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Editorial on the Research Topic

The Role of HMGB1 in Immunity

High mobility group box 1 (HMGB1) is an evolutionarily conserved nuclear protein that can be
released by almost all cell types. Scientists have uncovered a variety of molecular mechanisms
by which HMGB1 in both immune and non-immune cells modulates the nature and magnitude
of immune responses (1–3). In recent years, HMGB1-targeted therapies have been exploited in
multiple preclinical studies of inflammatory conditions and there is robust clinical evidence for
HMGB1 levels as a potential biomarker for early prediction or progression of various diseases.
However, it is not presently possible to specifically target HMGB1 in any clinical setting. A
significant obstacle to developing therapeutics lies in gaps in knowledge of the post-translational
modification of HMGB1 as well as the timing and type of microenvironments to which HMGB1
is exposed.

This Research Topic provides a comprehensive overview of current understanding of the
contribution of HMGB1 to various diseases and HMGB1 specific therapeutics. Nine articles are
included: five original articles, three review articles, and one mini-review. The authors invited
the scientific contributors to this collection based on their unique and pioneering discoveries on
the role of HMGB1 in physiological and pathological conditions including: (i) HMGB1-related
immune functions (ii) Post-translational modification and secretion mechanisms of HMGB1 (iii)
Molecular pathways activated by HMGB1 in acute lung injury, lupus, cancers, and other diseases
(iv) Agents to modulate HMGB1 function.

HMGB1-RELATED IMMUNE FUNCTIONS

While many researchers have focused on HMGB1 as an inflammatory mediator that prolongs
various inflammatory diseases, another aspect of HMGB1, which is related to its role in tissue
healing and regeneration, is being highlighted (4, 5). Yamashiro et al. describe the potential
tolerogenic role of HMGB1 in periodontal disease progress, including the cause of inflammation
and, conversely, regeneration of periodontal tissue. Further studies are needed regarding HMGB1
isoforms and their receptors that play major roles in the oral cavity to open up opportunities
for therapeutics.

Serum HMGB1 is elevated in systemic lupus erythematosus (SLE) patients, and it correlates
with disease activity (6). There are several preclinical studies of HMGB1-specific antagonists in
experimental lupus models showing inconsistent results. Liu et al. provide a mini-review about
the role of HMGB1 in SLE disease phenotypes and a novel agent forcing anti-inflammatory
macrophages polarization.
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In the tumor microenvironment, HMGB1 has a protective
role in cancer immunity during the early stage of disease.
In contrast, sustained HMGB1 recruits immunosuppressive
myeloid-derived suppressor cells and regulatory T cells during
tumor progression (7). Soloff et al. provide insight into how
HMGB1 impacts the microenvironment of malignant pleural
effusions (MPEs). The level of HMGB1 was inversely correlated
to the diversity of γδ T cells in MPE. The authors suggest some
novel therapeutic strategies for targeted HMGB1-neutralization
and its usage in pleural effusions.

POST-TRANSLATIONAL MODIFICATION

AND SECRETION MECHANISMS OF

HMGB1

The dynamics of HMGB1 oxidation in health and disease
are unknown. Ferrara et al. confirmed our understanding of
functions of HMGB1 redox isoforms using novel applications
of in vivo-based assay. They demonstrate that the redox state of
HMGB1 is controlled at both tissue and cell levels, suggesting that
HMGB1 oxidation is a spatially regulated process. Kwak et al.
provide an overview of the protein secretion mechanisms. The
authors highlight the importance of multiple post-translational
modifications and the redox biology of HMGB1, focusing on the
vital role of HMGB1 oxidation in its secretion.

MOLECULAR PATHWAYS BY HMGB1 IN

HUMAN DISEASES

Sepsis is a life-threatening inflammatory condition with no
known cure. HMGB1 is a critical mediator of acute and
chronic inflammation in sepsis caused by endotoxin (8). Li
W. et al. assess a novel mechanism through which hepatocytes
secrete HMGB1 following LPS stimulation that is relevant to
sepsis pathogenesis and inflammatory diseases of the liver. The
cytoplasmic translocation and later release of HMGB1 from
hepatocytes are mediated by a TLR4, Caspase-11, and Gasdermin
D-dependent mechanism. HMGB1 is secreted in exosomes.
Kim et al. demonstrate the anti-inflammatory effect of sulfatide
in suppressing the secretion of HMGB1 and disrupting lipid
rafts following LPS stimulation. They suggest that sulfatide is
a potential therapeutic agent against sepsis. Li R. et al. explore
how HMGB1/PI3K/Akt/mTOR signaling participates in acute

lung injury and acute respiratory distress syndrome which are
characterized by persistent hypoxemia, disruption of the alveolar-
capillary barrier, and widespread inflammation in the lung.

AGENTS TO MODULATE HMGB1

FUNCTION

As mentioned above, HMGB1 antagonists have achieved
therapeutic success in a broad set of preclinical inflammatory
disease animal models. Yang et al. summarize recent advances in
the understanding of HMGB1 as a pro-inflammatory molecule.

Collectively, these articles provide information for other
researchers in the field that will eventually help develop novel

therapeutic approaches to regulate the function of HMGB1
for the benefit of patients. The next step should be to
translate these preclinical studies into clinical settings. Many
inflammatory diseases, including the current pandemic COVID-
19, are characterized by increased circulating HMGB1 levels
(9). HMGB1 possibly plays a role in the increased risk for
severe outcomes in COVID-19 patients with inflammatory
comorbidities. Overall, HMGB1 is relevant in many diseases and
research on HMGB1 can benefit all fields of medicine.

AUTHOR CONTRIBUTIONS

MS wrote the manuscript. BD and J-SS contributed to the
elaboration of the manuscript. All authors have approved it
for publication.

FUNDING

This work was supported by grants from the National Institute
of Allergy and Infectious Diseases of the National Institutes of
Health [R01AI135063 (MS) and P01AI02852 (BD)], the National
Research Foundation (NRF) of Korea (2017R1A2B3006704,
2019R1A6A1A03032869), the Research Center Program of
Institute for Basic Science (IBS) in Korea (IBS-R026-D1), and the
Brain Korea 21 PLUS Project for Medical Science (J-SS).

ACKNOWLEDGMENTS

We thank all the authors and contributors who have participated
and reviewers for their insightful comments, which made the
publication of this Research Topic possible.

REFERENCES

1. Andersson U, Tracey KJ. Molecular basis of applied biological

therapeutics. J Intern Med. (2011) 269:2–7. doi: 10.1111/j.1365-2796.2010.

02320.x

2. Baxevanis AD, Landsman D. The HMG-1 box protein family: classification

and functional relationships. Nucleic Acids Res. (1995) 23:1604–13.

doi: 10.1093/nar/23.9.1604

3. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):

nuclear weapon in the immune arsenal. Nat Rev Immunol. (2005) 5:331–42.

doi: 10.1038/nri1594

4. Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P,

Venereau E. High-mobility group box 1 protein orchestrates responses to tissue

damage via inflammation, innate and adaptive immunity, and tissue repair.

Immunol Rev. (2017) 280:74–82. doi: 10.1111/imr.12601

5. Venereau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front

Immunol. (2015) 6:422. doi: 10.3389/fimmu.2015.00422

6. Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of

inflammatory and autoimmune diseases. Mol Med. (2014) 20:138–46.

doi: 10.2119/molmed.2013.00164

7. Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt

P, et al. Targeting myeloid-derived suppressor cells to bypass

Frontiers in Immunology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 5942535

https://doi.org/10.3389/fimmu.2020.02027
https://doi.org/10.3389/fimmu.2020.01122
https://doi.org/10.3389/fimmu.2020.01189
https://doi.org/10.3389/fimmu.2020.00229
https://doi.org/10.3389/fimmu.2020.01305
https://doi.org/10.3389/fimmu.2020.01104
https://doi.org/10.3389/fimmu.2020.00484
https://doi.org/10.1111/j.1365-2796.2010.02320.x
https://doi.org/10.1093/nar/23.9.1604
https://doi.org/10.1038/nri1594
https://doi.org/10.1111/imr.12601
https://doi.org/10.3389/fimmu.2015.00422
https://doi.org/10.2119/molmed.2013.00164
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Son et al. Editorial: The Role of HMGB1 in Immunity

tumor-induced immunosuppression. Front Immunol. (2018) 9:398.

doi: 10.3389/fimmu.2018.00398

8. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M,

Che J, et al. HMG-1 as a late mediator of endotoxin lethality

in mice. Science. (1999) 285:248–51. doi: 10.1126/science.285.

5425.248

9. Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a

therapeutic target in severe pulmonary inflammation including

COVID-19? Mol Med. (2020) 26:42. doi: 10.1186/s10020-020-

00172-4

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Son, Diamond and Shin. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 5942536

https://doi.org/10.3389/fimmu.2018.00398
https://doi.org/10.1126/science.285.5425.248
https://doi.org/10.1186/s10020-020-00172-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


REVIEW

published: 20 March 2020
doi: 10.3389/fimmu.2020.00484

Frontiers in Immunology | www.frontiersin.org 1 March 2020 | Volume 11 | Article 484

Edited by:

Jeon-Soo Shin,

Yonsei University, South Korea

Reviewed by:

Masahiro Nishibori,

Okayama University Graduate School

of Medicine, Japan

Melanie J. Scott,

University of Pittsburgh, United States

*Correspondence:

Huan Yang

hyang@northwell.edu

Ulf Andersson

ulf.andersson@ki.se

Specialty section:

This article was submitted to

Inflammation,

a section of the journal

Frontiers in Immunology

Received: 14 January 2020

Accepted: 02 March 2020

Published: 20 March 2020

Citation:

Yang H, Wang H and Andersson U

(2020) Targeting Inflammation Driven

by HMGB1. Front. Immunol. 11:484.

doi: 10.3389/fimmu.2020.00484

Targeting Inflammation Driven by
HMGB1

Huan Yang 1*, Haichao Wang 2 and Ulf Andersson 3*

1 Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States, 2Molecular Medicine,

Feinstein Institutes for Medical Research, Manhasset, NY, United States, 3Department of Women’s and Children’s Health,

Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden

High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all

cell types. It is a multi-facet protein exerting functions both inside and outside of cells.

Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions

activating innate immunity, after being actively released from cells or passively released

upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide

HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate

from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation

without compromising protective LPS/TLR4-dependent functions. Another important

therapeutic strategy is established on the administration of HMGB1 antagonists

precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules

capable of activating intracellular cognate receptors. Here we summarize the role of

HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-

associated molecular pattern molecule and as a therapeutic target in inflammatory

diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory

conditions are discussed.

Keywords: HMGB1, inflammation, danger signal, RAGE, TLR4, drug target

INTRODUCTION

Cells are constantly challenged by sterile or infectious stimuli that may cause injury or death. The
alarm system sensing danger-induced cellular stress makes use of preformed endogenousmolecules
termed alarmins or damage-associated molecular pattern molecules (DAMPs) for this interaction
(1). They have specified intracellular missions during homeostasis, but promotes inflammation
when released in response to danger signals. HMGB1 is a chromatin-binding protein that among
several undertakings regulates gene transcription, but operates as a critical DAMP after being
released. Excessive amounts of extracellular HMGB1may cause tissue injury and organ dysfunction
in the pathogenesis of many different diseases of both sterile and infectious origin (2–5). Important
questions in studies of HMGB1 biology concern how the molecule senses and mediates danger
signals during infectious and sterile inflammation. What are the most effective approaches to
specifically block HMGB1-driven inflammation? Here we focus on reviewing recent findings
addressing these important issues.
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HOW DOES EXTRACELLULAR HMGB1

INITIATE INFLAMMATION?

Excessive quantities of extracellular HMGB1, released after cell
death or via active secretion, produce inflammation. Receptor
usage causing inflammation is totally dependent on whether
HMGB1 acts on its own or in complex with partner molecules.
HMGB1 is prone to bind other proinflammatory molecules
including DNA, RNA, histones, nucleosomes, lipopolysaccharide
(LPS), SDF-1, IL-1α, IL-1β, and additional factors. These
complexes act in synergy via cognate receptors to the HMGB1-
partner molecules. The HMGB1 redox isoform is key when
HMGB1 acts on its own as a pro-inflammatory mediator.
The redox state of the 3 cysteines present in an HMGB1
molecule determines subsequent bioactivities. Nuclear HMGB1
in a quiescent cell is always in the fully reduced formwith all three
cysteines expressing thiol groups. The fully reduced HMGB1
released extracellularly forms a complex with the chemokine
CXCL12 (SDF-1) and initiates enhanced chemotaxis via CXCR4
compared to CXCL12 acting alone (6). Gentle HMGB1 oxidation
generates a disulfide bond between Cys23 and Cys45, but
keeping Cys106 in the reduced form. This modification converts
extracellular HMGB1 to a potent activator of pro-inflammatory
cytokine production via TLR4 receptor stimulation (7). Disulfide
HMGB1 loses its capacity to activate TLR4 when it is either
reduced or further oxidized. The ability to bind to MD-2 is
also abolished by substituting Cys 45 or Cys 106 by an alanine
residue (8). Additional oxidation of HMGB1 generates a sulfonyl
groups on one or several cysteines resulting in molecules without
any proinflammatory capacity on its own (7). The interchange
between the reduced and disulfide isoforms is reversible, while
sulfonyl HMGB1 is irreversibly converted.

Even if the list of reported HMGB1 receptors is quite
extensive, only two receptor systems, RAGE and TLR4, are fully
confirmed to act as established HMGB1 receptors. Many of the
receptor systems claimed to perform as HMGB1 receptors are
actually receptors for molecules complex-bound to HMGB1.
When disulfide HMGB1 activates the TLR4 complex, it binds
to MD-2 which forces two TLR4 chains together to form a
complex that can bind intracellular signal transductionmolecules
(9). The binding site for HMGB1 on the MD-2 molecule is
distinct from that for LPS. The biology created by HMGB1-
RAGE interactions is a fascinating story that has recently been
delineated (10, 11). There are approximately 700 publications
on PubMed examining HMGB1-RAGE activation. The great
majority concludes that HMGB1 binding to RAGE leads to
a direct NF-kB activation and subsequent cytokine formation.
However, macrophages expressing both TLR4 and RAGE, do
not produce cytokines when stimulated by any HMGB1 isoform
if TLR4 is functionally inactivated or absent. That would not
be the expected result if HMGB1-RAGE activated cytokines
directly. The novel discoveries by Lu and Billiar revealed that
RAGE provides a transport route for HMGB1, and above all,
for HMGB1-partner molecule complexes by endocytosis to the
endolysosomal compartment (11). Under the acidic conditions
in the lysosome system, HMGB1 has the unique ability to act as a
detergent in the lysosomal membrane. The HMGB1-transported

partner molecules will thus not be degraded in the lysosomes
as expected, but leak out from the permeabilized lysosomes into
the cytosol to reach cognate cytoplasmic receptors that will be
activated to cause inflammation (11).

HMGB1 holds two defined LPS-binding sites enabling
HMGB1 to bring LPS from the extracellular space via RAGE
and the lysosomal compartment to cytosolic caspase 11. TLR4
deficient mice have been shown to succumb to endotoxemia in
the presence of increased levels of HMGB1, while caspase 11
gene deficient mice survived (12, 13). These results emphasize
the functional importance of caspase-11 as a pathogenic LPS
receptor. HMGB1 operates as an LPS-carrier necessary to enable
caspase-11-mediated pyroptosis. Caspase-11 oligomerization
and activation are caused by LPS lipid A binding to the CARD
domain of caspase-11 (14). This activated oligomerized form
of caspase-11 cuts gasdermin D and the truncated gasdermin
D will subsequently generate pores in the plasma membrane
resulting in secretion of IL-1α, IL-1β, and HMGB1 and may
terminally cause cellular pyroptosis (15). Another fundamentally
important function exerted by cleaved gasdermin D is to promote
coagulation running the risk to escalate into disseminated
intravascular coagulation (DIC), a life-threatening event during
systemic inflammation. It has recently been demonstrated
that gasdermin D-induced pores can generate enhanced cell
membrane expression of rotated phosphatidylserine enabled via
a calcium-dependent phospholipid scramblase (15). This process
markedly promotes the pro-coagulant activity of tissue factor, a
central initiator of coagulation. The HMGB1-mediated transfer
of LPS to caspase-11 thus represents the initial step in the cascade
culminating in DIC generation.

An analogous strategy used by extracellular LPS to reach
cognate intracellular receptors has also been identified for
extracellular nucleic acids (16). Extracellular DNA bound to
HMGB1 can be endocytosed by cells via RAGE to reach cognate
DNA receptors like endosomal TLR9 or cytoplasmic cGAS or the
AIM2 inflammasome complex (16–19). This biology may have
detrimental effects in flares of lupus or in response to major
trauma. The HMGB1/RAGE-assisted cellular import system thus
performs an important task by alerting cells about a dangerous
environment. HMGB1 is an alarmin with dual functions-
warning the extracellular environment about cells in distress and
informing cells about a hazardous extracellular surrounding.

PATHOGENIC ROLE OF HMGB1 IN

IMMUNOSUPPRESSION IN SEPSIS

Sepsis is attributable to both exaggerated inflammatory responses
and subsequent immunosuppression (20–22). When initially
secreted by innate immune cells at relatively low amounts,
HMGB1 might still be pro-inflammatory during the early
stages of sepsis (23). However, when it is released by the
liver (11) and other somatic cells at overwhelmingly higher
quantities, HMGB1 could also induce immune tolerance (24,
25), macrophage pyroptosis (10, 11), and immunosuppression
(26), thereby impairing the host’s ability to eradicate microbial
infections (27, 28).
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This notion is supported by the relative higher affinity
of HMGB1 to receptors (e.g., TLR4/MD-2 complex, with a
disassociation equilibrium constant of 12 nM) that are involved
in the activation of innate immune cells (9), whereas HMGB1 has
a relative lower binding affinity to other receptors (e.g., RAGE
with a disassociation equilibrium constant of 97–710 nM) (29,
30) that are required for HMGB1 endocytosis and the resultant
macrophage pyroptosis. We thus propose that upon active
secretion by innate immune cells or passive release by somatic
cells, extracellular HMGB1 binds TLR4 (31) to induce the
expression and production of various cytokines and chemokines,
but triggers macrophage pyroptosis if it binds to RAGE and is
internalized via receptor-mediated endocytosis (10, 11).

As aforementioned, HMGB1 can also bind many negatively
charged pathogen-associated molecular pattern molecules
(PAMPs, e.g., CpG-DNA, endogenous extracellular DNA or
LPS) to facilitate their cellular uptake via similar RAGE-
receptor-mediated endocytosis. Consequently, HMGB1 not
only augments the PAMP/DAMP-induced inflammation (16),
but also promotes the PAMP/DAMP-induced pyroptosis
(11), leading to dysregulated inflammatory responses as well
as macrophage depletion and possible immunosuppression
during sepsis. In light of our recent finding that an HMGB1-
neutralizing mAb (e.g., m2G7), capable of rescuing animals from
lethal sepsis and acute liver injury could also inhibit HMGB1
endocytosis (32), we propose that therapeutic strategies capable
of modulating HMGB1-mediated immune over-activation
and/or associated immunosuppression could be developed in the
clinical management of inflammatory diseases.

HMGB1 ANTAGONISTS OF POTENTIAL

CLINICAL INTEREST

Several different strategies have been shown successful in
inhibiting HMGB1-dependent inflammatory processes,
especially aiming at blocking TLR4-HMGB1 or RAGE-HMGB1
pathways. Anti-HMGB1 antibodies and recombinant HMGB1
box A protein have each demonstrated beneficial effects in
a wide range of preclinical models of inflammatory diseases
(5, 33). Here we report on selected HMGB1 antagonists with a
potential of being brought to clinical trials in HMGB1-driven
inflammatory diseases.

MOLECULES INHIBITING

RAGE-MEDIATED ENDOCYTOSIS OF

HMGB1 OR LPS-HMGB1 COMPLEXES

Previous studies established that RAGE mediates HMGB1
endocytosis via dynamin-dependent signaling (10). The concept
that extracellular HMGB1-LPS complexes are imported via cell
surface-expressed RAGE to the endolysosomal system from
where LPS leaks out into the cytosol to activate caspase 11 has
been discussed in this review (11). The study by Deng et al. also
confirmed one previous report that treatment with anti-HMGB1
mAb m2G7 improves survival in experimental gram-negative
sepsis (34). The observation that RAGE-mediated endocytosis

of HMGB1 complexes is a pivotal event in gram-negative sepsis
prompted us to study therapeutic candidate molecules with a
capacity to prevent the cellular internalization of HMGB1/LPS
and subsequent inflammation. We thus generated an in
vitro assay to identify agents that inhibited RAGE-dependent
import in macrophages of fluorochrome-labeled HMGB1 or
fluorochrome-labeled complexes of HMGB1 and LPS (32). Our
main discoveries were that m2G7, recombinant HMGB1 box
A protein, acetylcholine, the nicotinic acetylcholine receptor
subtype alpha 7 agonist GTS-21, and a dynamin inhibitor, all
prevented cell activation and endocytosis of HMGB1, as well as
of HMGB1/LPS complexes in cultured macrophages (Figure 1).
The intriguing clinical therapeutic correlate to each one of these
identified HMGB1 antagonists is that they can be delivered
with exceptional delay (up to 24 h after sepsis initiation) with
beneficial effects (35–38). This unique, and clinically important,
wide therapeutic window is most likely mechanistically enabled
by obstructing the HMGB1/RAGE transport route.

HMGB1 Box A Protein
Recombinant HMGB1 box A protein has been successfully
used to treat a number of experimental inflammatory models,
but its mode of action has, until now, been an unresolved
issue. The identification of box A-blockade of RAGE-mediated
cellular import of HMGB1 and HMGB1-partner molecule
complexes thus represents considerable progress, not the least
because this knowledge enables an opportunity to evaluate
the biological activity of individual box A batches in vitro.
A lack of such technology has so far prevented a clinical
development of box A protein. Beneficial preclinical effects by
box A therapy was first reported in experimental arthritis (39),
followed by CLP sepsis (35), transplantation (40), stroke (41),
ischemia-reperfusion injury (42), pancreatitis (43), and acute
lung injury (44).

MOLECULES INHIBITING

HMGB1/TLR4-MEDIATED INFLAMMATION

Peptide P5779
Macrophages that do not express TLR4 do not display nuclear
NF–κB translocation or cytokine production when activated by
any HMGB1 redox isoform (7). Disulfide HMGB1 subjected
to cysteine mutations or redox changes loses the ability to
activate TLR4. MD-2 gene-deficient macrophages do not
release TNF in response to disulfide HMGB1 or any other
HMGB1 isoform. Disulfide HMGB1, like LPS, binds to MD-2
with low nanomolar avidity, but to distinct MD-2 epitopes.
We generated a tetramer peptide (FSSE, designated P5779)
as an HMGB1 inhibitor specifically targeting the HMGB1-
TLR4/MD-2 pathway (9). P5779 binds exclusively to MD-2 at
the HMGB1 binding site, which preserves the responsiveness to
endotoxin. The P5779 peptide does not inhibit RAGE-mediated
endocytosis of HMGB1 or HMGB1/LPS complexes. P5779
(but not the scrambled control peptide) dose-dependently
inhibited HMGB1-induced TNF release without affecting
LPS-induced cytokine and chemokine release in primary human
macrophage cultures. Therapeutic administration of P5779
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FIGURE 1 | Inhibiting TLR4- or RAGE-mediated effects induced by HMGB1 or LPS-HMGB1 complexes. During endotoxemia, LPS and extracellular HMGB1 forms

complexes that are endocytosed via the RAGE-dependent pathway. LPS and HMGB1 activate TLR4 system. The unique contribution by HMGB1 is disruption of the

lysosomal membrane enabling LPS to reach and activate its cytosolic receptor caspase-11, which cleaves gasdermin D to form an active oligomer. Activated

gasdermin D will subsequently start coagulation and cause cellular pyroptosis in murine macrophages. The HMGB1-specific inhibitors recombinant HMGB1 box A,

anti-HMGB1 m2G7, and acetylcholine each inhibits the cellular internalization of LPS-HMGB1 complexes and resultant immune activation. Anti-HMGB1 m2G7 and

acetylcholine also inhibit HMGB1/TLR4-mediated inflammation, whereas P5779 and resveratrol selectively block the HMGB1/TLR4 pathway only.

protected against experimental hepatic ischemia/reperfusion-
induced injury, acetaminophen-induced liver toxicity and CLP
sepsis lethality (9). Furthermore, the clinical outcome of murine
influenza infection was significantly improved by treatment
with P5779 (45). Therapy based on P5779 administration also
alleviated experimental endoluminal arterial injury-induced
intimal hyperplasia and up-regulation of TLR4, HMGB1, and
IL-6 expression in the affected carotid vessels. Global TLR4
gene-deficient mice demonstrated reduced inflammation and
diminished HMGB1 expression after arterial injury, further
supporting that HMGB1 and TLR4 are essential for vascular
inflammatory responses (46). P5779 treatment conferred a
striking survival advantage in an experimental pulmonary
arterial hypertension model (47). Using a molecular dynamic
simulation approach and surface plasmon resonance analysis,
Sun et al. (48) identified that several folic acid peptides
mimic the binding interaction of P5779 at the TLR4/MD-
2 interaction. Addition of these P5779 mimetic peptides
inhibited HMGB1-induced TNF release in cultured human
macrophages. Taken together, P5779 acts as an HMGB1-
inhibitor specifically targeting HMGB1-TLR4 interaction and
efficiently ameliorates HMGB1/TLR4-driven inflammatory
diseases (Table 1; Figure 1).

TABLE 1 | Summary of efficacy of P5779 in HMGB1-driven inflammatory

diseases.

Models Findings References

Acetaminophen liver

toxicity in mice

Improved survival, reduced serum liver

enzymes, reduced liver necrosis

(9)

Liver ischemia/reperfusion

in mice

Reduced serum liver enzymes and liver

inflammation

(9)

CLP-sepsis in mice Improved survival (9)

Arterial injury model in

mice

Reduced carotid artery injury-induced

intimal hyperplasia and TLR4, HMGB1,

and IL-6 expression in injured vessels

(46)

Influenza in nuce Improved survival and reduced lung

edema in influenza infection

(45)

Puhnonary hypertension

in rats

Improved survival in

monocrotaline-induced severe pulmonar

y hypertension

(47)

In vitro Reduced HMGB1-induced TNF release

from cultured human macrophages

(48)

Anti-HMGB1 mAb (m2G7)
Since the development of our anti-HMGB1 m2G7 (34), many
laboratories have independently confirmed the efficacy of other
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anti-HMGB1 mAb in many different models of sterile or
infectious inflammation. The m2G7 binds to an epitope in the
box A (located in HMGB1 sequence amino acids 53–63) and
this binding functionally affects both HMGB1 interactions with
RAGE and TLR4. Other published anti-HMGB1 mAbs have not
been studied from the perspective of HMGB1 receptor inhibition
and thus will not be further discussed in this section.

The m2G7 has been demonstrated to inhibit TNF production
in macrophages activated by recombinant disulfide HMGB1,
by HMGB1 from cultured HMGB1-transfected mammalian
cells, and by HMGB1 derived from necrotic fibroblasts (7,
9). This is proof of m2G7-caused antagonistic effects on
HMGB1-TLR4-mediated processes. There are many examples of
preclinical HMGB1-dependent models which respond favorably
to therapeutic administration of the m2G7 (Table 2). However,
the inflammation is generally caused by HMGB1 activation
of both TLR4 and RAGE and it is most often not possible
to discriminate between the specific contributions by each
receptor system. The first evidence of successful performance
by the m2G7 in vivo came from CLP sepsis studies (34),
when m2G7 therapy improved survival, a result which was
confirmed in the recent report by Deng et al. (11). Systemic
HMGB1 levels are increased during the acute stage of sepsis,
but persistently elevated for weeks or months in both mice
and patients for unknown reasons (50, 56–58). The increased
HMGB1 levels post-sepsis exert a causative role for post-
sepsis complications including cognitive dysfunction and anemia
in the mouse CLP model. Both complications also occur
after clinical sepsis, but the molecular background for this is
unresolved. It is tempting to suggest HMGB1 as a cause also
in the clinical situation, since HMGB1 is 99% identical in
all mammals. Mice surviving CLP sepsis developed significant
and persistent impairment in learning and memory, and
anatomic changes in the hippocampus. Administration of the
m2G7 10 days from the onset of CLP-sepsis to the survivors
significantly ameliorated memory and learning disabilities, and
hippocampal pathology. Systemic administration of disulfide
HMGB1 reproduced the neuropathology seen after CLP sepsis
(49). Systemic HMGB1 administration also caused anemia with
extramedullary erythropoiesis just like CLP surviving mice.
Treatment with the m2G7, provided post the acute CLP-sepsis
stage, prevented the development of anemia in sepsis survivors
in mice (50).

Multiple preclinical inflammatory sterile injury models
likewise respond positively to m2G7 therapy. Improved islet
viability and reduced inflammation after syngeneic islet graft
transplantation in diabetic mice were observed in response
to systemic m2G7 therapy (51). Collagen-induced arthritis
and a spontaneous arthritis model were both ameliorated
by m2G7 treatment. Joint destruction was prevented and
clinical arthritis scores improved (52). Intrathecal m2G7
injection reversed collagen antibody-induced arthritis-induced
chronic pain reactions (53). HMGB1 is an important down-
stream mediator in the pathogenesis of acetaminophen
intoxication and causes serious liver damage. Treatment
with m2G7 significantly inhibited acetaminophen-induced
release of hepatic enzymes, pro-inflammatory cytokines, and

TABLE 2 | Summary of efficacy of anti-HMGB1 m2G7 in HMGB1-driven

inflammatory diseases.

Models/species Findings References

Infectious diseases

CLP sepsis or endotoxemia

in mice

Reduced lethalit y in

CLP-induced sepsis and in

endotoxemia

(11, 34)

CLP sepsis-survivors

in mice

Reduced sepsis-induced

memory impairments and brain

pathology in survivors

(49)

CLP sepsis-survivors

in mice

Ameliorated sepsis-induced

development of anemia and

stress erythropoiesis

(49, 50)

Sterile injury

Islet transplantation in

diabetic mice

Improved islet viability and

reduced transplantation-induced

inflammation

(51)

Chronic arthritis in mice Ameliorated clinical arthritis

scores, partially prevented joint

destruction

(52)

Arthritis pain in mice Ameliorated pain-like behavior in

collagen antibody induced

arthritis

(53)

Acetaminophen

(APAP)-induced liver toxicity

in mice

Attenuated APAP-induced

release of ALT, microRNA-122,

and abrogated inflammation

(9, 54)

Autoimmune myocarditis

in mice

Reduced cardiac inflammation (55)

Puhnonary hypertension

in rats

Improved survival in

monocrotaline-induced severe

puhnonary hypertension

(47)

improved survival in mouse studies (9). Lundback et al.
(54) confirmed these experimental results and demonstrated
that administration of a humanized version of the m2G7
significantly attenuated acetaminophen-induced elevation of
microRNA-122, a liver-specific microRNA, and serum levels of
TNF, MCP-1, and CXCL1. Likewise, survival in experimental
pulmonary hypertension in rats was significantly enhanced
after m2G7 treatment (47). Systemic, as well as cardiac,
HMGB1 levels are increased in mice with troponin-induced
experimental autoimmune myocarditis and m2G7-based therapy
reduced the cardiac inflammation and HMGB1 expression
(55) (Table 2).

There are also reported therapeutic failures with the m2G7
in preclinical trials. Administration of m2G7 in a mouse model
of amyotrophic lateral sclerosis showed overall very limited
efficacy (59).

Treatment with m2G7 did not affect lupus nephritis in
MRL/lpr mice, despite the fact that systemic levels of HMGB1
are increased in lupus (60). Successful therapeutic outcome has
in contrast been reported in another mouse lupus model using a
different anti-HMGB1 mAb (61).

Resveratrol
Resveratrol is a phytoalexin phenol molecule acting as a
protective endogenous antibiotic when produced in plants under
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stress. Resveratrol also reduces LPS-induced levels of HMGB1,
IL-6, NO, and TNF in RAW 264.7 cell cultures. This TLR4-
dependent process was downregulated by resveratrol-mediated
inhibition of TLR4 expression (62). Resveratrol, markedly
inhibited microglia activation and display of TLR4, HMGB1,
MyD88, and NF-κB in the brain cortex in an experimental
subarachnoid hemorrhage model (63). Furthermore, resveratrol
demonstrated similar neuroprotective and anti-inflammatory
effects in a neonatal hypoxic-ischemic brain injury model.
Mechanistic in vitro and in vivo studies indicated that resveratrol
activated SIRT1 to reduce HMGB1/TLR4/MyD88/NF-κB
signaling and subsequent neuroinflammatory responses (64).
The compound also demonstrated beneficial effects in an
asthma model by decreasing the expression of HMGB1, TLR4,
MyD88, and NF-κB mRNA levels in the lung tissue and
significantly decreased the thicknesses of the airway walls (65).
Together, these results indicate that resveratrol ameliorates
inflammation in part via inhibition of HMGB1/TLR4-mediated
inflammation (Figure 1).

Dexmedetomidine
Dexmedetomidine is a α2-adrenoceptor agonist with anti-
inflammatory effects mediated via activation of the cholinergic
anti-inflammatory pathway (66). Dexmedetomidine treatment
in experimental endotoxemia attenuated inflammation through
downregulated TLR4 expression via a α7 nicotinic acetylcholine
receptor-dependent pathway (67). It is thus of great interest
that acetylcholine has the capacity to functionally inhibit both
the TLR4 and RAGE pathways, the major receptor HMGB1
systems (32, 67, 68).

ADDITIONAL HMGB1 ANTAGONISTS OF

CLINICAL INTEREST

Anti-HMGB1 mAb #10–22
Another extensively studied anti-HMGB1 mAb has been
developed by a Japanese research group (69). The antibody,
termed #10–22, recognizes an epitope in the repetitive C-
terminal sequence. Successful therapeutic interventions are
reported in a number of experimental neuro-inflammatory
conditions, including stroke (70), traumatic brain injury
(71), cognitive dysfunction after traumatic brain injury
(72), spinal cord injury (73), epilepsy (74, 75), blood brain
barrier dysfunction after CNS ischemia (76), hemorrhage-
induced brain injury (77), neuropathic pain (78–83), and
neuropathic pain-related depressive behavior (84). The antibody
has also demonstrated beneficial effects in severe mouse
influenza models (85, 86). Taken together, these findings
demonstrated impressive treatment results in severe preclinical
disease models.

Thrombomodulin
Thrombomodulin is an endothelial cell thrombin receptor
that converts thrombin into an anticoagulant. Soluble
thrombomodulin also binds to HMGB1 and aids the
proteolytic cleavage of HMGB1 by thrombin (87). Recombinant

thrombomodulin is successfully used in Japan to treat patients
with disseminated intravascular coagulation in sepsis (88).

Haptoglobin
The major task of the acute phase protein haptoglobin is to
bind and eliminate extracellular hemoglobin. Haptoglobin is
in addition capable of capturing extracellular HMGB1. The
haptoglobin-HMGB1 binds to CD163 onmacrophages activating
an anti-inflammatory response mediated via IL-10 and heme-
oxygenase 1 production (89). Therapeutic administration of
haptoglobin improved septic shock, lung injury, and survival in
a canine pneumonia model (90). Haptoglobin is approved as an
adjuvant therapy for patients in Japan with trauma, burns, and
transfusion-related hemolysis.

Metformin
Metformin occupies an important role in type 2 diabetes
treatment. Metformin also has an anti-inflammatory effects,
although these effects are not mechanistically fully understood.
Metformin inhibits nuclear HMGB1 translocation to the cytosol
and thus retains HMGB1 in the nucleus after cell activation
(91). Metformin also binds directly to the C-terminal domain
of HMGB1 and down-regulates inflammation by counteracting
the extracellular activity of HMGB1 (92). Furthermore, the
compound inhibits HMGB1 release and increases survival rate
of endotoxemic mice (93).

DNA-Conjugated Beads
HMGB1 is released and present at high levels in intestinal
tissue and feces in patients with chronic inflammatory
bowel diseases (IBD). Several experimental IBD models
have responded very well to systemic treatment with neutralizing
anti-HMGB1 antibodies. HMGB1 is a well-known DNA-
binding protein, which offers an opportunity to sequester
HMGB1 via DNA-conjugated beads that has been studied in
experimental colitis. Oral treatment with DNA-conjugated beads
significantly improved outcome in two different preclinical
colitis models (94).

CONCLUSION

HMGB1 antagonists have been highly successful in a broad
set of preclinical inflammatory disease models, corroborating
HMGB1 as an appealing therapeutic target in both infectious
and sterile inflammatory conditions that currently lack efficient
therapy. The next step should be to translate these preclinical
studies to a clinical setting. Most preclinical treatment trials
have targeted extracellular HMGB1. We suggest that this
strategy should also be the preferred approach in initial
future clinical studies, since we need to learn more about
critical intracellular functions of HMGB1 before starting
therapy studies with intracellular HMGB1 antagonists.
Regardless of the indication, the success of future therapy
with HMGB1 antagonists will depend on an ability to accurately
measure HMGB1 on standard hospital-based instruments
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in order to target patients expressing excessive quantities
of HMGB1.
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9Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China, 10Department of

Hematopathology, The Third Xiangya Hospital, Central South University, Changsha, China, 11 Pittsburgh Liver Research

Center, University of Pittsburgh, Pittsburgh, PA, United States

High-mobility group box-1 (HMGB1), a ubiquitous nuclear protein, acts as a late

mediator of lethality when released extracellularly during sepsis. The major source of

circulating HMGB1 in sepsis is hepatocytes. However, the mechanism of HMGB1

release of hepatocytes during sepsis is not very clear. We have previously shown

that bacterial endotoxin [lipopolysaccharide (LPS)] sensing pathways, including Toll-like

receptor (TLR)4 and caspase-11, regulate hepatocyte HMGB1 release in response to

LPS. Here, we report the novel function of caspase-11 and gasdermin D (GsdmD)

in LPS-induced active HMGB1 released from hepatocytes. HMGB1 release during

endotoxemia was caspase-11/GsdmD dependent via an active way in vivo and in

vitro. Caspase-11/GsdmD was responsible for HMGB1 translocation from nucleus to

the cytoplasm via calcium changing-induced phosphorylation of calcium-calmodulin

kinase kinase (camkk)β during endotoxemia. Cleaved GsdmD accumulated on the

endoplasmic reticulum, suggesting this may lead to calcium leak and intracellular calcium

increase. Furthermore, we investigated that exosome was an important pathway for

HMGB1 release from hepatocytes; this process was dependent on TLR4, independent

of caspase-11 and GsdmD in vivo and in vitro. These findings provide a novel mechanism

that TLR4 signaling results in an increase in caspase-11 expression, as well as increased

exosome release, while caspase-11/GsdmD activation/cleavage leads to accumulation

of HMGB1 in the cytoplasm through a process associated with the release of calcium

from the endoplasmic reticulum and camkkβ activation.

Keywords: gasdermin D (GsdmD), endotoxemia, caspase-11, extracellular vesicles, calcium, innate immunity
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INTRODUCTION

Sepsis is a dysregulated inflammatory and metabolic state
associated with infection. This dysregulated state is associated
with multi-organ dysfunction and high mortality (1). Endotoxin
[lipopolysaccharide (LPS)], a constituent of Gram-negative
bacteria, stimulates immune and non-immune cells to release
excessive levels of inflammatory mediators (e.g., cytokines),
which can precipitate tissue injury and lethal shock. However,
blocking single cytokines early in the course of sepsis has not
improved outcomes during clinical trials (2). This led to the
search for late mediators of lethality in sepsis, and this search
yielded high-mobility group box-1 (HMGB1), a nuclear protein
that is released by the liver during sepsis that can drive pyroptosis,
immune dysfunction, and lethality in sepsis models (3, 4).

Our findings (5) and the findings of others (6) established
that active release of HMGB1 by hepatocytes is the dominant
source of systemic levels of HMGB1 during endotoxemia and
sepsis. HMGB1 contributes to lethality in sepsis by delivering
extracellular LPS to cytosolic caspase-11 in macrophages and
endothelial cells (5). This, in turn, leads to macrophage and
endothelial cell pyroptosis that then propagates the systemic
inflammatory response and immune dysfunction (7–9). Caspase-
11 (caspase 4 and 5 in humans) belongs to the family of
inflammatory caspases and is also referred to as the non-
canonical inflammasome. The binding of cytosolic LPS to the
caspase activation and recruitment domain (CARD) of caspase-
11 leads to its oligomerization/activation (8). Active caspase-
11 promotes caspase-1 activation, and both caspases cleave
gasdermin D (GsdmD) (10, 11). The N-terminal fragment of
GsdmD forms 10- to 14-nm pores in artificial or natural
phospholipid mixtures (12, 13).

The intracellular steps that lead to the active release of
HMGB1 by hepatocytes in response to LPS are unknown.
Interestingly, this release is known to involve Toll-like receptor
(TLR)4-mediated LPS uptake by hepatocytes and is caspase-
11 dependent (5, 14). While TLR4 is required for the
upregulation of caspase-11 in hepatocytes exposed to LPS,
how these two LPS sensing pathways then regulate the release
of HMGB1 is not known. Here, we show that hepatocytes

mobilize HMGB1 from the nucleus to the cytosol through a
process that requires caspase-11-dependent GsdmD cleavage,
increases in intracellular calcium, and calcium-calmodulin
kinase kinase (camkk)β activation. We provide evidence that
a cleavage fragment of GsdmD inserts into the endoplasmic
reticulum (ER) membrane and may initiate calcium-dependent
signaling. Extracellular release of HMGB1 takes place via
exosomes, and this requires receptor-specific roles for TLR4 and
caspase-11/GsdmD. These findings illuminate a novel pathway
for the active release of HMGB1 from hepatocytes that is relevant
to sepsis lethality.

EXPERIMENTAL PROCEDURES

Exosome Isolation and Quantification
Exosome isolation from hepatocyte culture media was performed
as described previously (15). Briefly, cell culture media was

centrifuged at 500 × g for 10min, 16,500 × g for 20min,
followed by filtration through a 0.2-µm filter (Life Sciences).
Exosomes were pelleted at 120,000 g for 70min with Type
70.1 Ti rotor (Beckman). The exosomes were further washed
once with phosphate buffered saline (PBS) and centrifuged at
120,000 g for 70min, then resuspended in a small volume of
PBS for NanoSightTM assessment or in lysis buffer (1:10 dilution,
Cell Signaling Technology, #9803) for Western blot. Plasma
exosomes were isolated using the total exosome isolation kit
(Invitrogen) according to manufacturer’s instructions. The pellet
was resuspended in sample dilution buffer for ELISA or lysis
buffer for Western blot.

Animal Model
Male C57BL/6J wild-type (WT) mice were purchased from
Jackson Laboratory. GsdmD knockout (KO) mice were obtained
from Dr. Vishva Dixit (Genetech). TLR-4 KO (16), caspase-11
KO (5), and GsdmD KO (17) mice on C57BL/6 background were
bred in Dr. Billiar’s lab. We also generated mice with selective
Hmgb1 deletion (5) in either myeloid cells (HMGB1f/f Lyz2-
cre+) or hepatocytes (HMGB1f/f Alb-cre+). All animals were
housed or bred in the specific pathogen-free animal facility at the
University of Pittsburgh School of Medicine and were kept under
a 12-h dark/light cycle, fed standard chow ad libitum.

Mice were intraperitoneally (i.p.) injected with 5 mg/kg LPS
for the time indicated in the experiments. Knockdown of Rab27a
in vivo was performed as previously (18). Briefly, 1 × 109

plaque forming unit (PFU) adenoviruses Rab27a shRNA (Vector
Biolabs, Malvern, PA) were injected into the penile vein of
mice anesthetized by isoflurane. Two days after virus injection,
mice were injected i.p. with LPS or saline. For exosome release
inhibition in vivo, GW4869 dissolved in dimethyl sulfoxide
(DMSO) (0.005%) was pre-injected into the penile vein at one
dose of 2.5 mg/kg 1 h before LPS treatment.

Isolation and Culture of Hepatocytes
Cells were isolated from mice by an in situ collagenase (type
VI; Sigma) perfusion technique, modified as described previously
(19). Cell viability was typical >95% by trypan blue exclusion.
Hepatocytes (4 × 105 cells/plate for six-well plates, 5 × 106

cells/plate for 10-cm plates) were plated on gelatin-coated culture
plates in Williams medium E with 10% calf serum, 15mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),
10−6 M insulin, 2mM L-glutamine, 100 U/ml penicillin, and
streptomycin. Cells were allowed to attach to plates for at least
4 h before treatment.

Cell Treatment
Primary hepatocytes were treated with or without 1µg/ml LPS in
serum-free liver media (15mM HEPES, 10−6 M insulin, 2mM
L-glutamine, 100 U/ml penicillin, and streptomycin) for 24 h.
Culture media from two 10-cm plates for each group were
harvested for exosome isolation. Proteins in the supernatant
were extracted using methanol/chloroform. Total lysates were
prepared using lysis buffer (1:10, Cell Signaling Technology).
GW4869 and spiroepoxide were prepared as previously described
(20). For exosome inhibition in vitro, GW4869 or spiroepoxide
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was added 2 h before LPS treatment (1µg/ml LPS for 4 or 8 h).
For knockdown of caspase-11 or GsdmD, 300 ng siRNA was
diluted in 400µl serum-free medium with 12µl HiperFectTM

transfection reagent (Qiagen) and mixed by vortexing. The
mixture was incubated for 10min at room temperature, added
dropwise to the cells in 2-ml medium with 10% fetal bovine
serum (FBS) (final siRNA concentration was 10 nM), swirled, and
cultured the cells for 48 h.

Isolation of Nuclear/Cytoplasmic Protein

and Endoplasmic Reticulum
Nuclear and cytoplasmic proteins were prepared using NE-
PERTM Nuclear and Cytoplasmic Extraction Reagents (Thermo
Fisher) according to the manufacturer’s instructions. ER was
prepared using an ER isolation kit (Sigma) according to
the manufacturer’s instructions. Nuclear/cytoplasmic or ER
proteins were quantified using PierceTM BCA protein assay kit
(Thermo Fisher).

Immunofluorescent Staining on Primary

Hepatocytes and Tissue Sections
Primary hepatocytes cultured on coverslips were treated as
described and then fixed with 2% (w/v) paraformaldehyde in
PBS for 15min. Residual paraformaldehyde was removed by
multiple washes with PBS, and cells were permeabilized with
0.1% Triton X-100 in PBS for 15min at room temperature,
washed with PBS and PBB (0.5% BSA in PBS) and blocked
for 1 h with 20% normal goat serum (NGS, Sigma) in PBS.
Then samples were incubated with the specific primary antibody
for HMGB1 (Abcam, 1:200) in 1% BSA for 1 h, washed,
and incubated with secondary antibody (goat anti-rabbit-
Cy3, Jackson ImmunoResearch, 1:1,000). Additional in vitro
experiments were performed with primary hepatocytes cultured
on coverslips that were treated with Zombie RedTM viability
dye (1:1,000, Biolegend) at room temperature in the dark for
30min. All immunofluroescent staining sets involved staining
the nuclei with Hoechst (1 mg/100ml; Sigma) was applied at
room temperature for 30 s followed by a single rinse of PBS to
remove excess dye. In vitro samples cultured to collagen coated
coverslips were adhered on the cell surface side of the coverslip
to slides using Gelvatol [23 g of poly(vinyl alcohol 2000), 50 ml of
glycerol, 0.1% sodium azide to 100 ml of PBS].

Liver tissue removed after perfusion with cold PBS and
2% paraformaldehyde was incubated for an additional 2 h to
complete tissue fixation and then incubated for 24 h in 30%
sucrose, followed by cryopreservation in liquid nitrogen cooled
2-methylbutane. Tissue sections of 6µm were permeabilized
with 0.3% Triton X-100 for 20min, followed by staining
according to the manufacturer’s protocol of the in-situ Cell Death
Detection Kit-TMR red (Roche). Samples were washed with PBS
prior to being coverslipped using Gelvatol.

Regardless of the source of samples, all imaging conditions
were maintained at identical settings with original gating
performed using the primary delete control (no primary
antibody). Large area images in X and Y were taken at a
magnification of 20× with a two-fold digital zoom for the

equivalent of nine fields/section with a Nikon A1 confocal
microscope (purchased with 1S10OD019973-01 awarded to Dr.
Simon C. Watkins). Quantification was performed in a blinded
fashion using NIS Elements Software (Nikon). In brief, the Nikon
NIS elements quantification software measure amount of cell
death (either TMR or Zombie) fluorophore colocalized with the
nuclear Hoechst fluorescences. The amount of HMGB1 content
was measured for total HMGB1 fluorescences, as well as the
amount of HMGB1 that colocalized with the nuclear content to
enable the reporting of nuclear HMGB1, and cytosolic HMGB1
was analyzed as the amount of HMGB1 that did not colocalize
with the nuclear HMGB1 content.

Liver Damage Assessment
Mouse plasma was used for alanine aminotransferase (ALT) test.
ALT levels were measured using the DRI-CHEM 4000 Chemistry
Analyzer System (Heska). The ALT values were expressed as
international units per liter.

Intracellular Ca2+ Measurement
Cells were plated on a 96-well black clear bottom plate. After
LPS treatment, cells were washed and loaded with the ratiometric
Ca2+ indicator Fura-2/AM in calcium-free Hank’s balanced salt
solution (HBSS) [at 37◦C, 5% carbon dioxide (CO2)] for 30min,
washed, and incubated for an additional 30min prior to testing.
Excitation was carried out at 340 and 380 nm, and emissions were
collected at 510 ± 10 nm using BioTek SynergyMx multi-format
microplate readers.

Exosome NanoSightTM Analysis (Nano

Tracking Analysis)
Exosome samples were analyzed as previously described (21).
Briefly, exosomes isolated from 100µl plasma were resuspended
in 100µl PBS and diluted 1:10,000 in particle-free water (W4502,
Sigma). Exosomes isolated from 107 cells were resuspended
in 50µl PBS and diluted 1:10,000 in particle-free water. After
vortexing, the diluted samples were injected into the NTA LM-
10 system continuously using a syringe pump. Particles were
acquired by the machine, and data were analyzed with NTA
particle analysis software.

ELISA Assay
HMGB1 ELISA Kit (IBL, Hamburg, Germany) was used to
detect plasma HMGB1 levels according to the manufacturer’s
instructions. CD81 ELISA Kit (Cusabio, Wuhan, China) was
used to detect plasma exosome samples according to the
manufacturer’s instructions.

Western Blot
Antibodies for Western blot analysis were as follows: anti-
HMGB1 (1:1,000, Abcam), anti-caspase-11 (1:500, Sigma),
anti-TSG101 (1:500, Novus), anti-CD81 (1:500, Novus), anti-
Rab27a (1:1,000, Abcam), anti-Rab27b (1:1,000, Abcam),
anti-beta actin (1:5,000, Abcam), anti-glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (1:5,000, Bio-Rad),
anti-tubulin (1:5,000, Bio-Rad), anti-specificity protein 1
(SP1) (1:500, Santa Cruz), anti-phospho-camkk2 (1:1,000, Cell
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Signaling), anti-camkk2 (1:1,000, Novus), anti-calnexin (1:1,000,
Novus), anti-ERp72 antibody (1:1,000, Cell Signaling). Secondary
antibodies (1:10,000) were from Thermo Fisher Scientific. The
procedure of Western blot analysis was as previously described
(22). For in vitro experiments, hepatocytes were washed with
PBS at the endpoint of experiments, collected in lysis buffer
(Cell Signaling Technology) with phenylmethylsulfonyl fluoride
(PMSF) and protease inhibitors, and centrifuged at 16,000g for
10min, and supernatant was collected for Western blotting.
For in vivo experiments, frozen liver (ischemic lobe) was
homogenized in lysis buffer and centrifuged at 16,000g for
10min, and supernatant was collected. Protein concentrations
of the supernatants were determined with the bicinchoninic
acid (BCA) protein assay kit (Thermo Fisher Scientific). Sodium
dodecyl sulfate (SDS) loading buffer was then added to the
samples. Denatured protein samples were analyzed by 10%
or 15% SDS–polyacrylamide gel electrophoresis and then
transferred onto a polyvinylidene difluoride membrane at
250mA for 2 h. The membrane was blocked in 5% milk (Bio-
Rad) in Tris-buffered saline (TBS) for 1 h and then incubated
overnight with primary antibody in 1% milk in TBS overnight.

Membranes were washed three times in TBS-Tween (TBS-T)

for 10min, incubated with horseradish peroxidase-conjugated

secondary antibody for 1 h, and then washed three times for

10min in TBS-T before being developed for chemiluminescence
(Bio-Rad). Densitometry analysis was performed using the
ImageJ Gel Analysis tool. GAPDH, β-actin, and tubulin are used
as loading controls.

Statistical Analysis
All data were analyzed using GraphPad Prism software (version
6.0). For in vivo and in vitro experiments, numerical measures
will be compared using Student’s t-test and were used for
comparison between two groups or one-way ANOVA followed
by post hoc Bonferroni test for multiple comparisons. If the
data do not satisfy the assumptions necessary for this analysis,
variables will be transformed, or a non-parametric alternative will
be used. For the test above, there will be enough cultures/mice to
attain a power of at least 80% at a significance level of 0.05. The
required effect sizes for each analysis were estimated using the
results from the preliminary studies. Based on these numbers,
it was confirmed that the planned sample sizes are sufficient in
attaining the desired power. Further, for statistical analysis of our
in vitro studies, data will be expressed as mean ± SEM of three
independent experiments performed in triplicate. A p < 0.05 was
considered statistically significant for all experiments. All values
are presented as the mean± SEM.

RESULTS

Lipopolysaccharide-Induced High-Mobility

Group Box-1 Release From Hepatocytes Is

Caspase-11 and Gasdermin D Dependent
We have previously demonstrated that hepatocytes release
HMGB1 in sepsis and that this requires caspase-11 and GsdmD
(5). Here, we confirmed that hepatocytes are the dominant source
of the increases in circulating HMGB1 during endotoxemia.

FIGURE 1 | Lipopolysaccharide (LPS)-induced high-mobility group box-1 (HMGB1) release from hepatocytes is caspase-11 and gasdermin D (GsdmD) dependent.

Immunoblots for HMGB1, β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), or tubulin in the supernatant and cell lysates (Cell-Ext) in (A) wild-type (WT)

and caspase-11−/− [caspase-11 knockout (KO)] and (D) WT and GsdmD−/− (GsdmD KO) hepatocytes at 24 h after LPS (1µg/ml). (B,E) Hepatocytes pretreated with

siRNA to knock down caspase-11 or GsdmD prior to LPS treatment for 24 h as above. (C,F) Plasma HMGB1 levels in WT, caspase-11−/−, or GsdmD−/− mice at 4 h

after intraperitoneal injection with LPS (5 mg/kg). Each point represents one mouse. *P < 0.05. n = 3.
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FIGURE 2 | Lipopolysaccharide (LPS) does not induce hepatocyte death in vitro or in vivo. (A) Immunofluorescence of liver from wild-type (WT) mice at 4 h after

intraperitoneal injection with LPS (5 mg/kg). TMR = red; 4
′

,6-diamidino-2-phenylindole (DAPI) = blue; actin = white. (B) Plasma alanine aminotransferase (ALT) level in

WT mice at 4 h after intraperitoneally injection with LPS (5 mg/kg). Each point represents one mouse. (C) WT hepatocytes were treated with LPS (1µg/ml) for 24 h.

Cytotoxicity was measured by using lactate dehydrogenase (LDH) release in the culture media. Data are expressed as mean ± SEM. (D) Immunofluorescence of

Zombie-red staining (cell death) of WT hepatocytes 24 h after treatment with LPS (1µg/ml). DAPI = blue. NS, no significant difference. n = 3.

As shown in Supplemental Figure 1, cell-specific deletion of
HMGB1 in hepatocytes, but not myeloid cells, prevented the
rise in plasma HMGB1 observed in mice after LPS injection.
As expected, LPS treatment in vivo led to an increase in
liver levels of caspase-11 by 4 h that further increased at 8 h.
The levels of caspase-11 at 24 h decreased to a similar level
as at 4 h (Supplemental Figure 2). We confirmed that LPS
treatment of cultured hepatocytes led to a caspase-11-dependent
cleavage of GsdmD (Supplemental Figure 3). Deletion or
knockdown of caspase-11 or GsdmD prevented LPS-induced
HMGB1 release by cultured hepatocytes (Figures 1A,B,D,E;
Supplemental Figure 6), while deletion of caspase-11 or GsdmD
prevented the circulating rise in HMGB1 following LPS
treatment in vivo (Figures 1C,F). The increase in extracellular
HMGB1 induced by LPS treatment in vitro and in vivo was
not due to cell death (Figure 2). LPS treatment in vivo failed to
increase terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL)-positive cells in the liver or ALT levels in the
plasma. Furthermore, LPS, at a concentration shown to induce
HMGB1 release from hepatocytes in vitro, did not increase lactate
dehydrogenase (LDH) release or Zombie-red uptake in cultured
WT hepatocytes. Thus, hepatocytes actively release HMGB1
after exposure to LPS via a process that requires caspase-11
and GsdmD.

Caspase-11 and Gasdermin D Are

Required for High-Mobility Group Box-1

Translocation From the Nucleus to the

Cytoplasm
The active secretion of HMGB1 from cells requires at least
two steps. First, HMGB1 accumulates in the cytoplasm,

instead of the nucleus, and second, HMGB1, a leaderless
protein, is released into the extracellular space (23).
Therefore, we next assessed whether the nucleo-cytoplasmic
translocation of HMGB1 in hepatocytes following LPS
treatment required caspase-11 and/or GsdmD. As shown
in Figure 3 and Supplemental Figure 7, LPS treatment
led to an increase in cytosolic HMGB1 levels by 8 h.
Whereas, deletion of caspase-11 or GsdmD had no impact
on baseline levels of nuclear HMGB1 in hepatocytes,
deletion of either gene prevented the accumulation of
HMGB1 in the cytoplasm induced by LPS exposure.
Specificity protein 1 (SP1) and GAPDH/tubulin were
used to verify the compartment specificity of the proteins
isolated from the nucleus and cytoplasm (Figure 5B;
Supplemental Figure 9). These data establish that caspase-11
and GsdmD are involved in the nucleo-cytoplasmic translocation
of HMGB1 that occurs after exposure of hepatocytes to
extracellular LPS.

Caspase-11 and Gasdermin D Are

Required for Lipopolysaccharide-Induced

Phosphorylation of Camkkβ
We have previously shown that hypoxia-induced HMGB1
release by hepatocytes requires camkkβ (24). Camkkβ belongs
to the serine/threonine-specific protein kinase family and to the
Ca2+/calmodulin-dependent protein kinase subfamily. Camkkβ
catalyzes the phosphorylation of threonine residues located
in the activation loop of the CaMKI and CaMKIV, enhancing
their kinase activity. Therefore, we tested whether inhibition
of camkkβ would reduce HMGB1 release from hepatocytes
exposed to LPS. STO-609, a specific camkk inhibitor, blocked
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FIGURE 3 | Caspase-11 and gasdermin D (GsdmD) are required for high-mobility group box-1 (HMGB1) translocation to the cytosol in response to

lipopolysaccharide (LPS). (A,C) Immunoblots for HMGB1, caspase-11, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), or tubulin in the cytoplasmic (Cyto)

and nuclear (Nuc) lysates from wild-type (WT), caspase-11−/− [Casp-11 knockout (KO)], or GsdmD−/− (GsdmD KO) hepatocytes treated with LPS (1µg/ml) for the

time indicated. (B,D) Immunofluorescence of WT, caspase-11−/−, or GsdmD−/− hepatocytes treated with LPS (1µg/ml) for the indicated time. HMGB1 = red;

4
′

,6-diamidino-2-phenylindole (DAPI) = blue; colocalization = magenta. n = 3.

LPS-induced HMGB1 release (Supplemental Figure 4A).
Interestingly, previous reports suggest that camkkβ (25) and its
downstream targets, CaMKI (26, 27) and CaMKIV (28), may
regulate HMGB1 nucleo-cytoplasmic translocation. Therefore,
we investigated whether caspase-11 or GsdmD were required
for camkkβ pathway activation. As shown in Figure 4 and
Supplemental Figure 8, deletion of either caspase-11 or GsdmD
reduced the phosphorylation of camkkβ in hepatocytes exposed
to LPS (Figures 4A,B). Consistent with this result, we also
found that intracellular free calcium was increased following
LPS treatment in hepatocytes, and this required caspase-11 and

GsdmD (Figures 4C,D). Furthermore, A23187, an ionophore

that increases intracellular calcium levels, promoted HMGB1

release in response to LPS in caspase-11−/− and GsdmD−/−

hepatocytes to a level similar to that seen in WT hepatocytes
(Supplemental Figure 4B). Taken together, these data show that
the Ca2+ signaling regulates LPS-induced HMGB1 release in

hepatocytes, and this signaling pathway requires both caspase-11
and GsdmD.

Lipopolysaccharide Triggers Gasdermin D

Association With the Endoplasmic

Reticulum
Next, we investigated howGsdmD regulates intracellular calcium
transients. Calcium storage is one of the functions commonly
attributed to the ER in non-muscle cells (29). The N-terminal
cleavage fragment of GsdmD can form pores in phospholipid
membranes (13). Therefore, we sought evidence for GsdmD
association with the ER in LPS-treated hepatocytes. The purity

of the isolated ER was confirmed using electron microscopy and
the ER protein markers, calnexin and ERp72 (Figures 5A,B).
Western blot analysis demonstrated the presence of a GsdmD

cleavage fragment in the ER lysate from LPS-treated WT
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FIGURE 4 | Caspase-11 and gasdermin D (GsdmD) inhibited the phosphorylation of calcium-calmodulin kinase kinase (camkk)β. (A,B) Immunoblots for

phospho-camkkβ (P-camkkβ) and total-camkkβ (T-camkkβ) in whole cell lysates from wild-type (WT), caspase-11−/− [Casp-11 knockout (KO)], or GsdmD−/−

(GsdmD KO) hepatocytes were treated with lipopolysaccharide (LPS) (1µg/ml) for the indicated times. (C) Intracellular Ca2+ measured by fluorescence intensity of

Fura-2AM (F340/F380) in WT hepatocytes treated with or without LPS (1µg/ml) for the indicated time. Data are expressed as mean ± SEM. (D) Intracellular Ca2+

measured by fluorescence intensity of Fura-2AM (F340/F380) in WT, caspase-11−/−, or GsdmD−/− hepatocytes treated with or without LPS (1µg/ml) at indicated

times. Data are expressed as relative levels compared with baseline controls and as mean ± SEM. *P < 0.05. n = 3.

FIGURE 5 | Gasdermin D (GsdmD) is recruited to the endoplasmic reticulum (ER). (A) Morphological structure of isolated mouse ER as seen on standard transmission

electron microscopy (TEM) (100,000 × magnification; scale bar, 100 nm). (B) Immunoblots for calnexin, ERp72, glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), tubulin, and specificity protein 1 (SP1) in isolated ER, whole cell (Cell lysate), cytoplasm (Cyto), and nucleus (Nuc) of wild-type (WT) hepatocytes. (C)

Immunoblots for GsdmD in ER (ER lysate) isolated from WT and caspase-11−/− [Casp-11 knockout (KO)] hepatocytes after treatment with lipopolysaccharide (LPS)

(1µg/ml) for 8 h. n = 3.

hepatocytes but not caspase-11−/− hepatocytes (Figure 5C).
These findings raise the possibility that caspase-11 cleaves
GsdmD, and the cleavage fragment then inserts in the ER

membrane to release calcium into the cytoplasm.

High-Mobility Group Box-1 Is Released

From Hepatocytes in Exosomes
We have recently provided evidence that HMGB1 is released
into the extracellular space inside vesicles (5). To determine if
these HMGB1-containing vesicles were exosomes, we confirmed
that HMGB1 found in cell supernatant and plasma after

LPS challenge was within CD81- and TSG101-positive vesicles
(Figures 6A,B; Supplemental Figure 10). To further establish
that HMGB1 is released via exosomes, NanoSightTM nanoparticle
tracking analysis was used to show that mean size of particles
isolated from hepatocyte supernatant in vitro and plasma

were both in the range consistent for exosomes (40–100 nm)

(Figures 6C,D). GW4869 and spiroepoxide, inhibitors of neutral

sphingomyelinase associated with exosome release (20), reduced
HMGB1 release from hepatocytes in a dose-dependent manner
(Figures 6E,F). In vivo, GW4869 treatment before LPS challenge
significantly suppressed HMGB1 levels in plasma (Figure 6G).
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FIGURE 6 | Hepatocytes release high-mobility group box-1 (HMGB1) in exosomes. Immunoblots for CD81, TSG101, and HMGB1 in exosomes isolated from (A) cell

culture media from wild-type (WT) hepatocytes treated with lipopolysaccharide (LPS) (1µg/ml) for 24 h and (B) plasma from WT mice intraperitoneally injected with

LPS (5 mg/kg) for 4 h. NanoSightTM analysis of exosomes isolated from (C) cell culture media and (D) mouse plasma. (E,F) Immunoblots for HMGB1 in the

supernatant and cell lysates of hepatocytes treated with GW4869 or spiroepoxide for 2 h, then challenged with LPS (1µg/ml) for 24 h. (G) Plasma HMGB1 level in WT

mice injected intravenously with GW4869 (2.5 mg/kg) for 1 h prior to intraperitoneal injection of LPS (5 mg/kg) for 4 h. (H) Plasma HMGB1 level in WT mice pretreated

for 48 h with scrambled (control) or Rab27a-targeted shRNA via intravenous injection followed by intraperitoneal injection with LPS (5 mg/kg) for 4 h. Each point

represents one mouse. *P < 0.05. n = 3.

Rab27a is required for exosome release (30). An adenovirus-
expressing shRNA targeting Rab27a was used to suppress liver
Rab27a (Supplemental Figure 5). Knockdown of Rab27a also
significantly prevented HMGB1 increases in the plasma of LPS-
treated mice (Figure 6H). Combined, these observations support
the conclusion that HMGB1 is released into the extracellular
space in exosomes.

High-Mobility Group Box-1 Release in

Exosomes Is Toll-Like Receptor 4,

Caspase-11, and Gasdermin D Dependent

During Endotoxemia
We show above that the nucleo-cytoplasmic translocation of
HMGB1 and the active extracellular release of HMGB1 in

Frontiers in Immunology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 22923

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Li et al. Endotoxin-Induced HMGB1 Release Into Exosomes

FIGURE 7 | High-mobility group box-1 (HMGB1) release in exosomes is dependent on Toll-like receptor (TLR)4, caspase-11, and gasdermin D (GsdmD). (A,B)

Immunoblots for HMGB1 in exosomes isolated from cell culture media from wild-type (WT), TLR4−/− [TLR4 knockout (KO)], caspase-11−/− (Casp-11 KO), or

GsdmD−/− (GsdmD KO) hepatocytes were treated with lipopolysaccharide (LPS) (1µg/ml) for 24 h. (C–E) Immunoblots for HMGB1 in exosomes isolated from plasma

of WT, TLR4−/−, caspase-11−/−, or GsdmD−/− mice treated with LPS (5 mg/kg) for 4 h. Each lane represents one mouse. n = 3.

response to LPS exposure both require TLR4 and caspase-
11/GsdmD. We hypothesized that the release of HMGB1
into exosomes would depend on the same pathways. Using
KO mice, we confirmed that LPS-induced HMGB1 release in
exosomes was TLR4, caspase-11, and GsdmD dependent both
in vitro (Figures 7A,B; Supplemental Figure 11) and in vivo
(Figures 7C–E). We next asked whether the TLR4 and caspase-
11 pathways regulated total exosome release in response to LPS.
LPS treatment markedly increased exosome numbers based on
the Western blots for CD81 and TSG101. Only the deletion of
TLR4 and not the deletion of caspase-11 or GsdmD prevented
exosome release into the cell supernatant of cultured hepatocytes
or into the plasma of mice after the LPS challenge (Figures 8A–E;
Supplemental Figure 8). To further confirm these findings,
we used ELISA for quantification of CD81, and the results
were consistent with the Western blot analysis (Figure 8F).
Thus, TLR4 regulates exosome formation, while caspase-11 and
GsdmD are required only for HMGB1 delivery into exosomes.

DISCUSSION

In this study, we sought to establish the mechanisms involved in
the LPS-induced release of HMGB1 into the extracellular space
by hepatocytes. This area of investigation is important because
active HMGB1 release by hepatocytes has been shown to be
critical in the pathogenesis of not only sepsis lethality but also
many liver-based diseases (5, 31). Hepatocytes are known to sense
the presence of pathogen-associated molecular patterns (PAMPs)
in the circulation, and the detection of PAMPs triggers the release
of immune regulators such as HMGB1 or chemokines (5, 14,
32). Taken together, our previously published findings (5, 14)

combined with our current work demonstrate that hepatocytes
utilize surface TLR4 to detect and take up LPS, which occurs
concurrently with TLR4-dependent upregulation of caspase-
11. Intracellular LPS leads to caspase-11-dependent cleavage of
GsdmD, and this promotes increases in free calcium in the cell,
camkkβ activation, and relocation of nuclear HMGB1 to the
cytoplasm. This is followed by a TLR4- and caspase-11/GsdmD-
dependent release of HMGB1 in exosomes. The localization of
a cleavage fragment of GsdmD in the ER in LPS-treated cells
suggests that the source of free calcium in this signaling cascade
may be the ER. These findings introduce a novel mechanism
involving the coordinated interaction between the two canonical
LPS sensing pathways, surface TLR4 and cytoplasmic caspase-11,
for the secretion of HMGB1 into exosomes by hepatocytes. Our
observations also raise the possibility that targeting caspase-11
in sepsis could improve outcomes not only by directly blocking
pyroptosis in macrophages and endothelial cells but also by
suppressing HMGB1 release from the liver.

Our understanding of LPS sensing by immune cells evolved
with the discovery that LPS is recognized not only by the cell
surface TLR4 receptor complex (33) but also by cytosolic caspase-
11 in mice and caspases 4/5 in humans (8). In macrophages
and endothelial cells, LPS triggers an inflammatory program
aimed at initiating antimicrobial defenses by interacting with
cell surface TLR4 (34–36). This inflammatory signaling promotes
the upregulation of caspase-11 in the cytosolic compartment
of macrophages (37). The delivery of LPS to the cytosol in
these cells requires the endocytic uptake of LPS-containing
outer membrane vesicles from live Gram-negative bacteria
(38), the uptake of live bacteria, and the release of LPS from
phagolysosomes, or the uptake of LPS–HMGB1 complexes
via cell surface RAGE followed by the release of LPS from
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FIGURE 8 | Exosome release from hepatocytes is dependent on Toll-like receptor (TLR)4 but independent of caspase-11 and gasdermin D (GsdmD). (A,B)

Immunoblots of CD81 and TSG101 in exosomes isolated from cell culture media of wild-type (WT), TLR4−/−, caspase-11−/−, or GsdmD−/− hepatocytes treated with

lipopolysaccharide (LPS) (1µg/ml) for 24 h. (C–E) Immunoblots for CD81 and TSG101 in exosomes isolated from plasma of WT, TLR4−/−, caspase-11−/−, or

GsdmD−/− mice treated with LPS (5 mg/kg) for 4 h. Each lane represents one mouse. (F) CD81 levels in exosomes isolated from plasma of WT, TLR4−/−,

caspase-11−/−, or GsdmD−/− mice treated with LPS (5 mg/kg) for 4 h. Each point represents one mouse. (G) A proposed model describing TLR4 signaling results in

an increase in caspase-11 expression, as well as increased exosome release, while caspase-11/GsdmD activation/cleavage leads to accumulation of high-mobility

group box-1 (HMGB1) in the cytoplasm through a process associated with the release of calcium from the endoplasmic reticulum and calcium-calmodulin kinase

kinase (camkk)β activation. *P < 0.05. NS, no significant difference. n = 3.

lysosomes when HMGB1 destabilizes lysosomal membranes (5).
The release of LPS into the cytosol following uptake of bacteria
occurs through the actions of interferon-induced GTP-ases (39).
The only known consequence of LPS-induced activation of
caspase-11 in macrophages or endothelial cells is pyroptosis,
which is thought to be a mechanism for the destruction of
intracellular microbial niches and the release of local pro-
inflammatory molecules [e.g., interleukin (IL)-1α and HMGB1].
Our previous and current work shows that LPS sensing by
hepatocytes has a number of characteristics that are unique
from macrophages and endothelial cells. Hepatocytes utilize a
cell surface TLR4 receptor complex that incorporates CD14 and
CD11b/CD18 to uptake LPS into the cell (14). We show here
that this response to TLR4 stimulation includes an increase
in caspase-11 expression and an increase in exosome numbers
released by hepatocytes. In contrast to the cell death seen in
macrophages and endothelial cells, caspase-11 activation and

GsdmD cleavage in hepatocytes do not lead to cell injury or
death but instead mobilize HMGB1 from the nucleus to be
released into the exosomes. This coordinated TLR4 and caspase-
11/GsdmD interaction represents a novel pathway activated by
LPS sensing by hepatocytes. This pathway leads to the massive
systemic release of the alarmin/damage-associated molecular
pattern (DAMP) and LPS binding protein, HMGB1, from
the liver.

Mechanisms for cellular release of HMGB1 fall under two
broad categories: passive and active (40, 41). Passive release
follows necrosis or programmed cell death, while active release
follows a posttranslational modification of nuclear HMGB1.
Critical in this process is the acetylation of lysines in the
two nuclear localization domains present in HMGB1 (42–44).
Although we cannot rule out the possibility that low levels
of cell death contribute to the systemic release of HMGB1
during endotoxemia, our results indicate that most of the
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HMGB1 released by hepatocytes in response to LPS is through
an active process that requires both TLR4- and caspase-11-
dependent signaling steps. Deletion of TLR4, caspase-11, or the
downstream cleavage target of caspase-11, GsdmD, prevents the
nucleo-cytoplasmic translocation of HMGB1 induced by LPS.
These findings parallel our previous findings where hypoxia-
induced HMGB1 release by hepatocytes involves the transfer
of acetylated HMGB1 from the nucleus to cytoplasm following
the inhibition of nuclear histone deacetylase-1 (HDAC1) and
the transfer of histone deacetylase-4 (HDAC4) from the nucleus
to the cytoplasm (42). HMGB1 acetylation may also involve
an upregulation of histone acetyltransferase in response to
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling downstream of TLR4 (45, 46). Others
have linked JAK/STAT signaling to HMGB1 hyperacetylation
(27) and HDAC4 degradation in macrophages (47). We have
also shown that hypoxia-induced hepatocyte HMGB1 release
requires intracellular calcium signaling through camkkβ and
CaMKIV downstream of TLR4 (24), and that CaMK signaling
is upstream of HDAC inhibition. Our findings that caspase-
11/GsdmD are required for calcium increases in LPS-treated
hepatocytes and that the inhibitor of camkkβ blocks LPS-
induced HMGB1 release from hepatocytes suggest that caspase-
11/GsdmD regulate HMGB1 through calcium signaling, while
TLR4 signaling upregulates caspase-11 expression and may
regulate acetylation of HMGB1 through JAK/STAT.We speculate
that the insertion of the N-terminal fragment of GsdmD into the
ER membrane may explain the caspase-11/GsdmD-dependent
increase in cytosolic calcium observed in our experiments. This
would represent a novel function for cleaved GsdmD but will
require further proof that the source of cytosolic calcium is
indeed the ER in hepatocytes.

Our data suggest that caspase-11 or GsdmD transiently
regulates the calcium flux in hepatocytes at an early time point
after LPS treatment, which is prior to the upregulation of caspase-
11 levels. Unlike macrophage, there is a measurable amount of
caspase-11 in hepatocytes at baseline. Therefore, caspase-11 may
not be needed to upregulate in hepatocytes. However, caspase-11
at baseline may be activated at early time points to cause the early
(within 4 h) Ca2+ increase after GsdmD cleavage and localization
to ER. This then activates camkk and HMGB1 translocation. The
increase of caspase-11 by later time points may be responsible
for other functions, such as packaging and release of exosomes.
However, the mechanisms remain elusive.

If the transfer of HMGB1 from the nucleus to the cytoplasm
is the first step in the active release of HMGB1 in response
to LPS, our findings also support the notion that delivery of
cytosolic HMGB1 into exosomes is the second step. Exosomes
form in the cytoplasm when cytosolic contents are packaged
into multivesicular bodies (48). By blocking factors critical
to exosome release including neutral sphingomyelinase or the
GTPase Rab27a, we prevented extracellular HMGB1 release
in response to LPS, suggesting that HMGB1 is one of the
cytosolic proteins that are incorporated as cargo in the exosomes

released in response to LPS. Part of the mechanism for exosome
release appears to be an increase in overall exosome formation
in response to LPS-induced TLR4 signaling, while both TLR4
and caspase-11/GsdmD are required for HMGB1 to accumulate
in the cytoplasm. How HMGB1 in the cytoplasm is selected
for transfer into exosomes is not known. Furthermore, it is
unclear whether the secreted HMGB1 could further act as
an internalization signal, thereby mediating the switch-off of
the pathway.

In summary, we provide evidence that hepatocytes sense LPS
through both TLR4 and caspase-11, and this leads to the active
release of HMGB1 in exosomes. As depicted in Figure 8G, each
of the LPS-sensing pathways plays unique but interconnected
roles in this signaling cascade. An important conceptual advance
of this work is that hepatocytes utilize TLR4 and caspase-11
in ways that are distinct from macrophages. The two most
striking differences are that TLR4 signaling is critical to the
delivery of LPS into hepatocytes, and that the caspase-11/GsdmD
pathway does not lead to pyroptosis but instead promotes
calcium-dependent signaling for the active release of HMGB1.
The disease implications relate to the recently discovered central
roles of hepatocyte-derived HMGB1 to sepsis pathogenesis and
inflammatory diseases of the liver.
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The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects

on many cells of the innate immune system. Originally identified as a nuclear protein,

HMGB1 has been found to play an important role in mediating inflammation when

released from apoptotic or necrotic cells as a damage-associated molecular pattern

(DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation,

characterized by the presence of autoantibodies and systemic inflammation involving

multiple organ systems. SLE patients have impaired clearance of apoptotic debris,

which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in

multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus.

Elucidating the various properties of HMGB1 in SLE provides a better understanding of

the disease and opens up new opportunities for designing potential therapeutics.

Keywords: HMGB1, SLE, neuropsychiatric SLE, lupus nephritis, innate immunity, adaptive immunity

INTRODUCTION

Systemic Lupus Erythematosus (SLE)
SLE is an autoimmune disease characterized by the production of autoantibodies and multi-organ
system involvement with a wide array of clinical manifestations. The dominant clinical features
include fever, arthritis, serositis, cutaneous lesions, neuropsychiatric and renal involvements
(1). SLE is caused by aberrant activation of autoreactive B cells and subsequent production of
autoantibodies against nucleic acid and nucleic acid binding proteins. These bind to tissue, often
through cross-reactivity to a tissue antigen, and cause organ damage (2). Immune complexes
containing nucleic acid can be internalized through Fc receptor engagement and activate cells of
the innate immune system. Thus, neutrophils, monocytes, macrophages, and dendritic cells (DCs)
contribute to SLE pathologies (3), in part following, cytosolic sensing of DNA or RNA in part
through an impairment in the usual non-immunogenic clearance of apoptotic debris, and in part
due to cell intrinsic genetic alterations.

Genetic factors in the context of environmental triggers are thought to play important roles
(4). Some identified risk gene loci for SLE include BLIMP1, IRF5 and C1q (5–8). C1q binds
to opsonized cellular debris to mediate the clearance of dead and dying cells (9–11). Genetic
deficiency of C1q predisposes strongly to SLE (7, 12, 13). SLE occurs in approximately 90% of
C1q-deficient individuals in many studies. These patients have severe central nervous system and
renal autoimmune disease.

High-Mobility Group Box 1 Protein (HMGB1) in SLE
HMGB1 is a member of the family of high-mobility group (HMG) proteins which were identified
as important non-histone nuclear proteins (14, 15). Also known as amphoterin, HMGB1 has
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a molecular weight of 25 kDa and two positively charged
nucleic acid binding motifs, A box and B box, and a negatively
charged C-terminal tail (16, 17). The function of HMGB1 in
the cell is context-dependent. In the nucleus, HMGB1 plays the
essential role of bending DNA and facilitating its interaction
with transcription factors. HMGB1 can also function as a
DAMP outside the cell, activating the immune system and
promoting inflammation. It is released from damaged cells or
activated cells to exert its inflammatory effects (18). It binds
both receptor for advanced glycation endproducts (RAGE), toll-
like receptor 2 (TLR2) and TLR4 (19–21). There are three
cysteine residues (C23, C45, C106) in HMGB1 and their redox
states dictate the function of HMGB1. Histone H1 is most
effective at inhibiting the DNA bending activities of oxidized
HMGB1 (22). Additionally, HMGB1 oxidation is known to alter
its extracellular receptor binding and subsequent functions. As
reviewed by Janko et al., fully reduced HMGB1 can induce
autophagy through binding to RAGE or together with CXCL12
can promote cell migration through binding to CXCR4. When
C23 and C45 are oxidized to form a disulfide bond, HMGB1

FIGURE 1 | High-mobility group box 1 (HMGB1) exerts its pathogenic effects in systemic lupus erythematosus (SLE) through cells in both the innate and adaptive

immune systems. Impaired apoptotic clearance by macrophages prolongs exposure of HMGB1/nucleic acid-containing debris to the adaptive immune system as

autoantigens. HMGB1 enhances adaptive immune response in generating autoantibodies against DNA/RNA/HMGB1, which cross react with tissues and cause organ

damage. HMGB1 also locally increases proinflammatory cytokines and stimulate mesangial cells and macrophages in the kidneys. In the brain, HMGB1 bridges

binding of C1q to N-methyl-D-aspartate receptor (NMDAR) to promote dendritic pruning and spatial memory deficit. HMGB1 can stimulate monocytes and

plasmacytoid dendritic cells to sustain the production of type 1 interferon seen in SLE. HMGB1 can perpetuate its extracellular presence both by inducing more

HMGB1/DNA release from neutrophil NETosis and by deviating macrophage polarization away from M2, which further impairs apoptotic clearance. HMGB1 and C1q

together crosslink RAGE and LAIR-1 to exert anti-inflammatory and pro-resolving effects on monocytes.

can signal through TLR4 and cause pro-inflammatory cytokine
release (23). Oxidative stress is known to be increased in SLE
and contributes to immune system dysregulation (24) and it is
likely that partially oxidized, disulfide HMGB1 contributes to this
process. Serum HMGB1 is elevated in SLE patients and levels of
serum HMGB1 correlate with disease activity (25). The present
review discusses the role of HMGB1 as a DAMP in both the
innate and the adaptive aspects of SLE pathogenesis (Figure 1).

HMGB1’S ROLE IN SLE PATHOGENESIS

Adaptive Immunity
Antibodies to nuclear antigens are the hallmark of SLE (26).
These autoantibodies to ubiquitous self-antigens lead to immune
complex formation, to deposition in tissue and ensuing tissue

damage. Apoptotic defects are an important aspect of SLE

pathogenesis (27). When apoptotic cells are not efficiently
cleared, they can undergo secondary necrosis, releasing their
intracellular contents (28). The HMGB1 released in this process
can play a role as an autoadjuvant in the breakdown of B
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cell tolerance and the generation of autoantibodies in SLE.
As HMGB1 can bind both RNA and DNA it can activate
cytosolic nucleic acid receptors after entering cells in a RAGE
dependent fashion (29). It has been shown in vivo that HMGB1-
nucleosome complexes activate antigen presenting cells and
elicit an anti-dsDNA and anti-histone IgG response in a TLR2-
dependent manner, whereas HMGB1-free nucleosome do not
(30). Although anti-nuclear antibodies (ANA) in SLE most
commonly bind to DNA and histones in nucleosomes, they are
also reported to bind to HMGB1 itself (31, 32), although this
may represent binding to DNA associated withHMGB1. Elevated
anti-HMGB1 antibodies are observed in SLE and correlate
to disease severity (33, 34). Coupled with elevated circulating
HMGB1 seen in SLE patients, this can be a mechanism for
immune complex formation that includes nucleic acid which is
bound to the HMGB1.

Innate Immunity
Although the adaptive immune system has been studied
extensively for its roles in producing autoreactive antibodies
in SLE, the innate immune system is increasingly appreciated
as playing an important role in the pathogenesis of SLE (35).
Activating Fcγ receptors are highly expressed on monocyte-
derived dendritic cells (mo-DC) and macrophages. Immune
complexes formed by DNA or RNA/HMGB1 and IgG can
activate these innate immune cells through their Fcγ receptors to
elicit their inflammatory functions (36), which include secretion
of type 1 interferon (IFN), TNFα, IL-6 and more. The IFN
pathway is a crucial contributor to the disease in some models
of SLE. Type I IFN can cause the loss of peripheral tolerance by
maturing dendritic cells, which activates T cells that eventually
help expand autoreactive B cells (37).

While plasmacytoid DCs (pDCs) make the most type 1 IFN
on a per cell basis, monocytes are important IFN producers
in SLE because of their abundance compared to pDCs (38).
Nucleic acids need to be internalized into monocytes and
delivered to TLRs 7 and 9 to trigger the production of IFNs.
HMGB1chaperones nucleic acid to endosomal TLRs through
a RAGE dependent pathway (39). Porat et al. described two
pathways by which SLE serum can activate monocytes, one of
which involves HMGB1 delivering its nucleic acid cargo by
binding and internalization with RAGE (40). The induction of
the IFN signature genes by HMGB1 was shown to be inhibited by
a DNA mimetope binding to HMGB1, preventing its interaction
with RAGE (40).

PDCs, mentioned above, are specialized to produce high
amounts of type I interferons (41). Upon TLR 7 or 9 activation,
HMGB1 leaves the nuclei of pDCs and pDCs increase their
expression of RAGE as a part of their maturation (42). This
creates an autocrine loop which sustains type I IFN production.
The pathogenic role of pDCs in SLE is often considered to be a
consequence of their production of type I IFNs. Patients with SLE
have reduced numbers of pDCs in the blood and an accumulation
of pDCs in tissues (43). Reciprocally, IFN regulates HMGB1
secretion by driving its translocation from the nucleus to the
cytoplasm prior to release into the extracellular space (44). The

activation of the JAK/STAT1 signaling pathway by type 1 IFN
stimulation induces this process (45). Additionally, IFN-γ has
also been shown to dose-dependently induce HMGB1 release
through a TNF-dependentmechanism (46). Taken together, these
processes highlight the important role HMGB1 plays in initiating
nucleotide-induced IFN signature in SLE.

Neutrophils in SLE can mediate tissue damage and produce
IFNs (47). Neutrophils can undergo a specialized form of cell
death known as NETosis, releasing neutrophil extracellular traps
(NETs), primarily composed of DNA and nuclear proteins.
Normally, this process functions to prevent the dissemination
of pathogens. In SLE, uncleared NETs can become a source of
nuclear self-antigens and immune complexes and complement
activation, thereby perpetuating the inflammatory response (48).
HMGB1 is both released from neutrophils as a part of NETs
and itself can induce the release of NETs. It has been shown
that HMGB1 promotes the formation of NETs in mice in a
TLR4 dependent manner (49). NETs are confirmed as a source of
HMGB1 in SLE patients and are positively correlated with disease
progression in lupus nephritis (50).

It is important to note, however, that macrophages, especially
those expressing SLE risk alleles, also contribute to SLE
(51). Macrophages from SLE patients are defective at clearing
apoptotic debris and this delayed clearance can lead to
prolonged exposure of autoantigens to the adaptive immune
system (52, 53). Monocytes can differentiate into classically
activated macrophages (M1) responsible for inflammation and
tissue destruction, or alternatively activated macrophages (M2)
involved in phagocytosis, inflammation resolution and tissue
repair (54). Gene expression profiles have revealed that SLE
patients have a biased activation toward M1 macrophages
(55). Part of this activation pattern may be explained by the
elevated HMGB1 in SLE patients. HMGB1 is known to polarize
monocytes into M1-like macrophage phenotypes, skewing
macrophage phenotype away from M2-like differentiation and
thus decreasing phagocytosis of apoptotic cells (56), leaving
patients susceptible to the breakdown of peripheral B cell
tolerance and the generation of autoantibodies.

HMGB1 has also been shown to bind to C1q, a component
of the classical complement pathway. Leukocyte-associated
immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory
receptor for C1q on the membrane of many immune cells
(57, 58). Son el al showed that HMGB1 and C1q can form a
tetramolecular complex on the lipid raft with RAGE and LAIR-
1 on monocytes, causing M2-like pro-resolving macrophage
polarization (59). In the absence of C1q, or when C1q is low
due to immune complex-mediated complement consumption,
the high level of HMGB1 in SLE patients may skew to M1
macrophage polarization unchecked, promoting inflammation
and further reducing clearance of apoptotic cells, exposing
autoantigens and thus creating a favorable environment for the
adaptive immune system to generate autoantibodies. It is also
reported that in pediatric SLE, elevation of serum HMGB1 and
type 1 IFN occur with together decreased expression of LAIR-
1 on pDCs, suggesting a potential mechanism for a loss of the
inhibitory function of LAIR-1 in SLE (60).
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ROLE OF HMGB1 IN SPECIFIC SLE

DISEASE PHENOTYPES

HGMB1 in Lupus Nephritis
The role of HMGB1 in lupus nephritis (LN) illustrates its
central role in linking the innate and adaptive aspects to
cause the disease phenotype. Lupus nephritis is an example
of immune complex-mediated end organ damage in SLE. It is
a frequent complication and an important cause of long-term
disability and death in the disease (61). Its etiology, as with
that of SLE as a whole, involves the loss of immune tolerance
resulting in the production of autoantibodies against nuclear
autoantigens, potentially through increased exposure to specific
antigens and also through polyclonal B cell activation. These
immune complexes activate intrarenal TLRs and IFN signaling,
resulting in the local production of proinflammatory cytokines
by glomerular endothelium, mesangial cells and macrophages.
Damage to renal parenchyma triggers tissue repair mechanisms
that lead to glomerulosclerosis and chronic kidney failure (61).

Putterman et al. have shown that in the MRL/lpr mouse
model of SLE, anti-DNA antibodies can alter the gene expression
in mesangial cells of the kidney, upregulating proinflammatory

genes and facilitating kidney damage (62). They further
demonstrated that HMGB1 has a synergistic effect with anti-
DNA antibodies on this process in a RAGE/TLR2 dependent
manner (63). It has also been shown that, through TLR2,
HMGB1 can induce proliferation of glomerular mesangial cells.
Inhibition of either HMGB1 or TLR2 resulted in the decrease
in fibronectin and collagen IV, accompanied by improved
glomerular histological changes and sclerosis levels (64).

Renal macrophages from the SLE mice were found to
be strong producers of the proinflammatory cytokines TNFα
and IL-6, which have been suggested as important pathogenic
cytokines in mediating kidney inflammation and damage in
SLE (65). HMGB1 overexpression in mice resulted in an
increased macrophage proinflammatory cytokine response and
increased severity of lupus nephritis, whereas administration of
glycyrrhizin, a blocker of HMGB1 had an opposite effect (66).
Both in vivo and in vitro experiments confirmed that HMGB1’s
enhancement of macrophage response is through receptor RAGE
(66). These results demonstrate that HMGB1 has kidney-
specific effects in addition to its global contribution to SLE’s
etiology. Finally, urinary HMGB1 has been shown to differentiate
SLE patients with active LN from inactive and from healthy
individuals (67), again suggesting high local concentrations of
HMGB1 in LN.

HGMB1 in Neuropsychiatric SLE
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a
manifestation of SLE reported in up to 80% of patients. It can
affect both the central and the peripheral nervous systems and
is mostly characterized by cognitive impairment (68). Damage
to the blood-brain-barrier can be seen in NPSLE, which allows
anti-DNA antibodies access to the central nervous system (69).
A subset of anti-DNA antibodies termed DNRAbs cross reacts
with the N-methyl-D-aspartate receptor (NMDAR). In mouse
models of SLE, enhanced NMDAR signaling by DNRAbs result

in spatial memory impairments (70–73) and in patients, elevated
titers of DNRAb correlate with memory impairment. Transient
exposure to DNRAb leads to long-term neuronal dysfunction
through a 2-stage process with stage 1 involving excitotoxic
neuronal death and stage 2 involving microglia activation and
neuronal pruning (74). HMGB1 can be secreted by stressed
or activated cells, including neurons activated through the
NMDAR. Interestingly HMGB1 binds to NMDARs. Nestor et al.
showed that dendrites bound to C1q are targeted for destruction,
resulting in the deficits in spatial memory seen in SLE. C1q
uses HMGB1 as a bridge that connects it to the NMDAR.
Both in vivo and in vitro data showed that NMDAR-HMGB1-
C1q complexes formed on dendrites target them for destruction
by microglia, which itself is activated by HMGB1 through
RAGE/TLR4 (74).

HMGB1-BASED THERAPEUTICS

The standard treatments options for SLE are currently centered
around corticosteroids and immunosuppressive drugs with
numerous unwanted side effects (75). Therapeutics have
shifted toward targeting specific pathways (76). Small molecule
inhibitors of HMGB1 such as tashinone IIA derivatives and
glycyrrhizin are being investigated with some clinical success
(77). The possible therapeutic effects of HMGB1-specific
antagonists have also been explored in several preclinical
studies. The A box domain of HMGB1 alone can bind to
HMGB1 receptors such as TLR2/4 and RAGE without eliciting
proinflammatory responses and can, therefore, serve as a
potent competitive inhibitor of HMGB1 (18). Administration
of HMGB1A box as an HMGB1 antagonist has been shown
to reverse lethality in a model of sepsis (78). The effects of
monoclonal HMGB1-neutralizing antibodies have also been
investigated in various diseases. In SLE specifically, studies
on monoclonal HMGB1 antibodies showed conflicting results,
with some experiments demonstrating amelioration of SLE
disease phenotypes in MRL/lpr mice and BXSB mice (79,
80) while another finding no effects in disease progression
in MRL/lpr mice (81). Contrasting clinical outcomes have
led to efforts in inhibiting HMGB1 by other means. In
addition to direct inhibition of HMGB1, pathways involving
HMGB1 can be harnessed for their anti-inflammatory effects.
HMGB1 is known to regulate macrophage polarization through
its interaction with RAGE, LAIR-1 and C1q (59). Further
studies showed that HMGB1 through a positive feedback
loop involving IRF5 increases leukotriene B4 production in
activated monocytes while HMGB1 plus C1q increase the
production of specialized pro-resolving lipid mediators (82).
In the same study, a fusion protein that contains the RAGE-
binding fragment of HMGB1 and the LAIR-1-binding fragment
of C1q were shown to crosslink the two receptors the same
way HMGB1 and C1q do and to exert the same pro-resolving
effects both in vivo and in vitro (82). Recognizing that
HMGB1 can be harnessed to enhance tolerogenic properties
of the immune system opens up novel opportunities for
potential therapeutics.
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CONCLUDING REMARKS

HMGB1 has been shown to affect a wide array of disease
processes in SLE. Functioning both as a DAMP, HMGB1 is
able to exerts its pathogenic effects on both the innate and
the adaptive immune systems. HMGB1 also interacts with
local cells in the diseased organs in SLE, exacerbating disease
progression. Investigating the various effects of HMGB1 on
the immune system can be extremely valuable in enhancing
our understanding of SLE, and in the development of
new therapeutics.
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Most extracellular proteins are secreted via the classical endoplasmic reticulum

(ER)/Golgi-dependent secretion pathway; however, some proteins, including a few

danger-associated molecular patterns (DAMPs), are secreted via non-classical

ER/Golgi-independent secretion pathways. The evolutionarily conserved high mobility

group box1 (HMGB1) is a ubiquitous nuclear protein that can be released by almost

all cell types. HMGB1 lacks signal peptide and utilizes diverse non-canonical secretion

mechanisms for its extracellular export. Although the post-translational modifications

of HMGB1 were demonstrated, the oxidation of HMGB1 and secretion mechanisms

are not highlighted yet. We currently investigated that peroxiredoxins I and II (PrxI/II)

induce the intramolecular disulfide bond formation of HMGB1 in the nucleus. Disulfide

HMGB1 is preferentially transported out of the nucleus by binding to the nuclear

exportin chromosome-region maintenance 1 (CRM1). We determined the kinetics of

HMGB1 oxidation in bone marrow-derived macrophage as early as a few minutes after

lipopolysaccharide treatment, peaking at 4 h while disulfide HMGB1 accumulation was

observed within the cells, starting to secrete in the late time point. We have shown

that HMGB1 oxidation status, which is known to determine the biological activity in

extracellular HMGB1, is crucial for the secretion of HMGB1 from the nucleus. This review

summarizes selected aspects of HMGB1 redox biology relevant to the induction and

propagation of inflammatory diseases. We implicate the immunological significance and

the need for novel HMGB1 inhibitors through mechanism-based studies.

Keywords: high mobility group box1 (HMGB1), oxidation, inflammation, therapeutic target, danger-associated

molecular pattern (DAMP)

INTRODUCTION

High mobility group box 1 (HMGB1) is an abundant non-histone nuclear protein that was
discovered over four decades ago. The protein was isolated from calf thymus chromatin by 0.35M
NaCl extraction (1) and was then biochemically characterized (2). Based on its mobility during
polyacrylamide gel electrophoresis, Goodwin et al. termed the proteins “high mobility group,” or
HMG proteins; however, the group of proteins that migrated more slowly during polyacrylamide
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gel electrophoresis were termed “low-mobility group” proteins.
HMG proteins were therefore divided into two groups based
on their molecular weight: higher—HMG-1 and HMG-2 (now
HMGB1 and HMGB2), lower—HMG-14 and HMG-17 (now
HMGN1 and HMGN2), and HMG-I, -Y (now HMGA1a and
HMGA1b) (3–9).

HMG proteins are categorized into three superfamilies
based on the specific functional domains or motifs via
which they recognize individual DNA structures on chromatin:
HMGA, HMGB, and HMGN. Proteins in the HMGA family
contain an AT-hook, which is a DNA-binding motif with a
preference for A/T rich regions. In contrast, those in the
HMGB family contain A-box and B-box functional motifs
and those in the HMGN family contain a nucleosomal
binding domain (NBD). HMGB proteins are ubiquitous and
abundant in most cells and can bind to DNA without sequence
specificity (10–12).

The human HMGB1 protein has 215 amino acid (aa) residues
(MW: 25–30 kDa) that form two homologous DNA-binding
domains (A-box, 1–79 aa; B-box, 89–162 aa) and a negatively
charged C-terminal acidic tail (186–215 aa; Figure 1A) (9, 13).
HMGB1 is located in the nucleus as a result of bipartite
nuclear localization signals (NLS; NLS1, 28–44 aa; NLS2, 179–
185 aa) mediated by the nuclear importin karyopherin (KAP)-
α1; however, the affinity between the two molecules is decreased
by HMGB1 phosphorylation (14, 15). Conversely, the DNA-
binding domain of HMGB1 contains a nuclear-export signal
(NES), and its cytoplasmic localization is mediated by the
nuclear exportin chromosome-region maintenance 1 (CRM1)
(16). The acidic C-terminal of HMGB1 regulates DNA binding
and bending by interacting with its DNA-binding domains
(8, 17) or histones H1/H3 (18); thus, HMGB1 lacking the C-
terminal domain displays improved DNA looping and binding
abilities (19).

The C-terminal acidic domain of HMGB1 also functions
as a transcriptional activator (20, 21), while HMGB1 B-box
has been reported to induce pro-inflammatory signals upon
extracellular stimulation, and the A-box induces antagonistic
effects (22). In particular, the 201–205 aa residues in the C-
terminal acidic tail play a crucial role in the antibacterial
activity of HMGB1 (23). Moreover, interactions with diverse
receptors, extracellular partners, and intracellular partners play
important roles in the activity and biological functions of
HMGB1. HMGB1 residues 89–108 bind to Toll-like receptor
(TLR) 4 and increase pro-inflammatory signaling (22), whereas
residues 150–183 interact with the receptor for advanced
glycation end products (RAGE) to regulate cell migration
(24) and stimulate inflammation (25). HMGB1 has also been
shown to bind to dendritic cell (DC)-derived TIM-3 and
suppress nucleic acid-mediated innate immune responses (26).
In addition, residues 1–15 and 80–96 have been found to
inhibit lipopolysaccharide (LPS)-induced cytokine production in
a subclinical endotoxemia mouse model (27). HMGB1 binds to
lipoteichoic acid (LTA) and enhances proinflammatory responses
by mediating the transfer of LTA to CD14 and TLR2 (28).
Furthermore, HMGB1 residues 6–12 are responsible for binding
heparin and compete with binding between RAGE and HMGB1

(29). A- and B-box of HMGB1 bind to C1q, but only B-box of
HMGB1 can induce the complement activation leading to sterile
inflammation (30). In addition, complex formation between
HMGB1 and IL-1β enhances inflammation and destruction
mechanisms in arthritic joints (31), whereas the HMGB1 and
C-X-C motif chemokine ligand 12 (CXCL12) complex binds
to C-X-C chemokine receptor 4 (CXCR4) and promotes the
recruitment of inflammatory cells (32). Extracellular HMGB1
binds to single-stranded oligonucleotides, forming HMGB1-5’-
C-phosphate-G (CpG)-DNA complex, interacting with TLR9
to augments cytokine production (33, 34). Also, HMGB1
released from apoptosis binds to the nucleosomes and induces
cytokine production or dendritic cells (DCs) activation through
interaction with TLR2 (35). In contrary, HMGB1-CD24 complex
selectively represses the tissue damage-induced inflammation via
interaction with Siglec-10 protein (36). Cytoplasmic HMGB1
binds to Beclin 1 using intramolecular disulfide bridge (Cys23
and Cys45) to affect autophagosome formation (37). Cys23 or
Cys45 in HMGB1 can also bind to reactive cysteine residues in
peroxiredoxins I and II (PrxI/II) to form intramolecular disulfide
bonds that promote its secretion in response to inflammatory
stimuli (38). Residues 7–74 are responsible for binding the p53
transactivation domain and thus increasing gene transcription
(39) (Figure 1A).

Studies have modified HMGB1 A-box and B-box structures
using the PyMol program based on 2YRQ [Protein Data Bank
(PBD) ID: 2yrq]. These two DNA-binding domains consist of
three alpha helices (helix-I, -II, and -III) and two loops (loop-
I and -II) that form an L-shaped structure (40). HMGB1 binds
to the minor groove of pre-bent or linear DNA with little
sequence specificity (41, 42); however, both A- and B-box have
the remarkable ability to unwind and bend DNA with different
properties. For instance, the A-box domain recognizes pre-
bent or linear DNA, whereas the B-box domain binds to mini-
circles and bends linear DNA (43–45). In the crystal structure of
HMGB1 showing A-box domains and an AT-rich DNA fragment,
the two HMGB1 A-box domains were found to collaborate in
order to interact with pre-bent or kinked DNA. The Phe37
(Phe38 in HMGB1 described here) residues from both domains
were shown to play important roles in initiating intercalation
with CG base pairs and thus generating highly kinked DNA
(Figure 1B) (46). The B-box domain is structurally similar to
the A-box in its DNA-binding characteristics and its Ile34 (Ile35
in B-box or Ile122 in the full HMGB1 sequence described here)
residue is sterically comparable to the Phe37 residue in the A-box
domain (Figure 1B).

HMGB1 senses and coordinates the cellular stress response.
As mentioned earlier, HMGB1 contains three conserved
cysteines: Cys23, Cys45, and Cys106 (Figure 1A). Cys23 and
Cys45 can form an intramolecular disulfide bond depending
on the reactive oxygen species (ROS) concentration and
environmental conditions under which HMGB1 binds to its
ligands (Figure 1C) (47). Indeed, the half-life of all-thiol-
HMGB1 ranges from ∼17min in human serum and saliva to
3 h in cell culture medium (47). The oxidation state of HMGB1
determines its interactions with diverse receptors (32, 48) and
its DNA-binding affinity (49). Depending on its redox status,
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FIGURE 1 | Structure of HMGB1. (A) Detailed summary of various domains and motifs in HMGB1. (B) Signature L-loop structure of the A-box and B-box structures

of HMGB1. (C) Overall structure of HMGB1 showing the functional A-box cysteines (C23 and C45) and their geometric distribution in HMGB1. A-box and B-box

structures modified based on 2YRQ [Protein Data Bank (PDB) IP: 2yrq] using PyMol. NLS, nuclear localization sequence; NES, nuclear export signal; TLR4, toll-like

receptor 4; RAGE, receptor for advanced glycation endproducts; Tim-3, T-cell immunoglobulin and mucin domain-containing protein-3; LPS, lipopolysaccharide; LTA,

lipoteichoic acid; C1q, complement component 1q; IL-1β, interleukin 1β; CXCL12, C-X-C motif chemokine 12; F, phenylalanine; I, isoleucine; C, cysteine; C-term,

C-terminal; N-term, N-terminal. Solid line; known binding domain or sequence of HMGB1, Dotted grey line; unknown sequence of HMGB1.

extracellular HMGB1 can trigger numerous effects: (1) all-
thiol-HMGB1 can exert chemoattractive effects by binding to
CXCR4; (2) all-thiol-HMGB1 can prompt autophagy by binding
to RAGE (50); (3) disulfide-HMGB1 can exert pro-inflammatory
effects by binding to TLR4; and (4) fully oxidized-HMGB1
is inert. Cys106 plays a crucial role in the translocation of
HMGB1 from the nucleus to the cytosol (51). Moreover, C23-
C45 oxidation induces a shift between helix I and helix II in the
A-box domain that reduces DNA binding affinity by altering the
orientation of Phe37 (52), resulting in cytoplasmic translocation.
HMGB1 can also affect transcription in the nucleus, requiring
rapid transition between the all-thiol-and disulfide forms
of HMGB1 (53).

Purification of HMGB1 under its native conditions yields
both homodimers and oligomeric forms of the protein; however,

these forms are dissociated when acid-extracted (54). Our
group has also described the Cys106-mediated formation of
HMGB1 dimers under conditions of excessive ROS generation
at the cellular level (unpublished data). As previously discussed,
HMGB1 is a versatile molecule because of intra- and inter-
molecular interactions in its different domains; moreover, the
protein can be either actively secreted by activated immune
cells or passively released due to necrotic cell death where
it acts as a damage-associated molecular pattern (DAMP).
Because of its versatile and variable nature, it is important
to understand the mechanism underlying the secretion of
HMGB1 to fully appreciate its therapeutic and pathological
potential. In this review, we briefly summarize the conventional
and non-conventional mechanisms of cytokine secretion, and
describe in detail the mechanisms of HMGB1 oxidation and
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secretion that have been determined so far, with a focus on
immunological function.

CONVENTIONAL AND

NON-CONVENTIONAL CYTOKINE

SECRETION MECHANISMS

Most soluble secretory proteins utilize a well-known
conventional secretion system involving the endoplasmic
reticulum (ER) and Golgi network, and contain a signal peptide
to target them to the ER (55).When such proteins are synthesized
in the ribosome, the signal peptide is recognized by a signal
recognition particle (SRP) complex. The protein-ribosome-SRP
complex then moves to the Sec61 translocon complex in the ER
outer membrane and proteins translocate into the ER lumen
via the translocon complex (56, 57). Within the ER lumen, the
protein meets chaperone proteins such as Bip and undergoes
modification (glycosylation) followed by protein folding (58, 59).
These proteins are then translocated to the Golgi and plasma
membrane via several processes, concluding the conventional
protein secretion pathway. A recent study found that when
the ER/Golgi pathway is blocked, some proteins are secreted
via an independent mechanism. These proteins lack a signal
peptide targeting them to the ER and are secreted under specific
conditions, such as ROS accumulation, inflammation, and cell
growth factors. These forms of protein secretion are considered
unconventional, and the secreted proteins are generally involved
in immune surveillance, cell survival, and cellular stress (60).

Cytokines regulate immunological functions via their
secretion in immune environments; therefore, controlling
cytokine secretion is crucial for regulating immune function.
Many cytokines such as tumor necrosis factor-α (TNF-α),
interleukin (IL)-2, and IL-12 are secreted via the conventional
secretion mechanism; however, some, including HMGB1, IL-1β,
fibroblast growth factor (FGF)-1/2, and galectins, utilize non-
conventional secretion mechanisms. Here, we briefly explore
different cytokines that use various secretion mechanisms, and
summarize them in Table 1.

Tumor Necrosis Factor (TNF)-α
TNF-α was first identified for its anti-tumor activity but is
now also known to act as a multifunctional cytokine in host
defense mechanisms during inflammatory responses (77). Since
it contains an ER signal peptide, TNF-α is translocated across the
ER and through the Golgi apparatus to the plasma membrane
(61). Newly synthesized TNF-α is localized in the trans-Golgi
network (TGN) with golgin and p230/golgin-245 for intracellular
trafficking and cell surface delivery (78). TNF-α is then released
from the granule via fusion with the plasma membrane (62)
and is cleaved at the cell surface by the tumor necrosis factor-α
converting enzyme (TACE) between Ala76 and Val77 (79).

Interleukin (IL)-1β
IL-1β plays important roles in the cytokine response to
inflammation and immunity during bacterial or viral infection
and is mainly secreted by monocytes, macrophages, and CD
in response to inflammasome activation under conditions such
as LPS and adenosine triphosphate (ATP) stimulation (80).
Although IL-1β is passively released during pyroptotic cell death
(63), secretion of cleaved-IL-1β requires cytosolic compartments
such as the secretory lysosome (64), microvesicles shed from the
plasmamembrane (81) or exosomal release (65). Previous studies
have reported that caspase-1/11 cleave gasdermin D (GSDMD),
whose N-terminal then forms pores in the plasma membrane
that are crucial for the passive release of IL-1β during pyroptosis
(66, 67). Although the pathway is unknown, IL-1β secretion
is known to require ABC transporters whose knockdown or
inhibition is reported to ameliorate IL-1β secretion (82, 83).

Fibroblast Growth Factor (FGF) -1 and -2
FGF-1 and -2 belong to a family of heparin-binding growth
factors (84) and control mitogenic activity (85) and tumor-
induced angiogenesis (86). FGF-1/2 are not only secreted via
the ER/Golgi-dependent secretion pathway, but also the non-
conventional secretion system (68–70); however, the secretion
pathways of FGF-1 and FGF-2 are distinct (87). Unlike FGF-1,
FGF-2 secretion is sensitive to Na+/K+-ATPase inhibition and
is dependent on forming higher-order complexes with Na+/K+-
ATPase ion transporters, with its export occurring in amembrane

TABLE 1 | Conventional and non-conventional secretion of cytokines.

Cytokine Conventional

or Non-conventional

Secretion mechanism References

TNF-α Conventional - Translocated across the ER and through the Golgi apparatus to the plasma membrane (61, 62)

IL-1β Non-conventional - Secretion by secretory lysosome, microvesicles shed, or exosome

- Gasdermin D (GSDMD)-dependent

(63–67)

FGF-1/2 Conventional/

Non-conventional

- FGF-1/2 are not only secreted via the conventional secretion pathway, but also the

non-conventional secretion system

FGF-1

- Secretion is increased by cellular stresses such as heat shock, hypoxia, and

serum starvation

FGF-2

- Dependent on forming complexes with Na+/K+-ATPase

(68–73)

Galectins Non-conventional - Accumulate at the plasma membrane and induce the formation of exosomes pinched off

and released into extracellular space

(74–76)
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potential-independent manner (71). Conversely, FGF-1 secretion
is increased by cellular stresses such as heat shock (88), hypoxia
(72), and serum starvation (73), while copper also can induce
FGF-1 secretion by forming multiprotein aggregates in response
to stress (89); however, FGF1 folding does not prevent its
export (90).

Galectins
Galectins are a family of abundant β-galactoside-specific lectins
that reside in the extracellular matrix and are implicated in
many cellular processes, such as proliferation, differentiation, and
apoptosis (91, 92). Since galectins lack the signal peptides found
in IL-1β and FGF-1/2 for ER/Golgi-mediated secretion, their
secretion is not blocked by the ER/Golgi-dependent inhibitors
brefeldin A and monensin (74, 93). Moreover, galectin-1/3 are
not packaged into vesicles during extracellular export (74, 75,
94, 95) but accumulate at the plasma membrane and induce the
formation of exosomes that are pinched off and released into
extracellular space (74, 75, 94, 95). Secreted galectins bind to
the extracellular surface of the plasma membrane or extracellular
matrix (75, 76) via the N- and O-glycosylated β-galactose-
terminated oligosaccharide side chains of glycoproteins (74, 92).

HMGB1 SECRETION

Generally, cytokines containing a leader sequence undergo
secretion via the ER/Golgi secretion pathway; however, the non-
histone nuclear protein HMGB1 lacks this signal peptide, and
studies have suggested that HMGB1 secretion involves diverse
unconventional secretion pathways. For instance, infection or
cellular stress has been shown to increase the cytoplasmic
accumulation of HMGB1, which is then passively released into
the extracellular space or actively secreted via secretory lysosomes
(9) (Figure 2). Here, we describe in detail the mechanisms that
participate in HMGB1 secretion.

Passive Release of HMGB1
HMGB1 can be passively released during various forms
of cell death, including pyroptosis, apoptosis, autophagy,
necroptosis, and necrosis (Figure 2A). Pyroptosis refers
to inflammatory programmed cell death that occurs after
inflammasome formation caused by bacterial or viral infection.
During pyroptosis, double-stranded RNA-dependent protein
kinase (PKR) induces inflammasome formation, caspase-1
activation, and HMGB1 release upon exposure to diverse
inflammasome-activating agents (96). Apoptosis is another form
of programmed cell death that occurs when cells die due to
injury and involves caspase-3/7, which belong to a family of
protease enzymes. Apoptotic cells induce HMGB1 release, and
it has been reported that Z-VAD, a pan-caspase inhibitor, can
reduce the levels of HMGB1 released (97). Autophagy is an
intracellular degradation system that balances energy sources
in response to nutrient stress by regulating the degradation of
cellular material using lysosomes or vacuoles; however, excessive
autophagy can lead to cell death. Indeed, studies have shown that
epithelial and glioblastoma tumor cells release HMGB1 when
treated with the autophagy-inducing agent epidermal growth

factor receptor-targeted diphtheria toxin (DT-EGF) (98), also
ATG5 knock-out bone marrow-derived macrophages (BMDMs)
reduced HMGB1 secretion under EBSS starvation conditions
(99). In addition, autophagosome-mediated HMGB1 secretion
has been identified, with ATG5 deficient cells or those treated
with an early autophagy inhibitor displaying all-thiol-HMGB1
secretion (data not published). Necrosis is a form of premature
cell death caused by the loss of membrane integrity, intracellular
organelle swelling, and ATP depletion, and it has been shown
that HMGB1 is passively released by necrotic or damaged cells
(100). Necroptosis is a form of programmed necrosis mediated
by death signals that cause the phosphorylated mixed lineage
kinase domain-like protein (MLKL) to be inserted into and
permeabilize the plasma membrane (101). Moreover, TNF-α/Z-
VAD-induced necroptosis has been shown to phosphorylate
MLKL proteins and increase HMGB1 secretion levels (102).

Post-Translational Modifications (PTMs)

and Active Secretion of HMGB1
HMGB1 can undergo several extensive PTMs that increase
its cytoplasmic accumulation and extracellular secretion
during infection or cell stress, including acetylation (16),
phosphorylation (14, 15), ADP-ribosylation (103), methylation
(104), glycosylation (105), and oxidation (38, 51) (Figure 2B).
Various PTMs increase the interaction between HMGB1 and the
nuclear transport receptor CRM1, thus favoring its translocation
from the nucleus to the cytoplasm. PTM-mediated HMGB1
secretion is caused by lysosomal exocytosis wherein cytoplasmic
HMGB1 co-localizes with the lysosomal marker LAMP1 for
secretion (106). The PTMs and subsequent events that HMGB1
undergoes are summarized below and visualized in Figure 2B.

1) Acetylation is a major PTM that can affect protein function
by altering properties such as hydrophobicity, solubility, and
surface properties. Protein acetylation refers to the reaction
during which the acetyl group of acetyl coenzyme A (Ac-
CoA) is transferred to the lysine (Lys) residue of the target
protein. HMGB1 has two acetylation clusters at Lys27–
29 and Lys181–183, and it has been shown that nuclear
localization is unaffected by mutating either Lys cluster
(16). The poly(ADP-ribose) polymerase-1 (PARP1) induces
the cytoplasmic translocation and extracellular secretion of
HMGB1 by catalyzing its acetylation (107). Compare to
HMGB1, mimicking acetylated HMGB1 (six lysine residues
for glutamines) increases the TNF-α production in RAW264.7
cells and reduces DC maturation (108). Various triggers
which induces HMGB1 acetylation includes inflammatory
signal such as LPS or TNF-α (109), and cell stress triggered
by chemotherapeutic reagent such as cisplatin (110). Such
conditions can be experimentally mimicked using trichostatin
A (TSA), an inhibitor of histone deacetylase complex
(HDAC) (111).

2) Phosphorylation is a molecular mechanism via which amino
acid residues are phosphorylated by a protein kinase to
regulate the functional response of proteins to various extra-
or intracellular stimuli. HMGB1 phosphorylation is mediated
by classical protein kinase C (cPKC) in a calcium-dependent

Frontiers in Immunology | www.frontiersin.org 5 June 2020 | Volume 11 | Article 118940

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kwak et al. HMGB1 Modification and Redox Biology

FIGURE 2 | Active secretion and passive release of HMGB1. Summary of stimuli leading to passive HMGB1 release (A) and active HMGB1 secretion (B). (A) Passive

release mechanisms involve the disruption of the plasma membrane via various cell death mechanisms. (B) Active secretion involves various HMGB1

post-translational modifications that reduce its genomic DNA binding activity and increase its CRM1 binding affinity. DAMP, danger-associated molecular pattern;

PAMP, pathogen-associated molecular pattern; PKR, double-stranded RNA-dependent protein kinase; ROS, reactive oxygen species; ATG5, autophagy related 5;

z-VAD, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]; RIP1, receptor-interacting serine/threonine-protein kinase 1; RIP3, receptor-interacting protein kinase 3;

pMLKL, Phosphorylated mixed linage kinase domain like; PARP1, poly [ADP-ribose] polymerase 1; PCAF, P300/CBP-associated factor.

manner via the PI3K-PKC signaling pathway (14). InHMGB1,
Ser35, 39, 42, and 46 in NLS1, 181 in NLS2, and 53 close to
NLS1 have been shown to be phosphorylated in macrophages
after TNF-α and okadaic acid treatment (15), while Ser39,
53, and 182 of HMGB1 are phosphorylated by PKC-ζ in
colon cancer cells (112). Moreover, HMGB1 phosphorylation
has been found to reduce its binding affinity with the
nuclear import protein KAP-α1 and promote its cytoplasmic
translocation and extracellular secretion (15).

3) ADP-ribosylation refers to the process wherein one or
more ADP-ribose moieties are added to target proteins, and
includes mono-ADP-ribosylation, poly-ADP-ribosylation,
ADP-ribose cyclization, and O-acetyl-ADP-ribose formation.
PARP activation regulates the translocation of HMGB1
from the nucleus to the cytoplasm during DNA-alkylating
damage (103), while hyper poly(ADP)-ribosylated HMGB1
has been shown to inhibit efferocytosis by binding to
phosphatidylserine (PS) on apoptotic cells and RAGE on
macrophages (113). Such activation was reported in cell
death related stimuli such as activation of tumor necrosis
factor [ligand] superfamily member 10 (TNFSF10)—TNF-
related apoptosis-inducing ligand (TRAIL) pathway (114) or
daunorubicin treatment (115), and inflammatory assault with
LPS (103).

4) Methylation is a PTM in which a methyl group is added
to proteins, usually on the side-chain nitrogens of arginine
and lysine or carboxyl groups of glutamate and leucine.
During the process of neutrophilic differentiation, Lys42 in
HMGB1 can be mono-methylated which significantly reduces
its DNA binding activity, causing its translocation from the
nucleus to the cytoplasm (104). Lys112 has also been found

to be mono-methylated in HMGB1 and contribute toward
its cytoplasmic localization (116). However, it is still unclear
which stimuli exclusively leads to the methylation of HMGB1
during active secretion.

5) Glycosylation is a common PTM characterized by the
attachment of sugar moieties to proteins. HMGB1 derived
from calf thymus and chicken erythrocytes undergoes O-
linked GlcNac glycosylation with sugars such as Fuc,
Man, GalNH2, GlcNH2, and Gal monosaccharides (117),
while it has recently been reported that HMGB1 can also
undergo N-linked glycosylation at two consensus (Asn37 and
Asn137) residues and one non-consensus (Asn135) residue.
N-glycosylation of HMGB1, induced by PMA, TSA and
LPS, can persuade its secretion into the extracellular space
by reducing its DNA binding affinity and increasing the
association with CRM1 (105).

6) Oxidation is a covalent modification that proteins undergo
during redox reactions involving the transfer of oxygen,
hydrogen, and electrons. HMGB1 contains three redox-
sensitive cysteines: Cys23, Cys45, and Cys106. Under
mild oxidative stress, Cys23 and Cys45 rapidly form an
intramolecular disulfide bond that increases the cytoplasmic
localization and extracellular secretion of HMGB1 (51). In
response to inflammatory stimuli, PrxI and PrxII induce
HMGB1 oxidation to its disulfide form and lead to its
nucleocytoplasmic translocation and secretion (38). Such
oxidative stresses may come from external sources such
as H2O2 or glucose oxidase, or by internal activation of
molecules by LPS, TNF-α, or interferon-γwhich in turn causes
HMGB1 release through TNF-dependent manner (118). Since
the oxidation status and immunological properties of HMGB1
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crucially influence its biological function, we dedicated
a separate section to discussing HMGB1 redox biology
in detail.

HMGB1 Oxidation Mechanisms
The function and secretion of HMGB1 are dependent on
its redox status, which is controlled by three redox-sensitive
cysteines: Cys23 and Cys45 in A-box and Cys106 in B-box.
Thus, HMGB1 can take three different oxidation forms: an all-
thiol form, disulfide form (Cys23-Cys45 intramolecular disulfide
bond with Cys106 thiol form), and a fully oxidized form. During
the active secretion of HMGB1, the Cys23-Cys45 intramolecular
disulfide bond induces HMGB1 cytoplasmic translocation. This
process also requires Cys106, as demonstrated by the nuclear
localization of Cys106-mutated even with Cys23 and Cys45
mutations (51). Hydrogen peroxide is a ROS that induces the
release of HMGB1 frommacrophages and monocytes, reportedly
by increasing its interaction with CRM1 and thus increasing
HMGB1 secretion (119). Under elevated ROS conditions, PrxI
and PrxII cause disulfide-HMGB1 formation (38) (Figure 3).
The diversity of HMGB1 redox status also affects its passive

release from necrotic and apoptotic cells, with the majority
of HMGB1 released from necrotic cells being in an all-thiol
state but that released from apoptotic cells being in a fully
oxidized form. Moreover, HMGB1 oxidation status plays an
important role in receptor binding and subsequent cytokine-
like activities.

Hoppe et al. previously described the mechanism of HMGB1
oxidation (51), identifying that HMGB1 interacts with the
de-glutathionylation enzyme glutaredoxin (Grx) during the
nuclear extraction of Chinese hamster ovary (CHO) cells after
diamide treatment. Electrophoretic mobility assays revealed
that HMGB1 oxidation increases in a diamide concentration-
dependent manner, while disulfide-HMGB1 could be reversed
by incubating diamide-treated retinal pigment epithelium (RPE)
cells with thioredoxin (Trx) or Grx/glutathione (Figure 3).
Conversely, we found that HMGB1 can be oxidized by PrxI/II
in the nucleus after exposure to inflammatory stimuli (Figure 3)
(38). PrxI/II can interact with all-thiol-HMGB1 generated
by mutagenesis (Cys23-to-Ser or Cys45-to-Ser) after hydrogen
peroxide stimulation; however, such HMGB1 oxidation is
suppressed in PrxI/II-deficient mouse embryonic fibroblast

FIGURE 3 | HMGB1 redox biology. Summary of HMGB1 redox biology and the crucial role of peroxiredoxin and thioredoxin. Various stimuli cause oxidative stress

that promotes HMGB1 oxidation via the peroxiredoxin-dependent pathway. NADPH, nicotinamide adenine dinucleotide phosphate; SP, peroxidatic cysteine; SR,

resolving cysteine; H, hydrogen; Trx, thioredoxin; TrxR, thioredoxin reductases; NADP, nicotinamide adenine dinucleodebtide phosphate.
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(MEF) cells, even when exposed to inflammatory stimuli.
All-thiol-HMGB1 cannot translocate into the cytoplasm or
extracellular space, while PrxI/II-deficient BMDMs lack the
ability to secrete HMGB1 despite treatment with diverse
inflammatory stimuli, such as LPS, phorbol-12-myristate-13-
acetate (PMA), trichostatin A (TSA), or TNF-α (38). HMGB1
phosphorylation by PMA and/or acetylation by TSA promotes
its nuclear transport and extracellular secretion (15, 16).
Although cells treated with PMA or TSA display increased
HMGB1 secretion, this secretion is inhibited by treatment with
the antioxidant N-acetylcysteine (NAC). Moreover, HMGB1
secretion induced by PMA can be inhibited by the NADPH
oxidase inhibitor diphenyleneiodonium (DPI), indicating that
PMA-induced HMGB1 secretion requires H2O2 production
by the mitochondria and/or Nox. Intracellular disulfide bond
formation in HMGB1 (Cys23-Cys45) has been shown to
be important for its nucleocytoplasmic translocation and
extracellular secretion. Indeed, HMGB1 mutants with defective
phosphorylation or acetylation sites undergo less translocation
into the extracellular space than WT HMGB1 (38). In summary,
these findings indicate that the mechanisms of HMGB1
oxidation and reduction are induced by PrxI/II and Trx or
Grx/glutathione, respectively (Figure 3). It is possible that,
like acetylated-HMGB1, oxidized-HMGB1 may be less favored
for nuclear import and thus accumulates in the cytosol.
Oxidized-HMGB1 in the cytosol is packed into lysosomes
through an as yet unknown mechanism and then secreted.
Nevertheless, extracellular HMGB1 can induce an immune
response and HMGB1 oxidation decides its immune function.
Also, as mentioned previously, HMGB1 oxidation has a more
substantial influence on its secretion compared to acetylation
and phosphorylation. Thus, control of HMGB1 oxidation
both in intracellular and extracellular is important for the
therapeutic approach based on blockade of HMGB1 secretion
and immune response.

HMGB1 Secretion Kinetics
The PTMs of HMGB1 in the nucleus occurs rapidly after
exposure to diverse stimuli; however, after binding to CRM1 in
the nucleus, the export of modified HMGB1 into the cytoplasm
is known to take around 6–8 h, whereas it can take up to 18 h
for HMGB1 secretion into the extracellular space to peak. The
degree of HMGB1 oxidation has been reported to be crucial for
its immune function (9, 51, 120) and is also very important for its
secretion. For instance, HMGB1 secretion induced by PTMs such
as phosphorylation or acetylation also requires oxidation, with
anti-oxidant treatment reducing HMGB1 secretion even when
treated with PMA or TSA (38). Therefore, we examined instances
when HMGB1 PTMs and extracellular secretion occur under
oxidative conditions by treating mouse BMDMs with 100 ng/mL
of LPS and separating their nuclei at a series of time points
to determine the HMGB1 oxidation ratio. HMGB1 oxidation
increased with time, with oxidation first detectable after just
30min, and disulfide-HMGB1 was maintained for up to 4 h
and then gradually decreased after 8 h. Despite rapid HMGB1
oxidation in the nucleus, its secretion began only after 4 h and
increased up to 16 h (Figure 4). Further studies investigating
the mechanism underlying the delay between oxidation and
secretionwould improve our understanding ofHMGB1 secretion
kinetics. It is possible that secretion-ready cytosolic HMGB1 is
packed into a secretory lysosome or autophagosome and secreted
via non-conventional secretion mechanisms, requiring a very
complex, as yet unknown, packaging mechanism. Conversely,
a recent article by Wang et al. observed HMGB1 localization
in mitochondria and peroxisome in neuron cells via electron
microscopy and immunofluorescence, but not in lysosomes
(121). In macrophages or macrophage lineages, the release of
HMGB1 occurred through a lysosomal pathway after acetylation
of the HMGB1 (16). It has also been demonstrated that
LPS-induced HMGB1 secretion by monocytes is mediated
by lysosomal exocytosis (106). Various explanations may be

FIGURE 4 | HMGB1 redox kinetics. (A) Short-term (left) and long-term (right) changes of HMGB1 redox status upon LPS stimulation. Western blot showing the

All-thiol-H (all-thiol-HMGB1) or Disulfide-H (disulfide-HMGB1) expression in BMDM whole-cell lysates, which was treated with LPS (100 ng/mL) for indicated times.

Methods were used as our previous study (38). (B) HMGB1 secretion timeframe. Disulfide-H from culture supernatant was measured by Western blot. (C) Graphical

representation of the relationship between HMGB1 oxidation (left y-axis, closed circle) quantified as % maximum from (A) and HMGB1 secretion (right y-axis, opened

circle). The level of secreted HMGB1 was determined by ELISA (38).
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FIGURE 5 | HMGB1 redox status and receptors. Redox status of HMGB1 from various sources with different receptors and their representative functions. Different

redox states are associated with different release mechanisms, each linked to various immunological and cell biological functions.

FIGURE 6 | Current and potential strategies for HMGB1 inhibition. Summary of newly proposed inhibition targets (left), targets utilized by conventional inhibitors (right).
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available for such discrepancy; however, the diverse origin of
cells (macrophage, epithelial, neuronal, etc.) may have different
mechanisms that translocated HMGB1 takes to be secreted to the
extracellular milieu. A complete understanding of the oxidation
kinetics mechanism of HMGB1 is necessary to predict the fate of
HMGB1-mediated inflammation.

HMGB1 Receptors and Immune Functions
As mentioned in the Introduction, extracellular HMGB1 via
active secretion or passive release binds to diverse partners
(Figure 1A). HMGB1 associates and shows interactions with
several molecules, such as Heparin, LPS, LTA, IL-1β, RNA, and
DNA, CXCL12, nucleosomes and C1q (9, 27–30). HMGB1-
partner complex (or HMGB1 alone) interacts with immune
receptors or surface molecules such as TLRs and RAGE,
which then activate the downstream signaling pathways such
as MyD88, IFN regulatory factors (IRFs), nuclear factor κB
(NF-κB), MAPKs and phosphatidylinositol 3-kinase (PI3K) to
enhance the inflammation and immune response (9, 22, 25, 26,
28, 34, 36). Besides, HMGB1 oxidation status alters its receptor
bindings and subsequent cytokine-like activities (9, 51). As
mentioned in section Post-Translational Modifications (PTMs)
and Active Secretion of HMGB1, multiple PTMs are involved in
extracellular secretion of HMGB1. Effect of PTM in receptor-
ligand interaction kinetics between extracellular HMGB1 and
its receptors, however, are understood to a lesser degree. One
example of PTMs positively affecting the HMGB1-receptor
interaction is portrayed using acetylation-mimicking mutant
HMGB1 (six lysine residues for glutamines), increasing TNF-
α production in RAW264.7 cells (108). Thus, although specific
effects for each PTM are yet to be reported, diversely modified
HMGB1 may have an important role in the receptor binding
and downstream signaling pathway. Of all PTMs associated
with HMGB1, only the effects of oxidation are studied in
detail, hence we will focus our scope to the redox status of
extracellular HMGB1 in regards to its activity. HMGB1 binds
to different receptors depending on the redox state of its three
cysteines (C23, C45, C106), which subsequently determines its
functions (120). HMGB1 containing three thiol-form cysteines
exerts chemoattractive effects by forming a heterocomplex
with CXCL12, which then binds to CXCR4 and induces cell
migration. The formation of a complex between HMGB1 and
CXCR4 induces conformational changes in aa residues 3–12
of CXCL12 alongside specific conformational changes in the
CXCR4 homodimer, which promotes better chemotactic abilities
than CXCL12 alone (32). All-thiol-HMGB1 can also bind to
RAGE and promote autophagy (122) by inhibiting mTOR
and promoting Beclin 1-Ptdlns3KC3 complex formation (123).
ROS induces HMGB1 oxidation and cytosolic translocation
from the nucleus. Cytoplasmic HMGB1 binds to Beclin 1
using an intramolecular disulfide bridge (Cys23 and Cys45) to
enhance autophagic flux (37, 124, 125). Moreover, the interaction
between HMGB1 and RAGE activates NF-κB, the MAP kinase
pathways and affects cell migration by inducing the expression
of adhesion molecules (126, 127). Extracellular HMGB1 can
also stimulate RAGE expression (128). Conversely, disulfide-
HMGB1 stimulates cytokine production and inflammation by

forming a complex with CD14 andMD-2 via TLR4. The disulfide
bond between C23-C45 and the thiol form of C106 residues
are not only required for binding TLR4 but also inducing the
translocation of NF-κB and release of TNF-α (48). These findings
were confirmed in apoptotic cells where fully oxidized-HMGB1
produced by excessive ROS contributed toward immunological
inertness and apoptotic cell death (32). Although its specific
functions remain unclear, fully oxidized-HMGB1 is known to
prevent the cytokine or chemokine activities of other HMGB1
forms and ultimately induce immune tolerance (32) (Figure 5).
In contrast, CD24-Siglec-10 and TIM-3 are negative receptors
that inhibit HMGB1 immune activity in macrophages, DCs
and tumor cells. HMGB1 can bind to CD24, first identified
as a B cell differentiation marker, and selectively represses
the tissue damage-induce inflammation through induction of
CD24-Siglec-10 complex formation, negatively regulating NF-
κB (36). Also, HMGB1 can bind to TIM-3, a member of
the T-cell immunoglobulin domain and mucin domain family,
and its binding suppresses the nucleic acid-mediated antitumor
immunity via A-box competing with nucleic acid (26). The
aforementioned reports indicate extracellular HMGB1 have not
only pro-inflammatory effects but also anti-inflammatory effects
according to the microenvironment.

Extracellular HMGB1 not only differ in functions by its
PTM derivations, but also by the types of cells responding to
HMGB1. Monocytes exposed to HMGB1 polarized toward pro-
inflammatory (M1) macrophages, upregulating the production
of inflammatory cytokines both in vitro and in vivo (129, 130).
Silencing of HMGB1, on the other hand, prevents macrophage
polarization to the M1 phenotype following LPS stimulation
(131). Similarly, neutrophils react to extracellular HMGB1 by
promoting its neutrophil extracellular trap formation (132) and
heighten its immune reactions (133). DCs consider HMGB1 as
an endogenous adjuvant to boost its effectiveness in antigen-
presenting to its adaptive counterparts (134). Extracellular
HMGB1, as discussed above, has exhibited significance in various
immunological and physiological contexts, sparking an interest
in suppressing its functions. Controlling HMGB1 as a potential
therapeutic target in the immune diseases must be exquisitely
controlled depending on its purpose.

HMGB1 Inhibition
The involvement of HMGB1 in various pathologies ranging from
inflammatory diseases to cancer has been discussed thoroughly
and has resulted in the development of HMGB1 secretion
inhibitors. Currently, several companies and research centers
sought to control the effects of HMGB1 by modulating its
expression, translocation, secretion, and receptor binding ability
using diverse chemicals as an approach to develop therapeutic
agents. These strategies for suppressing HMGB1 secretion can
be divided into three categories: (1) small molecules inhibiting
HMGB1 release; (2) neutralizing HMGB1 itself; and (3) blocking
HMGB1 receptors (Figure 6).

Numerous studies have reported small molecules capable of
inhibiting HMGB1 secretion, from newly synthesized molecules
to those isolated from natural sources. For instance, naturally
isolated small molecules such as glycyrrhizin have been reported
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to be effective in treating numerous pathological conditions,
such as septic shock, neuroinflammation, atopic dermatitis, and
Pseudomonas aeruginosa keratitis (135–138). Syntheticmolecules
such as ethyl pyruvate, atorvastatin, and simvastatin have
also demonstrated promising therapeutic activity by targeting
HMGB1. In addition, the natural flavonoid kaempferol was
found to alleviate neuroinflammation by suppressing HMGB1
release and down regulating the TLR4/MyD88 pathway (139),
and the rare ginsenosides Rk1 and Rg5 have shown promise
by reducing HMGB1 release and thereby improving survival
in cecum ligation- and puncture-induced murine sepsis models
(140). Inflachromene, a novel small molecule developed as a
potential anti-inflammatory drug, was also found to inhibit
HMGB1 secretion via directly binding to HMGB1 and inhibiting
autophagy (141, 142). Despite most of the candidates are yet
to be approved by the Food and Drug Administration (FDA),
Metformin, clinically approved drug for metabolic disease and
type 2 diabetes, has investigated as an inhibitor for HMGB1
through direct binding each other, inhibiting the cytosolic
translocation within the cells and receptor binding in the
extracellular space (143, 144). Other candidates of HMGB1
secretion inhibitors are also being discovered through drug
repositioning efforts, such as salicylic acid, methotrexate, and
(-)-epigallocatechin-3-gallate (145–147).

Neutralizing antibodies against HMGB1 have been used to
confirm its involvement in mouse models of various pathologies,
such as arthritis, suggesting that HMGB1-neutralizing antibodies
could be used therapeutically (148, 149). Indeed, neutralizing
the effects of HMGB1 by competitively inhibiting its activity
with soluble receptors or neutralizing antibodies could be a
straightforward and approach. A soluble form of RAGE was
reported to effectively reduce neutrophilic asthma attacks and
angiotensin II-induced cardiomyocyte hypertrophy by inhibiting
the HMGB1-RAGE axis (150, 151). Similarly, studies have
reported the inhibition of the HMGB1-receptor signaling
pathway using neutralizing antibodies against its receptors.
For instance, neutralizing monoclonal antibodies recognizing
TLR4 were used to reduce IL-8 secretion upon LPS stimulation
in human primary monocytes, and efforts to use HMGB1
neutralizing antibodies in stroke patients are being continually
made (152, 153). Moreover, the continual administration
of neutralizing antibodies against RAGE in murine models
of neurological pain were reported to reverse mechanical
hyperalgesia (154, 155) Further information about HMGB1
inhibitors could be found in this Frontiers Research Topics of
“The Role of HMGB1 in Immunity” by Yang et al. (156).

We suggest expanding on the importance of modulating the
HMGB1 oxidation mechanism. HMGB1 oxidation is the major
PTM that drives secretion and its oxidized form of extracellular
HMGB1 induce inflammatory signaling, which leads to many
diseases, including neuroinflammation, hyperalgesia, drug-
induced liver injury, and sepsis (157–159). Of particular note is
the fact that it is important to develop specific inhibitors targeting
the enzymes involved in altering HMGB1 redox status. Prx,
which is a major direct modulator of HMGB1 redox status, could

possibly be a plausible candidate for inhibition (38), whereas
well-established redox enzymes with a strong connection to Prx,
such as Trx and sulforedoxins, could also be potential targets for
inhibition (160) (Figure 6).

CONCLUDING REMARKS

Although several strategies have been shown successfully in
inhibiting HMGB1-dependent inflammatory processes (156),
there is still a lack of specificity originating from HMGB1’s
involvement in pathologies. This review aims to overcome the
aforementioned weak points by suggesting various plausible
aspects of inhibition, increasing the specificity of inhibition
therapies. We provide an overview of the protein secretion
mechanisms and discuss the HMGB1 secretion mechanisms
and pathways in depth. Besides, we highlight the importance
of multiple PTMs and the redox biology of HMGB1, with a
particular focus on the important role of HMGB1 oxidation
in its secretion. Finally, we discuss multiple immunological
and non-immunological diseases involving HMGB1, as well
as attempts to inhibit its secretion, extracellular activity, or
the receptors that bind to HMGB1. The next step should to
unveil fine-tuned process of HMGB1 PTMs in physiological
and pathological conditions. Future researches would benefit
from extensive quantitative analysis of extracellular HMGB1
and its PTM patterns in various cell types and different
pathological conditions to further develop disease-specific
inhibition strategies.
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Background: High-mobility group box 1 protein (HMGB1) was identified as a highly

conserved DNA binding nuclear protein, which participates in the processes of acute lung

injury (ALI). HMGB1 binds to its specific receptors not only to activate the nuclear factor

(NF)-κB and mitogen-activated protein kinase (MAPK) pathways but also to regulate

the activation of the phosphatidylinositol 3′-kinase/protein kinase B/mammalian target

of the rapamycin (PI3K/AKT/mTOR) pathway. Mature dendritic cells (DCs) regulate acute

lung inflammation and pathological injury in ALI. In addition, studies have shown that

the activation of the PI3K/AKT/mTOR signaling pathway may regulate the function and

maturation of DCs.

Objective: Therefore, we speculate that HMGB1/PI3K/Akt/mTOR signaling participates

in regulating the pathological process of ALI by regulating the maturation and function

of DCs.

Methods: Anti-HMGB1 antibody, rHMGB1, or LY294002 (PI3K inhibitor) was

administered in a murine model of lipopolysaccharide (LPS)-induced ALI. For in vitro

studies, generated bone marrow-derived dendritic cells (BMDCs) primed by LPS were

stimulated with the same reagents. The effects of these different treatments were

observed on the expression of PI3K, AKT, and mTOR and on the function of DCs.

Results: HMGB1 upregulated the expression of PI3K, Akt, and mTOR mRNA and

phosphorylated proteins in BMDCs. The HMGB1/PI3K/Akt/mTOR signaling pathway

induced the maturation and antigen-presenting ability of lung DCs, mediated the

percentage of myeloid DCs (mDCs), and enhanced the adhesion and chemotactic ability

of lung DCs.

Conclusions: HMGB1/PI3K/Akt/mTOR signaling participates in the pathological

process of ALI by regulating the maturation and functions of DCs.
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INTRODUCTION

Acute lung injury (ALI)/acute respiratory distress syndrome
(ARDS) is a complex clinical syndrome characterized by
persistent hypoxemia due to pulmonary interstitial edema,
damage and disruption of the alveolar–capillary barrier, and
widespread inflammation in the lung (1, 2). Although the clinical
treatment and management of ALI/ARDS have improved, it still
has high morbidity and mortality in the intensive care unit (3).
Previous studies have shown that an excessive inflammatory
response storm plays a vital role in the pathological process of
ALI/ARDS (1). Therefore, elucidation of molecular and cellular
mechanisms associated with inflammation in ALI may be helpful
in identifying new therapeutic targets.

High-mobility group box 1 protein (HMGB1) was identified
as a highly conserved DNA binding nuclear protein and
participates in the processes of replication, recombination,
transcription, and DNA repair. HMGB1 is reported to contribute
to inflammatory dysfunction in sepsis and ALI, and the levels
of HMGB1 in the plasma and tissue were significantly increased
in a mouse model of lipopolysaccharide (LPS)-induced mouse
model of ALI (4, 5). Increasing evidence supports the role
of HMGB1 as a regulator of ALI. The downstream pathways
of HMGB1 may lead to neutrophil infiltration, injury of lung
tissue, inflammatory cytokine release, and the development
of ALI. HMGB1 binds to its specific receptors, including
the receptor for advanced glycation end products, toll-like
receptor (TLR)2 and TLR4, in turn activating the nuclear
factor (NF)-κB and mitogen-activated protein kinase (MAPK)
pathways, which mediate inflammatory molecules such as TNF-
α, IL-1β, IL-18, and IL-6 (6–8). HMGB1 also induces an
inflammatory response through the phosphatidylinositol 3′-
kinase/protein kinase B/mammalian target of the rapamycin
(PI3K/AKT/mTOR) pathway (9). Previous studies have shown
that HMGB1 inhibitors or HMGB1 siRNA effectively inhibited
the activation of the TLR4/NF-κB and PI3K/AKT/mTOR
pathways (9, 10). Previous research has shown that the
PI3K/Akt/mTOR pathway regulated multiple physiological
activities such as cell proliferation, autophagy, and apoptosis (11,
12). In addition, the PI3K/Akt/mTOR pathway has an important

role in pulmonary inflammation and pathological progression of
ALI (13, 14). Thus, HMGB1 induces an inflammatory response
in ALI through the PI3K/AKT/mTOR pathway.

Dendritic cells (DCs), the most prominent antigen-presenting
cells, play a key role in initial and adaptive immune responses
and are ideally positioned to serve a priming and central
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role in the immune response during inflammation (15, 16).
Previous studies have shown that the number of mature
conventional DCs (cDCs) in lung tissue during ALI is
significantly increased, and the maturation of pulmonary DCs
regulate acute lung inflammation and pathological injury (17,
18). Therefore, DCs play an important role in the pathological
progress of ALI, and regulating the function and maturation
of DCs may have great clinical significance for the treatment
of ALI.

Studies have shown that promoting the activation of
PI3K/AKT/mTOR signaling regulates the function of
immune cells including DCs (19, 20). Moreover, the
activation of the PI3K/Akt/mTOR pathway participates in
sepsis-induced ALI (11, 13, 21). Thus, we speculated that
HMGB1/PI3K/Akt/mTOR signaling participates in regulating
the pathological process of ALI by regulating the maturation and
function of DCs.

MATERIALS AND METHODS

Mice
Male C57BL/6 mice (6–8 weeks old, 20–22 g) were obtained
from the Experimental Animal Centre of Hubei province
(Wuhan, China). The mice were maintained in the animal
laboratory of the Experimental Animal Center of Hubei
province under standard laboratory conditions for 1 week
prior to the experiments. The mice were kept under specific
pathogen-free conditions at 25◦C in a 12-h light/dark

cycle, with a humidity of 45–55% in a ventilated cage. All
experimental procedures were performed in accordance with
the requirements of the Institutional Animal Care and Use
Committee at Huazhong University of Science and Technology
(Wuhan, China).

Experimental Protocol for the ALI Murine
Model
All mice were divided into the following groups using
the randomized grouping method (n = 4–6 per group):
control group, LPS group, LPS+anti-HMGB1 group,
LPS+rHMGB1 group, LY294002 (PI3K inhibitor) positive
control group, and LPS+LY294002 group. The ALI murine
model was induced by intraperitoneal (i.p.) injection
of LPS as described previously (22). Anti-HMGB1 or
rHMGB1 was administered as previously described (22).
The LY294002 intervention group was injected with 1 mg/25 g
LY294002 via the tail vein 2 h after LPS injection (23). All
experimental mice were sacrificed using cervical dislocation
24 h after receiving the LPS challenge, and lung tissues and
bronchoalveolar lavage fluid (BALF) were extracted for
further analysis.

Collection of BALF
We collected BALF as described in detail in a previous
study (24).
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TABLE 1 | Primer sequences and product sizes.

Gene name Primer sequences (5′-3′) Product

size (bp)

PI3K Forward:

Reversed:

5′- ACACCACGGTTTGGACTATGG -3′

5′- GGCTACAGTAGTGGGCTTGG -3′
140

Akt Forward:

Reversed:

5′- TGGGTCAAGGAACAGAAGCA -3′

5′- TCACACTGACCACTGACACA -3′
111

mTOR Forward:

Reversed:

5′-CGGGACTCTTTACACTGCG-3′

5′-CCTTCAGGCTCAACCAACA-3′
82

GAPDH Forward:

Reversed:

5′-TGTGTCCGTCGTGGATCTGA-3′

5′-TTGCTGTTGAAGTCGCAGGAG-3′
150

(a) PI3K, Phosphatidylinositol 3′-kinase; (b) Akt, Protein kinase B; (c) mTOR, Mammalian

target of rapamycin; (d) GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

Generation of Bone Marrow-Derived
Dendritic Cells (BMDCs)
BMDCs were generated as previously described (24). The
obtained BMDCs were stimulated with or without 1µg/ml LPS
(Sigma Aldrich, St. Louis, MO, USA), anti-HMGB1 (10µg/ml)
(22), rHMGB1 (50µg/ml) (22), or LY294002 (25µM) (25)
for 24 h. BMDCs and cell supernatants were collected for
subsequent real-time reverse-transcriptase polymerase chain
reaction (RT-qPCR) and enzyme-linked immunosorbent assay
(ELISA) analyses.

Cytokine Analysis
Concentrations of interleukin (IL)-12p40, tumor necrosis factor
(TNF)-α, IL-6, IL-18, IL-1β, and monocyte chemotactic protein
(MCP)-1 secreted by DCs from each sample were determined by
ELISA according to the manufacturer’s instructions (eBioscience,
San Diego, CA, USA). Cytokine concentrations are expressed
as pg/ml.

RNA Extraction and RT-qPCR
Total RNA was extracted from the right lung tissue and BMDCs
by a Trizol reagent (Invitrogen/Thermo Fisher Scientific Inc.,
Carlsbad, CA, USA), and the RNA was reverse-transcribed into
complementary DNA (cDNA) using a ReverTra Ace qPCR
RT kit (Toyobo CO., LTD., Tokyo, Japan) according to the
manufacturer’s protocol.

RT-qPCR assay on the samples was carried out
using the SYBR Premix Ex TaqTM (Takara Bio Inc.,
Otsu, Japan) as previously described (24, 26). RT-qPCR
data were analyzed by QuantStudio 6 Flex (ABI Life
Technology, USA). The 211Ct method was used to
evaluate the relative expression of each target gene after
normalization by glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). Primer sequences for each target gene are listed
in Table 1.

Western Blot Analysis
BMDCs were harvested at 24 h after stimulation with LPS
and frozen at −80◦C. Total protein was extracted using a
lysis buffer (Beyotime Institute of Biotechnology, Haimen,
China). Protein concentrations were determined by BCA Protein

Assay Kit (Beyotime Biotechnology, Shanghai, China). Protein
(40 µg/well) was separated via 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
to polyvinylidene fluoride (PVDF) membranes (Millipore
Corp., Billerica, MA, USA). Membranes were blocked with
5% non-fat milk in Tris-buffered saline containing Tween
20 (TBST) for 2 h at room temperature, then incubated
with primary antibodies (p-PI3K p85, p-Akt T308, p-mTOR,
Abcam, Cambridge, UK) diluted in a blocking solution
(1:1,000) overnight at 4◦C, and finally treated with diluted
horseradish peroxidase (HRP)-conjugated secondary antibody
(1:50,000, BOSTER Biological Technology Co., Wuhan, Chine)
at 37◦C for 2 h. The immunoreactive bands were analyzed
using the BandScan 5.0 (Glyko, Novato, CA, USA) gel
imaging software.

Flow Cytometry
To determine the phenotype of DCs in lung tissue and
BMDCs, prepared lung mononuclear cells (MNCs) and
BMDCs were suspended in a FACS buffer at 2 × 106

cells/ml. DCs express the marker CD11c but not the
marker F4/80 on the cell surface; therefore, DCs were
gated as CD11c+/F4/80− cells using the PE-CD11c antibody
(eBioscience, San Diego, CA, USA) and the APC-Cy7-F4/80
antibody (BioLegend Inc., San Diego, CA, USA). Next,
the cells were stained with the following antibodies: FITC-
MHCII, FITC-CD80, FITC-CD40, FITC-B220, FITCICAM-1
(eBioscience, San Diego, CA, USA), APC-CD86, APC-CCR7,
APC-CD11b (Biolegend Inc., San Diego, CA, USA). All
cells were analyzed by flow cytometry (FACSAriaTM III, BD
Biosciences, USA).

Statistical Analysis
The data are presented as the mean ± standard deviation
(SD). All experiments were repeated at least three times.
One-way analysis of variance was used to compare
differences. Statistical analysis was carried out using the
GraphPad Prism 6 software (GraphPad Software Inc.,
San Diego, CA, USA) and the SPSS 22.0 software (IBM
SPSS, Chicago, IL, USA). Differences were considered

significant at p < 0.05. ∗ p < 0.05; ∗∗ p < 0.01; and ∗∗∗ p
< 0.001.

RESULTS

HMGB1 Activated PI3K/Akt/mTOR Signal
Pathway in BMDCs
Previous studies have shown that HMGB1 regulates the
PI3K/Akt/mTOR pathway in myocardial ischemia reperfusion
injury and the ALI mouse model (9, 27). We examined the effect
of HMGB1 on PI3K/Akt/mTOR signaling in BMDCs following
administration with rHMGB1 or anti-HMGB1 by Western
blot and RT-qPCR analysis. HMGB1-mediated PI3K/Akt/mTOR
pathway activation was assessed by detecting p-PI3K, p-Akt, and
p-mTOR protein and PI3K, Akt, and mTOR mRNA expression
levels. Western blot and RT-qPCR analysis revealed a remarkable
increase in the expression of p-PI3K, p-Akt, and p-mTOR protein
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FIGURE 1 | Anti-HMGB1 and rHMGB1 regulated the expression of the PI3K/Akt/mTOR signaling pathway in BMDCs. (A,B) Expression of p-PI3K, p-Akt, and

p-mTOR in BMDCs of different groups was measured by Western blot analysis. GAPDH served as a loading control. (C) Expression of PI3K, Akt, and mTOR mRNA in

BMDCs of different groups was measured by RT-PCR. GAPDH served as the housekeeping gene. *p < 0.05, **p < 0.01, ***p < 0.001.

(Figures 1A,B) and PI3K, Akt, and mTOR mRNA (Figure 1C)
in LPS-primed BMDCs. Moreover, rHMGB1 treatment further
increased the expression of these proteins and transcripts, but
this increase was attenuated by anti-HMGB1 (Figures 1A–C).
These results suggest that HMGB1 is an activator of the
PI3K/Akt/mTOR pathway in DCs.

HMGB1 Induced the Maturation of DCs in
vivo and in vitro
The activation and maturation of DCs are characterized by
the expression of MHCII and various costimulatory molecules
on their surface and the secretion of related inflammatory
cytokines (28, 29). To determine whether HMGB1 affects the
maturation and function of DCs, we observed the effect of
HMGB1 on MHCII, CD80, CD86, and CD40 of lung DCs
in the LPS-induced ALI model. The left lungs from mice of
different groups were collected 24 h after LPS intervention,

and the prepared lung MNCs were stained for CD11c and
F4/80 and analyzed by flow cytometry. DCs were marked as
CD11c+F4/80− (Figure 2A). The analysis results showed that
the positive expression percentage of MHCII, CD80, CD86, and
CD40 was significantly increased in the ALI group in contrast
to those in the control, and the increase in MHCII, CD86,
and CD40 was further augmented by rHMGB1 treatment. By
contrast, the increase in MHCII, CD80, CD86, and CD40 was
obviously lowered in the ALI group treated with anti-HMGB1
(Figures 2B,C). Subsequently, we observed the effect of HMGB1
on proinflammatory cytokines released by LPS-primed BMDCs
in vitro. The levels of TNF-α, IL-6, IL-18, IL-1β, MCP-1, and
IL-12 cytokines released by DCs, which reflect the maturation
of DCs, were significantly upregulated by LPS stimulation in
the BMDC culture supernatant compared with those in the
control group. On the other hand, rHMGB1 stimulation also
significantly increased the production of these proinflammatory
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FIGURE 2 | Anti-HMGB1 and rHMGB1 regulated the maturation of DCs in vivo and in vitro. (A) Lung DCs were stained as CD11c+F4/80−. (B,C) Positive expression

percentage of MHCII, CD80, CD86, and CD40 was measured in DCs (CD11c+F4/80−) by flow cytometric analysis. (D) The levels of cytokines TNF-α, IL-6, IL-18,

IL-1β, MCP-1, and IL-12 secretion in BMDC culture supernatants were measured by ELISA. *p < 0.05, **p < 0.01, ***p < 0.001.

cytokines. Opposite results were observed in the groups receiving

anti-HMGB1 stimulation (Figure 2D). These data suggested that
HMGB1 induces the maturation and enhances the antigen-

presenting ability of DCs in the ALI mice model and in LPS-

primed BMDCs.

HMGB1 Affected the Phenotypic Changes
of DCs in ALI Mice Model
Subsequently, we observed the effect of anti-HMGB1 and
rHMGB1 on phenotypic and functional changes in the DCs
of lung tissue from the LPS-induced ALI mice model. While
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detecting intercellular adhesion molecule 1 (ICAM-1), CD11b
(a marker for myeloid dendritic cells [mDCs]), B220 (a
marker of plasmacytoid dendritic cells [pDCs]), and chemotactic
factor CCR7 in the surface of lung DCs by flow cytometric
analysis, we found that the percentage of ICAM-1, CD11b,
or CCR7-positive expression was significantly elevated in the
LPS-administrated ALI group in contrast to the control.
The increase in ICAM-1, CD11b, and CCR7 percentage was
significantly higher in the rHMGB1-treated ALI group relative
to those of the ALI group. In addition, the increase in
ICAM-1, CD11b, and CCR7 was reduced after anti-HMGB1
treatment (Figures 3A,B). However, the percentage of B220-
positive expression among different groups was not significantly
different (Figures 3A,B). These data demonstrated that HMGB1
upregulated the percentage of mDCs and enhanced the adhesion
and chemotaxis of DCs.

Inhibition of PI3K/Akt/mTOR Signaling
Pathway Weakens the Maturation of DCs
in vivo and in vitro
Wenext verified whether the PI3K/Akt/mTOR signaling pathway
affects the maturation and function of DCs in the presence of a
PI3K inhibitor (LY294002) in vivo and in vitro. Flow cytometric
analysis in vivo showed that the percentage of MHCII+, CD80+,
CD86+, or CD40+ DCs was significantly higher in ALI mice
compared with control mice. A significant decrease was also
observed in the percentage of MHCII+, CD80+, CD86+, and
CD40+ DCs in the LY294002-treated mice compared with
that in the LPS-induced ALI mice (Figures 4A,B). In vitro
experiments with BMDCs revealed that stimulation with LPS
significantly augmented the levels of TNF-α, IL-6, IL-18, IL-
1β, MCP-1, and IL-12 in the culture supernatant. The levels
of these proinflammatory cytokines produced by BMDCs were
reduced with the inhibition of PI3K (in the LPS+LY294002
group) (Figure 4C). Thus, inhibiting the PI3K/Akt/mTOR
signaling pathway attenuated the mature differentiation of DCs
in ALI.

PI3K/Akt/mTOR Signaling Pathway
Affected the Phenotypic Changes of DCs in
ALI Mice Model
To demonstrate the role of the PI3K/Akt/mTOR signaling
pathway in phenotypic and functional changes of DCs in the ALI
mice model, we also treated LPS-induced mice with LY294002
and detected the percentage of ICAM-1, CD11b, B220, and CCR7
in lung DCs by flow cytometric analysis. In comparison with
the control group, LPS-induced ALI groups showed a significant
increase in the percentage of DCs (CD11c+F4/80−MNCs)
expressing ICAM-1, CD11b, and CCR7. These changes were
weakened with LY294002 treatment. In addition, no significant
difference arose in the percentage of B220 between different
groups (Figures 5A,B). These results suggested that, similarly to
HMGB1, the PI3K/Akt/mTOR signaling pathway also influenced
the percentage of mDCs and mediated the adhesion and
chemotactic ability of DCs to T cells.

DISCUSSION

In the current study, we show that HMGB1 activates
the PI3K/Akt/mTOR signaling pathway in BMDCs and
upregulates the expression of PI3K, Akt, and mTOR mRNA
and corresponding phosphorylated proteins. HMGB1 and the
PI3K/Akt/mTOR pathway form the HMGB1-PI3K/Akt/mTOR
signaling pathway in lung DCs, and this pathway then
induces the maturation and antigen-presenting ability of
lung DCs while also mediating the percentage of mDCs
and enhancing the adhesion and chemotactic ability of
lung DCs.

HMGB1 functions to regulate the innate immune system.
Recent studies have shown that as a late proinflammatory
cytokine, HMGB1 has a key role in the pathological progress
of ALI and regulates the lung inflammatory response (4, 5).
HMGB1 is an upstream mediator of TLR2 and TLR4, the main
receptors of HMGB1. Together these form the HMGB1-TLR2,
TLR4 pathway, which contributes to inflammatory response
via multiple mechanisms (6–8). Besides activating the NF-κB
and MAPK pathways, recent studies also have demonstrated
that HMGB1 regulates the PI3K/Akt/mTOR signaling pathway
in myocardial ischemia/reperfusion injury and LPS-induced
pulmonary inflammation in ALI models (9, 10, 13, 14).
The PI3K/AKT/mTOR signaling pathway has been shown to
contribute to the regulation of cell survival during oxidative stress
and to participate in the pulmonary inflammatory progression
of ALI (11–14). These studies agree with our results for the
relationship between HMGB1 and the PI3K/Akt/mTOR pathway
in DCs during ALI.

As specialized antigen-presenting cells pivotal for the initial
and adaptive immune response, DCs are outpost cells of immune
defense in the respiratory system. Under the stimulation of
pathogens, DCs are activated and then mature and migrate to
lymph nodes (30). These mature and activated DCs upregulate
the surface expression of MHCII and diverse costimulatory
molecules (CD80, CD86, and CD40) and release inflammatory
cytokines, which train and stimulate Th cells to differentiate into
various subtypes (28–30). DCs regulate acute lung inflammation
and injury in LPS-induced ALI, and mature DCs participate

in aggravating acute lung tissue injury and inflammatory
response (17, 18).

In humans and mice, DCs have two important subsets: mDCs
(CD11c+F4/80−CD11b+) and pDCs (CD11c+F4/80−B220+).
Compared with pDCs, the mDC subset displays high expression
levels of costimulatory molecules CD80, CD86, CD40, and
MHCII and also better stimulate the proliferation and
differentiation of T cells (31). This indicates that the maturity
of pDCs is inferior to that of mDCs. Moreover, pDCs do not
express LPS-specific receptors TLR2 and TLR4 and therefore
cannot be stimulated to maturation by LPS (31). In addition,
DCs also express an important adhesive molecule on their
cell surface, ICAM-1, which mediates adhesion reaction, and
release an important chemokine, CCR7, which has the ability
to induce directional chemotaxis (32–34). In our present study,
we detected the expression of surface markers (CD80, CD86,
CD40, MHC II, B220, CD11b, ICAM-1, CCR7) to reflect the
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FIGURE 3 | Anti-HMGB1 and rHMGB1 affected the phenotype and function of DCs. (A,B) Positive expression percentage of ICAM-1, CD11b, B220, and CCR7 was

measured in DCs (CD11c+F4/80−) by flow cytometric analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | Inhibition of PI3K by LY294002 regulated the maturation of DCs in vivo and in vitro. (A,B) Positive expression percentage of MHCII, CD80, CD86, and

CD40 was measured in DCs (CD11c+F4/80−) by flow cytometric analysis. (C) Levels of secreted cytokines TNF-α, IL-6, IL-18, IL-1β, MCP-1, and IL-12 in BMDCs

culture supernatant were measured by ELISA. *p < 0.05, **p < 0.01, ***p < 0.001.

effect of the HMGB1/PI3K/Akt/mTOR signaling pathway on
the phenotype and function of DCs in ALI. Our results showed
that the HMGB1/PI3K/Akt/mTOR signaling pathway induced
upregulation of markers CD80, CD86, CD40, MHC II, CD11b,

ICAM-1, and CCR7, suggesting that the proportion of mature
DCs increased; the ratio of mDCs also increased, accompanied
by the augmentation of antigen presentation, adhesion, and
chemotactic ability.
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FIGURE 5 | Inhibition of PI3K by LY294002 affected the phenotype and function of DCs. (A,B) Positive expression percentage of ICAM-1, CD11b, B220, and CCR7

was measured in DCs (CD11c+F4/80−) by flow cytometric analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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In conclusion, our present study provides evidence of the
role of the HMGB1/PI3K/Akt/mTOR signaling pathway
at the level of DCs in ALI and further confirms that
HMGB1/PI3K/Akt/mTOR signaling participates in the
pathological process of ALI by regulating the maturation
and functions of DCs.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because access to this dataset is restricted. Requests to access the
datasets should be directed to 498676772@qq.com.

ETHICS STATEMENT

The animal study was reviewed and approved by Huazhong
University of Science and Technology.

AUTHOR CONTRIBUTIONS

RL and YS designed the research. RL, XZ, YY, HZ, PL, SP,
and YO performed the experiments. RL analyzed the data and
produced the figures. RL, HH, and YS wrote the manuscript.
All authors contributed to the article and approved the
submitted version.

REFERENCES

1. Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress

syndrome. J Clin Invest. (2012) 122:2731–40. doi: 10.1172/JCI60331

2. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome

advances in diagnosis and treatment. JAMA. (2018) 319:698–710.

doi: 10.1001/jama.2017.21907

3. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.

Epidemiology, patterns of care, and mortality for patients with acute

respiratory distress syndrome in intensive care units in 50 countries. JAMA.

(2016) 315:788–800. doi: 10.1001/jama.2016.0291

4. Li N, Liu XX, Hong M, Huang XZ, Chen H, Xu JH, et al. Sodium

butyrate alleviates LPS-induced acute lung injury in mice via

inhibiting HMGB1 release. Int Immunopharmacol. (2018) 56:242–8.

doi: 10.1016/j.intimp.2018.01.017

5. Song JH, Kim JY, Piao C, Lee S, Kim B, Song SJ, et al. Delivery of

the high-mobility group box 1 box A peptide using heparin in the

acute lung injury animal models. J Control Release. (2016) 234:33–40.

doi: 10.1016/j.jconrel.2016.05.039

6. Di Candia L, Gomez E, Venereau E, Chachi L, Kaur D, Bianchi ME, et al.

HMGB1 is upregulated in the airways in asthma and potentiates airway

smoothmuscle contraction via TLR4. J Allergy Clin Immunol. (2017) 140:584–

7. doi: 10.1016/j.jaci.2016.11.049

7. Achouiti A, van der Meer AJ, Florquin S, Yang H, Tracey KJ, van ’t Veer C,

et al. High-mobility group box 1 and the receptor for advanced glycation end

products contribute to lung injury during Staphylococcus aureus pneumonia.

Crit Care. (2013) 17:R296. doi: 10.1186/cc13162

8. He ZW, Qin YH,Wang ZW, Chen Y, Shen Q, Dai SM. HMGB1 acts in synergy

with lipopolysaccharide in activating rheumatoid synovial fibroblasts via

p38 MAPK and NF-kappaB signaling pathways. Mediators Inflamm. (2013)

2013:596716. doi: 10.1155/2013/596716

9. Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective

effect of dexmedetomidine on LPS-induced acute lung injury

through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR

pathways. Mol Immunol. (2018) 94:7–17. doi: 10.1016/j.molimm.2017.

12.008

10. Li X, Hu X, Wang J, Xu W, Yi C, Ma R, et al. Short-term hesperidin

pretreatment attenuates rat myocardial ischemia/reperfusion injury by

inhibiting high mobility group box 1 protein expression via the PI3K/Akt

pathway. Cell Physiol Biochem. (2016) 39:1850–62. doi: 10.1159/000447884

11. Sui H, Luo M, Miao Y, Cheng W, Shan W, Zhao B, et al. Cystic fibrosis

transmembrane conductance regulator ameliorates lipopolysaccharide-

induced acute lung injury by inhibiting autophagy through PI3K/AKT/mTOR

pathway in mice. Respir Physiol Neurobiol. (2019) 273:103338.

doi: 10.1016/j.resp.2019.103338

12. Feng FB, Qiu HY. Effects of Artesunate on chondrocyte proliferation,

apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in

rat models with rheumatoid arthritis. Biomed Pharmacother. (2018) 102:1209–

20. doi: 10.1016/j.biopha.2018.03.142

13. Li R, Ren T, Zeng J. Mitochondrial coenzyme q protects sepsis-induced acute

lung injury by activating PI3K/Akt/GSK-3β/mTOR pathway in rats. Biomed

Res Int. (2019) 2019:5240898. doi: 10.1155/2019/5240898

14. Qu L, Chen C, He W, Chen Y, Li Y, Wen Y, et al. Glycyrrhizic acid

ameliorates LPS-induced acute lung injury by regulating autophagy through

the PI3K/AKT/mTOR pathway. Am J Transl Res. (2019) 11:2042–55.

15. Kopf M, Schneider C, Nobs SP. The development and function of lung-

resident macrophages and dendritic cells. Nat Immunol. (2015) 16:36–44.

doi: 10.1038/ni.3052

16. Yi S, Zhai J, Niu R, Zhu G, Wang M, Liu J, et al. Eosinophil

recruitment is dynamically regulated by interplay among lung dendritic

cell subsets after allergen challenge. Nat Commun. (2018) 9:3879.

doi: 10.1038/s41467-018-06316-9

17. Lu Z, Chang W, Meng S, Xu X, Xie J, Guo F, et al. Mesenchymal stem

cells induce dendritic cell immune tolerance via paracrine hepatocyte growth

factor to alleviate acute lung injury. Stem Cell Res Ther. (2019) 10:372.

doi: 10.1186/s13287-019-1488-2

18. Li L, Dong L, Zhao D, Gao F, Yan J. Classical dendritic cells regulate

acute lung inflammation and injury in mice with lipopolysaccharide-induced

acute respiratory distress syndrome. Int J Mol Med. (2019) 44:617–29.

doi: 10.3892/ijmm.2019.4208

19. Ding J, Feng T, Ning Y, Li W, Wu Q, Qian K, et al. β-Glucan enhances

cytotoxic T lymphocyte responses by activation of human monocyte-derived

dendritic cells via the PI3K/AKT pathway. Hum Immunol. (2015) 76:146–54.

doi: 10.1016/j.humimm.2015.01.009

20. Xuan NT, Hoang NH, Nhung VP, Duong NT, Ha NH, Hai NV. Regulation

of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through

klotho expression. J Recept Signal Transduct Res. (2017) 37:297–303.

doi: 10.1080/10799893.2016.1247862

21. de Oliveira MTP, de Sá Coutinho D, Tenório de Souza É, Stanisçuaski

Guterres S, Pohlmann AR, Silva PMR, et al. Orally delivered resveratrol-

loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via

the ERK and PI3K/Akt pathways. Int J Nanomedicine. (2019) 14: 5215–28.

doi: 10.2147/IJN.S200666

22. Li R, Shang Y, Yu Y, Zhou T, Xiong W, Zou X. High-mobility group

box 1 protein participates in acute lung injury by activating protein

kinase R and inducing M1 polarization. Life Sci. (2020) 6:117415.

doi: 10.1016/j.lfs.2020.117415

23. Gao M, Ha T, Zhang X, Wang X, Liu L, Kalbfleisch J, et al. The Toll-like

receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction

in polymicrobial sepsis, involving activation of both phosphoinositide 3

kinase/Akt and extracellular-signal-related kinase signaling. J Infect Dis.

(2013) 207:1471–9. doi: 10.1093/infdis/jit036

24. Li R, Wang J, Li R, Zhu F, Xu W, Zha G, et al. ATP/P2X7-NLRP3 axis

of dendritic cells participates in the regulation of airway inflammation

and hyper-responsiveness in asthma by mediating HMGB1 expression and

secretion. Exp Cell Res. (2018) 366:1–15. doi: 10.1016/j.yexcr.2018.03.002
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The high mobility group box 1 (HMGB1) is a well-known late mediator of sepsis, secreted

by multiple stimuli, involving pathways, such as the mitogen-activated protein kinase

(MAPK) and nuclear factor kappa B (NF-κB) pathways, and reactive oxygen species

(ROS) under inflammation. Sulfatide, in contrast, is a sphingolipid commonly found

in myelin sheets with a disputed immunological role. We sought to determine the

immunological characteristics of sulfatide in the periphery by analyzing the secretion

of HMGB1 triggered by lipopolysaccharide (LPS) stimulation in Raw 264.7 cells.

Suppression of HMGB1 secretion by inhibiting its cytosolic translocation was observed

after pre-treatment with sulfatide before LPS stimulation. Further analysis of the

downstream molecules of toll-like receptor (TLR) signaling revealed suppression of c-Jun

N-terminal kinase (JNK) phosphorylation and p65 translocation. LPS-mediated ROS

production was also decreased when sulfatide pre-treatment was provided, caused by

the down-regulation of the phosphorylation of activators, such as IRAK4 and TBK1.

Investigation of the upstream mechanism that encompasses all the aforementioned

inhibitory characteristics unveiled the involvement of lipid rafts. In addition to

the co-localization of biotinylated sulfatide and monosialotetrahexosylganglioside, a

decrease in LPS-induced co-localization of TLR4 and lipid raft markers was observed

when sulfatide treatment was given before LPS stimulation. Overall, sulfatide was found

to exert its anti-inflammatory properties by hindering the co-localization of TLR4 and lipid

rafts, nullifying the effect of LPS on TLR4 signaling. Similar effects of sulfatide were also

confirmed in the LPS-mediated murine experimental sepsis model, showing decreased

levels of serum HMGB1, increased survivability, and reduced pathological severity.

Keywords: sulfatide, HMGB1, TLR4, lipid raft, sepsis, NF-κB, ROS

INTRODUCTION

Approximately 45 years have passed since the HMGB1 protein, an abundant nuclear protein
and a well-defined danger-associated molecular pattern (DAMP) molecule, was first purified
(1). Since its discovery, HMGB1 has been discussed in various contexts. Nuclear HMGB1 is
well-known for its chaperone-like functions, playing a role in deoxyribonucleic acid (DNA)
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unwinding (2) and DNA synthesis (3) by binding to DNA in
a sequence-independent manner (4) and in the structuring of
chromatin (5). In contrast, research regarding cytosolic HMGB1
is still in its relatively early stages, revealing its role in autophagy
regulation (6) and unconventional protein secretion (7).

HMGB1 can be either passively released through non-
apoptotic cell death, such as in necrotic cells (8), or actively
secreted through multiple pathways, such as in inflammasome-
mediated release (9). In this paper, we intend to limit the
scope to active secretion of HMGB1, triggered by inflammatory
signals transduced by toll-like receptor (TLR)-related signaling.
When TLRs are stimulated by their ligands, NF-κB (10)
and MAPK (10–12) are responsible for the translocation and
secretion of these receptors to the extracellular space. Our
research concentrates on TLR4, a member of the TLR family,
which recognizes lipopolysaccharides (LPS), and its mechanism
of action regarding the active secretion of HMGB1. Under
physiological conditions, bacterial LPS, which normally forms
a micelle, is recognized by the LPS-binding protein (LBP),
which facilitates its monomerization by CD14 (13). The LPS–
LBP complex, now bound to CD14, is then transferred to the
myeloid differentiation protein-2 (MD-2)–TLR4 complex (14).
This complex then forms a dimer, completing its activation
process. TLR4 dimers, however, require the formation of a
lipid raft, a special nano-scale membrane structure consisting of
various lipids (15). TLR4, which contains lipid-binding motifs,
is attracted and can readily form a dimer within the lipid rafts,
providing a platform on which the TLR4s can be within closer
proximity (16).

Most studies addressing the immunological role of HMGB1
have focused on the role of extracellular HMGB1 as a DAMP
molecule and its chemokine-like behavior. Depending on its
redox status, HMGB1 exerts different characteristics: 1) as
a thiol isoform, in which all of the three active cysteine
residues (Cys23, 45, and 106) are in free-thiol(-SH) form,
HMGB1 binds to C-X-C motif ligand 12 (CXCL12) and shows
chemokine-like activity, recruiting immune cells to the site of
inflammation (17); 2) the disulfide isoform of HMGB1, which
possesses one intra-molecular disulfide bond between the two
cysteinemolecules Cys23 and Cys45, exerts cytokine-like activity,
activatingmacrophages and lymphocytes (18–20); 3) the oxidized
isoform of HMGB1, containing fully oxidized cysteine residues (-
SOOOH) is considered immunologically inert (21, 22). In sepsis,
extracellular HMGB1 is known to be released in its reduced form
(23); it is considered a potent pro-inflammatory cytokine (24)
and a promising therapeutic target in clinical studies (25, 26).

Sulfatide, also known as 3-O-sulfogalactosylceramide, is a
lipid commonly found in the myelin sheath in both the central
and peripheral nervous system (27). First isolated and partially
characterized over 40 years ago (28), sulfatide was suggested
to play a varying role in physiological functions, ranging
from myelination of nerves (29, 30) to insulin secretion (31–
34). Similar to HMGB1, intracellular (or membrane-bound)
sulfatide and extracellular sulfatide play different roles. While
the intracellular (or membrane-bound) form performs the
abovementioned functions, extracellular sulfatide can bind to
selectins to cause hemostasis (35) or metastasis of tumors

(36) or bind to CD1d activating natural killer T (NKT) cells
with various anti-inflammatory abilities (37–41). Although most
papers discussing the anti-inflammatory functions of sulfatide
emphasize on NKT cells, a report suggested that sulfatide may
have a direct effect on brain-resident immune cells, causing
inflammation (42). This discrepancy between immune cells
residing in the central or peripheral nervous system led us to
investigate the direct effect of sulfatide in peripheral immune
cells, namely the macrophages.

In this study, we aimed to elucidate the effect of sulfatide in the
context of innate immunity by investigating its effect on HMGB1
secretion under LPS stimulus and discuss the specific molecules
involved in the process.

MATERIALS AND METHODS

Cell Culture and Treatment Reagents
Raw 264.7 cells were cultured in Dulbecco’s Modified Eagle’s
Medium supplemented with 10% heat-inactivated fetal bovine
serum (Gibco, Waltham, MA, USA), 100µg/mL of penicillin,
and 100µg/mL of streptomycin (Sigma, Saint Louis, MO, USA).
Treatment was performed after allowing the cells to adapt to
Opti-MEM (Gibco) for 2 h, after which the media was replaced.

LPS (Escherichia coli O111:B4; > 3 x 106 EU/mL; Sigma),
sulfatide (Bovine; brain; Matreya, State College, PA, USA),
18:0(2R-OH) sulfogalactosylceramide (synthetic; Avanti,
Alabaster, AL, USA), C24:0 mono-sulfogalactosylceramide
(synthetic; Avanti), C24:0 mono-sulfogalactosylceramide
(synthetic; Avanti), galactosylceramide (Bovine; Matreya), and
ceramide (Bovine; Matreya) were used as indicated in the
figures. All experiments were performed using vehicle as a
negative control.

Bone Marrow-Derived Macrophage

(BMDM) Preparation
Wild-type C57BL/6 mice obtained from Orient Bio (Seongnam,
Gyeonggi-do, South Korea) were housed in a SPF-grade facility
with controlled temperature, humidity, and light. For all
experiments, 8-week old female mice with approximate body
weight of 20 g were used. The animals were ethically sacrificed,
and the femur and tibia were extracted. Bone marrow was
collected via warm, serum-free DMEM lavage until no remaining
bone marrow was visible. Bone marrow was collected and
filtered through cell strainer with 40µm pore (SPL, Pocheon-si,
Gyeonggi-do, South Korea) to remove any undesirable debris and
washed with excessive media to further remove unfiltered debris.
The resulting cells were plated to 100mm cell culture-treated
dish (Corning, Oneonta, NY, USA), and then differentiated
using 20 ng/mL GM-CSF in complete medium for 7 days to
yield BMDMs.

Sample Preparation (Culture Media)
Culture media after treatment were collected after 24 h to
compare HMGB1 secretion between groups. Culture media
were then centrifuged at 3500 × g for 5min to remove any
cell debris. The supernatant was collected for trichloroacetic
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acid (TCA)/acetone precipitation. Then, 10% by volume of ice-
cold TCA was added to the samples and mixed by inverting.
After incubating overnight at−20◦C, the samples were thawed
and centrifuged at 20000 × g for 90min. Supernatants were
then discarded. The remaining pellets were washed with−20◦C
acetone by vortexing vigorously and left overnight at−20◦C.
Samples were centrifuged at 20000 × g for 90min, and the
resulting supernatants were removed. The remaining pellets were
then dried and boiled with 2X sample buffer.

Sample Preparation (Whole Cell Lysate)
Cells were harvested by scraping using cold Dulbecco’s phosphate
buffered saline (PBS) after the indicated time periods; they were
then collected by centrifuging at 3000× g for 5min. Supernatants
were discarded, and radioimmunoprecipitation (RIPA) buffer
was added before sonication. Lysed cells were centrifuged at
20000 × g for 10min to remove any debris. The resulting
whole cell lysates were collected, and protein concentration was
quantified using the bicinchoninic acid (BCA) assay. The cell
lysates were then prepared by heating to 65◦C for 10min after
adding sample buffer to minimize the loss of phosphorylated
protein to beta-elimination.

Western Blot
SDS-PAGE was performed on samples prepared via the
abovementioned methods, and proteins were transferred to
a polyvinylidene difluoride (PVDF) membrane for western
blotting. Transferred membranes were blocked using 5%
skimmed milk. Primary antibodies for HMGB1 (Abcam;
Cambridge, UK), JNK (phospho- and whole; Cell Signaling
Technology; Danvers, MA, USA), ERK1/2 (phospho- and
whole; Cell Signaling Technology), p38 (phospho- and whole;
Cell Signaling Technology), phospho-IκBα (Cell Signaling
Technology), phospho-IRAK4, phospho-TBK1 (Cell Signaling
Technology), caveolin 1 (Merck; Darmstadt, Germany), TLR4
(Santa Cruz; Dallas, TX, USA), and β-actin (Santa Cruz) were
diluted in 5% skimmed milk solution and incubated overnight
at 4◦C. After extensive washing, the corresponding secondary
antibody solutions were incubated for 1 h at room temperature
(20∼25◦C). The membranes were then washed, and signals were
detected using enhanced chemiluminescence substrate solution
(Gendepot; Katy, TX, USA) and X-ray film (AGFA; Mortsel,
Belgium). Membranes were stripped using stripping solution
(BioMax, Seoul, South Korea) for re-blotting, as necessary.
Densitometry analysis was performed using Image J.

Immunofluorescence
Raw 264.7 cells were seeded in 4-well chambered glass
slides coated with poly-L-lysine (Sigma). Treatment dosage
for LPS was increased to 200 ng/mL to facilitate visualization
via immunofluorescence, and sulfatide dosage was adjusted
accordingly to maintain molar ratio. Treatment was performed
for the duration indicated in Figure Legends. After treatment,
cells were then fixed with 4% paraformaldehyde overnight in
4◦C. On the subsequent day, the cells were washed with PBS
and permeabilized with 1% Triton X-100 and blocked with
bovine serum albumin (BSA). Primary antibodies anti-p65 (Santa

Cruz) or anti-HMGB1 (Abcam) were diluted in BSA solution
and left to incubate overnight at 4◦C. After thorough washing,
the respective secondary antibodies conjugated with Alexa Fluor
488 (Invitrogen; Waltham, MA, USA) were diluted in BSA
solution and incubated at 37◦C for 45min. Slides were then
washed, dried, andmounted usingmountingmedium containing
4′,6-diamidino-2-phenylindole (DAPI; Vector). Sealed slides
were observed via FV1000 confocal microscopy (Olympus).
Localization of sulfatide was determined by treating Raw 264.7
cells with biotin-sulfatide and staining them with streptavidin-
Alexa Fluor 488 (Invitrogen). Localization of TLR4 was detected
using mouse anti-TLR4 antibodies (Invitrogen).

ROS Detection
Raw 264.7 cells were pre-treated with either vehicle control or
20µM of sulfatide and with vehicle control or 100 ng/mL of
LPS for 1 h. The treatment medium was removed, and culture
dishes were washed twice with warm culture medium. H2-
DCFDA (Thermo Fisher; Waltham, MA, USA) was treated as
per the manufacturer’s instructions. Cells were viewed under a
fluorescence microscope. For flow cytometric analysis of ROS
levels, the cells were detached before H2-DCFDA treatment.

Lipid Raft Staining
Raw 264.7 cells were seeded in 4-well chambered glass slides
coated with poly-L-lysine (Sigma). Treatment dosage for LPS
was increased to 1µg/mL to maximize lipid raft formation and
facilitate visualization via immunofluorescence, and sulfatide
dosage was adjusted accordingly to maintain molar ratio.
Treatment was performed for the duration indicated in Figure
Legends. After treatment, the cells were then washed once with
4◦C complete growth medium. Washed cells were incubated in
cholera toxin B-Alexa Fluor 549 (Invitrogen) staining solution,
prepared in 4◦C complete growth medium. Cells were washed
with ice-cold PBS three times and fixed with ice-cold 4%
paraformaldehyde for 15 min.

Lipid Raft Isolation
Raw 264.7 cells were treated with reagents for 8min as indicated
in the legends, and cells were briefly washed three times with
ice-cold PBS to halt the internalization of lipid rafts. Cells were
then lysed using the ice-cold buffer provided by Caveolea/Rafts
Isolation Kit (Merck) supplemented with Triton X-100. Lysates
then underwent ultracentrifugation with OptiPrepTM density
gradient, provided by the aforementioned kit, and nine fractions
were collected. Collected fractions were then supplemented with
1% SDS to assist complete dissociation of the protein from the
lipids. Treated samples were concentrated using TCA/Acetone
and analyzed by immunoblotting.

Animal Experiments
Wild-type C57BL/6 mice obtained from Orient Bio (Seongnam,
South Korea) were housed in a SPF-grade facility with controlled
temperature, humidity, and light. For all experiments, 8-
week old female mice were used. For serum collection, mice
were anesthetized using an isoflurane–oxygen mixture, and
combinations of PBS, LPS (3 mg/kg), or sulfatide (25 nmol)
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were injected with a total of 100 µL injection volume,
intraperitoneally. The animals were allowed 60min between
injections to fully recover from the effects of anesthesia. Serum
samples were collected after 18 h. Survival rate was measured
by following the same procedure as mentioned above, with
increased doses of LPS and sulfatide injection (to 20 mg/kg

and 175 nmol, respectively). Mice were checked twice every
day and observed until completion. Survival data were then
analyzed through Kaplan-Meier survival analysis. Pathological
scores were obtained using the scoring regimen described
by Shrum et al. (43), and the obtained scores were then
analyzed through ANOVA and Dunnett’s multiple comparison

FIGURE 1 | Sulfatide inhibits HMGB1 translocation and release in Raw 264.7 cells. (A) Dose-dependency of sulfatide regarding HMGB1 secretion was accessed 24 h

after LPS treatment. Varying dosage of sulfatide was treated 10min prior to LPS treatment. (B) Efficacy of sulfatide pre-treatment for indicated time on HMGB1

secretion and its effect after removal of sulfatide was observed. Washed cells received two 36◦C PBS wash to remove the residual sulfatide prior to LPS treatment,

whereas unwashed cells were left unperturbed. (SE, Short Exposure; LE, Long Exposure) (C) Raw 264.7 cells received vehicle control, LPS 200 ng/mL, sulfatide

40µM only, or 10min of sulfatide 40µM pre-treatment, followed by LPS 200 ng/mL for 6 h. Cells were fixed for analysis by immunofluorescence, as described in the

Methods section. In total, 100 cells were counted, and those containing HMGB1 signals in the cytoplasm were counted as positive. (D) Culture media were analyzed

by ELISA for TNF-α and IL-6 titer. Cells were treated with vehicle control (PBS with DMSO), LPS 100 ng/mL, or 10min of sulfatide 20µM pre-treatment, followed by

LPS 100 ng/mL. Graphs show the mean value and error bars of three independent experiments performed. *p < 0.01, **p < 0.001.
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test. All experiments were conducted according to procedures
approved by the Institutional Animal Care and Use Committee
of the Yonsei Laboratory Animal Research Center (YLARC,
2015-0275).

Enzyme-Linked Immunosorbent

Assay (ELISA)
Tumor necrosis factor α (TNF-α) and interleukin-6 (IL-

6) ELISA were performed using Raw 264.7 cell culture
medium. Cells were treated with vehicle control (negative
control), 100 ng/mL LPS, and sulfatide 20µM, followed by
LPS 100 ng/mL. Culture media were collected after 12 h of
treatment and centrifuged to remove any cell debris. ELISA
was performed with the resulting supernatant following the
manufacturer’s instructions (Invitrogen). Serum obtained from
murine experimental sepsis models was analyzed for HMGB1
levels with a HMGB1 ELISA kit (IBL International), following the
manufacturer’s instructions.

Statistical Analysis
Unless specified otherwise, statistical analysis of experimental
data present in this paper were performed with Student’s t test
and ANOVA, with Tukey’s multiple comparison test as post-hoc
test, using GraphPad Prism 5. The data represent the mean value
and SD. The difference was considered statistically significant at
p < 0.05.

RESULTS

Sulfatide Inhibits HMGB1 and

Pro-inflammatory Cytokines Release
To study whether sulfatide treatment shows pro-inflammatory
or anti-inflammatory characteristics, we analyzed the secretion
level of a well-known DAMP molecule, HMGB1. When
treated simultaneously, sulfatide exhibited an inhibitory effect
in HMGB1 secretion without toxicity in a dose-dependent
manner, as shown (Figure 1A, Supplementary Figure 1A).
This phenotype was unique to sulfatide, and was not
seen in its precursors, galactosylceramide, and ceramide
(Supplementary Figure 1B). Further analysis using ligands of
other extracellular TLRs shows complete inhibition of HMGB1
secretion (Supplementary Figure 1C). This indirectly suggests
that the anti-inflammatory effect does not come from inhibiting
the ligand-receptor interaction by acting as a competitive
inhibitor or aggregating reagent against TLR ligands, since it
is unlikely that a molecule can act as broad-range inhibitor or
aggregating reagent against multiple TLR ligands with different
characteristics. Next, the time point-dependent effect of sulfatide
was studied to further investigate the mechanism of action

(Figure 1B). Interestingly, sulfatide not only exhibited dose- and
time-dependent manner in HMGB1 release suppression, but
also removal of sulfatide only induced a slight increase—lower
than the secretion level of negative control, nevertheless—
in HMGB1 secretion in 6 and 12 h-pretreatment samples.
These results, combined with the results collected above,

FIGURE 2 | Sulfatide suppresses NF-κB activation and JNK phosphorylation. (A) Raw 264.7 cells received vehicle control, LPS 200 ng/mL, sulfatide 40µM, or 10min

of 40µM sulfatide pre-treatment, followed by LPS 200 ng/mL for 40min. Cells were then fixed for analysis by immunofluorescence as described in the Methods

section. In total, 100 cells were counted, and those with p65 signals co-localizing with DAPI were counted as positive. *p < 0.001. (B,C) Raw 264.7 cells received

vehicle control, LPS 100 ng/mL, sulfatide 20µM, or 10min of 20µM sulfatide pre-treatment followed by LPS stimuli, as shown in the figure. Cells were harvested after

the indicated times and analyzed for the phosphorylation level of IκBα (B), p-ERK, p-JNK, and p-p38 (C) by immunoblotting.
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suggest that sulfatide is neither an aggregating reagent nor
competitive inhibitor, nor a reversible non-competitive inhibitor
of TLR ligands.

Although multiple points of inhibition are potentially
available throughout the HMGB1 secretion pathway, they
can be categorized into two large categories: initial signal
transduction, and the release step. In order to clarify whether
sulfatide affects the former or the latter, we treated Raw
264.7 cells with LPS or sulfatide and investigated HMGB1
localization via immunofluorescence microscopy (Figure 1C).
Confocal microscopy images show sulfatide inhibits nuclear
HMGB1 translocation to the cytoplasm caused by LPS
stimulation. This indicates that the inhibition mechanism
of sulfatide does not target the release of HMGB1 to the

extracellular space itself, but the pathway that precedes
HMGB1 translocation.

Previous reports state sulfatide to play a pro-inflammatory
role in brain-resident immune cells (42). In order to confirm
its anti-inflammatory characteristics shown within our
experimental setup, we treated Raw 264.7 cells with vehicle
control, LPS alone, or LPS stimuli after sulfatide pre-treatment
(Figure 1D). Contrary to previous reports made with brain-
resident immune cells, sulfatide did not induce any significant
secretion of pro-inflammatory cytokines, namely TNF-α and
IL-6. Interestingly, a combination of LPS and sulfatide, however,
did result in a significant decrease in the secretion levels of
both TNF-α and IL-6, indicating that sulfatide indeed has an
anti-inflammatory role in the peripheral immune system.

FIGURE 3 | Sulfatide down-regulates LPS-induced ROS production. Raw 264.7 cells were treated with 20µM sulfatide or vehicle control for 10min prior to receiving

LPS 100 ng/mL, and were analyzed through (A) flow cytometry and (B) fluorescence microscopy. More than 150 cells were counted. *p < 0.001. (C) Cells were

pre-treated with vehicle control or 20µM sulfatide before treatment with 100 ng/mL LPS. Cells were lysed, and the samples were immunoblotted for p-TBK1 and

p-IRAK4. Numbers below the immunoblots represent the relative band intensity, obtained by densitometry analysis. Vehicle controls of each groups were considered

as standards.
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Sulfatide Down-Regulates NF-κB Signaling

Pathway and JNK Phosphorylation
The pathway most frequently associated with TLR signaling,
NF-κB signaling pathway, is a cascade of signaling molecules
that results in the degradation of NF-κB inhibitory molecules
and the translocation of NF-κB to the nucleus, acting as a
transcription factor. Concerning this pathway, we performed
immunofluorescence microscopy, tracking the location of the
p65 molecule, and immunoblotting of the IκBα molecule
(Figures 2A,B). Our immunofluorescence data shows that NF-
κB activation, signified by the translocation of p65, decreased
when cells were pre-treated with sulfatide. Immunoblotting
also indicated that phosphorylation of IκBα, a crucial step
that precedes its ubiquitination and degradation, significantly
decreases when pre-treated with sulfatide.

Further analysis of the MAPKs within the TLR signaling
pathway revealed specific kinases affected by sulfatide treatment.
The phosphorylation levels of ERK, JNK, and p38 MAPK
were analyzed via immunoblotting (Figure 2C). Immunoblots
revealed that only the phosphorylation level of JNK, but not
of ERK or p38, was decreased by pre-treatment with sulfatide.

Overall, sulfatide blocks the NF-κB signaling pathway and

JNK-mediated HMGB1 translocation.

LPS-Mediated ROS Production Is

Decreased by Sulfatide
Since an alternate mechanism exists, where HMGB1 release
can be triggered via LPS-TLR4 signaling through ROS
production, we sought to measure the changes in the level
of intracellular ROS in the presence/absence of sulfatide
pre-treatment (Figures 3A,B). Flow cytometric analysis
and measurement of relative fluorescence intensity both
show a significant decrease in intracellular ROS levels
in sulfatide pre-treated groups. Such a decrease in ROS
levels can be accredited to the decreased phosphorylation
of both TBK1 and IRAK4, molecules that play crucial
roles in the regulation of NOX activity (Figure 3C). These
results, paired with those presented in earlier experiments,
propose that the point of inhibition, which sulfatide utilizes
to suppress HMGB1 release is positioned higher in the
signaling hierarchy.

Sulfatide Hinders the Translocation of

TLR4 Into Lipid Rafts
We hypothesized that sulfatide, a well-known component of
the cell membrane, may interfere with the lipid composition
of the cell membrane, inhibiting its signaling pathways. Since

FIGURE 4 | TLR4–lipid raft complex formation is reduced by sulfatide. (A) Raw264.7 cells were treated with 200µM of biotinylated sulfatide, with or without 1µg/mL

of LPS for 8min. Biotinylated sulfatide was stained with streptavidin-Alexa Fluor 488 and TLR4 with anti-rabbit-Alexa Fluor 549, and the cells were prepared for

confocal microscopy as described in the Methods section. (Scale bar : 10µm) (B) Raw 264.7 cells were treated with vehicle control or 40µM of sulfatide for 10min,

before 8min of vehicle control or 200 ng/mL of LPS treatment. (C) Raw 264.7 cells were identically treated as those in (B), and obtained samples were immunoblotted

for TLR4 and caveolin 1. All membranes were immunoblotted under identical medical X-ray film for accurate comparison. (SE, Short Exposure; LE, Long Exposure).
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TLR4 requires its monomers to be localized within the lipid
raft microdomains to form dimers, we sought to assess (1)
whether sulfatide localizes to the lipid raft microdomains, and
(2) whether sulfatide treatment curbs the localization of TLR4 to
lipid rafts. Utilization of biotinylated sulfatide revealed the co-
localization of sulfatide and lipid rafts (Figure 4A), indicating
the possibility of direct involvement of sulfatide in the lipid
raft machinery. Next, to observe the co-localization of TLR4

and lipid rafts, we treated cells with appropriate stimuli and
were prepared for immunofluorescence. Results insinuated that
sulfatide plays a role in significantly decreasing the localization
of TLR4 into the lipid microdomains. Such findings were

reinforced by subjecting the cells to identical conditions and

fractionating the cell lysate for lipid rafts. Results showed

significantly decreased co-localization of TLR4 within the lipid
raft fractions, signified by caveolin-1, in sulfatide-treated groups.

In summary, sulfatide was found to interfere with the localization
of TLR4 within lipid rafts, decreasing the efficacy of TLR4

signaling (Figures 4B,C).

Relase of HMGB1 Is Suppressed by

Sulfatide in BMDM and the Murine

Experimental Sepsis Model
The effects of sulfatide in primary cells and in vivomurinemodels
were measured. BMDMs of 8 weeks old female C57BL/6 mice
were harvested and were subjected to the same stimuli used
above (Figure 5A). BMDMs pre-treated with sulfatide showed
significantly decreased HMGB1 secretion, compared to cells
treated with LPS alone, congruent with data obtained with Raw
263.7 cells. Such conformity led us to induce an experimental
septic shock by the means of a sub-lethal dose injection of
LPS into the peritoneum of C57BL/6 mice. Measurement of
serum HMGB1 level was taken from sera obtained from a total
of 18 mice (Figure 5B). Serum HMGB1 level was significantly
decreased in the groups pre-treated with sulfatide, compared to
groups treated only with LPS (Figure 5B). These results show
that sulfatide regulates the release of HMGB1, a late time point
cytokine of sepsis, in the murine experimental sepsis model. Such
decrease in the serumHMGB1 level is also reflected in themurine

FIGURE 5 | Sulfatide decreases HMGB1 release in mouse BMDMs and the murine experimental sepsis model. (A) BMDMs were subjected to vehicle control, LPS

100 ng/mL, and 10min of 20µM sulfatide pre-treatment, followed by LPS 100 ng/mL for 24 h. The dotted line indicates where different portion of the identical

membrane have been presented together. (B) C57BL/6 mice (7 mice per group) were intraperitoneally injected with PBS, LPS, or sulfatide pre-treatment, followed by

LPS injection, as discussed in the Methods section. Sera were harvested and prepared for ELISA to measure serum HMGB1 level. (C) C57BL/6 mice (5 mice per

group) were subjected to a survival test against LPS-induced lethal septic shock. Two independent trials were completed, and the results were pooled for statistical

analysis. (D) A pathological score was obtained from the mice described in (C). Mice from the second trial were used. *p < 0.01, **p < 0.001, ***p < 0.0001.
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model injected with a lethal dosage of LPS, mimicking acute
septic shock. Although showing the telltale signs of septic shock
(decreased physical activity, shivering etc.), mice pre-injected
with sulfatide before LPS injection experienced no death in the
population, in contrary to those that received saline pre-injection
(Figure 5C). Additionally, to accurately compare the severity
of the septic shock and the effect of sulfatide in decreasing its
severity, pathological scores were measured every 24 h. Sulfatide
pre-injected mice showed similar increase in pathological scores
as the mice injected only with LPS for the first 24 h; however,
groups that only received LPS injection showed a continuous
increase in pathological scores, whereas the scores of the sulfatide
pre-injected group plateaued, followed by a decrease in the
pathological score (Figure 5D). Generally, sulfatide successfully
blocked the LPS-mediated HMGB1 release in sepsis, decreasing
the level of serum HMGB1 and preventing severe symptoms and
death caused by sepsis.

DISCUSSION

Our experiments showed sulfatide reducing HMGB1 secretion
and cytosolic translocation upon LPS stimulation. Sulfatide
decreased the activation of NF-κB translocation into the nucleus,
and inhibition of multiple kinases, such as JNK, IRAK4, and
TBK1, was also seen throughout the experiment. JNK is a well-
known signaling molecule playing a crucial role in cellular
stress conditions, and when activated, phosphorylated JNK can
also alter the mitochondria to increase its ROS production
significantly, creating a positive feedback loop (44). Mice
expressing inactive mutant form of IRAK4 were found to be
more susceptible to Listeria monocytogenes and Mycobacterium
smegmatis systemic infections due to impaired induction of
inducible nitric oxide synthase (iNOS) mRNA (45). Since TBK1
was also involved in mitophagic regulation of mitochondrial
physiology and expression of iNOS mRNA during inflammatory
assault, paired with the reduction of ROS production, we
hypothesized that the inhibitory characteristics of sulfatide may
come from the upper hierarchy (46, 47). Further experiments
showed sulfatide was hindering the lipid raft–TLR4 interaction,
thereby diminishing the TLR4 signaling pathway (Figure 6).

Based on our research, the possibility of exogenous sulfatide
as regulator of lipid raft—receptor complex formation may be
suggested in clinical scenarios, in addition to the experimental
sepsis model provided within. Pathological action of angiotensin
II, a potent vasoconstrictor which binds to the AT1 receptor, are
ascribed to multiple vascular diseases, such as hypertension and
secondary cardiac hypertrophy (48). AT1 receptors are reported
to be associated with lipid rafts (49); thus, sulfatide can be
used to alter the lipid composition of the microdomains to
deter the pathology in angiotensin II-mediated hypertension
patients. Moreover, the immunological synapse, crucial for
B/T cell activation, also depends on lipid raft formation
(50–53), proposing a potential treatment strategy against
autoimmune diseases such as rheumatoid arthritis, Type I
diabetes, and multiple sclerosis (54–56) by blocking abnormal
B/T cell activation.

FIGURE 6 | Schematic summary of the proposed mechanism of action.

Sulfatide, however, has been reported as a possible auto-
antigen in multiple sclerosis and experimental autoimmune
encephalomyelitis (EAE). Lipid microarrays showed specific
antibodies against various lipids in the cerebrospinal fluid,
including ones against sulfatide in the murine EAE model and in
multiple sclerosis (57, 58). Kanter et al. also reported the increase
in disease severity as the mice were immunized with sulfatide
and myelin membrane proteins. A further role of sulfatide as a
pro-inflammatory molecule in pathogenesis was discovered in
autoimmune hepatitis (59). In contrast, the anti-inflammatory
roles of sulfatide were also revealed in autoimmune neuritis
and asthma, mediated by sulfatide-activated type II NKT cells
(37, 60). These reports suggest that sulfatide can be a double-
edged sword, depending on the organ and pathological context,
and that caution must be taken when attempting to adapt the
“natural” form of sulfatide as a potential therapeutic agent.
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Further studies regarding the mechanism of action of sulfatide in
the abovementioned pathologies should be pursued to minimize
or ameliorate side effects, possibly by utilizing small molecules
mimicking the action of sulfatide.

Our research was able to report the anti-inflammatory
effect of sulfatide in the periphery, specify the kinases within
the NF-κB and MAPK pathway affected by sulfatide, and
elucidate its mechanism of action. Sulfatide, nevertheless, is
naturally a mixture of varying lengths of carbon chain backbone;
therefore, the sulfatide used in this experiment is close to its
natural form but far from being homogenous. Such properties
could control the accessibility of sulfatide isoforms to various
molecules via steric hindrance and variation in affinity. The
composition of sulfatide isoforms has been connected to MS
prognosis, enabling physicians to differentiate remitting MS
from progressive MS by studying the composition of sulfatide
isoforms (61). Although we were able to discover sulfatide
hampering the localization of TLR4 and lipid rafts in our
research, the specific roles of each component of sulfatide
are yet to be discovered. According to the composition sheet
provided by the supplier, C24-related isoforms were dominant
in the making of sulfatide. This may explain the difference in
phenotype between our experiment and others, as we carefully
suggest the difference stems from the variability of sulfatide
composition, depending on the provider. Isaac et al. has reported
the importance of C18 sulfatide in astrocyte functionality
(62), whereas many researchers including Buschard et al. and
Blomqvist et al. have reported the crucial role of the C16:0
isoform in diabetes mellitus (63, 64). Such reports describing
distinct role of various sulfatide components could be used
to aid in indirectly understanding the phenotype difference
between our group and the others. We sought to specify the
isoform solely responsible for the phenotype shown within C24-
related isoforms and C18 sulfatide, but to no avail (data not
shown). Although we were not able to establish the isoform of
sulfatide that is responsible for its properties, we were able to
suggest that the mixture of C24-related isoforms and the C18
isoform that mimics the natural composition of sulfatide could
also mimic its suppressive phenotype (Supplementary Figure 2).
Fine-tuning the composition of specific isoforms by the means
of supplementing the patients with sulfatide isoforms as needed
may prove to be useful to alter the overall phenotype of sulfatide,
further opening its therapeutic potential.

In conclusion, our study showed the effect of sulfatide in
suppressing the secretion of HMGB1 under LPS stimulation,

and its potential as anti-sepsis treatment. We have also firstly
described the mechanism of inhibition where sulfatide inhibits
the localization of TLR4 within the lipid microdomains,
nullifying LPS-TLR4 signaling cascade. Further investigations
regarding the interaction of exogenous sulfatide with lipid
microdomains, importance of sulfatide isoform composition
in various inflammatory diseases, and in-depth studying of
isoform lipid biology are necessary to pursue future therapeutic
applications of sulfatide.
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Acute inflammation is a complex biological response of tissues to harmful stimuli, such

as pathogens or cell damage, and is essential for immune defense and proper healing.

However, unresolved inflammation can lead to chronic disorders, including cancer and

fibrosis. The High Mobility Group Box 1 (HMGB1) protein is a Damage-Associated

Molecular Pattern (DAMP) molecule that orchestrates key events in inflammation by

switching among mutually exclusive redox states. Fully reduced HMGB1 (frHMGB1)

supports immune cell recruitment and tissue regeneration, while the isoform containing a

disulphide bond (dsHMGB1) promotes secretion of inflammatory mediators by immune

cells. Although it has been suggested that the tissue itself determines the redox state

of the extracellular space and of released HMGB1, the dynamics of HMGB1 oxidation

in health and disease are unknown. In the present work, we analyzed the expression of

HMGB1 redox isoforms in different inflammatory conditions in skeletal muscle, from acute

injury to muscle wasting, in tumor microenvironment, in spleen, and in liver after drug

intoxication. Our results reveal that the redox modulation of HMGB1 is tissue-specific,

with high expression of dsHMGB1 in normal spleen and liver and very low in muscle,

where it appears after acute damage. Similarly, dsHMGB1 is highly expressed in the

tumor microenvironment while it is absent in cachectic muscles from the same tumor-

bearing mice. These findings emphasize the accurate and dynamic regulation of HMGB1

redox state, with the presence of dsHMGB1 tightly associated with leukocyte infiltration.

Accordingly, we identified circulating, infiltrating, and resident leukocytes as reservoirs

and transporters of dsHMGB1 in tissue and tumor microenvironment, demonstrating that

the redox state of HMGB1 is controlled at both tissue and cell levels. Overall, our data

point out that HMGB1 oxidation is a timely and spatially regulated process in physiological

and pathological conditions. This precise modulation might play key roles to finetune

inflammatory and regenerative processes.
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INTRODUCTION

Inflammation is commonly perceived as a detrimental process
and people often react to its five signs (pain, heat, redness,
swelling, and loss of function) by taking anti-inflammatory drugs.
Indeed, many chronic and degenerative diseases are associated to
inflammatory processes, but inflammation is also important for
the elimination of infections, the clearance of damaged cells and
the regeneration of tissue (1). Many of the mechanisms that link
inflammation to damage repair and regeneration inmammals are
conserved during evolution, underlying the importance of this
physiological process. Hence, chronic unresolved inflammation
can lead to tissue damage and chronic disorders, including cancer
and fibrosis, but self-limiting acute inflammation is essential for
a proper healing process.

The Damage-Associated Molecular patterns (DAMPs) have
been identified as key mediators of inflammation in response
to infection or tissue damage (2). These sophisticated molecules
have physiological roles inside the cell and, without damage,
they are hidden to the immune system. Upon injury, DAMPs
are exposed to the extracellular environment where they acquire
additional functions: they alert the body about danger and
contribute to inflammatory response and tissue repair (3). The
HighMobility Group Box 1 protein fits all the criteria of DAMPs:
it leads a double life having both intracellular and extracellular
functions. HMGB1 has been first identified as a nuclear non-
histone protein that regulates many processes in the nucleus
from DNA repair to nucleosome dynamics (4, 5). However,
HMGB1 is a very motile protein that can translocate to the
cytoplasm and be passively released following traumatic death or
actively secreted during severe stress to alert other cells of danger
(6). This DAMP has been characterized as an inflammatory
mediator, inducing both leukocytes recruitment and production
of inflammatory cytokines and chemokines (7–9). Interestingly,
the activities of HMGB1 in the extracellular microenvironment
are tightly regulated by its redox state (7, 10, 11).

The HMGB1 protein is composed of two DNA-binding
domains, called A box and B box, and of an acidic tail. This redox-
sensitive protein contains 3 cysteines: C23 and C45 in the A box,
which can form a disulphide bond, and the unpaired C106 in

the B box. Notably, the redox state of these cysteines modulates
the extracellular activities of HMGB1 and dictates its binding to
different receptors. Fully reduced HMGB1 (frHMGB1) associates
with the chemokine CXCL12 and activates the CXCR4 receptor,
which recruits circulating leukocytes and stem cells to the site of
damage, promoting tissue regeneration (7, 12, 13). Conversely,
HMGB1 containing a disulphide bond (dsHMGB1) induces the
expression of pro-inflammatory cytokines and chemokines by
macrophages through its binding to MD-2, the TLR4 adaptor, or
to the Receptor for Advanced Glycation End products (RAGE)

(13, 14). Further cysteine oxidation to sulfonates by reactive

oxygen species (ROS) abrogates both activities (7). It has been
reported that HMGB1 inside the nucleus is fully reduced in
normal conditions (15). It has also been suggested that the tissue
itself determines the redox state of the extracellular space and
most probably of released HMGB1, although it has not been
demonstrated yet.

In the present work, we analyzed the expression of HMGB1
redox isoforms in different inflammatory conditions in skeletal
muscle, from acute injury to chronic conditions of muscle
wasting such as cancer cachexia, in tumor microenvironment,
in spleen, and in liver after drug intoxication. Interestingly, we
found that the presence of dsHMGB1 was tightly associated with
an inflammatory state and we identified leukocytes as a main
source of dsHMGB1. Overall, our data point at dsHMGB1 as a
biomarker of inflammation and as a therapeutic target to dampen
the inflammatory response.

MATERIALS AND METHODS

Mice and Models
Eight-wk-old C57BL/6 and Balb/cWTmice were purchased from
Charles River Laboratories. C57BL/6 HMGB1 fl/fl and HMGB1
fl/fl:MyoD-Cre (thereafter termed mKO) mice were bred in the
animal facility at San Raffaele Scientific Institute. In mKO mice,
Cre recombinase is under the control of MyoD promoter to
knock out HMGB1 in all myogenic cells. All mice were housed
under standard or specific pathogen–free conditions and allowed
access to food and water ad libitum with the exception of the 16 h
fasting prior to acetaminophen (APAP) injection, as described
below. All experimental protocols were approved by the San
Raffaele Institutional Animal Care and Use Committee (IACUC
838, 972, and 1,111) in accordance with Italian law. All efforts
were made to minimize suffering.

In the acute muscle injury model, animals were anesthetized
by intraperitoneal injection of Avertin (T48402, 2,2,2-
Tribromoethanol 97%; Sigma-Aldrich), and sterile injury
was induced by injection of 50 µl of 15-µM cardiotoxin (CTX,
C9759 Sigma-Aldrich) in tibialis anterior or triceps muscles.
WT mice were euthanized at 1 h, 6 h, 1 d, 3 d, 5 d or 7 d after
CTX injection, while HMGB1 mKO mice were euthanized 1,
2, 5, and 7 d after CTX injection. Muscles were collected and
either sectioned for histological analyses or subjected to protein
quantification for Western blot analyses.

For the liver acute injury, 8-wk-old C57BL/6males were fasted
16 h before intraperitoneal injection of 300 mg/Kg (body weight)
APAP (Sigma-Aldrich) dissolved in sterile warm saline. Mice
were i.p. injected with APAP or control saline, and after 1, 2,
3 and 7 days, were i.v. injected with 5 mg/Kg (body weight) of
Evans Blue (Sigma-Aldrich) followed by euthanasia 30min later.
Spleen and liver were collected either for histological analyses or
subjected to protein quantification by Western blot analyses. At
the indicated time points, blood was collected for serum Alanine
Aminotransferase (sALT) and HMGB1 quantifications.

For the cancer cachexia models, Lewis lung carcinoma (LLC)
cells and C26 colon adenocarcinoma cells were maintained in
DMEM (ThermoFisher) with 10% Fetal Bovine Serum (FBS).
C57BL/6 and Balb/c WT mice were subcutaneously injected on
the right flank with 5 × 106 LLC cells or 1 × 106 C26 cells,
respectively, in 100 µl of Phosphate Buffered Saline (PBS). Blood
was collected for HMGB1 quantification just before euthanasia.
LLC- and C26-bearing mice were sacrificed 3- and 2-weeks post-
injection of cancer cells, respectively. Skeletal muscles (tibialis
anterior, quadriceps, gastrocnemius) and tumors were collected
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and either sectioned for histological analyses or subjected to
protein quantification by Western blot analyses.

Histology and Immunohistochemistry
Tibialis anterior muscles were fixed with 4% buffered
paraformaldehyde solution for 3 h, then dehydrated in 15
and 30% sucrose and subsequently frozen in liquid nitrogen–
cooled isopentane. Serial muscle sections, 8-µm thick, were
then stained with anti-HMGB1 (1:800, ab18256 Abcam) and
anti-CD45 (1:1000, ab10558 Abcam) antibodies.

Livers were collected and pieces of liver were either fixed
with 4% buffered paraformaldehyde solution or zinc-formalin.
The livers fixed over-night with 4% buffered paraformaldehyde
solution were then equilibrated in 10, 20, and 30% sucrose,
embedded inOCT for quick freezing at−80◦C and cryosectioned
(20µm thickness) for subsequent fluorescent detection of
Evans Blue damaged areas. The liver samples fixed in zinc-
formalin were then embedded in paraffin, cut and stained with
hematoxylin/eosin, anti-CD45 (1:1000, ab10558 Abcam), or anti-
HMGB1 (1:800, ab18256 Abcam) antibodies.

Tumors were collected and fixed 24 h in formalin and
then transferred in 70% ethanol solution. Fixed tumors were
then embedded in paraffin, cut, and stained with anti-HMGB1
(1:800, ab18256 Abcam) and anti-CD45 (1:1000, ab10558
Abcam) antibodies.

Image Acquisition and Analyses
Bright-field images were taken with a Leica DM750 microscope
equipped with Leica ICC50 HD camera or with a Zeiss
AxioImager M2m with AxioCam MRc5. Representative images
were acquired at 20x magnification and analyzed by using ImageJ
software (http://rsbweb.nih.gov/ij/).

Confocal images were acquired using a Leica TCS SP5
confocal system (Leica Microsystems) available at the SRSI
Advanced Light and Electron Microscopy BioImaging Center
(ALEMBIC). Twenty-micrometer z-stacks were projected in 2D
and processed using Imaris image processing software.

Leukocyte Isolation and Lysates
Peripheral blood mononuclear cells (PBMCs) were isolated from
buffy coats of human healthy donors by Ficoll-Paque density
centrifugation as previously described (7). PBMCs were then
plated in RPMI 10% FBS and lysed after 30 min or treated
with either combination of 1µg/ml anti-CD3 (16-0037-85,
Life Technologies) and 1µg/ml anti-CD28 (16-0289-85, Life
Technologies) or 1µg/ml LPS (L4641, Sigma-Aldrich), and lysed
after 24 or 72 h.

Intrahepatic leukocytes (IHLs) isolation was performed as
previously described (16). Both PBMCs and IHLs (2–10 × 106

cells) were lysed in 100 µl of RIPA buffer (50mM Tris-HCl-
pH 7.4, 1% IGEPAL, 0.5% Na-deoxycholate, 0.1% SDS, 150mM
NaCl, 2mM EDTA, 50 mM NaF).

Supernatant Collection and Tissue/Cell

Lysates
Isolated muscles were incubated overnight at 4◦C in 200
µl of Phosphate Buffered Saline with protease inhibitors
cocktail (P8340, Sigma-Aldrich). Supernatants were collected

and centrifuged at 12,000 rpm for 15 min at 4◦C. Pellet
was discarded and supernatants were analyzed by Western
blot assays.

Tissues (muscles, tumor masses, livers, spleens) and cells
(PBMCs, IHLs, tumor cells) were lysed in RIPA buffer (50mM
Tris-HCl-pH 7.4, 1% IGEPAL, 0.5% Na-deoxycholate, 0.1%
SDS, 150mM NaCl, 2mM EDTA, 50mM NaF) with protease
inhibitors cocktail. Tissues were disrupted in RIPA buffer with
TissueLyser LT (Qiagen). Lysates were then centrifuged at 12,000
rpm for 15min at 4◦C and the supernatants were collected.

Western Blot Assays
Total protein content in muscle, tumor, liver, spleen, and
cells lysates was determined using the BCA protein Assay
Kit (ThermoFisher). Laemmli buffer to 1X final concentration
(45mM Tris-HCl-pH 6.8, 1.5% SDS, 3.5% β-mercaptoethanol,
3.5% Glycerol, 0.01% Bromophenol Blue) was added to
equivalent protein amounts of cell lysates (5 µg for PBMCs
lysates), tissue lysates (20 µg for muscle, spleen, liver, or
tumor lysates) or lysate volumes (5 or 25 µl for IHLs lysates
or muscle supernatants, respectively). To detect fully reduced
and disulphide-HMGB1 isoforms, Western blot assays were
performed in non-reducing conditions by diluting samples in
Laemmli buffer without reducing agent (β-mercaptoethanol or
DTT). Protein samples were separated on 14% SDS-PAGE (in
reducing or non-reducing conditions) and transferred onto
nitrocellulose membranes, which were blocked with 5% milk in
Tris-buffered saline, pH 7.0, containing 0.1% Tween 20 (TBS-T).
Membranes were probed with monoclonal rabbit anti-HMGB1
(1:10,000, EPR3507 Abcam) or rabbit anti-CD45 antibodies
(1:500, ab10558 Abcam) in TBS-T plus 5% milk overnight at
4◦C, washed several times with TBS-T, and incubated for 1 h
with anti–rabbit peroxidase-conjugated antibody. For loading
control, membranes were incubated with Ponceau Red (P7170
Sigma Aldrich) for a couple of minutes and then washed
several times with TBS-T, or with monoclonal anti-GAPDH
antibody (1:10,000, G9545 Sigma-Aldrich) in TBS-T plus 5%
milk overnight at 4◦C, washed several times with TBS-T, and
incubated for 1 h with anti–rabbit Cy5-conjugated antibody.
Western blots assays were visualized using a chemiluminescence
kit or a Typhoon instrument according to the manufacturer’s
instructions (GE Healthcare).

ELISA and Blood Analysis
Blood samples were collected, and serum was obtained by
centrifugation for 10min at 3,500 rpm at 4◦C. The levels of
HMGB1 protein were measured by ELISA (Tecan) according to
manufacturer’s instructions.

sALT levels were quantified in serum after APAP-
induced intoxication with an International Federation of
Clinical Chemistry and Laboratory Medicine-optimized
kinetic UV method in an ILab Aries chemical analyzer
(Instrumentation Laboratory).

Statistical Analysis
Every experiment was replicated at least twice and was performed
at least in biological triplicates. Sex-matched animals were
assigned randomly to experimental groups and no animals were

Frontiers in Immunology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 112277

http://rsbweb.nih.gov/ij/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ferrara et al. In vivo HMGB1 Redox Modulation

excluded from the study. According to the 3R rules, a power
calculation analysis was previously performed. The evaluator was
blinded to the identity of the specific sample as far as the nature
of the experiment allowed it. Bars represent the mean ± SEM.
Statistical significance was assessed by using the tests indicated in
the figure legends (Prism 8; GraphPad Software). P < 0.05 were
considered statistically significant.

RESULTS

Redox Modulation of HMGB1 in Skeletal

Muscle Upon Acute Injury
Several reports highlighted a role of HMGB1 in skeletal muscle
regeneration (17–19) and we previously demonstrated that
HMGB1 redox isoforms orchestrate regeneration in muscle and
liver after acute injury (13). HMGB1 is highly expressed in the
nuclei of regenerating myofibers (Figure 1A) and both fr- and
dsHMGB1 isoforms are abundant in the medium bathing injured
muscles (7). We speculated that dsHMGB1 might derive from
leukocytes infiltrating the injured muscle. To address this issue,
we concomitantly analyzed the presence of leukocytes (CD45-
positive cells) and the expression of HMGB1 redox isoforms in
injured muscles at different time points after cardiotoxin (CTX)-
induced acute injury. As evidenced by CD45 immunostaining on
muscle sections and lysates, leukocytes were nearly undetectable
in healthy muscle, and their infiltration started at 6 h post-injury
and persisted until day 7 post-injury (Figures 1A,B). While
the expression of total HMGB1 was increased from days 3–7
post-injury, both CD45-positive cells and dsHMGB1 appeared
between 6 h and day 1 post-injury and persisted until day 7
post-injury (Figures 1B–D). The proportion of frHMGB1 on the
total amount of HMGB1 decreased in muscle lysate from 6 h to
day 7 post-injury and conversely, the proportion of dsHMGB1
was increased at these time points (Supplementary Figure 1A).
Specifically, frHMGB1 was the isoform predominantly expressed
at time points characterized by the absence of CD45-positive
cells (control and 1 h post-injury), while dsHMGB1 represented
about 30% of the total HMGB1 protein in muscle lysate in the
presence of CD45-positive cells (from 6 h to day 7 post-injury)
(Figure 1E).

HMGB1 is a marker of tissue damage as it is released by
dead or stressed cells (6). In addition, leukocytes have been
identified as professional cells for HMGB1 release upon injury
and infection (9, 20). Hence, we analyzed the expression of
released HMGB1 in serum and supernatant of injured muscles.
Circulating HMGB1 was increased at early timepoints, from 1
to 6 h post-injury (Supplementary Figure 1B). This first peak
of HMGB1 in the serum is most probably due to the release
of the protein by necrotic cells from the injured muscle. To
a lesser extent, we observed a second peak of HMGB1 from
days 3–7 post-injury, which might be attributed to HMGB1
release by infiltrating leukocytes. The amount of HMGB1 was
increased in supernatant of muscles excised from days 3–7 post-
injury (Figures 1F,G). Notably, the expression of dsHMGB1
in the supernatant was much higher compared to those in
muscle lysate and perfectly overlaps the expression of CD45

over time (Figures 1F–H, Supplementary Figure 1C). In the
presence of CD45-positive cells, the percentage of dsHMGB1 on
total HMGB1 protein level in the supernatant raised about 50%
(Figure 1I).

Overall, our data demonstrate that the redox state of HMGB1
is highly modulated in skeletal muscle following acute injury,
with a very low amount of dsHMGB1 in normal condition that
strongly increases upon damage and is tightly associated with the
presence of infiltrating leukocytes.

Infiltrating and Circulating Leukocytes

Represent Major Sources of dsHMGB1
To demonstrate that dsHMGB1 derives from infiltrating
leukocytes and not from resident muscle cells, we took
advantage of muscle cells-specific HMGB1 knockout mice
(hereafter mKO mice). These mice were generated by crossing
C57BL/6 HMGB1 fl/fl mice with MyoD-Cre mice. In the
latter, the Cre enzyme is under the control of the promoter
of MyoD, a transcription factor expressed during myogenesis,
which enables the deletion of lox-flanked sequences in all
myogenic cells (muscle stem cells, myoblasts, myofibers). In
this model, HMGB1 is deleted in myogenic cells but it is
still expressed in skeletal muscle by non-muscle cell types,
such as endothelial and nervous cells. As expected, the level
of total HMGB1 was strongly decreased in uninjured muscle
lysates from mKO mice compared to controls, and CD45-
positive cells were nearly absent (Figures 2A–C). The level
of HMGB1 and the number of CD45-positive cells strongly
increased in both wildtype and mKO mice from day 1 to
day 7 post-injury (Figures 2A–C), indicating that the absence
of HMGB1 in myogenic cells does not dramatically affect
leukocyte recruitment in injured muscle and that HMGB1 in
injured muscle mainly derives from non-muscle cells. Similarly,
we observed no difference in the distribution of HMGB1
redox isoforms between wildtype and HMGB1 mKO mice with
detection of CD45 and dsHMGB1 only in injured muscles
(Figures 2D,E). These data demonstrate that dsHMGB1 does
not derive from myogenic cells in the injured muscle and
strongly suggest that it originates from non-muscle cells such as
infiltrating leukocytes.

Although the release of HMGB1 by leukocytes has been
widely studied, very little is known on the redox modulation
of the protein in these cells. Hence, we analyzed the expression
and redox state of HMGB1 in peripheral blood mononuclear
cells (PBMCs) from human healthy donors. We observed
a high expression of HMGB1 in lysate of freshly isolated
PBMCs with around the 50% of the total corresponds
to dsHMGB1 (Figures 3A,B), demonstrating that these
cells represent a reservoir of dsHMGB1. To determine
whether the expression and redox state of HMGB1 might
be modulated during cell activation, we treated PBMCs with
anti-CD3/anti-CD28 or lipopolysaccharide (LPS) to stimulate
T cells, dendritic cells, and monocytes/macrophages. We
observed a high amount of dsHMGB1 in all conditions
with no major difference upon the various stimuli, although
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FIGURE 1 | HMGB1 redox isoforms expression and leukocyte infiltration during acute muscle injury. (A) Representative images of immunohistochemical staining for

CD45 (upper panel) and HMGB1 (lower panel) on tibialis anterior (TA) muscle sections at indicated time points after cardiotoxin (CTX) injection. Scale bars, 50µm. Ctrl,

uninjured control muscles. (B–E) Western blot probed with anti-CD45 (upper panel) and anti-HMGB1 (middle panel) antibodies in reducing conditions or with

anti-HMGB1 antibody in non-reducing conditions (lower panel) on muscle lysates at indicated time points after CTX injection. The upper and lower bands in

non-reducing conditions correspond to the fully reduced-HMGB1 (frHMGB1) and the disulphide-HMGB1 (dsHMGB1) isoforms, respectively. (C) Quantification of

(Continued)
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FIGURE 1 | total HMGB1 protein expression levels, relative to control (Ctrl) and normalized on Ponceau staining, at indicated time points after CTX injection. A.U. =

arbitrary unit (n ≥ 10 muscles, 3 mice/time point). (D) Quantification of CD45 and HMGB1 redox isoforms expression (frHMGB1 and dsHMGB1), normalized on

Ponceau staining, at indicated time points. (E) Distribution of HMGB1 redox isoforms expression in muscle lysates in absence (controls and at 1 h post-injury) or

presence of CD45-positive cells (from 6h to day 7 post-injury). (F–I) Western blot probed with anti-HMGB1 antibody in reducing (upper panel) and non-reducing

conditions (lower panel) on supernatant of muscles isolated at indicated time points after CTX injection (F). Total HMGB1 protein expression at indicated time points

after CTX injection (G). A.U. = arbitrary unit (n = 6 muscle supernatants, 3 mice/time point). (H) Quantification of HMGB1 redox isoforms expression (frHMGB1 and

dsHMGB1) in muscle supernatants, from Western blot assays in non-reducing conditions, at indicated time points after CTX injection and compared with CD45

expression as in (D). (I) Distribution of HMGB1 redox isoforms expression in supernatants of muscle in absence (controls and at 1 h post-injury) or presence of

CD45-positive cells (from 6h to day 7 post-injury). Data represent the means ± SEM and statistical significance was calculated by One-way (C,D,G,H) and Two-way

ANOVA (E,I). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

FIGURE 2 | Disulphide-HMGB1 derives from non-myogenic cells in injured muscle. (A) Western blot probed with anti-CD45 (upper panel) and anti-HMGB1 (lower

panel) antibodies in reducing conditions on tibialis anterior (TA) muscle lysates from WT or HMGB1 mKO mice at indicated time points after cardiotoxin (CTX) injection.

Ctrl, control uninjured muscles. (B,C) Quantification of CD45 (B) and HMGB1 (C) protein expression, normalized on Ponceau staining, before (Ctrl) and after CTX

injection (CTX at 1, 2, and 7 d) in TA and triceps muscle lysates (n ≥ 4 muscles/time point, n = 3 mice/genotype). A.U. = arbitrary unit. (D,E) Western blot probed with

anti-HMGB1 antibody in non-reducing conditions (D) on TA muscle lysates from WT or HMGB1 mKO mice at indicated time points after CTX injection. The upper

band corresponds to the fully reduced-HMGB1 (frHMGB1) and the lower band to the disulphide-HMGB1 (dsHMGB1). (E) Percentage of HMGB1 redox isoforms

expression from WT or HMGB1 mKO mice before (Ctrl) and after CTX injection (CTX at 1, 2, 5, and 7 d) in TA and triceps muscle lysates (n ≥ 3 muscles/time point; n

≥ 4 mice/genotype). Data represent the means ± SEM and statistical significance was calculated by Student T-test (B,C) and Two-way ANOVA (E). **P < 0.01; ***P

< 0.001; ##P < 0.01 (Ctrl vs. CTX).

LPS appeared to slightly increase the level of dsHMGB1
at 72 h (Figures 3C,D).

Overall, our findings demonstrate that both circulating and
infiltrating leukocytes contain a high amount of dsHMGB1 that
could be released into the injured muscle.

Leukocytes Operate as Transporters of

dsHMGB1 in the Tumor Microenvironment
To further investigate the ability of leukocytes to transport
dsHMGB1, we extended our results to cancer and to cachexia, a
severe muscle wasting syndrome associated to tumor progression
(21). Cancer-related inflammation has emerged as a hallmark of
cancer and evidences from animal models indicate a compelling
link between cachexia and inflammation (22, 23). Beside
leukocyte invasion in the tumor microenvironment, cancer
cachexia is associated to systemic inflammation, but no leukocyte
infiltration in cachectic muscle (22, 24). To study the expression
of HMGB1 redox isoforms in tumors and cachectic muscles, we

employed two well-established mouse models of cancer cachexia:
C57BL/6 and BalB/C mice injected subcutaneously with Lewis
Lung Carcinoma (LLC) cells and colon adenocarcinoma C26
cells, respectively. In these models, mice undergo body weight
loss and muscle wasting, mainly through increased levels
of circulating Tumor Necrosis Factor-α and Interleukin-6,
respectively (25, 26). We observed a loss of body weight and

muscle mass in these two models, but the level of circulating

HMGB1 was decreased in C26-bearing mice while it was
increased in LLC-bearing mice (Supplementary Figures 2A–C),

further underlining that tumor growth and cachexia progression
are regulated by different mechanisms in these two models.

As expected, CD45-positive cells were nearly
absent in cachectic muscles (Figures 4A–C,
Supplementary Figures 2D,E). We observed a slight increase of

total HMGB1 level in cachectic muscles from both mouse models
(Figures 4B,C, Supplementary Figures 2D,E). Interestingly,
frHMGB1 was the predominant isoform with no increase
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FIGURE 3 | High expression of disulphide-HMGB1 in human leukocytes. (A) Western blot probed with anti-CD45, anti-HMGB1, and anti-GAPDH antibodies in

reducing conditions (upper panels) or probed with anti-HMGB1 antibody in non-reducing conditions (lower panel) on peripheral blood mononuclear cells (PBMCs)

isolated from four healthy human donors. The upper band corresponds to the fully reduced-HMGB1 (frHMGB1) and the lower band to the disulphide-HMGB1

(dsHMGB1) in the lower panel. (B) Quantification of HMGB1 redox isoforms expression normalized on Ponceau staining. A.U. = arbitrary unit (n = 4 healthy donors).

(C,D) Western blot probed with anti-HMGB1 antibody in non-reducing conditions on PBMCs stimulated with anti-CD3/anti-CD28 antibodies or lipopolysaccharide

(LPS) for 24 or 72 h (C). Percentage of HMGB1 redox isoforms expression (D). Ctrl, control unstimulated cells (n = 2 healthy donors). Data represent the means ±

SEM and statistical significance was calculated by Two-way ANOVA (D).

of dsHMGB1 in cachectic muscles compared to controls
(Figures 4D,E, Supplementary Figures 2F,G). These data
demonstrate that leukocytes are not recruited and that the
redox state of HMGB1 is not shifted toward dsHMGB1 in
cachectic muscles.

We next analyzed the expression of CD45 and HMGB1
in tumors isolated from cachectic mice. Both CD45 and
HMGB1 were highly expressed in LLC- and C26-derived
tumors (Figures 4F–H, Supplementary Figures 2H,I). While
the expression of total HMGB1 was comparable in isolated
tumors and cultured tumor cell lines, CD45 and dsHMGB1
were highly expressed only in isolated tumors (Figures 4G–J,
Supplementary Figures 2H–K).

Overall, these results demonstrate that the redox state of
HMGB1 is modulated locally during cancer cachexia progression
and indicate that leukocytes act as transporters of dsHMGB1
isoform in the tumor microenvironment.

Redox Modulation of HMGB1 in Spleen and

Liver
To determine whether resident leukocytes, as opposed to
infiltrating/circulating leukocytes, also produce dsHMGB1, we
analyzed the expression of HMGB1 redox isoforms in spleen

and liver, two organs characterized by a high number of
resident leukocytes. We observed a high expression of both
CD45 and dsHMGB1 in spleen whereas comparable percentage
of dsHMGB1 expression was associated to much lower CD45
expression in liver (Figures 5A–C), suggesting additional cell
population(s) expressing dsHMGB1 in liver. Beside differences in
leukocytes number, these findings indicate that these two organs
represent important sources of dsHMGB1.

Previous studies have demonstrated that endogenous
HMGB1 is a mediator of drug-induced hepatoxicity by
promoting inflammation via its interaction with TLR4/MD-2
(14). We decided to analyse the recruitment of leukocytes
and the expression of HMGB1 redox isoforms in liver upon
acetaminophen (APAP) intoxication. We hypothesized that
no difference in dsHMGB1 percentage would be observed in
liver upon acute injury as we already observed a comparable
percentage of dsHMGB1 in circulating leukocytes and uninjured
liver (around 50% of total HMGB1). As expected, we observed
hepatocyte necrosis, CD45-positive cell recruitment and
HMGB1 release in injured areas of the liver after APAP injection
(Figure 5D). Notably, the temporal dynamics of circulating
HMGB1 levels perfectly overlaps that of sALT, a marker of
liver damage (Figure 5E), which peaks at day 1 post-APAP. As
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FIGURE 4 | Leukocytes operate as transporter of dsHMGB1 in tumor microenvironment. (A) Representative images of immunohistochemical staining for CD45 (upper

panel) and HMGB1 (lower panel) on tibialis anterior (TA) muscle sections from control (Ctrl) vs. Lewis lung carcinoma (LLC)-bearing mice. Scale bars, 50µm. (B,C)

Western blot probed with anti-CD45, anti-HMGB1, and anti-GAPDH antibodies in reducing conditions (B), and quantification of total CD45 and HMGB1 protein levels

normalized on GAPDH (C) (n = 4 mice). In (B), spleen lysate (5 µg) was added as positive control for CD45 expression. (D) Western blot probed with anti-HMGB1

antibody in non-reducing conditions on tibialis anterior (TA) lysates from control or LLC-bearing mice. The upper and lower bands in non-reducing conditions

(Continued)
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FIGURE 4 | correspond to the fully reduced-HMGB1 (frHMGB1) and the disulphide-HMGB1 (dsHMGB1) isoforms, respectively. (E) Percentage of HMGB1 redox

isoforms expression. A.U. = arbitrary unit (n = 4 mice/group). (F) Immunohistochemical staining for CD45 (upper panel) and HMGB1 (lower panel) on tumoral sections

from LLC-bearing mice. Scale bars, 50µm. (G–J) Western blot probed with anti-CD45, anti-HMGB1, and anti-GAPDH antibodies in reducing conditions on LLC cells

and tumoral masses isolated from mice injected with LLC cells (G), and quantification of total CD45 and HMGB1 protein levels normalized on GAPDH (H). (I) Western

blot probed with anti-HMGB1 antibody in non-reducing conditions on LLC cells and tumoral masses isolated from mice injected with LLC cells. (J) Percentage of

HMGB1 redox isoforms expression in LLC cultured cells and tumoral masses from LLC-injected mice (J). A.U. = arbitrary unit (n = 5 cell replicates and n = 4 mice for

tumoral masses). Data represent the means ± SEM and statistical significance was calculated by Student T-test (C,H) and Two-way ANOVA (E,J). *P < 0.05;

****P < 0.0001.

previously described (13), the peak of intrahepatic leukocytes
(IHLs) occurs at day 2 post-APAP (Figures 5D,F). We performed
Western blot analyses on IHLs isolated from liver, and we
observed that both resident and infiltrating leukocytes upon
APAP intoxication express high level of dsHMGB1 (Figure 5G,
Supplementary Figure 3A). As expected, although the number
of CD45 positive cells was higher in APAP-treated mice, the
percentage of dsHMGB1 in total liver lysate was similar in
control and intoxicated mice (Supplementary Figures 3B–D),
indicating that cell population(s) distinct from leukocytes might
also produce dsHMGB1 in liver.

Overall, these findings demonstrate that spleen and liver
express high level of dsHMGB1 in physiological conditions,
and that both resident/infiltrating leukocytes and additional
uncharacterized cell population(s) are sources of dsHMGB1 in
normal and intoxicated livers.

DISCUSSION

Although it is well-established that HMGB1 is a critical mediator
of inflammation and is involved in numerous inflammatory
disorders, clinical trials to specifically target the protein are
still to come. A deeper understanding of both intracellular
and extracellular functions of HMGB1 is essential to develop
efficient therapeutic interventions targeting this alarmin. In this
context, the discovery of HMGB1 redox modulation represented
a breakthrough in the field, and our findings now reveal a highly
dynamic regulation of HMGB1 oxidation in vivo, both upon
tissue injury and in the tumormicroenvironment, which is tightly
associated to inflammatory processes. In addition, we identified
the leukocyte cell population as a reservoir and transporter
of dsHMGB1.

A growing body of evidence indicates that frHMGB1
orchestrates cell recruitment and tissue regeneration while
dsHMGB1 contributes to inflammation by activating immune
cells (11–13). However, most studies were performed using
recombinant HMGB1 redox isoforms. Here, we analyzed the
dynamics of expression of endogenous HMGB1 isoforms,
demonstrating that the redox state of HMGB1 is highly
modulated in vivo in different tissues, both in physiological
and pathological conditions. Indeed, our results indicate that
the redox modulation of HMGB1 is tissue-specific, with a high
expression of dsHMGB1 in normal conditions in spleen or liver
while it is almost absent in skeletal muscle. Similarly, dsHMGB1
is highly expressed in the tumor microenvironment while it
is absent in cachectic muscles from the same tumor-bearing
mice. It is well-established that cancer cachexia is characterized

by systemic inflammation and leukocytes infiltration in the
tumor, but not in the cachectic muscles (24). Accordingly, we
observed a high expression of both CD45 and dsHMGB1 in
tumors, but not in cachectic muscles. Hence, these data clearly
establish that the redox state of HMGB1 is locally controlled and
demonstrate that the presence of dsHMGB1 is tightly associated
with leukocytes infiltration.

Besides being spatially restricted, HMGB1 oxidation is
regulated in time. In skeletal muscle, dsHMGB1 appears a
couple of hours after an acute injury. In liver, dsHMGB1 is
highly expressed both at basal level and upon drug intoxication,
indicating that cell populations other than leukocytes might
contribute to the production of dsHMGB1 in liver. Overall,
our findings point out to an accurate and dynamic regulation
of HMGB1 redox state in physiological and pathological
conditions, most probably to finetune the inflammatory and
regenerative processes.

Extracellular HMGB1 has been identified as a drug-target
protein in multiple diseases, in particular in inflammation-
associated disorders, and as a target of aspirin (27), the most
widely used drug worldwide, and of the salicylate diflunisal
(28), demonstrating the importance of HMGB1 in clinic. A high
level of serum HMGB1 appears to be a sensitive biomarker
in diverse disorders, such as mesothelioma, but the different
HMGB1 isoforms represent novel biomarker candidates that
provide additional mechanistic information (29). Indeed, total
HMGB1 is indicative of both cell death and immune cell
activation while the characterization of the oxidation state can
provide pivotal information on the type of injury and on
inflammation degree. So far, it is not possible to detect the
different isoforms by ELISA assay due to the difficulty to generate
antibodies specific for each isoform. Mass spectrometry analyses
have been widely employed to analyse the posttranslational
modifications of HMGB1 such as acetylation and oxidation.
However, this methodology is costly and time-consuming,
considerably limiting its potential application in the clinic.
Iwahara et al., proposed an NMR-based approach to study
the kinetics of HMGB1 oxidation in extracellular fluids (30).
Although this technique has multiple advantages, it can be
applied only to extracellular fluids. In our study, we showed
that it is possible to perform Western blot assays to analyse
the expression of HMGB1 redox isoforms both at cell and
tissue levels. Other studies reported the detection of HMGB1
redox isoforms in serum and plasma by Western blot assay
(31, 32), showing that this method can also be applied to
extracellular fluids. Western blot has a wide range of applications
in the clinic, such as the application of medical diagnosis for
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FIGURE 5 | Redox modulation of HMGB1 in spleen and in drug-intoxicated liver. (A) Western blot probed with anti-CD45, anti-HMGB1, and anti-GAPDH antibodies

in reducing conditions (upper panels) or probed with anti-HMGB1 antibody in non-reducing conditions (lower panel) on lysates of spleen and liver isolated from control

WT mice. In the lower panel, the upper band corresponds to the fully reduced-HMGB1 (frHMGB1) and the lower band to the disulphide-HMGB1 (dsHMGB1). (B,C)

Quantification of total CD45 and HMGB1 protein levels normalized on GAPDH (B), and HMGB1 redox isoforms percentage (C) in spleen and liver lysates. A.U. =

arbitrary unit (n = 4 mice/group). (D–G) Drug-induced liver injury (DILI) was induced by i.p. injection of acetaminophen (APAP), 300 mg/kg (body weight). Serum

(Continued)
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FIGURE 5 | collection and necroscopy were performed at the indicated time points. (D) Representative images of DAPI and Evans Blue (EB) staining, Haematoxylin &

Eosin (H&E) staining, and CD45 and HMGB1 immunostaining in liver sections from control mice (Ctrl) and at days 1, 2, 3, and 7 after DILI. Scale bars, 50µm. (E)

Alanine aminotransferase (sALT) and HMGB1 levels in serum before and after APAP injection in mice (n ≥ 5 mice/group). (F) Quantification of total number of

intrahepatic leukocytes (IHLs) in control mice and at days 1 and 2 post-APAP injection (n = 4 mice/group). (G) Quantification of HMGB1 redox isoforms percentage,

from Western blot assays performed in non-reducing conditions with anti-HMGB1 antibody, in IHLs isolated from control mice and at days 1 and 2 post-APAP

injection (n = 4 mice/group). Data represent the means ± SEM and statistical significance was calculated by Student T-test (B), One-way (E,F) and Two-way ANOVA

(C,G). ***P < 0.001; ****P < 0.0001; ns, not significant.

infectious diseases including hepatitis C (HCV), HIV, Lyme
disease, and syphilis, as well as autoimmune disorders such
as paraneoplastic disease and myositis (33). In conclusion, the
analysis of HMGB1 redox isoforms expression by Western
blot assay might be useful not only for research but also for
clinical applications.

An important issue to address is to determine in which
conditions HMGB1 gets oxidized and if its oxidation
occurs outside and/or inside the cells. HMGB1 is secreted
through a non-classical vesicle-mediated secretory pathway,
bypassing the endoplasmic reticulum (ER) (20). The redox
potential of the ER is continually preserved as an oxidizing
environment to facilitate the oxidative process of disulphide
bond formation during protein folding. Hence, the avoidance
of the ER limits HMGB1 oxidation. Conversely, a recent

study indicates that HMGB1 oxidation can occur in the
nucleus of mouse bone marrow-derived macrophages, mouse

embryonic fibroblasts and HEK293T cells (34). The authors
demonstrate that disulphide bond formation is required

for HMGB1 nucleocytoplasmic translocation and secretion,
and is mediated by peroxiredoxins (Prxs), a ubiquitous
family of antioxidant enzymes highly expressed in cells. We
observed high levels of dsHMGB1 in lysates of leukocytes
from mice and healthy donors, demonstrating that HMGB1
was already oxidized inside the cells. Indeed, it is well-known
that leukocytes produce Reactive Oxygen Species (ROS)
as part of the killing response against microbial invasion
and as intra- and intercellular messengers. Conversely,
a recent study showed that HMGB1 is maintained in a
reduced state, owing to the activity of the thioredoxin
antioxidant system, in monocytes from patients with active
rheumatoid arthritis (35). Future investigation should
characterize the molecular mechanisms driving HMGB1
oxidation in extracellular and intracellular spaces, in particular
in leukocytes.

Inflammatory conditions are associated with the release of
ROS in the microenvironment, in particular by leukocytes.
Hence, HMGB1 is most probably oxidized also when it is present
in the extracellular space, especially in inflammatory conditions.
Accordingly, it has been reported that HMGB1 is rapidly oxidized
in the extracellular space and that the half-life for frHMGB1 is
17min in vitro in serum before it gets converted to dsHMGB1
(30). The authors showed large variations in the kinetics
for HMGB1 oxidation and clearance in different extracellular
fluids, clearly demonstrating that the balance between fr- and
dsHMGB1 depends on the extracellular environment. Similarly,
we observed higher level of dsHMGB1 in supernatants than in
lysates of injured muscles, suggesting that HMGB1 was partially

oxidized outside the cells. Most importantly, our results identify
leukocytes as a source of dsHMGB1 in muscle, spleen, liver, and
tumor. These findings are relevant because they demonstrate
that leukocytes can also operate as vehicle of dsHMGB1 in
the tissue. However, the relative contribution of non-muscle
cell types (e.g., endothelial cells) resident in skeletal muscle
to HMGB1 release and redox regulation is still unknown.
Similarly, the high expression of dsHMGB1 in healthy liver
suggests that it originates from a cell population different
from leukocytes. Hence, further investigation is required to
decipher the regulation of HMGB1 redox state at both tissue and
cell levels.

Overall, our study underlines a close association of dsHMGB1
expression with an inflammatory state characterized by immune
cells presence, and identifies leukocytes as reservoirs and
transporters of dsHMGB1. These findings emphasize that
HMGB1 oxidation is a timely and spatially regulated process in
physiological and pathological conditions, most likely to finetune
inflammatory and regenerative processes.
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Supplementary Figure 1 | HMGB1 redox isoforms expression in muscle and

HMGB1 level in serum upon acute muscle injury. (A) Percentage of HMGB1 redox

isoforms expression, quantified from Western blot assays performed in

non-reducing conditions with anti-HMGB1 antibody, on tibialis anterior (TA) and

triceps muscle lysates at indicated time points after cardiotoxin (CTX) injection.

A.U. = arbitrary unit (n = 11 muscles, 3 mice/time point). (B) Quantification of

HMGB1 protein level (ng/ml) by ELISA in the serum of control (Ctrl) and

CTX-treated mice at indicated time points (n ≥ 3 mice/time points). (C)

Percentage of HMGB1 redox isoforms expression, quantified from Western blot

assays performed in non-reducing conditions with anti-HMGB1 antibody, on

muscle supernatants at indicated time points after CTX injection. A.U. = arbitrary

unit (n = 6 muscle supernatants, 3 mice/time point). Data represent the means ±

SEM and statistical significance was calculated by One-way ANOVA (A–C). ∗P <

0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001.

Supplementary Figure 2 | Redox modulation of HMGB1 during cancer

cachexia. (A) Body weight (g) of mice injected with LLC or C26 cells at day 0 or at

the endpoint of the experiment. (B) Weight loss percentage of gastrocnemius

(GAS), tibialis anterior (TA), and quadriceps (QUAD) muscles from LLC- or

C26-bearing mice (n ≥ 4 mice/group). (C) Quantification of HMGB1 protein level

(ng/ml) by ELISA in the serum of control (Ctrl) or tumor-bearing mice (LLC or C26)

(n ≥ 4 mice/group). (D,E) Western blot probed with anti-CD45, anti-HMGB1, and

anti-GAPDH antibodies in reducing conditions (D) on tibialis anterior (TA) muscle

lysates from control (Ctrl) or C26-bearing mice. In (D), spleen lysate (5 µg) was

added as positive control for CD45 expression. (E) Quantification of total CD45

and HMGB1 protein levels normalized on GAPDH. A.U. = arbitrary unit (n ≥ 4

mice/group). (F,G) Western blot probed with anti-HMGB1 antibody in

non-reducing conditions on TA muscles isolated from control or C26-bearing mice

(F). The upper and lower bands correspond to the fully-reduced HMGB1

(frHMGB1) and the disulphide-HMGB1 (dsHMGB1) isoforms, respectively. (G)

Quantification of HMGB1 redox isoforms percentage. A.U. = arbitrary unit (n ≥ 4

mice/group). (H,I) Western blot probed with anti-CD45, anti-HMGB1, and

anti-GAPDH antibodies in reducing conditions on C26 cultured cells (Cells) and on

tumoral masses (Tumors) isolated from mice injected with C26 cells (H).

Quantification of total CD45 and HMGB1 protein expression normalized on

GAPDH (I). A.U. = arbitrary unit (n = 4 cell replicates and n = 5 mice for tumoral

masses). (J,K) Western blot probed with anti-HMGB1 antibody in non-reducing

conditions on cultured C26 cells (Cells) and on tumoral masses (Tumors) isolated

from C26-bearing mice (J). Quantification of HMGB1 redox isoforms percentage

in cultured C26 cells (Cells) and in tumoral masses (Tumors) isolated from

C26-injected mice (K; n = 4 cell replicates and n = 5 mice for tumoral masses).

Data represent the means ± SEM and statistical significance was calculated by

Student T-test (A,C,E,I) and Two-way ANOVA (G,K). ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P

< 0.001; ∗∗∗∗P < 0.0001; ns, not significant.

Supplementary Figure 3 | CD45 and HMGB1 redox isoforms expression in liver

after drug intoxication. Drug-induced liver injury (DILI) was induced by i.p. injection

of acetaminophen (APAP), 300 mg/kg (body weight). Liver and intrahepatic

leukocytes (IHLs) isolations were performed at indicated time points after APAP

treatment. (A) Western blot probed with anti-CD45, anti-HMGB1, and

anti-GAPDH antibodies in reducing conditions (upper panels) or probed with

anti-HMGB1 antibody in non-reducing conditions (lower panel) on IHLs isolated

from control (Ctrl) and APAP-treated mice at indicated time points. In the lower

panel, the upper band corresponds to the fully-reduced HMGB1 (frHMGB1) and

the lower band to the disulphide-HMGB1 (dsHMGB1). (B) Western blot probed

with anti-CD45, anti-HMGB1, and anti-GAPDH antibodies in reducing conditions

(upper panels) or probed with anti-HMGB1 antibody in non-reducing conditions

(lower panel) on liver lysates of control (Ctrl) and APAP-injected mice at indicated

time points. (C) Quantification of total CD45 and HMGB1 protein expression in

control (Ctrl) and APAP-treated mice at indicated time points. A.U. = arbitrary unit

(n = 4 mice/group). (D) Quantification of HMGB1 redox isoforms percentage in

liver lysates from control (Ctrl) and APAP-treated mice (n = 4 mice/group). Data

represent the means ± SEM and statistical significance was calculated by

One-way (C) and Two-way ANOVA (D). ∗∗P < 0.01; ∗∗∗∗P < 0.0001.
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High mobility group box 1 (HMGB1) is a non-histone DNA-binding protein of about

30 kDa. It is released from a variety of cells into the extracellular milieu in response

to inflammatory stimuli and acts on specific cell-surface receptors, such as receptors

for advanced glycation end-products (RAGE), Toll-like receptor (TLR)2, TLR4, with or

without forming a complex with other molecules. HMGB1 mediates various mechanisms

such as inflammation, cell migration, proliferation, and differentiation. On the other

hand, HMGB1 enhances chemotaxis acting through the C-X-C motif chemokine ligand

(CXCL)12/C-X-C chemokine receptor (CXCR)4 axis and is involved in regeneration. In

the oral cavity, high levels of HMGB1 have been detected in the gingival tissue from

periodontitis and peri-implantitis patients, and it has been shown that secreted HMGB1

induces pro-inflammatory cytokine expression, such as interleukin (IL)-1β, IL-6, and

tumor necrosis factor (TNF)-α, which prolong inflammation. In contrast, wound healing

after tooth extraction or titanium dental implant osseointegration requires an initial acute

inflammation, which is regulated by secreted HMGB1. This indicates that secreted

HMGB1 regulates angiogenesis and bone remodeling by osteoclast and osteoblast

activation and promotes bone healing in oral tissue repair. Therefore, HMGB1 can prolong

inflammation in the periodontal tissue and, conversely, can regenerate or repair damaged

tissues in the oral cavity. In this review, we highlight the role of HMGB1 in the oral cavity by

comparing its function and regulation with its function in other diseases. We also discuss

the necessity for further studies in this field to provide more specific scientific evidence

for dentistry.

Keywords: high mobility group box 1, inflammation, periodontal regeneration, periodontitis, osseointegration,

tooth movement, wound healing

INTRODUCTION

An inflammatory or immune response in oral tissues occurs when biological reactions such as
microbial infection, physical trauma, neoplastic processes, and autoimmune conditions occur in
the oral environment. The oral cavity contains complex microbial flora, and the immune system
promotes pro-inflammatory cytokine production (1). Sterile injuries, such as tooth extraction
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and orthodontic tooth movement also cause an immune
reaction and subsequent tissue repair. Immediately after a dental
extraction is performed, blood platelets are recruited into the
collagen connective tissue, a clot starts to form, and growth
factors and angiogenesis mediators are being produced (2). In the
context of orthodontic tooth movement, an initial inflammatory
reaction is generated at the compression sites caused by
constriction of the periodontal ligament. The periodontal
ligament releases pro-inflammatory cytokines and promotes
tissue resorption (3). It has been mentioned that chronic
inflammation and oxidative stress promote carcinogenesis (4). In
the oral cavity, it has been suggested that both cyclooxygenase
(COX) 2 and chronic inflammation are involved in the initiation
of carcinogenesis process of oral squamous cell carcinoma (5).
Becht’s disease, a well-known autoimmune condition, exhibits
symptoms such as aphthous ulcers in the oral cavity, and it
is suggested that there is a relationship between this disease
and periodontitis, which is a major chronic oral inflammatory
pathology (6). It is thought that the inflammatory and immune
response are closely related to both the progress of the diseases
and tissue repair.

HMGB1 is a nuclear protein that regulates transcription and
is one of the damage-associated molecular patterns (DAMPs),
which act as major mediators in immune reactions. HMGB1
has several isoforms, which have distinct biological implications.
These isoforms are: “fully reduced HMGB1,” “disulfide HMGB1,”
and “sulfonyl HMGB1” named after the different redox reactions
that occur in the three cysteines at positions 23, 45, and 106
of HMGB1 (7). Necrotic cell death or cell stress promotes fully
reduced HMGB1, which forms a heterocomplex with CXCL12.
The heterocomplex binds to the CXCR4 receptor with increased
affinity and enhances chemotaxis (8). Fully reduced HMGB1
can be oxidized to disulfide HMGB1, which forms a disulfide
bond between C23 and C45, and exerts a pro-inflammatory
effect by promoting cytokines production via the TLR4/myeloid
differentiation factor 2 (MD-2) complex. Fully oxidized HMGB1
and sulfonyl HMGB1 are thought to be inert (9, 10). The
difference in the isoforms is thought to be one of the reasons why
HMGB1 is involved in two opposing functions: progression of
inflammation and tissue repair.

Initially, HMGB1 was shown to cause a danger signal in
acute inflammatory diseases such as sepsis. Wang et al. (11)
reported that HMGB1 was liberated from cells stimulated with
cytokines and that HMGB1 plays an important role in mediating
experimental sepsis. Yamamoto et al. (12) reported that
lipopolysaccharide (LPS) increased pro-inflammatory cytokine
secretion from peritoneal macrophages and initiated intracellular
signaling to activate nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) by binding RAGE and TLR2. In
the report, they mentioned that LPS-mediated RAGE signaling
accelerates acute inflammation and vascular dysregulation,
leading to tissue damage, which then mediates HMGB1 release
in the late phase, resulting in a pernicious cycle of RAGE-
dependent lethality in septic shock. Yang et al. (9) reported
that disulfide HMGB1 binds MD-2/TLR4, andMD-2 antagonists
inhibited hepatic ischemia/reperfusion injury, chemical toxicity,
and sepsis in mice. HMGB1 is not only involved in acute

inflammation but also in chronic inflammation. Gasiorowski
et al. (13) reported that RAGE activation should be perceived
as a primary mechanism that determines self-perpetuated
chronic inflammation in Alzheimer’s disease, and the crosstalk;
RAGE cooperation with TLRs amplifies inflammatory signaling
via extracellular signal-regulated kinase (ERK)1/2, mitogen-
activated protein kinase (MAPK), p38, c-Jun N-terminal kinase
(JNK), and NF-κB signaling. In a recent report, it was shown
that the HMGB1/CXCL12 heterocomplex can be maintained in
rheumatoid arthritis (RA) by the activity of the prostaglandin
E2 (PGE2)/COX2 pathway, the Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway, and the
thioredoxin system, all of which are associated with the activation
of the disease (14). In addition, in juvenile idiopathic arthritis
patients (JIA), the presence of three functional HMGB1 redox
isoforms confirms the complexity of their pathogenic role during
chronic inflammation (15).

Until now, many researchers have focused on HMGB1 as
an inflammatory mediator that prolongs various inflammatory
diseases, and because of this research has focused on inhibiting
the function of HMGB1 to treat such diseases (16, 17). However,
in recent reports, another aspect of HMGB1, which is related to
its role in tissue healing and regeneration, is being highlighted
(18, 19). Originally, inflammation is believed to be not only
a chronic and degenerative disease, but also part of the
physiological process that initiates tissue repair and regeneration.
Infection or injury of epithelium leads to the generation of
DAMPs and pathogen-associated molecular patterns (PAMPs),
which then activate immune cells for regeneration by stimulating
cell proliferation and differentiation (20). Vénéreau et al. (18)
created the mutant HMGB1 (3S HMGB1), in which the cysteines
are replaced with serines, which are resistant to oxidation, and
behave as reduced HMGB1. Tirone et al. (21) reported that 3S
HMGB1 orchestrates muscle and liver regeneration via CXCR4.
A recent study also reported that fully reduced HMGB1 forms
a heterocomplex with CXCL12, which binds to CXCR4 and then
accelerates skeletal, hematopoietic, andmuscle regeneration (22).

In addition, an explanation of the HMGB1 function is
that HMGB1-C1q complexes regulate macrophage polarization
by inducing the differentiation to anti-inflammatory M2-like
macrophages (23). The activation of complements is strongly
involved in immune cell migration. There are three pathways
of complement activation: the classical pathway, the Mannan-
binding lectin pathway, and the alternative pathway, all of
which promote immune cell migration by producing the cleaved
complement component 3 (C3a) and cleaved complement
component 5 (C5a) (24). On the other hand, the C1 complex
(C1q), which normally triggers the classical pathway, is
thought to regulate both inflammation and regeneration by the
coexistence of DAMPs. Liu et al. (25) reported that the HMGB1-
C1q complex induces production of proresolving mediators such
as resolvin (Rv)D1 and RvD2. The resolution of inflammation
and macrophage polarization may result in tissue regeneration.

The oral cavity has a complex environment having a variety
of different tissues such as epithelium, connective tissue, and
hard tissue such as teeth and bone, along with various bacterial
species. Thus, in this complex environment HMGB1 may play
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its dual role in prolonged inflammation and tissue regeneration.
However, we still do not know the detailed mechanism by which
the isoform of HMGB1, or how the HMGB1 forming complex is
involved in oral inflammation and regeneration in the oral cavity.
In this review, we specifically focus on the role of HMGB1 in oral
inflammation and regeneration. We introduce past reports and
suggest future directions.

HMGB1 IN ORAL INFLAMMATORY

CONDITIONS

Periodontal Inflammation
Periodontal diseases are dysbiotic conditions in the gingival
margin, which are characterized by an imbalance between
subgingival microbial communities and the host immune
response (26, 27). Clinical studies have demonstrated that
the levels of TLR2 and TLR4 in periodontitis patients were
significantly higher than those in control groups (28, 29). Li et al.
(29) also demonstrated the presence of TLR4, CD14, and MD-
2 expression in both cultured human gingival keratinocytes and
fibroblasts. Porphyromonas gingivalis (P. gingivalis) is considered
a keystone pathogen for periodontitis (30). P. gingivalis fimbriae
can activate the TLR2 and TLR4 pathways, leading to excessive
production of pro-inflammatory cytokines and chemokines
in monocytic cells (31). PAMPs are conservative molecules
associated with groups of pathogens or their products, and are
involved in the development of periodontitis. LPS of P. gingivalis
is an effective ligand for TLR4, and Li et al. (32) discovered that
the ability of human periodontal ligament stem cells (hPDLSCs)
to differentiate into osteoblasts was impaired by LPS, through
a TLR4-mediated NF-κB pathway. Lipoprotein derived from P.
gingivalis can serve as a ligand for TLR2 and activate the NF-
κB pathway (33). Okugawa et al. (34) reported that soluble
peptidoglycans (PGNs) of P. gingivalis and Aggregatibacter
actinomycetemcomitans (A. actinomycetemcomitans) induced
IL-8 production in cultured oral epithelial cells. TLRs on
gingival tissues such as gingival epithelium, gingival fibroblasts,
periodontal ligaments, and immune cells recognize PAMPs, and
the TLR signals induce significant amounts of inflammatory
mediators. An exaggerated reaction response by the immune
response promotes the production of receptor activator of
nuclear factor kappa-B ligand (RANKL), activates osteoclasts,
and then cause tissue destruction and bone resorption.

The Cells in Periodontal Tissue Produce

HMGB1
Not only PAMPs but also alarmins such as HMGB1 are
considered as a significant factor during osteoclastogenic.
Infection promotes HMGB1 secretion from periodontal tissue,
and the secreted HMGB1 is involved in the lingering or
aggravation of periodontitis. HMGB1 was detected at high
levels in gingival crevicular fluid (GCF) in periodontitis patients
(35, 36). There were significant positive correlations between
the levels of HMGB1 in GCF and all periodontal parameters,
including plaque index, bleeding index, probing depth, and
clinical attachment level. The abundance of HMGB1 in GCF

in chronic periodontal patients suggests that human gingival
epithelial cells secrete HMGB1 up on stimulation by bacterial
infection (37). That study also confirmed that TNF-α promotes
HMGB1 production in vitro, using rat gingival epithelial cells
and Ca9-22 cells, which is an oral epithelial cell line. Ito et al.
(38) reported that IL-1β promoted the secretion of HMGB1
in human gingival epithelial and fibroblast cells. They also
confirmed that gene expression of RAGE was highly upregulated
by IL-1β stimuli in cultured human gingival epithelial cells,
and that HMGB1 and RAGE were highly expressed in gingival
epithelial cells in patients with oral inflammation. Another
study reported that HMGB1 was dislocated from the nucleus
of the cells in the pocket epithelium, which faces the infected
root surface, but it was mainly localized in the nucleus in
the gingival epithelium of periodontitis patients (39). They
also confirmed that butyric acid, which is a metabolite of
periodontal pathogens and a virulence factor of P. gingivalis,
induced HMGB1 production in Ca9-22 cells in vitro. Our
previous report suggested that HMGB1 translocated from the
nucleus into the cytoplasm in the gingival epithelium in vivo,
in a periodontal mouse model with P. gingivalis-soaked ligatures
(40). In vitro analysis using cultured progenitor human gingival
epithelial cells (HGECs) and THP-1 cells, which is a macrophage-
like cell line, showed that TNF-α induced HMGB1 production.
Interestingly, the amount of HMGB1 production was lower in
HGECs (<20 ng/mL) than in THP-1 cells (more than 60 ng/mL)
(40). Gingival connective tissue located between the epithelium
and the root surface contains gingival fibroblasts. It has been
reported that cultured human gingival fibroblasts (HGF) produce
HMGB1 upon stimulation by LPS of A. actinomycetemcomitans,
P. gingivalis, and Escherichia coli, and upon apoptotic and
necrotic initiation (41). The periodontal ligament, which is also
a connective tissue lying between the alveolar bone and tooth
root, contains periodontal ligament fibroblasts (PDLF). Nogueira
et al. (42) reported that HMGB1was produced in cultured human
PDLF upon treatment LPS and IL-1β. They also confirmed
the expression of HMGB1 in the periodontal ligament in an
experimental periodontitis rat model (42). However, we still do
not know which tissue is the main source of HMGB1 production
in periodontium.

Secretion of HMGB1 around periodontal tissue is considered
to promote pro-inflammatory cytokine production and prolong
periodontitis. Kim et al. (43) reported that recombinant HMGB1
induced the expression of TNF-α, IL-1β, IL-6, IL-11, and IL-
17 mRNA in immortalized human PDL cells (hPDLCs). They
also showed that TLR4 and TLR2 expression was increased
in hPDLCs exposed to HMGB1 and that neutralizing anti-
TLR2 and anti-TLR4 antibodies specifically inhibited HMGB1-
induced expression and secretion of osteoclastogenic cytokines
and expression of RANKL (43). Parks et al. (44) reported
that RAGE plays only a minor role in macrophage activation
by HMGB1, whereas signaling through TLR 2 and TLR4
prompted the release of TNF-α, IL-1β, and IL-6 from cultured
mouse neutrophils and macrophages. In addition to other
inflammatory diseases, secreted HMGB1 is considered to
promote inflammation; however, there is little evidence to
have examined the difference in HMGB1 isoforms in this
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research area. One of the reasons for these limitations was
the difficulty in using recombinant HMGB1 proteins because
they easily form complexes with other molecules such as LPS
and IL-1β.

Periapical lesions are osteolytic bone defects that are
inflammatory immune defensive reactions that originate as a
consequence of microbial and toxin invasion into the root canal.
It has been established that a variety of cytokines and chemokines
participate in the innate immune-inflammatory response and
later in the adaptive immune response (45). These cytokines,
including matrix metalloproteinases (MMPs), IL-1β, and IL-6
play a critical role in osteoclast formation and alveolar resorption
(46). Liu et al. (47) reported the presence of HMGB1 and TLR4-
positive cells around periapical lesions surrounding the apical
foramen via osteoclast activation.

In addition to teeth, dental implants also suffer from
bacterial infection. Peri-implantitis is a destructive inflammatory
process caused by bacteria surrounding dental implants (48).
Previously, it was reported that RAGE levels were elevated
in patients susceptible to periodontitis compared to healthy
patients, but TLR2 and TLR4 levels did not change before
implant therapy. After implant therapy, RAGE and TLR4 levels
were upregulated but TLR2 levels were downregulated (49). In
addition, a higher concentration of HMGB1 has been found
in the GCF from inflammatory gingival tissue in comparison
to the healthy site around the dental implant (35, 50). The
expression levels of other pro-inflammatory factors, such as IL-
1β, Il-6, IL-8, and TNF-α, were also higher in the GCF from
peri-implantitis sites than in the GCF from healthy sites. They
reported that HMGB1 expression level in GCF is indicative
of the progression of peri-implantitis and may be a useful
diagnostic biomarker.

HMGB1 Blockade Inhibits Periodontitis

Progression
It was revealed that HMGB1 is involved in the aggravation
of periodontitis by HMGB1 blockade analysis. Glycyrrhizin is
the chief sweet-tasting constituent of Glycyrrhiza glabra root
and is contained in various oral hygiene products such as
toothpaste and mouth wash to exert an anti-inflammatory effect
(51, 52). Mollica et al. (52) reported that glycyrrhizin binds
to HMGB1 specifically and inhibits cytokine activity. In our
previous report, the progression of periodontitis was inhibited
in a mouse periodontitis model with glycyrrhizin (53). A recent
study reported that glycyrrhizic acid suppressed inflammation
and reduced the increased glucose levels induced by the
combination of Porphyromonas gulae and ligature placement
in mouse model of diabetes (54). In this study, glycyrrhizic
acid also suppressed ligature/P. gulae-induced increases in
HMGB1 and RAGE both at the mRNA and serum levels in
the gingiva of diabetic mice. The anti-HMGB1 antibody is
one of the most powerful HMGB1 inhibitors and has been
used in many inflammatory disease models such as sepsis and
brain infarction (11, 55). In our study, administration of anti-
HMGB1 antibody in a murine periodontitis model inhibited
myeloperoxidase (MPO) activity, neutrophil migration, and bone

resorption in a dose-dependent manner. This result suggested
that a faster resolution of periodontal inflammation can be
achieved by blocking HMGB1. The antibody inhibited the
expression of IL-1β and C-X-C motif chemokine ligand 1
(CXCL1) in cultured cells. The antibody also inhibited TNF-
α-induced IL-1β production in HGECs and TNF-α-induced
GM-CSF production in THP-1 cells in vitro (40). In early
inflammation, gingival epithelial cells release various cytokines
and chemokines, and HMGB1 is then translocated from the
nucleus to the cytoplasm upon stimulation by TNF-α. The
released HMGB1 induces the translocation in an autocrine-
related manner; the released HMGB1 also induces GM-
CSF secretion from gingival epithelial cells, resulting in the
differentiation and activation of immune cells. As inflammation
proceeds via the continuous secretion of HMGB1, macrophages
release more cytokines, chemokines, and HMGB1. Moreover,
the released IL-1β promotes osteoclastogenesis and bone
resorption. Therefore, periodontal inflammation is initiated,
exacerbated, and prolonged by the HMGB1 secretion cycle.
The present study demonstrated that anti-HMGB1 antibody
succeeded in preventing prolonged immunostimulation and
bone-resorbing activity of osteoclasts by inhibiting the release
of cytokines in periodontal tissue. However, HMGB1 blockade
with anti-HMGB1 antibody partially inhibited periodontal
progression, thus indicating that there might be another
HMGB1-independent pathway.

Periodontitis has been associated with many other systemic
diseases; for instance, there is a two-way relationship between
diabetes and periodontitis (56). In 2012, a hypothesis was
reported that secreted HMGB1 acting through RAGE, on
monocytes, macrophages, and vascular endothelial cells, and
might play an important role in the development of diabetes-
associated periodontitis (57), and many reports regarding this
relationship are currently being conducted. RAGE is one
of the receptors for HMGB1, and its expression is higher
in gingival tissue of patients with type 2 diabetes than
in healthy patients (58). Blockade of HMGB1 by soluble
RAGE (sRAGE) suppressed periodontitis-associated bone loss
in diabetic mice (59), and serum levels of sRAGE and cleaved
RAGE were significantly lower in periodontitis patients (60).
However, soluble RAGE to neutralize RAGE receptors does
not specifically block HMGB1, as there are multiple other
RAGE ligands, such as AGEs, S100As, and lysophosphatidic
acid (LPA), which may bind to this receptor as well as to
HMGB1 (61, 62). Metformin, the first-line medication for the
treatment of type 2 diabetes, is also considered an HMGB1
inhibitor because it directly binds HMGB1 and inhibits the
pro-inflammatory activity (63). Metformin and metformin
hydrochloride-loaded poly lactic-co-glycolic acid nanoparticles
decreased the inflammatory response and bone loss in a rat
periodontitis model (64, 65). These findings indicate that
metformin does not only have a hypoglycemic action but also
has an anti-inflammatory effect to block HMGB1, and it might
be effective in diabetes-associated periodontitis. In summary,
HMGB1, and RAGE are involved in the two-way relationship
between diabetes and periodontitis, and metformin has the
potential to resolve them.
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ORAL REGENERATION ASSOCIATED WITH

HMGB1

Wound Healing Around the Gingival Tissue

and After Tooth Extraction
Tancharoen et al. (66) reported that HMGB1 promotes intraoral
palatal wound healing through RAGE. In vivo analysis showed
that the wound closure of palatal gingival tissue was attenuated
in heterozygous HMGB1 (Hmgb1+/−) mice compared to
wild type (WT) mice. In the Hmgb1+/− mice, the number
of proliferating cell nuclear antigen (PCNA), NF-κB p50,
and vascular endothelial growth factor (VEGF) were lower
than those in WT mice. In vitro analysis using cultured
HGF revealed that keratinocyte proliferation and migration
during re-epithelialization was delayed in RAGE knockdown
cells compared to that of the control, as determined by
the wound scratch assay and the gene expression level of
PCNA. Bone healing after tooth extraction is representative
of intramembranous ossification. Healing after tooth extraction
requires an initial acute inflammation, which is regulated by
secreted HMGB1. Anti-HMGB1 antibody inhibits MPO activity,
IL-1β and VEGF-A expression, and migration of CD31-, CD68-
, TRAP-, and osteocalcin-positive cells. This indicates that the
secreted HMGB1 regulates angiogenesis and bone remodeling by
osteoclast and osteoblast activation, thus promoting bone healing
in the tooth extraction socket (67). This indicates that anti-
HMGB1 antibody inhibits not only aggravation of inflammatory
diseases such as periodontitis, but also inhibits initial acute
inflammation, which is essential for tissue repair.

Periodontal Regeneration
Periodontal regeneration is defined histologically as regeneration
of the tooth’s supporting tissues, including alveolar bone,
periodontal ligament, and cementum on a previously
diseased root surface (68). Particularly, PDLFs are thought
to play an important role in periodontal wound healing and
regeneration because they contain stem cells that can be used
to regenerate periodontal tissues (69). HMGB1 protein induced
PDLF proliferation and migration in in vitro studies. It also
promoted osteogenic differentiation parameters such as alkaline
phosphatase (ALP), osteopontin, osteocalcin, RUNX2, and
bone morphogenetic protein (BMP) (70). However, the authors
considered that HMGB1 might support the reestablishment
of the structural and functional integrity of the periodontium,
following periodontal trauma such as orthodontic tooth
movement described later, and might not support periodontal
regeneration. Indeed, there is no evidence that HMGB1 is
involved in periodontal regeneration. For further study, it must
be explored whether the different isoforms of HMGB1 are
involved in periodontal regeneration.

Orthodontic Tooth Movement
In addition to the in vitro analysis with PDLF (70), Wolf et al.
(71) also indicated that HMGB1, initially produced in PDLFs
by mechanical loading during orthodontic tooth movement,
decreased gradually. Initial HMGB1 production enhances the
activity ofmonocytes andmacrophages by clearing cellular debris
and activating RANKL to initiate bone remodeling (71). Cui

et al. (72) also reported that mechanical stress during orthodontic
tooth movement induces PDLFs to secrete HMGB1. Mechanical
stress also induced pro-inflammatory cytokine expression, such
as TNF-α and IL-6, from macrophages, which activates the
innate immune response. HMGB1 and these pro-inflammatory
cytokines are reduced in a time-dependent manner (72). HMGB1
is thought to react in an acute innate immune response, and
the gradual reduction of HMGB1 in PDLF is necessary for the
achievement of orthodontic tooth movement; however, more
evidence is still needed.

Dental Pulp Regeneration
Many studies regarding tissue regenerative procedures have
found that dental pulp cells (DPCs) are one of the stem cell
sources (73, 74). Zhang et al. (75) showed that in healthy dental
pulps, HMGB1 remains in the nuclei (confirming its nuclear
localization), but in inflamed pulps, the presence of HMGB1 in
the cytoplasm of infiltrated inflammatory cells, fibroblasts, and
endothelial cells increases. Moreover, HMGB1 mRNA levels in
these cells have been demonstrated to increase, which means that
the pulp infection also stimulates the synthesis of this molecule.
Through in vitro studies, these authors have also demonstrated
that elevated cytoplasmic presence of HMGB1 mRNA levels

after E. coli LPS stimulation in cultured DPCs. It has also been
demonstrated that high levels of cytokines in pulpitis such as
IL-6, IL-1, and TNF-α are also released by HMGB1 secretion
(76). Some studies have concluded that HMGB1 and its receptor,
RAGE, are involved in stem/progenitor cell differentiation in
order to repair damaged tissues (77, 78). In a study by Zhang
et al. (75) it was demonstrated that HMGB1 promoted DPCs
migration in a dose-dependent manner, and that HMGB1 also
activated Rho signaling and cytoskeletal reorganization. Thus,
the formation of new dentin could be established, confirming
the findings from Qi et al. (79) who found that HMGB1
promotes odontoblast differentiation from DPCs. However,
excessive quantities of this molecule may amplify inflammation
and may cause tissue damage. Based on these findings, it can be
concluded that HMGB1 plays crucial roles not only in dental pulp
inflammation, but also in dentine regeneration, enhancing DPC
recruitment into the pulp injury, stimulating their differentiation
into odontoblasts, and new dentin formation for healing of
damaged tissues. Furthermore, we recently reported that RvD2
induces active resolution of inflammation through pulp-like
tissue regeneration after root canal infection (80). It is possible
that the HMGB1-C1q complex induces the production of RvD2
for dental pulp regeneration, as suggested by Liu et al. (25).

Ti Osseointegration
Interestingly, in the latest report, HMGB1 is involved not only
in peri-implantitis but also in osseointegration. Osseointegration
is defined as the direct structural and functional connection
between the living bone and the surface of a load-bearing artificial
dental implant. Biguetti et al. (81) reported that the released
HMGB1 binding to RAGE contributes to titanium (Ti)-mediated
osseointegration in dental implants. In this report, HMGB1 was
detected at high levels at bone Ti implantation sites immediately
after implantation, followed by a gradual decrease in later time
points. Inhibition of HMGB1 with glycyrrhizic acid and RAGE
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FIGURE 1 | Scheme of the role of HMGB1 in periodontitis progression.

FIGURE 2 | Scheme of the role of HMGB1 in oral regeneration.

antagonistic peptide decreased bone matrix formation, blood
vessel formation, and migration of osteoblasts and osteoclasts
around the Ti surface. The growth factors andmesenchymal stem
cell markers were upregulated in the oral osteointegration model,
but these were reduced in the HMGB1 inhibition models.

CONCLUSION AND FUTURE DIRECTIONS

Evidence indicates that HMGB1 is associated with inflammation
or immune response in both pathogenic and repair processes
in the oral cavity. The reason may depend on the amount
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and duration of HMGB1, and the kind of stimulus, such
as whether the conditions were sterile or infectious, not its
dual role. In the context of periodontal inflammation, PAMPs
such as LPS initially bind TLR2/4 and butyric acid binds
to other receptors on the gingival epithelium, and promotes
HMGB1 secretion. The secreted HMGB1 forms a complex with
other molecules such as LPS, binds TLR2/4 and RAGE on
the adjacent epithelium, thus promoting autocrine/paracrine
signaling. The inflamed epithelium produced pro-inflammatory
cytokines and chemokines such as IL-8 and GM-CSF to migrate
and differentiate immune cells. Migrated immune cells, such as
neutrophils and macrophages, are activated by secreted HMGB1,
and produce pro-inflammatory cytokines such as IL-1β, IL-6,
TNF-α, and HMGB1 via TLR2/4 and RAGE. These cytokines
induce further HMGB1 production from other tissues, such
as gingival fibroblasts and periodontal ligaments. Then, the
aggravated inflammation promotes osteoclastogenesis and causes
alveolar bone resorption (Figure 1). There was no evidence
regarding which isoform of HMGB1 was mostly involved in the
progression of periodontal disease. In JIA, which is characterized
by chronic inflammation and periodontitis, it was indicated
that the presence of various functional HMGB1 redox isoforms
confirms the complexity of their pathogenic role during chronic
inflammation (15). Thus, subsequent studies should focus on
improving the understanding of the biological effects of different
isoforms of HMGB1 and different receptors in periodontitis.

On the other hand, regarding tissue repair, it is believed
that because of the complexity of HMGB1, its different
pathways depending on the redox forms, and its complex
formation with other molecules, it is difficult to know
how it orchestrates its biological function (Figure 2). The
administration of HMGB1 antibody inhibited chemotaxis, such
as neutrophil and macrophage migration, during socket repair.
Tirone et al. (21) reported that fully reduced HMGB1 induced
muscle and liver regeneration via CXCR4, whereas “disulfide
HMGB1” and its receptors TLR/MD-2 and RAGE are not
involved. However, we believe that HMGB1/RAGE signaling is
also important in oral tissue repair. Keratinocyte proliferation
and migration during oral palate healing are regulated by
HMGB1/RAGE signaling (66). Biguettiet al. (81) reported that
HMGB1/RAGE signaling is involved in stem cell migration,
macrophage M1/M2 polarization, and osteogenesis during Ti-
implant osseointegration. In addition, further studies are needed
to examine whether fully reducedHMGB1, CXCL12, and CXCR4
participate in the biological process.

Furthermore, there is need to produce a certain amount
of HMGB1; disulfides HMGB1 binding TLR2 or TL4, to
produce pro-inflammatory cytokines for initial inflammation
during tissue repair. The presence of oral bacteria may be

important to determine whether HMGB1 plays a role in
inflammation or regeneration in the oral cavity. Pathogen
removal by physical approach or immune cell activity such
as phagocytosis decreases HMGB1 secretion following pro-
inflammatory cytokine reduction, M1/M2 polarization change,
and then promotes tissue repair. However, the remaining
pathogen induces further HMGB1 secretion, continued pro-
inflammatory cytokine production, and impaired healing or
chronic inflammation. To understand the detailed mechanism
of this complexity of HMGB1, further studies are required. For
example, the use of different isoforms of recombinant HMGB1
or knock down analysis of HMGB1 receptors are needed in this
research field. In addition, mostly, in vivo and in vitro studies
have been included in this review; thus, further clinical studies,
such as a translational study using anti-HMGB1 antibody or
HMGB1 protein as a therapeutic agent, are needed to examine
the biological effects of HMGB1 in the human body.
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Pleural effusions, when benign, are attributed to cardiac events and suffusion of fluid
within the pleural space. When malignant, lymphatic obstruction by tumor and failure
to absorb constitutively produced fluid is the predominant formulation. The prevailing
view has been challenged recently, namely that the lymphatics are only passive vessels,
carrying antigenic fluid to secondary lymphoid sites. Rather, lymphatic vessels can be
a selective barrier, efficiently coordinating egress of immune cells and factors within
tissues, limiting tumor spread and immune pathology. An alternative explanation, offered
here, is that damage associated molecular pattern molecules, released in excess,
maintain a local milieu associated with recruitment and retention of immune cells
associated with failed lymphatic clearance and functional lymphatic obstruction. We
found that levels of high mobility group box 1 (HMGB1) were equally elevated in both
benign and malignant pleural effusions (MPEs) and that limited diversity of T cell receptor
expressing gamma and delta chain were inversely associated with these levels in MPEs.
Acellular fluid from MPEs enhanced γδ T cell proliferation in vitro, while inhibiting cytokine
production from γδ T cells and monocytes as well as restricting monocyte chemotaxis.
Novel therapeutic strategies, targeting HMGB1 and its neutralization in such effusions
as well as direct delivery of immune cells into the pleural space to reconstitute normal
physiology should be considered.

Keywords: HMGB1, malignant pleural effusions, benign pleural effusions, immune repertoire, tumor immunology,
γδ T cells, adaptome, monocytes

INTRODUCTION

At advanced stages, many types of cancer can infiltrate the pleural cavity, disrupting the normal
mechanism of fluid secretion and absorption, resulting in an unopposed collection of cancer
containing fluid termed malignant pleural effusion (MPE). MPEs pose a major detriment to the
quality of life for a cancer patient, are marked by persistent inflammation, associated with reduced
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life expectancy, and often heralding the terminal stages of cancer
(1–4). While we are able to palliate some of the symptoms from
MPEs, systemic treatments most often fail to reverse course and
localized strategies are not often successful. The inflammatory
milieu of MPEs may provide insight regarding tumor biology
related to immune evasion and immune dysfunction (5). MPEs
possess an abundance of immune cells, often exceeding 108

leukocytes per effusion, that may harbor dormant effector
cells which could be expanded and utilized for therapy.
Unfortunately, our understanding of the phenotypes of immune
cells, their tumor specificity, and how they are impacted by the
MPE environment are only beginning to be understood. The
lymphatics themselves, regulating pleural fluid dynamics, are
not just passive conduits. Evolutionarily they emerged after the
appearance of cartilaginous fish, with organized lymph nodes
found later, primarily in mammals and in some birds. Pleural
fluid is responsible for lubrication between the visceral and
parietal layers. Water, and associated solute less than 4 nm,
pass freely through mesothelial cells. Materials >1000 nm, are
phagocytosed. Pleural lymphatics cycle pleural fluid at a rate
of 0.4 mL/kg/h (6–10). In the pleural space of sheep, where it
has been measured, effusions can be completely removed by the
lymphatics in a linear manner at a rate of 0.28 mL/kg/h, ∼28
times greater than the rate of pleural fluid formation.

High mobility group box 1 (HMGB1) is a multifaceted nuclear
protein that has diverse biological roles, regulating inflammation
and orchestrating cellular immune responses (11–13). Outside
the cell, HMGB1 functions as a prototypic damage-associated
molecular pattern (DAMP) molecule with established roles in
pathobiology such as cancer initiation and progression, toxic
shock, and trauma (11–13). In the setting of cancer, HMGB1 is
released from lysed and stressed cells into the extracellular space,
causing chronic inflammation, attracting immune cells to the
tumor site and engaging RAGE and Toll-like receptors to initiate
and propagate inflammatory responses (12). HMGB1 can also
be released by activated immune cells, which possibly contribute
to the local pathophysiology. In a MPE, it is unknown whether
HMGB1 has a role in anti-tumor immune activation or tumor
progression (14). It may indeed serve as a vehicle to regulate
lymphatic egress, limiting pathology to sites of tissue damage and
preventing propagation of tumor and microbes.

During tumor development and therapy, pleiotropic HMGB1
mediates diverse biologic functions, promoting both cell survival
and death by regulating unique signaling pathways (14).
HMGB1 provides a protective role in cancer immunity by
initially inducing immunogenic tumor cell death, contributing
to immune-mediated eradication of tumors during their early
development (15–17). Release of HMGB1 into the extracellular
space contributes to the maturation of dendritic cells (DCs)
and prompts cytotoxic T lymphocyte responses (18–20). In
contrast, HMGB1 also plays an adverse role in tumor immunity.
HMGB1 recruits and sustains immunosuppressive myeloid-
derived suppressor cell and regulatory T cell populations
during chronic inflammation. Sustained HMGB1 signaling limits
chemotherapeutic responses in tumor cells, promoting resistance
via enhanced autophagy, inhibiting both intrinsic and extrinsic-
mediated apoptotic pathways in cancer cells (18–21). The

presence of heightened levels of HMGB1 in human tumor
tissues and in the circulation is frequently associated with disease
severity and progression.

Inflammatory signaling among tumor cells, vasculature, and
immune cells contributes to the development of pleural effusions
(22). The pleural space is a sterile, secluded location in the
thoracic cavity that is a frequent metastatic site for various
histologic subtypes (2). The development of a MPE is the product
of three associated processes; inflammation, lymphangiogenesis,
and vascular leakage. More than 80% of MPEs feature elevated
lymphocyte populations that play an important role in MPE
pathogenesis (2, 3, 22). Lymphatic vessels respond to tumor
and pathogen-induced changes in fluid transport, helping to
regulate host immunity (23, 24). Based on these studies in
melanoma and viral infection, we therefore hypothesized that,
in the context of persistent tumor and other inflammatory
mediators within the pleural space, that released DAMPs serve as
cues to influence regional lymphatic vessel function, downstream
immune induction, and host antitumor defense. Given the
established role of HMGB1 and HMGB1-induced inflammation
in the pathology of malignant disease, and the unique interface
between immunity and tumor cells within the microenvironment
established within MPEs, we examined the potential influence of
HMGB1 on immune composition of MPEs.

MATERIALS AND METHODS

Collection of Specimens
Informed consent for participation was obtained prior to
effusion drainage from all patients, and no subjects were under
the age of 18. The use of human tissue samples and the
experiments were approved by the Institutional Review Board
at the University of Pittsburgh (IRB#PRO16110093). Samples
were collected as excess pathologic specimens and experiments
were not performed on humans. Effusions were collected for
clinically indicated drainage of symptomatic effusions, either
by thoracentesis, or from a temporary or indwelling tunneled
catheter. These specimens would otherwise be medical waste.
All methods were carried out in accordance with relevant
guidelines and regulations. Seventy pleural effusions resulting
from malignant disease (N = 46) or benign etiology (N = 24)
were included. Ten patients (N = 7 malignant and 3 benign),
underwent repeated collection of samples between 6 and 301 days
apart. Quantities of 350–1000 cc were processed immediately
upon collection wherein red blood cells were lysed, and cell
pellets and acellular fluid were isolated and preserved. All
effusions were examined by a cytopathologist. For normal serum
controls, subjects (N = 404) were drawn from two population-
based cohorts, the Shanghai Cohort Study and the Singapore
Chinese Health Study (25). Serum from a cohort of patients
with metastatic clear cell renal cell carcinoma (ccRCC) (N = 30)
were obtained in the context of an IRB approved protocol, 11-
080 conducted within the Cytokine Working Group. These three
cohort studies have been approved by the Institutional Review
Boards of the Shanghai Cancer Institute, the National University
of Singapore, and the University of Pittsburgh.
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HMGB1 ELISA
High mobility group box 1 levels in the acellular fractions of
pleural effusions and sera were measured using a specific ELISA
according to the manufacturer’s protocol (IBL International-
Shino Test Corporation, Kandajimbocho Chiyoda-ku, Japan). All
measurements were performed in duplicate.

Cell Isolation and Culture
Peripheral blood mononuclear cells (PBMC) were isolated from
consenting healthy volunteers using lymphocyte separation
media (Corning). Cryopreserved PBMC were thawed, and γδ T
cells were negatively selected (STEMCELL Technologies). γδ T
cells were cultured for 10 days in complete media containing
RPMI-1640, 5% human AB serum (GemCell), 1% Pen-Strep, and
recombinant cytokines IL-2 (3000 IU/ml, aldesleukin, Clinigan),
IL-15 (70 ng/ml, Miltenyi Biotech), and IL-21 (30 ng/ml, Miltenyi
Biotech). γδ T cell phenotype was confirmed by flow cytometry
and viable cultures with >80% γδ TCR+, <0.5% αβ TCR+,
and <5% CD3− CD56+ were utilized for subsequent studies.
CD14+ monocytes were isolated via MojoSort positive magnetic
bead isolation kit (BioLegend) per manufacturers protocol and
cultured as described below in complete RPMI-1640 without
additional cytokines. Acellular MPE fluid used for in vitro assays
was generated by pooling three individual donors with the
final solution containing 54.38 ng/ml HMGB1 as determined by
ELISA. When used at 50% in our assays (1:1 with media), this
yielded a final concentration of 27.19 ng/ml HMGB1 replicating
median levels identified in our cohort.

γδ T Cell Expansion
For expansion studies, 2 × 105 γδ T cells were seeded in 24-well
plates and cultured in complete media containing IL-2, IL-15,
and IL-21 with or without addition of rHMGB1 (200 ng/ml,
R&D Systems), acellular MPE fluid (50%), neutralizing anti-
HMGB1 polyclonal chicken Ab (10 µg/ml, Tecan), or humanized
CD3/CD28 agonist (20 µl/1:100, T cell TransActTM Miltenyi
Biotech) as indicated. γδ T cells were cultured for up to
11 days incubated at 37◦C, 5% CO2 and maintained at
0.5–1.5 × 106 cells/well with rHMGB1, acellular MPE fluid,
and anti-HMGB1 Ab added upon well splitting to maintain
initial culture conditions. Live cell counts were determined
with acridine orange and propidium iodide staining on day 6
and day 11 with an automated cell counter (Cellometer K2,
Nexcelom Biosciences).

Cytokine Analysis
To determine cytokine production, 2 × 105 γδ T cells were
washed in PBS and plated in 200 µl in a 96-well plate and
cultured in cytokine free complete media with addition of
rHMGB1, pooled acellular MPE fluid, anti-HMGB1 antibody,
or CD3/CD28 agonist as indicated. Following 24-h incubation,
50 µl culture supernatant was assayed with the Th1/Th2/Th17
cytometric bead array kit (BD Biosciences) measuring IL-2, IL-
4, IL-6, IL-10, TNFα, IFNγ, and IL-17A per the manufacturer’s
instructions. Similarly, 5× 104 CD14+ monocytes were cultured
in 100 µl in a 96-well plate using complete media in the presence

or absence of acellular MPE fluid, rHMGB1, anti-HMGB1 Ab,
or LPS (10 µg) (BioLegend) for 4-h. Subsequently, 50 µl
culture supernatant was assayed using the human inflammation
cytometric bead array kit (BD Biosciences) measuring IL-1β,
IL-6, IL-8, IL-10, IL-12p70, and TNFα per the manufacturer’s
instructions. Data was collected on a 5-laser Aurora (Cytek
Biosciences) or 4-laser BD LSR Fortessa flow cytometers and
analyzed with FlowJo V10.7 (BD Biosciences).

Monocyte Migration
Chemotaxis of CD14+ monocytes was performed using a 96-well
ChemoTX system (Neuroprobe) with membranes containing
8 µm pores per manufacturer’s protocol. Briefly, monocytes were
rested overnight in serum-free RPMI-1640 then 105 cells in
80 µl were plated onto top chamber of the membrane. Lower
chambers contained 325 µl of complete RPMI-1640 with or
without addition of rHMGB1 (200 ng/ml), anti-HMGB1 Ab
(10 µg/ml), LPS (10 µg/ml), and pooled acellular MPE fluid
(50%). ChemoTX plates were incubated at 37◦C, 5% CO2,
for 12 h. Transwell membranes were wiped with cotton and
washed in PBS to remove unbound cells, then stained with 0.2%
crystal violet. Transwell membranes were imaged using a Leica
DMI 3000B digital microscope and cell quantitation performed
by ImageJ (United States National Institutes of Health) to
extrapolate cell counts of three randomly selected fields to
represent the total area of the membrane well.

Flow Cytometry
Immunophenotyping of pleural effusions was performed
following cryopreservation of samples. All reagents were
purchased from BioLegend unless otherwise specified. 1–5× 106

cells per sample were stained in Cell Staining Buffer using
combinations of mAbs specific followed by labeling with
amine-reactive viability dye (LiveDead, Molecular Probes). To
determine leukocyte composition in pleural effusions, cells were
labeled with mAbs specific for: EpCAM (9C4), CD45 (HI30;
BD Biosciences), CD3 (UCHT1), CD4 (RPA-T4; Invitrogen),
CD8a (RPA-R8), HLA-DR (L243), CD11b (ICRF-44), CD14
(HCD-14), CD16 (3G8), CD15 (W6D3), CD66b (G10F5; BD
Biosciences), CD123 (6H6), CD11c (3.9), CD56 (HCD56; BD
Biosciences), and CD19 (SJ25C1). Lineage gating for DCs
includes CD3, CD19, and CD56. Samples were fixed in 1%
paraformaldehyde and data was collected on a five laser LSR
Fortessa (BD Bioscience). FlowJo (BD) software was used for
conventionally gated data analysis.

TCR Repertoire Analysis
The cellular component of MPEs was isolated, cryopreserved,
and transported to iRepertoire for T cell receptor (TCR)
analysis. RNA extraction from MPE cells using a RNeasy
Micro Kit (Qiagen, Valencia, CA, United States) according
to the manufacturer’s instruction. RNA concentrations were
measured by spectrophotometry. iRepertoire multiplex primer
sets (iRepertoire, Inc. Huntsville, AL, United States) were used
to amplify the CDR3 region of TCR α, β, γ, and δ chains
by using RNA as template as described by Wang et al. (26).
The whole amplification process and library preparation process
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for next generation sequencing were fully automated in the
iR-Procecessor and iR-Cassette (iRepertoire, Inc.). Then, paired-
end sequencing was performed on purified PCR products using
an Illumina MiSeq v2 300-cycle Reagent Kit (Illumina Inc.),
for an average read depth of 30,000 reads per sample. Raw
cDNA sequences were first analyzed to identify V and J genes
by using iR-map and visualized in iRweb (iRepertoire, Inc.).
Multiple alignments and hierarchical clustering of conserved
amino acid sequences were analyzed as described (26). RNA
samples were split into two reactions and processed as technical
replicates. The coefficient of determination (R2) was calculated by
linear regression to show the correlation between the replicates
of CDR3 frequencies prior to data analysis to exclude PCR
and sequence errors. The diversity of the TCR repertoire
was calculated based on the diversity index (DI) defined
mathematically by Wu et al. (27). Tree maps were used to
reveal the diversity and characteristics of TCR repertoire. In
a tree map, each rounded rectangle represents a unique V–J
combination of uCDR3, where the size of a spot denotes the
relative frequency.

Statistical Analysis
All results were expressed as means± standard error of the mean
(SEM) unless otherwise stated. Data were analyzed using non-
parametric Mann–Whitney U tests for comparisons of patient
groups, paired Student’s t-test for analysis of change in HMGB1
levels and cell densities within patients over time, unpaired
Students t-test for analysis of healthy donor cell expansion,
cytokine production, or migration in vitro, or Spearman rank-
order correlation tests performed using GraphPad Prism8
(GraphPad Software). For all hypothesis tests, a p < 0.05 was
considered statistically significant.

RESULTS

HMGB1 Levels Are Elevated in Pleural
Effusions
To characterize levels of soluble HMGB1 in pleural effusions
from malignant and benign etiologies, an HMGB1-specific ELISA
was performed on the acellular fraction of pleural effusions from
patients with metastatic MPE (N = 46) or benign pleural effusion
(BPE) (N = 24). MPEs were secondary to various primary cancers
including breast (N = 19), lung (N = 11), ovarian (N = 8),
sarcoma (N = 3), salivary gland (N = 1), and colon (N = 1)
(Table 1). As a reference control, we measured HMGB1 levels
in the serum of healthy donors (N = 404) and patients with
metastatic ccRCC (N = 30). Levels of HMGB1 in the sera
of ccRCC patients (16.16 ng/ml ± 4.708) were significantly
higher than those of healthy controls (2.64 ng/ml ± 0.229)
(p ≤ 0.0001) (Figure 1). Notably, levels of HMGB1 in pleural
effusions were significantly higher than serum HMGB1 in both
healthy and ccRCC cohorts (p = 50.0011), irrespective of
effusion etiology (Figure 1). Soluble HMGB1 was comparable
between pleural effusions (p = 0.872), with BPEs containing
53.07 ng/ml ± 11.21 and MPEs containing 48.89 ng/ml ± 12.13,
respectively (Figure 1). HMGB1 levels in sera from ccRCC

patients, BPEs, and MPEs were all significantly greater than
those detected in healthy control sera (p ≤ 0.0001). Additionally,
in our cohort, intrapleural HMGB1 from lung cancer patients
(70.05 ng/ml ± 24.70) was significantly elevated compared to
levels observed in ovarian cancer patients (21.01 ng/ml ± 3.54;
p = 0.025) and raised compared to breast cancer patients
(34.50 ng/ml ± 7.38; p = 0.057) (Supplementary Figure 1).
No differences were observed between HMGB1 levels in MPEs
secondary to breast or ovarian cancers.

Association of Intrapleural HMGB1 and
Cell Density of Pleural Effusions
We next examined associations between HMGB1 levels detected
in MPEs and BPEs and gross cellularity of the effusion.
As total cell number and volume of each effusion varies
dramatically, values were represented as total live cells per
liter of effusion. Although there was no association between
HMGB1 and cell density within MPEs, a minor correlation
between BPE cell density and HMGB1 was identified within
our cohort (p = 0.061) (Figure 2A). To examine the temporal
dynamics of this interaction, serial effusions were collected
up to four times from patients with MPE (N = 7) or BPE
(N = 3). HMGB1 levels and intrapleural cell densities in
MPEs were highly variable over time, whereas we observed a
continual decrease in both HMGB1 levels and gross cellularity
in BPEs upon serial drainage (Figures 2B,C). To evaluate
if the state of the effusion microenvironment, i.e., HMGB1
levels, was associated with a systemic phenotype, neutrophil,
lymphocyte, and monocyte levels were measured in the
peripheral blood by complete blood count (Table 1). In patients
with MPE, intrapleural HMGB1 positively correlated with
increased lymphocytes, percentage (p = 0.019) and number
(p = 0.005), and percentage of neutrophils (p = 0.021) in the
circulation. By contrast, HMGB1 levels within BPEs were not
associated with the percentage or numbers of these cellular
subsets in the peripheral blood.

HMGB1 Expression Is Associated With
Unique Leukocyte Profile Within MPEs
Malignant pleural effusions contain a highly heterogeneous
population of innate and adaptive immune cells, representing
diverse states of activation. As HMGB1 is a potent
inflammatory mediator capable of inducing chemotaxis,
we performed comprehensive immunophenotyping on a
subset of MPEs. Polychromatic flow cytometry was used to
simultaneously identify CD4+ and CD8+ T cells (CD3+),
NK cells (CD3−CD56+), monocytes (CD14+), macrophages
(CD11b+CD66b−), myeloid DCs (Lin−HLA-DR+CD11c+),
plasmacytoid DCs (Lin−HLA-DR+CD123+), B cells (CD19+),
and neutrophils (CD66b+ CD16+). Correlative analysis was
performed to identify associations between intrapleural HMGB1
and unique cell populations within the MPE. HMGB1 levels
in MPEs were associated with increased presence, as both
proportion of all cells as well as total numbers of CD45+
leukocytes within effusions (Figures 3A,B). Additionally, we
observed a strong inverse correlation between the concentration
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TABLE 1 | Characteristics of patients with pleural effusion.

Number of Patients MPE BPE p-Value (MPE/BPE)

Total number of patients 70 46 (65.7) 24 (34.2)

Age 65.89 (±1.46) 64.6 (±2.03) 68.3 (±1.70) 0.176

Gender

Male 21 (30.0) 6 (13.0) 15 (62.5)

Female 42 (70.0) 40 (87.0) 9 (37.5)

HMGB1

Mean ± SEM 50.33 (±8.90) 48.89 (±12.31) 53.07 (±11.21) 0.872

Median 26.25 22.88 32.78

Effusion cells

Tumor (% total) 25.74 (±6.07) 33.10 (±7.03) 0 (±0.0) 0.000

Leukocytes (% total) 63.70 (±5.96) 56.90 (±6.83) 87.50 (±5.59) 0.007

Peripheral blood

Neutrophil (109/L) 7.897 (±1.19) 6.778 (±1.48) 10.76 (±1.76) 0.006

Neutrophil (%) 73.61 (±1.93) 70.43 (±2.38) 81.73 (±2.38) 0.002

Lymphocyte (109/L) 1.008 (±0.10) 1.065 (±0.13) 0.861 (±0.10) 0.861

Lymphocytes (%) 13.68 (±1.54) 15.42 (±2.08) 9.211 (±1.40) 0.123

Monocytes (109/L) 0.674 (±0.05) 0.645 (±0.07) 0.748 (±0.06) 0.129

Monocytes (%) 8.934 (±0.83) 9.649 (±1.10) 7.117 (±0.78) 0.062

Effusion etiology

Breast cancer 19 (41.3)

Lung cancer 11 (23.9)

Ovarian cancer 8 (17.4)

Sarcoma 3 (6.52)

Colon cancer 1 (2.17)

Salivary gland cancer 1 (2.17)

Values are represented as n (%) and mean (±SEM) unless noted. p-values are derived using a Mann–Whitney U test. Bold values are statistically significant.

of intrapleural HMGB1 and the proportion and absolute number
of CD14+ monocytes (Figures 3A,B). When these subjects
were stratified into HMGB1 high (41.28 ng/ml ± 4.03) and
HMGB1 low (16.88 ng/ml ± 4.03) groups (N = 3 patients
each) based on the median HMGB1 level in our MPE cohort
(22.88 ng/ml) (Table 1), we observed pronounced differences in
MPE immune composition (Figures 3C,D). Notably, patients
with high levels of intrapleural HMGB1 were found to have
greatly increased proportion of neutrophils (19.9% vs 5.4%),
T cells (30.6% vs 15.5%), and B cells (6.8% vs 1.4%) compared
to HMGB1 low subjects. By contrast, MPEs containing low
HMGB1 were composed predominantly of monocytes (18.6%
in low vs 3.0% in HMGB1 high) and a major population of
undefined myeloid cells (36.6% vs 2.0% in HMGB1 high), likely
to represent myeloid-derived suppressor cell populations.

MPE Fluid Inhibits Monocyte Migration
and Cytokine Production
We observed that intrapleural HMGB1 levels were associated
with unique immune composition within MPEs, including
decreased percentage and absolute numbers of monocytes.
Consequently, we evaluated the effect of HMGB1 and acellular
MPE fluid on chemotaxis and cytokine production from
CD14+ monocytes isolated from the peripheral blood of
healthy donors. Herein, monocyte migration was measured
via ChemoTX Transwell membrane system following a 12 h

culture in the presence or absence of 50% acellular MPE fluid,
exogenous rHMGB1 (200 ng/ml), high dose LPS (10 µg/ml), or
combinations of these factors (Figure 4A). LPS was evaluated
as a known surrogate for other TLR4 ligands such as HMGB1
and taxanes and potent inducer of inflammatory responses in
monocytes. In the absence of acellular MPE fluid, both rHMGB1
and LPS induced robust monocyte migration (Figure 4A).
Notably, monocyte migration was dramatically inhibited in the
presence of acellular MPE fluid with migration induced by
rHMGB1 and LPS reduced by 90.3 and 60.1%, respectively
(Figure 4A). Culture with rHMGB1 and LPS combined was
insufficient to regain migratory ability (Figure 4A). As expected,
blocking HMGB1 in MPE culture using HMGB1-specific
antibody failed to enhance migration (data not shown). We next
determined the capacity of monocytes to produce inflammatory
TNFα following 4 h culture in the above conditions. Treatment of
monocytes with LPS induced robust TNFα production measured
in culture supernatants by cytometric bead array. Notably,
addition of acellular MPE fluid reduced the levels of TNFα

generated by monocytes following LPS stimulation by 37.1%,
an effect that was independent of further addition of rHMGB1
(36.6% reduction) or anti-HMGB1 blocking antibody (43.6%
reduction) (Figure 4B, and data not shown). Collectively, these
findings suggest that the local microenvironment of MPEs exerts
profound inhibitory effects upon monocyte functionality that are
independent upon the presence of HMGB1.
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FIGURE 1 | HMGB1 levels are elevated in pleural effusions. HMGB1 levels
were measured in pleural effusions from patients with metastatic malignant
disease (MPE) (N = 46), in effusions from patients presenting with congenital
heart failure or effusion of benign origin (BPE) (N = 24), within the sera of
healthy donors (N = 404) and sera from patients with metastatic clear cell
renal cell carcinoma (ccRCC) (N = 30) by specific ELISA. Levels of HMGB1 in
the sera of ccRCC patients (16.16 ng/ml ± 4.708) were significantly higher
than those of healthy controls (2.64 ng/ml ± 0.229) (p = 0.001) HMGB1 was
comparable between pleural effusions (p = 0.872), BPE containing
53.07 ng/ml ± 11.21 and MPE possessing 48.89 ng/ml ± 12.31. HMGB1
levels in serum from ccRCC patients, BPE, and MPE were all significantly
elevated compared to healthy controls (p ≤ 0.0001). Data represent
means ± SEM and Mann–Whitney U tests were used for comparisons.
*denotes statistical significance.

High HMGB1 Levels Are Associated With
Reduced Diversity of γδ TCRs Within
MPEs and γδ T Cell Proliferation in vitro
The clonal repertoire of T cells establishes diversity responding to
pathogenic and endogenous insults. In the context of malignant
disease, a greater breadth of TCR diversity may afford superior
protection from tumor cells expressing neoantigens (28). To
examine the effects of intrapleural HMGB1 on TCR diversity
within pleural effusions, cells isolated from MPEs from 14
patients underwent multiplexed TCR amplification followed by
next generation sequencing providing comprehensive detection
of unique TCR clones. Between patients, we observed a wide
range of TCR diversity, as illustrated in representative tree plots
of the TCRδ chain from individuals with high, moderate, or low
DIs, respectively (Figure 5A). Patients were then separated into
HMGB1 high (N = 5; 161.5 ng/ml ± 86.6) and HMGB1 low
(N = 9; 18.75 ng/ml ± 2.68) groups based on the MPE cohort
median level of HMGB1 as before (Figure 5B). Heterogeneity of
the TCR α and β chains was unaffected by levels of intrapleural
HMGB1 in MPEs (Figure 5C). Interestingly, patients with high
intrapleural HMGB1 levels had significantly diminished diversity
indices for both TCRδ and γ chains present on T cells within
MPEs (Figure 5C). Given that a decrease in TCR diversity

may be associated with emergence of dominant clonotypes,
we subsequently examined the 10 most highly expressed TCRδ

clones from the five patients with high HMGB1 levels and
corresponding low TCRδ diversity. Notably, the 10 dominant
TCRδ clones per MPE were unique to each patient, with no
individual clone being shared amongst individuals.

To examine the effect of HMGB1 on γδ T cell function,
γδ T cells were isolated from the peripheral blood of healthy
donors and assessed for their proliferative capacity and cytokine
production in the presence or absence of rHMGB1 (200 ng/ml),
anti-HMGB1 blocking antibody (10 µg/ml), acellular MPE
fluid (50% of culture media), and polyclonal activation with a
CD3/CD28 agonist. In media containing IL-2, IL-15, and IL-
21, γδ T cells underwent a ∼7.5-fold expansion by 11 days in
culture (Figure 5D). Notably, addition of rHMGB1 reduced γδ

T cell expansion by ∼41% at day 11 (p = 0.005) compared to
media control, whereas provision of acellular MPE fluid increased
γδ T cell numbers by ∼35% (p = 0.005). Depletion of HMGB1
from acellular MPE fluid in culture further enhanced γδ T cell
yield to ∼60% (p = 0.0005) by day 11. When γδ T cell culture
was performed in the presence of an activating CD3/CD28
agonist, MPE fluid again augmented γδ T cell proliferation, with
the highest γδ T cell numbers obtained following culture in
HMGB1-depleted acellular MPE fluid with a 92% increase over
CD3/CD28 agonist alone (p = 0.0006) (Figure 5D). Culture of
activated γδ T cell with rHMGB1 decreased proliferation by
21% compared to CD3/CD28 agonist treated cells but did not
attain statistical significance. Collectively, these findings suggest
that HMGB1 inhibits γδ T cell growth which is conversely
augmented by unidentified factors present within the acellular
MPE environment.

We next asked whether HMGB1 present in culture media
or acellular MPE fluid could effect cytokine production from
γδ T cells. We determined cytokine levels by cytometric bead
array in supernatants following 24 h culture of 2 × 105 γδ T
cells in the above conditions. Culture of γδ T cells in IL-2, IL-
15, IL-21 containing media resulted in robust TNFα production
that was further enhanced upon stimulation with CD3/CD28
agonist (Figure 5E). Notably, addition of acellular MPE fluid,
with or without anti-HMGB1 antibody, significantly decreased
TNFα production from both unstimulated and stimulated γδ

T cells (p ≤ 0.002 for both conditions; data not shown)
(Figure 5E). Provision of exogenous rHMGB1 did not effect
TNFα production. Similarly, production of IL-10 by γδ T cells
was enhanced by CD3/CD28 agonist stimulation, and again,
substantially inhibited by the presence of acellular MPE fluid with
or without anti-HMGB1 (p < 0.05) (Figure 5E). Culture with
rHMGB1 did not effect IL-10 production by γδ T cells in this
setting. Although provision of acellular MPE fluid profoundly
inhibits cytokine production form γδ T cells, this effect seems to
be independent of HMGB1.

DISCUSSION

Various pathologic processes regulate the development of pleural
effusions. To assess the presence of the prototypic DAMP,
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FIGURE 2 | Correlations between intra-pleural HMGB1 and gross cellularity of pleural effusions. (A) Levels of intra-pleural HMGB1 did not predict cellularity as
cells/liter of MPEs (left, red), but were significantly correlated with cell density in BPEs (right, blue). (B) When measured serially following multiple drainage events of
pleural effusions, HMGB1 decreased in BPE (right, blue). No consistent trend was observed in HMGB1 levels longitudinally in MPE (left, red). (C) Over time, cell
density decreased in both MPE (left, red) and BPE (right, blue) when serially sampled. Correlations were performed using Spearman rank-order tests.

associated with high levels of unscheduled cell death and/or
cellular stress, within the unique tumor microenvironment
of MPEs, we quantified intrapleural HMGB1 using BPEs as
a comparator. Previous studies have shown that transudative
effusions resulting from congestive heart failure or liver
cirrhosis had significantly lower levels of HMGB1 when
compared with exudative effusions arising from infection or
malignancy (29, 30). Although levels of intrapleural HMGB1
varied between studies (15.0–36.62 ng/ml transudate), (35.1–
118.0 ng/ml infectious), and (29.6–111.45 ng/ml malignancy),
quantities were similar to those identified in our local cohort
with expected variability due to limited sample sizes (29,
30). We found, compared to reference cohorts from sera
of both healthy controls and metastatic ccRCC patients,
that intrapleural HMGB1 levels in both MPEs and BPEs
were significantly elevated. Notably, intrapleural HMGB1 was
comparable in effusions resulting from malignant and benign
processes. Because both malignant and benign effusions can
have a component of associated inflammation, it is of interest
that MPEs and BPEs demonstrate increased levels of HMGB1,

whereas HMGB1 is rapidly cleared from serum in the setting
of trauma. As such, the presence of elevated HMGB1 may
serve as a novel therapeutic target if further studies implicate
DAMPs in the pathologic subversion of fluid reabsorption in
the pleural cavity.

High mobility group box 1 has both immune stimulating
and suppressing properties (31). HMGB1 promotes maturation
and subsequent cell death in macrophage−derived DCs (32).
HMGB1 also enhances the function of regulatory T cells
via enhanced IL-10 production, while inhibiting the effector
function of conventional T cells including IFNγ production
and proliferation (21, 33). Activated macrophages, natural
killer cells, and mature DCs can release HMGB1, which may
promote a positive feedback loop to propagate subclinical
inflammation, tumor initiation and progression (34–38).
Collectively, the immunosuppressive effects of HMGB1 serve
to inhibit the generation of de novo tumor-specific immunity,
as well as suppress the maintenance of pre-existing anti-tumor
responses. In MPEs, HMGB1 levels are associated with an
increase in leukocyte infiltration with reduced monocyte
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FIGURE 3 | HMGB1 levels are associated with leukocyte infiltration and unique immune composition within MPEs. Multiparametric flow cytometry was used to
immunophenotype cells isolated from MPEs. (A) The proportion and (B) absolute number of CD45+ leukocytes (left) was found to increase with greater levels of
intra-pleural HMGB1. By contrast, (A) the proportion and (B) absolute numbers of CD14+ monocytes within MPEs declined with increased HMGB1. (C) Patients
were segregated into HMGB1 low (16.88 ng/ml ± 4.03) and HMGB1 high (41.28 ng/ml ± 4.00) groups for comparative analysis. (D) Immune composition as
proportion of CD45+ cells determined by select markers by flow cytometry of MPE-resident leukocytes in patients with low or high intra-pleural HMGB1 (N = 3 each),
respectively. Group means were compared using a Mann–Whitney U test and correlations performed using Spearman rank-order tests. * denotes statistical
significance.

numbers. Notably, the presence of acellular MPE fluid alone
restricted monocyte chemotaxis and reduced inflammatory
cytokine release in vitro, and may, in the setting of chronic
HMGB1 exposure in vivo, induce apoptosis in effusion-
resident myeloid cells. In our cohort, high intrapleural
HMGB1 was associated with increased T cell, B cell, and
neutrophil recruitment into the MPEs, mirrored by increased
number of lymphocytes and neutrophils in the systemic

circulation, suggesting that the chemotactic properties of
HMGB1 propagated an active inflammatory environment with
substantial involvement of adaptive immune cells. In contrast,
low intrapleural HMGB1 was associated with a significant
proportion of undefined myeloid cells, likely representing
various myeloid-derived suppressor cell populations. Future
mechanistic studies will be required to define the causal
effect of intrapleural HMGB1 on leukocyte recruitment,
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FIGURE 4 | Acellular MPE Fluid Inhibits Monocyte Migration and TNFα

Production Independent of HMGB1. The effect of HMGB1 and acellular MPE
fluid (MPE AF) was assessed on healthy donor peripheral blood CD14+

monocyte function. (A) Twelve-hour monocyte migration (105 cells/well) was
evaluated in the presence of rHMGB1 (200 ng/ml), LPS (10 µg/ml), and 50%
acellular MPE fluid (N = 5 repeats). While rHMGB1 and LPS enhanced
migration, addition of acellular MPE fluid dramatically inhibited monocyte
chemotaxis. (B) Soluble TNFα was measured via cytometric bead array
following 4-h in vitro stimulation of 5 × 104 monocytes (N = 3 repeats). In the
presence of acellular MPE fluid, TNFα production following LPS stimulation
(10 µg/ml) was significantly decreased irrespective of additional treatment with
rHMGB1. p < 0.05. Data represent means ± SEM and Mann–Whitney U tests
were used for comparisons. * denotes statistical significance.

retention, lymphatic clearance, and ultimately, their impact on
malignant disease.

The ability of adaptive cellular immunity to account for the
myriad of pathogenic and endogenous threats is afforded through
the diversity of the T cell and B cell receptors, collectively referred
to as the adaptome (28). Using PCR-multiplexed amplification
and next-generation sequencing of TCR sequences from bulk
T cell populations isolated from MPEs, we have found that
high intrapleural HMGB1 levels resulted in substantial reduction
in TCRδ and TCRγ diversity specifically. Such a decrease in
breadth of diversity is likely accompanied by the expansion

of one or several dominant clones that have been actively
recruited to the MPE space (e.g., clonality). These findings
suggest that HMGB1 release may be associated with induction
of an antigen-specific γδ T cell response, or alternatively, that
aberrant release of DAMPs liberates yet unidentified molecular
antigens driving the recruitment of specific γδ T cell populations.
The early recruitment of such cells to tissues such as the skin,
lung, and gut is in part for them to regulate lymphatic fluid
flux and clearance of DAMPs, pathogens and cancer (39–43).
Notably, decreased T cell diversity, primarily within the αβ T
cell population, has been identified in the setting of cancer
(44–46). Furthermore, TCRβ diversity has been associated with
better patient responses to immunotherapy during checkpoint
treatment for lung cancer (47). Herein, we have observed that
cultured healthy donor γδ T cell proliferation was inhibited
by rHMGB1, enhanced in the presence of acellular MPE fluid,
and further augmented with addition of neutralizing HMGB1
antibody. Given the limited inflammatory cell migration in the
setting of MPE, enhanced intrapleural HMGB1 concentrations
could inhibit (1) infiltration of circulating γγδ T cells and (2)
subsequent proliferation of all but the most reactive clonotypes,
limiting repertoire diversity. Alternatively, recognition of non-
peptide stress antigens (MICA/B; ULBP1-6) in the pleural
environment could result in clonal expansion and reduction
in repertoire diversity (48). Increased understanding of the
biologic role of TCR diversity in health and disease has broad
implications for cellular immunity and identification of specific
and effective clonotypes, potentially useful for adoptive cell
transfer therapy.

The effects of HMGB1 on T cell proliferation and phenotype
are dependent on the source of HMGB1, resulting from tumor
or myeloid cells, and the T cell activation status (35). Secreted
HMGB1 from activated DCs results in CD4 Th1 polarization and
expansion that is limited in the presence of a HMGB1 blocking
antibody. HMGB1 mediated clonal expansion was dependent
on CD3 and CD28 crosslinking and T cells are more sensitive
to HMGB1 secreted by mature DCs than recombinant HMGB1
(49). rHMGB1 enhances CD4 proliferation at suboptimal doses
of plate-bound OKT-3, but has limited effects on CD8 T cells
(50). rHMGB1 induces CD4 Th17 polarization and apoptosis
of regulatory cells with diminished IL-10 production (51).
Although our findings suggest that increased HMGB1 levels
within MPEs are capable of promoting T cell recruitment, further
studies are necessary to determine the phenotype of recently
recruited lymphocytes and if such cells are endowed with tumor-
specific reactivity.

γδ T cells are MHC unrestricted effector cells that recognize
non-peptide antigens, with an underappreciated role in tumor
immune surveillance. Similar to their αβ T cell cousins, γδ

T cells are highly susceptible to the composition of the
tumor microenvironment, which may impart either antitumor
or immunoregulatory capabilities depending upon the local
signaling context (52). γδ T cells have been previously identified
in the MPE of patients with NSCLC. Compared to circulating
patient lymphocytes, γδ T cells in the MPE were found to have
a predominant Vδ1/Vδ1-Vδ2- subtype and decreased expression
of CD27 and CD28, with a suggested impaired activation and

Frontiers in Immunology | www.frontiersin.org 9 September 2020 | Volume 11 | Article 2027106

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02027 September 2, 2020 Time: 16:47 # 10

Soloff et al. HMGB1 in Pleural Effusions

FIGURE 5 | HMGB1 is associated with reduced γδ TCR diversity within MPEs and inhibition of γδ T cell proliferation in vitro. Amplification and next generation
sequencing of the α, β, δ, and γ TCR chains was performed from bulk cells isolated from 14 MPEs. (A) Clonal diversity represented via tree maps illustrating the
relative frequency of unique CDR3s as geometric shapes in patients with high, moderate, and low diversity of TCRδ chains within MPEs. (B) For comparative
analysis, patients were segregated into HMGB1 low (N = 9) (18.75 ng/ml ± 2.68) and HMGB1 high (N = 5) (161.5 ng/ml ± 86.6) groups. (C) Diversity of TCRα and
TCRβ chains, as calculated by diversity index, within cells of the MPE was not different between patients with high or low intrapleural HMGB1 (p = 0.743) (top).
Diversity indices for TCRδ and TCRγ chains were significantly decreased in patients with high compared to low intrapleural HMGB1 (p = 0.029 and 0.189,
respectively). (D) Expansion of cultured γδ T cells isolated from peripheral blood of healthy donors (N = 5) was observed over 11 days in the presence of rHMGB1
(200 ng/ml), anti-HMGB1 Ab (10 µg/ml), CD3/CD28 agonist (1:100 transact), and acellular MPE fluid (50%). rHMGB1 decreased unstimulated γδ T cell growth, while
addition of acellular MPE fluid enhanced proliferation that was further increased with addition of anti-HMGB1 blocking antibody. Similar trends were observed in
CD3/CD28 agonist stimulated γδ T cells. (E) Soluble TNFα and IL-10 in culture supernatants was determined by cytometric bead array following 24-h in vitro culture
of 2 × 105 γδ T cells under the above conditions. rHMGB1 had no effect on cytokine production; however, in unstimulated and stimulated γδ cells, acellular MPE
fluid decreased both TNFα and IL-10 production. Cytokine production studies were completed in n = 3 different donors. Group means were compared using a
Mann–Whitney U test with significance of p 5 0.05. * denotes statistical significance.
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cytokine releasing state (53). In a murine model of Lewis lung
carcinoma-derived MPE, IL-10 deficiency led to increased γδ

T cell intrapleural proliferation and IL-17a production, reduced
MPE volume, and longer survival that was dependent on γδ

T cells. However, IL-10−/− KO γδ T cells expressed lower
levels of NKG2D and FasL, typically associated with activated
γδ T cells (54, 55). Adding further complexity, γδ T cell-
derived IL-17 mediates both anti-tumor and pro-tumor effects
that are temporally regulated (56–58). Our findings suggests
that in the presence of acellular MPE fluid γδ T cells are
simultaneously driven to proliferate, while restricted in their
ability to mount a cytokine response. Such processes may
drive terminal exhaustion of this effector population leading to
immune evasion and tumor escape.
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FIGURE S1 | HMGB1 levels are elevated in MPEs secondary to lung cancer.
HMGB1 levels were measured by specific ELISA in MPEs from lung (N = 11),
breast (N = 19), and ovarian (N = 8) cancer patients. HMGB1 levels were
significantly higher in lung cancer MPEs when compared to levels within ovarian
MPEs (p = 0.025) and elevated in comparison to levels in breast cancer MPEs
(p = 0.057). Data represent means ± SEM and Mann–Whitney U tests were used
for comparisons.
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