blinks, movements and
muscular activates (e.g., the heart beats) could cause EEG
artifacts, and the EEG data with these artifacts may not truly
represent the underlying brain activities. Hence, removing
artifacts is an essential preprocessing step for further data
analysis.We used a finite impulse response (FIR) filter to filter out
unnecessary signals, and frequencies of 0.5–47Hz remained for
the analysis. Then, the independent component analysis (ICA)
algorithm in EEGLAB was applied to remove ocular artifacts
from the raw EEG data (Delorme and Makeig, 2004).

EEG signals are time-varying and nonstationary signals. There
are different frequency components at different times and in
different states. As machine learning techniques require a large
number of training sets, we divided each channel in the EEG
data into small, non-overlapping segments with durations of 1s,
2s, and 3s. Thus, we have a large number of samples to avoid
underfitting. The sample information is given in Table 2. The
average EEG recording time for all subjects is 3min; however,
this time was not the same for all the patients, so the number
of epochs in the MDD and HC groups are slightly different.
Three different frequency bands of EEG data, θ (4–8Hz), α (8–
13Hz), and β (13–40Hz), are extracted from the segmented EEG
signals using a fast Fourier transform (FFT), and the number
of FFT points is set to 1,024. Welch’s method is applied to
calculate the power spectrum of EEG bands. Welch’s method
consists of splitting the time series signal into epochs, computing
a modified periodogram for each epoch, and then averaging the
power spectrum density estimates (Alkan and Kiymik, 2007).

Feature Extraction
Two EEG features, namely, the interhemispheric asymmetry
and cross-correlation, are extracted. Then, the two features are
combined in two ways.

Interhemispheric asymmetry
The interhemispheric asymmetry is computed by the power
value of the electrode in the left and right brain regions. The
interhemispheric EEG asymmetry is shown in Equation (1):

P = ln(P2)− ln(P1) (1)

P denotes the interhemispheric asymmetry value. P2 is the power
value of one electrode in the left brain region, P1 is the power
value of the electrode in the right brain region, ln (P2) indicates
the absolute power of the left brain region, and ln (P1) is the
absolute power of the right brain region.
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FIGURE 3 | MDD EEG analysis framework. (A) EEG signal preprocessing and segmentation; (B) Feature extraction; (C) Construction of the feature matrix;

(D) Classification.

TABLE 2 | Basic information on the samples.

Time window

size (s)

1 2 3

Sample label MDD HC MDD HC MDD HC

Number of

samples

20,143 16,708 10,068 8,349 5,031 4,172

Cross-correlation
The formula for calculating the correlation coefficient of the two
symmetric electrodes X(s) and Y(t) is:

R(s, t) = E(X(s) ∗Y(t)) (2)

where ∗ indicates the convolution of the two sequences. The
correlation coefficient is normalized by:

R =
R̂−min(R)

max(R)−min(R)
(3)

The range of R is from 0 to 1. The larger the value of
the correlation is, the greater the correlation between the
two electrodes.

Feature mixing
The features are extracted and constructed into data matrices.
To avoid information loss for a single feature and to improve

the classification accuracy, the EEG features are combined. Two
ways of combining features are attempted to provide a better
presentation of human brain state changes in MDD. To remedy
the information deficiency of single features, the two single
features (the feature matrix) are added together using formula
(4). To reduce the amount of redundant information, the two
types of features are combined using formula (5).

MIX1 =
k1

k1 + k2
∗ F1 +

k2

k1 + k2
∗ F2 (4)

MIX2 =
k1

k1 + k2
∗ F1 −

k2

k1 + k2
∗ F2 (5)

where k1 and k2 are the ingredient coefficients of the two features
and their range is from 0 to 1; both k1 and k2 are set to 0.5. F1
denotes the interhemispheric asymmetry matrix, and F2 denotes
the cross-correlation matrix. MIX1 is an index indicating the
integrated brain state of interhemispheric asymmetry and cross-
correlation. MIX2 is an index indicating the difference in the
brain state of interhemispheric asymmetry and cross-correlation.

Construction of the Feature Matrix
Three feature matrices are constructed to feed into the classifiers:
two are single-feature matrices, and the third is the mixed-
feature matrix.

The single-feature matrix contains three layers: the first
layer is α interhemispheric asymmetry (or cross-correlation),
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the second layer is β interhemispheric asymmetry (or cross-
correlation) and the last layer is θ interhemispheric asymmetry
(or cross-correlation).

The mixed-feature matrix contains six layers: the first two
layers are the MIX1 and MIX2 feature matrices in the α band,
the middle two layers are the MIX1 and MIX2 feature matrices
in the β band, and the last two layers are the MIX1 and MIX2
feature matrices in the θ-frequency band. Thus, the size of the
single-feature input matrix is 7 × 4 × 3, while the size of
the mixed-feature input matrix is 7 × 4 × 6. The structure of
the single-feature matrix and mixed feature matrix are shown
in Figure 4.

Classification

Classifier
Selecting a suitable classifier is important forMDD identification,
and the KNN, SVM, and CNN algorithms are used to verify the
effectiveness of the extracted features.

The KNN algorithm, which was proposed by Dasarathy
(Dasarathy, 1997) in 1991, is a basic machine learning method
used for classification and regression. It is adept at handling noise
and large datasets. It performs classifications by a majority voting
of the neighbors, with the case being assigned to the class most
common among its K-nearest neighbors measured by a distance
function. The algorithm involves three main factors: a training
set, distance or similarity measure, and the size parameter K.
Several distance metrics are utilized to define the distance or
similarity in the KNN technique. To avoid the matching problem
between objects, the Euclidean distance is used. The KNN
algorithm has been widely used in EEG signal detection fields,
such as epilepsy (Acharya et al., 2012), anxiety disorder (Wang
et al., 2013), and depression (Rowley and Kanade, 1998). In this
study, K is set to 7 to ensure a better classification accuracy.

The SVM algorithm, which was proposed by Cortes and
Vapnik (Cortes, 1995) in 1995, is a supervised machine learning
method used in classification and regression. The SVM algorithm
can discriminate non-linearly separable data by mapping them to
higher dimension space by using a kernel function to make the

data more separable. We chose a poly kernel function; the degree
of the polynomial is set to 3, gamma is set to 2, and the maximum
number of iterations is set to 30,000.

CNN is a kind of feedforward neural network with a deep
structure and convolutional computations, and it is one of the
representation algorithms of deep learning. The CNN used in
this study mainly contains three layers: a convolutional layer,
a pooling layer and a fully connected layer. The structure of
the CNN is shown in Figure 5. As shown in the figure, in the
convolutional layer, two 2 × 2 × 3 convolution kernels are
selected. The outputs of the convolutional layers are two 7 × 4
× 2 feature maps, and they are the input of the pooling layer. We
chose max pooling, and the step size is set to 1. After reshaping,
the output matrix is resized 1 × 1 × 56, and it is input into
the fully connected layer. To overcome overfitting in the fully
connected layer, the dropout method is applied to each layer, and
50% of the training results are retained.

Evaluation of the classification performance
To evaluate the performance of different classifiers with different
EEG features, the following statistical measures are utilized.

(1) Accuracy: The accuracy is defined as the percentage of
correctly classified EEG segments of MDD patients and HCs,
and it is defined mathematically in formula (6). False positives
(FP) and false negatives (FN) are misclassifications of MDD and
HC, respectively.

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

where TP indicates the number of true positives, TN indicates
the number of true negatives, FN indicates the number of false
negatives and FP indicates the number of false positive.

(2) Sensitivity: The sensitivity is evaluated by the accuracy rate
of the positive samples, and it is defined as the accuracy rate of
the MDD EEG epochs and is given by formula (7).

Sensitivity =
TP

TP + FN
(7)

FIGURE 4 | Structure of the feature matrix.
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FIGURE 5 | Structure of the CNN.

(3) Specificity: The specificity is defined as the accuracy rate of
the negative samples. It is defined as the accuracy rate of the HC
EEG epochs and is given by formula (8).

Specificity =
TN

TN + FP
(8)

(4) F1-score: The F1-score is regarded as the weighted average of
the model precision and recall. It is defined by formula (9); its
maximum value is 1, and its minimum value is 0.

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN
(9)

RESULTS

To assess the ability of the proposed framework to detect
and classify MDD EEG signals, several experiments are
conducted, which mainly contain statistical analysis and
classification. The statistical analysis was performed by one-
factor analysis of variance (ANOVA) using SPSS 22.0. The
classification is implemented in PyCharm (version 2017.3.4,
Community Edition).

Statistical Analysis Results
ANOVA was used to examine significant differences between the
two groups (patients MDD and HCs). The significance level was
set to p < 0.05. Single features (asymmetry, cross-correlation)
and mixed features (MIX1 and MIX2) in the different frequency
bands (α band, β band, and θ band) are all analyzed. In terms
of EEG segmentation, a segmentation of 2s is demonstrated and
analyzed in detail in this study.

Statistical Analysis of the Interhemispheric

Asymmetry
The results of the statistical analysis of the interhemispheric
asymmetry in all the frequency bands of theMDD andHC groups
are shown in Figure 6A. A positive value for the interhemispheric

asymmetry indicates that the power value of the left brain is
greater than that of the right brain. Similarly, a negative value for
the interhemispheric asymmetry indicates that the power value
of the left brain is less than that of the right brain.

As shown in Figure 6A, in the α-frequency band, the
interhemispheric asymmetry in patients with MDD at C5-C6
is significantly higher than that of the HCs. In the β-frequency
band, the significant electrode pairs for the interhemispheric
asymmetry are from the whole brain except the parietal region,
and the values for the patients MDD are significantly larger
than those of the HCs. The significant electrode pairs of the
interhemispheric asymmetry are from the frontal, central and
occipital regions. From Figure 6A, it is easy to see that the
values for the patients with MDD are significantly larger than
those of the HCs, which indicates that the difference between
the interhemispheric power in patients with MDD is larger than
that in HCs. The importance of EEG alpha interhemispheric
asymmetry in the diagnosis of depression is evident from various
studies. For example, hypo-activation of the left frontal has been
observed during MDD (Kemp et al., 2010).

Statistical Analysis of the Cross-Correlation
The results of the statistical analysis of the cross-correlation
in patients with MDD and HCs are shown in Figure 6B. The
significant electrode pairs in the α-frequency band came from
the whole brain except for the occipital region, and the cross-
correlation in the patients with MDD was significantly larger
than that in the HCs, which means that compared with the
HCs, EEG connectivity in patients with MDD in the α-frequency
band was enhanced. There was no significant difference in
patients with MDD and HCs in terms of the cross-correlation
in the θ-frequency band. The significant electrode pairs of cross-
correlation in the β-frequency band came from the parietal and
central regions, and the cross-correlation values for the patients
with MDD were significantly larger than those of the HCs. From
the results of the statistical analysis of the cross-correlation, it is
easy to see that patients with MDD have more brain connectivity
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FIGURE 6 | Statistical analysis results for different features [(A) interhemispheric asymmetry; (B) cross-correlation; (C) MIX1; (D) MIX2]. The black bar indicates the

MDD group, and the white bar indicates the HCs. **indicates 0.001< p < 0.01, *indicates 0.01< p < 0.05.

than HCs. EEG signals in depression have connectivity features.
Knott et al. (2001) reported that significant group differences in
inter-hemispheric coherence pervaded all four frequency bands.

Statistical Analysis of MIX1
The results of the statistical analysis of MIX1 in all the
frequency bands of the patients with MDD and the HCs are
shown in Figure 6C. As shown in this figure, for significant
electrode pairs in all the frequency bands, the value of MIX1
in the patients with MDD is larger than that in the HCs.
MIX1 indicates the integrated brain state of interhemispheric
asymmetry and cross-correlation. In the α-frequency band, the
significant electrode pairs are all from the frontal region. In the
β-frequency band, the significant electrode pairs are from the
frontal, central and occipital regions. For brain regions such as
central, temporal, frontal and parietal, the depressed individual
showed greater anterior EEG activity. In a study, greater left
frontal activity is associated with fewer depressive symptoms
(Deslandes et al., 2008).

Statistical Analysis of MIX2
The results of the statistical analysis of MIX2 in all the frequency
bands of the patients with MDD and the HCs are shown in
Figure 6D. MIX2 is an index indicating the differential brain
state of the interhemispheric asymmetry and cross-correlation.
As shown in Figure 6D, for significant electrode pairs in all the
frequency bands, the value of MIX2 in the patients with MDD
is larger than that of the HCs. The significant electrode pairs in

the α-frequency band are from the frontal, central and parietal
regions. The significant electrode pairs in the β- and θ-frequency
bands are from the frontal, central and occipital regions. In
addition to α-frequency band, activity in other bands such as
θ-frequency band has shown relevance such as a decreased frontal
theta activity has also been reported (Saletu et al., 2010).

Classification Results
A 10-fold cross-validation scheme is performed to prevent
overfitting. All the feature matrices are randomly divided into
10 groups, nine of which are used for training, and the other
group is used for verification. To ensure the stability of the
classification model, each experiment is performed 10 times, and
the averaged value is considered the result. At the same time,
we set the shuffle parameter in this method to shuffle the data
before splitting into batches. In this way, we reduce the error rate.
The interhemispheric asymmetry, cross-correlation, and mixed
features of the 1s, 2s, and 3s segments of the α-, β-, and θ-
frequency bands in the MDD and HC groups were analyzed. The
classification results are given in Table 3. In Table 3, the standard
error of the classification results is around 0.001.

Table 3 presents the classification results in terms of the
accuracy, sensitivity, specificity and the F1-score (f1) for the
1s, 2s, and 3s EEG epochs for each of the classifiers. Table 3
shows that the F2 (cross-correlation) and F1 (asymmetry) are
more suitable for MDD detection than the mixed features. Each
classification index for F1 is ∼85%, while each classification
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TABLE 3 | Classification results of the EEG signals from all classifiers.

Classifiers Feature 1s 2s 3s

Acc (%) Sen (%) Spe (%) f1 (%) Acc (%) Sen (%) Spe (%) f1 (%) Acc (%) Sen (%) Spe (%) f1 (%)

KNN F1 79.10 86.58 70.07 81.89 81.76 88.19 74.04 84.08 80.74 87.76 72.29 83.27

F2 62.38 71.29 51.64 67.43 59.98 68.81 49.38 65.25 81.74 83.01 80.10 82.70

MF 79.50 87.29 70.13 82.30 83.15 88.97 76.14 85.22 82.43 88.51 75.10 84.61

SVM F1 83.78 85.88 81.52 85.36 84.13 86.24 81.60 85.59 82.83 85.53 79.62 84.46

F2 76.31 78.55 73.62 78.36 80.91 83.15 78.26 82.62 84.27 83.49 84.97 83.21

MF 87.95 89.24 86.38 89.00 88.22 89.69 86.44 89.26 86.15 88.28 83.60 87.43

CNN F1 91.10 91.45 89.42 91.62 92.70 93.72 91.27 93.52 92.11 93.62 92.23 91.64

F2 93.14 92.41 94.17 93.61 93.07 93.25 92.24 94.45 93.31 94.43 93.27 92.87

MF 94.10 93.61 91.69 93.82 94.13 95.74 93.52 95.62 93.58 94.74 93.72 94.81

F1 indicates asymmetry, F2 indicates cross-correlation and MF indicates mixed features. Acc indicates accuracy; Sen indicates the sensitivity; Spe indicates the specificity; f1 indicates

the F1-score. Bold values indicates the best performance.

index for F2 is ∼70%. The results show the consistency in the
performance of all the classifiers. The classification results of the
KNN, SVM, and CNN models based on the mixed features are
better than those of the single features.

Among all the classifiers, the CNN achieved the best
performance with the mixed features for the 2s time window
(accuracy = 94.13%, sensitivity = 95.74%, specificity = 93.52%,
and f1 = 95.62%). For the SVM, the best classification results
were achieved with the mixed features in the 2s time window
(accuracy = 88.22%, sensitivity = 89.69%, specificity = 86.44%,
and f1 = 89.26%). For the KNN, the best performance was
achieved with themixed features in the 2s time window (accuracy
= 83.15%, sensitivity = 88.97%, specificity = 76.14%, and f1 =

89.26%). Compared with the segmentation results for the 1s and
3s EEG epochs, and the segmentations of the 2s time window
achieve better classification results.

DISCUSSION

We attempted to discover the useful features reflecting the
intrinsic changes in brain activity in depressed patients to
construct an automatic system for MDD detection. Two types
of feature matrices were computed for MDD detection, and
three classifiers were introduced to classify the EEG data from
patients with MDD and HCs. First, the feature matrix for
interhemispheric asymmetry was fed to three classifiers, and we
obtained the best classification accuracy of 92.70% using the CNN
algorithm. Second, the feature matrix for electrode connectivity
was fed to the three classifiers, and we achieved the best accuracy
result of 93.31% using the CNN algorithm. Finally, the two types
of features were added and subtracted to form mixed features
for the classification, and the accuracy was greatly improved for
the three classifiers. Therefore, we concluded that the feature-
combining strategy is effective. Statistical analysis and automatic
classification based on the extracted and mixed features were
performed. The statistical analysis explored the difference in
the patients with MDD and the HCs at the group level, while

the classification method studied the EEG of patients’ MDD in
another way.

In this study, greater left frontal activity was associated with
fewer depressive symptoms. In addition, EEG interhemispheric
asymmetry was concluded to be a risk marker for MDD because
the study participants with depressive symptoms showed less
relative frontal activity than the HCs.

We also compared the detection results with those from
other investigations; this comparison is given in Table 4, which
shows that we achieved the best accuracy of 94.13% using
the mixed features. In 2017, the accuracy was 91.67% using
kernel eigen-filter-bank common spatial patterns (Knott et al.,
2001). Compared with the accuracy of 60–80% involving
48 depressed patients and 26 HCs based on the Lep-Ziv
complexity (Deslandes et al., 2008), our system was considerably
improved. Of course, the comparisons may be improper as we
used different datasets, but our analysis at least implies the
importance of our feature extraction and mixing strategy. We
will collect more subject EEGs for future investigations, as 32
subjects are not enough to validate the effectiveness of the
developed system. Other nonlinear EEG features related to the
human brain, such as fractal dimension and entropy, should
be analyzed and introduced into the feature combination for
MDD detection.

CONCLUSION

In this study, we propose a feature extraction and mixing
method to try to discover the correlated characteristics describing
intrinsic changes in depressed patients, and the feature extraction
and classifiers are integrated to construct a system for the
discrimination of MDD. Both interhemispheric asymmetry and
cross-correlation were extracted to analyze the structural and
connective changes in the EEG signals of MDD patients. The two
features were combined in twoways to comprehensively interpret
the brain state of MDD. Both features were helpful for MDD
detection. The classification accuracy based on interhemispheric
asymmetry was ∼85% for the three classifiers, while the
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TABLE 4 | Summary of previous works on EEG signal analysis for depression.

Paper format Year Sample size Feature(s) used Analysis method Accuracy

Mantri et al. (2015) 2015 13 MDD and 12

HC

Power spectrum, FFT ANN 84%

Akdemir (2015) 2015 53 MDD and 43

HC

EEG band power DT 80%

Liao et al. (2017) 2017 12 MDD and 12

HC

Kernel eigen-filter-bank common

spatial patterns

SVM 91.67%

Mumtaz et al.

(2017b)

2017 34 MDD and 30

HC

Wavelet transform LR 87.5%

Acharya et al.

(2018)

2018 33 MDD and 30

HC

Left and right hemispheres CNN 93.5% and 96%

Fan et al. (2005) 2019 48 HCC and 26

HC

Lep-Ziv complexity BP ANN 60-80%

Our Study 16 MDD and 16

HC

Asymmetry, cross-correlation,

mixed features

CNN 94.13%

classification accuracy based on cross-correlation was ∼70%
using the three classifiers. The classification results using the
mixed features were greatly improved compared with using the
single features. We also found that the mixed features with a 2s
time window using a CNN perform the best.

The proposed depressed patient detection system is promising
for exploring the pathogenesis, early diagnosis, and intervention
treatment of MDD. In future research, we will try to
investigate more useful information for MDD detection and
emotion decoding.
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Emotion perception is a crucial question in cognitive neuroscience and the underlying
neural substrates have been the subject of intense study. One of our previous
studies demonstrated that motion-sensitive areas are involved in the perception of
facial expressions. However, it remains unclear whether emotions perceived from
whole-person stimuli can be decoded from the motion-sensitive areas. In addition, if
emotions are represented in the motion-sensitive areas, we may further ask whether
the representations of emotions in the motion-sensitive areas can be shared across
individual subjects. To address these questions, this study collected neural images
while participants viewed emotions (joy, anger, and fear) from videos of whole-
person expressions (contained both face and body parts) in a block-design functional
magnetic resonance imaging (fMRI) experiment. Multivariate pattern analysis (MVPA)
was conducted to explore the emotion decoding performance in individual-defined
dorsal motion-sensitive regions of interest (ROIs). Results revealed that emotions
could be successfully decoded from motion-sensitive ROIs with statistically significant
classification accuracies for three emotions as well as positive versus negative emotions.
Moreover, results from the cross-subject classification analysis showed that a person’s
emotion representation could be robustly predicted by others’ emotion representations
in motion-sensitive areas. Together, these results reveal that emotions are represented
in dorsal motion-sensitive areas and that the representation of emotions is consistent
across subjects. Our findings provide new evidence of the involvement of motion-
sensitive areas in the emotion decoding, and further suggest that there exists a common
emotion code in the motion-sensitive areas across individual subjects.

Keywords: functional magnetic resonance imaging, emotion perception, multivariate pattern analysis, motion-
sensitive areas, cross-subject decoding

INTRODUCTION

The ability to understand emotions is a crucial social skill in humans. It has been proposed
that body language plays an important role in conveying emotions (Calbi et al., 2017). Body
language refers to the non-verbal signals in which physical behaviors, including facial expressions,
body posture, gestures, eye movement, touch and the use of space, are used to express our true
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feelings and emotions. According to experts, these non-verbal
signals make up a huge part of our daily communication.
Humans can easily recognize others’ emotions from their whole-
person expressions and perceive them in a categorical manner.
Since the human brain can readily decode emotions, considerable
functional magnetic resonance imaging (fMRI) studies have
investigated the potential neural substrates and mechanisms
underlying the perception of emotions.

Neuroimaging studies on emotion perception have used
emotional faces or non-face bodies as stimuli and identified
specific areas showing preferential activation patterns,
respectively known as face-selective and body-selective areas.
Classical face-selective areas mainly contain the fusiform face
area (FFA), occipital face area (OFA), and superior temporal
sulcus (STS), which are together considered the “core system”
in Haxby’s model (Haxby et al., 2000; Kanwisher and Yovel,
2006; Gobbini and Haxby, 2007; Pitcher, 2014; Henriksson
et al., 2015). Emotional bodies are found to be represented
in the extrastriate body area (EBA) and fusiform body area
(FBA), and some similarities have been revealed between the
processing of emotional bodies and faces (Minnebusch and
Daum, 2009; de Gelder et al., 2010; Kret et al., 2011; Downing
and Peelen, 2016). In addition, the STS, which acts as a crucial
node for social information processing, has been found to
be involved in the processing of emotions in both faces and
bodies (Candidi et al., 2011; Zhu et al., 2013). Previous fMRI
studies mainly assessed the perception of emotions using either
isolated faces or non-face bodies as visual stimuli. However,
behavioral studies have indicated that human brain prefers
whole-person expressions which contain both the face and
body parts, similar to that which we commonly perceive in real
scenes, and encoding whole-person expressions in a holistic
rather than part-based manner (Soria Bauser and Suchan, 2015).
Therefore, it is essential to explore the neural representation
of whole-person expressions individually rather than in an
integrated manner based on the isolated emotional faces and
bodies (Zhang et al., 2012; Soria Bauser and Suchan, 2015).
Moreover, most previous studies used static emotional images as
stimuli, but, considering that the emotions we mostly encounter
in a natural context are dynamic, recent studies have proposed
that dynamic stimuli are more ecologically valid than their static
counterparts (Johnston et al., 2013; Yang et al., 2018). Thus,
using dynamic emotional stimuli may be more appropriate
to investigate the authentic mechanisms used to recognize
emotions in daily life.

Compared to univariate analyses that estimate emotion-
evoked responses, a multivariate pattern analysis (MVPA), as
demonstrated by recent fMRI studies, can take advantage of
distributed activation patterns in fMRI data, thus providing
a more effective method to infer the functional roles of
cortical regions in emotion perception (Mahmoudi et al.,
2012). A growing number of studies have used ROI-based
MVPA to explore emotion decoding performances in specific
brain areas (Said et al., 2010; Harry et al., 2013; Wegrzyn
et al., 2015). In addition, studies with dynamic stimuli have
found that dorsal motion-sensitive areas within human motion
complex (hMT) + /V5 and STS exhibited significant responses

to facial expressions (Furl et al., 2013, 2015). A macaque
study identified motion-sensitive areas in the STS, which
may be homologous to human STS, and found that facial
expressions could be successfully decoded from motion-sensitive
areas (Furl et al., 2012). Moreover, one of our recent studies
has also identified the successful decoding of dynamic facial
expressions in motion-sensitive areas (Liang et al., 2017).
These findings suggest that motion-sensitive areas may transmit
measurable quantities of expression information and may
play an important role in emotion perception. However,
these studies only used facial expressions as stimuli, and
the full role of motion-sensitive areas in the decoding of
whole-person expressions therefore remains unclear. Since we
commonly perceive emotions from whole-person expressions
in our daily lives, exploring the decoding performance of
whole-person expressions in motion-sensitive areas may be
meaningful in revealing the potential mechanisms by which
the human brain efficiently recognizes emotions from body
movements. Furthermore, if emotions are represented in
the motion-sensitive areas, we may further ask whether
emotion codes in the motion-sensitive areas can be shared
across individual subjects. This would shed light on whether
an individual’s subjective emotion representation in motion-
sensitive areas corresponds to those observed in others, which
would be helpful in assessing the commonality and variability
of emotion coding.

In this study, we conducted a regions of interest (ROI)
MVPA to assess the potential role of dorsal motion-sensitive
areas in emotion decoding. We performed a block-design
fMRI experiment and collected neural images while participants
viewed emotional videos expressed by whole-person expressions
(joy, anger, and fear). Dynamic emotion stimuli were used
in this study to enhance ecological validity and to assess the
authentic mechanisms of emotion recognition in daily life.
A separate localizer was used to identify individual-defined
motion-sensitive ROIs. We first examined whether emotions
could be decoded based on the activation patterns from motion-
sensitive ROIs, after which we examined whether there exists a
common representation of emotions in motion-sensitive areas
across individuals.

MATERIALS AND METHODS

Participants
A total of 24 healthy, righted-handed college students
participated in the experiment (12 males, ranging from 19–
25-years-old). All subjects had normal or corrected-to-normal
vision, with no history of neurological disorders, and signed
informed written consent forms before the experiment.
Experimental procedures were explained to them before the
scanning. The threshold for head motion was framewise
displacement (FD) < 0.5 mm (Power et al., 2012). Four subjects
were discarded due to excessive head motion, and the final fMRI
analysis was focused on the data of 20 subjects (10 males, mean
age 21.8 ± 1.83 years old). This experiment was approved by the
local Ethics Committee of Yantai Affiliated Hospital of Binzhou
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Medical University. A separate group of subjects (n = 18, 8
females, mean age: 22.2 years old) participated in a preliminary
behavioral experiment for the stimulus validation.

Experimental Procedures
The fMRI experiment was based on a block design, with four
“main experiment” runs for the emotion perception task and one
“localizer” run for the ROI identification. A separate localizer
was used in our study to ensure that the data used for the ROI
definition was independent of the data used for the classification
in the main experiment analysis (Axelrod and Yovel, 2012, 2015;
Furl et al., 2013; Harry et al., 2013).

Figure 1A shows the process of the main experiment. Each
run began with a 10 s fixation cross followed by 18 stimulus
blocks presented in a pseudo-random order (Axelrod and Yovel,
2012; Furl et al., 2013, 2015). Successive stimulus blocks were
separated by 10 s intervals of a fixation cross. For the first three
runs, three emotions (joy, anger, and fear) expressed by three
stimulus types (facial, non-face bodily, and whole-person stimuli)
were presented in different blocks, while for the fourth run,
only three emotions expressed by the whole-person stimuli were
presented. In each block, eight video clips of different examples
per emotion category were displayed (each for 2000 ms), with an
interstimulus interval (ISI) of 500 ms. At the end of each block,
there was a 2 s button task instructing participants to indicate
the emotion category they had seen by pressing a button. The
emotion stimuli were taken from the geneva multimodal emotion
portrayals (GEMEP) corpus (Banziger et al., 2012). Videos of
eight individuals (four males and four females) displaying three
emotions (joy, anger, and fear) were selected as whole-person
emotion stimuli (Cao et al., 2018; Yang et al., 2018). Facial
and bodily emotion stimuli were generated from the whole-
person videos by cutting out and obscuring the irrelevant part
with Gaussian blur masks using Adobe Premiere Pro CC (Kret
et al., 2011). All video clips were cropped to 2,000 ms (25
frames/s) to retain the transition from a neutral expression
to the emotion apex, and were converted into grayscale using
MATLAB (Furl et al., 2012, 2013, 2015; Kaiser et al., 2014;
Soria Bauser and Suchan, 2015). The resulting videos were
resized to 720 × 576 pixels and presented on the center of
the screen. All generated emotion stimuli were validated by
another group of participants before scanning, confirming the
validity of the stimuli in representing all expressions. Figure 1B
shows the examples of whole-person emotion stimuli in the
main experiment.

In the functional localizer run, participants viewed video
clips or static images of four categories: faces, non-face bodies,
whole-persons and objects. Each category appeared two times
in a pseudo-random order, resulting in 16 blocks in total (4
categories × video/image × 2 repetitions). Each block contained
8 stimuli (7 novel and 1 repeated), and each was presented for
1,400ms, separated by an ISI of 100 ms. Participants performed
a “one-back” task during the localizer run, that is, to press a
button when they observed two identical stimuli appearing in
consecutive trials.

The stimuli were presented using E-Prime 2.0 Professional
(Psychology Software Tools, Pittsburgh, PA, United States) and

the behavioral results were collected using the response pad in the
scanner. After scanning, participants were required to complete
a questionnaire recording whether participants performed the
experiment according to the instructions, their feelings during
the fMRI experiment, and any difficulties they encountered.

Data Acquisition
Imaging data were acquired from Yantai Affiliated Hospital
of Binzhou Medical University, using a 3.0-T SIEMENS MRI
scanner with an eight-channel head coil. Acquisition parameters
of task-related functional images and anatomical images were
as follows: T2∗-weighted functional images were collected using
a gradient echo-planar imaging (EPI) sequence, with repetition
time (TR) = 2,000 ms, echo time (TE) = 30 ms, voxel
size = 3.1 mm × 3.1 mm × 4.0 mm, matrix size = 64 × 64,
slices = 33, slices thickness = 4 mm, slice gap = 0.6 mm (Yang
et al., 2018). T1-weighted anatomical images were acquired using
a three-dimensional magnetization-prepared rapid-acquisition
gradient echo (3D MPRAGE) sequence, with TR = 1,900 ms,
TE = 2.52 ms, time of inversion (TI) = 1100 ms, voxel
size = 1 mm × 1 mm × 1 mm, matrix size = 256 × 256.
Participants viewed the emotion stimuli through the high-
resolution stereo 3D glasses of the VisuaStim Digital MRI
Compatible fMRI system. Foam pads and earplugs were used
during scanning to reduce head motion and scanner noise.

Preprocessing
Statistical parametric mapping 8 (SPM8) software1 was used
to preprocess the functional and structural images. For each
functional run, the first five volumes were discarded to minimize
the magnetic saturation effect. Slice-timing and head motion
correction were performed for the remaining functional images.
The threshold for head motion was FD < 0.5 mm (Power
et al., 2012). Next, the structural images were co-registered to
the mean functional image after motion correction, and were
then unified segmented into gray matter, white matter (WM)
and cerebrospinal fluid (CSF). The functional data were spatially
normalized to the standard Montreal Neurological Institute
(MNI) space using normalization parameters estimated from the
unified segmentation, after which the voxel size was re-sampled
into 3 mm × 3 mm × 3 mm. Subsequently, the normalized
functional images of the localizer run were spatially smoothed
with a 6-mm full-width at half-maximum Gaussian kernel to
improve the signal-to-noise ratio.

Localization of Dorsal Motion-Sensitive
Regions of Interest (ROIs)
Individual ROIs were defined using the localizer run data in
which participants viewed static and dynamic faces, non-face
bodies, whole persons and objects. At the first-level (within-
subject) analysis, a general linear model (GLM) was constructed
for each subject to estimate the task effect for each condition:
dynamic face, static face, dynamic body, static body, dynamic
whole-person, static whole-person, dynamic object and static

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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FIGURE 1 | Paradigm representation of the main experiment and example emotional stimuli. (A) Schematic representation of the paradigm used. A cross was
presented for 10 s before each block, after which eight emotional stimuli appeared. Subsequently, participants completed a button task to indicate their identification
of the emotion category they had seen in the previous block. (B) All emotional stimuli were taken from the geneva multimodal emotion portrayals (GEMEP) database.
Videos of whole individuals displaying three emotions (joy, anger, and fear) were used in the experiment.

object. Each regressor was modeled by a boxcar function
(representing the onsets and the durations of the stimulus blocks)
convolved with a canonical hemodynamic response function
(HRF). Several confounding nuisances were regressed out along
with their temporal derivatives, including the realignment
parameters from head motion correction and the physiological
noise from WM and CSF were regressed using the CompCor
(Behzadi et al., 2007; Whitfield-Gabrieli and Nieto-Castanon,
2012; Woo et al., 2014; Power et al., 2015; Xu et al., 2017; Geng
et al., 2018). The low-frequency drifts of the time series were
removed with a 1/128 Hz high-pass filter. The dorsal motion-
sensitive ROIs were then identified by contrasting the average
response to dynamic versus static conditions. The aim of using
this contrast was to identify the motion-sensitive areas which are
relatively domain-general, as both person and person parts, as
well as those focused on non-person objects. We were especially
interested in whether emotions perceived from whole-person
expressions could be decoded from the relatively domain-general
motion-sensitive areas, which are not specialized for representing
only facial or bodily attributes. Thus, we chose to use a contrast
which was expected to elicit motion areas to be domain general.
Previous studies have showed that combined different types of
stimuli together would be expected to localize motion-sensitive
responses subsuming areas to be relatively domain-general (Furl
et al., 2012, 2013, 2015; Liang et al., 2017). Therefore, to maximize
the available data and to identify relatively domain-general
motion-sensitive areas, we chose to average the results for ROI
definition. We identified bilateral areas within human hMT + /V5
for all twenty subjects and bilateral STS areas for eighteen
subjects, with two subjects only demonstrating a unilateral STS
area in the left or right hemisphere. The ROIs were generated
with a liberal threshold (p < 0.05; Skerry and Saxe, 2014; Miao
et al., 2018; Yang et al., 2018). Individual subjects’ motion-
sensitive ROIs were defined as 9 mm spheres surrounding the
peak coordinates. Subsequent emotion classification analyses
were carried out based on these individually defined ROIs using
the data from the main experiment runs. Table 1 summarizes

TABLE 1 | Localization of motion-sensitive regions of interest (ROIs) used in the
decoding analysis of main experiment data.

Functional
ROIs

Hemisphere Number of
Subjects

MNI Coordinates

x Y z

STS L 19 −55 ± 10 −42 ± 5 14 ± 5

R 19 57 ± 8 −39 ± 8 13 ± 6

hMT + /V5 L 20 −53 ± 5 −67 ± 5 6 ± 6

R 20 53 ± 6 −64 ± 7 3 ± 5

Number of subjects in whom the ROIs were localized and the average Montreal
Neurological Institute (MNI) coordinates (mean ± standard deviation SD) are
reported. STS, superior temporal sulcus.

the average MNI coordinates (mean ± standard deviation SD)
for each ROI, and Figure 2 shows the statistical maps of the
significant clusters in the ROI definition of a representative
subject (uncorrected p < 0.05 with a cluster size > 20 voxels).

Within-Subject and Cross-Subject
Emotion Classifications
Emotion classification analyses were conducted on the
unsmoothed data from the main experiment (Harry et al.,
2013; Yang et al., 2018) using a MVPA. We carried out MVPA
classifications within ROIs that were functionally localized based
on individual subject localizer runs. Similar procedures as those
in previous MVPA studies were used in this study. For each
participant, raw intensity values for all voxels within an ROI were
extracted and normalized using the z-score function. The MVPA
classification was carried out based on the multi-voxel activation
patterns. Feature selection was performed using an ANOVA,
which yielded a p-value for each voxel to tell the probability
that a given voxel’s activity varied significantly between emotion
conditions. Feature selection was executed only on the training
set to avoid peeking, and the threshold for ANOVA was p < 0.05.
Next, the data were classified using a linear support vector
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FIGURE 2 | Statistical maps of the significant clusters of superior temporal
sulcus (STS) and hMT + /V5 of a representative subject (uncorrected p < 0.05
with a cluster size > 20 voxels). Individual subjects’ motion-sensitive regions
of interest (ROIs) were defined as 9 mm spheres surrounding the peak
coordinates.

machine (SVM) that was implemented in LIBSVM2 (Chang and
Lin, 2011; Skerry and Saxe, 2014). The activation patterns for
each condition were used to train and test the SVM classifier to
perform classification over emotions. Figure 3 represents the
framework of our emotion classification analyses. We conducted
two types of classifications in this section to assess the potential
role of motion-sensitive ROIs in emotion decoding: first, a
classical within-subject emotion classification was carried out as
implemented in previous MVPA studies (classifier was trained
and tested within the same subject data); next, a cross-subject
emotion classification was conducted (classifier was trained
iteratively on all subjects but one and tested on the remaining
one) to assess whether there is any commonality to emotional
representations in motion-sensitive areas across individual
subjects. The cross-subject classification was performed using
a leave-one-subject-out cross-validation (LOOCV) scheme
(Chikazoe et al., 2014). In each fold of LOOCV, we trained the
classifier in all but one subject and the remaining one was used
as the test set. The cross-validation procedure was repeated
until each subject was used as the test set, and the classification
performance was averaged over all folds. The cross-subject
classification was used to further investigate whether emotion
codes in the motion-sensitive areas can be shared across subjects.

We ran both three-way (joy vs. anger vs. fear) and two-
way (joy versus anger/fear, which could be considered as
positive vs. negative) emotion classifications. The three-way
classification was implemented similarly as previous MVPA
studies (Wang et al., 2016; Liang et al., 2017), using a one-
against-one voting strategy. That is, we obtained classifiers for
each pair of emotions and these pairwise classifiers were then
added to yield the linear ensemble classifier for each emotion.
Classifying positive versus negative emotions is essential since

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

these results basically demonstrate coarse-grained emotion codes
which can clearly distinguish positive-to-negative valences in
bipolar representations, all the while taking into account the
fact that some regions may not classify specific emotions in a
fine-grained way, but may be able to distinguish positive and
negative valence emotion representations (Kim et al., 2017).
Data were partitioned into multiple cross-validation folds and
the classification accuracies were averaged across folds to yield
a single classification accuracy in each ROI. For the within-
subject emotion classification, a cross-validation was performed
across blocks, while for the cross-subject emotion classification,
the cross-validation folds were based on subjects (testing each
participant’s activation pattern by a classifier that was trained by
all other participants). For the classification of positive versus
negative emotions, half of the data from anger and fear conditions
were randomly dropped for each cross-validation, equating the
base rates and therefore generating a chance level of 0.5 (Kim
et al., 2017; Cao et al., 2018). To evaluate the emotion decoding
performance, the significance of the classification results was
established as a group level one-sample t-test above chance level
(with a chance of 0.33 for the classification of three emotions, and
a chance of 0.5 for the classification of positive versus negative
emotions; Wurm and Lingnau, 2015; Cao et al., 2018), and
were subsequently corrected for multiple comparisons by false
discovery rate (FDR) and Bonferroni corrections according to
the number of ROIs.

RESULTS

Behavioral Results
Behavioral results of the emotion classification accuracies and
the reaction times for each emotion (joy, anger, and fear) are
summarized in Table 2. These results confirmed the validity of
the emotion stimuli used in our experiment as all emotions were
well recognized with a high level of accuracy. Paired t-tests for
the classification accuracies and reaction times were performed
among the three emotions. Results showed that the classification
accuracy for joy was significantly higher than that for anger
and fear and that there was no significant difference between
the accuracies for anger and fear [joy vs. anger: t(19) = 1.831,
p = 0.041; joy vs. fear: t(19) = 2.333, p = 0.015; anger vs. fear:
t(19) = 1.286, p = 0.107; one-tailed]. For the reaction times,
participants showed a significantly quicker response to joy than
to anger or fear, and the response time for anger was shorter
than that for fear [joy vs. anger: t(19) = -3.514, p = 0.001; joy
vs. fear: t(19) = -6.180, p < 0.001; anger vs. fear: t(19) = -3.161,
p = 0.003; one-tailed].

Within-Subject and Cross-Subject
Emotion Decoding Results
In this section, we conducted MVPA emotion classifications
based on the individually defined ROIs. Two types of
classification analyses were performed to assess the potential
role of the motion-sensitive ROIs in emotion decoding. The
first one was a classical within-subject emotion classification
which was implemented in a similar way as previous MVPA
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FIGURE 3 | Flowchart of the data analysis procedure. Multivariate pattern analysis (MVPA) emotion decoding analyses were conducted based on the individually
defined regions of interest (ROIs). Two types of classification analyses (within-subject classification and cross-subject classification) were performed to examine the
potential role of the motion-sensitive ROIs in the emotion decoding. Both three-way (joy vs. anger vs. fear: J vs. A vs. F) and two-way (positive vs. negative: P vs. N)
emotion classifications were performed.

TABLE 2 | Behavioral results (mean % and standard deviations SD).

Classification Accuracy (%) Reaction Time (ms)

Mean SD Mean SD

Joy 100 0 675.25 155.35

Anger 98.75 3.05 767.05 224.22

Fear 97.08 5.59 836.10 210.54

studies (Axelrod and Yovel, 2012, 2015; Wurm and Lingnau,
2015; Liang et al., 2017). In addition, we conducted a cross-
subject emotion classification to assess whether there is any
commonality in emotion representations in motion-sensitive
areas across individual subjects. Both three-way (joy vs. anger
vs. fear) and two-way (joy versus anger/fear, which could be
considered as positive vs. negative) emotion classifications were
performed. Feature selection was conducted using ANOVA
which was executed only on the training data, with a threshold

of p < 0.05. SVM classifier was trained and tested with cross-
validation scheme to perform classification analysis over emotion
categories. The classification accuracies for each ROI and subject
were entered into one-tailed one-sample t-tests against the
chance levels (Wurm and Lingnau, 2015), and the statistical
results were corrected for multiple comparisons by FDR and
Bonferroni corrections according to the number of ROIs.
Figures 4, 5 separately show the results for within-subject
and cross-subject emotion classifications and the statistical
significances for multiple comparisons correction results are
indicated by asterisks.

Results for the within-subject emotion decoding analysis are
shown in Figure 4, which illustrates the average percent signal
change for each emotion (Figure 4A) and the classification
accuracies for three emotions (Figure 4B) and for positive versus
negative emotions (Figure 4C) in all ROIs. We found that the
classification accuracies for three emotions and for positive versus
negative emotions were significantly higher than chance in all
ROIs [For three emotions classification: left STS: t(18) = 4.692,
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FIGURE 4 | Results of the within-subject emotion decoding analysis. (A) Average percent signal change for each emotion, (B) Classification accuracies for three
emotions, and (C) Classification accuracies for positive versus negative emotions. The dashed line indicates chance level, and all error bars represent the standard
error of the mean (SEM). Asterisks indicate statistical significance with a one-sample t-test, p < 0.05 [** p < 0.05 false discovery rate (FDR) corrected; *** p < 0.05
Bonferroni corrected].

FIGURE 5 | Results of the cross-subject emotion decoding analysis. (A) Classification accuracies for three emotions, and (B) Classification accuracies for positive
versus negative emotions. The dashed line indicates chance level, and all error bars reflect the SEM. Asterisks indicate statistical significance with a one-sample
t-test, p < 0.05 [** p < 0.05 false discovery rate (FDR) corrected; *** p < 0.05 Bonferroni corrected].
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p < 0.001; right STS: t(18) = 2.336, p = 0.016; left hMT + /V5:
t(19) = 2.294, p = 0.018; right hMT + /V5: t(19) = 1.950, p = 0.033.
For positive versus negative emotions classification: left STS:
t(18) = 5.149, p < 0.001; right STS: t(18) = 5.478, p < 0.001;
left hMT + /V5: t(19) = 5.202, p < 0.001; right hMT + /V5:
t(19) = 6.548, p < 0.001).

We next assessed whether a person’s emotion representations
in the motion-sensitive areas could be predicted by others’
emotion representations. Figure 5 shows the results for the
cross-subject emotion classifications in all motion-sensitive ROIs
(Figure 5A shows the classification results for three emotions
and 5B shows the classification results for positive versus negative
emotions). When classifying emotions from the classifiers trained
by the activation patterns of other subjects, we found that
classification accuracies were significantly higher than chance in
hMT + /V5 both for the three emotions and for the positive
versus negative emotions [classification of three emotions: left
hMT + /V5: t(19) = 2.483, p = 0.01; right hMT + /V5: t(19) = 2.116,
p = 0.024; classification of positive vs. negative emotions: left
hMT + /V5: t(19) = 3.510, p = 0.001; right hMT + /V5:
t(19) = 3.523, p = 0.001]. In the STS, although the classification
accuracies for the three emotions did not achieve significance
[left STS: t(18) = 0.174, p = 0.432; right STS: t(18) = 0.351,
p = 0.365], we did find successful cross-subject positive-to-
negative emotion decoding [left STS: t(18) = 2.199, p = 0.021; right
STS: t(18) = 1.995, p = 0.031].

DISCUSSION

In this study, we performed a block-design fMRI experiment
and collected neural data while participants viewed emotions
(joy, anger, and fear) from videos representing whole-person
expressions. Both within-subject and cross-subject MVPA
emotion classification analyses were performed to examine the
decoding performance of individual-defined motion-sensitive
ROIs. We ran both three-way (joy vs. anger vs. fear) and two-
way (positive vs. negative) emotion classifications. Our results
showed that emotions could be successfully decoded based on the
activation patterns in dorsal motion-sensitive areas. Moreover,
results from the cross-subject classification analysis showed that
motion-sensitive areas supported the classification of individual
emotion representation across subjects.

Emotions Perceived From Whole-Person
Expressions Are Represented in Dorsal
Motion-Sensitive Areas
We obtained significant classification results for both the
classification of the three emotions and the positive versus
negative emotions, indicating that emotions perceived from
whole-person expressions are represented in the motion-
sensitive areas.

Previous studies on facial expressions with dynamic stimuli
have revealed a certain degree of sensitivity in dorsal temporal
areas, showing that motion-sensitive areas within hMT + /V5
and STS exhibited strong responses to dynamic facial emotions
(Foley et al., 2011; Furl et al., 2013, 2015). Considering that the

results of the average response from the univariate analysis alone
are insufficient to reveal the potential role of a specific brain area
underlying decoding (Axelrod and Yovel, 2012; Mahmoudi et al.,
2012), recent fMRI studies used ROI-based MVPA to examine
the decoding performance of motion-sensitive areas. Furl et al.
(2012) used macaque STS as a model system and revealed the
successful decoding of facial emotions in motion-sensitive areas.
Similar results were obtained in one of our recent studies (Liang
et al., 2017). These studies suggest that motion-sensitive areas
may transmit measurable quantities of expression information
and may be involved in the processing of emotional information.
In this study, we defined individual motion-sensitive ROIs and
found that emotions perceived from whole-person expressions
could be successfully decoded from motion-sensitive areas. Our
results are consistent with previous findings, and provide new
evidence that emotions perceived from whole-person expressions
are represented in the motion-sensitive areas. It should be noted
that our results revealed the emotion decoding performance
of the relatively domain-general motion-sensitive areas, as the
localization contrast we used contained both person and person
parts, as well as non-person objects, which was expected to reflect
all responses to visual motion (Furl et al., 2012, 2015). Therefore,
our results suggest that motion sensitive voxels which respond to
various motions, not only specific to facial or bodily attributes,
may make a significant contribution to emotion decoding.

Taken together, our findings provide new evidence that
emotions are represented in dorsal motion-sensitive areas,
pointing to the role of dorsal motion-sensitive areas as
key regions in the processing of emotional information in
daily communication.

Commonality of Emotion
Representations in Motion-Sensitive
Areas Across Individuals
Furthermore, we assessed whether an individual’s emotion
representation in the motion-sensitive areas corresponds to
that observed in others by conducting a cross-subject emotion
classification analysis (classifier was trained iteratively on all
subjects but one and tested on the remaining one). This may
provide evidence of whether an individual’s subjective emotion
representation in the motion-sensitive areas corresponds to
that observed in others, which may be helpful in evaluating
the commonality and variability in emotion coding (Haxby
et al., 2011; Raizada and Connolly, 2012; Chikazoe et al.,
2014). We obtained statistically significant results for both
the cross-subject classification of three emotions and positive
versus negative emotions in the hMT + /V5, indicating that
the hMT + /V5 code may reflect experienced emotions in
the same way across participants. In addition, although much
less significant emotion classification results were identified for
the three emotions, we revealed the successful cross-subject
classification of positive versus negative emotions in the STS. This
reveals that population codes in the STS were less able to decode a
specific emotion in a fine-grained way, but demonstrated that the
similarity in emotion representations among people may allow
for the robust distinction of coarsely defined positive-to-negative
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emotional valences in the context of bipolar representations
(Kim et al., 2017). Our results also suggest that subjective
emotion representations are more similarly structured across
individual subjects in the hMT + /V5 than in the STS, since
hMT + /V5 supported the cross-subject classification of both fine-
grained three emotions and coarse-grained positive-to-negative
emotions, while the STS only supported the coarse-grained
classification in a significant way.

Overall, our study indicates that the representation of
emotions in motion-sensitive areas may be similar across
participants. This may provide evidence that even in the most
subjective perception of an individual’s emotion experience, its
internal emotion coding can be predicted on the basis of the
patterns observed in others in the motion-sensitive areas. This
finding is important, since such cross-subject commonality may
allow for the common scaling of the valence of emotional
experiences across participants. In summary, we show that a
person’s emotional representations in motion-sensitive areas may
be predicted by others’ emotional representations, suggesting that
there exists a common emotion code in the motion-sensitive
areas across individuals.

In the present study, different types of emotional stimuli
(facial, bodily, and whole-person expressions) were contained
in the main experiment. Future studies with whole-person
stimuli separately may further improve the implementation of
the classification scheme and lead to better understanding of the
whole-person expressions decoding. In addition, compared with
ROI-based analyses, whole-brain group-level analyses would
provide more informative results. Future studies combine both
whole-brain activation-based and FC-based analyses would
further enrich our findings about the neural substrates and the
mechanisms for the quick and effortless recognition of whole-
person emotions.

CONCLUSION

Our results showed that emotions perceived from whole-person
expressions can be robustly decoded in dorsal motion-sensitive
areas. Moreover, successful cross-subject emotion decoding
suggests that the emotion representations in motion-sensitive
areas could be shared across participants. This study extends
previous MVPA studies to the emotion perception of whole-
person expressions, which are more frequently perceived in daily
life, and may further our understanding of the potential neural
substrates underlying the efficient recognition of emotions from
body language. Our findings provide new evidence that emotions
are represented in dorsal motion-sensitive areas, underscoring

the important role of the motion-sensitive areas in the emotion
perception. Our study also suggests that emotion representations
in motion-sensitive areas are similar across individuals.
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The aim of this work was to re-evaluate electrophysiological data from a
previous study on motor imagery (MI) with a special focus on observed inter-
and intra-individual differences. More concretely, we investigated event-related
desynchronization/synchronization patterns during sports MI (playing tennis) compared
with simple MI (squeezing a ball) and discovered high variability across participants.
Thirty healthy volunteers were divided in two groups; the experimental group (EG)
performed a physical exercise between two imagery sessions, and the control group
(CG) watched a landscape movie without physical activity. We computed inter-individual
differences by assessing the dissimilarities among subjects for each group, condition,
time period, and frequency band. In the alpha band, we observe some clustering in
the ranking of the subjects, therefore showing smaller distances than others. Moreover,
in our statistical evaluation, we observed a consistency in ranking across time periods
both for the EG and for the CG. For the latter, we also observed similar rankings across
conditions. On the contrary, in the beta band, the ranking of the subjects was more
similar for the EG across conditions and time periods than for the subjects of the
CG. With this study, we would like to draw attention to variability measures instead of
primarily focusing on the identification of common patterns across participants, which
often do not reflect the whole neurophysiological reality.

Keywords: EEG, ERD/S, motor imagery, variability, inter-individual differences

INTRODUCTION

Motor imagery (MI) is defined as an internal representation of simple or complex movements in
absence of any physical action or any kind of peripheral muscular activity (Jeannerod, 1994; Annett,
1995; Jeannerod and Decety, 1995; Porro et al., 1996). It is well-known that MI improves motor
learning comparable with real physical exercises which results in neural and structural changes in
the brain (Grèzes and Decety, 2001; Miller et al., 2010; Sharma and Baron, 2013). Furthermore,
MI is a common task in brain–computer interface (BCI) research because users often cannot
perform an overt motor execution task due to some degree of motor disability (Neuper et al.,
2006; Pfurtscheller and Neuper, 2006; Pfurtscheller et al., 2006; Leeb et al., 2007a; Höhne et al.,
2014). With the so-called motor-imagery-based BCI, users send mental commands by performing
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MI tasks, e.g., movement imagination or attempts (Pfurtscheller
and Neuper, 2001; Neuper and Pfurtscheller, 2010; Lotte et al.,
2013). Even though improved signal processing and classification
algorithms are available, a tremendous inter- and intra-subject
variability has been observed in terms of performance (Allison
and Neuper, 2010; Wolpaw and Wolpaw, 2012; Kübler et al.,
2013). Thus, it is indisputable that one of the major aspects
contributing to MI–BCI control performance is the individual
characteristic and consequently neural pattern of the BCI user
(Kübler et al., 2013; Ahn and Jun, 2015).

In the past years, researchers identified different factors
like cognitive, attentional, or personal skills which influence
BCI performance (Leeb et al., 2007a,b; Blankertz et al., 2010;
González-Franco et al., 2011; Kübler et al., 2011; Halder
et al., 2013; Kleih and Kübler, 2013; Lotte et al., 2013;
Höhne et al., 2014; Schreuder, 2014). The observed large
inter-individual variability motivated researchers to investigate
important predictors related to a user’s personality and
cognitive profile. Jeunet et al. (2016) suggested the following
three categories of MI–BCI performance predictors: (1) users’
relationship with the technology, (2) attention, and (3)
spatial abilities. The attention-related predictors seem to be
particularly relevant. There is large inter-individual variability
in the efficiency of neural activity in the attention network
accounting for the inter-individual variations in attentional
abilities important for BCI control (Petersen and Posner, 2012).
Moreover, several other researchers have identified attention-
related brain patterns which are important to BCI performance.

For example, Grosse-Wentrup and Schölkopf (2012) found
that the variation in gamma power highly correlates with
BCI performance, hence being able to predict successful
or unsuccessful classification (Grosse-Wentrup et al., 2011;
Grosse-Wentrup, 2012; Grosse-Wentrup and Schölkopf, 2012;
Schumacher et al., 2015). Others found that the extent of
activation of the dorsolateral prefrontal cortex (associated with
the executive attention system; Posner and Petersen, 1990) differs
between high and low BCI performers (Halder et al., 2011).
Finally, Bamdadian et al. (2014) found that frontal theta, occipital
alpha, and midline beta power could be other predictors for
BCI performance.

Besides attention, there are several other factors that
contribute to a high variability in BCI users. For example, Kübler
et al. (2011) suggested a model of BCI control that contains
four categories: “Individual characteristics,” “Characteristics
of the BCI,” “Feedback and Instruction,” and “Application.”
Summarizing this classification, it can be distinguished between
two fundamental aspects. One aspect is the user’s part and the
other one the system’s part. It has been shown that within the
same BCI system, some subjects cannot perform successfully
(Allison and Neuper, 2010; Blankertz et al., 2010). These results
indicate the importance to understand why some individuals
perform differently in the same system. Other researchers like
Saha and Baumert (2019) reported that neurophysiological
processes during MI often vary over time and across subjects
(Meyer et al., 2013; Saha et al., 2017). Because the motor learning
process differs across individuals and consequently cortical
activity varies among subjects during MI, its utility for BCI

applications is largely restricted. Hence, it is very important to
more closely investigate inter- and intra-subject variability during
MI to find further predictors of inter-individual differences that
can improve future MI-based BCI systems.

In a former study, we investigated MI of playing tennis,
resulting in different mu rhythm patterns of activation on
the basis of individual expertise for the specific task. For
instance, experienced tennis players showed a more focal event-
related desynchronization (ERD) pattern over sensorimotor
regions surrounded by ERS with respect to non-experts
(Wriessnegger et al., 2018). Surprisingly, our data clearly show
high inter- and intra-individual differences in event-related
desynchronization/synchronization (ERD/S) patterns in all tasks
and groups reflected in the time–frequency visualization of
ERD/S patterns in the alpha band for the same tasks. For
example, while one person showed increased ERD during MI
of tennis, another one showed increased ERS for the same
task. Consequently, an overall analysis of the grand average
activity during tennis MI was quite problematic. Such high
inter- and intra-subject variability of mu rhythms during MI
tasks was also reported by other studies (Doppelmayr et al.,
1998; Pineda, 2005; Pfurtscheller and Neuper, 2006; Pfurtscheller
et al., 2006; Halme and Parkkonen, 2018; Corsi et al., 2019).
For example, Daeglau et al. (2020) attributed the inter-individual
differences in MI induced ERD to the experimental setup they
used. Concretely, they assumed that task and experimental
setup can affect the interplay of motor execution and MI
for each individual differently. Others discussed inter-subject
variability in the alpha frequency in relation with age and
genetic factors, supported by twin studies (Smit et al., 2012;
Bodenmann et al., 2009). But also, task demands and cognitive
factors like working memory performance influence the alpha
peak frequency (Klimesch, 1999). In addition, intra-subject
variability in alpha peak frequency has been observed reflecting
different alpha networks being activated dependent on task
demands (Klimesch, 1999). Following this, alpha frequency can
be interpreted as “trait” variable on the one side and “state”
variable on the other side. While the former might explain
differences in overall cognitive performance among subjects,
the latter could explain the observed intra-subject variability.
Moreover, this variability might reflect any fluctuations in real-
time performance.

These results and the high inter-individual differences in
ERD/S patterns elicited in our previous study (Wriessnegger
et al., 2018) motivated us to investigate more closely the
variability among and between subjects of this dataset. The
individual activation patterns during MI are largely neglected in
most of the studies which primarily focused on the identification
of common patterns across participants.

MATERIALS AND METHODS

Participants
Thirty healthy right-handed students participated in the study.
All reported normal or corrected to normal vision and none
of them had a history of psychiatric or neurological disorders.
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Participants were matched with regard to sex and age, and they
were randomly assigned to the control group (CG) (N = 15;
mean age: 24.9; range: 20–30 years; 7 women and 8 men) or
to the experimental group (EG) (N = 15; mean age: 24.8;
range: 20–28 years; 7 women and 8 men). The participants
were all naive regarding MI, 70% of them regularly perform
different kinds of sports and only five play tennis. The original
study was approved by the local ethics committee (Medical
University of Graz) and is in accordance with the ethical
standards of the Declaration of Helsinki. After detailed written
and oral instruction participants gave informed written consent
to participate in the study. They received financial compensation
(€7.50/hour) for their participation.

Experimental Design
The experimental procedure encompassed a pre-measurement,
the execution or relaxing intervention, and a post-measurement.
During the pre-measurement, participants from both groups
performed the MI task according to the written instructions
while simultaneously their EEG was recorded. Whenever the
letter “T” appeared on the screen in front of them, participants
had to imagine playing tennis for 6 s repetitively. The concrete
instruction was to imagine a repetitive right forehand movement
of returning balls from a first-person perspective. If the letter
“H” appeared on the computer screen, the task was to imagine
squeezing a ball for 6 s with the right hand. Participants had to
imagine each type of MI 15 times per run in pseudo-randomized
order. The whole experiment consisted of four runs with 60 trials
of squeezing a ball and other 60 trials of playing tennis.

During the intervention phase, participants from the EG
played virtual tennis via motion control (Kinect) and squeezed
a real ball for 5 min each. In this phase, no EEG was
recorded. The described execution interventions were performed
in randomized order within the EG. In the control group (CG),
participants performed no physical exercise, instead they watched
a landscape movie for 10 min.

In the last session, after the intervention phase, participants
of the EG and the CG performed the same MI (playing tennis
and squeezing a ball) tasks like in the first session while their
EEG was recorded. A trial consisted of a fixation cross (4 s), the
imagery phase (6 s), and a pause (4 s), which leads to a total trail
time of 14 s. In one run, 30 trials (15 per MI task) in total are
performed, with four runs in the pre-recording and 4 runs in
the post-recording phase. Each participant performed eight runs
with 240 trials in total. For a more detailed description of the
experimental setup, please see Wriessnegger et al. (2018).

EEG Preprocessing and ERD/ERS
Analysis
The raw EEG data, taken from the original study (Wriessnegger
et al., 2018), was down-sampled to 250 Hz and re-referenced to
channel Cz. We manually inspected the continuous EEG signals
and marked segments containing artifacts, which we discarded in
all subsequent analyses. Next, we used non-causal FIR bandpass
filters to extract time signals in the bands 8–13 Hz (alpha band)
and 16–24 Hz (beta band). We considered segments from−3.5 to

3.5 s relative to each cue for our ERD/ERS calculation, where the
baseline and activation intervals ranged from−3.5 to 0.5 s and 0.5
to 3.5 s, respectively. Finally, we averaged groups of channels into
the following six regions of interest (ROIs) (Figure 1): prefrontal
left (F5a, F3a, F1a, FC5b, FC3b, FC1d, and FC1c), prefrontal right
(F2a, F4a, F6a, FC2c, FC2d, FC4b, and FC6b), central left (FC5a,
FC3a, FC1b, FC1a, C5a, C3, C1b,C1a, CP5a, CP3a, CP1b, and
CP1a), central right (FC2a, FC2b, FC4a, FC6a, C2a, C2b, C4, C6a,
CP2a, CP2b, CP4a, and CP6a), parietal left (CP5b, CP3b, CP1d,
CP1c, P5a, P3a, and P1a), and parietal right (CP2c, CP2d, CP4b,
CP6b, P2a, P4a, and P6a). We computed time/frequency ERD/S
maps similar to the procedure used to calculate ERD/S values.

Calculating Intra- and Inter-individual
Differences
For every subject from the two groups (experimental and
control), each condition (hand and tennis), time period (pre-
and post-intervention), and frequency band (alpha and beta),
we averaged the time–frequency patterns during the task (0.5 to
3.5 s) of single channels within each of the six ROIs. Then, we
computed the ERD/S patterns and investigated their distribution
among subjects during pre- and post-intervention time periods.

Next, we concatenated the average ERD/S values of the six
ROIs for alpha and for beta frequency bands for all the subjects,
and assessed the dissimilarity between these patterns by means
of a pairwise distance computed as 1 - rho, where rho is
the Spearman correlation. We ranked and scaled the distances
between 0 and 1, and computed the distance matrix between
pairs of conditions. We computed inter-individual differences
by assessing the dissimilarities among subjects for each group,
condition, time period, and frequency band (Figures 4A,B).

To visualize the distances between different subjects in several
conditions, we used multidimensional scaling (MDS) (Kruskal
and Wish, 1978). MDS is a general dimensionality reduction
method that projects entities in a low-dimensional space, such
that their distances reflect their similarities. Specifically, similar
entries will be located closer to one another, while dissimilar ones
will be farther apart. For MDS visualization as a 2D plot that
reflects the distribution of the subjects in terms of their ranking,
we performed non-metric MDS for two dimensions with the
squared stress criterion.

Next, we investigated the variability of these pairwise distances
among subjects in each of the two groups (experimental and
control) among conditions, time periods, and frequency bands
using Kendall’s tau b and reporting their associated p-values. We
corrected for multiple comparisons using the Bonferroni–Holm
correction.

RESULTS

Subject-Specific ERD/S Patterns
Figure 2 shows subject-specific ERD/S values averaged over the
channels of each ROI. In every subplot, the vertical black line
separates the values for alpha and beta frequency bands, whereas
the horizontal black line separates the two groups of subjects:
experimental and control groups. Finally, the top row shows all
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FIGURE 1 | Layout of the EEG channels and description of the ROIs.

these patterns for the hand condition: on the left side during the
pre-intervention time period and on the right side during the
post-intervention time period. Similarly, the bottom row shows
these patterns for the tennis condition.

We can observe that for some subjects, the within-subject
ERD/S values remain similar throughout the conditions and time
points. However, across subjects, these values are very different.
For example, subject EG3 shows a strong negative ERD/S value
at the level of ROI3 and ROI5 in both hand and tennis pre-
conditions for both alpha and beta frequencies. These values
slightly increase but remain negative for all the conditions and
frequencies in the post-intervention period. However, as another
example, subject EG14 presents positive ERD/S values in all
conditions. Similar observations can be found in the control
group (e.g., CG3 and CG12). We also found that the ERD/S values
for the beta frequency show less variability among subjects for
either group compared with the alpha frequency band.

In Figures 3A,B, we use boxplots to visualize summary
statistics at the group level, based on ERD/S values for each
condition (hand and tennis), respectively, for alpha and beta
frequency bands and for all six ROIs. For both conditions, the
distribution of ERD/S values shows larger variability in the alpha
band than in the beta band throughout the ROIs. We can also

observe that in the EG, some subjects contribute as outliers to
the larger variability observed in the alpha band in the pre-
intervention period (large positive ERD/S values in the top left
subplot in Figures 3A,B).

Moreover, the median values among ROIs for the hand
condition are more negative for the EGs than for the control
group in the pre-intervention period in the alpha band. For the
tennis conditions, the medians of the ROIs are similar between
groups and between time periods.

Distance Matrices and Variability Results
Inter-individual differences are illustrated in terms of distance
measures between subject-specific ERD/S patterns for the alpha
band in Figure 4A and for the beta band in Figure 4B, for the
factors group (EG/CG), time period (pre/post), and condition
(hand/tennis). The distances are calculated between pairs of
subjects considering as a pattern the ERD/S during the task
period of all the channels, without averaging them. In Figure 4A,
we observe some clustering in the ranking of the subjects,
therefore showing smaller distances than others. Moreover, we
observed a consistency in ranking across time periods both for
the EG and for the control group. For the latter, we also observed
similar rankings across conditions. For example, subjects 6, 8,
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FIGURE 2 | Subject-specific ERD/S magnitudes in each of the six ROIs in the hand and tennis conditions (top and bottom panels), during the pre- and
post-intervention time periods (left and right panels) within the alpha and beta frequency bands.

9, and 10 from the EG show a strong similarity, therefore small
distances among each other across conditions; whereas subjects
4, 8, 9, and 12 from the control group are consistently different
independent of the condition or time period, by showing large
distances among each other.

In the beta band, the ranking of the subjects was more
similar for the EG across conditions and time periods than for
the subjects of the control group. For example, subjects 3, 8,
9, 12, and 13 were very similar in ranking across conditions
and time periods. We have not observed such a consistency in
the control group.

For an intuitive visualization of the relationship between
the ERD/S magnitudes of different subjects, we used MDS.
In Figures 5A,B, we show their relation for each of the two
frequency bands, respectively. With red dots we show the
subjects from the EG and with blue the subjects from the
control group. The closer the two dots are to one another,

the more similar the magnitude of the ERD/S for the two
subjects. For example, in Figure 5A, in the EG hand pre-
condition, subject 1 is similar to subjects 3 and 5 but very
different to subject 2 or 13. In each figure, we visualize
separately the structure of the rankings of the subjects for
different conditions and time periods. We observe that some
subjects remain consistent in their ranking with respect to
others across conditions and time periods. For example, in
the EG, subjects 8, 12, and 13 maintain their similarity across
conditions and time periods. Another example is subject 6
from the control group which shows a larger dissimilarity to
the other subjects from the same group independent of the
condition or time period.

In Figure 5B for the beta band, we also observed that some
subjects cluster together, for example, for the EG, subjects 12
and 13 are close in their rankings both across conditions and
time periods, and also across frequency bands, as we have seen in
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FIGURE 3 | (A) Distribution of ERD/S patterns across frequency bands and ROIs for the hand condition. Each dot represents a subject-specific average ERD/S in
the time period of the task (0.5 to 3.5 s w.r.t. the task cue) for a particular frequency band and ROI. The subplots on the left column show the ERD/S distribution for
the pre-intervention period for the experimental group (top) and for the control group (bottom). The right column shows the post-intervention ERD/S distribution.
(B) Distribution of ERD/S patterns across frequency bands and ROIs for the tennis condition. Each dot represents a subject-specific average ERD/S in the time
period of the task (0.5 to 3.5 s w.r.t. the task cue) for a particular frequency band and ROI. The subplots on the left column show the ERDS distribution for the
pre-intervention period for the experimental group (top) and for the control group (bottom). The right column shows the post-intervention ERD/S distribution.

Figure 5A. For the control group, we observed a different ranking
of the subjects between conditions and time periods compared
with the consistency in ranking found in the alpha band.

Figure 6 shows the degree of similarity between the pairs of
conditions and time points in which we evaluated the rankings
of the subjects. We chose Kendall’s Tau-b correlation coefficient
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FIGURE 4 | (A) Distance matrices—alpha frequency band. Each matrix displays the distance between subject-specific ERDS patterns in the alpha frequency band
for a group (experimental or control), a condition (hand or tennis motor imagery), and a time period (pre- or post-intervention). The distance is computed as 1 - rho,
where rho is the Spearman correlation. (B) Distance matrices—beta frequency band. Each matrix displays the distance between subject-specific ERDS patterns in
the beta frequency band for a group (experimental or control), a condition (hand or tennis motor imagery) and a time period (pre- or post-intervention). The distance
is computed as 1 - rho, where rho is the Spearman correlation.

to adjust for ties in the ranking, and we also report the
associated p-values corrected for multiple comparisons using
the Bonferroni–Holm correction. We found that the ranking
of the magnitude of the ERD/S patterns for the subjects in
the EG hand pre-beta was correlated with the one in the EG

hand pre-alpha (τb = 0.23, p = 0.03), which indicates that the
ranking of the subject is maintained across frequency bands
for the hand condition in the pre-intervention time period.
We also found stronger correlations between the EG tennis
post-alpha and EG hand post-alpha (τb = 0.34, p = 0.0001)
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FIGURE 5 | (A) Multidimensional scaling (MDS) scatter plots showing the relation among the subject-specific ERD/S patterns in the alpha frequency band for
subjects in the experimental group (red dots) and subjects in the control group (blue dots). (B) Multidimensional scaling scatter plots showing the relation among the
subject-specific ERD/S patterns in the beta frequency band for subjects in the experimental group (red dots) and subjects in the control group (blue dots).

as well as EG tennis pre-alpha (τb = 0.35, p = 0.00009),
which suggest consistency in ranking in the alpha band across
conditions (τb = 0.32, p= 0.0005) and time periods. For the beta

band, we observed a stronger correlation across both conditions:
τb= 0.38, p= 0.000007 for tennis pre-hand pre, and time periods:
τb = 0.32, p = 0.0006 for hand pre–hand post and τb = 0.38,
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FIGURE 6 | Kendall’s Tau-b correlation among the eight conditions for each of the two groups of subjects (experimental and control) and their associated p-values.
A significant p-value leads to the rejection of the null hypothesis that the correlation would be 0 (i.e., independent conditions), and it indicates that the pair of
conditions shares a similar distribution.

p = 0.000007 for tennis pre-tennis post than in the alpha band
for the subjects in the EG.

For the subjects in the control group, we found a stronger
consistency in ranking in the alpha band than in the beta band,
especially across time periods (τb = 0.47, p = 9.2∗e–11 for the
hand pre alpha to hand post-alpha and τb = 0.45, p = 9.6∗e–10
for the tennis pre alpha to tennis post-alpha). The consistency
across conditions was also significant: τb = 0.33, p = 0.0005 for
tennis pre alpha to hand pre alpha and τb = 0.25, p = 0.006 for
tennis post-alpha to hand post-alpha. In the beta band, the only
significant correlation was between hand post and the hand pre
(τb = 0.23, p = 0.02). The other significant correlations were
found across frequency bands but for the same condition or time
period (τb = 0.27, p= 0.002 for hand pre beta to hand pre alpha,
τb = 0.29, p = 0.0005 for hand pre beta to hand post-alpha, and
τb = 0.3, p = 0.0004 for hand post-beta to hand post-alpha). For

the tennis condition, the significant correlations were τb = 0.22,
p = 0.047 for pre beta to pre alpha and τb = 0.25, p = 0.009 for
post-beta to pre alpha.

DISCUSSION

The aim of this work was to re-evaluate data from a previous
study focusing on intra- and inter-individual differences in the
observed brain patterns of the individuals. More concretely, we
investigated ERD/S patterns during sports motor imagery and
discovered high variability among the subjects. By taking into
account the ERD/S patterns at the level of all the six ROIs,
we assessed the dissimilarity between these patterns by means
of distances. The subject-specific ERD/S values for each ROI
(Figure 2) shows that some subjects elicit similar ERD/S values
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throughout the conditions and time points. However, we found
very different ERD/S values among subjects in the EG. For
example, subject EG3 shows a strong negative ERD/S value
at the level of ROI3 and ROI5 in both hand and tennis pre
conditions for both alpha and beta frequencies. These values
slightly increase but remain negative for all the conditions
and frequencies in the post-intervention period. Contrarily,
another subject (EG14) presents positive ERD/S values over all
conditions. Similar observations have been found in the control
group, for example, subject CG3 compared with subject CG12.
Moreover, we observed that the ERD/S values for the beta
frequency show less variability within and among the subjects
for either group compared with the alpha frequency band which
was also observed in the study by Haegens et al. (2014). This
variability was further assessed in the ERD/S values at the group
level. For both conditions, hand and tennis, the distribution of
ERD/S values shows larger variability in the alpha band than in
the beta band throughout the ROIs (Figures 3A,B). Moreover, we
observed that in the EG, some subjects show large positive ERD/S
values in the alpha band in the pre-intervention period indicating
a strong variability among this sample of participants. Especially
for MI of tennis, the ERD/S patterns before the intervention
phase show a high distribution across frequency bands and ROIs
(Figure 3B). Based on these results, it is somehow speculative
to attribute any activity changes particularly to the intervention.
Beside some outliers, the variability in the beta band is quite low
for all conditions and groups.

The results of inter-individual differences in terms of distance
measures between subject-specific ERD/S patterns show again
more differences for the alpha compared with the beta band.
In the alpha band (Figure 4A), we observed some clustering in
the ranking of the subjects, therefore showing smaller distances
than others. Furthermore, a consistency in ranking across time
periods both for the EG and for the control group exists. For
the control group, we also observed similar rankings across
conditions. In the beta band (Figure 4B), the ranking of the
subjects was more similar for the EG across conditions and time
periods than for the subjects of the control group. Moreover,
the range of the variability was larger for the alpha band than
for the beta band. In other words, when assessing the distance
between a pair of subjects in terms of the ERD/S values in the
alpha band, we can find subjects that show strong (dis)similarities
with others, whereas in the beta band the magnitude of these
(dis)similarities is more contained. A better visualization of the
relationship between the ERD/S magnitudes of different subjects
is illustrated in the MDS plots (Figures 5A,B). In the alpha band,
we observe that some subjects remain consistent in their ranking
with respect to others across conditions and time periods. For
example, in the EG subjects 8, 12, and 13 maintain their similarity
across conditions and time periods. For the beta band, we also
observed that some subjects cluster together, for example, for the
EG, subjects 12 and 13 are close in their rankings both across
conditions and time periods, and also across frequency bands, as
we have seen in Figure 5A. For the control group, we observed
a different ranking of the subjects between conditions and time
periods compared with the consistency in ranking found in the
alpha band (Figure 6).

Haegens et al. (2014) reported similar findings of inter-
subject variability in posterior alpha peak frequency by means
of magnetoencephalography. They investigated how alpha peak
frequency differed across cognitive conditions and ROIs within
and between subjects with an N-back paradigm. Compared
with beta peak frequencies, the alpha peak frequency in
posterior regions increases with increasing cognitive demands
and engagement. Furthermore, they showed that it is also valid
across a wider frequency range than the commonly used 8–12 Hz
band. This should be taken into account when comparing power
values between different conditions. Moreover, they claimed
that using a fixed alpha band might bias results against certain
subjects and conditions. Even though many researchers observed
that individual differences in brain oscillations predict certain
cognitive performance (Klimesch et al., 1990a; Park et al.,
2014; Jiang et al., 2015), further research considering individual
oscillatory (dis)similarity is essential for a better understanding
of its correlation. The variability in alpha power plays also an
important role in studies investigating the resting state, especially
in fMRI experiments (Laufs et al., 2003; Moosmann et al.,
2003; Gonçalves et al., 2006). For example, Gonçalves et al.
(2006) performed a simultaneous recording of EEG-fMRI to
identify blood oxygenation level–dependent changes associated
with spontaneous variations of the alpha rhythm, which is an
indicator of the brain resting state (Goldman et al., 2002). Their
analysis was focused on inter-subject variability associated with
the resting state. Results suggest that the resting state varies over
subjects and, sometimes, even within one subject. Following this,
they suggested that the inter-subject variability of the resting state
should be addressed when comparing fMRI results from different
subjects. Although there is evidence that brain network structure
differs between persons (Chu et al., 2012; Cox et al., 2018), the
contribution of different frequency bands and oscillatory activity
is still unknown and needs further fine-grained characterization.

Another study revealed anatomical structure of the premotor-
parietal network to be an effective factor contributing to
inter-individual differences in brain activation (Kasahara et al.,
2015). They found that MI related patterns are associated
with development of non-primary somatosensory and motor
areas. In their study, they found that gray matter volume
in motor-related cortical areas like the supplementary motor
area (SMA) and the dorsal premotor cortex (PMd) correlated
with BCI success rate. These areas are well-known as the
substrates of motor imagery and planning (Hanakawa et al.,
2003, 2008). Participants with greater gray matter volume
in the SMA, SSA, and pre-PMd are more likely to show
the desired brain activity during motor imagery to increase
BCI performance. Advancing our understanding of BCI
performance in relation to its neuroanatomical correlates may
lead to better customization of BCIs based on individual
brain structure.

Finally, the outcome of this variability analysis brings us
to the following suggestions for future studies: especially in
the application of motor imagery paradigms for EEG-based
BCI systems, a user-centered measurement design might be
beneficial. Beside the investigation of subject-specific motor-
related oscillations (ERD or ERS), demographic and individual
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features of the participants might be relevant. For example, like
we observed in our study (Wriessnegger et al., 2018), participants
which are used to playing tennis frequently show different ERD/S
patterns in the alpha band compared with participants being
less sportive. Previous studies already reported different factors
influencing BCI performance (Blankertz et al., 2010; Kübler et al.,
2011; Jeunet et al., 2016); nevertheless, attention should also
be paid to special sports, skills, or habits that the participant
might have. Moreover, a pre-investigation of the subject-specific
patterns during a certain training or intervention might be
important for every future study focusing on neural correlates of
motor imagery, especially when comparing experts and novices
in a special cognitive task or sports performance. Generally, more
attention should be paid to the composition of the sample of
participants and a standard analysis of variability should always
be included in the usual mean value analysis. In any case, the
calculation of average parameters alone might lead to an over-
or underestimation of the suspected neuronal activation patterns
during motor imagery performances.

Because ERD measures are conventionally analyzed within
fixed frequency bands, inter-individual differences like those we
have observed in our study often occur. This means that an inter-
individual difference of about 1–2 Hz is quite a common case
(Klimesch, 1997). These inter-individual differences in the alpha
band are primarily due to differences in memory performance
(Klimesch et al., 1990b, 1993). By calculating ERD in the alpha
band (Pfurtscheller and Aranibar, 1977) significant parts of alpha
power will fall outside of a fixed frequency window and elicited
large inter-individual variability.

To solve this problem, one can adjust the frequency bands
to the individual alpha frequency (IAF) for each participant and
calculate the bandwidth for the alpha frequency as a percentage
of IAF (Doppelmayr et al., 1998; Goljahani et al., 2012; Grandy
et al., 2013).

CONCLUSION

Many authors often reported observing high inter- and intra-
individual differences in brain activity among subjects but
without paying much attention to it. This fact and the observation
of great variability in the data of our previous study led us
to perform additional (dis)similarities analysis. By calculating
different distribution measurements of distances, we confirmed
a high variability among participants during motor imagery
primarily in the alpha frequency band. More concretely, when

assessing the distance between a pair of subjects in terms
of the ERD/S values in the alpha band, some subjects show
strong (dis)similarities with others, whereas in the beta band the
magnitude of these (dis)similarities is more contained. Moreover,
we can observe that for some subjects, the within-subject ERD/S
values remain similar throughout the conditions and time points;
however, among subjects these values are very different. Although
we identified a high variability among subjects during MI, the
extent to which these inter-individual differences are a reliable
indicator of the heterogeneity of a group needs to be further
assessed in a longitudinal study involving further participants.
In conclusion, we believe that metrics of intra- and inter-
individual differences should be more frequently reported in
BCI studies. These metrics could inform the development of
generic BCI systems that target the adaptation among multiple
users and sessions.
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FMRI Montreal Imaging Stress Tasks (MIST) have been shown to activate endocrine
and autonomic stress responses that are mediated by a prefrontal cortex (PFC)-
hippocampus-amygdala circuit. However, the stability of the neurobehavioral responses
over time and the ability to monitor response to clinical interventions has yet to
be validated. The objective of this study was to compare the fMRI and physiologic
responses to acute psychosocial stress in healthy volunteers during initial and follow-up
visits approximately 13 weeks later, simulating a typical duration of clinical intervention.
We hypothesized that responses to stress would remain highly conserved across the
2 visits in the absence of an intervention. 15 healthy volunteers completed a variant
of control math task (CMT) and stress math task (SMT) conditions based on MIST.
Neural responses were modeled using an event-related design with estimates for math
performance and auditory feedback for each task condition. For each visit, measures of
stress reactivity included differential fMRI and heart rate (SMT-CMT), as well as salivary
alpha-amylase before and after scanning sessions. The results revealed that differential
fMRI, as well as increased heart rate and salivary alpha-amylase from before and after
scanning remained similar between visits. Intraclass correlation coefficient (ICC) values
revealed areas of reliable task-dependent BOLD fMRI signal response across visits for
peaks of clusters for the main effect of condition (SMT vs CMT) within dorsal anterior
cingulate cortex (ACC), insula, and hippocampus regions during math performance
and within subgenual ACC, posterior cingulate cortex, dorsolateral PFC regions during
auditory feedback. Given that the neurobehavioral response to acute stress remained
highly conserved across visits in the absence of an intervention, this study confirms
the utility for MIST for assessing longitudinal changes in controlled trials that can
identify underlying neurobiological mechanisms involved in mediating the efficacy of
stress-reduction interventions.
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INTRODUCTION

The endocrine and autonomic responses to acute stress are part
of the allostatic process that serves to maintain homeostasis in
response to a threat (Ulrich-Lai and Herman, 2009; Karatsoreos
and McEwen, 2011). Although this process can be adaptive,
dysregulation of the stress response has been implicated in the
pathophysiology of a wide range of disorders (McEwen and
Gianaros, 2011). Psychosocial stress arising from the threat
of social evaluation plays a prominent role in adverse health
effects (Dickerson and Kemeny, 2004). Experimental functional
magnetic resonance imaging (fMRI) tasks that employ the
use of a mild social evaluative stressor have proven a useful
tool in the human studies of the neurobehavioral response
to stress. In particular, the well-established fMRI Montreal
Imaging Stress Task [MIST; (Dedovic et al., 2005)] is used for
assessing the neural correlates of psychosocial stress reactivity.
Prior studies utilizing MIST have demonstrated that a prefrontal
cortex (PFC)-hippocampus-amygdala circuit mediates endocrine
and autonomic stress responses (i.e., Pruessner et al., 2008;
Dedovic et al., 2009a; Khalili-Mahani et al., 2010; Allendorfer
et al., 2014; Wheelock et al., 2016, 2018; Goodman et al.,
2019). Despite these contributions to our understanding of
the neurobiology of stress, the utility of MIST for assessing
longitudinal within-subject changes in reactivity to a common
stressor has yet to be validated. Understanding the effects
of repeated testing with MIST has important bearing on the
prospective utility of this task. In particular, there is potential
utility for MIST to assess changes in the neural processing of
stressful information arising from clinical interventions, such as
cognitive-behavioral therapy (CBT) or mindfulness meditation
training (McDermott et al., 2018). Accordingly, demonstrating
the validity of MIST to examine the neurobiological benefits of
clinical stress-reduction techniques first requires an assessment
of the neurobehavioral stress response for potential sensitization
(increased) or habituation (decreased) effects that may result
from repeated exposure to the task. This new knowledge of the
test-retest reliability of MIST will provide valuable insight into the
utility of this task for assessing the neurobiological mechanisms
underlying stress-reduction techniques.

In MIST, the exposure of participants to varying levels of
stressful math tasks allows comparisons between hormonal,
autonomic, and neural stress reactivity. However, the effects
of repeated assessments of stress-induction create difficulty in

Abbreviations: 3dLME, linear mixed effects analysis in AFNI; 3dICC, intraclass
correlation analysis in AFNI; Abs, absolute value; ACC, anterior cingulate cortex;
AFNI, analysis of functional neuroimages; ANOVA, analysis of variance; BOLD,
blood oxygen-level dependent; BPM, beats per minute; CBT, cognitive behavioral
therapy; CMT, control math task; dACC, dorsal anterior cingulate; dlPFC,
dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; fMRI,
functional magnetic resonance imaging; HPA, hypothalamic-pituitary-adrenal;
HR, heart rate; HC, hippocampal complex (hippocampus and parahippocampal
gyrus); ICC, intraclass correlation coefficient; MIST, montreal imaging stress tasks;
mm, millimeters; MNI, montreal neurological institute; MTL, medial temporal
lobe; Neg, negative feedback; PCC, posterior cingulate cortex; PFC, prefrontal
cortex; POMS, profile of mood states; Pos, positive feedback; PSS, perceived stress
scale; RT, reaction time; SAM, sympatho-adrenomedullary; SMT, stress math task;
TMD, Total Mood Disturbance; TOST, Two-one sided tests; V1, Visit 1; V2, Visit
2; vlPFC, ventrolateral Prefrontal Cortex; vmPFC, ventromedial Prefrontal Cortex.

disentangling the effect of an intervention. For example, changes
in elicited behavior can result simply from repeated exposure to
an emotionally evocative stimulus (i.e., non-associative learning).
Specifically, increased (sensitization) or decreased (habituation)
elicited responses after repeated exposure to a stimulus are
mediated by changes in synaptic plasticity (Kandel, 1976). In
humans, both sensitization and habituation learning appears
to involve changes in activation within PFC-hippocampus-
amygdala regions (Breiter et al., 1996; Fischer et al., 2003;
Strauss et al., 2005). Accordingly, an assessment of potential
sensitization or habituation effects for repeated exposure to MIST
is essential to differentiating clinical and learning related changes
in neurobehavioral stress response. Examining these potential
learning effects across longitudinal MIST assessments in the
absence of a clinical intervention will provide novel evidence
regarding the utility of MIST for assessing the neurobiological
mechanisms underlying stress-reduction techniques. Thus, the
objective of the current study was to compare the neural
(fMRI) and autonomic (cardiac, alpha-amylase) responses to
acute psychosocial stress in healthy volunteers during an initial
(V1) and second MRI visit (V2) approximately 13 weeks
later, simulating a typical interval before and after a clinical
intervention [e.g., 12 weeks of CBT treatment (LaFrance
et al., 2014; Espay et al., 2019)]. Although we expected to
observe some evidence of non-associative emotional learning,
we hypothesized that neural and autonomic responses to stress
would remain highly conserved across the 2 visits in the absence
of an intervention.

MATERIALS AND METHODS

Participants
Fifteen volunteers (male n = 9) with no self-reported history
of neurological or psychiatric disorders were recruited from
the University of Alabama at Birmingham and completed both
study visits. All participants provided written informed consent
based on procedures approved by the University of Alabama
at Birmingham Institutional Review Board (IRB). The informed
consent document provided as much details about the study
as possible without revealing the true nature of the study
(e.g., “During this scan you will be asked to answer some
math questions. . . About 13 weeks later, you will be asked to
return for another visit that includes the questionnaires you
completed previously and another MRI.”). Following completion
of participation in the study, as per IRB requirement, participants
were debriefed with a full explanation of the rationale for the
study design and methods used for the study and received $100
for their participation.

Psychological Measures
Prior to fMRI, all participants completed the 10-item version
of the Perceived Stress Scale [PSS-10; (Cohen et al., 1983)] to
assess perceived life stress. The PSS-10 is a self-report measure
consisting of 10 questions related to stress perception during the
month prior to the experimental session scored on a zero (never)
to four (very often) Likert scale. PSS-10 scores were computed
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as a sum, ranging from 0 (little or no stress) to 40 (extreme or
high stress), that reflected the degree to which participants found
situations or life experiences stressful. Additionally, participants
completed the Profile of Mood States [POMS, (McNair, 1992)] to
assess affective mood state. The POMS is a self-report measure
consisting of 65 questions related to how closely different
adjectives described their mood during the week prior to the
experimental session. Participants rated each of the 65 adjectives
on a zero (Not at All) to four (Extremely) Likert scale. These
adjectives provided scores for 6 different mood state subscales:
Anger, Confusion, Depression, Fatigue, Anxiety/Tension, and
Vigor. POMS scores were calculated by subtracting the Vigor
score from the sum of all the other mood scale scores to measure
overall mood state (i.e., Total Mood Disturbance; TMD). Possible
scores for TMD range between−32 and 200 and reflect the degree
to which participants rate their mood disturbance. To assess
whether perceived stress or mood states varied between visits,
paired samples t-test compared PSS-10 and TMD scores between
V1 and V2 assessments.

Stress Tasks for fMRI
Prior to MRI, participants were familiarized with the MIST task
that they later completed during MRI scanning (Balachandran
et al., In press). All instructions were scripted to promote
uniform administration of the practice and experimental tasks.
Participants completed a volume control task during a multi-
echo reference scan designed to calibrate audio volume for the
remainder of the study. Next, during BOLD Echo-Planar imaging
(EPI), participants performed control math (CMT) and stress
math tasks (SMT) that were adapted to include pre-recorded
evaluative auditory feedback, regardless of performance in the
tasks (Allendorfer et al., 2014, 2019; Goodman et al., 2019).
Participants selected the correct answer to the math problem via
pressing either the “1,” “2,” or “3” button on an MR-compatible
button box (Current Designs; Philadelphia, PA, United States).
Each of the math task scans contained series of unique math
trials, each lasting 5 s in duration. At eight separate fixed points
during each of the CMT and SMT scans, unique pre-recorded
auditory feedback messages were presented for between 6 and
10 s durations between math trials. For example, participants
heard statements such as “You’re doing great, so keep it up”
during the CMT and “You will have to do much better in
the remaining questions” during the SMT, regardless of their
performance in either task. Additionally, auditory recordings of
tones (1 s) were presented at eight separate fixed points in which
subjects were simultaneously asked to press “1” or “2” on the
button box (5 s) to ensure participants were attentive to the task.
During the CMT, participants completed 34 different subtraction
problems separated by 1.5 s inter-trial intervals. Between the
CMT and SMT scans, participants received instructions designed
to mildly increase participant’s stress to performing the SMT,
compared to the CMT. Specifically, participants were told that
“researchers” would be evaluating their performance and they
had a variable response window between 1 and 5 s in order for
their answer to count. Additionally, participants were given an
additional answer choice (3-item multiple choice alternatives)
to each math problem and the total number of subtraction

problems was increased to 63 trials during the SMT. All other
aspects of the SMT were identical to the CMT, including the
relative difficulty of subtraction problems. Participant’s accuracy
and reaction time during both math and tone trials were recorded
and two separate 2 × 2 repeated measures analysis of variance
(ANOVA) compared the main effects of Task (CMT vs SMT) and
Visit (V1 vs V2), as well as any potential interactions between
these factors during math trials. Accuracy and reaction time
during math performance and tone events were assessed as a
manipulation check to confirm that task performance varied
between CMT and SMT as designed.

As in all prior studies, the order of CMT followed by the
SMT was identical for all subjects and was not counterbalanced
(Allendorfer et al., 2014, 2019; Goodman et al., 2016, 2019;
Wheelock et al., 2018; Orem et al., 2019). As demonstrated
repeatedly in the stress literature, the acute stress response
takes up to 90 min to recover to baseline levels (Kirschbaum
et al., 1993; Kudielka et al., 2004; Dedovic et al., 2005; Gaab
et al., 2005). If implemented, counterbalancing the order of
stress and control scans would be expected to lead to significant
variability in brain activity during the control condition simply
due to counterbalancing scan order. This design was optimal
for detecting individual differences in fMRI signal between SMT
and CMT conditions as a function of repeated exposure to the
task and scanning.

Physiological Measures
Heart rate (HR) was recorded with data sampled at 50 Hz from
attachment of a photoplethysmograph to the index finger of the
left hand. Average beats per minute (BPM) for CMT and SMT
conditions for each subject were calculated as two individual
mean values based on the entire duration of each task using
QRSTool software. One participant was excluded from the heart
rate analysis due to equipment failure. Thus, 14 participants were
included in heart rate analyses. In order to assess whether cardiac
reactivity was greater during the SMT than the CMT, and whether
this difference varied as a function of visit, a 2 × 2 repeated
measures ANOVA and Bonferroni corrected post-hoc analyses
compared the main effects of Task (CMT, SMT) and Visit (V1,
V2) on HR, as well as any potential interactions between these
factors. An important goal of the current study was to assess
potential stress reactivity during both V1 and V2, independently.
As in previous work (Allendorfer et al., 2014, 2019; Goodman
et al., 2018, 2019; Orem et al., 2019), a preplanned contrasts of
SMT and CMT (SMT – CMT) served as an index of increased
BPM during stressful compared to control math conditions. In
order to assess whether HR was greater during SMT compared
to CMT during both visits, a priori planned contrasts compared
HR for Task (CMT, SMT) at each level of Visit (V1, V2).
Given the relatively modest sample size (n = 14) for participants
that were included in the heart rate analyses, follow-up non-
parametric tests (i.e., Wilcoxon signed-rank test) further assessed
any significant repeated measures effects identified by the initial
parametric 2 × 2 ANOVA and post-hoc tests. To provide
a more comprehensive comparison of cardiac responses to
acute psychosocial stress across longitudinal assessments, we
further evaluated the absence of a meaningful effect of Visit
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(V1 vs V2), on cardiac stress responses (SMT – CMT) using
an equivalence test [i.e., two-one sided test, TOST (Lakens,
2017)]. The implemented TOST procedure was based on the
paired-samples t-test, but instead tests the null hypothesis that
repeated measures are significantly different by assessing whether
a result is within an upper and lower 90% confidence interval
equivalence bound. First, the obtained effect size (Cohen’s dz) was
determined based on the mean difference, SD, n, and correlation
between Visit (V1, V2). Then, the estimated distribution of the
observed Cohen’s dz was compared to the bounds of the smallest
hypothetical effect size of interest (i.e., Cohen’s dz =±0.3). Lastly,
we tested for a large hypothetical effect size of interest (i.e.,
Cohen’s dz =±0.9) to provide a broad estimate of effect sizes that
would demonstrate evidence of equivalence, based on the data
obtained in our sample.

Cortisol, the hormonal end-result of hypothalamic-pituitary-
adrenal cortex (HPA-axis) release, aids in homeostasis and can
be used to assess the endocrine response to stress in humans
(Jankord and Herman, 2008; Gossett et al., 2018). However,
salivary alpha−amylase is closely correlated to HPA-axis activity
and has recently emerged as a beneficial alternative due to
complications in cortisol measures, including time-lag of effects
and anticipatory stress, (Granger et al., 2007; Gossett et al.,
2018). Thus, salivary alpha-amylase was assessed at three unique
time points throughout each experimental session to evaluate
the sympatho-adrenomedullary (SAM) autonomic responses as
an additional measure of stress reactivity. At each time point,
participants provided 1-ml of saliva via passive drool into plastic
tubes. Two samples were collected after consenting during pre-
scan assessments at 60 and 30 min prior to entering the MRI
environment. One additional sample was collected, immediately
at 30 min following completion of MRI scanning. The 3 salivary
samples from each participant (−60 min, −30 min, +30 min)
were stored on ice until being transferred to a −20 degree
Celsius freezer following the experimental session. The natural
diurnal pattern in humans is characterized by a pronounced
drop in the first hour after waking and gradual increase until
the afternoon or evening. Based on this report, we followed
recommended guidelines for salivary alpha-amylase assessments
to account for potential effects related to the time of day
(Nater et al., 2007). Alpha-amylase (U/ml) levels were assessed
using standard assay kits in duplicate and averaged at the UAB
metabolism core using a standard kit (Salimetrics, LLC) to
index SAM responses (Petrakova et al., 2015). One participant
did not provide usable saliva and was excluded, resulting in a
total of 14 participants that were included in the final alpha-
amylase analysis. A 2 × 3 repeated measures ANOVA and
Bonferroni-corrected post-hoc analyses assessed the main effects
of Time-points (−60 min, −30 min, +30 min) and Visit (V1,
V2) on alpha-amylase concentrations, as well as any potential
interactions between time point and visit. In order to assess
whether alpha-amylase concentrations were greater after MIST
compared to before MRI scanning during both visits, a priori
planned contrasts compared alpha-amylase concentrations for
Time-points (−60 min, −30 min, +30 min) at each level of
Visit (V1, V2). Given the relatively modest sample size (n = 14)
for participants that were included in the salivary alpha-amylase

analyses, follow-up non-parametric tests (e.g., Wilcoxon signed-
rank test) further assessed any significant increases identified
by the initial parametric 2 × 3 ANOVA and post-hoc tests.
Equivalence of Visit (V1 vs V2) on any significant increases
alpha-amylase within both Visits 1 and 2 were also evaluated
using the TOST procedure.

Magnetic Resonance Imaging
Acquisition and Analysis
Head-first supine MRI scans were completed on a 3T Siemens
Prisma scanner (Siemens Medical Solutions USA Inc., Malvern,
PA, United States) at the Civitan International Neuroimaging
Laboratory at the University of Alabama at Birmingham.
Participants were fitted with an MR-compatible button box
(right hand) and viewed a mirror affixed to the head coil that
reflected a video monitor (BOLDscreen 32, Cambridge Research
Systems ltd., Kent, United Kingdom) in the Siemens scanner. The
duration of scanning sessions lasted approximately 60 min. All
MRI sessions were scheduled to begin during afternoon hours
between 1,300 and 1,700 h.

High resolution T1-weighted anatomical scans were
collected in the sagittal plane via magnetization-prepared
rapid acquisition with gradient echo (MPRAGE) sequence
(TR = 2,400 ms, TE 2.22 ms, TI = 1,000 ms, flip angle = 8◦,
FOV = 24.0 cm × 25.6 cm × 16.7 cm, matrix = 256 × 256,
slice thickness = 0.8 mm)]. The task scans began approximately
45 min from the start of scanning sessions. During task
scans, blood-oxygen-level-dependent (BOLD) fMRI signal was
measured with a multiband gradient-echo echoplanar pulse
sequence (TR = 1,000 ms, TE = 35.8 ms, flip angle = 60◦,
FOV = 26.0 cm × 26.0 cm × 15.0 cm, matrix = 260 × 260 slice
thickness = 2.5 mm, multiband acceleration factor = 6).

Analysis of all MRI data was completed using Analysis of
Functional Neuroimaging [AFNI; (Cox, 1996)]. FMRI time-
series data were slice-time corrected, corrected for head motion,
spatially smoothed with a 4 mm full-width-at-half-maximum
Gaussian filter, and co-registered with the structural image (see
Supplementary Material for pre-processing scripts). Additional
motion correction was performed by censoring images with
simultaneous signal change that surpassed 3% of the total number
of voxels. Head motion was calculated for each participant visit
by averaging the absolute values for displacement (mm) in the
superior, left, and posterior directions across all volumes of
CMT and SMT scans (i.e., mean absolute head motion) using
motion estimates derived during registration of the fMRI time-
series (align_epi_anat.py, 3dvolreg). Noise occurring outside of
the brain was removed using binary masking. Anatomical and
functional data were normalized to the MNI 152 ICBM template
and resampled to a 1 mm3 isotropic resolution. FMRI signal
time series from both math tasks were concatenated and then
modeled with a gamma variate hemodynamic response function
using individual reference waveforms for task events including
math trials, audio feedback, and tones for the CMT and SMT
(3dDeconvolve). The six parameters of participants’ head motion
were modeled as regressors of no interest. No other nuisance
regression was performed during first-level modeling. Thus,
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there were 12 total regressors included in first-level modeling,
including task relevant and nuisance factors that occurred in
the time series. Percent signal change (% signal) was used as an
index of the amplitude of the fMRI signal response to task events.
Although responses to tone events were included in first-level
modeling, these data were not submitted for further analysis in
the current study.

Two separate linear mixed-effects analyses (3dLME) assessed
the neural response to stressful math trials and negative auditory
feedback. The first 3dLME analysis identified voxels with a main
effect of condition (CMT, SMT), a main effect of visit (V1, V2),
or voxels with significant interactions for these variables during
math trials. The second 3dLME analysis identified voxels with a
main effect of condition (Positive Feedback, Negative Feedback),
a main effect of visit (V1, V2), or voxels with significant
interactions for these variables during auditory feedback. A gray
matter mask restricted the analysis to the combined regions
of interest (ROIs), including the bilateral anterior cingulate,
posterior cingulate, insula, dlPFC, dmPFC, vmPFC, vlPFC,
amygdala, and hippocampal complex (i.e., hippocampus and
parahippocampal gyrus), generated using the standard Harvard-
Oxford atlas1 (see Supplementary Figure 1 for depiction of the
combined ROI mask). ROIs were based on a priori hypotheses
derived from prior MIST literature (Pruessner et al., 2008;
Allendorfer et al., 2014, 2019; Goodman et al., 2016, 2019;
Wheelock et al., 2016). A cluster volume extent threshold
was determined by the results of a Monte Carlo simulation
(3dClustSim) in order to reduce risks of family-wise error (FWE)
for the combined ROI mask. Smoothness was averaged across
subjects based on spherical autocorrelation function parameters
(-acf option in 3dFWHMx) derived from residual volumes from
the first level analysis (Cox et al., 2017). The results of this
simulation yielded a critical cluster extent volume threshold
of 88 mm3 using a corrected significant threshold p < 0.05
and uncorrected voxelwise significance threshold of p < 0.001
corresponding to AFNI’s cluster-forming options for nearest
neighbor 3 (NN3) with two-sided criteria.

Two separate follow-up analyses were implemented to test
the repeatability of task-dependent BOLD fMRI that remained
consistent across visits for (1) math performance and (2) audio
feedback. First, two separate cluster masks were derived from
the surviving clusters identified by 3dLMEs for the main effect
of Condition. To quantify the reliability of the measurements
within-subjects, a voxel-wise intraclass correlation (ICC) analysis
was performed (Shrout and Fleiss, 1979) using two separate
voxel-wise ICC analyses [3dICC (Chen et al., 2018)]. ICC values
can range between 0 (low consistency) to 1 (high consistency),
with ≥0.40 indicating reliable BOLD signal measures across
fMRI data acquisition (Cicchetti, 1994; Szaflarski et al., 2011;
McDermott et al., 2018). In the current study, two separate
3dICC analyses with a mixed-model specification [i.e., ICC(3,1)]
compared 1st-level coefficients from (1) math performance and
(2) auditory feedback events across fixed factors of condition
(CMT, SMT) and visit (V1, V2), and the random factor of subjects
(n = 15). Resulting ICC values were identified for each cluster

1http://fsl.fmrib.ox.ac.uk/fsl/

peak voxel. For descriptive purposes, signal extractions were
performed (3dROIstat) on representative cluster peaks and mean
BOLD signal (% change) across Condition and Visit were plotted
to visualize consistency and directional differences in activation
for cluster peak regions for any main effects or interactions
identified by the two main 3dLME analyses. Signal extractions
were not submitted to additional statistical comparisons because
these comparisons were identified as statistically significant by
the two main omnibus 3dLME tests. Accordingly, the purpose of
these extractions was to interpret the direction for any significant
main effects of Condition, as well as depict potential consistency
for the mean estimates of these effects across Visit.

In order to provide further information on the utility
of the MIST in assessing treatment mechanisms for future
studies, we also calculated estimates of minimum treatment
effects that would be needed to overcome the expected
neural response variability between visits. More specifically,
we estimated variability between visits by first calculating the
standard deviation of the differences between visits obtained
from results in the current study. The minimum Cohen’s d effect
size is defined as the expected difference in mean stress response
(SMT – CMT; Neg – Pos) between visits (V2-V1) divided by the
standard deviation of the difference in means, given our obtained
sample size (n = 15), 80% power to reject the null, and a two-
tailed α = 0.05 threshold. Using the obtained mean difference for
any region that met our reliability threshold (i.e., ICC ≥ 0.4), we
calculated the minimum mean difference (V2-V1) that is needed
to detect a statistically significant effect assuming our obtained
sample size, 80% power to reject the null, and a two-tailed α = 0.05
threshold for a paired t-test of the mean difference in stress
response between Visits. All power calculations were performed
using nQuery Advisor+ nTerim (ver. 3.0).

Data Availability
Unthresholded statistical maps of the results from this
manuscript have been made publically available at
https://neurovault.org/collections/RPKVOUQF/.

RESULTS

Participants
Demographic variables are summarized in Table 1. Years of
age were normally distributed (M = 32.00, SD = 9.03). The
durations between V1 and V2 were approximately 13 weeks
(M = 12.98 weeks, SD = 1.34). Two participants chose not to
respond to the years of education question. Years of education
for the remaining 13 participants were normally distributed
(M = 16.06, SD = 2.03). Additionally, 11 participants identified
as “White or European,” while 3 volunteers identified as “Black
or African” and 1 identified as other categories (i.e., “American
Indian/Alaska Native/Black”).

Psychological Measures
Participants psychological measures collected at V1 and V2 are
summarized in Table 1. PSS-10 scores during were normally
distributed during V1 (M = 14.33, SD = 6.44) and V2 (M = 14.00,
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TABLE 1 | Demographics, Psychological, Control Math Task, and Stress Math Task, by Visit.

Demographics Overall Psychological and task measures Visit 1 vs Visit 2

Visit 1 Visit 2 Mean diff

Sample size n = 15 Initial saliva time-point (h:m) 13:51 (1:21) 13:12 (0:59) 0:38

Age 32.00 (9.03) Psychological assessments

Sex (male) n = 9 PSS-10 14.33 (6.44) 14.00 (7.99) 0.33

Duration between visits (weeks) 12.98 (1.34) POMS (TMD) 24.60 (31.65) 26.73 (38.20) −2.13

Head motion

Years of education 16.46 (2.03) Mean absolute motion (mm) 0.29 (0.20) 0.28 (0.19) 0.01

Control math task

Race Math accuracy (% correct) 97.3 (3.2) 97.3 (3.9) 0.0

White or European n = 11 Response time (ms) 2037.6 (496.1) 1825.0 (358.4) 212.6*

Black or African n = 3 Tone accuracy (% correct) 100.0 (0.0) 100.0 (0.0) 0.0

Other n = 1 Response time (ms) 756.0 (145.8) 780.7 (238.7) −24.7

Heart rate (BPM) 60.4 (6.4) 63.6 (8.0) −3.2

Stress math task

Math accuracy (% correct) 61.3 (13.3) 68.3 (13.7) −7.0*

Response time (ms) 2878.9 (255.7) 2938.3 (446.2) 59.4

Tone accuracy (% correct) 98.4 (4.2) 98.4 (4.2) 0.0

Response time (ms) 704.4 (151.5) 726.3 (209.8) −21.9

Heart rate (BPM) 68.9 (16.5) 66.3 (7.9) 2.6

Data for participants reported as mean (SD) except for Sample Size, Sex, and Race which are reported as counts (n). Statistical comparisons were tested using paired
samples t-tests (t) and 2× 2 repeated measures ANOVA, with Bonferonni corrected post hocs. Results of these comparisons, including the mean difference are presented
in the adjacent columns to right of the descriptive means and S.D.s for visit 1 vs. visit 2. * indicates any effect or interaction of Visit from the analysis that reached statistical
significance (α = 0.05, two-tailed). h, hours; m, minutes; yrs, years; ms, milliseconds; mm, millimeters; PSS, Perceived Stress Scale; POMS, Profile of Mood States; TMD,
total mood disturbance.

SD = 7.99). Likewise, POMS TMD scores were normally
distributed during V1 (M = 24.60, SD = 31.65) and V2 (M = 26.73,
SD = 38.20). Paired samples t-tests revealed that participants PSS-
10 t(14) = 0.28, p = 0.78) and POMS TMD t(14) =−0.39, p = 0.70)
scores did not differ between V1 and V2 assessments.

Head Motion
Mean absolute head motion (mm) as a function of Visit
is reported in Table 1. Paired samples t-tests revealed that
participant’s mean absolute head motion did not differ between
V1 and V2 assessments [t(14) =−0.10, p = 0.93].

Stress Task Measures
Participant’s accuracy and reaction time during math and tone
trials as a function of Task and Visit are summarized in Table 1.
The 2 × 2 repeated measures ANOVAs revealed a significant
interaction between Task (CMT, SMT) and Visit (V1, V2) for
math accuracy [F(1,14) = 7.20, p < 0.05]. Bonferroni-corrected
post hoc tests revealed this interaction was driven by a difference
in V1 and V2 accuracy for SMT (mean diff =−7.0, p < 0.05), but
not CMT (mean diff = 0.0, p = 1.0). Furthermore, the post hoc
tests revealed significant differences in CMT and SMT accuracy
for V1 (mean diff = 36.0, p < 0.001) and V2 (mean diff = 29.0,
p < 0.001). The analysis on math response time yielded a
significant interaction between Task and Visit [F(1,14) = 5.94,
p < 0.05]. Bonferroni-corrected post hoc tests revealed this
interaction was driven by a difference in V1 and V2 reaction
time for CMT (mean diff = 212.58 ms, p < 0.05), but not SMT

(mean diff = −59.44 ms, p = 0.51). The analysis failed to yield a
significant interaction between Task and Visit for tone response
time [F(1,14) = 0.00, p = 0.95]. Any interactions or main effects
involving Visit could not be determined for tone accuracy due
to identical mean and standard deviation for Task across Visit
(see Table 1). The analysis also revealed significant main effects
for Task on math accuracy [F(1,14) = 109.35, p < 0.001], and
math response time [F(1,14) = 103.06, p < 0.001], but not on
tone accuracy [F(1,14) = 2.15, p = 0.16] or tone response time
[F(1,40) = 3.71, p = 0.08]. Likewise, the analysis revealed a
significant main effect for Visit on math accuracy [F(1,14) = 7.36,
p < 0.05], but not on math response time [F(1,14) = 1.75,
p = 0.21], or tone response time [F(1,14) = 0.56, p = 0.47].

Physiological Measures
Figure 1 shows participant’s mean cardiac and salivary alpha-
amylase stress reactivity assessments across the MRI visits. Mean
BPM results for CMT and SMT across V1 and V2 are summarized
in Table 1. The 2 × 2 repeated measures ANOVA that assessed
Task (CMT, SMT) and Visit (V1, V2) on HR (BPM) failed to yield
a significant interaction of Task and Visit, F(1,13) = 2.60, p = 0.13,
or main effect of Visit, F(1,13) = 0.02, p = 0.90. This analysis
did, however, reveal greater BPM during SMT compared to CMT
(mean diff = 5.58 BPM), regardless of visit [F(1,13) = 10.44,
p < 0.01]. Planned contrasts revealed greater BPM during SMT
compared to CMT during both V1 (mean diff = 8.46 BPM,
p < 0.05) and V2 (mean diff = 2.71 BPM, p < 0.05). Follow-
up Wilcoxon signed-rank tests also revealed greater BPM during
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FIGURE 1 | Comparisons of visit 1 (V1), visit 2 (V2), and collapsed (visit 1 and 2 combined) assessments of (A) cardiac and (B) alpha-amylase (α-amylase; right)
stress responses during V1 (top panel), V2 (middle panel), and collapsed across (bottom panel) MRI scanning visits. Heart rate (HR), measured in beats per minute
(BPM) was increased during stressful math compared to control math, during V1, V2, and collapsed across visit (a). Salivary α-amylase (U/ml) was increased
following stressful math at +30 min post-MRI compared to –60 min and –30 min pre-MRI collapsed across MRI scanning visits. Salivary α-amylase was increased at
+30 min compared to –60 min and –30 min during V1, and at +30 min compared to –60 min during V2. Error bars reflect SEM after adjusting for between-subjects
variance (Loftus and Masson, 1994). Asterisks indicate significant main effects of condition (SMT vs CMT) on mean HR and time point (–60 min vs +30 min; –30 min
vs +30 min) on salivary α-amylase revealed by ANOVA, Bonferonni-corrected post-hoc, and planned contrast analyses, *p < 0.05; **p < 0.01.

SMT compared to CMT during both V1 (z = 3.17, p < 0.01)
and V2 (z = 2.97, p < 0.01). The TOST procedure indicated that
the observed effect size (dz = −0.37) was not significantly within
the equivalent bounds of dz = ±0.3, (or in raw scores: ±4.48,
t(13) = −0.25, p = 0.60. However, when the anticipated effect of
Visit was increased to a much larger effect size of dz = ± 0.9, (or
in raw scores: ± 13.44), the effect of visit was significantly within
the equivalent bounds t(13) = 1.88, p < 0.05.

The initial salivary sample time-point (−60 min) for
all participants (see Table 1) did not differ between visits
t(13) = 1.38, p = 0.19. The 2 × 3 repeated measures ANOVA
that assessed Time-points (−60 min, −30 min, +30 min) and
Visit (V1, V2), on salivary alpha-amylase (U/mL) failed to
yield a significant interaction of Task and Visit, F(2,26) = 1.17,
p = 0.33, or main effect of Visit, F(1,13) = 1.37, p = 0.26.
This analysis did, however, reveal increased salivary alpha-
amylase across Time-points (−60 min, −30 min, +30 min),
[F(2,26) = 9.03, p < 0.01]. Bonferroni-corrected post hoc tests
revealed this significant main effect was driven by increased

alpha-amylase measures at +30 min compared to −60 min
(mean diff = 55.29 U/mL, p < 0.01). The remaining Bonferroni-
corrected post-hoc comparisons failed to reach significance (mean
diffs < 33.43 U/mL, ps > 0.05). Planned contrasts revealed
increased alpha-amylase measures at +30 min compared to
−60 min (mean diff = 70.66 U/mL, p < 0.05) and −30 min
(mean diff = 60.51 U/mL, p < 0.01) during V1, and at +30 min
compared to−60 min (mean diff = 41.91 U/mL, p < 0.05) during
V2. All remaining planned contrasts failed to reach significance
(mean diffs < 35.55 U/mL, all ps > 0.23). Non-parametric
follow-up tests also revealed increased alpha-amylase measures at
+30 min compared to−60 min (z = 2.73, p < 0.01) and−30 min
(z = 2.61, p < 0.05) during V1, and at +30 min compared to
−60 min (z = 2.10, p < 0.05) during V2. Based on the failure
to detect a significant interaction between the factors of Task and
Visit, but significantly increased alpha-amylase between−60 min
and+30 across both Visits 1 and 2, we further evaluated potential
time of day effects and equivalence for alpha-amylase stress
responses (−60 min > +30 min). There was no effect of time
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of day on alpha-amylase stress responses (−60 min > +30 min)
for Visit 1 (r = 0.21, p = 0.47) or Visit 2 (r =−0.03, p = 0.92). The
results of the TOST procedure indicated that the observed effect
of Visit (dz = −0.24) was not significantly within the equivalent
bounds of dz = ±0.3, (or in raw scores: ±36.5), t(13) = 0.24,
p = 0.41. However, when the anticipated effect of Visit was
increased to a much larger effect size of dz = ±0.9, (or in raw
scores: ±109.56), the effect of visit was significantly within the
equivalent bounds t(13) = 2.48, p < 0.05.

Magnetic Resonance Imaging Results
Figure 2 (top panel) shows significant clusters identified by
the two main 3dLME analyses that tested for a main effect of
Condition (CMT, SMT), a main effect of Visit (V1, V2), or

clusters with significant interactions for these factors during
math performance events (Figure 2a) and for a main effect of
Condition (Positive Feedback, Negative Feedback), a main effect
of Visit (V1, V2), or clusters with significant interactions for
these factors during auditory feedback events (Figure 2b). Results
of the voxel-wise ICC analysis exceeding the pre-determined
reliability threshold [ICC≥ 0.40 (Cicchetti, 1994; Szaflarski et al.,
2011; McDermott et al., 2018) are reported in Figure 2 (bottom
panel) for math performance (Figure 2c) and auditory feedback
(Figure 2d). Table 2 reports the regions showing changes in
neural response to math performance events during the SMT
compared to the CMT that correspond to Figure 2a and the ICC
values at peak voxel coordinates that correspond to Figure 2c.
Clusters of activation that differed across Condition during math

FIGURE 2 | Effects of MIST condition: Clusters (NN3) of significant activation for (a) the main effect of Condition (stress math task [SMT] vs control math task [CMT])
and (b) for the main effect of Condition (Negative Feedback [Neg] vs Positive Feedback [Pos]) that survived the volume-corrected threshold (uncorrected voxel-wise
p < 0.001, corrected to α = 0.05). Voxel-wise intraclass correlation (ICC) values (≥0.4) for the subject factor during (c) math performance and during (d) auditory
feedback resulting from 3dLME analyses.

TABLE 2 | Regions showing effect of condition (CMT vs. SMT) during math performance.

Cluster # Region Hemisphere Vol (mm3) MNI (x, y, z) F-statistic ICC V2-V1 diff (obtained) Min V2-V1 (abs)

Main effect of condition

1 Anterior Insula R 5335 31, 22, −8 70.92 0.56 −0.09 (0.22) 0.17

2 Dorsal Anterior Cingulate Cortex R/L 5011 3, 29, 33 53.15 0.63 0.04 (0.37) 0.29

3 Anterior Insula L 4482 −41, 17, −4 64.64 0.47 −0.1 (0.29) 0.23

4 Ventromedial Prefrontal Cortex R/L 385 −1, 58, 1 27.35 0.22 – –

5 Dorsolateral Prefrontal Cortex R 300 28, 51, 22 33.88 0.66 −0.1 (0.19) 0.15

6 Hippocampus R 212 19, −40, 1 28.74 0.47 −0.01 (0.28) 0.22

Cluster #, location, hemisphere, volumes, coordinates from Montreal Neurological Institute (MNI) standard space, F-statistic, and Intraclass correlation (ICC) values,
difference in BOLD % signal change (SMT-CMT) reported as mean (SD) for V2 - V1, and estimates of a minimum significant treatment effect (absolute value) for the peak
voxel of significant clusters. All clusters for the main effect of condition were significant at voxel-wise threshold of p < 0.001, corrected to cluster volume threshold of
p < 0.05 (3dclustsim in AFNI).
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performance trial events were identified with peak voxels located
within the dorsal ACC (dACC), PFC, insula, and hippocampus.
All clusters for the main effect of Visit and interaction of Task
and Visit failed to reach volume-corrected thresholds for math
performance trial events. Table 3 reports the regions showing
changes in neural response to auditory feedback events during
negative feedback compared to positive feedback that correspond
to Figure 2b and the ICC values at peak voxel coordinates that
correspond to Figure 2d. Clusters of activation that differed
across Condition during auditory feedback trial events were
identified with peak voxels located within the subgenual ACC,
PFC, PCC, hippocampus, and insula regions. All clusters for the
main effect of visit and the interaction of Task and Visit failed
to reach volume-corrected thresholds. Resultant statistical maps
for the main effects and interactions effects within the combined
ROI masks without voxelwise or volume-corrected thresholding
are presented for Math Performance (Supplementary Figure 2)
and Auditory Feedback (Supplementary Figure 3) in the
Supplementary Material.

The results of the follow-up analysis revealed areas of reliable
task-dependent BOLD signal response across visits within peak
voxels of several clusters for the main effect of condition (SMT
vs CMT) identified by the initial 3dLMEs. Figure 3 illustrates the

consistency of directional differences for mean BOLD change (%
signal) of between Condition (SMT vs CMT; Negative Feedback
vs Positive Feedback) in an example subset of cluster peaks in
regions with ICC values ≥0.4.

For n = 15, 80% power to reject the null, and a two-tailed
α = 0.05 threshold for the paired t-test of the mean difference
between Visit (Hθ: V2-V1 = 0), the minimum effect size to detect
a significant difference in stress responses (SMT – CMT; Neg –
Pos) for all regions is a Cohen’s d = 0.778 (i.e., a moderate-to-
large effect size). Estimates of the sufficient minimum treatment
effects detectable by repeated assessments based on the obtained
standard deviations of the difference for regions with ICC values
≥0.4 during Math Performance (Table 2) and Auditory Feedback
(Table 3) are reported as the absolute value of the minimum mean
difference (V2-V1). The minimum mean difference that is needed
to detect a statistically significant difference was always greater
than the mean differences observed for these regions.

DISCUSSION

The primary objective of this study was to compare the neural
(fMRI) and autonomic (cardiac, alpha-amylase) responses to
acute psychosocial stress in healthy volunteers during two

TABLE 3 | Regions showing effect of condition (Positive vs Negative) during audio feedback.

Cluster # Region Hemisphere Vol (mm3) MNI (x, y, z) F-statistic ICC V2-V1 diff (obtained) Min V2-V1 (abs)

Main effect of condition

1 Subgenual Anterior Cingulate Cortex R/L 32355 −1, 37, −5 77.41 0.45 0.03 (0.71) 0.55

2 Posterior Cingulate Cortex R/L 9148 −9, −43, 38 84.65 0.72 −0.05 (0.51) 0.39

3 Dorsolateral Prefrontal Cortex R 3423 44, 11, 28 60.08 0.65 −0.29 (0.46) 0.36

4 Dorsolateral Prefrontal Cortex L 3128 −37, 8, 31 59.88 0.63 −0.25 (0.53) 0.41

5 Posterior Hippocampus L 1815 −15, −37, −9 42.99 0.27 – –

6 Dorsolateral Prefrontal Cortex R 1516 17, 61, 29 47.62 0.43 −0.13 (0.65) 0.50

7 Dorsolateral Prefrontal Cortex L 1190 −41, 14, 47 65.76 0.77 −0.21 (0.32) 0.25

8 Dorsolateral Prefrontal Cortex L 987 −26, 7, 52 43.42 0.67 −0.15 (0.24) 0.18

9 Dorsolateral Prefrontal Cortex R 941 30, 5, 54 39.57 0.50 −0.14 (0.31) 0.25

10 Ventrolateral Prefrontal Cortex L 881 −43, 24, −12 36.92 0.68 0.04 (0.74) 0.58

11 Anterior Insula R 728 34, 23, 3 42.09 0.26 – –

12 Anterior Insula L 720 −30, 21, 2 47.94 0.56 −0.06 (0.4) 0.31

13 Dorsomedial Prefrontal Cortex R 664 13, 36, 54 28.58 0.60 −0.1 (0.26) 0.21

14 Ventrolateral Prefrontal Cortex R 623 36, 30, −16 29.55 0.38 – –

15 Anterior Hippocampus R 574 28, −20, −16 39.58 0.15 – –

16 Posterior Parahippocampal Gyrus R 514 21, −32, −16 29.41 0.05 – –

17 Ventrolateral Prefrontal Cortex L 224 −34, 61, −12 27.34 0.00 – –

18 Posterior Insula R 210 34, −22, 13 33.31 0.49 −0.17 (0.38) 0.29

19 Dorsomedial Prefrontal Cortex L 186 −7, 13, 54 24.78 0.65 −0.09 (0.3) 0.23

20 Dorsolateral Prefrontal Cortex L 165 −46, 8, 28 33.05 0.64 −0.4 (0.53) 0.41

21 Posterior Insula L 145 −34, −25, 18 26.61 0.57 −0.24 (0.43) 0.34

22 Posterior Cingulate Cortex R 121 8, −47, −2 27.72 0.55 −0.42 (0.64) 0.50

23 Posterior Insula R 113 39, −9, 9 23.72 0.23 – –

24 Posterior Insula L 101 −39, −7, −13 21.89 0.41 −0.16 (0.37) 0.29

Cluster #, location, hemisphere, volumes, coordinates from Montreal Neurological Institute (MNI) standard space, F-statistic, and Intraclass correlation (ICC) values,
difference in BOLD % signal change (SMT-CMT) reported as mean (SD) for V2 - V1, and estimates of a minimum significant treatment effect (absolute value) for the peak
voxel of significant clusters. All clusters for the main effect of condition were significant at voxel-wise threshold of p < 0.001, corrected to cluster volume threshold of
p < 0.05 (3dclustsim in AFNI).

Frontiers in Neuroscience | www.frontiersin.org 9 November 2020 | Volume 14 | Article 585509177

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-585509 November 24, 2020 Time: 15:48 # 10

Goodman et al. Repeatability Stress Task

FIGURE 3 | Mean fMRI BOLD percent signal change (% signal) for cluster peaks identified by the analysis for the main effect of Condition with reliable activation
across visits (i.e., ICC was ≥0.40, see Tables 2, 3) during (A–D) math performance (left panel) and (E–H) auditory feedback (right panel). Mean estimates of effects
demonstrated consistency of directional differences in activation for cluster peak regions identified by the two main 3dLME analyses. ACC, anterior cingulate cortex;
dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex.

visits separated by approximately 13 weeks simulating a typical
clinical intervention duration. Although some evidence of
non-associative emotional learning (i.e., sensitization and/or
habituation) was predicted, we hypothesized that neural and
autonomic responses to stress would remain highly conserved
across the two visits in the absence of an intervention. The results
indicated that responses to acute psychosocial stress during
MIST remained largely consistent between V1 and V2. Further,
repeatability analysis demonstrated reliable task-dependent
BOLD signal responses across visits. The current study provides
evidence that the neural mechanisms underlying autonomic
stress responses, as well as these peripheral stress responses
themselves, fail to demonstrate evidence of sensitization or
habituation as a function of repeated testing with MIST when
applied at approximately 13 weeks apart. Given that we observed
reliability of task-dependent BOLD signal activation across visits
in the absence of an intervention, these finding support the utility

of longitudinal assessments of the neurobehavioral response to
acute psychosocial stress to assess mechanisms of stress-targeted
treatment in randomized controlled trials.

Stress Task Responses
Accuracy and reaction time comparisons during CMT and SMT
conditions are utilized as a manipulation check to validate that
task conditions elicited the experimenter-intended psychosocial
stress in the task (e.g., Wheelock et al., 2016; Goodman et al.,
2019). In the current study, decreased accuracy and increased
reaction time (RT) for math trials during the SMT compared
to the CMT confirms that task performance varied between
MIST conditions as designed. Specifically, decreases in accuracy
and increases in reaction time for the SMT compared to CMT
did not differ between visits. Alternatively, reaction time was
decreased in the CMT and accuracy was increased in the SMT
during V2 compared to V1, suggesting that there is a small
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but significant benefit in task as a function of repeated testing.
Given that participants improved in response time during the
CMT and providing correct answers during the SMT condition
after the initial visit, these results suggests that improvements
in reaction time accuracy may reflect repeated testing effects
and may not serve as a valid assessment of improvements
to stress management. However, it remains unclear whether
similar changes in CMT response time or SMT accuracy might
occur with a stress-targeted intervention in between assessments.
Because we utilized increased task difficulty in the task as part
of our experimental manipulation to increase psychosocial stress,
there is room for interpretation that differences in accuracy
and reaction time during the CMT and SMT tasks include the
effects of increased difficulty as well as stress. Difficulty plays an
important and interwoven role in this method assessment of the
stress response and should be considered in light of future study
questions. We propose that any benefits of CMT response time
or SMT accuracy that may arise before and after interventions
should also be compared to benefits within a control group that
does not receive the intervention. Further, it is advised that the
emphasis on accuracy and reaction time be placed on validation
of the increased difficulty between CMT and SMT tasks, rather
than to index any benefit of potential treatment effects.

Physiological Responses
In addition to math performance measures, participant
autonomic responses to MIST are commonly used to validate
and index stress reactivity to the task (Allendorfer et al., 2014,
2019; Wheelock et al., 2016; Elbau et al., 2018; Goodman et al.,
2018, 2019; Gossett et al., 2018; Orem et al., 2019). In the present
study, we sought to assess whether these measures indicated
stress reactivity and whether this reactivity varied across
repeated MRI visits. Our results indicated that autonomic stress
reactivity was both evident and did not differ across the repeated
MRI visits. More specifically, the cardiac response to acute
psychosocial stress increased during the SMT compared to the
CMT, regardless of visit. Likewise, alpha-amylase demonstrated
increase in autonomic arousal 30 min post-scanning when
compared to the initial sample, 60 min prior to scanning.
Although parametric and non-parametric tests demonstrated
that these responses did not differ across repeated MRI visits,
follow-up equivalence tests failed to demonstrate that these
cardiac and alpha-amylase responses to stress were identical
across both visits. This failed equivalence result however rests
on assumptions of a small-to-modest treatment effect size (i.e.,
dz = ±0.3) and sample size (i.e., n < 15) for these comparisons.
We take these findings to suggest that detection of an absent
treatment effect via changes in cardiac reactivity and alpha
amylase may require relatively larger individual group sample
sizes (e.g., n > 15) and interventions with moderate-to-strong
treatment effect sizes (e.g., dz = ±0.9). Likewise, future studies
of treatment effects on the physiological responses during these
MRI tasks should be contextualized by comparing changes in
stress reactivity between a treatment and control group(s) (see
“Limitations” section). Regardless of the initial or repeated visit,
cardiac and alpha-amylase reactivity appear to be both reliable
and robust indices of autonomic arousal in response to acute

psychosocial stress. These results suggest a need for future
controlled trials to focus on cardiac and alpha-amylase reactivity
to index changes in biobehavioral responses to stress.

Neural Substrates
Comparisons of fMRI activation between SMT and CMT are
often utilized to assess the neural function that underlies
biobehavioral responses to acute psychosocial stress during MIST
(Pruessner et al., 2008; Dedovic et al., 2009b; Khalili-Mahani
et al., 2010; Goodman et al., 2016, 2019; Wheelock et al., 2016;
Allendorfer et al., 2019; Orem et al., 2019). Further, comparisons
of task-dependent BOLD signal responses between SMT and
CMT allow for assessment of unique components of stress
reactivity and processing. For example, comparing BOLD signal
responses during CMT and SMT conditions related to arithmetic
performance may assess inhibitory neural mechanisms related to
performance demands, while comparing positive and negative
auditory feedback assesses the neural response to extrinsic
verbal negative evaluations (Goodman et al., 2019). Thus, the
current study aimed to assess whether BOLD signal responses
to math performance and auditory feedback differed across
repeated MRI visits.

The results indicated that responses to math performance
within the dACC, PFC, insula, and hippocampus did not
differ across scans and demonstrated a fair to strong (ICC
range = 0.47–0.66) degree of repeatability for dACC, dlPFC,
insula, and hippocampus activation peaks across visits. Decreased
hippocampal activation related to math performance during SMT
compared to CMT has been consistently linked to HPA-axis
stress reactivity reported in prior MIST literature (Pruessner
et al., 2008; Dedovic et al., 2009b; Khalili-Mahani et al., 2010;
Goodman et al., 2019). Alternatively, activation of the sympatho-
adrenomedullary (SAM) system provokes rapid increases in
autonomic activity [e.g., cardiac (Ulrich-Lai and Herman, 2009)
and alpha-amylase (Granger et al., 2007)] in response to stress.
Activity within PFC and amygdala regions during stressful
math vary with cardiac, sweat gland, and self-reported stress
(Wheelock et al., 2016; Orem et al., 2019). Further, dACC activity
corresponding to bilateral insular activity is also commonly
referred to as the salience network (Seeley et al., 2007; Uddin,
2015) and has been implicated in emotion regulation studies of
reappraisal for negative information (Ochsner et al., 2002; Phan
et al., 2005; McRae et al., 2008; Buhle et al., 2014). Thus, the
robust and reliable responses to stressful math within the dACC
and insular regions observed in the present study implicates
this neural network as regions of interest in future studies to
assess the neural mechanisms underlying reappraisal-focused
CBT interventions.

During auditory feedback, the results indicated that activation
within subgenual ACC, PFC, PCC, hippocampus, and insula
regions did not differ across scans and demonstrated a fair
to strong (ICC range = 0.46–0.71) degree of repeatability for
subgenual ACC, PCC, and dlPFC activation peaks across visits.
Prior literature that assessed neural function related to auditory
feedback during SMT compared to CMT has previously reported
differential activation within ACC and PCC regions (Allendorfer
et al., 2014; Goodman et al., 2019). Further, ventromedial PFC
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activity corresponding to PCC activity is also commonly referred
to as the self-referencing network, and has been implicated in
mood disorder studies of self-reflection (Johnson et al., 2002;
Whitfield-Gabrieli et al., 2011). Thus, the robust and reliable
responses to stressful feedback within subgenual ACC and PCC
regions observed in the current study implicates these areas as
regions of interest in future studies of the neural mechanisms
underlying self-referencing CBT interventions.

Limitations
Interpretation of the results of the current study should be
considered in light of several limitations. First, the study sample
was relatively small. However, the chief objective of current
study was to assess repeated measures, and the current sample
was sufficient to demonstrate reliability estimates in excess
of our a priori determination for repeatability (ICC ≥ 0.40).
Further, stress responses are known to vary by sex (Lee
et al., 2014). Thus, a significant limitation of the current
study was that the achieved sample size was not sufficient to
assess whether acute stress reactivity was equally repeatable
on all measures examined for both sexes. Additionally, the
number of subjects with missing SAM reactivity assessments
may affect the power to detect significant differences across
visits. Although we reported no evidence for the presence of
variance in autonomic measures across visits, future studies are
encouraged to compare any clinical intervention against a control
group for biobehavioral comparisons. Based on the findings from
equivalence tests on the biobehavioral measures, relatively low
sample-sizes may potentially obscure small treatment effects that
differ between such an intervention and control group. Yet, we
are unaware of any prior studies utilizing a comparable repeated
neuroimaging stress task assessments that would provide a source
for anticipated magnitude of such treatment effects. Thus, a
lack of estimated treatment effect sizes should be considered a
current limitation in our understanding of autonomic response
variability across repeated neuroimaging stress task assessments.
However, the primary focus of the current report was to validate
and assess the repeatability of neural responses to repeated
assessment of psychosocial stress reactivity. Related to this point,
neural responses revealed no main effects of visit or interactions
of condition and visit for math performance or auditory feedback.
Therefore, the critical assessment of differential activation of
SMT and CMT did not appear to differ across visit. Lastly,
the current report did not include a clinical population studied
for test-retest reliability without intervention. Our conclusions
on the reliability of these neurobehavioral responses are limited
to healthy individuals. As a preliminary investigation, however,
the current study achieves stated goal of assessing repeated
testing effects. Future controlled trial studies can provide further
validation of MIST repeatability by showing changes as a function
of intervention in clinical populations.

Conclusion
Given that acute stress responses remained highly conserved
across visits, these findings lend support for the utility of MIST
to be used to elicit neural and autonomic stress reactivity
between repeated, longitudinal assessments. Demonstrating the

ability of this task to elicit stress reactivity across longitudinal
visits suggests this method, when implemented in a randomized
control trial design, may be used to assess changes in neural
and autonomic stress responses that underlie the efficacy of
therapeutic interventions. In several key brain regions, peak
activations of neural responses to stress were reliable between
longitudinal assessments approximately 13 weeks apart in
the absence of an experimenter intervention. Longitudinal
assessments that utilize MIST before and after stress-reduction
clinical interventions may provide new knowledge regarding
changes in the neural mechanisms of emotion regulation
underlying the efficacy of these interventions in clinical
populations.
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EEGs Vary Less Between Lab and
Home Locations Than They Do
Between People
Kaare B. Mikkelsen*, Yousef R. Tabar, Christian B. Christensen and Preben Kidmose

Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark

Given the rapid development of light weight EEG devices which we have witnessed

the past decade, it is reasonable to ask to which extent neuroscience could now be

taken outside the lab. In this study, we have designed an EEG paradigm well suited

for deployment “in the wild.” The paradigm is tested in repeated recordings on 20

subjects, on eight different occasions (4 in the laboratory, 4 in the subject’s own home). By

calculating the inter subject, intra subject and inter location variance, we find that the inter

location variation for this paradigm is considerably less than the inter subject variation.

We believe the paradigm is representative of a large group of other relevant paradigms.

This means that given the positive results in this study, we find that if a research paradigm

would benefit from being performed in less controlled environments, we expect limited

problems in doing so.

Keywords: electroencephalogram, home recording, inter subject variability, intra subject variability, ear-EEG

1. INTRODUCTION

With the advent of smart devices and wearable technologies, real life EEG recordings are getting
increasingly feasible and potentially useful (Debener et al., 2012, 2015; Mullen et al., 2015).
Applications include diagnosing and monitoring of epileptic patients (Gilliam et al., 1999; Askamp
and van Putten, 2014; Zibrandtsen et al., 2017), decoding of auditory attention (Mirkovic et al.,
2015; O’Sullivan et al., 2015; Das et al., 2018), brain-computer interfaces (Birbaumer and Cohen,
2007; De Vos et al., 2014), sleepmonitoring (Shambroom et al., 2012; Younes et al., 2017;Mikkelsen
et al., 2019), and monitoring of human behavior in extreme situations, such as cave exploration or
space travel (Mogilever et al., 2018), to name a few. With the ongoing SARS-CoV-2 pandemic,
the simple need to continue clinical investigations and EEG research outside laboratories has been
added to the list.

However, given that the majority of existing EEG literature deals with single measurements on
many subjects, there is limited data on the likely changes to results, or any decrease in data quality,
that would come about from performing multiple measurements on the same subjects, in different
locations, possibly outside of the laboratory and the immediate control of the investigator.

Looking at the literature, we find some studies focusing on intra- and inter-subject variability
in the lab. Corsi-Cabrera et al. (1997, 2007) looked at patterns of correlation in scalp EEG in
women, and found stable differences between subjects. Stastny et al. (2014) showed that inter-
subject variability in the µ-rhythm could be used to identify subjects between sessions. Dalebout
and Robey (1997) showed in 1997 that the P300 response varies more between subjects then within
them, and in the late 80’ies Lauter et al. showed extensively that audiological responses follow the
same pattern (Lauter and Karzon, 1990a,b).
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More recently, Poulsen et al. (2017) showed that the amount
of intersubject variability in a classroom setting could be used
to gauge group engagement. Given that this is in itself an
example of EEG recordings taken out of the laboratory setting,
the comparison is particularly interesting.

Finally, Shen and Lin (2019) studied both inter and intra-
subject variation in EEG during emotional responses. They found
substantial inter- and intra-subject variation, not unlike what we
show here.

In this study we present a paradigm designed to be both
doable outside a laboratory, as well as reasonably comparable
to a broad class of EEG paradigms. Second, we quantify the
relationship between inter-subject, intra-subject (inter-session)
and inter-location variability for this paradigm, and for each
individual response invoked by it.

We tasked 20 subjects with performing the instructions in a 3-
min long video on 8 separate occasions—4 in our EEG laboratory
and 4 in their respective homes. All while wearing a combination
of EEG, EOG, and chin EMG electrodes. By comparing the
variation contribution from the different sources, we find
clear inter-subject variability in all measures, and only little
location-dependence. However, we do find that the unexplained
variance generally increases for recordings performed outside
the laboratory.

2. METHODS

2.1. Setup
The recording setup consisted of 25 iridium oxide electrodes
(Kappel et al., 2019), connected to a TMSi Mobita amplifier.

The TMSi mobita amplifier is a mobile EEG amplifier with 24
bit resolution, individually shielded inputs, less than 0.4 micro
V RMS noise in the 0.1–10 Hz band, greater than 10 G� input
impedance, and greater than 100 dB CMRR.

The setup was a combination of ear-EEG (Mikkelsen
et al., 2015), scalp EEG, EOG, and EMG electrodes: 12
positions within the ears (6 per ear, see Figure 1), 3 chin
EMG electrodes, two EOG electrodes and 8 scalp electrodes
(M1,M2,C3,C4,F3,F4,O1,O2) (see Figure 1). All electrodes were
essentially identical, as seen in Figures 1B–F. To ensure good
connections, all electrodes outside the ears (13 in total) were
treated as wet electrodes and received electrode gel (Elefix
from Nihon Kohden for electrodes on the scalp, Ten20 from
Weaver and Company for face and mastoid). To ensure reliable
connections on the scalp, liberal amounts of Elefix gel were used,
in particular for subjects with long or curly hair (however, it
was ensured that bridging between gel patches never occurred).
All electrodes were embedded in soft silicone holders, and the
cap was an EASYCAP EEG cap (EASYCAP GmbH, Germany),
modified in-house. Ear-EEG ear pieces were costummade for the
individual, ensuring a good and stable connection.

It is worth noting that the electrode gels were specifically
chosen because they do not dry out (they are not hydrogels).
Furthermore, as the dry electrodes, by design, can not dry out
either, the electrode connections in the whole setup should be
expected to be very stable over time.

The signals were sampled at 500Hz, and a disposable electrode
(Ambu, White Sensor, WS-00-S) placed on the neck was used as
ground. The Mobita amplifier always uses an average reference
during recording.

The EEG laboratory used in this study was a dedicated room
in which we have successfully performed a host of different
electrophysiological recordings, and which is used in teaching
electrophysiological methods. During the recordings, no other
activities took place in the room, leading to a quiet setting. The
room has a sufficiently low amount of background electrical noise
that additional electrical shielding has not been necessary.

The study was reviewed and approved by the Central
Denmark Region Committees on Biomedical Research Ethics
(Ref. nr. 1-10-72-413-17) as well as the DanishMedicines Agency
(ref. nr. 2017111085).

2.2. Paradigm
Each recording consisted of two portions—one in a controlled
laboratory in an EEG lab, and one in the subject’s own
home. The electrode setup was performed in the laboratory
immediately prior to the first portion, and then kept on
until the second portion at home. The setup was performed
by an experienced EEG experimenter. The subjects were
informed that they could take out the ear-EEG electrodes
after the lab measurement and then put them back in
before the home measurement. This option was used a
total of 14 times (out of 80 possible). The time difference
between first and second portion was, on average, 5 h
and 9 min.

Each subject had 4 recording days, meaning that the video was
viewed 8 times by each subject. On average, there was a 19 day gap
between each recording day, though with considerable variation
(25% were below 7 days, 51% below 14 days).

Behavioral Paradigm

While watching a video (accessible at
https://www.youtube.com/watch?v=4Uh2UeDzizk),
the participants were instructed to:

• Perform 5 jaw clenches
• Alternate between 20 s of open and closed eyes, with

two repetitions
• Perform rhythmic, lateral eye motions.

The video takes 3 min and 9 s.
Please see Figure 2 for a detailed diagram of

experimental procedure.
It is worth noting that we took inspiration from the typical

paradigms used for quality control of EEG setups in a clinical
setting. This means that the expected responses in the recording
are easy to recognize, and it is possible to positively identify
whether the participant correctly followed the instructions.

2.3. Cohort
Twenty subjects were recruited, with ages between 22 and 36,
mean 25.9 years. Thirteen were female. Subjects were a mixture
of lay people (4), engineering students (15) and researchers (1).

Frontiers in Computational Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 565244184

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Mikkelsen et al. EEGs: Location Has Little Impact

FIGURE 1 | (A) The EEG setup, with EEG cap, face electrodes and ear-EEG plugged in. (B) Close-up for single ear-EEG earplug (left in this case). (C) 10-20 reference

diagram, showing the used scalp electrodes, including the 5 facial electrodes. (D) The EOG, EMG and M1/M2 electrodes were held in custom silicone holders. (E) Cap

electrode holder from the outside. (F) Cap electrode holder from the inside. The diameter of the electrode is 3.5 mm and the diameter of the “cup” is approximately 10

mm. Written informed consent was obtained from the individual for the publication of any potentially identifiable images or data included in this article.

FIGURE 2 | Overview of a recording. Top shows the structure of the video and included instructions, bottom shows how the video was seen twice on the same day

by the participant, once immediately after recording setup, and the second time several hours later in their own home (still wearing the recording equipment). The

same video, with the same instructions, is viewed every time.

In total, 3 out of the 20 subjects could be considered to have prior
EEG experience.

Subjects received monetary compensation for
their participation.

2.4. Preprocessing
The timing between the EEG and the video instructions was
determined by identifying the beginning of the lateral eye
movements in the EOG, and extracting data up to 105 s prior
to that as well as up to 85 s after.

As shown in Figure 3, the eye-movement dominated portion
of the EEG is quite clear, and by using this it is possible to get an
automatic, reproducible alignment at sub-second precision.

In preparing all EEG recordings, we employed a mixture of
automatic and manual artifact rejection:

1. All channels in all recordings were band pass filtered to only
keep activity in the 0.3 to 100 Hz band. This was done
using a Hamming windowed sinc FIR filter of order 5500 [as
implemented in EEGLAB (Delorme and Makeig, 2004)].

2. Instances where a single electrode had an amplitude larger
than 350 µV were identified as artifacts, and the samples from
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FIGURE 3 | Top: scaled version of the cross correlation between recorded signal from EOGl electrode and a sample recording used as “pattern.” Bottom:

comparison of EOGl and sample pattern at highest cross correlation. From subject 1, night 1, home recording.

that particular electrode was set to “nan” for a 2-s window
around the event.

3. Finally, we used the fact that the ear electrodes have a high
degree of redundancy between them, meaning that it should
be possible to predict most of the signal from a healthy
electrode using the signal from the neighboring electrodes.
This was implemented by rejecting any ear electrode that
had less than 0.4 Pearson correlation between itself and it’s
projection into the space of all other ear electrodes. The value
of 0.4 was chosen tomatch rejection through visual inspection.

Due to the quite large signal amplitudes evoked by the eye-
movement portion, the amplitude-thresholding was skipped for
that part of the recordings.

Finally, the recordings were checked manually, to spot any
additional channels to reject.

3. DATA MODELING

To maximize clarity and relevance of the analysis, for each part
of the analysis of the paradigm, we focus on specific choices in
modeling and specific electrodes (rather than report outputs from
all possible electrode configurations). Thus, we do not restrict
ourselves to a specific choice among the 25 electrodes, but have
instead chosen to use the derivations that are most relevant for
each sub analysis. See below for further details.

3.1. Jaw Clench Modeling
Jaw clenches are characterized by an increase in power at high
frequencies (40–1,000 Hz), seen easily in electrodes placed close
to the jaw muscles. Because of this, we extracted the power in the

40–80 Hz band for each ear electrode in windows of 0.5 s long,
and calculated median power across electrodes for each window.
By fitting the function:

f (t) = c+

5
∑

i=1

ai · e
(t−ci)

2/w2
i (1)

we may estimate the intensity of the clenching by the
extracted amplitudes, ai. Here, c, ai, ci,wi are all free parameters
determined through least squares fitting, and the index i
represents the five jaw clenches (such that ci is the timing and
wi the width of clench i). See Figure 4 for an example. Prior
to power estimation, the ear electrodes were referenced to their
own average.

3.2. Alpha Power
The occipital alpha oscillation is present all over the head,
but it is seen clearest in the occipital electrodes. Therefore,
we estimated the power in the 8–12 Hz band averaged over
electrodes O1 and O2, during the eyes open/closed portion of the
paradigm. The two electrodes were referenced to the average of
the scalp electrodes.

3.3. EOG Content
One way to characterize the EEG recordings is to specifically look
at the different noise sources, to see whether they influence the
recordings in the same manner across locations. An example of
this is extracting eye movements using a single-sided ear-EEG
device, which, besides its use in characterizing EEG recordings,
could also be considered as a means to estimate visual attention
(Favre-Félix et al., 2019).
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To test this, we used a linearmodel, similar to what was used in
Mikkelsen et al. (2017), to predict the activity in the EOGr-EOGl
derivation during the “horizontal eye movements” portion of the
behavioral paradigm. More precisely, the 70 s of eye movements
were partitioned into two 35 s intervals, and a linear model (with
a constant term) was trained to mimic the EOG activity using
only the left or right ear electrodes. The model trained on the
first 35 s was then applied to the second 35 s, and vise versa. For
each ear, performance was recorded as the Pearson correlation
between actual EOG signal and predicted.

From this point, we shall exclusively refer to this correlation
as the “prediction quality.”

3.4. Resting State Power Levels
It is generally interesting to know how the spontaneous, or
“background” variation in the EEG data differs between locations
and subjects, to infer whether paradigms known from recordings
in the lab can be performed at home. In practice, this would be the
main contribution to the “noise floor” in an ERP measurement.

We estimate the resting state EEG power by measuring the
power for various electrode combinations (M1, avr. left ear, avr.
right ear, C3, C4, F3, F4, all referenced to M2), and presenting
both the full spectrum (up to 100 Hz) as well as the behavior
of the average power in the 30–100 Hz band (excluding 50 Hz).
We only used the “eyes open/closed” portion of the recordings
for this analysis, and the power spectrum was calculated using
Welch’s algorithm with 3-s window widths.

3.5. Linear Mixed Models
A central question is to which extent variation in the independent
variables causes variation in the results; it is very helpful when
designing an experiment to know what alteration of study design
may risk drowning out the signal.

In this study, the three most interesting sources of variation
are that caused by adding subjects, that caused by repeating
measurements, and that caused by changing location. In short,
for m = 1, ..., 20 subjects, n = 1, ..4 repetitions and l = 1, 2
locations, the 80 observations, ymnl, may be described as:

ymnl ∼ c+ Ll + Sm (2)

Sm ∼ N(µm, σ
2
1 ) (3)

µm ∼ N(µ, σ 2
2 ) (4)

where N(µ, σ 2) is a normal distribution with mean µ and
variance σ 2. In this terminology, σ 2

1 represents the intra subject
variation, and σ 2

2 the inter-subject variation.
We apply our framework to the data using linear mixed

effects models, letting “subject identity” be a “random effect” and
everything else “fixed effects.” Since we are doing the calculations
in MATLAB (using fitlme), we describe the five models using
Wilkinson notation (Wilkinson and Rogers, 1973):

Jaw Clench, alpha power:

y ∼ 1+ location+ (1|subject).

EOG content:

y ∼ 1+ location+ side-of-head+ (1|subject).

Resting power levels:

y ∼ 1+ location+ channel+ (1|subject).

Note that we add either “channel” or “side-of-head”
dependencies in the last two, so as not to unduly add to
the “intra subject variation.”

By fitting the mixed effects models to the data, we can define
the inter-subject, intra-subject and inter-location variation in the
following ways:

Inter-subject: std(µi), where µi is the average response from
subject i.

Intra-subject: The residual error, or root mean square error
of the model fit. This can also be thought of as “day-to-
day variation.”

Inter-location: So as not to compare fixed-effects offsets to sums
of squared errors, we represent the inter-location variation
by the square root of the “squared error” term for the
location-term, as calculated by “fitlme” in MATLAB.

We calculate these for each of the analyses described above,
and rescale them such that the largest source of variation is 1
for each comparison, to make it easier to compare results from
different paradigms.

3.6. Analysis of Location Influence
To specifically quantify the effects of doing measurements in
multiple locations, we calculate p-values for both the differences
in mean values between laboratory and home measurements, as
well as the unexplained variances for each location (the “noise”).

p-values for the significance of mean differences are extracted
from the mixed linear model fits (the “ANOVA” field in
the fitlme output) and for variation differences, we use
permutation testing (by pairwise permutation of the location
information) to estimate the probability of getting a greater
difference than the one observed. All p-values are for two-
tailed tests.

4. RESULTS

4.1. Data Quality
On five occasions, the behavioral data were lost. This happened
on four occasions in the lab, and on one occasion at home. In
the lab, it was due to human error in mismanagement of the
recording, at home, the subject simply forgot to do it.

The automatic and manual artifact rejection resulted in 9% of
the data samples being rejected (11% in lab, 7% at home). 1.5%
of the data was rejected in the manual step. Viewing the setup
as a whole, 2% of the time points were rejected (meaning that
at 98% of the time, at least one electrode was recording). These
numbers for lab vs. home were 4.6 vs. 0.2%. We have excluded
the 5 missing recordings when calculating this.

4.2. Jaw Clenching
In Figure 4 is seen an example of the extracted median gamma
band power. The most common deviations from this pattern
are either a missing first peak (some subjects forgot to do the
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FIGURE 4 | Example of the MEG model [f in (1)] fitted to median gamma

power.

FIGURE 5 | Median median clench amplitude for each subject, in the two

locations. Meaning that we calculate the median clench for each recording,

and then find the median of those values. We see that median clench is very

consistent between home and lab environments, and that the value varies

between subjects. Identity line included for reference.

first clench) or some disturbance occurring halfway through
(coughing, other movements). In Figure 5 is shown the “median
of medians” peak amplitude, meaning that first the median
amplitude is calculated for each recording, and subsequently
the median is taken for each subject’s recording date. We see
that this observable is very consistent within subjects between
home and lab settings. Since the peak amplitude is influenced
by how vigorously the subjects clench, we interpret this to mean
that subjects were equally enthusiastic with and without direct
supervision; they did not just go through the movements when
at home, but strove to do the task as well as they had done in
the laboratory.

FIGURE 6 | Reproducibility of median alpha power in occipital electrodes,

referenced to the average of the rest of the scalp electrodes. Identity line

included for reference. Units are dB relative to 1[µV ]2. (A) Open eyes alpha

scalp. (B) Closed eyes alpha scalp.

4.3. Alpha Power
In Figure 6 is shown both alpha power for open and closed eyes.
As with jaw clenching, we see that alpha powers measured at
home and in the lab are very similar, but with some intersubject,
reproducible variation.

Not shown in Figure 6 is the subject-wise alpha modulation.
When analyzing that, we find an average of 3.6 dB, or slightly
more than a two-fold change in power. This is comparable to
what is otherwise seen in the literature (Alloway et al., 1997).

4.4. EOG Prediction
Figure 7 shows an example of successful EOG prediction in the
lab. Figure 8 shows that EOG prediction works to the same
extent at home as it does in the lab, though with a great deal of
“noise” added.

We find no differences between the two ears. Instead, when
calculating the Pearson correlation between prediction quality in
left and right ear, we obtain a quite high value of 0.6, meaning that
the performance in either ear tends to follow each other. On the
other hand, we find very little correlation between performance at
home and in the lab on the same day, at 0.11. By investigating the
distribution of prediction performances, we find that the major
variation in prediction quality is between “high” values that are
between 0.5 and 1, and low values which are between 0 and 0.5.
It appears that the variation between these two ranges is driven
by variations in signal quality in both EOG and ear electrodes.
In other words, if the prediction quality is not good (meaning
below 0.5), it is most likely due to either many electrodes in the
given ear having a bad connection, or one of the EOG electrodes
being faulty. This is not particularly correlated between the two
locations, which explains the low home vs. lab correlation.

4.5. Resting State Power Level
Figure 9 shows average power spectra in the EEG for different
locations and electrode combinations. There are different
observations to be made. (1) The relative difference in power
is frequency dependent. For some reason, we see a higher level
in the lab setting than home for frequencies below 10 Hz. We
hypothesize that this is either due to some special circumstance
in our laboratory (since it is unlikely that the noise environments
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FIGURE 7 | Examples of EOG signals reproduced from the electrodes inside the left or right ear. This example is based on data recorded in the lab.

FIGURE 8 | Comparison of EOG prediction quality in the lab and at home, for different subjects. Identity line included for reference.
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FIGURE 9 | (A) Grand average specters, for the M2-C3 EEG channel. For each frequency is calculated the distribution of power densities across all measurements,

the region between 25th and 75h percentile is shown (colored area), together with the median (line). (B) Difference between median lab and home power specters for

different measurement electrodes (all referenced to M2). Note that the specters (excluding the 50 Hz-peak) have been smoothed for added clarity.

of the test subjects should have some common bias) or long-term
settling of the electrodes. (2) The variation in power density is
greater than the difference caused by location. (3) The 50 Hz
peak behaves differently from the surrounding noise floor—some
combinationsmay have higher 50Hz power in the laboratory, but
lower noise in the surrounding frequency bins.

Performing an ANOVA on the average power between 30
and 100 Hz (excluding 50 Hz), with “subject” and “night” being
random factors, the p-value for “location” is found to be 5% for
all 7 EEG derivations plotted here. If we restrict the data to single
EEG channels, the location p-value jumps between high (> 18%)
and low values (< 3%).

4.6. Variational Analysis
Figure 10 shows an estimation of the relative contribution to
total variation in the data from different sources.We see that in all
cases, primary drivers are inter and intra-subject variation, with
“location” being mostly a distant third. Note that this is not an
estimate of significance—it is absolutely possible for a variable to
have a very small, but very probable influence. For instance, it
seems quite probable from the results in Figure 9 that location
has an influence. But from Figure 10 we see that it contributes
less uncertainty to the grand average than both the inter and
intra-subject variation.

4.7. Significance of Location
In Table 1 is shown differences in mean values and “unexplained
error” between laboratory and home recordings. We see that for
three of the sub paradigms, the unexplained error is significantly
larger at home than in the laboratory, despite the fact that the
difference in means is minimal.

It is worth noting that “EOG” is a clear outlier, with a smaller
variation in home recordings than in the laboratory, and a quite
large p-value. This is well explained by the observation made
previously—that the main variation in EOG prediction quality
is driven by electrode connection, which has no clear pattern
between locations.

FIGURE 10 | Measures of how much variation is added to the EEG results

from different independent variables. Within each subparadigm, the measured

standard deviations have been scaled relative to the strongest component.

TABLE 1 | Analysis of location dependence for all sub paradigms.

Clench Open-alpha Closed-alpha EOG Resting S.d.

Location offsets 14.65 0 −0.05 0.05 1.55

Location offsets

p-values

0.54 0.94 0.15 0.04 0

Unexp. var. diff. 91.03 0.19 0.18 −0.02 1.35

Unexp. var.

p-values

0 0 0 0.51 0

The units of offsets and standard deviations are, for column 1: [µV ]2, and for column 2

and 3: dB relative to 1 [µV ]2. Column 4 is dimensionless Pearson correlation. Positive

values mean that the “home” value is larger.

5. DISCUSSION

By analyzing the evoked EEG from a behavioral EEG paradigm
performed under many different conditions, we are able to
compare the variation in response due to subject difference,
location differences and that driven simply by the uncertainty of
doing EEG measurements (“intra subject variation”).
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We find that for our paradigm, inter subject and intra subject
variation contributes more to measurement noise than switching
between laboratory and home measurements.

We also find that the signal quality as obtained in the home
environment is decent; the rejection rate is actually lower for
the home recordings than the lab recordings (7 vs. 11%). The
signal to noise ratio is low enough that all parts of the paradigm
could be shown to have reproducible results, as presented in
Figures 5, 6, 8.

Note that this study does not conclude that location can
not have a statistically significant effect on the measured EEG.
Instead, we are concluding that the uncertainty added to the
results from recording in multiple locations was less than both
the intra subject and inter subject variation. Indeed, we do
find that in most cases, the amount of unexplained variance
(the “fitting error”) is significantly greater (statistically speaking)
outside the laboratory than inside it.

We also point out some decisions which had to be made
in the design, and which could have changed the results in
non-intuitive ways:

1. Some decisions had to be made regarding the definitions of
both inter-subject, intra-subject and inter-location variation.
Specifically, the choice of modeling “subject” as a random
factor means that the “shrinkage” caused by “partial pooling”
resulted in the inter-subject variability being roughly 85% of
what we would have found if “subject” had been modeled as a
fixed parameter. We have determined this by simply running
both analyses.

2. We chose to use the estimated standard deviation of the
location offset, rather than the offset itself, to represent
the location-based effect. Had we chosen otherwise, the
location-based variance would have been estimated at a much
lower value.

3. It is likely that “intra-subject variability” could be defined in
any number of ways, leading to smaller or larger estimates.
However, we do believe that the unexplained variance,
which we have chosen here, is a highly relevant quantity
for comparison.

4. The “intra-subject” variation is, presumably, quite sensitive
to the precise study design. Had the paradigm been
longer, resulting in more data for each response calculation,
it seems likely that “intra-subject” variation would have
been less.

5.1. Limitations
In addition to the considerations listed above, there
are certain circumstances which limit the generality of
our results:

Themain things to keep inmind when considering the general
relevance of our results are:

1. While the “home” setting is presumably quite varied, the “lab”
is not. If the laboratory conditions are somehow exceptional
in this study, then that will bias the results. We do not think
that this is the case.

2. The way the study was designed, the lab recording always
preceded the home-recording. This means that certain time-
based effects, such as long-term settling of the electrodes,
necessarily influences the two locations differently. It is
possible that this is part of the reason for the difference in
background power spectra observed in Figure 9.

3. As is common in many neuroscience studies on healthy
individuals, our subject cohort was not randomly drawn from
the general population. The majority of the participants were
engineering students, and it is possible that they would be
better than average at carrying out instructions. As to the
subset of participants with prior EEG experience, we do not
think they biased the results. These subjects were considerably
more likely to remove the ear-EEG electrodes between lab
and home recordings, which is not the behavior we would
expect from participants making an effort to maximize
data quality.

4. The study does not include impedance measurements. This
was no accident; to the best of our knowledge there are
simply no commercially available EEG amplifiers which both
have the necessary high input impedance and active shielding
required for dry-contact EEG recording as well as the ability
to measure electrode impedance. However, as we find that
the signal quality (both in terms of automatic data rejection
and in terms of recorded responses) is at least as good in the
home setting as in the lab, in accordance with the design of
the hardware (dry electrode and non-evaporating gels), we
are convinced that our electrode connections are stable across
both recording sessions.

Finally, we have specifically designed a paradigm which does
not rely on precise alignment between recordings and stimuli.
While we do believe that such a recording setup could be
implemented, we did not attempt to do so in this study, and
leave the solution of this problem to future works by either us or
our colleagues.

6. CONCLUSION

We present a mixed EEG paradigm which is shown to be
insensitive to moving the subject outside the laboratory and out
of the direct control of the researcher.

On this basis, we believe that any researchers considering
home measurements in a paradigm suited for it (our setup
did not require strict control of sensory input, for instance),
could do so without worrying that the lack of oversight would
unduly contaminate their data. According to our results, if
an EEG paradigm is known to work on a broad selection
of subjects, it will also work on those subjects in their
respective homes.
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Individuals with mild cognitive impairment (MCI) are at high risk of developing into

dementia (e. g., Alzheimer’s disease, AD). A reliable and effective approach for early

detection of MCI has become a critical challenge. Although compared with other costly or

risky lab tests, electroencephalogram (EEG) seems to be an ideal alternative measure for

early detection of MCI, searching for valid EEG features for classification between healthy

controls (HCs) and individuals with MCI remains to be largely unexplored. Here, we

design a novel feature extraction framework and propose that the spectral-power-based

task-induced intra-subject variability extracted by this framework can be an encouraging

candidate EEG feature for the early detection of MCI. In this framework, we extracted the

task-induced intra-subject spectral power variability of resting-state EEGs (as measured

by a between-run similarity) before and after participants performing cognitively

exhausted working memory tasks as the candidate feature. The results from 74

participants (23 individuals with AD, 24 individuals with MCI, 27 HC) showed that the

between-run similarity over the frontal and central scalp regions in the HC group is higher

than that in the AD or MCI group. Furthermore, using a feature selection scheme and a

support vector machine (SVM) classifier, the between-run similarity showed encouraging

leave-one-participant-out cross-validation (LOPO-CV) classification performance for the

classification between the MCI and HC (80.39%) groups and between the AD vs. HC

groups (78%), and its classification performance is superior to other widely-used features

such as spectral powers, coherence, and the complexity estimated by Katz’s method

extracted from single-run resting-state EEGs (a common approach in previous studies).

The results based on LOPO-CV, therefore, suggest that the spectral-power-based
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task-induced intra-subject EEG variability extracted by the proposed feature extraction

framework has the potential to serve as a neurophysiological feature for the early

detection of MCI in individuals.

Keywords: intra-subject variability, electroencephalography, mild cognitive impairment, Alzheimer’s disease,

between-run similarity, brain-computer interface, machine learning

INTRODUCTION

Alzheimer’s dementia has become the most prevalent type of
neurodegenerative dementia. There are nearly 10 million new
cases of dementia every year worldwide and 60–70% of these
new cases are diagnosed with AD (World Health Organization,
2020). The prevalence of AD generally increases with age: the
prevalence is 1% for people between 60 and 64 years, but
it increases to 38% for people over 85 years (Ferrara et al.,
2008). Although mild cognitive impairment (MCI), typically as a
transitional state between normal aging and very early dementia,
does not usually impact the daily life of individuals (Petersen,
2010), it may convert to AD or other types of dementia with
a high risk. For example, a study reported that 15% of MCI in
individuals older than 65 years old may develop into dementia
(Alzheimer association, 2020), whereas another study reported
that MCI of 32% of individuals developed into AD at the 5th-
year follow-up (Chen Y. et al., 2020; Alzheimer association,
2021). Early detection and intervention for individuals with
MCI will, therefore, be an important strategy in the fight to
reduce the impact of AD on our community. However, early
detection of MCI is challenging, as older adults with MCI are
often not aware of the subtle decline in their cognitive function,
which primarily prevents them from seeking medical advice or
even interventions.

Several biomarkers have been proposed to help physicians
verify the diagnosis of dementia due to AD; In contrast, the
diagnosis of MCI heavily relies rather on neuropsychological
assessments. For the diagnosis of AD, a common method is to
detect human brain amyloid-beta (Aβ) deposition and abnormal
aggregation of tau protein. The concentration ratio of Aβ42
to Aβ40 (Aβ42/40 ratio), the concentration of Aβ42 level and
positive amyloid, and tau PET scan are considered as important
biomarkers to detect AD (Hansson et al., 2019). However, these
biomarkers are not ideal solutions for the community health care
system, because they are expansive, time-consuming, invasive,
and radiational in nature. In addition, although recently, there
have been attempts to establish a biomarker-based guideline
for the diagnosis of MCI (Ritchie et al., 2014; Martinez et al.,
2017; Ross et al., 2021), there is still room for improvement in
terms of accessibility, reliability, and validity of these biomarkers.
Electroencephalography (EEG), on the other hand, is a promising
alternative due to its non-invasive nature and relatively much
lower costs. EEGs may, therefore, have great potential for
assisting the clinical characterization of MCI and AD (Poza et al.,
2014).

Resting-state EEGs, typically recorded while participants are
not doing anything purposefully, has become a popular approach
in clinical research with the patient population who has short

attention span or difficulties performing a goal-directed task.
Previously, a large body of literature based on single-session
resting-state EEG has found differences in EEG features between
AD andHC, such as spectral powers of different frequency bands,
complexity, and connectivity. For example, compared with the
HC group, individuals with AD showed lower signal complexity
(Abasolo et al., 2005, 2006, 2008; Liu et al., 2015), a higher
power of slow oscillations (delta, theta) and lower power of
fast oscillation (alpha, beta, gamma) over the temporal, parietal,
and occipital scalp regions (Huang et al., 2000; Rossini et al.,
2007; Roh et al., 2011; Ishii et al., 2017), and lower electrode-to-
electrode connectivity (Wang et al., 2014; Engels et al., 2015; Hata
et al., 2016) in resting-state EEGs. Furthermore, the entropy-
based complexity of EEG signals seems to gradually decrease with
disease development (Sun et al., 2020). However, differences in
resting-state EEGs between the MCI group and the HC group
are relatively less studied. Few studies reported a non-significant
trend for loss of complexity in individuals with MCI compared
with HC (Park et al., 2007; Dauwels et al., 2011; Labate et al.,
2013; Xu and Tao, 2013; Seker et al., 2021). Searching for a more
distinguishing EEG signature based on resting-state recordings
for the classification between MCI and HC appears to be a
critical challenge.

In addition to altered resting-states, memory dysfunction can
be another key clinical trait for inducing relevant EEG patterns to
discriminate between AD/MCI and HC. Memory dysfunction is
one of the critical diagnosis criteria for AD (American Psychiatric
Association, 2013), and among all types of memory dysfunction,
working memory impairment is often observed in both MCI
and AD. Working memory refers to the ability to access and
manipulate information that is stored in a short period of time
(Baddeley et al., 2015). Most complex cognitive abilities, such
as spatial orientation, problem solving, and reading, require
working memory functions (Kirova et al., 2015). Specifically,
individuals with MCI typically show performance declination
in verbal/visual working memory (Saunders and Summers,
2010), sentence span, operation span (Gagnon and Belleville,
2011), digit span, letter-number sequencing, and arithmetic
operation (Kessels et al., 2011). Since impaired working memory
is commonly observed in individuals withMCI, workingmemory
tasks can be a good candidate to induce task-relevant differences
in resting-state EEGs between the MCI group and the HC group.

This study, therefore, aimed to capitalize on the spectral-
power-based task-induced intra-subject variability of EEGs
recorded in two separate runs of resting-states, before and after
a challenging working memory task. Since working memory
tasks are presumably more cognitively exhausted for the MCI
or AD group than the HC group, we hypothesize that the
difference in the neurophysiological patterns of the before-task
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and after-task “resting-state” in the brain will be larger for the
MCI group than the HC group, and such difference carries more
discriminative information for classification in comparison with
the approach using single-run resting-state EEGs that has been
adopted in previous studies related to the MCI-HC classification.
To achieve this goal, we designed a novel feature extraction
framework in which we introduced the delayed matching-to-
sample (DSTM) task as a cognitively challenging behavior test,
applied a similarity-based approach (Chen G. et al., 2020) to
quantitatively evaluate the task-induced intra-subject variation
of resting-state EEG powers, and used it as a neural marker to
classify between the MCI and HC groups. To the best knowledge
of the authors, this is the first study that focuses on the analysis
of task-induced intra-subject variability between two separate
runs of resting-state EEGs for the detection of MCI. First, we
investigated the group difference in between-run similarity of
resting-state EEGs across different frequency bands and scalp
regions between the AD, MCI, and HC groups. Second, we used
machine-learning based feature selection methods to determine
the best combination of intra-subject variability features forMCI-
HC classification. The results showed that the proposed novel
intra-subject variability feature can be a promising one to further
develop an EEG-based computer-aided diagnosis method for the
early detection of MCI.

METHOD

Participants
This study included 23 individuals with Alzheimer’s disease (AD)
(nine females, mean age of 71.65 ± 5.36 y/o), 24 individuals
with mild cognitive impairment (MCI) (14 females, mean age
of 70.96 ± 8.2 y/o) in the patient group and 27 participants in
the healthy control (HC) group (17 females, mean age of 69.93
± 4.98 y/o). Data collection was conducted from July 2017 to
July 2020 at an outpatient memory clinic of a tertiary 2,700-
bed referral center (Table 1). The diagnosis of participants from
the patient group was based on the results of clinical interviews,
neuropsychological examinations, laboratory findings, and image
investigations (CT and/or MRI) and was confirmed at clinical
consensus meetings by board-certified psychiatrists. The core
clinical criteria recommended by National Institute on Aging
and the Alzheimer’s Association (NIA-AA) (Albert et al., 2011;
McKhann et al., 2011) were used for the diagnosis of AD and
MCI. Participants from the control group were enrolled via
advertisement and confirmed as not having any condition for
all-cause dementia listed in the NIA-AA criteria. Furthermore,
the participants from the control group were all tested with
neuropsychological battery, which resulted in the normal range
on standardized neuropsychological batteries after adjustment
for education (Tsai et al., 2012).

The exclusion criteria for all three groups were: (1) recent
major psychiatric comorbidity (clinically diagnosed in the 6
months prior to the current neuropsychological evaluation),
(2) motor and/or sensory deficits that constituted confounding
variables in the assessment of cognitive functions, and (3)
neurological illness or condition that may affect cognition.

The study protocol was reviewed and approved by the
institutional review board of Taipei Veterans General Hospital
(IRB No: 2017-06-009A). Before the experiment, written
informed consents were obtained from all the participants
or their legally authorized representatives according to the
Declaration of Helsinki.

Experimental Procedure
In this experiment, all the participants underwent two sessions
of resting-state condition (named resting run 1 and resting run
2) along with a working memory condition between two resting-
state conditions (Figure 1). During each resting-state condition
(90 s), the participants were instructed to gently keep their
eyes fixated on a central fixation cross without doing/thinking
anything purposefully. During the memory condition, the
participants performed three types of delayed DMTS tasks
(Sahakian et al., 1988; Fowler et al., 1995), with 10 trials for
each type.

A DMTS trial included three phases. In the encoding phase
(2 s), a set of sample stimuli was presented on the screen for the
participants to remember. In the maintenance phase (3 s), the
corresponding visual display was removed from the screen, and
the participants were required to keep the information in their
working memory. In the retrieval phase (3 s), a question display
was presented on the screen, and the participants were required
to judge if the contents of the question display match (both in
terms of shape and position) those in the sample display. The
participants were instructed to answer the question with a button
press after the retrieval phase without a time limit. The three types
of DMTS tasks varied in terms of contents to be remembered: 1.
Type 1: the participants were required to remember the locations
of three circles randomly placed on the screen, 2. Type 2: the
participants were required to remember the locations of seven
circles randomly placed on the screen. 3. Type 3: the participants
were required to remember the locations of three different shapes
(a circle, a square, and a star) randomly placed on the screen.

EEG Acquisition and Preprocessing
EEG signals were recorded with a 33-channel Quick-Cap
connected to a 40-channel NuAmps (NeuroScan Amplifier,
Compumedics Inc., Charlotte, NC, USA). The layout of the
electrodes followed the International 10–20 system (Figure 2),
where A1 and A2 were reference electrodes, the ground channel
was at the forehead, and the remaining 30 electrodes were used
for recording EEGs. Impedance was kept below 10 kOhm by
applying Electro-Gel (Compumedics Inc., Charlotte, NC, USA)
to the electrodes. Ocular activity (i.e., electrooculography, EOG)
was monitored with two electrodes placed above the left eye
and the right side of the right eye, respectively. The recorded
EEG and EOG signals were amplified and filtered (0.5–100Hz),
and then digitized with a sampling rate of 500Hz using the
NuAmp amplifier from NeuroScan Inc. Ocular artifacts coming
from blinking or eye movements were removed from the EEG
signals using the artifact removal software from NeuroScan
(Scan4.5). Afterward, the EEG signals were further filtered using
a Finite Impulse Response (FIR) filter (0.5–50Hz). Finally,
other possible artifacts caused from generic discontinuities
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TABLE 1 | Demographics and questionnaire data [Mean (SD)].

Variable HC MCI AD p Effect size

n = 27 n = 24 n = 23

Gender 17 F, 10M 14F, 10M 9F, 14M 0.212 0.145

Age 69.93 (4.98) 70.96 (8.20) 71.65 (5.36) 0.621 0.013

Education (years) 13.44 (3.18) 12.13 (3.76) 11.43 (4.35) 0.132 0.050

MMSE 28.26 (1.79) 26.58 (1.89) 21.35 (5.77) <0.001 0.412

MoCA 25.89 (3.29) 23.08 (4.11) 15.96 (6.43) <0.001 0.447

F, female; M, male; HC, healthy controls; MCI, mild cognitive impairment; AD, Alzheimer’s disease; MMSE, mini-mental state examination; MoCA, montreal cognitive assessment.

Gender: chi-square test of independence.

Age/Education year/MMSE/MoCA: one-way ANOVA.

FIGURE 1 | Temporal sequence of the experimental procedures. Each

participant would undergo two resting-state conditions and three delayed

matching-to-sample (DMTS) tasks. Type 1 and Type 2 tasks requires the

participants to remember the locations of stimuli, and Type 3 task requires the

participants to remember both the contents and locations of stimuli.

and electromyography were removed using the independent
component analysis (ICA) and ADJUST algorithm (Mognon
et al., 2011) provided in the EEGLAB (Infomax ICA).

Feature Extraction: Between-Run Similarity
Based on Spectral Powers
The purpose here was to quantify the intra-subject variability
of the EEG signals between the two resting runs using a

between-run similarity (BRS) of spectral powers. The calculation
of the BRS consists of five steps.

Step 1: segmentation of the resting-state EEG signal
into epochs

For each participant and for each run of resting state, the 90-s
EEG signal was segmented into 36 epochs of 6-second length, and
there is overlap of 60% between two consecutive epochs. Then,
we visually inspected all the segmented EEG epochs to make sure
that the data used for later analysis were noise- and artifact-free.
Among the 74 participants, nine (three with AD, four with MCI,
two HCs) had only 35 clean epochs for analyses in both runs or
in one of the two runs. The rejected epochs had large-amplitude
peaks in voltage, which could be due to some technical issue
during recordings. Data of the remaining 65 participants were all
clean (i.e., all 36 epochs per run were used for later analyses).

Step 2: calculation of band power for each epoch
For each participant, spectral band powers of delta (1–4Hz),

theta (4–8Hz), low alpha (8–10Hz), high alpha (10–13Hz), low
beta (13–20Hz), high beta (20–30Hz), and gamma (30–45Hz)
were extracted from each epoch using fast Fourier Transform
(FFT). Considering a specific band, let BPrij be the band power

of the ith epoch recorded from the jth electrode of a specific scalp
region, where r ∈ {1, 2} denotes the rth run of the resting state,
and, for example, j = 1, 2, . . . , 7 for the frontal region. Note that
n = 35 for some of the 74 participants (the nine aforementioned),
and n = 36 for the remaining 65 participants.

Step 3: computation of the average power vector for each
scalp region

Then, for each band and for each run, we extracted the
averaged powers of each 6-s epoch across the electrodes in a given
scalp region,

BPri =
1

ne

ne
∑

j=1

BPrij (1)

where ne is the number of electrodes in the scalp region of
interest, and i denotes the ith epoch. Thus, for a given scalp
region, the average scalp powers of the seven different bands
corresponding to the ith epoch were then concatenated to form a
power vector pri of dimension 7, where r denotes the run number
of resting-state EEG recordings (1 or 2 in this case).
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FIGURE 2 | Layout of the 30 recording electrodes. The positions of the electrodes follow the International 10-20 system. References were at A1 and A2 positions,

and the ground electrode was at the forehead (GND). The entire scalp region was divided into six different regions for analysis, namely, frontal (FP1, FP2, F3, F4, F7,

F8, Fz), central (FC3, FC4, FCz, C3, C4, Cz), parietal (CP3, CP4, CPz, P3, P4, Pz), occipital (O1, O2, Cz), left temporal (FT7, T3, TP7, T5), and right temporal (FT8, T4,

TP8, T6) regions.

Step 4: calculation of between-run similarity for each
participant and each scalp region

The aim here is to calculate the similarity between the EEG
power vectors of the two runs for each scalp region and for each
participant. Supposing that sij denotes the similarity between the
average scalp powers of the ith (i = 1, . . . , n) and jth (i =

1, . . . , m) epochs in the 1st and the 2nd run of the resting-state
EEGs, the similarity can bemeasured by the Euclidean distance as

sij =
1

∥

∥

∥
p2j − p1i

∥

∥

∥

(2)

A higher value of sij corresponds to a higher between-run
similarity between the vectors p1i and p2j . Then, calculating the

similarities between all possible pairs of p1i and p2j and then

averaging all the similarities will yield the averaged between-run
similarity for a specific scalp region,

S =
1

n×m

n
∑

i=1

m
∑

j=1

sij (3)

Step 5: standardization
The value of sij could be very small, because the distance

between vectors (
∥

∥

∥
p2j − p1i

∥

∥

∥
) is considerably large in most cases.

As a result, the value of the between-run similarity could
approach to zero. Therefore, for the ith participant (i =

1, 2, . . . , 74), we further standardize his/her BRS S (i) using the
HC group as the benchmark,

S (i) =
S (i) −mean (HC)

std (HC)
(4)

wheremean (HC) and std (HC)stand for the mean and standard
deviation of the between-run similarity values calculated from
the HCs, respectively. There are two primary reasons behind
performing standardization in this study. First, since the raw BRS
values are generally small, standardization will help zoom in on
the potential differences, if any, between groups. Second, in the
field of clinical science, a common approach to quantitatively
evaluate the level of dysfunction or impairments of individuals
with clinical diagnosis is to perform standardization based
on data from the healthy population (e.g., IQ, depression
levels, cognitive declination, etc.). Accordingly, we apply the
same concept to perform the study-driven standardization of
the task-induced BRS based on data from HCs in the same
study. In other words, data from healthy controls is treated
as a distribution reference for estimating how far the task-
induced BRS of individuals with MCI or AD deviates from the
healthy population.
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After performing the above five steps, six BRS values (i.e.,
six scalp regions) for each of the 74 participants were obtained.
Each BRS represents the task-induced intra-subject variation
of resting-state EEG power in a specific scalp region. A
high between-run similarity corresponds to a low intra-subject
variation between the two separate runs of resting states.

Classification
Two commonly used classifiers were adopted for classification, a
linear discriminant analysis (LDA) and a support vector machine
(SVM) classifier. LDA finds a linear decision boundary in the
original space of patterns to separate classes. Its decision function
is given by

DLDA (x) = (µP − µN)t 6−1x−

1

2
(µP − µN)t 6−1 (µP + µN) − ln

(

CPπN

CNπP

)

, (5)

where x ∈Rdis test data, t denotes the transpose of a matrix,
µP, and µN are is the mean vectors of the training data of the
positive and negative classes, respectively, 6 is the covariance
matrix of the training data, CP and CN are the penalty weight
for the positive and negative classes, respectively, and πP and
πN are the a priori probabilities of the positive and negative
classes, respectively. Here, the penalty weights for both classes
were set the same, i.e., CP = CN . Note that the feature dimension
of the data d (d ∈ [1, 6]) represents how many between-run
similarity features are used. For example, d = 6 if the between-
run similarities of all the six scalp regions are used as the features,
and d = 1 if only a between-run similarity of the scalp regions is
adopted as the feature for classification.

SVM maps the training data
{

(xi, yi)
}L

i=1
, yi ∈ {−1,+1}are

is class labels, into a higher-dimensional feature space from the
original space Rd via a non-linear mapping ϕ, and then finds
a hyperplane wtϕ(x) + b = 0,which maximizes the margin of
separation and minimizes the training errors, formulated as

Minimize
1

2
‖w‖2 + C

N
∑

i=1

ξi

subject to yi
(

wtϕ (xi) + b
)

− 1+ ξi ≥ 0 ∀i

ξ i ≥ 0 ∀i (6)

where w and b are the weight vector and the bias of the
SVM hyperplane, respectively, ξi is slack variables representing
the error measures of training data points, and Cis a penalty
weight. For an unseen data x, its class label is predicted by the
decision function

DSVM (x) =
∑

xi∈SV

αiyiK (xi,x) + b, (7)

where αi are is Lagrange multipliers [obtained by solving the
dual problem of (6)], SV denotes the set of support vectors (the
training data points whose Lagrange multipliers satisfying 0 <

αi ≤ C), and K is the kernel function. In this study, the radial
basis function (RBF) function K (xi,x) = exp(−γ ‖xi − x‖2)

was chosen as the kernel, where γ is the kernel parameter. The
optimal value of the bias b can be determined by the Kuhn–
Tucker condition. The test data x is classified as positive if
DSVM (x) > 0; negative otherwise.

Performance Evaluation and Parameter
Optimization
After performing feature extraction, we obtained 74 data (74
vectors) from the 74 participants, and each data consists
of d between-run similarity values from d different scalp
regions. Although the main goal of this study was to examine
the feasibility of using between-run similarity features to
achieve promising MCI-HC classification performance, we still
performed three different binary classification tasks (AD vs.
MCI, MCI vs. HC, and AD vs. HC) to see if such intra-subject
variability could contribute to the classification between AD and
MCI or between AD and HC.

Similar to previous EEG studies, the number of available
EEG data in this study is limited, mainly because the time for
recruiting participants was rather long. Performing the usual 10-
or 5-fold cross validation is not appropriate, because the number
of test data used for testing in each fold is considerably small: one
misclassified set of data will result in a large error rate in each
fold. Therefore, following the previous studies (Liao et al., 2017;
Wu et al., 2018), LOPO-CV was adopted as the performance
evaluation method to test the participant-independent accuracy,
which predicts how well the results of the proposed method will
generalize to unseen data. Take the classification of MCI (24
participants) vs. HC (27 participants) as an example. In each fold
of LOPO-CV, data (d-dimensional vectors) from 50 participants
were used to train the classifier, and then the d-dimensional data
from the remaining participant served as the test data. This step
was repeated until the data of every participant had been used
as test data once. We then recorded the classification accuracy,
computed as the number of correctly classified participants
divided by the total number of participants from two groups.
Hereafter, the classification accuracy or accuracy would be used
to refer to those obtained by the LOPO-CV procedure.

Both the proposed between-run similarity feature and the
LDA classifier involve no free parameter. SVM involves two
parameters (C and γ ). We optimized the parameters of SVM
using the LOPO-CV and grid search methods. The values of C
and γ were searched in the same set {2−29, 2−27, . . . , 227, 229},
leading to 961 parameter grids. The best parameter grid results
in the highest classification accuracy.

Feature Selection
The question now is how to determine the best feature subset to
gain the highest classification accuracy. In other words, the goal is
to determine the optimal value of the feature dimension d: which
combination of the between-run similarities of the scalp regions
is the best for classification. To this end, we adopted a commonly
used wrapper-based feature selection method—the sequential
forward selection (SFS) algorithm (Guyon and Elisseeff, 2003).

Let Ns be the number of scalp regions (Ns = 6). The optimal
feature selection procedure based on the SFS algorithm initially
finds the best single between-run similarity feature of a scalp
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region, which gives the highest LOPO-CV classification accuracy.
It is noted that here the LOPO-CV was performed on the data
of the participants from two groups, as mentioned in section
Performance Evaluation and Parameter Optimization (e.g., 51
data in MCI vs. HC). Subsequently, Ns − 1 pairs of features of
the scalp regions are formed by combining each of the remaining
features of the scalp regions with the best single feature, and
the best pair (i.e., the pair that gives the highest LOPO-CV
classification accuracy) is selected. Following the same logic,
Ns − 2 triples of features are formed using each of the remaining
features of the scalp regions and the best feature pair, and the
best triple is selected (i.e., the triple that gives the highest LOPO-
CV classification accuracy). This procedure is repeated until all
the Ns features are tested. Finally, the best feature set is the
one resulting in the highest LOPO-CV classification accuracy. In
other words, we can rank these six features from the best to the
worst after this SFS-based procedure. The top-n-ranked features
giving the highest LOPO-CV classification accuracy form the
optimal feature subset, where 1 ≤ n ≤ Ns.

SFS is a wrapper-based greedy approach for feature selection,
which has the advantage of achieving better accuracy than filter-
based feature selection approach, but with the disadvantage
of being more time-consuming (Guyon and Elisseeff, 2003).
Fortunately, the number of the BRS feature candidates is
only six, and thus the SFS algorithm used in this study is
not computationally expensive. Wrapper approaches include
the interaction between feature subset and classification model
(Saeys et al., 2007). In other words, wrapper-based methods
are classifier-specific in which the methods search for the best
subset of features that optimizes the generalization classification
accuracy of a chosen classifier (Kudo and Sklansky, 2000), and
the generalization performance used for evaluating the features
is often estimated by k-fold cross validation or LOPO-CV (Wu
et al., 2018). Therefore, for the classifiers LDA and SVM, the
optimal BRS feature subset selected by the SFS method could
be different, as presented in the results (Figure 6). Even using
the same SVM classifier, the optimal feature subset selected
by the SFS algorithm could also be different for different
SVM parameters (different values of C and γ ), because the
generalization performance of SVM varies with the parameter
grid (C, γ ). In summary, for the SVM classifier, the SFS-
based feature selection and the grid-search-based parameter
determination must be carried out together. The combination
of the optimal BRS feature subset and the SVM classifier
with the optimal hyperparameter gives the highest LOPO-CV
classification accuracy. The SFS-based feature selection and
the grid-search-based parameter determination procedure are
summarized in Figure 3.

As illustrated in this figure, LOPO-CV is performed to
estimate the generalization performance under the condition
that a parameter grid and a feature subset have been given in
advance. The calculated classification accuracy based on LOPO-
CV is subsequently used for evaluating the chosen parameter
grid and the feature subset. In other words, in each fold of the
LOPO-CV process in this study, the test data (a BRS feature
vector) from one participant is involved in the feature selection
and the parameter optimization procedure. Accordingly, the test

data in this LOPO-CV process are, in fact, validation data, not
independent test data.

Statistical Analysis
Since the data of between-run similarities did not pass the
Kolmogorov–Smirnov test, we performed the Wilcoxon rank
sum test to statistically test three pre-planned between-group
comparisons: AD vs. HC, MCI vs. HC, and AD vs. MCI. Since
each between-group comparison included six tests (data of 6
scalp regions), we used a Bonferroni corrected α level of 0.0083
(0.05/6) to correct for multiple comparison.

RESULTS

Behavior Performance Among Groups in
Different DMTS Tasks
Figure 4 reveals that the mean accuracy of DTMS tasks gradually
increases from AD, MCI, to HC, except in Type 2 of the DMTS
task where the MCI group showed higher mean accuracy than
the HC group. All the three groups showed worst performance
in Type 2 working memory task, as compared with the other two
types. The between-group comparison in each type of working
memory tasks revealed a significant difference in accuracy
between the AD vs. HC group in Type 1 (p = 0.003) and Type
3 (p= 0.012), and AD vs. MCI group in Type 2 (p= 0.038).

Comparing the Between-Run Similarities
Among the HC, MCI, and AD Groups
Figure 5A shows the EEG scalp topography of between-run
similarities (non-standardized) of resting-state EEGs in each
group. The HC group showed the highest between-run similarity
over all the scalp regions. To further compare the group
difference in between-run similarities, we perform statistical tests
on the standardized between-run similarity (see Method for
detailed calculation) on each scalp region across all groups. As
shown in Figure 5B, the HC group shows the highest median
values of between-run similarities (standardized) among the
three groups at all the scalp regions (Figure 5B). However, there
was significant group difference in the between-run similarity
only in the frontal (p = 0.006, Bonferroni corrected alpha =

0.0083) and central (p = 0.004, Bonferroni corrected alpha =

0.0083) scalp regions in the MCI vs. HC comparison.
Figure 6 further illustrates the significant group difference in

spectral power based BRS within each individual band (delta,
theta, low alpha, high alpha, low beta, high beta, gamma) across
the whole scalp region for the comparison of AD vs. HC, MCI
vs. HC, and AD vs. MCI. The results show that the task-induced
intra-subject variability of resting-state EEG is larger (lower BRS
values) in the MCI group than the HC group over the frontal,
central, and parietal scalp regions in low-beta, high-beta, and
gamma bands; larger in the AD group than theHC group over the
frontal, parietal, and occipital scalp regions in the delta and theta
bands. Furthermore, in line with the results shown in Figure 5A,
almost no statistically significant difference is found between the
AD and MCI groups. These findings indicated that both low
and high frequencies contribute to spectral power-based BRS
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FIGURE 3 | SFS-based between-run similarity (BRS) feature selection and the grid-search-based parameter determination procedure based on the use of an SVM

classifier.

FIGURE 4 | Performance comparison among groups in each type of working memory tasks. Note: error bars indicate standard errors of the means of the correct

response rate and * refers to p < 0.05.

difference between AD vs. HC or between MCI vs. HC but with
different topographic distributions.

Comparing the Classification Accuracies
Between the Three Binary Classifications
Classification results of the three binary classification tasks are
shown in Figure 6, where for each classification task the SFS

method was used to determine the best between-run similarity
feature subset. The highest classification accuracy for the three
classifications of AD vs. HC, MCI vs. HC, and AD vs. MCI,
was 74.47, 80.39, and 78%, respectively, and these results were
all achieved by SVM. The results indicate that the between-run
similarity can be a good candidate to classify between different
groups, especially between MCI vs. HC. Moreover, when the
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FIGURE 5 | Comparisons of between-run similarities across the AD, MCI, and HC groups. (A) The topographic distribution of the non-standardized between-run

similarities of resting-state EEGs for each group. (B) Boxplots of the standardized between-run similarities for each group in different scalp regions. *p < 0.05; **p <

0.05/6.

SVM classifier was used, the highest accuracy 80.39% of the
MCI-HC classification was achieved by only one feature (the
between-run similarity of the parietal scalp region that includes
six electrodes). Similarly, the highest accuracy of 74.47% of the
AD-MCI classification was achieved when only one between-
run similarity feature extracted from the four electrodes of the
left temporal region was used. Considering the feasibility in the
context of community healthcare, both classification accuracy
and usability are critical. A small number of electrodes can largely
shorten the time needed for preparation. Therefore, the results
demonstrate the high usability of the proposed between-run
similarity feature in both MCI-HC and AD-MCI classifications.

Comparing Classification Performances
Between Other Features Extracted From
Single-Run Resting-State EEGs and
Between-Run Similarity Features
We further compared the classification performance of the
proposed between-run similarity feature with other widely used

features extracted from single-run (1st run) resting-state EEGs in
different scalp regions in the three binary classification problems,
namely, spectral power (SP), complexity, and connectivity
features. Here, a simple LDA classifier was employed.

Fractal dimension (FD) has been widely used for measuring
the complexity of an EEG signal. The FD of a signal can be
estimated by different methods, such as those of Katz’s and
Higuchi’s methods and the correlation dimension. Katz’s FD
(KFD) (Katz, 1988) has been a widely accepted approach, because
it involves no free parameter and is, therefore, computationally
cheap. Also, it is less sensitive to noise in comparison with the
Higuchi’s FD (Esteller et al., 2001), and has recently shown its
high sensitivity to the change of in a mental state in various
BCI applications, for example, the EEG-based detection of
concentration level (Yeh et al., 2018). Coherence, a measure
for the synchrony between two electrodes’ EEG signals of two
electrodes at a specific frequency band or point, is frequently-
applied as an EEG connectivity feature (Liao et al., 2017). The
feature extraction procedures for the three types of features to be
compared are as follows.
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FIGURE 6 | Significant group difference in spectral power-based BRS values within individual bands (delta, theta, low alpha, high alpha, low beta, high beta, gamma)

for the comparison of [AD minus HC], [MCI minus HC] and [AD minus MCI]. Here we showed the topography of p-values; red indicates a negative difference, and blue

indicates a positive difference.

• Spectral power (SP). Take theta SP of the frontal region as an
example. For each electrode, we first calculated the theta band
power values from the n EEG epochs of the 1st run resting-state
EEGs separately, and then averaged the n values. The seven
average theta power features from the seven frontal electrodes
were sent to the classifier for classification (i.e., d = 7).

• Katz’s FD (KFD). As an example, the frontal-region KFD was
calculated with the following steps: 1) for each electrode, we
calculated the KFD values from the n EEG epochs of the 1st

run resting-state EEGs separately; 2) then we averaged the
nKFD values across epochs; 3) finally the seven averaged KFD
features from the seven frontal electrodes were sent to the
LDA classifier.

• Coherence (Coh). Take delta-band coherence in the frontal
region as an example. For each pair of electrodes, we calculated
the delta-band coherence values from the n EEG epochs of the
1st run resting-state EEGs separately, and then averaged the
n values to obtain an average coherence feature. Since there
were seven electrodes in the frontal region, we obtained totally
7×(7−1)

2 = 21 coherence features of delta band, which form a
21-dimensional feature vector fed into the LDA classifier.

The results based on spectral power, KFD, and coherence features
are listed in Table 2.

The spectral powers did not show satisfactory performance for
any of the three classification problems. The highest accuracies
for the AD-HC, MCI-HC, and AD-MCI classifications were
64, 64.71, and 61.7%, respectively, which were all slightly
higher than the chance level (50%). Similar accuracies
were also found for coherence. The best accuracies for the
three binary classifications (AD-HC, MCI-HC, and AD-
MCI), for example, were 64 (central), 64.71 (left temporal),
and 62.34% (frontal). Compared with spectral power and
coherence features, KFD performs relatively worse. All

the accuracies from KFD were close to the chance level
(< 60%).

By further comparing the LDA-based results of the between-
run similarity features shown in Figure 7, where the best
accuracies are 68 (AD vs. HC: two features), 72.55 (MCI vs. HC:
two features), and 51.06% (AD vs. MCI), we can see that the
between-run similarity feature outperforms the three types of
widely used features extracted from single-run resting-state EEGs
in both the AD-HC and MCI-HC classifications.

DISCUSSION

In the brain-computer interface (BCI) community, intra-subject
variability has been a challenge to be overcome. However,
in this study, we have shown that in terms of classifying
between individuals with MCI and healthy one, the intra-subject
variability could be an advantage instead. We therefore proposed
the between-run similarity feature to represent the task-induced
intra-subject variability of the EEGs recorded in two separate
runs of resting-states, before and after a challenging working
memory task (i.e., the DMTS). The primary goal of this study
was not to propose a novel EEG feature that can perform
better than any other existing features but to propose a novel
feature extraction framework by which the extracted feature
(i.e., the tasked-induced intra-subject variability) can provide
more discriminative information for identifying individuals
with MCI, and perform better than the usual architecture of
feature extraction from single-run resting-state EEGs. The results
have demonstrated that the between-run similarity feature is
indeed able to achieve high classification performance, especially
in the MCI vs. HC classification (80.39%). It is believed
that the accuracy can be further improved by combing the
proposed between-run similarity feature and other features
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TABLE 2 | Comparison of classification accuracies between different features and scalp regions using LDA classifier (in %).

Features Frontal Central Parietal Occipital Left temporal Right temporal

AD vs. HC δ (SP/Coh) 58/58 52/64 46/54 38/36 60/60 44/58

θ (SP/Coh) 64/62 56/54 56/38 60/62 54/62 50/62

Lα(SP/Coh) 54/54 56/64 52/62 54/50 60/64 48/46

Hα(SP/Coh) 58/60 54/60 54/54 48/48 58/58 50/64

Lβ(SP/Coh) 58/60 54/52 44/52 54/40 58/48 50/48

Hβ(SP/Coh) 62/58 60/52 50/52 48/42 60/52 44/56

γ (SP/Coh) 64/52 44/34 42/42 42/42 62/38 46/54

KFD 56 46 50 44 56 54

MCI vs. HC δ (SP/Coh) 50.98/43.14 54.90/52.94 54.90/45.10 35.29/35.29 45.10/45.10 47.06/58.82

θ (SP/Coh) 49.02/58.82 45.10/52.94 62.75/56.86 37.25/31.37 54.90/60.78 47.06/29.41

Lα(SP/Coh) 47.06/41.18 43.14/45.10 54.90/43.14 45.10/43.14 52.94/50.98 54.90/37.25

Hα(SP/Coh) 56.86/47.06 50.98/43.14 47.06/56.86 39.22/49.02 43.14/50.98 50.98/47.06

Lβ(SP/Coh) 56.86/49.02 58.82/60.78 47.06/62.75 47.06/62.75 58.82/43.14 43.14/54.90

Hβ(SP/Coh) 64.71/47.06 60.78/54.90 52.94/50.98 39.22/39.22 52.94/64.71 49.02/39.22

γ (SP/Coh) 64.71/49.02 52.94/31.37 47.06/45.10 45.10/52.94 62.75/52.94 52.94/50.98

KFD 58.82 56.86 54.90 50.98 56.86 43.14

AD vs. MCI δ (SP/Coh) 36.17/46.81 44.68/55.32 40.43/46.81 36.17/31.91 40.43/57.45 57.45/36.17

θ (SP/Coh) 55.32/46.81 59.57/59.57 61.70/53.19 44.68/51.06 57.45/53.19 42.55/53.19

Lα(SP/Coh) 61.70/62.34 53.19/44.68 48.94/44.68 36.17/62.34 34.04/61.70 29.79/46.81

Hα(SP/Coh) 61.70/46.81 61.70/34.04 53.19/31.91 31.91/61.70 38.30/42.55 34.04/59.57

Lβ(SP/Coh) 46.81/51.06 57.45/42.55 48.94/38.30 38.30/62.34 34.04/48.94 29.79/59.57

Hβ(SP/Coh) 40.43/55.32 55.32/48.94 48.94/38.30 40.43/51.06 31.91/59.57 36.17/61.70

γ (SP/Coh) 38.30/40.43 40.43/31.91 44.68/34.04 42.55/59.57 42.55/48.94 44.68/62.34

KFD 44.68 46.81 57.45 44.68 48.94 40.43

Spectral power and coherence features are based on different frequency bands, namely, delta (δ), theta (θ ), low alpha (Lα), high alpha (Hα), low beta (Lβ), high beta (Hβ), and gamma.

LOPO-CV classification accuracies higher than or equal to 60% were in boldface.

FIGURE 7 | Comparison of accuracies among three binary classifications. For each classification, the sequential forward selection (SFS) algorithm was used the find

the optimal feature subset. Take AD-HC classification as an example. The best feature subset contains four features (the between-run similarities of right temporal,

frontal, parietal, and central scalp regions) when a support vector machine (SVM) was used as the classifier. Accuracy decreases to 42% if all the six between-run

similarity features were used, i.e., without feature selection.

that showed encouraging performance [e.g., multiscale entropy
(MSE) Maturana-Candelas et al., 2019; Sun et al., 2020].

Previously, variants of the DMTS tasks have been tested in
few recent EEG-based MCI studies. These few studies focused
statistical analysis on the task-related EEG (EEGs recorded
during performing the task) event-related potentials (e.g., Li
et al., 2017). Task-related EEGs may contain discriminative

information for classification. However, task-related EEGs
sometimes suffer from signal contamination issue from great
EOG/EMG artifacts because of excessive eye and body (especially
the neck and facial actions) movements, which are not easy
to remove completely. In contrast, resting-state EEGs are less
likely to be contaminated by artifacts, and thus relatively
easy to implement in clinical practice. The proposed feature
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extraction framework records resting-state EEGs before and
after the DMTS-based working memory task and extract task-
induced intra-subject variability features. This “hybrid” approach
is unique, because it not only preserves the advantage of the
resting-state EEGs (i.e., cleaner signals), it also capitalizes on the
clinical traits of working memory dysfunction of the MCI group,
which is presumably more informative.

Few recent studies have also used spectral features to
characterizeMCI, such as band power (absolute power) (Rabbani
et al., 2016; Ruiz-Gómez et al., 2018a; Kashefpoor et al., 2019)
and relative power (Musaeus et al., 2018; Farina et al., 2020).
The reported accuracies in these studies ranged between 60
and 80%. It is a bit unfair to compare the accuracy of the
between-run similarity feature with the accuracies reported in
those bodies of literature, because there were differences in
terms of experimental settings as well as the inclusion and
exclusion criteria of participants. Nevertheless, based on the same
participants and settings, the results have indicated that, for both
the MCI-HC and AD-HC classifications, the spectral power-
based between-run similarity is superior to the spectral power
feature extracted from a single run resting-state EEGs.

Working memory performance is an important indicator for
evaluating memory ability. DMTS task has been largely used to
evaluate working memory ability in animals, such as pigeons
(Case et al., 2015; Zentall and Smith, 2016), monkey (Pontecorvo
and Evans, 1985), and hens (Foster et al., 1995). In human
participants, DMTS was also used to study working memory
performance in alcohol-dependent (Bowden et al., 1992) and
nicotine-dependent individuals (Janes et al., 2013). In addition,
the voltage peak-based qEEG ratio of posterior parietal to the
dorsolateral prefrontal cortex (DLPFC) extracted from task-
induced EEG signals based on DMTS showed high performance
for classification between normal aging individuals and patients
with mild AD (94% specificity and 88% sensitivity) (Sneddon
et al., 2005). As expected, this study demonstrated that working
memory performance gradually decreases from the HC to MCI
to AD group, except in the Type 2 task. All the three groups
performed poorly in the Type 2 task, likely because of the larger
memory loads of the Type 2 task (participants need to remember
the locations of seven circles). A DMTS task with heavy memory
loads can lead to decreases in accuracy (Adamson et al., 2000).

As Figure 5 reveals, the lower between-run similarities in the
AD andMCI groups than the HC group at the frontal and central
scalp regions suggest a more noticeable difference between
resting-state EEGs recorded before and after a challenging
working memory task in the AD and MCI groups. The higher
task-induced intra-subject variability suggests that performing
cognitively exhausting working memory tasks causes greater
disturbance to the degenerated brains in individuals with MCI or
AD (Kirova et al., 2015), which then leads to greater difficulties to
restore the same resting state as measured before performing the
task. A useful analogy is comparing the difference of heart rate
variability (HRV) or rhythm of breath during resting state before
and after a 5K jogging between individuals with cardiovascular
dysfunction and normal people. Although the spatial resolution
of EEG makes it difficult to measure the exact signal source,
the current frontally oriented results may very likely reflect the

common findings on the critical role of prefrontal cortices in
working memory and executive function (Guntekin et al., 2008;
Papadaniil et al., 2016; Jiang et al., 2021).

The general patterns of lower between-run similarities in the
AD andMCI groups than the HC group (Figures 5A, 6) seems to
also echo the observation of lower connectivity across electrodes
in the AD and MCI groups than the HC group based on single-
run resting-state EEGs (Michels et al., 2017; Ruiz-Gómez et al.,
2018a,b). For example, results from cross-sample entropy-based
connectivity (Ruiz-Gómez et al., 2018b) revealed that both the
AD and MCI groups showed an overall lower electrode-to-
electrode connectivity than the HC group in the frequency band
of 14–19Hz, which is very close to the low beta band in this study.
Both the loss of electrode-to-electrode connectivity in previous
studies and the decrease in task-induced intra-subject variation
(i.e., a decreased capability to maintain stable resting-state EEG
patterns after cognitively exhausting tasks) in this study could
be associated with the reduction in cortical-cortical connections
or gray matters observed in the brains of individuals with AD
or MCI (Jeong, 2004; Maestu et al., 2021) compared to the
HC group. Future studies combining structural and functional
brain scans (e.g., voxel-based morphometry, white matter fiber
tracking, or functional connectivity) and EEG recordings will be
required to verify this link.

Somewhat counter-intuitively, the binary classification
accuracy is higher for the MCI vs. HC classification than for
the AD vs. HC classification. This result actually echoes the
statistical results showing that the between-run similarity values
over the frontal and central scalp regions were significant
between MCI and HC but not between AD vs. HC. A possible
explanation may attribute to the observation that some patients
with AD were not able to keep up with the DMTS tasks
because of high difficulties. Thus, the after-task resting EEGs
could be quite similar to the before-task resting EEGs in
these patients with AD, because they simply did not spend
too much effort on the tasks, as compared with the MCI and
HC group. This speculation could be partially supported by
the significantly lower DMTS performance for the AD group
as compares with the HC (Types 1 and 3) and MCI (Type
2) groups.

If we assumed that MCI was simply a mild AD, then the
difference between them could follow a somewhat linear gradient
from mild to moderate to severe in terms of the severity degrees
of dementia. If this was true, it would be reasonable to predict
that the classification problem of AD vs. MCI vs. HC may
be more easily solved: there could exist a single EEG feature
that covaries with severity degree, which can then be used for
assessing cognitive dysfunction degree, with a higher degree
corresponding to a higher probability/risk to be AD. Another
possibility would be that there exists a feature set such that in
the feature space, the class separability between AD and HC will
be larger than that between MCI and HC. However, the results
from previous studies were controversial and do not support the
assumption above. Although some previous results have shown
that AD-MCI classification accuracy is higher than the MCI-HC
classification accuracy (Ieracitano et al., 2019; Meghdadi et al.,
2021), some other studies have reported the opposite (Sharma
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et al., 2019) or similar (Fiscon et al., 2018; Ieracitano et al.,
2020) result patterns. The reported result in this study shows
that MCI-HC (80.39%) is slightly higher than AD-HC (78%) in
classification. However, such an accuracy drop of 2.3% reflects
only onemoremisclassified participant in the LOPO-CV process,
because in the AD-HC classification, misclassified data in a
testing fold of the LOPO-CV resulted in an increase in error
rate (1/50 = 2%). Accordingly, in this study, the classification
results on AD vs. HC and MCI vs. HC may be also viewed
as similar.

From the view of psychopathology, there is no clear evidence
either to assume that MCI and AD can be viewed as a
gradient change or severity along the same clinical trait.
First, according to the diagnostic criteria based on NINCDS-
ADRDA and DSM-5, MCI is defined as a distinct syndrome
of abnormal cognitive change deviating from the normal
aging process, but is not grounded to dementia. In other
words, MCI is not considered as early dementia (Bruscoli
and Lovestone, 2004). Second, MCI in 32% of individuals
developed into AD at the 5th-year follow-up, as aforementioned.
In other words, MCI in about 70% of individuals would
not process to become AD in 5 years. In contrast, many
healthy elderly people develop AD directly without going
through the MCI stage in clinical practice, meaning that
the MCI stage is not necessarily the only transient state
between healthy conditions and AD. Although MCI has a
relative high risk of developing into AD, it is not the only
risk factor. Other risk factors for AD include hypertension,
type 2 diabetes mellitus, dyslipidemia, cardiovascular defects,
and alteration of the apolipoprotein E4 (Livingston et al.,
2020). All this evidence may help explain why AD-HC
classification accuracy is not necessarily higher than the MCI-
HC classification.

Being the first one to apply intra-subject variability in EEGs
as features for the classification between AD/MCI vs, HC, this
study suffers several limitations that can be further addressed
in the near future. First, there are many different similarity-
based measures. Although the Euclidean distance is a straight
forward approach for measuring signal similarity, its application
in high-dimensional data is more limited (Grootendorst, 2021).
It may be possible to improve classification performance further
using other types of similarity measures. For example, in a
recent study, Hellinger distance and Bhattacharyya distance
showed their effectiveness with highly noisy EEG signals (Chen
G. et al., 2020). Although comparisons between different
approaches of similarity measures are beyond the scope of
this study, they certainly merit attention in evaluating the
effectiveness of using different between-run similarity measures
as neurophysiological features for classifying neurodegenerative
diseases. Second, to be able to build a reliable classification
model, we would certainly need a much larger sample size,
especially in the context of clinical practices. Therefore, future
studies with a much larger sample size would be necessary to
further test the validity and reliability of task-induced intra-
subject variability for the classification between AD, MCI, and
HC groups.

Last but not least, the core concept behind this novel feature
extraction framework is highly flexible to be integrated with
other types of EEG features, complexity feature for example.
In this study, since we hoped to focus the investigation on
whether the new framework may lead to an improvement in
the MCI-HC classification, we, therefore, decided to implement
it with the more typical spectral power features and test the
effectiveness of the spectral power-based BRS. On another note,
other types of EEG feature can also be applied to quantify
the signal similarity between the two separate runs of resting-
state EEGs, as long as we replace the spectral powers with
other EEG features in steps 2–4 in the calculation of the
BRS. However, such a comparison is beyond the scope of
this study. Nevertheless, based on the results of this study,
it is expected that the task-induced intra-subject variability
based on other types of features could also perform better
than single-run resting-state EEGs and achieve even higher
classification performance. In the future, further investigation
on intra-subject variability based on other features may provide
additional insights into how the EEG dynamics of individuals
with MCI would change before and after performing working
memory tasks (e.g., loss of complexity or irregularity in EEGs).

CONCLUSION

This study investigated the value of using intra-subject
EEG variability between two separate runs of resting states,
before and after a sequence of challenging working memory
tasks, as a feature for the classification between individuals
with MCI vs. healthy controls. We derived a between-run
EEG power similarity as a measure of the intra-subject
variability, and applied the machine learning methods (SFS-
based feature selection and SVM classification) to determine
the most sensitive scalp regions for classification. The main
findings are 2-fold. First, the between-run similarity provided
encouragingly high LOPO-CV classification accuracy (∼80%) for
the MCI-HC and AD-HC classifications, and such performance
was superior to the spectral power features extracted from
single-run resting-state EEGs. Second, the feature selection
results suggested that the 80% MCI-HC classification accuracy
could be achieved using an SVM classifier and the six
electrodes over the parietal scalp region. Moreover, the
results were obtained by LOPO-CV. Because of the small
EEG dataset, the LOPO-CV process was performed together
with the feature selection and the parameter determination
procedure. Follow-up studies will be needed to test the
proposed methods on an independent dataset to further
examine its generalization performance. Indeed, the intra-
subject variability has been a challenging issue in terms
of stability of BCI application. In contrast and counter-
intuitively, the results reveal that the intra-subject variability
between two resting-state EEG data collected before and
after a challenging memory task can actually be a promising
approach for MCI-HC classification. This study, therefore,
shed new light on how we may transform the disadvantage
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of intra-subject variability into an advantage in the field of
BCI application.
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