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Editorial on the Research Topic

Quantum Information and Quantum Computing for Chemical Systems

Quantum computing has emerged as an exciting inter-disciplinary research topic that cuts
across the traditional fields of physics, computer science, and engineering [1]. It is a
revolutionary model of computation that has offered new insights into methods for
modeling and simulation of chemical systems [2]. Applications of quantum computing to
chemistry have demonstrated rapid progress on both theoretical and experimental fronts [3].
Past theoretical efforts have shown how to adapt quantum computation to a variety of problems
including electronic structure and molecular dynamics. In addition, the development of
quantum algorithms for quantum chemistry has been stimulated by the greater availability
of more capable quantum computing devices [4]. Advances in the number and quality of qubits
continues to enable remarkable proof-of-concept demonstrations working towards a milestone
of quantum computational advantage [5].

However, many challenges remain along the way toward practical quantum advantages of
quantum computing for computational chemistry. Several key examples are the development of
new quantum algorithms for solving chemical problems thought to be intractable for classical
computers, the efficient representation of those models within quantum computers, the verification
and validation of chemical simulations using quantum computers, and the testing and evaluation of
real-world problems on currently available devices.

The purpose of this research topic Quantum Information and Quantum Computing for Chemical
Systems is to present the latest snapshot of leading theoretical concepts, computational methods, and
experimental demonstrations of computational chemistry with quantum computers. In the opening
article, Yang et al. develop new methods for measuring the time-dependent one-particle probability
densities from quantum simulation circuits. They apply these methods to time-dependent density
functional theory successfully using numerical simulation of the helium hydride ion with 4- and 8-
orbital models. Bylaska et al. demonstrate the advantages of an efficient representation of electronic
correlations based on a plane-wave basis for electronic structure calculations of molecular hydrogen.
The new correlation optimized virtual orbitals are benchmarked against molecular hydrogen and
found to be significantly better at capturing correlation in plane-wave calculations. Claudino et al.
address the accuracy of variational quantum algorithms for modeling the exact FCI state of small
molecular systems. Their numerical results find that VQE and ADAPT-VQE methods offer similar
accuracies with significantly different circuit complexities.
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Several contributions address the model of quantum computation
and the extension to newparadigms for computation. This includes the
contribution from Wang et al. on the use of qudits for quantum
computing, which reviews techniques for building algorithms and
circuits that apply to available experimental devices before presenting
specifications of leading quantum algorithms using these methods.
Dixit et al. present on the advantages of quantumannealing for training
restricted Boltzmann machines against Markov chain Monte Carlo,
which show promise of reducing the number of iterations needed to
thismanuscript has been authoredbyUT-Battelle, LLCunderContract
No. DE-AC05-00OR22725 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes. TheDepartment of Energywill provide public access to these
results of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-access-
plan) realize highly accurate classification. Bhatia present a model
for chemical reactions using quantum finite automata using the
Belousov-Zhabotinsky reaction network as a demonstration.

Applications to chemistry is one of the fastest growing areas in
quantum computing and several contributions provide examples
of the many different approaches under development. Komarova
et al. discuss how parallelization can be used in quantum
computing for simulations of vibrational dynamics. They
adapt this approach to a platform of semiconducting quantum
dot dimers for computing the mean position and momentum of
the vibrations in parallel. Cheng et al. detail approaches to
applications of quantum computing for biochemical systems
focusing on methods that split the computational overhead
between conventional and quantum computers. This “divide
and conquer” approach offers a promising set of strategies for
exploring problems in shell transition-metal and conjugated pi-
electron strongly correlated systems as well as non-covalent

bonding. Kardashin et al. give a demonstration of quantum
machine learning for constructing a tensor network that
approximates the eigenvector of a black box model. This new
connection forms a bridge between the language of tensor
networks and variational quantum algorithms with plans for
near-term demonstrations.

This exciting collection of work highlights the ongoing
development of quantum computing for chemistry. Our editorial
team for this research topic is sincerely grateful to all the reviewers
that offered their perspective and expertise in selecting this
outstanding collection of contributions. Combining the expertise
of the chemical physics community with insights from the quantum
computing community continues to lead to a fresh understanding of
important chemical processes and the emergence of the novel many-
body formulations.
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The vibrational dynamics in a linear triatomic molecule is emulated by a quantum
information processing device operating in parallel. The quantum device is an
ensemble of semiconducting quantum dot dimers addressed and probed by ultrafast
laser pulses in the visible frequency range at room temperature. A realistic assessment of
the inherent noise due to the inevitable size dispersion of colloidal quantum dots is taken
into account and limits the time available for computation. At the short times considered
only the electronic states of the quantum dots respond to the excitation. A model for the
electronic states quantum dot (QD) dimers is used which retains the eight lowest bands of
excitonic dimer states build on the lowest and first excited states of a single QD. We show
how up to 82 � 64 quantum logic variables can be realistically measured and used to
process information for this QD dimer electronic level structure. This is achieved by
addressing the lowest and second excited electronic states of the QD’s. With a narrower
laser bandwidth (� longer pulse) only the lower band of excited states can be coherently
addressed enabling 42 � 16 logic variables. Already this is sufficient to emulate both energy
transfer between the two oscillators and coherent motions in the vibrating molecule.

Keywords: quantum dots, computing by observables, lie algebra,molecular dynamics, size dispersion, 2D electronic
spectroscopy, electronic coherence

INTRODUCTION

We describe the theoretical background for an experimental setup, an ensemble of quantum dot
dimers that can and has been realized in the laboratory. We show explicitly how this device is used to
emulate the quantum vibrational dynamics of a linear triatomic molecule and discuss possible
extensions. In 1985 Deutsch defined a quantum computer as a device that could simulate effectively
an arbitrary physical system [1]. Our aim here is much more modest. We seek to describe a device
that can be realized with currently available laboratory techniques. Furthermore, the device needs to
provide computational answers only for a limited set of variables of the physical system. The
computation is realized by mapping of the dynamics of the physical variables of this limited set using
a set of observations of the time-evolution of the device. The set of possible observations of the device
is the set of our N2 logic variables. The number N is less than or equal to the number of accessible
quantum states of the logic device. N2 is larger than the number of variables of interest for the
physicochemical system that is emulated.

The quantummechanical device is characterized by a set of observables and that is why we call the
logic done by the device “computing by observables” [2, 3]. With such a device one can emulate a
physical system that requires up to this number for simulating a closed set of physical variables.
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Increasing levels of resolution provided by the description of a
physicochemical system can be characterized by an increasing
numbers of variables. An example used in this paper is that of two
coupled harmonic oscillators. For each oscillator there is a
denumerable number of bound states. So, in principle, a fully
complete characterization of each oscillator can require up to a
denumerably infinite number of variables. An opposite extreme is
a thermal state of the oscillator. Its complete description requires
two physical variables, a normalization of the probabilities and
the mean energy. For the coupled oscillators we will describe
several physical levels of resolution that are intermediate between
these two limits.

The variables that we deal with can be regarded as vectors in a
linear space. They can, if so desired, be made orthogonal etc. As
vectors, the variables seem to behave like classical variables but
they are a quantum mechanical description of the system. In
textbooks one is more used to a linear vector space of wave
functions, what is sometimes called a Hilbert space. The
observables are also defined in a space with a scalar product
and a Mathematician may choose to call it a Hilbert space. But if
the Hilbert space of the wave functions has N dimensions, the
corresponding linear vector space of observables has N2

dimensions. If {|i〉} is a set of basis vectors in the Hilbert
space of wave functions, i � 1, 2, ..,N , a basis set for the
observables can be written as {Xij � |i〉〈j∣∣∣∣}, i, j � 1, 2, ..,N .
The N2 expectation values of these are our variables. We will
refer to the expectation values when i≠ j as coherences. The N
diagonal elements are populations. By taking linear
combinations, e.g., |i〉〈j∣∣∣∣ + ∣∣∣∣j〉〈i|, we can arrange all the
variables to be Hermitian and all the variables to be real.

In this paper we use two distinct linear vector spaces. One is
suitable to describe the dynamics of the computing device and
one the dynamics of the physical system we aim to emulate. We
do not consider the device as providing an analog for the physical
system. To emphasize this point we use a device that operates on

the dynamics of purely electronic states pumped and read by
ultrafast laser pulses. A schematic description of the device and
the physical system is shown in Figure 1. The dynamics in the
electronic Hilbert space of the quantum dot dimers is mapped to
simulate the time evolving physical variables in the nuclear
Hilbert space. We will therefore need a separate discussion of
the logic variables provided by the computing device and those
required to describe the physical system.

Quantum computing algorithms have been developed for
problems of chemical interest. This includes not only
electronic structure [4–13] but also quantum enhanced
machine learning algorithms [8] and algorithms for dimension
reduction including Principal Component Analysis, Canonical
Correlation Analysis and other algebraic methods used for
dimension reduction such as surprisal analysis [6, 15–17] A
preliminary report on our quantum computation has been
published [18].

THE COMPUTING DEVICE

Our computing device is an array of CdSe quantum dot QD
dimers. Addressing the device is by a sequence of laser pulses and
read-out is performed simultaneously on many dots [19–24] as in
2D electronic spectroscopy [25, 26]. Measuring over a classical
ensemble of dots importantly means that we directly read the
mean values and that there is no interference between
measuring different observables that individually do not
commute. In the short time interval during which the time
and probe are performed the primary source of noise is the
variability in the size of the quantum dots. This means that the
two dots making the dimer are not quite identical so strictly
speaking we have heterodimers. We therefore need to average
the read-out over the distribution of dimer sizes. The states of
different dimers are at slightly different energies so that the

FIGURE 1 | Representation of the computing device (A) and the physical system (B). The four bands of excited electronic states of the device that are used are
indicated as well as the ten pairs i, j whose twenty corresponding coherences Xij are used as logic variables. The physical system we emulate is a vibrating triatomic
molecule in a non-stationary quantum mechanical state. We will simulate the mean position and momentum of each of the two coupled oscillators as well as the
respective widths, σR and σP.
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coherences between different pairs of states beat at slightly
different frequencies. This reduces the frequency resolution
or, equivalently, the time available for read-out [13] to faster
than the dephasing time of the mixture of not fully identical
dimers. So we do not read individual quantum states but bands
of closely adjacent states belonging to different dimers. In our
computations we use an experimentally realizable size of the
dots and their size dispersion.

In this paper we employ rather elementary dynamics of the
computing device. Using a sequence of laser pulses we bring each
dimer to a multicoherent state. From then on the device is
unperturbed and it is the oscillations of different coherences
that are used to simulate the time dependence of the physical
system. The coherence between the ground state and any
electronic excited state oscillates quite fast so it dephases faster
then the dephasing of the coherences between the electronically
excited states. The very fast beating coherence, few fs’s or less,
between the ground state and an electronic excited state cannot
therefore be reliably detected. So very fast oscillations cannot be
simulated by our device due to the currently available dispersion
in sizes of colloidal quantum dots. It is expected that a lower
dispersion will be experimentally possible in the near future.

This paragraph is a sketch of the counting of electronically
excited states in a CdSe dot of nanometric mean size between 2
and 5 nm in diameter and of a dimer of two dots drawn from an
ensemble of dots of the same mean size. The two dots making up
the dimer are of about the same but not identical size. The first
electronically excited state of a dot is a band of 12 states, as
follows. The spin of the hole is coupled to a p (l � 1) orbital of Se
to give rise to two spin orbit components, 1/2 and 3/2. The s
orbital on Cd contributes only a spin of 1/2. The total orbital
angular momentum F of the excitonic 3/2 state has the
projections Fz � ± 2, ± 1, 0 and Fz � ± 1, 0 for the hole and
the electron respectively, eight states all together. There are four
states, (Fz � ± 1, 0 and 0) for the 1/2 excitonic state. The two
excitonic bands of states, (of eight and four states, respectively),
can be experimentally resolved [23]. There are similarly two
resolvable bands of states for the second electronically excited
state of CdSe. All together, four bands of electronically excited
states per dot. In the dimer, or dots with short ligands, the dots
are interacting by Coulomb and exchange coupling. Thereby
each one of the four bands of states of the monomer is split into
two. In the visible range a dimer has eight resolvable bands of
states, four bands that correspond primarily to the lower
electronic state and four to the higher excited state of a
monomer. Since the dimers are made of two dots that are
not quite identical, all eight bands are optically active from
the common dimer ground state, see Supplementary Materials,
section 1.1 for more details.

Using the counting as above the CdSe dots enable a choice of
four or eight bands of states in the visible range. Addressing
coherently the states of all the eight bands requires shorter laser
pulses. Smaller QD have larger energy difference between their
two lower excited electronic states and therefore one needs a
larger energy bandwidth of the pulse or a higher carrier frequency
to simultaneously address them. On the other hand, for larger
dots, the energy difference between the two lowest excited states

may become smaller or comparable to strength of the spin-orbit
coupling, which leads to a loss of resolution between the different
bands [23, 24]. Commercially available fast lasers in the visible
can easily address coherently all the states of the four lowest
bands. The minimal capability of our device is therefore 52 logic
variables, the five populations of the ground and four excited
states and the 5 × 4 coherences. Four (times two, complex values)
coherences of the transitions between the ground state and the
four excited states and 12 coherences between the four excited
states. After the laser pulses are over, each coherence will oscillate
with a fixed frequency determined by the differences in energy of
the two states. The highest frequencies are for the transitions up
from the ground state. These are rather fast. So in this paper we
consider the coherences between pairs of excited states.

To describe the dynamics of the device we take it that initially
it is in the ground electronic state. We assume that the addressing
lasers are weak enough so that only one photon transitions are
possible. The lasers are in the visible so that transitions between
the excited states are way out of resonance and so are excluded.
Indeed and as we shall discuss, the frequencies of the transitions
between the excited states are in the range of molecular
vibrational frequencies so that we can use the coherences
between excited states to emulate the time scales relevant to
the physical systems. The range of timescales is determined by the
size of the quantum dot dimers as is discussed above and by the
coherence width of the excitation lasers. The bandwidth of a 6 fs
pulse is about 2,100 cm−1.

The excitation scheme is that typically used in 2D electronic
spectroscopy [25, 26]. The first fast laser pulse generates the
absorption from the ground state. Next, with some delay, is a
second laser pulse. One frequency axis that we will use is the
Fourier transform with respect to this time delay. The system is
next allowed to evolve for a time interval that is typically denoted
T. After the second pulse, the system can be back in the ground
state, in one of the excited states, or in a coherence between two
excited states. After the time T the third laser pulse stimulates
emission that is monitored in time and the second frequency axis
is a Fourier transform with respect to this time. So for each value
of the time T we generate a 2D frequency map. In the echo phase
matching direction of emission, the populations of the excited
states appear on the diagonal of the 2D maps and the coherences
are on the off-diagonal at a position determined by the excitation
frequency of the two excited states they connect. At different
values of the time interval T, the intensities at the off-diagonal
positions on the map will vary according to the time-evolution of
the respective coherences, and this is how we can simulate the
time dependence of the physical variables. As emphasized above,
due to the size dispersion the coherence beating frequencies will
have a finite spread. The ability to resolve coherences between
different pairs of states depends on this spread to be limited
enough. From the complementary time-dependent point of view,
the coherence contributions decay in time as a Gaussian with a
width that is governed by the width of the frequency distribution
of the coherence [3]. On the plus side, the finite spread of the
frequency of every coherence means that the computing device
can simulate finite spans of values, roughly the width of the
Gaussian, about different frequencies.
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Deterioration of the signal due to dephasing has been an issue for
quantum computing from its early beginning [27, 28]. Often it is
dephasing due to interaction with the environment. Here too, the
limiting factor is dephasing but it is a dephasing due to an
inhomogeneous broadening caused by the size dispersion of the
QD’s. In the short times that we probe, the electronic states of each
dimer practically are not yet perturbed. The dephasing is due to the
probe averaging over many dimers, dimers with slightly different
frequencies [3]. We pay special care to make the dephasing realistic.
The mean diameter of the CdSe QD’s, 4.4 nm, that we use to
compute the spectrum and the size dispersion, 5%, have been
realized experimentally [23, 29]. We emphasize the considerable
improvement in performance that can be achieved by an even
modest reduction in the dispersion in sizes. Yet even the already
accessible 5% size variability is sufficient to enable a quite
powerful device. We also stress that the 2DES measurements
that we rely upon are performed at room temperature, in solution
[23] or on a solid state device [24].

We can emulate dynamics by measuring 2D coherence maps
at a range of values for the time interval T. With current chemical
synthetic capabilities the dephasing due to the size dispersion of
the dot is the primary limitation on how long T can be. At longer
times, say beyond 100 fs, coupling to the phonons also sets in.

For each experiment there will be a sequence of transitions
leading to the same coherence between two excited states during
the delay time T between the second and the third pulse. For weak
pulses so that first order time-dependent theory and the impulsive
limit transition applies at each interaction with the pulse, the two
coordinates of the 2D maps are the absorption frequency from the
ground state (GS) and the emission frequency to GS. When two
excited states, i and j, can be reached by one photon transitions from
the ground state (GS) there are four positions in the 2D maps, two
diagonal ones at (ω0i, ω0i) and (ω0j,ω0j) and two off-diagonal ones
(ω0i, ω0j) and (ω0j, ω0i) where ω0i and ω0j are the excitation
frequencies of states i and j from the GS. In the rephasing phase
matching (echo) direction, eight Liouvillian paths contribute to these
four positions. They are spelled out explicitly in Supplementary
Figure S3 in the notation of ref. [26], see also refs. [2, 30].

Four paths fall on the diagonal of the 2D map at the excitation
frequencies of the two excited states: one ground state bleaching
(GSB) path for which the system is the GS during the time
interval T and one stimulated emission paths (SE) for which the
system is in excited state i during T at (ω0i, ω0i) and a GSB and a
SE path for which the system is in excited state j at (ω0j, ω0j). At
the short times below 200 fs considered here, there is no exchange
of population between the GS and the two excited states during T
and the contribution of these four paths to the 2D response is
time-independent. Two time-dependent GSB paths contribute to
the two off diagonal positions, (ω0i, ω0j) and (ω0j, ω0i),
respectively. Two paths that are the signature of the electronic
coherence between the two excited states also contribute at the
same off diagonal positions. The two coherence paths are beating
during T with the transition frequency ωij of the coherence
between the excited states i and j.

The eight paths, see Supplementary Figure S3, contribute
simultaneously to the time evolution of the density matrix and
therefore to the 2D map, hence “parallel” in our title. When the

system has more than two excited states, each pair of excited
states contributes 8 paths to the time evolution of the density
matrix. For example, there are 16 coherences between excited
states for the five level system (GS + 4 excited states) discussed
above, meaning that 16x8 paths contribute in parallel. Of these,
only the 16x2 paths that lead to a distinct off diagonal position on
the 2D maps are used to map observables of the system that is
emulated. There are also 8 paths per pair of excited states in the
non rephasing phase matching direction. So in principle, the
larger the number of states in the band that can be accessed by one
photon transition from the GS, the larger the number of
observables that can be emulated.

As explained above, colloidal QD’s are synthesized with a
finite size dispersion which leads to a distribution of transition
frequencies for each coherence, both from the GS, the ω0i type and
between excited states (the ωij type). At the level of the ensemble,
the inherent size dispersion of the QD’s leads to a Gaussian
distribution in energy of the addresses (ω0i, ω0j) of coherences
between excited states and to their Gaussian dephasing along T
and therefore limits the number of coherence positions that can
be resolved on the map. When controlled and limited to a few
percent in diameter, the size dispersion can also be used to
advantage. Scanning positions on the 2D maps around the
address corresponding to the mean transition frequencies from
the GS gives slightly different periods of the coherence along T
which provides flexibility in mapping the periods of the
observables of the emulated systems.

Figure 1 shows a scheme where there are four bands of excited
states that are accessed by the laser pulses. The four coherences at
a relatively high frequency when the ground state is one of the two
states are not detected in 2D spectroscopy. There are the twelve
lower frequency coherences that, as mentioned, will be used to
emulate the vibrational motions of the physical system. Note that
there is a spread in the frequencies and the very lower ones will be
used to emulate splittings due to coupling of two
vibrational modes.

FIGURE 2 | The algebra characterizing the device (A) and the physical
system (B). The coherences Xij � |i〉〈j| between excited levels i and j of the
quantum dot dimer are our logic variables. After the laser pulses are over, the
coherences oscillate in time with a frequency that is the difference
between the energies of the two states that they connect. We aim to simulate
the time dependence of observables of the coupled oscillators system. For
example, as shown in Eq. 7, we need the time dependence of 〈a2〉 to
compute the variance of the bond displacement of the first oscillator.
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THE PHYSICAL SYSTEM: LINEAR
VIBRATING TRIATOMIC MOLECULE

In this paper we track the electronic dynamics in the QD dimers
to emulate the vibrational motion in non-stationary states of a
triatomic molecule, Figure 2.

The system we emulate is two coupled harmonic local
vibrations, each representing a bond. The coupling is due to
the motion of the central atom and it depends on its mass and its
displacement from equilibrium [31]. By expanding the potential
of the system and keeping only up to quadratic terms in the
deviation of the bond displacements from equilibrium, the
Hamiltonian for two harmonically coupled harmonic modes,
denoted a and b, is, using Z � 1,

Ĥ � ωaâ
†â + ωbb̂

†
b̂ + (α/2)(â†b̂ + b̂

†
â) (1)

Here we use the standard notation for the creation and
annihilation operators for the two local vibrational modes. The
vibrational quantum number mismatch is determined by 〈â†â −
b̂
†
b̂〉 and the frequency mismatch is δω � ωa − ωb. The harmonic

coupling is âb̂
† + â†b̂ and the strength is α/2. Due to this

coupling, the creation and annihilation operators of the two
oscillators are correlated.

We characterize vibrational motion of the local modes by the
mean values of the bond distance, momenta and dispersion of
both quantities. Computation of the values of the mean bond
distance andmeanmomenta involves description of the evolution
of both creation and annihilation operators:
〈R̂a〉 � 〈â + â†〉/ ������

2maωa
√

. A simple application of the
Heisenberg equation of motion leads to a set of equations of
motion:

d
dt

( â
b̂
) � −i( ωa α/2

α/2 ωb
)( â

b̂
) (2)

and an adjoint equation:

d
dt

( â†

b̂
† ) � i( ωa α/2

α/2 ωb
)( â†

b̂
† ) (3)

One can write these as one equation for a vector of four
components using a Liouvillian operator L̂: dv/dt � iLv, where
v+ � (â, b̂, â†, b̂†) and Liouvillian:

L � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−ωa −α/2 0 0
−α/2 −ωb 0 0
0 0 ωa α/2
0 0 α/2 ωb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

As is well known, one can diagonalize the Hamiltonian leading to
an antisymmetric and a symmetric vibrational modes. Here this
corresponds to diagonalizing the Liouvillian, Eq. 4, leading to the
frequencies:

(1/2)(ωa + ωb ± Ω) (5)

where Ω2 � α2 + (δω)2.
We use as an example vibrational dynamics in the CS2

molecule, where ωa � ωb � ω and Ω � α. The eigenfrequencies,

Eq. 5, become ω ± α/2 for the â ± b̂ eigenvectors and similarly for
their complex conjugate analogs. Taking expectation values it is
useful to note that equations imply that the mean values at the
time t can be computed given their initial values, for example:

〈â + b̂〉(t) � 〈â + b̂〉(0)exp( − i(ω + α/2)t )

〈â† + b̂
†〉(t) � 〈â† + b̂

†〉(0)exp(i(ω + α/2)t)
(6)

The mean values of the bond displacement,
(〈â〉(t) + 〈â†〉(t))/ ����

2mω
√

or the momentum
i(〈â†〉(t) − 〈â〉(t)) · ���

mω
√

/
�
2

√
can thereby be computed.

To describe the dispersion of the nuclear wave packets in
coordinate space and in momentum space we need to extend our
algebra. In the basis of the vibrational states the dispersion in the
displacement of a local oscillator can be written as follows:

σ2
R(t) � 〈R2〉(t) − (〈R〉(t))2

� 1
2mω

〈(â + â†)2〉(t) − 1
2mω

(〈(â + â†)〉(t))2 (7)

And similar for the dispersion in the momentum space:

σ2
P � 〈P2〉 − 〈P〉2 � −mω

2
〈(â† − â)2〉 +mω

2
〈(â† − â)〉2 (8)

Therefore we need to describe the dynamics of the {â2, (â†)2, â†â}
and {b̂2, (b̂†)2, b̂†b̂} for the dispersion in R and P of the two
coupled local bonds. Note connection between the dispersion of
the wave packets in different representations to the energy
transfer between the two coupled oscillators, 〈â†â〉 or 〈b̂†b̂〉
mean values. Therefore we need a hardware computing device
that can emulate 10 logic variables. The computing hardware
described above can emulate 16 logic variables when only the
lowest four exciton bands are addressed and 64 when shorter laser
pulses are used.

RESULTS

We use the device as discussed in section above to simulate the
time dependence of the physical variables as revealed by the
algebras for the coupled vibrations that are discussed in section
III. Each coherence of the device is a point on the 2D frequency
map generated by the 2D spectroscopy. The size dispersion of the
quantum dots means that each point is actually a cloud of points
at nearby frequencies. This dispersion in the frequency associated
with each coherence is what enables one device to simulate
different but similar physical systems. In this section we show
how different coherences can simulate the time evolution of
different physical variables of the system.

The results for the mean bond displacement 〈R〉(t) and its
dispersion σ2R(t), Eq. 7, are shown in panels (a) and (c) of
Figure 3. The computations are for a symmetric system that is
not stationary in time because of an asymmetry in the initial
conditions. One oscillator starts with low energy and the other,
the one shown, is initially energy richer. On the right side of the
figure we show relevant segments of 2D frequency maps
computed at different values of the time interval T that enable
the device to simulate the two functions of time 〈R〉(t) and σ2R(t).
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Shown for each are three values of T that correspond to extreme
displacement and dispersion. One can, of course, measure at
intermediate values as well.

The mean bond displacement of a local oscillator, frequency ω,
in a symmetric molecule such as CO2, Figure 3A, is seen to be
faster varying in time than the width, 3(c), of the wavepacket
describing the oscillator. This reflects the difference in magnitude
between the eigenfrequencies ω ± α/2 and the coupling parameter
α. In the absence of coupling between the oscillators, α � 0 in the
Hamiltonian, Eq. 1, the width of a coherent state of the harmonic
potential will not vary with time. The coupling induces a slow,
frequency α, energy transfer between the two oscillators as
reflected in the variation of the width of the wavepacket
localized on one of the two bonds.

It might seem from Figure 3 that one has to assemble a new
device for each different triatomic molecule. This is because for
each one of the two frequencies ω + α/2 and α one would need a
different electronic level structure in the dimer of the two
quantum dots. The same size dispersion of the quantum dots
that hitherto limited our abilities is here an advantage. The
somewhat different sizes of the monomers means that there is
a finite range of frequencies for each coherence. The range should
not be too broad as otherwise we will lose resolution in frequency.
Moreover, since the distribution of spacings of a particular
coherence is, at low dispersions, Gaussian [3], we should not
probe too far toward the wings. Complementary, when the range
is broad we can only measure at short times before serious
dephasing sets in. But the times cannot be too short because
we want to measure only after the laser pulses are over. Practical
implications of the distribution of spacings can be seen in
Figure 4. Shown is a 2D frequency map for both regions used
to compute the time-evolution of the bond distance (region A of
Figure 4) and its dispersion (region B, Figure 4). Slightly

different time-evolution of the coherences for the neighboring
positions on the map enables fine-tuning of the period of the
oscillations as is shown on the side panels of Figure 4.

A coherence is a complex valued observable so each coherence
can describe two conjugate physical variables as shown
in Figure 5. Equation 6 shows that the expectation values,
〈R〉(t) � (〈â〉(t) + 〈â†〉(t))/ ����

2mω
√

and 〈P〉(t) � i(〈â†〉(t)−
〈â〉(t)) · ���

mω
√

/
�
2

√
of the bond displacement and of the

momentum can both be computed at the same point of the
map, by reading the real and imaginary values. The two values
are shifted by a phase difference of π/2 as is to be expected. There
is an uncertainty with the momentum, σP, and position, σR, as
shown in Eqs. 7 and 8. Time-evolution of the uncertainty in the
position, related to the width of the wavepacket in coordinate
representation, is shown in Figures 3C,D. As discussed therein
these uncertainties are time-dependent because of the coupling
between the two oscillators so that they are more slowly varying
and reflect the energy transfer between the two oscillators. The
time-evolution of the uncertainty in the momentum
representation is following the same time-dependence as σR

therefore no additional computation is needed.

CONCLUDING REMARKS

A versatile quantum mechanical computing device that operates
on a laser addressed solid array of quantum dots dimers has been
discussed. Experimental data shows that such a device can
operate at room temperature [23, 24]. The device was
effectively used to simulate the quantal dynamics of non-
stationary states of coupled vibrations. We show how the
read-out of the coherences engineered in the device following
interaction with a sequence of the laser pulses enables parallel

FIGURE 3 | Time-evolution of the physical variables (A, C) and their computation (B, D) using 2D frequency maps for the device of the QD dimers. The response of
the quantum device, panels (B) and (D), can simulate the time dependent observables of the physical system such as the mean bond displacement, panel (A), and the
dispersion in the bond displacement, panel (C). The physical system shown is a symmetric triatomic molecule. Shown are the real part of the 2D maps. See
Supplementary Material, Section 1.2, for details about the computation of the 2D maps.
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computation of the two conjugated variables, mean position and
momentum of the local oscillators. Extension to the more detailed
dynamics is shown by simulating also the dispersion in coordinate
representation of the quantum wave packets of the coupled
oscillators. Simulation is provided by matching the beating
frequency of the coherence and the oscillation frequency of the
physical variable. This mapping is in principle always possible for
systems where the algebraic description of the physical variables is
closed upon their commutation with Hamiltonian. Diagonalization
of the respective Liouvillian operator, Eq. 4, determines
eigenfrequencies ωk, for example Eq. 5, and enables
transformation to observables Ak(t) that evolve in time as
Ak(0)exp(iωkt). It is these frequencies that need to be measured
by the time evolution of the coherences of the device. The inevitable
size dispersion of the quantum dots limits the span of time that is

available for emulation but on the other hand allows a fine-tuning of
a frequency of interest.
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FIGURE 4 | The same device can simulate a range of frequencies. Left: A 2D frequency map (real part) for the device at a particular value of the time interval T
(computed for the full frequency range of the excited states, Supplementary Figure S4). The dispersion in sizes means that there is a range of frequencies
corresponding to each coherence. Point A. A higher frequency coherence, more off the diagonal in the map, used to compute the time-evolution of the bond distance,
Figures 3A,B. Shown are the intensities of the coherence vs time T for points in the range shown on the map. Point B. Coherence at a lower frequency for the
computation of the bond dispersion, Figures 3C,D. A wider range in the frequency is possible but reading nearer to the diagonal is experimentally more challenging.

FIGURE 5 | Reading two conjugate variables at the same position on the 2D frequency maps. Left entries:mean position (A) and momentum (C) as given by Eq.
6. As expected the displacement is maximal at a turning point of the motion while the momentum is maximal when the wavepacket crosses the equilibrium position of the
oscillator. Right entries: real (B) and imaginary (D) values of the intensities in the frequency map in the frequency range of interest. The values shown are reading at
different time intervals T.
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Quantum Computing
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Qudit is a multi-level computational unit alternative to the conventional 2-level qubit.
Compared to qubit, qudit provides a larger state space to store and process information,
and thus can provide reduction of the circuit complexity, simplification of the experimental
setup and enhancement of the algorithm efficiency. This review provides an overview of
qudit-based quantum computing covering a variety of topics ranging from circuit building,
algorithm design, to experimental methods. We first discuss the qudit gate universality and
a variety of qudit gates including the pi/8 gate, the SWAP gate, and the multi-level
controlled-gate. We then present the qudit version of several representative quantum
algorithms including the Deutsch-Jozsa algorithm, the quantum Fourier transform, and the
phase estimation algorithm. Finally we discuss various physical realizations for qudit
computation such as the photonic platform, iron trap, and nuclear magnetic resonance.

Keywords: quantum information, quantum computing, qudit gates, qudit algorithm, qudit implementation

INTRODUCTION

Qudit technology, with a qudit being a quantum version of d-ary digits for d > 2 [23]; is emerging as
an alternative to qubit for quantum computation and quantum information science. Due to its multi-
level nature, qudit provides a larger state space to store and process information and the ability to do
multiple control operations simultaneously [106]. These features play an important role in the
reduction of the circuit complexity, the simplification of the experimental setup and the
enhancement of the algorithm efficiency [100, 106, 108, 109]. The advantage of the qudit not
only applies to the circuit model for quantum computers but also applies to adiabatic quantum
computing devices [5, 166]; topological quantum systems [16, 37, 38] and more. The qudit-based
quantum computing system can be implemented on various physical platforms such as photonic
systems [60, 106]; continuous spin systems [2, 11]; ion trap [91]; nuclear magnetic resonance [48, 62]
and molecular magnets [99].

Although the qudit system’s advantages in various applications and potentials for future
development are substantial, this system receives less attention than the conventional qubit-
based quantum computing, and a comprehensive review of the qudit-based models and
technologies is needed. This review article provides an overview of qudit-based quantum
computing covering a variety of topics ranging from circuit building [39, 61, 71, 89, 133];
algorithm designs [2, 17, 26, 62, 79, 119, 121]; to experimental methods [2, 11, 48, 60, 62, 91,
99, 106]. In this article, high-dimensional generalizations of many widely used quantum gates are
presented and the universality of the qudit gates is shown. Qudit versions of three major classes of
quantum algorithms—algorithms for the oracles decision problems (e.g., the Deutsch-Jozsa
algorithm [121], algorithms for the hidden non-abelian subgroup problems (e.g., the phase-
estimation algorithms (PEAs) [26] and the quantum search algorithm (e.g., Grover’s algorithm
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[79]—are discussed and the comparison of the qudit designs vs.
the qubit designs is analyzed. Finally, we introduce various
physical platforms that can implement qudit computation and
compare their performances with their qubit counterparts.

Our article is organized as follows. Definitions and properties
of a qudit and related qudit gates are given in Section 2. The
generalization of the universal gate set to qudit systems and
several proposed sets are provided in Section 2.1. Then Section
2.2 lists various examples of qudit gates and discusses the
difference and possible improvement of these gates over their
qubit counterparts. A discussion of the gate efficiency of
synthesizing an arbitrary unitary U using geometric method is
given in Section 2.3. The next section, Section 3, provides an
introduction to qudit algorithms: a single-qudit algorithm that
finds the parity of a permutation in Section 3.1.1, the Deutsch-
Josza algorithm in Section 3.1.2, the Bernstein-Vazirani
algorithm in Section 3.1.3, the quantum Fourier transform in
Section 3.2.1, the PEA in Section 3.2.2 and the quantum search
algorithm in Section 3.3. Section 4 is a section focused on the
qudit quantum computing models other than the circuit model,
which includes the measurement-based model in Section 4.1, the
adiabatic quantum computing in Section 4.2 and the topological
quantum computing in Section 4.3. In Section 5, we provide
various realizations of the qudit algorithms on physical platforms
and discuss their applications. We discuss possible improvements
in computational speed-up, resource saving and implementations
on physical platforms. A qudit with a larger state space than a
qubit can utilize the full potential of physical systems such as
photon in Section 5.1, ion trap in Section 5.2, nuclear magnetic
resonance in Section 5.3 and molecular magnet in Section 5.4.
Finally, we give a summary of the qudit systems advantages and
provide our perspective for the future developments and
applications of the qudit in Section 6.

2 QUANTUM GATES FOR QUDITS

A qudit is a quantum version of d-ary digits whose state can be
described by a vector in the d dimensional Hilbert spaceHd [23].
The space is spanned by a set of orthonormal basis vectors
{|0〉, |1〉, |2〉, . . . |d − 1〉}. The state of a qudit has the general form

|α〉 � α0|0〉 + α1|1〉 + α2|2〉 +/ + αd−1|d − 1〉 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0
α1

α2

«
αd−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Cd

(1)

where
∣∣∣∣α0|2 + ∣∣∣∣α1|2 + ∣∣∣∣α2|2 +/ + ∣∣∣∣αd−1|2 � 1. Qudit can replace

qubit as the basic computational element for quantum
algorithms. The state of a qudit is transformed by qudit gates.

This section gives a review of various qudit gates and their
applications. Section 2.1 provides criteria for the qudit
universality and introduces several fundamental qudit gate
sets. Section 2.2 presents examples of qudit gates and
illustrates their advantages compared to qubit gates. In the last

section, Section 2.3, a quantitative discussion of the circuit
efficiency is included to give a boundary of the number of
elementary gates needed for decomposing an arbitrary unitary
matrix.

2.1 Criteria for Universal Qudit Gates
This subsection describes the universal gates for qudit-based
quantum computing and information processing. We elaborate
on the criteria for universality in Section 2.1.1 and give examples
in Section 2.1.2.

2.1.1 Universality
In quantum simulation and computation, a set of matrices
Uk ∈ U(dn) is called the universal quantum gate set if the
product of its elements can be used to approximate any
arbitrary unitary transformation U of the Hilbert space H⊗n

d
with acceptable error measured in some appropriate norm [153].
This idea of universality not only applies to the qubit systems
[47]; but can also be extended to the qudit logic [24, 39, 65, 102,
114, 164]. Several discussions of standards and proposals for a
universal qudit gate set exist. Vlasov shows that the combination
of two noncommuting single qudit gates and a two-qudit gate are
enough to simulate any unitary U ∈ U(dn) with arbitrary
precision [153]. Qudit gates can themselves be reduced to, and
thus simulated by, sequences of qudit gates of lower-dimensional
qudit gates [135, 137] Brylinski and Brylinski prove a set of
sufficient and necessary conditions for exact qudit universality
which needs some random single qudit gates complemented by
one two-qudit gate that has entangled qudits [23]. Exact
universality implies that any unitary gate and any quantum
process can be simulated with zero error. Neither of these
methods is constructive and includes a method for physical
implementation. A physically workable procedure is given by
Muthukrishnan and Stroud using single- and two-qudit gates to
decompose an arbitrary unitary gate that operates on N qudits
[118]. They use the spectral decomposition of unitary
transformations and involve a gate library with a group of
continuous parameter gates. Brennen et al. [21] identify criteria
for exact quantum computation in qudit that relies on the QR
decomposition of unitary transformations. They generate a library
of gates with a fixed set of single qudit operations and “one
controlled phase” gate with single parameter as the components
of the universal set. Implementing the concept of a coupling graph,
they proved that by connecting the nodes (equivalently logical basis
states) they can show the possibility of universal computation.

2.1.2 Examples of Universal Gate Sets
An explicit and physically realizable universal set comprising
one-qudit general rotation gates and two-qudit controlled
extensions of rotation gates is explained in this section [108].
We first define

Ud(α) : ∑d−1
l�0

αl|l〉1|d − 1〉, α :� (α0, α1, . . . , αd−1). (2)

as a transformation in the d-dimension that maps any given qudit
state to |d − 1〉. Complex parameters of Ud may not be unique
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and have been addressed with probabilistic quantum search
algorithm [118]. Here in this scheme, Ud can be
deterministically decomposed into d − 1 unitary
transformations such that

Ud � X(d−1)
d (ad−1, bd−1)/X(1)

d (a1, b1), al :� αl, bl :�







∑l−1
l�0

α2
i

√√

(3)

with

X(l)
d (x, y) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1l−1
x







∣∣∣∣x∣∣∣∣2 + ∣∣∣∣y∣∣∣∣2√ −y







∣∣∣∣x∣∣∣∣2 + ∣∣∣∣y∣∣∣∣2√
y*







∣∣∣∣x∣∣∣∣2 + ∣∣∣∣y∣∣∣∣2√ x*







∣∣∣∣x∣∣∣∣2 + ∣∣∣∣y∣∣∣∣2√

1d−l−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

The d-dimensional phase gate is

Zd(θ) :� ∑d−1
l�0

ei(1−sgn(d−1−l))θ|l〉〈l|, (5)

which changes |d − 1〉 by a phase θ and ignores the other states,
and sgn represents the sign function.

Each primitive gate (such as X(l)
d or Zd) has two free complex

parameters to be controlled (x, y in the X(l)
d gate and θ in the Zd

gate). Let Rd represents either X(l)
d or Zd , then the controlled-

qudit gate is

C2[Rd] :� ( 1d2−d
Rd

), (6)

which is a d2 × d2 matrix that acts on two qudits. Rd acts on d
substates |d − 1〉|0〉, . . . , |d − 1〉|d − 1〉, and the identity
operation 1d2−d acts on the remaining substates.

Now we work on an N � dn dimensional unitary gate
U ∈ SU(dn) operating on the n-qudit state. The sufficiency of
the gates X(l)

d ,Zd and C2[Rd] to construct an arbitrary unitary
transformation of SU(dn) is proved in three steps. The first step is
the eigen-decomposition of U. By the representation theory, the
unitary matrix U with N eigenvalues {λs} and eigenstates |Es〉 can
be rewritten as

U � ∑N
j�1
eiλj

∣∣∣∣Ej〉〈Ej

∣∣∣∣ � ∏N
j�1

Yj (7)

with eigenoperators

Yj � ∑N
s�1
ei(1−|sgn(j−s)|)λs |Es〉〈Es|. (8)

Then the eigenoperators can be synthesized with two basic
transformations as [118].

Yj � U−1
j,N Zj,N Uj,N . (9)

Here Uj,N and Zj,N are the N-dimensional analogues of Ud and Zd

such that Uj,N is applied to the jth eigenstate to produce |N − 1〉
and Zj,N modifies the phase of |N − 1〉 by the jth eigenphase λj,
while ignoring all the other computation states. According to Eq.
3, Uj,N can be decomposed with primitive gates X(l)

j,N(x, y). Thus,
Xj,N(x, y) and Zj,N are sufficient to decompose U.

The second step is decomposing Uj,N and Zj,N . In other words,
Uj,N and Zj,N need to be decomposed in terms of multi-qudit-
controlled gates. For convenience denote Cm[Rd] as

Cm[Rd] � ( 1dm−d
Rd

), (10)

which acts on the dm-dimensional computational basis of
m-qudit space. It is proved in the appendix of Ref. 108 that
each Uj,N can be decomposed into some combinations of Cm[Rd]
and Cm[Pd(p, q)]where Pd(p, q) is the permutation of

∣∣∣∣p〉 and ∣∣∣∣q〉
state. The third step is using the two-qudit gates C2[Rd] and
C2[Pd(p, q)] to complete the decomposition of Cm[Rd]. Figure 1
shows a possible decomposition for d > 2. There are
r � (m − 2)/(d − 2) auxiliary qudits in the circuits (x denotes
the smallest integer greater than x). The last box contains Rd � Zd

or X(l)
d . Cm[Rd] is implemented with these gates combined. All of

the three steps together prove that the qudit gates set

Γd :� {X(l)
d ,Zd ,C2[Rd]} (11)

is universal for the quantum computation using qudit systems.
One advantage of the qudit model (compared to the qubit

model) is a reduction of the number of qudits required to span the
state space. To explain this, we need at least n1 � log2N qubits to
represent an N-dimensional system in qubits while in qudits we
need n2 � logdN qudits. The qudit system has a reduction factor
k � n1/n2 � log2d. According to Muthukrishnan and Stroud’s
method in Ref. 118 a binary equivalent of their construction
requires a number of qubit gates in the scale of O(n21N2). By
analogy, the scale of the required qudit gates using the same
construction is O(n22N2). So the qudit method has a (log2d)2
scaling advantage over the qubit case. Furthermore, in this

FIGURE 1 | The schematic circuit of Cm[Rd] with C2[Rd] and
C2[Pd(p,q)]. The horizontal lines represent qudits. The auxiliary qudits
initialized to |0〉 is denoted by the red lines and the black lines denoting m
controlling qudits. The two-qudit controlled gates is shown as the
verticle lines. Pd(p,q) is the permutation of |p〉 and |q〉 state, and Rd is either
X(l)
d or Zd.
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reviewed method, for an arbitrary unitary U ∈ SU(N), from Eqs
7 and 8 N eigenoperators is needed and each can be decomposed
with three rotations shown in Eq. 9. Deriving from the appendix
of Ref. 108; Uj,N can be decomposed with less than 3dn−1 multiple
controlled operations. Finally, as Figure 1 has shown, Cm[Rd]
needsm number ofC2[Rd] andC2[Pd(p, q)].Ud can be composed
with d − 1 numbers of X(l)

d as in Eq. 3. Therefore the total number
of primitive operations L in this decomposition method is

L≤ 2N × 3dn−1 × n × (d − 1) + N × n≤ 6nd2n + ndn. (12)

It is clear that there is an extra factor of n reduction in the gate
requirement as the number scale of this method is O(nN2). The
other advantage is these primitive qudit gates can be easily
implemented with fewer free parameters [108].

For qudit quantum computing, depending on the
implementation platform, other universal quantum gate sets
can be considered. For example, in a recent proposal for
topological quantum computing with metaplectic anyons, Cui
andWang prove a universal gates set for qutrit and qupit systems,
for a qupit being a qudit with p dimensions and p is an prime
number larger than 3 [38]. The proposed universal set is a qudit
analogy of the qubit universal set and it consists several
generalized qudit gates from the universal qubit set.

The generalized Hadamard gate for qudits Hd is

Hd

∣∣∣∣j〉 � 1


d

√ ∑d−1
i�0

ωij|i〉, j ∈ {0, 1, 2, . . . , d − 1}, (13)

where

ω :� e2πi/d. (14)

The SUMd gate serves as a natural generalization of the CNOT
gate

SUMd|i, j〉 � |i, i + j(modd)〉, i, j ∈ {0, 1, 2, . . . , d − 1}. (15)

The Pauli σz , with the π/8 gate as its 4th root, can be generalized to
Q[i] gates for qudits,

Q[i]d
∣∣∣∣j〉 � ωδij

∣∣∣∣j〉, (16)

with ω defined by Eq. 14 and the related P[i] gates are

P[i]d
∣∣∣∣j〉 � (−ω2)δij ∣∣∣∣j〉, i, j ∈ {0, 1, 2, . . . , d − 1}. (17)

In general Q[i]p is always a power of P[i]p if p is an odd prime.
The proposed gate set for the qutrit system is the sum gate

SUM3, the Hadamard gate H3 and any gate from the set

{P[0]3, P[1]3, P[2]3}. As an analogue of the standard
universal set for qubit {CNOT,H,T � π/8 − gate}, the qutrit
set generate the qutrit Clifford group whereas the qubit set
generate the qubit Clifford group (the definition of the Clifford
group can be found in Section 2.2.1). Whereas the rigorous
proof can be found in Ref. 38; the proving process follows the
idea introduced in Ref. 23 that the gate SUM3 is imprimitive,
and the Hadamard H3 and any gate from {P[0]3, P[1]3, P[2]3}
generates a dense subgroup of SU(3). Similarly, the proposed
gate set for the qupit system is the sum gate SUMp, the
Hadamard gate Hp and the gates Q[i]p for i ∈ [p − 1]. The
proof is analogous to that of the qutrit set. The Hadamard
Hp and theQ[i] gates are combined to form a dense subgroup of
SU(p) and SUMp is shown to be imprimitive. Implementing
Theorem 1.3 in Ref. 23; the set is a universal gate set. These
universal gate sets for the qudit systems, with fewer numbers of
gates in each set compare to that in the previous examples, have
the potential to perform qudit quantum algorithms on the
topological quantum computer.

2.2 Examples of Qudit Gates
In this section we introduce the qudit versions of many important
quantum gates and discuss some of the gates’ advantages
compared to their qubit counterparts. The gates discussed are
the qudit versions of the π/8 gate in Section 2.2.1, the SWAP gate
in Section 2.2 and the multi-level controlled gate in Section 2.2
In Section 2.2.3, we also introduce how to simplify the qubit
Toffoli gate by replacing one of the qubit to qudit. This gives ideas
about improving the qubit circuits and gates by introducing
qudits to the system.

2.2.1 Qudit Versions π/8 Gate
The qubit π/8 gate T has an important role in quantum
computing and information processing. This gate has a wide
range of applications because it is closely related to the Clifford
group but does not belong to the group. From the Gottesman-
Knill theorem [64] it is shown that the Clifford gates and Pauli
measurements only do not guarantee universal quantum
computation (UQC). The π/8 gate, which is non-Clifford and
from the third level of the Clifford hierarchy, is the essential gate
to obtaining UQC [20]. This gate can be generalized to a d
dimensional qudit system, where, throughout the process, d is
assumed to be a prime number greater than 2 [71].

To define the Clifford group for a d-dimensional qudit space,
we first define the Pauli Z gate and Pauli X gate. The Pauli Z gate
and Pauli X gate are generalized to d dimension in the matrix
forms [11, 67, 124, 130].

FIGURE 2 | (A) is the qudit SWAP circuit using CXd and Kd gates [58, 131]. (B) is the qudit SWAP circuits with the CXd , the CX†

d and the Kd gates.
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Xd �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 / 0 1
1 0 / 0 0
0 1 / 0 0
« « 1 « «
0 0 / 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Zd �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 / 0
0 ω 0 / 0
0 0 ω2 / 0
« « « 1 0
0 0 0 / ωd− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

for ω the dth root of unity Eq. 14. The function of the Z gate is
adding different phase factors to each basis states and that of theX
gate is shifting the basis state to the next following state. Using
basis states the two gates are

Zd

∣∣∣∣j〉 :� ωj
∣∣∣∣j〉Xd

∣∣∣∣j〉 :� ∣∣∣∣j〉 + 1, j ∈ {0, 1, 2, . . . , d − 1} (19)

In general, we define the displacement operators as products of
the Pauli operators,

D(x|z) � τxz Xx
d Z

z
d , τ :� e(d+1)πi/d , (20)

where (x|z) correspond to the x and y in the exponent of τ, X and
Z. This leads to the definition of the Weyl-Heisenberg group (or
the generalized Pauli group) for a single qudit as [11, 67, 124,
130].

G � {τcD χ
→
∣∣∣∣∣∣ χ→ ∈ Z2

d, c ∈ Zd} (Zd � {0, 1, . . . , d − 1}), (21)

where χ
→ is a two-vector with elements from Zd. With these

preliminary concepts defined in Eqs. 18-21, we now define the
Clifford group as the following: the set of the operators that maps
theWeyl-Heisenberg group onto itself under conjugation is called
the Clifford group [124, 157];

C � {C ∈ U(d)∣∣∣∣CGC† � G}. (22)

A recursively defined set of gates, the so-called Clifford hierarchy,
was introduced by Gottesman and Chuang as

Ck+1 � {U ∣∣∣∣UC1U
†4Ck}, (23)

for C1 the Pauli group [66]. The sets Ck≥ 3 do not form groups,
although the diagonal subsets of C3, which is our focus here, do
form a group.

The following derivations follow those in Ref. 71. The explicit
formula for building a Clifford unitary gate with

F � ( α β
c δ

) ∈ SL(2,Zd), χ→ � ( x
z
) ∈ Z2

d (24)

is

C(F∣∣∣∣ χ
→) � D(x|z)VF , (25)

VF �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1


d

√ ∑d−1
j,k�0

τβ
−1(αk2−2jk+δj2)|j〉〈k|, β≠ 0

∑d−1
k�0

ταck
2 |αk〉〈k|, β � 0.

(26)

The special case β � 0 is particularly relevant to the later
derivation, and

det⎛⎝∑d−1
k�0

ταck
2 |k〉〈k|⎞⎠ � τ

αc
6 (2d−1)(d− 1)d ,

� ⎧⎨⎩ τ2αc, d � 3,

1, ∀ d > 3,

(27)

can be shown. In the d � 3 case, we use

C([ 1 0
c 1 ]

∣∣∣∣∣∣∣[ xz ]) ∈ SU(p)∀ p> 3 (28)

and

det
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝C([ 1 0

c 1 ]
∣∣∣∣∣∣∣[ xz ])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � τ2c for p � 3. (29)

With all the mathematical definitions at hand, we are ready to
give an explicit form of the qudit π/8 gate. We choose the qudit
gate Uυ to be diagonal in the computational basis and claim that,
for d > 3, Uυ has the form

Uυ � U(υ0, υ1, . . . ) � ∑d−1
k�0

ωυk |k〉〈k|(υk ∈ Zd). (30)

A straightforward application of Eqs 20 and 30 yields

UυD(x|z)U†
υ � D(x|z)∑

k

ωυk+1−υk |k〉〈k|. (31)

As Uυ is to be a member of C3, the right hand side of Eq. 31must
be a Clifford gate. We ignore the trivial case UυD(0|z)U†

υ � D(0|z)
and focus on the case UυD(1|0)U†

υ in order to derive an explicit
expression for Uυ.

We define c′, z′, ε′ ∈ Zd such that

UυD(1|0)U†
υ � ωε′C([ 1 0

c′ 1 ]
∣∣∣∣∣∣∣[ 1z′ ]) (32)

From Eqs 26 and 31 we see that the right-hand side of Eq. 32 is
the most general form, and we note that U ∈ SU(d) implies
ωc′U ∈ SU(d). We rewrite the left-hand side of Eq. 32 using Eq.
31 and right-hand side using Eq. 26 and obtain

D(1|0)∑
k

ωυk+1−υk |k〉〈k| � ωε′D(1|z′)∑d−1
k�0

τc′k
2 |k〉〈k|. (33)

After canceling common factors ofD(1|0), an identity between two
diagonal matrices remains such that

ωυk+1−υk � ωε′τz′ωkz′τc′k
2 (∀k ∈ Zd), (34)

or, equivalently, using Eq. 20,

υk+1 − υk � ε′ + 2−1z′ + kz′ + 2−1c′k2. (35)

From here, we derive the recursive relation

υk+1 � υk + k(2−1c′k + z′) + 2−1z′ + ε′. (36)

We solve for the υk with a boundary condition υ0 � 0,
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υk � 1
12

k{c′ + k[6z′ + (2k − 3)c′]} + kε′, (37)

where all factors are evaluatedmodulo d. For example, with d � 5,
the fifth root of unity Eq. 14 is ω � e2πi/5 and choosing z’ � 1, c’ �
4 and ε’ � 0, we obtain

υ � (υ0, υ1, υ2, υ3, υ4) � (0, 3, 4, 2, 1) (38)

so that

Uυ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω0 0 0 0 0
0 ω−2 0 0 0
0 0 ω−1 0 0
0 0 0 ω2 0
0 0 0 0 ω1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (39)

The diagonal elements of Uυ are powers of ω that sum to zero
modulo d and, consequently, det(Uυ) � 1.

For the d � 3 case, because of Eq. 27 extra work is needed for
solving a matrix equation similar to Eq. 32. We first introduce a
global phase factor eiϕ such that

det⎛⎝eiϕ∑d−1
k�0

τck
2 |k〉〈k|⎞⎠ � 10ϕ � 4πc/9. (40)

The ninth root of unity Eq. 14 is ω � e2πi/9 and, from Eq. 29 we
derive that

det
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ω2c’C([ 1 0

c’ 1 ]
∣∣∣∣∣∣∣[ 1z’ ])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 1. (41)

The qutrit version ofUπ/8 has a more general form than in Eq. 30;
i.e.

Uυ � U(υ0, υ1, . . .) � ∑2
k�0

ωυk |k〉〈k|, υk ∈ Z9. (42)

Then the general solution is

υ � (0, 6z′ + 2c′ + 3ε′, 6z′ + c′ + 6ε′)mod9. (43)

For example, choosing z′ � 1, c′ � 2 and ε′ � 0,

Uυ � ⎛⎜⎜⎝ω0 0 0
0 ω1 0
0 0 ω−1

⎞⎟⎟⎠. (44)

The π/8 gate, with its close relation to the Clifford group, has
many applications and utilities in teleportation-based UQC [66];
transversal implementation [50, 162]; learning an unknown gate
[105]; or securing assisted quantum computation [28]. The
generalized qudit version of the π/8 gate, Uυ, is shown to be
identical to the maximally robust qudit gates for qudit fault-
tolerant UQC discussed in reference [150].

This gate also plays an important role in the magic-state
distillation (MSD) protocols for general qudit systems, which
was first established for qutrits [6] and then extended to all prime-
dimensional qudits [25].

2.2.2 Qudit SWAP Gate
A SWAP gate is used to exchange the states of two qudit such that:

SWAP|ϕ〉|ψ〉 � |ψ〉|ϕ〉 (45)

Various methods to achieve the SWAP gate use different variants
of qudit controlled gates [4, 58, 112, 131, 155, 158, 159] as shown
in Figure 2A,B. The most used component of the SWAP gate is a
controlled-shift gate CXd that perform the following operation:

CXd|x〉|y〉 � |x〉|x + y〉 (46)

with a modulo d addition. Its inverse operation is

CX†
d |x〉|y〉 � |x〉|y − x〉 (47)

In some approaches, the operation Kd is required to complete the
circuits, where

Kd|x〉 � |d − x〉 � |−x〉, (48)

which outputs the modulo d complement of the input. These
circuits are more complex and less intuitive then the qubit SWAP
gate [58] because they are not Hermitian, i.e., CXd ≠CX†

d .
One way to create a Hermitian version of the qudit CNOT uses

the GXOR gate

FIGURE 3 | Qudit SWAP circuits with the GXOR and the Kd gates [4,
155].

FIGURE 4 | (A) is the qudit SWAP gate with the C~X gate. (B) is the decomposing C~X gate. The QFT represents the quantum Fourier transform while CZd is the
selective phase shift gate.
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GXOR|x〉|y〉 � |x〉|x − y〉. (49)

However, this SWAP gate needs to be corrected with an Kd [4] as
shown in Figure 3. A partial SWAP gate Sp [39] works on a
hybrid system where |i〉 is a qudit of dimension dc and |j〉 is a
qudit of dimension dt

Sp|i〉⊗ | j〉 � { | j〉⊗ |i〉 for i, j ∈ Zdp

|i〉⊗ | j〉 otherwise
(50)

where dp ≤ dmin � min(dc, dt).
In the rest of this section, we present a Hermitian

generalization of the qudit CNOT gate with a symmetry
configuration and a qudit SWAP circuit with a single type of
qudit gate as shown in Figure 4A [61]. Compared with all the
previously proposed SWAP gate for qudit, this method is easier to
implement since there is only one type of gate C~X needed. To
begin with, we define a gate C~X acting on d-level qudits |x〉 and
|y〉 such that

C~X|x〉|y〉 � |x〉|−x − y〉, (51)

where |−x − y〉 represents a state |i � −x − y〉 in the range
i ∈ {0, . . . , d − 1} mod d. Notice that, for d � 2, the C~X gate is
equivalent to the CNOT gate. The SWAP gate for qudit can be
built using three C~X gates.

C~X is generated with three steps: a qudit generalization of the
CZ gate as CZd sandwiched by two quantum Fourier transform
operations (QFT). The circuit illustration for the sequence of
theses gate is shown in Figure 4B. The QFT transforms the |Es〉x
into a uniform superposition

QFT|x〉 � 1


d

√ ∑d−1
k�0

ei2πxk/d|k〉. (52)

The CZd gate adds a phase to the target qudit depending on the
state of the control qudit. Its effect on the input qudits is

CZd|x〉|y〉 � ei2πxy/d|x〉|y〉. (53)

The inverse QFT undoes the Fourier transform process and the
inverse of CZd is

CZ†
d |x〉|y〉 � e−i2πxy/d|x〉|y〉. (54)

The full evolution of the C~X is

|x〉∣∣∣∣y〉QFT2→
1


d

√ ∑d−1
k�0

ei
2πky
d |x〉|k〉 (55)

CZd→
1


d

√ ∑d−1
k�0

ei
2πky
d ei

2πxk
d |x〉|k〉 � 1



d
√ ∑d−1

k�0
ei

2πk(x+y)
d |x〉|k〉 (56)

QFT2→
1
d
∑d−1
l�0
∑d−1
k�0

ei
2πk(x+y)

d ei
2πkl
d |x〉|l〉 � |x〉|−x − y〉. (57)

It is easy to show that C~X is its own inverse and then C~X � C~X
†
.

For the proposed SWAP gate, both the QFT and CZd operations
are realizable on a multilevel quantum systems. For example,
there are implementations of them for multilevel atoms [118,
145]. The resulting SWAP gate provides a way to connect systems
limited to the nearest-neighbour interactions. This gate provides
a useful tool in the design and analysis of complex qudit circuits.

2.2.3 Simplified Qubit Toffoli Gate With a Qudit
The Toffoli gate is well known for its application to universal
reversible classical computation. In the field of quantum
computing, the Toffoli gate plays a central role in quantum
error correction [35]; fault tolerance [43] and offers a simple
universal quantum gate set combined with one qubit Hadamard
gates [141]. The simplest known qubit Toffoli gate, shown in
Figure 5, requires at least five two-qubit gates [125]. However, if
the target qubit has a third level, i.e., a qutrit, the whole circuit can
be achieved with three two-qubit gates [133].

A new qutrit gate Xa is introduced to the circuit that does the
following: Xa|0〉 � |2〉 and Xa|2〉 � |0〉 with Xa|1〉 � |1〉. The
simplified circuit is shown in Figure 6. The two controlled gates
are the CNOT gate and a control-Z gate, which is achieved with a
CNOT gate between two Hadamard gates. The Hadamard gate
here operating on the qutrit is generalized from the normal
Hadamard gate operating on a qubit—it only works with the
|0〉 and |1〉, such that H|0〉 � 1/



2

√ [|0〉+|1〉], H|1〉 � 1/


2

√ [|0〉 -
|1〉] and H|2〉 � |2〉. Comparing the circuit in Figure 6 to that in
Figure 5, it is clear that the total number of gates is significantly
reduced.

This method can be generalized to n-qubit-controlled Toffoli
gates by utilizing a single (n + 1)-level target carrier and using
only 2n − 1 two-qubit gates [133]. In other words, the target
carrier needs an extra level for each extra control qubit. Compare
to the best known realization previously that requires 12n − 11

FIGURE 5 | Decomposing qubit Toffoli gate with the universal qubit
gates. H is the Hadamard gate, T is the π/8 gate and S is the phase gate.

FIGURE 6 | The Simplified Toffoli gate. The first two lines represent two
control qubits and the third line represents a target qutrit that has three
accessible levels. The initial and final quantum states of the quantum
information carrier are encoded in the |0〉 and |1〉. The H is the
generalized Hadamard gate such that H|0〉 � 1/




2

√ [|0〉+|1〉],
H|1〉 � 1/




2

√ [|0〉 - |1〉] and H|2〉 � |2〉. Xa gate is a qutrit gate such that
Xa|0〉 � |2〉 and Xa|2〉 � |0〉with Xa|1〉 � |1〉. With the control being qubit, the
target being qudit, the two qudit gate in this case is a hybrid gate.
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two-qubit gates [125]; this method offers a significant resource
reduction. Furthermore, these schemes can be extended to more
general quantum circuits such as the multi-qudit-controlled-
unitary gate CnU .

The previous method turns the target qubit into a qudit;
another method simplifies the Toffoli gate by using only
qudits and treating the first two levels of the qudit as qubit
levels and other levels as auxiliary levels. The reduction in the
complexity of Toffoli gate is accomplished by utilizing the
topological relations between the dimensionality of the qudits,
where higher qudit levels serve as the ancillas [89].

Suppose we have a system of n qudits denoted as
Qi, i ∈ {1, . . . , n} and each qudit has dimension di ≥ 2. Qudits
are initialized into pure or mix states on the first two levels,
i.e., the qubit states, and zero population for the other levels,
i.e., the auxiliary states. This scheme assumes the ability to
perform single-qubit operations. We can apply the desirable
unitary operation on the qubit states and leave the auxiliary
states unchanged. We also assume that we have the ability to
manipulate the auxiliary levels by a generalized inverting gate Xm

Xm|0〉 � |m〉, Xm|m〉 � |0〉, Xm|y〉 � |y〉, for y ≠m, 0. (58)

At the same time, the two-qubit CZ gates are applied according to
certain topological connections between qudits. We introduce a
set E of ordered pairs (i, j), such that i, j ∈ {1, . . . , n}, i< j to
obtain this topology and the CZ gate is defined as

CZ|11〉Qi ,Qj
� −|11〉Qi ,Qj

CZ|xy〉Qi ,Qj
� |xy〉Qi ,Qj

for xy ≠ 1, (59)

with x ∈ {0, . . . di − 1} and y ∈ {0, . . . dj − 1}.
The set E describes an n-vertex-connected graph. Let ~E4E

defines an n-vertex connected tree (acyclic graph). The main
result is: the n-qubit Toffoli gate can be achieved with less number
of operations if

di ≥ ki + 1, (60)

where di is the dimension of a qudit and the number ki is the
qudit’s connections to other qudits within ~E. With this condition
fulfilled, the n-qubit Toffoli gate can be realized by 2n − 3 two-
qudit CZ gates. The detailed realization of the n-qubit Toffoli gate
by the properties and special operations of the tree in topology
can be found in Ref. 89. The advantage of this scheme is the
scalability and the ability to implement it for the multi-qubit
controlled unitary gate CnU .

These CnU gates are a crucial component in the PEA which
has many important applications such as the quantum simulation
[8] and Shor’s factoring algorithm [142]. This idea of combining
qudits of different dimensions or hybrid qudit gates can also be
applied to other qudit gates such as the SWAP and SUM gates as
shown in Refs. [33, 39]. Thus, introducing qudits into qubit
systems to create a hybrid qudit system offers the potential of
improvement to quantum computation.

2.2.4 Qudit Multi-Level Controlled Gate
For a qubit controlled gate, the control qubit has only two states
so it is a “do-or-don’t” gate. Qudits, on the other hand, have
multiple accessible states and thus a qudit-controlled gate can
perform a more complicated operation [46]. The Muthukrishan-
Stroud gate (MS gate) for a qudit applies the specified operation
on the target qudit only if the control qudit is in a selected one of
the d states, and leaves the target unchanged if the control qudit is
in any other d − 1 states. Hence, the MS gate is essentially a “do-
or-don’t” gate generalized to qudits and does not fully utilize the d
states on the control qudit [118].

To fully utilize the d states on the control qudit, people have
developed the quantum multiplexer to perform the controlled U
operations in a qudit system as shown in Figure 7, where the MS
gate and shifting gates are combined to apply different operations
to the target depending on different states on the control states
[87]. Here we discuss themulti-value-controlled gate (MVCG) for
qudits, which applies a unique operation to the target qudit for
each unique state of the control qudit [106].

For a d-dimensional qudit system, a two-qudit multi-value-
controlled gate is represented by a d2 × d2 matrix

MVCG �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0 0 / 0
0 U1 0 / 0
0 0 U2 / 0
« « « 1 0
0 0 0 / Ud−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (61)

where eachUi (i � 0, 1, . . . , d − 1) is a unique unitary single-qudit
operation. The Ui operation is applied to the target qudit when
the control qudit is in |Es〉 state. In the later sections, Section
3.2.1 and Section 3.2.2 the controlled gates are MVCG and
improve the efficiency of the qudit algorithm. MVCG can be
built in many physical systems and one example in a photonic
system is introduced in Section 5.1.

2.3 Geometrically Quantifying Qudit-Gate
Efficiency
In a quantum computer, each qudit can remain coherent for a
limited amount of time (decoherence time). After this time, the

FIGURE 7 | d-valued Quantum Multiplexer for the second qutrit and its
realization in terms of Muthukrishan-Stroud gates (the controlU operation that
only act on one specific control state). The gate labeled +1 is the shifting gate
that increases the state value of the control qudit by 1 (mod d).
Depending on the value of the top control qudit, one of Ui is applied to the
second qudit, for i ∈ {0, 1, . . .d − 1}.

FIGURE 8 | Schematic view of the quantum circuit for the parity
determining algorithm. FT is the Fourier transform andUfk is the gate that does
one of the two permutations and the last box represents the measurement.
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quantum information is lost due to the outside perturbations and
noises. In the computation process, quantum gates take certain
amount of time to alter the states of the qudits. The decoherence
time of a qudit state limits the number of quantum gates in the
circuit. Therefore, we need to design more efficient algorithms
and circuits. A method exists to do a general systematic
evaluation of the circuit efficiency with the mathematical
techniques of Riemannian geometry [126]. By reforming the
quantum circuits designing problems as a geometric problem,
we are able to develop new quantum algorithms or to exploring
and evaluating the full potential of the quantum computers. This
evaluation is able to generalized to qutrit systems, where the least
amount of the gates required to synthesize any unitary operation
is given [100].

To begin with, we assume that the operations done by the
quantum circuit can be described by a unitary evolution U
derived from the time-dependent Schrödinger equation dU/dt �
−iHU with the boundary condition tf ,U(tf ) � U . The complexity
of realizing U can be characterized by a cost function F[H(t)] on
the Hamiltonian control H(t). This allow us to define a
Riemannian geometry on the space of unitary operations
[122]. Finding the minimal geodesics of this Riemannian
geometry is equivalent to finding the optimal control function
H(t) of synthesizing the desired U.

Nowwe transform the problem of calculating a lower bound to
the gate number to finding the minimal geodesic distance
between the identity operation I and U. Instead of Pauli
matrices for the qubit representation of the Hamiltonian, the
qutrit version of Hamiltonian is expanded in terms of the Gell-
Mann matrices. Here we give an explicit form of the Gell-Mann
matrices representation in d-dimension [109] which is used for
qutrit (where d � 3) as well as other qudit systems in the later part

of the section. Let ejk denote the d × d matrix with a one in the
(j, k) elements and 0 s elsewhere, a basis can be described as

ud
jk � ejk + ekj, 1≤ j< k≤ d, (62)

ud
jk � i(ejk − ekj), 1≤ k< j≤ d, (63)

ud
jj � diag(1, . . . , 1,−j, 0d−2j), j ∈ [d − 1]. (64)

Here, diag represents the diagonal matrix, 0d−2j denotes the zeros
of length d − 2j. udjk are traceless and Hermitian and together with
the identity matrix 1d serve as the basis of the vector space of
d × d Hermitian matrix. These generalized Gell-Mann matrices
can be used to generate the group representation of SU(d) while
the other representations can be achieved by transform these
matrices uniformly. To derive the bases of SU(dn), we first define
xl � udjk with l � jd + k, l ∈ [d2] and

Xs
l � I⊗s−1⊗xl⊗I⊗d−s (65)

acts on the s-th qudit with xl and leaves the other qudits
unchanged. The bases of SU(dn) is constructed by
{YPt

t }, t ∈ [n], Pt � {i1, . . . , it} with all possible
1< i1 </< ik < n, where

YPt
t � ∏i

k�0
Xik
jk
. (66)

YP
t denotes all operators with generalized Gell-Mann matrices

xj1, . . . , xjk acting on t qudits at sites P � {i1, . . . , ik}, respectively,
and rest with identity. It is easy to prove that with the generalized
Gell-Mann matrices representations,1-body and 2-body
interactions can generate all 3-body interactions.

Now the Hamiltonian in terms of the Gell-Mann matrices
(with the notation σ) can be written as

H � ∑′
σ

hσσ +∑″
σ

hσσ. (67)

All coefficients hσ are real and, in ∑

′σhσσ, σ goes over all possible
one- and two-body interactions whereas, in ∑ ″″

σ
hσσ, σ goes over

everything else. The cost function is

F(H) :�
















∑′
σ

h2σσ + p2∑″
σ

h2σσ

√√
, (68)

FIGURE 9 | The Deutsch-Jozsa circuit in qudit system. The Fn are the
qudit Hadamard gates achieved with quantum Fourier transform.

FIGURE 10 |Quantum Fourier transform in qudit system. Hd is the d-dimensional Hadamard gate and the expression of the Rd gate is shown in Eq. 99. Resultant
states are shown to the right.
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where p is a penalty cost by applying many-body terms. Now that
the control cost is well defined, it is natural to form the distance in
the space SU(3n) of n-qutrit unitary operators with unit
determinant. We can treat the function F(H) as the norm
related to a Riemannian metric with a metric tensor g as:

g �
⎧⎪⎨⎪⎩

0, σ ≠ τ
1, σ � τ and σ is one or two body
p2, σ � τ and σ is three or more body

. (69)

The distance d(I,U) between I and U which is the minimum
curve connecting I andU equals to the minimal length solution to
the geodesic equation

〈dH
dt

,K〉 � i〈H, [H,K]〉, (70)

where 〈, 〉 denotes the inner product on the tangent space SU(3n)
defined by the metric components (69), and [, ] denotes the
matrix commutator and K is an arbitrary operator in SU(3n).

All lemmas backing up the final theorem have been proven in
detail [100]; but the reasoning behind can be summarized in four
parts. First let p be the three- and more-body items penalty. With
large enough p, the distance d(I,U) is guarantee to have a
supremum that does not depend on p. Secondly, we have

||U − UP||≤ 3nd([U])/p, (71)

where ‖ • ‖ is the operator norm and UP the corresponding
unitary operator generated by the one- and two-body items
projected Hamiltonian HP(t). Thirdly, given an n-qutrit
unitary operator U generated by H(t) with the condition
||H(t)||≤ c in a time interval [0, Δ], then∣∣∣∣∣∣∣∣U − exp(−iH)∣∣∣∣∣∣∣∣Δ≤ 2(ecΔ − 1 − cΔ) � O(c2Δ2), (72)

where H is the mean Hamiltonian. Lastly, for H as an n-qutrit
one- and two-body Hamiltonian, a unitary operator UA exists
that satisfies ∣∣∣∣∣∣∣∣eiHΔ − UA

∣∣∣∣∣∣∣∣≤ c2n2Δ3 (73)

and can be generated with at most c1n2/Δ one- and two-qutrit
gates, and constants c1 and c2.

All these lemmas combined gives the final theorem for the
qutrit system: for a unitary operator U in SU(3n), O(nkd(I,U)3)
one- and two-qutrit gates is the lower bound to synthesize a
unitaryUA with the condition ||U − UA||≤ c, given a constant c. It
is worth mentioning that for any groups of unitaries U, which is
labeled by the number of qudits n, the final theorem shows a
quantum circuit exists with a polynomial of d(I,U) number of
gates such that it can approximates U to arbitrary accuracy.
Alternatively,a polynomial-sized quantum circuit exists if and
only if the distance d(I,U) itself is scaling polynomially with n.

With appropriate modification, the Riemannian geometry
method can be used to ascertain the circuit-complexity bound
for a qudit system [109]. In this scheme, the unitary matrix
U ∈ SU(dn) is represented by the generalized Gell-Mann
matrices as defined in the earlier part of the section. The main
theorem in the qudit case of the Ref. [109] is “for any small

constant ε, each unitary UA ∈ SU(dn) can be synthesized using
O(ε−2) one- and two-qudit gates, with error U − UA ≤ ε.” To
break up the constant ε to an explicit form, we have ε−2 � N2d4n2,
where d is the dimension of the qudit, n is the number of qudits
and N is the number of the intervals that d(I,U) divides into,
such that a small δ � d(I,U)/N ≤ ε. The qudit case shows the
explicit relation between the non-local quantum gate cost and the
approximation error for synthesizing quantum qudit operations.
In summary, for the quantum circuit model, one can decide a
lower bound for the number of gates needed to synthesize U by
finding the shortest geodesic curve linking I and U. This provides
a good reference for the design of the quantum circuit using
qudits.

3 QUANTUM ALGORITHMS USING QUDITS

A qudit, with its multi-dimensional nature, is able to store and
process a larger amount of information than a qubit. Some of the
algorithms described in this section can be treated as direct
generalizations of their qubit counterparts and some utilize the
multi-dimensional nature of the qudit at the key subroutine of the
process. This section introduces examples of the well-known
quantum algorithms based on qudits and divides them into
two groups: algorithms for the oracle-decision problems in
Section 3.1 and algorithms for the hidden Abelian subgroup
problems in Section 3.2. Finally, Section 3.3 discusses how the
qudit gates can improve the efficiency of the quantum search
algorithm and reduce the difficulty in its physical set-up.

3.1 Qudit Oracle-Decision Algorithm
In this subsection we explore the qudit generalizations of the
efficient algorithms for solving the oracle decision problems,
which are quite important historically and used to
demonstrate the classical-quantum complexity separation [44,
45]. The oracle decision problems is to locate the contents we
want from one of the two mutually disjoint sets that is given. We
start in Section 3.1.1 with a discussion about a single-qudit
algorithm that determines the parity of a permutation. In
Section 3.1.2, the Deutsch-Jozsa algorithm in qudit system is
discussed and its unique extension, the Bernstein-Vazirani
algorithm is provided in Section 3.1.3.

3.1.1 Parity Determining Algorithm
In this section we review a single qutrit algorithm which provides
a two to one speedup than the classical counterpart. This
algorithm can also be generalized to work on an arbitrary
d-dimensional qudit which solves the same problem of a
larger computational space [62]. In quantum computing,
superposition, entanglement and discord are three important
parts for the power of quantum algorithms and yet the full
picture behind this power is not completely clear [151].

Recent research shows that we can have a speedup in a fault
tolerant quantum computation mode using the quantum
contextuality [72]. The contextual nature can be explained as
“a particular outcome of a measurement cannot reveal the pre-
existing definite value of some underlying hidden variable” [92,
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93]. In other words, the results of measurements can depend on
how we made the measurement, or what combination of
measurements we chose to do. For the qudit algorithm
discussed below, a contextual system without any quantum
entanglement is shown to solve a problem faster than the
classical methods [62]. Because this qudit algorithm uses a
single qudit throughout the process without utilizing any
correlation of quantum or classical nature, it acts as a perfect
example to study the sources of the quantum speed-up other than
the quantum correlation.

The algorithm solves a black-box problems that maps d inputs
to d outputs after a permutation. Consider the case of three
objects where six possible permutations can be divided into two
groups: even permutation that is a cyclic change of the elements
and odd permutation that is an interchange between two
elements. If we define a function f (x) that represents the
permutation on the set x ∈ {−1, 0, 1}, the problems become
determining the parity of the bijection f : −1, 0, 1→−1, 0, 1.
We use Cauchy’s two-line notation to define three possible
even functions fk, namely,

f1 :� ( 1 0 −1
1 0 −1), f2 :� ( 1 0 −1

0 −1 1
),

f3 :� ( 1 0 −1
−1 1 0

), (74)

and the remaining three odd function are

f4 :� ( 1 0 −1
−1 0 1

), f5 :� ( 1 0 −1
0 1 −1),

f6 :� ( 1 0 −1
1 −1 0

). (75)

The circuit for the single qutrit algorithm in a space spanned by
{|1〉, |0〉 | − 1〉} is shown in Figure 8, where the operation Ufk
applies fk to the state:Ufk(

∣∣∣∣1〉 + ∣∣∣∣0〉 + ∣∣∣∣ − 1〉) � ∣∣∣∣fk(1)〉 + ∣∣∣∣fk(0)〉 +∣∣∣∣fk( − 1)〉) and FT is the single-qutrit Fourier transform

FT � 1

3

√ ⎛⎜⎜⎝ ω 1 ω−1

1 1 1
ω−1 1 ω

⎞⎟⎟⎠ (76)

using ω as the cube root of unity Eq. 14. The process starts with
state |1〉 undergoing FT and becoming |ψ1〉 as
FT|1〉 � |ψ1〉 � ω|1〉 + |0〉 + ω−1|−1〉. Then we obtain |ψk〉 by
applying Ufk to |ψ1〉. It is easy to show that

|ψ1〉 � ω−1|ψ2〉 � ω|ψ3〉 (77)

and, similarly,

|ψ4〉 � ω−1|ψ5〉 � ω|ψ6〉. (78)

Hence, application of Ufk on |ψ1〉 gives |ψ1〉 (up to a phase factor)
for an even permutation and |ψ4〉 � FT|−1〉 for an odd
permutation. Thus, applying inverse Fourier transform FT−1 at
the end, we measure |1〉 for even fk and |−1〉 for odd fk. We are

FIGURE 11 | A) The circuit for the first stage of the PEA. The qudits in the second register whose states represent |u〉 are undergoing the U operations and the
generated phase factors are kicking back to the qudits in the first register, giving the results to the right. (B) The schematic circuit for the whole stage of PEA. After the first
stage of the PEA, inverse Fourier transform (FT−1) is applied to the qudits in the first register and the phase factors can be obtained by measuring the states of the first
register qudits.

FIGURE 12 | (A)Circuit illustration for Grover iteration,G, in a qudit system. The F gate is the proposed qudit gate that transforms the single-qudit state |0k〉 into an
equal weight superposition state. (B) Schematic circuit illustration of the qudit quantum search algorithm.
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able to determine the parity of fk by a single application of fk on a
single qutrit.

Generalizing to a d–dimensional qudit system,

|ψk〉 :� 1


d

√ ∑d
k′�1

ω(k′−1)(k− 1)|k′〉. (79)

In this scenario, a positive cyclic permutation maps |ψ2〉 onto
itself whereas negative permutations give |ψd〉. We then measure
the results after applying an inverse Fourier transform to solve for
the parity of the permutation. This algorithm has been
implemented on the NMR system for both the qutrit [48] and
quart [62] cases. It is also realized on a linear optic system [163].
Although the model problem has no significant applications and
the speedup in the higher dimensional cases is not exponential,
this proposed algorithm provides an elegant yet simple example
for quantum computation without entanglement.

3.1.2 Qudit Deutsch-Jozsa Algorithm
Deutsch algorithm (with its origin in Ref. 44 and improved in Ref.
33 is one of the simplest examples to show the speed advantage of
quantum computation. Deutsch-Jozsa algorithm is n-qubits
generalization of the Deutsch algorithm. Deutsch-Jozsa
algorithm can determine if a function f (x) is constant, with
constant output, or balanced, that gives equal instances of both
outputs [125]. The process itself consists of only one evaluation of
the function f (x). In this algorithm, Alice sends Bob N qubits in
the query register and one in the answer register where Bob
applies the function to the query register qubits and stores the
results in the answer register. Alice can measure the qubits in the
query register to determine whether Bob’s function is constant or
balanced. This algorithmmakes use of the superposition property
of the qubit and reduces the minimum number of the function
call from 2n/2 + 1 classically to only 1 with quantum algorithm.
This gives another example of the advantages of quantum
algorithms.

The Deutsch-Jozsa algorithm can be performed in the qudit
system with a similar setup. Furthermore, with the qudit system,
Deutsch-Jozsa algorithm can also find the closed expression of an
affine function accurate to a constant term [53]. The constant and
balanced function in the n dimensional qudit case have the
following definition: “An r-qudit multi-valued function of the
form

f : {0, 1, . . . , n − 1}r→ {0, 1, . . . , n − 1} (80)

is constant when f (x) � f (y) ∀x, y ∈ {0, 1, . . . , n − 1}r and is
balanced when an equal number of the nr domain values,
namely nr−1, is mapped to each of the n elements in the co-
domain” [53].

It can be shown that all of the affine functions of r qudits

f (x1, . . . , xr) :� A0 ⊕A1x1 ⊕/⊕Arxr , A0, . . . ,Ar ∈ Zn, (81)

can be categorized to either constant or balanced functions [53].
If all the coefficients Ai≠ 0 � 0 then the function is constant. For
affine function with non-zero coefficient Ai≠ 0, every element in
its domain {0, 1, . . . , n − 1}r is reducible modulo n to a unique

element m ∈ {0, 1, . . . , n − 1}. As f (p) � f (q) if p ≡ q(mod n),
each of the elements in the codomain {0, 1, . . . , n − 1} is mapped
to nr−1 different elements in the domain. To finish the proof of the
n-nary Deutsch-Jozsa algorithm, another trivial lemma is needed:
Primitive nth roots of unity satisfy ∑ n−1

k�0ωαk � 0 for nonzero
integers α.

The circuit of the Deutsch-Jozsa algorithm in qudits is shown
in Figure 9. This algorithm of r qudits can both distinguish
whether a function Uf is balanced or constant and verify a closed
expression for an affine function in Uf within a constant term
which is a universal phase factor of the x-register and thus is lost
during the measurement. The other coefficients of the affine
function A1, . . . ,Ar are determined by measuring the state of the
x-register at the output, |A1, . . . ,Ar〉.

A detailed derivation of the circuit has been shown [53]; but
the reasoning is an analogy to the qubit version of the Deutsch-
Jozsa algorithm. If the function Uf is constant, the final state after
the measurement is |0〉⊗r|n − 1〉 as for j≠ 0 every states in the
x-register have null amplitudes. Therefore, if every x-register
qudit yields |0〉, it is a constant function; otherwise the
function is balanced.

The Deutsch-Jozsa algorithm in the qudit system shares the
same idea while enabling more applications such as
determining the closed form of an affine function. Although
this algorithm is mainly of theoretical interest, the n-nary
version of it may have applications in image processing. It
has the potential to distinguish between maps of texture in a
Marquand chart since the images of which are encoded by
affine functions [121]. This algorithm can also be modified to
set up a secure quantum key-distribution protocol [121]. Other
proposed Deutsch-Jozsa algorithms exist such as a method that
makes use of the artificially allocated (subsystems) as qudits
[88] and a generalized algorithm on the virtual spin
representation [86].

3.1.3 Qudit Generalization of the Bernstein-Vazirani
Algorithm
In Section 3.1.2 we have discussed an application of a qudit
Deutsch-Jozsa algorithm (DJA): verify a closed expression of an
affine function. This application is closely related to the
Bernstein-Vazirani algorithm discussed in this section. Given
an input string and a function that calculates the bit-wize inner-
product of the input string with an unknown string, the
Bernstein-Vazirani algorithm determines the unknown string
[12]. This algorithm can be treated as an extension of the
Deutsch-Jozsa algorithm.

The qudit generalization of the Bernstein–Vazirani algorithm
can determine a number string of integers modulo d encoded in
the oracle function [95, 119]. First we introduce a positive integer
d and consider the problem in modulo d throughout. Given an
N-component natural number string

g(a) :� (g(a1),g(a2),g(a3), . . . ,g(aN)), g(aj) ∈ {0,1, . . . ,d−1},
(82)

we define
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f (x) :� g(a) · x mod d

� g(a1)x1 + g(a2)x2 + . . . + g(aN)xN mod d, (83)

for

x � (x1, x2, . . . , xN) ∈ {0, 1, . . . , d − 1}N . (84)

The oracle in the algorithm applies f (x) to the input string x and
computes the result, namely, the number string g(a) encoded in
the function f (x).

The input state x is chosen to be |ψ0〉 � |0〉⊗N |d − 1〉, where
|0〉⊗N means initialization of the N control-qudits into their |0〉
states and |d − 1〉 means the target qudit is in its d − 1 state.
Quantum Fourier transforms of the pertinent input states are

|0〉QFT→ ∑d−1
y�0

|y〉


d

√ (85)

and

|d − 1〉QFT→ ∑d−1
y�0

1


d

√ ωd−y|y〉,

for ω a root of unity Eq. 14. The component-wize Fourier
transform of a string encoded in the state |x1x2 . . . xN〉 is

|x1x2 . . . xN〉QFT→ ∑
z ∈ K

ωx·z|z〉



dN

√ , (86)

where

K � {0, 1, . . . , d − 1}N , z :� (z1, z2, . . . , zN ). (87)

We denote the Fourier transform of the |d − 1〉 state as |ϕ〉 and
the input state after the Fourier transform is

|ψ1〉 � ∑
x ∈ K

|x〉



dN

√ |ϕ〉 (88)

Now we introduce the oracle as the Of (x) gate such that

|x〉∣∣∣∣j〉Of (x)→ |x〉|(f (x) + j) mod d〉, (89)

where

f (x) � g(a) · x mod d. (90)

By applying theOf (x) gate to |ψ1〉 and following the formula by
phase kick-back, we obtain the output state

Of (x)|ψ1〉 � |ψ2〉 � ∑
x ∈ K

ωf (x)|x〉



dN

√ |ϕ〉. (91)

Finally, obtain the |ψ3〉 which is the state after inverse Fourier
transform of the first N qudits of |ψ2〉. By measuring the first N
quantum state of |ψ3〉we can obtain the natural number string we
want that is offset up to a constant

g(a1), g(a2), g(a3), . . . , g(aN) (92)

using a single query of the oracle function.
The Bernstein-Vazirani algorithm clearly demonstrates the

power of quantum computing. It outperforms the best classical

algorithm in terms of speed by a factor of N [95]. The qudit
generalizations of the Bernstein-Vazirani algorithm helps us
comprehend the potential of the qudit systems.

3.2 Qudit Algorithms for the Hidden Abelian
Subgroup Problems
Many of the widely used quantum algorithms such as the discrete
Fourier transform, the phase estimation and the factoring fit into
the framework of the hidden subgroup problem (HSP). In this
section, we review the qudit generalization of these algorithms.
The qudit Fourier transform is discussed in Section 3.2.1 and its
application, the PEA is reviewed in Section 3.2.2. A direct
application of these algorithms, Shor’s factoring algorithm
performed with qutrits and in metaplectic quantum
architectures is also introduced Section 3.2.2.

3.2.1 Quantum Fourier Transform With Qudits
The quantum Fourier transform algorithm (QFT) is realizable on
a qubit system [125]. QFT, as the heart of many quantum
algorithms, can also be performed in a qudit system [145,
165]. In an N-dimensional system represented with n
d-dimensional qudits, the QFT, F(d,N), where N � dn,
transforms the computational basis

{|0〉, |1〉, . . . , |n − 1〉} (93)

FIGURE 13 | Illustration of a qudit multipod linkage: the top is in the
original basis and the bottom is in the Morris-Shore basis. Δ is a common
detuning between a common (ancilla) state and other qudit states, Ωk

represents the single-photon Rabi frequencies. State |b〉 is a
superposition of the qudit states weighted by the couplings Ωk ; |un〉 are the
states that are not in the dynamics.
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into a new basis set [26]

F(d,N)|j〉 � 1


N

√ ∑N−1

k�0
e2πijk/N |k〉. (94)

For convenience, we write an integer j in a base-d form. If j> 1
then

j � j1j2/jn � j1d
n−1 + jn−22 +/ + jnd

0 (95)

and, if j< 1, then

j � 0.j1j2/jn � j1d
−1 + j2d

−2 +/ + jnd
−n. (96)

The QFT acting on a state |j〉 can be derived and rewritten in a
product form as

|j〉 � |j1j2/jn〉1
1
dn/2

∑dn−1
k�0

e2πijk/d
n |k〉

� 1
dn/2

∑d−1
k1�0

/∑d−1
kn�0

e2πij(∑ n

l�1kld
−l)|k1k2/kn〉

� 1
dn/2

∑d−1
k1�0

/∑d−1
kn�0

⊗
n

l�1
e2πijkld

−l |kl〉

� 1
dn/2

⊗
n

l�1
⎡⎢⎢⎣∑d−1
kl�0

e2πijkld
−l |kl〉⎤⎥⎥⎦.

This process can be realized with the quantum circuit shown in
Figure 10, and the fully expanded expression of the product form
is shown on the right side of the figure. The generalized
Hadamard gate Hd in the figure is defined as Hd :� F(d, d)
which effects the transform

Hd
∣∣∣∣jn〉� |0〉 + e2πi0.jn |1〉 +/ + e2(d−1)πi0.jn |d − 1〉. (97)

The matrix representation of Hd is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 / 1
1 e2πi0.1 / e2πi0.(d−1)

« « 1 «
1 e2(d−1)πi0.1 / e2(d−1)πi0.(d− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (98)

In the circuit the Rd
k gate is a phase gate that has the expression

Rd
k �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 / 0
0 e2πi/d

k
/ 0

« « 1 «
0 0 / e2πi(d−1)/d

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (99)

The black dots in the circuit are multi-value-controlled gates
that apply Rd

k to the target qudit j times for a control qudit in
state |j〉. In order to complete the Fourier transform and
ensure the correct sequence of j1j2/jn, a series of SWAP
gates are applied at the end, which are not explicitly drawn
in Figure 10.

The QFT developed in qudit system offers a crucial subroutine
for many quantum algorithm using qudits. Qudit QFT offers
superior approximations where the magnitude of the error

decreases exponentially with d and the smaller error bounds
are smaller [165]; which outperforms the binary case [34].

3.2.2 Phase-Estimation Algorithm With Qudits
With the qudit quantum Fourier transform, we are able to
generalize the PEA to qudit circuits [26]. Similar to the PEA
using qubit, the PEA in the qudit system is composed by two
registers of qudits. The first register contains t qudits and t
depends on the accuracy we want for the estimation. We
assume that we can perform a unitary operation U to an
arbitrary number of times using qudit gates and generate its
eigenvector |u〉 and store it using the second register’s qudits [17].
We want to calculate the eigenvalue of |u〉 where U |u〉 � e2πir|u〉
by estimating the phase factor r.

The following derivations follow those in Ref. 26. For
convenience, we rewrite the rational number r as

r � R/dt � ∑t
k�0

Rl/d
l � 0.R1R2/Rt . (100)

As shown in Figure 11A, each qudit in the first register passes
through the generalized Hadamard gate H ≡ F(d, d). For the lth
qudit of the first register, we have

F(d, d)|0l〉 � 1


d

√ ∑d−1
kl�0

|kl〉. (101)

Then the lth qudit is used to control the operation Udt−l on the
target qudits of the state |u〉 in the second register, which gives

CUdl−1 |k〉⊗|u〉 � |k〉(Udt−l)k|u〉 � e2πikd
t−l r|k〉⊗|u〉. (102)

Note that the function of the controlled operation CUdt−l can be
considered as a “quantum multiplexer” [24, 87, 139]. After
executing all the controlled operations on the qudits, the qudit
system state turns out to be

⎛⎝∏t
l�1

⊗
1


d

√ ∑d−1
kl�0

e2πikld
t−l r|kl〉⎞⎠⊗|u〉. (103)

Therefore, through a process called the “phase kick-back”,
the state of the first register receives the phase factor and
becomes

|Register 1〉� 1
dt/2

∑dt−1
k�0

e2πirk|k〉. (104)

The eigenvalue r which is represented by the state |R〉 can be
derived by applying the inverse QFT to the qudits in the first
register:

F−1(d, dt)|Register 1〉 � |R〉. (105)

The whole process of PEA is shown in Figure 11B. To obtain the
phase r � R/dt exactly, we can measure the state of the first
register in the computational basis.

The PEA in qudit system provides a significant improvement
in the number of the required qudits and the error rate decreases
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exponentially as the qudit dimension increases [129]. A long list
of PEA applications includes Shor’s factorization algorithm [142];
simulation of quantum systems [1]; solving linear equations [69,
128]; and quantum counting [147]. To give some examples, a
quantum simulator utilizing the PEA algorithm has been used to
calculate the molecular ground-state energies [8] and to obtain
the energy spectra of molecular systems [13, 41, 42, 84, 154].
Recently, a method to solve the linear system using a qutrit
version of the PEA has been proposed [138]. The qudit version of
the PEA opens the possibility to realize all those applications that
have the potential to out-perform their qubit counterparts.

Shor’s quantum algorithm for prime factorization gives an
important example of super-polynomial speed-up offered by a
quantum algorithm over the currently-available classical
algorithms for the same purpose [143]. The order-finding
algorithm at the core of the factoring algorithm is a direct
application of the PEA. With the previous discussion on the
qudit versions of the quantum Fourier transform and phase
estimation, we have the foundation to generalize Shor’s
factoring algorithm to the higher dimensional qudit system.
Several proposals for performing Shor’s algorithm on the qudit
system, such as the adiabatic quantum algorithm of two qudits for
factorization [166]; exist. This method makes use of a time-
dependent effective Hamiltonian in the form of a sequence of
rotation operators that are selected accoding to the qudit’s
transitions between its neighboring levels.

Another proposal carries out a computational resource
analysis on two quantum ternary platforms [17]. One is the
“generic” platform that uses magic state distillation for
universality [25]. The other, known as a metaplectic
topological quantum computer (MTQC), is a non-Abelian
anyonic platform, where anyonic braiding and interferomic
measurement is used to achieved the universality with a
relatively low cost [37, 38]. The article discusses two different
logical solutions for Shor’s period-finding function on each of the
two platforms: one that encodes the integers with the binary
subspace of the ternary state space and optimizes the known
binary arithmetic circuits; the other encodes the integer directly
in the ternary space using the arithmetic circuits stemming in Ref.
16. Significant advantages for the MTQC platform are found
compared to the others. In particular the MTQC platform can
factorize an n-bit number with n + 7 logical qutrits with the price
of a larger circuit-depth. To sum up the comparison, the MTQC
provides significant flexibility at the period finding algorithm for
the ternary quantum computers.

3.3 Quantum Search Algorithm With Qudits
The quantum search algorithm, also known as Grover’s
algorithm, is one of the most important quantum algorithms
that illustrates the advantage of quantum computing. Grover’s
algorithm is able to outperform the classical search algorithm for
a large database. The size of the computational space in an
n-qubit system is a Hilbert space of 2n dimensions.

Since there is a practical limit for the number of working
qubits, the working Hilbert space can be expanded by
increasing the dimension of each carrier of information,
i.e., using qudits and qudit gates. Several schemes of

Grover’s quantum search with qudits have been proposed,
such as one that uses the discrete Fourier transform as an
alternative to the Hadamard gate [54] or another
d-dimensional transformation [101] for the construction of
the reflection-about-average operator (also known as the
diffusion operator). In this section, an instruction on setting
up Grover’s algorithm in the qudit system is reviewed as well as
a proposal of a new way to build a quantum gate F that can
generate an equal-weight superposition state from a single
qudit state [79]. With the new gate F, it is easier to realize
Grover’s algorithm in a physical system and improve the overall
efficiency of the circuit.

Grover’s algorithm solves the unstructured search problem
by applying Grover’s oracle iteratively as shown in
Figure 12B. To construct the oracle, we build qudit gates
to perform the oracle function f (x) that acts differently on the
search target s as compared to all the others. The logic behind
the algorithm is to amplify the amplitude of the marked state
|s〉 with the oracle function, while attenuating the amplitudes
of all the other states. The marked state is amplified enough to
be located in O( 



N
√ ) steps for an N dimensional search space.

In each step Grover’s oracle is executed one time. This oracle
can be broken into two parts: (1) Oracle query. The oracle
shifts the phase of the marked state |s〉 and leaving others
unchanged by doing

Rs(ϕs) � 1 + (eiϕs − 1)|s〉〈s|. (106)

(2) Reflection-about-average. This operation is a reflection about a
vector |a〉 with a phase ϕa:

Ra(ϕa) � 1 + (eiϕa − 1)|a〉〈a|. (107)

It is constructed by applying the generalized Hadamard gate H,
applying phase shift to |0〉 state and then applying H again. It is
straightforward to show that

H⊗nR0(ϕa)H⊗n � Ra(ϕa).
The two steps combined form Grover’s operator G, which is one
execute of Grover’s iteration. This process of Grover’s iteration G
is shown in Figure 12A.

Building Grover’s operator in a qudit system can be simplified
both algorithmically and physically. The most important
improvement can be achieved by replacing the Hadamard gate
H with F which drives the single-qudit state |0k〉 into an equal
weight superposition state,

F|0k〉 � ∑d−1
q�0

ξq|qk〉, (108)

with
∣∣∣∣ξq∣∣∣∣ � d−1/2, in all qudits (k ∈ {1, 2, . . . , n}). The F

function can be realized by a single physical interaction in
a multipod system easily. The multipod system consists of d
degenerate quantum states |0〉, |1〉, . . . , |d − 1〉. A common
(ancilla) state |c〉 couples these states to each other by two-
photon Raman processes, as illustrated in Figure 13. The
root-mean-square (rms) Rabi frequency as the coupling
factor of the two states is
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Ω(t) �












∑d−1
k�0

|Ωk(t) 2.|

√√
(109)

Then from the two-state solution, we can calculate the dynamics
of the multipod [97].

This method of building F minimizes the number and the
duration of algorithmic steps and thus is fast to implement and, in
addition, it also provides better protection against detrimental
effects such as decoherence or imperfections. Due to its
conceptual simplicity, this method has applications in
numerous physical systems. Thus, it is one of the most natural
and simplest realizations of Grover’s algorithm in qudits.

4 ALTERNATIVE MODELS OF QUANTUM
COMPUTING WITH QUDITS

The gate-based description of quantum computing is useful to
establish principles of quantum computing with qudits, similar to
the case for qubits. There are various approaches to quantum
computing besides the gate-based model, such as the
measurement-based [134]; adiabatic quantum computing [3,
55] and topological quantum computing [57]. Qudit versions
of these approaches are barely explored to date, and we
summarize the current status of these studies below.

4.1 Measurement-Based Qudit Computing
Measurement-based quantum computing was introduced as an
alternative approach to quantum computing whereby a highly
entangled state, such as a cluster state [22] or its graph-state
generalization [70]; is prepared and then computation is
performed by sequential single-qubit measurements in bases
that are determined by a constant number of previous
measurement outcomes [123, 134]. Measurement-based
quantum computing is appealing in settings where preparing a
highly entangled many-qubit graph state is feasible, such as
parallelized controlled-phase operations [134] or cooling to the
ground-state of a special Hamiltonian [123].

Measurement-based qudit quantum computing is unexplored to
date. Preparatory work on generalizing graph states, implicitly
including the cluster-state special case, to qudit graph states has
been reported [85]. Regarding implement, qudit-based approaches
have only been reported for the error-correction aspect of
measurement-based qubit quantum computing [82]. In this
approach, the cluster state is envisioned as comprising qudits, with
the high-dimensional nature of qudits serving to encode qubits for
error correction. They propose continuous-variable realizations of a
qudit cluster state in a continuous-variable setting [82].

4.2 Adiabatic Qudit Computing
Adiabatic quantum computing approaches quantum computing
by encoding the solution of a computational problem as the
ground-state of a Hamiltonian whose description is readily
obtained; the solution is obtained by preparing the ground
state of a Hamiltonian whose ground-state is efficiently
constructed and then evolving slowly, according to the

adiabatic condition, into a close approximation of the ground
state of the Hamiltonian specifying the problem [55]. The
advantage of adiabatic quantum computing is evident in its
natural correspondence to quantizing satisfiability problems
[55]; and current efforts to exploit adiabatic quantum
computing focus on quantum annealing, which is a quantum
generalization of the simulated annealing metaheuristic used for
non-quantum global optimization problems [40, 56, 83].

Quantum annealing is an important branch of quantum
computing, particularly at the commercial level exemplified by
D-Wave’s early and continuing work in this domain. As D-Wave
researchers themselves point out, realistic solid-state devices
treated as qubits are not actually two-level systems and
higher-dimensional representations of the dynamics must be
considered to model and simulate realistic solid-state quantum
annealers. The effect of states outside the qubit space, namely the
treatment of solid-state quantum annealing as qudit dynamics,
has been studied carefully with conditions established for
soundness of qubit approximations [5].

In fact the qudit nature of so-called superconduting qubits,
i.e., the higher-dimensional aspects of the objects serving as
qubits, is not just a negative feature manifesting as leakage
error; remarkable two-qubit gate performance is achieved by
exploiting adiabatic evolution involving avoided crossings with
higher levels [10, 110] with this exploitation for fast, high-fidelity
quantum gates extendable to three-qubit gates and beyond by
exploiting intermediate qudit dynamics and avoided level
crossings [160, 161]. Another suggestion for exploiting qudit
dynamics concerns using a degenerate two-level system with the
additional freedom perhaps improving the energy gap and thus
increasing success probability [156].

A dearth of studies have taken place to date into qudit-based
adiabatic quantum computing. The one proposal thus far
concerns a quantum adiabatic algorithm for factorization on
two qudits [166]. Specifically, they consider two qudits of
possibly different dimensions, thus necessitating a hybrid two-
qudit gate [39]. They propose a time-dependent effective
Hamiltonian to realize this two-qudit gate and its realization
as radio-frequency magnetic field pulses. For this model, they
simulate factorization of each of the numbers 35, 21, and 15 for
two quadrupole nuclei with spins 3/2 and 1, respectively,
corresponding to qudit dimensions of 4 and 3, respectively.

4.3 Topological Quantum Computing With
Qudits
Topological quantum computing offers advantages over other
forms of quantum computing by reducing quantum error
correction overheads by exploiting topological protection. Some
work has been done on topological quantum computing with qudits
by proposing quantum computing with parafermions [49, 74].

Majorana fermions are expected to exhibit non-abelian
statistics, which makes these exotic particles, or their
quasiparticle analogue, sought after for anyonic quantum
computing [90]. Majorana fermions can be generalized to Zd

parafermions, which also exhibit non-abelian statistics and
reduce to standard Majorana fermions for d � 2. One advantage
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of d > 2 is that parafermion braiding is an entangling operation.
Importantly, encoding a qudit of dimension d in the four-
parafermion fusion space enables all single-qudit Clifford gates
to be generated modulo phase terms [74].

Clifford gates do not provide a universal set of gates for
quantum computing. A non-Clifford gate can be achieved for
parafermions encoded into parafermion zero modes by exploiting
the Aharonov-Casher effect, physically implemented by move a
half-fluxon around the parafermionic zero modes. Combining
this non-Clifford gate with the Clifford gates achieved by
parafermion braiding yields a universal gate set of non-abelian
quantum computing with qudits [49].

5 IMPLEMENTATIONS OF QUDITS AND
ALGORITHMS

The qubit circuit and qubit algorithm have been implemented on
various physical systems such as defects in solids [27, 81, 120];
quantum dots [104, 127]; photons [113, 132]; super conducting
systems [29, 31]; trapped ions [14, 15]; magnetic [7, 18, 32, 148]
and non-magnetic molecules [30, 152]. For each physical
representation of the qubit, only two levels of states are used
to store and process quantum information. However, many
quantum properties of these physical systems have more than
two levels, such as the frequency of the photon [106]; energy
levels of the trapped ions [91]; spin states of the nuclear magnetic
resonance systems [48] and the spin state of the molecular
magnetic magnets [115]. Therefore, these systems have the
potential to represent qudit systems. In this section, we briefly
review several physical platforms that have been used to
implement qudit gates or qudit algorithms.

Although most of the systems have three or four levels
available for computation, they are extensible to higher level
systems and scalable to multi-qudit interactions. These pioneer
implementations of qudit systems show the potential of future
realization of the more powerful qudit quantum computers that
have real-life applications.

5.1 Time and Frequency Bin of a photon
Photonic system is a good candidate for quantum computing
because photons rarely interact with other particles and thus
have a comparatively long decoherence time. In addition,
photon has many quantum properties such as the orbital
angular momentum [9, 52]; frequency-bin [75, 76, 96, 107] and
time-bin [73, 78] that can be used to represent a qudit. Each of
these properties provides an extra degrees of freedom for the
manipulation and computation. Each degree of freedom usually
has dimensions greater than two and thus can be used as a unique
qudit. The experimental realization of arbitrary multidimensional
multiphotonic transformations has been proposed with the help of
ancilla state, which is achievable via the introduction of a new
quantum nondemolition measurement and the exploitation of a
genuine high-dimensional interferometer [60]. Experimental
entanglement of high-dimensional qudits, where multiple high-
purity frequency modes of the photons are in a superposition
coherently, is also developed and demonstrated [96].

Here we review a single photon system that has demonstrated a
proof-of-principle qutrit PEA [106]. In a photonic system, there is
no deterministic way to interact two photons and thus it is hard to
build a reliable controlled gate for the photonic qudits. The
following photonic system bypasses this difficulty via using the
two degrees of freedom on a single photon—i.e., the time-bin and
frequency-bin to be the two qutrits. The frequency degree of
freedom carries one qutrit as the control register and the time
degree of freedom carries another qutrit as the target register. The
experimental apparatus consists of the well-established techniques
and fiber-optic components: continuous-wave (CW) laser source,
phase modulator (PM), pulse shaper (PS), intensity modulator
(IM) and chirped fiber Bragg grating (CFBG). The device is divided
into three parts [106]: 1) A state preparation part that comprises a
PM followed by a PS and a IM that encodes the initial state to
qudits; 2) a controlled-gate part that is built with a PM sandwiched
by two CFBGs to perform the control-U operation; and 3) an
inverse Fourier transformation comprising a PM and then a PS to
extract the phase information. Note that the controlled-gate part
can perform a multi-value-controlled gate that applies different
operations based on the three unique states of the control qutrit. In
the PEA procedure, eigenphases can be retrieved with 98% fidelity.
In addition to having long coherence lifetime, the photonic system
also has a unique advantage over other common quantum devices,
i.e., the ability to process and measure thousands of photons
simultaneously. This allows us to generate statistical patterns
quickly and infer the phase accurately whereas the normal PEA
has to use additional qudits on the control register to increase
accuracy.

Here we provide an example for the statistical inference of the
phase based on numerical data generated by the photonic PEA
experiment just described. The two unitary operations used in the
experimental setup are

Û1 � diag(1,ω,ω2), (110)

with ω being the cube root of unity Eq. 14, and

Û2 � diag(1, ei0.351π , ei1.045π). (111)

In the experiment, photonic qutrits are sent through the control
and target registers and the state of the control register qutrits is
measured and counted to obtain the phase information.

Given the eigenphase ϕ of an eigenstate of the target register,
the probability for the qutrit output state to fell into \ketn, where
n ∈ {0, 1, 2}, is

C(n, ϕ) � 1
9

∣∣∣∣1 + ei(ϕ−n2π3 ) + ei2(ϕ−n2π3 )∣∣∣∣2. (112)

Now let E0, E1, and E2 be the counts of the photons that fell into∣∣∣∣0f 〉, ∣∣∣∣1f 〉, and ∣∣∣∣2f 〉. The estimated phase, denoted ~ϕ, is the phase
that has the smallest the mean-square error between the
measured and theoretical results:

min
~ϕ

∑2
n�0

(En − C(n, ~ϕ))2 (113)

The estimated phases for Û1 (110) and Û2 (111) are shown in
Table 1 [106]. The first experiment with U1 estimates the phase of a
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eigenvector and gives the eigenvalue. The second experiment with
U2 estimates the phase of a state with an arbitrary value (not a
fraction of π), but, by repeating the experiment, the eigenvalue can be
estimated from the statistical distribution of the results.

5.2 Ion Trap
Intrinsic spin, an exclusively quantum property, has an inherently
finite discrete state space which is a perfect choice for
representing qubit or qudit. When a charged particle has spin,
it possess a magnetic momentum and is controllable by external
electromagneic pulses. This concept leads to the idea of ion trap
where a set of charged ions are confined by electromagnetic field.
The hyperfine (nuclear spin) state of an atom, and lowest level
vibrational modes (phonons) of the trapped atoms serves as good
representations of the qudits. The individual state of an atom is
manipulated with laser pulse and the ions interact with each other
via a shared phonon state.

The set-up of an ion trap qutrit system reviewed here can
perform arbitrary single qutrit gates and a control-not gate [91].
These two kinds of gates form a universal set and thus can be
combined to perform various quantum algorithms such as those
discussed in Section 3. The electronic levels of an ion are shown in
Figure 14. The energy levels |0〉, |1〉, |2〉 are used to store the
quantum information of a qutrit. The transition between the levels
are driven by the classical fields Ω03,Ω13,Ω04, and Ω24 of the Raman
transitions through independent channels linked to orthogonal
polarizations. We first develop a system acting as a single qutrit
gate that can manipulate the energy levels of the ion via Raman
transitions driven by the classical fields. The following expressions
follow those in Ref. 91. For single qutrit gates, where the center-of-
mass motion is excluded, we can include the spatial dependence of
the Raman fields as phase factors Δ and assuming the conditions

Δ≫Ω04,Ω03,Ω31,Ω42, (114)

the effective Hamiltonian describing the ion in this system is

H
Z
� −

∣∣∣∣Ω31

∣∣∣∣2
Δ |1〉〈1| −

∣∣∣∣Ω42

∣∣∣∣2
Δ |2〉〈2| −

∣∣∣∣Ω30

∣∣∣∣2 + ∣∣∣∣Ω40

∣∣∣∣2
Δ |0〉〈0|−

(115)

−[Ω31Ω*
30

Δ |0〉〈1| +Ω42Ω*
40

Δ |0〉〈2| + hc]. (116)

Knowing the Hamiltonian we are able to derive the evolution
operator in the restricted three-dimensional space spanned by
{|2〉, |1〉, |0〉} as the following

U(φ) � ⎛⎜⎜⎝ 1 + ∣∣∣∣g∣∣∣∣2C(φ) gg ′*C(φ) −ig sinφ
g ′g*C(φ) 1 + ∣∣∣∣g ′∣∣∣∣2C(φ) −ig ′ sinφ
−ig* sinφ −ig ′* sinφ cosφ

⎞⎟⎟⎠, (117)

where φ � Ωt represents interaction time and

C(φ) � cosφ − 1, Ω2 � ∣∣∣∣κ′ 2 + ∣∣∣∣κ 2.
∣∣∣∣∣∣∣∣ (118)

The notation g and g’ represents

g :� κ/Ω, g ′ � κ′/Ω, κ :� Ω*
42Ω40/Δ, κ′ � Ω*

31Ω30/Δ. (119)

This evolution operator can perform all kinds of the required
coherent operations that are acting on any two of the logical
states. It operates on the system and works essentially as a single
qutrit gate. All kinds of transitions can be realized by
manipulating the κ and κ′ coupling. Therefore with the proper
manipulation of the parameters κ and κ′ we are able to perform
any arbitrary one-qutrit gate as desired.

Single qutrit gate alone is not sufficient to form a universal
computational set, as we need a conditional two-qutrit gate or a
two-qutirt controlled-gate to achieve universality. To define the
conditional two-qutrit gate we need an auxiliary level |0’〉 as
shown in Figure 14. The conditional two-qutrit gate is achievable
via the center-of-mass (CM) motion of ions inside the trap. The
ion CM coupled to the electronic transition |0〉→ ∣∣∣∣q〉 is described
by the Hamiltonian

Hn,q � Ωqη

2
[|q〉n〈0|ae−iδt−iϕ + a†|0n〉〈q|eiδt+iϕ]. (120)

Here a is the annihilation operator and a† is the creation operator
of the CM phonons. Ωq is the effective Rabi frequency after
adiabatic elimination of upper excited levels and ϕ is the laser
phase, and δ is the detuning. The Lamb-Dicke parameter is

η :�












Zk2θ/(2M]x)

√
. (121)

This Hamiltonian governs the coherent interaction between
qutrits and collective CM motion. With appropriate selection
of effective interaction time and laser polarizations, the CM
motion coupled to electronic transitions is coherently
manipulated [91].

To complete the universal quantum computation requirements,
we need to develop a measurement scheme. In this scheme, von
Neumann measurements distinguishing three directions |0〉, |1〉,
|2〉 are made possible via the resonant interactions from |1〉 and
|2〉 to states |3〉 and |4〉, respectively. The single and two-qutrit
controlled gate are combined to perform various qutrit algorithms
such as the quantum Fourier transform. Other variations of the
ion-trap qutrit quantum computer designs use trapped ions in the
presence of a magnetic field gradient [111]. The qutrit ion-trap
computer provides a significant increase of the available Hilbert
space while demanding only the same amount of physical
resources.

5.3 Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is an essential tool in
chemistry and involves manipulating and detecting molecules’
nuclear spin states using radio-frequency electromagnetic waves
[19]. Some technologies of this field are sophisticated enough to
control and observe thousands of nuclei in an experiment. The
NMR has the potential to scale up quantum computer to
thousands of qudits [144].

In this section we review the implementation of a single-qudit
algorithm that can determine the parity of a permutation on an
NMR system [48]. The algorithm itself is the parity determining
algorithm explained in Section 3.1.1. The molecule in this NMR
setup is embedded in a liquid crystalline environment and the
strong magnetic field is used to adjust the anisotropic molecular
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orientation. This adding a finite quadrupolar coupling term to the
Hamiltonian which is as follows

H � −ω0Iz + Λ(3I2z − I2), (122)

where Λ � e2qQS/4 is the effective value of the quadrupolar
coupling [48]. The Fourier transformation is implemented by
a sequence of three transition-selective pulses. A series of
combinations of 180+ pulses, both transition-selective and
non-selective, is used to implement the permutations.

Final states of the system can be derived from a single projective
measurement. Pseudopure spin states act as approximation of
effect of the system on an ensemble NMR quantum computer
since it is impossible to do the true projective measurements [98].
The fidelity measurement of the experiment is given as

F :� tr(ρ†thρexpt)








tr(ρ†thρth)√ 











tr(ρ†exptρexpt)√ (123)

is used, where ρth and ρexpt are, respectively, theoretically expected
and experimentally obtained density matrices. Fidelities obtained
for these proposed operations are 0.92 and above.

Another set-up of the same algorithm treats a single quart
[62]. The algorithm implementation is achieved using a spinâ€“32
nuclei, which is commonly selected for NMR-QIP applications.
In their NMR systems the four energy levels needed is made via
the Zeeman splitting using a strong static magnetic field. All of the
two implementations of the single-qudit algorithm show that the
NMR system provides a way to realize a reliable and efficient
qudit system for the quantum computing.

5.4 Molecular Magnets
Molecular quantum magnets, also called the single-molecule
magnets (SMM), provides another physical representation of
qudits [115]. They have phenomenal magnetic characteristics
and can be manipulated via chemical means. This enables the
alternation of the ligand field of the spin carriers and the
interaction between the SMM with the other units. As pointed
out in one of the proposals, the nuclear spin states of the

molecules, which have a long life-time, are used to store the
quantum information. This information is read out by the
electronic states. In the mean time, the robustness of the
molecule allows it to conserve its molecular, electronic and
magnetic characteristics at high temperatures [116].

As one of the SMMs, the single molecule TbPc2 complex
reviewed in this section possesses all necessary properties such as
long lifetime and robustness. These properties are integrated as
important components of a serious quantummechanical devices, for
examples, resonator [59]; molecular spin valve [149] and transistor
[138, 146]. TbPc2 gains its SMM properties from the strong
spinâ€“orbit coupling of lanthanide ions and the ligand field [77].
Magnetic properties of TbPc2 are governed by the Hamiltonian:

H � Hlf + gJμ0μBJ ·H + Ahf I · J + (I2z − 1
3
(I + 1)I), (124)

where Hlf is the ligand field Hamiltonian (lf), and gJμ0μBJ ·H
represents the Zeeman energy. Ahf I · J accounts for hyperfine
interactions (hf) and (I2z − 1

3 (I + 1)I) is the quadrupole term. A
sweeping magnetic field associated with mI � ± 1

2 and ± 3
2 can

cause quantum tunneling of magnetization, which preserves
nuclear spin while changing electronic magnetic moment. This
field enables nuclear-spin measurement by suspending the TbPc2
molecule on carbon nanotubes (CNT) and between gold junctions.

This measurement uses the technique of electro-migration.
Initialization and manipulation of the four spin states of TbPc2
can be obtained from QTM transitions driven by external
ramping magnetic field. The transitions between the∣∣∣∣+1

2〉↔
∣∣∣∣−1

2〉 states and
∣∣∣∣+3

2〉↔
∣∣∣∣−3

2〉 is achieved via applying
appropriate resonate frequencies ]12 and ]23. Relaxation and
coherence times are important aspects to be analyzed for the
TbPc2 system, and this process is accomplished by imaging the
initialized nuclear spin trajectory in real-time.

Statistical analysis of the nuclear spin coherence time makes use
of the spinâ€“lattice relaxation times by fitting the data for an
exponential form (y � exp(−t/T1)) and yields T1 ≈ 17 s for mI �
± 1

2 and T1 ≈ 34s for mI � ± 3
2 with fidelities of

F(mI � ± 1
2) ≈ 93% and F(mI � ± 3

2) ≈ 87% accordingly [115].
The TbPc2 SMM can be used to execute Grover’s algorithm, where
the alternation of the mI state contained in the TbPc2 molecular
qubit are treated by resonance frequencies [63, 99].

TABLE 1 |Normalized photon counts and comparison of the true phase ϕ and the
experimentally estimated phase ϕ′ for each eigenstate of Û1 (Eq. 110) and Û2

(Eq. 111) [106].

Û1

Eigenstate |0t〉 |1t〉 |2t〉
E0 0.9948 ± 0.0004 0.0101 ± 0.0004 0.0122 ± 0.0005
E1 0.0023 ± 0.0002 0.9805 ± 0.0009 0.0120 ± 0.0005
E2 0.0029 ± 0.0002 0.0094 ± 0.0004 0.9758 ± 0.0010

True Phase, ϕ 0 2π/3 4π/3
Est. Phase, ~ϕ 1.972π 0.612π 1.394π
Error, |ϕ−~ϕ|2π 1.4% 2.7% 3.0%

Û2

Eigenstate |0t〉 |1t〉 |2t〉
E0 0.878 ± 0.002 0.316 ± 0.003 0.143 ± 0.002
E1 0.032 ± 0.001 0.530 ± 0.003 0.318 ± 0.003
E2 0.090 ± 0.002 0.154 ± 0.002 0.539 ± 0.003

True Phase, ϕ 0 0.3511π 1.045π
Est. Phase, ~ϕ 1.859π 0.377π 1.045π
Error, |ϕ−~ϕ|2π 7.1% 1.3% 0.0%

FIGURE 14 | Electronic level structure of the trapped ion. The carrier of
the quantum information is the qutrit states |0〉, |1〉, and |2〉. |0’〉 is an auxiliary
level used for the conditional two-qutrit gate.
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6 SUMMARY AND FUTURE OUTLOOK OF
QUDIT SYSTEM

6.1 Summary of the Advantages of Qudit
Systems Compared to Qubit Systems
Throughout the article we discuss and review many aspects of the
qudit systems such as qudit gates, qudit algorithms, alternative
computation models and implementations. Most gates and
algorithms based on qudits have some advantages over those
for qubits, such as shorter computational time, lower requirement
of resources, higher availability, and the ability to solve more
complex problems. The qudit system, with its high-dimensional
nature, can provide more degrees of freedom and larger
computational space. This section summarizes the advantages
of the qudit system compared to the qubit system.

Qudit gates have the advantage of a larger working Hilbert space
which reduces the number of qudits needed to represent an
arbitrary unitary matrix. In our discussion of universality in
Section 2.1.2, the qudit method proposed by Muthukrishnan
and Stroud’s has a (log2d)2 scaling advantage over the qubit
case. Furthermore, Luo and Wang show that with their
proposed universal computation scheme [108]; there is an extra
factor of n reduction in the gate requirement, where n is the number
of qudits. By introducing qudits to the construction of some well-
known gates such as the Toffoli gate, the elementary gate required
are reduced from 12n − 11 gates in the qubit case to 2n − 1 gates by
introducing a single (n + 1)-level target carrier [133] and to 2n − 3
gates by utilizing the topological properties [89]. In our discussion
of the geometrically quantified qudit-gate efficiency in Section 2.3,
the qubit system needs O(n6d(I,U)3) one- and two-qubit gates to
synthesize a unitary [122] while in the qutrit case the lower bound is
O(nkd(I,U)3) where k is an integer that depends on the accuracy
of the approximation and can be smaller than 6 [100].

For many of the physical systems such as photons [113, 132];
super conducting systems [29, 31]; trapped ions [14, 15]; magnetic
[7, 18, 32, 148] and non-magnetic molecules [30, 152] there are
usually more than two available physical states available for the
applications. The qudit system has a higher efficiency utilizing those
extra states than the qubit system. Also using the photonic system,
we can perform the multi-level controlled gate (Section 2.2) which
can perform multiple control operations at and same time and
largely reduce the number of controlled gates requirement [106].

Other than computation, the qudit also has advantages in
quantum communication as it possesses a higher noise resilience
than the qubit [36]. The qudit system has a higher quantum bit
error rate (QBER), which is a measure of resistance to the
environmental noise or eavesdropping attacks, compared to
the qubit system. The higher noise tolerance of the qudits
helps to increase the secret key rate as it can be shown that
the secret key rate increases as the Hilbert space dimensions
increase at the same noise level [140]. Notice that in practical
situation, the qudit system performed on each particular physical
apparatus has varied amount of advantages than the qubit and
there might be cases in which the high-dimensional states have a
higher transmission distance [36]. This higher noise resilience of

qudits is more advantageous if the qudits are entangled. The
entanglement becomes more robust by increasing the dimension
of the qudits while fixing their numbers. In other words, as the
noise sources act locally on every system, increasing the
dimension d will reduce the number of systems and thus
reduce the effect of noise resulting in the robustness increase
[103]. The increasing noise level tolerance as the qudit dimension
increases can be shown on an photonic OAM system as an
example of its implementation [51].

In summary the qudit system possesses advantages in the
circuit design, physical implementation and has the potential to
outperform the qubit system in various applications.

6.2 Future Outlook of Qudit System
This review article introduces the basics of the high-dimensional
qudit systems and provides details about qudit gates, qudit
algorithms and implementations on various physical systems.
The article serves as a summary of recent developments of qudit
quantum computing and an introduction for newcomers to the
field of qudit quantum computing. Furthermore we show the
advantages and the potential for qudit systems to outperform
qubit counterparts. Of course these advantages can come with
challenges such as possibly harder-to-implement universal gates,
benchmarking [80, 94, 117]; characterization of qudit gate [68,
136] and error correction connected with the complexity of the
Clifford hierarchy for qudits [157].

Compared to qubit systems, qudit systems currently have
received less attention in both theoretical and experimental
studies. However, qudit quantum computing is becoming
increasingly important as many topics and problems in this
field are ripe for exploration. Extending from qubits to qudits
uses in some mathematical challenges, with these mathematical
problems elegant and perhaps giving new insights into quantum
computing in their own right. Connections between quantum
resources such as entanglement, quantum algorithms and their
improvements, scaling up qudit systems both to higher
dimension and to more particles, benchmarking and error
correction, and the bridging between qudits and continuous-
variable quantum computing [67] are examples of the fantastic
research directions in this field of high-dimensional quantum
computing.
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A Quantum Finite Automata Approach
to Modeling the Chemical Reactions
Amandeep Singh Bhatia1 and Shenggen Zheng2*

1Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India 2Peng Cheng Laboratory, Shenzhen,
China

In recent years, the modeling interest has increased significantly from molecular level to
atomic and quantum levels. Computational chemistry plays a significant role in designing
computational models for the operation and simulation of systems ranging from atoms and
molecules to industrial processes. It is influenced by a tremendous increase in computing
power and the efficiency of algorithms. The representation of chemical reactions using
classical automata theory in thermodynamic terms had a great influence on computer
science. The study of chemical information processing with quantum computational
models is a natural goal. In this study, we have modeled chemical reactions using
two-way quantum finite automata, which are halted in linear time. Additionally, classical
pushdown automata can be designed for such chemical reactions with multiple stacks. It
has been proven that computational versatility can be increased by combining chemical
accept/reject signatures and quantum automata models.

Keywords: chemical reaction, two-way quantum finite automata, quantum finite automata, Belousov-Zhabotinsky
reaction, pushdown automata, quantum chemistry

1 INTRODUCTION

Recently, the connection between complex reactions and their thermodynamics has received
overwhelming response among research communities. Initially, in the 1970s, Conrad [1]
processed the information of molecular systems and stated that complex biochemical systems
cannot be analyzed in classical computers. Till now, artificial approaches use complex biomolecules
or logic gates–based reaction-diffusion systems to solve the problems [2–4]. Classical systems are not
robust and incapable to describe quantum systems. Some tasks that are impossible in classical
systems can be realized in quantum systems. Quantum computation is concerned with computer
technology based on the principles of quantum mechanics, which describes the behavior and nature
of matter and energy in quantum level [5]. Quantum computation demonstrates the computation
power and other properties of the computers based on the principles of quantum mechanics.

Models of finite automata are abstract computing devices, which play a crucial role to solve
computational problems in theoretical computer science. Classical automata theory is closely
associated with formal language theory, where automata are ranked from simplest to most
powerful depending on their language recognition power [6]. Classical automata theory has
been of significant importance due to its practical real-time applications in the development of
several fields. Therefore, it is the natural goal to study quantum variants of classical automata models,
which play an important role in quantum information processing.

The quantum automata theory has been developed using the principles of quantum mechanics
and classical automata. Quantum computational models make it possible to examine the resources
needed for computations. Soon after the brainstorm of Shor’s factorization quantum algorithm [7],
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the first models of quantum finite automata (QFAs) have been
introduced. Initially, Kondacs and Watrous [8], and Moore and
Crutchfield [9] proposed the concept of quantum automata
separately. Since then, a variety of quantum automata models
have been studied and demonstrated in various directions, such
as QFAs, Latvian QFA, 1.5-way QFA, two-way QFA (2QFA),
quantum sequential machine, quantum pushdown automata,
quantum Turing machine, quantum multicounter machines,
quantum queue automata [10], quantum multihead finite
automata, QFAs with classical states (2QCFA) [11, 12], state
succinctness of two-way probabilistic finite automata (2PFA),
QFA, 2QFA, and 2QCFA [13–15], interactive proof systems with
QFAs [16, 17], quantum finite state machines of matrix product
state [18], promise problems recognition by QFA [19–22],
quantum-omega automata [23] and semi-quantum two-way
finite automata [24–26], time complexity advantages of QFA
[27], nonuniform classes of polynomial size QFA [28, 29], QFA
and linear temporal logic relationship [30], and many more since
the past 2 decades [31–34]. These models are effective in
determining the boundaries of various computational features
and expressive power [35–37]. Quantum computers are more
powerful than Turing machines and even probabilistic Turing
machines. Thus, mathematical models of quantum computation
can be viewed as generalizations of its physical models.

Computational biochemistry has been a rapidly evolving
research area at the interface between biology, chemistry,
computer science, and mathematics. It helps us to apply
computational models to understand biochemical and
chemical processes and their properties. A combination of
chemistry and classical automata theory provides a
constructive means of refining the number of objects allowed
to understand the energetic cost of computation [38]. The
research has been consistently grown in the field of chemical
computing. There exist two ways to model complex chemical
reactions: abstract devices and formal models based on multiset
rewriting [39]. Complex chemical reaction networks carry out
chemical processes that mimic the workings of classical automata
models. Recently, Duenas-Diez and Perez-Mercader [38, 40] have
designed chemical finite automata for regular languages and
chemical automata with multiple stacks for context-free and
context-sensitive languages. Furthermore, the thermodynamic
interpretation of the acceptance/rejection of chemical
automata is given. It is useful to understand the energetic cost
of chemical computation. They have used the one-pot reactor
(mixed container), where chemical reactions and molecular
recognition takes place after several steps, without utilizing
any auxiliary geometrical aid.

In classical automata theory, it is known that two-way
deterministic finite automata (2DFA) can be designed for all
regular languages. It has also been investigated that 2PFA can be
designed for a nonregular language L � {anbn|n≥ 1} in an
exponential time [38, 40]. The research has consistently
evolved in the field of quantum computation and information
processing. In quantum automata theory, it has been proved that
2QFA can be designed for L with one-sided bounded error and
halted in linear time. Moreover, it has been demonstrated that
2QFA can be also designed for non–context-free language L �

{anbncn|n≥ 1} [8]. Hence, 2QFA is strictly more powerful than its
classical counterparts based on language recognition capability.

The field of chemistry and chemical computation plays a
significant role in the evolution of computational models to
mimic the behavior of systems at its atomic level. It is greatly
influenced by the computing power of quantum computers.
Motivated from the abovementioned facts, we have modeled
chemical reactions in the form of formal languages and
represented those using two-way QFAs. The main objective is
to examine how chemical reactions perform chemical sequence
identification equivalent to quantum automata models without
involving biochemistry or any auxiliary device. The crucial
advantage of this approach is that chemical reactions in the
form of accept/reject signatures can be processed in linear
time with one-sided bounded error (if the automata makes
error only in one direction, i.e., either on “no” instances or on
“yes” instances). This article is further designed as follows:
Subsection is devoted to prior work. In Section 2, some
preliminaries are given. The definition of two-way QFAs is
given in Section 3. In Section 4, the chemical reactions are
transcribed in formal languages and modeled using two-way
QFAs approach. Summary of work is given in Section 5.
Finally, Section 6 is the conclusion.

1.1 Prior Work
The field of chemical computation has rich and interesting
history. Various researchers have represented chemical
computation using the concept of logic gates–based reaction-
diffusion systems and artificial intelligence approaches. In early
1970s, Conrad [1] differentiated the information processing in
molecules using digital computation. Nearly a decade later,
Okamoto et al. [43] proposed the concept of a theoretical
chemical diode in cyclic enzyme systems. It has been proved
that it can be used to analyze the dynamic behavior of metabolic
switching events in biocomputer. In 1991, Hjelmfelt et al. [44]
designed neural networks and finite state machines using
chemical diodes. It has been found that the execution of a
universal Turing machine is possible using connecting
chemical diodes. Hjelmfelt et al. constructed clocked finite
state machines of binary adder, binary decoder, and stack
memory and showed that finite state machines can be
simulated by clocked neural networks.

In 1995, Tóth and Showalter [45] implemented AND and OR
logic gates using reaction-diffusion systems, where the signals are
programmed by chemical waves. It was the first empirical
realization of chemical logical gates. In 1997, Magnasco [46]
showed that logic gates can be constructed and executed in the
chemical kinetics of homogeneous solutions. It has been proved
that such constructions have computational power equivalent to
Turing machine. Adamatzky and Lacy Costello [47]
experimentally understood the Chemical XOR gate by
following the same approach of Toth and Showlter in 2002.
Further, Górecki et al. [48] constructed the chemical counters for
information processing in the excitable reaction-diffusion
systems.

It is one of the most promising new areas of research. Some
difficulties can be caused by connecting several gates together for
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advanced computation. Thus, recently, researchers started
focusing on native chemical computation, that is, without
reaction-diffusion systems. In 1994, Adleman [49] proposed
the concept of DNA computation and solved the Hamiltonian
path problem by changing DNA strands. In 2009, Benenson [2]
reviewed biological measurement tools for new-generation
biocomputers. Prohaska et al. [3] studied protein domain
using chromatin computation and introduced chromatin as a
powerful machine for chemical computation and information
processing. In 2012, Bryant [4] proved chromatin computer as
computationally universal by using it to solve an example of
combinatorial problem.

The structures of DNA and RNA are represented using the
concept of classical automata theory [50, 51]. Krasinski et al.
[52] represented the restricted enzyme in DNA with
pushdown automata in circular mode. Khrennikov and
Yurova [53] modeled the behavior of protein structures
using classical automata theory and investigated the
resemblance between the quantum systems and modeling
behavior of proteins. Bhatia and Kumar [54] modeled
ribonucleic acid (RNA) secondary structures using two-
way QFAs, which are halted in linear time. Duenas-Diez
and Perez-Mercader designed molecular machines for
chemical reactions. The native chemical computation has
been implemented beyond the scope of logic gates, that is,
with chemical automata [40]. It has been demonstrated that
chemical reactions transcribed in formal languages can be
recognized by Turing machine without using biochemistry
[38]. Recently, Bhatia and Zheng [55] modeled hairpin loop,
pseudoknot, and dumbbell RNA secondary structures using
2QCFA.

2 PRELIMINARIES

In this section, some preliminaries are given. We assume that the
reader is familiar with the classical automata theory and the
concept of quantum computation; otherwise, reader can refer to
the theory of automata [6], quantum information, and
computation [5, 56]. Linear algebra is inherited from quantum
mechanics to describe the field of quantum computation. It is a
crucial mathematical tool and allows us to represent the quantum
operations and quantum states by matrices and vectors,
respectively, that obey the rules of linear algebra. The
following are the notions of linear algebra used in quantum
computational theory:

• Vector space (V) [56]: A vector space (V) is defined over the
field F of complex numbers C consisting of a nonempty set
of vectors, satisfying the following operations:

• Addition: If two vectors |a〉 and |b〉 belong to V, then |a〉 +
|b〉 ∈ V .

• Multiplication by a scalar: If |a〉 belongs toV, then λ|a〉 ∈ V ,
where λ ∈ C.

• Dirac notation [5]: In quantum mechanics, the Dirac
notation is one of the most peculiarities of linear algebra.
The combination of vertical and angle bars (|〉 〈|) is used to

unfold quantum states. It provides an inner product of any
two vectors. The bra 〈b| and ket |a〉 represent the row vector
and column vector, respectively.

|a〉 � ⎡⎢⎢⎢⎢⎢⎣ α1α2

α3

⎤⎥⎥⎥⎥⎥⎦, 〈b| � [ β*1 β*2 β*3 ], |a〉〈b| � ⎡⎢⎢⎢⎢⎢⎢⎣ α1β
*
1 α1β

*
2 α1β

*
3

α2β
*
1 α2β

*
2 α2β

*
3

α3β
*
1 α3β

*
2 α3β

*
3

⎤⎥⎥⎥⎥⎥⎥⎦
[1]

where β*i indicates the complex conjugate of complex number αi.

• Quantum bit [34]: A quantum bit (qubit) is a unit vector
defined over complex vector space C2. In general, it is
represented as a superposition of two basis states labeled
|0〉 and |1〉.

∣∣∣∣ϕ〉 � α|0〉 + β|1〉 [2]

• The probability of state occurrence |0〉 is ∣∣∣∣α|2 and |1〉 is ∣∣∣∣β|2.
It satisfies that

∣∣∣∣α|2 + ∣∣∣∣β|2 � 1. The two complex amplitudes
(α and β) are represented by one qubit. Thus, 2n complex
amplitudes can be represented by n qubits.

• Quantum state [5]: A quantum state |ψ〉 is defined as a
superposition of classical states

∣∣∣∣ψ〉 � α1

∣∣∣∣w1〉 + α2

∣∣∣∣w2〉 + . . . + αn
∣∣∣∣wn〉 [3]

where αi s are complex amplitudes and |wi〉s are classical states for
1≤ i≤ n. Therefore, a quantum state |ψ〉 can be represented as
n-dimensional column vector.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
α1
α2
. . .
αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [4]

• Unitary transformation: In quantum mechanics, the
transformation between the quantum systems must be
unitary. Consider a state |ψ〉 of quantum system at time
t: |ψ〉 � α1|w1〉 + α2|w2〉 + . . . + αn|wn〉 transformed into
state |ψ′〉 at time t’: |ψ′〉 � α1′|w1〉 + α2′|w2〉+ . . . + αn′|wn〉,
where complex amplitudes are associated by
|ψ′(t′)〉 � U(t′ − t)|ψ(t)〉, where U denotes a time reliant
unitary operator, which satisfies that (U(t′ − t))* U(t′ − t) �
1 and ∑ n

i�1|αi|2 � |α′i|2 � 1 [5].
• Hilbert space: A physical system is described by a complex

vector space called Hilbert space H [56]. It allows us to
describe the basis of the quantum system. The direct sum∣∣∣∣x∣∣∣∣y〉 : H⊕H→C or inner product |x|v〉 : H⊗H→C of two
subspaces satisfies the following properties for any vectors:

• Linearity: (α〈x
∣∣∣∣ + β〈y

∣∣∣∣)∣∣∣∣z〉 � α
∣∣∣∣x∣∣∣∣z〉 + β

∣∣∣∣y∣∣∣∣z〉.
• Symmetric property:

∣∣∣∣x∣∣∣∣y〉 � ∣∣∣∣y∣∣∣∣x〉.
• Positivity: |x|x〉≥ 0 and |x|x〉 � 0 iff x � 0, where x ∈ H.
• where x, y, z ∈ H and α, β ∈ C.
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• Quantum finite automaton (QFA) [57]: It is defined as a
quintuple (Q, Σ, sint , Pacc,Uσ), where

• Q is a set of states,
• Σ is an input alphabet,
• Hilbert space H and sinit ∈ H is an initial vector such that∣∣∣∣sinit |2 � 1,
• Hacc ⊂ H and Pacc is an acceptance projection operator on

Hacc,
• Uσ denotes a unitary transition matrix for each input symbol

(σ ∈ Σ).

The computation procedure of QFA consists of an input string
w � σnσ2 . . . σn. The automaton works by reading each input
symbol, and their respective unitary matrices are applied on
the current state, starting with an initial state. The quantum
language accepted by QFA is represented as a function
fQFA(w) �

∣∣∣∣∣sinitUwPacc|2, where Uw � Uσ1Uσ2 . . .Uσn. The tape
head is allowed to move only in the right direction. Finally,
the probability of QFA in an acceptance state is observed: that is,
indicating whether the input string is accepted or rejected by
QFA. It is also called a real-time quantum finite automaton.

Based on the movement of tape head, QFA is classified as one-
way QFA, 1.5-way QFA, and 2QFA. In 1.5-way QFA, the tape head
is permitted to move only in the right direction or can be
stationary, but it cannot move toward the left direction. It has
been proved that it can be designed for non–context-free languages,
if the input tape is circular [58]. In this study, we focused on the
2QFAmodel due to the high computational power than its classical
counterparts.

3 TWO-WAYQUANTUM FINITE AUTOMATA

A quantum finite automaton (QFA) is a quantum variant of a
classical finite automaton. In QFA, quantum transitions are
applied by reading the input symbols from the tape [9]. Two-
way quantum finite automaton (2QFA) is a quantum counterpart
of a two-way deterministic finite automaton (2DFA). In 2QFA,
the tape head is allowed to move either in the left direction or
right direction or can be stationary. The illustration of 2DFA is
shown in Figure 1.

1. [9] A two-way quantum finite automaton is represented as
sextuple (Q, Σ, δ, q0,Qacc, Qrej), where

• Q is a finite set of states.
• Σ is an input alphabet.
• Transition function δ is defined by δ : Q × Γ × Q × D→C,

whereC is a complex number, Γ � Σ∪ {#, and D � {−1, 0,+1}
represent the left, stationary and right direction of tape head.

• Q � Qacc∪  Qrej∪ Qnon, where Qnon,Qacc, andQrej represent
the set of nonhalting, accepting, and rejecting states,
respectively. The transition function must satisfy the
following conditions:

• (i) Local probability and orthogonality condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

(q′ ,d) ∈ Q×D
δ(q1, σ, q′, d)δ(q2, σ, q′, d) � { 1 q1 � q2

0 q1 ≠ q2
}

(ii) First separability condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

q′ ∈ Q

δ(q1, σ1, q′,+1)δ(q2, σ2, q′, 0)
+ δ(q1, σ1, q′, 0)δ(q2, σ2, q′,−1)
� 0

(iii) Second separability condition:

∑∀(q1 ,σ1),(q2 ,σ2) ∈ Q×Γ

q′ ∈ Q

δ(q1, σ1, q′,+1)δ(q2, σ2, q′,−1) � 0

For each σ ∈ Γ, a 2QFA is said to be simplified, if there exists a
unitary linear operator Vσ on the inner product space such that
L2{Q}→ L2{Q}. The transition function is represented as

δ(q, σ, q′, d) � { q′Vσq
0

∣∣∣∣∣∣∣ if D(q′) � d
else

}, [5]

where q′Vσq is a coefficient of
∣∣∣∣q′〉 in Vσ

∣∣∣∣q〉.
Consider an input string w, written on the input tape enclosed

with both end markers such as #w. The computation of 2QFA is
as follows. The tape head is above the input symbol σ, and the
automaton is in any state q. Then, the state of 2QFA is changed to
q′ with an amplitude δ(q, σ, q′, d) and moves the tape head one
cell toward right, stationary, and left direction according to
∈ {−1, 0,+1}. It corresponds to a unitary evolution in the
innerproduct space Hn.

A computation of a 2QFA is a chain of superpositions
c0, c1, c2, . . . ., where c0 denotes an initial configuration. For
any ci, when the automaton is observed in a superposition
state with an amplitude αc, it has the form Uδ

∣∣∣∣ci〉∑c ∈ Cn
αc|ci〉,FIGURE 1 | Representation of two-way deterministic finite automata.
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where Cn represents the set of configurations. The probability
associated with a configuration is calculated by absolute squares
of amplitude. Superposition is said to be valid if the sum of the
squared moduli of their probability amplitudes is unitary. In
quantum theory, the time evolution is specified by unitary
transformations. Each transition function δ prompts a
transformation operator over the Hilbert spaceHn in linear time.

Uw
δ

∣∣∣∣∣∣∣∣∣∣∣∣q, j〉 � ∑
(q′ ,d) ∈ Q×D

δ(q,w(j), q′, d)
∣∣∣∣∣∣∣∣∣∣∣∣q′, j + d mod|w|〉

for each (q, j) ∈ C|w|, where q ∈ Q, j ∈ Z|w| and extended toHn by
linearity [9, 59].

4 MODELING OF CHEMICAL REACTIONS

Before we recognize the chemical reactions using two-way QFAs
model, it is important to show how computational chemistry
works. Figure 2 shows the illustration of language recognition by
the chemical computation model. It consists of three parts: i) a
mixed container where the computation process occurs, ii) an

input translator that translates the chemical aliquots into input
symbols and gives those consecutively depending upon the
processing time, iii) a system to monitor the response of an
automaton as a chemical criterion. Finally, the chemical
computation produces well-defined chemical accept/reject
signatures for the input. For instance, if the number of as and
bs are equal in the input, then the chemical computation
produces heat, that is, an input is said to be accepted.
Otherwise, if no heat is released at the end of computation,
then the input is said to be rejected by the system. The following
are the construction of two-way quantum finite state machines of
chemical reactions.

THEOREM 1. Two-way QFAs can recognize all regular
languages.

PROOF. The proof has been shown in Ref. 9.

4.1 Chemical Reaction-1 Consisting
Regular Language
For an illustrative and visual implementation, we can choose a
precipitation reaction in an aqueous medium such as

KIO3 + AgNO3 →AgIO3(s) + KNO3 [6]

FIGURE 2 | Representation of language recognition by chemical computation. It is reproduced from [40] under the Creative Commons CCBY license.

FIGURE 3 | Illustration of acid/base reaction of L1.
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During computation, if a white precipitate of silver iodate is
observed, then the input string is said to be accepted; if the
solution is clear from precipitate, the string has been rejected
because there was no reaction. Therefore, we have chosen the
recipes of alphabet symbols a for potassium iodate (KIO3) and b
for silver nitrate (AgNO3) quantitatively. Figure 3 shows the
chemical representation of symbols a and b, the bimolecular
precipitation reaction [38]. If the precipitate AgIO3 is not
presented in the solution, then the computation is said to be
rejected. For example, the input string w � aaab is said to be
accepted due to the presence of precipitate or, equally, heat has
been determined during computation. But, the inputw � aa is said
to be rejected due to the absence of precipitate or, precisely, heat
has not been observed. The Kleene star (Σ*) operator is a set of
infinite strings of all lengths over input alphabet as well as empty
string (ϵ). The language “(a + b)*”means the string containing any
number of “a”s or “b”s in any order or empty string. The language
“(ab)*”means the string containing any number of “ab”s or string
of length zero. Figure 4 shows the corresponding theoretical 2QFA
state transition graph to recognize L1.

THEOREM 2. A language L1 � {(a + b)*a(a + b)*b(a + b)*aa*
bb*} representing precipitation reaction in Eq. 6 can be
recognized by 2QFA.

PROOF. The idea of this proof is as follows. The initial state q0
reads a right-end marker # and moves the head toward the right
direction. If there is no occurrence of symbol b, then it shows no
precipitate, and the input is said to be rejected by the 2QFA.
Similarly, on reading the symbol b, the state q0 is changed into q1.
If there is no occurrence of symbol a, then the state is transformed
into rejecting state qr1. If the input string w ∈ L1 contains at least
one a and one b, then silver iodate is present during computation,
and it is said to be recognized by 2QFA. A 2QFA for L1 is defined
as follows: M2QFA � (Q, Σ, q0,Qacc,Qrej, δ),

where Q � {q0, q1, q2, q3, q4, q5, q6, q7, qa1, qa2, qr1, qr2}, where
q0 and q2 are used to move the head toward the $ on reading
as and bs, respectively. The states q1 and q3 are used to confirm
that the last symbol read by head is a and b, respectively.

Σ � {a, b}, q0 is an initial state, Qacc � {qa1, qa2} and
Qrej � {qr1, qr2}.

The specification of transition functions are given in Table 1.
It can be noted that in 2QFA, transitionmatrices consist of 0 and 1,

i.e., basically a two-way reversible finite automata (2RFA). Therefore,
2QFA can be designed for all the languages accepted by 2RFA. In
transition matrix, each column and row have exactly only one entry 1.
Hence, the dot product of any two rows is equal to zero. It is known
that the language recognition power of 2RFA is an equivalent to 2DFA.

FIGURE 4 | State transition diagram of L1.

FIGURE 5 | Illustration of the acid/base reaction of L2.
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4.2 Chemical Reaction-2 Consisting
Context-Free Language
Next, we have considered the context-free language from
Chomsky hierarchy satisfying the balanced chemical reaction
between NaOH and malonic acid as follows:

H2C3H2O4 + 2NaOH→Na2C3H2O4 + 2H2O [7]

The language generated by the abovementioned chemical
reaction is L2 consisting Dyck language of all words with
balanced parentheses. Figure 5 shows the acid/base reaction of
L2. 2QFA is designed for L2 as follows:

THEOREM 3. A language L2 consisting of Dyck language of all
words with balanced parentheses can be recognized by 2QFA
with probability 1, otherwise rejected with probability at least
1 − 1

N, where N is any positive number.
PROOF. The idea of this proof is as follows. It consists of three

phases. First, the initial state q0 reads a first symbol and both
heads start moving toward the right-end marker $. If the input
string starts with closed parentheses, then it is said to be
rejected. On reading the left-end marker #, the computation
is split into N paths, denoted by q1,0, q2,0, . . . , qN ,0. Each path
possesses equal amplitude 1��

N
√ . Along the N different paths, each

path moves deterministically to the right-end marker . Each
computational path keeps track of the open parentheses with
respect to the closed parentheses. At the end of computation, if
the excess of open parentheses is observed, then it is said to be
rejected. It means pH value is greater than midpoint pH, and
intermediate gray tone is observed. Secondly, if there is an excess
of closed parentheses, then the darkest gray tone is observed,
that is, pH value is less than midpoint pH. It is said to be rejected
by 2QFA with probability 1 − 1

N. If there is a balanced occurrence
of open and closed parentheses, the input string is said to be
accepted with probability 1. Hence, pH value is equal to
midpoint pH, and the lightest gray tone is observed at the end
of computation. A 2QFA for L2 is defined as follows: M2QFA �
(Q, Σ, q0,Qacc,Qrej, δ),where Q � {q0, q1, q2, q3} ∪ {qi,j

∣∣∣∣∣1≤ i≤N ,
0≤ j≤max(i,N − i + 1)}∪ {pk

∣∣∣∣1≤ k ≤N}∪ {si,0,wi,0, ri,0
∣∣∣∣1≤ i≤N}

FIGURE 6 | State transition diagram of L2.

FIGURE 7 | Illustration of the acid/base reaction of L3.
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∪ {qacc, qrej}, where q1 is used to check whether the first symbol is
an open parentheses or not, and q2 and q3 are used to traverse the
input string. Figure 6 shows the state transition diagram for L2.

Σ � {(, )}, q0 is an initial state, Qacc � {pN} and Qrej � {qr}∪
 {pk

∣∣∣∣1≤ k<N}∪ {ri,0
∣∣∣∣1≤ i≤N}.

The specification of transition functions is given in Table 2.

4.3 Chemical Reaction-3 Consisting
Context-Sensitive Language
To implement a chemical 2QFA for context-sensitive language,
we have used Belousov-Zhabotinsky (BZ) reaction network for
the nonlinear oscillatory chemistry [38], which consists of

temporal oscillation in the sodium bromate and malonic acid
system [60] as Figure 7 shows the acid/base reaction of L3. Figure
8 shows the state transition diagram for L3.

3BrO3 − +5CH2(COOH)2 + 3H+ → 3BrCH(COOH)2
+ 4CO2 + 2HCOOH + 5H2O [8]

In 2019, Duenas-Diez and Perez-Mercader [38] designed
chemical Turing machine for BZ reaction network. The chemical
reaction is fed sequentially to the reactor as
{(BrO−

3 )n(MA)n(NaOH)n}, where n> 0. It is transcribed in
formal language as L3 � {anbncn|n> 0}. The symbol a is
interpreted as a fraction of sodium bromate, b is used for
malonic acid and symbol, c is transcribed as a quantity of NaOH.
It is known that L3 is a context-sensitive language and cannot be
recognized by finite automata or pushdown automata with a stack.
Although it can be recognized by two-stack PDA, we have shown
that L3 can be recognized by 2QFA without using any external aid.

THEOREM 4. A language L3 � {anbncn|n> 0} can be
recognized by 2QFA in linear time. For a language,
L3 � {anbncn|n> 0}, and for arbitrary N-computational
paths, there exists a 2QFA such that for w ∈ L3; it accepts
w with bounded error ϵ and rejects w ∉ L3 with probability at
least 1 − 1

N.

FIGURE 8 | State transition diagram of L3.

TABLE 1 | Details of the transition functions and head function for L1.

V#
∣∣∣∣q0〉 � ∣∣∣∣q0〉 Va

∣∣∣∣q0〉 � ∣∣∣∣q0〉 Vb
∣∣∣∣q0〉 � ∣∣∣∣q1〉 V#

∣∣∣∣q1〉 � ∣∣∣∣q2〉
V Va

∣∣∣∣q1〉 � ∣∣∣∣q2〉 Vb
∣∣∣∣q1〉 � ∣∣∣∣q2〉 Vb

∣∣∣∣q2〉 � ∣∣∣∣q2〉
V Va

∣∣∣∣q7〉 � ∣∣∣∣q7〉 Va
∣∣∣∣q2〉 � ∣∣∣∣q3〉 Va

∣∣∣∣q3〉 � ∣∣∣∣q1〉
V Va

∣∣∣∣q4〉 � ∣∣∣∣q4〉 Vb
∣∣∣∣q3〉 � ∣∣∣∣q4〉 Vb

∣∣∣∣q4〉 � ∣∣∣∣q3〉
V#

∣∣∣∣q5〉 � ∣∣∣∣qr1〉 Va
∣∣∣∣q5〉 � ∣∣∣∣q6〉 Vb

∣∣∣∣q5〉 � ∣∣∣∣q5〉 Vb
∣∣∣∣q6〉 � ∣∣∣∣q6〉

V Va
∣∣∣∣q6〉 � ∣∣∣∣qa2〉

Head functions:
D(q0) � (+1),D(q1) � (−1),D(q2) � (+1),D(q3) � (−1),
D(q4) � (+1),D(q5) � (−1),D(q6) � (+1),D(q7) � (−1),

D(qa1) � D(qa2) � (0),D(qr1) � D(qr2) � (0)
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PROOF. The design of proof for BZ reaction network is as
follows. It consists of two phases. First, the 2QFA traverse the
input to check the form a+b+c+. On reading the right-end marker
$, the computation is split into N paths such that
w1,0,w2,0, . . . ,wN ,0. Second, the first path is used to check if
the number of bs and cs are equal or not. The second path is
used to check the initial part of an input string to identify if it is in
{anbn|n> 0}. On reading the right-end marker $, the both paths
are split into N different paths with an equal amplitude 1��

N
√ .

Finally, upon reading the right-end marker #, if the number of as
and bs and the number of bs and cs are equal in respective
computational paths, then all paths come into N-way quantum
Fourier transform (QFT) and either one acceptance state or
rejection states are observed. Suppose, if the input string is not in
the corrected form, then all computation paths read the # at different
times. Thus, their amplitudes do not cancel each other, and the input
string is said to be rejected with probability 1 − 1

N. Otherwise, the
input string is said to be recognized by 2QFA with probability 1.

5 SUMMARY

In summary, 2QFA model can be efficiently designed for balanced
chemical reaction and BZ reaction network with one-sided error
bound, which are halted in linear time. Table 3 shows the language
recognition ability of different computational models. The classical
2DFA and 2PFA are known to be equal in computational power to
one-way deterministic finite automata (1DFA) [24, 61]. It has been
proved that 2PFAs can be designed for nonregular languages in
expected polynomial time. Additionally, it has been demonstrated

that the chemical PDA can be designed for aforementioned
chemical reactions with multiple stacks. The recognition of
languages by native chemical automata can be found in Refs.
39–41. But, we have shown that 2QFA can recognize such
chemical reactions without any external aid. It has been proved
that 2QFA ismore powerful than classical variants because it follows
the quantum superposition principle to be in more than one state at
a time on the input tape. For execution, it needs at least O(log n)
quantum states to store the position of tape head, where n denotes
the length of an input string.

6 CONCLUSION

The enhancement in many existing computational approaches
provides momentum to molecular and quantum simulations at
the electronic level. It helps to test new abstract approaches for
considering molecules and matter. Previous attempts to model
the aforementioned chemical reactions used finite automata and
pushdown automata with multiple stacks. In this study, we
focused on well-known languages of Chomsky hierarchy and
modeled those using two-way QFAs. The crucial advantage of the
quantum approach is that these chemical reactions transcribed in
formal languages can be parsed in linear time, without using any
external aid.We have shown that two-way quantum automata are
more superior to its classical variants by using quantum
transitions. To the best of our knowledge, no such modeling
of chemical reactions is performed using quantum automata
theory so far. For the future purpose, we will try to represent
complex chemical reactions in formal languages and model those
using other quantum computational models.
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TABLE 2 | Details of the transition functions and head function for L2.

V#|q0〉 � |q0〉,V(|q0〉 � |q0〉,V)|q0〉 � |q1〉,V#|q1〉 � |qr〉
V(|q1〉 � |q2〉,V)|q2〉 � |q2〉,V(|q2〉 � |q3〉,V) |q3〉 � |q0〉

V#|q2〉 � 1��
N

√ ∑  N
i�1|qi,0〉

V(|qi,0〉 � |qi,i〉,V)|qi,0〉 � |qi,N−i+1〉, for 1≤ i ≤N,V(|qi,j〉 � |qi,j−1〉, for 1≤ j ≤ i
V) |qi,j〉 � |qi,j−1〉, for 1≤ j ≤N − i + 1, 1≤ i ≤N

V$|qi,0〉 � |si,0〉,V)|si,0〉 � |wi,0〉,V(|si,0〉 � |ri,0〉, for 1≤ i ≤N

V$|wi,0〉 � 1��
N

√ ∑ N
k�1exp(2πi

N ki)∣∣∣∣∣∣∣pk〉, for 1≤ i ≤N

Head functions:
D(q0) � (+1),D(q1) � (−1),D(q2) � (+1),D(q3) � (−1),D(qi,0) � (+1), for 1≤ i ≤N

D(qi,j) � (0), for 1≤ i ≤N, j ≠ 0,D(qr) � (0),D(pk) � (0), for 1≤ k ≤N
D(si,0) � (−1),D(wi,0) � (+1),D(ri,0) � (0), for 1≤ i ≤N

TABLE 3 | Comparison of computational power of models.

Languages Class 2DFA/
2PFA

Chemical
FA/PDA

2QFA

L1 � {(a + b)*a(a + b)*b(a + b)*aa*bb*} RL ✓ ✓ ✓
A language L2 consisting Dyck language of
balanced parentheses

CFL 7 ✓ (with 1-
stack PDA)

✓

L3 � {anbncn|n>0} CSL 7 ✓ (with 2-
stack PDA)

✓

RL, CFL, and CSL stand for regular languages, context-free languages, and context-
sensitive languages, respectively.
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Chemistry is considered as one of the more promising applications to science of near-

term quantum computing. Recent work in transitioning classical algorithms to a quantum

computer has led to great strides in improving quantum algorithms and illustrating their

quantum advantage. Because of the limitations of near-term quantum computers, the

most effective strategies split the work over classical and quantum computers. There

is a proven set of methods in computational chemistry and materials physics that has

used this same idea of splitting a complex physical system into parts that are treated at

different levels of theory to obtain solutions for the complete physical system for which

a brute force solution with a single method is not feasible. These methods are variously

known as embedding, multi-scale, and fragment techniques and methods. We review

these methods and then propose the embedding approach as a method for describing

complex biochemical systems, with the parts not only treated with different levels of

theory, but computed with hybrid classical and quantum algorithms. Such strategies

are critical if one wants to expand the focus to biochemical molecules that contain

active regions that cannot be properly explained with traditional algorithms on classical

computers. While we do not solve this problem here, we provide an overview of where

the field is going to enable such problems to be tackled in the future.

Keywords: computational molecular biology, biochemistry, quantum computing, hybrid quantum-classical

algorithms, quantum embedding theory

1. INTRODUCTION

Biochemical systems are essential for carrying out biological functions, and their actions span
extreme time and length scales. These systems consist of proteins, DNAs, RNAs, carbohydrates,
or lipids (either individually or in combination) with small molecule ligands and/or with ions
in aqueous or membrane environments. The functional processes can be either covalent or
non-covalent, such as molecular recognition; or a combination of both, such as an enzymatic
cycle. Important biological functions are, for example, stem cell maintenance, DNA repair,
gene transcription and translation, signal transduction, development, learning and memory,
metabolism, etc. In order to understand these elementary processes, together with experimental
approaches, various computational methods have been developed at the electronic, the atomic, and
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more coarse-grained levels over the decades. However, full
quantum calculations are intractable due to the large molecule
sizes and the high demands for accuracy required for chemical
applications.

The solutionmay lie in quantum computing: as Feynman once
said, “... Nature isn’t classical...if you want tomake a simulation of
Nature, you’d better make it quantum mechanical...” (Feynman,
1982). As a matter of fact, from the remarkable speed of
enzyme-catalyzed reactions to the workings of the human
brain, numerous biological puzzles are now being explored
for evidence of quantum effects. Well-known examples include
photosynthesis, nitrogen fixation, magnetoreception, olfaction,
neuronal signal processing, protein/drug interaction, and so
on. There have even been early attempts to develop quantum
computing algorithms specifically for nitrogen fixation (Reiher
et al., 2017).

Quantum computing is being explored to help solve a variety
of problems in biochemistry and biology (Cao et al., 2019; Emani
et al., 2019). In this paper, we review several approaches to allow
quantum computing to be exploited to simulate biochemical
systems with complicated electron correlation. We formulate a
general approach of embedding to describe part of the system on
classical computers and the most demanding part on a quantum
computer resulting in a complete solution of the complex system
with useful accuracy. This will allow quantum computers to be
used for such demanding problems without the requirement
that a quantum computer be available to hold and process the
entire system of interest. In section 2, as motivating examples,
we present three biochemical systems that are intractable with
classical algorithms on classical computers due to the need to
deal with complicated electron correlation. Effectively addressing
them with quantum computing will lead to important scientific
advances. Then we review the embedding methodologies that
have been used to handle very complex systems using classical
computers in section 3, which consists of dividing the system
into two parts, with one part, the most computationally
demanding, computed with quantum theory and the other part,
considered the environment, treated with classical theory. The
challenge of embedding methods is the exchange of information
between the two parts. Section 4 provides a brief review
of two of the most important existing quantum algorithms
for chemistry, Variational Quantum Eigensolver and Quantum
Phase Estimation. Section 5 presents how the idea of embedding
strategies can be usefully applied to handle complex physical
systems at a high level of accuracy by combining the power of
quantum computers for the strongly correlated part of the system
with the use of classical computers for the other parts.

In the context of computational chemistry, the distinction
of quantum vs. classical has two meanings that are both
relevant: The first, traditional, meaning designates the level of
theory that is used to describe the chemical and biochemical
systems. Because of the complexity and size of biochemical
systems, treating the whole system using quantum theory
is not feasible and often the systems are described using
theories based on classical physics. The second, more recently
introduced, meaning refers to whether the theoretical model and
computational algorithms are run on quantum computers or

classical computers. The promise of quantum computers is that
they will eventually be sufficiently powerful to allow scientists
to model complex biochemical systems accurately and efficiently
with a fully quantum theoretical description. In this paper, we will
make it clear which meaning is used when it is used.

2. MOTIVATING EXAMPLES

We present three important and representative biochemical
systems whose properties make them attractive targets for
quantum computing. The first two are open shell transition-
metal and conjugated pi-electron strongly correlated systems;
the last one displays extreme non-covalent intermolecular
binding involving a large number of atoms. These three
examples symbolize difficult cases for classical quantum chemical
treatments and superior ones for quantum computing.

2.1. A Transition-Metal-Ion-Containing
Enzyme: Histone Demethylase
The transcription of genetic information encoded in DNA
is in part regulated by chemical modifications to histone
proteins. Histone demethylases are enzymes that remove methyl
(-CH3) groups from histones. The demethylase proteins alter
transcriptional regulation of the genome by controlling the
methylation levels that occur on DNA and/or histones and, in
turn, regulate the chromatin states at specific gene loci within
organisms. The big demethylase family has KDM1-6 classes
(Pedersen and Helin, 2010). Defined by their mechanisms, two
main classes of histone demethylases exist: a flavin adenine
dinucleotide (FAD)-dependent amine oxidase, and an Fe(II)
and α-ketoglutarate-dependent hydroxylase. Both operate by
hydroxylation of a methyl group followed by dissociation
of formaldehyde. By studying various demethylation details,
improvements are possible in the understanding of how “histone
code” is employed for gene on/off switching.

Figure 1 is an illustration of the JmJD2A topology, active
site, and proposed catalytic mechanism which involve both
transition metal ions and reaction radicals (Chen et al., 2006;
Ng et al., 2007; Zheng and Huang, 2014). These are cases where
the Born-Oppenheimer approximation breaks down. During the
catalytic cycle, the iron metal ion has three charge states: +2,
+3, and +4, and two spin states: 0 and 1/2. Oxygen has three
spin states: 0, 1/2 and 1. There are at least nine catalytic steps.
Considering only direct contact catalytic amino acid residues,
oxygen, trimethylated quaternary amine from lysine substrate,
and of course catalytic Fe ion, 151 electrons and 121 spatial
orbitals must be involved to achieve accurate electronic structure
and related energy calculations.

2.2. Non-Metal-Ion-Containing Enzyme:
Telomerase
The study of telomerase is of tremendous significance for
understanding stem cell maintenance, aging, and cancer. At each
end of a chromosome, there is a region of repetitive nucleotide
sequences called a telomere which protects the chromosome
from deterioration or fusion with neighboring chromosomes.
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FIGURE 1 | Structure of JmJD2A. Some domains from above are highlighted: JmJ (N-terminus, red; C-terminus, yellow), Zinc finger domain (light purple),

Beta-hairpin (light blue), and mixed domain linker (green). The ball-and-sticks are Fe(II) and alpha-ketoglutarate cofactors. The enzymatic reactions involve both iron

redox and oxygen radical, and are thus infeasible with classical computers.

During chromosome replication, the enzymes that duplicate
DNA cannot continue their duplication all the way to the end
of a chromosome, so after each cell division, the telomere gets
shorter. Telomeres are replenished by an enzyme, as shown in
Figure 2, telomerase reverse transcriptase (TERT), (Cohen et al.,
2007) which is the catalytic subunit of telomerase. Telomerase is
active in normal stem cells and most cancer cells, but is normally
absent from, or at very low levels in, most somatic (body) cells.

For vertebrates, the sequence of nucleotides in telomeres is
AGGGTT (Harvey, 2014). The complementary DNA strand is
TCCCAA, which also has a single-stranded TTAGGG overhang
(Witzany, 2008). This sequence of TTAGGG is repeated
approximately 2,500 times in humans (Sadava et al., 2011).
The active telomerase is a homodimer, each monomer having
telomerase reverse transcriptase (TERT), telomerase RNA, and
dyskerin (Mitchell et al., 2010). Currently, there are several TERT
crystal structures available; computational simulation of TERT
telomere elongation is important. Snapshots of the molecular
processes need be constructed and quantum computing could
be used to simulate the catalytic active centers in order to
better understand how these systems work, especially base fidelity
preservation during the extension process. Due to its nucleobase
pairing and reaction processivity, this is a case where quantum
computing could make a large impact on molecular recognition.

2.3. Molecular Recognition:
Biotin-(Strept)Avidin Binding
Molecular recognition, the specific interaction between multiple
molecules which exhibit molecular complementarity through
non-covalent binding, plays a critical role in biological
interactions. Although the field is well-studied, important
problems remain unsolved. For example, even though it is
a classic molecular recognition issue and many studies have
attempted to resolve it, the origin of strong non-covalent

reversible binding of small molecule biotin to proteins avidin
(Ka ∼ 10E15 M-1) and streptavidin (Ka ∼ 10E13 M-1) remains
a mystery. As seen from Figure 3, the beta-barrel shaped
avidin binds the biotin ligand with van der Waals, electrostatic,
hydrogen bonding and pi-electron polarization forces; this results
in a free energy of binding around −20 Kcal/mol, almost at a
quasichemical bonding level.

Understanding this binding thermodynamics at the molecular
level holds fundamental importance theoretically and offers key
insights for molecular design. There is no doubt that in
desolvation, conformational and vibrational entropy play an
important role. However, the key issue here is to understand
biotin-avidin intermolecular interaction, which rests on
computing accurate non-bonded interaction energies. The
biotin molecule (as the ligand) has 89 valence electrons and
79 frontier orbitals. By only considering direct contacting
atoms from the binding amino acid residues, the active part
of the molecule has a total of 379 electrons and 358 spatial
orbitals. The spin state is S = 0 and charge state is −1. It
should be obvious that such a subsystem is too large to be
tackled with standard chemical methodologies for strongly
correlated molecules, so quantum computing is the only
option for a complete theoretical analysis. Sometimes, ligands
form covalent bonding with proteins, such as anticancer drug
ibrutinib binding to Bruton’s tyrosine kinase (Bender et al.,
2017). Quantum computing mimicking these processes not only
helps fundamental understanding on molecular recognition, but
also facilitates drug or materials design.

3. CLASSICAL COMPUTER EMBEDDING
STRATEGIES

In this section, we review the methodology of embedding as it
has been used for several decades to describe complex chemical
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FIGURE 2 | (Left) TERT with hybrid RNA/DNA bound; (Right) (A) cartoon representation of the active site; (B) detailed active site residues and DNA substrate.

FIGURE 3 | (Left) overall avidin protein structure with biotin binding; (Right) detailed biotin interaction amino acid residues from avidin.
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systems, including large bio-molecules in liquids and solid-
state systems, by dividing them into parts that are treated with
different levels of physical theory. The levels of theory range from
continuummodels, to classical dynamics of atoms andmolecules,
to full quantum-mechanical description of electronic structure
and nuclear motion. These methods are then implemented
in algorithms that run on classical computers. The challenge
common to all these methods lies in the description of the
interactions across the boundaries between the parts. There the
interaction must be described with care because of the different
theories being used to describe the parts on either side of
the boundary.

The same methodology used to divide complex systems
into parts is extended to describe some parts with algorithms
that are executed on classical computers, while other parts
are described by algorithms that are executed on quantum
computers. The challenge of embedding methods on classical
and quantum computers is the same in that the description
of the interaction between the parts running on the classical
and quantum computers must be handled with extreme care.
In addition, because one cannot directly readout the final
wavefunction from the quantum computer, hybrid algorithms
must be properly designed to allow for the information from the
quantum calculation to be transferred to the classical algorithm
and vice versa.

In the method of multiscale simulation, the challenge is to
describe the processes that are visible at the macroscopic level,
but are fully determined by the details at some microscopic level.
A paradigmatic example is the formation and propagation of
cracks in materials (Gao and Klein, 1998; Rudd and Broughton,
2000; Rountree et al., 2002; Liu et al., 2004; Budarapu et al., 2014;
Talebi et al., 2014). The macroscopic description is the goal, but
continuum models that are effective and affordable at that scale
cannot describe the basic-bond breaking process that lie at the
foundation of the crack formation. Nor can molecular dynamics
methods describe this process. Thus the continuum model, the
molecular dynamics model, and the quantum model must all be
coupled together with scale-bridging techniques used to connect
them in a way that accurately preserves the physics (Hoekstra
et al., 2014).

Similarly, a biomolecule can be divided into three regions:
a classical region where interatomic interaction can be treated
with classical force fields using standard methods (Amber http://
ambermd.org/, CHARMM https://www.charmm.org/charmm/,
LAMMPS https://lammps.sandia.gov/, etc); a quantum region
where mean-field approximations are sufficient; and a strongly
correlated region where high-level methods that treat quantum
entanglement are needed, that is, techniques beyond density
functional theory (DFT).

3.1. Hybrid Quantum-Classical Molecular
Dynamics
We illustrate how hierarchical methods have been used in a
few studies. We show a study of water-silica surface interaction,
which shows that very complex amorphous systems can be
handled by the method. In the amorphous water-silica interface

interaction, the system is divided into two regions, the quantum
and the classical. Here, the quantum region is described by
effective mean-field methods, while the classical region is
described by molecular dynamics using effective force laws. The
two regions must be coupled together across their boundary.
Various methods exist for the embedding of the quantum region
(the light blue region in Figure 4) inside the classical region. In
earlier work (Du et al., 2004), a quantum region described by
DFT is embedded in a classical matrix as shown in Figure 5.
This figure depicts a Si-O bond-breaking process on the silica
surface. According to a free cluster model (Walsh et al., 2000),
the calculated barrier energy of this process is Eb = 0.7–1.1 eV.
However, when the cluster is embedded in a surface matrix, the
calculated barrier energy Eb is equal to 0.4 eV. Including quantum
effects results in a substantial decrease.

For a bio-molecule, the embedding is simpler than for
amorphousmaterials as there are not as many bonds that connect
the classical region and the quantum region. Techniques for this
type of embedding are quite sophisticated (Gao and Xia, 1992;
Bakowies and Thiel, 1996; Gao et al., 1998; Cui et al., 2001; Laio
et al., 2002; Vreven et al., 2003; Friesner and Guallar, 2005).

The peptide hydrolysis reaction mechanism for HIV-1
protease has been studied by a hybrid Car-Parinello/classical
molecular dynamics simulation (Piana et al., 2004)/Gradient-
corrected BLYP density functional theory describes the reactive
part of the active site and the AMBER force field describes the rest
of the proteins, the solvent, and the counterions that are needed
to balance the QM/MM description. The authors find that the
orientation and the flexibility of the reactants, determined by the
embedding protein structure, are important in determining the
activation barrier for the reaction. This shows the need to include
the larger structure as well as the ability of the QM/MM approach
to address the problem.

As another example, a recent study (Ahsan and Senapati,
2019) on the effect of water, i.e., hydrogen bonds, in a catalytic
role in epoxide ring opening in aspartate proteases using
QM/MM show that the process follows a two-step mechanism
with the formation of an oxyanion intermediate, which is
stabilized with up to 30 kcal/mol supplied by the hydrogen
bonds from the water molecules near the protein active site. This
example, too, illustrates that the treatment of the whole system is
crucial for a correct understanding of the biochemistry enabled
by the hybrid approach.

3.2. From DFT to Strongly Correlated
Systems: Quantum Embedding Theory for
Molecules and for the Hubbard Model
Transition-metal molecular complexes with d and f electrons
often demonstrate strong correlation effects. Active centers of
many enzymes are transition-metal complexes; e.g., photosystem
I and II have iron-sulfur and manganese-oxide clusters as
their active centers. The large number of atoms in ligands
makes high-level calculation of the whole molecule impossible.
In this situation, quantum embedding is necessary. Note that
quantum embedding is different from the hybrid quantum-
classical simulation discussed in section 3.1. Here, we embed
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FIGURE 4 | Schematic of a hybrid simulation framework for molecules that employs a hierarchical embedding strategy.

FIGURE 5 | (A) Sketch of the hybrid simulation framework as applied to amorphous glasses from Du et al. (2004). Three sizes of the quantum region were chosen

(panels a–c on the left) to ensure the convergence of the reaction energy. (B) The right picture relates energy path with water splitting process. The energy barrier is

only 0.4 eV and is zero when the reaction involves only two water molecules.

a strongly correlated subspace in a single electron space. So,
we need a single-particle theory for the whole molecule and
a many-body theory for the correlated subspace, which is a
small but functional part of the molecule. One embedding

scheme utilizes density functional theory (DFT) as the single-
particle theory and does the embedding via dynamical mean-
field theory (DMFT) (Georges et al., 1996). In DMFT, the
correlated subspace is referred as an impurity and the impurity
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problem is solved by an impurity solver. We can use unitary
coupled-cluster theory, which can be run on quantum computers,
to create an approximation of the ground state of the active
region of the molecule. Then additional qubits are employed to
represent the self-consistent bath that the impurity is coupled
to. Time evolution then allows the Green’s function to be
determined for the impurity, which can be directly measured
and have its self-energy extracted after the Green’s function data
is transformed from the time domain to the frequency domain.
The impurity self-energy is then approximated as the self-energy
of the molecule in DMFT, and we can use it to obtain the
molecular interacting Green’s function, which in turn will be
used to calculate physical properties of the molecule. Most likely,
these problems will require an inhomogeneous DMFT approach,
with separate impurity problems for the different atomic sites in
the strongly correlated material. The challenging computation
of the local Green’s function for each atomic site from the local
self-energy would be carried out on a classical computer.

The impurity model is defined, in part, from the on-site
Coulomb interaction U-matrix. One reliable way to determine
these parameters from first principles is the constrained Random
Phase Approximation (cRPA) method (Aryasetiawan et al., 2004,
2006). One aims to estimate the screened Coulomb interaction
for selected bands of interest, that is, within a specified energy
window. For this purpose, the particle-hole polarization between
all possible pairs of occupied and unoccupied states is taken into
account. This approach uses the Random Phase Approximation
(RPA) and directly calculates the particle-hole polarization
(Petersilka et al., 1996; Aryasetiawan et al., 2004).

To make DFT+DMFT fully ab initio, the hopping parameters
and the Coulomb interaction parameters should be provided
from first principles (in the DFT part of the calculation). The
Hubbard Hamiltonian can be written as

ĤHubbard =
∑

i,j

tij ĉ
†
i ĉj +

∑

i,α,β ,γ ,δ

Ui,αβγ δ ĉ
†
i,α ĉ

†
i,β ĉi,γ ĉi,δ . (1)

The hopping matrix tij comes from the DFT eigenenergies and
provides the bath Green’s function in DMFT. The Coulomb
interaction Ui,αβγ δ comes from the cRPA calculation described
above, which is the only fully quantum-mechanical way to obtain
the Coulomb interaction parameters. With the bath Green’s
function and U at hand, the effective action of the impurity
problem is constructed. DMFT solves for the impurity Green’s
function by direct numerical sampling of the Green’s function

Gij,σ (t) = −〈Tĉi,σ (t) ĉ†j,σ (0)〉. A classical computer algorithm

often uses the continuous time quantum Monte Carlo algorithm
(CT-QMC) (Gull et al., 2011; Zhang et al., 2019).

It has been proposed (Bauer et al., 2016) that a quantum
computer algorithm could replace the CT-QMC calculation and
provide the impurity Green’s function Gij,σ (t), especially in cases
where the classical computation suffers from the sign problem.
Such a calculation embeds the impurity solver onto the quantum
computer (quantum computing task), while the remainder of
the DFT+DMFT iteration is carried out on classical computers.
However, because describing the bath for the impurity problem

is complex, it might be fruitful to instead simply solve the many-
band lattice problem directly on the quantum computer. Indeed,
this latter approach is more likely to be generalizable to large
molecular systems. Of course, becausemolecules are not periodic,
one will likely need to use inhomogeneous DMFT approaches if
one takes the impurity problem approach.

It often is important to embed the DFT+DMFT iteration
into a larger loop of charge-density (ρe) self-consistency (CSC)
(Figure 6). It is known that CSC DFT+DMFT is necessary to
capture charge density re-distributions even for very simple
transition metal oxides like V2O3 under ambient conditions
(Leonov et al., 2015). Similarly, in molecular calculations, charge
redistribution is important for any simulation involving catalysis
or other reactions. It is clear that all of these types of calculations
must continue to be done on a classical computer. Only the
complex strongly correlated part, involving the measurement of
the Green’s function will be done on the quantum computer.
Because it can be directly measured, the connection between
the quantum and classical calculation is simple to implement in
this case.

4. BRIEF OVERVIEW OF CHEMISTRY ON
QUANTUM COMPUTERS

4.1. Quantum Algorithms and Methods
One basic challenge in computational chemistry is finding a
way to avoid having to explicitly maintain the full many-body
wave function, because the classical resource requirements of
doing so grow exponentially with the system size. In a quantum
computer, on the other hand, this scaling is linear in the number
of qubits used. Another classical computational challenge is
propagating the wave function in time by computing e−iHt |9〉.
This calculation can also be efficiently implemented, in principle,
on a quantum computer. This gives the promise of eventually
being able to use a quantum computer to handle systems that
cannot be feasibly calculated on classical computer. Such analysis
can even be extended to beyond Born-Oppenheimer effects by
including additional orbitals for the nuclei (Veis et al., 2016),
but those approaches require significantlymore resources and are
likely to be applied to these large systems only far into the future.
The disadvantage of working on the quantum computer is that
the wave functions cannot be directly retrieved—either we resort
to multiple calculations and measurements to obtain statistical
knowledge of the wave function, or we settle for measuring some
property of the wave function. Thus quantum algorithm design
is not trivial.

In the last 20 years, significant progress has been made
toward the goal of performing quantum chemistry on quantum
computers (Cao et al., 2019). Most recently, Google has achieved
a milestone in computational quantum chemistry by performing
a Hartree-Fock calculation, the foundational algorithm in the
field, on a superconducting quantum computer (Google AI
Quantum and Collaborators, 2020). In this section, we describe
two paradigmatic algorithms. The first is the variational quantum
eigensolver (Peruzzo et al., 2014; McArdle et al., 2020), which
is viewed today as the best candidate for performing chemistry
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FIGURE 6 | Schematic plot of the charge density self-consistent loop in conjunction with DFT+DMFT.

on so-called noisy intermediate-scale quantum (NISQ) hardware.
We also discuss the more accurate quantum phase estimation
algorithm (Kitaev, 1995), which will ultimately emerge as the
gold standard for quantum chemistry on a quantum computer
because it can compute ground-state energies with only small
systematic errors.

Of course, the first chemical systems put onto quantum
computers are not going to be large biological molecules. But,
with the development of the right algorithms for embedding,
hierarchical structuring, and low-depth circuits, one might be
able to advance biological science sooner than later. At the least,
we should position ourselves to be able to try.

4.1.1. Variational Quantum Eigensolver
In the NISQ era, quantum computers will not be able to
accurately execute deep circuits. They also generate results
that require error/noise mitigation due to errors in state
preparation and measurement, and from infidelities in quantum
gate executions. Within this realm of quantum hardware, there
is an algorithm that shows great promise—the variational
quantum eigensolver algorithm (Peruzzo et al., 2014). This
algorithm is essentially a “state preparation and then measure”
algorithm leading to low-depth circuits governed primarily
by the complexity of the state preparation. One starts from

a single reference state (usually the Hartree-Fock state) and
then creates a variational ansatz that depends on a set of
variational parameters. There are several options for how to
do this, discussed below. Extensions and generalizations of
the algorithm to determine excited states, which are important
in many biological processes, have been developed such as to
maintain the low-depth characteristic so important for the ability
to run on NISQ systems (Higgott et al., 2019; Nakanishi et al.,
2019).

However the wavefunction has been prepared on the quantum
computer, we next need to measure the expectation value of the
Hamiltonian to complete the calculation. The Hamiltonian is a
Hermitian operator rather than a unitary one, so it cannot be
evaluated directly on the quantum computer. Instead, we break
it up into a sum of its mutually commuting unitary components
and evaluate the expectation value of each unitary—the total
expectation value is found by accumulating the total of all of the
terms. As the number of orbitals increases, the number of terms
in the Hamiltonian also increases. To date, only quite simple
molecules have been computed on available quantum hardware
(usually with minimal bases). The first approach was hydrogen
and other simple binary and tertiary molecules (Kandala et al.,
2017). More recently, the more complex system H2O in the
STO-3G basis (Nam et al., 2020), has been handled.
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Of course, this forms just the inner loop of the full
variational calculation. One must now adjust the parameters in
the variational wavefunction and repeat the whole process until
the result converges with the minimum energy value. Because
the data emerging from the quantum computer is noisy, this
optimization problem requires complex algorithms on classical
computers. The noise may even make it challenging to complete
the calculation to the point where a true minimum can actually
be located. The optimization problem may also suffer from
“barren plateaus” which are large areas where the cost function
gradient is extremely small. The sensitivity to noise can be
reduced by calculating the derivative of how the energy changes
when a variational parameter is changed from a matrix element
measured directly on the quantum computer (Grimsley et al.,
2019).

Because quantum computers have much slower clock cycles
than classical computers, even with a quantum advantage for
computing the results of a given measurement the quantum
computations are expected to be slow. In addition, the
parameters of a quantum computer often drift with time,
creating additional issues associated with a changing accuracy
for different expectation values over time. One may even need
to correct for the drift over time or risk having data that is
not accurate enough to be able to complete the outer loop of
the variational cycle. Nevertheless, this approach remains the
most promising approach available for now. Until we are able to
perform extensive time evolution on a quantum system, it will
remain the only viable strategy for quantum chemistry on NISQ
era machines.

4.1.2. Phase Estimation
The quantum phase estimation (QPE) algorithm was invented
by Kitaev (1995) and is closely related to the quantum Fourier
transform. It provides an alternative to solving the traditional
eigenvalue problem H|ψ〉 = E|ψ〉 on a quantum computer by
transforming the problem to a unitary one and determining the
phase λE arising from the application of eiλH to the eigenfunction
as follows:

eiλH|ψ〉 = eiλE|ψ〉. (2)

The λ parameter is introduced and a value chosen to ensure we
can read the energy off without having the phase increase past
2π . We also need to measure enough binary digits in the number
λE to have an accurate measure of the energy. In addition, to
get the energy corresponding to a particular eigenstate with high
probability, onemust prepare an initial state that has high overlap
with that eigenstate. This could then involve a synergy with
the variational quantum eigensolver algorithms in the following
way: since the variational state is an approximation, it should
have a high overlap with the true ground state, allowing it
to be a good choice for the initial state that is used for the
phase-estimation algorithm.

There are many benefits to the phase-estimation approach.
First, it will give us an accurate estimate of the ground-state
energy, with the accuracy determined by how many binary
digits representing the phase are computed on the quantum
computer. Second, it projects onto the eigenstate it measures.

This allows it to also be employed as a state-preparation protocol;
measuring the ground-state energy also has the consequence
of preparing the ground-state wavefunction directly on the
quantum computer where it can then be employed for further
quantum computations. For example, if the embedding strategy
for self-energy embedding theory (described in detail in section
5) is used, one can compute the zero-temperature Green’s
function directly from the ground-state eigenfunction after it has
been prepared by QPE.

The challenge with phase estimation is that it requires us to
be able to accurately perform time evolution. This is currently
beyond the scope of available hardware and most likely we will
need to wait for large-scale fault-tolerant quantum computers
to be available to be able to carry out such computations.
Nevertheless, it is important to think through how one would
work with such an algorithm now, to be ready when such
hardware becomes available. Also, sparse embedding theories
will allow for time evolution sooner, and possibly even on
NISQ machines.

4.1.3. State Preparation
Both VQE and QPE require preparing an initial ansatz on
the quantum computer. In other words, we start with an easy
to initialize state, such as the Hartree-Fock state represented
by |ψ0〉 = |0 . . . 0〉, and apply operations to transform
that state to a representation of the desired wave function.
The complexity of this step can be non-trivial. The ADAPT-
VQE approach (Grimsley et al., 2019) dynamically constructs
the ansatz by iteratively choosing operators from a pool of
available operators. Another approach uses a unitary coupled
cluster ansatz. In standard coupled cluster, the wave function
has the form

ψ = eT̂ |ψ0〉 (3)

where T̂ = T̂1 + T̂2 + T̂3 + .... represents singles, doubles,
triples, etc. excitations relative to the Hartree-Fock ground state
reference function. In principle, one can work out as many
terms as computationally feasible. In conventional coupled-
cluster theory, the operator is not unitary, but can be made

unitary by letting T̂ → T̂ − T̂†. Unitary coupled cluster is
not practical computationally on classical computers, but is well-
suited for quantum computers. A unitary singles and doubles
coupled cluster approach will use a Trotterized form of the
unitary coupled cluster ansatz (with only singles and doubles
excitations in the exponent). Factorized forms of the unitary
coupled cluster approach have also been considered, but usually,
these approaches are not easily restricted to certain classes of
excitations andmight be better thought of within an ADAPT type
methodology (Grimsley et al., 2019). There also are ansatzes that
employ tensor-product-based wavefunctions (Cao et al., 2019).

5. QUANTUM COMPUTER EMBEDDING
STRATEGIES

The molecular systems of interest in biological processes are
complex as well as geometrically extensive. It is also known
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that some processes depend crucially on small differences in
structure and their associated energy differences. The timescales
of processes may also span several orders of magnitude, from
femtoseconds for molecular vibrational changes to milliseconds
for some electron transfer processes and conformation changes.
The challenge is that highly accurate calculations are needed for
these extreme systems.

In addition, biological processes happen at finite temperature
in a liquid environment, as opposed to many chemical processes
that can be understood by studying the gas phase or materials
structures that are often analyzed in isolation and at absolute
zero. This means that a statistical description is needed to
describe the full process and to obtain accurate reaction rates.
Entropy and free energy play a crucial role.

Hence, biological molecules appear to be an ideal application
for the promised power of quantum computing. However,
with noisy intermediate-scale quantum computers (NISQ), such
calculations are currently out of reach. Even when more fully
fault-tolerant quantum computers become available, it is likely
that the complete statistical quantum description of realistic
biomolecular systems and processes will require decomposition
of the system into parts, with the parts of the molecule
involving themost demanding calculations done on the quantum
computer and the less expensive calculations involving the rest
of the molecule done on a classical computer. This section
describes several such approaches which will necessarily be
hybrid quantum-classical algorithms.

5.1. Quantum Computing on Fragments
In computational chemistry for large systems, the fragment
molecular orbital (FMO) method (Gordon et al., 2012; Zahariev
and Gordon, 2012; Tanaka et al., 2014) was developed to solve
the problem described above: namely that the system is too large
to treat directly as a whole. In that case, the molecule is divided
into fragments that can be chosen to (in some sense) contain
atoms that interact strongly with each other, but less strongly with
atoms in other fragments. First, standard methods are used to
obtain an accurate description of the isolated fragments. Then,
other methods, also standard, are used to describe the interaction
between the fragments and the effect those interactions have on
the internal structure and properties of the fragments. The result
converges to a solution for the complete system of all interacting
fragments with controllable accuracy. In addition, the method
shows linear scaling for large systems.

To describe the biochemical systems, one can envision a
similar approach. Now, however, instead of using different
methodologies for different regions, one uses a classical computer
to describe one region and a quantum processor for the region
where the model can use the advantage offered by quantum
computing. The self-consistency would typically be carried out
on a classical computer. The approach is similar to the VQE
method described in section 4.1.1 for quantum chemistry on
quantum computers: Part of the computation is performed on
the quantum computer, some information is extracted from
that calculation and handed to a classical computer, which then
performs the next part of the computation. That computation

results in new values to be used for the next iteration on the
quantum computer.

For a hybrid description of a complex biological systems, the
different parts of the computation are not only different stages
in an algorithm, but also describe different spatial regions of
the system. Let us call the region described on the quantum
computer “primary” and the region described on the classical
computer, which most often surrounds the primary region in
space, the “environment.” We assume that the primary region
fits in the quantum computer in the sense that it has sufficient
qubits to represent both the quantum state in some encoding
from fermions to spins (McArdle et al., 2020) and all the ancillary
qubits necessary to execute the chosen algorithm.

It is necessary to choose quantum-mechanical methods to
represent the states of both the primary and environment regions
of the biological system so that the desired accuracy for the
complete system can be achieved. It is not necessary that both
regions are treated with the same method, as long as the
physical description is consistent. The algorithm then inevitably
requires that information is exchanged between the classical
and quantum computers about the state description of the
respective components. The classical computer can easily provide
the necessary information to the quantum computer, which
usually changes the state preparation on the quantum computer.
However, as with VQE, obtaining accurate information about
the state of the primary region as represented on the quantum
computer can be challenging if the quantum state is complicated
since there is no efficient way to directly access the entangled
wavefunction stored on the qubits in the quantum processor.
If a process of measurement needs to be called, then accurate
calculations may require unacceptably large numbers of repeat
runs of the program to obtain the required accuracy.

The general algorithm works as follows.

1. Specify a computational chemistry model for the environment
region and initialize its state.

2. Specify a computational chemistry model for the primary
region and prepare its state using the environment state
parameters as needed.

3. Perform the algorithm to solve the computational chemistry
model for the primary region on the quantum computer.

4. Extract the required information from the state of the primary
region to perform the next iteration of the algorithm to
converge the environment.

5. Perform the classical part of the algorithm for the primary
region, using state information of the environment as needed.

6. Using information obtained by the classical part of the
algorithm for the primary region, re-prepare the quantum
computer for the quantum part of the algorithm for the
primary region.

7. Repeat until the defined convergence criterion is met.

5.2. Sparse Green’s Function Embedding
Schemes
One of the challenges with accurate quantum chemistry
calculations is that a large percentage of the correlation energy
arises from the sum of many small contributions. This arises in
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part, because any standard orbital basis results in fairly full single-
particle and two-particle interaction matrices. Hamiltonian
evolution, or even variational methods require evaluating many,
many terms. On a quantum computer, this leads to high-depth
circuits, which become difficult to run on NISQ machines and
may even be problematic on the expected fault-tolerant ones.
One way around this problem is to transform the problem into
a representation that is more sparse, or even to approximately
force it into an extremely sparse representation. This is the
idea behind the self-energy embedding theory (Tran et al.,
2018).

Starting from an inexpensive classical calculation (such
as Hartree-Fock plus MP2), one computes a representation
for the self-energy of the full chemical system. Next, one
determines the high-frequency moments of the self-energy. For
the retarded Green’s function, these moments of the self-energy
are often determined by parameters in the Hamiltonian itself
(the constant term is exactly determined from the Hartree-Fock
approximation, the zeroth moment from the interaction, the
first moment involves a few two-particle correlation functions,
and so on). The strategy is then to construct an extremely
sparse interaction for the effective Hamiltonian. This has the
full single-particle contributions, but restricts the Coulomb
interaction to on-site direct or exchange interactions only. These
interaction terms are chosen to require that the low-order
moments are preserved in the effective model. Then, one solves
for the full self-energy of the effective model and then uses
the effective self-energy as the self-energy for the full system.
This approach guarantees that the low-energy moments of the
final description of the molecule are exactly preserved. A self-
consistency scheme is employed to update the approximation,
as the moments depend on some expectation values which
change as the Green’s functions change with each iteration of the
calculation. We also note that equality of low-order moments
also implies that the two Green’s functions agree exactly for
short times.

The way we envision using this on a quantum computer
for large molecules is to apply this approach to the strongly
correlated core (or strongly correlated fragments) and one ends
up with a much lower depth circuit for the time evolution
because the Hamiltonian is so much sparser. This will allow
more complex systems to be simulated earlier than possible
with algorithms that include the full chemical complexity. The
quantum computer simulates only the sparse Hamiltonian and
determines the Green’s function (or self-energy), which then
is sent to the classical computer for the remainder of the
algorithm. Even in the future, when fault-tolerant quantum
computers become available, methods like the self-energy
embedding theory will remain valuable as they can significantly
streamline the number of operations needed to be run on the
quantum computer.

6. CHALLENGES

There are a few challenges associated with the modeling of
biochemical systems. The first challenge is the accuracy required

to describe the structures and processes. The standard is 1
kcal/mol or 4 kJ/mol, which in atomic units used in quantum
mechanics is equal to 27.2 meV or 1 mHartree. Given that
the energies of large molecules relevant in biochemistry are in
the thousand Hartree range, the energies need to be calculated
with a precision of 6 to 8 digits, which corresponds to a
single precision IEEE floating point number on a classical
computer. There are a large number of integrals with weights
that are small. The contribution from each integral is small,
but the sum adds up to a non-negligible contribution to the
total energy. Because these numbers are obtained by a large
number of floating point operations in the classical part of the
computation, the minimum precision needed to perform this
classical part of the calculation with controlled rounding error
is 15 digits, which corresponds to the double precision floating
point number on classical computers. For large molecules,
relevant to biology, the integral contributions are sorted and
added with small numbers first to build larger numbers that
can be meaningfully added together to avoid critical round-
off errors. That means that the step in the hybrid quantum-
classical algorithm where values must be measured from the
state in the quantum processor, these results need to be obtained
with the right precision. Because the standard deviation of
statistical sampling with N trials goes like 1/

√
N, the number

of measurements for a given accuracy ε is N = ε−2. A careful
analysis is needed on what precision will be needed for the
various terms to get acceptable accuracy for the total energies,
because the required precision directly impacts the number of
measurements that will be required, with a quadratic impact on
total run time. Some further research to improve the algorithm
for processing of the integrals will be needed to determine the
minimum precision of each wave function component that must
be combined with each integral to get the correct precision of the
final result.

The second challenge in biochemical structure and process
analysis and design is that the systems are at some finite
temperature. That means a statistical description is essential.
This has been taken into account for decades in the molecular
dynamics simulations (Karplus and McCammon, 2002; Seabra
et al., 2007; Salomon-Ferrer et al., 2013), with the method of
replica exchange being one of the leading approaches (Roe et al.,
2008).

However, chemical accuracy may not be sufficient. Decades
of research to design drugs, enzymes, and catalysts has not
been as successful as once hoped. A possible root cause is that
chemical accuracy is insufficient to distinguish the competing
mechanisms from each other, especially once the proper statistics
at room temperature are taken into account. If 1 kcal/mo
were adequate, scientists should have made more progress in
identifying new mechanisms. To make the computations really
insightful, it is likely that at least one and probably two or three
orders of magnitude higher accuracy is required to generate
new insights into drug, enzyme, and catalyst activities and
reaction mechanisms.

These considerations make it clear that biochemical structures
and processes are a fertile ground of problems to use and
demonstrate the advantage of quantum computing over classical
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computing. It also shows the road to success will be difficult. But
it promises to be wonderful journey!

7. CONCLUSION

This short review leaves us hopeful, but with many unanswered
questions. It is clear that there are significant challenges that must
be met before we can reap the benefits of quantum computers
for biochemical applications. Nevertheless, due to the complexity
involved in properly partitioning the sub units of these problems
and then combining the results together, we need to start now
to properly plan for how this will work. We can bring in ideas
from a number of different areas where similar “divide and
conquer” approaches have been tried and successfully completed.
But the strategies that employ quantum co-processors to handle
the most difficult parts of the calculations need to be properly
thought out and structured so we can make rapid advances once
the hardware is available. We did not map out a complete plan
for how one can proceed. Instead, we described the different
strategies that need to work together to achieve this goal. We are
looking forward to seeing how everything comes together and
how quantum computation will yield important and significant
impacts on biochemistry.
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By design, the variational quantum eigensolver (VQE) strives to recover the lowest-energy

eigenvalue of a given Hamiltonian by preparing quantum states guided by the variational

principle. In practice, the prepared quantum state is indirectly assessed by the value of the

associated energy. Novel adaptive derivative-assembled pseudo-trotter (ADAPT) ansatz

approaches and recent formal advances now establish a clear connection between

the theory of quantum chemistry and the quantum state ansatz used to solve the

electronic structure problem. Here we benchmark the accuracy of VQE and ADAPT-VQE

to calculate the electronic ground states and potential energy curves for a few selected

diatomic molecules, namely H2, NaH, and KH. Using numerical simulation, we find both

methods provide good estimates of the energy and ground state, but only ADAPT-VQE

proves to be robust to particularities in optimization methods. Another relevant finding

is that gradient-based optimization is overall more economical and delivers superior

performance than analogous simulations carried out with gradient-free optimizers. The

results also identify small errors in the prepared state fidelity which show an increasing

trend with molecular size.

Keywords: ADAPT-VQE, quantum computing, quantum chemistry, VQE, potential energy scan, state fidelity

1. INTRODUCTION

Quantum mechanics naturally lends itself to the description of phenomena at the atomic and
molecular scale, including problems of chemical interest, which has culminated in the field of
research known as quantum chemistry. Despite the formal impediments to achieve exact, closed-
form solutions to quantum chemistry problems, there is a wide array of possible approximations,
such as coupled cluster (CC) theory (Shavitt and Bartlett, 2009), which have elevated quantum
chemistry to good standing in the scientific community due to their reliability.

In practice, CC faces two main difficulties that have hindered a more widespread adoption. One
is that most of the success it has garnered over the years is due to its superior performance in
the weak electron correlation regime, for which single-reference (SR) CC remains unchallenged.
This success is justified because many problems in chemistry, such as thermochemistry, can be
adequately treated as being largely weakly correlated. Yet, many other problems of interest involve
molecules and materials that do not comply with this assumption, and for these instances, SR-
CC breaks down. Despite multi-reference (MR) CC being an active area of research (Jeziorski
and Monkhorst, 1981), theoretical and computational challenges currently curb the applicability
of MR-CC (Lyakh et al., 2012).

A second obstacle to a more extensive use of CC theory is its pronounced computational
cost. Reliable SR-CC methods, such as the so-called “gold standard” of quantum chemistry,

62

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2020.606863
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2020.606863&domain=pdf&date_stamp=2020-12-04
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:humblets@ornl.gov
https://doi.org/10.3389/fchem.2020.606863
https://www.frontiersin.org/articles/10.3389/fchem.2020.606863/full


Claudino et al. Benchmarking Adaptive Variational Quantum Eigensolvers

coupled cluster singles and doubles (and perturbative triples), aka
CCSD(T) (Urban et al., 1985; Raghavachari et al., 1989; Watts
et al., 1993), scale unfavorably with one-particle basis spanning
the Hilbert space that houses the electronic wave function, which
largely constrains the application of CCSD(T) to relatively small
molecular systems. It is important to note that some of these
limitations can be mitigated with methods such as configuration
interaction (CI) in its MR formulation and the density matrix
renormalization group (DMRG) which have in turn their own
shortcomings, such as lack of size-extensivity and exactness
contingent upon the dimensionality of the problem.

Concurrent with developments in CC theory has been the
increase in performance of computing technologies, which
broadens the reach of computational chemistry techniques.
Presently, this trend is continuing with the adaptation of
chemistry methods, including CC, to the new technology
paradigm of quantum computing (Britt and Humble, 2017;
Humble et al., 2019). Because of the shared foundation in
quantum mechanics, one of the most immediate applications for
quantum computers is quantum chemistry (McArdle et al., 2020).
Recent advances have reformulated conventional problems in
electronic structure for currently available quantum computing
platforms (Cao et al., 2019). In particular, these efforts have led
to a resurgence of the unitary coupled cluster (UCC) theory
(Bartlett et al., 1989; Kutzelnigg, 1991; Taube and Bartlett, 2006;
Romero et al., 2018), which can be employed in investigations
where strong correlation is dominant. Quantum computing
hardware appears to be well suited for building the states
described by UCC, as this hardware can efficiently implement
unitary operations to construct physical representations of the
quantum state. Moreover, the intrinsic nature of the quantum
computing logic can be exploited in order to propose new
ansatze that, despite lacking a close connection to the underlying
chemical intuition lent by UCC, are prone to a more efficient
implementation, such as the so-called hardware efficient ansatz
(Kandala et al., 2017).

It is in the context of noisy intermediate-scale quantum
(NISQ) (Preskill, 2018) devices that the variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) has emerged as a
promising method for testing the preparation and measurement
of quantum states including those that represent the electronic
eigenstates described by UCC (Quantum et al., 2020). Several
variants of VQE are available (Parrish et al., 2019b; Chivilikhin
et al., 2020), but all build on the variational principle from
quantum mechanics, which constrains the quantum states that
can satisfy the electronic eigenvalue problem (McClean et al.,
2016). While the initial VQE proposal assumes a predefined
ansatz, this constraint has been relaxed, opening the door to
adaptive approaches (Grimsley et al., 2019; Ryabinkin et al.,
2020), by which the preparable quantum states are driven by the
problem at hand. In particular, the adaptive derivative-assembled
pseudo-trotter (ADAPT) ansatz, which finds support on the
recently coined “disentangled” UCC (Evangelista et al., 2019)
and starts from an exact UCC representation of the electronic
ground state to construct an approximate prepared state based
on the dominant contributions. Early studies demonstrated
this as a promising avenue for developing ansatze for specific

molecules and constraints, such as highly accurate energetics or
shallow circuits.

Here we benchmark adaptive VQE prescriptions, ADAPT-
VQE in particular, by comparing the prepared quantum
states with the conventional solutions obtained from exact
diagonalization of the full configuration interactionHamiltonian.
We track the energy of the minimized expectation value
as well as the fidelity of the corresponding prepared state
using multiple ansatz, optimization methods, and molecular
Hamiltonians. We calculate infidelity as a measure of error
for the prepared quantum state relative to the expected, exact
result from quantum chemistry using frozen-core Hamiltonians.
Across these examples, we find that ADAPT-VQE is the more
robust method due mainly to its performance with respect to
optimization methods. While all methods lead to small errors as
measured by the infidelity, these errors are found to grow with
molecular size.

This presentation is structured as follows. In section 2, we
provided an overview of the ingredients in the VQE approach
relevant to our purposes, followed by a short exposition of
the underpinnings of ADAPT-VQE (section 2.1) and a brief
discussion on implementation of gradients and optimization
in ADAPT-VQE (section 2.2). The computational details
permeating the reported simulations are exposed in section 3.
The main results are presented and discussed in section 4 and
several conclusions are drawn in section 5.

2. VARIATIONAL QUANTUM EIGENSOLVER

This section serves to illustrate the pertinent fundamentals of
the VQE algorithm and to motivate the following exposition of
adaptive ansatz construction.We start by recalling the variational
principle, which is at the heart of VQE, and given as

E ≤ min
9

〈9|Ĥ|9〉 (1)

where |9〉 is normalized trial wave function for which Equation
(1) becomes an equality when 9 is constructed from a basis
that spans the single-particle Hilbert space of all possible
occupation numbers (the underlying Fock space) and the
electronic Hamiltonian Ĥ for a molecular system is given as

Ĥ =
∑

pq

hpqp
†q+

∑

pqrs

hpqrsp
†q†sr (2)

The central problem in modern electronic structure theory is the
description and quantification of the electron correlation from an
un-entangled, mean-field wave function |0〉 whose preparation
can be carried out in classical hardware in a timely fashion,
e.g., Hartree-Fock (HF). In analogy with quantum chemistry,
we can expect that there exists an operator that, once applied
to |0〉, will account for the missing electron correlation. Bearing
in mind that quantum computers manipulate quantum states in
a well-defined Hilbert space, this configures a generic unitary
operator Û(Eθ) whose main purpose is to build entanglement
from an un-entangled reference function |0〉. The set of scalars
Eθ are parameters variationally varied in order to minimize
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the expectation value in Equation (1). With that, we recast
Equation (1):

E ≤ min
Eθ
〈0|Û†(Eθ)ĤPÛ(Eθ)|0〉 (3)

In order to ensure that Equation (3) meets the requirements of
quantum hardware, the fermionic, second-quantized operators
found in the formulation of electronic structure problem,
such as those in Equation (2), are brought to a qubit (spin)
representation, with the additional constraint of fermionic anti-
symmetry. Our approach uses the Jordan-Wigner transformation
(Jordan and Wigner, 1928), but others exist, and such a
transformation yields ĤP from Ĥ, that is, the Hamiltonian in
terms of strings of Pauli operators. Starting from the UCC ansatz,
the unitary Û(Eθ) can be written as:

Û(Eθ) = exp(
∑

k

θk(T̂k − T̂†
k
)) = exp(

∑

k

θkτk) (4)

with the T̂k representing the usual cluster operators in CC

theory and τk = T̂k − T̂†
k
, ensuring the anti-Hermiticity of the

operators, which is a necessary condition for their utilization in
quantum computing.

Once in possession of all ingredients in Equation (3), the
tasks of preparing the state Û(Eθ)|0〉 and measuring the terms in
ĤP are delegated to the quantum hardware, and Û(Eθ) is varied
variationally with the aid of a classical optimization routine until
〈ĤP〉 reaches its minimum, which is dependent on the chosen
optimizer and is taken as a good approximation to the sought
ground state energy. Due to the isomorphic property of the qubit
mappings, 〈ĤP〉 = 〈Ĥ〉, yielding the lowest energy eigenvalue of
the molecular Hamiltonian in Equation (2).

2.1. ADAPT-VQE
An important choice in the specification of the VQE method
is the functional form of the ansatz Û(Eθ). Even for a relatively
small Hilbert space, with a moderate number of cluster operators
T̂i, the ansatz Û(Eθ) gives rise to a unitary that translates into
multi-qubit gates and thus cannot be efficiently implemented
in an actual quantum processor. Borrowing from the dynamics
community, this can be alleviated by resorting to the Trotter-
Suzuki decomposition, or Trotterization for short:

exp(
∑

k

θkτk) ≈
∏

k

exp(θkτk) (5)

which here is limited to first-order.
The Adaptive Derivative-Assembled Pseudo-Trotter ansatz

Variational Quantum Eigensolver (ADAPT-VQE) (Grimsley
et al., 2019) takes advantage of Equation (5) to propose an
iterative ansatz construction whereby only the perceived most
relevant operator for energy lowering is added to the ansatz.
A set of operators the algorithm can choose from needs to be
provided, which in this work is comprised of the fermionic spin
singlet adapted single and double excitations, borrowing from the
usual UCCSD formulation, and subsequently mapped into the

appropriate tensor products of Pauli operators via the Jordan-
Wigner transformation. In principle, one could envision explicit
enforcement or relaxation of other types of symmetry, and the
effect of such choices on the performance of ADAPT is certainly
a topic worth exploring. Moreover, the ADAPT algorithm has
also recently been reported to perform well with other choices of
operators, including a more economical pool of qubit operators
(Tang et al., 2020), and has been applied to variational algorithms
other than VQE (Zhu et al., 2020).

From a practical standpoint, at the i-th iteration of the
algorithm, the energy gradient vector (G) with respect to all
{θk} in Equation (5) is computed from measurements on the
circuit that prepares the state optimized in the previous iteration,
represented by |ψi−1〉, with |ψ0〉 = |0〉. Labeling the energy at the
current iteration Ei, we have:

G =
(
∂Ei

∂θ1
, . . . ,

∂Ei

∂θk
, . . . ,

∂Ei

∂θN

)

∂Ei

∂θk
= 〈ψi−1|[H, τk]|ψi−1〉 (6)

and if the norm of this vector falls below a set threshold, the
algorithm is deemed converged and the ansatz-growing loop
is exited. Otherwise, the operator associated with the largest
absolute component of G is selected to increment the ansatz:

|ψi〉 = eθiτi |ψi−1〉, τi = {τk|max |〈[H, τk]〉i−1|} (7)

where 〈[H, τk]〉i−1 means this commutator was computed from
observations in the circuit obtained from the previous iteration.
With the selection of a new operator, the new ansatz is subject to
the usual VQE routine and the corresponding energy minimum
is obtained.

2.2. Gradient Estimate and Classical
Optimization in ADAPT-VQE
From a quantum computing standpoint, ADAPT-VQE improves
on VQE by potentially offering a more tractable circuit. However,
this may come at the expense of a much larger number of
measurements, as the evaluation of all [H, Âk] is performed at
each iteration of the ADAPT loop, on top of the expected energy
evaluations. In order to reduce the number of measurements
associated with ADAPT-VQE simulations, adoption of a gradient
estimate strategy can help improve the classical optimization
step by reaching the sought minima with fewer calls to the
hardware backend.

To motivate the discussion, we start by invoking the
gradient expression as introduced in the original formulation
of ADAPT-VQE:

∂E

∂θi
= 〈φ|Ĥ

i+1∏

j=N

(eθjτj )τi

1∏

k=i

(eθkτk )|0〉

− 〈0|
i∏

k=1

(e−θkτk )τi

N∏

j=i+i

(−eθjτj )Ĥ|φ〉 (8)

where
∏

i e
θiτi |0〉 = |φ〉.
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Equation (8) can be further simplified into a
recursive formula:

∂E

∂θi
= 〈φ|



Ĥ,

i+1∏

j=N

(eθjτj )τi

N∏

j=i+1

(e−θjτj )



 |φ〉 (9)

Before moving further in the discussion regarding the use
of gradients to support the classical optimizer, let us clarify
a potential source of confusion. At a certain ADAPT-VQE
iteration, the circuit previously optimized is implemented to
prepare the state from which the current iteration builds upon.
The gradient vector G is then computed upon the necessary
measurements for all τk in the chosen operator pool (Equation
6), and the operator that has the largest commutator (in absolute
value) is selected. And this the extent to which the gradient
is employed at this stage. On the other hand, we now have a
new ansatz, which is composed of all previously added operators
that enable preparation of |ψi−1〉, along with the newly added
operator from Equation (7). Each of these operators have a
corresponding variational parameter, which in the following
VQE step need to be re-optimized. It is in this optimization
that we would employ the gradients as written in Equations (8)
and (9), and whose magnitude needs to be minimized in order
to signal the finding of an extremum (minimum in this case).
For an operator pool containing N elements, at each ADAPT-
VQE iteration, all N elements of G need to be evaluated, but the
magnitude of this vector is not directly minimized by varying
the circuit parameters, only indirectly by the addition of enough
operators in the ansatz. On the other hand, for optimization
purposes, at the i-th iteration, only i gradient elements are
considered, and the search for the energy minimum is guided
by the minimization of the magnitude of this i-th dimensional
gradient vector. Finally, another crucial point worth pointing out
is that the commutators in Equation (6) are equivalent to those in
Equation (9) only for the operator most recently added, i.e., τi in
Equation (7).

For the purposes of an economical quantum resource
utilization, it is desirable to deploy only one circuit to
be used in both energy and gradient estimates (the same
circuit is implemented many times, one for each term in
the Hamiltonian/gradient). Even though the recursive formula
in Equation (9) could, in principle, satisfy this requirement,
this commutator cannot be measured (Mitarai et al., 2018).
As originally proposed, the gradient is no longer given in
an expectation value form, requiring an auxiliary state to be
prepared via introduction of ancilla qubits, which deviates from
our requirement of saving quantum resources. For that reason,
we resort to numerical finite differences as means of carrying out
gradient-based optimizations in the current work.

In terms of resource estimation, for a circuit depth of O(N),
forward or backward finite differences are akin to introducing
a single Rz(h), where h is the step size, leading the a circuit
depth of O(N + 1), while the use of central differences,
thus, has circuit depth of O[2(N + 1)], the former being
used here due to its superior convergence properties. This is
the cost incurred in the numerical gradient estimate for each

parameter being optimized and a detailed discussion is provided
in section 4.4. Such an estimate may be improved with strategies
such as the quantum natural gradient (Stokes et al., 2020)
or exploiting partial tomography (Parrish et al., 2019a). These
ramifications are worthy of a separate study, and will not be
further investigated here.

3. COMPUTATIONAL DETAILS

The quantum simulations detailed in this manuscript were
performed using the VQE and ADAPT-VQE algorithms and
numerical gradient strategies as implemented in the XACC
hybrid quantum-classical computing framework (McCaskey
et al., 2018b, 2020), with the latter algorithm leveraging a
convergence criterion of ||G|| ≤ 10−2. We emphasize that this
parameter can be of substantial impact on the results, as it
controls the size of the obtained ansatz. In light of the findings in
Grimsley et al. (2019), the adopted value in this paper is believed
to strike a satisfactory balance between accuracy and circuit
depth. The resulting circuits were simulated via the TNQVM
(tensor-network quantum virtual machine) (McCaskey et al.,
2018a) XACC simulation backend and employed a noiseless,
matrix product state (MPS) wave function decomposition for the
quantum circuit with the aid of the ITensor library (Fishman
et al., 2020). XACC provides other simulation backends, as well
as physical backends targeting QPUs from IBM and Rigetti. For
the size of the problems studied in this work, there may not
be perceived benefits from choosing TNQVM over other XACC
simulation backends like Aer (Abraham et al., 2019) or QPP
(Gheorghiu, 2018). TNQVM is expected to be advantageous over
other simulation approaches for problems requiring more qubits
(McCaskey et al., 2018a), but we leave this to future work and do
not investigate it here.

The COBYLA (Powell, 1994) algorithm was used as a
gradient-free optimizer, while gradient-based optimizations were
carried out with the L-BFGS algorithm (Nocedal, 1980; Liu and
Nocedal, 1989), with all parameters being initialized at 0 at each
optimization cycle for both optimizers. Other approaches have
been reported in the literature, such as random initialization
(Grimsley et al., 2020), or as in the original implementation of
ADAPT-VQE (Grimsley et al., 2019) where the new parameter is
initialized at 0, while the previous parameters are initialized from
the optimal values obtained in the previous ADAPT iteration.
XACC offers both optimizers via its interface with NLOpt
(Johnson).

The potential energy curves (PEC) of NaH and KH, were
generated by imposing the frozen-core approximation, reducing
the number of configurations to only those arising from one σ
orbital and its σ ∗ counterpart, that is, a two electrons in two
orbitals complete active space [CAS(2,2)] problem. The one-
and two-electron integrals necessary for the construction of the
Hamiltonians and the corresponding references CAS energies
were obtained with PySCF (Sun et al., 2017), with all calculations
performed with the STO-3G basis set (Hehre et al., 1969, 1970;
Pietro et al., 1980).
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The quality of the output circuits in preparing the desired
states is assessed via the fidelities computed with respect to the
ground state full configuration interaction (FCI) wave function.
This corresponds to the lowest energy eigenvector from exact
diagonalization in the 2N Hilbert space, with orbital occupation
determined by the number of electrons. In possession of the
circuits from the quantum simulations, the respective state vector
representation is obtained using the XACC interface to the Qiskit
Aer simulator (Abraham et al., 2019).

4. RESULTS AND DISCUSSION

Typically, the quality of the state obtained from the variational
optimization of the gate parameters is probed indirectly
by comparison of the computed energies with trustworthy
references values or the exact lowest energy eigenvalue whenever
computationally feasible. Thus, we start by investigating the
energy profile along the atomic displacement, and subsequently
contrast these findings with the analysis of the appropriateness
of the corresponding states via evaluated fidelities relative to the
vector corresponding to the lowest eigenvalue in the active space.

4.1. Potential Energies Curves
We start investigating the behavior of the energy by studying
the H2 molecule. This example has been extensively approached
in quantum computing, and hardly poses any difficulty, at least
from the standpoint of numerical simulations, as opposed to
deployment to actual hardware. However, it serves as a baseline
for the following discussion, as the orbital spaces in the other
molecules are reduced to an active space with the goal of
resembling the H2 molecule. Results with the VQE and ADAPT-
VQE ansatze are plotted in Figure 1, along with FCI results.

Unsurprisingly, there is a remarkable agreement between
simulated and exact values, both qualitatively and quantitatively.
Absolute errors from FCI are found in the sub-miliHartree
range throughout the energy scan, and with either choice of
ansatz, the observed errors would be inconsequential when
taking into account the scale of the errors introduced by noise
in the operation of quantum devices. The impression that
some points are “missing” from the bottom plot of Figure 1 is
explained by these values being numerically identical to the FCI
values (to seven decimal places), hence not being plotted in the
logarithmic scale.

The results from the potential energy curve from simulations
on the NaH molecule are presented in Figure 2.

Visual inspection of the top plot reveals that the choice
between the two ansatze being considered here yield energies
that track one another very well, but because of the energy scale
of this plot, it begs a closer look. The bottom plot displays the
absolute errors between VQE and ADAPT-VQE with respect
to FCI. The errors here are still within chemical accuracy (<1
kcal/mol), and are unlikely to be of much relevance in the total
error if such simulations are executed in a quantum computer.
However, there is a clear trend of increase in the magnitude of the
computed deviations when compared to the hydrogen molecule,
whose results are in Figure 1.

FIGURE 1 | (Top) Potential energy curves of H2 computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

In Figure 3, we again observe some of the patterns that
follow from the analysis of Figures 1, 2. The energy scale here
is much too large to able to reveal relatively minor inadequacies,
even though qualitative discrepancies, such as those arising
from symmetry breaking or the crossing of lines of different
states, would be evident had they been present. The bottom
plot, exhibiting the energy differences from FCI, offers a more
reliable evidence, allowing us to infer that ADAPT-VQE is overall
superior, with smaller errors for the vast majority of points (the
exception being 1.4 Å). Perhaps more importantly, we observe
a general trend of the points from simulations with the plain
VQE ansatz approaching the 1mHartree, with the distances of 2.9
and 3.9 Å now found more than 1 kcal/mol above the respective
FCI energy.

4.2. Optimization Strategies
The potential energy curves presented and discussed in section
4.1 are based upon gradient-free optimization carried out with
the COBYLA optimizer. We report that analogous simulations
were performed with the Nelder-Mead optimizer, which is
also a gradient-free alternative, but preliminary investigations
pointed to COBYLA being a superior choice, at least for the
chosen molecules. To contrast the performance of gradient-free
optimization in the current context, we use the L-BFGS optimizer
for parameter update, as implemented in NLOpt, with gradient
estimated via central numerical finite differences. To assess the
relative performance of these two approaches as the bond in the
current diatomic molecules is stretched, we plot the difference
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FIGURE 2 | (Top) Potential energy curves of NaH computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

between energies obtained with the COBYLA optimizer and
those with L-BFGS+finite differences, that is, E(COBYLA) −
E(L-BFGS). That way, positive energy differences indicate there
is an improvement by turning to a gradient-based optimization,
while the opposite signals that the current gradient-free method
reached a lower energy.

We observe compatible energies for the H2 case, regardless of
the underlying optimization strategy, for the entirety of Figure 1.
In order to maintain consistency, we plot the energy difference
between the two optimization prescriptions in a miliHartree
scale, and the spike in E(COBYLA) − E(L-BFGS) in 1.7Å, when
rationalized with the scale in mind, shows a deviation in the
µHartree range. Due to the presence of all the many-body
operators necessary for exactness (Evangelista et al., 2019), we
expect and in fact observe results on par with the numerical
precision imposed by the employed optimizers (10−6 Hartree in
relative energy).

While most of the PEC for H2 showed no major dependence
on the adopted optimization procedure, according to Figure 4,
the picture is significantly different in the case of NaH, as
portrayed in Figure 5. Even though the values for E(COBYLA)−
E(L-BFGS) are still rather small, in the sub-miliHartree range,
noticeable differences are more frequent here. Albeit of µHartree
in magnitude, we also observe cases where COBYLA provides
a lower energy than L-BFGS, most notably for ADAPT-VQE
in the 1.4 and 2.5 Å interatomic distances. On the other
hand, in an overall assessment of the performance between

FIGURE 3 | (Top) Potential energy curves of KH computed with the STO-3G

basis set for FCI (green solid line), VQE (blue circles), and ADAPT-VQE (orange

diamonds) with the COBYLA optimizer. (Bottom) Absolute error in the

minimized energy for VQE (blue) and ADAPT-VQE (orange) relative to the FCI

reference value.

FIGURE 4 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the H2 potential energy curve.

VQE and ADAPT-VQE, the latter displays a more pronounced
insensitivity with respect to the choice of optimization scheme.

An even more drastic contrast is found from inspection
of Figure 6, where E(COBYLA) − E(L-BFGS) are plotted for
the KH molecule. Some of the qualitative assertions pointed
out in Figure 5 hold, namely that the performance of VQE
is much more influenced by the choice of optimization
strategy than ADAPT-VQE. Not only that, but ADAPT-VQE is
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FIGURE 5 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the NaH potential energy curve.

FIGURE 6 | Difference between the energies from COBYLA and L-BFGS

optimization with central finite differences for the KH potential energy curve.

largely unaffected by employed optimizer, at least between the
two alternatives in consideration. Here again, the differences
seen for VQE correlated well with the deviations from FCI
reported in Figure 3, further corroborating the claim that a
gradient-based optimization, given the current conditions, is a
more robust for approaching the lowest energy eigenvalue of
molecular Hamiltonians.

4.3. State Fidelities
As previously stated, energy values can be used as valuable metric
of the adequacy of a given set of variational parameters and
trial state. However, the energy alone may not be indicative
of the quality of the corresponding state and even acceptable
energy values do not guarantee equally satisfactory values for
other properties. The usual electronic Hamiltonian, as shown
in Equation (2), transforms as the most symmetric irreducible

FIGURE 7 | State infidelities for VQE and ADAPT-VQE using COBYLA (solid

line) and L-BFGS (dashed line) optimization with central finite differences for

the NaH potential energy curve.

representation for a given point group, therefore yielding the
same energy in the case of degenerate states. Other operators,
however, such as the terms in the multipole expansion of the
electric potential, do not display this feature, meaning that
degenerate states may yield different expectation values for
such operators.

In order to examine the state prepared by the two circuit
approaches considered here, we compute their “infidelities”
with respect to the exact FCI state within the aforementioned
active spaces, which is mathematically represented by 1 −
|〈9FCI|Û(Eθ)|0〉|, where Eθ here are the set of optimal values also
utilized for the energy computations in sections 4.1 and 4.2. We
acknowledge that, while this provides direct inroads in the state
being output at completion of the state preparation, it cannot be
experimentally realized. However, in the case of moderately sized
molecules for which the exact diagonalization of the Hamiltonian
is feasible, this can provide valuable insights.

The energy differences discussed in the case of the hydrogen
molecule in sections 4.1 and 4.2 are quite small when considering
the magnitude of the other potential sources of error that
can arise in the presence of noise, either through a model
or in the operation of an actual quantum device. Due to the
simplicity of the electronic structure of this molecule the state
prepared according to the two ansatze construction prescriptions
investigated here yield infidelities that are below the numerical
thresholds employed here, and certainly would be unnoticeable
for realistic purposes. Because they offer little insight, we abstain
from plotting the infidelity results for this molecule here.

Before delving into the particularities of each curve in
Figure 7, we bring the reader’s attention to the scale of the plots,
signaling a remarkable agreement between the state prepared
and the one expected (FCI). It should come as no surprise
that the largest infidelities are found in the vicinity of the
Coulson-Fischer point, the most demanding region in the energy
landscape, and subsequently approach zero as the atoms are
moved far apart. The infidelities for the VQE ansatz follow a
smooth progression when employed in conjunction with the
gradient-based optimizer L-BFGS, whereas the same is not true
for the other combinations of ansatze and optimization. This is
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FIGURE 8 | Number of operators in the ADAPT-VQE ansatze using the

COBYLA (solid line) and L-BFGS (dashed line) optimizers. The corresponding

VQE ansatz has two operators.

likely a compound effect, explained by the former being a fixed
circuit, where only the associate Eθ changes throughout the energy
scan. The latter, however, can assume a different composition,
changing according to the demands of the electronic structure at
each bond length. This works along with the fact that gradient-
based optimization, at least in the current study, provides a
tighter, more reliable solution. For the NaH and KH cases, we
plot the number of operators in the ansatz in Figure 8.

Once again, there is a clear advantage in turning to gradient-
based optimization, as it renders ansatze with fewer operators.
For some internuclear distances, the ADAPT-VQE ansatze,
even when optimized with L-BFGS, contain more operators
than the corresponding VQE ansatz. This is not necessarily
in contradiction with the some of the findings from Grimsley
et al. (2019) because those results were obtained for different
molecules and using different optimization implementations.
Yet, we would expect that when comparing against a larger VQE
problem, such as those investigated in that paper, we would see
similar trends. We also speculate that another variable that can
contribute to the observed behavior is the tolerance that controls
how tight the optimization should be. Because we are using a
default 10−6 threshold in relative energy as the tolerance and
there is no clear connection between the quality of the energies
and the respective prepared states, the absolute energies values
may fall in a scale that may have a small, but non-negligible effect
on the fidelities, which is also evidence of the effect it can have in
the output state, further corroborated by the number of operators
found in the respective ansatze, yet not enough to alter any of the
main conclusions drawn from the results presented here.

Many of the main inferences from the analysis of the Figure 7
hold for the KH molecule, whose infidelities are shown in
Figure 9. Firstly, the infidelities, though still quite small, are
about an order of magnitude larger. The smoothness and
overall profile observed for the VQE UCCSD is retained, but
the behavior of the ADAPT-VQE infidelities is much more
erratic. Secondly, while the ADAPT-VQE ansatz for NaH around

FIGURE 9 | State infidelities for VQE and ADAPT-VQE using COBYLA (solid

line) and L-BFGS (dashed line) optimization with central finite differences for

the KH potential energy curve.

the Coulson-Fischer point is mostly the same, but the larger
number of variational parameters make it more vulnerable
to the optimization inconsistencies discussed above, here the
large oscillations are due to ansatze of alternating operator
compositions. Because the ADAPT-VQE convergence criterion
depends upon a fixed numerical threshold, sometimes the ansatz
at a given iteration may already be close to convergence, but
still not quite below the gradient norm threshold, and upon
the addition of an extra operator, the state may be improved
significantly in the scale of the plots seen in this section.

4.4. Resource Estimation
One of the main motivations behind the present work is to serve
as the baseline for following studies focusing on the investigation
of the electronic structure of molecules carried out in NISQ
devices. With this in mind, it is important to develop some
intuition on the resource demands involved in such tasks.

First we analyze the circuit proposed by VQE and ADAPT-
VQE to prepare the states whose energies and fidelities were
shown in sections 4.1–4.3 in terms of total gate count and circuit
depth, plotted in Figure 10.

Let us first compare the ADAPT-VQE results on the basis of
the two optimizers. As we move from H2 to NaH and KH, we
see a more intricate picture of how these optimizers impact the
final circuit. Qualitatively, L-BFGS has an overall advantage as it
provides circuits that are shallower and with fewer gates. While
there are a few points along the potential energy scans where
the circuits generated based on L-BFGS are not as efficient as
those from a COBYLA optimization, the scales of the plots are
determined solely by the latter. We noticed that in several points,
the simulations with the COBYLA optimizer would produce
states with two instances of the same operator adjacent to each
other. If the actual minimum value had been achieved in a
certain iteration of ADAPT-VQE, the commutator of the same
operator in the next iteration would have been zero. Because this
procedure is accomplished numerically, the magnitude of this
commutator is related to how close the determined minimum
is from the actual one. It turns out that the default threshold
in relative energy (10−6) is found not to be stringent enough,
which incurs a commutator whose deviation from the expected
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FIGURE 10 | Gate counts (left axis) and circuit depth (right axis) from

ADAPT-VQE circuits optimized with the COBYLA and L-BFGS optimizers. The

black solid and dashed lines are the gate counts and circuit depths from the

VQE ansatz, respectively.

zero is non-negligible, resulting in the same operator being added
in successive iterations. Another factor that accounts for the
displayed circuit figures is the fixed gradient norm threshold
in ADAPT-VQE. In some iterations, this quantity is above,
but already quite close to the pre-defined 10−2, and one extra
iteration is performed, with only marginal energy improvement.
To illustrate this, the ADAPT-VQE simulation for NaH with
internuclear separation of 1.8Å converges to ansatz with three
operators, with E = −160.3146751 Hartree and ||G|| = 0.001.
Had the ADAPT cycle been stopped in the second iteration, we
would have ||G|| = 0.013, with E = −160.3146492 Hartree,
that is, the energy improvement was in the µHartree range, yet
at the expense of a deeper circuit, which calls for a more flexible
operator selection in ADAPT-VQE.

These resource estimation parameters in Figure 10 are
comparable between the two ansatz strategies. In general terms,
the circuits optimized upon L-BFGS are more affordable than
the corresponding VQE ones, while using COBYLA tends to
yields circuits that are deeper and need to implement more
gates. We bring attention to the fact that there is not a one-
to-one correspondence between the present analysis and that
in the Figures 2C,F,I in Grimsley et al. (2019). This is because
the latter refers to the number of parameters/operators in the
ansatz. A circuit withmore parameters/operators does not readily
translate into a more complex circuit, which depends on the
number of qubits in a given operator and the operator locality

FIGURE 11 | Total number of measurements for final energy evaluation for the

VQE and ADAPT-VQE ansatze using the COBYLA (solid line) and L-BFGS

(dashed line) optimizers.

and placement. Thismeans these results are not at odds with what
was previously reported, which were obtained for a distinct set of
molecules, but can be seen as complementary.

Another important metric when estimating the necessary
resources for implementation and deployment of the simulations
discussed here is the number of measurements. To complement
the end of the last paragraph, it is important to mention that in
this context the rationalization in terms of number of operators
increases in relevance. In Figure 11, we plot the total number of
measurements to achieve the results reported in section 4.1.

As pointed out in Grimsley et al. (2019), the ansatz put
forth by ADAPT-VQE offers a trade-off between circuit depth
and number of measurements. We can readily confirm by
visual inspection of Figure 11 that ADAPT-VQE incurs a
much larger number of measurements. These figures account
for all measurements involved in computing the commutators
in Equation (6), the energy evaluations at each optimization
iteration, and the computations necessary to minimize the
gradients when L-BFGS is employed. The measurement burden
in ADAPT-VQE reported here can be partially alleviated by
employing a better parameter initialization, such as starting the
VQE optimization at each iteration with the previously optimized
parameters and initializing just the newly added parameter at
zero. This demand is also expected to be greatly relieved by
resorting to a different set of operators, such as those introduced
in the qubit-ADAPT-VQE variant (Tang et al., 2020), which can
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still span the underlying Hilbert space, yet with linear growth in
the number of qubits. This approach would require much fewer
commutator computations at each iteration, but would likely be
of noticeable advantage for operator pools larger than those in
question here. These results are also contingent upon the choice
of optimizer, and there may exist better suited choices than those
investigated here. Yet, we do not believe this would dramatically
change the overall qualitative picture drawn in Figure 11.

Another key outcome from the analysis of Figure 11 is
the fact that, even though the gradient computation with L-
BFGS requires more measurements per iteration, it is overall
much more economical than the gradient-free optimization,
represented here by COBYLA. This furthers strengthens the
case for gradient-based optimization in VQE, as it not only
results in smaller errors/better convergence with respect to the
sought ground state, but it is also much less demanding from a
resource standpoint.

5. CONCLUSION

For a broader adoption of adaptive methods for ansatz
construction in the realm of quantum chemistry, and perhaps,
for many-body methods in general, many aspects still needs to
be explored and their underpinnings better understood. This
work provides a contribution toward this goal by showing a
comprehensive study of potential energy curves of a selection
of molecules of the general formula XH (X = H, Na, K).
Despite their simplicity, they serve to shed light on some of
the mentioned characteristics, and deliver a baseline for feasible
studies involving actual quantum hardware.

Even a relatively conservative gradient norm threshold of 10−2

in ADAPT-VQE is sufficient to provide overall better energetics
than corresponding fixed ansatz approach embodied by the
ordinary VQE, which is in agreement with the initial ADAPT-
VQE proposal. Due to its iterative nature, ADAPT-VQE has an
extra layer of tunability which can be controlled via the threshold
on ||G||. This means that the errors observed with ADAPT-
VQE might have been reduced had ||G|| been made tighter,
which could in turn increase the depth of the circuits, and even
having to cope with more necessary measurements than those of
UCCSD, as suggested with ||G|| = 10−3 in Figure 2i by Grimsley
et al. (2019) However, upon a simple choice of gradient strategy
motivated by the constraints of quantum hardware, we report
that ADAPT-VQE is fairly resilient with respect to the employed
optimization strategy and that encouraging improvements in
performance by adopting a gradient-based approach in the search
of the parameter set that minimizes the objective function can
be mostly beneficial in the case of VQE. These findings call
for a follow-up study on the role of optimizer in conjunction
with ADAPT-VQE, extending the analysis to a larger selection
of optimizers and gradient strategies.

The ongoing development of VQE methods, including
ADAPT-VQE, must also address the noise that is intrinsic to the
operations implemented in experimental quantum computers.
The above benchmarks of infidelity and energy error place
lower bounds on the expected accuracy for VQE methods

using noiseless numerical simulation. However, we anticipate
that the introduction of noise will substantially affect the
accuracy with which the prepared ansatz state approaches
the pure state expected from conventional quantum chemistry
theory. However, if the state infidelity grows with increasing
molecular size, as indicated by our short series of examples,
then lower bounds on ansatz accuracy may become a non-trivial
contribution to observed errors in experimental measurements.
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Quantum Machine Learning Tensor
Network States
Andrey Kardashin*, Alexey Uvarov and Jacob Biamonte

Skolkovo Institute of Science and Technology, Moscow, Russia

Tensor network algorithms seek to minimize correlations to compress the classical data
representing quantum states. Tensor network algorithms and similar tools—called tensor
networkmethods—form the backbone ofmodern numerical methods used to simulatemany-
body physics and have a further range of applications in machine learning. Finding and
contracting tensor network states is a computational task, which may be accelerated by
quantum computing. We present a quantum algorithm that returns a classical description of a
rank-r tensor network state satisfying an area law and approximating an eigenvector given
black-box access to a unitary matrix. Our work creates a bridge between several
contemporary approaches, including tensor networks, the variational quantum eigensolver
(VQE), quantum approximate optimization algorithm (QAOA), and quantum computation.

Keywords: quantum computing, quantum algorithms and circuits, tensor network algorithms, ground state,
properties, machine learning, quantum information

1 INTRODUCTION

Tensor network methods provide the contemporary state of the art in the classical simulation of
quantum systems. A range of numerical and analytical tools have now emerged, including tensor
network algorithms, to simulate quantum systems classically; these algorithms are based in part on
powerful insights related to the area law [1–9]. The area law places bounds on quantum
entanglement that a many-body system can generate, which translates directly to the amount of
memory required to store a given quantum state; see, e.g., [8].

The leading classical methods to simulate random circuits for quantum computational supremacy
demonstration are also based on tensor network contractions. Additionally, classical machine
learning has been merged with matrix product states and other tensor network methods
[10–14]. How might quantum computing accelerate tensor network algorithms?

Although tensor network tools have traditionally been developed to simulate quantum systems
classically, we propose a quantum algorithm to approximate an eigenvector of a unitary matrix with
bounded rank tensor network states. The algorithm works given only black-box access to a unitary
matrix. In general, tensor network contraction can simulate any quantum computation.

We focus on 1D chains of tensors (matrix product states) due to some associated analytical
simplifications; indeed, matrix product states can be approximated classically which offers an
attractive gold standard to compare the quantum algorithm against. The general framework we
develop applies equally well to 2D and, e.g., sparse networks (projected entangled pair states, etc.).
However, an early merger between these topics is better situated to focus on 1D.

Even in 1D, tensor networks offer certain insights into quantum algorithms. For example, the
maximal degree of entanglement can often be bounded in the description of the tensor network state
itself. In other words, the bond dimension (the dimension of the wires) in the tensor network acts to
bound the maximal entanglement. Merging quantum computation with ideas from tensor networks
provides new tools to quantify the entanglement that a given quantum circuit can generate [15, 16].
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For the sake of simplicity, we work in the black-box setting and
assume access to a provided unitaryQ. The black-box setting does
not consider the implementation ofQ. Prima facie, this appears to
be a limitation; in practice, however, the restriction can easily be
lifted. For example, in QAOA, the problem Hamiltonian can be
applied for varying times, offering a natural extension of the
oracle idea by giving Q a simple time dependence [17].

In Discussion, we drop the black-box access restriction and
cast the steps needed to perform a meaningful near-term
demonstration of our algorithm on a quantum computer,
providing a low-rank approximation to eigenvectors of the
quantum computers free- (or effective) Hamiltonian. The
presented algorithm falls into the class of variational quantum
algorithms [18–25]. It returns a classical description, in the form
of a tensor network, of an eigenvector of an operator found
through an iterative classical-to-quantum optimization process.

We present a general framework to determine tensor networks
using quantum processors. We focus on 1D, which enables
several results related to the maximum amounts of
entanglement required to demonstrate these methods. This
analysis is followed by a discussion focused on applications of
these techniques and what might be required for a meaningful
near-term experimental demonstration.

2 METHODS

The algorithm we propose solves the following problem: given
black-box access to a unitary Q, find any eigenvector of Q.

We work in the standard mathematical setting of quantum
computing. We define n qubits arranged on a line and fix the
standard canonical (computational) basis. We consider the
commutative Hermitian subalgebra generated by the
n-projectors:

Pi �|0〉〈0 i,| (1)

where the subscript i denotes the corresponding ith qubit acted
on by Pi, with the remainder of the state space acting on trivially.
These form our observables.

Rank is the maximum Schmidt number (the nonzero singular
values) across any of the n − 1 stepwise partitions of the qubits on
a line. Rank provides an upper bound on the bipartite
entanglement that a quantum state can support; as will be
seen, a rank-r state has at most k � log2(r) ebits of
entanglement. The quantum algorithm we present works by
finding a sequence of maximally k ebit approximations, where
the k’th approximation can be used to seed the (k + 1)’th
approximation.

An ebit is the amount of entanglement contained in a
maximally entangled two-qubit (Bell) state. A quantum state
with q ebits of entanglement (quantified by any entanglement
measure) has the same amount of entanglement (in that measure)
as q Bell states. If a task requires l ebits, it can be done with l or
more Bell states, but not with fewer. Maximally entangled
states in

Cd ⊗Cd (2)

have log2(d) ebits of entanglement. The question is then to upper
bound the maximum amount of entanglement a given quantum
computation can generate, providing a coarse-graining to classify
quantum algorithms in terms of both the circuit depth and the
maximum ebits possible. For low-depth circuits, these arguments
are surprisingly relevant.

We parameterize a circuit family generating matrix product
states with θ, a real vector with entries in [0, 2π). We consider
action on the initial rank-1 state |0〉 � |0〉⊗n and define two states

|ψ(θ)〉 � U†(θ)QU(θ)|0〉 (3)

and

|~ψ(θ)〉 � U(θ)|0〉, (4)

both of yet to be specied rank.
We will construct an objective function (Eq. 6) to minimize

and hence to recover our approximate eigenvector. The choice of
this function provides a desirable degree of freedom to further
tailor the algorithm to the particular quantum processor at hand.
We choose

pi(θ) � 〈ψ(θ)|Pi|ψ(θ)〉 (5)

and call

L(θ) � ∑n
i�1

lnpi(θ) (6)

the log-likelihood function of the n-point correlator

∏n
i�1

pi(θ). (7)

The minimization of Eq. 6 corresponds to maximizing the
probability of measuring each qubit in |0〉. This minimization
can be done using a variety of optimization and machine learning
algorithms. The following summarizes the steps of the algorithm.

Algorithm 1: Find successive tensor network approximations
of an eigenvector of Q.

Choose the maximum number of ebits kmax

Choose the maximum number of optimization iterations nit
for k←1 to kmax do
Construct the ansatz Uk corresponding to a k ebit MPS
Set θk randomly
for j←1 to nit do
Evaluate p(θk)
Evaluate L(p)
Update θk using a classical optimizer

end for
Store Lk � L(p)

end for
return {θk}kmax

k�1 , {Lk}kmax
k�1

The algorithm begins with rank-1 qubit states as

|~ψ(θ)〉 �⊗
i�1

n (cosθi1|0〉 + e−ıθ
i
2 sinθi1|1〉). (8)
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Minimization of the objective function Eq. 6 returns 2n real
numbers describing a local matrix product state. Approximations
of higher rank are made by utilizing the quantum circuit structure
given in Figure 1.

3 RESULTS

The algorithm works given only oracle access to a unitary Q. The
spectrum of Q is necessarily contained on the complex unit circle
and so we note immediately that

1 � max
ϕ

|〈ϕ|Q|ϕ〉|2 ≥max
θ

|〈0|ψ(θ)〉|2 (9)

� max
θ

|〈~ψ(θ)|Q|~ψ(θ)〉|2

with equality of the left-hand side if and only if |ϕ〉 is an
eigenvector of Q. One advantage of the presented method is
that it terminates when the measurement reaches a given value.
This implies that the system is in an eigenstate. Such a certificate
is not directly established using other variational quantum
algorithms.

Importantly, the maximization over θ on the right-hand
side of Eq. 9 corresponds to the minimization of the log-
likelihood Eq. 6. We will then parameterize ~ψ(θk), where k
denotes a k ebit matrix product state of interest. Learning this
matrix product state recovers an approximation to an
eigenvector of Q. With a further promise on Q that all
eigenvectors have a rank-p matrix product state
representation, we conclude that r < p implies a fundamental
error in our approximation. We consider then that the r’th
singular value of the state takes the value ε. It then follows that
the one-norm error scales with O(ε) and the two-norm error
scales only with O(ε2). In general, we arrive at the monotonic
sequence ordered by the following relation:

1≥max
θk+1

∣∣∣∣〈~ψ(θk+1)|Q|~ψ(θk+1)〉∣∣∣∣2 (10)

≥max
θk

|〈~ψ(θk)|Q|~ψ(θk)〉|2

which is valid for k � 1 to ⌊n/2⌋ (minimum to maximum possible
number of ebits).

Indeed, increasing the rank of the matrix product state
approximation can improve the eigenvector approximation.
Yet, it should be noted that ground state eigenvectors of
physical systems are in many cases known to be well
approximated with low-rank matrix product states [1–9]. This
depends on the further properties of Q and is a subject of
intensive study in numerical methods, further motivating the
quantum algorithm we present here. We will develop our
algorithm agnostic to Q, leaving a more specific near-term
demonstration (in which Q is implemented); e.g., we will
express any |~ψ(θ)〉 as a matrix product state as

|~ψ(θ)〉 � ∑
q,s,...,n

A[θq]
q A[θs]

s /A[θn]
n |q, s, . . . , n〉 (11)

In Eq. 11, the rank-r of the representation is embedded into
the realization of the A’s. Quantum mechanics allows the
deterministic generation of a class of isometries, where an
isometry U that is also an endomorphism on a particular
space is called unitary.

Matrix product states (Eq. 11) are not isometries, though
correlation functions are readily calculated from them.
Furthermore, matrix product states can be deterministically
generated by the uniform quantum circuit given in Figure 1.
Other isometric structures of interest include trees and the so-
calledMultiscale Entanglement Renormalization Ansatz (MERA)
networks [3, 26–28].

Consider then a rank-r approximation to an eigenvector ofQ.
The blocks in Figure 1 represent unitary maps. These circuits
act on at most ⌈log2(r)⌉ qubits. Hence, each of these blocks has
at most r2 real degrees of freedom in [0, 2π). The general
realization of these blocks using the typical basis of CNOT
gates and arbitrary local unitaries can be done by a range of
methods; see, e.g., [29]. A commonly used theoretical lower
bound requires

1
4
(r2 − 3log2r − 1) (12)

FIGURE 1 | Example of a tensor network as a quantum circuit: (left) quantum circuit realization of a matrix product state with open boundary conditions; (right)
using standard graphical rewrite rules—or by manipulating equations—one readily recovers the familiar matrix product state depiction as a “train of tensors.”
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CNOT gates, where the method in [29] requires r2 local qubit
gates and did not reach this theoretical lower bound of CNOT
gates. The total number of single qubits and CNOT gates
nevertheless scales as O(r2) for each block, where the number
of blocks is bounded by n. Hence, the implementation complexity
scales as O(l · n · r2), where the optimization routine terminates
after l steps (perhaps in a local minimum).

Instead of preparing |~ψ(θ)〉 by a quantum circuit with
θ ∈ (0, 2π]×l tunable parameters as

|~ψ(θ)〉 � ∏
l

Ul|0〉⊗n (13)

where Ul is adjusted by θl , one might adopt an alternative
(heuristic) circuit realization performed by adjusting
controllable Hamiltonian parameters realizing each block,
subject again to the minimization of Eq. 6. With such an
approach, one will prepare |~ψ(θ)〉 by tuning accessible time-
dependent parameters θk(t) corresponding to Hermitian Ak as

|~ψ〉 � T {e− ı∑
θk(t)Ak}|0〉⊗n, (14)

where T orders the sequence by time and superscript k indexes
the kth operator Ak. Provided these sequences are localized
appropriately, the matrix product structure still remains.

We then consider vertical partitions of a quantum circuit with
the n qubits positioned horizontally on a line. For an m-depth
quantum circuit (where m is presumably bounded above by a
low-order polynomial in n), the maximum number of two-qubit
gates crossed in a vertical partition is never more than m. The

maximum number of ebits generated by a fully entangling two-
qubit CNOT gate is never more than a single ebit. We then
consider the (n − 1) partitions of the qubits, the maximum
partition with represent to ebits is into two (ideally) equal
halves, which is never more than ⌈n/2⌉. We then arrive at the
general result that anm-depth quantum circuit on n qubits never
applies more than

min{⌈n/2⌉,m} (15)

ebits of entanglement. This immediately puts a lower bound of
∼ n/2 on the two-qubit gate depth for Q to potentially drive a
system into a state supporting the maximum possible ebits of
entanglement.

In Figure 2, we demonstrate our algorithm for finding an
eigenstate of randomly generated 5-qubit unitary matrices. For
minimizing the function Eq. 6, we used the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) minimization method [30]. For each k
ebit MPS, we place the k-layered hardware-efficient ansatz as the
operators in blocks [21].

4 DISCUSSION

We now turn to the realization of Q and sketch a possible
demonstration for a near-term device. Polynomial-time
simulation of Hamiltonian evolution is well known to be BQP-
hard. This provides an avenue for Q to represent a problem of
significant computational interest, as simulating quantum
evolution and quantum factoring are in BQP. We aim to
bootstrap properties of the quantum processor as much as
possible to reduce resources for a realization; see, for example, [21].

Let Q(t) be the one-parameter unitary group generated by H,
where H represents a 3-SAT instance. Given access to an oracle
computing

〈~ψ(θ1)|H|~ψ(θ1)〉, (16)

we can minimize the overall eigenvectors, which is NP-hard.
Hence, finding even rank-1 states can be NP-hard. This provides
a connection between our method and QAOA [31]. Similarly, we
can also use this external minimization to connect our method to
VQE [20]. However, our method provides a certificate that, on
proper termination, the system is indeed in such a desired
eigenstate.

When H is a general quantum Hamiltonian, minimization of

〈~ψ(θk)|H|~ψ(θk)〉 (17)

is in turnQMA-hard. For example, pairing our procedure with an
additional procedure (quantum phase estimation) to minimizeQ,
the overall eigenvectors would hence provide rank-k variational
states and hence our methods provide a research direction which
incorporates tensor network methods in works such as, e.g.,
[19–21]. It should however be noted that phase estimation
adds significant experimental difficultly compared with the

FIGURE 2 | Algorithm demonstration on randomly generated 6-qubit
unitaries Q: the value of Eq. 9 (upper), overlap between the variational state
and the closest eigenstate ofQ (middle), and the von Neumann entropy of the
subsystem of the first three qubits (lower). The vertical solid lines
indicate the iteration numbers after which k, the number of ebits that the MPS
ansatz can support, increases by 1. The plot is obtained by averaging over 10
randomly generated unitaries Q.

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 5863744

Kardashin et al. Quantum Machine Learning Tensor Networks

77

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


algorithm presented here and the algorithm is closer to VQE
(with evident differences as listed above and in the main text).

For a near-term demonstration, we envision Q to be realized
by bootstrapping the underlying physics of the system realizing
Q, e.g., using the hardware-efficient ansatz [21]. For instance, one
can realize Q as a modification of the systems free Hamiltonian
using effective Hamiltonian methods (modulating local gates).
This greatly reduces practical requirements on Q.

The interaction graph of the Hamiltonian generating Q can be
used to define a PEPS tensor network (as it will have the same
structure as the layout of the chip, it will no longer have the
contractable properties of matrix product states, and yet is still of
interest) [4]. The algorithm works otherwise unchanged, but the
circuit acts on this interaction graph (instead of a line) to create a
corresponding tensor network state (a quantum circuit in the
form of, e.g., the variational ansatz). Tailored free evolution of the
system Hamiltonian generates Q. Our algorithm returns a tensor
network approximation of an eigenstate of Q.

The first interesting demonstrations of the quantum algorithm
we have presented should realize rank-k tensor networks (matrix
product state), and the corresponding tensor network can be realized
with a few hundred gates for a system with a few hundred qubits.
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Quantum Solvers for Plane-Wave
Hamiltonians: Abridging Virtual
Spaces Through the Optimization of
Pairwise Correlations
Eric J. Bylaska1*, Duo Song1, Nicholas P. Bauman1, Karol Kowalski 1, Daniel Claudino2,3 and
Travis S. Humble2,4

1Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States, 2Quantum Computing Institute,
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For many-body methods such as MCSCF and CASSCF, in which the number of one-
electron orbitals is optimized and independent of the basis set used, there are no problems
with using plane-wave basis sets. However, for methods currently used in quantum
computing such as select configuration interaction (CI) and coupled cluster (CC) methods,
it is necessary to have a virtual space that is able to capture a significant amount of
electron-electron correlation in the system. The virtual orbitals in a pseudopotential plane-
wave Hartree–Fock calculation, because of Coulomb repulsion, are often scattering states
that interact very weakly with the filled orbitals. As a result, very little correlation energy is
captured from them. The use of virtual spaces derived from the one-electron operators has
also been tried, and while some correlations are captured, the amount is quite low. To
overcome these limitations, we have been developing new classes of algorithms to define
virtual spaces by optimizing orbitals from small pairwise CI Hamiltonians, which we term as
correlation optimized virtual orbitals with the abbreviation COVOs. With these procedures,
we have been able to derive virtual spaces, containing only a few orbitals, which are able to
capture a significant amount of correlation. The focus in this manuscript is on using these
derived basis sets to target full CI (FCI) quality results for H2 on near-term quantum
computers. However, the initial results for this approach were promising. We were able to
obtain good agreement with FCI/cc-pVTZ results for this system with just 4 virtual orbitals,
using both FCI and quantum simulations. The quality of the results using COVOs suggests
that it may be possible to use them in other many-body approaches, including coupled
cluster and Møller–Plesset perturbation theories, and open up the door to many-body
calculations for pseudopotential plane-wave basis set methods.

Keywords: quantum computing, ADAPT-VQE, many-body calculations, DUCC, pseudopotential plane-wave,
correlation optimized virtual orbitals, COVOs, nwchem
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INTRODUCTION

Quantum chemistry is one of the first and most successful scientific
applications of digital computers (Mulliken et al., 1941; Mulliken and
Rieke, 1941; Boys, 1950; Parr and Mulliken, 1950; Hall, 1951;
Roothaan, 1951; Boys et al., 1956; Nesbet, 1960; Allen and Karo,
1962; Nesbet, 1963; Pople et al., 1965; Kohn and Sham, 1965; Reeves,
1966; Pulay, 1969). This success has led to a large number of research,
open-source (Dupuis et al., 1989; Stanton et al., 1992; Schmidt et al.,
1993; Briggs et al., 1996; Challacombe, 2000; Gygi, 2008; Giannozzi
et al., 2009; Deslippe et al., 2012; Hutter et al., 2014; Gonze et al., 2016;
Harrison et al., 2016; Apra et al., 2020), and commercial codes (Kresse
and Furthmüller, 1996; te Velde et al., 2001; Betteridge et al., 2003;
Clark et al., 2005; Werner et al., 2012; Shao et al., 2015; Frisch et al.,
2016; Neese, 2018) (for a larger list of quantum chemistry software,
see (Wikipedia, The Free Encyclopedia, 2020)), which are used on a
regular basis by tens of thousands of scientists, engineers, and
students from a variety of scientific and engineering domains.
With Moore’s law as a backdrop (Moore, 2006), the cycle of new
machines leading to new algorithms stimulated the field for many
decades, and as a consequence, a large number of quantum chemistry
methods were developed along with a variety of numerical methods
to solve them. However, in recent decades, the maturity and success
of these codes coupled with the imminent death of Moore’s law
(Dubash, 2005; Rotman, 2020) that made numerical software
development much more difficult and less accessible to the
average scientist have resulted in the field having priorities other
than just new science, such as porting and optimizing these codes to
the next generation of computers (Bylaska et al., 2017a, Bylaska et al.,
2017b; Richard et al., 2018; van Dam et al., 2020), standardization of
methods (Crawford et al., 2017; Wilkins-Diehr and Crawford, 2018),
and marketing (Goldbeck, 2017; Hocquet and Wieber, 2017).

With the advent of quantum computing, there is excitement
again, and quantum chemists are beginning to rethink how they carry
out quantum chemistry calculations, in particular very accurate and
very expensive instances of systems containing strong electron-
electron correlations. This is because it is anticipated that
quantum computers with 50–100 qubits will be able to surpass
classical digital computers for these types of calculations (Preskill,
2018). Quantum computing has thus emerged as an alternative
avenue to the continuity of quantum chemistry in the long run
(Wasielewski et al., 2020) but poses several challenges that demand
careful consideration in order to eventually mature into a viable
replacement for classical computers and large, highly parallelizable
high-performance computing clusters.

Present quantum devices are plagued by short coherence times
and vulnerability to environment interference, i.e., noise. Albeit
quantum algorithms have been developed with proved exactness,
such as quantumphase estimation, these are not a viable option in the
present/near-term time frame. Therefore, it is desirable to limit the
operation of quantum processors to a complementary concerted
execution with classical counterparts, whereby each of these
components is only in charge of those tasks for which it is more
suitable. This has materialized into the variational quantum
eigensolver (VQE) (Peruzzo et al., 2014) and other hybrid
algorithms. Briefly, this class of algorithms strives to find the
lowest eigenvalue of a given observable by assuming that the

associated quantum state can be accurately represented by a trial
wave function and whose parameters are varied according to the
Rayleigh—Ritz method (variational principle), with these parameters
being updated by the classical computer. The burden on the quantum
processor can be further alleviated with strategies such as
Trotterization, which in turn introduce other challenges
(Evangelista et al., 2019; Grimsley et al., 2020) but can be
successfully exploited in the construction of favorable ansatz, as
long as a predefined form for the trial wave function is imposed.
This is at the heart of the ADAPT-VQE (Grimsley et al., 2019).

Most high-level methods for strongly correlated systems in use
today (e.g., full configuration interaction (CI), coupled cluster
(CC) and Green’s function (GF) approaches) are based on
second-quantized Hamiltonians, which are written in terms of
creation and annihilation operators for fermion orbitals. These
methods are amenable to quantum computers because fermionic
creation and annihilation operators can be readily mapped to
qubits through the use of some established transformation,
among which Jordan—Wigner (Jordan and Wigner, 1928),
Bravyi—Kitaev (Bravyi and Kitaev, 2002), and binary codes
(Steudtner and Wehner, 2018) stand out, where the number of
qubits scales with the number of orbitals in the second-quantized
Hamiltonian. In principle, converting the full many-body
electronic Hamiltonian to a second-quantized form is exact
and popular CC and GF approximations based on this form are
very accurate. However, this conversion has a drawback in that it
requires the introduction of a basis set, which, for computational
cost reasons, needs to be small. Typically, these basis sets are
composed of atomic-like orbitals generated with heuristics based
on an atom calculation for each kind of atom in the system. An
example of this type of basis set is the popular Dunning correlation
consistent basis set (Dunning and Hay, 1977; Dunning, 1989) in
which the atomic orbitals are optimized at the CISD (configuration
interaction method with single and double excitations) level of
theory. While the size of this basis set is small compared to other
basis sets used in quantum chemistry, such as plane waves, it still
needs to contain a large number of atomic orbitals to produce a
truly accurate result.

Solving relevant chemistry problems analogously to what is
classically done with MCSCF or FCI on near-term quantum
computers that contain 10s to 100s of noisy qubits (Reiher
et al., 2017), in which only limited numbers of operations can
be performed, is a monumental challenge. One way to reduce the
cost of these calculations is to develop new procedures for
optimizing basis sets. In this manuscript, a new method is
presented for generating a plane-wave derived correlation
optimized orbital basis sets. These derived basis sets can also be
used in other many-body approaches, including CC theory, and
can easily be generalized to work with recently developed Filon’s
Integration Strategy for two-electron integrals in periodic systems
(Bylaska et al., 2020). This method is different from other plane-
wave derived optimized orbital basis sets (Shirley, 1996;
Prendergast and Louie, 2009; Chen et al., 2011); in that, it is
based on optimizing small select CI problems rather than fitting
one-electron eigenvalue spectra and band structures.

The paper is organized as follows. In Section 2, a brief
description of the second-quantized Hamiltonian and the
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double unitary CC downfolding method that can be used with the
pseudopotential plane-wave method is given, followed by
comparisons between restricted Hartree–Fock (RHF)
calculations using plane-wave and Gaussian basis sets. Using
this framework, CI calculations up to 20 virtual orbitals,
generated from plane-wave Hartree–Fock and one-electron
Hamiltonians, are shown for the H2 molecule. The VQE
quantum computing algorithms used in this work are
described in Section 3. Section 4 presents a new class of
algorithms for generating a virtual space in which the orbitals
are generated byminimizing small pairwise CI Hamiltonians, and
a complete set of equations for implementing these optimizations
is given in Subsections 4.1–4.4. Using this new type of virtual
space, CI calculations up to 18 virtual orbitals for the ground state
energy curve of the H2 molecule are presented in Section 5
followed by results using quantum computing simulations in
Section 6, and lastly, the conclusions are given in Section 7.

PSEUDOPOTENTIAL PLANE-WAVE
MANY-BODY HAMILTONIAN

The nonrelativistic electronic Schrödinger eigenvalue equation of
quantum chemistry can be written as

H
∣∣∣∣Ψ(x1, x2, . . . , xNe)〉 � E

∣∣∣∣Ψ(x1, x2, . . . , xNe)〉, (1)

where H is the electronic structure Hamiltonian under the
Born–Oppenheimer approximation and

∣∣∣∣Ψ(x1, x2, . . . , xNe)〉 is the
quantummechanical wave function that is a function of the spatial and
spin coordinates of the Ne electrons, xi � (ri, σ i). When solving this
equation, the Pauli exclusion principle constraint of particle exchange
must be enforced, in which the wave function changes sign when the
coordinates of two particles, xi and xj, are interchanged; i.e.,∣∣∣∣Ψ(x1, x2, . . . xi, . . . xj, . . . , xNe)〉

� −∣∣∣∣Ψ(x1, x2, . . . xj, . . . xi, . . . , xNe)〉. (2)

For the Born–Oppenheimer Hamiltonian, the interaction
between the electrons and nuclei is described by the proper
potentials Ze

|ri−RA |, which for plane-wave solvers can cause
trouble with convergence because of the singular behavior
at |r − RA|. A standard way to remove this issue in plane-wave
calculations is to replace these singular potentials with
pseudopotentials. By making this replacement, the
Hamiltonian, H, in Eq. 1 can be written as

H � −1
2
∑Ne

i�1
∇2
i

+∑Ne

i�1
∑NA

A�1
⎛⎝V(A)

local(|ri − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠
+∑Ne

i�1
∑Ne

j> i

1∣∣∣∣ri − rj
∣∣∣∣,

(3)

where the first term is the kinetic energy operator, the second
term contains the local and nonlocal pseudopotentials, V(A)

local and

V̂
(A),lm
NL represent the electron-ion interactions, and the last term is

the electron-electron repulsion.
Instead of writing the many-electronic Hamiltonian in the

traditional Schrödinger form, as in the equations above, it is
more common today to write it in an alternative representation,
known as the second-quantization form, defined using the
creation, a†p, and annihilation, ap, operators. The second-
quantized Hamiltonian is written as

H � ∑Nbasis

p�1
∑Nbasis

q�1
hpqa

†
paq +

1
2
∑
pqrs

hpqrsa
†
pa

†
r asaq,

hpq � ∫ dxϕp
p(x)(−12∇2)ϕq(x)

+ ∫ dxϕp
p(x)⎡⎢⎢⎣∑NA

A�1
⎛⎝V(A)

local(|r − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠⎤⎥⎥⎦ϕq(x),

hpqrs � ∫ dx1dx2ϕ
p
p(x1)ϕp

r(x2)
1

|r1 − r2|ϕs(x2)ϕq(x1),
(4)

where ϕp(x) represent the one-electron spin-orbital basis. A
nice feature about this form of the Hamiltonian is that the
antisymmetry of wavefunction requirement as given in Eq. 2
is automatically enforced through the standard fermionic
anticommutation relations {ap, a†q} � δpq and {ap, aq} �
{a†p, a†q} � 0.

In this formulation, the choice of the one-electron spin-
orbital basis is nebulous and requires some care in its
choosing in order to obtain accurate results with this type
of Hamiltonian. Typically, in quantum chemistry, one uses
the filled and virtual orbitals from a Hartree–Fock
calculation. For methods that utilize linear combinations
of atomic orbitals (LCAO) as the basis, the size of the
basis set and subsequently generated Hartree–Fock orbitals
is fairly small. However, for plane-wave solvers and other
grid-based solvers, the size of the basis set is very large and
the number of the one- and two-electron integrals in Eq. 4
will become prohibitive if all possible Hartree–Fock orbitals
are used.

One approach to this problem is to only include virtual
orbital up to a certain energy threshold, and another related
approach is to use the plane-wave derived optimized orbital
basis set, e.g., the Shirley approach. While the number of
these orbitals needed to accurately describe eigenvalue
spectra over a range of ∼100 eV is significantly smaller
than the number of plane waves, it is still significantly
larger than the number of orbitals generated by an LCAO
method. The reason for this is that the virtual orbitals in a
plane-wave Hartree–Fock calculation, because of Coulomb
repulsion, are often unbound scattering states that interact
very weakly with the filled orbitals. As a result, very little
correlation energy is captured from them. In contrast, LCAO
basis methods can only describe bound states, and hence,
Hartree–Fock calculations on this basis do not generate these
types of scattering states.
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Many-Body Downfolding Techniques
One technique for reducing the dimensionality of large plane-
wave calculations is to construct effective Hamiltonians that
capture correlation effects of the full calculation in manageable
active spaces. That way, all many-body effects are retained as
opposed to simply truncating the orbital space. In Bauman et al.
(2019), we introduced downfolding techniques, which utilize the
double unitary CC (DUCC) ansatz for exact ground state wave
function |Ψ〉,

|Ψ〉 � eσext eσint |Φ〉 , (5)

where σ int and σext are the general type anti-Hermitian operators

σ†
int � −σ int, (6)

σ†ext � −σext , (7)

defined by amplitudes defining action within and outside of
the predefined active space, respectively; i.e., the amplitudes
defining the σext operator must carry at least one inactive
spin-orbital index whereas all amplitudes defining the σ int
operator carry active spin-orbital indices only. In Eq. 5, |Φ〉
designates properly chosen reference function (usually
chosen as a Hartree–Fock (HF) Slater determinant). The
exactness of the expansion 5 has been recently discussed in
Kowalski and Bauman (2020), where it was also shown that
the standard UCC expansions can provide a basic
approximation of the exact σ int and σext operators, i.e.,

σ intxTint − T†
int, (8)

σextxText − T†
ext , (9)

where Tint and Text are single-reference-type internal and external
cluster amplitudes (in the sense defined above).

Using ansatz in Eq. 5 we have shown (Kowalski and Bauman,
2020) that the exact energy of the systems can be reproduced by

the diagonalization of the effective (or downfolded) Hamiltonian

H
(DUCC)
eff in the corresponding active space:

H
(DUCC)
eff eσint |Φ〉 � Eeσ int |Φ〉, (10)

where

H
(DUCC)
eff � (P + Qint)e−σextHeσext(P + Qint) . (11)

In Eq. 11, P and Qint are the projection operators onto the
reference function and all active-space excited Slater
determinants (with respect to |Φ〉).

We will discuss the utility of the downfolding techniques
in the next section for the ground state calculations of H2.
This is just one of the two approaches presented in this paper
for reducing the dimensionality of the quantum problem
(Figure 1).

Results for the 1Σ+
g Ground State of H2 Using

Virtual Space From Hartree–Fock and
One-Electron Hamiltonians
The NWChem program package (Kendall et al., 2000; Valiev
et al., 2010; Bylaska et al., 2011; Bylaska, 2017; Apra et al.,
2020) was used for all calculations in this study, except for
the FCI calculations, which used the TINYMRCC suite by Jiří

FIGURE 1 | Schematic representation of the dimensionality reduction
algorithms considered in this paper: (1) discretization of the many-body
problem by employing efficient single-particle basis sets (in this paper, we
consider correlation optimized virtual orbitals (COVOs)) and (2)
downfolding techniques based on the double unitary coupled cluster (DUCC)
formalism (Bauman et al., 2019; Kowalski and Bauman, 2020); in this step, the
many-body problem is rerepresented in a subspace of entire Hilbert space.

FIGURE 2 | The ground state energy curves for H2 with RHF, CCSD, and
DUCC/QDK methods using plane-wave and LCAO Gaussian basis sets. It
should be noted that for the two-electron H2 molecule CCSD gives the same
answer as FCI.
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Pittner. The plane-wave calculations used a simple cubic
box with L � 26a0 and cutoff energy of 100 Ry. The valence
electron interactions with the atomic core are approximated
with generalized norm-conserving Hamann (Hamann, 1989)
pseudopotentials modified to the separable form suggested
by Kleinman and Bylander (Kleinman and Bylander, 1982).
The pseudopotentials used in this study were constructed
using the following core radii: H: rcs � 0.8 a.u. and rcp � 0.8
a.u.; Be: rcs � 1.219 a.u., and rcp � 1.219 a.u. (vide infra).
The RHF and coupled cluster singles and doubles (CCSD)
LCAO calculations used the Dunning cc-pVTZ Gaussian
basis set.

As can be seen in Figure 2, the RHF ground state energy curve
of the H2 molecule using plane-wave and LCAO Gaussian basis
sets gives nearly identical results. However, when we performed
plane-wave FCI calculations (not shown) for this system using up
to 20 RHF virtual orbitals, the amount of correlation energy

calculated was nearly zero (<1.0 e-4 Hartree). This result was not
surprising since most of the virtual states were scattering states as
shown in Figure 3.

Instead of using virtual states of the RHF Hamiltonian,
virtual states were also generated using the 1-electron part of
the RHF Hamiltonian, H1 (i.e., just the kinetic energy and
pseudopotential terms). As shown in Figure 3, the H1

Hamiltonian generated virtual orbitals that were bound
and looked like the virtual orbitals generated in an LCAO
RHF calculation. Using these H1 generated orbitals, we
performed plane-wave CI calculations using 19 of these
virtual orbitals. As seen in Figure 2 and Table 1, a
significant improvement was seen using these orbitals as
they were able to capture a nonzero amount of the
correlation energy; however, it was still significantly less
than that found in LCAO calculations. In addition, results
using the quantum phase estimation (QPE) algorithm in the
Microsoft QDK package (Svore et al., 2018; Low et al., 2019)
in which the number of orbitals was reduced to 4 and 6
orbitals using the DUCC method are shown. These results
showed that the DUCC QDK QPE method produces total
energies that are within a few milli-Hartrees of the 20 orbital
FCI result with only 4 or 6 orbitals.

VARIATIONAL QUANTUM EIGENSOLVER
METHODS

VQE is a method to find the quantum state that minimizes a
cost function defined in operator form (Peruzzo et al., 2014;
O’Malley et al., 2016). This is a hybrid computational
approach in which the preparation of the quantum circuit
is tuned using feedback from classical evaluations of the cost
function. Reduction of a given problem to minimization,
such as solving for the ground state energy (lowest energy
eigenvalue) of a molecular Hamiltonian, may then rely on
the variational principle to affirm that only the true ground
state could satisfy the minimum energy (Kandala et al., 2017;
McCaskey et al., 2019).

Formally, we may consider the problem of solving for the
ground state energy, Eg , as

Eg � min
|Ψ〉

〈Ψ|H|Ψ〉, (12)

FIGURE 3 | The HOMO and first three LUMOs generated from the
straight HF calculation and the H1 Hamiltonian are shown in the left and right
panels, respectively. The orbitals are displayed in the order of decreasing
orbital energy from top to bottom. The isovalues of positive and negative
isosurfaces are 0.007226 and −0.007226 for the RHF LUMO 1; 0.01148 and
−0.01148 for the RHF LUMO 2; 0.002404 and −0.002404 for the RHF LUMO
3; and 0.03117 and −0.03117 for the others. Notice that the isovalues of RHF
LUMO 1 are very close to zero, which indicates that it is a scattering state. The
orientation of H2 is rotated by 90° in the bound LUMO 3 relative to the bound
LUMO 2.

TABLE 1 | Total energies as a function of distance from plane-wave FCI
calculations for the H2 molecule 19 H1 virtual orbitals.

R (H-H) PW FCI PW QDK PW QDK CCSD

(Å) 19 H1 Virt. DUCC 4 DUCC 6 cc-pVTZ

0.423 −0.99396 −0.99113 −0.99052 −1.01540
0.529 −1.10715 −1.10363 −1.10440 −1.12144
0.741 −1.15340 −1.14968 −1.15010 −1.17234
1.058 −1.11042 −1.10768 −1.10785 −1.13617
1.588 −1.01251 −1.01435 −1.01417 −1.05526
2.117 −0.94070 −0.94303 −0.94318 −1.01485
4.233 −0.83962 −0.84025 −0.84156 −0.99965
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where H represents the second-quantized Hamiltonian of
Eq. 4 and |Ψ〉 labels the electronic configuration. Within the
context of quantum computing, the fermionic
representations of the Hamiltonian and state are
transformed to alternate representations in terms of the
spin operators. This transformation recast the
molecular Hamiltonian into a representation HP that is
defined in terms of the usual Pauli spin operators.
Similarly, the electronic state |Ψ〉 is represented as a
variable unitary operator Û( θ→) acting on a fiducial quantum
state (|0>). This yields the equivalent representation of Eq.
13 as

Eg � min
θ
→ 〈0∣∣∣∣Û†( θ→)HPÛ( θ→)∣∣∣∣0〉. (13)

The second equality is pertinent to the current context as it
makes explicit the fact that 1)HP, the Hamiltonian in terms of
strings of Pauli operators, relates to H through some
transformation that maps fermionic creation and
annihilation operators to qubits operators, and 2) the trial
wave function emerges from the action of the parameterized
unitary operator Û( θ→) which builds entanglement, usually
starting from an unentangled wave function, such as
Hartree–Fock. For practical considerations, H is
transformed into HP with the Jordan-Wigner
transformation (Jordan and Wigner, 1928), but alternatives
have been reported in the literature (Bravyi and Kitaev, 2002;
Setia and Whitfield, 2018; Steudtner and Wehner, 2018). The
classical search for the quantum state that minimizes the
energy represents the conventional computing task, while
evaluation of the expectation value is performed using the
quantum computer. In particular, the quantum state is
prepared by executing a quantum circuit, which is
expressed formally as a series of unitary operators acting
on a well-defined initial state. The action of a specific
sequence of unitaries is to prepare a given state that is
subject to the measurements necessary to recover the
desired expectation value.

In practice, the quantum state that minimizes the
energy is unknown, and, therefore, a search over possible
unitaries is necessary to find the form that minimizes the
energy. This variational approach to circuit synthesis
underlies the VQE method and an essential choice is the
selection of a quantum circuit ansatz which defines the range
of unitaries that may be formed to prepare and evaluate a
quantum state. For electronic structure calculations,
seemingly randomized unitaries may offer advantages for
efficient circuit construction, but they lack much of the
intuition available from theoretical chemistry (Kandala
et al., 2017). Rather, ansatz circuits derived from unitary
coupled cluster theory offer a convenient connection to the
expected unitary forms of the minimal quantum state
(Romero et al., 2017).

VQE has been applied previously to recover the electronic
energy from the Hamiltonian presented in Eq. 4. The
literature provides several examples of usage of VQE for

problems of chemical interest, in terms of both simulation
and implementation on actual quantum hardware. Given the
current limitations faced by present quantum computers,
these instances are usually accompanied by strategies that
reduce the effective Hilbert space, thus leading to a decrease
in the computational expense, such as the use of active spaces
and natural orbitals (Verma et al., 2020), as well as
downfolding techniques introduced earlier. Another route
is to modify the form of the ansatz; an example of this
alternative would be the so-called Trotterization, which
can be used in conjunction with Hilbert space-reducing
techniques.

Recently, the principle of VQE was extended to use ansatz
circuits that are tailored to computational chemistry
applications and specifically the unitary coupled cluster
singles and doubles (UCCSD) ansatz state. Adaptive ansatz
construction is attractive because it obeys the underlying
complexity of the electronic structure in question, whereas a
predefined form for the trial wave function in Eq. 13 may fall
short of the flexibility necessary for intricate problems. The
prime example of this class of algorithms is the ADAPT-VQE,
which iteratively assembles a circuit according to the expected
energy gain signaled by the gradient with respect to the
variational parameters.

An important consideration in the performance of both
VQE and ADAPT-VQE is the depth of the ansatz circuit
and the time required to construct the optimal variational
circuit. For electronic structures dominated by weak
correlation, ADAPT-VQE tends to be very economical,
adding only operators that make a meaningful
contribution toward the lowest eigenvalue in the
spectrum of the Hamiltonian in Eq. 14. On the other
hand, the usual UCCSD, by virtue of being defined ahead
of time, may contain operators with little impact on the
energy, but the classical optimizer will still need to perform
a number of calls to the cost function in order to find their
best values. Also, the gates originating from these
operators, even if they are deemed unimportant because
of a small associated parameter, will nevertheless be present
in the circuit, adding to its depth. If high accuracy is sought,
then ADAPT-VQE may require an ansatz comprised of a
large number of operators, which in turn adds to the depth
of the underlying circuit. More operators also mean more
variational parameters, leading to an onerous optimization
process. A more detailed analysis of this trade-off can be
found in Grimsley et al. (2019).

ALGORITHM FOR DEFINING A VIRTUAL
SPACE WITH A SMALL CI HAMILTONIAN

In this section, we present a downfolding method to define
virtual orbitals for expanding the second-quantized
Hamiltonian given in Eq. 4. These new types of orbitals are
able to capture significantly more correlation energy than the
virtual orbitals coming from Hartree–Fock and one-electron
Hamiltonians tested in Section 2.2. The basis of this method is
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to define a set of virtual orbitals, {ψ(n)
e (r)}with n � 1 . . .Nvirtual ,

which we call correlation optimized virtual orbitals or COVOs
for short, by optimizing a small select CI Hamiltonian with
respect to a single virtual orbital and then the next virtual
orbitals in sequence, subject to them being orthonormal to the
filled and previously computed virtual orbitals. The algorithm
to calculate these new types of orbitals can be formulated as
follows:

1. Set n � 1.
2. Using the ground state one-electron orbital, ψg(r) (or

ground state orbitals for many-electron systems), and
the virtual orbital to be optimized, ψ(n)

e (r), generate a CI
matrix.

3. Calculate the select CI expansion coefficients by diagonalizing
the CI matrix.

4. Using the CI coefficients associated with the lowest
eigenvalue, calculate the gradient with respect to the
ψ(n)
e (r) and then update with a conjugate-gradient or

similar method while making sure that ψ(n)
e (r) is

normalized and orthogonal to ψg(r) and ψ(m)
e (r) for m �

1, . . . , n − 1.
5. If the gradient is small, then n � n + 1.
6. If n≤Nvirtual , go to step 2; otherwise, finish.

In the case of the H2 molecule, a small CI wave function for
the 2 electron system composed of 2 one-electron orbitals,
ψg(r) and ψ(n)

e (r), can be written as a linear combination of 6
determinant wave functions, or just 3 determinant wave
functions for just singlet (or triplet) states,

Ψi[ψg(r),ψe(r)] � c(i)g Ψg[ψg(r)]
+ c(i)e Ψe[ψe(r)]
+ c(i)m Ψm[ψg(r),ψe(r)] + . . . .

Using this small CI ansatz, the energies of the system can
be obtained by diagonalizing the following eigenvalue
equation:

HCi � EiSCi,

where

H � ⎡⎢⎢⎢⎢⎢⎣ 〈Ψg

∣∣∣∣H∣∣∣∣Ψg〉 〈Ψg

∣∣∣∣H|Ψe〉 〈Ψg

∣∣∣∣H|Ψm〉
〈Ψe|H

∣∣∣∣Ψg〉 〈Ψe|H|Ψe〉 〈Ψe|H|Ψm〉
〈Ψm|H

∣∣∣∣Ψg〉 〈Ψm|H|Ψe〉 〈Ψm|H|Ψm〉
⎤⎥⎥⎥⎥⎥⎦,

S � ⎡⎢⎢⎢⎢⎢⎣ 〈Ψg

∣∣∣∣Ψg〉 〈Ψg |Ψe〉 〈Ψg |Ψm〉
〈Ψe

∣∣∣∣Ψg〉 〈Ψe|Ψe〉 〈Ψe|Ψm〉
〈Ψm

∣∣∣∣Ψg〉 〈Ψm|Ψe〉 〈Ψm|Ψm〉
⎤⎥⎥⎥⎥⎥⎦,

Ci � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ c
(i)
g

c(i)e

c(i)m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(14)

Note that the overlap matrix, S, is the identity matrix for
orthonormal ψg and ψe. The variation with respect to ψe(r) can
be simply obtained using the following formula:

δEi

δψp
e(r)

� c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g + c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψe〉
δψp

e(r)
c(i)e

+ c(i)g

δ〈Ψg

∣∣∣∣H∣∣∣∣Ψm〉
δψp

e(r)
c(i)m + c(i)e

δ〈Ψe

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g

+ c(i)e

δ〈Ψe|H|Ψe〉
δψp

e(r)
c(i)e + c(i)e

δ〈Ψe|H|Ψm〉
δψp

e(r)
c(i)m

+ c(i)m

δ〈Ψm

∣∣∣∣H∣∣∣∣Ψg〉
δψp

e(r)
c(i)g + c(i)m

δ〈Ψm|H|Ψe〉
δψp

e(r)
c(i)e

+ c(i)m

δ〈Ψm|H|Ψm〉
δψp

e(r)
c(i)m .

(15)

It should be noted that the above formulas can be generalized
to work beyond two-electron systems by using corresponding
orbitals techniques (King et al., 1967; Bylaska and Rosso, 2018).
The next two Subsections 4.1–4.4 provide formulas that can be
used to generate the matrix elements in Eq. 14 and the gradients
with respect to ψp

e(r) in Eq. 15.
We also note that the COVO approach proposed in this work is

similar in spirit to the optimized virtual orbital space (OVOS) approach
developed over 30 years ago by Adamowicz and Bartlett (Adamowicz
and Bartlett, 1987; Adamowicz et al., 1988). The differences in our
approach compared to this previous work is that the variational space
used byCOVOs is significantly bigger because plane-wave basis sets are
used instead of LCAO Gaussian basis sets and that a second-order
Hylleraas functional (Hylleraas, 1928; Hylleraas, 1929; Hylleraas, 1930;
Hylleraas, 1964; Koga, 1992) was used to describe the correlation in the
OVOS procedure rather than a small CI Hamiltonian. Other
differences with the COVOs approach are that the orbitals are
optimized one at a time and the cost to generate them is similar to
generating regular RHF virtual orbitals (just 4 to 9 times more
expensive relative to RHF). Moreover, the resulting electronic
gradient is non-Hermitian, which in addition to requiring more
involved optimizers can result in extended energy plateaus that
occur during the initial stages of the geodesic line searches in a
conjugate-gradient or quasi-Newton optimization method.

One-Electron Orbitals for Two-State
Hamiltonian
The four one-electron spin orbitals of two-state Hamiltonian are

χ1(x) � ψg(r)α(s),
χ2(x) � ψg(r)β(s),
χ3(x) � ψe(r)α(s),
χ4(x) � ψe(r)β(s),
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where the spatial orbitals and spin functions are
orthonormalized,

∫ψp
g(r)ψe(r)dr � ∫ψp

e(r)ψg(r)dr � 0,

∫ψp
g(r)ψg(r)dr � ∫ψp

e(r)ψe(r)dr � 1,

∫ αp(s)β(s)ds � ∫ βp(s)α(s)ds � 0,

∫ αp(s)α(s)ds � ∫ βp(s)β(s)ds � 1.

Two-Electron Orbitals for a Two-State
Hamiltonian
For the two-state system, there are six two-electronwave functions, two
ofwhich are singlet, two are triplet, and two contain amixture of singlet
and triplet character. These wave functions can be written as

∣∣∣∣χ1χ2〉 � Ψg(x1, x2)

� [ψg(r1)ψg(r2)] 1�
2

√ [α(s1)β(s2) − α(s2)β(s1)],∣∣∣∣χ3χ4〉 � Ψe(x1, x2)

� [ψe(r1)ψe(r2)] 1�
2

√ [α(s1)β(s2) − α(s2)β(s1)],∣∣∣∣χ1χ4〉 � Ψa(x1, x2)

� 1�
2

√ ⎡⎢⎣ ψg(r1)α(s1)ψe(r2)β(s2)
− ψe(r1)β(s1)ψg(r2)α(s2)

⎤⎥⎦,
∣∣∣∣χ2χ3〉 � Ψb(x1, x2)

� 1�
2

√ ⎡⎢⎣ ψg(r1)β(s1)ψe(r2)α(s2)
− ψe(r1)α(s1)ψg(r2)β(s2)

⎤⎥⎦,
∣∣∣∣χ1χ3〉 � Ψu(x1, x2)

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)][α(s1)α(s2)],∣∣∣∣χ2χ4〉 � Ψd(x1, x2)

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)][β(s1)β(s2)].
Note that Ψa and Ψb cannot be written as a product of a spatial

wave function times a spin function. Moreover, these functions are
not eigenfunctions of the spin operators S2 and Sz , and as a result,
these determinants contain both singlet and triplet components.
However, if we take linear combinations of them, we can get two new
wave functions that are separable in spatial and spin functions and at
the same time being eigenfunctions of S2 and Sz ,

Ψm � Ψa−b � 1�
2

√ (∣∣∣∣χ1χ4〉 − ∣∣∣∣χ2χ3〉)
� 1�

2
√ [Ψa(x1, x2) − Ψb(x1, x2)]

� 1�
2

√ [ψg(r1)ψe(r2) + ψe(r1)ψg(r2)]
× 1�

2
√ [α(s1)β(s2) − β(s1)α(s2)],

Ψp � Ψa+b � 1�
2

√ (∣∣∣∣χ1χ4〉 + ∣∣∣∣χ2χ3〉)
� 1�

2
√ [Ψa(x1, x2) + Ψb(x1, x2)]

� 1�
2

√ [ψg(r1)ψe(r2) − ψe(r1)ψg(r2)]
× 1�

2
√ [α(s1)β(s2) + β(s1)α(s2)].

Matrix Elements From the One-Electron
Operators
The H1 operator for H2 molecule is

H1 � h(r1) + h(r2),
where h(r) is a function/operator of the coordinate r; i.e.,

h(r) � −1
2
∇2
r + ∑NA

A�1
⎛⎝V(A)

local(|r − RA|) +∑
lm

V̂
(A),lm
NL

⎞⎠,

〈Ψg

∣∣∣∣H1

∣∣∣∣Ψg〉 � 2∫ψp
g(r)h(r)ψg(r)dr,

〈Ψg

∣∣∣∣H1|Ψe〉 � 0, 〈Ψe|H1|Ψe〉 � 2∫ψp
e(r)h(r)ψe(r)dr,

〈Ψm|H1|Ψm〉 � ∫ψp
g(r)h(r)ψg(r)dr + ∫ψp

e(r)h(r)ψe(r)dr,

〈Ψg

∣∣∣∣H1|Ψm〉 � �
2

√ ∫ψp
g(r)h(r)ψe(r)dr,

〈Ψm|H1

∣∣∣∣Ψg〉 � �
2

√ ∫ψp
e(r)h(r)ψg(r)dr,

〈Ψe|H1|Ψm〉 � �
2

√ ∫ψp
e(r)h(r)ψg(r)dr,

〈Ψm|H1|Ψe〉 � �
2

√ ∫ψp
g(r)h(r)ψe(r)dr,

δ〈Ψg

∣∣∣∣H1

∣∣∣∣Ψg〉
δψp

e(r)
� 0,

δ〈Ψg

∣∣∣∣H1|Ψe〉
δψp

e(r)
� 0,

δ〈Ψe|H1|Ψe〉
δψp

e(r)
� 2h(r)ψe(r),

δ〈Ψm|H1|Ψm〉
δψp

e(r)
� h(r)ψe(r),

δ〈Ψg

∣∣∣∣H1|Ψm〉
δψp

e(r)
� 0,

δ〈Ψm|H1

∣∣∣∣Ψg〉
δψp

e(r)
� �

2
√

h(r)ψg(r),
δ〈Ψe|H1|Ψm〉

δψp
e(r)

� �
2

√
h(r)ψg(r),

δ〈Ψm|H1|Ψe〉
δψp

e(r)
� 0.
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Matrix Elements From the Two-Electron
Operators
The H2 operator for H2 molecule is

H2 � 1
r12

� 1

|r1 − r2|,

〈Ψg

∣∣∣∣H2

∣∣∣∣Ψg〉 � ∫∫ψp
g(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′,

〈Ψg

∣∣∣∣H2|Ψe〉 � ∫∫ψp
g(r)ψe(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′,

〈Ψe|H2

∣∣∣∣Ψg〉 � ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
e(r′)ψg(r′)drdr′,

〈Ψe|H2|Ψe〉 � ∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψe(r′)drdr′,

〈Ψm|H2|Ψm〉 � [∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′

+ ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′],

〈Ψg

∣∣∣∣H2|Ψm〉 � �
2

√ ∫∫ψp
g(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψe(r′)drdr′,

〈Ψm|H2

∣∣∣∣Ψg〉 � �
2

√ ∫∫ψp
e(r)ψg(r)

1

|r − r′|ψ
p
g(r′)ψg(r′)drdr′,

〈Ψe|H2|Ψm〉 � �
2

√ ∫∫ψp
e(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψg(r′)drdr′,

〈Ψm|H2|Ψe〉 � �
2

√ ∫∫ψp
g(r)ψe(r)

1

|r − r′|ψ
p
e(r′)ψe(r′)drdr′,

δ〈Ψg

∣∣∣∣H2

∣∣∣∣Ψg〉
δψp

e(r)
� 0,

δ〈Ψg

∣∣∣∣H2|Ψe〉
δψp

e(r)
� 0,

δ〈Ψe|H2

∣∣∣∣Ψg〉
δψp

e(r)
� 2[∫ψp

e(r′)ψg(r′)
|r − r′| dr′]ψg(r),

δ〈Ψe|H2|Ψe〉
δψp

e(r)
� 2[∫ψp

e(r′)ψe(r′)
|r − r′| dr′]ψe(r),

δ〈Ψm|H2|Ψm〉
δψp

e(r)
� [∫ψp

g(r′)ψg(r′)
|r − r′| dr′]ψe(r),

+ [∫ψp
g(r′)ψe(r′)
|r − r′| dr′]ψg(r),

δ〈Ψg

∣∣∣∣H2|Ψm〉
δψp

e(r)
� 0,

δ〈Ψm|H2

∣∣∣∣Ψg〉
δψp

e(r)
� �

2
√ [∫ψp

g(r′)ψg(r′)
|r − r′| dr′]ψg(r),

δ〈Ψe|H2|Ψm〉
δψp

e(r)
� �

2
√ {[∫ψp

e(r′)ψg(r′)
|r − r′| dr′]ψe(r)

+ [∫ψp
e(r′)ψe(r′)
|r − r′| dr′]ψg(r)},

δ〈Ψm|H2|Ψe〉
δψp

e(r)
� �

2
√ [∫ψp

g(r′)ψe(r′)
|r − r′| dr′]ψe(r).

RESULTS FOR 1Σ+
g GROUND STATE OF

THE H2 MOLECULE USING CORRELATION
OPTIMIZED VIRTUAL ORBITALS (COVOS)
The results for PW FCI calculations of H2 with 1, 4, 8, 12, and 18
COVOs are shown in Figure 4 and Table 2. The average difference
error for the 1, 4, 8, and 12 COVOs calculations from the 18 COVOs
calculation is 11.8 kcal/mol, 1.4 kcal/mol, 0.9 kcal/mol, and 0.3 kcal/
mol, respectively. While the error is significant for 1 virtual, the
difference is quite small by 4 virtual orbitals, and the error steadily
decreases as the number of virtual orbitals increases. The error seen in
the 4 optimized virtual orbitals’ calculations is similar to the 1.6 kcal/
mol error seen in the DUCC calculations for the 19H1 virtual orbitals’
calculations in Section 2.2. Another measure of the error is the
extensivity error. The energy for large R should be the same as the
energy of twice the energy of an isolated H atom. For the
pseudopotential plane-wave method being used, the energy of 2H
atoms is −0.997765 Hartrees (E(1H) � −0.498825 Hartrees). This
difference at R � 7Å is found to be 11.6, 1.2, 1.1, 0.5, and 0.4 kcal/mol
for 1, 4, 8, 12, and 18 optimized virtual orbital calculations, respectively.

FIGURE 4 | Plots of total energies as a function of distance from plane-
wave FCI calculations for the H2 molecule with 1, 4, 8, 12, and 18 correlation
optimized virtual orbitals. The top plot shows energy from R � 0.4 Å to
R � 7.0 Å, and the bottom plot zooms in near the energy minima.

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6030199

Bylaska et al. Optimized Virtual Spaces

88

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


With only 4 optimized virtual orbitals, the correlation
energy at the minimum was found to be −0.035 Hartrees,
which is comparable to the −0.039 Hartrees found with
CCSD/cc-pVTZ. The correlation energy decreases to −0.037,
then −0.038, and finally −0.039 Hartrees as the number of
optimized virtual orbitals increases to 8, 12, and 18 orbitals,
respectively. These results showed that by 18 COVOs the same
amount of correlation energy was recovered as with the cc-
pVTZ LCAO basis set calculation. The results also showed that
there was systematic convergence toward the benchmark
LCAO result as the number of COVOs was increased, and
with just 4 COVOs, a significant portion of the correlation
energy was recovered.

QUANTUM SIMULATIONS OF THE 1Σ+
g

GROUND STATE OF THE H2 MOLECULE
USING COVOS
The previous section provides indisputable evidence for the
performance of the proposed virtual orbitals for correlation
energy recovery. Besides the possible ramifications in quantum
chemistry carried out with classical computers, one immediate
application is in the realm of quantum simulations. Because the
present quantum hardware has not fully matured, hybrid
algorithms that leverage classical resources and restrict the
workload delegated to quantum computers, namely, state
preparation and measurements of highly entangled states,
are essential to meaningful quantum computations. The
COVOs meet this requirement by decreasing the
dimensionality of the problem, i.e., by enabling simulations
with fewer qubits.

In order to probe the performance of COVOs in quantum
simulations, we use the Hamiltonian with 4 COVOs and simulate
the 1Σ+

g ground state of H2 in the same bond distances shown in
Table 2 and Figure 4. The ansatz circuit for the simulations is

generated according to the ADAPT-VQE algorithm as
implemented in the XACC (McCaskey et al., 2018b, McCaskey
et al., 2020) framework for hybrid quantum computing using the
tensor network quantum virtual machine (TNQVM) as the
noiseless simulator backend (McCaskey et al., 2018a). In the
present study, the ADAPT-VQE cycle is repeated until the norm
of the gradient vector falls below 1e-2 and we use an operator pool
containing all spin-adapted single and double excitation
operators (one- and two-body rotations). A detailed account
of ADAPT-VQE is exposed elsewhere (Grimsley et al., 2019).

TABLE 2 | Total energies as a function of distance for the H2 molecule from plane-wave FCI calculations with 1, 4, 8, 12, and 18 COVOs and ADAPT-VQE simulations with 4
COVOs. Nonparallelity errors (NPE) are evaluated with respect to the calculations with the largest virtual orbital space (PW FCI 18 COVOs) and reported in milli-Hartree.

R (H-H) PW FCI PW FCI PW VQE PW FCI PW FCI PW FCI

(Å) 1 COVO 4 COVOs 4 COVOs 8 COVOs 12 COVOs 18 COVOs

0.60 −1.13749 −1.15729 −1.15728 −1.15902 −1.16028 −1.16089
0.70 −1.15321 −1.17179 −1.17178 −1.17353 −1.17467 −1.17525
0.80 −1.15128 −1.16858 −1.16857 −1.17033 −1.17136 −1.17192
0.90 −1.14124 −1.15726 −1.15724 −1.15903 −1.15995 −1.16049
1.00 −1.12742 −1.14216 −1.14213 −1.14399 −1.14478 −1.14533
1.50 −1.05311 −1.06195 −1.06195 −1.06473 −1.06516 −1.06564
2.00 −1.00793 −1.01225 −1.01220 −1.01868 −1.01916 −1.01945
2.50 −0.98862 −1.00150 −1.00150 −1.00195 −1.00228 −1.00301
3.00 −0.98137 −0.99704 −0.99701 −0.99737 −0.99789 −0.99872
3.50 −0.97883 −0.99573 −0.99570 −0.99629 −0.99698 −0.99766
4.00 −0.97810 −0.99613 −0.99611 −0.99614 −0.99693 −0.99736
4.50 −0.97817 −0.99609 −0.99608 −0.99609 −0.99722 −0.99729
5.00 −0.97845 −0.99604 −0.99598 −0.99603 −0.99716 −0.99727
6.00 −0.97906 −0.99597 −0.99596 −0.99597 −0.99705 −0.99719
7.00 −0.97928 −0.99596 −0.99596 −0.99596 −0.99703 −0.99717
NPE 11.88 6.00 6.04 1.10 0.76 —

FIGURE 5 | Potential energy curves for FCI and ADAPT-VQE (top) and
the deviations in ADAPT-VQE energies with respect to FCI (bottom).
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Optimization of the parameterized circuit is conducted with the
COBYLA (Powell, 1994) optimizer as implemented in the NLOpt
package (Johnson, 2007). Results for the simulated potential
energy curve are plotted in Figure 5.

It is evident from Figure 5 that ADAPT-VQE can generate a
circuit capable of reproducing the FCI results in the current active
space. These simulations deliver a smooth, continuous potential
energy curve that tracks the FCI values strikingly well. The
deviations from the corresponding FCI energies are all found
below 1e-4 Hartree. This means that not only do these
simulations deliver results that are well below the conventional
chemical accuracy mark, but also more importantly in the current
context is that this error is inconsequential compared to the effect
of noise in case of deployment on actual quantum hardware.

It is remarkable that the results degrade little throughout the
energy scan, which attests to the aptness and flexibility of
ADAPT-VQE in determining an ansatz according to the
complexity of the underlying electronic structure. The ansatz
in the vicinity of the equilibrium bond length 0.5–1.0 Å is
comprised solely by pair excitations as would be expected
given a restricted HF reference, which means no determinant
obtained via one-body rotations can lower the energy below that
of HF. As we approach the Coulson-Fischer point (Coulson and
Fischer, 1949), single excitations start to become part of the
ansatz, which signals the inadequacy of a restricted reference
wave function and that inclusion of these operators enables the
ansatz to remain in the 1Σ+

g potential energy curve, which means
that this flexibility may come at the expense of deeper circuits.
Because one-qubit gates tend to be executed in a short timescale
and are fairly insensitive to noise, we can use the number of
CNOTs present in the circuit as indicative of the complexity in its
implementation, which we provide in Figure 6, showing that the
ansatzes generated from ADAPT-VQE are much more affordable
than those obtained by ordinary UCCSD VQE simulations.

Along these lines, once the operator composition of the ansatz
is defined, by virtue of introducing more parameters, we are likely

to experience a more arduous optimization of the corresponding
parameterized gates. This has a compound effect with the circuit
depth since more measurements are needed, each of which
requires the circuit to be implemented and measurements to
take place. Figure 7 gives a profile of the optimization
performance along the potential energy scan.

It should come as no surprise that the optimization is more
difficult in the regime of stronger correlation. This region also
demands a more complex ansatz, as the top plot in Figure 7
shows that only in this vicinity (1.5–3.5 Å) we observe ansatzes
with more than four operators. Interestingly, the number of
objective function calls does not show large deviations for
ansatzes with 1–3 operators, regardless of where they are
found in the potential energy curve, which is further
corroborated by the relatively small error bars in the
corresponding columns of the bottom plot. This observation
does not hold as more parameters/operators are introduced in
the ansatz in order to accommodate a more complex electronic
structure. Thus, with four parameters, not only are more calls to
the objective function needed, but also there is a more
pronounced standard deviation. Ansatzes with five or more
operators can only be found in the (1.5–3.5 Å), as we can see
that the calls to the objective function coming from them
dominate the overall number of optimization cycles. Due to
the scarce occurrence of these ansatzes in the current energy
scan, the corresponding statistical information that can be
derived from these instances is not as reliable. All in all, this
plot is valuable in lending additional insight into the resources
required to perform these simulations. It is important to mention

FIGURE 6 | CNOT gate count for ADAPT-VQE and ordinary VQE with
both singlet-adapted singles and doubles operators.

FIGURE 7 | Number of objective function calls as a function of the H-H
distance for the different ansatz compositions (top) and the average number
of objective function calls per ansatz size, with error bars representing one
standard deviation (bottom). The bar colors on the top plot represent
the ansatz sizes in the bottom plot.
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that, for every new ansatz, the variational parameters are
initialized at zero. Alternatively, the parameters corresponding
to the previously optimizer ansatzes could be initialized at their
optimal values and the new parameter would be introduced in the
ansatz, which would accelerate convergence. Moreover, the
convergence profile likely displays pronounced dependence on
the chosen optimizer, which is not pursued here.

CONCLUSION

In summary, we have developed a new approach for defining
virtual spaces with a pseudopotential plane-wave code for use in
many-body methods described by second-quantized
Hamiltonians. The method is based on optimizing the virtual
orbitals to minimize a small select CI Hamiltonian (i.e., COVOs)
that contains configurations containing filled RHF orbitals and
the one virtual orbital to be optimized. Subsequent virtual orbitals
are optimized in the same way, but with the added constraint of
being orthogonal to the previously calculated filled and virtual
orbitals. The method was applied to the simple, but nontrivial, H2

molecule. As summarized in Figure 8, these new types of virtual
orbitals were significantly better at capturing correlation in plane-

wave calculations than from virtual spaces from Hartree–Fock
and one-electron Hamiltonian, and moreover, we were able to
obtain good agreement with Gaussian cc-pVTZ basis set results

FIGURE 8 | Summary of various plane-wave andGaussian basis set RHF and FCI calculations for the 1Σ+
g ground state of H2 molecule. FCI calculations (not shown)

using up to 20 RHF virtual orbitals produced only a negligible amount of correlation energy (<1.0 e-4 Hartree, i.e., visually the same as RHF results). It should be noted that
for the two-electron H2 molecule CCSD gives the same answer as FCI.

FIGURE 9 | Potential energy curves in kcal/mol for the Be2 dimer using
plane-wave Hartree–Fock and FCI with 5 COVOs calculations.
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with just 4 virtual orbitals for the H2 molecule. Subsequent
calculations showed that the correlation energy converged
steadily as more virtual orbitals were included in the
calculation. With 18 virtual orbitals, the correlation energies
were found to be converged to less than 0.5 kcal/mol. The
robustness of the proposed basis sets is corroborated by its
ready applicability to quantum simulations, which in the case
of ADAPT-VQE show remarkable agreement with the classical,
exact diagonalization result (FCI) in the same basis set (4
COVOs).

Because this study is focused on how one might carry out plane-
wave CI calculations on near-term quantum computers in the next
few years, we have only shown results for theH2 dimer. However, we
are optimistic that these correlation optimized virtual orbitals open
up the door tomany-body calculations using pseudopotential plane-
wave calculations, including coupled cluster, Møller–Plesset, and
Green’s function theories as well as other FCI-approaching methods
for quantum computers. We hope in future studies to more
thoroughly test the effectiveness of the COVOs procedure on
larger and more complicated molecules and materials. To lend
credence to this assertion, we show the promising results for Be2
dimer with a small number of COVOs in Figure 9. Also as shown in
Figure 10, the shapes of the COVOs end up being similar to what is
found for the virtual orbitals from LCAO calculations. This suggests

that new classes of LCAO basis sets might be able to be generated
using a simple rotation of the filled orbitals and COVOs. Future
work will focus on using this approach on larger molecular and
periodic systems. With the validation granted by our quantum
simulations, further studies are called for, including the further
reduction of dimension by employing active-space DUCC
downfolded Hamiltonians, OVOS, and natural orbitals, as well as
work in conjunction with VQE methods.
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Quantum algorithms are touted as a way around some classically intractable problems

such as the simulation of quantum mechanics. At the end of all quantum algorithms

is a quantum measurement whereby classical data is extracted and utilized. In fact,

many of the modern hybrid-classical approaches are essentially quantummeasurements

of states with short quantum circuit descriptions. Here, we compare and examine

three methods of extracting the time-dependent one-particle probability density from a

quantum simulation: direct Z-measurement, Bayesian phase estimation, and harmonic

inversion. We have tested these methods in the context of the potential inversion

problem of time-dependent density functional theory. Our test results suggest that direct

measurement is the preferable method. We also highlight areas where the other two

methods may be useful and report on tests using Rigetti’s quantum virtual device. This

study provides a starting point for imminent applications of quantum computing.

Keywords: quantum measurement, TDDFT, Bayesian inference, harmonic inversion, potential inversion

1. INTRODUCTION

The real time simulation of quantum systems on a classical computer is a difficult problem even
for a supercomputer due to the fact that the Hilbert space grows exponentially with the system size
[1]. A universal quantum computer is believed to be the solution of the difficulty, where it is known
that a wide class of physical systems can be simulated efficiently on a quantum computer [1–6].
But running a practically meaningful quantum algorithm may require a large amount of qubits,
e.g., factoring 2,048 bit RSA integers may take up to 20 millions qubits [7], which is far beyond the
capacity of the current best 53-qubit quantum computer [8]. So the current quantum technology
works best when paired with classical algorithms. We have been studying the application of such
a hybrid algorithm in quantum chemistry. The primary example is the time-dependent density
functional theory (TDDFT) [9]. To utilize quantum technology in classical algorithms, quantum
measurement are necessary, here we measured the density operator on Rigetti’s quantum device
and then utilized the density to perform the potential inversion within the framework of TDDFT.

Density functional theory (DFT) is a powerful tool in modeling condensed matter systems [10].
In the framework of DFT, a non-interacting system with a self-consistently determined potential is
constructed to replace the interacting system. The additional potential term in the non-interacting
system is known as the Kohn-Sham potential. Such a system with non-interacting particles is
the Kohn-Sham(K-S) system. In the K-S system, the calculation of an exchange-correlation term
is required. However, the exact form of the exchange-correlation potential is not yet known.
This term is usually obtained with some approximation methods [11–14], machine learning
methods [15, 16]. In fact, the utilization of a quantum computer can help generate an accurate
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exchange-correlation potential. This idea is mentioned in the
article [17], where a hybrid method of generating exchange-
correlation potential for classical DFT calculation is proposed.

The time dependent counterpart of DFT, time-dependent
density functional theory (TDDFT) is widely used in finding
the dynamics of the system when a time-dependent potential is
present. Similar to DFT, TDDFT uses the time dependent K-S
systemwhere a time-dependent K-S potential is required.We call
the task of constructing such a K-S potential when given the time-
evolution of the on-site probability density, the K-S potential
inversion problem. In article [18], a scheme of solving the K-
S potential inversion problem utilizing a quantum computer
was proposed. We have recently returned to this proposal with
improved numerical methods for inverting the potential [19]. To
obtain the K-S potential, we need to get the density of the time
evolved many-particle system using a quantum computer.

In this paper, we will present three different methods of
measuring the density operator on a quantum computer and
compare the performance of the methods.

An outline for the remainder of the article is as follows: first,
we discuss the phase estimation approach to measurement. Then
we describe the circuit implementation for measuring the on-site
fermionic density. Qubit descriptions for the fermionic operator
are explained in the next part followed by the illustration of a two-
electron test. Finally, three schemes for extracting the density are
tested numerically and compared.

2. METHODS

2.1. Phase Estimation
Quantum phase estimation [20, 21] plays an important role in
the quantum algorithm zoo [22], it is a key sub module of many
quantum algorithms [23–25]. It is also an important procedure
to measure the on-site density operator in our work.

We’ll next describe the general picture of doing the
measurement of an arbitrary operator and how quantum
phase estimation plays a role in our work. To implement the
measurement of an arbitrary observable, we will consider the
circuit as shown in Figure 1. The circuit has two parts, the part
before the dashed line is for evolving the initial state at time t
under a fixed fermionic Hamiltonian of chemical interests.

The system of the most chemical interests is the interacting
electron system. The Hamiltonian of a many-body interacting
system is given by

H =
N∑

i



−∇2
i

2
+ Vext(ri)+

1

2

N∑

j

1

|ri − rj|



 (1)

where Vext(ri) is the external potential energy consists of the
interaction between the electrons and the external field.

The second quantized form of the above many-body
Hamiltonian is given by

H =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

hpqrsa
†
pa

†
qaras (2)

where the fermionic operators {ap, a†
p} satisfy a†

qap + apa
†
q =

δpq, apaq = −aqap and a†
pa

†
q = −a†

qa
†
p. Given the basis set

{χp(r)}, the coefficients hpq, hpqrs are given by

hpq =
∫

drχ⋆p (r)

(
−1

2
∇2 + Vext(r)

)
χq(r) (3)

hpqrs =
∫

dr1dr2
χ⋆p (r1)χ

⋆
q (r2)χr(r2)χs(r1)

|r2 − r1|
(4)

The latter half is a phase estimation circuit where UO(τ ) = e−iOτ

where O is the observable to be measured.
For a general state |ψ〉, we can expand it in the eigenspace of

the operatorO. To be precise, for a general state |ψ〉 =
∑

k ck |k〉,
where Ok and |k〉 are the eigenvalue and eigenvector of the
operator O. Thus, the probability of measuring zero on the top
register is given by

P(0|τ , t) = 1

2
+ 1

4
[〈ψ(t, τ )|ψ(t)〉 + 〈ψ(t)|ψ(t, τ )〉]

=
∑

k

|ck(t)|2 cos2
(
Okτ

2

)

= 1

2
+ 1

4

∑

k

|ck(t)|2
(
eiOkτ + e−iOkτ

)
(5)

where ck(t) = 〈k|U(t)|ψ〉.
In this article, we only consider O = nj = a†

j aj in order to

measure the local on-site density at site j. This is because the
inverse potential is determined by the on-site density and its first
and second order derivatives [18, 19].

The eigenvalues of nj = a†
j aj are 0 and 1, so the wave

function after the unitary evolution U(t) is given by |ψ(t)〉 =
c0(t) |ψnj=0〉 + c1(t) |ψnj=1〉. Thus, the expectation value of the
density is given by,

〈nj(t)〉 = 〈ψ(t)|a†
j aj|ψ(t)〉 = |c1(t)|2 (6)

2.2. Qubit Encoding
To implement the evolution and phase estimation algorithm
on a quantum computer, we need to encode the Hamiltonian
into qubits. A standard way is to use Jordan-Wigner (JW)
transformation, which encodes a fermionic system of M orbitals
intoM qubits.

ap =
1

2

(
Xp + iYp

)
Z1Z2 . . .Zp−1 (7)

a†
p =

1

2

(
Xp − iYp

)
Z1Z2 . . .Zp−1 (8)

With the above transformation, the fermionic Hamiltonian can
be encoded into qubit representation. Thus the Hamiltonian can
be written as H =

∑
i hi, where all the hi’s are tensor product of

Pauli operators.
There is not an easy way to construct arbitrary unitary

operators on a quantum computer [26]. A pragmatic way
to simulate the propagator U(t) = e−iHt is applying the
Trotter decomposition.
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FIGURE 1 | The circuit for measuring the density matrix. The half before the dashed line is used for evolving the state to time t, the half after is used for doing the

measurement of an observable at time t via phase estimation.

U(t) = e−iHt ≈
(
e−ih1t/Ne−ih2t/N . . . e−ihnt/N

)N
(9)

Each individual term in the decomposition above can be
simulated efficiently on a quantum computer [27].

3. RESULTS AND DISCUSSION

We tested our methods on two different Hamiltonians, one is
the 4-orbital HeH+ model, the other is the 8-orbital HeH+. For
the 4-orbital model, the basis set used to examine the HeH+

molecule is that given in [28] which results in four spin orbitals.
The interatomic distance is 1.401 Bohr. The basis functions
are orthogonalized and then transformed such that the one-
body Coulomb matrix is diagonal. This transformation was
chosen so that a corresponding scalar time-dependent Kohn-
Sham potential could be calculated using for this system using
the method of [19].

For the larger case, we used HeH+ at the same geometry but
in the 6-31G basis set [29]. This resulted in twice the number of
basis functions as the minimal example. The integrals in the 6–31
basis were computed using Pis4 [30].

The basis functions are orthogonalized and then transformed
such that the one-body Coulomb matrix is diagonal. This
transformation was chosen so that a corresponding time-
dependent Kohn-Sham potential could be calculated using for
this system using the method of [19]. In both models, the initial
state at t = 0 places two electrons in the first two modes of
opposite spin. This state is obtained by employing two X-gates
to prepare |ψ(0)〉 = |1100〉 in the 4-orbital model and |ψ(0)〉 =
|11000000〉 in the 8-orbital model.

Using Rigetti’s quantum virtual machine [31], we then evolve
the system under its Hamiltonian for times less than three
atomic units. The propagation is implemented via the first-order
Trotterization with Trotter step equal to three. To reduce the
Trotter error in evolution, either a shorter Trotter step or a
higher order Trotter approximation must be used [32]. This
means more quantum gates are needed, making it harder to be
implemented on a near term device. Additional sources of error
are associated with finite sampling from the binomial distribution
and the error associated with the inference steps. To make the
virtual machine slightly closer to a real quantum computer, in all

methods below, measurement noise was added into the system,
giving 1% probability of flipping the qubit. It should be noted that
the quantum noise found on the actual device was much higher,
so we will not present the results from the actual quantum device.

In Figures 2A,C,D,F, we used 3,000 quantum measurement
samples per time-point. For harmonic inversion, a total of
120,000 quantum measurements occur for extracting the density
at each time point. This is because there were 40 equally
spaced τ -points and 3,000 quantum measurements were used
per fixed τ . A comparison between the measuring results, the
exact solution of the original Hamiltonian and the exact solution
of the Trotterized Hamiltonian are compared in Figure 2.
In each subfigure, the dark green dots are the result from
measurement result, the red dashed line is the solution of the
Trotterized Hamiltonian, the black solid line is the solution of
the original Hamiltonian.

3.1. Method 1: Z-Basis Measurement
In the first method, we rely on the fact that the Jordan-
Wigner transformation of the on-site density operator has a

simple form a†
pap = (1 − Zp)/2. Thus, we can directly

measure the local density operator by measuring Zp without
passing in the phase estimation circuit after the dotted line
in Figure 1.

For an arbitrary wave function |ψ(t)〉 = c0(t) |ψnp=0〉 +
c1(t) |ψnp=1〉, where ψnp denotes the state projected into the
subspace where the p-th qubit is in state np. Given the fact
that 〈Zp(t)〉 = |c0(t)|2 − |c1(t)|2 and |c0(t)|2 + |c1(t)|2 =
1, both amplitudes |c0(t)|2 and |c1(t)|2 can be obtained from
the measurement.

By repeating the measurement at each time step in the time
range 0 ≤ t ≤ 3, we obtain the expectation value of the density.
The results based on 15 equally spaced time-points with 3,000
measurements at each fixed time are shown in Figures 2A,D.
The exact time evolution of the density is also shown in the
figure for comparison along with error bars of 2σ reflective of
the N = 3, 000 sample variance of the binomial distribution.

The simplicity of this measurement approach reduces the
classical runtime to the lowest of the three methods compared,
and the convergence of the error bars is faster than the Bayesian
measurement discussed later.
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FIGURE 2 | The expectation value of a†1a1 is measured via (A,D) direct Z-basis measurement, (B,E) harmonic inversion, and (C,F) Bayesian inference. The upper

panel are the results of 4-orbital model, the lower panel are the results of the 8-orbital model. All of the data points are plotted against the exact Trotter solution

depicted in as a continuous line. In (C,F), the first point shows a large deviation from the Trotter solution typical of the behavior of Bayesian inference whenever the

exact density’s value is close to one. Error bars shown in (A,C,D,F) are two standard deviations about the mean. The harmonic inversion does not have error bars

because the error comes from two sources: from the sampling error at different time τ and from the reconstruction of the density using harmonic inversion.

3.2. Method 2: Harmonic Inversion
Harmonic inversion is a technique of extracting the amplitudes
Aj, frequencies fj, phases φj, and exponential decay constants αj
out of a signal,

f (τ ) =
∑

j

Aje
−i(2π fjτ−φj)−αjτ (10)

which is evenly sampled [33, 34]. The signal reconstructed
from harmonic inversion has the same form as the probability
P(0|τ ) except for the decaying term which is negligible when
the decoherence is not considered. By comparing the form of
the reconstructed signal with the probability, we can obtain the
density from the reconstructed signal.

The results of density measurement through harmonic
inversion are shown in Figures 2B,E. Each point in Figures 2B,E

was computed through harmonic inversion using the HarmInv

package [35]. Because the local density operator a†
pap only has

eigenvalues zero and one, the measurement outcome has a
simple form

P(0|τ , t) = A0(t)+ A1(t)
(
e−i2π f τ + ei2π f τ

)
(11)

where A0(t) = 1
2 (2− |c1(t)|2), A1(t) = |c1(t)|2/4, and f = 1/2π .

3.3. Method 3: Bayesian Inference
Bayesian inference can be used to estimate the density as well.
As a powerful tool of making inferences, Bayesian inference has

wide applications. We applied Bayesian inference to infer the
unknown parameters in a quantum system which, in our case,
is the on-site density. The density estimation was implemented
via sequential Monte Carlo (SMC) [36]. This method requires
the most communication between the classical and quantum
processors since the SMC suggests each τ -point based on the
previous outcomes. The Bayesian experimental design is based on
the implementation found in the QInfer package [37]. Bayesian
inference gives the probability distribution of a parameter over
the parameter space. The final decision is made according to the
posterior probability P(θ |d1, d2 . . . dN), where θ is the parameter
we want to estimate, di’s are the outcome of each measurement.
In the present application, θ ≡ 〈nj(t)〉.

Recall the Bayesian rule, the posterior probability is updated
by carrying out experiments sequentially,

P(θ |d1, d2, . . . dN) ∝
N∏

i=1

P(di|θ)P(θ) (12)

where P(θ) is the prior probability, P(di|θ) is the
likelihood function.

The likelihood function contains the information about the
parameters before conducting any experiments. Since we know
nothing before the experiment, we can initialize the prior with
a uniform distribution over the parameter space. For the phase
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estimation circuit of Figure 1, the likelihood function is given by

P(d| 〈nj(t)〉 ; τ ) =
1

2
+ (−1)d

4
〈ψ(t)|{UO(τ )+ U†

O(τ )}|ψ(t)〉
(13)

where UO(τ ) = exp(−iτa†
j aj) and d = 0 or 1. Note, when d = 0

we recover Equation (5).
With this we can rewrite the likelihood function as

P(d| 〈nj(t)〉 ; τ ) = δd,0 +
(−1)d

2
(cos τ − 1) 〈nj(t)〉 (14)

This can be compared with Equation (5) in the case that d = 0.
The results of Bayesian inference are shown in Figures 2C,F.

Bayesian inference has good performance within a wide range of
the time domain except at the boundary of the estimate domain
e.g., when the density is one or zero. This is based on numerical
evidence since the majority of the points at or near the boundary
of the estimation domain needed to be discarded when cleaning
the data as discussed below.

Unlike harmonic inversion, τ in the phase estimation circuit is
not required to be evenly spaced. Another advantage of Bayesian
inference is that we do not need to know the exact form of the
function to be estimated a priori. Bayesian inference could also
be applied to estimate more general parameters.

3.3.1. Comparison

To quantify the accuracy of these density extraction methods, we
employ the L1 norm to measure the deviation from the Trotter
solution. For discrete data points, the deviation is given by the
loss function on the density at the first site: L =

∑N
k |ñ1(tk) −

n1(tk))|/N, where ñ1(tk) is the outcome of the measurement at
time tk, n1(tk) is the solution of the Trotterized Hamiltonian.

Figure 3 shows how the loss function scales with the number
of trials for each of the three approaches. The convergence rate
for determining the bias of a coin would be 0.5 but here additional
measurement error has been introduced into the model which
prevents L = 0 situation even with an infinite number of
samples. Further, in our implementation, the Bayesian and
harmonic inversion techniques sometimes reported anomalously
poor estimates of the density at a given time. A single fluctuation
of this type along the time trace of the density entirely dominates
the loss function. For the sake of comparison, we did not include
the data points that are 5σ away from the exact solution in all
three methods. This led to more stable results when the number
of trials is small. Another benefit of filtering the data is that for the
Bayesian inference, estimates close to the boundary of the domain
are subject to large fluctuations giving poor estimates. So we can
exclude the wrong data points by setting a 5σ window. Although
the discarding procedure is ad hoc and requires knowing the
exact answer, we have tested our data at various levels of cutoff
finding that at any fixed cutoff harmonic inversion had the most
points discarded and consistently displayed marginally faster
convergence rates.

Figure 3A shows the scaling of loss function of the 4-orbital
model. The slope of the fitting lines are −0.4961, −0.3747, and

−0.4103, respectively. Points 5σ away from the exact density
under the Trotter approximation are not used for calculating the
loss function. This resulted in 73.87, 87.26, and 90.07% of points
used in the plotted data, respectively.

Figure 3B shows the scaling of loss function of the 8-orbital
model. The slope of the fitting lines are −0.4346, −0.4595, and
−0.4184, respectively. Points 5σ away from the exact density
under the Trotter approximation are not used for calculating the
loss function. This resulted in 80.53, 84.40, and 93.20% of points
used in the plotted data, respectively.

Harmonic inversion measures 40 times more than the other
two methods, so the actual data and fitting line should be shifted
to the right by 40 times the number of measurements showing in
the figure.

Regardless of the possible improvement in convergence, it
should be reminded that the harmonic inversion technique uses
many quantum computer queries to estimate P(0|τ , t) at variable
τ before inferring the density at a fixed time t. In comparing
the three methods, all require time evolution of the system wave
function to time t. In the harmonic inversion and Bayesian
estimation techniques, additional gates are needed for the τ
propagation under the observable for density. The difference
between queries in harmonic inversion and Bayesian inference
is the selection of the τ parameter in UO(τ ).

While the convergence rates are all approximately the same, it
is clear that the Z-basis measurement has the best performance in
terms of the number of queries of the quantum computer. In the
case considered here, the direct Z measurements are convenient
for the Jordan-Wigner encoding. In other circumstances with
different fermion-to-spin transforms, the direct measurement
technique may not be as fruitful. For existing and near-term
quantum devices, the constraints of low circuit depth suggests
direct measurement of the Z operators as the best path forward
when using a Jordan-Winger transformed qubit Hamiltonian.

The runtime of these three methods also varies. Since direct Z-
measurements are the simplest from an inference point of view,
the classical computation time is also the least. Bayesian inference
requires many steps for the sequential Monte Carlo to converge
[36]. Consequently, this method used the longest amount of
classical computational time. Although harmonic inversion uses
40 times more measurement per time-point, it is interesting
to note that it only took an intermediate amount of classical
processing time.

4. CONCLUSIONS

We have tested three different methods of measuring the on-site
density operator for a toy model inspired by TDDFT. We were
able to conclude that direct Z measurements obtains the best
estimates of the on-site density for a given number of quantum
computer queries. This is based on the use of the Jordan-Wigner
transform and simulatedmeasurement noise. Of course, we could
have considered other fermion-to-spin transforms which lead to

different encodings of the a†
i ai.

For improving our noise models, we can do no better than
testing our circuits on current and future quantum devices. We
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FIGURE 3 | Loss function vs. number of measurements of the quantum computer (trials) in both 4-orbital model and 8-orbital model. Red diamonds, black triangles,

and blue circles are drawn from harmonic inversion, Bayesian inference and Z-basis measurement respectively. (A) 2 Electron 4 orbital case. (B) 2 Electron 8 orbital

case.

tested our circuits on Rigetti’s quantum device but found that
the loss function depends heavily on which qubits are used
as well as the permutation of qubit labels within the circuit.
Time evolution under the full Hamiltonian did not return
any signal even when using only one first-order Trotter step.
We therefore resorted to using a truncated Hamiltonian which
included the one-body Hamiltonian and only the Coulomb-like
(hijji) terms of the two-body Hamiltonian. After encoding and
exponentiation, this Hamiltonian results in 66 universal gates
and compiled non-deterministically using the PyQuil package
PyQuil to approximately 200 allowable gates on the Rigetti
device. Due to decoherence, only a weak signal was present
where amplitudes recovered were between three and twenty
percent of the exact solution. The recovered amplitude depended
mostly on qubit selection but also changed run-to-run. The
frequency and sinusoidal shape of the signal was recovered
more reliably. In our present study, the eigenenergies were not
interesting but we suspect that problems that depend on the
frequencies may be more successfully calculated on the current
Rigetti device.

We plan to continue our inquiry into the TDDFT potential
inversion problem using existing and forthcoming quantum
technology. Tasks that avoid QMA-hard [38] state preparation

problems will continue to be of interest to those looking for new
applied areas of quantum computation.
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Restricted BoltzmannMachine (RBM) is an energy-based, undirected graphical model. It is
commonly used for unsupervised and supervised machine learning. Typically, RBM is
trained using contrastive divergence (CD). However, training with CD is slow and does not
estimate the exact gradient of the log-likelihood cost function. In this work, the model
expectation of gradient learning for RBM has been calculated using a quantum annealer
(D-Wave 2000Q), where obtaining samples is faster than Markov chain Monte Carlo
(MCMC) used in CD. Training and classification results of RBM trained using quantum
annealing are compared with the CD-based method. The performance of the two
approaches is compared with respect to the classification accuracies, image
reconstruction, and log-likelihood results. The classification accuracy results indicate
comparable performances of the two methods. Image reconstruction and log-
likelihood results show improved performance of the CD-based method. It is shown
that the samples obtained from quantum annealer can be used to train an RBM on a 64-bit
“bars and stripes” dataset with classification performance similar to an RBM trained with
CD. Though training based on CD showed improved learning performance, training using a
quantum annealer could be useful as it eliminates computationally expensive MCMC steps
of CD.

Keywords: bars and stripes, quantum annealing, classification, image reconstruction, log-likelihood, machine
learning, D-wave, RBM (restricted Boltzmann machine)

1 INTRODUCTION

Quantum computing holds promise for a revolution in the field of science, engineering, and industry.
Most of the R&D work related to quantum computing is focused on gate based approach [1–3], an
alternative to this is the adiabatic quantum computing (AQC) [4–7]. In AQC, a system of qubits
starts with a simple Hamiltonian whose ground state is known. Gradually, the initial Hamiltonian
evolves into a final Hamiltonian. The final Hamiltonian is designed in such a way that its ground state
corresponds to the solution to the problem of interest. According to the quantum adiabatic theorem,
a quantum system that begins in the non-degenerate ground state of a time-dependent Hamiltonian
will remain in the instantaneous ground state provided the Hamiltonian changes sufficiently slowly
[8–11]. It has been shown theoretically that an AQCmachine can give solutions that are very difficult
to find using classical methods [12].
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D-Wave’s quantum annealer has been investigated by several
researchers for machine learning and optimization problems.
Mott et al. [13] used D-Wave to classify Higgs-boson-decay
signals vs. background. They showed that the quantum
annealing-based classifiers perform comparably to the state-of-
the-art machine learning methods. Das et al. has used a D-Wave
for clustering applications [14]. Mniszewski et al. [15] found that
the results for graph partitioning using D-Wave systems are
comparable to commonly used methods. Alexandrov et al.
[16] used a D-Wave for matrix factorization. Lidar et al. [17]
used a D-Wave for the classification of DNA sequences according
to their binding affinities. Kais et al. have used D-Wave’s
quantum annealer for prime factorization and electronic
structure calculation of molecular systems [18, 19].

RBM is a widely used machine learning technique for
unsupervised and supervised tasks. However, its training is
time consuming due to the calculation of model-dependent
term in gradient learning. RBMs are usually trained using a
method known as Contrastive Divergence (CD). CD uses
Markov chain Monte Carlo (MCMC) which requires a long
equilibration time. Further, the CD does not follow the gradient
of the log-likelihood [20] and is not guaranteed to give correct
results. Therefore, better sampling methods can have a positive
impact on RBM learning. Among other works related to the
topic, Adachi et al. [21] used quantum annealing for training
RBMs, which were further used as layers of a two-layered deep
neural network and post-trained by the back-propagation
algorithm. The authors conclude that the hybrid approach
results in faster training, although the relative effectiveness of
RBM trained using a quantum-annealer vs. contrastive
divergence has not been documented. Benedetti et al. [22]
used a D-Wave quantum annealer to train an RBM on a 16-
bit bars and stripes dataset. To train the RBM effectively an
instance dependent temperature was calculated during each
iteration. Caldeira et al. [23] used a QA-trained RBM for
galaxy morphology image classification. Principal component
analysis was used to compress the original dataset. They also
explored the use of temperature estimation and examined the
effect of noise by comparing the results from an older machine
and a newer lower-noise version. Sleeman et al. [24] investigated
a hybrid system that combined a classical deep neural network
autoencoder with a QA-based RBM. Two datasets, the MNIST
and the MNIST Fashion datasets, were used in this study. Image
classification and image reconstruction were investigated. Winci
et al. [25] developed a quantum-classical hybrid algorithm for a
variational autoencoder (VAE). A D-Wave quantum annealer
was used as a Boltzmann sampler for training the VAE. Dymtro
et al. [26] performed a benchmarking study, to show that for
harder problems Boltzmann machines trained using quantum
annealing gives better gradients as compared to CD. Lorenzo
et al. [27] used RBM trained with reverse annealing to carry out
semantic learning that achieved good scores on reconstruction
tasks. Koshka et al. [28] showed D-Wave quantum annealing
performed better than classical simulated annealing for RBM
training when the number of local valleys on the energy
landscape was large. Dumoulin et al. [29] assessed the effect
of various parameters like limited connectivity, and noise in

weights and biases of RBM on its performance. Koshka et al.
explored the energy landscape of an RBM embedded onto a
D-Wave machine, which was trained with CD [30–33]. Dixit
et al. [34] used a QA-trained RBM to balance the ISCX
cybersecurity dataset, and training an intrusion detection
classifier. There has been growing interest in quantum
machine learning including Boltzmann machines [35–38],
however, training quantum machine learning models on a
moderate or large dataset is challenging. An RBM with 64
visible and 64 hidden units can be trained using a quantum
annealer which is very difficult to do using existing gate based
approaches.

In this work, our objective is to train an RBM using quantum
annealing (QA) via samples obtained from the D-Wave 2000Q
quantum annealer and compare its performance with an RBM
trained with CD. The model-dependent term in the gradient of
log-likelihood has been estimated by using samples drawn from a
quantum annealer. Trained models are compared with respect to
classification accuracy, image reconstruction, and log-likelihood
values. To carry out this study, the bars and stripes (BAS) dataset
has been used.

2 METHODS

2.1 Restricted Boltzmann Machine
A Restricted Boltzmann Machine is an energy-based model,
inspired by the Boltzmann distribution of energies for the
Ising model of spins. An RBM models the underlying
probability distribution of a dataset and can be used for
machine learning applications. However, an efficient method
of RBM training is still not discovered. An RBM is comprised
of two layers of binary variables known as visible and hidden
layers. The variables or units in the visible and hidden layers are
denoted as {v1, v2, . . . ., vn} and {h1, h2, . . . ., hm}, respectively. The
variables in one layer interact with the variables in the other layer,
however, interactions between the variables in the same layer are
not permitted. The energy of the model is given by:

E � −∑
i

bivi −∑
j

cjhj −∑
i,j

viwijhj, (1)

where bi and cj are bias terms; wij represents the strength of the
interaction between variables vi and hj. Let us represent the
variables in the visible layer collectively by a vector: v ∈ {0, 1}n,
similarly for the hidden layer: h ∈ {0, 1}m. Using this
representation Eq. 1 can be written as:

E(v, h) � −bTv − cTh − hTWv, (2)

where b and c are bias vectors at the visible and hidden layer,
respectively;W is a weight matrix composed of wij elements. The
probability that the model assigns to the configuration {v, h} is:

P(v, h) � 1
Z
e−E(v,h), Z � ∑

v

∑
h

e−E(v,h), (3)

where Z is the partition function. Substituting value of E(v, h),
from Eq. 2, we get:
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Z � ∑
v

∑
h

eb
T v+cTh+hT ·W·v � ∑

h

ec
Th∑

v

eb
Tv+hT ·W·v (4)

Z � ∑
h

ec
Th∑

v

e(bT+hT ·W)v � ∑
h

ec
Th∑

v

es·v, (5)

where s is:

s � bT + hTW � [s1, s2, . . . , sn]; (6)

n is the number of variables in the visible layer. Now, Z can be
written as:

Z � ∑
h

ec
Th ∏n

j�1
(1 + esj ) (7)

From Eq. 7, we notice that the calculation of Z involves
summation over 2m configuration, where m is the number of
variables in the hidden layer. On the contrary, we need 2m+n
configurations to evaluate Z using Eq. 3.

2.2 Maximization of the Log-likelihood Cost
Function
The partition function, Z, is hard to evaluate. The joint
probability, P(v, h), being a function of Z is also hard. Due to
the bipartite graph structure of the RBM, the conditional
distributions P(h|v) and P(v|h) are simple to compute,

P(h|v) � P(v, h)
P(v) (8)

where P(v) is given by the following expression:

P(v) � ∑he
−E(v,h)

Z
. (9)

Substituting values from Eq. 3 and Eq. 9 into Eq. 8 gives:

P(h|v) �
exp{∑jcjhj +∑j(vTW)jhj}

Z′ , (10)

where

Z′ � ∑
h

exp(cTh + hTWv). (11)

P(h|v) � 1
Z′ ∏

j

exp{cjhj + (vTW)jhj} (12)

Let’s denote

~P(hj∣∣∣∣v) � exp{cjhj + (vTW)jhj} (13)

Now, the probability to find an individual variable in the hidden
layer hj � 1 is:

P(hj � 1
∣∣∣∣v) � ~P(hj � 1

∣∣∣∣v)
~P(hj � 0

∣∣∣∣v) + ~P(hj � 1
∣∣∣∣v) �

exp{cj + (vTW)j}
1 + exp{cj + (vTW)j}

(14)

Thus, the individual hidden activation probability is given by:

P(hj � 1
∣∣∣∣v) � σ(cj + (vTW)j), (15)

Where σ is the logistic function. Similarly, the activation
probability of a visible variable conditioned on a hidden vector
h is given by:

P(vi � 1|h) � σ(bi + (hTW)i). (16)

An RBM is trained by maximizing the likelihood of the training
data. The log-likelihood is given by:

l(W, b, c) � ∑N
t�1

logP(v(t)) � ∑N
t�1

log∑
h

P(v(t), h) (17)

l(W, b, c) � ∑N
t�1

log∑
h

e−E(v(t) ,h) − N · log∑
v,h

e−E(v,h). (18)

Where v(t) is a sample from the training dataset. Denote
θ � {W, b, c}. The gradient of the log-likelihood is given by:

∇θl(θ) � ∑N
t�1

∑he
−E(v(t) ,h)∇θ( − E(v(t), h))∑he

−E(v(t) ,h) − N

· ∑v,he
−E(v,h)∇θ(−E(v, h))∑v,he−E(v,h)

(19)

∇θl(θ) � ∑N
t�1

〈∇θ( − E(v(t), h))〉P(h|v(t)) − N

· 〈∇θ(−E(v, h))〉P(v,h), (20)

Where 〈 · 〉P(v,h) is the expectation value with respect to the
distribution P(v, h). The gradient with respect to θ can also be
expressed in terms of its components:

∇wl � 1
N

∑N
t�1

〈v(t) · h(t)〉P(h|v(t)) − 〈v · h〉P(v,h) (21)

∇bl � 1
N

∑N
t�1

〈v(t)〉P(h|v(t)) − 〈v〉P(v,h) (22)

∇cl � 1
N

∑N
t�1

〈h(t)〉P(h|v(t)) − 〈h〉P(v,h) (23)

The first term in Eq. 20 is the expectation value of ∇θ(−E(v(t), h))
with respect to the Boltzmann distribution, v(t) is a row vector
from the training dataset withN records, and h is a hidden vector.
Given v(t), h can be calculated via Eq. 15.

The second term in Eq. 20 is a model-dependent term, the
expectation value of ∇θ(−E(v, h)), v and h can be any possible
binary vectors. This term is difficult to evaluate as it requires all
possible combinations of v and h. Generally, this term is
estimated using contrastive divergence, where one uses many
cycles of Gibbs sampling to transform the training data into data
drawn from the proposed distribution. We used Eq. 15 and Eq.
16 to sample from hidden and visible layers repeatedly. Once we
have the gradient of log-likelihood (Eq. 18), weights and biases
can be estimated using gradient ascent optimization:

θnewj � θoldj + ϵ · ∇θj l(θj) (24)
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where ϵ is the learning rate.
Alternatively, the second term can be calculated using samples

drawn from the D-Wave quantum annealer, which is a faster
procedure than MCMC.

2.3 D-Wave Hamiltonian and Arrangement
of Qubits
The Hamiltonian for a D-Wave system of qubits can be
represented as:

hIsing � −A(s)
2

⎛⎝∑
i

σ̂ ix⎞⎠ + B(s)
2

⎛⎜⎜⎜⎝∑
i

hiσ̂
i
z + ∑

(i> j)
Jijσ̂

i
z σ̂

j
z
⎞⎟⎟⎟⎠ (25)

where σ̂(i)x,z are Pauli matrices operating on ith qubit. hi and Jij are
the qubit biases and coupling strengths. s is called the anneal
fraction. A(s) and B(s) are known as anneal functions. At s � 0,
A(s)≫B(s), while A(s)≪B(s) for s � 1. As we increase s from 0
to 1, anneal functions change gradually to meet these boundary
conditions. In the standard quantum annealing (QA) protocol, s
changes from 0 to 1. The network of qubits starts in a global
superposition over all possible classical states and after s � 1, the
system is measured in a single classical state.

The arrangement of qubits on the D-Wave 2000Q quantum
annealer forms a C16 Chimera graph with 16 × 16 unit cells (2048
qubits are mapped into 16 × 16 matrices of unit cells; each unit
cell has eight qubits). Figure 1A shows a C3 Chimera graph with
3 × 3 unit cells. Within each unit cell, there are two sets of four
qubits that are connected in a bipartite fashion. As shown in the
figure, each qubit in a unit cell is connected to four qubits of the
same unit cell and two qubits of other unit cells. Thus, each qubit
can be connected to a maximum of six qubits. This connectivity
can be enhanced by forming strong ferromagnetic couplings
between the qubits, which forces coupled qubits to stay in the
same state.

2.4 Restricted Boltzmann Machine
Embedding Onto the D-Wave QPU
Mapping an AQC algorithm on specific hardware is nontrivial
and requires creative mapping. Several algorithms can be used

to map a graph to the physical qubits on an adiabatic quantum
computer [39, 40]. However, it is nontrivial to find a simple
embedding when the graph size is large. Taking into
consideration the arrangement of qubits on the 2000Q
processor, we found a simple embedding that utilizes most
of the working qubits. In the present study, we investigated
RBMs in two configurations, one with 64 visible units and 64
hidden units, another with 64 visible units and 20 hidden units.
Here, we will discuss the embedding of the RBM with 64 units
in both layers. Each unit of the RBM is connected to 64 other
units, but in the D-Wave each qubit only connects to six other
qubits. To enhance the connectivity, qubits can be coupled
together or cloned by setting Ji,j � −1. This forces the two
qubits to stay in the same state. In our embedding, one unit of
RBM is formed by connecting 16 qubits. The D-Wave
processor has qubits arranged in 16 × 16 matrices of unit
cells. Each unit cell has two sets of four qubits arranged in
a bipartite fashion. Each qubit in the left column of the unit cell
can be connected to one qubit of the unit cell just above it and
one just below it. There are 16 unit cells along one side, so a
chain of 16 qubits can be formed. This chain forms one visible
unit of the RBM. Figure 1B shows the procedure to couple
three qubits to form a chain that represents a visible unit. The
qubits that are connected together to form a vertical chain
forming a visible unit are shown in red. Since there are four
qubits in the left column of the unit cell, four chains can be
formed resulting in four visible units of RBM. The four qubits
that form the right column of the unit cell can be connected to
form horizontal chains as shown in Figure 1B. These
horizontal chains form the hidden units. There are 16 unit
cells along the horizontal direction in a C16 Chimera graph,
therefore each horizontal chain is also composed of 16 qubits.
Utilizing the arrangement of qubits of the D-Wave QPU, 64
vertical and 64 horizontal chains can be formed representing
the 64 visible and 64 hidden units of RBM. Figure 1C shows
the scheme that we used to connect one visible unit (V1) to the
hidden units. In this fashion, one can embed an RBM with 64
visible and 64 hidden units on a C16 Chimera graph. Of course,
care must be taken for any inaccessible qubits to form a further
restricted RBM. In our experiments, we found that the absence
of a few qubits does not affect the performance of the resulting
network.

FIGURE 1 | (A) C3 Chimera graph of qubits. (B) Three vertical (red) and horizontal (blue) qubits are chained to form a visible and a hidden unit. (C) Connectivity of a
visible unit (V1) with 12 hidden units (H1 to H12). Here, each unit is formed by ferromagnetic couplings between three qubits.
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2.5 Classification and Image
Reconstruction
Each record of the bars and stripes dataset is made up of 64 bits.
The last two bits are for labeling the pattern: 01 for a bar and 10
for a stripes pattern–Figure 2A. If the last two bits are 00 or 11,
the prediction by RBM is incorrect. Once we obtained the weights
and biases of the RBM from the training step, RBM can be used
for classification or image reconstruction. To predict the class of a
test record we apply its first 62 bits at the visible layer Figure 2B.
We randomly input either zero or one for the last two classifying
bits (L1 and L2). We then run 50 Gibbs cycles, keeping the 62
visible units clamped at the values of the test record. At the end of
50 Gibbs cycles label units, 63 and 64 are read. L1 � 0 and L2 � 1
indicates a bar pattern, while L1 � 1 and L2 � 0 suggests a stripe
pattern. For the problem of image reconstruction, the goal is to
predict the missing part of an image. A similar procedure can be
applied for image reconstruction where a trained RBM is used to
predict the values of the missing units. In this case, we clamp the
visible units where values are given, and run 50 Gibbs cycles, at
the end, we sample from the units where values have to be
predicted.

3 RESULTS AND DISCUSSION

In the present work, we have used the bars and stripes (BAS)
dataset. An example of a bar and a stripe pattern is shown in
Figure 2A. BAS is a popular dataset for RBM training, it has been
used by several researchers [22, 41–43]. This is a binary dataset
consisting of records of 64 bits in length, with the last 2 bits
representing the label of the record: 01 for a bar and 10 for a stripe
pattern. Our dataset is comprised of 512 unique records. The
number of unique samples used for training is 400, with the
remaining 112 samples were held for testing. Classification of bars
and stripes, image reconstruction, and the log-likelihood values
are used to compare the performances of trained RBMs.

3.1 Restricted Boltzmann Machine Training
Equation 20 has been used to train the RBMs. The first term in
this equation is a data-dependent term which can be exactly
calculated using the conditional probabilities P(h|v) and P(v|h)
given by Eq. 15 and Eq. 16. The second term is a model-
dependent, which requires expectation value over all possible

hidden h and visible v vectors, which is clearly intractable.
Typically, the model-dependent term is approximately
estimated using a method known as contrastive divergence
(CD). In this approach, samples needed to calculate the
model-dependent term are obtained by running the Gibbs
chain starting from a sample from the training data
(Figure 3). If n Gibbs steps are performed, the method is
known as CD-n. It is shown by Hinton that n � 1 could be
sufficient for convergence (CD-1) [20]. In CD-1, first, a data
sample is applied at the visible layer, then Eq. 15 is used to
generate a corresponding hidden vector at the hidden layer. Now,
this hidden vector is used to generate a new visible vector using
Eq. 16, which is in turn used to generate a new hidden vector.
These new visible and hidden vectors are used to calculate the
model-dependent term. This process is repeated for each record
in the dataset. A detailed description of RBM training using CD is
given in a review article by Hinton [44]. The model-dependent
term can also be calculated using samples (v and h) obtained from
an RBM mapped on the D-Wave. From Eq. 19 we notice that in
the second term the expectation value should be calculated with
respect to e−E(v,h) distribution, while samples from the D-Wave
follow a distribution of e−

E(v,h)
kT . It should be noted as the RBM

training starts, the weights and biases are random, and samples
from the D-Wave are not expected to have a Boltzmann
distribution, however, as the training progresses the
underlying probability distribution moves toward the
Boltzmann distribution. Following the approach used by
Adachi et al. [21], we used a hyperparameter, S, such that for
the model-dependent term, we sample from e

−E(v,h)
SkT distribution.

Here, S is a hyperparameter, which is determined by the
calculation of the classification accuracy for various values of
S. The optimal condition corresponds to the case when SkT � 1.
A different approach was taken by Benedetti et al. [22]. They
calculated effective temperature during each epoch. Their
approach is difficult to apply in the present case of 64 bits
record length BAS dataset. The BAS dataset that they used
was comprised of just 16-bit records. A complex dataset leads
to a complicated distribution, which makes training with a
dynamical effective temperature difficult.

In order to train an RBM using D-Wave, model parameters
(wij, bi and cj) were initialized with random values, the first term
of Eq. 20 was calculated exactly using these weights and biases,
and the training dataset. The weights and biases were then used to
embed the RBM onto the D-Wave QPU, and quantum annealing

FIGURE 2 | (A) Example of the bars (left) and stripes (right) patterns of size 8 × 8. A blue cell represents a 0 while a yellow cell a 1. Last two bits (bottom right) are
labels; bar � 01, stripe � 10. (B)RBM for classification. Box with yellow units is the visible layer. The hidden layer is shown by a box with grey units. 8 × 8 bits of an image is
rearranged into a record of size 1 × 64 bits which is applied to the visible layer. Units L1 and L2 are the labels.
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was performed. Once annealing was complete, the D-Wave
returned low energy solutions. Based on the mapping of the
RBM, visible v and hidden h vectors were obtained from the
solutions returned from the D-Wave. These v and h samples were
used to calculate the model-dependent expectation value which in
turn gives the gradient of log-likelihood. The gradient was further
used to calculate new weights and biases (Eq. 24). The whole
process was repeated until some convergence criterion was
achieved. One of the several ways to monitor the progress of
model learning during the RBM training is by estimating the
reconstruction error for each training epochs. The reconstruction
error is defined as:

Reconstruction error � ∑n
i�1

∑N
t�1

(v(t) − v′)2 (26)

where v(t) is a data record and v’ is the reconstructed visible vector
(Figure 3). N and n are the number of records in the training
dataset and the number of units in the visible layer, respectively.
The plot of reconstruction error versus epoch is presented in the
left panel of Figure 4. An optimal value of the empirical
parameter S is important for a correct sampling of v and h
vectors. The effect of change in S on the classification accuracy is
shown in the right-side panel of Figure 4, a plot between accuracy
and epoch. The term epoch means a full cycle of iterations, with
each training pattern participating only once. Accuracy is
defined as:

Accuracy � Number of correct predictions
Total number of predictions

(27)

The classification accuracy is maximum for S � 4. The
performance of the model during the training process can be
visualized by plotting classification accuracy with epochs.
Figure 5 shows the plot of classification accuracy vs. epochs
for bars (left) and stripes (right) patterns. This calculation was
performed on the test dataset. As the number of epoch increases
from 0 to 400, the classification accuracy increases after that it
stays constant. Based on these results, we conclude that the
performance of QA-trained RBM is similar to CD-trained
RBM. However, from Figure 5 we notice that there are higher
fluctuations in the classification accuracy with CD-1 based
training.

3.2 Image Reconstruction
For classification tasks, both training methods (QA and CD-1)
showed similar results. Classification task requires the prediction
of target labels (only 2 bits) based on the features in the dataset.
An input data record is applied at the visible layer and the target
labels are reconstructed. A more difficult task would be the
reconstruction of not just the target labels, but also some
other bits of the record. We call this task - image
reconstruction. Here, we take a 64-bit record from the test
dataset, corrupt some of its bits, and then apply this modified
test record to the visible layer of a trained RBM. We follow the

FIGURE 3 | Illustration of the contrastive divergence algorithm for training a Restricted BoltzmannMachine (RBM). If sampling stops at nth Gibbs step of the Markov
Chain, the procedure is known as CD-n.

FIGURE 4 | (A) Reconstruction error versus epoch of the RBM training. (B) The plot of the classification accuracy versus epoch for different values of the
hyperparameter S.
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procedure explained earlier for the image reconstruction. The
results of image reconstruction are presented in Figure 6. In
Figure 6A, only target labels were corrupted/reconstructed. We
notice that both training methods correctly reproduced the
classifying labels. In the second case, Figure 6B, 16 bits of the
original data record were corrupted. The RBM trained using CD-
1 correctly predicted all the bit, while two bits were incorrectly
predicted by the RBM trained with QA. In the third case, Figure
6C completely random 64-bit input vector (all bits corrupted)
was fed to both RBMs. In the case of CD-1, the output is a bar
pattern, whereas QA trained RBM resulted in a stripes pattern
with many bits incorrectly predicted. Figure 6B shows a
particular case where 16 bits of a record were corrupted and
then reconstructed, histograms in the right panel of Figure 6
show the results when 16 bits of all the records of the dataset were
corrupted and then reconstructed. These histograms show the
plots between the number of instances of the dataset versus the
number of incorrectly predicted bits. Figure 6D and Figure 6E
show the results where CD-trained RBM was used for image
reconstruction. Figure 6D shows the case where the records of

the training data were corrupted and fed to a CD-trained RBM for
performing the reconstruction. The histogram shows that in over
350 cases all the bits were correctly predicted. In the cases where
some bits were not correctly predicted, the number of incorrectly
predicted bits was less than or equal to eight. Figure 6E shows a
similar histogram for the test dataset which had 112 records.
Around 100 records were correctly predicted. Figure 6F and
Figure 6G show the histogram for the cases where QA-based
trained RBM was used for image reconstruction. In Figure 6F
where records from the training dataset were used, for most of the
instances around 4 bits were incorrectly predicted. Figure 6G
shows the results for the case where the records from the test
dataset were used for image reconstruction. In this case, most of
the reconstructed images show about 6–7 bits incorrectly
predicted. From these plots, it is clear that the CD-trained
RBM performed better than the QA-trained RBMs.

3.3 Log-likelihood Comparison
The classification accuracy results indicated similar performances
of both methods (CD-1 and quantum annealing). However,

FIGURE 5 | Plots showing classification accuracy of individual classes with epoch. The gradient of log-likelihood was calculated using samples generated via
contrastive divergence and D-Wave’s quantum annealer. A comparison of classification accuracy for both methods is presented for bars (A) and stripes (B) patterns.

FIGURE 6 | Original data was first corrupted, then reconstructed. Left panel: The images in the left column are input data fed to the RBMs; output obtained from
the CD and QA-trained RBMs is shown in the middle and right column, respectively. The bits of the input images that were corrupted are enclosed in black boxes.Right
panel: Histograms showing the distribution of incorrectly predicted bits versus the number of instances; 16 bits of the records were corrupted and then reconstructed
using trained RBMs.
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image reconstruction suggests the improved performance of CD-
1. In order to further compare and quantify the performances of
these two methods, the log-likelihood of training data was
calculated. Several researchers have used “log-likelihood” in
order to compare different RBM models [45, 46]. The log-
likelihood has been computed using Eq. 18. It involves the
computation of the partition function Z. If the number of
units in the hidden layer is not too large, Z can be exactly
calculated using Eq. 7. To calculate the log-likelihood, the
number of hidden units was set to 20. The log-likelihood of
both models was computed at various epochs. The results are
presented in Figure 7. From the figure, we notice that the log-
likelihood is higher for RBM trained using CD-1 compared to
quantum annealing. A lower value of the log-likelihood for the
D-Wave trained model could be attributed to a restricted range of
allowed values for the bias field h and the coupling coefficients J.
Another reason could be an instance (each set of h and J)
dependent temperature variation during the RBM training
[22], which disturbs the learning of embedded RBM. Figure 7
also compares the log-likelihood values calculated using the new
lower-noise D-Wave 2000Q processor and an earlier 2000Q
processor. D-Wave’s lower-noise machine shows slightly
improved log-likelihood values over the entire training range.

3.4 Feature Reduction
Next, we compared the performance of a QA and CD-1 trained
RBM for features reduction applications. Both RBMs that were
used in this experiment had 64 visible and 20 hidden units. The
BAS dataset was comprised of 62 binary features and two target
labels. The target labels were removed and random 0 and 1s were
added before feeding the dataset to an RBM for feature reduction.
Input data vector from the training data was applied to the visible
layer of the RBM. Equation 15 was then used to obtain the
hidden variables. The compressed feature vector was sampled
from 20 hidden units of the hidden layer. This procedure was
used to extract features corresponding to 400 records of the

training data and 112 records of the test data. Several classifiers
were used to compare the effectiveness of feature reduction of QA
and CD-1 trained RBMs. The results are presented in Table 1.
Both feature reduction methods resulted in high classification
accuracy, with classifiers trained on data obtained from CD-
trained RBM showing slightly improved classification accuracy
than the classifiers trained on data from a QA-trained RBM.

Currently, quantum computers are in their developmental stage.
Therefore, the comparison of quantum annealing based RBM
training with a mature classical approach like CD is uneven.
However, such comparison is important as results from a CD
trained RBM provides a reference with respect to which
performance of QA based RBM training can be assessed.
Though a better performance of CD was expected, QA
performed satisfactorily. For classification and feature reduction
tasks both QA and CD performed comparably. For the image
reconstruction task, CD performed better than QA. The lower
performance of QA-based training could be attributed to two main
reasons. First, we obtain samples from the D-Wave assuming that it
operates at a fixed temperature. However, this is an approximation,
and one should calculate an effective temperature during each
epoch. This mismatch degrades RBM’s learning during the
training. Efforts have been made towards developing methods to
estimate this instance-dependent temperature for small datasets [22,
23], none of which have been shown to be efficient for bigger
datasets. Another reason for the lower performance of QA-trained
RBM could be hardware limitations like limited connectivity, lower
coherence time, noise, etc. These limitations will be removed as
quantum annealing technology matures. D-Wave’s new machine,
advantage, has higher connectivity, qubits and lower noise
compared to the older machine. In Figure 7 we have shown
that the new 2000Q machine performs better than the older
machine. We believe as technology evolves and a new algorithm
for calculation of effective temperature is developed QA based RBM
training will improve and will be able to deal with larger datasets.
Quantum annealing offers a fundamentally different approach to
estimate model-dependent term of the gradient of log-likelihood
compared to CD and PCD. Depending on the complexity of a
dataset, the CD might need hundreds of Gibbs cycles to reach the

FIGURE 7 | Plot showing variation in log-likelihood with training epochs.
Label CD-1 represents CD-based RBM training, while label 2000Q indicates
QA-based RBM training employing the D-Wave 2000Q.

TABLE 1 | Comparison of classifiers trained on compressed BAS dataset
obtained from CD-1 and QA trained RBMs. The classification accuracy was
estimated on the test data comprised of 56 bars and 56 stripes instances. The
label “No. of bars” (No. of stripes) indicates the number of correctly predicted bar
(stripe) instances. The labels CD-1 and QA indicate that the feature reduction
was performed using contrastive divergence and quantum annealing,
respectively.

Classifier Accuracy No. of bars No. of stripes

CD-1 QA CD-1 QA CD-1 QA

SVM 0.98 0.88 54 42 56 56
MLP 0.98 0.98 55 55 56 55
KNN 1.00 0.99 56 55 56 56
Decision tree 1.00 0.89 56 46 56 54
Gaussian process 0.99 1.00 55 56 56 56
Ada boost 0.82 0.79 50 43 42 45
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equilibrium to finally give one sample, while using a QA-based
approach one can obtain 10,000 samples almost instantaneously.

4 CONCLUSION

In this work, we present an embedding that can be used to embed an
RBM with 64 visible and 64 hidden units. We trained an RBM by
calculating the model-dependent term of the gradient of the log-
likelihood using samples obtained from the D-Wave quantum
annealer. The trained RBM was embedded onto the D-Wave
QPU for classification and image reconstruction. We also showed
that a new lower-noise quantum processor gives improved results.
The performance of the RBM was compared with an RBM trained
with a commonly used method called contrastive divergence (CD-1).
Though bothmethods resulted in comparable classification accuracy,
CD-1 training resulted in better image reconstruction and log-
likelihood values. RBM training using the samples from a
quantum annealer removes the need for time-consuming MCMC
steps during training and classification procedures. These
computationally expensive MCMC steps are an essential part of
training and classification with CD-1. QA-based RBM learning could
be improved by the calculation of an instance-dependent temperature
and incorporating this temperature in the RBM training procedure
though better methods to compute the effective temperature of the
D-Wave machine on large datasets is still an open problem.
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