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Editorial on the Research Topic

Synchronization, Swarming and Emergent Behaviors in Complex Networks and Neuroscience

A vast number of systems in nature display the peculiar ability to spontaneously enter synchrony
across multiple spatial and temporal scales, and the study of natural synchronization has inspired
numerous transdisciplinary applications in fields ranging from sensor networks and signal
transmission to systems biology and physiological systems dynamics. While synchronization
between sub-units has been vastly investigated as a function of local as well as coupling dynamics,
the recent advent and exponential growth of complex network science has provided novel, fertile
ground for deepening our insight into synchronization phenomena as a function of intrinsic,
possibly dynamical network properties.

For example, the study of synchronization in hierarchical networks and, in particular, of how
global dynamics can emerge from different network motifs and how mesoscale topology and
time-delays due to propagation, as well as microscopic properties can influence whole-network
synchronization, is beginning to provide solid stepping-stones for a better understanding of
complex neuronal networks. In this context, recent neuroscience research has suggested that the
synchronization of low-level elements in neural populations are instrumental to the dynamical
emergence of higher-lever neural functional units, which in turn interact to generate and regulate
complex behavioral patterns in health and disease. Recent simultaneous macro- (gross neural
activities) and the micro- (single/multi-neuron activities) scale assessments are also providing
evidence for complex, cross-scale brain interactions which are not yet well understood.

The study of synchronization in time-varying networks has very recently posited the existence
of so-called “chimera-states”, whose appearance and disappearance in neuronal networks has
been explained as an interplay of integration and segregation which gives rise to metastability.
Similarly, the study of swarming in natural systems has very recently prompted ideas that exploit
similarities with synchronization phenomena to define so-called “swarmalators”, i.e., units that
are able to both swarm and synch, and are possibly governed by unifying physical principles
such as energy conservation. Such systems exhibit rich spatiotemporal dynamics and may offer
additional insight into mechanistic as well as statistical modeling for natural systems, as well as
potential technological applications such as bio-computing and swarm robotics. In this context,
two emergent phenomena in the hippocampus, i.e., self-stabilizing maps as well as temporal
reorganization through sharing oscillatory dynamics, have provided explanations for decentralized
self-organization and distributed communication in the brain.

Often the type of phenomena and the features that arise from the dynamics of the synchronized
system are intrinsically pan-scale, and cover both ends of the spectrum of “biological networks,”
from neuronal functioning to the collective behavior of individuals. For example, in their
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perspective paper Ribeiro et al. introduced and summarized the
striking similarities between flocking in animal group dynamics
and neuronal populations in the brain. The parallelism includes
the key feature of scale-free correlation functions which (both
in animal flocks and mammal brains) arise from the absence
of a central control, and inherently lead to better response to
external perturbation (e.g., intrusions by predators or external
stimuli). The parallelism extends from interaction-length vs.
correlation-length considerations, to effects due to structure
heterogeneities. Another key feature is the nature of the phase
transitions underlying the collective properties of animal groups
and neuronal populations, which are at the basis of our
understanding of phase-change mechanisms. Ribeiro et al. show
that these two key features (near-critical dynamics and scale-
free organization) provide maximal information transmission
and key dynamic range advantages for both flocks and brains.
Cross-frequency coupling is an important aspect of neural
interactions, however, its origin is not yet fully understood. One
paper Sinha et al. performed a theoretical study about the effect
of the number of synaptic layers in descending pathways on
the expression of cross-frequency coupling between supraspinal
input and the cumulative output of the motoneuron pool using
computer simulations of Hodgkin–Huxley like neuron models.
They showed that the cross-frequency coupling is dominant in
multi-synaptic indirect motor pathways, paving the way for a
future human subject study.

This Research Topic also includes an in-vitro and in-vivo
validation of how cross-frequency coupling and oscillatory
synchrony give rise to complex communication strategies
between clusters of neurons. Kawai explores the emergence
of noise-causing stochastic resonance (reverberation) and
coherence, resonance-like phenomena in neurons of the vagal
complex by using brainstem preparations. Through these
phenomena, which are rarely observed in in-vitro and in-vivo,
this study demonstrates the role of neuronal noise with respect
to the robustness and resilience of life-sustaining vagal functions.

Another in-vivo study França et al. provides evidence that
beta2 frequency (20–30 Hz) oscillations in hippocampal activity
are linked with novelty detection and processing. In particular,
in behavioral task experiments in mice, animals are exposed to
different degrees of novelty content. Simultaneous extracellular
recordings of the CA1 hippocampal region and mid-prefrontal
and posterior parietal cortex are analyzed to demonstrate that
beta2 power increases with both spatial and object novelty
content, and that novelty modulates oscillatory coherence in
hippocampal-cortical circuitry.

Even though the topographic organization of biological
networks is often known, their role in influencing the
spatiotemporal dynamics of population activity is not
understood, creating a theoretical gap between micro- and
macro-scale observations. One paper Yu, Bouteiller et al.,
aims to fill this gap by studying the CA3 subfield of the
hippocampus in rats (which has been investigated extensively
from a topographical point of view) by providing detailed
information about its connectivity.

Hippocampal structures (in humans and rats) are also
investigated in Yu, Wu et al., with a two-fold approach that
encompasses both human functional magnetic resonance and

animal electrophysiology, in combination with molecular and
biochemical evaluations. The authors demonstrate that chronic
pelvic pain alters functional connectivity between the anterior
cingulate cortex and hippocampal pathway.

Two contributions to this Research Topic analyzed neuronal
masses that describe the mean-field activity of populations of
theta neurons and quadratic integrate and fire (QIF) neurons.
These are often referred to as next generation neural mass
models (Coombes and Byrne, 2018), and they all stem from
the exact mean-field formalism based on the Lorentzian ansatz,
introduced in a seminal paper by Montbrió et al. (2015). Theta-
nested gamma oscillations were investigated in two variants of
neuronal mass of QIF neurons by Segneri et al.: the pyramidal
interneuronal network gamma and the interneuronal network
gamma. In both set-ups the system is driven with a sinusoidal
theta-forcing in the proximity of a Hopf bifurcation, giving
rise to the mixed theta-gamma rhythms that always display
phase amplitude coupling. These types of mixed oscillations have
been reported in many areas of the brain and they have been
replicated through optogenetic theta frequency stimulation. In
Lin et al. synaptic diversity was shown to suppress the complex
collective behavior in networks of theta neurons. Aiming to
account formore realistic heterogeneous inter-neuronal coupling
strengths, the authors show (analytically) that the collective
macroscopic behavior of a network of theta neurons gives rise to
complex dynamics, but the increase of synaptic diversity leads to
suppression of most of the dynamical structures, selecting simple
collective equilibrium states in physiologically relevant regions.

Models of neuronal populations were also analyzed in
Schumm et al. in the context of impairment of rhythms between
microcircuits caused by neuronal degeneration after traumatic
brain injury. The authors studied changes in the synchronization
in networks of Izhikevich integrate-and-fire neurons, which
also adapt according to spike-timing-dependent plasticity. The
results indicate that inherent resilience strongly depends on the
connectivity with highly synchronized circuits, which are largely
protected against the effects of neuronal deletion.

Often the transition from synchronized to desynchronized
states involves a so-called chimera or solitary state (a sort of
coexistence of coherent and incoherent dynamical evolution).
Kushwaha et al. employ large numerical simulations to
investigate whether the creations of chimera and solitary states
can be predicted from network topology and distributions of
delays between oscillators of the network.

Qin et al. concentrate on ensemble spike events to extract
the network evoked by acupuncture manipulations. In their
theoretical analysis and numerical simulations they describe
network response activities employing Bayesian theory, and
estimates of network spike correlations along with in-silico
experiments, which are used to define the relationship between
spike correlations and synchronous spike events.

In Puxeddu et al. the authors conducted a comprehensive,
extensive, and systematic comparative analysis among multilayer
community detection methods. They looked at three different
clustering approaches and four algorithms based on single-layer
modularity, multilayer modularity, and evolutionary clustering.
First, they analyzed the performance of the methods in ground
truth networks. Their results suggested that the performance of
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the algorithms depends on the network features, such as the
number of clusters, number of layers, and level of noise in the
network. Their application to real EEG networks confirms the
feasibility and usefulness of these methods.

Javed et al. studied the process of human aging. They
used EEG-based scalp level analysis to identify aging-related
alterations in synchronized brain regions. Starting from EEG
data, the method decomposes the oscillations, calculates
instantaneous features (amplitude and frequency), after which it
extracts band-wise topographic maps. These topographic maps
have shown the capability of capturing age-related changes in
both spatial distribution and temporal characterization.

Racz et al. analyzed delta band (0.5–4 Hz) neural activity
in schizophrenia. They used multifractal and entropy-based
analysis to compare patients to controls, placing special
attention on detecting the time-varying properties of neural
interactions. Their results imply that the dynamic features of
brain connectivity (e.g. multifractal properties and entropy) are
potent markers of altered neural dynamics in schizophrenia.

Deschle et al. performed a theoretical study of how well
the mass models resemble the real mean dynamics of a
neural population. They tested the validity of neural mass
models and whether the population under study comprised a
mixture of excitatory and inhibitory neurons that are densely
(inter-)connected. They found that these methods represent the
mean dynamics for specific conditions, but not for all, and
conclude that mass models should be used with great care.

In another theoretical contribution, Ghosh et al. employed
Izhikevich neuron models to study the emergence of mixed
mode oscillations. These are complex firing patterns that are
neither spiking nor bursting activity alone. Instead, oscillations
are distributed over different amplitudes, and the firings alternate
between large and small amplitude oscillations. Ghosh et al.
analyze mixed mode oscillations in a random and a small-world
network of various neurons for different coupling strengths.

Spontaneous BOLD fMRI activity of the brain in the
context of Resting State Networks (RSN) was analyzed by two
studies. Amemiya et al. analyzed global vs. network-specific
regulations as the source of intrinsic coactivations in the RSN.
By using temporal independent component analysis, the authors
investigated mechanisms that can give rise to network-specific
coactivations. The time lag of global oscillations was shown to
contribute to the RSN synchronization as much as the locally
confined activities. The results thus confirm an equally important

role of network-specific regulation for its coactivation, regardless
of whether vascular artifacts contaminate the global component
in fMRI measures.

Vohryzek et al. looked for recurrent excursions into
functionally-relevant BOLD phase-locking states to adequately
assess the biophysical mechanisms governing intrinsic brain
activity. Clustering BOLD phase-locking patterns from 100
healthy participants from the Human Connectome Project into a
set of k states. The authors demonstrate that the cluster centroids
closely overlap with reference functional subsystems. In addition,
the results reinforce the mechanistic scenario that RSN is the
expression of erratic excursions from a baseline synchronous
steady state into weakly-stable partially-synchronized states – i.e.,
ghost attractors.

In summary, with the advent of mass-scale exploitation of
biologically inspired mechanisms as inspiration for artificial
intelligence, there has been a surge in renewed interest in
complex phenomena in biological networks. The need to
understand the global functioning of complex neuronal networks
has fueled theoretical and applied research of the classical topics
of dynamical systems—such as studies of synchronization—to
the now mature but ever-growing field of complex network
science. While more and more observations and experiments
in neuroscience investigate the functional macro-scale of
network organization through a top-down approach, and system
biology paradigms are creating an understanding of micro-scale
complex phenomena, the physiological mechanisms of biological
networks at the “meso-scale” are not yet well understood. This
Research Topic collects contributions across theory, methods,
and applications of complex networks to provide a reference
point for the interested reader in this renewed and ever-
increasing field.
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Spontaneous neural activities are endowed with specific patterning characterized by
synchronizations within functionally relevant distant regions that are termed as resting-
state networks (RSNs). Although the mechanisms that organize the large-scale neural
systems are still largely unknown, recent studies have proposed a hypothesis that
network-specific coactivations indeed emerge as the result of globally propagating
neural activities with specific paths of transmission. However, the extent to which
such a centralized global regulation, rather than network-specific control, contributes
to the RSN synchronization remains unknown. In the present study, we investigated
the contribution from each mechanism by directly identifying the global as well as local
component of resting-state functional MRI (fMRI) data provided by human connectome
project, using temporal independent component analysis (ICA). Based on the spatial
distribution pattern, each ICA component was classified as global or local. Time lag
mapping of each IC revealed several paths of global or semi-global propagations that
are partially overlapping yet spatially distinct to each other. Consistent with previous
studies, the time lag of global oscillation, although being less spatially homogenous
than what was assumed to be, contributed to the RSN synchronization. However,
an equivalent contribution was also shown on the part of the more locally confined
activities that are independent to each other. While allowing the view that network-
specific coactivation occurs as part of the sequences of global neural activities, these
results further confirm an equally important role of the network-specific regulation for its
coactivation, regardless of whether vascular artifacts contaminate the global component
in fMRI measures.

Keywords: fMRI, resting-state network, spatiotemporal dynamics, spontaneous neural activity, neuronal pathway
tracing

INTRODUCTION

Once considered to be a noisy, stochastic process, spontaneous activity of the cortical neuron is
now understood to be by no means random but is endowed with specific patterning that reflects
the functional architecture of the underlying network at the level of micro- or meso-circuits
(Tsodyks et al., 1999; Kenet et al., 2003). Over the last two decades, it has become apparent that this
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is analogously true at the level of large-scale networks that
are defined using resting-state functional magnetic resonance
imaging (rs-fMRI) (Biswal et al., 1995; Fox and Raichle,
2007). The spatial patterns identified as areas with synchronous
oscillation of the blood oxygenation-level dependent (BOLD)
signal are termed as resting-state networks (RSNs) (Fox
et al., 2005). These networks are closely related to anatomical
connectivity among the neural subsystems that have been
revealed by a wide variety of visual, sensorimotor, and cognitive
task paradigms (Vincent et al., 2007; Zhang et al., 2010). However,
the neurophysiology of the phenomenon, or the mechanism that
controls and coordinates the intrinsic synchronization across
distributed neural systems, largely remains to be established.

While conventional rs-fMRI analyses based on seed-based
correlation or independent component analysis (ICA) implicitly
assume that the spatial distribution of the synchronous neural
activity is temporally constant, animal studies have revealed that
spontaneous neural activity is spatiotemporally structured, and
propagating waves of activity have been recorded in a variety of
species (for review, see Muller and Destexhe, 2012). Neuronal
membrane potential in the cortex undergoes a spontaneous
transition between up and down states in the absence of sensory
inputs (Steriade et al., 1993; Lampl et al., 1999; Petersen et al.,
2003; Shu et al., 2003). Population activity of the neurons during
the up state manifests as propagating waves not only within a
part of the cortex (Petersen et al., 2003; Ferezou et al., 2007; Xu
et al., 2007; Civillico and Contreras, 2012), but also throughout
the entire brain (Stroh et al., 2013). The spatiotemporal dynamics
of the low-frequency oscillation have also been identified by
examining the repetitive spatiotemporal patterns (Majeed et al.,
2009, 2011; Takeda et al., 2016; Belloy et al., 2018; Abbas et al.,
2019) or by analyzing the time lag structures of the rs-fMRI
data (Mitra et al., 2014, 2015a; Amemiya et al., 2016; Matsui
et al., 2016). An intriguing hypothesis proposed by one of those
studies is that the RSN synchronization indeed emerges as the
result of several independent global propagations of spontaneous
neural activity (Mitra et al., 2015a). Using synthetic time series
embedded with the measured time lag structures of the rs-
fMRI data, Mitra et al. (2015a) showed that the functional
connectivity (FC) matrix representing the RSN synchronization
could be reconstructed to a fair approximation. In support of this
idea, a recent animal study also showed that a global wave of
spontaneous neuronal activity propagating across the networks
contributes to within-network coactivations of the neurons
that correspond to RSN synchronization (Matsui et al., 2016).
Based on these findings it follows that seemingly independent
RSN activity can be viewed as being controlled by a single
centralized mechanism, through global wave(s) of activity that
regulate and constrain the relative relationships of the network
activity by determining the order and timing of the activation
of each network. However, it remains unclear if this is the
sole mechanism that gives rise to the RSN synchronization,
as suggested by those studies (Mitra et al., 2015b; Matsui
et al., 2016). An alternative, thought non-exclusive, origin of
the synchronization would be network-specific coactivations
among the neural populations confined within each network
(Mohajerani et al., 2013; Ponce-Alvarez et al., 2015). In the

neural system, it is generally supposed that diverse physiological
mechanisms coexist for rhythm generation and population
synchronization for which different levels of integration interact
closely with each other (Ivanchenko et al., 2008; Harris-
Warrick, 2010; Wang, 2010). For example, in the respiratory
central pattern generator of the mammals, rhythm generation is
dependent on the endogenously oscillatory neurons that serve as
pacemaker, as well as the pattern of synaptic connections within
the network that forms a network pacemaker (hybrid pacemaker-
network mechanism) (Calabrese, 1998; Rybak et al., 2004, 2007;
Sohal et al., 2006; Johnson et al., 2007).

It seems possible, therefore, that multiple mechanisms –
namely, global propagation and local synchronization –
contribute to the emergence of the coherent RSN activity that
characterizes the functional architecture of the brain. In order
to address this question, it is imperative to evaluate not only the
paths but also the whole picture of the traveling waves. We thus
started by identifying the signal time course of the global waves
by applying the temporal ICA to rs-fMRI data. In fMRI, virtually
all applications of ICA use spatial rather than temporal ICA.
Although spatial ICA is suitable for the separation of the spatially
distinct activations from each other, temporal ICA would be
more appropriate if the aim is to find functionally independent
and spatially overlapping activities (Smith et al., 2012), such as
what we assume to be multiple global waves.

In contrast to previous studies focusing on estimating the
paths of traveling waves by analyzing the signal time lag (Mitra
et al., 2014, 2015a; Amemiya et al., 2016; Matsui et al., 2016),
direct detection of the traveling waves enables us to infer the
likelihood that each mechanism contributes to the emergence
of network synchronization, as well as to map the magnitude
of each type of activity in each region. Moreover, identification
of individual traveling waves allows accurate estimation of the
time lag structures, in contrast to previous studies employing
a decomposition approach, regardless of the validity of the
assumptions that the time lags of multiple waves can be linearly
superposed, or that the paths of traveling waves are spatially
independent. By comparing the correlation matrix of both the
global and the local component to that of the FC matrix,
contribution of each type of activity to the RSN synchronization
that characterizes the resting state FC was evaluated.

MATERIALS AND METHODS

Overview
A summary of the analysis is presented as a schematic in Figure 1
to provide an overview of the study. We used data from the
WU-Minn Human Connectome Project (HCP) young healthy
adults (ages 22–35) S1200 release that provides paired dataset of
the same group of subjects (day 1 and day 2). All preprocessing
and data analyses were performed for each dataset, respectively,
in the same way.

HCP Data
Data of 50 subjects who underwent 3 T resting-state fMRI
sessions without quality control issues, and whose mean
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FIGURE 1 | Schematic of the resting-state fMRI data processing. Temporal independent component analysis (ICA) was applied to pre-processed test and re-test
dataset, whose dimensionality were reduced to 61 × 120,000 and 62 × 120,000 using spatial ICA, respectively. Each temporal ICA gave 28 and 30 reproducible
components (Step 1). For each component (IC time series), a time lag map was obtained by computing the time lag of each voxel relative to the IC time series using
cross-correlation, which was further interpolated with parabolic polynomials. Pearson’s correlation coefficients were computed between each voxel’s time series and
the IC time series that was shifted as much as the measured time lag. Classification of ICs was based on spatial distribution pattern of each component. Any
component that is more similar to the whole-brain signal than any RSN template in distribution pattern was classified as global (Step 2). Using the time-shifted global
ICs as regressors, linear regression analysis was performed for each voxel. All global ICs detected for any single temporal ICA were then integrated. The rest of the
signal change was classified as local contribution. The correlation matrix of the global as well as local component was computed and compared with the correlation
matrix of the original signal FC matrix (Step 3).

framewise displacement was less than 0.2 mm were included
for the analysis. The number of subject was determined by
the maximum size of the data that could be processed by
a core program for ICA, Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC)
(Beckmann and Smith, 2004). HCP imaging and pre-processing
protocol have been previously described in detail (Glasser et al.,
2013; Smith et al., 2013; Van Essen et al., 2013; Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). In brief, resting-state fMRI
data were acquired using a single customized Siemens 3 T
scanner housed at Washington University in St. Louis, using a
standard 32-channel receive head coil, with 2.0 mm isotropic
spatial resolution, 0.72 s repetition time (TR), and 1200 frames,
i.e., 14.4 min per run. For each subject, and for each session,
two runs with reversed phase encoding directions, RL or LR,
with the order counterbalanced across each of two sessions,
were acquired (WU-Minn HCP 1200 Subjects Data Release
Reference Manual), and the geometric distortions were corrected
using spin echo field map EPI scans (Glasser et al., 2013).

The data were then subjected to spatial ICA using MELODIC
with automatic dimensionality estimation. Using FMRIB’s ICA-
based X-noisifier (FIX) (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014) that is a machine learning classifier trained on HCP
data, spatially specific noise components were identified and
removed for each run. Then 24 movement regressors were further
regressed out of the data (Smith et al., 2013; Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014).

Data Analysis
Further Pre-processing
Further pre-processing and analysis of the data were performed
using tools from SPM12 software1, AFNI libraries2 and in-house
scripts written and implemented in Matlab 9.3 (MathWorks,
Natick, MA, United States). Linear trends were removed from
the HCP data that had been processed with subject-level ICA

1http://www.fil.ion.ucl.ac.uk/
2https://afni.nimh.nih.gov/
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noise reduction (sICA + FIX), and the data were band-pass
filtered at 0.01–0.1 Hz. The pre-processed data were temporally
concatenated across runs to create a single 4D dataset of 120,000
timepoints for test and re-test dataset, respectively.

Temporal-ICA
For temporal ICA decomposition of the data, we employed a
strategy adapted from Smith et al. (2012) to perform group-wise
spatial ICA in advance of the final temporal ICA. The spatial
ICA allows further identification of artifact components at the
group level, as well as to achieve a high-dimensional functional
parcelation of the group data, which reduces the dimensionality
of the data to feed into temporal ICA. The overall ICA analysis is
described as follows:

X(V×T) = SS(V×K) × At(K×L) × St(L×T) + E

whereX is the data matrix of sizeVoxels×Time points, Ss are the
spatial maps estimated by spatial ICA, K is the number of spatial
ICA components that were subsequently fed into temporal ICA,
after removing noise components. L is the number of temporal
ICA components. St is the decomposed time series (ICA sources),
and At is the central mixing matrix of temporal ICA. E combines
noise and artifact aspects of the data (Smith et al., 2012).

Group-wise spatial ICA was performed using MELODIC
with automatic dimensionality estimation. Of the 61 and 62
ICs generated from dataset 1 and 2, three ICs were classified
as artifacts on the basis of their spatial features, respectively.
Specifically, activation patterns clearly outlining the intensity
edges of the gray matter were classified as noise (Smith et al.,
2012; Salimi-Khorshidi et al., 2014; Pruim et al., 2015). For
the remaining components, functional nodes’ time series were
computed using dual regression technique (Filippini et al., 2009),
and fed into temporal ICA.

For temporal ICA, we used Icasso algorithm (Himberg et al.,
2004) to estimate the most appropriate decomposition yielding
a set of reproducible IC clusters. For all possible dimensions or
number of components, Icasso was ran with both resampling
mode that uses random initial condition as well as bootstrapping
of the data for 100 times, which pooled all temporal ICA estimates
using FastICA (Hyvärinen, 1999) with tanh non-linearity and a
symmetric decorrelation approach. We chose the decomposition
yielding the maximum number of clusters of reproducible
components that gives a stability index Iq larger than 0.5. Iq
is computed as the difference between the average intracluster
similarities and average intercluster similarities, which reflects
the compactness and isolation of a cluster (Himberg et al.,
2004). For each dataset, 28 and 30 reproducible clusters were
found, respectively.

Identification of the Global Waves
For all temporal ICs, time series of each run, once concatenated
to be subjected to a temporal ICA was deconcatenated so that
following analyses can be performed for each run separately
unless otherwise noted. Firstly, spatiotemporal patterns or
paths of traveling waves were estimated for each IC by
computing the relative time lag t that gives the best positive
fit between each voxel’s time series and the time-shifted

(±6.3 s or ±9 TR) IC (time series) using cross-correlation
analysis. As in our previous study, 12 s limit of propagation
delay was set to include whole-brain vascular time lag that
can range up to nine seconds (Amemiya et al., 2016).
Parabolic interpolation (Meijering, 2002) was further applied
to locate the peak time lag t’ using the extremum t,
as well as the two nearest points given by the cross-
correlation analysis.

The magnitude map of each IC was then computed as
the Pearson’s correlation coefficients between each voxel’s time
series and the IC time series that was shifted as much as
t’ using sinc interpolation to give the maximum correlation.
Classification of ICs was based on the spatial distribution pattern
of each component. We performed template matching using
21 RSN templates (Smith et al., 2012), as well as a whole-
brain signal template that is the correlation map of the whole-
brain mean signal, averaged over 100 runs (Supplementary
Figure S1). The whole-brain signal was computed as the
average signal within a gray matter mask was created by
thresholding MNI template at 10% or larger probability of being
gray matter. Pearson’s correlation coefficients were computed
between each IC and each of the 22 templates within the
mask. Any component that is more similar to the whole-
brain signal template than any of the RSN templates (i.e.,
giving a greater correlation coefficient with a whole-brain signal
template) was classified as global. Note that our study focuses
particularly on examining the existence of coactivations restricted
within each RSN, in addition to the globally propagating
activities that were assumed to exist throughout the brain
and treated as such in the analysis of previous studies.
In this context, it would certainly make sense to identify
any component whose distribution is restricted within any
functionally distinct areas as being local as opposed to a
functionally and spatially less specific global (or more precisely
semi-global) pattern.

Using the time-shifted global ICs as regressors, linear
regression analysis was performed for each voxel’s time series.
The global component was then computed as the integral of all
global ICs by summing up the shifted time series multiplied by
the corresponding regression coefficients. The rest of the signal
was classified as local contribution (Figure 1).

Estimation of the Likelihood That Each Mechanism
Gives Rise to the RSN Synchronization
In order to evaluate the contribution of each mechanism to
the emergence of RSN synchronization, we compared regions
of interest (ROI)-wise correlation matrices given by each
component using a set of 132 ROIs provided as part of the
CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012)
that were originally defined from FSL Harvard-Oxford Atlas
maximum likelihood cortical or subcortical atlas and cerebellar
parcelation from AAL atlas.

For each subject’s each run, FC matrix was obtained by
computing the Pearson’s correlation coefficient between each
possible couple of ROI’s mean time series (i.e., global + local
component). Similarly, three types of correlation matrices were
computed by correlating the time series of (1) global component,
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(2) local component, (3) global component reconstructed to
reflect only time lag of each global IC, respectively. We
correlated each matrix against the FC matrix run-wisely,
using the correlations above the diagonal of each matrix,
transformed to Fisher’s Z and tested by using a two-tailed
t-test over runs against the null hypothesis of no correlation.
Next, we examined whether the time lag itself contributes
to the RSN synchronization by computing the correlation
between the FC matrix and the correlation matrix of the
global component that was reconstructed without implementing
the magnitude difference. In the presence of time lag, even
when the global component is composed of a single IC,
the spatial difference of its magnitude can contribute to
the characterization of the correlation matrix, let alone the
global component composed of multiple ICs. It is therefore
important to eliminate the effect to determine if time lag
is the source of synchronization. The magnitude of each IC
was adjusted to reflect the contribution of each IC that is
computed as the root mean square of the mixing matrix of
the temporal ICA.

In order to further confirm the relationship between the
signal synchronization and the time lag of the global component,
for each global component, Pearson’s correlation coefficient was
computed between the FC matrix and the matrix of relative time
lag that is the difference of the time lags between given ROIs.

Contribution of the local component was also assessed by
computing the correlation between the FC matrix and the
correlation matrix of the local component in the same way.
Correlation between the correlation matrices were computed
using the upper triangle of each correlation matrix. The
threshold of the statistical significance was set at p = 0.05,
and the Bonferroni correction was used to control for the
multiple comparisons.

Origin of the Time Lag
To estimate the origin of the time lag that characterizes
the global component, all magnitude (correlation coefficient)
and time lag maps of the global ICs that were averaged
across subjects were compared with those of the whole-
brain signal, respectively. Partial correlation analysis was also
performed to control the effect of vascular time lag that
was measured using dynamic susceptibility contrast enhanced
perfusion imaging (Amemiya et al., 2016). We also compared
the time lag structure of the local component and that of
the whole-brain signal by computing the Pearson’s correlation
between the time lag maps with each local IC. A correction
for the spatial degrees of freedom was given via Gaussian
random field theory and empirical smoothness estimation,
which estimated the number of independent resels or resolution
elements to be 103.

RESULTS

Identification of the Global Waves
Of the 28 and 30 reproducible ICs for dataset 1 and 2, 7,
and 10 were classified as global IC based on the pattern of

spatial distribution for each dataset, respectively (Figure 2 and
Supplementary Figure S2). The magnitude of the global IC
is shown as Pearson’s correlation coefficient between the time-
shifted global IC and the time series of each voxel, with the
corresponding time lag structures showing the paths of each
global component (Figure 2 and Supplementary Figure S2).
All magnitude and time lag maps shown were obtained by
averaging the resulting maps across all subjects’ all runs. Time
lag maps of the global components showed structural paths of
each signal, which is consistent with previous studies suggesting
the existence of multiple global waves of activity in the resting
state; c25, c07 and c05 show early regions in the rostral and
lateral part of the frontal lobes and delayed regions in the
medial part of the frontal lobes, insular and inferior frontal
gyrus and occipital lobes, while the pattern is almost opposite
for c10. C12’s path is characterized by early regions in the
sensorimotor, auditory, and visual cortex, as well as delayed
regions in the association cortex and posterior cingulate cortex,
while c07 shows the opposite pattern. C15 resembles c05, c07,
c25 pattern, but the delay in the dorsal attention network is more
conspicuous (Figure 2).

However, there were significant correlations among the
paths of global signals (Supplementary Figures S6A,B). Some
global ICs also showed apparent similarity to the whole-brain
signal not only in its spatial distribution characterized by
symmetrical involvement of the dorsal cerebral cortex with
predominantly high magnitude in the occipital lobes, but also
in its propagation pattern: time lag: |r| = 0.42 ± 0.21 (re-test,
0.37 ± 0.23); magnitude: r = 0.58 ± 0.15 (re-test, 0.55 ± 0.12)
(Figure 2 and Supplementary Figure S2). Partial correlation
analysis controlled for the perfusion time lag also showed
sometimes reduced but still significant correlation between
the time lag maps of the global ICs and the whole-brain
signal: |r| = 0.40 ± 0.23 (re-test, 0.39 ± 0.22). These results
suggest that even if multiple global waves of activity coexist
in the resting state, the paths of the traveling waves can be
substantially overlapped, as can the spatial distribution, which
is not simply explained as the result of common background
vascular perfusion.

Time lag maps of the global ICs detected from the test
dataset were well replicated by the analysis of the re-test dataset.
Supplementary Figure S6C demonstrates that all global ICs of
the test data were significantly positively correlated with at least
one global IC of the re-test data.

Consistent with previous studies (Mitra et al., 2014; Amemiya
et al., 2016), magnitude and latency of the whole-brain signal
were not significantly correlated: r = −0.10, p = 0.32 (re-test,
r = −0.051, p = 0.62). The majority of the global components
showed significant correlation between magnitude and time lag
(p < 0.05): c07, r = 0.41; c10, r = −0.30; c12, r = −0.48; c12,
r = −0.48; c25, r = −0.27 (re-test, c05, r = −0.29; c07, −0.44;
c12, r = −0.31; c18, r = −0.36; c22, r = −0.24; c24, r = −0.25;
c26, r = −0.42), which might be caused by the attenuation of the
waves of activity during the process of transmission.

Some of the global ICs showed anteroposterior propagation
that might correspond to the pattern detected using
electroencephalogram in sleeping humans: c22 of the test
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FIGURE 2 | Global component. The spatial distribution of the magnitude of the temporal ICA components for test dataset demonstrates a set of global ICs. The
magnitude of the seven global ICs is shown as Pearson’s correlation coefficient with the corresponding time lag structures showing its path. All magnitude maps
were significantly correlated with the map obtained using the whole-brain signal (WBS), that is characterized by symmetrical high magnitude areas distributed
predominantly in the occipital lobes, as well as in the path of propagation that is characterized by early signal in the primary sensorimotor and visual cortex compared
with association areas, frontotemporal basal regions or the cerebellum (bottom row). Five of the seven time lag maps were significantly correlated with that of the
whole-brain signal. C25, c07, and c05 show early regions in the rostral and lateral part of the frontal lobes and delayed regions in the medial part of the frontal lobes,
insular and inferior frontal gyrus and occipital lobes, while the pattern is almost opposite for c10. C12’s path is characterized by early regions in the sensorimotor,
auditory, and visual cortex, as well as delayed regions in the association cortex and posterior cingulate cortex, while c07 shows the opposite pattern. C15 resembles
c05, c07, c25 pattern, but the delay in dorsal attention network is more conspicuous. Pearson’s correlation coefficients between time lag and magnitude maps of
each global IC and those of the whole-brain signal are also shown.

dataset as well as c22 and c26 of the re-test dataset show
early regions in the rostral compared with caudal part of the
cerebral cortex.

Contribution of the Global Waves to the
RSN Synchronization
The correlation matrix of the global component reconstructed
with the detected global ICs showed significant correlation with
the FC matrix: r = 0.31 ± 0.13 (re-test, 0.32 ± 0.11), p < 0.001
(Figures 3A,B and Supplementary Figures S3A,B). Significant
correlation was found even when the global component
was reconstructed without considering the spatial difference
of its magnitude: r = 0.22 ± 0.13 (re-test, 0.27 ± 0.11),
p < 0.001 (Figure 3C and Supplementary Figure S3C).
Furthermore, significant negative correlation between the
strength of synchronization (FC) and the relative time lag
was also shown for all global waves: r = −0.19 to −0.39,
p < 0.001 (re-test, r = −0.14 to −0.40, p < 0.001) (Figures
3E, 4 and Supplementary Figures S3E, S4), which suggests that

the time lag of the global component can contribute to the
RSN synchronization.

Characteristics of the Local Component
The spatial distribution of the magnitude of the 28 and 30
reproducible local ICs is shown in Figure 5 and Supplementary
Figure S5, respectively. Each magnitude map of the local ICs
showed significant synchronization within functionally relevant
structures, which would correspond to spatial maps for the
temporally independent functional modes (Smith et al., 2012). In
other words, as previously well-explored in Smith et al. (2012),
the local ICs could be considered as functional “modes” that
in some cases could subdivide and/or reorganize the currently
standard spatial RSNs.; e.g., c01-03 contain visual cortex
(predominantly extrastriate areas) and ventral sensorimotor
cortex; c04 contains right orbitofrontal cortex in addition
to sensorimotor and visual cortex; c06 contains extrastriate
cortex and basal ganglia; c08 contains sensorimotor cortex, c09,
c17, c18 involve frontotemporal network nodes; c11 mainly
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FIGURE 3 | Contribution of each component to RSN synchronization. Whole signal Functional Connectivity (FC) matrix had significant positive correlation with the
global component correlation matrix (A vs. B), suggesting the contribution of the global component to the RSN synchronization. Significant correlation is also shown
even when the global component was reconstructed without considering the spatial difference of its magnitude (A vs. C). Correlation matrix of the local component
is also fairly similar to the FC matrix, suggesting an equivalent contribution of locally limited activity to RSN synchronization (A vs. D). For each global component,
there was significant negative correlation between the strength of synchronization (FC) and the relative time lag between each ROI, which confirmed the contribution
of the time lag of the global component to RSN synchronization (E).

involves association cortex; c13 and contains primary visual
cortex and default mode network nodes in the angular gyrus
and posterior cingulate cortex; c14 contains visual cortex and
dorsolateral prefrontal cortex; c16 involves relatively widespread
areas mainly involving the sensorimotor and primary visual
cortex in addition to basal ganglia; c19 contains; c20 and c21
contain dorsal attention network and frontal lobes; c23 involves
primary visual cortex and frontal lobes; c24 and c28 contains
salience network and frontoparietal network nodes; c26 contains
auditory and sensorimotor networks; c27 involves sensorimotor
and visual cortex. Figure 3D and Supplementary Figure S3D
show correlation matrices of the local component that are fairly
similar to the FC matrix (r = 0.41, p < 0.05; re-test, r = 0.42,
p < 0.05), suggesting an equivalent or even larger contribution
of the local activity to the RSN synchronization that characterizes
the FC matrix. The magnitude of the activity of the local
component relative to the whole signal was 0.70 for both test and
re-test dataset.

DISCUSSION

By applying temporal ICA to the rs-fMRI data, we have identified
several global or semi-global waves of slow oscillation that are

temporally independent yet spatially overlapping with each other.
Although the correlation matrix of the global component showed
substantial correlation with the FC matrix, an equivalent or even
greater contribution of the local component was also shown.
The results indicate that while global waves of activity, although
being less spatially homogenous than what was assumed to be,
could contribute to the emergence of the RSN, which is partly
consistent with previous studies suggesting that within-network
synchronization can arise from the time lag of the global waves
(Mitra et al., 2015a; Matsui et al., 2016), this does not exclude
the contribution of local activity that are more confined within
functionally relevant structures.

Multiple Waves of Activity
Although the number of the global IC was slightly varied
depending on the dataset, there was substantial overlap among
the global ICs detected within or across the temporal ICAs for
test and re-test datasets. Moreover, the majority of the global
waves detected across the temporal ICAs were significantly
correlated with the path of the whole-brain (global mean)
signal, which would be the most robust representation of the
global signal. Partial correlation analysis that controlled for
the effect of vascular time lag also confirmed that significant
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FIGURE 4 | Signal correlation matrix vs. Time lag matrix. For each global component, there was significant negative correlation between the strength of
synchronization (FC) and the relative time lag between each ROI, which confirmed the contribution of the time lag of the global component to RSN synchronization.

correlation was still found with the global waves. While these
results might support the finding that the global neural activity
has a predominant path of propagation (Matsui et al., 2016),
they also suggest the existence of multiple overlapping paths
of neural oscillations. Some paths of global ICs that share
common features with those obtained in the previous studies:
c25, c05, c07, c10, and c12 would correspond to the thread
2 reported in Mitra et al. (2015a) that shows a contrast
between the rostral and lateral part of the frontal lobes vs.
medial part of the frontal lobes, insular and inferior frontal
gyrus and occipital lobes, while c15 to thread 8 (note that
the polarity of the threads can be inverted). However, there
were some other time lag structures representing the paths
of propagating neural activity that were not obtained by
merely decomposing the measured total time lag as multiple
orthogonal components (i.e., threads in Mitra et al., 2015a) or
as independent components (Amemiya et al., 2016). Specifically,
some global ICs showed anteroposterior propagation that might

correspond to the pattern detected using electroencephalogram
in sleeping humans (Massimini et al., 2004) or with calcium
imaging as well as BOLD imaging in anesthetized mice (Stroh
et al., 2013; Matsui et al., 2016). While physiological basis or
significance of such global activity remains to be known, all
these data further support the view that spatiotemporal pattern
of BOLD signal could reflect large-scale dynamics of underlying
neuronal activity.

Origin of the Time Lag and
Synchronization
Given that cerebral vascular time lag is quite uniform across
subjects (Amemiya et al., 2016), existence of multiple paths
of traveling BOLD signal suggest the existence of multiple
waves of neural signal (Mitra et al., 2015a; Amemiya et al.,
2016). Although BOLD represents hemodynamic response
to neural activity that is necessarily influenced by the
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FIGURE 5 | Local component. The spatial distribution of the magnitude of the temporal ICA components for test dataset demonstrates a set of local ICs. Each IC
shows significant synchronization within functionally relevant structures that would correspond to spatial maps for the temporally independent functional modes
(Smith et al., 2012).

characteristics of the underlying vasculature (Amemiya et al.,
2012; Bandettini, 2014), the path of globally propagating
activity has been shown to coincide with that of the neuronal
calcium signal in mice (Matsui et al., 2016). Assuming that
the same holds true for non-anesthetized awake human
data, the propagating pattern of global oscillations that are
characterized by structured and smooth gradation can be
seen as corresponding to a gradual propagation via short-
range corticocortical connections. In addition, small time lag
observed between distant regions across RSNs may reflect
the presence of a mechanism controlling the initiation of
spreading activity, mediated via long-range connections
in a rapid manner. Such activities might help integrate
the spontaneous oscillation of the cortex across RSNs in
the whole brain, which is analogous to the concept of
synfire chains in synchronous mode (Abeles, 1982, 1991),
in which groups of neurons are organized into chains, and
the architecture enables precisely timed sequences of spikes
to form a propagating wave of activity (Abeles, 1982, 1991;
Diesmann et al., 1999).

Alternatively, it would also be possible to assume that the time
lag of the global oscillations mainly reflects vascular dynamics for
some ICs. Indeed, whole-brain signal and vascular perfusion are

known to share similar spatiotemporal characteristics (Amemiya
et al., 2014, 2016; Tong et al., 2017). It might be important
to note, however, that the source of the time lag is not
necessarily identical to the source of the signal, so even if
the time lag were totally non-neural in origin, that does not
mean that the origin of the global signal is non-neural. This
is because perfusion time lag can also be reflected in the
time lag of BOLD signal of neural origin (Roc et al., 2006;
Amemiya et al., 2012). Therefore, for the ICs whose time lag
maps are similar to that of perfusion, e.g., like whole-brain
signal, a measurement that is independent of neurovascular
coupling would be preferable and perhaps essential for a more
precise prediction of the spatiotemporal profile of the underlying
neural activity.

Nevertheless, even if the contribution of some global
oscillations to the apparent network synchronization were an
artifact (Tong et al., 2015), the results of the present study
suggest that network-specific synchronization does exist besides
such component, which is consistent with the growing evidence
supporting the link between BOLD and electroencephalographic
or magnetoencephalographic measures of resting state activity
(Goldman et al., 2002; Yan et al., 2009; Brookes et al., 2011;
Tagliazucchi et al., 2012). Moreover, the present study indicates
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that within-network synchronization is dependent on
local neural activities that are temporally independent
to each other, which necessitates the presence of
a mechanism that would be conceived as network-
specific pacemaker irrespective of the contribution of the
global oscillations.

Technical Issues
In the present study, two large HCP datasets acquired from
the same 50 subjects were used to test the reproducibility of
the analysis. In temporal ICA, each component’s independence
is optimized for the axis of time. Therefore, the temporal
dimensionality or timepoints of the data should be large
enough. Although there is no good reason to assume that
the number of timepoints should be as large as the number
of voxels in original data, when the dimension was reduced
during the process of group spatial ICA in advance to temporal
ICA. Rather the problem lies in that it is generally difficult
and practically impossible to know in advance how many
timepoints are needed for an ICA, which is particularly
dependent on the non-gaussianity of the data. This is
why post hoc analysis is generally considered important to
validate an ICA.

It is also theoretically apparent that higher spatiotemporal
resolution is preferable for a better mapping of the
spatiotemporal characteristic of the data. However, identification
of the global component is not likely dependent on the
spatiotemporal resolution of the BOLD fMRI. This is because
ICs are classified according to the pattern of spatial distribution,
which is not dependent on the temporal or spatial resolution
itself let alone the speed of the traveling waves. Therefore,
granting that the time lag maps would become more accurate
if the sampling rate or spatial resolution of the data were
increased, given that the maps obtained in the present study
represent structured and highly similar patterns even across
studies for the whole-brain signal (Amemiya et al., 2014;
Mitra et al., 2014; Tong et al., 2017), such contribution would
be negligible compared with other factors, at least for the
range of the neural band of 0.01–0.1 Hz. The same holds
true for the slice-time correction. HCP do not recommend
us doing slice timing correction for the dataset, because
while the effect of the slice timing correction is limited
for the short TR (0.72s), slice timing correction interacts
with movement correction in ways that have not ever been
appropriately addressed in available tools. However, given
the fact that it is impossible to align the subjects’ head
in exactly the same position for every scan for all the
subjects, and that the acquisition was performed by using
simultaneous multislice imaging with a slice thickness of
2 mm, we consider that the small slice timing differences
were expected to be canceled out during the course of spatial
normalization and group averaging of the time lag maps, which
was confirmed by high correlation among the whole-brain
signal time lag maps.

For the preprocessing, we did not apply global signal
regression (GSR). Although GSR is a useful process to remove
physiological noise like motion artifact, it eliminates any

global signal regardless of the origin and can distort the
resulting connectivity or activation measures in a complex
way (Saad et al., 2012; Gotts et al., 2013; Glasser et al.,
2016, 2018; Tang et al., 2019). Therefore, GSR and related
approaches still remain controversial. Given that the study
aim is to understand the possible contribution of the
global signal, we consider it important not to apply GSR
for our analysis.

In the present study, detection of the global IC was based
on the spatial distribution pattern of each component that was
judged by template matching using RSNs as well as the magnitude
map of the whole-brain signal, which enabled us to classify an
IC into global or local component without setting a threshold
for the spatial coverage of that component. Although intuitively,
an IC showing a larger spatial coverage would be considered
as a global component, such classification is practically very
difficult, because there is no objective definition regarding the
coverage of a global component, as was the case in the original
definition of the RSNs.

Rather, it is important to note that the present study, like
previous studies, focuses on identifying slow waves with fixed
patterns of propagation. While such an approach is advantageous
in exploring the most robust representation of the phenomenon,
an analysis allowing more spatiotemporally complex and
dynamically changing patterns of propagation will probably
reveal a more precise picture of the inter-network activities
that may contribute to the integration of the network-specific
activities constituting the functional architecture of the brain.
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Clusters of neurons can communicate with others through the cross-frequency coupling
mechanism of oscillatory synchrony. We addressed the hypothesis that neuronal
networks at various levels from micro- to macrocircuits implement this communication
strategy. An abundance of local recurrent axons of vagal complex (VC) cells establish
dense local microcircuits and seem to generate high-frequency noise-causing stochastic
resonance (reverberation) and coherence resonance, even in in vitro slice preparations.
These phenomena were observed in vitro as the generation of episodes of higher-
frequency noise after an external stimulation and as stimulus-induced or spontaneous
high-amplitude signals (postsynaptic activities). The in vitro microcircuit networks
rarely sustained the stochastic resonance and coherence resonance cooperatively;
however, in vivo networks involving additional intrabulbar mesocircuits and large-scale
macrocircuits were able to sustain them cooperatively. This gave rise to large-scale
oscillatory synchrony leading to robust power and coherence of signals with high
amplitudes, reaching several millivolts in amplitude from a noise level of ∼100 microV
through cardiorespiratory frequency coupling. A regenerative mechanism of neuronal
circuits might work for the generation of large-scale oscillatory synchrony. The amplitude
and phase of neuronal activity in vivo may interact cooperatively to give rise to varying
degrees of power and coherence of robust rhythmic activity for distinct physiological
roles. The cooperative interaction between phase adaptation and amplitude amplification
of neuronal activity may provide diverse nervous systems with both robustness
and resilience.

Keywords: resonance, synchrony, noise, fluctuation, brain wave, electrophysiology, emergence, complex
adaptive system

INTRODUCTION

The most salient feature of brain electrical activity is the oscillatory synchrony generated
and/or sustained by ensembles of coupled neuronal oscillators (Destexhe et al., 1999;
Buzsaki, 2006; Canolty and Knight, 2010; Kawai, 2018b). Clusters of neurons with varying
spatial dimensions and connectivity form regenerative neuronal circuits that can elicit
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synchronized oscillations. These neuronal circuits also
incessantly generate brain activity at the level of noise in
the form of local sub- and suprathreshold waves, in addition
to spatially distributed large-scale oscillatory synchrony.
Previous publications have addressed and emphasized a possible
interdependent relationship between wave synchrony and
noise, although rarely in real nervous tissues (but see Galán
et al., 2006), and mainly in theoretical or simulation-based
studies (Ermentrout et al., 2008; Faisal et al., 2008). For
example, it has been reported that noise can play a stabilizing
role in synchronized oscillations. When adequate random
noise is added, stable and synchronized oscillations may
appear. Uncorrelated noise may thus sufficiently change the
characteristics of a non-oscillating feedback system to produce
stable oscillations (Springer and Paulsson, 2006). Theoretical
and simulation-based studies predict that stochastic noise or
fluctuation in an excitable-system can produce large-scale
oscillatory synchrony via stochastic or coherence resonance
mechanisms (Wiesenfeld and Moss, 1995; Pikovsky and Kurths,
1997; McDonnell and Abbott, 2009; Dodla and Wilson, 2010).

However, noise-based stochastic or coherence resonance-like
phenomena have rarely been described with respect to the
nervous system, particularly not in real in vitro and in vivo
brain preparations that retain neuronal circuits with varying
levels of intactness (Galán et al., 2006). Using brainstem
preparations, the present study sought to investigate the
structure and dynamics of neuronal activity [subthreshold,
spike, local field potential (LFP) activity] at the noise level that
may develop into emergent large-scale oscillatory synchrony.
In addition, the possible functional significance of such
developmental dynamics was evaluated (Kawai, 2018b).
Although the significance of noise in neural functions has been
both endorsed and refuted in previously published literature
(Stein et al., 2005; Ermentrout et al., 2008), the present study
would like to stress the quintessential role of neuronal noise
in neural functions. Analogous to complex adaptive systems,
a cooperative interaction of wave amplitude amplification
and phase adaptation is proposed in the present study with
respect to the robustness and resilience of these systems
(Holland, 1995).

MATERIALS AND METHODS

Animal Preparations and
Electrophysiological Recordings
All surgical and experimental procedures were approved by the
Institutional Committee for the Care and Use of Experimental
Animals at the Jikei University School of Medicine in Japan and
were performed in accordance with the Guidelines for Proper
Conduct of the Animal Experiments by the Science Council
of Japan.

For in vitro preparations, Sprague–Dawley rats (postnatal
days 18–24; Saitama Experimental Animals Supply, Japan)
were deeply anesthetized with ether. After decapitation at the
cervical spinal level followed by rapid craniotomy, the brainstem
mass including the cerebellum was quickly removed, and a

2–3-mm-thick block containing the area postrema (caudal
medulla oblongata) was prepared for coronal slicing. Two
slices containing the area postrema for patch-clamp whole-cell
recordings were usually available from each animal.

Coronal slices (250–300 µm thickness) were made using
a micro slicer (DTK-1000; Dosaka, Japan). Slices containing
the area postrema were collected and incubated in standard
Ringer’s solution for at least 1 h at 37◦C. The standard Ringer’s
solution had the following composition (in mM): 125 NaCl,
2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3,
and 10 glucose. This solution was continuously bubbled with
a mixture of 95% O2 and 5% CO2 (pH 7.4, ∼320 mOsm).
After the incubation, a single brain slice was transferred to a
recording chamber placed on the stage of an upright microscope
(BX51WI; Olympus, Japan) and submerged in the continuously
superfusing medium (1–2 ml/min). Whole-cell recordings with
a high seal resistance (>1 GΩ before break-in) were obtained
from cells of the nucleus of the tractus solitarius (NTS) using
borosilicate glass pipettes [1.5 mm outer diameter (O.D.);
World Precision Instruments, Sarasota, FL, USA]. The electrodes
contained (in mM): 140 cesium-acetate, 0.1 CaCl2, 2 MgCl2,
5 TEA, 1 EGTA, 10 HEPES, 5 ATP, and 0.1% biocytin (pH
7.3). Unless specified otherwise, drugs were purchased from
Sigma-Aldrich (St. Louis, MO, USA). The resistance of the
electrodes filled with this solution ranged from 5 to 12 M�.
Neuronal signals were recorded in either the voltage-clamp or
the current-clamp mode (Multiclamp 700A; Molecular Devices,
Foster City, CA, USA). Signals were filtered at 1–2 kHz and
digitized at 2–4 kHz.

For detecting inward excitatory postsynaptic currents
(EPSCs) and outward inhibitory PSCs (IPSCs) in the same
neurons, the membrane potential was clamped first between
−60 and −70 mV and then between 0 and 10 mV, respectively.
Upward and downward currents of peak amplitudes more than
twice the device noise level (∼20 pA) were sampled.

Evoked EPSCs and IPSCs were also recorded and analyzed.
Isolated stimuli of 100–200 µs duration were applied at ∼0.1 Hz
through tungsten bipolar electrodes with a tip diameter of 20 µm
and separation of 150 µm. The electrodes were positioned at the
dorsomedial part of the tractus solitarius in coronal slices.

On occasion, the A-type γ-aminobutyric acid (GABAA)
receptor antagonist bicuculline methiodide (10 µM) and
the non- N-methyl-D-aspartate (NMDA) glutamate receptor
antagonist 6-cyano-7-nitroquinoxaline-2,3-dione disodium
(10 µM) were bath-applied to isolate excitatory glutamate- and
inhibitory GABA-mediated activities, respectively.

For in vivo preparations, electrophysiological recordings were
carried out using five male Sprague–Dawley rats (weight range,
280–310 g). Animals were anesthetized with an intraperitoneal
injection of ketamine (30 mg/kg) and xylazine (24 mg/kg) and
placed in a stereotaxic instrument for recording. In most cases,
0.5% isoflurane was additionally administered through a nose
mask to obtain sufficient depth of anesthesia during recordings.

Glass electrodes (1.5 mmO.D.; World Precision Instruments)
containing 2 M NaCl were used in in vivo extracellular
recordings. The resistance of the electrodes filled with this
solution ranged from 1 to 5 MΩ. After making an incision in the
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atlanto-occipital dural membrane, an electrode tip was advanced
under a stereoscopic microscope vertically with a motorized
micromanipulator (IVM Single; Scientifica, East Sussex, UK)
into the exposed left dorsal medulla at the level of the area
postrema; the depth was 50–500 µm from the brain surface.
Neuronal signals were recorded in alternating current mode
with a Multiclamp700A. The amplified signals were analyzed
offline using Spike2 (Cambridge Electronic Design Limited,
Cambridge, UK) and OriginPro2017 (Lightstone Company,
Tokyo, Japan) software.

Simultaneous 16-channel in vivo recordings were performed
from the vagal complex (VC) using a silicon probe (A1x16-
Poly2s-5mm-50s-177-A16; NeuroNexus Technologies Inc., Ann
Arbor, MI, USA). The resistance of each electrode specified
by the manufacturer was between 0.96 and 1.17 MΩ. Each
electrode ‘‘site’’ consisted of a circular platinum metal 15 µm
in diameter, arranged by two 8-site-columns, and separated by
50 µm (Blanche et al., 2005). Electrical activities were amplified
(A-M Systems Model 3600 Amplifier; Carlsborg, WA, USA),
sampled at 1–4 kHz, and stored for offline analysis.

Cardiorespiratory activities were recorded non-invasively
with a piezoelectric pulse transducer (PZT; MP100; AD
Instruments, New South Wales, NSW, Australia). The PZT
transformed themechanical movement or vibration of the thorax
(through touch on the sensor probe patch) into electrical signals
that could be divided into heartbeat and respiration components
(Sato et al., 2006).

Data Analysis
Event data displays (Figure 1) were made using Spike2 menu
commands. ‘‘Instantaneous frequency (Inst)’’ takes the inverse
of the time difference between the current event and the one
preceding it. The event is plotted as a dot. The x-axis dot position
is the time event. The y-axis dot position is the instantaneous
frequency of that event in Hz with respect to the previous event.
‘‘Mean frequency (Mean)’’ is calculated over the preceding data
at each event. ‘‘Rate’’ counts how many events fall within a time
period (1 s) and displays the result in the form of a histogram.

Neuronal signals recorded in vivo exhibited, to a highly
variable degree, a mixture of single- or multi-unit spikes and
LFPs, especially when using standard glass electrodes, whereas
signals recorded with a silicon probe mostly consisted of
LFPs. For 0–10 Hz phase (frequency range of cardiorespiratory
rhythms) enhancement, neuronal signals were, in some cases,
offline filtered with a low-pass type II Chebyshev filter (Spike2,
low-filtered between D.C. and 100 Hz with an order of 2 and a
ripple of 60).

Amplitude amplification of in vitro spontaneous EPSCs,
in vivo multiple unit activities (MUAs), and in vivo LFPs was
evaluated in terms of their height change and signal interval.
Records of spontaneous signals (each ∼40-s duration) were
sampled from each recording mode. The height of the signal
amplification was expressed as amean signal/noise ratio obtained
from several experimental sessions (number: 4–8). Intervals
between successive pairs of the amplified signals were measured
and expressed as frequency (Hz). Values were expressed as
mean ± standard errors.

Cross- and auto-correlograms, as well as fast Fourier
transform power spectra, were generated with OriginPro2017.
Continuous wavelet transform (CWT) and wavelet coherence
using Morse wavelets (default wavelet function) were calculated
with MATLAB (The MathWorks, Natick, MA, USA). CWT
and wavelet coherence were expressed as time-resolved power
and coherence spectra, respectively. A detailed explanation of
each formula for numerical analysis was previously provided
(Kawai, 2018b).

RESULTS

The caudal parts of the NTS consist of small, densely packed
cells which are densely innervated by recurrent local axons that
establish both excitatory and inhibitory synaptic transmission
(Figures 1A1,A2, Negishi and Kawai, 2011). This microcircuit
configuration of the caudal NTS seems to constitute an
extremely noisy environment. The noise consisted mostly
of subthreshold high-frequency postsynaptic activity even in
in vitro slice preparations (Figure 1B1). The frequency of
excitatory inward currents recorded from a small cell in the
whole-cell mode of the patch-clamp technique was between
1.1 and 18.0 Hz (6.2 ± 1.2 Hz, n = 12). The postsynaptic activity
was considered to be noise because paired activity recorded
simultaneously from two neighboring cells (less than 50 µm in
distance) showed no correlation or any specific corresponding
spectra (Figures 1B2,B3). However, this noisy environment
of the NTS rarely developed into a persistent firing even in
in vivo experiments.

Phase adaptation described in this study represents an
increase in the frequency of signal or noise associated with
spontaneous or evoked signals of an amplified amplitude. In
in vitro preparations, subthreshold EPSCs were analyzed because
the spontaneous occurrence of spikes was extremely rare in
the VC, while spikes were easily evoked after a slight external
stimulation of afferent synapses. In contrast, neuronal signal or
noise recorded in vivo as MUAs and LPFs would consist mostly
of spike activity. A possible cooperative relationship between
amplitude amplification and phase adaptation was addressed
using both in vitro and in vivo preparations.

Evoked Phase Adaptation of Postsynaptic
Activities in vitro
Evoked EPSCs were recorded from small NTS cells by minimally
stimulating the tractus solitarius (Figure 1C1). Each tractus
solitarius stimulation elicited usually a monosynaptic EPSC
that possibly derived from primary afferents or nearby cells or
polysynaptic EPSCs that could last for up to several seconds
(solid triangles in Figures 1C1, 2). In a few cases, the tractus
solitarius stimulation failed to generate apparent polysynaptic
EPSCs (open triangle and arrow in Figure 1C1). An evoked
elevation of secondary polysynaptic activities was inconsistently
observed (Figure 1C2). This statistically significant increase in
noise frequency after an external stimulation was indicative of
‘‘reverberation of recurrent activity’’ (Tegnér et al., 2002). The
reverberation reached 20–30 Hz in the instantaneous frequency
(Inst in Figure 1C2), more than 10 Hz in the mean frequency
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FIGURE 1 | Evoked phase adaptation of postsynaptic activities in vitro. (A1) A differential interference contrast (DIC) photomicrograph showing the recording and
stimulation sites for in vitro slice preparations. (A2) A DIC photo of higher magnification. An electrode tip is shown. Note the size and density of NTS cells. (B1)
Postsynaptic potentials (PSPs) recorded from two nearby neurons (#1 and #2) in a slice preparation using the patch-clamp whole-cell technique in the current-clamp
mode. (B2) Cross- and auto-correlations (Corr.) of the PSPs. The lack of correlation between the PSP activities of the two cells shows that most of these
spontaneous PSP activities were noise or fluctuation. (B3) Power spectra (0–10 Hz range) of the PSPs (#1 and #2) of 20 s duration. No specific frequency peaks or
spectra coincidences between the PSPs are noted, characterizing the PSP activity features as noise. (C1,2) The frequency (phase) of noise activities recorded as
postsynaptic currents (PSCs) is increased transiently over several seconds after an external stimulation of input fibers (triangles in C1). Of six successive stimulations,
one (the open triangle in C1) fails to elicit a sufficient increase in frequency (arrow in C1). The phase adaptation elicited by external inputs are characterized by
instantaneous (Inst in C2) frequencies of more than 10 Hz, increased mean (Mean in C2) events, and rate (Rate in C2) frequencies following subthreshold stimulations
(gray vertical lines). ap, area postrema; cc, central canal; dmnX, the dorsal motor nucleus of the vagus; NTS, nucleus of the tractus solitarius; TS, tractus solitarius.

(Mean in Figure 1C2), 10–15 Hz in the rate count (Rate in
Figure 1C2) and lasted for 1–5 s (Figure 1C2).

Evoked Amplitude Amplification of
Postsynaptic Activities in vitro
The superimposition of a preceding evoked monosynaptic EPSC
and the following multiple polysynaptic EPSCs by adjusting the

stimulus artifacts (triangles in Figure 1C1; n = 6) was utilized
to better assess the relationship between them (Figure 2A).
A reverberation is most evident within ∼1 s following the
stimulation (top wave trace, Figure 2A). More expanded wave
traces (middle and lower traces, Figure 2A) indicate that
multiple polysynaptic EPSCs appear more frequently near the
preceding evoked EPSCs (double arrowheads in the lower
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FIGURE 2 | Evoked amplitude amplification of postsynaptic activities in vitro. (A) Superimposition of six episodes of PSCs following external stimulations
(arrowheads), as indicated in Figure 1. During the 1-s period after a stimulation, an apparent increase in the frequency of inward PSCs is noted (gray bar in the top
wave trace). Both upward and downward stimulus artifacts are truncated in the top wave trace. Traces (middle and bottom) further expanded near the stimulus
artifacts reveal high amplitude inward (downward) PSCs (double arrowhead in the bottom trace) following the stimulus artifacts (arrowheads). Out of six PSCs
following the stimuli, one PSC of low amplitude fails to give rise to an increase in frequency (arrow in the bottom trace, see also the open arrowhead in Figure 1C). In
the middle and bottom wave traces, upward traces near the stimulus artifacts are truncated. Note the co-occurrence of preceding high-amplitude PSCs and
episodes of high-frequency PSCs for an increase in frequency. (B) Inward trough (double arrowheads)-triggered superimposition of both spontaneous and evoked
PSCs. The inward evoked PSC with an aborted increase in frequency (tilted arrow, bottom wave trace in A) is embedded in many other spontaneous PSCs whose
amplitudes are all within the noise level.

expanded wave traces, Figure 2A). However, a monosynaptic
EPSC of lower amplitude (206 pA) fails to generate a barrage
of subsequent multiple polysynaptic EPSCs (arrow in the
lower group of traces, Figure 2A; see also Figure 1C1). It
seems that the preceding evoked monosynaptic EPSCs with an
amplitude (423 ± 42.1 pA; n = 5) large enough to elicit a
reverberation cause the following multiple polysynaptic EPSCs,
and thus amplitude amplification and phase adaptation co-occur
by external stimulation. Superimposition of spontaneous and
evoked EPSCs according to their inward current troughs
(Figure 2B) indicates that the amplitude of an evoked EPSC
failing to elicit a reverberation was within the range (40–260 pA)
of that of spontaneous EPSCs, i.e., of a fluctuation (noise) level.

Spontaneous Amplitude Amplification of
Electrical Activities in vitro and in vivo
The mean amplitude of spontaneous EPSCs in patch-
clamp whole-cell recordings of the voltage-clamp mode
was 40–50 pA in slice preparations (Figures 3A,B). The
distribution of current amplitudes revealed a logarithmic

normal distribution with a long tail. A spontaneous amplitude
amplification rarely occurred in less than 2% of EPSCs.
The spontaneous EPSCs superimposed with their inward
current troughs indicate that several preceding EPSCs are
followed by late EPSCs (5–10 ms latency) with a hint of
spontaneous phase adaptation, however, on a few rare occasions,
if any at all.

In contrast to in vitro preparations, a wave amplitude
amplification was seen more frequently and conspicuously
in vivo in terms of occurrence frequency (5–10%) and amplitude
amplification (Figures 3C,D). Neuronal activities in the NTS
recorded with a standard glass electrode comprised mostly a
mixture of single- and multi-unit spikes, as well as highly
polyphasic and LFP-like longer duration waves of up to several
100 µV in amplitude (i.e., the noise level). In a few cases,
neuronal activities with an amplified amplitude (>1 mV)
emerged abruptly, ensued sporadically for several seconds,
and waned (Figure 3C). Similar phenomena of amplitude
amplification were confirmed with LFPs recorded using a silicon
electrode (Figure 3D). Spontaneous amplitude amplification of
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FIGURE 3 | Spontaneous amplitude amplification of electrical activities in vitro and in vivo. (A,B) Two examples of PSCs recorded in slice preparations using the
patch-clamp whole-cell technique in the voltage-clamp mode. Inward trough (arrows)-triggered PSCs are superimposed. Several inward PSCs (arrows) are followed
by late PSCs (double arrows). Note that high-amplitude PSCs occur randomly with an extremely low frequency in the PSC amplitude histograms (tilted arrows) and
the original continuous PSC recordings. Note, the average of PSC amplitudes is 40–50 pA sampled from more than 400 PSCs. (C) Inward trough (arrow)-triggered
multiple unit activities (MUAs) recorded in vivo with a standard glass electrode are superimposed on an original continuous MUA recording. (D) Inward trough
(arrow)-triggered local field potentials (LFPs) recorded in vivo with a silicon electrode are superimposed on an original continuous LFP recording. Note that
high-amplitude signals occur sporadically with higher frequency in the amplitude histograms (tilted arrows). In in vivo recordings, episodes of repetitive
high-amplitude activities over several tens of seconds are spontaneously generated and subdued. EPSC, excitatory postsynaptic current.

neuronal activities was observed in the NTS of both in vitro and
in vivo preparations.

Cooperative Phase Adaptation and
Amplitude Amplification of Spontaneous
Neuronal Activities in vivo
In in vivo preparations, it seemed that amplitude amplification
occurred in concert with the respiratory rhythm (Kawai, 2018b).
In order to verify this in more detail, cardiorespiratory and
neuronal NTS activities were simultaneously recorded using a
non-invasive PZT placed under the thorax (Figures 4A1,B).
The power spectra of neuronal (NTS in Figure 4A2) and
cardiorespiratory (PZT in Figure 4A2) rhythms show clear
coherence. The respiratory and cardiac fundamental frequencies
were ∼1.3 Hz and ∼6.8 Hz, respectively. Superimposition of
simultaneous neuronal and PZT activities triggered by each large
peak of PZT activity (that roughly corresponds to a transition
from the inspiratory to the expiratory phase) indicates that
amplitude amplification and higher frequency of noise co-occur
during each inspiratory phase (Figures 4A1,B). However,
strikingly large amplitudes of neuronal activity are concentrated
either in the initial (Figure 4A1) or the final (Figure 4B) segment
of an inspiratory phase.

Emergence of Large-Scale Cooperative
Phase Adaptation and Amplitude
Amplification of Neuronal Activities in vivo
Given that each NTS cell fires synchronously during an
inspiratory phase, large-scale oscillatory synchrony was expected
to be recorded in the VC with silicon multielectrode. Since
the silicon electrode had a large vertical dimension of ∼400 µm,
the part of the medulla oblongata termed the VC, consisting of
the caudal NTS and the dorsal motor nucleus of the vagus nerve,
was used instead of the NTS, to improve precision (Figure 5A).

As shown in Figure 3D, the amplitudes of LFPs changed
sporadically. To quantify the three different phases of wave
activities, 20-s (Figure 5B) and time-resolved (Figure 5C; CWT)
power spectra were applied to three successive episodes (in
magenta, green, and blue; 20 s durations, Figure 5D) of LFPs
at a certain fixed recording site of the electrode. The power
spectra show that the larger the signal amplitude the larger the
power and that stronger power signals converge to a 1–3 Hz
frequency (delta) band (Figure 5C). Time-resolved coherence
spectra (wavelet coherence, Wcoh) between trace pairs with
different distances (50, 200, and 350 µm) indicated that the
shorter the distance of two paired recording sites or the larger the
amplitude of the paired waves is, larger is the coherence between
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FIGURE 4 | Cooperative phase adaptation and amplitude amplification of neuronal activities in vivo. (A1,B) Two examples showing high-amplitude neuronal
electrical activities recorded with a standard glass electrode. The majority of high-amplitude signals are synchronized with the inspiratory phase according to
simultaneously recorded signals (gray traces) of a piezoelectric transducer (PZT) attached to the thorax. The superimposition according to PZT upward peaks
(vertical arrows) of simultaneous neuronal (NTS) and PZT recordings shows several tens of consecutive episodes of one respiratory cycle (A1, 30 cycles; B,
26 cycles). Expanded wave traces are truncated and scaled to values in parentheses (A1,B). (A2) Power spectra of neuronal (NTS) and cardiorespiratory (PZT)
rhythms. Note synchrony of these two waves. Solid and open circles indicate respiratory and cardiac fundamental frequencies (∼1.3 Hz and ∼6.8 Hz, respectively).
They are represented respectively as large (solid circle with arrow) and small (open circles with arrows) upward waves in the PZT trace (A1). NTS, nucleus of the
tractus solitarius; a.u., arbitrary unit.

those wave pairs (Figure 5E). A large amplitude with a large-scale
phase adaptation of LFPs generated larger power and coherence
over a larger brain area.

Quantitation of Amplitude Amplification
and Frequency of Spontaneous Signals
Amplitude amplification of in vitro spontaneous EPSCs, in vivo
MUAs, and in vivo LFPs was evaluated according to the height
changes and signal intervals (Figure 6). Values for amplitude
amplification of spontaneous EPSCs, MUAs, and LFPs were
4.3 ± 0.9 (n = 4, each session contained 15 samples), 18.6 ± 4.6
(n = 5, 17 samples), and 49.6 ± 11.3 (n = 8, 18 samples),
respectively. Values for the frequency of the amplified signals
were 0.28 ± 0.12 (n = 15), 1.34 ± 0.16 (n = 21), and 0.97 ± 0.07
(n = 21), respectively. The frequency of amplified signals in
in vivo recordings was adapted to a range of respiratory rhythmic
cycles (∼1 Hz).

DISCUSSION

Large-scale oscillatory synchrony emerges spontaneously in the
VC of anesthetized animals (Kawai, 2018b). Neuronal activity
changes incessantly in frequency and amplitude depending on
the spatial dimension of the oscillatory synchrony (Destexhe
et al., 1999; Buzsaki, 2006). This phenomenon implies that
the important properties of neuronal activity, i.e., phase and
amplitude, may interact interdependently. The cooperative
dynamics of wave amplitude and phase were addressed in the
present study with respect to neuronal circuit configuration
or dimension.

Microcircuits and Macrocircuits Involving
the Vagal Complex
The VC consists of the caudal NTS and the dorsal
motor nucleus of the vagus nerve (Ramon y Cajal, 1995;
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FIGURE 5 | The emergence of large-scale cooperative phase adaptation and amplitude amplification of neuronal activities in vivo. (A) A silicon electrode records
LFPs at multiple sites over a 100 µm along the depth of the vagal complex (VC). Right, Magnification of the picture from an anatomical atlas (left). (B,C)
Twenty-second (B) and time-resolved (C; continuous wavelet transform, CWT) power spectra of three successive episodes (20 s) of LFPs at a certain fixed recording
site (three traces in D, top). (B) The power of high-amplitude LFPs (in blue) is increased compared to those of low-amplitude LFPs (in magenta and green, inset for a
gray bar region). This representative set of episodes (solid circle in D) is one of eight sets of traces (D, multiple LFPs). (E) Time-resolved coherence spectra (wavelet
coherence, Wcoh) between pairs of traces of the representative episode (solid circle in D) and of those at different distances (50, 200, and 350 µm apart, D, bottom).
Note that the shorter the distance of paired sites or the larger the amplitude of paired waves is, the larger the coherence is. Amb, ambiguous nucleus; ap, area
postrema; cc, central canal; dmnX, the dorsal motor nucleus of the vagus; Gr, gracilis nucleus; NTS, nucleus of the tractus solitarius; nXII (12), hypoglossal nucleus;
py, pyramidal tract; TS, tractus solitarius; Vsp, spinal nucleus of the trigeminal nerves.

Kawai, 2018a,b). The caudal NTS provides multiple connections
with diverse brain areas encompassing the telencephalon to the
spinal cord, thus establishing large-scale macrocircuits (Kawai,
2018a). Most brain areas innervated by the NTS establish

reciprocal connections with the NTS and form regenerative
macrocircuits including intrabulbar brainstem mesocircuits
that govern a robust rhythmic cardiorespiratory activity. This
multiple-nested circuit configuration may implement noise-
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FIGURE 6 | Quantification of amplitude amplification and frequency. Amplitude amplification of in vitro spontaneous EPSCs, in vivo MUAs, and in vivo LFPs are
quantified according to height changes and signal intervals. Note that the frequency of amplified signals in in vivo recordings adapts to a range of respiratory rhythmic
cycles (∼1 Hz: gray shaded range). Values are represented as mean ± standard errors.

based stochastic synchrony that could confer a benefit to such
a system in which robust cardiorespiratory rhythmicity and
resilience to external perturbation coexist cooperatively. In
addition to macrocircuits, the NTS contains microcircuits
in which dense recurrent axons generate a highly noisy
neuronal activity (Negishi and Kawai, 2011). The noise-based
synchrony of cooperative wave phase adaptation and amplitude
amplification in NTS microcircuits is specifically attributed
to their cytoarchitectural features. The NTS consists of an
extremely concentrated assembly of synaptically interconnected
small cells (∼11 µm in diameter; Yoshioka et al., 2006). This
structural compactness enables a clearer recording of emergent
noise-based synchrony in in vivo preparations with a typical glass
electrode, since the detection of a wave amplitude amplification
is relatively easy with a stochastic correlation of noise activity.
This may be due to the fact that a given receptive electrical field at
an electrode tip would contain much greater numbers of smaller
cell soma. This seems to provide a functional significance for
sensory processing in reference to intrinsic stochastic synchrony
since the NTS is strategically the sole recipient of peripheral
viscerosensory information while connecting central macro-
circuits governing rhythmic cardiorespiratory activity. This
cooperative interplay between microcircuits and macrocircuits
would be of functional significance.

Different behaviors of phase adaptation and amplitude
amplification in in vitro and in vivo preparations could result
from a developmental change in circuits rather than the
different dimensions (micro vs. macro) of matured circuit
organization. However, it has been demonstrated anatomically
and physiologically that the VC circuit matures until late in
the third week of postnatal development, supporting the latter
possibility (Yoshioka et al., 2006; Tashiro and Kawai, 2007).

Neuronal Activity as Noise and Signal
The hierarchical architecture of nested neuronal circuits
involving the VC could provide the anatomical basis for its
unique task for VC for viscerosensory information processing

(the caudal NTS) and autonomic output production (the dorsal
motor nucleus of the vagus nerve) in addition to centrally
generated neuronal activity. The centrally generated neuronal
activity consists mostly of spontaneous stochastic noise that
can change into signals of varied spatiotemporal dimensions
and dynamics based on the cross-frequency coupling of the
cardiorespiratory frequency range (Kawai, 2018b).

Wave synchrony and oscillation are, in most cases,
phenomena that co-occur during neuronal activity, but
the relative proportion of power in a certain macroscopic
phenomenon varies according to the required task of the
neuronal activity (Destexhe et al., 1999; Buzsaki, 2006). In
the large-scale neuronal activity, wave synchrony with large
amplitudes would be more appropriate for a signal transfer over
longer distances to multiple destinations. For local activities,
wave oscillations with a fine-tuned phase (particularly those of
the higher gamma frequency range) would be appropriate for
holding more precise information. The fundamental feature of
ongoing neuronal activity is stochastic fluctuation (noise) to
enable a potential development into a signal in either direction
according to the changing environment to which individuals
must adapt.

Gap junctions between neurons may play an important role
in synchronized rhythms (Konopacki et al., 2014). However,
this is unlikely to be the case in the VC because intracellular
injections of biocytin or lucifer yellow, which can penetrate the
junction complex, were not reported to stain any neighboring
cells (Yoshioka et al., 2006; Negishi and Kawai, 2011).

Emergence and Development of
Stochastic Synchrony
The phenomenon described in the present study seems to be
similar to stochastic synchrony investigated in the olfactory bulb
(Galán et al., 2006) in that both are likely to be noise-induced
synchronization. Correlated noisy inputs are able to generate
synchronous oscillation of the gamma frequency range (∼40 Hz)
in mitral cells of the olfactory bulb in vitro. Of note is the
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clear difference in frequency ranges between low (delta–theta
for the VC, present study) and high (gamma for olfactory
mitral cells; Galán et al., 2006). The stochastic synchrony
emerges due to the influence of partially correlated but aperiodic
transient inputs; neither synaptic coupling nor oscillatory input is
required. In this respect, this phenomenon should be designated
as coherence resonance (Pikovsky and Kurths, 1997) but not
stochastic resonance (McDonnell and Abbott, 2009). Stochastic
resonance has been used to explain noise-dependent entrainment
of neuronal firing to a subthreshold oscillatory input in a
variety of systems (Wiesenfeld and Moss, 1995; McDonnell and
Abbott, 2009), including crayfish mechanoreceptors (Douglass
et al., 1993; Moss and Pei, 1995). Although the adaptive
feature of spiking synchrony and periodic network bursts was
also investigated in neuronal networks (Mainen et al., 1995;
Fardet et al., 2018), a relevance to stochastic noise was not
addressed. The spontaneous synchrony, in this case, seems to be
generated by phase-adaptive ion channel properties rather than
stochastic noise.

Complex Adaptive System
The term complex adaptive system states that complex,
emergent, and macroscopic properties of the system as a whole
(an ensemble) could be self-organized as a result of non-linear
dynamics of interacting microscopic elements, where they have
no a priori plan or meaning (Holland, 1995; Kelso, 2016).
The system is also characterized by a high degree of adaptive
capacity (adaptation or homeostasis), giving it resilience in the
face of perturbation. The microscopic interactions are non-
linear, such that small changes in inputs, physical interactions,
or stimuli can cause large effects or significant changes in
outputs. Any interaction can feedback onto itself directly or
after a number of intervening stages. Such feedback can vary
in quality. This interaction may be designated as regenerative
recurrence or iteration. The overall behavior of the system
of elements would not be predicted by the behavior of the
individual elements.

The above-mentioned description concerning a complex
adaptive system may be applicable to many aspects of stochastic
synchrony of the VC neuronal activity revealed in this study. The
results show that a stable frequency of robust neuronal activity
ranging to respiration rhythms emerges in vivo networks and
would adapt to a changing environment.

CONCLUSION

The maintenance of rhythmic cardiorespiratory brain activity,
which is the most fundamental and robust activity, may
be a prerequisite for sustaining life. This robust task is
attributed essentially to neuronal networks of the brainstem
responsible for rhythmic cardiorespiratory activity (Feldman
and Ellenberger, 1988). This task also requires resilience
in the face of immediate changes in the environment,
which individuals must constantly adapt to (Dick et al.,
2014). The activity of the brainstem network involving the
VC must obey a system rule in which robustness and
resilience cooperatively and dynamically coexist. The most
promising candidate for a system model may be that of a
complex adaptive system (Holland, 1995; Kelso, 2016). This
system contains concepts with several important keywords,
including but not limited to robustness and resilience, self-
organization, synchrony, non-linear dynamics, and emergence.
Studies of system dynamics addressing such perspectives warrant
multidisciplinary investigations using both experimental and
theoretical approaches.
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Coupling of neural oscillations is essential for the transmission of cortical motor

commands to motoneuron pools through direct and indirect descending motor

pathways. Most studies focus on iso-frequency coupling between brain and muscle

activities, i.e., cortico-muscular coherence, which is thought to reflect motor command

transmission in the mono-synaptic corticospinal pathway. Compared to this direct

pathway, indirect corticobulbospinal motor pathways involve multiple intermediate

synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs

can lead to modulation of inter-spike intervals which produces cross-frequency coupling.

This theoretical study aims to evaluate the effect of the number of synaptic layers

in descending pathways on the expression of cross-frequency coupling between

supraspinal input and the cumulative output of the motoneuron pool using a computer

simulation. We simulated descending pathways as various layers of interneurons with a

terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and

iso-frequency coupling between the supraspinal input and the motorneuron pool output

were computed using a novel generalized coherence measure, i.e., n:m coherence.

We found that the iso-frequency coupling is only dominant in the mono-synaptic

corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic

indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic

direct and multi-synaptic indirect descending pathways showed that increased reliance

on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances

the dominance of cross-frequency coupling between the supraspinal input and the

motorneuron pool output. These results provide the theoretical basis for future human

subject study quantitatively assessing motor command transmission in indirect vs. direct

pathways and its changes after neurological disorders such as unilateral brain injury.

Keywords: cross-frequency coupling, descending motor pathways, computer simulation, Hogdkin–Huxley styled

neuron model, n:m coherence
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INTRODUCTION

The human motor system is a highly cooperative network
comprised of different groups of neurons. Neural coupling, i.e.,
the synchronization of neural activity across these groups, is
key to signal transmission among functionally related, though
anatomically distant, neuronal groups (e.g., the motor cortices
and spinal motoneuron pool) through direct and indirect
descending pathways (van Wijk et al., 2012). Over decades,
most researchers investigating neural coupling in the motor
descending pathways have focused on the synchronization
between cortical oscillations and muscle activities at the same
frequency (i.e., iso-frequency coupling), known as the cortico-
muscular coherence (Mima and Hallett, 1999). It is thought
to reflect motor command transmission in the mono-synaptic
corticospinal tract (Schoffelen et al., 2005). Previous simulation
and in vivo studies demonstrated that, in this direct descending
pathway, despite the non-linearity of individual neurons, neural
oscillation of the supraspinal input could be linearly transmitted
to the cumulative output of the motoneuron pool at the same
frequency (Negro and Farina, 2011a,b). These previous studies
explained the origin of iso-frequency coupling between the
supraspinal input and the motoneuron pool output with respect
to the use of the monosynaptic corticospinal tract as the fastest,
direct descending pathways in healthy individuals.

However, the corticospinal tract is not the onlymotor pathway
in humans. There are other indirect pathways (e.g., cortico-
reticulospinal tract, rubrospinal tract) in parallel with the direct
corticospinal tract (Dum and Strick, 1991; Jang and Seo, 2014).
Although contributions from these indirect motor pathways are
relatively small compared to the corticospinal tract in healthy
individuals, they do still play important roles in various motor
control tasks such as postural control during movement (Drew
et al., 2004). Furthermore, in some neurological disorders, such
as unilateral brain injury, the reliance on these indirect motor
pathways may increase due to losses of corticospinal projections
(Fries et al., 1993; Jang et al., 2013; Owen et al., 2017). The injury-
induced increased reliance on these indirect motor pathways
is likely associated with motor impairments (e.g., abnormal
limb synergies and spasticity) post unilateral brain injury (Ellis
et al., 2012, 2017; McPherson et al., 2018a,c; Li et al., 2019).
Thus, investigating the neural coupling in these indirect motor
pathways will allow for a more complete understanding of the
transmission of motor commands from the brain to muscles,
and may pave the way for quantitative assessments of the usage
of indirect motor pathways in both normal and pathological
motor control.

Compared to the direct corticospinal tract, these indirect
motor pathways involve multiple synaptic connections via
interneurons. Neuronal processing of synaptic inputs can lead
to the modulation of inter-spike intervals which produces
cross-frequency coupling, i.e., synchronization across different
frequencies between input and output (Koch and Segev, 2000;
Markram, 2003; Yang et al., 2018). Our previous work on multi-
synaptic ascending sensory pathways (Yang et al., 2016b; Tian
et al., 2018), as well as a recent opinion article (Yang et al.,
2018), argued that multi-synaptic interaction in a neural pathway

can lead to a substantial expression of cross-frequency coupling.
However, insights into possible mechanisms underlying neural
coupling in the multi-synaptic descending motor pathways
are currently lacking. Focusing on the iso-frequency coupling
(e.g., cortico-muscular coherence) only one previous study
indicated that the input from the indirect motor pathways can
reduce the iso-frequency coupling between the cortical input
and motoneuron pool output (Negro and Farina, 2011a) while
no insight has been provided into the neural mechanisms of
cross-frequency coupling. This study aims to systematically
evaluate the effect of the number of synaptic connections or
interneuron layers on the expression of cross-frequency coupling
between supraspinal input and output of the motoneuron
pool using computer simulations. We hypothesize that multi-
synaptic interaction in an indirect descending motor pathway
increases the non-linear distortion of efferent motor signal
transmission, resulting in enhanced cross-frequency coupling
over iso-frequency coupling.

To test our hypothesis, we simulated descending pathways
as various layers of interneurons in cascade with a terminal
motoneuron pool, using Hodgkin-Huxley styled neuron models
(Booth et al., 1997; Rybak et al., 2006). Both cross- and iso-
frequency coupling between the input (which comprised of a
supraspinal drive with an independent membrane noise) and the
output of the motoneuron pool were computed using a recently
developed generalized coherence method (Yang et al., 2016b).
The ratio of cross- to iso-frequency coupling was calculated
to determine which type (cross- or iso-frequency) of neural
coupling is dominant and how it changes with an increasing
number of synaptic connections or interneuron layers.

METHODS

Motoneuron and Interneuron Models
We simulated descending pathways as various layers of
interneurons in a cascade with a terminal motoneuron pool.
All neurons were modeled in the Hodgkin–Huxley style. A
two-compartment model comprising of a soma and a dendrite
was used for simulating motoneurons (Booth et al., 1997).
Because of the lack of adequate experimental data, a single
compartment simplification of this model was used to simulate
the interneurons (Rybak et al., 2006).

The motoneuron model incorporated the following ionic
currents (with the corresponding channel conductances): fast
sodium (INa with maximal conductance gNa), persistent (slowly
inactivating) sodium (INaP with maximal conductance gNaP),
delayed-rectifier potassium (IK with maximal conductance gK),
calcium-N (ICaN with maximal conductance gCaN), calcium-
L (ICaL with maximal conductance gCaL), calcium-dependent
potassium (IK,Ca with maximal conductance gK,Ca), and leakage
(IL with constant conductance gL) currents (Lee and Heckman,
2001; Darbon et al., 2004; Rybak et al., 2006; Streit et al., 2006):

INa = gNa ×m3
Na × hNa × (V − ENa);

INaP = gNaP ×mNaP × hNaP × (V − ENa);

IK = gK ×m4
K × (V − EK);
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ICaN = gCaN ×m2
CaN × hCaN × (V − ECa);

ICaL = gCaL ×mCaL × (V − ECa);

IK,Ca = gK,Ca ×mK,Ca × (V − EK);

IL = gL × (V − EL);

where V is the membrane potential of the corresponding neuron
compartment [i.e., soma (V(S)) or dendrite (V(D))] in two-
compartment models, or the neuron membrane potential V in
the one-compartment interneuron model which is explained
later). ENa, EK , ECa, and EL are the reversal potentials for
sodium, potassium, calcium and leakage currents, respectively.
The variables m and h (with subscripts indicating ionic
channels) represent the activation and inactivation variables of
the corresponding ionic channels, as described by the following
differential equations:

τmi (V)
d

dt
mi = m∞i (V) −mi

τhi (V)
d

dt
hi = h∞i (V) − hi

where i indicates the name of the channel, m∞i(V) and h∞i(V)
represent the voltage-dependent steady-state activation and
inactivation, and τmi(V) and τhi(V) are the corresponding time
constants (see Booth et al., 1997; Rybak et al., 2006 for details
of these parameters). The instantaneous value of mK,Ca was
calculated from the intracellular Ca2+ concentration of the
corresponding compartment as (Booth et al., 1997):

mK,Ca =
Ca

Ca+ Kd

where Ca is the Ca2+ concentration of the corresponding
compartment of the neuron and Kd is the half-saturation
level of this conductance. The kinetics of intracellular Ca2+

concentration (|Ca|) were computed separately for each
compartment according to the following equation:

d

dt
|Ca| = −f × (αICa + kCa|Ca|)

where f defines the percentage of free to total Ca2+, α converts the
total Ca2+ current, ICa, to Ca2+ concentration and kCa represents
the Ca2+ removal rate.

The maximal channel conductances, equilibrium potentials
and membrane capacitance of the neuron models were set with
the same values as in Rybak et al. (2006). The details are
specified in the Appendix. The equilibrium leakage potentials
of the motoneurons and interneurons were set as described in
section Simulations.

The dendrite–soma coupling currents (with conductance gC)
for soma (IC(S)) and dendrite (IC(D)) were calculated as (Booth
et al., 1997):

IC(S) =
gC

p

(

V(D) − V(S)

)

IC(D) =
gC

1− p
(V(S) − V(D))

where p is the parameter defining the ratio of somatic surface area
to the total neuronal surface area.

We used conductance-based excitatory post-synaptic
potentials (EPSPs) for simulating the synaptic inputs to each
motoneuron. The synapses were modeled as exponentially
decaying injected currents (ISynE with peak conductance gSynE
and reversal potential ESynE): ISynE = gSynE × (V – ESynE) into
the soma compartment (Negro and Farina, 2011a). The time
constant τsynE for the decay was 5ms (Rybak et al., 2006).
The peak conductance value for synapses on motoneurons
was adjusted to produce an EPSP peak of 100 µV (Finkel and
Redman, 1983).

With the inclusion of INaP to the motoneuron dendrite
(Rybak et al., 2006), the membrane potentials of the motoneuron
soma (V(S)) and dendrite (V(D)) were computed from the
following equations:

C
dV(S)

dt
= −INa(S) − IK(S) − ICaN(S) − IK,Ca(S) − IL(S)

−IC(S) − ISynE

C
dV(D)

dt
= −INaP(D) − ICaN(D) − ICaL(D) − IK,Ca(D) − IL(D)

−IC(D)

where C is the membrane capacitance and t is time.
The interneurons (single-compartment models) contain only

a minimal set of ionic currents (Rybak et al., 2006):

C
dV

dt
= −INa − IK − IL − ISynE

There is no existing literature reporting experimentally observed
values of interneuron EPSPs of the descending pathways. Since
interneurons are usually much smaller than motoneurons, they
have higher input resistances and smaller somatic surface areas
(Bui et al., 2003). Thus, we adjusted peak conductance of synapses
on interneurons to produce an EPSP peak of 500 µV.

Input Signal and Connection Configuration
We used a probabilistic connection model (Ferrario et al., 2018)
to simulate descending pathways with various layers and 100
neurons per layer (Lüscher et al., 1983) (see Figure 1). Each
neuron in the first layer was fed by a time-varying injected
current into the somatic compartment. The supraspinal input
was designed as a Gaussian signal in beta band (15–35Hz)
[mimicking the cortical oscillations observed experimentally
during motor tasks (Pfurtscheller and Da Silva, 1999)] with an
added membrane noise (see Figure 2). The membrane noise was
modeled as a bandlimited (1–100Hz) Gaussian noise, which was
independent for each neuron (Maltenfort et al., 1998). The total
variance of this stochastic input was a percentage of the constant
current injection to produce amean ISI-CoV of (i) 0.55 for the 1st
interneuron layer in case of multi-synaptic pathways (Prut and
Perlmutter, 2003), and (ii) 0.2–0.3 for the motoneuron pool in
case of the mono-synaptic pathway (Tanji and Kato, 1972; Sturm
et al., 1997; Mattei and Schmied, 2002).

For the successive layers, the input to each neuron was the
sum of output spike trains (convolved with the EPSP) of neurons
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FIGURE 1 | Simulation of descending pathways with various layers (N = 0, 1, 2, …) of interneurons in cascade with a terminal motoneuron pool. In, interneuron; Mn,

motoneuron.

FIGURE 2 | Simulated supraspinal input comprising of a Gaussian signal (15–35Hz) with added Gaussian noise (1–100Hz band-limited) with signal-to-noise ratio of

∼−7.5 dB.

randomly sampled from the previous layer. The number of
neurons which contributed to the input of each interneuron
was set to obtain a mean firing rate in the range of 19–24
spikes/s for the whole interneuron layer. This is in line with
previous experimental observations in primate models during
flexion/extension tasks (Prut and Perlmutter, 2003). The number

of inputs to each motoneuron was set to 100 i.e., the sum of
inputs from all interneurons of the terminal interneuron layer.
The range of the firing rates was adjusted as explained in section
Simulations. The mean firing rate of the active motoneurons (>8
spikes/s; Negro and Farina, 2011a) was thus obtained to be in the
range of 16–19 spikes/s. Such a connection model resembles the
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anatomical course of various descending motor pathways which,
via a varying number of interneuron layers, terminate on spinal
motoneuron pools (Matsuyama et al., 2004).

Simulations
Simulations were run at a sampling rate of 1 kHz using 200
epochs with a 1-s duration per epoch. The resulting data were
sufficient for a robust neural coupling analysis (Hagihira et al.,
2001). Our simulated multi-synaptic pathways represented the
part of descending pathway involving only spinal interneurons
and motoneurons, since no reticular neurons were simulated
due to the complete lack necessary parameters in the existing
literature (McDougal et al., 2017). A previous study reported
heterogeneity of excitatory spinal interneuron populations based
on their firing rates. It found a non-monotonous decline in the
mean firing rate histogram with a local peak at ∼50 spikes/s
(Prut and Perlmutter, 2003). In the simulations, we mimicked
this histogram (see Figure 3A) by combining two random
exponential distributions of leakage potential (EL) values for each
interneuron layer. The range of EL was adjusted so that its mean
was around −64mV (Rybak et al., 2006). Motoneuron firing
rates have been experimentally reported to be predominantly
in the range of 5–30 spikes/s during isometric contractions
of limb muscles (for contraction levels ≤60% of maximum
voluntary torque) (De Luca and Hostage, 2010). We adjusted the
leakage potentials of the motoneurons in the pool to generate a
distribution (Rybak et al., 2006) of firing rates in a similar range
(see Figure 3B).

Neural Coupling Analysis
We used our recently developed generalized coherence
measure, i.e., n:m coherence (NMC) (Yang et al., 2016b),
to assess cross- and iso-frequency coupling between the
simulated input and output signals. The n:m coherence is
a straightforward extension of the linear coherence used
in corticomuscular coherence (Mima and Hallett, 1999)
based on high-order statistics (Nikias and Mendel, 1993)
for distinguishably determining cross- and iso-frequency
coupling between signals. Thus, the iso-frequency coupling of
our results obtained by this method would be comparable
to previous corticomuscular coherence studies (Mima
and Hallett, 1999; Mima et al., 2001; Yang et al., 2016a,
2018).

Let X(f ), Y(f ) be the Fourier Transform of two time series
(e.g., the input and output signals). The NMC between them is
defined as:

NMC
(

fX , fY
)

=

∣
∣SXY

(

fX , fY
)∣
∣

√

SnX
(

fX
)

SmY
(

fY
)

for assessing cross-frequency (fX 6= fY ) and iso-frequency
(fX = fY ) coupling between signals, where m/n is the simple
whole number ratio of fX/fY (e.g., if fX = 8, fY = 16 then
m= 1, n= 2) and

SXY
(

fX , fY
)

=< Xn
(

fX
) (

Ym
(

fY
))∗

>,

SnX
(

fX
)

=< Xn
(

fX
) (

Xn
(

fX
))∗

>

where < · > represents the averaging over epochs and
Xn = X(fx) · X(fx) · . . . · X(fx)

︸ ︷︷ ︸

n

.

The NMC reflects the strength of iso- or cross-frequency
coupling between signals.When fX = fY , we havem= n=1, then
the NMC is equivalent to the classical (linear) coherence for iso-
frequency coupling (Yang et al., 2016a). When fX 6= fY , then the
NMC indicates the non-linear coupling between signals across
different frequency components (i.e., cross-frequency coupling)
(Yang et al., 2015). Thus, the n:mmapping can generate harmonic
(m = 1) and subharmonic coupling (m > 1) between the
input and the output in the frequency domain (Yang et al.,
2016b). As a generalized coherence method, the NMC is a
metric indicating cross-frequency coherence between signals,
which is different from other cross-frequency coupling methods
such as the phase-amplitude coupling (De Hemptinne et al.,
2013) reflecting how a low-frequency phase modulates a high-
frequency amplitude.

According to Cauchy-Schwarz-inequality, we have:

∣
∣〈Xn

(

fX
) (

Ym
(

fY
))∗

〉
∣
∣ ≤

(

〈
∣
∣Xn

(

fX
)∣
∣
2
〉

)1/2 (

〈
∣
∣Ym

(

fY
)∣
∣
2
〉

)1/2

Thus, the NMC is bounded by 0 and 1, where 1 indicates
that two signals are perfectly coupled at the tested frequency
pair (f X, f Y). As the NMC values are computed by comparing
different frequency pairs between signals, the significant
threshold was adapted with a Bonferroni correction to control
the type I error (family-wise error rate: 0.05) (Yang et al.,
2016b). There are 2,100 frequency pairs that were included
for Bonferroni corrections, i.e., 21 frequencies in the input
(from 15 to 35Hz at 1Hz resolution) × 100 frequencies
in the output (from 1 to 100Hz at 1Hz resolution). More
details of the NMC method is available in Yang et al.
(2016b).

Since the supraspinal input had added independent noise for
each 1st layer neuron, each coupling analysis was repeated 100
times, each time with a different realization of the independent
noise (as described in section Input Signal and Connection
Configuration) added to the supraspinal input in the same
signal-to-noise ratio as the original input (i.e., ∼-7.5 dB). To
compare the dominance of cross- vs. iso-frequency coupling,
we defined the cross-frequency coupling over iso-frequency
coupling index as COI = (CFC–IFC)/(CFC+IFC), where CFC
is the sum of all significant cross-frequency coupling values
and IFC the sum of all significant iso-frequency coupling. We
included only “significant” CFC and IFC values to exclude
false positives in the coherence analysis. The range of COI is
[−1, 1], where a larger COI indicates a more dominant cross-
frequency coupling.

To examine the effect of the number of synaptic/interneuron
layers on neural coupling of descending pathways, we computed
NMC, IFC, CFC, and COI between the given supraspinal input
and the cumulative spike train (CST) output of the simulated
motoneuron pool (derived as the sum of individual motoneuron
spike trains following Negro and Farina, 2011a). In addition,
the IFC, CFC, and COI between the supraspinal input and the
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FIGURE 3 | Firing rate of simulated neurons. (A) Histogram of mean firing rates of the simulated interneuron layer with a secondary peak at ∼ 50 spikes/s. (B) Scatter

plot showing the distribution of mean firing rates of the simulated pool of motoneuron.

CST of each successive interneuron layer was also computed to
evaluate how they change across layers. Furthermore, we also
examined the combined effect of both mono- and multi-synaptic
pathways on neural coupling by varying the weight of the input
from either pathway (with the same supraspinal input) to the
terminal motoneuron pool.

RESULTS

Neural Coupling Between the Supraspinal
Input and the Cumulative Output From
Motoneuron Pool
Both iso-frequency coupling and cross-frequency coupling were
detected in the simulated motor pathways (see Figure 4). The
detected cross-frequency coupling includes harmonic coupling
(i.e., output frequency over input frequency ratio n/m is
an integer) and non-integer n:m coupling. This result is
in line with previous experimental studies reporting both
harmonic and non-integer coupling in the human sensorimotor
system (Daffertshofer et al., 2000; Yang et al., 2016a). A
higher amount of cross-frequency coupling was observed in
the multi-synaptic pathways where there are one or more
interneuron layers.

To examine how iso-frequency coupling and cross-frequency
coupling evolved with increasing interneuron layers, we
computed the IFC, CFC, and COI between the given supraspinal
input and the motoneuron pool output for simulated pathways
with various layers (N = 0, 1, 2, 3, . . . ) of interneurons in
cascade with a terminal motoneuron pool (see Figure 5). Using
one-way ANOVA we found that the number of interneuron
layers had significant effect on IFC [F(10, 1089) = 3613.36, p
< 0.001], CFC [F(10, 1089) = 2934.50, p < 0.001] and COI
[F(10, 1089) = 7108.90, p < 0.001]. We used Tukey’s honest
significant difference (HSD) criterion for post-hoc comparisons,
with Bonferroni correction to control the type I error. Hence, we
adjusted the threshold p-value as 0.05/k to control the family-
wise error rate to be <0.05, where k is the number of post hoc
comparisons (k = 10). We found that the IFC decreased with

increasing number of interneuron layers in the pathways (p <

0.05/10), while the CFC increased in the pathway with up to
three interneuron layers (p < 0.05/10). Their combined effect
resulted in an initial increase in COI with interneuron layers (p<

0.05/10) and a saturation for the pathways with more than three
interneuron layers. It was also observed from the COI values that
the iso-frequency coupling is only dominant (COI < 0) in the
mono-synaptic descending pathway where the supraspinal input
directly drives themotoneuron pool without passing through any
interneuron layer. Consequently, the cross-frequency coupling
became dominant (COI > 0) when there were interneuron layers
in the descending pathway.

Neural Coupling Between the Supraspinal
Input and the Output From Successive
Neuron Layers
Using one-way ANOVA, we also found that the number of
interneuron layers had a significant effect at p < 0.05 level
on the IFC [F(9, 990) = 3235.46, p < 0.001], CFC [F(9, 990)
= 2113.54, p < 0.001] and COI [F(9, 990) = 5597.45, p <

0.001] between the supraspinal input and the output from
successive interneuron layers. Using Tukey’s HSD criterion with
Bonferroni correction (k = 9), the IFC was observed to decrease
across successive interneuron layers (p < 0.05/9) while the
CFC and COI increased (p < 0.05/9) up to the fifth and sixth
layer, respectively (see Figure 6). Additionally, in multi-synaptic
pathways, IFC dropped more at the terminal motoneuron layer
of the n-layer pathway in comparison to that of the terminal
interneuron layer of the n + 1 layer pathway (for n = 1–11,
unpaired t-test, p < 0.001 in all cases).

Combined Effect of Mono-Synaptic and
Multi-Synaptic Pathways
In reality, the motor system contains both the mono-synaptic
corticospinal tract and multi-synaptic indirect motor pathways.
Hence, to examine the combined effect of both types of
descending pathways in a motor system, we performed
simulations in a system having dual input to the terminal
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FIGURE 4 | Neural coupling between the supraspinal input and cumulative spike train output of the terminal motoneuron pool for the descending motor pathways

with 0, 1, and 3 interneuron layers. The iso-frequency (1:1) coupling is indicated by the green dashed line. The detected cross-frequency coupling including harmonic

coupling (i.e., output frequency over input frequency ratio n/m is an integer, e.g., 2:1, 3:1, 4:1, indicated by the red dashed lines) and non-integer n:m coupling (other

points in the map).

FIGURE 5 | IFC, CFC, and COI between the supraspinal input and the motoneuron pool output in simulated pathways with various layers of interneurons in cascade

with a terminal motoneuron pool. The depicted values represent the mean (with ±2 standard deviation as indicated by error bars) calculated from 100 repetitions of

the coupling analysis, each being run with a different realization of additive noise to the supraspinal input (as described in section Neural Coupling Analysis). Tukey’s

test was performed to test for significant decrease in IFC and increase in CFC and COI between the pathways containing n−1 and n (n = 1, 2, 3…) interneuron layers.

To control the family-wise error rate, we set the threshold p = 0.05/k (k = 10, i.e., number of comparisons). Asterisks in superscript of the n-th layer number indicate a

significant change of the results in the n-interneuron layer motor pathway in comparison to (n−1)-interneuron layer motor pathway (**p < 0.05/10).

motoneuron pool. The dual input is comprised of (i) a direct
supraspinal drive (resembling the monosynaptic corticospinal
tract) and (ii) an indirect drive from the same supraspinal
input after being passed through two layers of interneurons
(resembling a multi-synaptic descending pathway). The relative

weights of these two drives were systematically varied to examine
their effects on the neural coupling between the supraspinal
input and the motoneuron pool output. Using one-way ANOVA,
we found that the proportion of direct vs. indirect drive has a
significant effect on the IFC [F(5, 594) = 640.63, p < 0.001], CFC
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FIGURE 6 | IFC, CFC, and COI between the supraspinal input and cumulative spike train output of successive neuron layers in simulated pathways with various layers

of interneurons in cascade with a terminal motoneuron pool. The 1-layer pathway represents the monosynaptic tract. The depicted values represent the mean (with ±2

standard deviation as indicated by error bars) calculated from 100 repetitions of the coupling analysis, each being run with a different realization of additive noise to the

supraspinal input (as described in section Neural Coupling Analysis). Tukey’s test was performed to test for significant decrease in IFC and increase in CFC and COI

between the n−1th and nth (n = 2, 3, 4…) interneuron layer. To control the family-wise error rate, we set the threshold p = 0.05/k (k = 9, i.e., number of comparisons)

Asterisks in superscript of the n-th layer number indicate a significant change of the result in that layer in comparison to that of the previous layer (**p < 0.05/9).

[F(5, 594) = 5552.81, p < 0.001] and COI [F(5, 594) = 7748.80, p <

0.001]. Using Tukey’s HSD criterion with Bonferroni correction
(k= 5), IFC was found to reduce with increased indirect drive (p
< 0.05/5), while the CFC increased (p < 0.05/5). Their combined
effect resulted in the progressive increase of COI (p< 0.05/5) (see
Figure 7).

DISCUSSION

This study investigated neural coupling in descending motor
pathways using computer simulations. We simulated the
pathways as various layers of interneurons in a cascade with
a terminal motoneuron pool, using Hodgkin–Huxley neuron
models, to examine the effect of the number of synapses or
interneuron layers on the expression of cross-frequency coupling,
as well as its ratio over iso-frequency coupling.

Most studies investigating neural coupling in the descending
pathways mainly focus on the mono-synaptic corticospinal tract
using iso-frequency coupling measures such as cortico-muscular
coherence (Mima and Hallett, 1999; Salenius and Hari, 2003;
Negro and Farina, 2011b; vanWijk et al., 2012). In this simulation
study, we examined both iso- and cross-frequency coupling in
the mono-synaptic descending pathway. Our results confirmed
the dominance of iso-frequency coupling (as indicated by COI
< 0) in the mono-synaptic pathway, though cross-frequency
coupling is also present (see Figure 4). This result is in line
with our previous experimental work using the NMC to assess
cross- and iso-frequency coupling between brain and muscle

signals during a low-effort (1Nm) isotonic wrist flexion in
healthy young participants, showing that the motor task using
the mono-synaptic corticospinal tract mainly generates iso-
frequency coupling (Yang et al., 2016a).

Using linear coherence measure alone, a previous modeling
study indicated that the recruitment of multi-synaptic indirect
motor pathways can reduce the iso-frequency coupling between
the supraspinal input and motoneuron pool output (Negro and
Farina, 2011a). Consistent with the previous study, we found
that the IFC decreases in the multi-synaptic pathways: the more
interneuron layers in the pathway, the smaller IFC between the
supraspinal input and the motoneuron pool output. However, we
also found that the CFC initially increases in the multi-synaptic
pathways and is then followed by a saturation after passing a few
neuron layers. The combined effect of changes in IFC and CFC
leads to the dominance of cross-frequency coupling (as shown by
COI > 0) in the multi-synaptic pathways.

The mechanism underlying the changes in IFC and CFC
could be associated with the information distortion that occurs
across neuron layers leading to decorrelation of the supraspinal
input and the motoneuron pool output (Negro and Farina,
2011a). Such distortion is likely caused by the modulation
of inter-spike intervals when the motor command is passing
through multiple synaptic layers (Koch and Segev, 2000;
Markram, 2003; Yang et al., 2018). This modulation could be
attributed to (1) heterogeneous recruitment thresholds and spike
after-hyperpolarizations of the individual neurons which results
in different firing rates for the same steady-state drive (Powers
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FIGURE 7 | IFC, CFC, and COI between the supraspinal input and cumulative spike train output of the terminal motoneuron pool for the simulated dual input system.

The dual input is comprised of (i) a direct supraspinal drive (resembling the monosynaptic corticospinal tract) and (ii) an indirect drive from the same supraspinal input

after being passed through two layers of interneurons (resembling a multi-synaptic descending pathway). The relative proportion (in terms of signal power) of the

indirect drive in the composite input was systematically varied from 0 to 100% in steps of 20% increments. The depicted values represent the mean (with ±2 standard

deviation as indicated by error bars) calculated from 100 repetitions of the coupling analysis, each being run with a different realization of additive noise to the

supraspinal input (as described in section Neural Coupling Analysis). Tukey’s test was performed to test for significant decrease in IFC and increase in CFC and COI

between the successive steps of increase in indirect drive. To control the family-wise error rate, we set the threshold p = 0.05/k (k = 5, i.e., number of comparisons).

Asterisks in superscript of the percentage values denote significant change (**p < 0.05/5).

and Binder, 2001; Heckman and Enoka, 2012; Yang et al., 2018),
and (2) the consequent interplay between the time-varying input
(as shown Figure 2, which is added over the steady-state drive)
and different firing rates (as shown in Figure 3) of the neurons
over the entire pool (Thompson et al., 2018). Thus, besides
the input frequecies, the neurons also generate responses at
other frequencies, which contain the components that are cross-
frequency coupled with the input signal, as well as a certain
amount of noise that is not phase-locked to the suprapinal input.
Not only the cross-frequency coupled components but also the
noise can be cumulatively enhanced when the signal is passing
from one layer to the next. After passing a few neuron layers, the
reduced signal-to-noise ratio then leads to the saturation of CFC.

In the multi-synaptic pathways, a sharp decrease of IFC
was found at the terminal motoneuron pool in comparison to
the last interneuron layer. This is likely caused by different
neuronal processing properties of the simulated interneurons
and motoneurons. The motoneurons modeled in this study had
an active dendrite with a persistent inward current as well as
calcium dependent potassium currents in both the soma and the
dendrite compartments (Heckman et al., 2008). In contrast, the
interneurons were modeled without such conductances and had
a single compartment only. These differences may have given rise
to lower IFC (and higher COI) in motoneuron outputs due to
their effects on the neurocomputational properties. Indeed, this
study opens a broad new area for exploring the origin of different

types of neural coupling at the single neuron level and a detailed
analysis of the role of individual ionic conductances on IFC and
CFC can be the scope of future studies.

The proposed COI measure reflects the dominance of iso-
frequency coupling vs. cross-frequency coupling. Interestingly,
the iso-frequency coupling is only dominant in the mono-
synaptic pathway, while the cross-frequency coupling is
dominant in multi-synaptic pathways. After a unilateral
brain injury, damage to the mono-synaptic corticospinal tract
can increase the reliance on multi-synaptic indirect motor
descending pathways (e.g., cortico-reticulospinal tracts for
upper limbs) (Owen et al., 2017; McPherson et al., 2018a;
Karbasforoushan et al., 2019). The simulated “dual-drive”
model mimicks this pathological condition by varing the ratio
of multi-synaptic drive vs. mono-synpatic drive. Our results
show that the increased input from the indirect drive leads to
a more dominant cross-frequency coupling as reflected by an
increased value of COI over the increased percentage of the
indirect motor drive. This result is in line with our pilot work
on eight participants with hemiparetic stroke. The COI between
the brain and muscle signal increases when participants with a
unilateral stroke progressively lift the weight of their paretic arm
(Yang et al., 2019), thereby enhancing the recruitment of indirect
motor pathways to compensate for the loss of corticofugal (i.e.,
corticospinal and corticobulbar) projections from the lesioned
hemisphere (McPherson et al., 2018a).
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Thus, the COI can be used as a quantitative measure to
indicate the relative usage of multi-synaptic indirect motor
pathways vs. mono-synaptic direct corticospinal tract. This
measure could have a significant impact on future neuro-
pathophysiological studies on individuals with an unilateral
brain injury, since recent studies have indicated that motor
impairments after a unilateral brain injury could be associated
with an increased reliance on multi-synaptic indirect motor
pathways following a lesion-induced loss of direct corticospinal
projections (Owen et al., 2017; McPherson et al., 2018a;
Karbasforoushan et al., 2019). Therefore, a measure that
quantitatively determines the usage of indirect motor pathways
over direct corticospinal drive could be crucial (1) for evaluating
motor recovery following unilateral brain injuries, and (2) for
determining the effect of targeted therapeutic interventions
(Ellis et al., 2018; McPherson et al., 2018b) that aim to reduce
the maladaptive reliance on indirect motor pathways after a
hemiparetic stroke. In the future, we will examine both cross-
frequency and iso-frequency coupling, as well as the COI,
between the brain and muscle signals to characterize the relative
ratio of the recruitment of indirect vs. direct motor pathways
following unilateral brain injuries, such as hemiparetic stroke and
unilateral celebral palsy.

LIMITATIONS

We acknowledged that there are a few limitations of the current
study. First, the interneuron model has only a basic set of ionic
conductance since the details of the ionic conductances of spinal
and reticular interneurons are yet to be explored. However,
such reductionist interneuron models have been used in other
simulation studies as well, and this simplification is not expected
to change the overall results of this study (Maltenfort et al.,
1998; Cisi and Kohn, 2008; Williams and Baker, 2009; Negro and
Farina, 2011a). Second, there is no existing literature detailing
the connection pattern of individual interneuron layers in multi-
synaptic descending pathways. However, the probabilistic model
used in this simulation has been previously demonstrated to
capture global connectivity properties in motor descending
pathways well (Humplik and Tkačik, 2017). Thirdly, the number
of neurons in each layer of multi-synaptic descending tracts have
not yet been experimentally determined. However, compound
EPSP recording on motoneurons from spinal interneurons has
shown the number of inputs to be ∼ 100 (Lüscher et al., 1983).
Hence, it is reasonable to assume that the number of descending

inputs on the motoneurons from each tract should be in this
order. The motoneuron pool size can vary frommuscle to muscle
(Karpati et al., 2001), in a range from around 100 (e.g., first dorsal
interosseous in humans) (Buchthal and Schmalbruch, 1980) to
around 800 (e.g., biceps brachii in humans) (Feinstein et al.,
1955). Thus, a size of 100 units for a motoneuron pool falls
in the lowest part of the range. In this study, the size of 100
units per neuron layer was adopted also for uniformity and
computational convenience. Finally, we did not consider synaptic
and transmission delays in this work. The overall delay in a
motor pathway may be determined based on the onset latency
of Transcranial Magnetic Stimulation (TMS) induced Motor
Evoked Potential (MEP) in the targeted muscle (Schwerin et al.,
2011). However, the latency of MEP can be affected by coil
orientation: differencemay exist between direct vs. trans-synaptic
activation of the pyramidal cells and the measurement of MEP
responses in proximal vs. distal muscles. In short, it is still hard
to get a “precise” assessment of the delay in a motor pathway.
Meanwhile, there is no available experimental data for the delays
in each neuron layer that we can included in this simulation
work. Moreover, the time delay only has the effect on the relative
phase between signals. This will not result in additional resonance
components with new frequencies. Thus, the time delay issue
will not affect our current results and overall conclusion of
this paper.
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APPENDIX

Equilibrium Potentials
ENa = 55mV; EK = − 80mV; ECa = 80mV;

EL(S) = −65mV ±0.3; EL(D) = −65±0.15mV (motoneurons∗)
∗Motoneuron equilibrium potentials were assigned from
uniform random distributions with mean ± S.D as given above
to obtain firing rates in the range of 5–30 spikes/s as described in
section Simulations.
∗ ∗ Interneuron equilibrium potentials were set as described in
section Simulations.

Neuron Paramteres
Motoneurons:
gNa(S) = 120 mS cm−2; gNaP(S) = 0.1 mS cm−2; gK(S) =

100mS cm−2;

gCaN(S) = 14 mS cm−2; gK,Ca(S) = 5 mS cm−2; gL(S) =

0.51mS cm−2;

gCaN(D) = 0.3 mS cm−2; gCaL(D) = 0.33 mS cm−2; gNaP(D) =

0.1mS cm−2;

gK,Ca(D) = 1.1 mS cm−2; gL(D) = 0.51 mS cm−2; gc =

0.1mS cm−2;

p = 0.1; f = 0.01; α = 0.0009 mol C−1 µm−1; kCa =

2ms−1; Kd = 0.2µM

Interneurons:
gNa = 120mS cm−2; gK = 100mS cm−2; gL = 0.51mS cm−2;

Synapses:
EsynE = − 10mV; gsynE = 0.01mS cm−2; τsynE = 5ms;
EsynE = − 10mV; gsynE = 0.0075mS cm−2; τsynE = 5ms;

TABLE A1 | Steady-state activation and inactivation variables and time constants

for voltage-dependent ionic channels (Rybak et al., 2006).

Ionic channels m∞ (V) , V is in mV

h∞ (V) , V is in mV

τm (V) , ms

τh (V) , ms

Na+ m∞Na = 1

1+ e
−

(V+35)
7.8

h∞Na = 1

1+ e
(V+55)

7

τmNa = 0

τhNa =
30

e
(V+50)

15 + e
−

(V+50)
16

NaP+ m∞NaP = 1

1+ e
−

(V+47.1)
3.1

h∞NaP = 1

1+ e
−

(V+59)
8

τmNaP = 0

τhNaP = 1,200

cosh( (V+59)
16 )

K+ m∞K = 1

1+ e
−

(V+28)
15

hK = 1

τmK = 7

e
(V+40)

40 + e
−

(V+40)
50

CaN2+ m∞CaN = 1

1+ e
−

(V+30)
5

h∞CaN = 1

1+ e
−

(V+45)
5

τmCaN = 4

τhCaN = 40

CaL2+ m∞CaL = 1

1+ e
−

(V+40)
7

hCaL = 1

τmCaL = 4;
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Synchronization of neural activity across brain regions is critical to processes
that include perception, learning, and memory. After traumatic brain injury (TBI),
neuronal degeneration is one possible effect and can alter communication between
neural circuits. Consequently, synchronization between neurons may change and
can contribute to both lasting changes in functional brain networks and cognitive
impairment in patients. However, fundamental principles relating exactly how TBI at
the cellular scale affects synchronization of mesoscale circuits are not well understood.
In this work, we use computational networks of Izhikevich integrate-and-fire neurons
to study synchronized, oscillatory activity between clusters of neurons, which also
adapt according to spike-timing-dependent plasticity (STDP). We study how the
connections within and between these neuronal clusters change as unidirectional
connections form between the two neuronal populations. In turn, we examine how
neuronal deletion, intended to mimic the temporary or permanent loss of neurons
in the mesoscale circuit, affects these dynamics. We determine synchronization of
two neuronal circuits requires very modest connectivity between these populations;
approximately 10% of neurons projecting from one circuit to another circuit will result
in high synchronization. In addition, we find that synchronization level inversely affects
the strength of connection between neuronal microcircuits – moderately synchronized
microcircuits develop stronger intercluster connections than do highly synchronized
circuits. Finally, we find that highly synchronized circuits are largely protected against
the effects of neuronal deletion but may display changes in frequency properties across
circuits with targeted neuronal loss. Together, our results suggest that strongly and
weakly connected regions differ in their inherent resilience to damage and may serve
different roles in a larger network.

Keywords: neurodegeneration, microcircuit, network, synchronization, rhythms

INTRODUCTION

Affecting as many as 3.8 million new patients each year (Langlois et al., 2006), traumatic brain injury
(TBI) is a leading cause of disability in the U.S. population (Blennow et al., 2016; Pevzner et al.,
2016). As such, TBI constitutes a substantial financial burden for both caregivers and healthcare
systems (Coronado et al., 2012; Pevzner et al., 2016). Although TBI may occur during high-contact
sports or from exposure to explosive military devices (Blennow et al., 2016), TBI is more frequently
caused by motor vehicle accidents and falls (Blennow et al., 2016). In addition, TBI commonly
affects the elderly, a growing demographic in the United States.
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Due to its diverse array of causes, TBI has broad social impact
across many demographics and continues to pose a challenge to
researchers attempting to develop treatments. Although many
recover completely from mild TBI, other patients suffer long-
term consequences (Masel and DeWitt, 2010; Blennow et al.,
2016; Hiploylee et al., 2017; Wilson et al., 2017), which include
memory deficits, sleep disturbances, or mood disorders (Masel
and DeWitt, 2010; Wilson et al., 2017). Recent work shows
that some of these long-term effects are associated with lasting
changes in brain networks. For instance, increased activation
in the default mode network is linked to sustained attention
deficits after TBI (Bonnelle et al., 2011). Additionally, alterations
in functional brain connectivity are thought to explain motor
impairments after mild TBI (Kasahara et al., 2010), can target
regions involved in cognitive function (Stevens et al., 2012) and
sensory processing (Sours et al., 2015), and can differentially
target areas associated with episodic memory (Yan et al., 2016).
With the well-known heterogeneity of injury patterns and TBI
mechanisms, though, it is difficult to draw direct and consistent
associations between an impact, the resulting network changes,
and the corresponding behavioral impairments. One critically
understudied area is how damage in TBI affects the coordination
of circuits at the mesoscale level, where hundreds to thousands
of neurons coordinate their relative activation pattern with other
areas of the brain, leading to the periodic synchronization of areas
throughout the brain during task execution, recall, and learning.

Coherence is an important concept across scales in neural
communication and brain networks. When the brain is engaged
in a task, anatomical regions exhibiting synchronous activity
are believed to participate in executing that task (Logothetis
and Wandell, 2004; Damoiseaux et al., 2006; Jilka et al.,
2014). Most commonly, temporal correlations in hemodynamic
fluctuations (functional MRI BOLD data) are used to determine
networks of functionally connected brain regions (Fransson,
2006; Greicius et al., 2009). Beyond defining intrinsic brain
networks, synchronization is important at the cellular scale
for facilitating communication, as it temporarily binds neurons
together into functional ensembles (Bastos et al., 2015; Bocchio
et al., 2017). Likewise, learning and memory largely depend
on coherence, which enables long-distance communication
between brain regions (Dü Zel et al., 2010; Wang et al., 2010).
Several human imaging studies demonstrate that TBI disrupts
synchronization (Sharp et al., 2011; Venkatesan et al., 2015;
Wang et al., 2017), leading to the likely increase or decrease in
functional network connectivity that contributes to long-term
cognitive effects.

Synchronization has been studied extensively at the whole
brain scale, but it has also proved important in microscale
neuronal networks (Eytan and Marom, 2006; Penn et al., 2016).
Despite our understanding and visualization of whole brain
activity, little is known about the way in which smaller scale
dynamics give rise to high-level coherence. Although it is
expected that cellular dysfunction at the beginning and over
the course of neurological disorders will impact the coherence
of neural activity throughout the brain, there is remarkably
little known about how the structure of a network at the
cellular scale can lead to coherence changes at the microcircuit

level. Furthermore, macroscale synchronization may obscure
greater dynamic variability at a smaller spatial scale. Few
computational models have emphasized connections between
physically separated neuronal clusters or the flow of information
between them (Vicente et al., 2008), so there are many
unanswered questions regarding how synchronization emerges in
mesoscale circuits and how resilient that behavior is to damage.

In this report, we examine how disrupting an intermediate
level of neural computation informs and affects the interpretation
of large-scale synchrony. We use a computational model of a
neuronal network to make precise manipulations that would
not be possible experimentally, with the goal of uncovering
the principles of mesoscale synchronization that occur when
coupled neuronal networks are traumatically injured. There
are few existing studies that examine coherence at this scale
(Vicente et al., 2008; Gollo et al., 2014), and we are not aware
of any similar efforts to examine the unique intersection between
traumatic injury and coherence at the mesoscale. We find that our
modeled networks synchronize easily despite relatively modest
connections between two microcircuits. Upon simulating the
effects of neuronal inactivation or degeneration, we find the
simplest model of two connected neuronal populations – i.e.
the directed projection of neuronal outputs from one cluster
to another – reveals inherent advantages of two levels of
interconnectivity between microcircuits. Broadly speaking, our
results show that highly interconnected clusters are resilient and
highly reliable and moderately interconnected clusters are less
resilient and more flexible.

MATERIALS AND METHODS

Networks were constructed by assembling and connecting
clusters consisting of 1000 neurons each. Two of these clusters
were then connected. We prescribed the properties of each cluster
independently before connecting the two together.

Properties of a Single Microcircuit
Each individual cluster consisted of 1000 neurons, 80% of which
were excitatory and 20% of which were inhibitory, according
to empirical evaluation of cortical tissue (Soriano et al., 2008).
To create a network, neurons were represented as nodes placed
randomly on the surface of a unit sphere, which eliminated
the potential boundary effects of a planar geometry. Synaptic
connections were represented as directed edges and added at
random according to distributions of excitatory and inhibitory
connections experimentally derived by Soriano et al. (2008).
Neurons averaged 100 outputs and an average of 80 excitatory
and 20 inhibitory inputs.

In networks with spike-timing-dependent plasticity (STDP),
edge weights are known to follow a bimodal distribution with
most connections pushed toward the lowest and highest possible
strengths (Song et al., 2000). Accordingly, the initial synaptic
strength of each connection was assigned from a bimodal
distribution where networks with greater excitatory strength
had a higher proportion of strong, high-weight connections.
This distribution was scaled from a minimum strength of
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0 to a maximum strength of 4 (peak mV/ms). Inhibitory
neurons instead followed a Gaussian distribution of strength
with 10% variance ranging from −14 to 0 (peak mV/ms).
These ranges were selected such that post-synaptic potentials fell
within the range of voltages observed empirically for cortical
neurons (Ferster and Jagadeesh, 1992). Conduction delays
between neurons were proportional to the distance between two
neurons and ranged from 1–8 milliseconds (ms), as derived from
experimental work by Swadlow (1985).

Connecting Multiple Neuronal
Microcircuits
For more complex simulations, the individual microcircuits
(clusters) were first created and then connections were added
between them (Figures 1A,B). The parameters defining
intercluster connections include the following: (1) the
percentage of excitatory neurons in the upstream cluster
(“Pre”) that project to the downstream cluster (“Post”), (2)
the percentage of excitatory neurons in the downstream
cluster that receive connections from the upstream cluster,
and (3) the number of connections per upstream projecting
neuron (Figure 1A). We randomly selected neurons in the
upstream network to connect to randomly selected neurons
in the downstream cluster. The synaptic weights for these
connections were selected from the weight distribution of
the upstream cluster. Intercluster conduction delays were
chosen from a uniform distribution in the range of 10 ± 2 ms.
This delay corresponds to a separation distance between the
two clusters of 2–3 mm. Finally, we maintained the total
number of inputs on each excitatory neuron by removing
intracluster connections to verify activity-related results are
due to the two-cluster architecture and not to a change in
the number of inputs a neuron receives. This approach of
preserving the number of inputs to a neuron is referred to
as “input-degree control.” In a subset of simulations, we
compared our results in non-degree controlled and output-
degree controlled networks, finding no significant differences
between their baseline synchronization behavior. In order to best
interpret changes in activity and avoid an unrealistic number
of connections, we proceeded with input-degree controlled
simulations. Accordingly, we limited the potential number of
intercluster connections such that the downstream neurons
must receive >50% excitatory inputs from the downstream
population, ensuring the downstream cluster remains distinct
from the upstream.

To characterize the structural changes with more detail, we
identified six subpopulations within the two-cluster topology.
There is a total of four excitatory neuron populations defined
based on cluster membership (Cluster 1 = presynaptic OR Cluster
2 = postsynaptic) and whether the neurons have intercluster
connections. Neurons sending intercluster connections in the
upstream or presynaptic cluster are referred to as the Inter
Pre subpopulation. Neurons with intracluster connections only
in the presynaptic cluster are the Intra Pre subpopulation.
Those receiving intercluster connections in the downstream or
postsynaptic cluster are the Inter Post neurons. Finally, neurons

with intracluster connections only in the downstream cluster are
the Intra Post subgroup. There are also two inhibitory neuron
populations, one per cluster. These are referred to as Inhib
Pre and Inhib Post. We focused our analysis predominantly on
the excitatory subpopulations because these are the neurons
that may have intercluster connections and, thereby, shape
synchronization most directly (see the section “Results”).

Dynamics and Neural Activity
Neuron activity was modeled via a system of differential
equations, which describe the membrane potential and the
recovery potential (Izhikevich, 2003; Izhikevich et al., 2004;
Izhikevich and Edelman, 2008; Wiles et al., 2017; Gabrieli et al.,
2019). The dynamic equations are as follows:

v′ = 0.04v2
+ 5v+ 140− u+ I

u′ = a(bv− u)

if v ≥ 30 mV, then
{
v = c
u = u+ d

where v is the membrane potential in millivolts and u is the
recovery variable. I is the current and includes both synaptically
driven and noise currents. The parameters a, b, c, and d shape
the neuron spiking behavior. These parameters were used to
create regular-spiking excitatory neurons and fast-spiking, low-
threshold inhibitory neurons, according to Izhikevich (2003).

The model also incorporated primary ionic currents through
AMPA and GABA receptors, which drove synaptic-based activity.
As in our previous work (Gabrieli et al., 2019), the networks were
driven with a contribution of 1 Hz noise according to a gamma
distribution (k, θ = 2, 1/2) (Izhikevich and Edelman, 2008; Wiles
et al., 2017). When neurons fired, the action potential propagated
along synaptic connections with a delay depending on the
distance the signal must travel. Neurons were desensitized to
repeated action potential inputs at 40% attenuation (τ = 150 ms).

Our model also featured STDP in connections between
excitatory neurons, according to the following equation:

1w(w) =

A+(w) exp
(
−

tpost−tpre
τ

)
if tpost − tpre > 0

A−(w) exp
(
−

tpost−tpre
τ

)
if tpost − tpre ≤ 0

where w is the weight of the connection between two neurons.
A+ and A− set the maximum magnitude of synaptic change. τ

is the plasticity time constant and equal to 20 ms. Finally, tpre
and tpost are the timing of pre- and post-synaptic spikes. By
the process of STDP, synapses are strengthened when the post-
synaptic neuron fires closely after receiving an input from the
presynaptic neuron (Song et al., 2000; Effenberger et al., 2015). If,
instead, the post-synaptic neuron fires before receiving a signal
from the presynaptic neuron, the synapse is weakened (Song
et al., 2000; Effenberger et al., 2015). This process is believed to
contribute to learning and memory and to enable entrainment of
information into neuronal networks (Song et al., 2000).
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FIGURE 1 | Overview of modeling microcircuit synchronization. (A) Two microcircuits (Cluster 1, Cluster 2), each composed of 800 excitatory and 200 inhibitory
neurons, were coupled by connecting some outputs of randomly selected neurons in upstream Cluster 1 to randomly selected neurons in downstream Cluster 2.
These projections are termed intercluster connections. All neurons were also connected to other neurons within the same cluster via intracluster connections. The
relative fraction of neurons in Cluster 1 that sent outputs to Cluster 2 varied from 5 to 95% of the excitatory neuron population in Cluster 1. Similarly, a fraction of
excitatory neurons in Cluster 2 was targeted by these outputs (5–95% of excitatory neurons in Cluster 2). The number of intercluster connections from each
projecting neuron in Cluster 1 ranged from 1 to 50 downstream connections. (B) A connectivity matrix of the overall network topology shows intercluster
connections between excitatory neurons in the bottom left quadrant. To mimic in vivo connectivity patterns over long distances, only excitatory neurons projected
outputs from Cluster 1 to excitatory neurons in Cluster 2. (C) Neurons were modeled using the Izhikevich integrate-and-fire formulation. Each simulation achieved a
stable firing pattern before activity was analyzed. Raw neuron activity (raster plot) was summed into an aggregate activity trace (solid, oscillating lines) for each cluster
and smoothed. Synchronization between the two clusters was calculated as a time-based correlation for 5 min of data. In this equation, ρ is correlation, C1 is Cluster
1, C2 is Cluster 2, µ is the mean, σ is the standard deviation, and N is the sample size or number of timesteps.

Convergence studies were performed by conducting a 24-h
simulation and measuring the aggregate change in connectivity
weights at each minute over the 24 h of simulation time. The
network connectivity reached stable convergence after 90 min.
Therefore, we ran all simulations for 2 h to allow adequate
time for network activity and synaptic weights to stabilize. All
activity and network measures were collected in the final 5 min
of simulation time.

To determine synaptic strength parameters used in
subsequent simulations, we tested all combinations of excitatory
and inhibitory strength available with our model. Given the
range of firing rates observed, we then selected one set of
strength parameters each for approximately 4, 5, and 6 Hz
(Supplementary Figure S1).

Analysis Metrics
Indeed, there are many ways to measure neural synchronization,
ranging from phase locking to different forms of correlation,
depending on the relevant time and spatial scales (Varela et al.,
2001; Narayanan and Laubach, 2009; Cohen and Kohn, 2011).
Here, synchronization of activity between the upstream and
downstream clusters was evaluated as a time-based correlation
because this methodology incorporated both activity timing
and magnitude and was effective for our purposes. That is, we

sought to precisely measure the extent to which the population-
wide spike density of the downstream cluster matched that
of the upstream cluster across minutes of simulated activity.
To do so, spiking activity was summed for all neurons of
each cluster every millisecond and smoothed with a 50 ms
window averaging filter. A filter size of 50 ms was used
because it corresponds to an intermediate temporal range of
neural activity. This yielded an aggregate, smoothed signal for
each cluster (Figure 1C). A time-based correlation was then
computed between these two signals and used as a proxy
for synchronization.

The rhythmic oscillations of network activity were analyzed
with a similar aggregate signal approach. Spike counts were
collected in 1 ms bins for the full network, and the resulting signal
was then smoothed using a moving average filter (10 ms window)
to produce a measure of temporal change in the network spiking
activity. The magnitude (height) of the high activity periods
(peak prominence ≥ 1) was calculated to represent the relative
activation level of the network. The height of each activity peak
was normalized by the number of neurons to yield a fraction,
and these magnitudes were averaged to obtain a single value
for each simulation. In addition, this smoothed, aggregate signal
was analyzed in the frequency domain using Welch’s method
to generate the power spectral density. The power ratio was
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computed as the ratio of power in a high frequency band (10–
17 Hz) over the power in a low frequency band (1–4 Hz). To
identify these bands, we found the highest two peaks in the
frequency spectra for all networks considered and determined
the range for these two dominant peaks across all spectra. (See
Supplementary Figure S2 for more detail and representative
spectra for baseline networks).

We used network control theory to identify potentially
important roles for subgroups of neurons in the network.
Network control theory uses the concept of controllability to
identify control points in a network for driving the network
to alternative activity states. For example, in the brain, this
could mean switching between states of daydreaming and active
learning (Gu et al., 2015). Two mechanisms of control are average
and modal. Nodes with high average controllability are predicted
to be important for driving the network to nearby, easy-to-reach
states (Gu et al., 2015). In contrast, nodes with high modal
controllability are predicted to drive the network to difficult-to-
reach states (Gu et al., 2015). (See Supplementary Figure S3 for
schematics). Since the metric relies on the underlying network
connectivity to theoretically predict functional roles of nodes,
controllability attempts to unite both network structure and
function. Using established methods [see Wiles et al. (2017) for
derivations] (Gu et al., 2015; Wiles et al., 2017), we calculated both
average and modal controllability for each neuron in the network.
The raw controllability values were then rank ordered such that 1
is the neuron with lowest controllability and N is the neuron with
highest controllability.

Injury
To assess the impact of injury on the synchronization of these
two neuronal populations, we selected a generic high correlation
and moderate correlation network for further analysis. These
networks were determined by analyzing the effect of adding
intercluster connections in healthy networks. (See the section
“Results” and Figure 2 for how these correlation levels were
determined). After each network ran for 2 h of simulation time
to achieve stable synchronization levels, neurodegeneration was
simulated by removing neurons and all their connections from
the network. We focused on deleting neurons with a specific
structural subtype (see the section “Materials and Methods” for
detailed definitions), such that neurons were targeted from a
single subtype for each injury simulation. With our interest
in testing whether the controllability of a specific neuron was
important to overall network synchronization, we first deleted
neurons with the highest controllability ranking. For comparison,
we deleted the same number of neurons randomly, again by
subtype, in separate simulations and compared these results to
the targeted deletion approach. After neurons were removed,
we ran the simulation for another 2 h to stabilize connectivity
weights before analyzing neural dynamics in the final 5 min of
the simulation period. This process was repeated for five high
correlation and five moderate correlation networks.

Statistical Analysis
One-way ANOVA was applied to compare the average strength
of structural subtypes. A repeated measures model was used

to differentiate neuron subpopulations based on nodal network
measures. The Tukey–Kramer test was applied post hoc for
multiple comparisons where relevant. To determine the effects
of injuring different neuronal subtypes, we used paired Student’s
t-test to compare to uninjured baseline measures. Bonferroni
corrections were used to determine significance when noted.
To compare different neuron selection methods of injury, we
applied analysis of covariance (ANCOVA) to control for the
injury level covariate.

RESULTS

Unidirectional Connection of Two
Neuronal Clusters
With our interest in studying how two independent neural
circuits synchronize and change after injury, we first studied the
physical connectivity requirements for two neural circuits
to synchronize their activity. We added unidirectional
connections from an upstream Cluster 1 to downstream
Cluster 2 (Figures 1A,B) to understand the impact of intercluster
connections on network dynamics, namely synchronization
(Figure 1C). In general, we observed two phases: (1) a rapidly
increasing linear phase of increasing synchronization at low
levels of intercluster connection and (2) a more gradually
increasing plateau phase at high levels of intercluster connection.
We tested different combinations of basal firing rates in Cluster 1
and Cluster 2 and found that these results held for all conditions
(Figure 2C). Furthermore, we examined a subset of simulations
with 30% inhibitory and 70% excitatory neurons and, again,
found this consistent synchronization behavior (Supplementary
Figure S4). Importantly, the activity correlation was significantly
related to the number of connections between the two clusters.
We normalized this quantity as the proportion of excitatory
inputs to downstream Cluster 2 that originated in upstream
Cluster 1. Using the completely decoupled state of the circuits
as the starting point (proportion of excitatory inputs = 0), we
found the synchronization level below a proportion of inputs
of 0.09 increased rapidly with more intercluster connections
(linear regression, Y = 7.53X + 0.10, R2 = 0.78, p < 10−5).
Above a physical coupling level of 0.09, the synchronization
levels were also significantly correlated with the proportion of
intercluster inputs, however more gradually (linear regression,
Y = 0.66X + 0.58, R2 = 0.77, p < 10−5). The transition
between these two phases occurred around 9% of inputs
and was found by determining a cutoff that would produce
approximately equal goodness of fit (R2-values) for both phases.
The intersection between the transition point (0.09) and the
gradual phase regression line was used to set a threshold for
identifying high correlation networks (correlation > 0.65). We
also created a designation between moderate and low correlation
networks to facilitate subsequent injury analysis where we
were interested in networks that could display an appreciable
decrease in synchronization. Lastly, we observed relatively
modest coupling was required to cause a significant change in
synchronization, learning that the downstream cluster needed
only 0.3% of inputs from the upstream cluster to significantly
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FIGURE 2 | Two microcircuits synchronize activity with relatively few intercluster connections. (A) Microcircuits were modeled as two distinct populations of neurons.
They were coupled by progressively increasing the proportion of excitatory inputs received by Cluster 2 (C2) from the upstream Cluster 1 (C1). A low proportion of
excitatory inputs was associated with low activity correlation between the microcircuits. A representative raster plot of neural activity in both microcircuits shows that
periods of high and low activity were not coordinated across the two circuits at low correlation (correlation < 0.45). The corresponding frequency spectrum for low
correlation networks has two distinct peaks (PSD = power spectral density). (B) In comparison, periods of high and low activity frequently occurred at the same time
when the circuits were highly correlated (correlation > 0.65). (C) Increasing the proportion of inputs to one microcircuit (C2) from another (C1) led to a rapid increase
in synchronization. We considered three regions of synchrony: low (correlation < 0.45; blue region), moderate (0.45 < correlation < 0.65; purple region), and high
(correlation > 0.65; green region). Legend indicates the average firing rates of neurons in each microcircuit when correlation is computed. The corresponding
frequency spectrum for high correlation networks has two distinct peaks (PSD = power spectral density). (D) While the correlation between the two clusters
increased with more intercluster connections, the two clusters maintained independent firing rates (t-test; p < 10−5). While the correlation between the two
microcircuits increased with more physical connections between them, average firing rates of neurons in each microcircuit were significantly different from each other
(Student’s t-test; p < 10−5). (E) The magnitude (fraction of network participating) of the high activity oscillations continued to increase with more intercluster
connections, showing a strong positive correlation (linear regression, R2 = 0.78, p < 10−5). The dashed line marks the baseline level of the null model, which has no
intercluster connections. The intersection between the baseline and the regression line is marked with a red star.
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change synchronization from baseline (Control networks with
0 intercluster connections: correlation = −0.008 ± 0.006 vs.
Networks with 0.3% connection: correlation = 0.025 ± 0.010;
paired Student’s t-test, p = 0.002). For thoroughness, we
investigated correlated activity within the excitatory populations
of each cluster with similar methodology, finding that Cluster 1
populations (InterPre and IntraPre) are correlated at 0.98 ± 0.01
and Cluster 2 populations (InterPost and IntraPost) are
correlated at 0.86± 0.09. This result verifies that the two follower
populations in the downstream cluster remain coordinated
with one another despite our removal of some intracluster
connections due to input-degree control.

In addition to synchronization, another important feature
of activity in the neural circuits was the rhythmic oscillations
of high and low activity that would appear under normal
conditions. We converted the signal to the frequency spectrum
(Figures 2A,B) to characterize these rhythms and found
oscillations of 12.6 ± 0.5 Hz in our uninjured networks. These
rhythms are also addressed more formally in Supplementary
Figure S2. Unlike synchronization, which plateaued above a
specific proportion of intercluster connections, we observed that
the rhythmic oscillations continued to include more neurons
(higher magnitude) as the coupling of the networks increased
(Figure 2E). Peak magnitude showed a strong positive correlation
with the proportion of excitatory inputs into Cluster 2 that
originate in Cluster 1 (linear regression, Y = 0.051X + 0.075,
R2 = 0.78, p < 10−5). We tested whether these changes in
synchronous, rhythmic activity were correlated with altered firing
rates; however, we found no corresponding change in the average
firing rates of the excitatory neurons in the network (Cluster
1: 6.4 ± 0.1 Hz vs. Cluster 2: 3.5 ± 0.4 Hz; paired Student’s
t-test, p < 10−5) (Figure 2D). Therefore, the observed increase
in correlation depended on a temporal shift in activity in Cluster
2, not increased activity.

With this clear change in synchronization that appeared
as the network adapted with STDP, we next asked what sort
of commensurate changes occur in the structural network
to facilitate the observed synchronization. We expected that
developing synchronous activity would necessitate strong
intercluster connections. It is well-known that the STDP model
implemented in our networks will lead to a bimodal synaptic
weight distribution (Song et al., 2000), and we also saw a similar
result in our stabilized networks (Figures 3A,B). From this
distribution, we defined high strength connections as strengths
>50% of the maximum (normalized strength > 0.5) and saw that
a significantly higher fraction of intercluster connections were
high strength than upstream intracluster outputs (intercluster:
0.822 ± 0.007 vs. intracluster: 0.521 ± 0.001; paired Student’s
t-test, p < 10−5). In addition, the proportion of high strength
intercluster connections increased rapidly and persisted for the
duration of the simulation (Figure 3C). This remained true
whether the network displayed high, moderate, or low levels of
synchronization. Not only was the proportion of high strength
intercluster connections stable, these connections themselves
were highly stable. Among them, only 0.08 ± 0.04% change per
minute was observed in the last 30 min of simulation time. As
more intercluster connections were added (i.e. the proportion

of excitatory inputs to downstream Cluster 2 from upstream
Cluster 1 increased), the proportion of high strength intercluster
connections decreased (linear regression, R2 = 0.58, p < 10−5)
(Figure 3D). At low synchronization, when there were few
intercluster connections, a larger proportion of those connections
were high strength. As more intercluster connections were added,
synchronization increased (Figure 2C), and the proportion
of high strength intercluster connections decreased (linear
regression, R2 = 0.58, p < 10−5) (Figure 3D). This suggests
redundancy at maximal levels of coupling since it is unnecessary
for as many connections to have high strength to achieve
high synchronization.

Given the high strength intercluster connections, we
considered whether intercluster projecting neurons (Inter Pre)
are strong overall. To determine whether that was true,
we assessed the average output strength of each excitatory
population. The output strength of each neuron was summed
and normalized by the total number of outputs. Contrary to our
expectation, the Inter Pre population did not have high strength
outputs as a whole, indicating that the outputs of these neurons
to other neurons within the upstream population are rather
weak. Instead, downstream neurons receiving connections from
the upstream cluster (Inter Post) had significantly higher average
output strength than other populations did (one-way ANOVA,
p < 10−5) (Figure 3F). Interestingly, upstream neurons with no
downstream projections (Intra Pre) showed significantly lower
average output strength than did the intercluster populations
(one-way ANOVA, p < 10−4) (Figure 3F). Notably, the Intra
Pre neurons also had the least variance in strength, which
suggests they respond minimally to the addition of intercluster
connections (Figure 3F). Since the Intra Pre neurons also display
relatively weak outputs, these findings show that Intra Pre
neurons are the most isolated subpopulation and likely function
primarily as drivers of activity in the upstream cluster.

Controllability
At this point, we knew that the network synchronized and
adapted structurally. However, we did not know how this
architecture might be described with higher level network
metrics, and specifically, whether the neuron subtypes we defined
could be identified with these metrics. In network science,
there are many measures that characterize nodal importance
and identify nodes as influential under different circumstances.
One such nodal property, betweenness centrality, describes how
often paths between two nodes in the network must pass
through a given node. High betweenness centrality indicates
that node is an important connector between other nodes.
Commonly called hubs, nodes with high betweenness centrality
are often affected after TBI due to axonal injury (Fagerholm
et al., 2015). A second nodal property, controllability, predicts
the importance of nodes for driving the network to a different
energetic state. We examined two mechanisms of control –
average and modal, which describe the ability to access easy-
to-reach and difficult-to-reach states, respectively. We were
interested in how the network control points identified by average
and modal controllability reflected the known dynamics of the
system, namely synchronization. From all tested combinations
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FIGURE 3 | Intercluster connections become strong connections. (A) Within either microcircuit, synaptic strength showed a bimodal distribution that is consistent
with previous simulations that incorporate plasticity-based changes in synaptic strength. Once connections were made between the circuits, intercluster connections
from Cluster 1 to Cluster 2 predominantly increased in synaptic strength. The proportion of strong intercluster connections is defined as the fraction of intercluster
connections that have strength greater than half the maximum strength (marked by dashed vertical line in histograms). For a moderate correlation network, the
proportion of strong connections was higher at the end time that at the start time. (B) Similarly, for a high correlation network, the proportion of strong connections
increased from the start time to the end time. (C) The proportion of strong intercluster connections (strength > half maximum) increased as the simulation settled,
and this proportion remained stable over time for all connected networks. In this representative example, the final proportion was significantly higher in low and
moderate correlation networks than in high correlation networks (ANOVA with Tukey’s post hoc comparison, p < 0.001). (D) The proportion of strong synaptic
connections between microcircuits depended on the proportion of excitatory inputs. As the number of intercluster connections increased, the proportion of strong
intercluster connections decreased (linear regression, R2 = 0.58, p < 10−5). The null model has 0 intercluster connections and, thereby, 0 strong intercluster
connections (marked by red star). (E) We define four excitatory neuron subtypes in this architecture based on their participation in intercluster connections and two
inhibitory neuron subtypes. (F) The Inter Post neurons had higher average output strength than the other excitatory subtypes (ANOVA with Tukey’s post hoc
comparison, p < 10−4).

of a 6 Hz Cluster 1 projecting to 4 Hz Cluster 2 (Figure 2C),
two representative networks (one each for moderate and
high synchronization) were selected for this analysis, though
similar results were found for a more extensive sample of
networks. Low correlation networks were also considered but
were structurally similar to moderate correlation networks
in this analysis.

We found that controllability and betweenness centrality
reveal distinct phenotypes in this two-cluster architecture
that mirror the subtypes we know to exist and previously
defined (Figure 4). The subtypes with intercluster connections
(Inter Pre and Inter Post) had the highest betweenness
centrality, underscoring their integral position in the network.
Any signal passing from Cluster 1 to Cluster 2 must pass
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FIGURE 4 | Controllability and betweenness centrality reveal phenotypes of neuron subtypes. (A) Legend for subsequent panels. (B) Controllability and
betweenness centrality differentiated the neuronal subtypes for all correlation levels. All subtype comparisons were significant (repeated measures model with
Tukey–Kramer post hoc, p < 10−4) with the exception of Inhib Post vs. Inhib Pre (p = 0.075). (C) All subtype comparisons were significant (repeated measures
model with Tukey–Kramer post hoc, p < 10−4) with the exception of Inter Pre vs. Intra Post. Ovals are centered at the group mean and represent 50% of the group
standard deviation.

through Inter Pre and Inter Post neurons. The betweenness
centrality of these populations decreased as more intercluster
connections were added and the correlation of the network
increased (Figures 4B,C). In contrast to betweenness centrality,
controllability did not show a relationship with correlation
(Figures 4B,C). In general, populations in the downstream
cluster had higher controllability than populations in the
upstream cluster. This result indicates that targeting the
downstream cluster would be a more effective way to change
the network state than targeting the upstream cluster. For the

hypothetical example of attempting to change the network state
by breaking synchronization, exogenous stimulation applied
to the downstream cluster would likely be a more effective
strategy because the upstream cluster is the driver while the
downstream cluster is the follower. Controllability does depend
on the strength of connections, so while this was generally
the case, we did identify a network in which the upstream
cluster had higher controllability (data not shown). Overall,
the subtypes showed minimal overlap in controllability, which
emphasizes the distinct roles neuronal subtypes play in this
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two-cluster topology. Notably, average and modal controllability
show similar trends, suggesting that the same populations would
be important for driving the network to both easy-to-reach
and difficult-to-reach states. Using a repeated measures model
with Tukey–Kramer post hoc test for multiple comparisons,
we found for high correlation networks all comparisons
were significant (repeated measures model with Tukey–Kramer
post hoc, p < 10−4) except for Inter Pre vs. Intra Post
(Figure 4C). For moderate correlation networks, all subtypes
were significantly different (repeated measures model with
Tukey–Kramer post hoc, p < 10−4) with the exception of Inhib
Post vs. Inhib Pre (p = 0.075).

Injuring Highly Controllable Neurons by
Subtype
Given the emergence of nodal subtypes, we sought to better
understand their functional roles by implementing a scheme
of targeted neurodegeneration in which we removed neurons
from the network. Neurons were selected from one subtype at
a time to compare the effect of their removal on synchronization
and activity oscillations. Since controllability is believed to link
structure and function, enhancing the likelihood of activity
changes due to damage, we interrogated the functional influence
of removing highly controllable neurons. This is in contrast
to previous work in which highly controllable neurons are
stimulated (Betzel et al., 2016; Muldoon et al., 2016; Gu et al.,
2017; Kim et al., 2018). We hypothesized that removing the
most controllable neurons within a given subtype would be more
detrimental to network function than removing random neurons
from that subtype. The distributions of output weights from
removed neurons vs. remaining neurons of the same subtype
remain bimodal; however, for some cases of controllability-
based removal, the removed neurons have many connections
of relatively low output strength (Supplementary Figure S5).
The representative high and moderate correlation networks
used for our controllability analysis were also used in these
studies (N = 5 networks per type). Low correlation networks
were excluded because the baseline synchronization level could
not drop further as a result of injury. We tested three injury
levels (25, 50, and 75% removal) for each excitatory subtype
(Inter Post, Inter Pre, Intra Post, and Intra Pre). While
inhibitory neurons influence local spike timing and may thereby
modulate synchronization indirectly, excitatory neurons directly
affect synchronization and adapt according to STDP in our
model. Thus, we focused our injury on excitatory subtypes.
Finally, we found that the intercluster connection weights
continued to follow the distributions shown in Figures 3A,B with
predominantly strong connections (Supplementary Figure S6).
Therefore, our subsequent analysis emphasizes the effects of
injury on network activity.

We found that synchronization in high correlation networks
was robust. When neurons were targeted according to their
controllability ranking (average or modal), no level of deletion
for any subtype reduced synchronization below the threshold
for high synchronization (0.65 as determined in Figure 2C)
(Figure 5A). We used paired t-tests with Bonferroni correction

for multiple comparisons to evaluate each set of damaged
networks compared to baseline uninjured networks. While there
were a few significant decreases in synchronization (75% injury
to Inter Pre neurons differed significantly from baseline for all
targeting methods; p < 0.0014 for all), high correlation networks
remained high correlation networks post-injury, with a single
exception (Figure 5A). The one exception is random targeting
of upstream neurons with intercluster connections (Inter Pre)
at the highest injury level: 75% deletion yielded 0.6 ± 0.05
correlation. By applying ANCOVA to control for the injury level
covariate, we also found that networks with damaged Inter Pre
populations differed from one another based on the targeting
strategy. Average and modal controllability targeting methods
both differed from random deletion (ANCOVA with Bonferroni
correction, p < 0.001); however, they did not differ from one
another (p > 0.8). Lastly, we tested correlated activity within
each cluster and found intracluster correlations remain high after
injury (Cluster 1: 0.97± 0.04 and Cluster 2: 0.86± 0.07).

In contrast, the moderate correlation networks revealed a
marked, dose-dependent vulnerability when the Inter Pre subtype
(upstream neurons that send intercluster projections) was
damaged (Figure 5B). While the changes were more modest than
for Inter Pre, targeting the Inter Post population (downstream
neurons that receive intercluster projections) also produced a
dose-dependent decrease in synchronization. When comparing
the results of Inter Pre deletion across the three methods, average
and modal controllability-based deletion differed significantly
from random (ANCOVA with Bonferroni correction, p < 0.008)
but not from each other (p > 0.8). As for high correlation
networks, intracluster correlated activity remained high (Cluster
1: 0.97 ± 0.03 and Cluster 2: 0.83 ± 0.06). For moderate
correlation networks, we observed both significant decreases and
increases in synchronization compared to baseline depending on
the targeted subtype (paired t-test with Bonferroni correction,
p < 0.0014) (Figure 5B). Notably, when Intra Post neurons
were targeted, the resulting correlation increased. This is likely
because achieving high synchronization is easier when there
are fewer downstream neurons without direct inputs from the
upstream cluster. In total, these results reveal a malleability of
the synchronization of moderate correlation networks. Targeted
injury could drive the network toward a state of either higher or
lower synchrony.

While injury predominantly did not impact the
synchronization of high correlation networks, we observed
that the oscillation pattern of the high activity periods changed
(Figures 6A,B). Therefore, we turned to the frequency spectrum
to evaluate these rhythms. In undamaged networks, we
routinely observed two prominent peaks in the power spectrum,
corresponding to two primary oscillation frequencies that existed
in the network activity (10–17 and 1–4 Hz; see the section
“Materials and Methods,” Figures 2A,B, and Supplementary
Figure S3 for further detail). The baseline power ratio between
these two frequency bands (power in 10-14 Hz over power in
1-4 Hz) in high correlation networks was 2.6± 0.1 (N = 5). High
correlation networks showed a rapid decline in this power ratio
following selective damage to the Inter Pre population (paired
t-tests with Bonferroni correction, p < 0.0014 for 50 and 75%
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FIGURE 5 | Synchronization protects against damage to microcircuits. (A) Most highly synchronized networks (correlation > 0.65; green line marks threshold for
high correlation) maintained high correlation when neurons from specific populations were deleted from the network. The dashed gray line denotes the baseline
correlation prior to injury. Some injured networks remained high correlation while having significantly lower synchronization compared to baseline (one-sided paired
t-test, Bonferroni corrected, p < 0.0014). (B) In comparison, networks with moderate correlation (0.45 < correlation < 0.65) prior to injury were more likely to
change synchronization level after injury. The most harmful deletion strategy was targeting excitatory neurons from Cluster 1 that send projections to Cluster 2 (the
Inter Pre subtype). The green line marks the threshold between moderate and high correlation networks (0.65). The purple line marks the threshold between low and
moderate correlation networks (0.45) (Figure 2). The gray dashed line marks the baseline correlation prior to injury. Many injury networks had significantly higher or
lower correlation compared to baseline (paired t-test, Bonferroni corrected, p < 0.0014). Damaging Inter Pre neurons decreased synchronization while damaging
Intra Post neurons increased synchronization.

injury for all selection strategies) (Figure 6C). A decrease in
power ratio indicates a reduction in high frequency components
of the activity signal. As we observed for correlation post-injury,
average and modal controllability-based deletion differed from
random deletion of the Inter Pre subtype (ANCOVA with
Bonferroni correction, p < 0.005) but did not differ from one
another (p > 0.8). Of note, this decrease in high frequency signal
occurs across both clusters (Figure 6A) and suggests that the
upstream cluster is unable to generate higher frequencies. Since
the upstream cluster serves as the driver for high correlation
networks, the downstream cluster depends on receiving input
from the upstream cluster. After adapting with STDP, these
networks appear to prioritize synchronization over more varied
frequency information.

The power ratio of moderate correlation networks varied
after targeted neurodegeneration. The baseline power ratio
for moderate correlation networks was 2.1 ± 0.1 (N = 5).
Removing non-projecting neurons from the upstream cluster
(Intra Pre) significantly reduced the power ratio for all targeting
methods (paired t-tests with Bonferroni correction, p < 0.0014)
(Figure 6D). This effect was more pronounced in response to
controllability-based deletion. In contrast, removing neurons
in the downstream cluster that lacked intercluster connections
(Intra Post) increased the power ratio (significant at the 75%
level with random or modal controllability-based removal; paired

t-tests with Bonferroni correction, p < 0.0014) (Figure 6D). The
power ratio was most resilient to damage in the downstream
population with intercluster input (Inter Post). Of note, the
power ratio increased when the Inter Pre subtype was injured at
the 75% level despite these same networks showing a decrease in
correlation (Figure 5B). Here, the frequency of high oscillation
periods in Cluster 1 decreased while Cluster 2 retained higher
frequency (Figure 6B). Thus, for the aggregate network activity,
frequency was high while correlation was low. In this case, the
results of removing Inter Pre neurons were not significantly
different by targeting method.

DISCUSSION

In this work, we were interested in how the coherence
of two model microcircuits was established by connecting
one population to another. We were also interested in
determining whether specific neuronal subpopulations would
be more influential in changing the dynamics of these coupled
circuits after traumatic injury. We found that the two clusters
synchronized with relatively few intercluster connections. In
addition, intercluster connections became significantly stronger
than did those among neurons within each microcircuit,
indicating that they are high priority connections within the
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FIGURE 6 | Highly synchronized networks are prone to large decreases in power ratio after injury. (A) A raster plot and corresponding frequency spectrum of an
injured network with high correlation and low power ratio. The blue overlays mark the portions of signal that contribute to the power ratio calculation. (B) A raster plot
and corresponding frequency spectrum of an injured network with low correlation and high power ratio. The blue overlays mark the portions of signal that contribute
to the power ratio calculation. (C) Removing Inter Pre neurons in a high correlation network reduced the power ratio at deletion levels 50% and above for all selection
methods (paired t-test, Bonferroni corrected, p < 0.0014). The dashed gray line marks the baseline power ratio prior to injury. (D) Removing neurons in a moderately
correlated network had variable effects. In most cases, networks had modest, though significant, reductions in the power ratio; however, there were also injured
networks with higher power ratio than they had at baseline (paired t-test, Bonferroni corrected, p < 0.0014). Increased power ratio was typically observed after
damage to Intra Post neurons whereas decreased power ratio was common after damage to other subtypes.

network. Finally, we employed targeted neurodegeneration to
explore the influence of neuron subtypes on overall network
behavior and showed that neuron controllability did not
strongly influence injury response. However, neurons linking
the two microcircuits were critical for maintaining both the
broad power spectrum of activity communicated between
the two networks and the coherence of this communication.
Together, the results of targeted neurodegeneration reveal
that densely connected microcircuits are resilient and highly
reliable, even when injured, but these benefits may come at
the cost of reduced signal flexibility (Figure 7). Conversely,
moderately coupled microcircuits are more flexible than
their densely coupled counterparts. However, because these

networks have fewer intercluster connections, they are less
resilient and may suffer greater effects of isolation after
damage (Figure 7).

There are several assumptions we made throughout these
studies. First, we used generic excitatory and inhibitory neurons
based on the Izhikevich integrate-and-fire neuron model
(Izhikevich, 2003). These model neurons are simplistic but
versatile, well-verified, and adequate for our purposes. Several
past studies employed these models to study polychronous neural
computation (Izhikevich, 2006), autaptic neuronal connections
(Wiles et al., 2017), and dopaminergic modulation of brain
oscillations (Kobayashi et al., 2017). Second, we implemented
only AMPA and GABA receptor currents as well as one type

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2020 | Volume 14 | Article 1855

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-14-00018 February 28, 2020 Time: 19:23 # 13

Schumm et al. Neurodegeneration in Connected Microcircuits

FIGURE 7 | Summary comparison between high and moderate correlation networks. In the schematics showing network topology, black circles represent excitatory
neurons and light gray circles represent inhibitory neurons. Not shown are the connections between them. Arrows between clusters stand for intercluster
connections between excitatory neurons. Thicker arrows indicate stronger connections.

of plasticity (STDP). Although adding additional receptors or
dynamics could affect the precise timing of neuron activation,
these changes would not likely impact our broad findings,
which indicate synchronization is a robust phenomenon in a
unidirectional architecture. These simplifications were also made
deliberately to produce a realistic, yet efficient and tractable,
neuronal network model. A third simplification we made was
connecting the two clusters by unidirectional connections only.
It is often assumed that brain regions are reciprocally connected
in diffusion tractography or functional MRI (Buckner et al., 2009;
Bullmore and Sporns, 2009; Damoiseaux and Greicius, 2009;
Nakamura et al., 2009; Cabral et al., 2011; Rubinov and Sporns,
2011; Horn et al., 2014; Fagerholm et al., 2015). Our goal was
to build a more principled view of how groups of neurons
interact to produce a composite network signal. To do so

required beginning with a simplified architecture. Moreover,
this unidirectional architecture does appear in larger, network-
based descriptions of the brain. For example, the hippocampus is
predominantly unidirectionally connected (Hummos et al., 2014;
Wheeler et al., 2015), and other structures like the hypothalamus
have a combination of bidirectional and unidirectional pathways,
including afferent inputs as part of the sensory circuitry and
outputs to the brainstem (Lechan and Toni, 2000; Card and
Swanson, 2013). Given these limitations, however, we plan
to pursue more complex and anatomically accurate network
topologies in future work. In particular, it would be interesting
to combine more diverse and specific neuron types with known
connectivity features of anatomical regions like the hippocampus.

In healthy brain networks, it is known that synchronization
or coherence between distant brain regions is important for
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functions like attention, learning, and memory (Dü Zel et al.,
2010; Clayton et al., 2015; Fries, 2015; Hanslmayr et al., 2016).
Typically, coherence is discussed at the scale of whole brain
imaging, such as fMRI BOLD, which has a temporal resolution
on the order of seconds (Logothetis and Wandell, 2004). With
this resolution, there are nuances of activity patterns which
may not be observed, and synchronization remains important
at intermediate spatial and temporal scales. Nonetheless, due
to experimental constraints, early studies about local networks
and neuron response focused on firing rate (Barlow, 1972;
Newsome et al., 1989). Currently, with improved technology for
measuring activity in multiple neurons or regions simultaneously
(multielectrode arrays, in vivo calcium imaging), there is a
growing emphasis on understanding the correlation of activity
among neurons (Cohen and Kohn, 2011). There is an interest
in what correlation might encode in comparison to firing rate
alone and what it might mean at various timescales (Cohen and
Kohn, 2011). It is valuable to consider how complex patterns
may combine to generate the activity observed at larger spatial
scales and longer time scales. This work aims to examine this
phenomenon at an intermediate scale where subtle topology
changes may impact synchronization.

Our general finding that clusters of neurons synchronize with
a low proportion of intercluster connections finds support in the
literature. For example, thalamic inputs are important drivers
of activity in the primary visual cortex yet account for only 5%
of synapses on cortical simple cells (Wang et al., 2010). The
authors further suggest that spike synchrony may be a critical
mechanism for ensuring reliable, efficient transmission when
inputs comprise a small percentage of overall synaptic input.
Within the context of TBI, it is well-known that diffuse axonal
injury and white matter damage more broadly are associated
with cognitive impairment (Sharp et al., 2011; Johnson et al.,
2013; Fagerholm et al., 2015; Blennow et al., 2016). Our current
work suggests that if two brain areas are connected with a
high density of projections, a significant amount of axonal
injury (disconnection) will be needed to disrupt synchronization
between these areas. Conversely, our work also suggests a
relatively rapid decline in synchronization if two brain areas are
only weakly connected and the linking connections are damaged.
By extension, our work predicts that TBI neurodegeneration
is most problematic when it impacts long-range projections
between brain regions, especially when these regions are not
strongly connected. In addition to synchronization itself, our
supporting result that intercluster connections become strong,
stable connections corroborates evidence in the literature. It has
been observed in dissociated cultures of hippocampal neurons
that “loose synchrony” exists at weak connectivity (Penn et al.,
2016). As connectivity strength increased, the mean phase shift
between oscillations decreased as the network converged to
a common oscillation frequency characterized by synchronous
periodic bursts (Penn et al., 2016). More broadly interpreted,
these changes in synaptic strength reinforce connections among
brain areas and could protect against synchronization deficits that
occur in disease or injury.

Our results studying the influence of neuron controllability
on intercluster dynamics revealed a surprisingly consistent

result – deleting nodes of either high average or high modal
controllability achieved the same change in network dynamics.
Controllability is frequently applied to undirected, symmetric
networks at the full-brain scale (Gu et al., 2015, 2017; Betzel et al.,
2016; Muldoon et al., 2016). In general, these past studies show
that nodes with high average controllability drive the network
to easy-to-reach energy states, whereas nodes with high modal
controllability push the network into hard-to-reach states. In the
brain, these types of controllability often pertain to different tasks
and networks. For instance, high modal control is associated
with cognitive control regions, and high average control is
associated with the default mode network (Gu et al., 2015; Tang
et al., 2017). Our results, though, predominantly showed no
differential effect of deleting neurons with either high average
or modal controllability. One possibility is that easy- and hard-
to-reach states are near one another on the energy landscape,
so this deletion process would produce indistinguishable results.
However, our manipulation also fundamentally differs from
previous control studies in macroscale brain networks because
deleting neurons effectively subtracts energy from the system
as evidenced by deficits in both firing rate (Gabrieli et al.,
2019) and frequency power after injury. These changes indicate
a global loss of energy after neurodegeneration. More often,
controllability is used in the context of stimulation or adding
energy to drive the network to a different energetic state (Betzel
et al., 2016; Muldoon et al., 2016; Gu et al., 2017; Kim et al.,
2018). Prior to neurodegeneration, our networks already exist
in a stable energy basin, and subtracting energy by removing
nodes does little to drive the network toward a different state.
As such, it suggests that a priori controllability rankings may be
limited in their ability to predict dynamic network changes from
degenerating neurons.

Whereas controllability regulates network dynamics and state
transitions, synchronization appears to operate ideally within
a “sweet spot” regime. With excessive synchronization comes
dysfunction, including seizures. Excessive synchronization also
limits cognitive flexibility, an important component of switching
between different task networks. Using blood flow to detect
coordinated neural activity, fMRI determines which regions of
the brain are functionally connected. Neurological diseases are
known to impact functional connectivity, variably increasing or
decreasing it. In general, hyperconnectivity is associated with
cognitive dysfunction, including decreased cognitive flexibility
(Mayer et al., 2011; Tang et al., 2011; Pang, 2015; Venkatesan
et al., 2015), an attribute that enables the brain to attain and
utilize diverse brain states (Tang et al., 2017). In contrast,
hypoconnectivity is related to cognitive decline due to loss
of neural resources, such as occurs in Alzheimer’s disease
(Sheline and Raichle, 2013; Hillary et al., 2015). A reasonable
expectation is that traumatic injury – either from degenerating
neurons or from disrupted connections between them – will
only decrease functional connectivity in the brain. However,
functional connectivity can both increase and decrease after
TBI (Bullmore and Sporns, 2009; Mayer et al., 2011; Pandit
et al., 2013; Sharp et al., 2014; Venkatesan et al., 2015). Our
work studying the degeneration of specific neurons within
each population raises an intriguing new mechanism at the
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cellular scale that may help explain how TBI can promote
either functional hyper- or hypoconnectivity. In our moderate
networks subjected to neurodegeneration, we observed both
increases and decreases in correlation depending on which
neuron subtype was targeted. If injury affects predominantly
neurons that send connections to other regions, we can
expect coherence with those regions to decline and subsequent
hypoconnectivity. We would expect a similar decrease in
functional connectivity if the projections between two different
brain areas declined, a potential effect of diffuse injury to
the white matter tracts connecting these areas. However,
if neurons with primarily local connections are damaged,
the diversity of information in that region goes down and
correlation increases, leading to hyperconnectivity and reduced
cognitive flexibility. To our knowledge, we are not aware
of previous work showing this bifurcating response within a
single network, making this the first study to demonstrate both
higher and lower synchronization as a result of differentially
targeted injury.

Correlation, as we have defined it, is a robust metric with tight
standard deviations and high consistency among simulations.
Despite this, synchronization alone does not provide a full
picture of network activity. The traditional metric of neuron
firing rate also fails to add much to this picture because it
does not account for the variability in action potential timing.
Both our networks and more complex networks in vitro and
in vivo develop oscillatory patterns with periods of high and
low activity. These rhythms may themselves encode information
or instead facilitate the flow of information (Sejnowski and
Paulsen, 2006). In vivo oscillations contribute to many important
cognitive functions, including the representation, consolidation,
and retrieval processes of memory (Dü Zel et al., 2010; Hanslmayr
et al., 2016). Oscillations are also believed to coordinate activity
in different brain regions, dynamically shaping brain networks
that have static structural connections (Dü Zel et al., 2010;
Deco and Kringelbach, 2016). The coupling is hypothesized
to occur via different frequencies. Theta-gamma coupling in
the hippocampus is one well-studied example (Dü Zel et al.,
2010; Lisman and Jensen, 2013; Colgin, 2015), in which gamma
frequencies are coupled to phases of the theta signal to enable
CA1 to coordinate with the entorhinal cortex via high frequency
gamma and with CA3 via low frequency gamma (Dü Zel et al.,
2010; Colgin, 2015). Similarly, coherent activity appears between
the hippocampus and prefrontal cortex during certain behaviors
in rodents (Jones and Wilson, 2005; Tamura et al., 2017). Thus,
transmitting spike rate information across different frequency
bands allows a single region to communicate with multiple
regions or even participate in different networks simultaneously.
As an approximation of the signal properties encoded in
the network, we defined a power ratio of the total network
activity. In a more complex topology, different features of the
frequency spectra may synchronize more strongly than others
between two regions. Our results indicate that weakly connected
regions are more vulnerable to changes in synchronization post-
injury while highly connected regions are more vulnerable to
changes in frequency, though they may remain synchronized.
As the brain is comprised of regions coupled by varied

connectivity strength, our results imply that an injured brain
may show altered synchrony or oscillation frequency between
some brain regions and not others, with the difference due to
the connection strength. Moreover, both phenomena may occur
simultaneously for a given region, contributing to the response
heterogeneity observed after TBI. We also note that the high
frequency components were susceptible to neurodegeneration,
showing the largest change when upstream projecting neurons
were targeted in high correlation networks. This finding
corroborates other reports of decreased broadband power in
the CA1 region of the hippocampus (Paterno et al., 2016;
Gagnon et al., 2019).

The changes in oscillatory rhythms in our model after damage
lead us to consider ways to restore the original rhythms.
One possibility is stimulation of neurons within each network,
which would also enable us to further explore our insights
about controllability in the framework of injury. At a larger
scale, deep brain stimulation (DBS) has been implemented
to treat neurological conditions including Parkinson’s disease
(de Hemptinne et al., 2015) and chronic pain (Owen et al.,
2006) by modulating inappropriate brain activity (Kringelbach
et al., 2007). While it has been used for years, the fundamental
mechanisms of DBS are not well understood. In the context
of TBI, DBS has been previously proposed to restore cognitive
rhythms (Pevzner et al., 2016). At the scale of our network
model, we can examine the principles of restorative stimulation
protocols as a means of reestablishing disrupted rhythms.
With the flexibility of our model, we can compare various
stimulation strategies, including testing different frequencies
and targeting highly controllable neurons, to study both
effectiveness and structural network changes. Past work indicates
the controllability type and rank for a network node will affect
transition states for the network when energy is injected into
this node (Betzel et al., 2016; Muldoon et al., 2016; Kim
et al., 2018). As such, we expect that nodal stimulation will
function differently than nodal deletion and will allow one to
systematically reconstruct activity oscillations and re-establish
information encoding properties across nodes in the network.

In closing, we find that a relatively simple injury, namely
neurodegeneration, can cause complex outcomes that depend
on the baseline coupling of microcircuits and on the function
of damaged neurons (Figure 7). The communication abilities
(synchronization) and information coding capacity (frequency
content) of these networks may be impaired after traumatic
injury. Densely connected microcircuits possess an inherent
resilience to synchronization-related changes after damage
while moderately coupled networks are more malleable.
Our work underscores that upstream neurons sending
downstream projections are highly valuable for maintaining
both synchronization and frequency properties of the aggregate
signal in a multi-regional network. More broadly, this work
raises a new dimension of heterogeneity of TBI where the pattern
of cellular damage may contribute to the specific outcome and
impairment. In future work, this complexity could be explored
with a multiscale approach which integrates local, time-varying
signal information as inputs to oscillator-based models of
macroscale brain connectivity (Váša et al., 2015; Lee et al., 2017).
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Thus, this work facilitates integrative multiscale efforts for
translating fundamental mechanisms of TBI to macroscale
consequences by establishing principles which may be applied
and tested in a larger scale model of the brain.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

SS and DM conceived and designed the studies and analysis,
and wrote the manuscript. SS performed the simulations
and conducted the analysis. SS and DG contributed to the
model and analysis tools. DG contributed to the manuscript
discussion and revision.

FUNDING

This work was funded by grants from the Paul G.
Allen Foundation and the National Institutes of Health
(NIH) (RO1 NS088176).

ACKNOWLEDGMENTS

We would like to thank Lia Papadopoulos for careful reading
of the manuscript and Danielle S. Bassett for aiding our
understanding of network controllability.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2020.00018/full#supplementary-material

REFERENCES
Barlow, H. B. (1972). Single units and sensation: a neuron doctrine for perceptual

psychology? Perception 1, 371–394. doi: 10.1068/p010371
Bastos, A. M., Vezoli, J., and Fries, P. (2015). Communication through coherence

with inter-areal delays. Curr. Opin. Neurobiol. 31, 173–180. doi: 10.1016/j.conb.
2014.11.001

Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F., and Bassett, D. S. (2016).
Optimally controlling the human connectome: the role of network topology.
Sci. Rep. 6:30770. doi: 10.1038/srep30770

Blennow, K., Brody, D. L., Kochanek, P. M., Levin, H., McKee, A., Ribbers, G. M.,
et al. (2016). Traumatic brain injuries. Nat. Rev. Dis. Prim. 2, doi: 10.1038/nrdp.
2016.84

Bocchio, M., Nabavi, S., and Capogna, M. (2017). Synaptic plasticity, engrams, and
network oscillations in amygdala circuits for storage and retrieval of emotional
memories. Neuron 94, 731–743. doi: 10.1016/j.neuron.2017.03.022

Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De
Boissezon, X., et al. (2011). Default mode network connectivity predicts
sustained attention deficits after taumatic brain injury. J. Neurosci. 31, 13442–
13451. doi: 10.1523/JNEUROSCI.1163-11.2011

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al.
(2009). Cortical hubs revealed by intrinsic functional connectivity: mapping,
assessment of stability, and relation to Alzheimer’s disease. J. Neurosci. 29,
1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.
doi: 10.1038/nrn2575

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of local network
oscillations in resting-state functional connectivity. Neuroimage 57, 130–139.
doi: 10.1016/j.neuroimage.2011.04.010

Card, J. P., and Swanson, L. W. (2013). “The hypothalamus: an overview of
regulatory systems,” in Fundamental Neuroscience, eds L. R. Squire, D. Berg,
F. E. Bloom, S. du Lac, A. Ghosh, and N. C. Spitzer, (Waltham, MA: Elsevier),
717–727. doi: 10.1016/B978-0-12-385870-2.00033-0

Clayton, M. S., Yeung, N., and Kadosh, R. C. (2015). The roles of cortical
oscillations in sustained attention. Trends Cogn. Sci. 19, 188–195. doi: 10.1016/
j.tics.2015.02.004

Cohen, M. R., and Kohn, A. (2011). Measuring and interpreting neuronal
correlations. Nat. Neurosci. 14, 811–819. doi: 10.1038/nn.2842

Colgin, L. L. (2015). Theta-gamma coupling in the entorhinal-hippocampal system.
Curr. Opin. Neurobiol. 31, 45–50. doi: 10.1016/j.conb.2014.08.001

Coronado, V. G., Mcguire, L. C., Sarmiento, K., Bell, J., Lionbarger, M. R., Jones,
C. D., et al. (2012). Trends in traumatic brain injury in the U.S. and the public

health response: 1995–2009. J. Safety Res. 43, 1995–2009. doi: 10.1016/j.jsr.2012.
08.011

Damoiseaux, J. S., and Greicius, M. D. (2009). Greater than the sum of its parts: a
review of studies combining structural connectivity and resting-state functional
connectivity. Brain Struct. Funct. 213, 525–533. doi: 10.1007/s00429-009-
0208-6

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J.,
Smith, S. M., et al. (2006). Consistent resting-state networks across healthy
subjects. Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.
0601417103

de Hemptinne, C., Swann, N. C., Ostrem, J. L., Ryapolova-Webb, E. S., San Luciano,
M., Galifianakis, N. B., et al. (2015). Therapeutic deep brain stimulation reduces
cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18,
779–786. doi: 10.1038/nn.3997

Deco, G., and Kringelbach, M. L. (2016). Metastability and coherence: extending
the communication through coherence hypothesis using a whole-brain
computational perspective. Trends Neurosci. 39, 125–135. doi: 10.1016/j.tins.
2016.01.001

Dü Zel, E., Penny, W. D., and Burgess, N. (2010). Brain oscillations and memory.
Curr. Opin. Neurobiol. 20, 143–149. doi: 10.1016/j.conb.2010.01.004

Effenberger, F., Jost, J., and Levina, A. (2015). Self-organization in balanced state
networks by STDP and homeostatic plasticity. PLoS Comput. Biol. 11:e1004420.
doi: 10.1371/journal.pcbi.1004420

Eytan, D., and Marom, S. (2006). Dynamics and effective topology underlying
synchronization in networks of cortical neurons. J. Neurosci. 26, 8465–8476.
doi: 10.1523/JNEUROSCI.1627-06.2006

Fagerholm, E. D., Hellyer, P. J., Scott, G., Leech, R., and Sharp, D. J. (2015).
Disconnection of network hubs and cognitive impairment after traumatic brain
injury. Brain 138, 1696–1709. doi: 10.1093/brain/awv075

Ferster, D., and Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex
studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274.
doi: 10.1523/jneurosci.12-04-01262.1992

Fransson, P. (2006). How default is the default mode of brain function? Further
evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44, 2836–
2845. doi: 10.1016/j.neuropsychologia.2006.06.017

Fries, P. (2015). Rhythms for cognition: communication through coherence.
Neuron 88, 220–235. doi: 10.1016/j.neuron.2015.09.034

Gabrieli, D., Schumm, S. N., Parvesse, B., and Meaney, D. F. (2019).
Neurodegeneration exposes firing rate dependent effects on oscillation
dynamics in computational neural networks. bioRxiv doi: 10.1101/663187

Gagnon, K., Cottone, C., Adam, C., and Wolf, J. (2019). Disruptions in
hippocampal circuitry involved in learning and memory following TBI.
J. Neurotrauma 36:A-3. doi: 10.1089/neu.2019.29100.abstracts

Frontiers in Computational Neuroscience | www.frontiersin.org 16 March 2020 | Volume 14 | Article 1859

https://www.frontiersin.org/articles/10.3389/fncom.2020.00018/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncom.2020.00018/full#supplementary-material
https://doi.org/10.1068/p010371
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.1016/j.conb.2014.11.001
https://doi.org/10.1038/srep30770
https://doi.org/10.1038/nrdp.2016.84
https://doi.org/10.1038/nrdp.2016.84
https://doi.org/10.1016/j.neuron.2017.03.022
https://doi.org/10.1523/JNEUROSCI.1163-11.2011
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.neuroimage.2011.04.010
https://doi.org/10.1016/B978-0-12-385870-2.00033-0
https://doi.org/10.1016/j.tics.2015.02.004
https://doi.org/10.1016/j.tics.2015.02.004
https://doi.org/10.1038/nn.2842
https://doi.org/10.1016/j.conb.2014.08.001
https://doi.org/10.1016/j.jsr.2012.08.011
https://doi.org/10.1016/j.jsr.2012.08.011
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1038/nn.3997
https://doi.org/10.1016/j.tins.2016.01.001
https://doi.org/10.1016/j.tins.2016.01.001
https://doi.org/10.1016/j.conb.2010.01.004
https://doi.org/10.1371/journal.pcbi.1004420
https://doi.org/10.1523/JNEUROSCI.1627-06.2006
https://doi.org/10.1093/brain/awv075
https://doi.org/10.1523/jneurosci.12-04-01262.1992
https://doi.org/10.1016/j.neuropsychologia.2006.06.017
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1101/663187
https://doi.org/10.1089/neu.2019.29100.abstracts
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-14-00018 February 28, 2020 Time: 19:23 # 17

Schumm et al. Neurodegeneration in Connected Microcircuits

Gollo, L. L., Mirasso, C., Sporns, O., and Breakspear, M. (2014). Mechanisms of
zero-lag synchronization in cortical motifs. PLoS Comput. Biol. 10:e1003548.
doi: 10.1371/journal.pcbi.1003548

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009). Resting-
state functional connectivity reflects structural connectivity in the default mode
network. Cereb. cortex 19, 72–78. doi: 10.1093/cercor/bhn059

Gu, S., Betzel, R. F., Mattar, M. G., Cieslak, M., Delio, P. R., Grafton, S. T.,
et al. (2017). Optimal trajectories of brain state transitions. Neuroimage 148,
305–317. doi: 10.1016/j.neuroimage.2017.01.003

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E., et al.
(2015). Controllability of structural brain networks. Nat. Commun. 6:8414.
doi: 10.1038/ncomms9414

Hanslmayr, S., Staresina, B. P., and Bowman, H. (2016). Oscillations and episodic
memory: addressing the synchronization/desynchronization conundrum.
Trends Neurosci. 39, 16–25. doi: 10.1016/j.tins.2015.11.004

Hillary, F. G., Roman, C. A., Venkatesan, U., Rajtmajer, S. M., Bajo, R., and
Castellanos, N. D. (2015). Hyperconnectivity is a fundamental response
to neurological disruption. Neuropsychology 29, 59–75. doi: 10.1037/neu000
0110

Hiploylee, C., Dufort, P. A., Davis, H. S., Wennberg, R. A., Tartaglia, M. C.,
Mikulis, D., et al. (2017). Longitudinal study of postconcussion syndrome:
not everyone recovers. J. Neurotrauma 34, 1511–1523. doi: 10.1089/neu.2016.
4677

Horn, A., Ostwald, D., Reisert, M., and Blankenburg, F. (2014). The structural–
functional connectome and the default mode network of the human brain.
Neuroimage 102, 142–151. doi: 10.1016/j.neuroimage.2013.09.069

Hummos, A., Franklin, C. C., and Nair, S. S. (2014). Intrinsic mechanisms stabilize
encoding and retrieval circuits differentially in a hippocampal network model.
Hippocampus 24, 1430–1448. doi: 10.1002/hipo.22324

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural
Comput. 18, 245–282. doi: 10.1162/089976606775093882

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598. doi:
10.1073/pnas.0712231105

Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-timing dynamics
of neuronal groups. Cereb. Cortex 14, 933–944. doi: 10.1093/cercor/bhh053

Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., et al.
(2014). Damage to the salience network and interactions with the default
mode network. J. Neurosci. 34, 10798–10807. doi: 10.1523/JNEUROSCI.0518-
14.2014

Johnson, V. E., Stewart, W., and Smith, D. H. (2013). Axonal pathology in
traumatic brain injury. Exp. Neurol. 246, 35–43. doi: 10.1016/j.expneurol.2012.
01.013

Jones, M. W., and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-
prefrontal interactions in a spatial memory task. PLoS Biol. 3:e402. doi: 10.1371/
journal.pbio.0030402

Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Taylor Tavares,
J. V., Carpenter, T. A., et al. (2010). Altered functional connectivity in the
motor network after traumatic brain injury Background: a large proportion of
survivors of traumatic brain injury (TBI) have persistent cognitive. Neurology
75, 168–176. doi: 10.1212/WNL.0b013e3181e7ca58

Kim, J. Z., Sooer, J. M., Kahn, A. E., Vettel, J. M., Pasqualetti, F., and Bassett,
D. S. (2018). Role of graph architecture in controlling dynamical networks with
applications to neural systems. Nat. Phys. 14, 91–98. doi: 10.1038/NPHYS4268

Kobayashi, T., Shimada, Y., Fujiwara, K., and Ikeguchi, T. (2017). Reproducing
infra-slow oscillations with dopaminergic modulation. Sci. Rep. 7:2411. doi:
10.1038/s41598-017-02366-z

Kringelbach, M. L., Jenkinson, N., Owen, S. L. F., and Aziz, T. Z. (2007).
Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–
635. doi: 10.1038/nrn2196

Langlois, J. A., Rutland-Brown, W., and Wald, M. M. (2006). The epidemiology
and impact of traumatic brain injury. J. Head Trauma Rehabil. 21, 375–378.
doi: 10.1097/00001199-200609000-200609001

Lechan, R. M., and Toni, R. (2000). Functional anatomy of the hypothalamus and
pituitary, eds K. Feingold, B. Anawalt, and A. Boyce South, (Darthmouth, MA:
MDText.com, Inc).

Lee, W. H., Bullmore, E., and Frangou, S. (2017). Quantitative evaluation of
simulated functional brain networks in graph theoretical analysis. Neuroimage
146, 724–733. doi: 10.1016/j.neuroimage.2016.08.050

Lisman, J. E., and Jensen, O. (2013). The theta-gamma neural code. Neuron 77,
1002–1016. doi: 10.1016/j.neuron.2013.03.007

Logothetis, N. K., and Wandell, B. A. (2004). Interpreting the BOLD signal. Annu.
Rev. Physiol. 66, 735–769. doi: 10.1146/annurev.physiol.66.082602.092845

Masel, B. E., and DeWitt, D. S. (2010). Traumatic brain injury: a disease process,
not an event. J. Neurotrauma 27, 1529–1540. doi: 10.1089/neu.2010.1358

Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., and Yeo, R. A. (2011).
Functional connectivity in mild traumatic brain injury. Hum. Brain Mapp. 32,
1825–1835. doi: 10.1002/hbm.21151

Muldoon, S. F., Pasqualetti, F., Gu, S., Cieslak, M., Grafton, S. T., Vettel, J. M., et al.
(2016). Stimulation-based control of dynamic brain networks. PLoS Comput.
Biol. 12:e1005076. doi: 10.1371/journal.pcbi.1005076

Nakamura, T., Hillary, F. G., and Biswal, B. B. (2009). Resting network plasticity
following brain injury. PLoS One 4:e8220. doi: 10.1371/journal.pone.0008220

Narayanan, N. S., and Laubach, M. (2009). Methods for studying functional
interactions among neuronal populations. Methods Mol. Biol. 489, 135–165.
doi: 10.1007/978-1-59745-543-5_7

Newsome, W. T., Britten, K. H., and Movshon, J. A. (1989). Neuronal correlates of
a perceptual decision. Nature 341, 52–54. doi: 10.1038/341052a0

Owen, S. L. F., Green, A. L., Stein, J. F., and Aziz, T. Z. (2006). Deep brain
stimulation for the alleviation of post-stroke neuropathic pain. Pain 120,
202–206. doi: 10.1016/j.pain.2005.09.035

Pandit, A. S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F. E.,
et al. (2013). Traumatic brain injury impairs small-world topology. Neurology
80, 1826–1833. doi: 10.1212/WNL.0b013e3182929f38

Pang, E. W. (2015). Different neural mechanisms underlie deficits in mental
flexibility in post-traumatic stress disorder compared to mild traumatic brain
injury. Front. Psychiatry 6:170. doi: 10.3389/fpsyt.2015.00170

Paterno, R., Metheny, H., Xiong, G., Elkind, J., and Cohen, A. S. (2016). Mild
traumatic brain injury decreases broadband power in area CA1. J. Neurotrauma
33, 1645–1649. doi: 10.1089/neu.2015.4107

Penn, Y., Segal, M., and Moses, E. (2016). Network synchronization in
hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A. 113, 3341–3346. doi: 10.
1073/pnas.1515105113

Pevzner, A., Izadi, A., Lee, D. J., Shahlaie, K., and Gurkoff, G. G. (2016). Making
waves in the brain: what are oscillations, and why modulating them makes sense
for brain injury. Front. Syst. Neurosci. 10:30. doi: 10.3389/fnsys.2016.00030

Rubinov, M., and Sporns, O. (2011). Weight-conserving characterization of
complex functional brain networks. Neuroimage 56, 2068–2079. doi: 10.1016/
j.neuroimage.2011.03.069

Sejnowski, T. J., and Paulsen, O. (2006). Network oscillations: emerging
computational principles. J. Neurosci. 26, 1673–1676. doi: 10.1523/
JNEUROSCI.3737-05d.2006

Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De
Boissezon, X., et al. (2011). Default mode network functional and structural
connectivity after traumatic brain injury. Brain 134, 2233–2247. doi: 10.1093/
brain/awr175

Sharp, D. J., Scott, G., and Leech, R. (2014). Network dysfunction after traumatic
brain injury. Nat. Rev. Neurol. 10, 156–166. doi: 10.1038/nrneurol.2014.15

Sheline, Y. I., and Raichle, M. E. (2013). Resting state functional connectivity
in preclinical Alzheimer’s disease. Biol. Psychiatry 74, 340–347. doi: 10.1016/j.
biopsych.2012.11.028

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Soriano, J., Rodriguez Martinez, M., Tlusty, T., and Moses, E. (2008). Development
of input connections in neural cultures. Proc. Natl. Acad. Sci. U.S.A. 105,
13758–13763. doi: 10.1073/pnas.0707492105

Sours, C., George, E. O., Zhuo, J., Roys, S., and Gullapalli, R. P. (2015). Hyper-
connectivity of the thalamus in during early stages following mild traumatic
brain injury.Brain Imaging Behav. 9, 550–563. doi: 10.1007/s11682-015-9424-2

Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., and Witt, S. T. (2012).
Multiple resting state network functional connectivity abnormalities in mild
traumatic brain injury. Brain Imaging Behav. 6, 293–318. doi: 10.1007/s11682-
012-9157-4

Frontiers in Computational Neuroscience | www.frontiersin.org 17 March 2020 | Volume 14 | Article 1860

https://doi.org/10.1371/journal.pcbi.1003548
https://doi.org/10.1093/cercor/bhn059
https://doi.org/10.1016/j.neuroimage.2017.01.003
https://doi.org/10.1038/ncomms9414
https://doi.org/10.1016/j.tins.2015.11.004
https://doi.org/10.1037/neu0000110
https://doi.org/10.1037/neu0000110
https://doi.org/10.1089/neu.2016.4677
https://doi.org/10.1089/neu.2016.4677
https://doi.org/10.1016/j.neuroimage.2013.09.069
https://doi.org/10.1002/hipo.22324
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1162/089976606775093882
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1093/cercor/bhh053
https://doi.org/10.1523/JNEUROSCI.0518-14.2014
https://doi.org/10.1523/JNEUROSCI.0518-14.2014
https://doi.org/10.1016/j.expneurol.2012.01.013
https://doi.org/10.1016/j.expneurol.2012.01.013
https://doi.org/10.1371/journal.pbio.0030402
https://doi.org/10.1371/journal.pbio.0030402
https://doi.org/10.1212/WNL.0b013e3181e7ca58
https://doi.org/10.1038/NPHYS4268
https://doi.org/10.1038/s41598-017-02366-z
https://doi.org/10.1038/s41598-017-02366-z
https://doi.org/10.1038/nrn2196
https://doi.org/10.1097/00001199-200609000-200609001
https://doi.org/10.1016/j.neuroimage.2016.08.050
https://doi.org/10.1016/j.neuron.2013.03.007
https://doi.org/10.1146/annurev.physiol.66.082602.092845
https://doi.org/10.1089/neu.2010.1358
https://doi.org/10.1002/hbm.21151
https://doi.org/10.1371/journal.pcbi.1005076
https://doi.org/10.1371/journal.pone.0008220
https://doi.org/10.1007/978-1-59745-543-5_7
https://doi.org/10.1038/341052a0
https://doi.org/10.1016/j.pain.2005.09.035
https://doi.org/10.1212/WNL.0b013e3182929f38
https://doi.org/10.3389/fpsyt.2015.00170
https://doi.org/10.1089/neu.2015.4107
https://doi.org/10.1073/pnas.1515105113
https://doi.org/10.1073/pnas.1515105113
https://doi.org/10.3389/fnsys.2016.00030
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1523/JNEUROSCI.3737-05d.2006
https://doi.org/10.1523/JNEUROSCI.3737-05d.2006
https://doi.org/10.1093/brain/awr175
https://doi.org/10.1093/brain/awr175
https://doi.org/10.1038/nrneurol.2014.15
https://doi.org/10.1016/j.biopsych.2012.11.028
https://doi.org/10.1016/j.biopsych.2012.11.028
https://doi.org/10.1038/78829
https://doi.org/10.1073/pnas.0707492105
https://doi.org/10.1007/s11682-015-9424-2
https://doi.org/10.1007/s11682-012-9157-4
https://doi.org/10.1007/s11682-012-9157-4
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-14-00018 February 28, 2020 Time: 19:23 # 18

Schumm et al. Neurodegeneration in Connected Microcircuits

Swadlow, H. A. (1985). Physiological properties of individual cerebral axons
studied in vivo for as long as one year. J. Neurophysiol. 54, 1346–1362. doi:
10.1152/jn.1985.54.5.1346

Tamura, M., Spellman, T. J., Rosen, A. M., Gogos, J. A., and Gordon, J. A.
(2017). Hippocampal-prefrontal theta-gamma coupling during performance of
a spatial working memory task. Nat. Commun. 8:2182. doi: 10.1038/s41467-
017-02108-9

Tang, E., Giusti, C., Baum, G. L., Gu, S., Pollock, E., Kahn, A. E., et al. (2017).
Developmental increases in white matter network controllability support a
growing diversity of brain dynamics. Nat. Commun. 8:1252. doi: 10.1038/
s41467-017-01254-4

Tang, L., Ge, Y., Sodickson, D. K., Miles, L., Zhou, Y., Reaume, J., et al. (2011).
Thalamic resting-state functional networks: disruption in patients with mild
traumatic brain injury. Radiology 260, 831–840. doi: 10.1148/radiol.11110014

Varela, F., Lachaux, J. P., Rodriguez, E., and Martinerie, J. (2001). The brainweb:
phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–
239. doi: 10.1038/35067550

Váša, F., Shanahan, M., Hellyer, P. J., Scott, G., Cabral, J., and Leech, R.
(2015). Effects of lesions on synchrony and metastability in cortical networks.
Neuroimage 118, 456–467. doi: 10.1016/J.NEUROIMAGE.2015.05.042

Venkatesan, U. M., Dennis, N. A., and Hillary, F. G. (2015). Chronology and
chronicity of altered resting-state functional connectivity after traumatic brain
injury. J. Neurotrauma 32, 252–264. doi: 10.1089/neu.2013.3318

Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I., and Pipa, G. (2008). Dynamical
relaying can yield zero time lag neuronal synchrony despite long conduction
delays. Proc. Natl. Acad. Sci. U.S.A. 105, 17157–17162. doi: 10.1073/pnas.
0809353105

Wang, C., Costanzo, M. E., Rapp, P. E., Darmon, D., Nathan, D. E., Bashirelahi,
K., et al. (2017). Disrupted gamma synchrony after mild traumatic brain injury

and its correlation with white matter abnormality. Front. Neurol. 8:571. doi:
10.3389/fneur.2017.00571

Wang, H.-P., Spencer, D., Fellous, J.-M., and Sejnowski, T. J. (2010). Synchrony
of thalamocortical inputs maximizes cortical reliability. Science 328, 106–109.
doi: 10.1126/science.1183108

Wheeler, D. W., White, C. M., Rees, C. L., Komendantov, A. O., Hamilton, D. J., and
Ascoli, G. A. (2015). Hippocampome.org: a knowledge base of neuron types in
the rodent hippocampus. Elife 4:e09960. doi: 10.7554/eLife.09960

Wiles, L., Gu, S., Pasqualetti, F., Parvesse, B., Gabrieli, D., Bassett, D. S., et al. (2017).
Autaptic connections shift network excitability and bursting. Sci. Rep. 7:44006.
doi: 10.1038/srep44006

Wilson, L., Stewart, W., Dams-O’Connor, K., Diaz-Arrastia, R., Horton, L., Menon,
D. K., et al. (2017). The chronic and evolving neurological consequences
of traumatic brain injury. Lancet Neurol. 16, 813–838. doi: 10.1016/S1474-
4422(17)30279-X

Yan, H., Feng, Y., and Wang, Q. (2016). Altered effective connectivity of
hippocampus-dependent episodic memory network in mTBI survivors. Neural
Plast. 2016:6353845. doi: 10.1155/2016/6353845

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Schumm, Gabrieli and Meaney. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 March 2020 | Volume 14 | Article 1861

https://doi.org/10.1152/jn.1985.54.5.1346
https://doi.org/10.1152/jn.1985.54.5.1346
https://doi.org/10.1038/s41467-017-02108-9
https://doi.org/10.1038/s41467-017-02108-9
https://doi.org/10.1038/s41467-017-01254-4
https://doi.org/10.1038/s41467-017-01254-4
https://doi.org/10.1148/radiol.11110014
https://doi.org/10.1038/35067550
https://doi.org/10.1016/J.NEUROIMAGE.2015.05.042
https://doi.org/10.1089/neu.2013.3318
https://doi.org/10.1073/pnas.0809353105
https://doi.org/10.1073/pnas.0809353105
https://doi.org/10.3389/fneur.2017.00571
https://doi.org/10.3389/fneur.2017.00571
https://doi.org/10.1126/science.1183108
https://doi.org/10.7554/eLife.09960
https://doi.org/10.1038/srep44006
https://doi.org/10.1016/S1474-4422(17)30279-X
https://doi.org/10.1016/S1474-4422(17)30279-X
https://doi.org/10.1155/2016/6353845
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


ORIGINAL RESEARCH
published: 31 March 2020

doi: 10.3389/fphy.2020.00082

Frontiers in Physics | www.frontiersin.org 1 March 2020 | Volume 8 | Article 82

Edited by:

Nicola Toschi,

University of Rome Tor Vergata, Italy

Reviewed by:

Krasimira Tsaneva-Atanasova,

University of Exeter, United Kingdom

Luis Diambra,

National University of La

Plata, Argentina

Maria Grazia Puxeddu,

Sapienza University of Rome, Italy

*Correspondence:

Ehtasham Javed

rajaehti1@gmail.com;

ehtasham.javed@unich.it

Specialty section:

This article was submitted to

Biophysics,

a section of the journal

Frontiers in Physics

Received: 16 December 2019

Accepted: 09 March 2020

Published: 31 March 2020

Citation:

Javed E, Croce P, Zappasodi F and

Del Gratta C (2020) Normal Aging:

Alterations in Scalp EEG Using

Broadband and Band-Resolved

Topographic Maps. Front. Phys. 8:82.

doi: 10.3389/fphy.2020.00082

Normal Aging: Alterations in Scalp
EEG Using Broadband and
Band-Resolved Topographic Maps
Ehtasham Javed*, Pierpaolo Croce, Filippo Zappasodi and Cosimo Del Gratta

Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, Gabriele

d’Annunzio University, Chieti, Italy

Given the majority of age-related diseases have been described as disconnection

syndromes, understanding the functional connections of normal aging is of considerable

importance. Here, an EEG-based scalp level analysis has been performed to identify the

alterations in the synchronized brain regions in aged, compared to young persons. Two

groups, aged and young subjects were studied, each consisting of 18 participants. First,

conventionally extracted broadband topographic maps, also called microstate maps,

were examined. The results showed an overall dominant alteration: a uniform decrease

in synchronization of brain regions related to cognitive processing resources that was

observed only when the maps C and D were characterized in temporal parameters.

However, no remarkable change in the spatial distribution was found between the groups.

This failure in identifying differences in the spatial distribution was hypothesized to be due

to the presence of superimposed signals of several frequencies in the broadband signal

that is used for the extraction of microstate maps. Second, spectrally resolved band-wise

topographic maps, which we have shown, in a previous study, are able to detect

spectral details associated with broadband microstates maps, were used to address this

failure. The use of the instantaneous frequency concept is essential in the extraction of

band-wise topographic maps, and represents a novelty compared to current studies. The

method consists of three steps: (a) from EEG signal, the Empirical Mode Decomposition

method is used to extract underlying oscillatory components; (b) these intrinsic oscillatory

components are then amplitude demodulated and subjected to numerical equations

for the calculation of instantaneous features, such as amplitude, and frequency; finally,

(c) based on these instantaneous features, band-wise topographic maps are extracted.

Here, as a first application to aging data, these band-wise topographic maps have shown

the capability of capturing the age-related changes in both spatial distributions, and in

temporal characterization. Spatially, the potential distribution in the aged and the young

subject groups, respectively, showed differences, while, in temporal characterization,

both increases and decreases were observed, suggesting the lengths of synchronized

activities vary differentially, and in accordance with results from fMRI studies. These

observed differences also support the dedifferentiation and compensation mechanisms.

Keywords: aging, microstate analysis, band-wise topographic analysis, empirical mode decomposition,

instantaneous frequency
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INTRODUCTION

Numerous studies have shown age-related alterations in
functional connectivity of brain regions while evaluating task-
based performance as well as during rest, likely ensuing from
a decline in cognitive performance. Intra and inter-networks
changes in functional connectivity of resting-state networks have
been recurrently reported [1]. The patterns of these alterations in
functional connectivity are relatively complex i.e., both increases
and decreases in number of connections have been found.
For example, increase in anterior regions of DMN, subcortical
and somatosensory/motor network, and decrease in posterior
DMN regions, dorsal attention, and salience networks [2, 3].
In addition, the within-region functional connectivity in the
somatosensory, and central visual areas, were found to be non-
linearly related to aging, whereas other studies found results in
contrast to the above mentioned [4].

In the literature, the complex nature of aging-related changes
is based on two main hypotheses i.e., dedifferentiation and
compensation. First, dedifferentiation is the term used to explain
the loss of underlying functional resources required to perform
the given task [5]. Biologically, it is referred to as the chain
of processes affected by the deterioration of dopaminergic
neuromodulation that result in a reduced specificity of involved
cortical areas [6]. Second, the compensation hypothesis explains
the involvement of newly recruited brain areas in a higher level of
activity to overcome the decline in functional specificity [7]. The
compensation process was first identified by Grady et al. [8] while
investigating the performance metrics for memory tasks.

In recent years, research on brain changes related to aging
increasingly relied on functional magnetic resonance imaging
(fMRI). Numerous insights were provided e.g., key brain areas
like the anterior cingulate cortex involved in emotional and
cognitive processing has been found to be significantly affected
by aging, even when its functional connections were investigated
during rest [9]. Similarly, Roski et al. [10] found that the
age-related resting-state functional connectivity alterations were
correlated with behavioral changes. Despite advancements, in the
existing literature, inconsistency of results in the aging-related
resting-state functional connectivity alterations still persist [11].
Although fMRI data provide high spatial resolution, it has
certain limitations. First, fMRI is primarily based on BOLD
contrast which allows us to measure neuronal activity only
indirectly, whereas non-neuronal factors such as metabolic rate
and cerebral blood flow, influencing BOLD response, may hinder
the correct assessment of aging-related functional connectivity
alterations, aging being linked with several factors that include
changes in dopaminergic neurotransmission [12], metabolism
[13], alterations in brain structure [14], cerebral blood flow
[15], and cognitive resources [16]. Second, due to low temporal
resolution, fMRI is less efficient in the investigation of temporal
dynamics of functional connectivity, and consequently, it is
reasonable to mention that most of the existing aging studies
assumed that functional connectivity is stationary during rest.
However, a recent fMRI study by Chen et al. [11], inspired from
the evidences in the studies of schizophrenia [17], cognition
impairment [18], depression [19] and epilepsy [20], has examined

the temporal dynamics of resting-state functional connectivity in
young and elder subjects, and found it non-stationary. Moreover,
they reported a decline in the modularization of dynamic
functional connectivity in elderly subjects. Therefore, it is timely
to further assess these observations with modalities providing a
sufficiently high temporal resolution.

In EEG data analysis, several methods have been used
to assess coupling and synchronizations among EEG signals
[21]. However, one method, which has recently gained a wide
interest of researchers aiming at assessing synchronization across
signals, is capable of detecting short lived quasi stationary
states. These EEG states are found useful to empirically
analyze cognitive and sensory process [22]. Lehman et al.
proposed this spatiotemporal method to keep track of quasi-
stable neuronal processes at a fine resolution, and named
it “Microstate analysis” [23]. In microstate analysis, short-
lived functional states are referred to as microstates, which
are topographic configurations representing the distribution of
electric potential across the scalp [23]. An observation which
made microstate analysis a strikingly influential tool for the
assessment of neuronal activity in time domain was that the
temporal sequence of these spatial maps is non-random, and
does not change continuously. These topographic configurations
are found to be stable for short duration before transiting
abruptly into another. The average duration of microstate ranges
from 40 to 120ms [24]. These short-lived microstates are
viewed as an electrophysiological signature of a global integrative
process. A study by Lehmann et al. [25] in which microstate
configurations and syntax were found significantly different
for imagery, and abstract thoughts, respectively, is considered
as a validation of their link with cognitive processes. In a
clinical context, studies employing microstate analysis found
substantial electrophysiological signatures for altered neuronal
processes that differ between healthy controls and subjects
with psychopathology [26], dementia [27], schizophrenia [28],
and stroke [29], provide further evidence of their usefulness.
Moreover, recent studies assessing resting state dynamics using
simultaneous EEG and fMRI has shown that the imprints
of abruptly changing short-lived states of brain calculated
using multichannel electrode array are related to resting-state
networks. The normative four states are reported to be associated
with visual, verbal, interoceptive-autonomic processing and
attention reorientation [30, 31]. On how the associations
between dynamics of microstates derived from EEG at high
temporal resolution and resting-state networks based on slow
hemodynamic fluctuations are possible, Van De Ville et al.
found that the temporal dynamics of microstates are scale-
free dynamics over six dyadic cycles (256 ms-16 s), suggesting
the same underlying neurophysiological phenomenon, and
microstates being the probable candidate for electrophysiological
signatures of slow fluctuations of brain activity as measured by
methods relying on hemodynamics [32].

These considerations encouraged the present analysis to
explicitly investigate aging-related resting-state alterations using
microstate analysis. A related work in which microstates analysis
was used to study developmental stages of brain was published in
2002 by Koenig et al. [33]. Temporal profiles of microstates were
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investigated in subjects aged 6–80 years. They found microstate
temporal parameters differ as the brain develops, but mainly
had focus on the investigation of developmental changes in the
brain of age 6–16 years. However, without going into details,
they suggested that the changes in the brains of subjects over
50 years of age are due to aging. In short, their study provided
the preliminary evidence that microstates can capture age-related
changes.With the knowledge and insights provided by the studies
in the last decade, we believe that it is the need of the hour to
investigate whether the altered neuronal signatures due to aging
observed (if any) using the microstate analysis at scalp support
the hypotheses derived from the evidence of existing fMRI
studies that are dedifferentiation and compensation. We expect
that age-related alterations will not only be found in temporal
parameters of microstates but also in their spatial configurations.
We have also applied our recently published method of band-
wise topographic analysis as a new application to aging data. It
has shown great promise to capture further details that are not
identifiable with conventional microstate analysis.

MATERIALS AND METHODS

Data and Pre-processing
Eyes closed resting-state EEG data were recorded in 36 healthy
subjects equally divided into aged and young adults. The aged
subjects group ranged between the ages of 62–85 years (mean age:
71.8 ± 5.6, 12 males), whereas, young subjects had age ranging
from 19 to 31 years (mean age: 23.2 ± 4.1, 12 males). Scalp
potentials were measured using Electrical Geodesics sensor net.
No subject had a history of neurological disorders, head injuries
causing loss of consciousness or mental illness. All subjects were
right-handed, tested and confirmed by Edinburgh Manuality
test. The acquisitions were performed at, and under the ethical
guidelines of “Gabriele d’Annunzio” University of Chieti, after
signed written informed consent. The subjects were instructed to
close their eyes while staying conscious.

Data Analysis
The analysis has been performed for spatiotemporal assessment
of the EEG data in two ways. First, the conventional
microstate analysis was implemented using the well-established
standardized procedure [34] over the whole bandwidth of the
data i.e., 0.01–40Hz. In this procedure, to start with, the standard
deviation across channels also known as Global Field Potential
(GFP) was calculated at each time point. It was calculated using
the following formula

GFP(t) =

√

1

N

(∑N

i=1
(Vi (t)−Vm (t))2

)

(1)

where N is the number of channels, Vi(t) is the electric potential
at the ith electrode and Vm(t) represents the instantaneous
mean potential across electrodes. The GFP(t) is the array
representing standard deviations across channels for all data
samples. Afterwards, from GFP(t) waveform, the time points
of local maxima were extracted to find out the optimal set of
microstate maps. The intuitions to only include time points with

local maxima were that these instances have high signal-to-noise
ratio and reduce the computational complexity of clustering
algorithm [35]. Moreover, microstate maps are found to be
stable at local maxima of GFP waveform and transitioning
from one to another topographical map occurs at local minima
[22]. Therefore, in next step, the potentials of all electrodes
(topographic maps) at these local maxima time points are
subjected to the K-means algorithm for clustering.

For an optimal selection of a number of microstates, the
cluster size (number of microstates in the cluster) was varied
from 2 to 7. The optimality criteria consisted of Cross Validation
(CV)—amodified version of the predictive residual variance [34],
and of Explained Variance (EV)—the fit percentage of segmented
data. The EV and CV values were calculated for each cluster size.
Based on statistical significance between consecutive EV and CV
values over the cluster size range, the following two cases were
used to define optimality. First, if the increase in EV value by
increasing the cluster size is not found statistically significant
while CV value increased statistically, previous cluster size is said
to be optimum. Second, if, both, the increase in EV value and
in CV value is significant, the statistical increase in CV value
(i.e., the high probability of having different spatial patterns when
clustering is repeated) is given priority and previous cluster size is
chosen as optimum. Else, the statistical analysis is performed for
the next consecutive cluster size. Based on the criteria, optimal
microstates were calculated for individual subjects. For group
microstates, these individual microstates were averaged based
on minimal topographic dissimilarity [33] for both groups of
young and aged subjects. Furthermore, these microstate maps
explaining maximal variance were extracted after 300 iterations
to minimize error due to stochastic processing. In summary,
the step wise procedure for extraction of microstate maps is
as follows

1. Calculate GFP waveform by computing standard deviation
across electrodes for each time point.

2. Find time points where GFP waveform has local peaks.
3. Input topographic maps of EEG potential at time points found

in step 2 to a clustering algorithm.
4. Pre-assign cluster size or set criteria for optimal selection of

microstate maps.
5. Repeat clustering algorithm for multiple time (300 iterations

performed commonly) to identify microstate maps explaining
maximum variance present in the data.

The EEG data were segmented into a topographic sequence of
extracted group averaged four microstates as shown in Figure 1.

Second, the conventional microstate analysis was extended
to spectrally resolved topographic analysis using band-wise
topographic maps [36]. This is to investigate the age-related
spatial changes which are limited to a narrow band oscillations.
The wide-band [0.01 Hz−40Hz] EEG data is transformed into
five fundamental EEG bands (delta (δ) = [0.01Hz–4Hz), theta
(θ) = [4 Hz–8Hz), 191 alpha (α) = [8Hz–12Hz), beta (β) =
[12Hz–30Hz), gamma (γ)>= 30 Hz) via time-frequencymethod
with a concept of instantaneous frequencies. This means that
the method, unlike traditional frequency analysis approaches,
does not require few time periods to calculate the EEG
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FIGURE 1 | Example of a representative young subject, (A) 2 s epoch of EEG recorded during eyes closed resting state (average referenced) for each of the 19 EEG

sensors. The Global Field Power (GFP), standard deviation of EEG across sensors, computed for each time point is shown at the bottom of EEG data. Four averaged

microstates labeled a, b, c, d are presented in (B) in a color scale representing the normalized potentials on scalp. In (C) the EEG data is segmented using these

microstates: intervals of stability of different microstates are shown in their respective colors.

power/energy in a particular frequency band, instead it calculates
Instantaneous Frequencies (IFs) and Instantaneous Amplitudes
(IAs) for each data time-point. In the method, first, the EEG
data is decomposed into bands using the modified Hilbert Huang
Transform proposed by Sandoval and Leon [37].Where, intrinsic
oscillations named Intrinsic Mode Functions (IMFs) present in
the data are extracted using Complete Ensemble Empirical Mode
Decomposition (CEEMD). The CEEMD is an improved version
of Empirical Mode Decomposition (EMD) that reduces the
“mode-mixing” problem and help in preserving the completeness
property of the decomposition. Mode-mixing is named after the
drawback of EMD that consists in the leakage of a single physical
oscillation across several IMFs. Based on the inherited property
of IMFs i.e., local orthogonality, their IFs and IAs are estimated at
each time-point using “amplitude demodulation and numerical
equations.” The data decomposed into IMFs can be represented
as follows

x (t)=
∑k

n=1
Cn (t)+ r(t) (2)

where,
{

Ci(t)
}k

i=1
are the k decomposed IMFs of x(t) and r(t) is

the residue. The process to extract IMFs is called sifting process
[38]. The formulae to estimate their IFs and IAs are shown in (3)
and (5) respectively:

ŵ (t)= d/dt[arg(ŝ (t)+jσ̂ (t))] (3)

with ŵ (t) symbolizing IF estimated by calculating derivative
d
dt () of complex number in which real part ŝ(t) is an amplitude

demodulated IMF (
{

Ci(t)
}k

i=1
) i.e., iteratively, dividingC(t) by its

amplitude envelope until there are no oscillations in the envelope
and the imaginary component σ̂ (t) is calculated as in (3)

σ̂ (t)=−sgn[d/dtŝ(t)]
√

1−ŝ2(t) (4)

where
√

1−ŝ2(t), the magnitude of the imaginary component is
calculated using Pythagorean Theorem in which the magnitude
of the complex number is unity due to amplitude demodulation.
The expression −sgn[ ddt ŝ(t)] estimates the sign of the imaginary
component, or, in other words, it identifies +ve or –ve plane
of the imaginary axis. It is calculated empirically i.e., if ŝ (t) is
decreasing, the sign of imaginary component will be positive
whereas a negative sign of the imaginary component is for
increasing ŝ(t). Hence, reversing the sign (−sgn[]) of derivative
d
dt () of ŝ (t)will yield the sign of the imaginary component. While
corresponding â(t) is calculated by interpolating local maxima of
respective IMF or simply by calculating the upper envelope as
in (5):

â (t)=interpolate(tp,Up
) (5)

where, tp are the times at which the local maxima occur and
Up is their magnitude (see details on these equations in [37]).
The theoretical explanation along with the representation in
algorithmic form can be found in our article in which the
method was originally proposed [36]. That study also identifies
the spectral details associated with wide-band microstates when
the data is spectrally decomposed using the very method. Thus,
based on an identified link between the band-wise topographic
maps and conventional microstate maps, the use of the method
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in this study not only provides further insights to differences
among distinct age groups but also a step forward in the
effectiveness of its use in EEG analysis of synchronized activities.
Interested readers are also referred to the studies [37, 38]
for more details on method. However, a stepwise overview of
procedure for calculation of band-wise topographic maps is
as follows

1. Extract IMFs for a pre-processed signal as in equation 2 by
employing CEEMD algorithm.

2. Calculate instantaneous frequencies (IFs) and instantaneous
amplitudes (IAs) for each IMF and for all time-samples using
equation 3 and 5, respectively.

3. Define frequency bands (e.g. δ, θ, α, β, and γ) and construct
their amplitude-time-series based on above calculated IAs and
IFs i.e., by assigning IA of given sample to the frequency band
determined by IF of that sample. This is repeated for all IMFs
and resultants are summed up in respective frequency bands
to get single amplitude-time-series.

4. Above steps are repeated for all electrodes in a
data individually.

5. After construction of band’s amplitude time series,
conventional microstate procedure as explained above is
applied to get topographic maps for each band.

Optimality criterion is applied for each band’s topographic maps
to get final set of band-wise topographic maps.

The EEG data were spectrally transformed into five
fundamental EEG bands based on the estimated IFs at each
time point, providing the same temporal resolution as in the
time domain EEG data. As will be shown below, the preserved
timescale allowed us to analyze spatial patterns at each frequency
band and to identify the differences between young and aged
subjects that could not be captured by conventional microstate
analysis due to the use of full band data. The procedure [34] for
the extraction of topographic maps was then applied to each
frequency band data and the same optimality criteria (mentioned
above) for all band-wise topographic maps from both young and
aged subjects group was used.

Moreover, the differences between the aged and young
subjects in temporal dynamics of the topographic sequence are
quantitatively analyzed for both conventional and band-wise
topographic analysis using the following parameters:

- Mean-duration (MD): average stability time of
each microstate.

- Frequency-of-occurrence (FO): average number of
appearances of each microstate within a window size of
1 min.

- Coverage (Cov): the ratio of time covered by each microstate
per total time.

- Transition-probability-matrix: the probability of each
microstate transiting into other microstates e.g., transition
probability of microstate A to microstate B symbolized
by A→ B. For example, in resting-state literature, it has
been found that, on average, twelve transitions between
microstates can occur in a second if the number of microstates
is four.

In addition to these parameters, EV is also calculated to
demonstrate the fit percentage of extracted microstate maps to
the EEG data for both groups. Whereas, for spatial changes,
the dissimilarity index has been calculated. The dissimilarity
index represents the strength of spatial similarity, the value of
which ranges from 0 to 2 with 0 representing the same spatial
configuration with similar polarity and 2 for the same spatial
configuration with inverted polarity. It should be noted that
instead of strictly restricting the definition of similarity to these
extremes, we used the range of 0–0.2 and 1.8–2 for similar
and inverted polarity configuration, respectively, in our study to
account for the variance induced due to averaging of maps across
subjects (i.e., group averaged topographic maps).

RESULTS

As mentioned in above section, the analysis is performed in
two ways and their results highlighting the differences between
two groups in respective analysis are presented in separate
subsections below.

Differences Between Groups in the
Conventional Microstate Analysis
Based on optimality criteria, for the conventional microstate
analysis, four microstate maps are found to be optimal for
both young and aged subject group. Four microstate maps are
also found to be consistent with the normative and existing
literature of microstate analysis. Based on resemblance in the
topographic configurations of extracted microstate maps from
both groups with the existing literature, standard labels of
A, B, C, and D are assigned as shown in Figure 2. Note
that these spatial configurations are prototypical representations
of potential distribution across electrodes, ignoring polarity
inversion (as polarity is not taken in to account: (1) when unique
clusters for these potential distribution are being computed
using clustering algorithm and (2) when spatial correlations are
computed for back-fitting of these maps to the EEG data. The
back-fitting is elaborated in Figure 1 where time series across
electrodes presented in (a) are represented by topographic maps
in (b) as a single time series of colored blocks in (c), whose
amplitude is varied according to GFP waveform). The extracted
microstate maps used to segment EEG data achieved Global
Explained Variance (GEV) of 73.55 ± 3.7% for aged and 79.68
± 4.1% for the young subjects group. The difference in GEVs
is found statistically significant (independent t-test, p < 0.05).
Moreover, an overall four microstate maps are also calculated
by combining the data of both groups to investigate the need
for separate microstate maps for longitudinal studies. The GEVs
using overall microstate maps for both groups have decreased
i.e., 71.64 ± 5.5% for aged and 78.72 ± 4.3% for the young
subjects. Note that, although the differences in the explained
variance between individual and combined microstate maps
for each group are small, they are found statistical significant
(independent t-test, p < 0.05).

The repeated measures ANOVA (rmANOVA) has been
separately (2 × 4) conducted for the three metrics that
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FIGURE 2 | Four group-microstate maps extracted from young and aged datasets separately. The maps are labeled conventionally based on maximum resemblance.

include duration, frequency of occurrence, and coverage. Each
rmANOVA had one factor for groups (Aged, or Young) and
one factor for microstate maps (A, B, C, or D). The difference
in mean values for metrics presented in Figure 3 are found to
be significant (p < 0.05) with the exception of the frequency
of occurrence, as presented in Table 1. The significance found
in the full model of mean duration and coverage is further
tested using reduced models (post-hoc analyses), which revealed
that the dynamics of microstate C are dependent on age-
related changes and the mean values of metrics for microstate C
decrease in aged compared to young subjects group (p < 0.0125,
Bonferroni corrected independent t-test). The significance level p
= 0.023 for microstate C is found in the frequency of occurrence
metrics suggesting marginally significant difference. However, no
relation has been found between age and dynamics of the rest
of the microstate maps (A, B, or D) in all metrics (p > 0.02,
independent t-test).

Additionally, the syntax analysis, i.e., analyzing the non-
randomness or directional dominance in the microstate
transitioning, probabilities for each transition pair (in total:
twelve pairs, e.g., X↔Y represents two pairs that are X→ Y
and X←Y) of four microstates are calculated. Our analysis
reports discernable patterns for aged and young subjects group
i.e., directional dominance is always found opposite (i.e., for
example, if aged subjects group has dominant transition from
A to B, then young subjects group found having dominant
transitions from B to A) for each pair as shown in Figure 4.
However, this pattern was not statistically significant except
for the transitions between microstates C and D (p < 0.0125,
Bonferroni corrected independent t-test).

Apart from evaluation of age-related changes in the temporal
parameters of conventional microstates, spatial changes across
groups are also quantified using the dissimilarity index. The
results are presented in Table 2. The results provide evidence
that a change (if any) in spatial maps of scalp-level data can
be detected effectively as in this case microstate map D found
dissimilar across two groups while others are similar with
inverted polarity.

Differences Between Groups in the
Band-Wise Topographic Analysis
In this analysis, three topographic maps are found optimal for
each band in both groups using the same optimal map selection
procedure explained in conventional microstate analysis. The
topographic maps of each band are presented in Figure 5. The
segmentation of EEG data using these band-wise topographic
maps yielded EV of 44.47 ± 3.4% in Delta, 49.15 ± 8.5% in
Theta, 54.28 ± 7.3% in Alpha, 46.69 ± 6.7% in Beta, and 44.54
± 5.5% in Gamma band for the young subjects group; While
EV for the aged subjects group is: 61.52 ± 11.3% in Delta, 57.97
± 9.7% in Theta, 56.79 ± 6.9% in Alpha, 56.48 ± 8.1% in
Beta and 51.14 ± 6.5% in Gamma band. The difference in EVs
in respective bands among groups has been found statistically
significant (independent t-test, p < 0.01, Bonferroni corrected)
for all bands except the alpha band.

Like conventional microstate analysis, the temporal dynamics
of band-wise topographic segmentation are also analyzed. Same
metrics: mean duration, frequency of occurrence, and coverage
are calculated for all band maps i.e., D1, D2, D3 of the delta, T1,
T2, T3 of theta, A1, A2, A3 of alpha, B1, B2, B3 of beta and G1,
G2, G3 of gamma band. The results are presented in Figure 6.
Statistical inferences for the changes among groups are drawn
by conducting the repeated measures ANOVA (rmANOVA)
separately (2 × 3) for these temporal metrics. Each rmANOVA
had one factor for groups (Aged or Young) and one factor for
band-wise topographic maps. In the full model i.e., Table 3A,
the differences in the temporal characteristics of band-wise
topographic segmentation have been found significant (p < 0.05)
except for the theta band for the mean duration and for the beta
band for the frequency of occurrence. To further analyze the
relation found in the full model, post hoc analysis was performed
(Table 3B) where, for every band-wise topographic map, at least
one temporal metric is found significant (independent t-test, p <

0.0167, Bonferroni corrected).
In addition to the analysis of temporal dynamics, the

dissimilarity index has been used to quantify the spatial changes
between groups. The dissimilarity index has been calculated
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FIGURE 3 | Bars representing average values of microstate metrics calculated for both aged (red) and young (green) subject groups to visualize within group

differences for each group-microstate maps.

TABLE 1 | Statistical comparison of microstate temporal dynamics in aged and young subjects.

Repeated measure ANOVA Post-hoc comparison—p level

df F p level A B C D

Mean duration

Group 1;36 5.538 0.031

Map 3;72 16.143 0.000

Group* Map 3;72 10.919 0.002 0.902 0.819 0.001 0.056

Frequency of occurrence

Group

Map 3;72 10.403 0.000

Group* Map 3;72 1.684 0.182 0.232 0.339 0.023 0.913

Coverage

Group

Map 3;72 15.270 0.000

Group* Map 3;72 7.732 0.001 0.025 0.058 0.001 0.636

Results of repeated measure ANOVA and post-hoc comparisons for microstate metrics. ‘Group’ describes between-subject factor as aged or young and within-subject factor i.e. ‘Map’

describes four microstate maps (A, B, C, or D). p-values highlighted in bold formatting are significant.

across the band-wise topographic maps to give us intra and inter-
band similarities if there exist any between two groups. The
results averaged across subjects are presented in Figure 7 which
quantitatively confirms the visual observations of Figure 5 that
narrow band topographies are not only unique with in the bands
of same subject, but are also capable of capturing the differences
across groups.

DISCUSSION

In this study, by means of band-wise microstate analysis,
we have for the first time, to the best of our knowledge,
observed age-related EEG differences in spectrally resolved,
spatial domain, scalp EEG data. Conventional microstate analysis
which constructs spatially synchronized topographies using the
whole bandwidth of EEG data was also used. This conventional
analysis served few purposes in the study. First, the extent to
which age-related changes are identifiable using broad-band EEG
data was still to be analyzed in detail. Second, this provided a
reference for comparison of the band-wise topographic method

which can be considered as a spectral extension of the former.
Third, due to our recent study [36] identifying the link between
band-wise topographic maps and conventional microstates, it
allowed us to draw inferences and reasonably argue that the
results observed using band-wise topographic maps could be
linked with age related changes. Finally, on a similar note, to
show how these observed results could possibly be related to the
results of fMRI studies on normal aging i.e., dedifferentiation
and compensation mechanisms. The interesting findings of this
article are: (a) conventional microstate analysis was found to have
limited effectiveness in identifying age-related changes compared
to band-wise topographic analysis. That is, using the band-
wise topographic method, the observed variations in temporal
features could possibly represent the complex functional changes
found in existing fMRI studies [4, 11], whereas conventional
analysis failed in providing such details. (b) The relative increase
or decrease in timing of synchronized activity between young
and aged subject groups is observed at scalp level which among
existing fMRI studies [4] has been well-reported. And, (c), the
topographic maps of band-wise topographic analysis has shown
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FIGURE 4 | Directional predominance: difference between transition

probabilities of each pair i.e., X↔Y = (X→ Y)-(X←Y). The sign indicating

dominant direction [+ve = (X→ Y) and –ve = (X←Y)]. The values are averaged

across subjects in respective groups. Asterisk is for significant differences (p <

0.0167) between groups.

TABLE 2 | Dissimilarity index among the group averaged microstates of young

and aged subjects group.

Young

Aged
A B C D

A 1.89 1.39 1.84 1.33

B 1.92 1.66 1.31

C 1.92 1.47

D 0.69

spatial changes among groups which is unlike conventional
microstate analysis. Here, the findings are discussed in the light
of the results described above, along with new insights provided
by the band-wise topographic method.

Differences Between Groups in the
Conventional Microstate Analysis
A relevant work of Koenig et al. [33] in which they studied
developmental stages with microstate analysis, using data of
subjects between age of 6 and 80 years. They suggested that
changes in microstate dynamics in subjects above 50 years of
age could possibly be age-related changes. However, the focus of
the study being on developmental stages they did not evaluate
age-related changes in detail. Therefore, we started our analysis
by assessing what insights can be provided by conventional
microstates in this regard. In the present work, four microstates
were found optimal for both datasets. The Global Explained
Variance (GEV) was evaluated to find out whether representing
both groups with grouped-averaged microstate maps (extracted
after concatenating data of both groups), like in Koenig et al.
[33], constitutes a sufficient model, or if, conversely, separating
the two groups with distinct averaged microstate maps for each
group, yields a more explanatory model. Results demonstrate
a significant increase in the GEV values in each group when
distinct microstates maps are used for distinct groups. Although

the change in GEV is not large, it is statistically significant,
and therefore encourages the use of separate microstate maps
for aged and young subject groups, respectively (at least in
this study). This is to avoid any segmentation bias that may
hinder age-related changes. Therefore, we have used separate
microstate maps for each group for further analysis. The
extracted microstate maps are shown in Figure 2.

Temporal parameters of microstate analysis have their own
neurophysiologic significance. The Mean Duration (MD) is
representative of stability in underlying neuronal patterns, the
Frequency of Occurrence (FO) is representative of propensity
of specific neuronal generators to be activated in a given
time-period, and coverage is interpreted as the amount of
time neuronal generators remain dominant [29]. For example,
Seitzman et al. [39] observed that the coverage and FO of
microstate B has increased significantly when analyzing open-
eyes data compared to closed-eyes data for same subject across
24 healthy young subjects (age: 21.1 ± 4.5 years). Note that
microstate B has been previously linked with the visual system
[40]. Similarly, a few other studies have also found alterations
in the temporal parameters of other microstates, such as C and
D [31, 41, 42]. Therefore, to investigate if there are any age-
related alterations to these parameters, the above-mentioned
metrics were calculated (results in Figure 3) for both groups,
and rmANOVA (Table 1) was performed to search for an overall
difference among the four microstate maps. The metrics MD and
coverage have been found to be statistically different. Further
investigation using post hoc analysis revealed that the differences
in the respective metrics are mainly due to the decreases in
microstate C in aged compared to young subjects. The decrease in
microstate C in aged subjects group is not surprising considering
its relation to the hemodynamic counterpart: It has been found
positively correlated with the BOLD signals of the anterior
cingulate cortex (ACC), right anterior insula, inferior frontal
gyri and left claustrum [40]. These areas are also said to be
roughly related to resting state network (RSN 6) in Mantini
et al. work [43]. Several fMRI studies identified age-related
decline in functional connectivity involving these regions. As in
Damoiseaux et al. [2], decrease in connectivity involving most
frontal and parietal brain regions has been found. The ACC
which is related to working memory has been found to have
decreased activations in elderly people [44]. Additionally, not
only in fMRI studies, Kalpouzos et al. [45] suggested decline in
metabolic activity at ACC and prefrontal cortex using Positron
Emission Tomography. Similarly, structural changes i.e., gray
matter volume in ACC along with parietal cortex, insula, and
cerebellum has been found to be reduced in aged people [46].
Therefore, decrease in temporal parameters has been in-line
with existing studies analyzing data of different modalities, and
possibly this observed change is due to the attention deficiency
and limited emotional, cognitive, and perceptual brain processing
in normal aging.

Furthermore, we have also computed the syntax ofmicrostate-
based segmentation of EEG. The results in Figure 4 show that
transitions in pairs is inverted between young and aged subjects
but there is no statistically significant difference except for the
pair of C↔D. This suggests an overall balance is maintained
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FIGURE 5 | Band-wise group averaged topographic maps of young subject data in (A) and aged subject data in (B). From top to bottom are five frequency bands (δ,

θ, α, β, and γ) with 3 maps for each band from left to right, labeled as D1, D2, D3 for delta, T1, T2, T3 for theta, A1, A2, A3 for alpha, B1, B2, B3 for beta, and G1, G2,

G3 for gamma band. This sequence is the same for both panels.

in connectivity patterns in both groups. The balance in elder
people is suggested to be due to the compensatory mechanism
which fulfills the need of any reduced activity in performing a
given task [11]. Despite the differences in connectivity of several
regions involved in deficiency due to normal aging, several
fMRI studies have reported the compensatory mechanisms. This
compensation-related activity has been formulated using three
cognitive models as reported by Sala-Llonch et al. [4]. One of
these models named “Hemispheric Asymmetry Reduction in Old
Adults” informs about the compensatory activity arising from
decline in lateralized pattern of activity in frontal region in elder
people [47]. And, Britz et al. [40] reported that microstate D
is related to the BOLD signal of ventral and right-lateralized
dorsal areas of parietal and frontal cortex which are responsible
for reorientation and switching of attention. Therefore, it is
reasonable to assume that the significant change in the syntax of
pair C↔D are due to the microstate D.

Besides inferring that the change in microstate D is due to
compensatory activity, to further support the link of observed
changes in our conventional microstate analysis with the
dedifferentiation and compensatory mechanisms, we highlight
that, in Figure 2, microstate D appears visually dissimilar
between the groups in spatial configuration, a result that is also
supported quantitatively by the dissimilarity index in Table 2.
However, except for microstate D, no other microstate map
shows such dissimilarity. This could be acceptable for microstates
A and B, as they were found similar in their temporal parameters

as well. But the spatial similarity of microstate C (even though its
temporal parameters have shown significant alterations) across
groups raised concern about the possibility of visualizing the
spatial changes at scalp level that occurred locally in normal
aging due to dedifferentiation and compensatory mechanisms
as observed in fMRI studies at the cortical level. Having said
that, it is also observed from the existing fMRI studies that the
age-related changes are not straightforward, i.e., both increases
and decreases are found which are in abidance to the results of
dynamic balancing of connectivity patterns of both young and
elder brains [11]. Based on these results, it can be deduced that
for dedifferentiation and compensation mechanisms to be true, if
there is a decrease in connectivity of a certain region, there should
be a compensatory increase in connectivity involving other
regions. However, detecting such mechanisms topographically
with scalp-level data may well be tricky as in our analysis
of conventional microstate analysis, and might require adding
constraints or transformations to the scalp data to be resolved.

One possible reason which we thought of to help us solve
this issue of observing age-related changes spatially at scalp-
level analysis, was to spectrally decompose the data. The
intuition behind is that we did not observe the age-related
changes occurring in local brain areas could be due to the
amalgamation of signals of different frequencies into one signal
which will consequently describe only the prominent change
even if multiple changes have occurred at different frequencies.
In such a case, it would be reasonable to assume that the failure
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FIGURE 6 | Average values along with standard deviations of microstate

metrics: (A) mean duration, (B) frequency of occurrence, and (C) coverage,

calculated for both aged and young subject groups to assess within-group

differences for each grouped band-wise topographic map.

in capturing such changes could be due to the use of broad-
bandwidth of the signal for the extraction of the conventional
microstate maps. Therefore, we hypothesized that decomposing
spectrally the EEG signals, and then evaluating the spatial
patterns could capture the complex changes which are already
known from fMRI studies. This brings forth the need to apply
the band-wise topographic analysis to investigate differences
between young and aged subjects.

Differences Between Groups in the
Band-Wise Topographic Analysis
To strengthen our point of using separate microstate maps for
young and aged subjects, EV has been calculated for band-
wise topographic maps at each frequency band using EEG
data. The statistically significant (p < 0.01) differences in EV
values suggest age-related changes should be considered a factor
while examining spatial synchronicity. As expected, there are
more differences in temporal and spatial characterization of
band-wise analysis compared to broad-band analysis between
the two groups. For the temporal characterization of band-
wise topographic analysis, the metrics analogous to those used
in the conventional analysis, evaluating stability, occurrence,
and percentage of existence over time, were used. The results
presented in Figure 6 show a complex pattern of increase and
decrease between groups. The rmANOVA (2 × 3) analysis
(Table 3A) suggest a significant change between groups at each
frequency band for each metric except for the theta band
concerning MD, and for the beta band concerning FO. Further
analysis (Post hoc: Table 3B) revealed that at least one metric is
found to have statistically different values at each band between
groups. The observed changes in temporal characteristics of
band-wise topographic segmentation are in line with our
hypothesis. That is, on one hand, in the temporal domain,
both increases and decreases in MD are observed, however, the
dynamic balance in synchronized activity across brain, which
has been found in fMRI studies, is still maintained and can be
noticed at scalp-level analysis. For example, the MD for A1 and
A3 increased in aged compared to young subjects but a decrease
in A2 compensate this. Similarly, other temporal parameters also
adjusted themselves to maintain a dynamic balance.

On the other hand, in the spatial domain, from Figure 5,
the spatial differences can also be visualized easily. The band-
wise spatial maps of young subjects appear to be more localized
than those of aged subjects. This spread in synchronized brain
activity in the maps of aged subjects is not surprising because,
in existing studies of fMRI data, increases in brain activity in
aged subjects are reported, and these increases in activation
have heterogeneous localization compared to young subjects
[4]. At this point, we refrain from concluding that these
spatial changes are a consequence of age-related dedifferentiation
and compensation mechanisms, but the inferences that can
be drawn from fMRI studies do highly support this notion.
For example, a few studies also suggested that brain regions
continue to reconfigure with age during rest to compensate
for decline in other regions [48]. Moreover, the “Posterior-
Anterior Shift with Aging (PASA),” experimentally proven model
to describe age-related changes also support changes which
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TABLE 3A | Statistical analysis of the temporal dynamics of band-wise topographic maps in aged and young subjects.

Repeated measure ANOVA

Delta Theta Alpha Beta Gamma

df F Sig. F Sig F Sig. F Sig. F Sig.

Mean duration

Group 1;36 10.2 0.005 6.1 0.024 10.3 0.005 10.3 0.005 7.4 0.014

Map 2;54 41.7 0.000 2.7 0.078* 30.9 0.000 30.9 0.000 17.3 0.000

Group* Map 2;54 10.8 0.000 2.9 0.064* 30.5 0.000 30.5 0.000 10.5 0.000

Frequency of occurrence

Group 1;36 7.4 0.014 7.4 0.014 15.3 0.001 8.0 0.12 10.9 0.004

Map 2;54 17.3 0.000 17.3 0.000 30.9 0.000 9.6 0.000 49.6 0.000

Group* Map 2;54 10.5 0.000 10.5 0.000 15.5 0.000 2.6 0.089* 3.4 0.044

Coverage

Group

Map 2;54 49.5 0.000 48.5 0.000 38.8 0.00 18.0 0.00 32.3 0.00

Group* Map 2;54 3.4 0.044 9.5 0.001 35.5 0.00 7.2 0.03 5.6 0.08*

Results of repeated measure ANOVA.

“Group” describes between-subject factor as aged or young and within-subject factor i.e., “Map” describes three band-wise topographic maps.

Sig. represents p-level and values >0.05 are highlighted with asterisk at their end and are considered non-significant.

TABLE 3B | A post-hoc analysis of temporal dynamics of band-wise topographic

maps in aged and young subjects.

Mean duration

(ms)

Frequency of occurrence

(FO/min)

Coverage (%)

Delta D1 0.395 0.00 0.000

D2 0.001 0.005 0.005

D3 0.037 0.005 0.968

Theta T1 0.028 0.028 0.883

T2 0.625 0.003 0.113

T3 0.007 0.432 0.186

Alpha A1 0.461 0.000 0.000

A2 0.000 0.758 0.000

A3 0.330 0.000 0.000

Beta B1 0.001 0.077 0.003

B2 0.247 0.001 0.002

B3 0.004 0.071 0.579

Gamma G1 0.019 0.013 0.467

G2 0.009 0.037 0.072

G3 0.323 0.003 0.004

The significance here is tested using independent t-test.

p > 0.0167 (Bonferroni corrected) are considered non-significant and are highlighted in

bold formatting.

include both increases and decreases in connected regions along
with the changes in spatial patterns [49]. As in PASA, Davis
et al., have described the dedifferentiation mechanism with
the decline in posterior midline cortex combined with the
compensatory mechanism of increased activity in medial frontal
cortex. However, to be sure that the spatial changes observed
in band-wise topographic maps are due to age-related changes,
one has to reconstruct the underlying sources at the time of

FIGURE 7 | Intra and inter band dissimilarity Indices between topographic

maps of young (x-axis) and aged (y-axis) subject groups.

their occurrences by utilizing some forward/inverse modeling.
But, to further add support to our opinion, we would like to
take advantage of recently identified associations between band-
wise topographic maps and conventional microstate maps in
one of our works [36]. It says that conventional microstates
maps could well be represented by the combination of any of
these five band-wise topographic maps (one from each band).
This means that a meta-process described by one microstate
map can be spectrally resolved into five sub-processes, which
are described by five band-wise topographic maps, one from
each band. Thus, these observed spatial and temporal changes
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in band-wise topographic analysis can be linked to age-related
changes observed in fMRI studies similar to the conventional
microstate analysis in the above subsection. For example, in Javed
et al. [36], band-wise topographies D2 and D3 are associated
with conventional microstate C which is described above to be
linked with ACC [40], and the ACC has been found to have
decreased activations in elderly people [44]. Moreover, results
of spatial dissimilarity index presented in Figure 7 show intra
and inter band dissimilarities among groups. No two band-wise
topographic maps are found similar, which is unlike conventional
microstate maps. Therefore, it is reasonable to suggest that
the failure in identifying the spatial changes among groups
using conventional microstate maps is due to the amalgamation
of signals of different frequencies into one signal of broad-
bandwidth. However, being one of the very first studies using
band-wise topographic maps to investigate dedifferentiation and
compensation mechanism at scalp-level, these findings reveal
new and interesting directions that require further assessments.

CONCLUSION AND FUTURE WORK

One of the most frequently reported age-related factors is
the change in cognitive and perceptual systems, which may
consequently affect behavior. In turn, the majority of age-
related diseases, including Alzheimer, which are related to these
systems, are reported as disconnection syndromes. Therefore,
the need to carry out this work lies in the importance of
identifying the scalp-level electrophysiological correlates of fMRI
findings. As it is believed that the results found via different
modalities, more so with the one that directly measures neuronal
potentials, and recent analysis tools, will be helpful in developing
consensus over aging-related alterations; inching closer to the
underlying mechanism which is still elusive, and consequently
helping in limiting the differences between young and elder
brain. In this work, we first showed that conventional microstate
analysis can only identify the prominent changes in normal
aging and is unable to detect complex changes. However, to
conclude on results of conventional microstate analysis if one

wants to use it for, let say, identification of any potential
electrophysiological biomarkers of a given disease, we suggest
using separate microstate maps for young and aged subject
groups. Second, to get further insights, we applied our recently
proposed band-wise topographic analysis which has shown more
sensitivity in detecting the changes between the young and aged
groups. However, we are constrained in drawing conclusions
on their relevance since, to the best of our knowledge, this
is the first study evaluating spectrally resolved spatial changes
of aging. And unlike conventional microstate analysis where
the corresponding resting state networks are known for each
microstate map, a simultaneous study of EEG and fMRI is an
imminent future prospect for band-wise topographic analysis
to unfold its functional significance. Having said that, it is also
important to mention that the band-wise topographic method
has shown the glimpse of advancements that could converge
the efforts of linking the results from different modalities to
one another.
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Functionally relevant network patterns form transiently in brain activity during rest,
where a given subset of brain areas exhibits temporally synchronized BOLD signals.
To adequately assess the biophysical mechanisms governing intrinsic brain activity,
a detailed characterization of the dynamical features of functional networks is needed
from the experimental side to constrain theoretical models. In this work, we use an
open-source fMRI dataset from 100 healthy participants from the Human Connectome
Project and analyze whole-brain activity using Leading Eigenvector Dynamics Analysis
(LEiDA), which serves to characterize brain activity at each time point by its whole-
brain BOLD phase-locking pattern. Clustering these BOLD phase-locking patterns
into a set of k states, we demonstrate that the cluster centroids closely overlap with
reference functional subsystems. Borrowing tools from dynamical systems theory, we
characterize spontaneous brain activity in the form of trajectories within the state space,
calculating the Fractional Occupancy and the Dwell Times of each state, as well as
the Transition Probabilities between states. Finally, we demonstrate that within-subject
reliability is maximized when including the high frequency components of the BOLD
signal (>0.1 Hz), indicating the existence of individual fingerprints in dynamical patterns
evolving at least as fast as the temporal resolution of acquisition (here TR = 0.72 s). Our
results reinforce the mechanistic scenario that resting-state networks are the expression
of erratic excursions from a baseline synchronous steady state into weakly-stable
partially-synchronized states - which we term ghost attractors. To better understand
the rules governing the transitions between ghost attractors, we use methods from
dynamical systems theory, giving insights into high-order mechanisms underlying
brain function.

Keywords: LEiDA, ghost attractors, dynamic functional connectivity, dynamical system theory, functional
networks, resting-state
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INTRODUCTION

For healthy human cognition, the brain needs to engage
in functionally meaningful activity through an integration of
information incoming from various segregated brain areas
(Tononi and Edelman, 1998; Sporns et al., 2000). At rest, brain
activity has been shown to reveal the spontaneous activation
of meaningful functional subsystems, sharing spatial features
with networks of brain areas typically activated during task
(Beckmann et al., 2005; Fox et al., 2005; Damoiseaux et al., 2006).
These spatially activated coalitions of brain regions, dubbed
resting-state networks (RSNs), have been remarkably consistent
across neuroimaging studies and utilized in describing functional
changes in disruptions to the healthy brain functioning (Greicius,
2008; Fox and Greicius, 2010; van den Heuvel and Hulshoff
Pol, 2010; Vargas et al., 2013; Kaiser et al., 2015). However,
while RSNs represent spatially meaningful information, in order
to further investigate the generative mechanisms of RSNs and
their functional role, it is important to further characterize
their behavior in the temporal domain (Preti et al., 2016;
Cabral et al., 2017b).

Indeed, recent advances have focused on how these spatially
coherent functional patterns can explain the complex brain
dynamics evolving in time (Chang and Glover, 2010; Hutchison
et al., 2013; Allen et al., 2014). However, the most appropriate
way to characterize network dynamics at the whole brain
level is still unclear. The most common approach to dynamic
functional connectivity (dFC) has been the sliding-window
method, which describes statistical relationship between brain
regions in successive intervals of time and generates recurrent
states of functional connectivity using unsupervised learning
(Hutchison et al., 2013; Allen et al., 2014; Calhoun et al.,
2014). However, the choice of the “window” size introduces
limitations which hinders the temporal resolution as well
as statistical validation (Hindriks et al., 2016; Preti et al.,
2016). To overcome these caveats, recent development has
focused on describing single frame functional connectivity
[FC(t)] either by considering BOLD co-activations (Karahanoğlu
and Van De Ville, 2015; Tagliazucchi et al., 2016) or BOLD
phase coherence (Glerean et al., 2012; Cabral et al., 2017b).
Framewise co-activation analysis considers the brain regions
with BOLD signal above a certain threshold before clustering
into distinct FC patterns (Karahanoğlu and Van De Ville,
2015; Tagliazucchi et al., 2016). While it allows for higher
temporal resolution, it is still dependent on the choice of the
threshold as well as limited to describing simultaneous (in-phase)
activations. On the other hand, phase coherence techniques
represent the time instances as relative phase relationships
between brain regions and thus do not require thresholding
and are sensitive to phase-shifted patterns (Glerean et al., 2012;
Cabral et al., 2017b)

To overcome issues with high data dimensionality, Cabral
and colleagues have proposed to represent the instantaneous
relationships between brain regions using the largest magnitude
eigenvector of BOLD phases (a 1xN vector for each time
point) instead of the NxN phase synchronization matrix
(Cabral et al., 2017b). Notably, Leading Eigenvector Dynamic

Analysis (LEiDA) has been shown not only to improve
clustering performance, but to consistently capture meaningful
BOLD phase-locking states (PL-states) that closely overlap with
previously-described functional subsystems (Cabral et al., 2017b;
Figueroa et al., 2019; Lord et al., 2019). By representing whole-
brain activity over time as a succession of discrete PL states, it
is possible to quantify the fractional occupancy, the probability
of transition as well as the Dwell Time of individual states.
Importantly, these measures have shown to be significantly
related with cognitive performance (Cabral et al., 2017b), to be
altered in clinical populations of patients suffering with major
depressive disorder (Figueroa et al., 2019), as well as to describe
the network-specific modulation of resting-state activity by the
psychoactive compound psilocybin (Lord et al., 2019). As such,
LEiDA opens up as a useful tool to quantitatively characterize
individual fingerprints in dynamic functional connectivity,
reinforcing a mechanistic scenario proposed by theoretical works
where RSNs are the expression of a repertoire of BOLD FC
configurations emerging from complex non-linear interactions in
the whole-brain network (Ghosh et al., 2008; Cabral et al., 2011;
Deco and Jirsa, 2012; Deco et al., 2013; Haimovici et al., 2013;
Hansen et al., 2015).

Here, we explore this mechanistic hypothesis using the
mathematical formalism from dynamical systems theory and
Markov chains in order to characterize the spatio-temporal
dynamics of spontaneous brain activity in terms of probabilistic
trajectories between recurrent BOLD phase-locking patterns. We
validate the functional role of the patterns obtained by comparing
them with known RSNs. Furthermore, we evaluate the stability of
BOLD phase locking states based on their Fractional Occupancy,
Dwell Times and Transition probabilities. While previous works
have applied LEiDA to condition-specific datasets, with reduced
sample sizes, here we make secondary use of a large open source
dataset of healthy participants, demonstrating the reliability
of the yielded metrics across subjects and consecutive fMRI
recording sessions.

MATERIALS AND METHODS

Data
All data used in this work comes from a publicly available
database – the Human Connectome Project, WU-Minn
Consortium (Principal Investigators: David Van Essene and
Kamil Ugurbil; 1U54MH091657) with funding from the sixteen
NIH Institutes and Centers supporting the NIH Blueprint for
Neuroscience Research; and by the McDonell Center for Systems
Neuroscience at Washington University.

Participants
100 unrelated subjects (mean age 29.5 years old, 55% females
(Glasser et al., 2013)).

Neuroimaging HCP Acquisition
Each participant underwent four resting-state fMRI sessions
lasting 14 min 30 s with a repetition time (TR) of 0.72 s, on a
3-T connectome Skyra scanner (Siemens) – two during the first
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day and two during the second day. The 2 fMRI sessions acquired
on the same day differ only in the oblique axial acquisition phase
encoding, one being from Left to Right (LR) and the other from
Right to Left (RL). The acquisition and pre-processing of the
data is fully described in detail at the HCP website https://www.
humanconnectome.org/. Here, we used the fMRI data acquired
on the first day of scanning. One subject was excluded because
one session was missing. In total, two same-day resting-state
fMRI sessions from 99 of the 100 unrelated subjects’ sessions were
used for the analysis.

Parcellation
To reduce the dimensionality of the voxel-based data
(Voxels × Time), the Anatomic Automatic Labeling (AAL)
atlas was used to define N = 90 anatomically distinct cortical
and sub-cortical regions covering the whole brain, excluding
the cerebellum. Data was reduced to size N × Time, with
Time = 1200 TR per session, by averaging the BOLD signals in
all the voxels associated to each brain region (Figure 1A).

Analysis
BOLD Phase Dynamics
To compute the phase relationship between brain regions, for
each region n with n = 1...N, a BOLD phase θ(n, t) varying
in time t, was calculated via Hilbert transform (Glerean et al.,
2012). The analytical signal expresses the regional signal x(t)
as x(t) = A(t) ∗ θ(t)) with A and θ representing the time-
varying amplitude and phase respectively (Figure 1C). The
first and last time points were removed from each time series,

to exclude the boundary artifacts induced by the Hilbert
transform. Subsequently, for every pair of brain regions n and
m at time t the phase coherence matrix dPC is calculated as
follows: dPC (n,m, t) = cos(θ (n, t)− θ(m, t)), where cos (0) =
1 represents the case when the two brain areas n and m are
aligned at time t (Figure 1E). Conversely cos (π) = −1 indicates
the two brain areas nandm to be anti-aligned at time t. Lastly,
cos (π/2) = 0 shows the two brain areas n and m at time
t to be orthogonal to each other and therefore their phase
relationship being 0.

Phase Dynamics Leading Eigenvector
We used LEiDA, where only the 1xN leading eigenvector V1(t)
of the dPC is considered in the analysis, to describe the phase
coherence pattern of the (NxN) dPC(t) at every time-point t
with reduced dimensionality. In other words, we calculated
the eigendecomposition of dPC(t) at every time t [dPC(t) =
V(t)D(t)V−1(t), where columns of V(t) are the corresponding
eigenvectors of dPC(t) and D(t) is the diagonal matrix of the
eigenvalues of dPC(t), and we took the first (most dominant)
eigenvectorV1(t) to represent the BOLD PL pattern at each time
point with size 1xN. Since dPC(t) is symmetric, its eigenvectors
are orthogonal (V−1(t) = V(t)T) and the eigenvalues are real.
Each element in the eigenvector can be associated to a specific
brain area (i.e., in Figures 1B–D each brain area is colored
according to its sign in V1(t)). The NxN dominant connectivity
pattern at every time t captured by V1(t) can simply be retrieved
by calculating the matrix product of the eigenvector with its
transpose as V1(t) ∗ VT

1 (t) (Cabral et al., 2017b).

FIGURE 1 | Time-evolving patterns of BOLD Phase Dynamics. (A) BOLD signals from a representative fMRI scan of the HCP dataset averaged over all voxels within
each region of interest (ROI). ROIs were defined using an anatomically-based parcellation scheme (AAL) covering the entire brain (here excluding the cerebellum).
(B) To illustrate BOLD phase dynamics, we select a representative interval of TRs. At each TR, blue circles represent the brain areas whose BOLD phase projects
into the main BOLD phase direction (captured by the leading eigenvector, see (C), and red dots represent the brain areas whose BOLD phase project into the
opposite direction of the main BOLD phase orientation. It serves to illustrate that the phase-shifted signals (in red) do not directly correspond to supra-threshold
BOLD increases. (C) Phase portraits of the analytic BOLD signal at each TR, where the real and imaginary axis represent the cosines and sines of the Hilbert phase
at each TR. (D) Representation of the brain patterns captured by the signs of the leading eigenvector at each TR, illustrating how phase-locking patterns evolve
smoothly over several TRs, whereas the corresponding BOLD signals (shown in panel B) exhibit significantly different activation patterns over the same range of TRs.
(E) Representation of the instantaneous phase coherence matrices obtained at each TR as the cosine of the phase difference at each instant of time.
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FIGURE 2 | Partition of the N-dimensional phase space into a K-dimensional state-based space. (A) Representation of all BOLD PL patterns captured at each TR in
a reduced 3-dimensional perspective of the phase space. Since each observation is a 1xN vector - corresponding to the leading eigenvector of BOLD phases at
each TR - the full phase space is N-dimensional, where N = 90 is the number of ROIs used to parcellate the brain). Each dot corresponds to one fMRI volume
recorded over time (TR = Repetition Time = 0.72 s). Dots are placed according to their cosine distance with respect to the first three principal components (i.e., the
first 3 eigenvectors of the covariance matrix) of all observations. (B) Partition of the Phase Space using K-means clustering decomposes the space of observations
into k clusters, where each observation from an fMRI experiment is assigned to a cluster given its closest proximity to the corresponding centroid. The centroids
obtained for K = 5 are represented by coloring each brain area using the same color scheme as in Figure 1, representing distinct whole-brain BOLD phase-locking
patterns. (C) Illustration of the partition of a 2D plane into k Voronoi cells, where each point in a given cell is closer to its centroid than to any other centroid.

With the aforementioned reduction, whole-brain activity at
each time point t is represented by a 1xN vector, where N is
the number of brain regions defined by the applied parcellation.
Each vector V1(t) can be seen as an observation of the dynamical
system and can be represented as a point in a N-dimensional
space RN (in Figure 2A, represented in R3 for illustration).
Each fMRI experiment is thus characterized by a trajectory of
the leading eigenvector V1 in this N-dimensional space. To
get a graphical representation (Figures 2A,B), we project each
vector V1(t) on the space determined by the first three principal
components of all V1s, (i.e., the x, y, and z coordinates are
given by the cosine distance between each 1xN V1(t) and the
first 3 Nx1 eigenvectors of the NxN covariance matrix of all V1s
(with size NxT).

Partition of Phase Space
In order to achieve a state-based representation, the leading
eigenvectors obtained from all 99 participants in the Left-
Right (LR) fMRI scanning session - corresponding to a total
of T = 118602 observations (99 × 1198 TRs) with N = 90
dimensions each - are partitioned into a set of discrete states.
Importantly, we do not include in this partition the Right-Left
(RL) fMRI scanning sessions from the same 99 participants
recorded on the same day, which will serve to test the
validity and consistency of the results, as described in the
following section.

Given the large number of observations in this dataset,
clustering algorithms relying on the TxT similarity matrix had
to be discarded because of limited computational resources
(i.e., computing our TxT matrix requires >100 GB of RAM).
Instead, we use the k-means algorithm, which relies on an
iterative process to find the solution that minimizes the distance
between each (1xN) observation and the closest 1xN cluster

centroid (we note that, given the large number of dimensions,
we use the Cosine distance, which significantly reduces the
computation time with respect to City Block or Euclidean
distances). As such, k-means algorithm is used to iteratively
cluster the leading eigenvectors into k = 2 to k = 20 clusters
(resulting in 19 partitions), repeating each calculation 100
times to ensure stability in the results. Since each observation
represents a time point, the output vector of cluster assignments
- where each observation is assigned to its closest 1xN
cluster centroidα = 1...k - can be approached as a trajectory
x (t) in state space.

In Figure 2 we show how the k-means clustering algorithm
divides the phase-space (here represented in only three
dimensions for illustration) into k = 5 (Voronoi) cells, where
each location in the phase space is assigned to the closest
centroid. Using colors to represent the regions of the phase
space assigned to each cluster Rα, we represent in Figure 2B
the same observations from panel A, but highlighting the cluster
assignment at each time point. Although the 3-dimensional
representation serves to illustrate the partition of the phase-space,
there is a clear overlap of colors given that the phase-space,
defined in N = 90 dimensions, cannot be adequately represented
in three dimensions only. To illustrate the decomposition into
k-means clustering algorithm we show, in Figure 2C, the
partition of a 2D plane into k Voronoi cells, where each region
in space is assigned to the closest centroid.

Each cluster Rα(with α = 1...k) is now represented by its
cluster centroid Vcα, each corresponding to a distinct BOLD
phase-locking state (which will be described in detail in the
section “Results”). To assess the quality of the cluster separation,
the silhouette value is computed for each k, which estimates how
similar each observation V1(t) is to its own cluster compared
to other clusters.
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Comparison to Reference Intrinsic Functional
Networks
The existence of functionally interconnected subsystems, where
subsets of brains areas consistently activate together even
during rest, has been widely explored in studies of resting-state
functional connectivity. Intrinsic Functional Networks, typically
assessed using correlation analysis, have been consistently
detected in large cohorts of resting-state fMRI experiments (Yeo
et al., 2011), but the analysis of their temporal dynamics has been
hindered by the methods used to assess them, namely sliding
window methods with their choice of the window over which
connectivity is computed (Hindriks et al., 2016).

Here, we verify if the centroids obtained from clustering
BOLD phase leading eigenvectors obtained at TR resolution share
spatial similarities with the seven cerebral intrinsic functional
networks estimated by Yeo et al. (2011) clustering correlation-
based functional connectivity between 1175 regions of interest
from 1000 participants.

To do so - and since our BOLD PL centroids Vα are defined in
AAL parcellation - we take the mask of the Yeo parcellation into
seven non-overlapping functional networks defined in MNI152
space1 and the mask of the AAL parcellation in the same MNI152
space, and calculate, for each of the 90 AAL brain areas, the
proportion of voxels assigned to each of the seven functional
networks, obtaining in this way 7 1× 90 vectors representing the
intrinsic functional networks in AAL space.

Subsequently, we compute the Pearson’s correlation (with
associated p-values) between these seven networks and the
centroids Vα obtained from our clustering analysis across
the whole range of k explored (setting all negative values of the
centroids’ vectors to zero, to consider only the areas whose BOLD
phase is shifted from the main orientation).

Projection of the Validation Dataset Into the Same
State Space
We used the second fMRI scanning session from each of the 99
participants recorded on the same day as the primary dataset -
differing only in the oblique axial acquisition phase encoding,
being Right to Left (RL) instead of Left to Right (LR) - to verify
the validity and consistency of the partition performed in the
previous session. To do so, we obtained all the 1xN leading
eigenvectors from the the Right-Left (RL) scanning session -
totaling 118602 observations (1198 TRs× 99 subjects) - using the
same methodology as before, but instead of running the k-means
algorithm, we compute the cosine distance between each 1xN
eigenvector V1(t) and the k 1xN cluster centroids Vcα obtained
from the previous analysis, and define the trajectory vector x (t)
by assigning each V1(t) to its closest cluster centroid Vcα .

Fractional Occupancy
Following the cluster partition into k PL states evolving in
time t, the probabilities - or fractional occupancies - 5

(S)
α

associated to each PL state α and each scan S, can be calculated

1surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011

as follows:

5(S)
α =

1
T

T∑
t=1

χ
[
x (t) ∈ Rα

]
(1)

where χ is the indicator function - χ (A) = 1 if the event A
is true, and χ (A) = 0 otherwise, and T = 1198 is the number
of time points (TRs) corresponding to each fMRI scan (S).
In other words, the equation counts the number of times
when the trajectory x (t) is assigned to each of the defined
clusters R(α), divided by the total number of time points T.
Furthermore, given that participants are constantly in resting
state - i.e. without performing any task -, we assume stationarity
in the data within each scan (justifying the time average in
Eq. 1). Cluster probabilities are estimated separately for each
individual fMRI scan.

Dwell Time
To describe the average time periods when a given PL state α is
being visited in each fMRI scan S, the Dwell Time DT(S)

α is defined
as the mean of all the consecutive periods of each state, i.e.,

DT(S)
α =

1
pα

pα∑
1

Cpα (2)

where DTα is the Dwell Time of PL state α, pα is the number of
consecutive periods assigned to PL state α and Cpα is the duration
of each consecutive period.

Markov Chain Transition Probabilities
Following the same rational as in Eq.1, the definition of the
probability 5αβ to be in the PL state α at time bin t and in the
PL state β at time bin t+ 1 can be written as follows:

5
(S)
αβ =

1
T − 1

T−1∑
t=1

χ[x (t) ∈ Rα, x (t + 1) ∈ Rβ
] (3)

and thus, the transition probability matrix W(S)
αβ of each fMRI

scan S is defined as:

W(S)
αβ = P[x (t + 1) ∈ Rβ

| x (t) ∈ Rα
] =

5
(S)
αβ

5
(S)
α

. (4)

Wαβ defines the transition matrix from state alpha to state beta.
This defines an homogeneous Markov chain, characterizing the
transition between BOLD phase locking states. The transition
probability matrix W(S)

αβ is estimated separately for each scan S.

To each matrix W(S)
αβ is associated a transition graph with an

oriented arrow from α to β if W(S)
αβ > 0 (see Supplementary

Figures S2–S4). To illustrate the transitions at the group level,
we represent the transition graph of the average transition matrix
Wαβacross all scans in the LR sessions.

Intra-Class Correlation
In order to calculate the reliability of the computed measures
between the LR and RL fMRI sessions recorded on the same
day, we calculated the Inter-Class Correlation (ICC) (Landis and
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Koch, 1977; Xing and Zuo, 2018). ICC describes the proportion
of within-subject variability versus between-subject variability
across recording conditions as follows:

ICC =
MSEb −MSEw
MSEb +MSEw

, (5)

where MSEw and MSEb are the within-subject and between-
subject mean squared errors, respectively (Xing and Zuo, 2018).
Positive ICC values (i.e., when within-subject MSE is smaller than
the between-subject MSE) indicate individual reliability, which,
depending on its value, is categorized as low (0 < ICC < 0.2),
fair (0.2 < ICC < 0.4), moderate (0.4 < ICC < 0.6), substantial
(0.6 < ICC < 0.8) and almost perfect (0.8 < ICC < 1)
(Landis and Koch, 1977).

Effects of Low-Pass Temporal Filtering
A typical step in the pre-procession of fMRI resting-state data
is the application of a low-pass filter to exclude high frequency
noise in the BOLD signal (typically < 0.1 Hz). However, given
that BOLD signals are already averaged over all voxels within
each brain area - which should improve the signal-to-noise ratio-,
and given the instantaneous nature of our dynamic analysis, we
performed our first analysis directly on the unfiltered BOLD
signals recorded at a TR of 0.72 s, corresponding to a Nyquist
frequency of fNq = 1/2TR = 0.694 Hz.

To verify whether the higher frequency components in
the BOLD signal are meaningful for the dynamic analysis of
functional networks, we apply a 2nd order Butterworth band-
pass filter to the ROI-averaged BOLD signals - before computing
LEiDA and clustering into k = 5 states - varying the low-pass
cut-off frequency to 0.07, 0.1, 0.2 or 0.6944 Hz, while keeping
the lower high-pass frequency limit at 0.01 Hz (to exclude only
the ultra-slow signal drifts from the scanner). ICC measures
were subsequently calculated for the corresponding Dwell Times,
Fractional Occupancy and Transition Probabilities obtained.

RESULTS

Phase-Locking States Reveal Relevant
Functional Networks
We obtain a set of BOLD phase-locking patterns from the first
session of resting-state fMRI of 99 unrelated subjects using
the LEiDA approach (see section “Materials and Methods” for
details). Each BOLD phase-locking pattern is represented as a
vector with N elements, each element representing the projection
of the BOLD phase of a brain area into the leading eigenvector of
all BOLD phases (here N = 90 since we use the 90 non-cerebellar
brain regions from the AAL atlas).

Firstly, we verify the overlap between the BOLD phase-locking
states obtained across clustering solutions (with 2 < k < 20)
to seven intrinsic functional networks defined in the literature
(Yeo et al., 2011). In Figure 3, we report for all partitions into
k states (rows), the k cluster centroids obtained (columns). The
cluster centroids Vcα(representing BOLD phase-locking states)
are represented in the brain by coloring only the brain areas
whose BOLD phase projects in the opposite direction from the

main orientation of BOLD phases (negative elements in Vcα).
BOLD phase locking states are color-coded according to the
most significantly correlated RSN used as reference (shown in
panel B), given a corrected threshold of p < 0.05/k, and in black
otherwise. The same Figure is shown from a top view perspective
in Supplementary Figure S1.

Sorting the states according to their probability of occurrence,
we find consistently across clustering solutions a most prevalent
state, occupying the first column of Figure 3, in which the BOLD
phase of all brain areas project into the same direction. Since
it does not reveal the separation of any particular subsystem,
and does not significantly overlap with any reference functional
network, this so-called global state (state 1) is represented as a
transparent brain.

The remaining states are all characterized by a phase shift
in the BOLD signal of a given subset of brain areas, which are
highlighted as colored patches. Notably, most of the obtained
cluster centroids demonstrate a close statistical similarity to
reference functional networks, revealing a strong and highly
significant overlap (up to r = 0.89, with p-values down to10−30)
with the different RSNs used as reference. We also find that
some partitions show different PL states overlapping with the
same reference RSN. When no significant overlap is found, the
patches are colored in black. One example is the second most
prominent state appearing in all clustering solutions with k > 7,
which involves regions of basal ganglia, which have been omitted
in the analysis of functional networks from Yeo et al. (2011).

We chose to focus on the clustering solution with k = 5
within the range of best clustering performance according to the
silhouette value (Figure 3C), as it reveals a meaningful partition
of the BOLD PL patterns into four representative functional
networks. For k = 5 we found State 2 to correlate with the Default
Mode Network (r = 0.71, p = 10−14), State 3 to correlate with the
Fronto-parietal Network (r = 0.84, p = 10−21), State 4 to correlate
with the Visual Network (r = 0.88, p = 10−29) and finally State 5
to mostly correlate with the Ventral Attention Network (r = 0.71,
p = 10−14). In Supplementary Figures S5, S6, we also report
the overlap of cluster centroids with reference functional brain
networks obtained for the filtered series (0.04–0.07 Hz) both from
top and side view.

Exploration of a Repertoire of BOLD
Phase Locking States
In Figure 4, we show the different representations of the BOLD
PL states and their properties. Each PL state is represented in
two ways: on the left we plot the N = 90 vector elements as
arrows representing the magnitude of projection of each brain
area into the leading eigenvector of BOLD phases V1 and on the
right by rendering and coloring the brain regions shifted from
the main orientation (corresponding to the red arrows on the
left) according to the relevant functional system to which they
maximally overlap with (Figures 4A,E).

The PL states can also be represented in the form of a matrix
by computing the matrix product of each centroid’s vector Vcα
and its transpose, describing the pairwise relationship between
individual brain regions in each PL state (Figure 4B).
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FIGURE 3 | Centroids overlap with Functional Brain Networks. (A) Representation of the centroids obtained for each k-means clustering solution with K ranging
between 2 and 20. Centroids are represented in cortical space, rendering only the ROIs whose BOLD phase is shifted > ±π/2 with respect to the leading direction.
ROIs are colored according to the reference Functional Brain Network (shown in panel B) to which they most significantly relate with. Pearson’s r and corresponding
p-value are reported as a title only when surviving a conservative threshold of p < 0.05/K, to correct for the number of independent hypotheses tested in each
partition model. Centroids not significantly overlapping with any of the reference functional networks are colored in black. Side views of the same centroids are
reported in Supplementary Figure S1. (B) Reference functional brain networks estimated from 1000 subjects from correlation-based intrinsic functional
connectivity (Yeo et al., 2011). (C) Silhouette value, used to evaluate clustering performance, shows a peak for partitions into 2 to 6 clusters.

Assuming stationarity of the brain’s dynamical regime during
rest, we compute the probability of occurrence of PL states as
well as their mean Dwell Time within each fMRI scan (see
section “Materials and Methods”). In Figures 4C,D, we show the
probabilities of occurrence and mean Dwell Times of each PL
state obtained for each participant, plotting the values obtained
from the first fMRI session (LR) versus the values obtained from
the second same-day fMRI session (RL). We find that, in both
LR and RL sessions, State 1 shows high variability both in terms
of probability of occurrence (mean = 0.51, standard deviation
(std) = 0.16) and Dwell Times (mean = 3.94 s, std = 1.73 s),
with some subjects spending as little as 20% of the time in this
globally coherent state, whereas others spend up to 80% of the
time, with some occurrences lasting up to 10 s (the reliability
of metrics across recordings will be addressed in a following
section). Interestingly, the other 4 states show consistently
lower probabilities of occurrence, with state 2 (overlapping
with the DMN) occurring on average 16.6 ± 7.6% of the time
(mean ± std), being slightly more prevalent than the other states
(state 3: 12.7 ± 6.2%; state 4: 9.9 ± 4.7%; state 5: 9.5 ± 5.5%).
Not only do these functionally relevant PL patterns occur less

often, but they also show, consistently across subjects, much
shorter Dwell Times, lasting on average around 2 TRs (state 2,
1.71 ± 0.34 s; state 3 1.57 ± 0.37 s; state 4, 1.4 ± 0.34 s; state 5,
1.3± 0.22 s).

In Figure 4E, we report the correlation between each PL state
and the seven intrinsic functional networks used as reference
(see section “Materials and Methods”). We observed State 2
to correlate only with the Default Mode Network (r = 0.71,
p = 10−14), State 3 to correlate with the Fronto-parietal Network
(r = 0.84, p = 10−24), State 4 to correlate with the Visual Network
(r = 0.88, p = 10−29) and finally State 5 to mostly correlate with
the Ventral Attention Network (r = 0.71, p = 10−14) but also with
the Somatomotor Network (r = 0.53, p = 10−8). Supplementary
Figure S7 of the states’ measures for the filtered data (0.04–
0.07 Hz) is added in the Supplementary Material.

Recurrent Excursions Into BOLD PL
States
Similar to the probability of occurrence of a given state, we
can quantitatively characterize the temporal trajectories by the
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FIGURE 4 | Repertoire of BOLD Phase Locking States obtained using K = 5. (A) BOLD Phase Locking states represent recurrent patterns of BOLD phase alignment
across the whole brain. Each centroid is a vector VC of size 1xN whose elements indicate how each brain area projects into it. Each centroid is represented in the
brain in two different ways: (left) by placing an arrow at the centre of gravity of each brain area and setting its size, direction and color according to the magnitude
and sign of the corresponding element in VC (coloring in red for positive projections into VC, and blue otherwise). (right) Rendering all brain areas with positive values
in VC colored according to the functional network to which they show maximal overlap (see Figure 3 and/or panel E below). (B) Phase-locking matrices computed
as the outer product of the centroid vectors VC. (C) Scatter plots of state Fractional Occupancy, plotting the values obtained for the 99 fMRI scans in the LR
scanning session versus the values from the RL session. (D) Scatter plots of mean state Dwell Times, plotting the values obtained for the 99 fMRI scans in the LR
scanning session versus the values from the RL session. (E) Correlation between each BOLD PL state and the seven networks of intrinsic functional connectivity
from Yeo et al. (2011). * indicates significance corrected for multiple comparisons with Pearson’s p-value < 0.05/7.

probabilities of transition between the different BOLD PL states.
In Figure 5A we show the average transition matrix,Wαβ, as
the probability of switching from state α to state β. We noted
that the highest probabilities of transition (Wαβ > 0.5) were
along the diagonal (representing the probability to remain in the
same state) as well as along the first column (representing the
transitions back to the state 1). The characteristic self-transitions
(α→ α) along the diagonal are a distinctive feature of the system,
indicating the relative stability of each state. State 1 reveals the
highest stability (with 77% probability of remaining in it in the
following TR), whereas the probability of remaining in the other
states is close to chance levels. The scatter plots in Figure 5B
show the transition probabilities obtained for each of the 99
participants (LR session vs. RL session), revealing consistency of
the results across participants and scanning sessions.

Another relevant feature is the asymmetry of the transition
matrix, which is indicative of an imbalance in the reciprocity of
transitions both to and from a given state, as can be observed
with the apparent proclivity for switching into the (global) state
1, whereas the probability to leave from it is much smaller.

In Figure 5C, a Transition Graph is constructed from the
transition matrix W shown in panel A, where edges α→ β are
directed and weighted with weight Wαβ. This gives a good insight
into the spontaneous transition dynamics and motivates the use
of the Markov chain transition matrix beyond the probability
of occurrence alone. Supplementary Figure S8 of the transition
graph and matrix for the filtered data (0.04–0.07) is added in
the Supplementary Material. Furthermore, the comparison of
LR and RL sessions for the probabilities of transition is added in
Supplementary Figure S10.
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FIGURE 5 | Trajectories of brain activity in state space. (A) Transition matrix quantifying the probability of the trajectory transiting from one state to another as defined
in Equation 5, averaged across the scans from all 99 participants in the LR session. (B) Transition probabilities estimated for each fMRI scan, each dot
corresponding to one participant, plotting the probabilities of switching in the LR fMRI session versus the RL fMRI session. (C) Transition Graph is constructed from
transition matrix W where edges α→ β are directed and weighted with weight Wαβ.

Reliability of Individual Metrics
To assess the metric’s reliability across same-subject same-day
recordings when compared to other subjects, we computed the
Intra-Class Correlation (see section “Materials and Methods”)
for each measure above, namely, the Fractional Occupancies, the
Dwell Times and the Transition Probabilities. In Figure 6A, we
show the Fractional Occupancy for all 5 states to have moderate
reliability values (State1: ICC = 0.59, State 2: ICC = 0.47, State 3:
ICC = 0.42, State 4: ICC = 0.39 and State 5: ICC = 0.51). The Dwell

Times for the first three states had moderate values of ICC and
States 4 and 5 showed poor values (State1: ICC = 0.55, State 2:
ICC = 0.37, State 3: ICC = 0.4, State 4: ICC = 0.32, and State 5:
ICC = 0.28, Figure 6B).

Regarding the transition matrix, Figure 6C shows that the
probability of remaining in the (global) State 1 has one of the
highest ICC values (ICC = 0.61), with most of the transition to
and from the State 1 showing a range of fair to moderate ICC
values (0.29 < ICC < 0.62). States 2 and 3 have border-line
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FIGURE 6 | Individual reliability of the Phase-locking states’ measures: (A) Intra-Class Correlation (ICC) calculated for the Fractional Occupancy, showing positive
ICC values for all five PL states, meaning that the within-subject error is smaller than the between-subject error. All values are within a moderate range of
within-subject reliability (i.e., 0.4 < ICC < 0.6) according to the categorization by (Landis and Koch, 1977). (B) Intra-Class Correlation for Dwell Times for all five
states showing the states 1,2 and 3 to be in the moderate reliability range. (C) ICC for the normalized Probability Transition Matrix showing positive ICC values in all
transitions, with the probabilities of transition from state 1 being the most reliable, whereas other transitions, particularly between states 2 to 5, showing lower
reliability. The ICC is categorized, based on (Landis and Koch, 1977) as low (0 < ICC < 0.2), fair (0.2 < ICC < 0.4), moderate (0.4 < ICC < 0.6), substantial
(0.6 < ICC < 0.8) and almost perfect (0.8 < ICC < 1)

moderate values of ICC in the self-transitions (State 2: ICC = 0.39,
State 3: ICC = 0.40) and some of the transitions to other states
were also in the moderate range. States 4 and 5 seem to have
relatively poor, but still positive, ICC values for the probability
of transitions metric (Figure 6C).

Taken overall, the ICC results show that all the measures
evaluated have smaller within-subject error than the between-
subject error (given ICC values are positive for all measures),
indicating that the measures proposed herein capture individual
fingerprints of dynamic functional connectivity. To improve
the assertion of individual landscapes and reliability of
the methodology we added scatter plots for all the three
measures (Fractional Occupancy, Dwell Times and Transition
Probabilities) of the two sessions (LR and RL) in Figures 4, 5.

Effect of the Temporal Filtering
All the results shown so far were obtained directly from the
ROI-averaged BOLD signals from the HCP dataset, without
applying any temporal frequency filter. Temporal filtering is
a typical pre-processing step in resting-state fMRI analysis to
remove frequency components regarded as noise. In this section,
we evaluate whether the inclusion of the higher frequency
components in the BOLD signal improve the analysis of
dynamic functional connectivity by evaluating its effects on the
reliability (ICC) of the measures across sessions, which should
be maximized if assuming stationarity in individual resting-
state dynamics.

As shown in Figures 7A,C, filtering has a crucial effect on
the Dwell Times, with lower cut-off frequencies leading to longer
Dwell Times for all states, and especially for state 1. Notably,
when reaching up to the Nyquist frequency, the mean Dwell
Times of states 2 to 5 approach the duration of 2TRs consistently
for all subjects and in both LR and RL fMRI sessions, while state 1
lasts for slightly longer periods. When evaluating the Dwell Times
ICC (Figure 7E), we find that the ICC is maximal for states 1, 2,
and 3 when the high frequency components of the BOLD signal

are included. However, it is important to take into account that
the accurate estimation of Dwell Times is limited by the temporal
resolution of the current fMRI dataset, minimizing the difference
between subjects and hence affecting the ICC estimation.

Regarding the Fractional Occupancy of the states, it appears
from Figures 7B,D that filtering does not affect the overall values
estimated across subjects and in the different sessions. However,
when looking at the ICC values for Fractional Occupancy
(Figure 7F), we find that this measure is much more reliable
within individuals (and across all states) when the high frequency
components of the BOLD signal are included. Similarly, the
ICC of the Transition Probabilities (shown in Supplementary
Figure S9) shows a slight improvement in the reliability of most
transitions. Actually, when considering only frequencies <0.2 Hz,
a few transition probabilities have even a negative ICC, indicating
no individual reliability at all. Overall, these findings point to
the direction that it is important to consider the high frequency
components of resting-state BOLD signals when assessing
individual fingerprints in dynamic functional connectivity.

DISCUSSION

The challenge of describing dynamic functional connectivity for
a mechanistic understanding of the brain processing as well as
for its potential use in clinical research, has been of great interest
to the neuroimaging community (Hutchison et al., 2013; Preti
et al., 2016). With the advent of open multimodal neuroimaging
data, it is possible to address and validate these approaches in
representative datasets (Van Essen et al., 2013; Poldrack and
Gorgolewski, 2014). In this work, we apply, formalize and validate
the Leading Eigenvector Dynamics Analysis (LEiDA) to a large
cohort of 99 healthy unrelated HCP subjects (Glasser et al.,
2013). We describe brain activity during rest as a time evolving
trajectory in a low-dimensional state space, where states are
defined according to characteristic whole-brain configurations
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FIGURE 7 | Temporal Filtering effect on Dwell Time and Fractional Occupancy. (A,C) Dwell Times obtained across four different band-pass filters applied to the
BOLD signals, keeping the lower bound fixed at 0.01 Hz and varying the higher (lowpass) cutoff frequency between 0.07, 0.1, 0.2, and 0.6944 Hz, which
corresponds to the Nyquist frequency fNq = 1/(2TR). Results are shown for LR (A) and RL (C) recording sessions. (B,D) Fractional Occupancies across the four
different filtrations for LR (B) and RL (D) recording sessions. (E,F) Inter-Class Correlation (ICC) across four different filtrations for Dwell Times (E) and Fractional
Occupancy (F). The red dashed line represents the threshold for moderate reliability based on the Landis and Koch (1977) ICC scale.
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of BOLD phase-locking. Furthermore, we validate these BOLD
phase-locking states to reference networks of intrinsic functional
connectivity (Yeo et al., 2011) and compute their properties of
fractional occupancy, Dwell Times and transition probabilities.
We subsequently assess the reliability of these measures across the
two same-day fMRI recordings (using Intra-Class Correlation)
and show that all measures have a smaller within-subject error
than the between-subject error (ICC values > 0), with the
highest reliability values being detected when including the high
frequency components (>0.1 Hz) of ROI-averaged BOLD signals
in the analysis. We argue that such interpretation of brain
activity, validated with reliability analysis, has the potential to
identify individual-specific fingerprints in the brain’s dynamical
landscape and thus serve personalized clinical applications in
diagnostics and therapeutics of patients with cognitive disorders.

Concepts and methods from dynamical systems theory are
proving useful in the analysis of brain activity at the macroscopic
scale, as they serve to formally characterize the complex dynamics
emerging from the collective behavior of billions of interacting
neurons, exhibiting features such as multi-stability, meta-stability
and self-organized criticality, that may serve helpful to identify
the underlying principles coordinating cognition at the whole-
brain level (Deco and Jirsa, 2012; Tognoli and Kelso, 2014; Cocchi
et al., 2017; Roberts et al., 2019). Here, we aimed at a different
characterization of the dynamical properties of the intrinsic
functional networks emerging spontaneously and consistently
during rest. Our analysis revealed a repertoire of BOLD phase-
locking states through which the trajectory of brain activity
consistently returns in time and across subjects.

By analyzing the PL state’s fractional occupancy, Dwell Time
and probability of transitions, our results revealed that the BOLD
phase-locking states can be divided in two groups according
to their dynamical properties: On one hand, our algorithm
consistently detects a state where all the ROI-averaged BOLD
signals project into the same direction captured by the leading
eigenvector (state 1 for all clustering solutions). This state exhibits
longer Dwell Times and shows high between-subject variability
but also high within-subject reliability. On the other hand, we
detect for all k-means clustering solutions, a set of k-1 states
where the BOLD signals of some brain areas project into the
opposite direction from the main BOLD phase orientation.
These states occur consistently less often and last for shorter
times than the global state, but reoccur consistently across
subjects and sessions. Given the reduced stability of these BOLD
phase-locking states with respect to the meta-stable globally
synchronized state, we refer to this second group as “ghost”
attractor states. In other words, ghost attractors in this framework
refer to short-lived (or weakly stable) network configurations that
consistently reoccur across fMRI recordings.

Regarding the functional relevance of these “ghost” phase-
locking states, our results show a clear and highly significant
overlap of most cluster centroids (obtained for the whole
range of partitions explored) with a set of seven previously
identified networks of intrinsic functional connectivity used as
reference. This finding indicates that these patterns of BOLD
phase locking, despite being obtained from a different analytic
perspective than more conventional correlation-based analyzes,

are closely related to the so-called resting-state networks. Yet,
unlike correlation-based analyses that reveal only the spatial
map of these functional networks, the LEiDA approach allows
characterizing their properties over the temporal dimension. As
the reference RSNs are computed from the correlation-based
static functional connectivity, a perfect match to the BOLD
phase-locking states detected herein is not expected. Rather, they
can be considered for validation of the functional relevance of
the PL states and served to guide the choice of the number of
states or further analysis. The number of states chosen is a trade-
off between more fine-grained but less robust state solutions
as demonstrated by the increasing specificity of functional
subsystems for higher k. Here, the clustering solution with k = 5
was chosen for being within the range of maximal Silhouette
value and for revealing a separation into distinct functionally
meaningful systems such as the Default Mode Network, the
Frontoparietal Network, the Ventral Attention Network and the
Visual Network. However, a partition into a higher number of
states may prove necessary when addressing particular conditions
that affects a particular subsystem optimally defined for higher
k. For instance, in a previous work using LEiDA, the partition
into k = 10 was chosen for detecting the network that most
significantly distinguished patients in remission from major
depressive disorder and controls (Figueroa et al., 2019), whereas
another study found the solution with k = 7 to optimally highlight
the effects of psilocybin (Lord et al., 2019).

For all partitions into k > 7, our algorithm consistently
detected a functional subsystem involving the basal ganglia
(colored in black in Figure 3 and Supplementary Figure S1)
for not overlapping with any of the reference RSNs) as the
second most prevalent BOLD PL state. This indicates that resting-
state activity also involves connectivity to subcortical areas,
which appears particularly important for the study of psychiatric
disorders, such as anxiety-related disorders involving the basal
ganglia. Following previous LEiDA studies, we chose here a
coarse parcellation into N = 90 brain areas and did not include
the BOLD signal detected in the cerebellum. The Anatomic
Automatic Labeling Atlas has been validated in many studies
and has shown consistency in the LEiDA results across datasets
(Cabral et al., 2017b; Figueroa et al., 2019; Lord et al., 2019).
However, it is based on an anatomic definition of the brain
regions and as such might not generalize adequately to the
dynamic functional connectivity analysis. We expect to extend
to finer-grained and fMRI-derived parcellations in future studies,
potentially including other substructures such as the cerebellum,
in order to gain a wider insight into the network configurations
observed in brain activity at the macroscopic scale (Cammoun
et al., 2012; Glasser et al., 2016; Schaefer et al., 2018).

The mechanistic interpretation of the empirical data proposed
herein serves as a great candidate for further theoretical
exploration by whole-brain computational models (Ghosh et al.,
2008; Deco et al., 2009; Honey et al., 2009). To this date, many
models have demonstrated well-matched dynamics to the brain
activity as represented by static functional connectivity in a
critical range of parameters where the brain is poised between
noisy and oscillatory activity. Furthermore, different properties
were shown to have an impact on the emerging dynamics
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such as propagation delays, local vs. global connections, signal-
to-noise ratio, and local inhibitory rules (Deco et al., 2009,
2014; Honey et al., 2009; Cabral et al., 2011). Extending such
modeling endeavors away from static functional connectivity
to a dynamic representation of the experimental data is
currently becoming a possible new avenue into understanding the
underlying principles governing dynamic functional connectivity
(Hansen et al., 2015; Cabral et al., 2017a; Deco et al., 2018,
2019). Recently, Deco et al. have shown how the dynamic
representation of resting-state data in wakefulness and sleep
(characterized using LEiDA) can serve to explore how a whole-
brain model can be perturbed to identify the brain regions
responsible for the transition between awake and sleep state
(Deco et al., 2019).

Representing dynamic functional connectivity through the
prism of dynamical system theory hypothesizes the existence of
attractors in N-dimensional space through which the functional
activity evolves in time. Assuming this hypothetical scenario, it
describes a state-based propagation of the data, rendering the
underlying dynamics in a discrete sense (Baker et al., 2014;
Karahanoğlu and Van De Ville, 2015; Preti et al., 2016; Cabral
et al., 2017a). However, other methods have considered dynamic
functional connectivity from a continuous point-of-view, such as
the spatio-temporal connectome where brain activity is described
as a temporal graph (Griffa et al., 2017; Vohryzek et al., 2019) and
auto-regressive models (Liégeois et al., 2017). We acknowledge
that looking at the brain activity in a discrete sense is only
one of the interpretations currently proposed in trying to
describe the emergent complex phenomena observed in whole-
brain dynamics.

It is to be noted that the applied clustering algorithm
is just one amongst many decomposition methods that can
partition the LEiDA results into meaningful states. Indeed,
(Cabral et al., 2017b) compared the results from k-means
algorithm to the Hidden Markov Model (HMM), in their
paper on cognitive performance of patients, showing similar
results with both approaches (Cabral et al., 2017b). However,
k-means was chosen here for its relatively simple implementation
and its relatively low computational cost, revealing functionally
meaningful cluster centroids.

New imaging methods benefit greatly from the reliability
analysis that investigates individual variabilities across recordings
sessions. Especially in clinical applications, reliability is crucial
to obtain stable measures across time for individual subjects
(i.e., low within-subject variability) and at the same time
distinguishable differences between subjects (i.e., high between-
subject variability) (Xing and Zuo, 2018; Zuo et al., 2019).
In this work, Intra-Class Correlation is used to calculate the
desirable ratio between between-subject variability and within-
subject variability across recording sessions. One of the Intra-
Class Correlation scales proposed by Landis and Koch (1977)
to assess reliability for clinical applications suggests that values
1.0 > ICC > 0.8 have excellent reliability, 0.8 > ICC > 0.6
substantial reliability, 0.6 > ICC > 0.4 have moderate reliability
and, 0.4 > ICC > 0.2 poor substantial reliability. In other words,
it is desirable to obtain high reliability values for the method’s
possible clinical application.

In the last part of our study, we show that including the high
frequency components up to the Nyquist frequency maximizes
the ICC values (reaching a mainly moderate range of ICC values).
As such, it is likely that the temporal resolution of the fMRI
acquisition might have hindered further increase in reliability.
Although the Dwell Times become significantly shorter if no
smoothing is applied - which may decrease the detection of RSNs
in correlation-based analysis - we find that the occurrence of
these states is intrinsically short, given that the measures become
more reliable. Although the hemodynamic response function
(HRF) is intrinsically slow, the capacity of the BOLD signal to
detect faster frequency components is still highly debated in the
literature (Glerean et al., 2012; Deco et al., 2019). Nevertheless,
it is likely that resting-state dynamics occurs at a faster time
scale than captured with the BOLD signal, as suggested by MEG
studies that point to a duration of around 200 ms (Baker et al.,
2014; Vidaurre et al., 2016). Here, we show that LEiDA allows
detecting meaningful dynamic network configurations occurring
at relatively short time-scales for fMRI analysis, which may serve
useful not only for resting-state analysis but also for the detection
of task related patterns [as in Stark et al. (2019)], that may not be
captured with conventional general linear models using the HRF.
Overall, we expect that novel insights into BOLD signal temporal
characteristics and improvements in fMRI temporal resolution
might increase the ICC reliability of these measures.

CONCLUSION

In summary, we combine novel analytic tools to quantitatively
characterize brain activity in each fMRI scan as a trajectory
through a discrete set of BOLD phase-locking states. Given the
dynamical properties of these states (fractional occupancy, Dwell
Time and transition probability) we propose that RSNs behave as
ghost attractors, emerging spontaneously and for brief periods,
but recurring consistently across subjects and sessions. Our
study corroborates previous theoretical works that put forward
an interpretation of brain activity as a trajectory evolving in
time in an energy landscape (Deco et al., 2011; Ashourvan
et al., 2017). By demonstrating the functional relevance of the
BOLD phase-locking states detected and the reliability of the
measures across same-subject sessions we go further by revealing
the existence of individual-specific energy landscapes in brain
activity with potential application in patient-specific diagnostics
and therapeutics.

DATA AVAILABILITY STATEMENT

All data and codes used in this study are publicly available on
https://github.com/jvohryzek/GhostAttractors.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Washington University review board including
all study protocols. Informed consent was obtained for all

Frontiers in Systems Neuroscience | www.frontiersin.org 13 April 2020 | Volume 14 | Article 2087

https://github.com/jvohryzek/GhostAttractors
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00020 April 17, 2020 Time: 17:59 # 14

Vohryzek et al. Ghost Attractors in Spontaneous Brain Activity

participants. The participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

JV and JC carried out the analysis, wrote the main manuscript
and came up with the paper’s ideas. BC and GD verified and
advised the theoretical methods. MK and JC supervised the whole
project. All authors participated in the discussion of the ideas and
contributed in the final writing of the manuscript.

FUNDING

This work has been funded by FEDER through the
Competitiveness Factors Operational Program (COMPETE),
by National funds through the Foundation for Science
and Technology (FCT) under the scope of the project
UID/Multi/50026; and by the projects NORTE-01-0145-FEDER-
000013 and NORTE-01-0145-FEDER-000023, supported by the
Northern Portugal Regional Operational Programme (NORTE
2020), under the Portugal 2020 Partnership Agreement, through

the European Regional Development Fund (FEDER). JC was
supported by Portuguese Foundation for Science and Technology
CEECIND/03325/2017, Portugal. GD acknowledges funding
from the European Union’s Horizon 2020 FET Flagship Human
Brain Project under Grant Agreement 785907 HBP SGA2, the
Spanish Ministry Project PSI2016-75688-P (AEI/FEDER) and
the Catalan Research Group Support 2017 SGR 1545. MK was
supported by the European Research Council Consolidator
Grant: CAREGIVING (615539), Pettit Foundation, Carlsberg
Foundation and Center for Music in the Brain, funded by the
Danish National Research Foundation (DNRF117). BC was
supported by the French Government through the UCA-Jedi
project managed by the National Research Agency (ANR-15-
IDEX-01) and, in particular, by the interdisciplinary Institute for
Modeling in Neuroscience and Cognition (NeuroMod) of the
Université Côte d’Azur.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnsys.
2020.00020/full#supplementary-material

REFERENCES
Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun,

V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state.
Cerebral. Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Ashourvan, A., Gu, S., Mattar, M. G., Vettel, J. M., and Bassett, D. S.
(2017). The energy landscape underpinning module dynamics in the human
brain connectome. NeuroImage 157, 364–380. doi: 10.1016/j.neuroimage.2017.
05.067

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Smith, P. J. P.,
et al. (2014). Fast transient networks in spontaneous human brain activity. ELife
2014, 1–18. doi: 10.7554/eLife.01867

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M. (2005).
Investigations into resting-state connectivity using independent component
analysis. Philos. Trans. R. Soc. BBiol. Sci. 360, 1001–1013. doi: 10.1098/rstb.2005.
1634

Cabral, J., Hugues, E., Sporns, O., and Deco, G. (2011). Role of local network
oscillations in resting-state functional connectivity. NeuroImage 57, 130–139.
doi: 10.1016/j.neuroimage.2011.04.010

Cabral, J., Kringelbach, M. L., and Deco, G. (2017a). Functional connectivity
dynamically evolves on multiple time-scales over a static structural connec-
tome: models and mechanisms. NeuroImage 160, 84–96. doi: 10.1016/j.
neuroimage.2017.03.045

Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel
Soares, J., et al. (2017b). Cognitive performance in healthy older adults relates
to spontaneous switching between states of functional connectivity during rest.
Sci. Rep. 7:5135. doi: 10.1038/s41598-017-05425-7

Calhoun, V. D., Miller, R., Pearlson, G., and Adali, T. (2014). The
chronnectome: time-varying connectivity networks as the next frontier
in fmri data discovery. Neuron 84, 262–274. doi: 10.1016/j.neuron.2014.
10.015

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. Q.,
et al. (2012). Mapping the human connectome at multiple scales with diffusion
spectrum MRI. J. Neurosci. Methods 203, 386–397. doi: 10.1016/j.jneumeth.
2011.09.031

Chang, C., and Glover, G. H. (2010). Time-frequency dynamics of resting-state
brain connectivity measured with fMRI. NeuroImage 50, 81–98. doi: 10.1016/
j.neuroimage.2009.12.011

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017). Criticality in the
brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158,
132–152. doi: 10.1016/j.pneurobio.2017.07.002

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J.,
Smith, S. M., et al. (2006). Consistent resting-state networks across healthy
subjects. Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853. doi: 10.1073/pnas.
0601417103

Deco, G., Cruzat, J., Cabral, J., Tagliazucchi, E., Laufs, H., Logothetis, N. K.,
et al. (2019). Awakening: predicting external stimulation to force transitions
between different brain states. Proc. Natl. Acad. Sci. U.S.A. 116, 18088–18097.
doi: 10.1073/pnas.1905534116

Deco, G., Cruzat, J., and Kringelbach, M. L. (2019). Brain Songs: Discovering the
Relevant Timescale of the Human Brain. Nature Communications. Berlin: Nature
Publishing Group.

Deco, G., Jirsa, V., Mcintosh, A. R., Sporns, O., and Kotter, R. (2009). Key role of
coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci.
U.S.A. 106, 10302–10307. doi: 10.1073/pnas.0901831106

Deco, G., and Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality,
multistability, and ghost attractors. J. Neurosci. 32, 3366–3375. doi: 10.1523/
JNEUROSCI.2523-11.2012

Deco, G., Jirsa, V. K., and McIntosh, A. R. (2011). Emerging concepts for the
dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci.
12, 43–56. doi: 10.1038/nrn2961

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G., Mantini, D., and Corbetta,
M. (2014). How local excitation-inhibition ratio impacts the whole brain
dynamics. J. Neurosci. 34, 7886–7898. doi: 10.1523/JNEUROSCI.5068-13.
2014

Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., and
Corbetta, M. (2013). Resting-state functional connectivity emerges from
structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33,
11239–11252. doi: 10.1523/JNEUROSCI.1091-13.2013

Deco, G., Vidaurre, D., and Kringelbach, M. L. (2019). Revisiting the global
workspace: orchestration of the functional hierarchical organisation of the
human brain. BioRxiv [preprint]. doi: 10.1101/859579

Deco, G., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, R. L., Whybrow,
P. C., et al. (2018). Whole-brain multimodal neuroimaging model using
serotonin receptor maps explains non-linear functional effects of LSD. Curr.
Biol. 28, 3065.e6–3074.e6. doi: 10.1016/j.cub.2018.07.083

Frontiers in Systems Neuroscience | www.frontiersin.org 14 April 2020 | Volume 14 | Article 2088

https://www.frontiersin.org/articles/10.3389/fnsys.2020.00020/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnsys.2020.00020/full#supplementary-material
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1016/j.neuroimage.2017.05.067
https://doi.org/10.1016/j.neuroimage.2017.05.067
https://doi.org/10.7554/eLife.01867
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1016/j.neuroimage.2011.04.010
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://doi.org/10.1016/j.neuroimage.2017.03.045
https://doi.org/10.1038/s41598-017-05425-7
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.1016/j.jneumeth.2011.09.031
https://doi.org/10.1016/j.jneumeth.2011.09.031
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.pneurobio.2017.07.002
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.1905534116
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1523/JNEUROSCI.2523-11.2012
https://doi.org/10.1038/nrn2961
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1523/JNEUROSCI.1091-13.2013
https://doi.org/10.1101/859579
https://doi.org/10.1016/j.cub.2018.07.083
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00020 April 17, 2020 Time: 17:59 # 15

Vohryzek et al. Ghost Attractors in Spontaneous Brain Activity

Figueroa, C. A., Cabral, J., Roel, M. J. T., Rapuano, K. M., Van Hartevelt, T. J., and
Ruhé, H. G. (2019). Altered ability to access a clinically relevant control network
in patients remitted from major depressive disorder. Hum. Brain Mapp. 40,
2771–2786. doi: 10.1002/hbm.24559

Fox, M. D., and Greicius, M. (2010). Clinical applications of resting state functional
connectivity. Front. in Syst. Neurosci. 4:19. doi: 10.3389/fnsys.2010.00019

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., and
Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic,
anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Ghosh, A., Rho, Y., Mcintosh, A. R., Kö Tter, R., and Jirsa, V. K. (2008). Noise
during rest enables the exploration of the brain’s dynamic repertoire. PLoS
Comput. Biol. 4:1000196. doi: 10.1371/journal.pcbi.1000196

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub,
E., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature
536, 171–178. doi: 10.1038/nature18933

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,
Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for
the human connectome project. NeuroImage 80, 105–124. doi: 10.1016/j.
neuroimage.2013.04.127

Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P., and Sams, M. (2012).
Functional magnetic resonance imaging phase synchronization as a measure of
dynamic functional connectivity. Brain Connectivity 2, 91–101. doi: 10.1089/
brain.2011.0068

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric
disorders. Curr. Opin. Neurol. 21, 424–430. doi: 10.1097/WCO.0b013e3283
06f2c5

Griffa, A., Ricaud, B., Benzi, K., Bresson, X., Daducci, A., Vandergheynst,
P., et al. (2017). Transient networks of spatio-temporal connectivity map
communication pathways in brain functional systems. NeuroImage 155, 490–
502. doi: 10.1016/j.neuroimage.2017.04.015

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D. R. (2013). Brain
organization into resting state networks emerges at criticality on a model of the
human connectome. Physical. Rev. Lett. 110:178101. doi: 10.1103/PhysRevLett.
110.178101

Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G., and Jirsa, V. K. (2015).
Functional connectivity dynamics: modeling the switching behavior of the
resting state. NeuroImage 105, 525–535. doi: 10.1016/j.neuroimage.2014.11.001

Hindriks, R., Adhikari, M. H., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis,
N. K., et al. (2016). Can sliding-window correlations reveal dynamic functional
connectivity in resting-state fMRI? NeuroImage 127, 242–256. doi: 10.1016/j.
neuroimage.2015.11.055

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.-P., Meuli, R., et al.
(2009). Predicting human resting-state functional connectivity from structural
connectivity. Proc. Natil. Acad. Sci. U.S.A. 106, 2035–2040. doi: 10.1073/pnas.
0811168106

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D.,
Corbetta, M., et al. (2013). Dynamic functional connectivity: promise, issues,
and interpretations. NeuroImage 80, 360–378. doi: 10.1016/j.neuroimage.2013.
05.079

Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., and Pizzagalli, D. A. (2015).
Large-scale network dysfunction in major depressive disorder. JAMA Psychiatry
72, 603611. doi: 10.1001/jamapsychiatry.2015.0071
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Comprehending how the brain functions requires an understanding of the dynamics of

neuronal assemblies. Previous work used a mean-field reduction method to determine

the collective dynamics of a large heterogeneous network of uniformly and globally

coupled theta neurons, which are a canonical formulation of Type I neurons. However,

in modeling neuronal networks, it is unreasonable to assume that the coupling strength

between every pair of neurons is identical. The goal in the present work is to analytically

examine the collective macroscopic behavior of a network of theta neurons that is

more realistic in that it includes heterogeneity in the coupling strength as well as in

neuronal excitability. We consider the occurrence of dynamical structures that give

rise to complicated dynamics via bifurcations of macroscopic collective quantities,

concentrating on two biophysically relevant cases: (1) predominantly excitable neurons

with mostly excitatory connections, and (2) predominantly spiking neurons with inhibitory

connections. We find that increasing the synaptic diversity moves these dynamical

structures to distant extremes of parameter space, leaving simple collective equilibrium

states in the physiologically relevant region. We also study the node vs. focus nature

of stable macroscopic equilibrium solutions and discuss our results in the context of

recent literature.

Keywords: network, synaptic diversity, theta neuron, oscillations, synchronization, heterogeneity

1. INTRODUCTION

In 1949, Hebb (1949) proposed that cell assemblies are the true functional unit of the nervous
system. The cerebral cortex contains networks of neuronal assemblies that comprise a large number
of interacting neurons (Harris, 2005; Sporns et al., 2005). Individual neuronal assemblies organize
via transient synchronization to generate collective behavior that is critical to communication
between the neuronal assemblies themselves. Furthermore, it has been suggested that this
synchronous neural activity, as well as average spatiotemporal firing patterns that emerge from
these populations, are important coding mechanisms (Harris, 2005).

In developing an analytical understanding of the behavior of large neuronal assemblies, it is
prohibitively challenging to use realistic models of actual neurons. To make progress, it is useful
to use a canonical model that can represent the general behavior of a whole class of neurons
(Izhikevich, 2000). A model can be considered canonical for a family of models if a continuous
change of variables can transform any instance of that family into the canonical model. Such
a model is advantageous due to its universality since any behavior exhibited by the canonical
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model informs the behavior of the entire family of neurons.
In approaching the characterization of neuronal populations
specifically, the use of a canonical model is beneficial in that it
may be amenable to a complete analytical treatment.

Physiologically, excitable neurons are typically classified into
two types (Hodgkin, 1948; Izhikevich, 2007). Here, we are
concerned with Type I neurons, which represent a category
that includes cortical excitatory pyramidal neurons that generate
action potentials at an arbitrarily low rate when a sufficiently
large input stimulus is applied. Ermentrout and Kopell derived
a one-dimensional neuronal model that includes a saddle-node
bifurcation on an invariant circle, or SNIC bifurcation, and
demonstrated that it is canonical for Type I neurons near the
firing threshold (Ermentrout and Kopell, 1986). We use this
model, also termed the theta neuron, to analyze the collective
dynamics of a large population of Type I neurons.

Instead of being concerned with the exact values of all
neuronal state variables in a large network of model neurons,
we look to classify the macroscopic or collective behaviors
that describe the activity of a population as a whole. Much
early work studied such collective behaviors in terms of mean
firing rates. Famously, the Wilson–Cowan equations consider
a homogeneous population of interconnected excitatory and
inhibitory neurons (Wilson and Cowan, 1972, 1973; Coombes,
2006). But, in recent years, many authors have employed the
groundbreaking techniques of Ott and Antonsen (2008, 2009),
which yield an understanding of the collective dynamics from
the asymptotic behavior of a low-dimensional set of reduced
equations for an appropriate set of macroscopic variables.

Luke et al. (2013) used these methods to analyze a network
of globally-coupled theta neurons (see also Luke et al., 2014; So
et al., 2014). These authors analytically obtained the asymptotic
dynamics of a Kuramoto-type order parameter that quantifies the
collective network dynamics. This work was later adapted to a
spatiotemporal context by Laing (2014, 2015) and used to make a
connection between the microscopic theta neuron steady states
and the corresponding mean-field firing-rate-based model. At
about the same time, similar work was pursued independently by
Pazó and Montbrió (2014) for pulse-coupled Winfree networks.
Then, Montbrió et al. (2015) used similar analytic techniques
to describe the collective dynamics of a population of quadratic
integrate-and-fire (QIF) neurons in terms of the network firing
rate and average membrane potential. It is important to note
that the theta neuron can be transformed into a QIF neuron
by an appropriate change of variable. Montbrió et al. (2015)
went further, linking networks of these neurons by identifying
a conformal mapping between the two macroscopic variables for
the QIF network (i.e., firing rate and mean membrane potential)
and the Kuramoto order parameter for the theta neuron system.

The current work builds directly on the results of Luke
et al. (2013), which included heterogeneity in the excitability
parameter of the theta neuron in order to model this obviously
significant feature of real neuronal ensembles. However, the
neurons were assumed to be linked together with a single value
of coupling strength. In the current work, we extend this analysis
to also include synaptic diversity, modeled as heterogeneity in the
coupling strength parameter. Our aim is to determine how this

additional and realistic feature of the network model affects the
macroscopic patterns produced by the population as a whole. We
note that in Appendix E1 of Montbrió et al. (2015), this situation
was also considered for QIF networks, and we comment on the
relationship of our work to theirs in section 4.

We also take interest in the nature of equilibrium solutions
of the macroscopic network variables. Luke et al. (2013) noted
that collective stable node and stable focus solutions exist, and
that their nature can be identified by observing the collective
network response to a perturbation (see their Figure 5), since
the relaxation back to a focus solution involves oscillatory
behavior in the macroscopic variable. Recently, di Volo and
Torcini (2018) (see also Bi et al., 2020) argued that collective
oscillations in balanced spiking inhibitory networks can arise
via this mechanism when driven by appropriate fluctuations.
They showed using a model based on Montbrió et al. (2015)
that the frequency of such collective oscillations match the
relaxation dynamics around a stable focus equilibrium. Thus
we are also interested in examining how introducing synaptic
diversity affects the node vs. focus nature of macroscopic
equilibrium solutions.

2. METHODS

2.1. Microscopic Formulation
The theta neuron model is a canonical representation of a Type-1
neuron (Ermentrout, 2008) and is given by

θ̇ = (1− cosθ)+ η(1+ cosθ),

where the phase angle θ characterizes the state of the neuron.
The neuron is considered to “spike,” or produce an action
potential, when θ crosses π while increasing. We call η the
“excitability parameter” and think of it as playing the role of a
fixed input current. If η < 0, then the model has a stable and
an unstable equilibrium which we call the resting state and the
threshold, respectively. In this situation, the neuron is excitable,
as a sufficiently large external stimulus could push the phase of
the neuron across the unstable equilibrium, where upon θ would
travel around the circle, pass θ = π and spike, and then approach
the stable equilibrium from the other side. As η increases, the
stable and unstable equilibria get closer together, merge in a SNIC
bifurcation at η = 0, and disappear. For η > 0, the neuron’s
dynamics is that of a limit cycle, representing a periodically
spiking neuron.

We consider a network of N theta neurons,

θ̇j = (1− cosθj)+ [ηj + Isyn,j](1+ cosθj), (1)

where j = 1, ...,N is the index of the j-th neuron. The theta
neurons are coupled together via a pulse-like synaptic current
Isyn,j given by

Isyn,j =
kj

N

N
∑

i=1

Pn(θi), (2)
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where Pn(θ) = an(1 − cosθ)n, n ∈ N, kj is the coupling strength,
and an is a normalization constant such that

∫ 2π

0
Pn(θ)dθ = 2π .

In this model, the parameters ηj, kj, and n represent biological
features. ηj determines either the degree to which neuron j is
excitable (for ηj < 0), or the frequency of regular spiking (for
ηj > 0). kj describes the strength of coupling between neuron j
and its presynaptic partners, and can be inhibitory (kj < 0) or
excitatory (kj > 0). The parameter n determines the shape of the
synaptic current. As n increases, the current pulse becomes more
sharply peaked. Throughout most of this paper, we set n = 2, but
we also consider n = 9 as noted.

To quantify the macroscopic collective behavior of
the network, we use the usual Kuramoto complex order
parameter z(t):

z(t) =
1

N

N
∑

j=1

eiθj .

This is the centroid of the phase distribution. Perfect phase
synchrony corresponds to |z| = 1, and partial phase synchrony
to 0 < |z| < 1. Note, however, that because the angular speed of
a spiking theta neuron is not uniform in θ , a population of such
neurons exhibits a degree of phase synchrony with |z| 6= 0 when
completely uncoupled.

Since neurons in real biological networks exhibit a range
of intrinsic excitabilities, the parameter ηj is typically different
for each neuron. New in this work, we also allow for diversity
in the coupling strengths kj. We model this by drawing these
parameters at random from two independent Cauchy–Lorentz
distribution functions gη(η) and gk(k) given by

gη(η) =
1

π

1η

(η − η0)2 + 12
η

, gk(k) =
1

π

1k

(k− k0)2 + 12
k

, (3)

where η0 and k0 are the centers of the distributions, and 1η

and 1k are their half-widths at half-maximum. The latter two
parameters describe the degree of heterogeneity in the excitability
parameter and the coupling strength, respectively. This particular
choice of distribution function permits analytical solutions.
Because the distribution has infinite support, the infinitely large
networks include both positive and negative η’s and k’s, meaning
that the network contains a mixture of excitable and spiking
neurons as well as inhibitory and excitatory connections. The
ratios of these depend on the values of η0 and k0, i.e., where the
distributions are centered.

2.2. Mean Field Reduction
We adopt a mean-field continuum description of our network
(Kuramoto, 1975, 1984) by considering the limit N → ∞ such
that the network is described by a probability density function
F(θ , η, k, t), where F(θ , η, k, t)dθdηdk gives the probability at
time t of finding an oscillator with phase in [θ , θ + dθ] and
parameters in [η, η + dη] and [k, k + dk]. The total number

of neurons is conserved and we assume that the marginal
probability distribution functions gη(η) and gk(k) are both time-
independent and independent of each other. Thus, F satisfies the
continuity equation,

∂F

∂t
+

∂

∂θ
(Fvθ ) = 0, (4)

where vθ represents the velocity of a neuron and is given by the
continuum version of the single neuron equation,

vθ = (1− cosθ)+

[

η + kan

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0
F(θ ′, η′, k′, t)

(1− cosθ ′)ndη′dk′dθ ′
]

(1+ cosθ). (5)

We also define the order parameter z(t) in the continuum limit,

z(t) ≡

∫ 2π

0
dθ

∫ ∞

−∞

dη

∫ ∞

−∞

dkF(θ , η, k, t)eiθ . (6)

This describes the collective behavior of the infinite network.
Ott and Antonsen showed that in the continuum limit,

the macroscopic behavior of Kuramoto-type populations of
globally coupled and heterogeneous phase oscillators displays
low-dimensional dynamics (Ott and Antonsen, 2008, 2009).
They adopted the ansatz that the probability density function
describing the network can be written as a Fourier expansion
in the phase variable whose coefficients are powers of a single
complex function. Using the continuity equation and a self-
consistency argument, they derived an equation that this complex
function must satisfy. Ultimately, with appropriate choices of
gη and gk (such as Equation 3), this procedure leads to a
low-dimensional ordinary differential equation (ODE) whose
asymptotic dynamics coincides with that of the order parameter
z(t) of the infinite discrete network. Thus, the asymptotic
collective dynamics of the infinite discrete network can be
obtained by solving that low-dimensional ODE instead of the
infinitely many coupled ODEs of the discrete network (i.e.,
Equation 1), or the partial differential equation that describes
the network in the continuum description (i.e., Equation 4).
Later, Marvel et al. (2009) showed that the Ott-Antonsen (OA)
approach applies more generally to other oscillator-type systems
for which the velocity field vθ can be written in “sinusoidally
coupled form,” i.e., vθ = feiθ + h+ f ∗e−iθ , where the dependence
on the individual oscillator’s phase occurs only through the first
harmonics eiθ and e−iθ .

These methods were applied to a globally-coupled population
of theta neurons with heterogeneity in the excitability parameter,
which can be written in the sinusoidally-coupled form described
above, by Luke et al. (2013). The result was a two-dimensional
(i.e., complex) ordinary differential equation for z(t) which
identifies the asymptotic collective dynamics of the infinite
discrete network. The equation admits three possible asymptotic
states: equilibrium solutions with either real (node) or complex-
conjugate (focus) eigenvalues, and limit cycles. The authors
confirmed by numerical simulation that the reduced model
accurately captures the collective behavior of discrete networks
of 10, 000 neurons.
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Note that there is considerable discussion in the literature
regarding the interesting question of the marginal stability of the
OA manifold and its relation to earlier work. See, for example,
Pikovsky and Rosenblum (2015), Mirollo (2012), Watanabe and
Strogatz (1994), Watanabe and Strogatz (1993), and Goldobin
and Dolmatova (2019), and for networks with parameter-
dependent oscillators, such as our theta neuron network, see
Pietras and Daffertshofer, 2016.

In the following, we follow the approach in Luke et al.
(2013), but include heterogeneity in the coupling strength k as
in Equation (3). We comment on the relationship between our
results and those in Appendix E1 of Montbrió et al. (2015) in
section 4.

2.3. Bifurcation Analysis Methods
In addition to constructing standard one-dimensional
bifurcation diagrams, we employ the following less-common
approach to bifurcation analysis (Luke et al., 2013). With
z(t) = x(t) + iy(t) and fixed values of n and 1k, we think of the
conditions for an equilibrium solution (xe, ye),

ẋ(t) = f (n,1k; xe, ye, η0,1η, k0) = 0

ẏ(t) = g(n,1k; xe, ye, η0,1η, k0) = 0, (7)

as being two constraints on the five independent variables xe,
ye, η0, 1η, and k0. A saddle-node bifurcation occurs when one
of the eigenvalues of the Jacobian J of the equations of motion
(Equations 7) is zero. Thus, it is sufficient to require

det[J(xe, ye, η0,1η, k0)] = 0. (8)

With this equation, we have three constraints on five variables,
thus defining two-dimensional surfaces. We manipulate these
equations to find expressions for η0, 1η , and k0, each in terms of
xe and ye. This then allows us to parametrically plot the saddle-
node bifurcation surfaces in the three-dimensional parameter
space (η0,1η, k0) by scanning over (xe, ye). In other words, we
construct plots of two-dimensional surfaces in the parameter
space (η0,1η, k0) such that points on these surfaces correspond
to parameter values at which an (unspecified) equilibrium
undergoes a saddle-node bifurcation.

Since our reduced system is two-dimensional, surfaces of
Hopf bifurcations can be obtained in the same way by replacing
Equation (8) with

tr[J(xe, ye, η0,1η, k0,1k)] = 0 (9)

subject to

det[J(xe, ye, η0,1η , k0,1k)] > 0. (10)

Finally, surfaces corresponding to node-focus (NF) transitions
can be obtained, for two-dimensional systems, using
the condition

tr[J]2 − 4det[J] = 0. (11)

In the following, we examine how the saddle-node, Hopf, and
node-focus transition surfaces evolve as 1k changes.

2.4. Computational Methods
One-dimensional bifurcation diagrams of the reduced equations
were calculated using XPPAUT (Ermentrout, 2002), and three-
dimensional diagrams were generated with custom-made code
using the ParametricPlot3D function in Mathematica Version
12.0 (Wolfram Research, 2019). In addition, simulations of the
discrete network were carried out to confirm the validity of our
results, but are not reported here.

3. RESULTS

3.1. The Reduced System
To derive the reduced dynamical system for our network, we
follow the methods of Ott and Antonsen (2008, 2009), Marvel
et al. (2009), and Luke et al. (2013), but include heterogeneity in
the coupling strength according to Equation (3). We sketch the
procedure here.

We first write the velocity equation in sinusoidally coupled
form, vθ = feiθ + h+ f ∗e−iθ , with

f = −
1

2
[(1− η)− kH(z, n)]

h = (1+ η + kH(z, n)),
(12)

where H(z, n) is the rescaled synaptic current (Luke et al., 2013)

H(z, n) = an(A0 +

n
∑

q=1

Aq(z
q + z∗q))

Aq =

n
∑

j,m=0

δj−2m,qQjm

Qjm =
(−1)j−2mn!

2jm!(n− j)!(j−m)!
.

Next we adopt the OA ansatz that the solution to the continuity
equation, F, can be written as a Fourier series,

F(θ , η, k, t) =
g(η, k)

2π






1+

∞
∑

q=1

(

α∗(η, k, t)qeiqθ + α(η, k, t)qe−iqθ
)






,

(13)
where g(η, k) = gη(η) ∗ gk(k) is the joint probability distribution
for the two independent random variables. At this point, the
complex function α(η, k, t) is yet to be determined. This manifold
is invariant if and only if |α(η, k, t)| < 1 and α satisfies

α̇ = i(fα2 + hα + f ∗). (14)

Substituting Equation (13) into Equation (6) [which defines the
order parameter z(t)] then gives

z(t) =

∫ ∞

−∞

∫ ∞

−∞

α(η, k, t)g(η, k)dηdk,

which can be evaluated using analytic continuation and the
residue theorem, resulting in

z(t) = α(η0 + i1η, k0 + i1k, t). (15)
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FIGURE 1 | Case 1: One-dimensional bifurcation diagrams showing y = Im(z) vs. the parameter k0, which is the center of the coupling strength distribution. The

panels show the diagrams for increasing values of 1k , the width of the coupling strength distribution. Stable (unstable) equilibria are represented by solid (dotted) lines,

and are nodes or foci as indicated. Open diamonds are node-focus transitions. For 1k = 0.0, two saddle-node bifurcations are seen (solid black circles). These merge

and disappear as 1k increases, but the node-focus transitions remain. The other parameters are η0 = −0.3, 1η = 0.08, and n = 2.

Substituting Equations (12) for f and h into Equation (14),
combining with Equation (15), and evaluating at the residue, the
reduced dynamical system is obtained:

ż = −i
(z − 1)2

2
+

(z + 1)2

2

[

−
(

1η + 1kH(z, n)
)

+i
(

η0 + k0H(z, n)
)]

. (16)

This result is similar to the result in Luke et al. (2013), but
the incorporation of heterogeneity in the parameter k adds the
relatively simple extra term that involves 1k. We numerically
verified that predictions obtained with Equation (16) match
the asymptotic collective behavior exhibited by a large discrete
network of theta neurons. In fact, we find that the predictions
from the reduced system are quite valid for networks with as few
as 10, 000 neurons (see also Luke et al., 2013). Note that we only
consider solutions to Equation (16) with |z| ≤ 1.

3.2. The Effects of Synaptic Diversity
As the title suggests, our main result is that increasing the
synaptic diversity by increasing the parameter 1k, which is the
width of the coupling strength distribution given in Equation (3),
reduces the complexity of the collective dynamics of the network.
We illustrate this result by using Equation (16) to construct
series of one-dimensional bifurcation diagrams with increasing
1k. We then provide a more comprehensive perspective by using
sequences of three-dimensional bifurcation diagrams.

Luke et al. (2013) argued that typically, interesting dynamics
happen—by which we mean the occurrence of bifurcations of
macroscopic quantities—when there is a competition between
the intrinsic dynamics of individual neurons and the synaptic
input. Thus, we concentrate attention on two generic cases. In
our Case 1, we consider the situation in which most neurons are
excitable (η0 < 0) and are coupled by mostly excitatory synapses
(k0 > 0). Case 2 considers predominantly spiking neurons (η0 >

0) with mostly inhibitory coupling (k0 < 0). We keep n = 2 until
the end, where we check the effects of setting n = 9.

3.2.1. One-Dimensional Bifurcation Diagrams
We begin by considering Case 1 (excitable neurons with
excitatory coupling). Figure 1 (left) shows a bifurcation diagram

of y = Im(z) vs. the parameter k0 for 1k = 0, i.e., no
diversity in the coupling strength between neurons. The solid
lines represent stable equilibria. Equilibria on the lower branch
are nodes, and most of the upper branch are foci. The dotted
line indicates unstable equilibria, and the solid circles are saddle-
node bifurcations. The stable node that emerges from the upper
saddle-node bifurcation almost immediately transitions into a
stable focus at the location marked with an open diamond (NF).
(Observe also that there is another node-focus transition near
k0 = 0.0.) Thus, throughout this range of k0, the collective
dynamics of the network is attracted to an equilibrium state.
Interestingly, however, there is an interval of k0 for which
different equilibrium states coexist.

The middle and right panels of Figure 1 show the same
diagram but for 1k = 0.1 and 0.2, respectively. We see
the saddle-node points merge and disappear, thus removing
the interval of multistability from these diagrams (with other
parameters fixed). In this sense, introducing synaptic diversity
removes an interesting dynamical feature from the network’s
behavior. Below we examine if this is true more globally. Note,
however, that the node-focus transition points remain.

Figure 2 illustrates the more complicated situation that arises
in Case 2 (spiking neurons with inhibitory coupling). Here, the
upper left panel shows the one-dimensional bifurcation diagram
of x = Re(z) vs. η0 for 1k = 0 (no coupling strength
diversity). We see a structure of lines representing stable and
unstable equilibria (nodes and foci as indicated) with saddle-
node bifurcations and a node-focus transition, which is very
similar to that in Figure 1. In addition, however, there is a
supercritical Hopf bifurcation depicted by the open circle, along
with the limit cycle that emerges from it as η0 decreases. This
attracting limit cycle indicates that the network can exhibit
collective time-dependent behavior with a degree of phase
synchrony that oscillates in time. In the diagram, the red lines
are the maximum and minimum values of x on this limit cycle.
At its largest extent, the limit cycle collides with an unstable
equilibrium in a homoclinic bifurcation. Note also that there is
again an interval of multistability. In this case, the lower stable
equilibrium (node) coexists with either the limit cycle or the
upper equilibrium (focus), depending on η0.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 4494

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lin et al. Synaptic Diversity Suppresses Complex Behavior

FIGURE 2 | Case 2: One-dimensional bifurcation diagrams showing x = Re(z) vs. the parameter η0. The panels show the diagram for increasing values of 1k , the

width of the coupling strength distribution. Stable (unstable) equilibria are represented by solid (dotted) black lines, and are nodes or foci as indicated. Open diamonds

are node-focus transitions. The maximal and minimal values of x on stable limit cycles are represented by the red lines. Solid black circles are saddle-node

bifurcations, and open circles are Hopf bifurcations. As 1k increases, the various bifurcations merge and disappear, but the node-focus transition remains. The other

parameters are k0 = −9.0, 1η = 0.5, and n = 2.

The subsequent panels show the same diagram but for
increasing values of the coupling strength diversity parameter1k

as indicated. Again, we see that the various bifurcation points
approach each other as1k increases. An interesting phenomenon
is how the homoclinic point approaches the upper saddle-node
bifurcation. By 1k = 1.3, it has disappeared, and a new Hopf
bifurcation is seen on the upper branch (this sequence of events
indicates that we are near a Bagdanov–Takens point, where the
saddle-node, homoclinic, and left Hopf bifurcation coincide).

The limit cycle now forms a loop linking the two Hopf points—
see the magnified view in the inset.

As before, we observe that all these complexities merge
and annihilate as 1k increases further. The two Hopf
points coalesce, eliminating the limit cycle and the unstable
equilibrium sandwiched between them. Subsequently the two
remaining saddle-node points merge and disappear. Thus
we see again that introducing synaptic diversity diminishes
the dynamical repertoire of the network (at least when
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FIGURE 3 | Case 1: Plots of the saddle-node surface (top) and the node-focus surface (bottom) for 1k = 0.0 (left), 0.1 (middle), and 0.2 (right), with n = 2. The black

lines correspond to η0 = −0.3 and 1η = 0.08, and show the path traversed along k0 in the bifurcation diagrams shown in Figure 1. Equilibria along the lines are

labeled node or focus; see the discussion in the text. In the upper sequence, a hidden node-focus transition (open diamond) emerges in the right panel.

holding other parameters fixed). But, as before, the node-focus
transition persists.

3.2.2. Three-Dimensional Bifurcation Diagrams
A reasonable question is whether or not this
“decomplexification” by increasing synaptic diversity is
something that happens locally in a particular region of
parameter space, or if it is a more global phenomenon. We
address this by showing three-dimensional bifurcation diagrams
that incorporate the structures shown in Figures 1 and 2.

For example, the upper panels in Figure 3 show a more
general view of Case 1. The top left panel shows a locus of saddle-
node points embedded in the (η0,1η, k0) parameter space for
1k = 0. This appears as a V-shaped folded sheet with a sharp
crease. The black line corresponds to η0 = −0.3 and 1η =

0.08 and is the path traversed along k0 in the one-dimensional
bifurcation diagram shown in Figure 1 (left). Node and focus
equilibria along the black line are as indicated. This black line can
be seen to intersect the saddle-node surfaces in two points; these
are the same two saddle-node points shown in Figure 1 (left). The
remaining upper panels of Figure 3match those of Figure 1, and
one can see that by increasing 1k, the saddle-node surface moves
to the left (i.e, toward more negative η0 and smaller 1η). In so
doing, the creased fold in the surface approaches the fixed black
line and then moves beyond it, so that the intersection points

merge and then disappear. In the right panel, there is no longer
any intersection.

Recall that in Figure 1, a node-focus point occurs very close
to the upper saddle-node bifurcation. In the perspectives shown
in the upper left and middle panels of Figure 3, this point is not
visible, but it emerges in the right panel for 1k = 0.2.

The lower panels in Figure 3 show the node-focus surface for
the same situation, but rotated to better show the folded shape.
The diamonds show where the black line intersects this surface,
and are the same diamonds that mark the NF transitions on the
black lines in the upper panels. Within the region of parameter
space shown, one generally finds a single attracting focus above
(higher k0) the NF surface, and an attracting node within the fold.
However, multistability can occur.

For Case 2, a similar sequence of events can be seen in
the upper three panels of Figure 4. These show the saddle-
node surfaces corresponding to the 1k = 0.0, 1.3, and 1.7
panels of Figure 2. Here, the black line is fixed at k0 = −0.9
and 1η = 0.5, representing the path traversed along η0 in
the one-dimensional bifurcation diagrams of Figure 2. Again
we see a folded and creased saddle-node surface that migrates
toward the unphysical negative 1η region with increasing
1k until it no longer intersects the black line. Note that in
the right panel, the view has been rotated to show the lack
of intersection.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2020 | Volume 14 | Article 4496

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lin et al. Synaptic Diversity Suppresses Complex Behavior

FIGURE 4 | Case 2: Plots of the saddle-node surface (top), the node-focus surface (middle), and the Hopf surface (bottom) for 1k = 0.0 (left), 1.3 (middle), and 1.7

(right), with n = 2. The black line corresponds to k0 = −9.0 and 1η = 0.5, and is the path traversed along η0 in the bifurcation diagrams shown in Figure 2. Open

diamonds are node-focus transitions. The views in the upper and middle right panels have been rotated for clarity. In particular, the black line does not intersect the SN

surface for 1k = 1.7. The view in the lower panels is also rotated to better show the structure.

The middle panels show the node-focus surface. As 1k

increases, the surface lowers and twists, but remains present. The
larger structure, of which we only see limited portions here, is
difficult to discern from these images. Below we examine a more
comprehensive view.

The lower panels of Figure 4 show the corresponding Hopf
surfaces. The view has been rotated to give an easier-to-
understand perspective. In the left panel, this surface resembles a
high-heeled shoe, and we see a single intersection with the black
line. This intersection point is the sameHopf bifurcation denoted
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FIGURE 5 | Magnified view of the Hopf surface shown in the lower middle

panel of Figure 4, for 1k = 1.3, showing two intersections.

with the open circle in Figure 2 for 1k = 0. As 1k increases, the
“shoe” migrates into the unphysical negative-1η region, leaving
the black line without intersections. Note that the NF transition
point, hidden behind the surface in the left panel, emerges in the
middle and right panels.

Recall that for 1k = 1.3, we saw the interesting structure
with the two Hopf bifurcation points in Figure 2. This case
corresponds to the lower middle panel of Figure 4. Since it
is hard to see, we present in Figure 5 a magnification of the
region where the black line intersects the surface. We see that
the Hopf surface has a gentle curl at the edge such that as
the surface migrates away, the approaching curl gives rise to a
second intersection point before the surface goes away entirely.
In fact, the lower edge of the Hopf surface seen here is a line of
Bagdanov–Takens bifurcations.

To complete the story, we show in Figures 6, 7, and 9 views of
the saddle-node, Hopf, and node-focus surfaces with the ranges
of η0, k0, and 1k greatly expanded. For visual clarity, we did not
expand the 1η range, but our conclusions still hold. Recall also
that 1η is the half-width at half-maximum of the distribution gη
in Equation (3). Therefore, negative values of this parameter are
not considered.

In Figure 6, we see that the saddle-node surfaces are actually
two V-shaped sharply-creased sheets corresponding our two
cases. One surface occurs in the negative-η0/positive-k0 region,
matching Case 1 (excitable neurons coupled with excitation), and
the other occurs in the positive-η0/negative-k0 region, matching
Case 2 (spiking neurons coupled with inhibition). Note also
that the edges of the creased folds bend away toward ±η0 as
1η increases. As 1k increases, the two folded sheets migrate
away from each other until essentially nothing is left within the
view shown.

In contrast, we see in Figure 7 that there is only one
Hopf surface. It resides entirely within the Case 2 region
(positive-η0/negative-k0). There is no corresponding Hopf
surface in the Case 1 region (negative-η0/positive-k0).

The gray curved line in the top-left panel of Figure 7 is
the boundary between the subcritical and supercritical Hopf
bifurcations. The supercritical versions occur on the side with
larger values of η0. In all the other panels, only supercritical
bifurcations are found. The black lines correspond to paths used
to calculate the one-dimensional bifurcation diagrams shown in
Figure 8. This latter figure shows the periodic orbits that emerge
from the Hopf bifurcations. On the left we see a subcritical
bifurcation, where the dotted blue line denotes an unstable
periodic orbit. Note that as this unstable orbit grows with
increasing k0, it collides with a stable periodic orbit (red line)
at a saddle-node-of-periodic-orbits bifurcation (triangle). From
this point, the stable orbit grows with decreasing k0 until it
collides with the lower unstable equilibrium and disappears in
a homoclinic bifurcation. The right panel shows a supercritical
Hopf bifurcation, with a stable periodic orbit (red) emerging
and growing with decreasing k0 until it too disappears in a
homoclinic bifurcation.

Returning to themore comprehensive view of Figure 7, we see
that as 1k increases, the surface disappears into the unphysical
negative 1η region. Thus, increasing the synaptic diversity also
removes the Hopf bifurcation structure such that by 1k = 3.0,
essentially nothing is left within the view shown. Interestingly, we
find that subcritical Hopf bifurcations only occur for small values
of 1k, i.e., little synaptic strength diversity. For example, the
subcritical Hopf bifurcation shown in Figure 8 (left) for1k = 0.0
remains subcritical as1k increases to 0.114, where it merges with
the saddle-node-of-periodic-orbits bifurcation at a Bautin point.
Increasing 1k further, the bifurcation becomes supercritical, and
goes on to follow a scenario similar to that shown in Figure 2,
until it disappears at 1k = 0.864.

Finally, we show the node-focus transition surfaces as 1k

increases in Figure 9. The structure looks complicated for 1k =

0.0, but its overall shape becomes clear as 1k increases and its
various components separate. The surfaces occur in two pieces.
There is a folded-over sheet in the Case 1 region of excitable
neurons (η0 < 0) with excitation (k0 > 0), and another sheet
that covers the entire η0-1η region shown and which, for 1k =

0.0, dips sharply down toward negative k0 in the Case 2 region
(η0 > 0 and k0 < 0; spiking neurons with inhibition). As 1k

increases, two things happen: the folded sheet in the Case 1 region
migrates away toward the negative-η0 direction, and the other
sheet flattens out (i.e., occurs within a more restricted range of k0
within the view shown).

To understand the nature of the equilibrium solutions that
correspond to this region of parameter space, we identified and
followed the equilibria along the black lines seen in the upper
right panel of Figure 9. Generally, for parameters corresponding
to the region above (meaning higher values of k0) the surfaces
shown, there exists a single stable focus equilibrium (recall that
we restrict attention to solutions with |z| ≤ 1). For the line
with positive η0, the NF surface is crossed only once as k0
decreases, and below it we find a stable node. For the line with
negative η0, there are three surface crossings as k0 decreases. We
observe the following sequence of equilibria: Stable focus, stable
node (within the folded upper surface), stable focus (between
the folded surface and the lower sheet), and stable node (below
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FIGURE 6 | The saddle-node surfaces disappear from view as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right).

the lower sheet). The same scenarios were observed along lines
shifted to1η = 0.5, and for the different values of1k of the other
panels (not shown). Note, however, that in some cases saddle-
node bifurcations create other coexisting equilibria—compare
Figure 6—so it is not entirely clear from Figure 9 alone which
equilibrium transitions as the NF surface is crossed. (One may
resolve this issue with one-dimensional bifurcation diagrams
such as those in Figures 1 and 2.) However, as we have seen, the
other bifurcation surfaces leave this region of parameter space as
1k increases, and the situation becomes simpler.

It is interesting to compare our two cases in this context. In
the Case 1 region, the folded sheet introduces more node-focus
transitions. And as the synaptic diversity1k increases, this folded
surface moves away toward negative η0, thus leading to reduced
complexity within the view shown. However, the lower sheet
persists, and covers the entire η0-1η plane. It shifts to be within
a more restricted interval of k0 (i.e., it flattens), but it remains.

Finally, we consider the effect of changing n = 2 to n =

9 in Equation (2), which results in a much narrower synaptic
pulse. Figure 10 shows (top to bottom) the saddle-node, Hopf,
and node-focus surfaces for increasing values of 1k (right to
left). In general, the surfaces are very similar to those shown
in Figures 6, 7, and 9. The most obvious difference is in the
Hopf surface for 1k = 0.0. Comparing this panel to the upper
right panel in Figure 7, we see that the downward spike seen
for n = 2 opens up, becomes wider, and moves toward more
negative values of k0 for n = 9. A more subtle observation is
that the migration of the surfaces in all the panels seems to occur
slightly slower with respect to 1k. By this we mean that for equal
surface migration, the n = 9 case may require a slightly higher
value of 1k than for the n = 2 case. Overall, however, we see
qualitative agreement with our results for n = 2. Specifically, our
observation that increasing the synaptic strength diversity causes
the various surfaces to migrate toward regions of the parameter
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FIGURE 7 | The Hopf surfaces disappear from view as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right). The gray

line on the surface in the top left panel marks the boundary between sub- and super-critical Hopf bifurcations, and the black lines correspond to paths taken to create

the one-dimensional bifurcation diagrams shown in Figure 8. Super-critical bifurcations occur on the side with larger η0, and in all the other panels.

space with larger and/or non-physical values of the parameters is
consistent with the n = 9 results shown in Figure 10.

4. DISCUSSION

We constructed a large network of theta neurons that included
diversity in the excitability parameters as well as connections
with diversity in their coupling strengths. Our aim was to
examine the effects of adding this synaptic diversity. Extending
previous work in Luke et al. (2013), we applied the OA reduction
technique to derive a surprisingly simple ordinary differential
equation that we used to identify the asymptotic behavior of
the order parameter, which quantifies the macroscopic collective
behavior of the network. Setting the synaptic diversity to zero,

we constructed one-dimensional bifurcation diagrams and found
dynamical structures that underlie the repertoire of collective
behaviors that the network exhibits: equilibrium states—both
nodes and foci—corresponding to states of partial synchrony
of the network, limit-cycle states of temporally-evolving partial
synchrony, saddle-node, Hopf, and homoclinic bifurcations,
node-focus transitions, and different versions of multistability
(Luke et al., 2013). We then increased the synaptic diversity and
found that these rich dynamical structures migrated away toward
unphysical and/or extreme regions of parameter space, except for
one portion of the node-focus transition surface.

It is interesting to note that Ott and Antonsen’s analysis
revealed how the potentially high-dimensional behavior of a
population of phase oscillators collapses onto a low-dimensional
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FIGURE 8 | One-dimensional bifurcation diagrams showing x = Re(z) vs. k0 illustrating subcritical (left) and supercritical (right) Hopf bifurcations (open circles). The

insets are magnifications. These diagrams correspond to paths along the black lines in the top left panel of Figure 7. Here, black solid (dotted) lines are stable

(unstable) equilibria, red (dotted blue) lines indicate stable (unstable) limit cycles, solid circles are saddle-node bifurcations, and triangles are

saddle-node-of-periodic-orbits bifurcations. The other parameters are 1k = 0.0, n = 2, 1η = 0.4, and η0 = 6.0 (left) and 11.0 (right).

“OA manifold” defined by their ansatz (Equation 13) (Ott
and Antonsen, 2008). But this does not happen in networks
of identical phase oscillators. In fact, the OA manifold is
only attracting when the oscillator population is heterogeneous
(Ott and Antonsen, 2009; see also Pietras and Daffertshofer,
2016, which addresses this issue for systems such as our theta
neuron network). Indeed, it becomes more attracting with
increasing parameter heterogeneity. Accordingly, we found that
incorporating an additional dimension of diversity into our
network resulted in even simpler behavior than we already had.

Our sequences of one- and three-dimensional bifurcation
diagrams allow us to interpret this somewhat abstract description
of the complexity collapse within the more concrete context of
our specific network, and draw inferences in biophysical terms.
Dynamical complexity arises from macroscopic bifurcations,
which require the right mix of parameters such that different
dynamical tendencies compete against each other (Luke et al.,
2013). We grossly categorized these into two cases: Case 1
corresponds to predominantly resting but excitable neurons
connected mostly by excitation, and Case 2 corresponds to
predominantly spiking neurons connected mostly by inhibition
(the qualifying adjectives are necessary because the Cauchy–
Lorentz distribution has infinite support). These scenarios have
been studied for decades; for a small sampling, see, e.g.,
(VanVreeswijk et al., 1994; Hansel et al., 1995; Brunel andHakim,
2008), and some recent works (Devalle et al., 2017; di Volo and
Torcini, 2018; Bi et al., 2020) that have investigated mechanisms
for the emergence of collective oscillations in Case 2, as we
discuss below. Note that our two cases suffice: parameter space
regions corresponding to other mixtures of parameters were less
interesting in that they did not contain bifurcations.

With 1k = 0, we see from the first panels in Figures 1,
2, and 6 that saddle-node bifurcations, unstable equilibria, and
multistability between different equilibria occur in both Cases 1
and 2. In addition, the region inside the V-shape of the folded
saddle-node surfaces, where multistability occurs, is wider if 1η

is smaller, meaning that in both cases, a narrower distribution

of neuronal excitability favors multistability. Most importantly,
adding diversity by increasing 1k causes the two saddle-node
surfaces to move away from each other, deeper into their own
regions. That is, the Case 1 surface moves toward negative η0 and
positive k0, and the Case 2 surface moves toward positive η0 and
negative k0. In both cases, they also move toward the unphysical
region of negative 1η . This migration is quite significant: within
the parameter space shown in Figure 6 (i.e., η0 ∈ [−30, 30], k0 ∈
[−40, 40],1η ∈ [0, 3]), only a tiny sliver of the Case 2 saddle-
node surface remains for 1k = 3.0. This suggests that the Case 1
surface moves away more quickly with respect to 1k. Indeed, for
1k = 6.0, to see only small slivers of both surfaces requires the
much larger and asymmetric parameter space region defined by
η0 ∈ [−200, 100], k0 ∈ [−60, 120], and 1η ∈ [0, 3] (not shown).
All this means that with substantial synaptic diversity, complexity
in the sense of finding saddle-node bifurcations requires very
carefully tuned parameters at extreme values.

Similarly, we see in Figure 7 that Hopf bifurcations occur only
in Case 2, i.e., with predominantly spiking neurons (η0 > 0)
and inhibitory synapses (k0 < 0), as is generally well-known
(Van Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout,
1996; Brunel and Hakim, 2008; Devalle et al., 2017). We also
find that Hopf bifurcations occur preferentially for more uniform
networks (1η small). In our theta neuron network, the vast
majority of these are of the super-critical variety, but sub-
critical bifurcations do occur in a small region of parameter
space corresponding to weakly active neurons (small η0) and
little synaptic diversity (small 1k). And again, we see that with
increasing synaptic diversity, the Hopf surface moves away such
that this bifurcation requires more removed (η0 ≫ 0) and
narrower (1η & 0) distributions of the excitability parameter,
as well as stronger inhibitory coupling (k0 ≪ 0).

Hopf bifurcations are currently of particular interest as
they give rise to periodic orbits that are thought to underlie
the emergence of fast gamma oscillations in inhibitory QIF
networks, as has been recently investigated (Devalle et al., 2017;
Bi et al., 2020). Interestingly, Bi et al. (2020) considered QIF
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FIGURE 9 | The node-focus surfaces as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right). Along the black lines in

the upper right panels, we find a stable focus for k0 above the surfaces, and a stable node below; see the discussion in the text.

networks with diversity in the synaptic strengths but not in the
neurons’ excitabilities, and found both sub- and supercritical
Hopf bifurcations. In contrast, Devalle et al. (2017) considered
QIF networks with diversity in the neurons’ excitabilities but
not in the synaptic strengths, and found only super-critical Hopf
bifurcations. Recalling the equivalence between the QIF neuron
and the theta neuron, it is interesting that in our theta neuron
network, which includes both kinds of diversity, we find both
kinds of Hopf bifurcations. However, as noted above, the sub-
critical ones occur only in a small region of parameter space and
with little synaptic diversity. Also interestingly, none of the works
cited above report the termination of a limit cycle via homoclinic
bifurcation, as we do.

But there is another important difference between the
QIF models cited above and our theta neuron network that
complicates the question: the synaptic connections are modeled
differently. Montbrió et al. (2015) and di Volo and Torcini

(2018) used delta-function pulses and included excitability but
not synaptic diversity, and did not find Hopf bifurcations1.
Bi et al. (2020) included exponentially-decaying post-synaptic
currents with a non-zero time constant τ . They found both
sub- and super-critical Hopf bifurcations. Devalle et al. (2017)
included excitability but not synaptic diversity, and found that
supercritical Hopf bifurcations only occur with τ within a finite
range greater than zero, and that sub-critical Hopf bifurcations
do not occur at all. In contrast to these works, we included
both excitability and synaptic diversity, and we modeled our
synapse by the pulse in Equation (2) with n = 2 (or 9).
Since this is a wide pulse, we effectively have a non-zero
synaptic time constant, but note that unlike (Devalle et al.,
2017; Bi et al., 2020), we do not have an additional equation

1Montbrió et al. (2015) included synaptic diversity in their Appendix E1, but did
not consider inhibitory coupling, necessary for Hopf bifurcations.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2020 | Volume 14 | Article 44102

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lin et al. Synaptic Diversity Suppresses Complex Behavior

FIGURE 10 | The surfaces for n = 9, for which the synaptic pulse (Equation 2) is much narrower. (Top) The saddle-node surfaces for 1k = 0.0, 1.0, 2.0. (Middle) The

Hopf surfaces for 1k = 0.0, 1.0, 2.0. (Bottom) The node-focus surfaces for 1k = 0.0, 3.0, 5.0 (values chosen for visual clarity).

governing our synaptic dynamics. Thus our network is different
from any of the ones considered above. We found both sub-
and super-critical Hopf bifurcations, but our subcritical ones
required low excitability diversity (i.e., small 1η). All of this
might suggest that in addition to the requirement for a non-
zero synaptic time constant, diversity in excitability might favor
the occurrence of supercritical Hopf bifurcations, and synaptic
diversity might favor subcritical Hopf bifurcations. But this is not
clear, since in our case, the subcritical variety only occurred with

small amounts of synaptic diversity. Furthermore, O’Keeffe and
Strogatz (2016) studied a mixed system of excitable and active
oscillators analogous to our theta neurons, and compared the
effects of using a broad pulse vs. a delta-function pulse for the
coupling. They found only subcritical Hopf bifurcations for the
broad pulse coupling, and only supercritical Hopf bifurcations
for the delta-function coupling.

It would be interesting to examine the limit n → ∞, for
which our pulse approaches a delta function. Given the results
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in Devalle et al. (2017), we might expect the Hopf bifurcation
surface to disappear in this limit. Our results for the Hopf surface
with n = 9 (a narrower pulse), shown in the middle row of
Figure 10, perhaps hints at this. Compared to the n = 2 case,
the Hopf surface for 1k = 0.0 has shifted toward more negative
values of k0 (stronger inhibitory coupling), especially for small
1η (narrower excitability distributions). Interestingly, however,
no such overall shift appears to occur for the saddle-node or
node-focus surfaces. In any case, a more complete study would
certainly be needed before drawing any confident conclusions.

di Volo and Torcini (2018) and Bi et al. (2020) identified
another mechanism that may give rise to slow gamma
oscillations, namely fluctuation-driven oscillations that circulate
around a stable focus. Since this mechanism does not work
with a node, this is relevant to our study of the node-focus
transition. This transition is not a true bifurcation in that it
does not involve changes in either the existence or stability of a
solution. Nevertheless, we identified the corresponding surfaces
in parameter space, and observed that, as the synaptic diversity is
increased, they behave both similarly and differently as compared
to surfaces of the true bifurcations discussed above. We found
(Figure 9) that in the parameter space corresponding to our
Case 1, there are essentially three NF surfaces that are crossed
as k0 changes—a folded upper surface with two intersections
and a lower surface—thus introducing complexity in the possible
network behavior. However, the upper (higher k0) folded sheet
migrates away toward extreme values of negative-η0 as synaptic
diversity increases. In contrast, the increased synaptic diversity
does not cause the lower NF surface, which occurs for negative
k0, to migrate away. It persists. For Case 2, only this lower NF
surface occurs. Furthermore, as 1k increases and the saddle-
node and Hopf surfaces move away, we find that the central
parameter space rather neatly splits into a region for which
a stable focus equilibrium exists for k0 larger than a critical
value (which depends increasingly weakly on η0 and 1η), and
a stable node exists for k0 more negative than this critical value.
This suggests that for non-extreme, physiologically “reasonable”
parameter sets and sufficiently large fluctuations, the occurrence
of fluctuation-driven collective network oscillations in networks
of theta neurons with significant diversity in the connection
weights depends quite simply on the value of the center of the
connection weight distribution.

It is important to note that in Appendix E1 of Montbrió
et al. (2015), the authors considered the same issue—the effect of
introducing synaptic diversity—that we examine here. There are
some differences in our formulations of the problem, however.
We constructed our network using theta neurons, and they
used quadratic integrate-and-fire neurons. This is not a major
difference because, as was noted previously, these systems are
related by a change of variable. Furthermore, we both used
independent Cauchy–Lorentz distributions for the excitability
parameters and synaptic strengths (i.e, Equation 3). A more
important difference lies in the synaptic models. Montbrió et al.
(2015) used delta function pulses, whereas we use the continuous
pulse of Equation (2) with n = 2 (or 9), which is wide
with respect to the state of the pre-synaptic neuron and is
always “on” (see also O’Keeffe and Strogatz, 2016, which used

a similar pulse). Also different are the macroscopic variables
used to describe the collective network dynamics: We used the
Kuramoto order parameter, and Montbrió et al. (2015) used the
more directly interpretable quantities of firing rate and mean
membrane potential. But we both found that the macroscopic
equations, when extended to the case with heterogeneous
coupling strengths, simply involves a single additional term
proportional to the width of the coupling strength distribution.

Montbrió et al. (2015) reported their results in their Figure
9, which shows a family of saddle-node bifurcation curves
parameterized by Ŵ/11/2 on a two-dimensional plot of their
rescaled parameters J̄/11/2 vs. η̄/1, where J̄ and η̄ are the center
values of their current and synaptic weight distributions, and
1 and Ŵ are their widths, respectively. The saddle-node curves
identify regions of bistability, and these are seen to shift toward
lower values of η̄/1 and higher values of J̄/11/2 as Ŵ/11/2

increases. We note that their graph is restricted to what is the
equivalent of our Case 1: mostly excitable neurons with mostly
excitatory connections (η̄/1 < 0 and J̄/11/2 > 0).

We see qualitatively equivalent behavior in our formulation:
a careful study of appropriate slices of the surfaces shown in
the upper panels of our Figure 3 reveals that our results are
consistent with those already published in Figure 9 of Montbrió
et al. (2015). However, we do not rescale our parameters as
they do, and this allows us to observe that the saddle-node
surfaces move toward extreme values of ±η0 and ±k0, and into
the unphysical negative-1η region, as we increase the synaptic
strength diversity 1k. We believe that it is appropriate to assume
that the parameters η0, k0, and 1η have a somewhat restricted
range of “reasonable” values. In this sense, our main result
can be taken to mean that with increasing synaptic diversity,
parameter values that correspond to interesting bifurcations of
macroscopic variables move toward extreme and “unreasonable”
regions of parameter space, and in this sense, are not likely to be
encountered under “reasonable” circumstances. This conclusion
is not evident in Figure 9 of Montbrió et al. (2015).

Furthermore, we adopt a more comprehensive view of the
parameter space as compared to Montbrió et al. (2015) that
includes our Case 2, i.e., networks of spiking neurons (η0 >

0) coupled by inhibition (k0 < 0), as well as the rest of
the parameter space. In addition, we also consider saddle-node
and Hopf bifurcations as well as the node-focus transition. See
Figures 6, 7, and 9, respectively. It is interesting to note that the
occurrence of saddle-node bifurcations are essentially restricted
to Cases 1 and 2, andHopf bifurcations just to Case 2, whereas the
“off-diagonal” regions do not contain any bifurcation structures.
We also observed that for small values of 1k, a folded surface
of node-focus transitions occurs within the “reasonable” Case 1
region of parameter space, thus adding an additional measure
of complexity which shifts away to “unreasonable” regions as
1k increases.

In a biological sense, a rich dynamical structure represents
the means by which the firing patterns of neural assemblies
in the brain can be dynamic and change states in response
to external stimuli. Such differences in macroscopic patterns
have been shown to strongly correlate with the function of
different brain regions (Shinomoto et al., 2009). At the same
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time, our findings are consistent with an in vitro study of
how intrinsic heterogeneity in the phase response curve (PRC)
characteristics of olfactory bulb mitral cells limits correlation-
induced synchronous neural oscillations (Burton et al., 2012).
See also the theoretical analysis of Pazó et al. (2019), which
finds that beyond a critical level of PRC heterogeneity,
the incoherent state—a simple equilibrium—is always stable.
These works, and our observations reported here, suggest that
evolution tunes the diversity of neuronal populations to achieve
an appropriate balance between dynamical complexity and
simplicity, depending on function.

Several avenues for future work suggest themselves. First,
the assumption of global coupling may or may not be
realistic, depending on the level of description that is desired.
Interestingly, however, our network formulation includes a kind
of sparsely-connected network in the case k0 = 0, in which
the majority of synaptic connections are very weak, regardless
of the chosen spread 1k. This observation was used explicitly
in di Volo and Torcini (2018) to relate collective oscillations
in a network with a Cauchy–Lorentz distribution of in-degrees
to the occurrence of a collective stable focus in the analogous
globally-coupled network of Montbrió et al. (2015). In our work,
we find in Figures 6, 7, and 9 that the k0 = 0 plane is the
very boundary between the regions of interesting and simple
dynamical structures. Second, our formulation allows a study
of the role of the synaptic sharpness parameter n, particularly
with respect to the occurrence of Hopf bifurcations, as described
above. Third, it would be interesting to examine in greater
depth the consequences of the different synapse models used
in our work and in the various QIF networks cited above.
Fourth, we assumed that the probability distributions gη and
gk were independent, largely for mathematical convenience.
However, fast-spiking neurons are typically inhibitory, and
regularly-spiking neurons are typically excitatory, suggesting
that it would be interesting to analyze our network with a
more complicated joint probability distribution g(η, k). Fifth,
Pazó and Montbrió (2014) applied the OA technique to study
pulse-coupled oscillators described by phase response curves, an
approach that makes it possible to study the role of synaptic
diversity in networks of Type II neurons (Pazó et al., 2019). Sixth,
previous work has shown that in populations of coupled excitable
systems subjected to an external periodic driving and/or noise,
a resonance effect can occur for an optimal degree of oscillator
diversity (Tessone et al., 2006, 2007). Thus, extending our

autonomous network to include these kinds of external inputs
might yield interesting insights about the interplay between
this resonance effect and our observation that diversity leads
to simpler dynamics. Finally, it would be interesting to allow
the coupling strength between particular neurons to evolve
dynamically based on activity, and to study the conditions on the
synaptic plasticity rule that lead to simple or complex dynamical
structures for the network’s behavior.

Understanding the brain requires studying models of
neuronal network dynamics with a balance between accurate
biological description and analytical tractability. Real biological
networks are typically studied by recording from several neurons
and studying correlations (Gerstein and Kirkland, 2001). On the
other hand, mathematical studies such as ours give a quantitative
understanding of the dynamical and behavioral repertoire of
what these networks can do, and suggest what to look for in
the laboratory.
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Theta-nested gamma oscillations have been reported in many areas of the brain and are

believed to represent a fundamental mechanism to transfer information across spatial and

temporal scales. In a series of recent experiments in vitro it has been possible to replicate

with an optogenetic theta frequency stimulation several features of cross-frequency

coupling (CFC) among theta and gamma rhythms observed in behaving animals. In order

to reproduce the main findings of these experiments we have considered a new class of

neural mass models able to reproduce exactly the macroscopic dynamics of spiking

neural networks. In this framework, we have examined two set-ups able to support

collective gamma oscillations: namely, the pyramidal interneuronal network gamma

(PING) and the interneuronal network gamma (ING). In both set-ups we observe the

emergence of theta-nested gamma oscillations by driving the system with a sinusoidal

theta-forcing in proximity of a Hopf bifurcation. These mixed rhythms always display

phase amplitude coupling. However, two different types of nested oscillations can be

identified: one characterized by a perfect phase locking between theta and gamma

rhythms, corresponding to an overall periodic behavior; another one where the locking

is imperfect and the dynamics is quasi-periodic or even chaotic. From our analysis it

emerges that the locked states are more frequent in the ING set-up. In agreement with

the experiments, we find theta-nested gamma oscillations for forcing frequencies in the

range [1:10] Hz, whose amplitudes grow proportionally to the forcing intensity and which

are clearly modulated by the theta phase. Furthermore, analogously to the experiments,

the gamma power and the frequency of the gamma-power peak increase with the

forcing amplitude. At variance with experimental findings, the gamma-power peak does

not shift to higher frequencies by increasing the theta frequency. This effect can be

obtained, in our model, only by incrementing, at the same time, also the stimulation

power. An effect achieved by increasing the amplitude either of the noise or of the

forcing term proportionally to the theta frequency. On the basis of our analysis both the

PING and the ING mechanism give rise to theta-nested gamma oscillations with almost

identical features.

Keywords: neural oscillations, neural mass models, cross-frequency coupling, hippocampus, quadratic integrate-

and-fire neuron, phase-amplitude coupling
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1. INTRODUCTION

Oscillations in the brain, reflecting the underlying dynamics of
neural populations, have been measured over a broad frequency
range (Buzsaki, 2006). Particularly studied are γ -rhythms (30–
120 Hz), due to their ubiquitous presence in many regions of
the brain, irrespectively of the species (Buzsáki andWang, 2012),
and for their relevance for cognitive tasks (Fries et al., 2007)
and neuronal diseases (Uhlhaas and Singer, 2006; Williams and
Boksa, 2010).

Inhibitory networks have been shown to represent a
fundamental ingredient for the emergence of γ oscillations
(Bartos et al., 2007; Buzsáki and Wang, 2012). Indeed, inhibition
is at the basis of the two most known mechanisms: pyramidal
interneuronal network gamma (PING) and interneuronal
network gamma (ING) (Tiesinga and Sejnowski, 2009). The
ING mechanism is observable in purely inhibitory networks in
the presence of few ingredients: recurrent connections, a time
scale associated with the synaptic GABAA receptors and an
excitatory drive sufficiently strong to lead the neurons supra-
threshold (Buzsáki and Wang, 2012). The collective oscillations
(COs) emerge when a sufficient number of neurons begins
to fire within a short time window and generate almost
synchronous inhibitory post-synaptic potentials (IPSPs) in the
post-synaptic interneurons. The inhibited neurons fire again
when the IPSPs have sufficiently decayed and the cycle will
repeat. Thus, the main ingredients dictating the frequency of
the COs in the ING set-up are: the kinetics of the IPSPs
and the excitatory drive (Whittington et al., 1995). On the
other hand the PING mechanism is related to the presence
of an excitatory and an inhibitory population, in this case
COs emerge whenever the drive on the excitatory neurons is
sufficiently strong to induce an almost synchronous excitatory
volley that in turn elicits an inhibitory one. The period
of the COs is thus determined by the recovery time of
the pyramidal neurons from the stimulus received from the
inhibitory population (Wilson and Cowan, 1972). A peculiarity
of this mechanism, observed both in vivo and in vitro
experiments, is that there is a delay between the firing of the
pyramidal cells and the interneuronal burst (Buzsáki and Wang,
2012).

In several parts of the brain, one can observe that γ

oscillations are modulated by θ oscillations, with θ frequencies
corresponding to 4–12 Hz in rodents and to 1–4 Hz in humans.
Specific examples have been reported for the hippocampus of
rodents in behaving animals and during rapid eye movement
(REM) sleep (Lisman, 2005; Colgin et al., 2009; Belluscio et al.,
2012; Pernía-Andrade and Jonas, 2014; Colgin, 2015), for the
visual cortex in alert monkeys (Whittingstall and Logothetis,
2009), for the neocortex in humans (Canolty et al., 2006) etc.
This is an example of a more general mechanism of cross-
frequency coupling (CFC) between a low and a high frequency
rhythm, which is believed to have a functional role in the brain
(Canolty and Knight, 2010). In particular, low frequency rhythms
(such as θ) are usually involving broad brain regions and are
entrained to external inputs and/or to cognitive events; on the
other hand the high frequency activity (e.g., the γ -rhythm)

reflects local computation activity. Thus CFC can represent
an effective mechanism to transfer information across spatial
and temporal scales (Canolty and Knight, 2010; Lisman and
Jensen, 2013). Four different types of CFC of interest for
electrophysiology, have been listed in Jensen and Colgin (2007):
phase-phase, phase-frequency, phase-amplitude and amplitude-
amplitude couplings (PPC, PFC, PAC, and AAC). Two more
types of CFCs have later been added as emerging from the
analysis of coupled non-linear oscillators (Witte et al., 2008)
and coupled neural mass models (Chehelcheraghi et al., 2017):
frequency-frequency and amplitude-frequency coupling (FFC
and AFC).

In this paper, we will consider θ-nested γ oscillations, where
specific features of the γ oscillations are correlated to the
θ phase. In particular, we will analyze PPC, PFC, and PAC
between θ and γ rhythms. The most studied CFC mechanism
is the PAC, which corresponds to the modification of the
amplitude (or power) of γ -waves induced by the phase of
the θ-oscillations. This mechanism has been reported in the
primary visual cortex of anaesthetized macaques subject to
naturalistic visual stimulation (Mazzoni et al., 2011), as well
as during the formation of new episodic memories in the
human hippocampus (Lega et al., 2016). As discussed in Jensen
and Colgin (2007), the θ phase can often modulate both
amplitude (PAC) and frequency (PFC) of the γ oscillations,
therefore these two mechanisms can occur at the same time.
PPC, which refers to n:m phase locking between γ and θ

phase oscillations (Tass et al., 1998), has been identified in the
rodent hippocampus during maze exploration (Belluscio et al.,
2012).

Our study is mostly motivated by recent optogenetic
experiments revealing PAC in areas CA1 and CA3 of the
hippocampus and in the medial enthorinal cortex (MEC) (Akam
et al., 2012; Pastoll et al., 2013; Butler et al., 2016, 2018).
These experiments have shown that a sinusoidal optogenetic
stimulation at θ-frequency of the circuits in vitro is able
to reproduce several features of θ-nested γ oscillations,
usually observed in behaving rats (Bragin et al., 1995). All
these experiments suggest that inhibition has a key role in
generating this cross-frequency rhythm; however both ING
(Pastoll et al., 2013) and PING (Butler et al., 2016, 2018)
mechanisms have been invoked to explain locally generated
γ oscillations.

PING and INGoscillationmechanisms have been qualitatively
reproduced by employing heuristic neural mass models (Wilson
and Cowan, 1972; Gerstner et al., 2014). However, these
standard firing rate models do not properly describe the
synchronization and desynchronizaton phenomena occurring
in neural populations (Devalle et al., 2017; Laing, 2017;
Coombes and Byrne, 2019). Recently a new generation of
neural mass models has been designed, which are able to
exactly reproduce the network dynamics of spiking neurons of
class I, for any degree of synchronization among the neurons
(Luke et al., 2013; Laing, 2014; So et al., 2014; Montbrió
et al., 2015). In particular, for purely inhibitory networks,
these mean-field models have been able to reproduce the
emergence of COs, observed in the corresponding networks,
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without the inclusion of an extra time delay (Devalle
et al., 2017), as well as the phenomenon of event related
synchronization and desynchronization (Coombes and Byrne,
2019).

Our main aim is to understand how θ-nested γ oscillations
can emerge when a PING or ING mechanism is responsible
for the fast oscillations and which differences can be expected
in the population dynamics in the two cases. Therefore we will
consider the new class of neural mass models introduced in
Montbrió et al. (2015) in two configurations: namely, a purely
inhibitory population (ING set-up) and two coupled excitatory-
inhibitory populations (PING set-up). In both configurations
we will examine the system response to an external sinusoidal
θ-drive.

Section 2 is devoted to the introduction of different
spiking network configurations of Quadratic Integrate-and-Fire
(QIF) neurons able to generate γ COs via PING and ING
mechanisms and to the introduction of their corresponding
exact neural mass formulations. A detailed bifurcation analysis
of the neural mass models for the PING and ING set-
ups, in the absence of any external forcing, is reported in
section 3. The PAC mechanism is analyzed and discussed
in section 4. First, by considering different types of PAC
states (namely, phase locked or unlocked) and second, by
comparing our numerical results for PAC dynamics with
experimental findings reported in Butler et al. (2016, 2018),
for the CA1 region of the hippocampus under sinusoidal
optogenetic stimulations. Finally, a discussion of our results
and of their implications, as well as of possible future
developments, will be presented in section 5. The results
reported in the paper are mostly devoted to super-critical Hopf
bifurcations, however a specific example of a sub-critical Hopf
bifurcation leading to COs is discussed for the PING set-
up in Appendix A. Further network configurations ensuring
the emergence of COs via PING mechanism are presented in
Appendix B.

2. MODELS AND BIFURCATION ANALYSIS

2.1. Network Models
In this paper we want to compare the two principal
mechanisms at the basis of the emergence of collective
oscillatory dynamics in neural networks: namely, the PING
and ING mechanisms. Therefore we will consider QIF
neurons in the two following set-ups: an excitatory and an
inhibitory population coupled via instantaneous synapses
(PING configuration) and a single inhibitory population
interacting via post-synaptic potentials (PSPs) with exponential
profile (ING configuration). The corresponding network
configurations are shown in Figure 1. Moreover, the neurons
are assumed to be fully coupled. As we will show in the
following, both these two configurations support the emergence
of COs.

The dynamics of the membrane potentials of the QIF neurons
in the PING configuration is given by

FIGURE 1 | Network topologies. Two different network configurations have

been investigated: on the left side, an excitatory population (E) and an

inhibitory population (I) form a circuit that can generate oscillatory output (PING

set-up); on the right side one inhibitory population (I) is coupled to itself with an

inhibitory coupling (ING set-up). In both cases an external current I(l) impinging

on one single population has been considered.

τ (e)m V̇
(e)
k

=

(

V
(e)
k

)2
+ η

(e)
k

+ τ (e)m

[

J(ee)s(e) − J(ie)s(i)
]

+ I(e)(t) k = 1, . . . ,N(e) (1)

τ (i)m V̇
(i)
j =

(

V
(i)
j

)2
+ η

(i)
j + τ (i)m

[

J(ei)s(e) − J(ii)s(i)
]

+ I(i)(t) j = 1, . . . ,N(i)

s(l) =
1

N(l)

∑

t
(l)
m

δ(t − t(l)m ) l ∈ {e, i} ;

where the super-scripts e (i) denote the excitatory (inhibitory)

population, τ
(e)
m = 20 ms (τ (i)m = 10 ms) is the excitatory

(inhibitory) membrane time constant, η
(l)
k

is the excitability of

the k-th neuron of population l, J(ln) is the strength of the
synaptic coupling of population l acting on population n. The
term I(l)(t) represents a time-dependent external current applied
to the population l; usually we have considered the external drive
to be applied to the excitatory population only, i.e., I(e)(t) 6= 0 and
I(i)(t) = 0. The synaptic field s(l)(t) is the linear super-position
of all the pulses p(t) emitted in the past within the l population,
p(t) being δ-functions in the present case. Furthermore, since
the neurons are fully coupled, each neuron will be subject to
the same synaptic field (Olmi et al., 2010). The emission of

the m-th spike in the network occurs at time t
(l)
m whenever the

membrane potential of a generic neuron j reaches infinity, i.e.,

V
(l)
j (t(l)−m ) → +∞, while the reset mechanism is modeled by

setting V(l)
j (t(l)+j ) → −∞, immediately after the spike emission.

The main part of our analysis of the PING set-up will be
devoted to networks with self-activation only (i.e., where J(ii) =
0), a configuration which is known to favor the emergence of
collective oscillations (Wilson and Cowan, 1972; Kilpatrick, 2015;
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Onslow et al., 2014). However, as discussed in Appendix B, we
have found that COs can arise in different PING set-ups: in the
presence of self-inhibition only (i.e., with J(ii) 6= 0 and J(ee) = 0)
and in the absence of both self-activation and inhibition (i.e., with
J(ee) = J(ii) = 0).

For what concerns the purely inhibitory network, the
membrane potential dynamics of the j-th neuron is ruled by the
following equations:

τ (i)m V̇
(i)
j =

(

V
(i)
j

)2
+ η

(i)
j − τ (i)m J(ii)s(i) + I(i)(t)

τd ṡ
(i) = −s(i) +

1

N(i)

∑

t
(l)
m

δ(t − t(i)m ) , (2)

where τ
(i)
m = 10 ms. In this case the synaptic field s(i)(t) is the

super-position of the exponential IPSPs p(t) = e−t/τd/τd emitted
in the past, where we set τd = 10 ms.

For reasons that will become clear in the next paragraph,

we assume that the neuron excitabilities η
(l)
i are randomly

distributed according to a Lorentzian probability density
function (PDF)

g(l)(η) =
1

π

1(l)

(η −H(l))2 + (1(l))2
, (3)

where H(l) is the median and 1(l) is the half-width half-
maximum (HWHM) of the PDF. Therefore each population will

be composed of neurons supra- (with η
(l)
j > 0) and sub-threshold

(with η
(l)
j < 0), the percentage of one group with respect to

the other being determined by the Lorentzian parameters. For
the PING set-up we fix 1(e) = 1(i) = 1, whereas varying H(e)

and H(i). For the ING set-up we fix 1(i) = 0.3 and analyze the
dynamics by varying H(i).

The dynamical equations are integrated by employing a 4th
order Runge-Kutta method in the absence of noise with a time
step dt = 0.002 ms (dt = 0.001 ms) for the PING (ING) set-up.
Moreover, we define a threshold Vp = 100 and a reset value Vr =

−100. Whenever the membrane potential Vj of the j-th neuron
overcomes Vp at a time tp, it is reset to Vr for a refractory period
equal to 2/Vj. At the same time the firing time is estimated as tp+
1/Vj; for more details see Montbrió et al. (2015). The membrane
potentials are initialized from a random flat distribution defined
over the range [−100 : 100], while the excitabilities are randomly
chosen from the Lorentzian distribution (3).

For instantaneous synapses, we will only employ the following
two indicators to characterize the macroscopic dynamics:

r(l)(t) =
M(l)(1t)

N(l)1t
, v(l)(t) =

1

N(l)

N(l)
∑

j

V
(l)
j (t), (4)

which represent the average population activity and the average
membrane potential of the l-th population, respectively. In
particular, the average population activity of the l−network r(l)(t)
is given by the number of spikes M(l)(1t) emitted in a time
window 1t, divided by the total number of neurons in such

population. For finite IPSPs we also consider the synaptic field
s(l)(t). Furthermore, the emergence of COs, corresponding to
periodic motions of r(l)(t) and v(l)(t), are characterized in terms
of their frequencies ν(l).

We assume that the driving current, mimicking the θ-
stimulation in the optogenetic experiments, is a purely sinusoidal
excitatory current of the following form

Iθ (t) =
I0

2
[1− cos(2πνθ t)] (5)

where νθ is the forcing frequency, usually considered within
the θ-range, i.e., νθ ∈ [1 : 10] Hz. In this context a theta
phase associated with the forcing field can be defined as θ(t) =

mod(2πνθ t, 2π). For the PING configuration we set I(e)(t) =

Iθ (t) and I(i)(t) ≡ 0 and for the ING set-up I(i)(t) = Iθ (t).

2.2. Neural mass models
As already mentioned, an exact neural mass model has been
derived in Montbrió et al. (2015) for a fully coupled network of
QIF neurons with instantaneous synapses and with Lorentzian
distributed neuronal excitabilities. In this case the macroscopic
neural dynamics of a population l is described by two collective
variables: the mean field potential v(l)(t) and the instantaneous
firing rate r(l)(t). In this context, the neural mass model for
two coupled E − I populations with instantaneous synapses,
corresponding to the microscopic model reported in Equation
(1), can be written as

ṙ(e) =
1(e)

(

τ
(e)
m

)2
π

+
2r(e)v(e)

τ
(e)
m

(6)

v̇(e) =

(

v(e)
)2

+H(e) + I(e)(t)

τ
(e)
m

− τ (e)m

(

πr(e)
)2

+ J(ee)r(e) − J(ie)r(i) + Aξ (e)

ṙ(i) =
1(i)

(

τ
(i)
m

)2
π

+
2r(i)v(i)

τ
(i)
m

v̇(i) =

(

v(i)
)2

+H(i) + I(i)(t)

τ
(i)
m

− τ (i)m

(

πr(i)
)2

+ J(ei)r(e) − J(ii)r(i) + Aξ (i) .

In the equations for the evolution of the average membrane
potentials we have also inserted an additive noise term of
amplitude A, employed in some of the analysis to mimic the
many noise sources present in the brain dynamics. In particular,
the noise terms ξ (e) and ξ (i) are both δ-correlated and uniformly
distributed in the interval [−1 : 1].

In case of finite synapses, the exact derivation of the
corresponding neural massmodel is still feasible for QIF neurons,
but the macroscopic evolution now contains further equations
describing the dynamics of the synaptic field characterizing
the considered synapses (Devalle et al., 2017; Coombes and
Byrne, 2019). In particular, for a single inhibitory population
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with exponential synapses, the corresponding neural mass model
reads as:

ṙ(i) =
1(i)

(τ (i)m )2π
+

2r(i)v(i)

τ
(i)
m

(7)

v̇(i) =
(v(i))2 +H(i) + I(i)(t)

τ
(i)
m

− τ (i)m (πr(i))2

− J(ii)s(i) + Aξ (i)

ṡ(i) =
1

τd
[−s(i) + r(i)].

In the present case the equation for the average membrane
potential contains, as already shown before in Equation (6), an
additive noise term of amplitude A.

It should be noticed that in Equations (6) and (7) the noise
has been added in an effective manner and not with a consistent
procedure, that would amount to take into account the effect
of microscopic noise on the mean-field formulation. This can
be achieved by considering a Fokker-Planck description for the
distribution of the membrane potentials, e.g., as done in Brunel
and Hakim (1999), or by considering a reduced approach in
terms of circular cumulants (Tyulkina et al., 2018; Goldobin et al.,
2018). However, all these formulations will lead to much more
complicated evolution equations for the macroscopic quantities.

To analyse the stability of the macroscopic solutions of
Equations (6) and (7), one should estimate the corresponding
Lyapunov spectrum (LS) (Pikovsky and Politi, 2016). This can
be done by considering the time evolution of the tangent vector,
which for the PING set-up turns out to be four dimensional, i.e.,

δ =

{

δr(e), δv(e), δr(i)δv(i)
}

. The dynamics of the tangent vector is

ruled by the linearization of the Equation (6), namely

δṙ(e) =
2
(

r(e)δv(e) + v(e)δr(e)
)

τ
(e)
m

(8)

δv̇(e) =
2v(e)δv(e)

τ
(e)
m

− 2τ (e)m π2r(e)δr(e) + J(ee)δr(e) − J(ie)δr(i)

δṙ(i) =
2
(

r(i)δv(i) + v(i)δr(i)
)

τ
(i)
m

δv̇(i) =
2v(i)δv(i)

τ
(i)
m

− 2τ (i)m π2r(i)δr(i) + J(ei)δr(e) − J(ii)δr(i) .

For the ING set-up the tangent vector is three dimensional, δ =
{

δr(i), δv(i), δs(i)
}

, and its time evolution can be obtained by the

linearization of Equation (7), which reads as

δṙ(i) =
2
(

r(i)δv(i) + v(i)δr(i)
)

τ
(i)
m

(9)

δv̇(i) =
2v(i)δv(i)

τ
(i)
m

− 2τ (i)m π2r(i)δr(i) − J(ii)δs(i)

δṡ(i) =
1

τd
[−δs(i) + δr(i)] .

Please notice that the presence of additive external noise or of
forcing terms in Equations (6) and (7) does not modify the
evolution equations in the tangent space Equations (8) and (9).

The LS is composed by 4 (3) Lyapunov exponents (LEs)
{λi} for the PING (ING) set-ups, which quantify the average
growth rates of infinitesimal perturbations along the orthogonal
manifolds. In details, LEs are estimated as follows

λi = lim
t→∞

1

t
log

|δi(t)|

|δi(0)|
, (10)

where the technique described in Benettin et al. (1980) to
maintain the tangent vectors δi orthonormal during the evolution
is employed. The autonomous system will be chaotic for λ1 > 0,
while a periodic (quasi-periodic) dynamics will be characterized
by λ1 = 0 (λ1 = λ2 = 0) and a fixed point by λ1 < 0. In a non-
autonomous system in the presence of an external forcing, one
Lyapunov exponent will be necessarily zero, therefore a periodic
behavior corresponds to λ1 < 0 and a quasi-periodic dynamics
to λ1 = 0 (Pikovsky and Politi, 2016).

In the absence of noise, neural mass models have been directly
integrated by employing a Runge-Kutta 4th order integration
scheme, while in the presence of additive noise with a Heun
scheme. In both cases the time step has been set to dt = 0.01
ms. In order to estimate the Lyapunov spectra we have integrated
the direct and tangent space evolution with a Runge-Kutta 4th
order integration scheme with dt = 0.001 ms, for a duration of
200 s, after discarding a transient of 10 s.

Besides LEs, in order to characterize the macroscopic
dynamics of the model, we have estimated the frequency power

spectra P
(e)
S (F) (P(i)S (F)) of the mean excitatory (inhibitory)

membrane potential v(e)(t) (v(i)(t)) for the PING (ING) set-
up. The power spectra have been obtained by calculating the
temporal Fourier transform of the mean membrane potentials
sampled at time intervals of 2 ms. In the deterministic (noisy)
case, time traces composed of 2048 (1024) consecutive intervals
have been considered to estimate the spectra, which are obtained
at a frequency resolution of 1F = 0.244 Hz (1F = 0.488
Hz). Finally, the power spectra have been averaged over 12 (488)
independent realizations for the deterministic (noisy) dynamics.
To compare our numerical findings with the experimental results
reported in Butler et al. (2016), as a measure of the power of the
γ oscillations, we have estimated the area of the power spectrum
Pγ in an interval±15 Hz around the main peak position Fr of the
corresponding power spectrum.

3. DYNAMICS IN THE ABSENCE OF
FORCING

Due to the low dimensionality of the neural mass models we
have been able to obtain the corresponding bifurcation diagrams
by employing the software MATCONT developed for orbit
continuation (Govaerts et al., 2006).

In particular, we have derived the bifurcation diagrams in the
absence of forcing [I(e) = I(i) ≡ 0] as a function of the medians
H(e) and H(i) of the excitability distributions for the PING and
ING configuration. In general, we observe either asynchronous
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dynamics, corresponding to a stable fixed point (a focus) of the
neural mass equations, or COs, corresponding to stable limit
cycles for the same set of equations.

3.1. PING set-up
For the excitatory-inhibitory set-up, as already mentioned, we
usually fix H(i) = −5 and we vary H(e). In this case the
inhibitory neurons are mostly below threshold (apart from 6
to 7% of them) and they can be driven supra-threshold from
the activity of the excitatory population for sufficiently large
values of H(e). COs emerge when a sufficient number of neurons
is supra-threshold, i.e., when H(e) becomes positive enough,
Indeed, as shown in Figure 2A, at negative or low values of H(e),
one can observe asynchronous dynamics, where the neurons
fire independently and without any collective behavior (as an
example see Figure 2C). By increasing H(e), a supercritical Hopf

bifurcation occurs at H(e)
c ≃ 1.5 leading to the emergence of

COs. The COs regime is characterized in the network by almost
periodic population bursts, where the neurons in one population
partially synchronize over a short time window in the order
of a few milliseconds. An example for H(e) = 5 is shown in
Figure 2D, where one can observe two salient characteristics
of the oscillatory dynamics. Firstly, the excitatory anticipates
always the inhibitory burst by a certain time interval Ta (in
this case Ta ≃ 5 ms), as usually observed for the PING
mechanism (Tiesinga and Sejnowski, 2009). Secondly, the bursts
of the excitatory population have a temporal width (≃ 8 ms)
which is two or three times larger than those of the inhibitory
ones (≃ 2 − 3 ms). This is also due to the fact that a large
part of the inhibitory neurons is sub-threshold, therefore most
of them fire within a short time window, irrespective of their
excitabilities, due to the arrival of the synaptic stimulation from
the excitatory population. Instead, the excitatory neurons, which
are mostly supra-threshold, recover from silence, due to the
inhibitory stimulation received during the inhibitory burst, over a
wider time interval, driven by their own excitabilities. It is evident
that the CO frequency of the excitatory and inhibitory population
coincide in this set-up.

Moreover, it is important to investigate the bifurcation
diagram of the system at fixed median excitatory drive by varying
H(i). The corresponding bifurcation diagram is displayed in
Figure 2B for H(e) = 10. By increasing H(i), COs emerge
from the asynchronous state via a sub-critical Hopf bifurcation

at H(i)
c1 ≃ −8.4 and they disappear via a super-critical Hopf

bifurcation atH(i)
c2 ≃ 0.20. Since the first transition is hysteretical,

COs disappear via a saddle-node of the limit cycles at a value

H
(i)
SN ≃ −10.00 lower than H

(i)
c1 . Indeed, in the interval

[H(i)
SN;H

(i)
c1 ] we have the coexistence of a stable focus with a stable

limit cycle. In summary, COs are clearly observable as long asH(i)

is negative or sufficiently small. If the inhibitory neurons become
mostly supra-threshold, this destroys the collective behavior
associated with the PING mechanism.

It is worth noticing that the frequencies of the COs are in
the γ -range, namely ν(e) ∈ [22 : 71] Hz (as shown in the inset
of Figure 2A): in this set-up the maximum achievable frequency

≃ 100 Hz, since the decay time of inhibition is dictated by τ
(i)
m =

10 ms (Tiesinga and Sejnowski, 2009). On the other hand, the
influence of H(i) on the frequency of the COs is quite limited. As
shown in the inset of Figure 2B for a specific case corresponding
to H(e) = 10.0, ν(i) ≡ ν(e) varies by few Hz (namely, from 42.8 to
46.9 Hz), when H(i) is varied by an order of magnitude.

For what concerns the delay Ta between the excitatory and
inhibitory bursts, we observe a decrease of Ta with the increase
of the excitatory drive H(e), from Ta ≃ 10 ms at the Hopf
bifurcation, toward 2 ms for large H(e) value, see Figure 2E. The

largest value of Ta is of the order of τ
(i)
m . This can be explained

by the fact that the excitatory stimulations should reach the

inhibitory population within a time interval of (at most) ≃ τ
(i)
m

to be able to sum up in an effective manner and to ignite the
inhibitory burst. As shown in the inset of Figure 2E, the increase
of H(i) has in general the effect to reduce Ta; this should be
expected since for larger excitabilities [larger H(i)], the inhibitory
neurons are faster in responding to the excitatory stimulations.
However, this is not the case in proximity of the saddle-node

bifurcation at H
(i)
SN and for positive H(i), where the effect is

reversed and Ta increases with H(i). It is worth noticing that the
same parameters as in Figure 2A are used for the main panel
Figure 2E, while in the inset of Figure 2E, the data shown are
calculated for the same parameters as in Figure 2B.

For the PING set-up we can also observe sub-critical Hopf
bifurcations. A specific example is discussed in some detail in
Appendix A.

3.2. ING set-up
As shown in Devalle et al. (2017), in order to observe
COs in globally coupled inhibitory QIF networks and in
the corresponding neural mass models, it is sufficient to
include a finite synaptic time scale τd. On the other hand, in
sparse balanced QIF networks, COs are observable even for
instantaneous synapses (di Volo and Torcini, 2018). Indeed, for
the set of parameters here employed, by varying the median
of the inhibitory excitabilities H(i), we observe a super-critical

Hopf bifurcation at H(i)
c ≃ 2.4, from an asynchronous state

to COs (see Figure 3A). Analogously to the PING set-up, the
frequencies of the COs observable in the ING set-up are within
the γ -range, namely ν(i) ∈ [26 : 83] Hz. In particular, we
observe an almost linear increase of ν(i) with H(i). An example
of the observed dynamics is shown in Figure 3B (Figure 3C)
where the raster plot of the inhibitory network is calculated for
H(i) = 0 (H(i) = 10).

Therefore, the PING and ING set-ups considered here are
ideal candidates to analyse the influence of θ-forcing on γ -
oscillatory populations, which represents the main focus of
this paper. In particular, the response of the system to the
excitatory θ-forcing current (5) can be interpreted in terms of
the bifurcation diagrams for the model in the absence of forcing
shown, respectively, in Figure 2A for the PING set-up and in
Figure 3A for the ING set-up. The interpretation is possible due
to the fact that the response of the system to the sinusoidal
current (5) can be considered as almost adiabatic, because the
forcing frequencies νθ ∈ [1 : 10] Hz are definitely slower than
those of the COs [ν(e) and ν(i)], which lie in the γ -range.
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FIGURE 2 | (PING set-up) (A) Bifurcation diagram of the average membrane potential v(e) as a function of H(e), for H(i) = −5.0. The black continuous (dashed) line

identifies the stable (unstable) fixed point. The red lines denote the maxima and minima of the limit cycles. The supercritical Hopf bifurcation occurs at H
(e)
c = 1.5. The

inset shows the frequency ν (e) of the COs vs. H(e). (B) Bifurcation diagram of the average membrane potential v(e) vs. H(i) for H(e) = 10. The Hopf bifurcations are

located at H
(i)
c1 = −8.4 and H

(i)
c2 = 0.20, while the saddle-node bifurcation of limit cycles occurs at H

(i)
SN

= −10.0. The inset show the frequency ν (i) ≡ ν (e) of the COs

vs. H(i). (C,D) Raster plots of the excitatory (green dots) and inhibitory (blue dots) networks are calculated in correspondence with the stable fixed point for H(e) = −5.0

(C) and with the limit cycle for H(e) = +5.0 (d) for the case analyzed in (A). For a better visualization, the activity of only 500 neurons of each population is shown. (E)

Delay Ta as a function of H(e). The red dashed line denotes H
(e)
c . Here we have used the same parameters as in (A). In the inset is reported the dependence of Ta vs.

H(i) for the parameters in (B). The other parameters of the system are J(ee) = 8, J(ie) = J(ei) = 10, J(ii) = 0 and the sizes of the networks are N(e) = 5,000, N(i) = 5,000.

FIGURE 3 | (ING set-up) (A) Bifurcation diagram of the average membrane potential v(i) as a function of H(i). The black continuous (dashed) line identifies the stable

(unstable) fixed point. The red lines denote the maxima and minima of the limit cycles. The supercritical Hopf bifurcation occurs at H
(i)
c ≃ 2.4. The inset shows the COs’

frequency ν (i) of the inhibitory population as a function of H(i). (B,C) Raster plots of the inhibitory network (blue dots) are calculated in correspondence with the stable

fixed point at H(i) = 0.0 (B) and with the limit cycle at H(i) = +10.0 (C). Only the firing activity of 1,000 neurons is displayed. Parameters of the system: J(ii) = 21.0,

η̄(i) = 2.0, 1(i) = 0.3, τ
(i)
m = 10.0 ms, τd = 10.0 ms, A = 0. The system size for the purely inhibitory network is N(i) = 10, 000.
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FIGURE 4 | Theta-nested gamma oscillations (PING set-up). (A) From top to bottom: temporal traces of r(e), v(e), r(i), v(i), for the spiking network (red curves) and the

neural mass model (black curves). Iθ , reported in the bottom panel in blue, is the external current (5). For the neural mass model the average rates and membrane

potentials are solutions of Equation (6), while for the network they are calculated according to Equation (4). (B) Spectrogram of the mean membrane potential v(e) (top)

as a function of the external forcing (bottom). The amplitude of the forcing is I0 = 10 and its frequency is νθ = 5 Hz. Parameters of the system: J(ee) = 8,

J(ie) = J(ei) = 10, J(ii) = 0, H
(e)
0 = 1.3, H

(i)
0 = −5.0, 1(e) = 1, τ

(e)
m = 20, 1(i) = 1, τ

(i)
m = 10.0, A = 0, network size N(e) = N(i) = 5, 000. The average firing rates are

R̄(e) ≃ 37 Hz, R̄(i) ≃ 36 Hz. (ING set-up) (C) From top to bottom: temporal traces of r(i), v(i) where the line colors have the same meaning as in (A). For the neural mass

model, average rates and membrane potentials are solutions of Equation (7). (D) Spectrogram of the mean membrane potential v(i) (top) as a function of the external

forcing (bottom). The amplitude of the forcing is I0 = 9 and its frequency is νθ = 5 Hz. Parameters of the system: J(ii) = 21.0, H
(i)
0 = 2.0, 1(i) = 0.3, τ

(i)
m = 10.0 ms,

τd = 10.0 ms, A = 0, system size for the purely inhibitory network N(i) = 10, 000. The corresponding average firing rate is R̄(i) ≃ 28 Hz.

4. DYNAMICS UNDER θ-FORCING

As a first step, we have verified that the reduced mean-field
models are able to reproduce the macroscopic evolution of the
spiking network in both considered set-ups, under the external
forcing (5). In particular, we set the unforced systems in the
asynchronous regime in proximity of a super-critical Hopf

bifurcation, by choosing H
(e)
0 = 1.3 < H

(e)
c and H

(i)
0 = −5

(H(i)
0 = 2.0 < H

(i)
c ) and considered a forcing termwith frequency

νθ = 5 Hz and amplitude I0 = 10 (I0 = 9) for the PING
(ING) set-up.

The comparisons, reported in Figures 4A,C, reveal a very
good agreement in both set-ups between the network and the
neural mass simulations, for the mean membrane voltages and
the instantaneous firing rates. Furthermore, in both cases, we
clearly observe COs, whose amplitudes are modulated by the
amplitude of the θ-forcing term (5), suggesting that we are in
the presence of a Phase-Amplitude Coupling (PAC) mechanism

(Hyafil et al., 2015). The corresponding spectrograms shown in
Figures 4B,D reveal that the frequencies of the COs are in the
γ -range with the maximum power localized around 50–60 Hz.
Moreover, the spectrograms indicate that the process is stationary
and due to the external stimulation. The gamma oscillations
repeat during each θ-cycle and they arrest when the external
stimulation is stopped. The characteristics of these COs resemble
θ-nested γ -oscillations reported in many experiments for neural
systems in vitro under optogenetic stimulation (Akam et al., 2012;
Pastoll et al., 2013; Butler et al., 2016, 2018) as well as in behaving
animals (Chrobak and Buzsáki, 1998).

4.1. Wavelet Analysis
To get a deeper insight into these dynamics we have estimated the
continuous wavelet transform of the average membrane potential
on each θ-cycle. As an example, we report in Figure 5 the wavelet
spectrogram of the mean potential within a single θ-cycle for
the previously examined PING (Figure 5A) and ING (Figure 5B)
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FIGURE 5 | Wavelet analysis. Continuous wavelet transform over a single θ-cycle of the mean membrane potentials v(e) and v(i) appearing in the neural mass models

for PING (A) and ING (B) set-up, respectively. This analysis allows for accurate automated detection and extraction of γ activity without the need for bandpass

filtering. Parameters as in Figure 4.

set-ups. Indeed, from the comparison of Figures 5A,B, we
practically do not observe any difference: the system responds
with COs in the range [40, 80] Hz and it exhibits alternating
maxima and minima in the wavelet spectrogram as a function
of the θ-phase. Similar results have been reported in Figure 4G in
Butler et al. (2016) for the CA1-region of rat hippocampus under
optogenetic sinusoidal θ-stimulation.

Differences among the two cases appear when one considers
the wavelet spectrograms averaged over many θ-periods: for
the PING case the spectrogram remains unchanged, instead for
the ING set-up the spectrogram smears out and it does not
present anymore the clear oscillations reported in Figure 5B.
This difference indicates that, in the PING case, the observed
pattern repeats exactly over each cycle: γ -oscillations and θ-
oscillations are perfectly phase locked. This is not the case for
the ING set-up: although the PAC patterns appear quite similar
in successive cycles, as shown in Figure 4C, indeed they do not
repeat exactly. From the point of view of non-linear dynamics,
the PING case would correspond to a perfectly periodic case,
while the other case could be quasi-periodic or even chaotic.
Therefore, we can observe PAC with an associated phase locking,
but also in the absence of phase locking.

Furthermore, according to the data shown in Figure 5, this
can also represent an example of PFC, since COs with frequencies
≃ 40 Hz occur at small and large θ-phases, while in the middle
range π/2 < θ < 3π/2 one observes similar oscillations with
F ≃ 60 Hz.

For what concerns the wavelet analysis obtained from
optogenetic experiments and shown in Figure 4G in Butler et al.
(2016), we should stress two important aspects: (i) the wavelet
spectrogram, averaged over several θ cycles (namely 30), displays
clear correlations among the θ-phase and the γ -oscillations;
(ii) the spectrogram is highly asymmetric indicating that γ -
oscillations emerge in proximity of θ-phase ≃ π and disappear
≃ 3/2π . The former aspect reveals that θ and γ oscillations
were perfectly locked in the experiment, while the latter suggests
that the bifurcation associated with the emergence of COs in
the experiment is probably hysteretic. This would explain the
asymmetry that we do not observe here for super-critical Hopf

bifurcations in Figure 5, but that emerges for sub-critical Hopf
bifurcations, as discussed in Appendix A.

4.2. Phase-Amplitude Locked and
Unlocked States
To better examine the dynamical regimes emerging in our set-
ups, we have first estimated the maximal Lyapunov exponent λ1
associated with the neural mass models, for the same parameters
considered in Figure 4, over a wide range of forcing amplitudes,
that is 0 ≤ I0 ≤ 20. From the results reported in Figures 6A,B, it
is clear that λ1 is almost always zero, apart from some limited
intervals where it is negative and a few values of I0 for the
ING set-up, where it can be even positive. This means that
the dynamics is usually quasi-periodic, apart from some Arnold
tongues where there is perfect locking between the external
forcing and the forced system.

We notice that for small amplitudes the forcing entrains the
system in a 1 : 1 periodic locking, therefore the instantaneous
firing rate displays one peak for each θ-period with the same
frequency as the forcing νθ . This locking is present in a wider
region in the ING case (namely, I0 < 1.70) with respect to
the PING set-up (namely, I0 < 0.40). More interesting locking
regimes, where the forced populations oscillate in the γ -range,
emerge at larger I0. These locking regimes can be considered as θ-
nested γ -oscillations; most of them are of the typem : 1, withm ∈

[5 : 10], which means that, for each θ-period, the firing rate of the
forced populations has m maxima (for specific examples see the
insets of Figures 6A,B). In extremely narrow parameter intervals
other, more complex, kinds of locking of the type m : n emerge,
where exactly m maxima in the population activity appear for
every n θ-oscillations. In the examined cases we have identified
locked patterns with n up to four. Moreover, for the ING case,
we have even observed a chaotic region (see Figure 6B), which
emerges at quite large forcing amplitude I0 ≃ 19. On the basis of
our analysis we cannot exclude that chaos could emerge also in
the PING set-up, for sufficiently strong forcing.

Let us now focus on the m : 1 perfectly locked states with
m > 1, which are worth investigating due to their relevance for
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FIGURE 6 | Maximal Lyapunov exponent λ1 estimated for the neural mass models as a function of the forcing amplitude I0, for the PING (A) and ING (B) set-ups. In

both cases the system is subject to a forcing frequency νθ = 5 Hz. Insets in (A,B) report the instantaneous firing rate r(e)(t) (r(i)(t)) vs. time for the PING (ING) set-up,

respectively. The three cases shown are representative of the states identified by circles in the main panels. The color code is the same, i.e., the color used in the inset

identifies the corresponding circle in the main panel. The black continuous lines in the inset correspond to Iθ in arbitrary units. Parameters are the same as in Figure 4.

θ-γ mixed oscillations, as well as to their relative large frequency
of occurrence with respect to more complex m : n locked states.
In particular, we have examined the response of the system
to different forcing amplitudes I0 ∈ [0 : 20] and frequencies
νθ ∈ [1 : 10] Hz. The m : 1 locked oscillations are reported in
Figures 7A,B and characterized by the number m of oscillations
displayed within a single θ-cycle.

These locked states appear only for νθ > 2− 3 Hz. Moreover,
the states with equal m are arranged in stripes in the (νθ , I0)-
plane. Locked states in the PING configuration occur in separated
stripes whose order m increases for increasing I0; in particular,
states with 3 ≤ m ≤ 10 are clearly identifiable. In the ING set-
up, for sufficiently large νθ and I0, we have a continuum of locked
states, thus indicating that, for the ING set-up, phase locking to
the forcing frequency is easier to achieve. In this case the order of
occurrence of m-order states is not clearly related to the forcing
amplitude; however locked states with order m and 2m are often
nested within each other as shown in Figure 7B.

To examine which frequencies are excited in these states we
have measured for each amplitude I0 the minimal, the maximal
and the average frequency of the COs associated withm : 1 locked
states over the whole range of examined forcing frequencies νθ .
These frequencies are reported in Figures 7C,D. The analysis
clearly reveals that the minimal CO frequency is essentially
independent from I0 and its value is around 20 Hz, while
the maximal and the average grow with I0. However all these
frequencies stay within the γ -range for the examined forcing
amplitudes.

To better understand the mechanism underlying the
emergence of θ-nested γ oscillations, we have reported in
Figures 7C,D the COs frequencies ν(e) (ν(i)) (green solid
lines) obtained from the adiabatic bifurcation analysis of the
neural mass models (these frequencies are also shown in the
insets of Figures 2A, 3A). The very good agreement between
ν(e) and ν(i) and the maximal frequency measured for the
locked states suggests that the nested COs are induced by

the crossing of the super-critical Hopf bifurcation during the
periodic stimulation. In particular, during forcing, the maximal
achievable γ -frequency is the one corresponding to the maximal

stimulation current I0 + H
(e)
0 (I0 + H

(i)
0 ) for the unforced

PING (ING) set-ups. Furthermore, under sinusoidal forcing,
the system spends a longer time in proximity of the maximal
stimulation value, since it is a turning point. This explains why
this frequency is always present in the response of the driven
system for the considered locked states.

4.3. Comparison with Experimental
Findings
In a series of recent optogenetic experiments on the mouse
enthorinal-hippocampal system, clear evidence has been
reported that phase-amplitude coupled γ -rhythms can be
generated locally in brain slices ex vivo in the CA1-region, as
well as in the CA3 and MEC, under sinusoidal θ stimulations
(Akam et al., 2012; Pastoll et al., 2013; Butler et al., 2016, 2018).
In particular, in Butler et al. (2018) the authors reported evidence
that, for all the regions CA1, CA3 and MEC, the generation
of the γ -rhythms, under θ-rhythmic activation of pyramidal
neurons, is due to a PING mechanism.

However, due to the fact that pyramidal neurons are directly
activated during experiments, their result cannot exclude that
tonic activation of interneurons contributes to θ–γ oscillations in
vivo. Furthermore, in Pastoll et al. (2013) the authors affirm that
θ-nested γ -oscillations due to the optogenetic θ-frequency drive,
are generated, in MEC, by local feedback inhibition without
recurrent excitation, therefore by a ING mechanism. In this
section, we try to reproduce some of the analyses reported in
these experimental studies by employing both the PING and ING
set-ups, in order to understand if these two set-ups give rise to
different dynamical behaviors.

By following the analysis performed in Butler et al. (2016,
2018), we have considered the response of the two set-ups
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FIGURE 7 | Phase locked m : 1 states Locked states for the neural mass models are displayed in (A,B) for the PING and ING set-ups, respectively. The color code

identifies the locked states according to the value of m, from 3 to 15. (C,D) Minimal (red circles), average (blue circles), and maximal (black circles) frequencies of the

COs as a function of the forcing amplitude I0 for PING (C) and ING (D) set-ups. These values are obtained by considering all possible m : 1 locked states

corresponding to the examined I0. The frequencies ν (e) (ν (i)) (green solid lines) of the COs obtained from the bifurcation analysis in the adiabatic set-up are reported as

a function of H(e) − H
(e)
0 (H(i) − H

(i)
0 ) for the PING (ING). Parameters are the same as in Figure 4.

to forcing of different frequencies νθ and amplitudes I0. The
results reported in Figure 8 reveal that the phenomenon of
PAC is present for all the considered frequencies νθ ∈ [1, 10]
Hz and amplitudes I0 ∈ [1, 20] in both set-ups. Moreover,
analogously to what was reported in Butler et al. (2016, 2018),
the amplitude of the γ -oscillations increases proportionally to I0,
while the number of nested oscillations in each cycle increases for
decreasing νθ . On the basis of this comparison, the forced PING
and ING set-ups display essentially the same dynamics.

To get a more detailed information about the dynamics in
the two set-ups, we will now consider the features of the power

spectra P
(e)
S (P(i)S ) of the mean excitatory (inhibitory) potential

for the PING (ING) set-up. These features are obtained for
different forcing amplitudes and frequencies, somehow similar to
the analysis performed for the power spectra of the Local Field
Potential (LFP) in Butler et al. (2016, 2018).

Let us first consider, as an example of the obtained power
spectra, the case corresponding to the PING set-up with a forcing
characterized by νθ = 5 Hz and amplitude I0 = 10, shown
in Figure 9A. In the spectrum we observe very well defined
spectral lines located at frequencies which can be obtained as
a linear combination of the forcing frequency νθ = 5 Hz and
of the response frequency Fr = 45 Hz. In particular Fr is
associated with the main peak and should correspond to the
intrinsic frequency of the forced system. In the present case,
the adiabatic bifurcation diagram reported in Figure 2A tells

us that the maximal achievable frequency is ν
(e)
max ≃ 49.3 Hz,

corresponding to H(e) = I0 + H
(e)
0 = 11.3. Indeed Fr < ν

(e)
max

due to the interaction with the forcing current that eventually
induces a locking phenomenon at a frequency that is exactly a
multiple of νθ , as it happens in the present case. However, in
general, a spectrum as the one shown in Figure 9A, is the emblem
of a quasi-periodic motion characterized by two incommensurate
frequencies. This can be easily observable in most cases in our
system, where νθ and Fr are usually incommensurate.

The spectra obtained from optogenetic stimulation, reported
in Butler et al. (2016, 2018), do not resemble the one
shown in Figure 9A; indeed they present only two peaks: one
corresponding to the stimulation frequency and one, quite
broad, associated with the γ -oscillations. We can expect that
the difference is due to the multiple noise sources that are
always present in an experimental analysis (in particular for
neurophysiological data), but that are absent in our model.
Indeed, by considering the neural mass model for the PING
set-up with additive noise on the membrane potentials of
suitable amplitude, that is A = 1.4, we get a power
spectrum resembling the experimental one, as shown in
Figure 9B. The presence of noise induces the merging of
the principal peaks in a unique broad one and the shift of
the position of the main peak toward some larger values
(Fr = 54 Hz in the present case) with respect to the fully
deterministic case.
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FIGURE 8 | Theta-nested gamma COs for PING (A,B) and ING set-up (C,D). Left column: dependence of the mean membrane potential of the excitatory (inhibitory)

population v(e) (v(i)) on the frequency νθ of the external forcing I(e) = Iθ (I(i) = Iθ ) with I0 = 10 (I0 = 9) for the PING (ING) set-up. The current profiles (blue lines) are

displayed immediately below the corresponding membrane potential evolution. From top to bottom, the frequency νθ is 1, 5, and 10 Hz. Right column: dependence of

the mean membrane potential v(e) (v(i)) on the amplitude I0 of the external current. Here the forcing frequency is kept constant at the value νθ = 5Hz. The amplitude is

changed from 100% of maximum (top) to 20% of maximum (bottom) in 20% increments, the maximum being given by I0 = 10. The data refer to the evolution of

neural mass models, the parameters are the same as in Figure 4.

Let us now consider the power spectra obtained for different
forcing frequencies νθ ∈ [1 : 10] Hz in the θ-range, in case
of fixed forcing amplitude and in the absence of noise. The
position of themain and auxiliary peaks are shown in Figure 10A
(Figure 10C) for the PING (ING) set-up and compared with the
experimental results (red circles) obtained for the CA1 region
of the hippocampus in Butler et al. (2016). It is clear that, for
both set-ups, the position of the main peak Fr (green squares)
has a value ≃ 50 Hz and it does not show any clear dependence
on νθ . This is in contrast with the experimental data, which
reveal an increase proportional to νθ from 49 to 60 Hz. The
same trend is displayed in our simulation from the subsidiary

peak located at Fr + νθ (black stars), showing an increase
with νθ .

Let us now take into account the power of the γ oscillations Pγ

as defined in section 2.2. As shown in the insets of Figures 10B,D,
this quantity remains essentially constant for low frequencies
(namely, for νθ ≤ 5 Hz in the PING and for νθ ≤ 7 Hz in
the ING), while it drops to smaller values at larger frequencies.
On the other hand, the experimental results (red circles) reveal a
similar decrease at frequencies νθ > 5 Hz, but they also reveal
an increase at low frequencies, not present in our numerical data,
thus suggesting a sort of resonance at 5 Hz. For what concerns the
dependence of Pγ on the forcing amplitude, we have fixed νθ = 5
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FIGURE 9 | Power spectra for the PING set-up. Spectra P
(e)
S

of the mean membrane potential v(e) of the neural mass model estimated when the excitatory population

is subject to an external drive with frequency νθ = 5 Hz and amplitude I0 = 10, in the absence of noise (A) and for additive noise with amplitude A = 1.4 (B). The data

refer to the evolution of neural mass models, the parameters are as in Figure 4.

Hz and varied I0 in the range [4 : 10] ([8 : 20]) for the PING (ING)
set-up. In both cases and analogously to experimental data, Pγ

increases proportionally to I0, see Figures 10B,D.
In both set-ups, our model is unable to reproduce, in the

absence of noise and for fixed forcing amplitude I0, the steady
increase of Fr with νθ reported in the experiments for the mice
CA1 in Butler et al. (2016). Therefore, in order to cope with
this problem, we will now investigate how a similar trend can
emerge in our data. In particular, in the remaining part of the
paper we consider noisy dynamics, to have a better match with
experiments where is unavoidable. In Figure 11A we report, for
the PING set-up, the estimated power spectra for different noise
levels, under constant external sinusoidal forcing. The effect of
noise is to render the spectrummore flat and to shift the position
of the peak in the γ -range toward higher frequencies. As shown
in the inset of Figure 11A, the frequency Fr is almost insensitive
to the noise up to amplitudes A ≃ 1.0, then it increases steadily
with A from ≃ 45 Hz to ≃ 62 Hz. The effect of varying the
forcing amplitude I0, for constant forcing frequency νθ = 5 Hz
and noise amplitude A = 1.4, is shown in Figure 11B. In this
case the amplitude increase of the forcing leads to more defined
peaks in the γ -range and to an almost linear increase with I0 of Fr ,
as reported in the inset. In the same inset we also have reported
the results related to two optogenetic experiments for the CA1-
region of the mice hippocampus. In particular, the data-sets refer
to two successive experiments performed by the same group:
namely, red filled circles refer to Butler et al. (2016) and red open
circles to Butler et al. (2018). While in one experiment (red open
circles) a constant increase of Fr with the forcing amplitude is
observable from 60 to 70 Hz, in the other one (red filled circles)
the frequency initially increases with I0 and then decreases with
it. As a matter of fact in the latter case, Fr remains around 45–
50 Hz for a variation of I0 from 40 to 100 % of the maximal
amplitude Imax

0 . From the comparison with our results, we can
affirm that our data reproduce the correct range of frequencies
in both experiments and also the dependence on the forcing
amplitude for I0/Imax

0 ≥ 60% reported in Butler et al. (2018).
The decrease of Fr for I0/Imax

0 larger than the 50% reported in

Butler et al. (2016) is inconsistent with our data, but also with the
experimental results of the same group published in Butler et al.
(2018).

From this last analysis we have understood that, for constant
forcing frequency, the γ -peak shifts toward higher frequencies
by increasing the forcing amplitude or the noise level, i.e., by
increasing the stimulation power.

Therefore, to obtain an increase of Fr with the forcing
frequency νθ , analogously to the results reported in Butler et al.
(2016) (and displayed as filled red circles in Figures 10A,C), we
perform numerical experiments where νθ increases together with
A or I0. The simplest protocol is to assume thatA (I0) will increase
linearly with νθ . The results obtained for the PING (ING) set-
up are reported in Figure 12A (Figure 12B). As evident from the
figures, in both set-ups and for both protocols we obtain results
in reasonable agreement with the experiments. In the present
framework, we have also analyzed the dependence of the γ -power
Pγ on νθ . In particular, this quantity increases almost linearly
with the forcing frequency, at variance with the experimental
results in Butler et al. (2016) which revealed a sort of resonance
with an associated maximal γ -power around νθ = 5 Hz (the
experimental data are displayed as red circles in the insets of
Figures 10B,D).

5. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the dynamics of a new class
of neural mass models arranged in two different set-ups: an
excitatory-inhibitory network (or PING set-up) and a purely
inhibitory network (or ING set-up). These neural mass models
are extremely relevant to mimick neural dynamics for two
reasons. On one side, because they are not derived heuristically,
since they reproduce exactly the dynamics of excitatory and
inhibitory networks of spiking neurons for any degree of
synchronization (Montbrió et al., 2015; Devalle et al., 2017; Ceni
et al., 2019). On another side, these neural masses reproduce the
macroscopic dynamics of quadratic integrate-and-fire neurons,
which are normal forms of class I neurons, therefore they are
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FIGURE 10 | Power spectra features (PING set-up). (A) Frequencies of the peaks of the power spectrum P
(e)
S

as a function of the stimulation frequency νθ . Green

squares correspond to the main peak frequency Fr , while the black stars to Fr + νθ and the blue diamonds to Fr − νθ . The red circles are the experimental data

extrapolated from Figure 4C of Butler et al. (2016). The amplitude of the forcing is I0 = 10. (B) Normalized power of the γ oscillations Pγ /Pmaxγ associated with the

signal v(e) as a function of the amplitude stimulation, where we set Imax0 = 20 and the frequency of stimulation at νθ = 5 Hz. In the inset we report the same quantity as

a function of the frequency stimulation νθ for I0 = 10. The black stars correspond to our simulations, while the red circles to experimental data extrapolated from

Figure 4E (Figure 4B for the inset) of Butler et al. (2016) (filled circles) and from Figure 4C of Butler et al. (2018) (empty circles). The other parameters are as in

Figure 4. (ING set-up) (C) Same as in (A) for the power spectrum P
(i)
S
with I0 = 9. (D) Same as (B) for the signal v(i) with Imax0 = 40. The data refer to the evolution of

neural mass models. For the inset we set I0 = 9, other parameters as in Figure 4.

FIGURE 11 | Power spectra dependency on noise and forcing amplitudes (PING set-up). Power spectra P
(e)
S

for different noise level A (A) and different amplitude of

the external input I0 (B), for a fixed forcing frequency νθ = 5 Hz. In the insets are reported the frequencies Fr of the main peak as a function of the noise level (A) and of

the amplitude of the external drive I0 (B). In the inset of (B) are also reported experimental data extracted from Figure 4F of Butler et al. (2016) (filled red circles) and

from Figure 4D of Butler et al. (2018) (open red circles). The curves in (A) are obtained by varying the noise amplitude A ∈ [0.9 :3.0] with a step of 0.3, while keeping

I0 = 10 fixed. On the other hand the curves in (B) refer to different forcing amplitudes 2 ≤ I0 ≤ 20, varied in steps of 0.2, with fixed noise amplitude A = 1.4. The other

parameters are as in Figure 4. Data have been obtained by the integration of neural mass models.
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FIGURE 12 | Influence of the theta frequency on the gamma oscillations. Frequency Fr of the main peak of the power spectrum P
(e)
S

vs. νθ for the PING (A) and ING

(B) set-ups. Red filled circles represent the experimental data extrapolated from Figure 4C in Butler et al. (2016). Black stars (magenta triangles) refer to numerical data

obtained by varying linearly the noise amplitude A (the forcing amplitude I0) as a function of νθ and maintaining the forcing amplitude I0 (the noise amplitude A)

constant. The data shown as black stars for the PING (ING) set-up in (A) (panel B) are obtained by adding white noise to the evolution of the mean membrane

potentials and by varying linearly its amplitude in the interval A ∈ [1.4 : 2.9] as a function of νθ with I0 = 10 (I0 = 9). The magenta triangles refer to data obtained by

keeping fixed the noise amplitude at the value A = 1.4 and by varying linearly with νθ the forcing amplitude I0 in the range [9.5 : 18] ([8 : 14]) for the PING (ING) set-up

in (a) (panel B). Other parameters for as in Figure 4. Data are obtained from neural mass models integration.

expected to represent the dynamics of this large class of neurons
(Ermentrout and Kopell, 1986).

In this present work we have shown that θ-nested γ

oscillations can emerge both in the PING and ING set-up
under an external excitatory θ-drive whenever the system, in the
absence of forcing, is in a regime of asynchronous dynamics,
but in proximity of a Hopf bifurcation toward collective γ

oscillations. The external forcing drives the system across the
bifurcation inside the oscillatory regime, thus leading to the
emergence of γ oscillations. The amplitude of these collective
oscillations is related to the distance from the bifurcation point,
therefore it depends on the phase of the θ-forcing term. These
nested oscillations can arise in proximity of a super-critical and
also a sub-critical Hopf bifurcations. As shown inAppendix A, in
the latter case the amplitudes are nomore symmetric with respect
to themaximum value of the theta stimulation, analogously to the
experimental findings reported in Butler et al. (2016).

Equivalent results have been reported for an excitatory-
inhibitory network with a recurrent coupling among the
excitatory neurons, by considering theWilson-Cowan rate model
(Onslow et al., 2014). However, at variance with our neural
mass model, the Wilson-Cowan model fails to reproduce the
emergence of γ -oscillations, displayed by the corresponding
spiking networks, in several other set-ups. In particular, the
Wilson-Cowan model is unable to display COs for purely
inhibitory populations (the ING set-up), without the addition of
a delay in the IPSPs transmission, delay that is not required in the
network model. Moreover, theWilson-Cowan model is unable to
display COs even for excitatory-inhibitory coupled populations
in the absence of a recurrent excitation (Onslow et al., 2014;
Devalle et al., 2017). As shown in Appendix B, the considered
neural mass model in the PING set-up displays clear θ-nested
γ -oscillations in the absence of any recurrent coupling or with
recurrent couplings only among the inhibitory neurons.

Furthermore, we have identified two different types of phase
amplitude couplings. One characterized by a perfect locking
between θ and γ -rhythms, corresponding to an overall periodic
behavior dictated by the slow forcing. The other one where
the locking is imperfect and the dynamics is quasi-periodic
or even chaotic. The perfectly locked θ-nested γ oscillations
display in turn two types of CFC: phase-phase and phase
amplitude coupling (Hyafil et al., 2015). These states arise
for νθ larger than 2–3 Hz and for sufficiently large forcing
amplitudes. From the results reported in Butler et al. (2016)
for the CA1-region of the hippocampus under sinusoidal
forcing in vitro, it is evident that perfectly phase locked PACs
have been observed in each single slice. However, in vivo
this perfect phase-phase locking cannot be expected, see the
detailed discussion of phase-phase coupling reported in Scheffer-
Teixeira and Tort (2016), where the authors clarify that phase
locking is indeed observable, but only over a limited number
of successive θ-cycles. Therefore, PAC with an underlying
chaotic (or noisy) dynamics is the scenario usually expected in
behaving animals.

From our analysis it also emerges that locked states are more
frequent in the ING set-up. The purely inhibitory population
is more easily entrained by the forcing with respect to the
coupled excitatory-inhibitory population system, where the
forcing is applied to the excitatory population. This result
is somehow in agreement with recent findings based on
the analysis of phase response curves, which suggest that
stimulating the inhibitory population facilitates the entrainment
of the gamma-bands with an almost resonant frequency (Akao
et al., 2018; Dumont and Gutkin, 2019). However, these
analyses do not consider θ-γ entrainment: this will be a
subject of future studies based on exact macroscopic phase
response curves (Dumont et al., 2017; Dumont and Gutkin,
2019).
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Our modelization of the PAC mechanism induced by an
external θ-forcing is able to reproduce several experimental
features reported for optogenetic experiments concerning the
region CA1, CA3 of the hippocampus, as well as MEC (Akam
et al., 2012; Pastoll et al., 2013; Butler et al., 2016, 2018). In
agreement with the experiments, we observe nested γ COs for
forcing frequencies in the range [1 : 10] Hz, whose amplitude
grows proportionally to the forcing one. Furthermore, the
γ -power and the frequency of the γ peak increase almost
linearly with the forcing amplitude, i.e., with the input θ-power.
Moreover these findings are consistent with recent results for
behaving rats, where it has been shown that hippocampal γ -
frequency and the associated power increase proportionally to
the animal speed (Ahmed and Mehta, 2012; Sheremet et al.,
2019). In addition, in Richard et al. (2013), the authors have
clearly demonstrated that the hippocampal θ-power and the
mouse speed are positively correlated. This proportionality
between the θ-power and the mouse speed has been recently
employed to develop a computational model able to successfully
reproduce CA1 network activity (Haimerl et al., 2019).

However, the neural mass model in all the examined PING
and ING set-ups is unable to reproduce the increase in frequency
of the γ -power peak with νθ reported in Butler et al. (2016).
Indeed, such effect was expected by the observation that during
movement, both the frequencies of hippocampal θ oscillations
(Sławińska and Kasicki, 1998) and γ oscillations (Ahmed and
Mehta, 2012) increase with the running speed of the animal.
However, the variation of the γ frequency reported in Ahmed
and Mehta (2012) for behaving animals amounts to 40–60 Hz,
while in the optogenetic experiment by Butler et al. (2016), the
increase was limited to≃ 10 Hz. In order to get a similar increase
in the neural massmodel, we have been obliged to assume that the
stimulation power (namely, the noise or the forcing amplitude)
increases proportionally to νθ . On one side, further experiments
are required to clarify if, during optogenetic experiments, the
forcing (or noise amplitude) affecting the neural dynamics is
indeed dependent on νθ . This could be due to a reinforcement
of the synaptic strengths for increasing forcing frequencies, or
to the fact that higher θ frequencies can favor neural discharges
in regions different from CA1, thus being assimilated to external
noise. On another side it should be analyzed if other bifurcation
mechanisms, beside the Hopf one, here considered, can give rise
to such a dependence of γ power on θ forcing.

Finally, experiments on behaving rodents report clear
evidence that θ-power and νθ , as well as the power of the γ -peak
and the corresponding frequency, increase all proportionally
to the animal speed (Sławińska and Kasicki, 1998; Ahmed

and Mehta, 2012; Richard et al., 2013; Sheremet et al., 2019).
Furthermore, in Sheremet et al. (2019) the authors report
evidence of the increase of the phase-amplitude coupling with the
speed. This scenario is consistent with the results reported in our
analysis, where we have shown that an increase of νθ and of the
stimulation power leads to an increase of Pγ and of the frequency
of the γ peak as well as of the PAC.
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In this paper, we focus on the emergence of diverse neuronal oscillations arising in

a mixed population of neurons with different excitability properties. These properties

produce mixed mode oscillations (MMOs) characterized by the combination of large

amplitudes and alternate subthreshold or small amplitude oscillations. Considering the

biophysically plausible, Izhikevich neuron model, we demonstrate that various MMOs,

including MMBOs (mixed mode bursting oscillations) and synchronized tonic spiking

appear in a randomly connected network of neurons, where a fraction of them is in a

quiescent (silent) state and the rest in self-oscillatory (firing) states. We show that MMOs

and other patterns of neural activity depend on the number of oscillatory neighbors

of quiescent nodes and on electrical coupling strengths. Our results are verified by

constructing a reduced-order network model and supported by systematic bifurcation

diagrams as well as for a small-world network. Our results suggest that, for weak

couplings, MMOs appear due to the de-synchronization of a large number of quiescent

neurons in the networks. The quiescent neurons together with the firing neurons produce

high frequency oscillations and bursting activity. The overarching goal is to uncover a

favorable network architecture and suitable parameter spaces where Izhikevich model

neurons generate diverse responses ranging from MMOs to tonic spiking.

Keywords: Izhikevich neuron model, random networks, bicurcation scenaria, mixed mode oscillations (MMOs),

mixed mode bursting oscillations (MMBOs), excitable neurons, electrical coupling

1. INTRODUCTION

Diverse spiking oscillations and bursting phenomena of electrical activity in single neurons or
neuronal networks play an important role in information processing and transmission across
different brain areas (Connors and Gutnick, 1990; Izhikevich, 2003, 2004, 2007; Coombes and
Bressloff, 2005; Antonopoulos et al., 2015, 2019; Ma and Tang, 2017; Mondal and Upadhyay, 2018;
Teka et al., 2018). The underlying mechanism of signal processing in neurons depends on the
variations of membrane voltages called spikes (Izhikevich, 2003, 2004, 2007). The complexity of
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spikes or trains of spikes can be controlled by external
stimuli, e.g., by injected electrical currents. In a common
scenario, a bunch of spikes (called a burst) may emerge in the
activity of single neurons or in neural populations (Izhikevich,
2000; Coombes and Bressloff, 2005; Constantinou et al., 2016;
Zeldenrust et al., 2018). Such oscillatory patterns of membrane
voltages can bemodeledmathematically by biophysical dynamics
(with realistic parameters) such as the (un)coupled Izikevich
neuron model (Khoshkhou and Montakhab, 2018), described in
the next section. Our goal is to study the firing and collective
activities of coupled neurons in an environment of heterogeneous
excitabilities. Neural networks support functional mechanisms
within brain areas. For example, such diverse groups of neurons
in the cortex are responsible for many complex neuronal
mechanisms (Izhikevich, 2000, 2004, 2007).

Most of the neurons are excitable, i.e., they show quiescent
behavior however, they can also fire spikes when they are
stimulated by input stimuli. In neural computations, the neurons
continue to fire a train of spikes when there is an input by
injecting a pulse of direct current (DC) and this is called tonic
spiking. There exist different types of spiking patterns depending
on the nature of the intrinsic dynamics. Bursting follows a
dynamic state in a neuron where it repeatedly fires discrete
groups or bursts of spikes, i.e., when the activity alternates
between a quiescent state and repetitive spiking (a bunch of
spikes appear together). This might be regular or chaotic,
depending on the dynamics of the system and excitabilities or
couplings (Izhikevich, 2000, 2004, 2007). Apart from spiking
and bursting activities, one of the interesting complex firing
patterns emerge from the activity of neurons is the mixed-
mode oscillations (MMOs) (Brøns et al., 2008; Desroches et al.,
2012; Bacak et al., 2016), what is the main focus here. In
MMOs, the oscillations are distributed with different amplitudes
where the firings alternate between large and small amplitude
oscillations (Brøns et al., 2008) (i.e., the so called LAOs and
SAOs, respectively) reflecting different rhythmic activities such
as locomotion or breathing (Bacak et al., 2016). The multiple
time scales (e.g., fast potassium channels with slow kinetics;
Ghaffari et al., 2015) of voltage variables or controlled noise
can induce MMOs in neuronal systems (Muratov and Vanden-
Eijnden, 2008; Upadhyay et al., 2017). MMOs were first observed
in chemical reaction systems (Ostwald, 1900). They were also
observed in Belouzov-Zhabotinsky reactions (Schmitz et al.,
1977; Showalter et al., 1978; Brøns and Bar-Eli, 1991), calcium
dynamics and electrocardiac systems (Kummer et al., 2000;
Rotstein and Kuske, 2006). We note that, from a dynamical
perspective, the generation of MMOs can be analyzed through
the canard phenomenon (Eckhaus, 1983; Drover et al., 2004;
Rubin and Wechselberger, 2008) and also via homoclinic
bifurcations (Chakraborty and Dana, 2010). Krupa et al. (2008)
analyzed the mechanism of MMOs in a two-compartmental
model of dopaminergic neurons in the mammalian brain stem.
To investigate the generation of MMOs in a self-coupled,
FitzHugh-Nagumo model, Desroches et al. (2008) developed a
computational method and Guckenheimer (2008) examined how
chaotic dynamics and MMOs arise near folded nodes and folded
saddle-nodes on slow manifolds. Vo et al. (2010) demonstrated

that MMOs can generate a type of bursting that can be reflected
in a biophysical model of pituitary lactotroph (Toporikova et al.,
2008). MMOs were also observed in stellate cells of the medial
entorhinal cortex (layer II) and Rotstein et al. (2008) analyzed the
mechanism of such patterns in a biophysical, conductance-based,
model. Apart from MMOs, mixed-mode bursting oscillations
(MMBOs) (Desroches et al., 2013) were also observed when
a bunch of spikes in a single burst appears with SAOs. In
MMBOs, burst activity appears instead of single spikes within
LAOs. Our study on network dynamics sheds more light on such
interesting patterns.

In this paper, we explore the emergence of spiking and
MMOs in a random network of diffusively coupled (through the
membrane voltage variable) Izhikevich neurons in a backdrop
of diverse excitabilities. The role of network structure and
arrangement of mixed neural populations in the network are the
main objectives for the study of the emergence of MMOs. In
network neuroscience, researchers investigate the firing activities
and collective patterns of neural activity where neurons are
connected in a complex-network topology (Brøns et al., 2008;
Desroches et al., 2008; Erchova and McGonigle, 2008; Postnov
et al., 2008; Krupa et al., 2014; Malagarriga et al., 2015;
Antonopoulos, 2016; Borges et al., 2017, 2020; Khoshkhou
and Montakhab, 2018). For instance, a correlated synchronous
firing appears in neuronal cells with the adaptive exponential
integrate-and-fire model with excitatory-inhibitory synapses that
can be associated with epileptic seizures (Protachevicz et al.,
2019). Bittner et al. (2017) showed that balanced excitatory
and inhibitory input currents in clustered (non-clustered)
networks of neurons may reflect spiking activities in which
inhibitory neurons share more coherent activities. Recently,
MMOs have also been observed in pre-Bötzinger complex
networks (Bacak et al., 2016) (a medullary region that controls
breathing in mammals) in the presence of heterogeneous
excitable parameters. In both studies, a three-coupled reduced
model was proposed to understand the behavior of collective
spiking patterns and the conditions for the emergence of LAOs
and SAOs were studied.

However, the role of network architecture and different
excitabilities in the emergence ofMMOs are not well-understood.
In this paper, we have affirmative answer to the question related
to the emergence of MMOs. We reveal how such MMOs can
be distinguished from other firing patterns, supported by their
relevant biophysical significance (Golomb, 2014). Moreover, the
neurons in the paper are placed on the nodes of a random
network and transfer signals through its links. In the absence
of coupling, the activity of the considered neuronal population
reveals two types of dynamical states (or excitabilities), ranging
from spike-bursting to subthreshold to quiescent states. The
key question that arises here is the following: considering a
mixed/heterogeneous neural population (neighboring neurons
of self-sustained spiking neurons might have subthreshold
oscillations), can we design a random network of neurons (with
Poissonian neighbor node-degree-distribution) that will give rise
to collective firings where subthreshold or quiescent neurons are
compelled to show high amplitude activities?Wewant to uncover
the coupling parameter space and the ratio of mixed populations
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where MMOs and fast tonic spiking behavior emerge. In this
context, by mixed/heterogeneous neural population we mean
that neurons with different excitability properties i.e., the non-
identical neurons with different firing patterns are connected in
a complex network. At weak couplings and a diluted random
network setting, we show that desynchronized subthreshold
neurons exhibit MMOs. With the increase of the coupling, all
subthreshold neurons fire in a mixed-mode state. In both cases,
MMOs are not prominent in oscillatory neurons and eventually
disappear as the coupling strength increases. Consequently,
neural subpopulations emerge as synchronous clusters exhibiting
tonic spiking behavior. For diluted random and homogeneous
networks, where the electrical coupling strength is constant,
we show that neighbors exhibiting self-sustained oscillations,
determine the structural patterns of MMOs. Based on the
synchronized cluster over a certain coupling range, we can
reduce the random network to a low dimensional, reduced-
order network, i.e., to two coupled oscillators which reflect and
predict the diverse dynamical patterns that appear in the random
network. Additional to the random network, we have validated
our results in small-world network of 500 nodes. In particular,
our results for both types of networks confirm that the emerging
features observed in the random network can also be found in the
small-world network.

The paper is organized as follows: in section 2, we describe the
Izhikevich neuron model and discuss its dynamical properties.
The model displays various electrical activities (i.e., different
spiking and bursting patterns) for fixed parameter values
and for a range of injected currents, I. Then, we investigate
the dynamical behavior on a random network (see section
2.2) based on single Izhikevich neurons with various firing
responses. In particular, we identify the parameter region
and coupling strategy where MMOs and MMBOs exist, and
analyze the transition phases of firing responses (sections 2.2.1
and 2.2.2). In section 3, the reduced-order network model
is constructed to verify the results obtained for the random
network. A bifurcation analysis is also performed to show
the mixed mode states and other phases of oscillations. In
section 4, the MMOs are further tested in a small-world
network. Finally, we conclude our work in section 5, followed by
a discussion.

2. BIOPHYSICAL MODEL AND RANDOM
NETWORK

2.1. Model Description
Our work focuses on the analysis of the complex dynamical
behavior in the 2-dimensional nonlinear Izhikevich model that
captures neuronal membrane voltages (Izhikevich, 2003, 2004).
It produces spiking and bursting patterns distributed over
a range of parameter values. It is a biophysically plausible
and computationally efficient mathematical model that takes
into account continuous spike generation and a discontinuous
resetting process following the spikes. It has two state variables;
the membrane voltage, v and recovery variable, u, which measure
the activation of K+ and inactivation of Na+ ionic currents,

respectively. The dynamical activity of an Izhikevich neuron is
captured by the set of equations

v̇ = 0.04v2 + 5v+ 140− u+ I, (1)

u̇ = a(bv− u), (2)

with an after-spike resetting constraint, i.e., when the membrane
voltage v reaches a peak value vpk, the following relation is
applied: if v ≥ vpk(= 30), then v ← c and u ← u + d.
The parameters a, b, c, and d are dimensionless. The resting
potential ranges in the interval−70 to−60mV and depends on b
that indicates the sensitivity of u to the subthreshold fluctuations
of the membrane potential, v. The parameter a measures the
timescale of the recovery variable u. The parameters c and d
control the after-spike reset value of v and u, respectively, caused
by fast high-threshold K+ channel conductances and slow Na+

and K+ conductances. The function (0.04v2 + 5v + 140) was
derived using the spike initiation dynamics of a cortical neuron.
The different suitable choices of parameters generate various
types of oscillations, often found in neocortical and thalamic
neurons (Connors and Gutnick, 1990; Gray and McCormick,
1996; Izhikevich, 2000). The initial conditions are set to v =
−63 and u = bv. Synaptic currents or injected DC-currents
are delivered via I. We consider a fixed parameter regime
that produces different firings for a single Izhikevich neuron
(Izhikevich, 2003, 2004), i.e., a = 0.1, b = 0.2 with reset
parameters c = −65 and d = 8, what we call set I. We note that
for I < 4, the system of Eqs. (1) and (2) does not show any spiking
or bursting behavior. Thus, the firing patterns can be obtained
for I ≥ 4. Simulations of the systems of ordinary differential
equations were performed using the fourth-order Runge-Kutta
method with a fixed time step of 0.01, as the simulation results
with a smaller time step did not show any significant differences.
Bifurcation diagrams of the deterministic dynamical model in
the reduced-order network were computed using the MatCont
software package (Dhooge et al., 2003).

2.2. Formulation of the Network of Model
Neurons
We construct an Erdős-Rényi (ER) random network of N = 500
nodes with average node-degree 5. Then, we set up a mixed
population of Izhikevich neurons to model neural activity on
the nodes of the random network, where 70% of them exhibit
oscillatory behavior (self-sustained spiking oscillations, for I =
10) as shown in Figure 1B (in blue) and 30% are in quiescent
states (for I = 3), shown in Figure 1B (in red) by setting all the
parameters in the tonic spiking condition (see set I). The system
is coupled via the membrane voltage vwith a mean-field diffusive
coupling. In particular, the equations of the N coupled neurons
(i = 1, 2, . . . ,N) in the network are described by

v̇i = 0.04v2i + 5vi + 140− ui + Ii +
K

∑N
j=1 Aij

N
∑

j=1

Aij(vj − vi),

u̇i = a(bvi − ui),

with the constraint that if vi ≥ 30, then, vi ← c and ui ←
ui + d. A is the adjacency matrix of the random network, K
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FIGURE 1 | Membrane potential v and spatiotemporal plots. (A) One self-oscillatory spiking neuron in the absence of coupling (K = 0) and a time-series of a

quiescent node is shown in (B). (C) The spatiotemporal plot for all neurons in the random network. The first 350 nodes are self-oscillatory. Nodes from 351 to 500 are

in steady states (see the 4 zoom-ins). (D,E) The coupling is increased to K = 0.3. There are several types of MMOs observed in the quiescent subpopulation. Three

nodes from the quiescent subpopulation are marked and the time series of each node over the course of time is shown in (E). (F) Spatiotemporal plot of all neurons in

the random network. The quiescent nodes are desynchronized with each other. (G,H) The coupling is increased to K = 0.4. ISI of spiking nodes are increased and

decreased for quiescent nodes. Desynchronized MMOs (shown in (H), where two quiescent nodes have been randomly chosen) are still visible in the quiescent

population. (I) Spatiotemporal plot that shows the variation in spikes for all nodes in the random network. (J–L) are for K = 1. The entire population fires (without any

MMOs appearing) with almost the same frequencies. Clearly two subpopulation are separately synchronized.

the coupling strength and Si =
∑N

j=1 Aij the degree of the ith

node. We consider I1 = . . . = Ip = 3, where p
N = 0.3 and

Ip+1 = . . . = IN = 10, where q = 1 − p
N = 0.7 that lead

to the time evolution shown in Figures 1A,B. In the absence
of coupling, the oscillatory nodes (70%) show desynchronized
spiking and the rest of them (30%) converge to fixed points (see
spatiotemporal plot in Figure 1C, where the inset is a zoom-
in). With the increase of the coupling strength K, the quiescent
neural subpopulation exhibits different transitions to oscillatory
behavior. Generally, for weak coupling, this subpopulation
generates MMOs and subthreshold oscillations. One type of
MMOs shows that between two consecutive LAOs, there exist
two SAOs. Interestingly, other aperiodic MMOs may coexist in
this subpopulation. Interspike intervals (ISI) are not identical and

the number of small amplitude spikes in SAOs within two large
amplitude spikes may vary in the entire signal. We have found
three types of MMOs shown in Figure 1E, randomly picked
from the quiescent subpopulation in which the average interspike
intervals, 〈ISI〉, differ significantly. We will analyze such mixed
MMOs behavior and variation of SAOs between LAOs in the next
subsections. This study unveils the generation and annihilation
of MMOs within a subpopulation of neurons. We note that, the
oscillatory subpopulation shows almost coherent tonic spiking
(Figure 1D). The spatiotemporal plot of all nodes is shown in
Figure 1F, where quiescent nodes are desynchronized (a zoom-in
is shown on the right).With further increase of the coupling (K =
0.4), the quiescent subpopulation exhibits MMOs, however the
number of LAOs between two spikes is considerably decreased.
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The distance between two consecutive spikes is also decreased
compared to the previous coupling case, therefore, 〈ISI〉 is also
decreased (see Figure 1H, where two randomly chosen nodes
have been depicted in the panels of the figures. Interestingly,
the oscillatory subpopulation remains in the same firing regime
and the network shows asynchronous behavior (Figures 1G,I)
for all nodes. Finally, for K = 1, the complete population
switches to tonic spiking (Figures 1J–L) with almost identical
〈ISI〉, and the two subpopulations form two clusters when they
are separately synchronized.

2.2.1. MMOs in the Quiescent Subpopulation: Impact

of Spiking Neighbors of Quiescent Nodes
Here, we elaborate on the quiescent population and on several
coexisting MMOs that emerge. Figure 2A shows the network
structure with a mixed population (spiking neurons are shown
with blue filled circles and quiescent nodes with red filled circles).
We first observe the emergence of MMOs in the quiescent nodes
at weak coupling. At K = 0.3, we have isolated three red
nodes with different neighbor distributions. The red node (left)
with 7 neighbors shows MMOs in which three large amplitude
spikes exist within 100 time units (see Figure 2B). ISI are not
constant and the number of small amplitude spikes between
two large amplitude consecutive spikes is also varied in SAOs.
The neighbors of this node have two silent (blue) and five
oscillatory nodes (red). The number of spikes is slightly increased
for another neuron originally in a quiescent state (Figure 2C)
and the number of small amplitude spikes in LAOs is varied
from 4 to 5. This neuron has 11 neighbors in which 7 nodes are
self-oscillatory (blue) in the absence of coupling.

Next, we define the parameter ri to search for the presence of
oscillatory nodes in the neighborhood of quiescent node (i) by

ri =
Noi

∑N
j=1 Aij

=
Noi

Si
, (3)

where Noi is the number of spiking oscillators connected with
the ith quiescent node and Si the degree of the ith node. The
neighbors of a third selected node are all oscillatory (r = 1)
and the node reveals lower ISI as there is comparably fast
switching from SAOs to LAOs (see Figure 2D). Therefore, the
ratio of adjacent spiking nodes (blue) with respect to neighbors,
Si, determines the effect of the average ISI, 〈ISI〉, on the ith
quiescent node (red). To understand the effect of the average r
on 〈ISI〉, we have considered three couplings: K = 0.3, 0.4, and
0.6, shown in Figure 2E with upper red line (filled circle), middle
red line (filled diamond) and lower red line (star), respectively.
For the weaker couplings K = 0.3 and K = 0.4, and for
small r, 〈ISI〉 exhibits significantly higher values (25 time units
with high fluctuations). For higher values of r ≈ 1, 〈ISI〉 is
decreased by 10 time units. The results confirm that, a red node
with smaller r (where the presence of red (quiescent) neighbors is
significantly larger, have strong impact on the red node) reduces
the number of spikes compared to the case where r ≈ 1. For
even higher couplings (K = 0.6, red line with star marker),
〈ISI〉 decreases to around 5 and the impact of r on〈ISI〉 is not
prominent at even higher couplings (not shown herein). We
note that, as we have seen in Figures 2B–D, smaller changes
in r (r = 2

7 ≈ 0.28, r = 7
11 ≈ 0.63 and r = 1 for

(b), (c) and (d), respectively) result in small amplitude spikes
in SAOs between two large amplitude spikes (LAOs). 〈ISI〉 and

FIGURE 2 | The impact of neighbors of MMOs on quiescent nodes. (A) The random network of 500 nodes (Bastian et al., 2009). Red nodes are in quiescent and blue

in self-oscillatory states. (B) One red node is identified with degree 7. Five of them are spiking oscillators (r ≈ 0.28). Irregular MMOs are observed here. (C) The second

red node with r ≈ 0.63. MMOs with considerably lower ISI are shown. (D) All neighbors are self-oscillatory (r = 1), MMOs with highly frequent spikes are observed. For

(B–D), the coupling strength is fixed at K = 0.3. (E) Impact of r on 〈ISI〉. The 〈ISI〉 is continuously decreased if we check for higher values of r and the average value

saturates below 15 (red curve with black filled circles, red curve with black filled diamonds) for K = 0.3 and 0.4, respectively. For even higher coupling (K = 0.6, red

curve with black filled stars), r contributes less to 〈ISI〉 with the value fluctuating between 5 and 10.
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spikes in SAOs of quiescent nodes are determined by two key
factors: the number of neighboring spiking neurons and the
coupling strength. Therefore, we conclude that 〈ISI〉 decreases if
the number of oscillatory nodes in the neighbor increases.

2.2.2. MMOs of Quiescent Nodes: The Role of

Electrical Coupling
Next, we choose randomly a quiescent node (red) and check
the effect of electrical coupling strength on MMOs connected
to that node. At the lower coupling K = 0.3, the node exhibits
three small amplitude spikes (SAOs) between two large amplitude
spikes (Figure 3B). To quantify the spike distribution, we define

fSAO =
SSAO

Sall
,

fLAO =
SLAO

Sall
,

where SSAO, SLAO are the numbers of small and large amplitude
spikes, respectively, and Sall the count of all spike amplitudes
in the same interval. In Figure 3B, three small amplitude
spikes appear consecutively and are shown by star, triangle,
and hexagon markers, respectively. They are distributed with
almost similar amplitudes (see left part of Figure 3A shown in
light blue). As the membrane voltage is periodic, fLAO shares
almost equal probability with fSAO. We note that, we have
used f in Figure 3B instead of fSAO or fLAO to accumulate the
information of the entire spiking frequency set. If we increase
the coupling to K = 0.4, we see that three small amplitude
spikes converge to a single one (Figure 3C, diamond marker),
the oscillatory neighbors influence the oscillation of the quiescent

node and they are equiprobable (the light and deep blue bars
in Figure 3A are almost of the same amplitudes). At K = 0.6,
the small amplitude spikes appear recurrently (circle marker in
Figure 3D) after two large amplitude spikes and give rise to
MMBOs. Interestingly, simpleMMOs change into more complex
dynamics, i.e., MMBOs. Therefore, fLAO (deep blue bar) is higher
than fSAO for small amplitude spikes (light blue bar). When the
coupling is set to 1, the MMOs are completely lost (no light
blue bar appears in the right-hand side of Figure 3A, see also
the spiking behavior in Figure 3E). The quiescent neighbors
at weak coupling contribute strongly to the generation of
mixed-mode oscillations. When we increase the coupling, more
information is shared among nearest neighbor nodes and long
distant neighbors. The dynamics in the network, including that
of quiescent nodes, is characterized by large amplitude spikes.
We note that, the nodes in the random network are dominated
by self-oscillatory neurons (70%) and for higher coupling, they
control the spiking behavior in the entire network, therefore
quiescent nodes cannot reflect MMOs for higher couplings.

2.2.3. Average ISI vs. Coupling Strength K in Neural

Subpopulations
Here, we scan the average ISI, 〈ISI〉, interval of the entire
subpopulation varying the coupling strength K. The 〈ISI〉 of
oscillatory (blue) nodes in the network is slightly increased (see
Figure 4A with filled blue circles) for weaker couplings and
saturates around 5.6 time units when it is increased (for K >

1.2). On the other hand, the 〈ISI〉 of red quiescent nodes is
decreased when the coupling is increased. For small couplings,
〈ISI〉 shows strong fluctuations (shown by black lines with error
bars in the backdrop of red filled circles, Figure 4B) due to

FIGURE 3 | Impact of coupling K on MMOs of a quiescent (red) node. (A) Probability distribution of spikes in SAOs (light blue) and LAOs (deep blue) for K = 0.3, 0.4,

0.6, and 1 from left to right, respectively. (B) The time evolution for K = 0.3. Three small amplitude oscillations (star, triangle, and hexagon) appear between two

consecutive large amplitude spikes. (C) One small amplitude spike (diamond) appears between two large amplitude spikes at K = 0.4. (D) One small amplitude spike

(black circle) appears after two spikes emerging together for K = 0.6. Therefore, the probability of small amplitude spikes is decreased [third part of (A)] and results to

the emergence of MMBOs. (E) Small spikes vanish at higher coupling (K = 1), therefore MMOs are lost and tonic spikes are generated, instead.
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FIGURE 4 | 〈ISI〉,
√
fSAO and CV as a function of coupling K. (A) 〈ISI〉 for all spiking oscillators (in total 350). At small coupling, 〈ISI〉 is smaller, i.e., the spike

frequencies are comparatively higher and it saturates around 5.6 for higher couplings. The fluctuations are negligible here, i.e., all spiking nodes have common

frequencies for all couplings considered. (B) Quiescent nodes. For small couplings, the nodes exhibit diverse desynchronized MMOs (shown in black, with error bars).

〈ISI〉 saturates at higher couplings. (C) Relation between CV (red line with marker) and
√
fSAO (brown line with marker) as a function of the coupling strength K.

the desynchronized 〈ISI〉 in MMOs of the quiescent nodes. The
red and blue lines in Figures 4A,B are plotted from the two
coupled reduced models derived from the collective behavior
of the connected network described in the next section. For
small couplings, we see that the 〈ISI〉 of each quiescent node
are dissimilar (see Figure 2), i.e., the firing rate varies from one
node to another. We scan the entire average ISI interval of the
quiescent subpopulation for a range of coupling strengths to
understand the fluctuations in ISI. To quantify these fluctuations,
we calculate the coefficient of variation, CV , of ISI of the
quiescent subpopulation calculated from the numerical data
(Figure 4C, red line with dots). CV becomes zero after a certain
coupling strength, as there is no variation in spike sequences and
SAOs completely vanish. The brown line in Figure 4C reflects
the frequency of peaks in the SAOs, which is zero for higher
couplings, where CV is also zero, thus revealing a close relation
between CV2 and fSAO. In the Supplementary Material, we
present an analytical approach that relates the two quantities and
offer a plausible explanation for the discrepancy observed for
small coupling strengths.

3. REDUCED MODEL DESCRIPTION

It is clear from Figure 1 that neurons within subpopulations are
synchronized for higher couplings, and cluster synchronization
appears within subpopulations. This motivates us to pursue
further an approach to construct a reduced model of two
coupled systems which is able to encode the information in the
large network. Since we have considered a random network in
which the node-degrees follow the Poisson distribution, we can
approximate the degree of each node/neuron by the average
degree of the considered network (Hens et al., 2015; Sasai et al.,
2015). Therefore, we can assume that Sj = 〈S〉 for j = 1, . . . ,N.
The number of spiking oscillators in the neighborhood of each
oscillator is expected to be (1 − p

N )S =
q
N S and that of quiescent

oscillators, p
N S, where p is the number of quiescent oscillators

in the network. We set vj = VQ for j = 1, . . . , p and vl =
VS for l = p + 1, . . . ,N. Over a certain coupling strength,
within different clusters, the quiescent and spiking oscillators
are synchronized separately. Therefore, by representing the two
clustered subpopulations by two nodes, we obtain the following

reduced system of coupled equations

V̇S = 0.04V2
S + 5VS + 140− US + IS + Kp(VQ − VS), (4)

U̇S = a(bVS − US), (5)

V̇Q = 0.04V2
Q + 5VQ + 140− UQ + IQ + Kq(VS − VQ), (6)

U̇Q = a(bVQ − UQ), (7)

with the constraint equation that if VQ ≥ 30, then VQ ← c
and UQ ← UQ + d. These conditions are also valid for spiking
nodes, i.e., for Eqs. (4) and (5) for spike oscillators with IS = 10
and for Eqs. (6) and (7) for quiescent oscillators with IQ = 3.
We note that, for homogeneous networks, there will be no effect
of the assortativity (degree-degree correlation) on MMOs or on
collective firing states as the number of quiescent oscillators in
the neighborhood of each oscillator will not be affected. The
〈ISI〉 plotted for VS and VQ as a function of K is shown in
Figures 4A,B with red and blue dots, respectively. The results
almost match with the result for the random network (filled blue
and red circles). A phase diagram of the coupled reduced model
with respect to p

N and K is shown in Figure 5A. The diagram
is drawn by monitoring VQ. The MMOs and spike regions are
identified with the help of f and quiescent (death) states by noting
the variation of the peak values of VQ. The dark-red regime is
the steady state island, where all neurons in the random network
remain in quiescent states. The regime of MMOs appears for
weak couplings (for all p) shown in orange. The uncoupled
quiescent nodes are desynchronized in this regime. All nodes
collectively (and individually) fire at higher couplings for p < 0.9
(pink region). The boundaries of each region are consistent with
the results from the random network. To confirm further the
onset of steady states, we have performed a bifurcation analysis
to check the boundaries while we have changed p

N from 0.8 to
1 for coupling strengths K = 2 and K = 3, respectively (see
Figures 5B,C). The stable fixed point, VQ, is shown with thick
green line in both cases. This fixed point (node) collides with a
saddle point and vanishes at p

N ≈ 0.87. The system shows spiking

oscillations below p
N ≈ 0.87 in both cases. Finally, for p

N = 0.95,
the system changes its dynamics from MMOs to a steady state at
K ≈ 0.77, as evidenced in Figure 5D.
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FIGURE 5 | Phase-space diagram of the reduced quiescent node model as a function of K and relative size of quiescent oscillators in the random network. The

emergence of MMOs, synchronized spiking oscillations and quiescent states are depicted in orange, pink, and dark red, respectively. The boundaries of quiescent

states with other regimes are demarcated by the bifurcation scenario. (B,C) Stable fixed points vanish through a saddle-node (SN) bifurcation at p
N
≈ 0.87 for K = 2

and 3, closely matched with the phase diagram. Note that for higher couplings, the boundary of quiescent states does not depend on p
N
. (D) Bifurcation analysis as a

function of K, for p
N
= 0.95 [dashed vertical line in (A)]. The onset of quiescent states occurs at K ≈ 0.77.

4. EMERGENCE OF MMOS IN A
SMALL-WORLD NETWORK

Following up the previous studies on a random network of
neural computation, we construct here a small-world network
of N = 500 nodes. A closed non-local ring is constructed with
8 adjacent neighbors. A rewire strategy (Watts and Strogatz,
1998) is implemented with a probability 0.2 to construct the final
network (see Figure 6A). To understand the impact of oscillatory
neighbors (i.e., blue nodes) (see Equation 3) on quiescent nodes
(red), we have identified four quiescent nodes (red) with different
r. The network comprises 40% quiescent nodes. Nodes with
higher percentage of oscillatory neighbors show spiking and
irregular MMOs that appear between two successive spikes
(Figures 6B,E, where r = 0.75 and 1, respectively). However, the
red nodes with a smaller percentage of oscillatory neighbors are
unable to fire (r ≈ 0.4, Figure 6C) or irregular spikes appear with
higher 〈ISI〉 value (r = 0.5, Figure 6D). The coupling strength is
fixed at K = 0.3. Figure 6E shows the impact of r on 〈ISI〉, which
is seen to continuously decrease for nodes with large percentage
of oscillatory neighbors (r ≫ 0.1). The average 〈ISI〉 saturates
below 30 (red curve with black filled circles) for K = 0.3. For this
coupling strength, diverse MMOs can be seen in Figures 6B–E.
For the higher coupling strength K = 0.4, 〈ISI〉 converges to 10
(red curve with black filled diamonds). r contributes less to 〈ISI〉
with the value fluctuating around 10 for K = 0.6 (red curve with
black filled stars).

5. CONCLUSIONS

In this paper, we sought to study MMOs in a random and
a small-world network of diverse excitable Izhikevich neurons

for different coupling strengths by introducing the generation
of complex oscillations. We have observed MMBOs, which are
periodic in nature and are relevant to the GnRH model neuron
as the dynamical behavior of these neurons in a small-size
network can be useful in the studies for epilepsy (Desroches et al.,
2013). We have confirmed that a certain mixed population of
quiescent and oscillatory nodes can give rise to several types
of MMOs and MMBOs in the two types of networks. MMOs
have potential applications in biophysical and other systems.
In complex systems, various mechanisms exist during different
oscillatory phases that generate spike patterns between fast and
slow amplitude motion together with spikes and subthreshold
oscillations, termed MMOs. It was observed that pyramidal
neurons are capable of exhibiting two types of MMOs and
their characterization was analyzed under antiepileptic drug
conditions (Babak et al., 2017). Small amplitude oscillations
(<10mV) give rise to intrinsic neuronal phenomena that exist
during the synaptic transmission block (Alonso and Llinás, 1989;
Zemankovics et al., 2010). Actually, it has been observed in
many types of neurons, such as in neurons in the thalamus,
hippocampal CA1 neurons, neocortex neurons, spinal motor
neurons, etc. (Puil et al., 1994; Gutfreund et al., 1995; Narayanan
and Johnston, 2007; Iglesias et al., 2011). It was suggested that
MMOs can be responsible for the transition from high firing
rates to quiescent states by reducing neuronal gain (Iglesias
et al., 2011; Golomb, 2014). Many studies showed the impacts of
small amplitude oscillations/subthreshold oscillations (STOs) on
diverse neuronal responses such as spike clustering (Puil et al.,
1994; Gutfreund et al., 1995; Narayanan and Johnston, 2007),
synaptic plasticity (Narayanan and Johnston, 2007; Bazzigaluppi
et al., 2012), rhythmic activities, synchronization (Acker et al.,
2003; Engel et al., 2008), etc.
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FIGURE 6 | The impact of neighbors of MMOs on quiescent nodes. (A) The small-world network of 500 nodes (Watts and Strogatz, 1998) with p = 0.2 and 〈S〉 = 8.

(B) One red node (quiescent) is identified with node-degree 8. Six of them are spiking oscillators (r = 0.75). Irregular MMOs are observed here. (C) The second red

node with r ≈ 0.4. The node shows sub-threshold oscillations only. (D) 50% of the neighbor nodes are spiking oscillators and irregular spikes appear with high 〈ISI〉.

(E) All neighbors are self-oscillatory (r = 1) and MMOs with highly frequent spikes are observed. For (B–E), the coupling strength is fixed at K = 0.3. (F) Impact of r on

〈ISI〉. The 〈ISI〉 is continuously decreased if we increase r. The average value saturates below 30 (red curve with filled circles) for K = 0.3 and converges to 10 (red

curve with black filled diamonds) for K = 0.4. r contributes less to 〈ISI〉 with the value fluctuating around 10 for K = 0.6 (red curve with black filled stars).

Here, random networks with various injected electrical
current stimuli go through different transition phases of
oscillations for various coupling strengths and emerging STOs
with spikes, i.e., MMOs. First, the depolarization in membrane
voltages show small amplitude oscillations around steady state
potentials, and with further depolarization, gives rise to spikes,
e.g., to MMOs (Jalics et al., 2010). STOs play an important role
in the emergence of MMOs and in controlling spike clustering
(Torben-Nielsen et al., 2012; Latorre et al., 2016).

Furthermore, MMOs play an important role in neuronal
functional mechanisms, namely, the STOs affect the sensitivity
of neurons for injected input stimuli, the amplification of
synaptic inputs and network synchronization to specific firing
frequencies (Babak et al., 2017). The mechanism of MMOs
produced in complex dynamical systems remains a challenging
task. In the excitable pituitary cell model, pseudo-plateau
bursting is canard-induced MMOs (Vo et al., 2010). It correlates
electrophysiological behavior of SAOs on clustering spikes, and
shows the influences of ionic currents to the firing rate and spike
patterns in the network.

Finally, experimental and numerical studies show that
MMOs occur in oscillatory rhythms in brain functioning
from a single neuron to global neural networks (Erchova and
McGonigle, 2008). In this study, we investigated both types of
oscillations, MMOs and MMBOs. The results may be useful
to Neuroscientists and those working on the mathematical
modeling and dynamical behavior of cortical neurons based in
random neural networks. We plan in a future publication to

explore the impact of excitatory and inhibitory connections in
Izhikevich neurons and how they give rise to the emergence of
MMOs (Noback et al., 2005; Deco et al., 2014; Pastore et al., 2018).
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Dynamic functional connectivity (DFC) was established in the past decade as a
potent approach to reveal non-trivial, time-varying properties of neural interactions –
such as their multifractality or information content –, that otherwise remain hidden
from conventional static methods. Several neuropsychiatric disorders were shown
to be associated with altered DFC, with schizophrenia (SZ) being one of the
most intensely studied among such conditions. Here we analyzed resting-state
electroencephalography recordings of 14 SZ patients and 14 age- and gender-matched
healthy controls (HC). We reconstructed dynamic functional networks from delta band
(0.5–4 Hz) neural activity and captured their spatiotemporal dynamics in various global
network topological measures. The acquired network measure time series were made
subject to dynamic analyses including multifractal analysis and entropy estimation.
Besides group-level comparisons, we built a classifier to explore the potential of DFC
features in classifying individual cases. We found stronger delta-band connectivity,
as well as increased variance of DFC in SZ patients. Surrogate data testing verified
the true multifractal nature of DFC in SZ, with patients expressing stronger long-
range autocorrelation and degree of multifractality when compared to controls. Entropy
analysis indicated reduced temporal complexity of DFC in SZ. When using these indices
as features, an overall cross-validation accuracy surpassing 89% could be achieved in
classifying individual cases. Our results imply that dynamic features of DFC such as
its multifractal properties and entropy are potent markers of altered neural dynamics in
SZ and carry significant potential not only in better understanding its pathophysiology
but also in improving its diagnosis. The proposed framework is readily applicable for
neuropsychiatric disorders other than schizophrenia.

Keywords: dynamic functional connectivity, multifractal analysis, information-theoretical entropy, machine
learning, schizophrenia, electroencephalography
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INTRODUCTION

Schizophrenia (SZ) is a severe psychiatric disorder that can
be characterized by altered perception and sensory processing,
distorted thinking and impaired affective, social and cognitive
functions (Uhlhaas and Singer, 2010). Yet being one of the
most prevalent mental diseases affecting approximately 1% of
the worldwide population (Bhugra, 2005), still no objective
diagnostic test exists for SZ (Boutros et al., 2008; Calhoun et al.,
2008). Moreover, the etiology of SZ is still unclear, despite being
the subject of intense research for more than 100 years (Uhlhaas
and Singer, 2010; Yu et al., 2015). Evidently, there has been
a growing interest recently in developing tools that can yield
quantitative markers of SZ with a biological basis. The expected
benefits of these would be twofold: (i) advancing diagnosis
and screening of the disease, while also (ii) providing further
insights on its underlying neural mechanisms. The hypothesis
of abnormal or altered connectivity has been suggested as a
key feature of SZ (Friston and Frith, 1995; Bullmore et al.,
1997), referring to it as a dysconnectivity syndrome (Friston
et al., 2016). Accordingly, many recent studies utilized tools of
functional neuroimaging and connectivity analyses to identify
biomarkers of SZ (Arbabshirani et al., 2013; Du et al., 2015, 2018;
Rashid et al., 2016).

Many SZ-related alterations of functional connectivity (FC)
were revealed both at rest and during task modulation (Calhoun
et al., 2009; van den Heuvel and Fornito, 2014; Kambeitz et al.,
2016; Sheffield and Barch, 2016), however results from different
studies are often inconsistent (Fox and Greicius, 2010). FC is
most commonly defined as the statistical interdependence of
neural activity recorded from disparate brain regions (Friston
et al., 1993). This dependence can be captured in many ways
from bivariate methods (Sakkalis, 2011; Smitha et al., 2017)
to data-driven multivariate approaches such as independent
component analysis (ICA) (Li et al., 2009). The large variety of
available analytical tools can be considered as one of the (many
possible) reasons of contradictory results (Maran et al., 2016).
Recently, it has also been proposed (Damaraju et al., 2014) that
the inconsistency may arise from the fact that most previous
studies analyzed FC in a static manner, i.e., implicitly regarding
functional connectivity constant during the measurement period
(static functional connectivity, SFC). On the other hand, it has
been shown that FC fluctuates even in the resting state (Chang
and Glover, 2010; Hutchison et al., 2013; Allen et al., 2014).
Indeed, several studies revealed alterations of dynamic functional
connectivity (DFC) in SZ that could not be captured by simple
SFC analyses (Damaraju et al., 2014; Ma et al., 2014).

Much progress has been made in the past decade in terms of
developing methods to capture and characterize dynamic features
of FC (see Preti et al., 2017 for a recent review). Among others,
dynamic graph theoretical analysis has emerged as a frequently
used approach (Dimitriadis et al., 2010; Tagliazucchi et al., 2012;
Yu et al., 2015). Graph theory is a popular and powerful tool
of FC studies (Bullmore and Sporns, 2009) and is used to
describe various topological aspects of complex brain networks
reconstructed from physiological data through a set of relatively
simple graph theoretical measures (Rubinov and Sporns, 2010).

It was also adapted to the DFC framework by multiple studies
to capture the spatio-temporal evolution of functional networks
(Dimitriadis et al., 2010; Tagliazucchi et al., 2012). As details
of brain graph reconstruction fundamentally depend on the
particular neuroimaging modality in use, functional magnetic
resonance imaging (fMRI) is currently the most frequently used
imaging technique. Electroencephalography (EEG) on the other
hand provides a reasonable alternative with – albeit lower spatial,
but – much higher temporal resolution, thus allowing for a
more detailed reconstruction of network dynamics. Despite this
and other advantages of EEG imaging (i.e., its accessibility and
mobility), up to date not many studies have used dynamic graph
analysis of electrophysiological recordings to investigate DFC in
SZ (Dimitriadis, 2019).

Dynamic graph theoretical measures were reported to express
reduced variance in schizophrenic patients when compared to
healthy individuals (Yu et al., 2015) and features extracted
by dynamic graph analysis lead to a better classification of
SZ patients than simple static network measures (Lombardi
et al., 2019). However, it has been shown that global FC
fluctuates according to scale-free (or fractal) dynamics (Stam
and de Bruin, 2004; Van de Ville et al., 2010). Statistical
properties (such as the variance) of scale-free processes do not
have a characteristic time scale, but they depend on the scale
of observation according to a power-law function, and the
relationship is established via the scaling exponent (Eke et al.,
2000). The scale-free property manifests itself in the time domain
as long-range autocorrelation, meaning that such processes have
an autocorrelation function that decays according to a power-
law rather than an exponential function like of those having
characteristic time scales (Eke et al., 2000). Furthermore, in our
recent works we showed that functional brain networks express
not only scale-free/fractal but indeed multifractal dynamics (Racz
et al., 2018a,b), meaning that the local scaling exponent also
changes with time. More generally, mono- and multifractality
has been recognized previously as a fundamental property of
not only DFC but brain dynamics in general, across species
and modalities (Herman et al., 2011; Nagy et al., 2017). Such
dynamic features cannot be captured by simple first and second-
order statistics, thus multifractal time series analysis called for
providing a more detailed characterization of network dynamics.
Temporal complexity of brain network dynamics can also be
efficiently captured in entropy-related measures – which capture
the information production rate of processes – such as sample
entropy (SE) (Richman and Moorman, 2000) or permutation
entropy (PE) (Bandt and Pompe, 2002). Indeed, temporal
complexity of DFC has been shown to express characteristic
regional patterns that reflect well the underlying functional
organization of the brain (Racz et al., 2019). Similar studies
revealed that patients with SZ express higher SE in their FC
dynamics than healthy control (HC) individuals (Jia et al., 2017;
Jia and Gu, 2019). Since the aforementioned methods appear
promising tools in characterizing DFC, our main goal in this
study was to investigate network dynamics in SZ by means of
multifractal and entropy-related analysis. To the best of our
knowledge, this is the first study applying multifractal analysis to
characterize network dynamics in schizophrenia.
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Beyond group-level inferences, the true utility of the extracted
dynamic features would lie with their ability to enhance the
discrimination of individual cases. Machine learning techniques
can be used to build models for classifying individual subjects as
HC or SZ, however most methods do not yield any additional
information on which predictors play the most important role
in the classification process. One of the exceptions is the class of
random forest classifiers (RFCs) which can provide measures on
the importance of each individual feature (Breiman, 2001) and
thus are frequently and efficiently used not only for classification
but for feature selection purposes as well (Archer and Kirnes,
2008; Menze et al., 2009). Our goal in this study therefore
was not only to investigate if multifractal and entropy-related
properties of DFC are altered in SZ, but also to explore how
these features could serve as potential markers of the disease
when classifying individual cases. We analyzed resting-state EEG
recordings from healthy individuals and patients with SZ, and
performed dynamic graph theoretical analysis to capture brain
network dynamics. Since electrophysiological abnormalities are
reported most frequently and consistently in delta band (0.5–
4 Hz) neural activity (Newson and Thiagarajan, 2019), in our
analysis we primarily focused on this frequency range. Besides
conventional first- and second-order indices (such as the mean
and variance), connectivity dynamics were characterized by their
multifractal and entropy-related properties, while a traditional
SFC analysis was also performed as a baseline. Apart from
group-level comparisons, an RFC was trained and validated
using a leave-one-out scheme, and estimates on predictor
importances were extracted.

MATERIALS AND METHODS

Participants and Data Acquisition
Resting-state EEG recordings of an openly available database
published previously (Olejarczyk and Jernajczyk, 2017) were
analyzed. The dataset comprised EEG records of 14 SZ patients (7
females aged 28.3 ± 4.1 years and 7 males aged 27.9 ± 3.3 years)
and 14 age- and gender-matched HC individuals (7 females aged
28.7 ± 3.4 years and 7 males aged 26.8 ± 2.9 years). Subjects
of the SZ group were diagnosed with paranoid schizophrenia
according to the International Classification of Diseases ICD-
10 criteria (category F20.0) and were hospitalized at the
Institute of Psychiatry and Neurology in Warsaw, Poland. Only
individuals over the age of 18 were allowed to participate
in the original study and subjects of the SZ group had a
medication washout period of a minimum of 1 week prior
to the measurement. Exclusion criteria included organic brain
pathology, first episode of schizophrenia, other neurological
diseases such as epilepsy, Alzheimer’s or Parkinson’s disease, or
presence of any general medical condition (for further details, see
Olejarczyk and Jernajczyk, 2017). All participants were informed
of the measurement protocol and provided written informed
consent prior to participation. The original study was approved
by the Ethics Committee of the Institute of Psychiatry and
Neurology in Warsaw. The data was downloaded from the
repository at http://dx.doi.org/10.18150/repod.0107441.

Measurement of all participants was performed in an eyes-
closed resting-state condition where EEG activity was recorded
at a sampling rate of 250 Hz from 19 cortical regions (Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2)
according to the standard 10–20 montage (Nuwer et al., 1998)
with an additional reference electrode placed at FCz. The original
datasets consisted of 15 min of raw EEG data, from which a 3
min long artifact-free segment was selected for each participant
for further analysis.

Preprocessing
Data preprocessing was carried out in a fully automatized
manner using the Batch EEG Automated Preprocessing Platform
(Levin et al., 2018). The data was first band-pass filtered
between 0.5 and 45 Hz with additional “cleanline” filtering at
50 Hz to remove line noise. Subsequently, artifact removal was
performed using the Harvard Automated Processing Pipeline
for Electroencephalography (Gabard-Durnam et al., 2018), a
built-in module of BEAPP for standardized artifact removal.
HAPPE was set to perform the following steps: (i) wavelet-
enhanced ICA filtering for spike artifact removal (You and
Chen, 2005), (ii) subsequent ICA with automated component
rejection using the Multiple Artifact Rejection Algorithm
(Winkler et al., 2011, 2014), and (iii) re-referencing against
the common average reference. For ICA, HAPPE used the
extended Infomax algorithm as implemented in the EEGLAB
software package (Delorme and Makeig, 2004). Finally, EEG
data was forward-backward filtered using a 5th order zero-
phase Butterworth filter with lower and upper cutoff frequencies
0.5 and 4 Hz, respectively. Data preprocessing and subsequent
analysis steps were carried out using Matlab (MathWorks, Natick,
MA, United States).

Dynamic Functional Connectivity
Estimation
The Synchronization likelihood (SL) method (Stam and van Dijk,
2002) was used to estimate functional connectivity between all
pairs of brain regions. SL is a dynamic measure of generalized
synchronization that estimates the probability of synchronization
between two processes for every time point. It utilizes a temporal
embedding scheme (Takens, 1981) and looks for similarities in
recurrences around every time point in a “k-nearest neighbor”
manner, using the L2 (Euclidean) norm. SL requires five input
parameters: the embedding dimension m, the embedding time
lag L, a window parameter w1 controlling for autocorrelation
effects, a window parameter w2 that serves a similar purpose as
the time window in a sliding window approach and a resolution
parameter pref . In case of data with explicit frequency limits and
fixed sampling rate – such as narrow-band EEG signals –, these
parameters (except for pref ) can be defined in a standardized
manner according to simple signal processing principles (Montez
et al., 2006). Accordingly, in the current analysis we had the
following set of parameters: m = 25, L = 20, w1 = 960, and
w2 = 1959, while we set pref to be equal to 0.05, similarly to
previous studies (Stam and van Dijk, 2002; Jalili, 2016). Being
a probability-type measure, SL takes on values between 0 and
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1 with 0 indicating complete lack of synchronization and 1
indicating perfect synchronization.

SL per se estimates synchronization of two processes
in a time-resolved manner (Stam and van Dijk, 2002).
Therefore, computing SL between all possible pairs of channels
yielded a dynamically changing synchronization matrix (i.e., a
synchronization matrix for every time point) for every subject,
from which the first 215 consecutive matrices were made subject
for further analysis. Additionally, as a reference we also computed
static FC between all channels, where static SL was acquired
according to Stam and van Dijk (2002) by averaging the
time-resolved values of SL. This procedure yielded only one
synchronization matrix for every subject. Further details on the
SL method and its appropriate parameter settings are found
elsewhere (Stam and van Dijk, 2002; Montez et al., 2006).

Graph Theoretical Analysis
The synchronization matrices were first thresholded to exclude
non-significant and spurious connections (Rubinov and Sporns,
2010). For this purpose, we applied the cost-thresholding scheme
introduced by Achard and Bullmore (2007). In that, for every
time-point the threshold was set to a value so that only a desired
fraction K of all connections (i.e., the strongest connections)
were kept in the network. This procedure yielded dynamic
weighted networks with a constant number of connections, thus
graph theoretical measures truly captured the reorganizations
of functional network topology. The whole analysis pipeline
was carried out for multiple values of K ranging from 0.15 to
0.5 in 0.05 increments. The lower limit of K was set to 0.15
as we found that cost values below that often rendered the
functional networks disconnected, while the upper limit was
defined according to Achard and Bullmore (2007).

Subsequently we described the global topology of functional
brain networks for every time point with graph theoretical
measures connectivity strength (D), global clustering coefficient
(C), and global efficiency (E). Global connectivity strength was
acquired as the fraction of the sum of present edge weights
and the maximal possible value of overall edge weights in
the network (Rubinov and Sporns, 2010). The local clustering
coefficient of a particular node can be defined as the fraction
of the node’s neighbors that are also neighbors of each other
(Watts and Strogatz, 1998), while the global clustering coefficient,
C is the average taken over all nodes in the network. Global
network efficiency is defined as the average inverse shortest
path length of the network taken over all pairs of nodes
(Latora and Marchiori, 2001). C is a widely used measure of
segregation, i.e., how much nodes of the network (regions of the
brain) tend to form densely connected groups, and characterizes
information processing on the local level. On the other hand,
E is a measure of integration, i.e., how the brain combines
specific information distributed over disparate regions and thus
it represents information processing on the global level. All
weighted network measures were computed using functions of
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

This analysis yielded network measure time series (NMTS)
for each cost value and graph theoretical measure, a total of 28
subjects× 8 costs× 3 network measures = 672 NMTS, that were

subjected to dynamic analysis. Finally, graph theoretical analyses
were also performed on the static synchronization matrices as
well, yielding one value of D, C, and E for every cost, per subject.

Dynamic Features of Brain Connectivity
First, the mean and variance (µ and σ2, respectively) of each
NMTS were calculated. We also computed the excursion from
median (EfM) measure recently proposed by Zalesky et al.
(2014) to capture the true dynamic nature of functional brain
networks. This measure was suggested to capture time-varying
behavior more efficiently than the variance as it takes into
account both the amplitude and the duration of periods where
the process deviates from its median. EfM was calculated
with the input parameters a = 0.9 and b = 1, as suggested
by previous studies (Zalesky et al., 2014; Hindriks et al.,
2016). Yet EfM was originally proposed as a test statistic
for distinguishing true FC dynamics from random statistical
fluctuations of stationary FC, here we only used it as a non-
linear measure on grading of “how dynamic” functional brain
network topology was.

We used the focus-based multifractal signal summation
conversion (FMF-SSC) method (Mukli et al., 2015) to capture
multifractal properties of the NMTS. FMF-SSC estimates the
multifractal spectrum by first calculating the scaling function
S(q, s) according to:

S
(
q, s
)
=

{
1

Ns

Ns∑
υ=1

σ (υ, s)q

} 1
q

(1)

where s is the scale, Ns is the number of non-overlapping
windows of size s, υ is the index of the window, σ(υ, s)
is the standard deviation of the υth window at scale s and
q is the moment. The generalized Hurst exponent, H(q),
is then estimated by focus-based multiple linear regression
for every q simultaneously. Finally, the multifractal spectrum
is acquired via applying Legendre transformation to H(q).
Consequently, FMF-SSC qualifies as an indirect approach when
analyzing multifractality by providing information about the
distribution of local scaling exponents of the investigated process
through its multifractal spectrum. The key steps of FMF-
SSC are illustrated in Figure 1, while further details of FMF-
SSC and its parametrization are described elsewhere (Mukli
et al., 2015). Accordingly, we performed FMF-SSC with the
following settings: s were set according to 2n datapoints per
window with n ranging from 3 to 13 in steps of 1, and
q ranging from -15 to 15 with increments of 1. The lower
limit of n was defined to have 8 data points, while the
upper limit was set to be equal to 1/4 of the signal length.
FMF-SSC yields two endpoint measures, hmax and FWHM.
hmax is the Hölder exponent at the peak of the multifractal
spectrum and is strongly related (although not strictly equal)
to the degree of global long-term autocorrelation of the
process. FWHM is the full width at half maximum of the
multifractal spectrum and captures the degree of multifractality,
i.e., how much the local scaling exponent (and thus the local
degree of autocorrelation) varies in time. Essentially, the larger
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FIGURE 1 | Steps of focus-based multifractal analysis. (A) After the scaling function (marked in black) is acquired, linear regression is used to fit power-law functions
(marked in green) at each moment order q. On double logarithmic plots these appear as linear functions whose slopes are the scaling exponents. Also, in case of
finite length signals, these converge to one point, the Focus, that is used as a reference point during regression. (B) The generalized Hurst exponent, H(q) is acquired
as the scaling exponents of the functions fitted on the scaling function at each value of q. The focus-based formalism enforces the monotonously decreasing nature
of H(q); a prerequisite for Legendre transformation. (C) The multifractal spectrum is acquired from H(q) via Legendre transformation and is described by the Hölder
exponent at its maximal value (hmax ) and its full width at half maximum (FWHM).

hmax is, the stronger is the global long-term autocorrelation
while the smaller FWHM is, the smaller is the variability
of the local scaling exponent in time. A theoretical FWHM
value of zero would mean that the scaling exponent does
not change at all, and in which case the process does
not express multifractality but reduces to a simple scale-
free (or monofractal) process. However, even monofractal
signals produce multifractal background noise when analyzed
in a multifractal manner due to the finite length of real-
life signals (Grech and Pamula, 2012) and the focus-based
regression scheme. In order to exclude these cases, a multi-
step surrogate data testing framework (Racz et al., 2019) was
also carried out against 40 surrogates in each step to verify
true multifractality of NMTS. By this means, we verified if
time series truly expressed power-law scaling and that their
FWHM values were significantly larger than those of strictly
monofractal surrogate signals of otherwise similar properties.
In all cases, NMTS were considered significantly different from
their surrogates in their investigated property if it was found
outside the µ± 2∗σ range where µ and σ denotes the mean and
standard deviation acquired from the surrogates. After verifying
normality of surrogate indices, this yields an approximate
confidence level of 0.05.

Temporal complexity of NMTS was captured by their
information theoretical entropy (Bandt and Pompe, 2002). Since
it is possible that network topology does not change in two
consecutive time points, we calculated a modified version of PE
(mPE) that allows for this effect yet still yields accurate estimates
of signal complexity (Bian et al., 2012). mPE also builds on
the temporal embedding approach; thus its input parameters
include the embedding dimension and the embedding time
lag. To achieve the highest resolution possible within the
current experimental setup, we set the embedding dimension
to 7 and the embedding time lag to 3 according to previous
studies (Staniek and Lehnertz, 2008). The analysis pipeline is
summarized in Figure 2.

FIGURE 2 | Flowchart of the analysis pipeline. The analysis pipeline for static
connectivity analysis is not shown as it is equivalent in most steps to the
dynamic pipeline, except that only one connectivity matrix is acquired per
subject, leading to only one value for each network measure instead of a time
series, thus dynamic analyses are bypassed. SL, synchronization likelihood;
D, connectivity strength; C, clustering coefficient; E, global efficiency; Th,
thresholding; K, cost; AUC, area under the curve.

Statistical Analyses
First, we compared HC and SZ groups in a cost-dependent
manner. Since assumptions of a two-way repeated measures
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ANOVA were violated in most cases, we compared values of
the HC and SZ groups for each cost separately. In case of
normally distributed data and equal variances two sample t-tests
were used, while Mann-Whitney U tests otherwise. The acquired
p-values were corrected for multiple comparisons using the false
discovery rate (FDR) approach (Benjamini and Hochberg, 1995)
with level α = 0.05. Significant effect of cost on the acquired
indices was verified with Friedman tests with complementary
Kendall’s W coefficient calculation in order to estimate the
concordance among subjects.

Furthermore, in order to render the results independent of
cost and thus reduce dimensionality for classification (see below)
we calculated the area under the curve (AUC) for all calculated
network measures. AUC values of all measures in the HC and
SZ groups were compared using two sample t-tests or Mann–
Whitney U-tests. Note that the AUC approach is commonly used
in FC studies to avoid selecting a specific cost/threshold value (He
et al., 2009; Koshimori et al., 2016). However, in most DFC studies
AUC values for network measures are calculated for every time
point first, and then dynamics of the AUC time series are analyzed
(Yu et al., 2015; Kim et al., 2017). Here we took a different
approach (by analyzing dynamics first for each K and calculating
AUC afterward), as the prior summation of values could lead
to undesired effects in multifractal analysis (Nagy et al., 2017).
Statistical analysis was carried out using StatSoft Statistica 13.2.

Classification
Due to the small sample size, it is unlikely that a classifier built
from this dataset would generalize well on unseen real-world
data. With that in mind, our goal instead was to explore if
the dynamic measures of FC described above could serve as
valuable features for classifiers in the future, trained on larger
datasets. Therefore, we intentionally selected a standard machine
learning method where information on feature importances
could be easily and readily extracted. One of such methods
are random forest classifiers (RFC, Breiman, 2001). A random
forest consists of a set of binary decision trees, each grown from
a different bootstrap sample of the training dataset. However,
unlike a regular unpruned decision tree, trees of the forest
do not use all predictors but split the data using only a
random subset of the features. Finally, when a new example
is presented, it is subjected to all trees in the forest and the
target variable is predicted by aggregating the predictions of
all trees, i.e., as a “majority vote.” A big advantage of RFCs
is that they provide multiple estimates on feature importances
(Menze et al., 2009). From these, we selected the Gini importance,
a widely used measure that captures how much prediction
accuracy would be affected if the given feature was not used
when splitting the data (Breiman, 2001). Although there is no
theoretical limit to the number of features used for training
an RFC, in most cases it is accepted as a rule of thumb
that the number of features should not exceed the number
of training examples. For this reason, the AUC values of
seven indices (static, mean, variance, EfM, hmax, FWHM, and
mPE) acquired from the three network measures (D, C, and
E) were used for training, resulting in a total number of 21
training features.

The sample size of the dataset did not allow for a statistically
robust train-test split, so that the generalization of the model
could be reliably tested. Thus, we evaluated model performance
via cross-validation according to a stratified leave-one-out
scheme (Calhoun et al., 2008; Rashid et al., 2016). In that, the
dataset was first divided into a training and a holdout set. The
holdout set always consisted of one HC and one SZ subject;
thus the training set comprised the remaining 26 subjects. Then,
the model was trained using data of the training set and its
performance was validated on the holdout subjects. In each
cross-validation run, model performance was evaluated using
six standard report measures: accuracy, specificity, sensitivity,
positive predictive value, negative predictive value and the AUC
of the receiver-operator-characteristic (ROC) curve. Similarly,
the Gini importance of each feature was extracted at the end
of each cross-validation cycle. The whole process was then
repeated using a different pair of HC-SZ subjects as holdout
set. Each HC and SZ subject were put exactly once in the
holdout set; thus the model was cross-validated 14 times. Overall
classifier performance was captured in the average of the six
report measures over the cross-validation runs, while the overall
importance of each feature was quantified as the sum of its Gini
importance over the cross-validation runs.

An RFC has many hyperparameters (parameters that have to
be set before training) including but not limited to the number
of trees in the forest and the allowed maximum number of
features used by each tree for splitting the data. Since RFC
performance can strongly depend on the appropriate setting of
these hyperparameters, we performed a grid search in order to
find the parameter settings that yield the best overall classifier
performance. Finally, we also evaluated the performance of
the classifier against surrogate datasets. In that, we carried
out the cross-validation scheme described previously on 100
surrogate datasets, each acquired by randomly permuting group
labels among subjects (but leaving features/predictors intact).
All performance measures were compared to those of surrogate
data and were considered significant if they exceeded the µ±

2∗σ range acquired from surrogates. RFCs were implemented
in Python 3.7 using the RandomForestClassifier class of the
Scikit-Learn package and grid search was carried out using
GridSearchCV class. Details on the hyperparameter settings of
the final RFC model, as well as definitions of the performance
measures are provided in Supplementary Material.

RESULTS

Throughout the results, for all dynamic indices the network
measure it was calculated on is indicated in the left superscript,
e.g., Chmax standing for the hmax of clustering coefficient.
AUC indices are indicated in the left subscript, e.g., C

AUChmax
refers to the AUC index calculated from the hmax values of
clustering coefficient.

Static Functional Connectivity
Static synchronization matrices revealed a high degree of
similarity in topology between HC and SZ groups (Figure 3A).

Frontiers in Systems Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 49141

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00049 July 22, 2020 Time: 17:53 # 7

Racz et al. Multifractal Dynamic Functional Connectivity in Schizophrenia

FIGURE 3 | Group-average connectivity matrices and results of static functional connectivity analysis. (A) Group-average static connectivity matrices for healthy
controls (left) and patients with schizophrenia (right). For a better comparison, the matrices are in the same color scale. Channels are grouped according to
macroanatomical brain regions. (B) Results of the cost-dependent analysis. Data corresponding to healthy controls is marked in blue, while those of patients with
schizophrenia are marked in orange. Dots mark median values, the shaded area refers to the 25th and 75th percentiles, and vertical lines range from 10th to 90th
percentiles. Asterisk marks significant group difference (p < 0.05, corrected) acquired with two sample t-test. (C) Violin plots of static FC results for all three network
measures. In each violin plot the central black line indicates the mean and the central red line indicates the median. The lower and upper horizontal lines of the
rectangle mark the 25th and 75th percentile, respectively, and the outer horizontal lines indicate the 10th and 90th percentile values. The colored areas illustrate the
estimated probability density function of the corresponding datasets. An asterisk marks significant group difference (p < 0.05) identified with two-sample t-test, while
a plus sign marks significant difference identified with Mann-Whitney U-test. SL, synchronization likelihood; FR, frontal cortex; FT, frontotemporal regions; PA, parietal
cortex; SM, somatomotor cortex; VI, visual cortex; AUC, area under the curve; HC, healthy control; SZ, schizophrenia.
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TABLE 1 | Effect of cost on static network measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

Static p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 0.8042 0.7075 1 1

The upper row contains p-values from the Friedman tests, while the lower row
contains Kendall’s coefficient of concordance (W) values. W = 1 indicates perfect
agreement among subjects. HC, healthy control; SZ, schizophrenia.

In both groups, clusters of stronger connections were observable
linking the frontal with the occipital as well as parietal regions.
In these three regions, the within-regional connections also
appeared to be stronger than in the rest of the network. Cost-
dependent analysis showed a tendency of stronger FC in SZ
for all three network measures, nevertheless, this difference was
significant only in the case of C with K = 20% (Figure 3B). In both
groups, the cost had a significant, although trivial effect on all
three network measures (Table 1), as their values increased with

increasing K. On the other hand, when we compared the AUC
values acquired from D, C and E we found significant differences
between the two groups, with SZ subjects expressing stronger
static FC as captured in all three measures (Figure 3C).

Mean, Variance, and Excursions From
Median
The mean of DFC measures can be understood as a statistically
more reliable estimation of static FC. This effect was
demonstrated convincingly as the cost-dependent analysis
indicated significantly higher D and C values in the SZ group
with all K (Figure 4). As expected, cost had a similar effect
on the mean of D, C and E as in the case of static FC analysis
(Table 2). In addition, significantly higher variance of D and
C was identified in the SZ group at almost all values of K
(Figure 4). Interestingly, increasing the cost resulted in an
increase of Dσ2 but a decrease of Cσ2, while had an indistinct
effect on Eσ2. Nearly identical results to those of the variance
were acquired when investigating EfM with additionally CEfM
being significantly higher in SZ for every cost value (Figure 4

FIGURE 4 | Cost-dependent results of the mean, variance and excursions from median analysis of network measures. Mean, variance, and excursions of median
(EFM) values of the three network measures are plotted as functions of the cost. Black markers indicate significant group level difference (p < 0.05, corrected).
*Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia.
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TABLE 2 | Effect of cost on the mean (µ ), variance (σ2), and excursions from
median (EfM) of dynamic network theoretical measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

µ p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 1 1 1 1

σ2 p <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001

W 1 1 1 0.9968 0.9111 0.8365

EfM p < 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 1 1 1 1 0.7291 0.8287

For each index, the upper rows contain p-values from Friedman tests, while the
lower rows contain Kendall’s coefficient of concordance (W) values. HC: healthy
control; SZ: schizophrenia.

and Table 2). This is in accordance with previous findings where
EfM was found to have power equal to standard deviation in
distinguishing true FC dynamics (Hindriks et al., 2016). The
AUC analysis reassured stronger FC, as well as higher temporal
variability of DFC in SZ (Figure 5).

Multifractal Measures and Entropy
Since multifractality can emerge due to phenomena other than
the presence of long-term autocorrelations, appropriate surrogate
testing is indispensable (Kantelhardt et al., 2002). In order to
verify true multifractality of each NMTS, we replicated the four-
step testing framework as described in detail in Racz et al.
(2019). In that, we (i) generated surrogate time series with power-
law spectra and equal spectral slope and compared goodness of
fit statistics to those of the original time series, (ii) generated
surrogates by shuffling data points of the original datasets, (iii)
generated surrogates by phase-randomization, and (iv) generated
strictly monofractal signals with equal global scaling exponent.
In step i we compared the goodness of fit statistics of the spectra
of the original time series to those of surrogate data with known
power-law spectra, while in steps ii–iv we assessed multifractal
properties of the surrogates and compared them to the original
NMTS. Surrogate testing indicated that in the vast majority of
cases, NMTSs expressed a power-law scaling, thus their general
scale-free nature was confirmed. Shuffling reduced the process to
pure white noise, as indicated by their spectral slope and FWHM
being approximately zero. Finally, both phase randomization and
monofractal signal generation produced signals with significantly
smaller FWHM values, thus presence of true multifractality could
be concluded. The percentage of NMTS that passed each test are
shown for every test in Table 3. Values are reported combining
both groups, as we did not find any significant difference in
the fraction of NMTS that passed each test between HC and SZ
groups (Mann–Whitney U-test, p > 0.05 in all cases).

Cost-dependent analysis revealed significantly higher Chmax
in subjects of the SZ group for most values of K, while this
difference appeared only as a tendency in Dhmax (Figure 6).
Conversely, DFWHM was found significantly higher in the SZ
group for higher costs, while the same difference could be
observed in CFWHM and EFWHM only at two and one cost
values, respectively (Figure 6). On the other hand, DmPE was

significantly reduced in SZ subjects for all cost values, while the
same difference in CmPE was found significant only at K = 35%
(Figure 6). Increasing K resulted in significant increase of hmax
of all three network measures, while it has the opposite effect on
mPE (Table 4). In addition, the cost had indistinct or no effect on
the FWHM of D, C, and E.

Again, group-level differences were found much more
pronounced when comparing the AUC values of multifractal
and entropy measures (Figure 7). In that, significantly higher
D
AUChmax, C

AUChmax, D
AUCmPE, and C

AUCmPE values were found in
the SZ group, while the AUC of FWHM was found increased for
all three network measures. This indeed highlights the power of
AUC analysis as FWHM was found significantly higher in the SZ
group only at a few cost values.

Classification and Most Important
Features
Train and test performance metrics of the classifier are shown in
Table 5. Notably, the RFC was able to reach an overall 89.29%
cross-validation accuracy and 100% specificity. The bottom row
of Table 5 shows the mean test results for surrogate data
testing with the upper boundary of the confidence interval
in parentheses. Surrogate datasets yielded estimates close to
chance level (50%), as expected, indicating a significantly better
performance of the classifier in all metrics. The cumulative Gini
importance was the highest for Dσ2, Chmax, CmPE, and CFWHM,
highlighting the importance of dynamic indices, while in general
(with the exception of Estat) static and mean graph theoretical
measures were identified as less important for classification
(Table 6). Interestingly, while CFWHM was amongst the most
important features, DFWHM and EFWHM were identified as
negligible predictors.

DISCUSSION

There is a growing interest in investigating dynamic features of
FC in various clinical conditions (Calhoun et al., 2014; Preti
et al., 2017). However, the vast majority of such studies use
fMRI to capture neurodynamics, while other imaging modalities
such as EEG are rather underrepresented (Mutlu et al., 2012).
The orders of magnitude higher temporal resolution of EEG is
a clear advantage that allows for a more detailed assessment
of brain network dynamics. In this study, we reconstructed
dynamic functional networks of healthy controls and patients
with schizophrenia from delta-band EEG activity with a much
higher sampling rate that would have been possible with
fMRI. Ultimately, this allowed us to capture several aspects
of temporal complexity, namely multifractality and entropy,
in which our analytical framework was capable of revealing
disease-related changes. In particular, DFC in SZ patients
could be characterized by increased long-range autocorrelation
and degree of multifractality, while lower entropy values
indicated reduced temporal complexity. Furthermore, a machine
learning-based classification scheme identified these dynamic
connectivity features as highly relevant in classifying individual
cases. Additionally, we found higher static and mean dynamic
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FIGURE 5 | Results of the area-under-the-curve analysis regarding the mean, variance and excursions from median (EFM) of dynamic network measures. Higher
mean and temporal variability of dynamic functional connectivity in SZ is apparent as captured in both connectivity strength, clustering coefficient and global
efficiency. Asterisk marks significant group difference (p < 0.05) identified with two-sample t-test. HC, healthy control; SZ, schizophrenia.
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TABLE 3 | Testing results for true multifractality.

Spectrum Shuffling True MF PhaseRan

D 95.98% 100% 100% 94.64%

C 96.43% 100% 100% 100%

E 98.21% 100% 100% 100%

MF, multifractality; PhaseRan, phase randomization; D, connectivity strength; C,
clustering coefficient; E, global efficiency.

functional connectivity in schizophrenia, as well as subjects of the
patient group expressed higher temporal variability in their DFC
when compared to that of healthy controls.

Aberrant Connectivity Dynamics in SZ
In the present study, we report on increased FC in SZ, as well
as higher variability of dynamic graph theoretical measures in
the patient group. Static approach to FC was also able to reveal
this difference, although with less sensitivity than taking the
means of dynamic network topological indices. In general, there
is considerable inconsistency among results in the literature on
resting-state dysconnectivity in SZ not only in the fMRI field

(Fox and Greicius, 2010) but among electrophysiological studies,
too (Maran et al., 2016). The somewhat contradictory results
can be attributed to the differences in applied methods and
modalities (Jalili, 2016), however independent studies using the
same methodology reported both decreased (Winterer et al.,
2001) and increased (Kam et al., 2013) connectivity in delta-band
EEG. It also has to be noted, that the original study where the
current dataset was published (Olejarczyk and Jernajczyk, 2017)
performed SFC analyses using various pre-processing pipelines
and FC estimators, and reported on both increased and decreased
SFC in SZ, depending on the FC estimator or data pre-processing.
The pre-processing pipeline in our approach was designed to
be fully automatized and thus easily reproducible, however in
order to investigate the plausible effects of FC estimator selection
(SL in this case), we carried out the whole analysis using the
exact same settings but a different, widely used estimator of
connectivity, the Phase Lag Index (PLI, Stam et al., 2007).
A detailed report of this analysis is provided in Supplementary
Material. PLI takes a different approach from that of SL in
estimating FC, as it captures synchronization of two processes
based on the differences between their instantaneous phases
following Hilbert transformation (Stam et al., 2007). Despite

FIGURE 6 | Cost-dependent results of multifractal and entropy analysis of network measures. Multifractal measures (hmax and FWHM) and modified permutation
entropy (mPE) of all three network measures are plotted as functions of the cost. Black markers indicate significant group level difference (p < 0.05, corrected).
*Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia.
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TABLE 4 | Effect of cost on the multifractal measures (hmax and FWHM) and
modified permutation entropy (mPE) of dynamic network theoretical measures.

Connectivity strength Clustering coefficient Global efficiency

HC SZ HC SZ HC SZ

hmax p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W 0.8374 0.7048 0.9788 0.9417 1 1

FWHM p 0.0036 <0.0001 <0.0001 0.0001 0.1191 0.0069

W 0.2155 0.4242 0.8861 0.3061 0.1171 0.1985

mPE p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

W <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

For each index, the upper rows contain p-values from Friedman tests, while the
lower rows contain Kendall’s coefficient of concordance (W) values. HC, healthy
control; SZ, schizophrenia.

TABLE 5 | Performance report of the random forest classifier.

Test performance

ACC
(%)

SEN
(%)

SPE
(%)

PPV
(%)

NPV
(%)

ROC-
AUC
(%)

Train 93.41 86.83 100 100 88.55 99.32

Test 89.29 78.57 100 78.57 89.29 85.71

CI 49.93
(72.45)

46.14
(75.10)

53.71
(83.92)

35.21
(58.97)

39.00
(63.28)

51.39
(81.51)

In the bottom row, upper boundary of the confidence interval is presented in
parentheses below the mean. ACC, accuracy; SEN, sensitivity; SPE, specificity;
PPV, positive predictive value; NPV, negative predictive value; ROC-AUC, area
under the receiver operator characteristic curve; CI, confidence interval.

the fundamentally different nature of the two estimators, the
PLI analysis yielded highly similar results (see Supplementary
Material), thus making it improbable that the nature of our
results was significantly biased by the choice of FC estimator.

In order to further test the robustness of the identified
connectivity patterns, we also repeated the analysis pipeline
using the Weighted Phase Lag Index (WPLI, Vinck et al.,
2011) as the connectivity estimator. WPLI is derived from PLI
by weighing the phase differences by the magnitude of the
imaginary part of the cross-spectrum, and thus attributing less
importance to small (i.e., close to zero) phase differences (for
details see Supplementary Material), that are more susceptible
to common noise sources (Vinck et al., 2011). PLI was originally
introduced as an FC estimator that is robust against common
source effects originating from volume conduction and/or active
reference electrodes in case of EEG monitoring (Stam et al.,
2007), however, WPLI was shown to further reduce these
confounding factors (Vinck et al., 2011). Surprisingly, although
dynamic networks reconstructed using WPLI expressed true
multifractality in a proportion similarly high to those based of
SL or PLI (Supplementary Table 4), between-group differences
were found far less pronounced. In fact, only Dµ and Eµ

indicated significantly higher connectivity in SZ. At first, this may
imply that the previously observed results are not pronounced
enough to be identified by more sophisticated methods such as
WPLI. However, random forest classification was still able to

TABLE 6 | Feature importances extracted from the random forest classifier.

Rank Feature Importance

1 Dσ2 3.7912

2 Chmax 1.8674

3 CmPE 1.3843

4 CFWHM 1.3431

5 DEfM 1.0582

6 EEfM 1.0110

7 Estat 0.6700

8 Dhmax 0.3853

9 Ehmax 0.3510

10 Eσ2 0.3507

11 Cµ 0.3424

12 DmPE 0.3218

13 Cstat 0.3104

14 Cσ2 0.2683

15 CEfM 0.2224

16 EmPE 0.1630

17 Dµ 0.1134

18 Eµ 0.0322

19 Dstat 0.0137

20 DFWHM 0.0

21 EFWHM 0.0

For each index, the network measure it was calculated from is indicated in the
left superscript. Static network measures are indicated by the subscript “stat”
following their abbreviation. D, connectivity strength; C, clustering coefficient; E,
global efficiency; stat, static; µ, mean; σ2, variance; EfM, excursions from median;
hmax , Hölder exponent at the peak of the multifractal spectrum; FWHM, full width
at half maximum; mPE, modified permutation entropy.

reach comparable performance (see Supplementary Tables 8, 9),
indicating that connectivity dynamics were indeed substantially
different between HC and SZ individuals. The observed contrast
between the results of PLI- and WPLI-based analyses may emerge
from multiple origins. First, WPLI is superior to PLI when
detecting phase synchronization in the presence of uncorrelated,
volume-conducted noise sources (Vinck et al., 2011). Therefore,
the stronger connectivity captured by PLI in SZ may arise due
to the presence of more and/or stronger “noise sources” in
SZ patients. Second, WPLI generally weights down phase lags,
especially those close to zero. Consequently, it may be the case
that most connections responsible for significant group-level
differences could be characterized with small phase lags, which
were effectively pruned by the WPLI calculation, thus rendering
the dynamic networks indistinguishable. Although these findings
highlight that one must apply great caution when interpreting
the results of FC (and DFC) analyses, these issues – namely the
choice of the FC estimator and specifics of the preprocessing
pipeline – has also been emphasized by numerous recent studies
(Jalili, 2016; Olejarczyk and Jernajczyk, 2017; Lindquist, 2020).

Previous studies applying dynamic graph analysis reported
reduced mean (Du et al., 2016) and variance (Yu et al.,
2015) of D, C and E in SZ patients, in contrast to our
findings. Both of these studies used fMRI imaging and estimated
functional network connectivity (Jafri et al., 2008) from low-
frequency (0.01–0.1 Hz) spontaneous brain activity; thus a
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FIGURE 7 | Results of the area-under-the-curve analysis regarding multifractal and entropy-related properties of dynamic network measures. Black markers indicate
significant group level difference (p < 0.05). *Two-sample t-test; +Mann–Whitney U-test; HC, healthy control; SZ, schizophrenia; hmax , Hölder exponent at the peak
of the multifractal spectrum; FWHM, full width at half maximum; mPE, modified permutation entropy.

direct comparison would be difficult to make. Furthermore, the
exact origins and physiological functions of wake delta-band
oscillations are still debated (Dang-Vu et al., 2008; Harmony,
2013). It has been shown, that activity of resting-state networks

(RSNs) reconstructed from fMRI dynamics can be attributed
to not one but multiple EEG rhythms to various extents and
that each RSN could be characterized with a unique set of
correlations with different frequency bands (Mantini et al., 2007).
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For most RSNs, that largely overlap with many of the intrinsic
connectivity networks (ICNs) identified by the approach of Yu
et al. (2015) and Du et al. (2016), the highest correlations
were found with the alpha and beta bands. Thus, it can be
hypothesized that activity of these RSNs more closely resembles
alpha- and/or beta- rather than delta-band activity. In order
to test this hypothesis, we carried out our analysis pipeline on
alpha- and beta-filtered (8–13 Hz and 13–30 Hz, respectively)
EEG data as well. The analysis showed no significant differences
between HC and SZ connectivity dynamics in the alpha band,
while a slight (but insignificant) tendency of higher static and
mean C was found in the beta band of SZ patients. On the other
hand, it has been argued (Knyazev, 2012; Harmony, 2013) that
waking delta activity originates not only from thalamocortical
neurons (Hughes et al., 1998) but also from regions associated
with the default mode network (DMN) (Raichle et al., 2001).
Enhanced connectivity between thalamic and DMN regions in
SZ was reported by multiple studies earlier (Skudlarski et al.,
2010; Damaraju et al., 2014). In accordance with previous studies,
our results of cortical delta-band dysconnectivity therefore may
reflect the large-scale consequences of the involvement of these
structures in SZ. Moreover, delta-band dysconnectivity in SZ also
fits in with the hypothesis considering the role of wake delta
rhythm in motivational, cognitive and autonomous functions
(Knyazev, 2007, 2012), as these are broadly affected in SZ
(Insel, 2010).

Another plausible source of the apparent contradiction
between results reported in this study and those of previous works
is the heterogeneous nature of SZ itself as a clinical condition
(Seaton et al., 2001; Moran and Hong, 2011). It has been shown
for example, that patients with various subtypes of SZ that
could be characterized with largely different psychopathological
symptoms expressed distinct, specific alterations in cortical
electrophysiological activity (Harris et al., 2001). Likewise, several
studies reported on characteristic differences in EEG findings
between SZ phenotypes, i.e., those characterized mostly by
positive and/or negative symptoms (Begic et al., 2000; John
et al., 2009). Furthermore, brain electrical activity as assessed
by EEG in SZ was shown to be affected by acute as well
as chronic pharmaceutical treatment (Knott et al., 2001), the
type of medication (Tislerova et al., 2008) and disease duration
(Ranlund et al., 2014). These considerations, along with the
drawback of no available clinical information of the subjects
analyzed here, therefore prevents us to resolve this issue within
the scope of this study.

Multifractality and Temporal Complexity
of DFC in SZ
One of the main contributions of this study is reporting on
the true multifractal nature of DFC in SZ and its alterations
compared to healthy controls. Although scale-free aspects of
DFC have been known for a while (Stam and de Bruin, 2004;
Van de Ville et al., 2010), its true multifractal nature was
confirmed only recently (Racz et al., 2018a,b). It is a matter of
debate in the neuroscience field what aspect of brain function
manifests in scale-free neurodynamics (He, 2014). A view shared

by many is that scale-free fluctuations are the result of an
underlying self-organized critical state of the brain that gives rise
for its ability to perform large-scale reorganizations quickly in
response to external/internal stimuli (Linkenkaer-Hansen et al.,
2001; Bullmore et al., 2009; Chialvo, 2010; Beggs and Timme,
2012; Mukli et al., 2018). In support of this hypothesis, a close
correspondence was shown by Racz et al. (2018a) between
dynamic graph measures (node strength in particular) and the
seminal sand pile model of self-organized criticality (Bak et al.,
1987). It also has been shown that self-organized critical models
can express a scaling exponent different from 1 (De Los Rios
and Zhang, 1999), as well as not only mono- but indeed true
multifractal dynamics can emerge from systems in a critical state
(Lima et al., 2017). Based on these considerations, the increased
hmax in SZ could reflect on the impaired ability of the brain
to respond to stimuli incoming from the external or internal
environment. Although this hypothesis requires further research
in the future, investigation of the possible correspondence
between hmax of DFC and the severity of symptoms related
to altered perception in SZ appears an important question.
Note however, that criticality is by no means the only feasible
explanation for the scale-free nature of brain activity. It has
been argued previously, that the apparent power-law spectra of
local field potential recordings could result from the extracellular
medium acting as a 1/f filter (Bedard et al., 2006; Bedard and
Destexhe, 2009). However, this mechanism alone would not
explain the presence of fractal scaling in a much broader range
of neural phenomena (Beggs and Timme, 2012). Simulations
indicate that slow cortical oscillations may exhibit fractal scaling
due to the noisy nature of dynamical synapses with sufficiently
large recovery times, i.e., the combined presence of stochasticity
and synaptic fatigue is required for the emergence of power-
law distributions (Mejias et al., 2010). Neutral theory has been
recently proposed as a plausible explanation of scale-free neural
dynamics (Martinello et al., 2017), in which multiple causal
avalanches can coexist (producing power-law distributions of
avalanche sizes and durations) without the system being tuned
or self-organized to a critical point.

True multifractality often arises from various physiological
processes as the result of multiple antagonistic feedback
loops (Ivanov et al., 1998; Ashkenazy et al., 2002). Feedback
mechanisms play a crucial role in the generation of neural
oscillations and thus synchronization (Buzsaki and Draguhn,
2004). It has been shown that by suppressing feedback regulation
by administering an autonomic blockade, heart rate variability
loses its multifractal nature and reduces to simple monofractal
dynamics (Amaral et al., 2001). On this basis, the higher degree
of multifractality of DFC could indicate stronger neural feedback
regulation in SZ. Recent findings attributed increased global delta
synchrony to subthreshold activity of thalamocortical GABAergic
neurons (Herrera et al., 2016). As mentioned above, the exact
origins of waking delta rhythm are still unknown, however, these
results also point to the direction that thalamocortical neurons
may play an important role (Knyazev, 2012). Furthermore,
many studies support evidence for the key role of the thalamus
and thalamocortical dysfunction in the pathomechanism of SZ
(see e.g., Murray and Anticevic, 2017 for a review). We found
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increased delta connectivity as well as stronger multifractality in
SZ that indeed could indicate that thalamocortical projections
and feedback loops are affected, however, this hypothesis requires
further research. From a more practical standpoint, multifractal
dynamics often emerge from intermittent periods of larger
variance due to multiplicative mechanisms (Ihlen and Vereijken,
2010), which in the terms of DFC can be understood as large-
scale reorganizations of functional networks. Multiple studies
argued that brain dynamics are actually more prominent during
resting-state than in the presence of cognitive stimuli, as in wake
rest internal thought processes and self-referential activities are
unconstrained (Miall and Robertson, 2006; Deco et al., 2013).
General thought processes are often distorted and disorganized in
SZ patients that can be related to aberrant reorganization patterns
in DFC captured as increased degree of multifractality; a plausible
relationship yet to be elucidated.

Information-theoretical entropy-related measures (such as PE
or SE) refer on the temporal complexity of the process with
higher values implying more unpredictable behavior. Regional
differences in PE has been shown to reflect the functional
organization of the brain (Racz et al., 2019). It has also
been reported recently that several dynamic connections of
the amygdala show a decrease with aging in its complexity
as measured by SE, however, this decrease was absent in
patients suffering from SZ (Jia et al., 2017). Moreover, in
many connections SE was higher in the HC than in the SZ
group, implicating a lower dynamical complexity in the latter.
Interestingly, in a subsequent study using the same dataset, the
authors reported higher global SE in the SZ group that was later
revealed to be the consequence of connections with higher SE in
the visual recognition and auditory networks (Jia and Gu, 2019).
These results may seem contradictory at first, nevertheless, in
light of previous findings, they rather highlight the fact that FC
dynamics vary greatly among brain regions (Racz et al., 2019)
and that various regions could be affected in different ways in
SZ. Our current results indicate a lower dynamical complexity
of delta-band DFC in SZ. The rightful question arises of how
the performance of entropy-related measures could be affected
by the presence of long-range correlations. In an earlier study
we found that regions with stronger autocorrelation expressed
lower PE in their local FC dynamics and vice versa (Racz et al.,
2019). However, according to Xiong et al. (2017) this cannot be
simply a consequence of long-range autocorrelation, as it only
introduces a constant bias that is independent of the degree
of autocorrelation. A lower value of mPE implicates a lower
variability in spatio-temporal patterns in a sense that the process,
although varies over time, more prone to return to/repeat a
specific subset of patterns instead of switching randomly between
the full set. This is in line with previous DFC studies reporting
that SZ patients are prone to visit fewer of the possible meta-states
than HC subjects (Miller et al., 2014a,b).

It should be noted, that the obtained values for hmax,
FWHM, and mPE all indicate the presence of complex temporal
structuring in connectivity dynamics. In order to emphasize this,
we generated n = 100 random dynamic networks with equal
size to those reconstructed from EEG data, in which for each
time point all edges were randomly drawn from a distribution

approximating that of the edges of the original networks (a
normal distribution with mean 0.3 and variance 3∗10−4). The
networks were thresholded at K = 0.35. Network measures were
calculated for every time point and then multifractal and entropy
analyses were carried out using the same settings as previously.
As expected, all obtained indices (hmax, FWHM and mPE) were
found significantly different (p < 10−8 in all cases) from those
of real networks. In fact, they were found very similar to those
acquired for random noise (shuffled) time series used in surrogate
data testing (hmax = 0.513 ± 0.017; FWHM = 0.240 ± 0.007 and
mPE = 12.18 ± 0.003 with p > 0.05 in all cases expect DmPE of
HC and DFWHM, DmPE and Ehmax of SZ). Notably, the same
values were obtained for all three network measures. These results
further emphasize that dynamic brain networks express complex
temporal structuring, which is absent in dynamic networks with
randomly fluctuating connection patterns.

While the SL- and PLI-based analyses led to largely similar
results, some differences found regarding the cost-dependence
of fractal properties and mPE are worth noticing (see Figure 6
and Supplementary Figure 4). Namely, increasing the cost
thus including more of the weaker connections led to an
increase of Chmax and decrease of CmPE in SL-derived dynamic
networks. In contrast, the opposite pattern emerged in networks
reconstructed from the PLI-based analysis. This implies that
weak links in PLI networks introduce new information (that
can also be understood as increased unpredictability) to network
dynamics, while weaker links in SL analysis carry redundant
information as their inclusion reduces dynamical complexity and
increases autocorrelation. In other words, it seems as weaker
links destabilize PLI but stabilize SL networks. This is indeed an
interesting finding from the perspective of dynamic networks and
requires further research.

Automated Classification of Patients
With SZ
One of the major critiques of the FC field is that although it
was able to reveal characteristic alterations of various diseases
on the group level, its actual utility in the diagnosis of individual
cases is yet to be shown (Papo et al., 2014). Thus, recently more
and more studies attempt to utilize SFC and DFC features to
build classifiers in order to explore their true utility, especially
in the diagnosis and differential diagnosis of SZ (Calhoun et al.,
2008; Arbabshirani et al., 2013; Du et al., 2015; Kim et al.,
2016; Rashid et al., 2016). Our model was able to reach a
high cross-validation performance, comparable to those of most
recent reports. Additionally, this high-level performance could be
replicated when using AUC features from the PLI-based analysis
(Supplementary Table 5). Note that many studies reported
performance results surpassing ours, however all of these studies
worked with larger sample sizes. On the other hand, a study
working with the exact same dataset made available by Olejarczyk
and Jernajczyk (2017) was able to reach a 71.4% accuracy and
80% balanced accuracy using an RFC model and narrow-band
power values as features (Buettner et al., 2019). In a subsequent
report, using data augmentation by segmenting the data sets
into 1 min epochs, thus arbitrarily increasing sample size, the
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same group reported an outstanding 96.8% accuracy (Buettner
et al., 2020). Oh et al. (2019) also used the same dataset and fit
a convolutional neural network model on EEG data to classify
HC and SZ subjects. They also divided the data into 25 s long
epochs and were able to reach 98.1% accuracy. Although these
results highlight the importance of a large sample size, the
reported high accuracies may be biased, as the epochs used in
the training and test sets were not independent (i.e., segments
acquired from the same subject could be present both in the
training and test sets). Namely, this way the classifiers could
also learn and use subject-specific patterns for classification of
the epochs. This is supported by the fact that when Oh and
colleagues used a cross-validation scheme where data was split on
a subject-based manner (i.e., epochs of each subject only appeared
in either the training, validation or test sets), the accuracy of
their model dropped to 81.3% (Oh et al., 2019). Considering the
small size of the dataset, even though our classifiers performed
reasonably well, it is unlikely that they would generalize well
to real world-data. Therefore, we rather considered the RFC
model as a tool for exploring which features are the most
important for classification. From our results, it is apparent that
static FC measures carry less, though still relevant information
when compared to dynamic indices. On the other hand, Chmax,
CmPE, and CFWHM appear promising indices of DFC besides
the more commonly used σ2. Nevertheless, the results reported
here are essentially in agreement with those of previous studies
reporting on the superiority of DFC- over SFC-derived features
(Rashid et al., 2016).

Comparison With Existing Methods
In order to further clarify the advantages and plausible
disadvantages of our analytical pipeline, it is indispensable
to compare it with those already published in the literature.
Since it could be inconclusive to draw correspondences between
DFC approaches with vastly different methodologies, here
we selected three previous studies utilizing dynamic graph
theoretical analysis for comparison, namely those of Dimitriadis
et al. (2010), Tagliazucchi et al. (2012), and Yu et al.
(2015). The summary of the details is shown in Table 7.
Similarly to our study, Dimitriadis et al. (2010) used EEG
for monitoring brain activity, while Tagliazucchi et al. (2012)
and Yu et al. (2015) estimated connectivity dynamics based
on fMRI measurements. This – among other specifics such as
sampling rate or temporal resolution – inherently influenced
how nodes of the reconstructed networks were defined. In the
EEG-based approaches nodes corresponded to recording sites
(EEG channels), while Tagliazucchi et al. (2012) selected 90
cortical and subcortical regions according to the Automated
Anatomical Labeling template (Tzourio-Mazoyer et al., 2002) and
Yu et al. (2015) investigated connectivity between 48 ICNs (sets
of brain regions forming functional units). All studies utilized a
sliding window approach; however, in both EEG-based studies
the window length was adaptively defined to fit the frequency
characteristics of the data, while in the fMRI studies it was set
according to empirical considerations. The advantages of the
adaptive approach are that it reduces the number of subjective
parameters of the analysis pipeline, as well as it always yields a

complete characterization of the dynamics, while a short time
window (e.g., 40 s) prevents slow fluctuations to fully manifest,
especially if the data is filtered (e.g., between 0.01 and 0.1 Hz).
Most fMRI-based DFC approaches use Pearson cross-correlation
(or an inherently related similarity index such as in Yu et al.,
2015) as FC estimator, that only allows for the identification
of linear interactions. On the other hand, Dimitriadis et al.
(2010) computed dynamic Phase-Locking Index, while in this
study we used Synchronization Likelihood for DFC estimation
and PLI (and WPLI) for verification. These latter measures are
able to capture non-linear interactions, which is considered as
an inherent feature of functional coupling between neuronal
assemblies (Friston, 2000). Note, that all three studies discussed
here utilized only one FC estimator and did not validate
their results with a different method. All studies took different
approaches for network thresholding except for that of Yu et al.
(2015), where no additional threshold was applied. Dimitriadis
et al. (2010) introduced a novel algorithmic technique for the
objective selection of the most relevant edges, while similarly to
our approach Tagliazucchi et al. (2012) used cost thresholding.
However, while in the latter case the authors selected only one
cost value (K = 0.1) here we also explored the effect of cost on
network dynamics, which were revealed to be significant and
characteristic to the FC estimator used, as discussed previously.
All studies characterized the reconstructed networks with mostly
similar network measures (see Table 7), with the larger number
of nodes also allowing Tagliazucchi et al. (2012) to estimate
more sophisticated network characteristics such as betweenness
centrality. In this aspect our study is clearly the most constrained
among those discussed here, operating on networks with the
smallest number of nodes. Network size inherently limits the
set of graph theoretical measures that could reasonably be used
for network characterization (Rubinov and Sporns, 2010; van
Wijk et al., 2010), however previous results suggest that D, C,
and E could still provide valuable information even in case
of small networks (Racz et al., 2017). Finally, in all studies
the acquired NMTSs were analyzed in different fashions and
utilized for various purposes. Dimitriadis et al. (2010) utilized
the technique of replicator dynamics to identify consistent hub
regions of cortical structures. Tagliazucchi et al. (2012) used
correlation analysis to unfold the electrophysiological correlates
of fMRI-based connectivity fluctuations. Finally, Yu et al. (2015)
identified altered connectivity dynamics and patterns in SZ
patients when compared to HC subjects. A common pattern of
the aforementioned three studies though is that dynamic graph
theoretical measures were finally reduced to their mean, while
their dynamics were characterized by their variance or standard
deviation (see Table 7).

Accordingly, one of the main contribution of our approach lies
with the analysis of the multiscale and information-theoretical
aspects of connectivity dynamics. Although the studies discussed
above all provided valuable insights on physiological and
pathological brain function, they mainly neglected the already
established scale-free nature of DFC (Stam and de Bruin, 2004;
Racz et al., 2018a,b). On the other hand, our approach reveals
the complex temporal structuring of connectivity fluctuations
that otherwise remain undetected for most approaches. The
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TABLE 7 | Comparison of various DFC approaches based on dynamic graph-theoretical analysis.

Dimitriadis et al. Tagliazucchi et al. Yu et al. Racz et al.

Modality EEG fMRI fMRI EEG

Node definition Recording sites AAL-defined brain regions Intrinsic connectivity networks Recording sites

Number of nodes N = 30 N = 90 N = 48 N = 19

Window length Adaptive to frequency range 60TRs (≈2 min) 20 TRs (40 s) Adaptive to frequency range

Connectivity estimator Phase-Locking Index Pearson cross-correlation Similarity index Synchronization Likelihood,
Phase Lag Index

Thresholding Algorithmic identification of
most significant edges

Cost thresholding at K = 0.1 No thresholding Cost thresholding with K
ranging from 0.15 to 0.5

Network measures Global efficiency, local
efficiency, small-worldness

Clustering coefficient, average path
length, betweenness, small-worldness

Connectivity strength, clustering
coefficient, global efficiency

Connectivity strength,
clustering coefficient, global
efficiency

Analysis Mean Identification of
consistent hubs by using the
technique of replicator
dynamics

Standard deviation Correlations of
time-varying graph measures with
dynamic frontal-, central- and occipital
band-limited power

Variance Identification of reoccurring
connectivity states

Mean, variance, EfM Scale-free
(multifractal) analysis Temporal
complexity (information content)

EEG, electroencephalography; fMRI, functional magnetic resonance imaging; N, number of nodes; K, cost; EfM, excursions from median.

results presented here not only provide further confirmation
that multifractality is an inherent property of brain dynamics,
but also demonstrate that multifractal and entropy-related
properties of DFC could carry significant clinical potential. In
that, they could not only be utilized as disease biomarkers
but may also provide further insights on the underlying
mechanisms of neuropsychiatric morbidities. Note that the
methodology implemented here for reconstructing time-varying
brain graphs does not differ substantially from those of previous
approaches. Consequently, the framework put forward in this
study is readily adaptable for other DFC studies utilizing
different imaging techniques or investigating neuropsychiatric
disorders other than SZ.

Limitations and Future Directions
Clearly, the most severe drawback of the present work is the
lack of clinical data on SZ subjects such as illness duration,
medication or positive and negative symptom scores. Although
we revealed several differences between HC and SZ groups,
the physiological bases of these findings remain elusive until
their correspondence with clinical symptoms is investigated.
Furthermore, simultaneous fMRI-EEG measurements would be
also important not only for unfolding the neural basis of delta
synchronization but to reconcile contradictory results within
the FC field. The low spatial resolution (19 regions) is the
source of yet another limitation. A replication of this study
using high-density EEG (e.g., 128 or even 256 channels) would
benefit from a more detailed functional network reconstruction
and also allow for reliable source reconstruction with a
reasonable spatial resolution (although source reconstruction
can be performed using only 19 channels as well (e.g., Vecchio
et al., 2020). This way plausible volume conduction effects
could be further reduced and information could be gained
on the involvement of specific – even subcortical – brain
regions as well, thereby enhancing the interpretation of the
results. A high-density setup would also allow for detailed local

connectivity analyses which appear increasingly relevant in the
light of recent advancements recognizing the importance of
not only temporal, but spatial- and spatiotemporal patterns in
DFC (Iraji et al., 2020). Specifically, it has been demonstrated
by previous studies that regional alterations of DFC could
play a relevant role in SZ (Damaraju et al., 2014; Jia et al.,
2017; Jia and Gu, 2019), which may will be overlooked when
investigating network characteristics on the global level only.
Considering in addition, that multiscale and entropy-related
properties of DFC were shown to express significant regional
variability over the cortex (Racz et al., 2019), an extension
of the current framework to the analysis of local connectivity
dynamics appears as an important future research direction.
In this study, only datasets of 14-14 HC individuals and
SZ patients were analyzed, that limits the applicability and
power of machine learning classifiers. Most importantly, using
datasets of a larger sample size would allow for a train-test
split scenario where the training data itself would be sufficient
to perform the cross-validation and thus would allow fine-
tuning of model parameters before evaluating the true model
performance on previously unseen data. Small sample size
also limits to some extent the possible number of features
that can be used in a model. Although solutions (such as
penalization in case of logistic regression or the “dropout”
technique in case of neural networks) exist to circumvent
this problem and prevent overfitting, in most cases it is
accepted as a rule of thumb that for reliable performance
the number of cases should surpass the number of features
in a model (Hastie et al., 2009). Thus, increasing the sample
size would also permit the inclusion of other, non-connectivity
derived predictors commonly used in EEG analysis such as
band-limited power. Multifractal indices appeared as important
predictors, however a drawback of fractal- and especially
multifractal analysis is that it requires sufficiently long (i.e.,
at least a few thousand data points) signals to obtain reliable
estimates (Eke et al., 2000; Mukli et al., 2015). This makes
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multifractal analysis unfeasible for fMRI-based DFC analyses,
where time series are usually in the range of hundreds of data
points. Note, that PE (and mPE) does not suffer from this
limitation (Bandt and Pompe, 2002) and is readily applicable
to short time series as well. It is important to highlight that
the analysis pipeline was designed deliberately to be fully
automatized. This includes steps of pre-processing as well as
parameter settings of the applied analysis methods that were
defined based on purely data-driven considerations, thus the
procedure could be easily applied to different datasets. This
greatly enhances the potential of the proposed pipeline for clinical
applications, as in clinical settings practicality is an important
aspect. Finally, the utility of potential biomarkers lies with not
only in separating healthy from patient groups but also in
differentiating between diseases with similar and/or overlapping
clinical manifestations, such as schizophrenia, bipolar disorder
and schizoaffective diseases. Thus, further work is required to
investigate disease-related alterations of the dynamic indices
proposed in this study in neuropsychiatric morbidities and
conditions other than schizophrenia.

CONCLUSION

In summary, by applying dynamic graph theoretical analysis to
EEG signals, we found delta-band dysconnectivity in patients
with SZ. The SZ group expressed higher average and variance
of network measures when compared to HC. Moreover, here
we first report the multifractal nature of DFC in SZ that
expressed stronger fractal scaling and degree of multifractality
than in healthy controls. In accordance with previous studies,
lower temporal complexity of DFC in SZ was captured with
mPE analysis. Random forest classifiers indicated that indices of
complexity, such as multifractality and entropy were amongst
the most important predictors of the disease. This implies that
these features carry great potential as biomarkers of SZ for
future studies, that could facilitate its biologically- rather than
symptom-based diagnosis and progression monitoring.
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Acupuncturing the ST36 acupoint can evoke the response of the sensory nervous

system, which is translated into output electrical signals in the spinal dorsal root.

Neural response activities, especially synchronous spike events, evoked by different

acupuncture manipulations have remarkable differences. In order to identify these

network collaborative activities, we analyze the underlying spike correlation in the

synchronous spike event. In this paper, we adopt a log-linear model to describe network

response activities evoked by different acupuncture manipulations. Then the state-space

model and Bayesian theory are used to estimate network spike correlations. Two sets

of simulation data are used to test the effectiveness of the estimation algorithm and

the model goodness-of-fit. In addition, simulation data are also used to analyze the

relationship between spike correlations and synchronous spike events. Finally, we use

this method to identify network spike correlations evoked by four different acupuncture

manipulations. Results show that reinforcing manipulations (twirling reinforcing and

lifting-thrusting reinforcing) can evoke the third-order spike correlation but reducing

manipulations (twirling reducing and lifting-thrusting reducing) does not. This is the main

reason why synchronous spikes evoked by reinforcing manipulations are more abundant

than reducing manipulations.

Keywords: population signals, spike correlation, synchrony, log-linear model, state-spacemodel, bayesian theory,

acupuncture

INTRODUCTION

Different acupuncturing manipulations can evoke different rapid and immediate concentrated
effects in the corresponding target organ (Ezzo et al., 2000). The nature of the acupuncture effect
depends on information regulation, in which neural information regulation plays an important
role. And spike response activities are products of the neural regulation. In recent years, the
analysis of response activities evoked by acupuncture has focused on the single neuron spike train
and been largely confined to feature extraction, such as the spiking rate, the variation coefficient,
the embedded dimension, the correlation dimension, and the complexity (Han et al., 2011; Men
et al., 2012; Zhou et al., 2012). Ensemble spike activities are rarely investigated. In order to
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accurately quantify the acupuncture effect for different
manipulations, we chose ensemble spike events as
the research object in order to extract the network
collaborative relationship.

With the rapid development of multi-electrode acquisition
technology, more synchronous spikes have been detected in
animal behavior and stimuli experiments (Gerstein and Clark,
1964; Meister et al., 1994; Gray et al., 1995; Brown et al.,
2004; Segev et al., 2004; Blanche et al., 2005). A synchronous
spike event is the important manifestation of the network
collaborative activity (Hebb, 1949). In acupuncture experiments,
some research has shown that reinforcing manipulations can
evoke more response activities and encourage a higher spiking
rate than reducing manipulations (Li, 2009). On this basis
we instigated statistical analysis for ensemble spike events
in 20 trials and found that the numbers of response spikes
evoked by reinforcing manipulations were far higher than
reducing manipulations, which mainly embodies synchronous
spike activities.

In the earlier research, a study of the network collaborative
relationship focused on the statistical analysis of ensemble
spike trains. First, the cross-correlation method was used to
obtain the stationary dependency in pairs of neurons (Perkel
et al., 1967). Then Aertsen, Fujisawa et al. introduced the
concept of the time-varying joint spiking rate of two neurons,
which extended the pair-wise stationary dependency to the
pair-wise dynamic dependency (Aertsen et al., 1989; Fujisawa
et al., 2008). Still later, more methods, such as unitary event
analysis (Grün et al., 2002a,b; Grün, 2009) and the CuBIC
test method (Staude et al., 2010a,b) turned to the extraction
of the high-order dynamic dependency based on ensemble
spike trains.

In recent research, this model-based analysis has been
extensively investigated. The generalized linear model is one
of the most common models (Chornoboy et al., 1988;
Brown et al., 1998; Truccolo et al., 2004), in which each
spike train is modeled as a discrete point process based
on all spike events and the time-varying spiking rate is
modeled as a linear-non-linear cascade framework. In this
cascade framework, spike-histories of other neurons are linearly
superposed and then the spiking rate is obtained from the
non-linear exponential transformation of the superposition
result. Some methods also introduce input stimulus into the
linear superposition (Kim et al., 2011). The generalized linear
model is a probability statistical model, in which dynamic
dependencies among neurons are directly modeled as linear
coupling parameters of the spike-history (Truccolo et al.,
2004; Okatan et al., 2005; Pillow et al., 2008). However,
because ensemble spike trains are modeled on the assumption
that spike events of each neuron are independent, these
models cannot provide the time-varying joint spiking rate of
neural ensemble or accurately describe dynamic synchronous
spike activities.

In this paper, we model ensemble spike trains as multivariable
Bernoulli events and adopt a log-linear model to directly

describe dynamic joint spike activities. Pair-wise and high-
order spike correlations are the model parameters, which
describe the dependency among the neural ensemble.
Unlike the cross-correlation analysis, the log-linear model
simultaneously extracts all pair-wise spike correlations.
This avoids the effect of other neurons. Meanwhile the
log-linear model can extract high-order spike correlations
avoiding the effect of lower-order spike correlations. Some
studies have shown that high-order dependencies cannot be
neglected in ensemble spike activities and a log-linear model
containing only up to pair-wise interactions cannot account
for stimulus encoding (Montani et al., 2009; Roudi et al.,
2009; Ohiorhenuan et al., 2010; Santos et al., 2010; Yu et al.,
2011). This method is used to ensemble spike trains evoked
by different acupuncture manipulations. And the Akaike
information criterion (AIC) is used to test the goodness-of-fit
of the model and to judge the existence of high-order spike
correlations. Based on the optimal model, ensemble spike
correlations evoked by different acupuncture manipulations
are estimated.

METHOD

Log-Linear Model
For the neural ensemble comprised of N neurons, taking time
t for example, we define N-dimension binary variables Xt =

(X1
t ,X2

t , . . . ,XN
t) as the ensemble spike pattern. Xi

t represents
the spike state of the i neuron. When Xi

t = 1, it indicates that
the spike event occurs at time t. When Xi

t = 0, it indicates
that the spike event does not occur at time t. So, there are
2N spike patterns for the neural ensemble. For a given spike
pattern x = (x1, x2, . . . , xN) (xi = 0 or 1), we define the
joint probability function of its occurrence as p(x|θt), which is
determined by θt (ensemble spike correlations). θt reflects the
dependency relationship of the neuron ensemble. The dimension
of θt is 2N − 1 because the sum of joint probabilities of all
spike patterns is 1, namely

∑

p(x|θt) = 1. The logarithm of
the joint probability function is defined as a linear function
(Amari et al., 2003; Gütig et al., 2003; Kass et al., 2011; Long and
Carmena, 2011; Pillow et al., 2013) and the log-linear model is
as follows:

log p(x|θt) =
∑

i

θ t
i
xi +

∑

i<j

θ t
ij
xixj +

∑

i<j<k

θ t
ijk
xixjxk · · ·

+ θ t
1...N

x1 · · · xN − ψ(θt), (1)

where θt = (θ t
1
, θ t

2
, . . . , θ t

12
, θ t

13
, . . . , θ t

1···N
)′ are ensemble spike

correlations and compose the θ coordinate (Amari, 2001;
Nakahara and Amari, 2002). The number of model parameters
θt is C1

N + C2
N + C3

N + · · ·CN
N = 2N − 1. Because of

∑

p(x|θt) = 1, ψ(θt) = − log p({0, . . . , 0}) is the log
normalization parameter.
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Besides, we define the expectation of the joint spike (the
synchronous spike) at time t as follows:

ηt
i
= E[Xt

i
] = 1 ∗ p(Xt

i = 1)

= p(
{

xti = 1, 0, . . . , 0
}

)+
∑

j(j6=i)
p(

{

xti = 1, xtj = 1, 0, . . . , 0
}

)

+
∑

j<k(j6=i,k6=i)
p(

{

xti = 1, xtj = 1, xt
k
= 1, 0, . . . , 0

}

)+ · · ·

+p({1, . . . , 1}), i = 1, · · · ,N
ηt
ij
= E[Xt

i
Xt

j
] = 1 ∗ p(Xt

i = 1,Xt
j = 1)

= p(
{

xti = 1, xtj = 1, 0, . . . , 0
}

)

+
∑

k(k6=i,k 6=j)
p(

{

xti = 1, xtj = 1, xt
k
= 1, 0, . . . , 0

}

)

+
∑

k<l(k6=i,k6=j,l 6=i,l 6=j)

p(
{

xti = 1, xtj = 1, xt
k
= 1, xt

l
= 1, 0, . . . , 0

}

)

+ · · · + p({1, . . . , 1}), i < j
...

ηt
1···N

= E[Xt
i
· · ·Xt

N
] = 1 ∗ p(Xt

1 = 1,Xt
2 = 1, . . . ,Xt

N = 1)
= p({1, . . . , 1}).

(2)

Expectations ηt = (ηt
1
, ηt

2
, . . . , ηt

12
, ηt

13
, . . . , ηt

1···N
)′ compose the

η coordinate. In order to facilitate writing, �k represents all
possible combination forms of the k-order subset. Then for all
subsets, we can get �1 = {1, 2, . . . ,N}, �2 = {12, 13, . . .},
�3 = {123, 124, . . .},. . . ,�N = {123 . . .N}. If I ∈ {�1, . . . ,�N},
the corresponding model parameter and expectation parameter
can be written as θ t

I
and ηt

I
. Similarly, the joint spike event is

substituted by fI(x):

fi(x) = xi, i = 1, · · · ,N
fij(x) = xixj, i < j
...
f1···N(x)=x1 · · · xN .

(3)

Equations (1, 2) are simplified as follows:

p(x|θt) = exp[
∑

I∈{�1 ,...,�N }θ
t
I fI(x)− ψ(θt)], (4)

ηtI = E[fI(x)|θt], I ∈ {�1, . . . ,�N} . (5)

Some research has shown that the θ coordinate and η coordinate
are dually orthogonal coordinates and non-zero high-order spike
correlations represent the excess and paucity of high-order
synchronous spikes (Amari and Nagaoka, 2000; Amari, 2001,
2009; Nakahara and Amari, 2002). But it is worth noting that
non-zero high-order spike correlations are not equal to the
expectations of the corresponding order joint spikes. For a given
r-order subset, {ηI} (I ∈ {�r}) is the expectation of synchronous
spikes. Equations (4, 5) show that {ηI} (I ∈ {�r}) depends not
only on r-order spike correlations {θI} (I ∈ {�r}) but also on
higher-order spike correlations {θI} (I ∈ {�r , . . . ,�N}, r ≤ N).

State-Space Method for Estimating

Spike Correlations
We chose ensemble spike events of n trials as the research
object to make the result statistically significant. Xt,l =

(X1
t,l,X2

t,l, . . . ,XN
t,l) is defined as the ensemble spike pattern in

the l-th trial at time t, which is a sample for the joint probability
function p(x|θt). Based on experimental data of n trials, the
effective estimate of ηI t is equal to the joint spiking rate:

ytI =
1

n

n
∑

l=1

fI(X
t,l), I ∈ {�1, . . . ,�N} , (6)

where I ∈ {�1, . . . ,�N}, yt = (yt
1
, yt

2
, . . . , yt

12
, yt

13
, . . . , yt

1···N
)′.

For the observation interval [0,T], y1:T =
{

y1, y2, . . . , yT
}

are
efficient estimates of joint spiking expectations at each time.
According to the Bernoulli experiment, n trials are independent
of each other and we assume that spike patterns for all time are
also independent of each other. Based on Equations (4, 6), we
can get the conditional probability function for all ensemble spike
events of n trials, which is given as:

p(y1:T |θ1:T) =
n∏

l=1

T∏

t=1
exp[

∑

I∈{�1,...,�N }θ
t
I fI(X

t,l)− ψ(θt)]

=
T∏

t=1
exp[n(

∑

I∈{�1,...,�N }θ
t
I y

t
I − ψ(θt))]

=
T∏

t=1
exp[n(y′tθt − ψ(θt))],

(7)

where θ1:T = {θ1, θ2, . . . θT}.
In order to estimate dynamics spike correlations, we adopted

the idea of the discrete state-space model. Here state variables
are spike correlations, which are unknown. And observation
variables are the ensemble spike events of n trials, which are
observable and known. Equation (7) defines the conditional
probability function for the observation process. For state
variables, the iterative process is defined as a first-order
autoregressive model, which is given as:

θt = Fθt−1 + ξ t , (8)

where t = 2, . . . ,T. F is the first-order autoregressive parameter.
ξt obeys the normal distribution, in which the mean is the zero
vector and the covariance matrix is Q. And the initial value of
state variables also obeys the normal distribution θ1 ∼ ν(µ,6).
Here we assume that the parameter 6 is constant and w =

[F,Q,µ] is the unknown parameter set of the state process.
According to Equation (8), we know (θt − Fθt−1) ∼ ν(0,Q)

and get the prior probability function of the state process
p(θ1:T |w). Then the log-likelihood function of the ensemble spike
events of n trials can be written as:

l(w) = log
∫

p(y1:T , θ1:T |w)dθ1:T
= log

∫

p(y1:T |θ1:T)p(θ1:T |w)dθ1:T .
(9)

The unknown parameter set w can be estimated by maximizing
this log-likelihood function. Meanwhile according to the
Bayesian theory, the posterior probability function can be
written as

p(θ1:T |y1:T ,w) =
p(y1:T |θ1:T)p(θ1:T |w)

p(y1:T |w)
. (10)
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By maximizing the posterior probability function, the unknown
state (spike correlations) can be estimated (Dempster et al., 1977;
Akaike, 1980; Shumway and Stoffer, 1982; Smith and Brown,
2003; Smith et al., 2004; Pillow et al., 2013).

Selection of the Log-Linear Model
For the neural ensemble comprised of N neurons, Equation (4)
is a full model, which contains spike correlations of all orders.
We can construct its hierarchical models, such as E1 ⊂ E2 ⊂

· · · EN . Er (r = 1, 2, . . . ,N) a hierarchical log-linear model, in
which spike correlations that are greater than the r-order are
set to zero. If the model contains more high-order correlation
terms, apparently it can better describe the joint probability
of the ensemble spike pattern. However, for the estimation of
spike correlations, more high-order correlation terms do not
mean better. This is because when high-order synchronous
spike activities do not exist in the neural ensemble, high-
order correlation terms will lead to a large statistical fluctuation
for the parameter estimation and estimates of low-order spike
correlations would be inaccurate. This phenomenon is an over-
fitting of the model, so it is necessary to remove non-existent
high-order correlation terms.

This paper adopts the Akaike information criterion (AIC)
(Akaike, 1980) to choose the optimal model. AIC is based on the
concept of the information entropy, which is a balance between
the model complexity and the model goodness-of-fit. When AIC
for a given model is small, it means that the model provides a
good description for experimental data with fewer parameters.
According to the log-linear model, AIC is defined as,

AIC = −2 log
∫

p(θ1:T |y1:T ,w)dθ1:T + 2k
= −2l(w)+ 2k,

(11)

where k is the number of parameters, which is equal to the
sum of the numbers of w = [F,Q,µ] (Akaike, 1980; Kitagawa,
1987). For a given r-order hierarchical model, the number of
spike correlation parameters θt =

[

θ1
t , . . . , θ12t , . . . , θ1···rt

]
′ is

d =
∑r

k=1

(

N
k

)

, so the total number of parameters is k =

d2+ d(d+ 1)/2+ d, in which three terms, respectively, represent
the numbers of F, Q, and µ.

In addition, the Bayesian information criterion (BIC)
(Schwarz, 1978; Rissanen, 2009) is another common information
measure. Compared to AIC, BIC replaces the second term k with
k log n. BIC is defined as,

BIC = −2l(w)+ k log n. (12)

Selection of the State Model
Besides the selection of high-order correlation terms, we should
choose the dynamic change pattern of the state process, which is
determined by state parameters: F and Qin Equation (8). There
are three dynamic change patterns: (I) F = I (identity matrix)
and Q = 0; (II) F = I and Q is estimated by the state-space
method; and (III) F and Q are both estimated by the state-space
method. In case (I), spike correlations are stationary. In cases (II)
and (III), spike correlations are non-stationary. Here we similarly
use AIC to select the optimal dynamic change pattern.

RESULT

Simulation Data Analysis
In this section, we generate two sets of simulation data with
known model parameters (spike correlations) to, respectively,
test the effectiveness of the state-space method and information
criterions (AIC and BIC). Meanwhile the relationship between
spike correlations and synchronous spikes is discussed.

Testing the State-Space Estimation Method
The first-order and second-order spike correlations (dashed lines
in Figures 1B,C) are used to simulate ensemble spike activities
(Figure 1A), which contain two neurons (N = 2). Besides, we
can obtain synchronous spikes of two neurons, which are shown
as blue raster at the bottom of Figure 1C. At time t = 125ms (red
dashed box), both θ1 and θ2 (the green dashed line and the pink
dashed line) have a significant increase. At this moment, the blue
raster (Figure 1C) are very dense because of the high spiking rates
of the two neurons. At time t = 375ms (black dashed box), θ12
(blue dashed line) has a significant increase. Conversely, θ1 and θ2
reduce. At this moment, the blue raster (Figure 1C) are relatively
dense because of the high second-order spike correlation.

Then the state-space method is used to simulation data
(Figure 1A) and estimates of θ1, θ2, and θ12 are shown in
Figures 1B,C (green, pink, and blue solid lines), in which three
gray intervals are, respectively, their 95% credible intervals.
Results show that all of the spike correlations (the first-order
and the second-order) lay within 95% credible intervals of
their estimates. The effectiveness of the state-space method has
been validated.

Testing the Akaike and Bayesian Information

Criterions
In order to test the effectiveness of the Akaike and Bayesian
information criterions, the log-linear model with known spike
correlations is used to simulate ensemble spike activities of three
neurons (N = 3). There are non-stationary first-order, second-
order, and third-order spike correlations in this model. And the
number of trials is also n = 100. Then we can construct its
hierarchical models Er (r = 1, 2, 3). These three hierarchical
models are employed to fit simulation data and corresponding
model parameters (spike correlations) are estimated by the state-
space method. Meanwhile in order to test the importance of
the data sample size, we analyzed different sample sets: n =

3, 5, 10, 20, 50, 100. For different sample sizes, AICs and BICs of
three hierarchical models can be calculated. Results are shown
in Tables 1, 2. Minimum values of AICs and BICs for the three
hierarchical models are marked in blue.

Table 1 shows that for small sample sizes (n = 3, 5, 10, 20),
the second-order hierarchical model E2 is chosen, whose AICs
is minimal. For large sample sizes (n = 50, 100), the
third-order hierarchical model E3 with the minimal AICs is
chosen. BIC has the same result in Table 2. Because neuronal
spiking is a random event, the analysis of the synchronous
spike and the spike correlation must be based on enough
sample data. Results from one or two trials have statistical
significance, which also cannot represent entire ensemble
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FIGURE 1 | Estimation of spike correlations for simulation data of two neurons. (A) Simulated ensemble spike activities. The number of neurons is N = 2 and the

number of trials is n = 100. (B) First-order spike correlations: true values (dashed lines) and their estimates (solid lines). (C) Second-order spike correlations: true value

(dashed line) and its estimate (solid line). Blue raster, at the bottom, represent the synchronous spikes of the two neurons.

TABLE 1 | AICs for different sample sizes of simulation data.

Number of trials r = 1 r = 2 r = 3

n = 3 1,207 1,197 1,213

n = 5 1,960 1,902 1,919

n = 10 3,782 3,647 3,663

n = 20 7,851 7,595 7,609

n = 50 19,259 18,592 18,585

n = 100 37,759 36,362 36,325

TABLE 2 | BICs for different sample sizes of simulation data.

Number of trials r = 1 r = 2 r = 3

n = 3 1,199 1,172 1,182

n = 5 1,957 1,891 1,906

n = 10 3,784 3,655 3,673

n = 20 7,860 7,622 7,644

n = 50 19,276 18,644 18,652

n = 100 37,783 36,432 36,416

response activities. When the sample size is large enough,
AIC and BIC both choose the full model E3 as the optimal
model. The effectiveness of the two information criterions has
been validated.

Relationship Between Spike Correlations and

Synchronous Spikes
For the neural ensemble containing two neurons, synchronous
spikes of the two neurons are represents by blue raster in

Figure 1C. At time t = 375ms, second-order synchronous spikes
occurred frequently with the increasing of the second-order spike
correlation θ12 (blue line). In addition, at time t = 125ms,
although the second-order spike correlation is fixed at zero,
second-order synchronous spikes still have an obvious increase.
It is because that two first-order spike correlations θ1 and θ2
both display an obvious increase (>-3) at this moment. When
the first-order spike correlations are smaller than −3, they have
little effect on the synchronous spike and will not be taken
into account.

For the neural ensemble containing three neurons, estimates
of spike correlations are, respectively, shown in Figures 2B–D

based on ensemble spike activities (Figure 2A). In the bottom
of each panel, synchronous spikes are shown as raster figures.
Estimated curves and raster figures for the same order
have the same color. Results show that second-order (low-
order) synchronous spike events are not only related to
corresponding order spike correlations but also the third-
order (high-order) spike correlation. Specifically, in the interval
[450ms, 500ms], synchronous spikes of neurons 1-2 (blue
raster) do not increase but reduce with the increasing of
θ12(blue solid line), compared with the interval [100ms, 150ms].
This is because of a smaller θ123 (gray dotted line) in the
interval [450ms, 500ms]. In addition, although θ23 (red solid
line) in the interval [100ms, 150ms] is much smaller than
the interval [0ms, 50ms], red raster of neurons 2-3 in these
two intervals show no significant difference. This is because
θ123 (gray dotted line) in [100ms, 150ms] is much bigger.
Meanwhile Figure 2D shows that the third-order (high-order)
spike correlation θ123 represents the third-order (high-order)
synchronous spike events.
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FIGURE 2 | Estimation of spike correlations for simulation data of three neurons. (A) Simulated ensemble spike activities. The number of neurons is N = 3 and the

number of trials is n = 100. (B) First-order spike correlations: θ1, θ2, and θ3 (green, pink, and yellow solid lines). (C) Second-order spike correlations: θ12, θ13, and θ23
(blue, cyan, and red solid lines). (D) The third-order spike correlation: θ123 (gray solid line). Raster with different colors at the bottom show the timing of corresponding

order synchronous spikes.

Acupuncture Data Analysis
In the acupuncture experiment, healthy Sprague Dawley rats
(weight: 180–200 g, age: 2–3) were selected as subjects. Before
the experiment, all of the rats were fed for 7 days to adapt
to the standard laboratory environment. In the process of the
experiment, subjects were anesthetized deeply by 20% ethyl
carbamate (1.5 g/kg) for preparation. We trimmed the hair
between T8-L6 on both sides of the dorsal midline, cut the
back skin along this midline, and removed the subcutaneous
fascia. After that, the erector spinae, spinous process on both
sides of centrum between T13-L5 was taken out to expose the
spinal cord. To keep the spinal cord from drying out, paraffin
oil at a temperature of 38◦C was injected into stitched skin
flaps. And then we used a hairspring tweezer to cut the spine
dura mater with the help of the anatomical microscope. The
dorsal roots separated from L3-L5 intervertebral foramen were
snipped by eye scissors at the proximal part. Lastly, nerve
filaments of the L4 dorsal root were placed on electrodes. And
then, we used the BIOPAC-MP150 physiological recorder to
record the spike activity of spinal dorsal root neurons evoked
by acupuncture. We adopted four common manipulations in the
clinical treatment: (I) twirling reinforcing, (II) lifting-thrusting
reinforcing, (III) twirling reducing, and (IV) lifting-thrusting

reducing. The stimulus frequency was 100 times/min and the
stimulus duration was T = 2.5s (for specific experimental
details refer to references Men et al., 2011 and Xue et al.,
2013). We chose the spike trains of three neurons in 20 trials
as the research object and created statistical analysis on the
spike events. The numbers of spike events of single neurons
evoked by four manipulations are shown in Table 3. Under the
condition of reinforcing manipulations (I and II), the numbers
of spikes of the three neurons are far more than those under the
condition of reducing manipulations (III and IV). The last two
rows marked in red are the number of supernumerary spikes of
the three neurons evoked by manipulation I and II, respectively.

The number of synchronous spike events evoked by the
four manipulations are shown in the first four rows in Table 4.
Numbers in the fifth row marked in red are the number of
supernumerary synchronous spikes evoked by manipulation
I compared to manipulation III. And numbers in the sixth
row are the number of supernumerary synchronous spikes
evoked by manipulation II compared to manipulation IV.
According to Tables 3, 4, we find that reinforcing manipulations
can evoke more response spikes than reducing manipulations,
which mainly embody synchronous spike activities. In order to
theoretically explain this phenomenon through the viewpoint
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TABLE 3 | Number of spike events of each neuron evoked by four manipulations

in 20 trials.

Manipulation Neuron 1 Neuron 2 Neuron 3

I 874 1,027 1,035

II 1042 824 851

III 653 659 592

IV 596 647 622

I-III 221 368 443

II-IV 446 177 229

TABLE 4 | Number of synchronous spike events evoked by four manipulations in

20 trials.

Manipulation Neurons 1-2 Neurons 1-3 Neurons 2-3 Neurons 1-2-3

I 190 176 261 129

II 109 111 223 85

III 67 33 69 25

IV 70 57 94 41

I-III 123 143 192 104

II-IV 39 54 129 44

TABLE 5 | AICs for different sample sizes of acupuncture data evoked by

manipulation I.

Number of trials r = 1 r = 2 r = 3

n = 2 1,875 1,846 1,884

n = 5 4,564 4,371 4,398

n = 10 8,882 8,485 8,509

n = 15 13,152 12,558 12,560

n = 20 NaN 16,663 16,635

TABLE 6 | AICs for different sample sizes of acupuncture data evoked by

manipulation II.

Number of trials r = 1 r = 2 r = 3

n = 2 1,744 1,696 1,727

n = 5 4,311 4,099 4,130

n = 10 8,180 7,765 7,803

n = 15 12,298 11,664 11,695

n = 20 16,635 15,767 15,744

of spike correlation, this paper introduces the log-linear model
and the state-space estimation method into the analysis of
acupuncture data.

Selection of the Log-Linear Model and the State

Model
The first step is to choose the appropriate models for the
acupuncture data. Here because acupuncture is a discrete
stimulation, we assume that the first-order autoregressive
parameter F in the state model is not equal to the identity
matrix and is optimized by the estimation method. Ensemble

TABLE 7 | AICs for different sample sizes of acupuncture data evoked by

manipulation III.

Number of trials r = 1 r = 2 r = 3

n = 2 1,297 1,345 1,384

n = 5 3,083 3,106 3,139

n = 10 6,184 6,150 6,182

n = 15 9,103 9,016 9,042

n = 20 12,156 11,986 12,003

TABLE 8 | AICs for different sample sizes of acupuncture data evoked by

manipulation IV.

Number of trials r = 1 r = 2 r = 3

n = 2 1,301 1,342 1,385

n = 5 3,102 3,059 3,100

n = 10 5,965 5,871 5,896

n = 15 8,816 8,667 8,687

n = 20 11,794 11,546 11,562

TABLE 9 | AICs of given hierarchical models of the four manipulations for different

state processes.

State parameter I, r = 3 II, r = 3 III, r = 2 IV, r = 2

F = I 16,771 15,859 12,091 11,632

Optimized F 16,635 15,744 11,986 11,546

spike activities with different sample sizes (n = 2, 5, 10, 15, 20)
evoked by the fourmanipulations are used to fit three hierarchical
models (E1, E2 and E3). And their corresponding AICs can
be calculated and shown in Tables 5–8. For the given sample
sizes, the minimum values of AICs are marked in blue. Results
show that under the condition of reinforcing manipulations (I
and II), when the sample size is large enough (n = 20), AIC
chooses the full model E3 as the optimal model. Conversely,
under the condition of reducing manipulations (III and IV),
the hierarchical model E2 is selected. Therefore, we conclude
that reinforcing manipulations can evoke the third-order spike
correlation θ123 and reducing manipulations cannot. This is the
main reason why more response spikes are evoked by the two
reinforcing manipulations.

In the selection of the log-linear model, the autoregressive
parameter F is fixed at the identity matrix. AICs of four chosen
models have been calculated and we show them in the first row
of Table 9. Meanwhile we calculate AICs (the second row of
Table 9) of the four chosen models under the condition of the
optimized F. For the four manipulations, AICs in the second row
are less than those in the first row. The efficacy of the assumption
that the state parameter F is optimized has been validated.

Analysis of Acupuncture Reinforcing Manipulations
This section discusses the twirling reinforcing manipulation
and its ensemble response activities (Figure 3A) are used to
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FIGURE 3 | Estimation of spike correlations for acupuncture data evoked by twirling reinforcing. (A) Ensemble spike activities. The number of neurons is N = 3 and

the number of trials is n = 20. (B) Rates of joint spike: η12, η13, η23, and η123. (C) First-order spike correlations: θ1, θ2, and θ3 (green, pink, and yellow solid lines). (D)

Second-order spike correlations: θ12, θ13, and θ23 (blue, cyan, and red solid lines). (E) Third-order spike correlation: θ123 (gray solid line). Raster with different colors at

the bottom show the timing of corresponding order synchronous spikes.

fit the full model E3. In Figure 3A, each twirling reinforcing
stimulus can evoke a lot of spike activities and spike times
show a single-peak distribution. Based on spike trains in
20 trials, joint (synchronous) spike events (colored raster
in Figure 3) and their rates (Figure 3B) can be obtained.
Then the state-space method is used to estimate spike
correlations. Figure 3C shows that three first-order spike
correlations are <0. Only θ1 and θ2 are significantly >-3
during each acupuncture stimulus. Therefore, except for the
synchronous spikes of neurons 1-2, the first-order spike
correlations are not the main considerations for synchronous
spike events.

Figure 3D shows that second-order synchronous spike events
are not only related to corresponding order spike correlations
but also to the third-order spike correlation θ123. Take the third
acupuncture stimuli for example ([1.1s, 1.7s]), θ12 is negative
in the interval [1.2s, 1.4s]. But because θ123 is large enough
during this time period, there are many synchronous spikes of
neurons 1–2 (blue raster). In the interval [1.4s, 1.5s], θ12 gradually
increases, but the number of blue raster has a dramatic decline
because of a smaller θ123. For the rest of the time ([1.5s, 1.7s]),
values of θ12 and θ123 are both large. However, in this time
period, the current stimuli has stopped. Therefore, the three
first-order spike correlations are very small and spike activities
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FIGURE 4 | Estimation of spike correlations for acupuncture data evoked by lifting-thrusting reinforcing. (A) Ensemble spike activities. The number of neurons is

N = 3 and the number of trials is n = 20. (B) Rates of joint spike: η12, η13, η23, and η123. (C) First-order spike correlations: θ1, θ2, and θ3 (green, pink, and yellow solid

lines). (D) Second-order spike correlations: θ12, θ13, and θ23 (blue, cyan, and red solid lines). (E) Third-order spike correlation: θ123 (gray solid line). Raster with different

colors at the bottom show the timing of corresponding order synchronous spikes.

disappear gradually. For synchronous spikes of neurons 1–3
and neurons 2-3, θ13 and θ23 are both larger than θ12 during
the interval [1.25s, 1.45s]. So synchronous spikes of neurons 1-
2 rely more on θ123. Figure 3E shows that synchronous spikes
of neurons 1-2-3 (gray raster) increase with the increasing of
θ123 during each acupuncture stimulus. Therefore, the third-
order spike correlation θ123 represents third-order synchronous
spike events.

For the lifting-thrusting reinforcing manipulations, analysis
results are shown in Figure 4. From Figure 4A, we find
that spike times during each acupuncture stimulus show a
multi-peak distribution. Therefore, analysis results are same as
twirling reinforcing, except for the characteristic of volatility.

In addition, during each acupuncture stimulus θ23 (Figure 4D,
red solid line) is larger than θ123 (Figure 4D, gray dotted
line) and the red raster become dense with the increasing
of θ23. Therefore, the dependence of synchronous spikes of
neurons 2-3 on θ123 is minimal. And Figure 4E shows that
synchronous spikes of neurons 1-2-3 (gray raster) are the
result of the interaction of second-order and third-order
spike correlations.

Analysis of Acupuncture Reducing Manipulations
This section discusses the twirling reducing manipulation and
its ensemble response activities (Figure 5A) are used to fit
the hierarchical model E2. Its analysis results are shown in
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FIGURE 5 | Estimation of spike correlations for acupuncture data evoked by twirling reducing. (A) Ensemble spike activities. The number of neurons is N = 3 and the

number of trials is n = 20. (B) Rates of joint spike: η12, η13, η23, and η123. (C) First-order spike correlations: θ1, θ2, and θ3 (green, pink, and yellow solid lines). (D)

Second-order spike correlations: θ12, θ13, and θ23 (blue, cyan, and red solid lines). Raster with different colors at the bottom show the timing of corresponding order

synchronous spikes.

Figure 5. From Figures 5A,B, we find that spike times during
each acupuncture stimulus also show a single-peak distribution,
but the number of response spikes are less than the twirling
reinforcing. The main reason is that reducing manipulations
cannot evoke the third-order spike correlation.

Figure 5C shows that, like the twirling reinforcing, θ1 and
θ2 are >-3 during each acupuncture stimulus. So synchronous
spikes of neurons 1-2 (Figure 5D, blue raster) are not only related
to θ12 but also to θ1 and θ2. For synchronous spike events
of neurons 1-3 and of neurons 2-3 (Figure 5D, cyan and red
raster), first-order spike correlations can be ignored. Second-
order spike correlations θ13 and θ23 are, respectively, their main
considerations.

For the lifting-thrusting reducing manipulation, analysis
results are shown in Figure 6. Similarly, results are same as
twirling reducing, except for the characteristic of volatility. In
addition, only θ1 among the first-order spike correlations is
larger than −3 during each acupuncture stimulus. So first-order
spike correlations are not main consideration for synchronous

spikes. Second-order spike correlations, respectively, represent
corresponding order synchronous spike events.

DISCUSSION

This paper introduces the concept of spike correlation
and builds a log-linear model to describe ensemble spike
activities evoked by four acupuncture manipulations. Then
according to the idea of the state-space model, ensemble
spike trains are defined as observation variables and spike
correlations are defined as unknown state variables, which
are estimated by the Bayesian theory. Results show that
under the condition of acupuncture reducing manipulations,
the third-order spike correlation does not exist. This is the
primary reason that synchronous spikes are significantly less in
this condition.

In this paper, we judge the existence of the high-order
spike correlation by the goodness-of-fit of three hierarchical
models and their AICs. Readers can also test the presence
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FIGURE 6 | Estimation of spike correlations for acupuncture data evoked by lifting-thrusting reducing. (A) Ensemble spike activities. The number of neurons is N = 3

and the number of trials is n = 20. (B) Rates of joint spike: η12, η13, η23, and η123. (C) First-order spike correlations: θ1, θ2, and θ3 (green, pink, and yellow solid lines).

(D) Second-order spike correlations: θ12, θ13, and θ23 (blue, cyan, and red solid lines). Raster with different colors at the bottom show the timing of corresponding

order synchronous spikes.

of high-order spike correlation by the Bayes factor. The
Bayes factor is the ratio of two likelihood functions, which
is defined as BF = p(y |M1 )/p(y |M2 ). M1 represents the
model containing the high-order spike correlation. When the
value of the Bayes factor is larger than 1, it indicates that the
experimental data supports model M1 and the high-order spike
correlation exists.

Acupuncture is a kind of the discrete stimulation. Therefore,
the log-linear model is time-dependent and model parameters
(spike correlations) are time-varying. Meanwhile our model
contains spike correlations of each order and we can estimate
the “pure” high-order spike correlation. This makes it possible
to discuss the effect of high-order spike correlation on a low-
order synchronous spike event. In addition, the correlation
analysis in this paper is based on a large number of sample
data. The spike event of neurons is a stochastic process. One
or two experiments cannot reflect synchronous spike activities
of the neural ensemble. Therefore, the result based on a small
amount of sample data is unreliable. This is a new view to

analyze acupuncture neural electrical signals and will become an
important scientific method for the quantitative analysis of the
acupuncture response system.
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Topographic Organization of
Correlation Along the Longitudinal
and Transverse Axes in Rat
Hippocampal CA3 Due to Excitatory
Afferents
Gene J. Yu*, Jean-Marie C. Bouteiller and Theodore W. Berger

Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA,

United States

The topographic organization of afferents to the hippocampal CA3 subfield are

well-studied, but their role in influencing the spatiotemporal dynamics of population

activity is not understood. Using a large-scale, computational neuronal network model

of the entorhinal-dentate-CA3 system, the effects of the perforant path, mossy fibers,

and associational system on the propagation and transformation of network spiking

patterns were investigated. A correlation map was constructed to characterize the

spatial structure and temporal evolution of pairwise correlations which underlie the

emergent patterns found in the population activity. The topographic organization of the

associational system gave rise to changes in the spatial correlation structure along the

longitudinal and transverse axes of the CA3. The resulting gradients may provide a basis

for the known functional organization observed in hippocampus.

Keywords: correlation, CA3, large-scale model, connectivity, neuronal network, hippocampus, topography

INTRODUCTION

The architecture and connectivity of rat hippocampus has been intensely studied, revealing a
prominent topographic organization within the highly complex and tortuous structure of the
hippocampal anatomy. Despite a thorough characterization of the macroscale, mesoscale, and
microscale connectivity of rat hippocampus, the contributions of the architecture of the afferent
and efferent projections to the organization of population dynamics has yet to be fully understood.
This is partly due to the difficulty in interpreting and integrating the results of the key studies,
many of which were performed several decades ago, into a single comprehensive model. The
technical difficulty in recreating these studies with either older or more modern methods limit
further characterizations of the microscale and mesoscale topography. Few computational models
of neural systems have attempted to represent their full geometrical, or at least up to an extent at
which the mesoscale contributions to population activity can be observed (Schneider et al., 2012;
Markram et al., 2015; Hendrickson et al., 2016; Billeh et al., 2020). Yet, these types of anatomical-
scale models are necessary to explore the contributions of topographically organized connectivity
on the spatio-temporal dynamics of their respective neural systems.

At a basic level, connectivity determines the spatial arrangement of postsynaptic activation
given a presynaptic spike resulting in a correlation across neurons, i.e., a spatially organized
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correlation. Pairwise spike correlations between neurons have
been shown to capture much of the statistical properties of a
single neuron and provide a measure for studying the properties
of population activity (Helias et al., 2014; Dettner et al.,
2016). Weak pairwise correlations have been demonstrated to
give rise to emergent spatiotemporal structures in population
activity (Halliday, 2000; Schneidman et al., 2006; Kriener
et al., 2009; Renart et al., 2010; Senk et al., 2018; Yu et al.,
2018).

The relation between connectivity and spatially organized
correlation is due to the spatial distribution of an axon and the
sparsity/density of its connectivity which then determine
the amount of input overlap/input sharing that occurs
among neurons. Theoretical studies have characterized the
role of input sharing in determining the correlation that
a postsynaptic population exhibits and the propagation of
the correlation through multiple layers (Kumar et al., 2010;
Rosenbaum et al., 2011, 2016; Darshan et al., 2018). Such
studies have also revealed how the interactions between
feedforward and recurrent inhibitory circuits nonlinearly
affect the spatial structure of correlation. Beyond spatial
correlation, the temporal correlation can also be considered
in the correlation structure which is determined by the
electrophysiology of the postsynaptic neuron and the synaptic
properties (Tetzlaff et al., 2008; Hong et al., 2012; Chan et al.,
2016; Yu et al., 2018). Given these principles, we investigated
the population dynamics and spatiotemporal correlation
structure that resulted from different types of connectivity in a
hippocampus-specific context.

Using an entorhinal-dentate network, we had previously
revealed a role of anatomically-constrained connectivity in
organizing random inputs into spatially and temporally dense
regions of activity called clusters (Hendrickson et al., 2016; Yu
et al., 2018). The spatial properties of the clusters were found
to be influenced by the anatomy of the axonal projections,
i.e., the spatial extent of the axon terminal field. This previous
work was limited to exploring the effect of a single feedforward
projection on a single neural population. In the present work,
the entorhinal-dentate work was expanded to investigate (1)
how spatio-temporal patterns within the dentate gyrus would be
preserved when propagated to the CA3 subfield, (2) howmultiple
feedforward projections would interact to influence the spatio-
temporal pattern of the CA3, and (3) how a recurrent excitatory
projection, i.e., the associational system, would further transform
the activity.

A large-scale entorhinal-dentate-CA3 neuronal network
model with spatially-dependent and topographically-organized
connectivity was constructed that encompasses the full geometric
extent of a rat hippocampus using compartmental models
of neurons (Figure 1). From the entorhinal-dentate network,
the perforant path projection and dentate mossy fibers were
included to connect the entorhinal cortex and dentate gyrus
to the CA3, and the recurrent associational system was
added. By computing a spatio-temporal correlation map,
a heterogeneous correlation structure was discovered which
varied in amplitude and shape along both the longitudinal
and transverse spatial axes of the CA3 and further evolve
in time.

MATERIALS AND METHODS

Neuron Models
The CA3 pyramidal cell is the principal neuron of the CA3,
and the basis of the CA3 pyramidal cell models used in the
present work originated from a study in which three major
firing types were discovered: bursting, strongly adapting, and
weakly adapting (Hemond et al., 2008). They published three
models with biophysical parameters and spiking behavior that
best represented in vivo recordings of CA3 pyramidal cells that
demonstrated the different firing types. For the three models,
the biophysical parameters had been distributed upon a single,
morphological reconstruction of the apical and basal dendrites
of a CA3 pyramidal cell. The models contained the following
ion channels: sodium, delayed-rectifier K+, A-type K+, D-
type K+, M-type K+, T-type Ca2+, N-type Ca2+, L-type Ca2+,
calcium-dependent K+ (CaGK), calcium-dependent K+ (BK),
HCN, and leak channels (see Supplementary Tables 1–3). In
the present work, the morphology of the models from Hemond
et al. (2008) was simplified using an algorithm that used circuit
theory to combine compartments connected in series and in
parallel to create simplified equivalent circuit representations of
complex morphologies (Marasco et al., 2012). The algorithm
was used in the current work to construct simplified models
while preserving the firing behavior exhibited by the original
models (Figure 2C). The simplified models contained eight
compartments corresponding to a compartment for each layer
upon which input is received and reduced simulation times
by a factor of 20. Model parameters are summarized in the
Supplementary Tables 1–4. The computational models were
simulated using NEURON v7.5 and scripted using Python 2.7.

The entorhinal-dentate network used in the present study was
the same as described in Yu et al. (2018, 2019) and is extensively
described there. Dentate granule cells were represented using
a simplified morphology that was constructed using the same
technique as for the CA3 pyramidal cell models (Marasco et al.,
2012). Entorhinal cortical cells were represented using a renewal
process that consisted of a homogeneous Poisson process with an
exponentially-decaying refractory period with a time constant of
35 ms.

The entorhinal-dentate-CA3 network was comprised of
112,000 entorhinal cortical cells, 120,000 dentate granule cells,
and 25,000 CA3 pyramidal cells which represents one-tenth of
the full number of dentate granule cells and CA3 pyramidal
cells within the rat hippocampus (Mulders et al., 1997). Each
simulation represented 5 s of real-time at a time step of 0.025ms
and was run using 100 cores fromDual Intel Xeon 2.4 GHz CPUs
resulting in a wall-time of approximately 4 h per simulation.
Each core was allocated 2 GB of RAM for a total of 200 GB
of RAM per simulation. The simulations were performed using
the computing resources provided by the Center for Advanced
Research Computing at the University of Southern California.

Topography of Afferent Inputs to CA3
Pyramidal Cells
Hippocampal Anatomy
To describe the CA3 network model, some background
regarding the structure of the hippocampus must be given, and
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FIGURE 1 | Overview of methods in constructing the large-scale hippocampal model. (A) Compartmental models of CA3 pyramidal cells with Hodgkin-Huxley style

dynamics were constructed. A detailed version with realistic morphology was converted into a reduced equivalent compartment model. (B) Anatomical data was used

to define a topographically-organized, spatially-dependent connectivity. (C) The postsynaptic potential for each pre-post synapse type was characterized using their

peak value and their half-height width (HHW). (D) A three-dimensional hippocampal model consisting of the dentate gyrus and CA3 was constructed for this study.

common terminology to describe the hippocampal anatomy
must be established. Briefly, the rat hippocampus is organized
into three areas: the dentate gyrus, CA3 subfield, and CA1
subfield (Figure 3A). The simplified trisynaptic circuit of the
hippocampus is a predominantly feedforward pathway that
begins in the entorhinal cortex and describes the propagation
of activity from entorhinal cortex, to dentate gyrus, to CA3, and
finally to CA1 (Andersen, 1975). There are many more details to
the full description of the circuits within the hippocampus such
as back projections and the CA2, but the simplified trisynaptic
circuit captures the major organization of the hippocampus.

The hippocampus is a three-dimensional structure, and the
curved nature of the layers do not allow positions to easily be
described using three-dimensional cartesian coordinate systems.
Therefore, neuroanatomists developed a technique to unfold
and flatten the structure to describe the anatomy using a two-
dimensional coordinate system (Figure 3A). The longitudinal
axis can generally refer to the dorso-ventral axis, septo-temporal
axis, or y-axis of the hippocampus. The transverse axis can
generally refer to the proximodistal axis or x-axis of the
hippocampus. The proximodistal axis within CA3 refers to
position with respect to the dentate gyrus, and the CA3 has
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FIGURE 2 | Anatomical details and spiking behavior of CA3 pyramidal cell models. (A) The total dendritic length varied based on the transverse position of the model

within the CA3 subfield. These lengths and the synaptic densities in each layer (Table 1) were used to determine the numbers of each input type that a model

received. (B) After the reduced models (dashed colored lines) preserved the different spiking behaviors as the original models (solid black lines). (C) The original

morphology was reduced to eight compartments. On the right, the specific regions that received a particular input type are denoted.

been commonly divided into three subregions along this axis.
The CA3c, CA3b, and CA3a are organized with the CA3c being
most proximal to dentate gyrus and CA3a being most distal to
dentate gyrus.

Anatomically-Constrained Mesoscale and Microscale

Connectivity
The major intrahippocampal afferents to CA3 pyramidal cells
were considered in this study: the lateral perforant path
input, the medial perforant path input, mossy fiber input,
and the associational input. Anatomical data was used to
define and constrain the topography of the various projections.
The topography describes the regional mapping between
layers/subfields of the hippocampal formation. Relevant data
include anterograde and retrograde tracer injection studies
which can reveal the relation between position within a
hippocampal subfield and the region within the postsynaptic
area to which axons are sent (anterograde) or the region
within the presynaptic area from which axons are received
(retrograde). Another crucial aspect of the anatomy is the
spatial distribution of the axon terminal field within the
postsynaptic area. Under the assumption that a greater
axonal density results in a larger number of connections,
the axonal distribution was converted into a probability
distribution with a higher density corresponding to a higher
probability of connection. Thus, connectivity was stochastically
generated by first defining the regional mapping between
the position of a presynaptic neuron and the postsynaptic
region to which axons are sent. Then, the axonal density

was used to define a spatial constraint resulting in a spatially
dependent connectivity. The topographic regional mapping
corresponds to mesoscale connectivity, and the resulting
connections based on the axonal density correspond to the
microscale connectivity.

Axons were not explicitly represented in the models but
were represented as a propagation delay based on the path
length between the presynaptic and postsynaptic neurons and
the conduction velocity. Conduction velocities of 0.32 m/s, 0.27
m/s, and 0.39 m/s were used for the perforant path (Tielen et al.,
1981), mossy fibers (Kress et al., 2008), and associational system
(Andersen et al., 2000), respectively. The anatomical data and
methods for quantifying them that are described below were
initially introduced in earlier work (Yu et al., 2014, 2015).

The perforant path refers to the projection arising from
the entorhinal cortex that are sent to the dentate gyrus and
CA3 and is divided into the lateral and medial perforant path
based on their origin from the lateral and medial areas of
the entorhinal cortex. They initially synapse onto the dentate
gyrus before continuing onwards and making a monosynaptic
connection with the CA3 (Yeckel and Berger, 1990). Within
the dentate gyrus and CA3, the lateral and medial perforant
paths terminate on different strata which, for the CA3, are the
distal and proximal lacunosum-moleculare, respectively. Because
the same axons that synapse in the dentate gyrus continue
to the CA3, the topographical map from entorhinal cortex to
dentate gyrus was used to describe the mapping from entorhinal
cortex to CA3. The data used to describe the entorhinal-dentate
topography came from the series of retrograde tracer studies
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FIGURE 3 | Overview of mossy fiber and associational topography. (A) A conceptual diagram depicts how a flattened representation of the hippocampus can be

made from the original 3D structure. The transverse axis refers to the proximodistal axis. The longitudinal axis refers to the septotemporal/ dorsoventral axes. (B) The

original data that revealed the organization of the associational system was reported using two intensity values. The data was mapped onto a standard space, fit to a

parameterized equation, and then remapped back into subject space. (C) Examples of the original data and resulting fits are shown. (D) The trajectories of the mossy

fibers are shown in the CA3 subfield. The top right subplot indicates the change inter-synapse distance that occurs along the mossy fiber. The bottom right subplot

shows example synapse locations.

(Dolorfo and Amaral, 1998), and the extent of the axon terminal
field along the longitudinal axis was reported to be 1–1.5mm
(Tamamaki, 1997). A Gaussian distribution was used to represent
the connection probability of a perforant path axon terminal
field. The resulting map predicts a longitudinal organization of
the entorhinal projection to dentate gyrus (Figure 1B). A detailed
description of the data and method for extracting the topography
are described previously in Hendrickson et al. (2016) and Yu et al.
(2019). To summarize this method, a workflow was developed to
digitize the data, map the results of the injection onto a standard
space, perform averaging when relevant within the standard

space, and finally remap the averaged data onto a chosen subject
rat space.

The mossy fibers describe the axons that are sent by dentate
granule cells to the CA3. Each mossy fiber can be generally
characterized as a single fiber which initially stays within the
same longitudinal level from which it originates and then
travels through the CA3 predominantly along the transverse axis
for the first two-thirds (i.e., within CA3c and CA3b) before
turning toward the temporal pole of the longitudinal axis within
CA3a (Figure 3D) (Acsády et al., 1998). The fiber trajectories
were estimated using data published in Swanson et al. (1978)
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by measuring the deviation of the fiber with respect to the
longitudinal level of origin as it traversed the proximodistal
extent of the CA3. The deviations as a function of longitudinal
origin were interpolated using a cubic b-splines fit to represent
a smooth change in fiber trajectory. To generate the fibers, noise
was added to the points representing each fiber trajectory create
variable fibers.

The longitudinal and transverse organization of the
associational system was most thoroughly revealed by Ishizuka
et al. (1990) using anterograde tracers. The tracer was injected
into one of nine areas within the CA3 which roughly covered
a 3 × 3 grid with injections within the CA3c, CA3b, and CA3a
as well as the septal, middle, and temporal levels. The resulting
distribution of tracer represents the density and spatial extent
to which axons were sent. Density in the study was represented
using three qualitative levels: a zero level, a low density level,
and a high density level. Similar to the entorhinal-dentate/CA3
topography, the data were digitized and mapped onto a standard
space (Figure 3B). Within the standard space, distribution
of labeling was parameterized using a two-dimensional skew
gaussian equation. The parameters of the equation could then
be interpolated/extrapolated to estimate the distribution of
CA3 associational axons for areas that were not covered by an
injection (Figure 3C).

Numbers of Synapses
The final step to generating connectivity is to define the numbers
of connections that are possible. There are two method by
which the number of connections could be constrained. From
a postsynaptic perspective, the number of inputs that could
be received for a presynaptic population can be estimated by
using spine count information which could be obtained by using
spine density and dendritic length measurements. Due to highly
stratified nature of the CA3 afferents, the number of inputs for
each afferent could be estimated by calculating the total number
of spines for the different layers to which the afferents project.
The second method for constraining the number of inputs is
to use the presynaptic population’s axon measurements. The
bouton density and the axon length can be used to estimate
the number of connections that a presynaptic neuron forms
with a postsynaptic population. The strata to which the various
projections are restricted are summarized in Figure 2.

The total dendritic length of each strata within CA3 change
along the proximodistal axis as revealed by Ishizuka et al. (1995).
In general, the total dendritic length is smallest proximally,
and it is largest distally (Figure 2A). The spine density within
each stratum are not well studied for CA3 pyramidal cells.
Rather, spine densities have been meticulously characterized for
CA1 pyramidal cells and were used to estimate the numbers
of synapses for CA3 pyramidal cells (Megias et al., 2001). The
total synapse numbers are summarized in Table 1. Using these
calculations, the number of inputs for the perforant path and
associational projections were constrained for the model.

Because the synaptic density within the stratum lucidum
was not characterized in CA1, the second method of using the
presynaptic axon properties was used to constrain the number of
inputs for the mossy fibers. The inter-synapse distance had been

measured for mossy fibers which revealed that the inter-synapse
distance changed as the fiber moved fromCA3c to CA3b to CA3a
(Acsády et al., 1998). Using a Poisson process, the locations of
mossy fiber synapses along the fiber were estimated using the
reported mean values of 162± 12.6µm in CA3c, 223± 19.3µm
in CA3b, and 345 ± 27.5µm in CA3a (Figure 3D). Mossy fibers
originating in the suprapyramidal blade of the dentate gyrus were
restricted to the stratum lucidum. Mossy fibers originating in
the infrapyramidal blade were restricted to the proximal stratum
oriens within CA3c before moving into the stratum lucidum for
the CA3b and CA3a.

Having defined the topography, spatially dependent
connection probabilities, and the numbers of connections
the connectivity of the network could be stochastically generated.
For the postsynaptic method, the connection probabilities for
each presynaptic neuron for a given afferent were collected for
each CA3 pyramidal cell. The connection probabilities were
normalized, and a presynaptic neuron was randomly selected
until the total number of connections for that particular afferent
was achieved. For the presynaptic method, a postsynaptic
neuron was randomly selected for each synapse location. A
postsynaptic neuron within 30µm of the synapse was considered
based on measurements performed by Acsády et al. (1998). The
distribution of the number of mossy fiber inputs is found in
Supplementary Figure 1.

Synapse Models
Neuron communication in the model was mediated exclusively
through synapse-like processes. The synapse was modeled as a
deterministic process in which an action potential activates a
change in synaptic conductance. The time-course of the synaptic
conductance was represented using a double exponential
function for AMPA receptors (Kleppe and Robinson, 1999) and
a triple exponential function for NMDA receptors. The NMDA
receptor was additionally modulated by a sigmoidal function
to capture the magnesium-related voltage dependence of the
receptor (Jahr and Stevens, 1990; Zador et al., 1990).

gAMPAR(t)∝e
−t
τ2 −e

−t
τ1 , τ2>τ1

gNMDAR (t,v)∝
w·e

−t
τ3 + (1− w) ·e

−t
τ2 −e

−t
τ1

1+e−0.062v·[Mg2+]/3.57
, τ3>τ2>τ1

The t and v variables correspond to time in milliseconds and
membrane potential in millivolts. The τ variables are time
constants that control the time-course of the waveform. The
w variable for the NMDA receptor is a weighting variable
constrained within (0, 1). The equations are normalized using
the peak value of the exponential functions, i.e., ignoring the
denominator for the NMDA receptor. This can be solved
analytically for the AMPA receptor by setting the derivative
to zero. For the NMDA receptor, the solution was empirically
derived after setting the derivative to zero and finding the
intersection of the left- and right-hand sides of the equation.
The normalized synaptic conductance equations are then
multiplied by a factor corresponding to the synaptic weight.
The synaptic weights are constrained such that the resulting
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TABLE 1 | Number of inputs received by the CA3 pyramidal cells and EPSP properties.

Lacunosum

distal

(LEC)

Lacunosum

proximal

(MEC)

Radiatum

(associational)

Oriens

(associational)

Synaptic Densitya 0.63 0.63 3.61 3.15

Number of Inputs (Proximal) 0 0 11,241 7,147

Max. Number of Inputs (Distal) 1,658 1,105 11,281 17,893

The proximal vs. distal inputs are based on the multiplication of the synaptic density and the total dendritic length within the relevant layer. Between the proximal and distal ends, the

numbers of inputs change linearly.
aMegias et al. (2001).

TABLE 2 | EPSP properties.

Lacunosum

distal

(LEC)

Lacunosum

proximal

(MEC)

Radiatum

(associational)

Lucidum

(mossy fiber)

Oriens

proximal (mossy

fiber)

Oriens

distal

(associational)

Peak (mV) 0.30a 0.30a 0.30a 3.2b 3.2b 0.30a

HHW (ms) 46.1a 46.1a 40.9a 135c 135c 38.0a

aPerez-Rosello et al. (2011).
bLawrence et al. (2003).
cScanziani et al. (1993).

excitatory postsynaptic potential (EPSP) recorded from the soma
match those reported from unitary synaptic release experiments
for the relevant presynaptic-postsynaptic synapse pairings.
The time constants for the AMPA receptor were similarly
separately constrained such that the half-height width of resulting
somatic EPSP matched the experimentally reported values
(Table 2). The parameters for the synapses are summarized in
Supplementary Tables 5–8.

Three-Dimensional Space-Time
Correlation Maps
The spatial and temporal correlation structure of the network
was constructed by computing the pairwise correlation of the
spiking activity for all neuron pairs and averaging the normalized
cross-correlations of neuron pairs that were located at the same
relative distance (Figure 4). The normalized cross-correlation
was computed by binning the spike times of the neurons and
using the following equation:

(

x ⋆ y
)

[n]=
1

σxσy

N−1
∑

m=0

1

Lm
(x [m]−µx)

(

y [m+n]−µy

)

for which the ⋆ operator represents correlation, x and y
correspond to the binary spike trains, σ is the standard deviation
of the spike trains, µ is the mean of the spike trains, N is the total
length of the spike train, and Lm is the size of the overlap between
the signals while they are being shifted.

A three-dimensional matrix was constructed with an axis
corresponding to time, an axis for the longitudinal distance
between the neuron pair, and an axis for the transverse distance
between the neuron pair. The temporal resolution for binning the

spikes was 1ms. The spatial resolution for the longitudinal and
transverse axes was 0.1 mm.

There were two types of space-time correlation maps that
were generated for this study (Figure 4). The first type was the
global map which computed the space-time correlation map for
all possible neuron pairs. The global map then represents the
average correlation structure for all principal neurons within a
hippocampal subfield. The second type of map was the local
map which divided the CA3 into a 3 × 3 grid of longitudinal
and transverse sections based on the CA3a, CA3b, and CA3c
subdivisions along the transverse axis and the septal, middle,
and temporal subdivisions along the longitudinal axis. Local
maps were specific to each of these sections and were computed
using neuron pairs only if at least one of the neurons was
located in the corresponding longitudinal/transverse section.
This constraint caused the resulting space-time correlation
map to be representative of a smaller population of neurons,
as defined by the longitudinal/transverse position. In contrast
to the global map which considered every neuron pair, the
local map provided a more granular characterization of the
correlation map a local map to represent each of the nine
longitudinal/transverse sections.

RESULTS

Input to the entorhinal-dentate-CA3 network was primarily
provided by the entorhinal cortex, and the spiking activity of
each entorhinal neuron was represented with a renewal process
comprised of a Poisson process with an exponentially decaying
refractory period that modified the spiking probability after the
generation of a spike. The mean firing rate of the Poisson process
was 5Hz. The resulting input had a uniform power density in the
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FIGURE 4 | Summary of the construction of the space-time correlation maps. (Top row) The workflow in calculating pairwise spike correlations and placing them in a

matrix that is organized by the longitudinal, transverse, and temporal lags. (Bottom row) Global vs. local space-time correlation map. In the global map, all neuron

pairs were considered to construct an average correlation map to represent all neurons that were included to compute the map. In the local map, only neuron pairs

with at least one neuron within the chosen section were used in the calculation which results in a correlation map that is specific to the section to which the neuron

pairs were constrained. In the local map example highlighted in the figure, the resulting correlation map would be representative for the neurons within the section

located in the second row and third column.

frequency domain and was spatially and temporally uncorrelated.
Though the random input does not contain behavioral or spatial
information, the mean firing rate was determined based on the
mean firing rate of the grid cells modeled in Yu et al. (2019) and
served as a control to eliminate any correlation that may arise due
to a common physiological/behavioral drive.

The simulations described throughout the results can be
organized based on the afferent projections that were present
and the activity of the dentate granule cells. For the different
afferent projections, there was the perforant path (PP-CA3)
model which includes only the entorhinal projection, the mossy
fiber (MF-CA3) model which includes only the mossy fiber
projection, the perforant path-mossy fiber (PP-MF-CA3) model
which includes both perforant path and mossy fiber projections,
and the perforant path-mossy-fiber-assocational (PP-MF-A-
CA3) model which includes the perforant path, mossy fiber,
and associational projections. As described in the previous
paragraph, the entorhinal cortex only generated random input.
However, the dentate granule cell activity was generated using
two methods. The first method uses the entorhinal activity

and the dentate gyrus network model to generate the dentate
granule cell activity and represents the natural dentate response
to entorhinal activity. This method introduces a weak spatial
and temporal correlation to the dentate granule cell activity due
to the topographic connectivity. The second method represents
the dentate granule cell activity using a renewal process with a
mean firing rate of 0.62Hz which was the mean firing rate of
the dentate granule cells due to entorhinal input. Therefore, the
key difference between the first and second methods for dentate
granule cell activity was the presence of an inherent spatial and
temporal correlation in the activity using the first method and
the absence of a correlation in the activity using the second
method. These differences in terms of the model are denoted
using as weakly correlated mossy fiber (wcMF) or randommossy
fiber (rMF).

Simulations were initially performed with synaptic weights
that were constrained to elicit the appropriate EPSP peak values,
and additional simulations were performed that multiplied the
original synaptic weights with scalar factors. The perforant path
and mossy fibers each had their synaptic weights modified by
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factors of 0.5, 1, 2, 3, and 5 with 1 corresponding to the original
synaptic weight.

Spiking Activity and Global Correlation
Maps
The longitudinal axis of the hippocampus is much larger than
the transverse axes of the hippocampal regions. Additionally,
there is a significant longitudinal organization to the topography
between regions. These details have supported the presentation
of hippocampal activity along the longitudinal axis. The
following subsections present the raster plots of spiking
activity and the corresponding space-time correlation maps
as functions of longitudinal position and time with the same
scale to demonstrate the similarities between the spatio-
temporal patterns of activity and the space-time correlation map.
The slice of the space-time correlation map was taken at a
transverse lag of 0mm, and the color maps were thresholded
to 30% of the maximum value to better visualize the weaker
negative correlations.

Entorhinal Perforant Path Projection (PP-CA3 and

PP-DG Models)
There is a monosynaptic projection from entorhinal cortex
to both dentate gyrus and CA3 meaning that the entorhinal
cortex directly projects onto their principal neurons. Though
the monosynaptic perforant path projection onto dentate gyrus
has already been extensively covered (Hendrickson et al., 2016;
Yu et al., 2018, 2019), a brief analysis is presented here for
comparison with CA3. In CA3, the spatially and temporally
uncorrelated entorhinal input (PP-CA3 model) was converted
into network activity that exhibited a weak clustering (Figure 5A,
i). Dentate granule cells (PP-DG model) responded with more
visible clusters (Figure 5A, iv). A global space-time correlation
map was computed with the CA3 pyramidal cells having a peak
correlation of 0.0026 and the dentate granule cells having a peak
correlation of 0.03 which is approximately an order of magnitude
greater (Figure 5B, i,iv). The spatial extent of the correlation for
both granule cells and CA3 pyramidal cells were nearly identical
at approximately 1 mm.

These results indicate that the formation of clusters due to the
perforant path are not unique to the dentate gyrus but can be
generalized for different neural systems. Given a shared axonal
distribution, the spatial extent of the correlation is preserved.
However, the specific electrophysiology of the neuron types
does affect the extent of temporal correlation. Other differences
between the granule cells and CA3 pyramidal cells include the
numbers of inputs that they receive from perforant path. The
CA3 pyramidal cells receive much fewer inputs than granule cells
and therefore share fewer inputs among their neighbors. This
results in a lower peak correlation and noisier clusters.

Dentate Mossy Fiber Projection (rMF-CA3 and

wcMF-CA3 Models)
The role of mossy fibers in organizing spatio-temporal activity
was investigated within two conditions. The random mossy
fiber (rMF) condition represented the dentate granule cell
activity using an independent Poisson process that had the

same mean firing rate as the weakly correlated mossy fiber
(wcMF) condition which was 0.62Hz. The wcMF represented
the disynaptic propagation of entorhinal activity via mossy fibers
to CA3, i.e., the dentate activity in Figure 5A, iv that was
generated by the PP-DG model was used as the input to the
CA3 pyramidal cells. The rMF created an input that was spatially
and temporally uncorrelated. The wcMF created in an input
with weak spatial and temporal correlation based on the dentate
transformation of uncorrelated entorhinal activity. At the default
synaptic parameters, the dentate activity was not sufficient to
generate significant activity in the CA3. Therefore, the following
analysis was performed with the synaptic weight increased by a
factor of five.

The rMF resulted in CA3 activity that remained spatially
uncorrelated and exhibited a weak temporal correlation with a
peak of 0.001 (Figure 5A, ii). The wcMF resulted in the CA3
generating a spatio-temporal pattern that largely matched the
spatio-temporal pattern of the dentate gyrus with a delay of
9ms (Figure 5A, v). Additionally, the CA3 clusters included
a “tail” that extended down toward the temporal pole and
represents the downward turn that the mossy fiber trajectory
follows after reaching the CA3a. The spatial structure of the
CA3 correlation map remains largely similar to the dentate
correlation map (Figure 5B, ii,v). These results indicate that
in contrast to the perforant path projection, which organizes
random activity into clusters, the mossy fibers do not imbue a
spatial correlation to their postsynaptic population. Rather, the
mossy fibers preserve the structure of the activity that is generated
by the presynaptic population.

Combined Entorhinal and Dentate Projections

(PP-rMF-CA3 and PP-wcMF-CA3 Models)
To explore the interactions between both the perforant path and
mossy fiber projections, both rMF and wcMFwere considered. In
the PP-rMF-CA3 model, both the entorhinal cortex and dentate
granule cell activity were randomly generated with an entorhinal
mean firing rate of 5Hz and a dentate mean firing rate of
0.62Hz. These were both projected directly to the CA3. The PP-
rMF-CA3 model eliminated the entorhinal projection to dentate.
In the pPP-wcMF-CA3 model, the entorhinal cortex projected
to both the dentate gyrus and CA3, and the CA3 received
random input from entorhinal cortex and weakly correlated
input from the dentate gyrus, which again represents the dentate
gyrus’ transformation of the random entorhinal input. These
simulations were performed using the original synaptic weights,
i.e., a scalar factor of one.

The PP-rMF-CA3 model resulted in the CA3 pyramidal cells
generating a noisier version of the spatio-temporal pattern that
was caused by the entorhinal projection by itself (Figure 5A, iii).
This was expected as the random dentate input caused the CA3
to respond with spatially and temporally uncorrelated activity.
The combination of these inputs results in the noisy pattern.
The space-time correlation map supports this finding as the
correlation structure is very similar to the correlation structure
caused by the entorhinal projection but with a peak correlation
that was roughly decreased by half (Figure 5B, iii).

Frontiers in Computational Neuroscience | www.frontiersin.org 9 November 2020 | Volume 14 | Article 588881179

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yu et al. Topographically Organized Correlation in CA3

FIGURE 5 | Raster plots and global correlation maps for the effects of the perforant path and mossy fibers on CA3 pyramidal cells. (A) Spiking activities of the CA3

pyramidal cells are indicated with black dots and are organized based on their longitudinal position and time of spike. The circuits above each subplot indicate which

circuit configuration was used. All plots indicate CA3 pyramidal cell activity except for the EC-DG plot which shows dentate granule cell activity. (B) The corresponding

space-time correlation maps are shown. The longitudinal-temporal cross-sections are shown at a transverse lag of 0mm. Red areas represent positive correlation,

and blue areas represent negative correlation. (A,B) (i) PP-CA3 model: CA3 response to random perforant path activity. (ii) rMF-CA3 model: CA3 response to random

dentate granule cell activity. (iii) PP-rMF-CA3 model: CA3 response to both random perforant path and random dentate granule cell activity. (iv) PP-DG model: DG

response to random perforant path activity. (v) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic

perforant activity via dentate granule cells. (vi) PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity.

The PP-wcMF-CA3 model caused the CA3 pyramidal cells to
respond with a pattern that closely matched the dentate granule
cell activity (Figure 5A, vi). Previously, the mossy fiber synaptic
weights were multiplied by a factor of 5 to generate significant
CA3 activity. Otherwise, the original mossy fiber synaptic weight
generated almost no CA3 activity. In combination with the
perforant path, the mossy fibers at their original strength were
able to propagate the dentate clusters and cause similar clusters
within CA3. The CA3 clusters were noisier than the dentate
clusters (Figure 5A, iv), and it is likely that the CA3 pattern
is some combination of the patterns caused by the entorhinal
and dentate activity individually. However, the perforant path
projection was able to nonlinearly interact with the mossy fibers
tomarkedly reinforce the dentate input pattern. The combination
of these two systems may serve to enhance and propagate the
patterns generated by the dentate granule cells.

Associational System (PP-wcMF-A-CA3 Model)
The perforant path and mossy fiber inputs together resulted
in the preservation of the dentate pattern within the CA3, at
least along the longitudinal axis. However, the CA3 contains
an extremely strong associational system which could alter the

pattern due to the excitatory feedback that the associational
system provides. The subsequent studies explored the further
transformation of spatio-temporal pattern that resulted when the
associational system was added (the PP-wcMF-A-CA3 model).
Separate simulations were run with the synaptic weight of the
associational system set to 0.1, 0.2, 0.5, 1, 10, and 100% of the
original value.

The strength of the associational system can be predominantly
attributed to the number of inputs that a CA3 pyramidal
cell receives from other CA3 pyramidal cells rather than
the strength of the individual EPSPs. This number lies
within the tens of thousands which is at least one order of
magnitude larger than the numbers of inputs received from
other afferents including the perforant path and mossy fibers.
The average firing rate of the simulated CA3 pyramidal cells
started at 11Hz with no associational system and increased
nonmonotonically toward 70Hz with increasing synaptic
strength (Supplementary Figure 2A), indicating that the CA3
activity was much less sparse than the DG which exhibited an
average firing rate of 0.62Hz. Furthermore, the spatio-temporal
patterns appear to change little at 1, 10, and 100% of the full
strength (Figure 6A, iv–vi), i.e., the spatio-temporal pattern did
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not change substantially. In spatio-temporal pattern and firing
rate, the CA3 approached a particular state asymptotically, which
indicated that the CA3 was approaching a saturated state, i.e., the
system was behaving nonlinearly. It is only at 0.1–0.5% of the
original synaptic weight (Figure 6A, i–iii) that the associational
system appears to significantly affect the spatio-temporal pattern.
At these synaptic weight levels, the transformation of the clusters
can be observed. The diffuse axonal distributions of the CA3
pyramidal cells appears to expand the spatial size of the clusters.
This is also demonstrated by the correlationmaps which show the
increase in the extent of the spatial correlation with the increase
in synaptic weight (Figure 6B).

Regardless of the strength of the associational system, the
original clusters appear to continue to persist at all synaptic
weights. The associational only serves to modify them and add
inter-cluster noise or oscillation. This is notable because the peak
pairwise correlation of the dentate granule cells is very low at
0.02, and the average firing rate is also very sparse at 0.62Hz.
Despite the low correlation and sparse firing conditions, the
dentate gyrus causes clusters in CA3 pyramidal cells that remain
even when the associational system is at full strength.

Longitudinal-Transverse Cross-Sections of
Global Correlation Maps
Previously, the visualization of activity and correlation was
limited to a single spatial dimension, the lag along the
longitudinal axis. However, the CA3 exhibits a transverse
organization that is hidden when only considering the
longitudinal extent. The longitudinal-temporal view of the
correlation maps demonstrated their ability to capture the basic
structure of the features observed in the raster plots, i.e., the
basic cluster shape. The three-dimensional correlation maps
that were computed also incorporate the transverse relation to
correlated activity. Here, we present the longitudinal-transverse
cross-sections of the correlation maps at different time lags to
reveal the temporal evolution of the two-dimensional spatial
structure of correlation. The color maps were thresholded to
30% of the maximum value to emphasize the contributions of
the weaker negative correlations that were present.

Perforant Path and Mossy Fibers
The longitudinal-transverse views of correlation demonstrate
that the spatial structure is predominantly dependent on
the methods used to represent the axonal anatomy. For the
entorhinal projections which were represented using a gaussian
(the PP-CA3 and PP-DG models), the spatial correlation
maintains an elliptical shape with a longitudinal span that
matches the standard deviation of the gaussian (Figure 7, i,iv).
The differences in the temporal dynamics for the entorhinal effect
on dentate granule cells and CA3 pyramidal cells may be due
to differences in biophysics, electrophysiology, and number of
inputs received by the respective populations. In the CA3, a
positive and negative correlation moves across the transverse axis
which represents the transverse propagation of entorhinal input
from the CA3c to the CA3a.

With only mossy fiber input to the CA3, the random
condition (rMF-CA3 model) resulted in a horizontal stripe

spatial correlation that spanned the transverse axis which
represents the thin nature of the mossy fibers (Figure 7, ii).
The spatial correlation faded with time. The weakly correlated
condition (wcMF-CA3 model) largely preserved the correlation
structure of the dentate granule cells with the addition of a
diagonal element which represented the downward turn of the
mossy fibers in the CA3a (Figure 7, iv,v). As the temporal
lag progressed, the shape of the correlation changed before
moving into a weakly negative phase. With the combination
of both perforant path and mossy fiber afferents, the random
condition (the PP-rMF-CA3model) again exhibited a correlation
structure that was similar to the entorhinal case, but the extent
of the spatial correlation began to shrink in the negative phase
(Figure 7, iii). In the weakly correlated condition (the PP-wcMF-
CA3 model), both the perforant path and mossy fiber related
correlation structures appeared superimposed with the diagonal
stripe appearing and a stronger negative phase (Figure 7, vi).

The main observation is that the spatial correlation was
nonmonotonic and was not static in time, i.e., spatial correlation
was dynamic. The spatial correlation can travel based on the
direction of propagation and does not merely oscillate between
positive and negative in a fixed position. Furthermore, the shape
of the correlation changes over time. The correlation is both
displaced and morphed partly due to direction of propagation
and the interactions between different afferents.

Associational System
The longitudinal-transverse view of the correlation reveals the
role of the associational system (PP-wcMF-A-CA3 model) in
increasing the spatial extent of the correlation (Figure 8). The
spatial extent of correlation increased with synaptic weights
from 0.1–0.5% strength to encompass almost the entire CA3
extent (Figure 8, i–iii), though the strongest correlation was still
localized to the same area that was caused by the entorhinal
projection. As the strength of the synaptic weight was increased
to 1–100%, the extent of spatial correlation became reduced to
an area that was smaller than the correlation caused by the
entorhinal cortex (Figure 8, iv–vi). At 1% strength, a spatial
correlation pattern consisting of a positive region surrounded
by negative correlation emerged. The polarity of this pattern
switched between positive-negative and negative-positive over
time. At 10 and 100% strength, the spatial correlation and
its temporal evolution appeared almost identical. A repeating
pattern of positive and negative correlation moves along the
transverse axis over time. These results verify that the extensive
axon distribution of the CA3 pyramidal cells does increase the
area of spatial correlation during the low synaptic strengths.
At higher synaptic strengths, the correlation oscillated between
positive and negative which is consistent with the highly
oscillatory nature of the spiking activity. At 1% strength, a
unique pattern of positive and negative correlation emerged
(Figure 8, iv).

Local Correlation Maps
One issue with the global correlation maps computed previously
is that the anatomy of the various projection changes depending
on the location within the CA3. In particular, the trajectory
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FIGURE 6 | Raster plots and global correlation maps for the results using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and

associational projections to CA3. In the subplots, the strength of the associational synapses was modulated as indicated by the subplot titles. All other synapses

remained at their experimentally constrained strength. (A) Raster plots of the CA3 pyramidal cells. (B) Longitudinal-temporal cross-sections of the correlation map at a

transverse lag of 0mm. Red areas represent positive correlation, and blue areas represent negative correlation.

of the mossy fiber changes along the transverse axis, and the
CA3 pyramidal cell axons change substantially depending on
their origin on both the longitudinal and transverse axes. While
the global maps used every neuron pair in its computation of
correlation, local maps were created by only consider neuron
pairs in which at least one neuron of the pair was located in a
particular area within the CA3. The CA3 was divided into nine
sections. Along the longitudinal axis, three overlapping windows
were defined which were centered at 7.5, 5.0, and 2.5mm that
extended 2.5mm above and below the midpoint. Along the
transverse axis, the windows were restricted to the CA3c, CA3b,
and CA3a. This restriction allowed the correlation maps for a
local region in space within the CA3 to be computed, in contrast
to the global map which averages across every neuron (Figure 4).

Considering the local correlation maps when the associational
system was included (PP-wcMF-A-CA3 model), the influence
of the mossy fiber trajectory on the correlation structure along
the transverse axis can be seen when then associational synaptic
weight was reduced to 0.1% (Figure 9, i). Within the CA3c and
CA3b, the correlation is predominantly horizontal while the
correlation becomes diagonal within CA3a. This again highlights
the influence of axonal anatomy on the correlation structure.
It also reveals that the diagonally-organized positive/negative
correlations seen in the global maps were due to the averaging
of the CA3a correlation structure with the correlations from

CA3b and CA3c. The local correlation maps were able to identify
and separate the contributions of the different CA3 divisions
(Figure 9, i) toward the global correlation map (Figure 7, vi).

At 0.02 and 0.05% (Figure 9, ii,iii), the differences in
correlation structure among the different CA3 sections due to
the CA3 axonal anatomy become more apparent. The magnitude
and spatial extent of correlation is largest within the septal
CA3c which becomes smaller toward the temporal CA3a. As
the synaptic weights approach 100% strength, the correlations
become confined to a smaller area.

Influence of Projections on Peak
Correlation
The peak correlations were plotted as a function of synaptic
strength based on the global maps to investigate how the
synaptic strength of the different projections affected maximum
correlation (Figure 10A). For the perforant path and mossy
fibers, the synaptic strength was varied to be 50, 200, 300, 400,
and 500% of the original value. The synaptic weight of the
perforant path (PP-CA3 model) had a nonlinear relation to
the peak correlation which initially decreased until twice the
original strength and then continued to increase (Figure 10A, i).
In general, however, the peak correlation due to the entorhinal
projection to CA3 was very weak and stayed below 0.01.
Under the weakly correlated condition (wcMF-CA3 model),
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FIGURE 7 | Longitudinal-transverse cross-sections of global correlation maps at different temporal lags for simulations involving the perforant path and mossy fibers.

The evolution of spatial correlation across positive time lags are shown. Red areas represent positive correlation, and blue areas represent negative correlation. (i)

PP-CA3 model: CA3 response to random perforant path activity. (ii) rMF-CA3 model: CA3 response to random dentate granule cell activity. (iii) PP-rMF-CA3 model:

CA3 response to both random perforant path and random dentate granule cell activity. (iv) PP-DG model: DG response to random perforant path activity. (v)

wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic perforant activity via dentate granule cells. (vi)

PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity.

the mossy fibers generated a monotonic relation between CA3
peak correlation and synaptic strength that decreased toward an
asymptotic value of 0.1 (Figure 10A, ii). However, the random
condition (rMF-CA3model) had an opposite and nonmonotonic
effect, and its peak correlation was three orders of magnitude
lower than for the weakly correlated condition (Figure 10A,
ii). The associational system (PP-wcMF-A-CA3 model) caused
the peak correlation to nonmonotonically decrease toward an
asymptotic value of 0.003 as the synaptic strength increased
(Figure 10A, iii). Though generally decreasing, the correlation
unexpectedly increased at an associational strength of 0.05%
before continuing to decrease.

Using the local correlation maps, the distribution of
correlation along the transverse extent was evaluated for the
feedforward projections (Figure 10B). The correlation caused
by the perforant path (PP-CA3 model) increased from CA3c
to CA3a which is explained by the increase in synaptic density
along the transverse axis (Figure 10B, i). For the wcMF-CA3
model, correlations decreased from CA3c to CA3a (Figure 10B,
ii). This is due to the decrease in density of synapses along the
transverse axis. When both the perforant path and mossy fibers

were connected (PP-wcMF-CA3 model), the correlation due to
the mossy fibers dominated resulting in a decrease in correlation
from CA3c to CA3a (Figure 10B, iii). However, the correlation
was not simply an average between the correlations from the
individual projections. The combined effect was lower than what
an average would predict (Figure 10B, iii).

Including the associational system (PP-wcMF-A-CA3 model),
the trend in peak correlation along both the longitudinal
and transverse axes were measured (Figure 10C). In general,
peak correlation decreased from the dorsal/septal pole to the
ventral/temporal pole and decreased from CA3c to CA3a.

DISCUSSION

In this study, anatomical data was used to constrain a spatially-
dependent connectivity for the excitatory projections to and
within the CA3 subfield of hippocampus including the perforant
path, mossy fibers, and associational system. The present work
represents an extensively detailed connectivity for the entorhinal-
dentate-CA3 network concerning the major excitatory afferents
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FIGURE 8 | Longitudinal-transverse cross-sections of global correlation maps at different temporal lags for simulations using the PP-wcMF-A-CA3 model, which

includes the perforant path, mossy fiber, and associational projections to CA3. In the subplots, the strength of the associational synapses was modulated as indicated

by the subplot titles. All other synapses remained at their experimentally constrained strength. The evolution of spatial correlation across positive time lags are shown.

Red areas represent positive correlation, and blue areas represent negative correlation.

to the dentate gyrus and CA3 and represents connectivity
at the microscale and mesoscale levels. A major outcome in
constraining the connectivity was to include the variations in
the spatial distribution of axons along both the longitudinal
and transverse axes. These axes are sufficient to represent the
full three-dimensional structure of the hippocampus. Theoretical
studies that incorporated two spatial dimensions had constructed
radially symmetric connectivity structures that could easily be
analyzed along a single radial dimension (Rosenbaum et al.,
2016; Senk et al., 2018; Huang et al., 2019). These studies
with symmetric connectivity are able to generate rich sets of
dynamics and lay the foundation for studying two-dimensional
networks. However, the axonal distributions in hippocampus
are far from symmetric. Furthermore, the variations in CA3
properties, e.g., connectivity and dendritic morphology, within
its transverse axis are well-documented and represent important
features that cannot be ignored. Incorporating the details relevant
to both spatial axes resulted in the emergence of a heterogeneous
spatial correlation structure, which has implications toward a
topographic organization of information encoding along both the
longitudinal and transverse axes. Additionally, the correlations
were nonmonotonic in that they would not strictly decrease,
and the correlations were dynamic with changes in their spatial
structure at different time lags.

Perforant Path Generates Lower
Correlation in CA3 Than Dentate Gyrus
Also using the entorhinal-dentate network, a relation between
the size of the axon terminal field and the resulting correlation
was revealed in Hendrickson et al. (2016) and Yu et al.
(2018). The size of the axon terminal field and the size of
the clusters in the population activity were linearly related.
However, the entorhinal-dentate projection is relatively dense
compared to the entorhinal-CA3 projection as dentate granule
cells receive approximately 3,000 entorhinal inputs compared
to CA3 pyramidal cells which can receive between 0 and 1,658
entorhinal inputs (Table 1). The present study revealed that the
perforant path still generates clusters within CA3, though the
correlation is much lower which resulted in noisier clusters
(Figure 5A).

Mossy Fibers Propagate Correlation
Structure From Dentate Gyrus to CA3
A larger unknown was the role of mossy fibers in the
propagation of correlation. The mossy fibers of dentate granule
cells represented the smallest extreme in size as they are
fibers rather than fields. Though the number of mossy fiber
inputs that CA3 pyramidal cells receive is extremely low
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FIGURE 9 | Local correlation maps for simulations using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and associational projections to

CA3. In the subplots, the strength of the associational synapses was modulated as indicated by the subplot titles. All other synapses remained at their experimentally

constrained strength. Longitudinal-transverse cross-sections at a temporal lag of 0ms are shown. Nine local correlation maps were computed for each synaptic

strength which represents the local spatio-temporal correlation based on the longitudinal-transverse region as divided into CA3c, CA3b, and CA3a along the

transverse axis (left to right) and roughly into the septal, middle, and temporal sections (top to bottom) along the longitudinal axis. The longitudinal boundaries were

defined with a window size of 5mm and centered at 7.5 (septal), 5.0, and 2.5 (temporal) mm along the longitudinal axis. Red areas represent positive correlation, and

blue areas represent negative correlation.

with a mode of 38 (Supplementary Figure 1), the size of
the EPSP is 3.2mV which is over ten times greater than
the EPSPs caused by the perforant path at 0.2mV. The
analysis of the longitudinal correlation indicated that the
mossy fibers contribute little to the spatial correlation structure
beyond that is already present within dentate granule cells.
In other words, mossy fibers well-preserve and propagate the
correlation structure that its presynaptic population, i.e., dentate
granule cells, already expresses. However, the longitudinal-
transverse analysis of the random condition shows that
mossy fibers do contribute to a spatial correlation along

the transverse axis, albeit a practically negligible correlation
at <0.0001.

The combination of the perforant path and mossy fibers was
shown to enhance the pattern carried in the mossy fibers. The
mossy fibers alone did not generate significant activity within
CA3. Experimental studies support that mossy fibers do not
reliably cause action potentials at low frequencies, which is the
case in these simulations (Urban et al., 2001). However, when
the perforant path was added, the dentate patterns of activity
were reinforced and perpetuated in the CA3 activity (Figure 5A).
The enhancement of the mossy fiber pattern supports the view
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FIGURE 10 | Relations between peak correlation and synaptic strength and location. (A) The effect of synaptic strength on peak correlation from the global maps.

The middle row plot shows the relation under the clustered (solid purple line) and random (dashed black line) conditions of dentate input. (A, i) PP-CA3 model: CA3

response to random perforant path activity. (A, ii) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3 response to disynaptic

perforant activity via dentate granule cells. (A, iii) PP-wcMF-A-CA3 model: CA3 response due to random perforant path and correlated dentate granule cell activity in

the presence of the associational system. (B) The differences in peak correlation based on transverse position from the global maps. In the bottom plot, the effect of

the combined perforant path and mossy fiber input (solid red line) and the average of the individual effects of the two pathways (dashed black line) are shown. (B, i)

PP-CA3 model: CA3 response to random perforant path activity. (B, ii) wcMF-CA3 model: CA3 response to solely correlated dentate granule cell activity, i.e., CA3

response to disynaptic perforant activity via dentate granule cells. (B, iii) PP-wcMF-CA3 model: CA3 response due to random perforant path and correlated dentate

granule cell activity without the associational system. (C) The variation in peak correlation from the local maps as a function of longitudinal and transverse position are

shown from simulations using the PP-wcMF-A-CA3 model, which includes the perforant path, mossy fiber, and associational projections to CA3. The strength of the

associational system is modulated as indicated by the subplot titles.

of mossy fibers as conditional detonators which may need
concurrent activation of multiple synapses in order to elicit a
spike in the pyramidal cells, e.g., mossy fiber, perforant path,
associational (Henze et al., 2002).

Associational System Preserves and
Modulates Mossy Fiber Induced Patterns
However, it was not known how much of the dentate
pattern would persist within CA3 after the associational system
was included. The effect of a recurrent excitatory circuit in
neural systems has commonly been shown to generate highly
synchronized and oscillatory behavior (Le Duigou et al., 2014;
Hendrickson et al., 2015). This was observed in the CA3
associational system due to the highly dense nature of the
projection in which a CA3 pyramidal cell can receive between
18,000 and 29,000 inputs from other CA3 pyramidal cells.
With synaptic weights at 0.1–0.5% of the original strength, the
CA3 did not enter a synchronous, oscillatory state (Figure 6A),

and an increase in the size of spatial correlation was observed
(Figures 8, 9). This indicates that weak excitatory recurrent
circuits can expand the extent of spatial correlation. One of
the interesting findings in the associational results was that the
dentate-based clusters persisted within all synaptic weight values,
i.e., even within the synchronized, oscillatory state. This finding
further supports that the dentate activity acts as a major driver of
the spatio-temporal patterns generated by the CA3.

Correlation and Functional Gradients
Along Both Longitudinal and Transverse
Axes Within CA3
The topographic organization of connectivity resulted in
heterogeneous correlation structures that varied along the
longitudinal and transverse axes within the CA3. First, there
was a clear trend toward higher correlations in the dorsal/septal
region of the CA3 vs. ventral/temporal region. Second,
correlations were higher in the proximal/CA3c region vs. the
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distal/CA3a region. These ultimately combine to indicate that
peak correlation decreases from dorsal-proximal CA3 to the
ventral-distal CA3. Additionally, the spatial extent of correlation
followed the same gradient with a larger size of spatial
correlation dorsally/proximally and a smaller size of spatial
correlation ventrally/distally.

These correlation gradients may functionally indicate the
extent to which information is integrated by a CA3 pyramidal
cell. With larger sizes in correlation, a CA3 pyramidal
cell is integrating information across more neurons, which
may result in a CA3 organization with more “general”
neurons dorsally/proximally and more specialized neurons
ventrally/distally. Another interpretation is that neuronal activity
may bemore similar to one another in the dorsal/proximal region
vs. ventral/distal region. Experimental work had discovered that
a positive relation between pairwise spike correlation and overlap
of place fields within CA3 and CA1 (Hampson et al., 1996).
Under the theory of pattern separation and pattern completion
(Yassa and Stark, 2011), this suggests that pattern completion as a
population may be stronger where correlation between neurons
is higher.

A longitudinal gradient in function has been reported
experimentally (Small, 2002; Strange et al., 2014;
Papaleonidopoulos et al., 2017), and such a relation between
axonal anatomy and the encoding of spatial information had
been previously explored with the same entorhinal-dentate
network used in the present study (Yu et al., 2019). A transverse
gradient has also been reported within CA3 with respect to
pattern completion (Lee et al., 2015).

Validation
As a platform for investigating the system properties of
hippocampus, it is important to validate the model at higher
levels, e.g., population and network levels. Lower level validation
is already performed in constraining the parameters for neuron
electrophysiology and synaptic conductance waveforms. Some
higher-level validation has been performed using place fields and
spatial information (Yu et al., 2019), and local field potential
generation (Bingham et al., 2018). The present CA3 network
lacks inhibition and is comparable to a CA3 for which a
GABAA blocker has been applied. One experimental study
observed that the power of CA3 population oscillations at
210Hz increased with the application of the GABAA blocker
bicuculline. This increase is also observed with the simulations
(Supplementary Figure 2C). Pairwise spike correlation values
that have been reported in experimental studies are vary between
0.005 and 0.025 (Hampson et al., 1996; Dombeck et al., 2010).
The peak correlation values from the simulations are well within
these ranges. Furthermore, other studies have reported a general
decay in pairwise correlation as a function of distance between
neuron pairs (Hirase et al., 2001; Dombeck et al., 2010). This
relation is present in other cortical areas as well (Rosenbaum
et al., 2016; Safavi et al., 2018) which supports the notion that
such correlations may be present in other brain areas.

Future Work
The CA3 network in the study excluded any forms of extrinsic
inhibition due to interneurons as the role of the afferent
excitatory projections were not yet known. However, the present
results establish the groundwork upon which the contributions of
the various interneuron types in further transforming the spatio-
temporal patterns of spiking and correlation can be investigated.

Additionally, the simulations used an input paradigm
designed to contain zero spatial or temporal correlations to
reveal how the anatomically-constrained connectivity of the
network may imbue the population activity with correlation.
Though the input firing rates may represent a resting state
type of network, the input was not physiologically. Later work
will aim to behaviorally-driven input such as the grid cells in
the medial entorhinal cortex to investigate how physiologically-
relevant correlation in the input may be processed by CA3,
and grid cell input had previously been used to investigate the
entorhinal-dentate network version of themodel (Yu et al., 2019).
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Modeling the dynamics of neural masses is a common approach in the study of

neural populations. Various models have been proven useful to describe a plenitude of

empirical observations including self-sustained local oscillations and patterns of distant

synchronization. We discuss the extent to which mass models really resemble the mean

dynamics of a neural population. In particular, we question the validity of neural mass

models if the population under study comprises a mixture of excitatory and inhibitory

neurons that are densely (inter-)connected. Starting from a network of noisy leaky

integrate-and-fire neurons, we formulated two different population dynamics that both

fall into the category of seminal Freeman neural mass models. The derivations contained

several mean-field assumptions and time scale separation(s) between membrane and

synapse dynamics. Our comparison of these neural mass models with the averaged

dynamics of the population reveals bounds in the fraction of excitatory/inhibitory neuron

as well as overall network degree for a mass model to provide adequate estimates. For

substantial parameter ranges, our models fail to mimic the neural network’s dynamics

proper, be that in de-synchronized or in (high-frequency) synchronized states. Only

around the onset of low-frequency synchronization our models provide proper estimates

of the mean potential dynamics. While this shows their potential for, e.g., studying resting

state dynamics obtained by encephalography with focus on the transition region, we

must accept that predicting the more general dynamic outcome of a neural network via

its mass dynamics requires great care.

Keywords: neural mass model, leaky integrate and fire, random graph, mean field approximation, Freeman model

INTRODUCTION

Over the years, neural mass models have profoundly contributed to our understanding of the meso-
and macroscopic dynamics of populations of neurons. This is particularly true when it comes
to the oscillatory behavior of mean post-synaptic potentials and firing rates. Central there is the
notion of brain rhythms arguably resembling (episodic) local and distant synchronization of neural
oscillators. Corresponding theoretical studies date back as far as the mid of the last century (Beurle,
1956; Griffith, 1963, 1965) though it was Walter Freeman who coined the notion neural masses
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(Freeman, 1975). Building neural mass models typically relies on
phenomenological insights and one “prescribes” the evolution of
the neural activity over time (Deco et al., 2008). Yet, as said, these
models strongly contributed to advancing our understanding of
brain rhythms as they succeeded in mimicking signals recorded
especially via magneto- and electroencephalography (Freeman,
1987; Kozma and Freeman, 2016).

Freeman’s K-sets are based on a hierarchy of interacting
sets of neural populations or masses (Freeman, 1975). These
masses are composed of non-interacting, identical neurons.
Without interactions in the mass, it is called a KO-set for which
the original Freeman model applies. In fact, the absence of
interactions in the mass allows for great algebraic simplicity: The
mass dynamics can be cast in the form of a linear second-order
ordinary differential equation,

[
d

dt
+ α

] [
d

dt
+ β

]

V = (αβ) J, (1)

where V = V(t) denotes the mean potential of all the somas
over the neural population, J = J(t) represents some (common)
input into the population, and α and β are (inverse) time
constants specifying the rise and decay of the mean potential.
The input J is usually a continuous function of time t, but if J
is meant to resemble point processes, e.g., given via microscopic
action potentials or spikes, continuity may be introduced (albeit
heuristically) using sigmoidal activation functions (Marreiros
et al., 2008).

Obviously, the dynamics (1) is a gross approximation for
most (non-linear) neural dynamics at the microscopic level.
Nonetheless, the model may provide reasonable approximations
of selected features of a neural population’s mean activity.
However, apart from the weakness (if not absence) of internal
interactions, this requires the population to contain sufficiently
many neurons1 and/or symmetries. Symmetries typically imply
an adequate amount of homogeneity. Even under these
assumptions, detailed derivations of mass models like (1) from
microscopic neural dynamics are rare (Stefanescu and Jirsa,
2008a; Byrne et al., 2017). As a consequence, it remains difficult
to judge the degree to which the outcome of neural mass
models really agrees with the mean activity of a “real” neural
network. This is unfortunate because, given their mathematical
ease, neural mass models appear ideal candidates for estimating
parameter dependencies of network activation and predicting
their dynamical outcome. For the Freeman model (1), Rodrigues
and co-workers recently presented a mapping between a
microscopic conductance-based model and the macroscopic
mass dynamics (Rodrigues et al., 2010). They imposed strong
homogeneity assumptions on a population of interconnected
leaky integrate-and-fire (LIF) neurons.We adopted this approach
but complemented it by an alternative, since some steps
in Rodrigues et al. (2010) missed some rigor.

1Ideally one can consider the thermodynamic limit, i.e., infinitely many neurons,
though symmetries may allow for exact mean field description even for finite
population sizes. Yet, the Freeman model is often considered appropriate for
describing the “coordinated activity of cell assemblies of∼ 104 neurons with∼ 108

synapses”, Walter J. Freeman and Harry Erwin (2008), Scholarpedia, 3(2):3238.

To test the quality of these two mass models, we simulated
an externally driven, finite-size LIF network. We used its overall
spiking activity and the external drive as input to the mass
models and compared the resulting time series with the ones of
the average LIF potentials using different measures. Following
previous studies, we set these neural masses to contain neurons
of mixed types, i.e., inhibitory and excitatory ones (Lopes da Silva
et al., 1974; Jansen and Rit, 1995; Wendling et al., 2000; David
and Friston, 2003; Stefanescu and Jirsa, 2008b; Ponten et al.,
2010). Given the relevance for neural mass models in the study
on brain rhythms we first investigated the spectral distributions
of the potentials and complemented this by correlating the
average network activity with that of the two neural mass
models. This procedure allowed for a systematic assessment of
the influence of population parameters on the quality of the
mass model approximation(s). Here, we particularly focus on
the (im-)balance between inhibitory and excitatory neurons and
the degree of their connectivity. As will be shown, the quality
of approximation(s) is (are) limited, except for parameter ranges
defining the onset of synchrony and/or the range in which LIF
neurons are synchronized at low spiking frequencies.

RESULTS

Our two neural mass models obey the generic form

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V =

J(net)(V;A, . . . ) + J(ext)(V; . . . )

(2)

where J(net)(V;A, . . . ) is the sum of all spike-related currents in
the LIF network, i.e., the population mean of the expectation
values of the spike trains generated by network times the
corresponding synapse conductances. Its value may depend on
the mean membrane potential V and the networks adjacency
matrix A (amongst other parameters). J(ext) summarizes the
external drive, here always realized as a Poisson train. If the V-
dependency of J is absent, we refer to (2) as the “conventional”
Freeman model (CFM) and in the presence of a V-dependent
currents, we refer to it as a slightly modified Freeman model
(MFM); the explicit forms are given in (20) and (24), respectively.

The linearities in (2) stem from the facts that: (i) apart from
the spike-related reset, the LIF dynamics is linear with membrane
time constant τ (mem); and (ii) we connected them via exponential
synapses containing a linear conductance dynamics with time
constant τ (syn). In relation to (1) we have α = 1/τ (mem), β =

1/τ (syn).
In the absence of J(net), the impulse response of (the left-hand

side of) the dynamics (2) equals that of a second-order linear
system with rise and decay times given by τ (mem) and τ (syn). The
corresponding frequency response function is that of a second-
order low-pass filter (cf. Appendix). As soon as J(net) is included,
i.e., once the LIF neurons start to fire, the response functions
in the time- and frequency-domains become less trivial and
quantitative assessments require numerical approaches. For this,
we simulated a network composed of N = 10,000 LIF neurons
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TABLE 1 | Parameters values used when simulating the network of LIF neurons.

Variable Description Value

v(thres) Threshold potential –50 mV

ṽ Membrane reversal potential –80 mV

ṽ(E) Excitatory synaptic reversal potential 0 mV

ṽ(I) Inhibitory synaptic reversal potential –70 mV

v(reset) Reset potential –60 mV

τ (mem) Membrane characteristic time 20 ms

τ (E) Excitatory synaptic time constant 3 ms

τ (I) Inhibitory synaptic time constant 7 ms

τ (ref) Refractory period 5 ms

g Leak conductance 10 nS

ĝ(E) Excitatory synaptic conductivity 4 nS

ĝ(I) Inhibitory synaptic conductivity 40 nS

ĝ(ext) External synaptic conductivity 5 nS

and used the simulated network’s spiking activity as input to the
mass dynamics, i.e.,∼ J(net) in (2).

To study the influence of different adjacenciesA on the quality
of agreement between the average network potential and that
modeled via the neural mass dynamics (2), we modified A in two
ways. (i) We considered the adjacency of an Erdős-Rényi random
graph and changed the network’s overall degree p from 0 to 1 so
A represents connections between all excitatory and inhibitory
neurons. (ii) By the same token, we varied the relation between
excitatory vs. inhibitory units that we quantified via

λ : =
#excitatory

#inhibitory+ #excitatory
. (3)

Details on the implementation of the different kinds of neurons
can be found in the Methods section below; all parameters are
summarized in Table 1.

Before investigating the extent of agreement in more detail,
we first verified that the chosen parameter range covered
different dynamical regimes including phase transitions from de-
synchronized to synchronized states. Figure 1 illustrates typical
examples of the network with and without synchronization,
while a more complete picture of the network’s synchronization
characteristics over the {p, λ} parameter space is given in
Figure 2. There, we quantified the degree of synchrony using
a spike train measure called spike-contrast (Ciba et al., 2018).
In brief, one contrasts activity vs. non-activity (spike vs. no-
spike) in temporal bins and varies the bin-size to obtain a time
scale independent result. This allows for unraveling time scales
of synchrony, over which we averaged here. Once the overall
network degree exceeds a minimal value, increasing it further
has little to no influence on the state of synchronization in
the network. In contrast, altering λ, e.g., increasing the relative
amount of excitatory units, one can observe a spontaneous switch
between de-synchronized to synchronized states.

The degree of synchronization in the network plays a crucial
role for the appropriateness of the neural mass models in
relation to the average network dynamics. As said, there is

particular interest in the spectral content of the dynamics of
neural populations (Buzsaki, 2006; Başar, 2012). Hence, we first
summarize our comparisons in the frequency domain.

Spectral Characteristics
In what follows, we denote the average LIF network potential
and the neural mass potentials by VLIF, VCFM, and VMFM,
respectively, and refer to the corresponding spectra as PLIF, PCFM,
and PMFM. Figure 3 shows the median frequency of VLIF, which
in combination with Figure 2, provides a more encompassing
view on the LIF network dynamics: when passing from small
to larger values of λ, the network starts to synchronize. At the
onset of synchrony the network’s median frequency remains very
low (this transition can be observed in Figure 1). When further
increasing λ, this first transition from the de-synchronized to
a synchronous state is followed by a second one, at which the
network enters the synchronous regular regime with high spiking
rate (Brunel and Hakim, 1999; Yger et al., 2011). The first
transition appears smoother, which may be attributed to an effect
of the chosen measure, i.e., the median frequency.

As expected, in the de-synchronized region both neural mass
models displays significantly lower median frequencies than the
network counterpart due to their low-pass filter characteristics.
In all other dynamical regimes, the median frequencies seems
to agree, at least at first glance. In general, one can expect that
around a transition to or from synchrony, a spectral distribution
may change qualitatively, rendering a comparison based solely on
the median frequency incomplete. We therefore supplemented
our analysis by a χ2-statistic (25) between the network’s and the
neural masses’ power spectral densities shown in Figure 4 for
both CFM and MFM; see theMethods section for details.

In the region of de-synchronization, the χ2-values between
the LIF network and the MFM spectra are clearly larger than
the CFM counterpart. That is, there, the CFM provides a better
representation of the network’s average potential; cf. Figure 4. In
the synchronous network state both models generate similar χ2-
values. In the region of regular high-frequency synchronization,
both spectra substantially disagree with theVLIF spectrum. There,
the quality-of-fit is poor. By contrast, in the low-frequency
synchronous region, especially close to the transition points from
de-synchronization to synchronization, the spectra from both
models agree to a level in which our χ2-statistics does not identify
any statistically significant differences; see the areas encircled by
the red dashed lines in Figure 4.

Temporal Characteristics
We analyzed the VCFM and VMFM time series by determining
the cross-correlation function between them and VLIF. In view
of the aforementioned response characteristics, we expected
the extrema of this correlation to be located at finite, non-
vanishing time lags τ . Therefore, we first estimated these time lags
and, subsequently, determined the corresponding correlation
coefficient as ρk (τmax) with

ρk (τ ) =

∫

V̂LIF (t) V̂k (t + τ) dt (4)
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FIGURE 1 | Typical behavior of the LIF network for different fractions of excitatory and inhibitory units. Top panels (a-c) contain raster plots for 104 units, excitatory in

blue and inhibitory in green. The bottom panels (d-f) show the corresponding LIF mean-field potential, V (t); (a,d) λ = 0.6, (b,e) λ = 0.75 and (c,e) λ = 0.8; in all cases

the overall network degree was set to p = 0.2.

and τmax = argmaxτ |ρk (τ ) |—in (4) the (·̂) indicates the
computation of z-scores and k ∈ {CFM,MFM}. The resulting
time lags andmaximum correlation values are shown in Figure 5.
As expected from the close relationship between the neural mass
model and the linear response, the time lags switch from zero
to positive values around the points of transition between de-
synchronized and synchronized states—the fact that in the de-
synchronized regime, the MFM displays a negative time lag
shows its deviation from the mere low-pass characteristics for
CFM. The drop in time lag in the transition from low-frequency
to high-frequency synchronization is unexpected and we return
to it in the Discussion section below.

For both CFM and MFM, the correlation followed a {p, λ}-
dependent pattern similar to that of the synchronization degree
combined with the median frequency (Figures 2, 3). Apart from
the regions with very small p, i.e., where the network was set
to be very sparsely connected, the region with pronounced low-
frequency synchronization (λ ∈ [0.70, 0.85]) is accompanied
with the largest correlation values. Similar to the χ2-based
approach for the spectra, we determined a significance interval
for the ρk(τmax), now after Fisher transform (Fisher, 1915).
The red-dashed significance boundaries indicate regions of
proper approximations. In line with the results for the power
spectral densities, also here the agreement between neural
mass models and the average LIF network dynamics becomes
arbitrarily bad in the region of high-frequency synchronization
(larger values of λ). While both models largely agreed there,
they differ when the network is de-synchronized (λ <

0.7) where ρVCFM displayed larger correlation values than
ρVMFM .

FIGURE 2 | The synchronization degree in the {p, λ} space computed using

the Spike-contrast measure (Ciba et al., 2018). A value close to 1 indicates

strong synchronization, here particularly pronounced for large λ, whereas a

value close to 0 indicates de-synchronized states. This is the case if p is very

small, or if the number of inhibitory units exceeds that of the excitatory ones,

i.e., if λ is small.

DISCUSSION

We compared two neural mass models with the average potential
of a network of LIF neurons. Both models provide limited
approximations of the average network potential for large regions
of the {p, λ} parameter space spanning network degree and the
relation between excitatory and inhibitory neurons. We found
arbitrary discrepancies between the neural mass models and the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 581040193

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Deschle et al. Validity of Neural Mass Models

FIGURE 3 | Median frequency of the LIF network’s average potential VLIF;

several contour lines were added to highlight the increase of the median

frequency when increasing λ. When looking also at Figure 2, one can identify

two transitions, one from the de-synchronized to a synchronized state (at low

frequencies), followed by a second one from low- to high-frequency

synchronization.

average potential of the LIF network, manifested in both the
cross-correlation between model and network potentials and in
the corresponding spectral densities that we assessed via χ2-
statistics. These were not just minor quantitative deviations
but qualitative and largely unpredictable ones. Only in a very
confined region around the transition from the de-synchronized
state to low-frequency synchronization in the LIF network,
both models performed well. There, our simulations did not
reveal any significant differences between the “real” average
network potential and the outcome of the two neural mass
dynamics. Although this finding is troublesome as it implies
a quite limited accuracy of neural mass approximations—at
least in some parameter regimes—, we want to emphasize that
our models appear suitable for studying neural activity at the
transition between synchronized and de-synchronous states. In
fact, transition regimes have recently gainedmuch interest as they
seem to particularly characterize neural dynamics during resting
state (Ito et al., 2005, 2007) and also may describe more general
metastability in ongoing whole-brain activity (Tognoli and Kelso,
2014; Deco et al., 2017; Beim Graben et al., 2019).

We incorporated two neural mass models derived from
microscopic conductance-based neural models. For the first one,
we followed the procedure described by Rodrigues et al. (2010).
As already mentioned in the Introduction, some parts of their
derivation arguably lack some rigor. For small fluctuations of
the driving forces, they assumed the latter to be constant across
channels, i.e., the membrane potential was considered constant
and identical for all neurons on the synaptic terms; see Equation
(17). While Rodrigues et al. did mention that this may not be
a valid assumption, they also claimed this approximation to be
required for deriving their neural mass model. Being constant
is a very strong constraint for the membrane potential, which
has—to the best of our knowledge—not been supported by
previous research. Moreover, to us remains unclear why this
approximation has only been applied for the synaptic terms

but nowhere else in Equation (16). For the second neural
mass model, we conducted an alternative derivation with the
same starting point (16). To compute the population mean, we
separated the time scales of the neural dynamics. This led to
a slightly more complicated dynamics and reducing it further
required a second approximation: the expectation values of the
spike trains have to be identical among the different units.
While this may be true for homogeneous cases, it may not
hold in general. Strikingly, however, our results for both CFM
and MFM largely agree. Both represent fairly accurately the
results of the LIF network mean-field around the onset of low-
frequency synchronization, while in other regions of the {p, λ}-
space they both performed arbitrarily bad. Given these poor
performances, we hope for future work to focus on (even more)
rigorous alternatives.

In the population modeled in this work, the heterogeneity
has been included by a mixture of excitatory and inhibitory
units, while the external and internal connectivities are uniformly
distributed and the different type of units are identical among
them. This simplified the implementation of the models and
the interpretation of our results. Yet, we have to admit that
—when it comes to biological plausibility—this choice might
be considered unrealistic: the homogeneity between neurons
of the same type can be challenged (Reyes et al., 1998; Jinno
et al., 2007; Ávila-Åkerberg et al., 2010) and the uniform
distribution of connectivity might be replaced by, e.g., small-
world topologies (Bettencourt et al., 2007; van den Heuvel
et al., 2016; Bassett and Bullmore, 2017). Here we would like
to add that using the current modeling approach the cell-to-
cell heterogeneity including their role in neural coding has been
explored elsewhere (Boustani and Destexhe, 2009; Mejias and
Longtin, 2012, 2014; Carlu et al., 2020) while the modeling
of small-world, modular and more realistic topologies remains
future work.

As a final remark we would like to point out that discrepancies
between microscopic and macroscopic descriptions for the same
neural network are problematic when seeking for inferences from
one level to the other. However, this ability for such inferences
is fundamental, since a model has only value when it allows for
predictions. Studying the network on the macroscopic neural
mass level should allow to forecast a dynamics that could be
verified on the microscopic, i.e., full network level. Of course,
this requires a proper modeling of the latter. Since this cannot
be guaranteed under all circumstances, the litmus test remains to
forecast experimental data. This, however, will come with further
challenges as one has to answer, e.g., “what is the microscopic
level?” or “what defines the full network?”. For instance, in
encephalography the likelihood that the recorded potentials of
some cortical region contains large contributions of (tangentially
oriented) inhibitory units is arguably small. That is, although the
full network does contain inhibitory units the recorded mean
values of the underlying neural population may not cover them.
In the Appendix we sought to mimic this case by repeating
our comparisons after selecting only excitatory units from the
simulated LIF-network. Also in this case our results stay intact
rendering our conclusions valid and possibly transferrable to this
type of experimental data.
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FIGURE 4 | χ2-statistic computed between the power spectra (χ2(·, ·)) in the {p, λ} space (105 values). (a) χ2 between the LIF network and the CFM, χ2(PLIF,PCFM).

(b) χ2 between the LIF network and the MFM, χ2(PLIF,PMFM). We add several contour lines in white to improve legibility. The dashed-red line indicates the boundaries

of significance region with α = 0.01 (conform the χ2 distribution): inside the small region encircle by the dashed-red line, the CFM/MFM spectra were not significantly

different from the LIF network spectrum.

FIGURE 5 | Time lags and correlation coefficients. (a,b) depict the optimal time lags τmax, (a) CFM and (b) MFM. We added contour lines (in white) to improve

legibility. In (b) there is a change in the time lags when p is sufficiently large for the LIF network to generate spikes. In (c,d) the corresponding correlation coefficients

ρk (τmax) between the LIF model and (c) CFM and (d) MFM are shown. The red-dashed lines in panels (c,d) indicate boundaries of significance; α = 0.01 obtained by

applying the Fisher transformation to the correlation values (Fisher, 1915). Inside the area defined by the red-dashed line in the synchronized region and the small area

in the asynchronous region where p → 0, the time series of the two neural mass models were not significantly different than the LIF mean field.

CONCLUSION

Neural masses are common tools to model neural population
dynamics. They are believed to mimic selected brain activity
patterns with great accuracy. We questioned the relation between

these models and the underlying spiking neural network. For
populations with both excitatory and inhibitory neurons and
random connectivity, we found that approximations via the
corresponding mean-field dynamics may deviate arbitrarily from
the network’s average potential. Deviations may be particularly

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 581040195

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Deschle et al. Validity of Neural Mass Models

large when the network is either de-synchronized or fully
synchronized and spikes at high rate, while mass models can fit
well around the onset of low-frequency synchronization. Neural
mass models covering several dynamical regimes require more
than mere mean-field approximations because they typically
average out the (synchrony-defining) spiking behavior.

METHODS

Wewill derive two neural mass models from a network of spiking
neurons and compare them against the mean outcome of that
network. The first model represents the CFM, and the second one
contains a (slight) modification by means of a weakly non-linear
response, i.e., the MFM. Then, our approach to test the model
is the following: We simulate the spiking network for different
values of two major topological parameters, i.e., the fraction of
excitatory/inhibitory units and mean degree of the (random)
network quantifying the general connectivity. We choose the
parameters such that the dynamics undergoes a phase transition
from the de-synchronized to a synchronized state (Yger et al.,
2011). Throughout the simulations, we “record” both the output
spiking activity and the mean membrane potential. While the
latter is considered as reference, i.e., the “real” mean network
activity, the first serves as input to the two neural mass models.
Finally, we compare the outcome of the neural mass models
with the real mean network activity in both the time and the
frequency domain.

Below, we will specify the microscopic neuron and synapse
dynamics and put them on a homogeneous network before
deriving the two versions of the macroscopic Freeman model.
Finally, we will provide all details about how we altered the
network structure when probing model validity.

Microscopic Dynamics
We consider a population or network of n = 1, . . . ,N neurons
where neuron n is described in terms of the dynamics of its
membrane potential vn = vn(t) and voltage- and time-dependent
conductances. If cn and gn denote the membrane’s capacitance
and leak conductance, respectively, then the dynamics can be cast
in the form

τndvn + fn(vn)dt = g−1
n jn(t)dt + dwn. (5)

The function fn(·) is—as of yet—generic and describes the
voltage-dependent decay, jn(t) is the total current applied to
neuron n. The membrane’s time constant τ (mem) can be given by
its capacitance and leak conductance in terms of τn : = cn/gn.
And, w denotes a stochastic force summarizing random voltage
fluctuations of the membrane; here, w will always reflect zero-
centered, δ-correlated (white) Gaussian noise with variance Q. In
what follows, we will specify both fn(·) and jn(t) and estimate the
expectation values of the population average for finite N.

We first notice that the input current jn(t) can be a
combination of an internal current generated within the network
and an external one stemming from outside the network. We

denote them as j(net)n and j
(ext)
n , respectively, and assume that they

superimpose like jn = j
(net)
n + j

(ext)
n . Without loss of generality, the

internal current will be given as

j(net)n = −
∑

σ∈{E,I}

N
∑

m=1

g(σ )nm

(

vn − ṽ(σ )nm

)

(6a)

where ṽ(σ )nm is the reversal potential for a synapse between neurons
n and m. The synapse can be excitatory or inhibitory, which we
indicate by σ = E or σ = I, respectively. The synaptic activity

is further quantified by a time-dependent conductance g(σ )nm that
depends on incoming spikes. We consider the corresponding
response to be cast into a first-order, linear dynamics, i.e.,
we include so-called exponential synapses with conductance
dynamics which leads to the dynamics

τ (σ )nm dg(σ )nm = −

(

g(σ )nm − ĝ(σ )nmφ(σ )
nm

)

dt. (6b)

The parameter ĝ(σ )nm relates to the maximum conductance, τ (σ )nm is
the characteristic time of the type-σ synapse between neurons n

and m, and φ
(σ )
nm is the input that neuron n receives from neuron

m. If that input is composed of spikes, it can be cast into the form

φ(σ )
nm = Anm

∑

k

δ

(

t − t
(σ )
m,k

)

(6c)

where Anm denotes the elements of the network’s adjacency
matrix, i.e., Anm = 1 if neuron m targets neuron n and 0

otherwise, and
∑

k δ

(

t − t
(σ )
m,k

)

is a spike train emitted by neuron

m with spikes at times t(σ )
m,k. Similarly, the external current may be

expressed as

j(ext)n = −

M
∑

m=1

g(ext)nm

(

vn − ṽ(ext)nm

)

(7a)

givenM external units that project into the network with external
synaptic conductivity and external inputs of the form

τ (ext)nm dg(ext)nm = −

(

g(ext)nm − ĝ(ext)nm φ(ext)
nm

)

dt (7b)

and

φ(ext)
nm = Bnm

∑

k

δ

(

t − t
(ext)
m,k

)

(7c)

respectively. The parameter ĝ
(ext)
nm is again related to the

maximum conductance, τ
(ext)
nm denotes the characteristic time

of the corresponding synapse and φ
(ext)
nm is an external spike

train that enters according to the adjacency matrix between the
external and internal neurons (Bnm = 1 if the external neuronm
targets internal neuron n and 0 otherwise).

We would like to note that, thus far, we did not detail the
dynamics of the individual neuron n, i.e., the function f (·)
can still be arbitrary (except that it has to be integrable). Put
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differently, the system (5) and (6a-c) covers a very general case for
a conductance-based, stochastic spiking network model under
impact of an external drive (7a-c).

Next, in order to make this system tractable, we consider the
case in which all synapses of type σ are identical for every neuron.
This means that

∀m=1,...,M :









τ
(σ )
nm = : τ

(σ )
n

ĝ
(σ )
nm = : ĝ

(σ )
n

ṽ
(σ )
nm = : ṽ

(σ )
n









, (8)

i.e., all synapses have identical characteristic times, maximum
conductances, and reversal potentials. For the sake of legibility,
we further introduce two abbreviations, namely

g(σ )n : =

N
∑

m=1

g(σ )nm and φ(σ )
n : =

N
∑

m=1

φ(σ )
nm (9)

which represent the total conductivity of type-σ synapses in
neuron n and the total spike input via type-σ synapses received
by neuron n, respectively. Then, substituting (8) and computing
the sum overm in (6b) yields

τ (σ )n dg(σ )n = −

(

g(σ )n − ĝ(σ )n φ(σ )
n

)

dt. (10)

Network of LIF Neurons
The arguably simplest case of spiking neurons are LIF neurons.
To model them, we constrain fn(·) to be linear in vn. In more
detail, we define fn(vn) = (vn − ṽn), where ṽn denotes the
membrane reversal potential. We add a further homogeneity
assumptions by considering identical fn as well as identical
membrane characteristics for all neurons, i.e., cn = : c, gn =

: g ⇒ τn = : τ (mem), and ṽn = : ṽ. Likewise, we assume

homogeneity of the synapse by setting τ
(σ )
n = : 6τ (σ ), ṽ(σ )n =

: ṽ(σ ), and ĝ
(σ )
n = : ĝ(σ ), i.e., all synapses of the same type σ are

identical across the population2. Using (10) and the homogeneity,
we can simplify the system (5) and (6) as

τ (mem)dvn = −

[

(vn − ṽ)+

+ 1
g

∑

σ∈{E,I}

g(σ )n

(

vn − ṽ(σ )
)
]

dt + dwn

(11a)

and

τ (σ )dg(σ )n = −

(

g(σ )n − ĝ(σ )φ(σ )
n

)

dt (11b)

with

φ(σ )
n =

N
∑

m=1

Anm

∑

k

δ
(

t − t
(σ )
m,k

)

. (11c)

2This appears a reasonable assumption given that the variability between neurons
of the same type might be lost in the presence of noise.

Finally, the membrane dynamics is supplemented by the reset
rule that reads

if vn reaches v
(thres), then neuron n emits a spike

- its membrane potential vn resets to v
(reset)

- and stays there for a refractory period τ (ref).

(11d)

The set of equations (11a-d) defines our microscopic dynamics.
This dynamics can be readily completed by adding external input
as defined in (7a-c) much in line with the formulation of (11b)
and (11c).

Macroscopic Dynamics
In the following we will estimate the population mean
of the membrane potential’s expectation value—recall that
the dynamics (11a) contains noise that we “eliminate” by
determining first the dynamics’ first moment Vn : = 〈vn〉. Hence,
the task is to approximate

V : = 1
N

N
∑

n=1

Vn : =
1

N

N
∑

n=1

〈vn〉. (12)

Before doing so, however, we recast (11b) in the form

[

τ (σ )
d

dt
+ 1

]
〈

g(σ )n

〉

= ĝ(σ )8(σ )
n (13)

where we introduced the first moment of the spike trains, i.e.,

8(σ )
n : =

〈

φ(σ )
n

〉

. (14)

By construction, 〈wn〉 = 0 holds, with which we find

[

τ (mem) d

dt
+ 1

]

V =

ṽ− 1
g

∑

σ∈{E,I}

1
N

N
∑

n=1

(
〈

g(σ )n vn

〉

−

〈

g(σ )n

〉

ṽ(σ )
)

.

(15)

We can combine (13) and (15), in particular, when assuming
identical time constants across synapse types σ , i.e.,
∀ σ : τ (σ )=:τ (syn). Then, we find

[

τ (mem) d

dt
+ 1

][

τ (syn)
d

dt
+ 1

]

V =

ṽ+
∑

σ∈{E,I}

ĝ(σ )

g ṽ(σ )8(σ ) − 1
g

∑

σ∈{E,I}

1
N

N
∑

n=1

[

τ (syn)
d

dt
+ 1

]
〈

g(σ )n vn

〉

(16)

with 8(σ )
: = N−1 ∑N

n=1 8
(σ )
n . The last term on the right-

hand side of (16) needs to be approximated, and the way of
which discriminates our two models. We first adopt the line
of reasoning by Rodrigues et al. (2010) leading to the CFM
before presenting a slight adjustment culminating in the MFM
(cf. Tewarie, 2014, chap. 2).
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The Conventional Freeman Model (CFM)

Approximating the term 〈g
(σ )
n vn〉 in (15) can be difficult because

smallness arguments may not hold in view of the stochastic
nature of the dynamics. Rodrigues et al. (2010) introduced an
admittedly gross step by considering

〈

g(σ )n vn

〉

≈

〈

g(σ )n V̄
〉

=

〈

g(σ )n

〉

V̄ (17)

where V̄ denotes the constant mean membrane potential of
the population. This approximation implies that the individual
membrane potentials vn are arbitrarily close to the population
mean V̄ , averaged over time. Note that when applying this
approximation one selectively ignores all of their dynamic
characteristics on the right-hand side of (16); cf. Discussion
section (but not on the left-hand side). Presuming this is
acceptable, the last term on the right-hand side of (16) simplifies
drastically because of

[

τ (syn)
d

dt
+ 1

]
〈

g(σ )n vn

〉

≈

[

τ (syn)
d

dt
+ 1

]
〈

g(σ )n

〉

V̄
(13)
= ĝ(σ )V̂8(σ )

n

(18)

Substituting (18) into (16) yields

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V =

ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V̄ − ṽ(σ )
)

8(σ ).
(19)

In the presence of external input, as given in (7a-c), the full
dynamics finally reads

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V = ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V̄ − ṽ(σ )
)

8(σ )

−
ĝ(ext)

g

(

V̄ − ṽ(ext)
)

8(ext).

(20)

In our study, the function 8(ext) consists of Poisson spike trains
as specified in Equation (7c).

Both forms, (19) and (20), agree entirely with the Freeman
model (1) when identifying α = 1/τ (mem), β = 1/τ (syn), and
J = rhs(19) or J = rhs(20).

The Modified Freeman Model (MFM)

For an alternative approximation of the term 〈g
(σ )
n vn〉 in (16),

let us detail the time scales, at which the membrane potentials
and the synapses evolve. Synaptic time constants can be as small
as 1.7 ms (Häusser and Roth, 1997), much in the range of
typical time scales of the membrane dynamics. Yet, changes in
most chemical synapses are much slower than the changes the
membrane potential, in particular, the generation/emission of
action potentials. Then, one may assume that the membrane

potential instantly follows changes at the synapse, its dynamics
can be eliminated adiabatically, i.e., we can use

∣
∣
∣
∣

dvn

dt

/

vn

∣
∣
∣
∣
≪

∣
∣
∣
∣
∣

dg
(σ )
n

dt

/

g(σ )n

∣
∣
∣
∣
∣

(21)

to rewrite

[

τ (syn)
d

dt
+ 1

]
〈

g(σ )n vn

〉

≈

〈([

τ (syn)
d

dt
+ 1

]

g(σ )n

)

vn

〉

(13)
= ĝ(σ )8(σ )

n 〈vn〉.

(22)

While this approximation contains sufficient rigor under the
proviso of a proper time scale separation, we also require that

1
N

N
∑

n=1

ĝ(σ )8(σ )
n 〈vn〉 ≈ ĝ(σ )8(σ )V (23)

which is true for 8 being the external spike train but may be
arbitrarily inaccurate for the internal one8(σ )—again we refer to
the Discussion section for a critical review. If this approximation
turns out adequate, the MFM becomes

[

τ (mem) d

dt
+ 1

] [

τ (syn)
d

dt
+ 1

]

V =

ṽ−
∑

σ∈{E,I}

ĝ(σ )

g

(

V − ṽ(σ )
)

8(σ ) −
ĝ(ext)

g

(

V − ṽ(ext)
)

8(ext).

(24)

In contrast to (20), the dynamics (24) contains a parametric
forcing since on the right-hand side the constant V̄ is replaced
by the time-dependent mean potential V . Note, however, that
despite this difference our simulation results revealed that
given the chosen parameter values (õver-damped second-order
response) the outcome of bothmodels (20) and (24) largely agree.

Numerical Methods
Simulations
We simulated N = 10,000 LIF neurons with three types of
synapses, each. The network equations were integrated using an
Euler-Maruyama scheme with a time step of 1t = 0.1 ms and
noise variance Q = 5·10−4 for a total duration of T = 3·104 ms,
i.e., for 3·105 time steps. We discarded a transient regime of T0 =

3 · 103 ms. The network was stimulated by 10,000 independent
Poisson trains each of them connected to each neuron in the
network with probability p(ext). The population average of the
total spike input of each synaptic type σ received by each neuron
at each time step t, φ(σ ) was stored as it subsequently served
as input to the Freeman model. The temporal average of the

populationmean, 1/(T−T0)
∫ T
T0

Vdt served as proxy of V̄ . For the
neural masses, we employed a simple Euler forward scheme with
the same time parameters used for the network model. The time
constant τ (syn) was set to 5 ms, i.e., the average of the synaptic
time constants in the network; see Table 1.
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FIGURE 6 | Diagram of the network of LIF units (Left) together with the external de-correlated input (Right). Blue denotes excitatory, green inhibitory and black

excitatory external neurons. The units on the LIF network are connected to each other with probability p independently on their type. The external units are modeled

as independent Poisson trains and are connected with the same probability p(ext) only to excitatory LIF units and are not connected to inhibitory ones.

To generate external input as Poisson spike trains, we
drew random numbers from an exponential distribution. Since
we drew the numbers at every time step for all the M =

10,000 external units, we minimized the computational load by
following (Zenke and Gerstner, 2014) and used that the union of
distinct exponential distributions is again exponential. The mean
frequency ν(ext) of the external input was set to 5 Hz. The Erdős-
Rényi adjacency {Anm} was constructed using the Gilbert model
published in Batagelj and Brandes (2005), adjusted for directed
graphs. For the connection probability, we used a range of p =

0 . . . 1 implying a range of mean degrees of k = Np = 0 . . .N.
The distribution of excitatory vis-à-vis inhibitory neurons was
quantified by the ratio given by (3), i.e.,

λ : =
#excitatory

#inhibitory+ #excitatory

with #inhibitory + #excitatory = N = 10,000. This network
structure is similar to that in Brunel and Wang (2003) and
Mazzoni et al. (2015) and has been considered as a good estimator
of cortical activity (Mazzoni et al., 2015). Note, however, that it
differs from other LIF networks such as the ones used in Brunel
(2000) and Wong and Wang (2006) in their external drive: in
the current work only excitatory neurons receive external input.
The internal network connectivity is given by directed Erdős-
Rényi network without discriminating excitatory and inhibitory
units. The connectivity between the external Poisson trains and
the network of LIF neurons was also given by a directed Erdős-
Rényi network with mean out degree (Mp(ext)); cf. Figure 6.

Parameter Values
The major parameters are summarized in Table 1. They largely
agree with the settings in Yger et al. (2011) and resemble bio-
physically plausible values.

Data Analysis
Per point {p, λ} in the parameter space, the network was
simulated. We first verified that the chosen parameter range
in fact covered the regime at which phase transitions from
the de-synchronized to a synchronized state may occur by

using a recently introduced, time-scale independent spike train
synchrony measure coined Spike-contrast (Ciba et al., 2018).
This measure yields results that are comparable to those of
the well-established Spike-distance (Kreuz et al., 2013) but had
our preference for its computational efficiency, which was
necessary for our fairly large number of neurons. Subsequently,
the regenerated internal and external spike trains served as
input to the Freeman model. From the time series of the
network’s mean membrane potential and of the Freeman
model’s outcome we estimate power spectra via a discrete
Fourier transform after boundary correction using a Hamming
window. This procedure was repeated 10 times yielding average
discrete power spectra Pω as sample mean approximation
of the power spectral densities. The corresponding median
frequency ̟ served as first, albeit very gross outcome measure
to compare the spectra of the original network (i.e., its
average potential) vis-á-vis the spectra of our models, CFM
and MFM.

To quantify the agreement between spectra, we used a χ2-
statistics: Given two discrete spectra P = (P1, P2, . . . , PL) and
Q = (Q1,Q2, . . . ,QL), their χ2-statistic can be given as

χ2(P,Q) =
L

∑

l=1

(Pl − Ql)
2

Pl + Ql
(25)

where the sum covers all L frequency components of the
spectra (Press et al., 1989). Prior to using (25), the spectra were
normalized to resemble histograms rather than probabilities.
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Collective phenomena fascinate by the emergence of order in systems composed of

a myriad of small entities. They are ubiquitous in nature and can be found over a vast

range of scales in physical and biological systems. Their key feature is the seemingly

effortless emergence of adaptive collective behavior that cannot be trivially explained by

the properties of the system’s individual components. This perspective focuses on recent

insights into the similarities of correlations for two apparently disparate phenomena:

flocking in animal groups and neuronal ensemble activity in the brain. We first will

summarize findings on the spontaneous organization in bird flocks and macro-scale

human brain activity utilizing correlation functions and insights from critical dynamics.

We then will discuss recent experimental findings that apply these approaches to the

collective response of neurons to visual and motor processing, i.e., to local perturbations

of neuronal networks at the meso- and microscale. We show how scale-free correlation

functions capture the collective organization of neuronal avalanches in evoked neuronal

populations in nonhuman primates and between neurons during visual processing in

rodents. These experimental findings suggest that the coherent collective neural activity

observed at scales much larger than the length of the direct neuronal interactions

is demonstrative of a phase transition and we discuss the experimental support for

either discontinuous or continuous phase transitions. We conclude that at or near a

phase-transition neuronal information can propagate in the brain with similar efficiency as

proposed to occur in the collective adaptive response observed in some animal groups.

Keywords: correlations, criticality, brain dynamics, neuronal network, flocking, scale-free, synchronization,mutual

information

INTRODUCTION

The collective movement of animal groups has been the subject of great interest for many decades,
with the early work focusing on model simulations (Aoki, 1982; Reynolds, 1987). It is now well-
accepted that collective properties in animal groups are closely related to the general study of
collective phenomena in physics, which initially was focused on phase transitions in equilibrium
systems composed of many, locally interacting particles (Stanley, 1971; Ma, 1976, 1985), but
eventually was expanded to include far-from-equilibrium systems (Meakin, 1987; Kertesz and
Wolf, 1989; Martys et al., 1991). Many biological systems were found to fit into this latter
category specifically when considering systems of self-driven particles to model movements of ants
(Millonas, 1992; Rauch et al., 1995), fish schools (Huth and Wissel, 1992) and bird flocks resulting

202

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2020.591210
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2020.591210&domain=pdf&date_stamp=2021-01-20
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:plenzd@mail.nih.gov
https://doi.org/10.3389/fnsys.2020.591210
https://www.frontiersin.org/articles/10.3389/fnsys.2020.591210/full


Ribeiro et al. Animal Groups and Neuronal Populations

in the seminal model by Vicsek et al. (1995) for flocking in
biological systems based on local interactions impacted by noise.
Since then, variations of the Vicsek model (Grégoire and Chaté,
2004; Chate et al., 2008) as well as other models that utilize
attraction and distance rules (Couzin et al., 2002; Romanczuk
et al., 2009) have been combined with experimental observations
to capture population dynamics of many species such as locust
swarms (Huepe et al., 2011), ants (Gelblum et al., 2016), fish
schools (Tunstrøm et al., 2013), migrating white storks (Nagy
et al., 2018), and cycling pelotons (Belden et al., 2019) with a
major goal to understand the emergence of collective behavior
from the mechanistic interactions between individuals [for a
review, see e.g., Wang and Lu (2019)].

These observations support the idea that biological systems
seem to be naturally poised near a phase transition (Bak, 1996),
where they might benefit from order yet maintain adaptability to
changing environmental conditions, an idea that is increasingly
gaining attraction including the brain (Chialvo, 2010; Mora
and Bialek, 2011; Plenz, 2012; Hesse and Gross, 2014; Plenz
and Niebur, 2014). The initial theoretical debate has been
enriched recently by an ever-improving ability to simultaneously
track many biological elements (neurons, birds, midgets, etc.)
over time, such that now the ideas are being challenged and
contrasted by the experimental findings in the usual manner of
statistical mechanics.

In this note, we focus on the behavior of the system correlation
properties, the central tenet of statistical mechanics. For the
sake of discussion, our starting point will be the work by
Cavagna et al. in 2010, who demonstrated that starlings in a
flock exhibit spatial correlations much longer than the length
of direct interactions between neighboring birds (Cavagna et al.,
2010, 2018). Specifically, they showed that the correlation length,
i.e., the distance at which correlations drop below zero, grows
monotonically with flock size (Figure 1A) and is, therefore, scale-
free. The absence of any characteristic scale in the correlations is
known to be a hallmark of critical systems (Wilson, 1979). For the
human brain, early evidence of scale-free correlation functions
was found for ongoing neuronal activity assessed indirectly using
the blood oxygen level dependent signal (BOLD) (Expert et al.,
2011) followed by the demonstration of correlation length to
grow with the size of the observed brain region (Figure 1B)
(Fraiman and Chialvo, 2012), exactly as was described for starling
flocks. These remarkable population-spanning correlations were
replicated for a network model of the brain with experimentally
based interareal connectivity when the network dynamics was
tuned to criticality (Haimovici et al., 2013). Since then, they have
also been observed for bacterial colonies (Chen et al., 2012),
insect swarms (Attanasi et al., 2014b), and globular proteins
(Tang et al., 2017, 2020). Here, we explore specifically the
analogy in scale-free correlations between animal groups and
brain dynamics at the scale of local population activity during
motor outputs in nonhuman primates and down to the cellular
scale of single neuron interactions during sensory processing
in mice. We will demonstrate that this analogy goes beyond
phenomenology and shares the same formal scaling relations
which suggest common underlying principles.

SCALE-FREE CORRELATIONS IN
RESPONSE TO EXTERNAL
PERTURBATIONS

The absence of a central control for the emergence of order lies
at the heart of collective phenomena. With respect to animal
groups this remarkable feature is also known as “coordination”
and allows animals to stay together for protection in the
face of predators (Powell, 1985; Terborgh, 1990; Krause and
Ruxton, 2002) or to enhance foraging (Krebs, 1973; Munn
and Terborgh, 1979; Greenberg, 2000). This collective response
thus requires information about a local predator or local food
source to be translated into a coordinated flock response
for escape behavior or foraging to be successful. Several
studies have now demonstrated how swarms can achieve such
de-centralized coordination using local interactions between
neighbors (Gregoire et al., 2003; Sumpter, 2006; Strombom, 2011;
Bialek et al., 2012; Vicsek and Zafeiris, 2012; Ling et al., 2019b).

Predominantly local interactions are also characteristic for
many brain networks, specifically as found for the cortex in
mammals (Markram et al., 2015). Like a bird in a flock, the
“action” or output of a cortical neuron depends largely on the
activity of its intracortical neighbors (Boucsein et al., 2011).
The response to external perturbations of a flock, e.g., by the
local intrusion of a predator, also invite interpretations similar
to the response of a cortical network to external inputs. Those
inputs directly affect only a small proportion of all neurons, e.g.,
through input from the thalamus (Bruno and Sakmann, 2006)
or from other cortical regions, and thus are analogous to local
perturbations of ongoing network dynamics (Arieli et al., 1996).
And although neurons in a network do not change physical
positions in relation to one another like birds, they may change
their interaction neighborhood over time by strengthening or
weakening their direct connections through synaptic plasticity.
The mechanisms by which neuronal networks can propagate
information quickly and flexibly to very distant, but not directly
interacting, neurons are less clear though. Thus, inspired by
the flock results we searched for evidence of scale-invariant
correlations in brain activity in response to sensory input.

We recently explored the behavior of neuronal correlation
functions at scales closer to direct neuronal interactions (Ribeiro
et al., 2020). At the scale of a cortical area (i.e., the mesoscale
of millimeters), we measured the distribution of the so-called
local field potential (LFP) with high-density microelectrode
arrays implanted in the premotor and prefrontal cortices of
non-human primates performing a self-initiated motor task and
a working memory task, respectively. The LFP extracts the
local synchronization of neuronal groups and its emergence
and propagation thus tracks the spatiotemporal evolution of
population activity at a spatial resolution of several 100µm with
millisecond precision. At the scale of the cortical microcircuit
(i.e., the scale of few micrometers), we measured the intracellular
calcium dynamics in pyramidal cells expressing the genetically
encoded calcium indicator YC2.6 in superficial layers of the
primary visual cortex in awake mice passively viewing drifting
gratings. The fluorescent indicator closely tracks the action
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FIGURE 1 | Scale-free growths in correlations length is observed in bird flocks and the mammalian brain at different scales and using different recording techniques.

(A) Correlations in the velocity fluctuations of pairs of starlings in flocks of different sizes. Fluctuations are obtained by subtracting from each bird’s velocity vector (left)

the center-of-mass velocity of the flock (middle). Correlation length, defined as the distance at which correlations of the fluctuations reaches zero, scales linearly with

flock size (right) in line with expectations from critical dynamics. Adapted from (Cavagna et al., 2010). (B) Correlations obtained from blood oxygenated level

dependent (BOLD) signals using fMRI to measure ongoing neuronal activity of the human brain. Left: Average correlation between voxel pairs drops with distance

between voxels as a power law (solid line), while phantom data drops exponentially (dashed line) and spatially shuffled data is constant (dotted line). Adapted from

(Expert et al., 2011) Middle: Correlation length, ξ, from fluctuations in BOLD data scales linearly with the size of the brain area observed (black circles) or when pooling

areas together (red diamonds). Adapted from Fraiman and Chialvo (2012). Right: Mutual information between voxel pairs decays with pair distance, allowing for the

definition of “mutual information length,” ξI, in analogy to correlation length. ξI scales linearly with the size of the brain area observed (black circles). Adapted from

Fraiman and Chialvo (2012). (C) Correlations in the fluctuations of LFP amplitudes from prefrontal cortex in nonhuman primates during a working-memory task using

high-density microelectrode arrays. Left/middle: LFP vectors depicting phase and amplitude on the array without/with subtraction of the population average (blue

arrow, left) in analogy to velocity distributions in flock data. Right: Correlation length scales linearly with (sub)array size for both ongoing (blue) and evoked (red) data.

Adapted from Ribeiro et al. (2020). Inset: Mutual information length scales linearly with (sub)array size for both ongoing (blue) and evoked (red) data. (D) Correlations in

the fluctuations of neuronal activity from primary visual cortex in mice during visual stimulation using 2-photon imaging. Left: Example field-of-view showing cells used

for the analysis. Middle: Average correlation of activity fluctuations between pairs of neurons decays with distance as well as with the size of the observed window

(colors). Right: Correlation length scales linearly with observed window size for both gray screen (gray) or drifting gradings (red). Adapted from Ribeiro et al. (2020).

potential firing in individual pyramidal neurons, which allows
for a cellular reconstruction of spatiotemporal population activity
with micrometer spatial resolution and sub-second temporal
precision. At both scales, we observed the linear growth of
the correlation length as a function of the linear size of the
sampled area during sensory processing and motor output
(Figures 1C,D). Remarkably, these scale-free correlations were
similarly present during rest and evoked responses from the
sensory/motor stimulation (Figures 1C,D) [see also Ribeiro
et al. (2020)]. In line with previous results for the whole
brain (Fraiman and Chialvo, 2012), the mutual information
found in neuronal activity also behaved in a scale-free manner.
By measuring how the mutual information between pairs of
electrodes decays with distance, we showed that the “mutual
information length” grew linearly with system size, just like
the correlation length, for ongoing and evoked neuronal at the
mesoscale (Figure 1C, inset).

Animal groups exhibit collective behavior in space during
motion, in contrast to the brain, where activity propagates
in high-dimensional networks and neurons themselves are

stationary. These differences come into focus when considering
scaling of correlation length by the spontaneous breaking of
continuous rotational symmetry as is the case for orientation in
space. In this case, global ordering can emerge in the absence
of criticality at lower temperatures including the presence of
powerlaw decay in space (Goldstone’s theorem) (Goldstone,
1961). For this reason, Cavagna et al. (2010) also investigated
correlations in the speed of birds, for which that argument does
not apply: whereas orientation could be seen as a soft mode
(being bound, they have a “soft” degree of freedom), speed in
principle is unbounded and thus is considered a so-called “stiff”
mode. In the case of brain activity, the Goldstone’s theorem does
not apply, at least for the data presented here, since there is no
continuous symmetry that can be broken or soft modes. It needs
to be noted that although a “pseudo” phase can be extracted from
the LFP using a Hilbert transform of the original time series
(Yu et al., 2017) the work of Ribeiro et al. (2020) used only the
change in LFP amplitude (which is unbounded) to compute the
correlation length. Furthermore, similar results were obtained
when using binarized negative excursions of the LFP below a
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certain threshold [so-called nLFPs, which represent the local,
synchronous firing of neurons around the electrode; see Yu et al.
(2017)], calcium traces or deconvolved spikes (Ribeiro et al.,
2020), all of which are analogous to speed in animal movement.

INTERACTION LENGTH VS.
CORRELATION LENGTH

As commented, many animals living in groups synchronize their
behavior to that of their neighbors. In that manner, they can
spend less time on the lookout for predators and more time
feeding or resting (Bednekoff and Lima, 1998). If animals were
required to be on alert to the behavior of distant group members,
more resources would need to be allocated to group observation.
Obviously, this requirement might not even be possible, e.g., for
herds that are confined to a plane where observation of distant
members is obscured or for very large animal groups in general.
The attention toward neighbors is accounted for by most models
of collective behavior in animal groups, which, considering
local interactions (Vicsek et al., 1995; Cucker and Smale, 2007;
Wang and Lu, 2019), are able to capture the synchronization
of animals to their neighbors as found for red deer (Rands
et al., 2014) and recently for black-headed gulls (Evans et al.,
2018). In a more extreme example, mosquitofish were shown
to only respond to their single nearest neighbor (Herbert-Read
et al., 2011). Thus, regardless of whether interactions between
animals depend on metric or topological distance (Ballerini
et al., 2008; Ginelli and Chate, 2010; Strandburg-Peshkin et al.,
2013), it is probably safe to say that keeping track of nearby
neighbors is a preferred behavioral strategy in groups. On the
other hand, this strategy requires that information pertinent
for the individual survival must travel efficiently throughout
the entire group, independently of the group size. In physics,
this feature of transforming local (short-range) interactions
into global (long-range) correlations, is known to be present
in systems (almost exclusively) at criticality (Wilson, 1979).
Support for this concept comes from the work of Cavagna et al.
(2015) who employed a maximum entropy approach to infer
the effective interactions from individuals in a natural flock and
showed that the interaction range decays exponentially over the
range of just a few individuals. Additionally, Calvão and Brigatti’s
model (Calvao and Brigatti, 2019), which is an implementation
of the classical “selfish herd hypothesis” (Hamilton, 1971), is
composed of local-interacting agents which collectively undergo
a discontinuous phase transition. Their model successfully
reproduces the behavior observed in nature for midge swarms
including long-range correlations (Attanasi et al., 2014a,b).

For the brain, direct interactions between neurons exhibit
a far more complex and selective organization than nearest
neighbor relations. Neuronal interaction in the cortex includes
a dominant number of direct short-range connections onto
which long-range connections are superimposed that link distant
cortical regions within and between hemispheres. Accordingly,
the observation of long-range correlations might arise from
short-range interactions at critical dynamics, from long-range
connections independent of dynamical regimes, or both. To

disambiguate this, we have simulated critical dynamics in a
neuronal network with a precisely defined characteristic size
for its connections and evaluated how the correlation function
changes for distances beyond the short interaction range (Ribeiro
et al., 2020). We found that there is a clear change in the
behavior of the correlation function at the interaction range,
with correlations growing much faster for distances up to this
point, confirming our experimental findings in primary visual
cortex. The obtained interaction distance was similar to the
characteristic distance at which two pyramidal cells in layers II/III
are connected anatomically (Levy and Reyes, 2012; Seeman et al.,
2018). These results suggest critical dynamics in combination
with short interactions to be a major factor behind the observed
correlation length scaling at the microscale and indirectly suggest
that as in the case of animal flocks, the information about a
local input or perturbation can rapidly propagate through the
entire system.

EFFECTS OF THE HETEROGENEITY OF
THE ELEMENTS ON THE CORRELATION
STRUCTURE

Although some early works have taken heterogeneity and self-
sorting into account (Couzin et al., 2002), animal group behavior
has been mostly studied assuming homogeneous behavior of
the individual (Ero et al., 2018; Gouwens et al., 2019). More
recently, the effects of heterogeneity within groups has gained
increased attention [for a review, see e.g., King et al. (2018)]. For
instance, it has been shown that body size affects the strength
of social interactions and the spatial organization of fish schools
(Romenskyy et al., 2017). For jackdaws, a bird species that form
lifelong pair-bonds, social relationships between different birds
lead to the appearance of sub-structures within a flock. Pair-
bonded jackdaws interact with fewer neighbors than unpaired
birds, flap their wings more slowly, which may save energy and
flocks with more pairs exhibit shorter correlation length, which
may lead to decreased group-level benefits (Ling et al., 2019a).

For the mammalian brain, already a cortical column with
∼10,000 neurons across its six layers provides a major modeling
challenge with its diversity in cell types, cell connectivity,
cellular, and subcellular dynamics (Markram et al., 2015; Dura-
Bernal et al., 2019). The type of dynamics that in principle
can be generated in these high-dimensional models is not
easily constrained and can range from large-scale synchronized
oscillations to more local, sometimes sequential activity. With
respect to the latter and in analogy to how the social relationships
affect correlations in jackdaw flocks (Ling et al., 2019a), it has
been shown that some neurons (leaders) consistently fire earlier
than others in spontaneous bursts of activity in vitro (Eytan
and Marom, 2006; Eckmann et al., 2008; Orlandi et al., 2013;
Pasquale et al., 2017). Yet, it is currently not known how the
heterogeneity of cell types, layers and areas contribute to scale-
free correlation lengths measured in the awake brain at macro-,
meso-, and microscale. In a first attempt to address this issue,
we studied functional subnetworks in cortical circuits, such
as the one formed by orientation selective, i.e., “tuned” cells
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with similar tuning preference in V1 (Palagina et al., 2019).
When separately analyzing tuned and non-tuned cells, despite
significant changes in the absolute value of correlation changes
(evidencing the different structure present in these subgroups),
we were able to show that scale-free correlations are present
along the tuning dimension (Ribeiro et al., 2020). We note that
the subgroup not included in the analysis was still participating
in the overall network response and that this finding does not
exclude the possibility that both subgroups are essential to create
the observed scale-free correlations for both subnetworks.

NATURE OF THE PHASE TRANSITION
UNDERLYING THE COLLECTIVE
PROPERTIES OF ANIMAL GROUPS AND
NEURONAL POPULATIONS

A variety of collective states can be observed in animal groups.
For instance, Tunstrøm et al. (2013) have shown that golden
shiner schools can present three dynamically-stable collective
states, namely swarm, polarized and milling, with frequent
transitions between them. Naturally, different types of collective
states and accompanied transitions between those states are
necessary for different animal species. Here, we discussed
coordination or synchronization in animal groups in the context
of emerging of directional order (or onset of collective motion)
(Vicsek and Zafeiris, 2012) and condensation or clustering
transitions (Chen et al., 2012; Calvao and Brigatti, 2019).
Modeling work reflects this wide variety in collective behavior,
which have been linked to different types of phase transitions,
mainly of the discontinuous type [first order transitions,
including hysteresis and metastability; e.g., Couzin et al. (2002),
Chate et al. (2008), Hein et al. (2015), and Calvao and Brigatti
(2019)] or the continuous type [second order, in line with
criticality; e.g., Barberis and Albano (2014), Calovi et al. (2015),
Feinerman et al. (2018)], or both (Huepe et al., 2011). Even
within one model, the type of phase transition encountered can
be sensitive to the specific model parameters and simulations
conducted. For example, the original introduction of the Vicsek
model (Vicsek et al., 1995) suggested a second-order phase
transition, yet, clear discontinuities where identified particularly
when adding aggregational terms and/or allowing noise to be
directly added to the neighborhood computation (Grégoire and
Chaté, 2004; Chate et al., 2008). There is strong theoretical
evidence for the discontinuous nature of the transition in the
Vicsek model (Bertin et al., 2009; Ihle, 2011; Peshkov et al., 2014),
yet finite-size effects can smooth a discontinuous transition
making it appear continuous (Grégoire and Chaté, 2004; Solon
et al., 2015; Brown et al., 2020). Nevertheless, there are claims
for the existence of robust continuous transitions in the Vicsek
model within certain parameter regimes (Barberis and Albano,
2014). These commonly encountered sensitivities of abstract
models to parameter regime and seemingly innocent model
variation, necessarily call for elaborate experimental designs to
validate models. For example, cooperative transport in ants was
found to be more in line with a continuous phase transition when

quantifying transport velocity for food pellets of different sizes
(Feinerman et al., 2018).

The plethora of models that can be construed for brain
networks ranging from abstract, binary neurons with random
connectivity to detailed compartmental neuronal networks
requires a prudent and stepwise alignment of theory and models
with continuously improving experimental evidence. Here, we
would like to point out the experimental demonstration of scale-
free neuronal avalanches in isolated brain preparations in line
with predictions for a critical branching process (Beggs and
Plenz, 2003). This experimental finding suggested that system
wide correlations form spontaneously in a fluctuation dominated
brain state, with low and sparse rate. The experimental
demonstration of scale-free (most-often weak) correlations for
spontaneous and evoked neuronal activity in the awake brain
in the presence of scale-invariant neuronal avalanches has
been reliably found at the macroscale (Expert et al., 2011;
Fraiman and Chialvo, 2012; Tagliazucchi et al., 2012), meso and
microscale (Ribeiro et al., 2020). Importantly, LFP avalanches
in the non-human primate that show scale-free correlations
also exhibit a scaling collapse with an exponent of 2 for mean
size vs. duration and an inverted parabolic profile in line
with predictions for a critical branching process (Miller et al.,
2019). This scaling collapse revealed a complex interaction with
simultaneously present oscillations exhibiting the value of 2 at
temporal resolutions outside the scale of the oscillation, required
limit-analysis when measured at the scale of the oscillation, and
collapsed to 1.5 when oscillations were removed by low-pass
filtering. It is this body of experimental results in the awake cortex
(Scott et al., 2014; Bellay et al., 2015), which forms the seed for
a more comprehensive understanding of the mechanisms ruling
the scale-free dynamics in brain activity.

A variety of alternative models and simulations often exhibit
significant differences when accounting for the above-mentioned
body of experimental findings. For example, the identification
of universality classes that deviate from the directed percolation
model have been found to be indecisive to explain neural data
obtained from the anesthetized or sleep state under severe
subsampling conditions (Fontenele et al., 2019; Carvalho et al.,
in press). Similarly, neuronal models that feature a first order
transition between a low and high activity mode switched
randomly by external noise and include oscillations (Scarpetta
and de Candia, 2013; Scarpetta et al., 2018), while demonstrating
a size distribution exponent of −3/2, also exhibit scaling
exponents ∼1.1, which is lower than the relationship found in
awake nonhuman primates (Miller et al., 2019). The Landau-
Ginzburg scenario introduced recently to simulate avalanches
in neuronal networks (di Santo et al., 2016; Buendia et al.,
2020) exhibits, under certain parameter choices, a first order
transition, hysteresis, and exponents similar to those of a
critical branching process. However, the temporal avalanche
profile identified in that model differs from an inverted-parabola
measured experimentally in non-human primates (Miller et al.,
2019). In addition, the disorder-synchronization phase transition
in that model gives rise to statistically distinct giant (“king”)
avalanches found typically in disinhibited brain activity similar
to epileptic seizures.
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FIGURE 2 | Criticality and scale-free organization provide key advantages for both flocks and brains such as maximal information transmission and dynamic range.

(A) In a decision-making model of flock behavior, information transmission peaks at criticality, shown by a peak in mutual information for K ∼ 1.62 and τ ∼ 2,500

(critical point). Adapted from Lukovic et al. (2014). (B) In organotypic cultures grown from rodent brains, information transmission peaks when spontaneous neuronal

activity displays scale-free neuronal avalanches, in line with expectation from criticality (κ ∼ 1). Two different coarse-graining levels are shown (colors). Proximity to

criticality, i.e., scale-free avalanches, is controlled through pharmacological manipulation of the cultures. Adapted from Shew et al. (2011). (C) Information transmission

is maximized as mice recover from anesthesia, establishing neuronal avalanches. Left: Criticality distance measure approaches 1 (critical point) as time from

anesthesia application (in min) passes. Anesthetized (blue), recently awake (red) and fully awake (green) states are highlighted. Entropy (middle) and information

transmission (right) reaches a maximum as mice recover from anesthesia and reestablishing neuronal avalanches. Adapted from Fagerholm et al. (2016). (D) In

organotypic cortex cultures, the dynamic range peaks when neuronal avalanches emerge and can be reduced when pharmacologically changing the natural

excitation/inhibition balance. Adapted from Shew et al. (2009). (E) Using microelectrode array recordings in rats in vivo, the peak of dynamic range was demonstrated

using natural stimuli and changes in excitation/inhibition balance through local pharmacological manipulation. Adapted from Gautam et al. (2015).
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As a final reflection on this aspect, it needs to be noted that
in contrast with the empirical solitude of the finding of neuronal
avalanches a decade and half ago, the field is currently populated
by a large variety of not-always self-consistent models. It seems
that a fruitful avenue now might be to balance the modeling
efforts with a careful analysis of the continuously improving
sophisticated experimental evidence at hand.

IMPORTANCE OF SCALE-FREE
CORRELATIONS FOR BRAIN FUNCTION

A large body of modeling work and some experimental evidence
have shown that scale-free correlations are beneficial, providing
key advantages to animals living in groups. For example, Rauch
et al. (1995) showed the emergence of self-organized trails
near a critical density of foraging ants. The length of these
trails exceeded several orders of magnitude the ants perceptual
scale, being another example of long-range correlations. In
the same line, it has been shown that evolutionary pressure
could move fish schools toward an optimized state near a
discontinuous phase transition in an evolutionary model, where
local environmental perturbations can cause changes in the
collective school state (Hein et al., 2015). Using the Vicsek model
for flocks (Vicsek et al., 1995), it has been shown that information
transmission is maximized near the phase transition (Figure 2A)
(Vanni et al., 2011; Lukovic et al., 2014), which as discussed
in the previous subsection could have an underlying first-order
origin. The enlarged correlations arising as a result from this
maximized information transmission, lead to optimized response
to predators (Mateo et al., 2017), in line with what has been
observed in data-driven models of fish schools (Calovi et al.,
2015) or sheep herds (Ginelli et al., 2015) near criticality. It
has also been shown that the efficiency of computations in the
Grégoire and Chaté (2004) model is maximized at the phase
transition (Crosato et al., 2018).

On the brain side, theory and model simulations on
critical dynamics in neuronal networks has proposed many
advantages in information processing, some of which have
been demonstrated experimentally, specifically when using
pharmacological manipulations to move cortical networks away
from neuronal avalanche dynamics (Figures 2B–E) [for reviews,
see e.g., Shew and Plenz (2013) and Cocchi et al. (2017)].
For example, the dynamic range, which measures the range of
stimulus intensity a network is able to differentiate, has been
proposed to maximize at criticality by Kinouchi and Copelli
(2006) and was demonstrated experimentally (Figures 2D,E)
(Shew et al., 2009; Gautam et al., 2015).

Another parallel between scale-free flocks and brains is the
presence of decentralized signal processing. This aspect has
gained increased attention in the context of artificial intelligence,
with many studies proposing the usage of artificial swarm
systems (Hornischer et al., 2019; Sueoka et al., 2019). The
brain also provides inspiration for these systems: Monaco
et al. (2020) proposed an analogy between these multi-agent
robotic platforms and place cells in the hippocampus, suggesting

improvements to current models that follow solutions found by
brain circuits. Startle responses in animal populations can trigger
escape waves (Herbert-Read et al., 2015; Sosna et al., 2019), in
the latter case yielding heavy-tail cascade size distributions and
involve distributed repositioning of in the swarm beyond an
individual’s sensitivity changes to perturbation. The initiation
and spread of such local response bears similarities to branching
process dynamics suggesting promising similarities with critical
brain dynamics.

CONCLUSIONS

The emergence of order in systems composed of a myriad of
small entities exhibits many parallels between animal groups
and neuronal populations in the brain. We summarized new
experimental findings for the brain on the emergence of
scale-invariant correlations and scale-invariant population
sizes and discussed their similarities and differences compared
to collective behavior in animals. We show that for both
fields of research there are fascinating arguments for
systems to be positioned near a phase transition to support
propagation of local information throughout the entire
system. Future experimental work on the role of cell types
and microcircuit mechanisms in maintaining these scale-free
dynamical features are crucial for understanding how the brain
processes information.
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Novelty detection is a core feature of behavioral adaptation and involves cascades
of neuronal responses—from initial evaluation of the stimulus to the encoding of new
representations—resulting in the behavioral ability to respond to unexpected inputs.
In the past decade, a new important novelty detection feature, beta2 (∼20–30 Hz)
oscillations, has been described in the hippocampus (HC). However, the interactions
between beta2 and the hippocampal network are unknown, as well as the role—or
even the presence—of beta2 in other areas involved with novelty detection. In this
work, we combined multisite local field potential (LFP) recordings with novelty-related
behavioral tasks in mice to describe the oscillatory dynamics associated with novelty
detection in the CA1 region of the HC, parietal cortex, and mid-prefrontal cortex.
We found that transient beta2 power increases were observed only during interaction
with novel contexts and objects, but not with familiar contexts and objects. Also,
robust theta-gamma phase-amplitude coupling was observed during the exploration of
novel environments. Surprisingly, bursts of beta2 power had strong coupling with the
phase of delta-range oscillations. Finally, the parietal and mid-frontal cortices had strong
coherence with the HC in both theta and beta2. These results highlight the importance
of beta2 oscillations in a larger hippocampal-cortical circuit, suggesting that beta2 plays
a role in the mechanism for detecting and modulating behavioral adaptation to novelty.

Keywords: beta2 oscillation, hippocampus, novelty detection, medial prefrontal cortex, posterior parietal cortex,
synchronization

INTRODUCTION

Novelty detection is a crucial feature for behavioral adaptation and ignites cascades of
neuronal responses, from the initial evaluation of the stimulus to the encoding of new
representations, resulting in the behavioral ability to respond appropriately and adaptively
to unexpected stimuli (van Kesteren et al., 2012; Kafkas and Montaldi, 2018). Over recent
decades, an important novelty detection feature, beta2 oscillations (∼20–33 Hz), has been
described in the hippocampus (HC; Berke et al., 2008; França et al., 2014; Kitanishi et al.,
2015). In particular, beta2 power transiently increases during spatial novelty (Berke et al.,
2008; França et al., 2014; Kitanishi et al., 2015) and its generation is implicated with AMPA
and NMDA receptors plasticity between the connections of CA3 and CA1 hippocampal
regions (Berke et al., 2008; Kitanishi et al., 2015). However, the interaction between
beta2 with other hippocampal rhythms remains unknown. Furthermore, the HC is not
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alone in detecting novelty: evidence in both humans and rodents
points to a larger hippocampal-cortical circuit for detecting and
adapting to novelty, including the mid-prefrontal cortex (mPFC)
and posterior parietal cortex (PAR; Spellman et al., 2015; Kafkas
and Montaldi, 2018; Pho et al., 2018). It seems plausible that
beta2 oscillations are a mechanism of communication across
these regions, but there is currently no empirical evidence for or
against this possibility.

Here, we tested three novel hypotheses concerning the
role of beta2 in novelty detection: First, whether beta2 power
increase is associated with different forms of novelty (spatial and
object); second if slower hippocampal oscillations can modulate
beta2 power, similarly to the phase-amplitude coupling of theta-
gamma oscillations during memory encoding in the HC; and
third, whether the novelty integration hubs in the cortex (PAR
and mPFC) synchronize with hippocampal beta2 oscillations
during novelty exploration.

Combining behavioral tasks where the animal is exposed to
environments with different levels of novelty, and recordings
from local field potential (LFP) and multi-units targeting
the CA1 region of the HC, PAR, and mPFC, we aimed
to describe the interactions among these regions involved
with novelty detection processing. Using power spectral
analysis, weighted phase lag index (WPLI), mean phase
vector length (MPVL), Granger causality, and cross-frequency
phase-amplitude coupling (CFC) as indices of local and
long-range synchronization (Canolty and Knight, 2010; Vinck
et al., 2011; Hyafil et al., 2015), we found that transient
beta2 power increases are observed only during interactions
with novel contexts—environment or object—and not with
familiar contexts. During novelty exploration, robust CFC
was observed between theta and multiple gamma subbands.
Unexpectedly, beta2 had robust coupling with delta-range
oscillations. Finally, the PAR and mPFC cortices exhibited
strong coherence with both theta and beta2 during novelty
exploration. Within the PAR and mPFC, a similar pattern
of coupling between delta-ranged and beta2 was seen as
in the HC. The results reported in the present study also
suggest that beta2 is an oscillatory feature independent of slow
gamma oscillations, showing different dynamics of power and
CFC, and related to novelty detection. The synchronization
among HC, mPFC, and PAR in beta2 during novelty detection
reveals its importance to understanding novelty exploration
and its implication in a broad hippocampal-cortical circuit for
novelty detection.

MATERIALS AND METHODS

Animals
The data shown in this article is from nine male mice with
Black57 background. All the animals were recorded in all the
experimental sessions described in Figure 1A. The animals had
free access to food and water. All experiments were approved
by the Centrale Commissie Dierproeven (CCD) and it is
according to all indications of the local Radboud University
Medical Centre animal welfare body (Approval number
2016-0079).

Electrode Implant Procedures
The self-made electrode arrays used in the present work were
custom-designed to target three different regions of the mouse
brain: CA1-HC, PAR, and mPFC. A detailed description of the
arrays and the manufacturing process can be verified (França
et al., 2020b). Briefly, there were 16 channels aiming at mPFC
(spread in the coordinates AP: 0.5 and 1.5; ML: 0.25 and 0.75; in
three columns of electrodes in different depths−2.0, 1.5 and 1.0),
eight channels at PAR (AP:−2 and−2.25; ML: 1.0 and 1.75; DV:
0.5) and eight channels at HC (AP −2.5 and −2.75; ML: 1.0 and
1.75; DV: 1.5).

For surgery, 10–16 week old mice were anesthetized with
Isoflurane (induction at 5% Isoflurane in 0.5 L/min O2;
maintenance at 1–2% Isoflurane in 0.5 L/min O2; Teva).
Mice were fixed in the stereotaxic instrument (Neurostar
Stereotaxic). After shaving, the skin was disinfected with ethanol
(70%). The local anesthetic Xylocaine [2%, Adrenaline 1:200,000
(AstraZeneca)] was injected subcutaneously at the incision site
before exposing the skull. Peroxide [10–20% H2O2; (Sigma)]
was applied to the skull with a cotton swab for cleaning and
visualization of Bregma and lambda. The windows in the skull
through which the electrodes would be lowered into the brain
were drilled specifically to accommodate the type of arrays
to be implanted. To avoid contact between the dental cement
and the brain, vaseline was applied to those windows after the
implant. Electrodes and screws were fixated onto the skull with
dental cement (Super-Bond C&B; Supplementary Figure 1).
Approximately 40 min before the end of the surgery, saline
and analgesic (Carprofen injected subcutaneous 2.5 mg/Kg) were
injected to facilitate the animal recovery.

After the experiments, animals were euthanized for
post-mortem histological confirmation of electrode location.
The majority of electrodes in mPFC were distributed across the
anterior cingulate and secondary motor cortex. The majority of
the PAR electrodes were placed among layers 2 to 5. In the HC,
all electrodes were located in CA1, within the region enclosed by
the stratum pyramidale and the stratum lacunosum-moleculare.
Electrode tracing can be verified in Supplementary Figure 1.

Behavioral Task
The experiments were designed to expose the animal to different
HC-dependent novelty content (environment and novel object).
The experiment consisted of four main different sessions of
10 min recording—two sessions at Open field and two sessions
at Open field with Objects—interspersed by 5 min Home Cage
recordings (see Figure 1A).

Because our goal was to evoke and investigate novelty-
related oscillatory features, our task did not require or provide
detailed behavioral performance output. However, to investigate
how the oscillatory features investigated here were correlated
with locomotor activity and behavioral exploration, the average
velocity and the object exploration time were extracted. The data
was computed by automated tracking of video recordings in the
program Ethovision. We labeled time windows as being ‘‘object
exploration’’ if the animal’s nose was within a quadrant draw
around the object (∼3 cm of the object).
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Electrophysiological Analysis
Data Inspection
Electrophysiology data were acquired using Open Ephys with
a sampling rate of 30 kHz. During preprocessing, data were
downsampled to 1,000 Hz, and EEGlab (Delorme et al., 2011)
was used for visual inspection and cleaning artifacts (open
channels were removed from the analysis; high-frequency
noises were removed by Independent Component Analysis;
Segments containing large deflections in all channels were used
as a criterion for recording session exclusion). Six animals
had high-quality data in all recording sessions, therefore
statistical analysis concerning all sessions was performed
in six animals. Analyses in different sessions, therefore,
have a different number of animals (varying between seven
and nine).

Data Analysis
The data analysis was performed using custom-written and
built-in routines in MATLAB (R2015b). Before analyses, the
multichannel data from each region were re-referenced to that
region’s local average.

Spectral and time-frequency analysis was performed via
convolution with complex Morlet wavelets (defined as a
frequency-domain Gaussian with a 3 Hz full-width at half-
maximum) that ranged in peak frequency from 2 to 80 Hz
in 100 linearly spaced steps. We reduced the dimensionality
of the multichannel data by implementing a frequency-
specific guided source-separation method based on generalized
eigendecomposition. The goal was to create a linear weighted
combination of channels (separately per region) that maximized
the multivariate energy between the data covariance matrix from
the narrowband filtered data, vs. the broadband filtered data.
This results in a single time series from each region, which
was subjected to further analyses. We and others have shown
that this method increases signal-to-noise characteristics while
reducing computational costs and multiple-comparisons issues,
and is more accurate than other sources separationmethods such
as principal components analysis and independent components
analysis inM/EEG and LFP data (Haufe et al., 2014; de Cheveigné
and Arzounian, 2015; Cohen, 2017a; Morrow et al., 2020). An
advantage of generalized eigendecomposition over independent
components analysis is that it optimizes the spatial filter for
narrowband activity, which was a primary goal here. Various
spatial filters can produce similar or distinct results, depending
on their optimization criteria, and rigorous comparison of
the performance of spatial filters is beyond the scope of this
article (Cohen, 2017b). Nonetheless, possibly the analysis of
the independent components could provide comparable results
(Fernández-Ruiz and Herreras, 2013).

The Hilbert transform was then applied to these narrow-band
filtered component time series to extract time-varying power
and phase estimates. The Hilbert transform was then applied
to these narrow-band filtered component time series to extract
time-varying power and phase estimates. For analyzing beta2 and
theta power on a cycle-by-cycle basis, we first detected the
beta2 cycles using the instantaneous phase extracted by the
Hilbert transform. We then computed the average amplitude

envelope of beta2 and theta in each beta2 cycle. Our analyses were
restricted to the 10% beta2 cycles with higher and lower energy.

The power spectrum was computed by averaging over the
time-frequency power time series from all time points within
each larger time window. CFCwas performed in sliding windows
of 5 s. The phase of delta-range and theta frequency (2–12 Hz)
and the amplitude of beta2 to mid-gamma (20–100 Hz) were
extracted. The raw CFC values were transformed into standard
deviation (z) values by computing the normalized distance
away from a null-hypothesis surrogate distribution, created by
500 permutations in which the phase angle time series were
randomly cut and swapped. To decrease the influence of possible
volume conduction, we performed coherence computations
utilizing WPLI (Vinck et al., 2011). Statistical analyses were
performed using the routine RMAOV1—Repeated Measures
Single-Factor Analysis of Variance Test (α = 0.05).

Conditional spectral Granger causality was applied using the
MultiVariate Granger Causality toolbox (Barnett and Seth, 2014).
As this relies on the time-domain signals and not already-
filtered data (because the causality spectrum is computed from
the autoregression terms), we dimension-reduced each region
using principal components analysis, taking the time series of the
largest component from each region. Data were downsampled
to 250 Hz and a model order ranging from 100 to 200 ms
(varied over animals to best fit each dataset) was used for the
autoregression model fitting. The advantage of the conditional
Granger analysis is that it allowed us to isolate the unique
contributions of one region to a second region while accounting
for a possible shared variance with the third region.

For detecting spiking activity, the electrophysiological signal
was first band-pass filtered between 500 Hz and 6 kHz. Then,
waveforms were detected using a threshold of eight times the
median absolute deviation as in Quiroga et al. (2004) and
aligned by their interpolated peak. We used the wavelet and
weighted-PCA approach described in Souza et al. (2019) to
automatically sort the waveforms of each channel. Although
we could not separate spiking activity into single units, the
different MUA clusters found in the same channel presented
unique activity patterns, and we, therefore, analyzed their activity
separately. To access the phase coupling of spikes to beta2 in the
first time-window (30 to 150 s), we first selected beta2 cycles in
which the mean amplitude envelope of beta2 and delta-range
were both in the highest quartile. Then, for each MUA we
computed the MPLV of the spikes occurring on those cycles.
MUAs with fewer than 30 spikes were excluded from further
analyses. The significance of each MPVL value was assessed
using an equivalent surrogate distribution, computed using
500 surrogates with the same number of spikes as the original
MUA. For significantly modulated MUAs we also assessed the
mean phase of spiking.

RESULTS

Beta2 Power Increases With Both Spatial
and Object Novel Content
The experiment consisted of four sessions of successive
10 min recordings. Two sessions at Open field (OF1 Novel;
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OF2 Familiar) and two sessions at Open field with Objects
(OBJ1Novel; OBJ2 Familiar)—interspersed by 5minHomeCage
recordings (see Figure 1A). We first verified that both spatial
and object novelty evoked the same pattern of power dynamics
previously described (Berke et al., 2008; França et al., 2014). As
expected, beta2 power increased only during novelty (OF1 and
OBJ1; Figure 1B), but not during any of the familiar contexts
(Home cage, OF2, and OBJ2; Figure 1B, Supplementary
Table 1). We also verified the transient aspect associated with
novelty-related beta2, whereby the power returned to initial
levels after around 3 min of novelty exposition (Figure 1C). as
previously reported (França et al., 2014). For all further analyses,
we utilized four time windows based on the power dynamics
of beta2 in the HC verified during the exploration of novelty
(Figure 1C). The comparison of the normalized beta2 power
(normalized by the power of the last time window) across the
different time windows showed that beta2 power was higher
in the first compared to the later time windows (Figure 1D;
Supplementary Table 1).

A possible confound for these analyses would be if
beta2 power was simply increased during locomotor activity,
instead of reflecting novelty. We, therefore, conducted several
analyses to rule out this confound. First, we computed the
average velocity of the animal in the different time windows
defined above, and entered velocity into a two-way ANOVA
using ‘‘time window’’ and ‘‘session’’ as independent variables
(Interaction: F(3,93) = 27.44, p < 0.0001; Time Window:
F(3,93) = 2.41, p = 0.0501, and Session: F(3,93) = 2.41, p = 0.0398),
post hoc Tukey-Kramer test showed that OF1 had significantly
higher velocity than OBJ1, OBJ2, OF2, p < 0.05; Figure 1E).
Importantly, we saw significant interaction between the time
window and session. However, this result does not directly
link beta2 to movement. Therefore, we computed the Pearson
correlation between the normalized beta2 power and animal
velocity per session. We verified a strong correlation between
the mean velocity and normalized beta2 power when looking
at all experimental sessions together (OF1, OF2, OBJ1, and
OBJ2; Figure 1E). To verify if such correlation could explain
by itself the previous changes in beta2 power, we computed the
correlation separately in novelty (OF1 and OBJ1) and familiar
sessions (OF2 and OBJ2). We found that beta2 power correlated
with mean velocity in the novelty sessions, but not in the
familiar session (Figure 1E). However, possibly the correlation
in the novelty sessions was biased by the higher velocity in the
OF1 sessions. Indeed, the correlation between beta2 power and
velocity vanished when analyzing OBJ1 session only (r = 0.306,
p = 0.216; Figure 1F). Nevertheless, animal speed in OBJ1, OBJ2,
and OF2 sessions showed similar distributions (Figure 1F),
despite having different beta2 power values (Figure 1B). In
other words, beta2 was not trivially correlated with movement,
showing that velocity cannot explain the novelty-related changes
in beta2 power. There was no relationship between beta2 power
and theta power on a cycle by cycle basis (t(2,8) = 0.06, p = 0.94;
Supplementary Figure 2). Third, we tested whether the amount
of object exploration predicted beta2 power. We found no
correlation between the total time spent exploring the objects and
the beta2 normalized power (r = −0.195, p = 0.25; Figure 1G).

Together, these results show that beta2 power increases only
during novelty exposure. Beta2 had transiently higher power
in the initial phase of the novelty exposure, which waned
towards the end of the session. Beta2 power was correlated
with velocity exclusively during novelty exposure, but not in a
familiar environment.

Delta Modules Beta2 Amplitude During
Spatial and Object Novelty
Given the role of CFC in the HC during spatial navigation,
learning, and memory retrieval, we next explored whether there
was any CFC coupling between beta2 power and the phase of
slower frequencies and if this coupling was modulated during
novelty processing. We used the frequency ranges of 2–12 Hz
for extracting the phase and 20–100 Hz for computing the
amplitude envelope. Because the Open field exploration does not
present any well-defined time event to trigger time windows for
the CFC, we calculated the modulation index (MI) in sliding
time windows, which allowed us to examine both the overall
CFC and the temporal dynamics of CFC. We observed two key
features of novelty-related CFC: first, we verified theta-gamma
CFC for both low-gamma (30–50 Hz lowG) and mid-gamma
(60–80 Hz midG); second, CFC was present between theta phase
and beta2 power and between delta-range phase and beta2 and
lowG power in the same time window of higher beta2 power
(Figure 2A). A similar pattern of CFC was also observed in the
first exploration of OBJ1 (Figure 2B).

Then, we verified the temporal dynamics of the most
prominent CFC patterns: delta-beta2, delta-lowG, theta-beta2,
theta-lowG, and theta-midG. For sessions with novelty (OF1 and
OBJ1), the couplings of all those frequency bands were
higher in the first time window, suggesting that most of
the novelty detection and encoding computation happens
during the initial part of the session when beta2 power is
higher (Figures 2A,B, Supplementary Table 2—time-window
comparison), all pairs of coupling in all time-windows (the
exception to OF1 win4-theta/lowG and OBJ1 win3-theta/beta)
shown MI higher than chance (Figures 2A,B, Supplementary
Table 2). Conversely, during the re-exposure to the OF2 and
OBJ2 we observed small or no changes in the temporal dynamics
of beta2 coupling (Supplementary Figure 3, Supplementary
Table 4), but higherMI in all time-windows, exhibiting strongMI
for delta-beta2/theta-beta2 and delta-lowG/theta-lowG for the
OF2 session (Supplementary Figure 3, Supplementary Table 4).
We also found a strong modulation of delta/theta in both novel
and familiar sessions, where no effect among time windows was
found, but all time-windows in all sessions analyzed exhibitedMI
higher than chance (Supplementary Figure 3, Supplementary
Table 4). Together, these results show that besides the largely
reported theta/gamma coupling (Lasztóczi and Klausberger,
2014; Schomburg et al., 2014; Fernández-Ruiz et al., 2017; Gereke
et al., 2017; Lopes-dos-Santos et al., 2018), exposure to novelty is
followed by delta-range/beta2 coupling with a similar transient
characteristic as seen in the beta2 power dynamics, stronger MI
is present in the first time window. Such temporal dynamics are
not observed in the familiar sessions. However, all time-windows
exhibit a MI higher than chance, indicating that beta2 events
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FIGURE 1 | Hippocampus (HC) beta2 power increase during novelty exploration. (A) Recording sessions scheme, 10 min of Open field (OF1, OF2) or Open
field/Object explorations (OBJ1 and OBJ2) intercalated by home cage recordings (H.C.1–5). (B) Group average hippocampal power spectral density over the first
150 s in the nine different sessions presented in panel (A). Note that only Open field 1 and Object 1 had increases in beta2 power, but not in other frequency bands.
(C) Average of the spectrogram of the Open field 1 session. The four time-windows defined in the plot were used for all further analysis. (D) Exploration session
average power spectrum density (PSD). (E) Two-way ANOVA comparison of the mean velocity with a time window and different sessions. (F) Person correlations
between the mean velocity and mean beta2 power. (G) Person correlations between total exploration time of objects and mean velocity. *p < 0.05, n.s.: not
significant.
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FIGURE 2 | Delta-range modulates beta2 during novelty exploration. (A) Sliding-window cross-frequency phase-amplitude coupling (CFC) concatenated in the four
time-windows defined in Figure 1C. Right panels exhibit the modulation index (MI) during the time for different pairs of coupling. The different time-windows MI are
compared against chance (0). (B) Same as (A) but for the Object 1 exploration session. *p < 0.05.

are modulated by delta-range oscillations during the novel and
familiar contexts.

Novelty Modulates Oscillatory Coherence
in Hippocampal-Cortical Circuitry
To investigate our third key hypothesis of whether
beta2 oscillations play an important role in the hippocampal-
cortical novelty detection system, we computed a measure of
pairwise coherence WPLI between the three regions.

We observed consistent theta-band coherence among all
pairs of areas (see Figures 3A–C) in all the sessions. Besides,
sessions with novelty content also exhibited increased coherence
in the beta2 range (Figures 3A,B). In contrast to the increase
in beta2 power, this increase in coherence was not restricted
to the first time window. In fact, besides the home cage
1 session (when the animal never experienced any novelty), a
high beta2 coherence could also be observed even in familiar
sessions, suggesting maybe the existence of a prolonged effect
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FIGURE 3 | Beta2 high coherence among HC, parietal and mid-frontal cortices during novelty exploration sessions. (A) The left panel shows the WPLI of the
Open field 1 novelty exploration session. Note the high coherence in theta, beta2, and low-gamma during the first session of novelty exploration. Right panels show
the different time-windows of the coherence between different pairs of regions. Panel (B) shows the same as in (A), but for the Object 1 session. (C) Coherence plots
of different familiar exploration sessions. (D) Granger causality gain between the pairs of regions in the Open field 1 session. Note the increase of Granger gain in
theta and beta2 range going from HC and parietal cortex to mid-frontal cortex. Panel (E) shows the same as in (D), but related to the Object 1 session.
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on synchronization among areas after the first novelty session.
We also note that in the last Home exploration session the
coherence between mPFC and PAR, the two cortical areas, were
already at similar levels compared to the first Home exploration,
while coherence between HC and mPFC, and between HC and
PAR was still high (Figure 3C). This might be explained by the
mechanisms underlying beta2 synchronization in the circuitry.

We next applied conditional spectral Granger causality to
further investigate this and to determine the causal flow of
interactions around this circuit. During the OF1, PAR, and HC
provided input into the mPFC in theta, beta2, and lowG ranges
(Figure 3D). While in the Object 1 session, PAR exhibited
a higher gain in the lowG frequency band (Figure 3E). HC
dominated the gain values towards both cortices in both theta
and beta2 (Figures 3D,E), exhibiting especially strong gain
with theta and beta2 during the OBJ1 session (Figure 3E).
Similar to the coherency, the Granger analysis showed no strong
variation across different time windows, and suggest less stable
connectivity between mPFC and PAR cortices.

Finally, we verified the presence of beta2 burst in the raw
data in all regions analyzed (Figures 4A,B). More specifically,
we could also see bursts of beta2 and lowG that happened
independently (Figure 4A). To verify that cortical beta2 was not
driven by volume conduction, we also analyzed the multi-unit
activity in the three regions of interest, computing the MPVL
of the spikes in high cycles of beta2. In Figure 5A, we show
examples of multi-units in the mPFC, PAR, and HC that are
strongly coupled with the phase of beta2 (Figure 5A). We found
that the multi-unit spikes couple (i.e., showed significant MPVL
values) to beta2 events detected in each of the three different
regions (Figures 5B,C).

Altogether, these results show that PAR, mPFC, and HC
synchronize in beta2, after the first novelty exposure and also
in the following familiar sessions, suggesting the existence of
a prolonged effect on synchronization. The contribution for
such synchronization is dominated by HC towards the cortices.
Finally, multi-unit activity coupled with beta2 in the three
regions analyzed suggests that the beta2 events are not explained
by volume conduction.

Parietal and Mid-prefrontal Cortices
Exhibit Strong Delta-Beta2 Coupling
During Novelty Exploration
Lastly, to further characterize the participation of PAR and
mPFC cortices in processing novelty information, we verified
both power and the coupling dynamics in the cortices during
novelty detection exploration. We found that the mPFC
exhibited similar beta2 power dynamics as in the HC, where
the increase of beta2 power was verified in the first time
window. The power spectrum density (PSD) revealed an increase
in beta2 frequency specifically during the novelty exploration
(Figure 6A, Supplementary Table 3). Such an increase in
beta2 could be seen in the raw data and was also independent
of bursts in the HC (see Figure 4).

Unexpectedly, the PAR and mPFC cortices not only
exhibited strong coherence among each other and the HC,

but also presented a similar pattern of coupling as seen
in the HC (Figures 2A–C, 6A–F, Supplementary Table 3),
in which the novel content induced a strong MI between
delta/beta2, theta/beta2, and theta/lowG in time-window 1.
In contrast, familiar sessions did not exhibit an increase
in the delta/beta2 in any time window (Supplementary
Figures 3B,C, Supplementary Table 4) most of the time
windows analyzed did not present any coupling during the
familiar session (Supplementary Figure 3C, Supplementary
Table 4). These results suggest that although the three areas
are synchronized in beta2 during the novel and familiar
sessions, the coupling dynamic involving delta-rangemodulation
is specific to novelty exposure, similar to the beta2 power
dynamics. Moreover, this modulation engages both mPFC and
PAR pointing to the active participation of the associative
cortices in the processing information during the novelty
detection sessions.

DISCUSSION

In this work, we used simultaneous extracellular recordings of
the HC CA1 region, PAR, and mPFC to characterize, for the
first time, beta2 oscillations in the hippocampal-cortical novelty
detection circuit of mice. We found that beta2 hippocampal
power increases during both spatial and object novelty, but not
during the exploration of familiar contexts. We have shown
that delta-range oscillations modulate beta2 and lowG during
the exploration of new and familiar environments, while theta
modulates beta2, lowG, and midG. Also, we found strong
coherence in theta and beta2 bands during novelty exploration
among the areas recorded, in which the higher Granger gain
for beta2 and theta came mostly from HC. Such coherence
was translated into the increase of beta2 power in the mPFC
but not in the PAR, even though bursts of beta2 could be
identified in the raw trace of both mPFC and PAR, as well as
beta2-modulated multi-units. Finally, we have observed similar
coupling characteristics in the cortex to what is described in
the HC, showing that beta2 is also modulated by delta-range
activity in the cortex. Taken together, these results highlight the
importance of beta2 oscillations in a larger hippocampal-cortical
circuit, suggesting that beta2 reflects themechanism for detecting
and modulating behavioral adaptation to novelty.

The three regions investigated in the present study, the
HC, PAR, and mPFC, share some similar features: (1) have
monosynaptic connections among each other (Cenquizca and
Swanson, 2007); (2) are extensively related to learning and
encoding of memory (Lisman and Otmakhova, 2001; Lisman
and Grace, 2005; Hasselmo, 2006; Sigurdsson et al., 2010; de
Lima et al., 2011; Cross et al., 2013; Preston and Eichenbaum,
2013; Spellman et al., 2015), a characteristic which is preceded
by novelty detection (van Kesteren et al., 2012); and (3) are
implicated in novelty detection networks in human models
(Kafkas and Montaldi, 2018).

To coordinate the activity of such diverse brain areas during
the process of novelty detection, oscillations are suggested to play
a key role in the integration and coordination of the information
(Buzsáki and Draguhn, 2004; Fries, 2005). Theta oscillations are
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FIGURE 4 | Beta2 bursts can be visualized in the raw traces of the HC, parietal and mid-frontal cortices. (A) Blue—raw signal of HC channel; Green—filtered signal
in low-gamma (30–50 Hz); Red—filtered signal in beta2 (20–30 Hz). Note that the burst of low-gamma and beta2 happens independently from each other. (B)
Blue—raw signal; Yellow—filtered signal in delta (1–6 Hz); Red—filtered signal in beta2 (20–30 Hz). Note that the burst of beta2 can be verified in the raw signal of the
HC, parietal and mid-frontal cortices. (C) Same exhibit as in (B), but for HC channels of different animals. (D) Individual examples of time-MI plot of delta-beta2 and
delta low-gamma during Open field 1 exploration session. Note that the MI dynamics of beta2 and low-gamma are different over time.
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FIGURE 5 | MUA coupling to beta2 events. (A) Examples of MUAs in mPFC (left), PAR (middle), and HC (right) coupled to beta2 oscillations. (B) Z-scored a mean
phase vector length for MUAs in each region in relation to beta2 events in PFC (top), PAR (middle), and HC (bottom). Colored dots denote MUAs significantly coupled
to beta2. (C) Histogram of the mean spiking phase of the coupled MUAs showed in (B) for PFC (top), PAR (middle), and HC (bottom) beta2 events. Black line
denotes the sine of the beta2.

thought to coordinate neural networks during memory encoding
within and across different areas (Tort et al., 2009; Benchenane
et al., 2011; Colgin, 2015). The close relationship between HC
and mid-prefrontal areas as it relates to memory encoding
and retrieval has been extensively reported (Benchenane et al.,
2010, 2011; Samuel, 2019), and theta plays an important role in
mediating the function of these two areas (Benchenane et al.,
2010, 2011). But until now, no specific oscillatory dynamic
responsive to novelty content was reported playing a role in the
coordination of different brain areas responsible to process the
novelty information.

We and others have identified beta2 as an oscillatory
feature in the HC related to novelty detection in mice (Berke
et al., 2008; França et al., 2014) and in rats (Kitanishi et al.,

2015). The previous and current findings begin to elucidate a
picture of beta2. Its spectral peak is around 20–30 Hz in mice
(Berke et al., 2008; França et al., 2014), and is slightly faster
in rats—25 to 48 Hz. It is elicited by spatial/environmental
novelty but is not associated with novel olfactory stimuli.
Beta2 has been related to the stability of place fields, as well
as impairments in memory consolidation of novel recognition.
This novelty-linked oscillation is transient, reaching its peak
during the first 2 min after the novelty presentation and
decreasing in amplitude thereafter. Beta2 likely originates in the
projections of CA3 towards CA1 and seems to drive the synaptic
delivery of GluR1-containing AMPA receptors and CA3 NMDA
receptors. Finally, despite the prominence of beta2 in the HC
and inter-connected association cortical areas, it is absent in
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FIGURE 6 | Mid-frontal and parietal cortices exhibit similar coupling dynamics as seen in the HC during novelty exploration. (A) Group average mid-frontal PSD of
different time-windows. Note that the first time-window exhibits a power increase in the beta2 range. Left panels show sliding-window CFC concatenated in the four
time-windows of mid-frontal cortex electrodes in the Open field 1 exploration session. Note that in the first time-window there is an increase in the coupling between
delta-beta2, and theta-mid-gamma, slow-gamma, and beta2. (B) MI during the time for different pairs of coupling. The different time-windows are compared with a
chance (0) in the right panels. (C) Similar as exhibited in (A), but for the Object 1 session (F (3,8) = 1.07, p = 0.38). Panel (D) shows the same as in (B), but for the
parietal channels. Note in the first time-window the increase in coupling with beta2 and delta, and theta, but also mid-gamma and slow-gamma with theta. Panel (D)
shows the same as in the right panel of (B), but for PAR. Panel (E) shows the same as in (A,B), but with Object 1 session. Note the very high MI for delta and
beta2 and mid-gamma and theta. Panel (F) shows the same as in (C,D), but with the Object 1 session. *p < 0.05.
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primary sensory andmotor cortices—regions not associated with
novelty detection.

In the present work, we replicate the main features
in the power dynamics reported before (Figures 1A–C,
Supplementary Table 1). Similar to the previous reports, we
have shown that beta2 can be verified at the raw signal of the
HC channels (Figure 4). The results reported in the present
work, following what has been previously described, shows a
delay between the beginning of the novelty exposition and the
peak of beta2 (Figure 1C; Supplementary Table 1). This latency
period may reflect the generation of a mismatch from previous
expectations (Grossberg, 2009) or the time that animals take to
perceive the experience as novel. Another possibility is the delay
being related to the stability of the place field that is followed by
the dynamic of beta2 (Berke et al., 2008). Although, we would
not expect a gender effect on beta2 and novelty, none of the
previous studies—and also not the present work—investigated
beta2 oscillations in females’ brains. As the females outperform
males in recognition tasks (Bettis and Jacobs, 2012), possible
gender differences in beta2 characteristics remains an open
question for future research.

We also replicated the relation between beta2 normalized
power and the mean velocity of the animal (Figure 1E; França
et al., 2014). We found that this correlation is only present in the
novelty exposition sessions, and not in the familiar exploration
sessions (Figure 1E). However, this correlation vanished when
analyzing the Object 1 session individually, and might be a
spurious effect driven by the higher velocity values in the novel
open field (Open field 1) session. In either case, differences in
beta2 power cannot be fully explained by the animal speed,
since beta2 power is stronger in Object 1 in comparison to
Object 2 andOpen field 2 even though those sessions have similar
velocity distribution (Figures 1B,E,F). Further investigation
of the instantaneous power and animal speed might help to
establish a more conclusive relationship between beta2 and
the animal velocity. Unfortunately, this could not be done
in this dataset due to a synchronization problem between
those two signals (which does not affect our other analyses).
Finally, we found no difference in the mean theta power of
high- and low-energy beta2 cycles, suggesting the occurrence
of beta2 might be independent of locomotion (Supplementary
Figure 2).

As previously reported, no correlation between object
exploration time and beta2 normalized power was found
(Figure 1E; França et al., 2014). Because mice have an
innate exploratory behavior when they are exposed to novel
environments, it is expected to see an increase of the
total distance traveled and thus the mean velocity in novel
environments. However, except for one pair of time-windows in
OF1 (2nd and 5th windows, in which the animal should be more
habituated to the novelty), the mean velocity did not statistically
change within the exploration session, while beta2 power varied
along the session (Figure 1) suggesting that the correlation with
velocity might reflect the behavior output expected of novelty
sessions, as opposed to velocity directly driving beta2 activity.

One of the novel results reported here was the cross-frequency
modulation between a slow frequency range within the delta-

range activity and the power of beta2 during novelty detection.
This set of results was surprising, and not anticipated for the
experimental design. As recently shown, delta oscillations have
been related to the respiration rhythm (Lockmann and Tort,
2018; Tort et al., 2018a). However, the only way for checking
if the phase of the slow oscillation reported here is indeed
related to a delta oscillation was implanting electrodes in the
olfactory bulb. Therefore, the results present here were reported
as a delta-range oscillation, and future research is needed to
further investigate the relationship between respiration and
novelty detection.

CFC has been implicated in different brain computations,
from modulating different assemblies of neurons, facilitating
communication between brain regions, and coordinating local
cortical processing required for effective computation and
synaptic modification (Canolty and Knight, 2010; Lisman and
Jensen, 2013; Hyafil et al., 2015). The relation between theta
and gamma, from the involvement of different GABAergic
interneurons, and its function has been extensively reported in
the hippocampal formation (Fernández-Ruiz andHerreras, 2013;
Lasztóczi and Klausberger, 2014; Schomburg et al., 2014; Gereke
et al., 2017), It has been suggested that the coupling of different
gamma frequencies to different theta phases would serve as a
mechanism underlying the communication of CA1 with CA3 or
entorhinal cortex (Colgin et al., 2009; Schomburg et al., 2014).
Although the report of CFC during tasks without specific time
epochs to trigger the analysis are uncommon, previous reports
indicate changes in the dynamics of gamma and its relation
to theta over the experience exposition (Gereke et al., 2017)
and promote encoding of memories for novel object-place
associations (Zheng et al., 2016).

Here, the sliding time-window CFC analysis in the HC,
especially during the first 150 s (window 1), revealed theta-
nested spectral components, consistent with previous reports
(Lopes-dos-Santos et al., 2018). The CFC revealed the peak of
theta/beta2 around 22 Hz (instead of the 25 Hz of beta2 power
increase; Figure 2A), theta/lowG at 35 Hz, and theta/midG
around 70 Hz (Figure 2A) or 54 Hz (Figure 2A). We observed
an increase of theta/midG coupling during the exploration of
novel environment and objects (Figures 2A,B), while theta/lowG
coupling was more prevalent in the ‘‘retrieval’’ at the familiar
session (Supplementary Figure 3A, Supplementary Table 4)
following previously reported theta/midG coupling increases
during learning and retrieval of memory (Tort et al., 2008, 2009;
Lisman and Jensen, 2013; Zheng et al., 2016; Gereke et al., 2017;
Lopes-dos-Santos et al., 2018).

One might be concerned that the beta2 oscillations are simply
a harmonic of theta or a reflection of slow-gamma. However,
several considerations suggest that beta2 is a unique spectral
signature and not a confound of slower non-sinusoidal rhythms.
First, if beta2 were a harmonic oscillation of theta, we would
expect the first harmonic (around 16 Hz) to be present and
stronger than the second (around Beta2), but this is not observed
in our results (Figures 1B–D). Second, it is clear that theta, beta2,
and lowG have distinct temporal patterns and characteristics
(Figure 1C). Third, It would also be expected a stronger
beta2-theta-harmonic during higher theta in any exploration
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sessions (novel or familiar), but that is not the case, with
strong beta2 appearing only in the novel exposition (OF1 and
OBJ1), specifically at the beginning of the session. Fourth,
there is no relation between theta and beta2 instantaneous
power (Supplementary Figure 2) Firth, the spike-field coherence
analyses showed that distinct populations of neurons coupled to
beta2 bursts vs. theta (Figure 5).

Interestingly, beta2 and lowG were strongly modulated by
the delta-range phase (Figures 2A,B). Although this could
initially point to beta2 and lowG as being part of the same
oscillatory regimen, beta2 and lowG have different spectral peaks
(25 Hz vs. 35 Hz), beta2 has a transient power characteristic
and lowG does not (Figure 1C, Supplementary Table 1) and
inspecting the raw signal reveals that these two dynamics
can be observed independently of each other (Figures 4A–C).
Furthermore, beta2 and lowG have different coherence peaks
(Figure 4) and exhibit different temporal coupling dynamics
during novelty exploration (Figure 4D). The usage of the
same nomenclature (lowG to describe beta2 and lowG) may
create difficulties in the characterization of the function behind
these different oscillations, which could also be the reason for
beta2 being reported only twice in the past decades (França
et al., 2014). Instead of only the band of frequency, in which
authors constantly change the frequency range for the same
nomenclature, the oscillations ideally should be classified based
on different characteristics, from the species been recorded
to wave-shape, origin, and physiological function (Cole and
Voytek, 2017; Tort et al., 2018b). We also report a strong
delta-range phase modulating theta (Supplementary Figure 3A,
Supplementary Table 4). The modulation of delta/theta was
not modulated by time-window or novelty, exhibiting high
MI values through all time-windows and sessions. Delta-theta
coupling was previously reported in both rodents and humans
during novelty exposure (Isler et al., 2008; Fujisawa and Buzsáki,
2011; Jirsa and Müller, 2013; Roy et al., 2017). As suggested in
previous works, delta-theta coupling in the HC could be involved
with multiplexed timing mechanisms inherent to the support
processing of information necessary during the acquisition and
retrieval of memories (Fujisawa and Buzsáki, 2011).

The distinction between beta2 and lowG is also important in
the perspective of a complex network involving different brain
regions because beta oscillations are implicated in long-range
synchrony between different areas of the brain, a feature not
shared with gamma oscillations (Kopell et al., 2000). For the first
time, we revealed that during the novelty exploration sessions
the HC has a strong coherence in the beta2 frequency band
(Figures 3A,B), such coherence is not seen when the animal
never faced the novelty content before (Figure 3C). On top of
that, Granger causality revealed that the highest Granger gains
come from HC and PAR cortex towards mPFC in theta, beta2,
and lowG frequency band during OF1 exploration, while in
the object novelty session the Granger gain comes mostly from
HC (Figures 3D,E). Note that during the subsequent familiar
exploration sessions the beta2 coherence in all three areas
remains strong, probably carrying novelty content information
towards the cortices, which may act as hubs for comparing
the familiarity/novelty contents. In contrast to the beta2 power

dynamics, which increase only at the beginning of novelty
sessions, this suggests a more cumulative effect on coherence.We
also notice that in the last HC session, the coherence between the
two cortices decreased while their coherence with the HC was
still high. This might be explained by the strong hippocampal
influence in the generation of beta2, or memory trace retrieval
characteristics previously described between mPFC and HC
(Jin and Maren, 2015). Further investigation is needed to
reveal detailed aspects of these interactions. In summary, the
coherence and Granger results presented here point to the close
communication among the three areas recorded, showing that all
three areas communicate via theta and beta2 during novelty and
familiarity exploration.

We also have shown for the first time that beta2 has
similar transient power dynamics also in the mPFC, increasing
at the beginning of the session and fading towards the
end of the session (Figure 6A). Although PAR did not
exhibit a statistically significant increase in beta2 power, the
beta2 bursts can be verified in the raw signal of mPFC,
and PAR LFP was coherent with other areas (Figure 4).
Furthermore, all three areas involved showed multi-unit
coupling with beta2 bursts events among the three areas
analyzed, including PAR multi-unit activity coupled to the
beta2 bursts of mPFC, PAR, and HC. The couplings of these
three areas had different phase preferences of beta2 events
of each region, supporting the interpretation of independent
bursts in each area (Figure 5). This corroborates the results
of coherence and Granger causality analyses, showing that the
cortical beta2 is not a result of volume conduction from the
HC. Taken together, our results of: (1) raw traces showing
independent bursts in the HC and both cortices; (2) local
referencing; (3) phase-lag-based LFP coherence; (4) Granger
causality; and (5) phase-diverse long-range spike-field coherence
demonstrates for the first time that each region exhibits
independent bursts of beta2, with the HC appearing to be the
main drive.

We also have shown that similar to HC coupling dynamics,
(1) both cortices exhibit strong coupling between theta/midG
and theta/lowG during novelty exploration; and (2) that
both cortices show the same coupling between delta/beta2 as
exhibited in HC in the first time window that beta2 exhibited
higher power (Figures 6B,D–F). These couplings are only
found during the novelty exploration (Figure 6), and not
during familiar exploration (Supplementary Figures 3B,C).
Even though there is a trend in the delta-beta2 coupling to
be higher in the first time-window, this effect is stronger
in the OF1 session (time-window effect in mPFC, PAR, and
HC; see Supplementary Tables 2,3). Thus it is not clear
whether this modulation follows the temporal dynamics of
beta2 power, coherence, or a mix between them. Similar coupling
was previously reported in the mid-prefrontal cortex during
recording in freely behaving rodents (Andino-Pavlovsky et al.,
2017) or during learning and working memory (Canolty and
Knight, 2010; Samuel, 2019). However, for the first time, we
show that the local delta oscillations modulate the beta2, not
only in the HC but also in the PAR and mPFC during
novelty exploration.
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Importantly, we found a dissociation between the time
courses of beta2 coherence among the three areas and
beta2 power within-area: whereas local beta2 power was transient
and primarily observed early in the novelty sessions, inter-
regional coherence was more sustained and remained robust
through the sessions. This unveils the existence of multiple
processes influenced by beta2 oscillations: one in a shorter
timescale, revealed by the transient presence of hippocampal
beta2 bursts during novelty exposure; and another, in a longer
timescale, is characterized by the beta2 synchrony across the
HC, mPFC, and PAR that in our data extends through the
entire session of novelty exposure and even further into familiar
sessions. Those two mechanisms might be associated with
different steps of memory encoding. For example, Grossberg
(2009) suggests that initial beta2 bursts could be a mechanism
for the fast stabilization of the memory traces (during memory
acquisition), explaining the rapid emergence of place cells in
the HC (Berke et al., 2008; Grossberg, 2009). It has also been
shown that inhibition of protein synthesis in the HC impairs
reconsolidation of memory traces only when the memory
reactivation involves novelty (Rossato et al., 2007; Radiske
et al., 2017)—that is, in the presence of beta2 bursts. Both
of those processes, memory acquisition and reconsolidation,
involve first setting the memory into an active state, which
requires further stabilization towards an inactive memory
state (Nader, 2015). Thus, there might be a link between
the acquisition/activation of memory traces and the initial
beta2 bursts. On the other hand, beta2 coherence between
HC and the two cortices stays higher for a longer time
after novelty exposure, which could indicate a role in the
stabilization of the memory traces and the LTP induction
that happens in the HC (Clarke et al., 2010). Despite this
being an interesting hypothesis, new experiments are needed
to specifically investigate the direct relation of beta2 to the
different memory trace processes. Finally, in between these
two temporal dynamics of beta2 there is the modulation of
beta2 amplitude by delta-range oscillations, which seems to
follow a short timescale in the cortex only during novelty, similar
to the transient beta2 bursts, and a longer timescale in the
HC, even though the modulation tends to be higher in the
first time-window.

Together, these results highlight and further support the
relation of beta2 oscillations and novelty extending it to a

larger hippocampal-cortical circuit and suggesting beta2 as
a mechanism for detecting and communicating information
among the areas involved in behavioral adaptation to novelty.
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Modular organization is an emergent property of brain networks, responsible for

shaping communication processes and underpinning brain functioning. Moreover, brain

networks are intrinsically multilayer since their attributes can vary across time, subjects,

frequency, or other domains. Identifying the modular structure in multilayer brain

networks represents a gateway toward a deeper understanding of neural processes

underlying cognition. Electroencephalographic (EEG) signals, thanks to their high

temporal resolution, can give rise to multilayer networks able to follow the dynamics

of brain activity. Despite this potential, the community organization has not yet been

thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state

of the art, there is still no agreement about which algorithm is the most suitable to detect

communities in multilayer brain networks, and a way to test and compare them all under a

variety of conditions is lacking. In this work, we perform a comprehensive analysis of three

algorithms at the state of the art for multilayer community detection (namely, genLouvain,

DynMoga, and FacetNet) as compared with an approach based on the application of a

single-layer clustering algorithm to each slice of the multilayer network. We test their

ability to identify both steady and dynamic modular structures. We statistically evaluate

their performances by means of ad hoc benchmark graphs characterized by properties

covering a broad range of conditions in terms of graph density, number of clusters, noise

level, and number of layers. The results of this simulation study aim to provide guidelines

about the choice of the more appropriate algorithm according to the different properties

of the brain network under examination. Finally, as a proof of concept, we show an

application of the algorithms to real functional brain networks derived from EEG signals

collected at rest with closed and open eyes. The test on real data provided results in

agreement with the conclusions of the simulation study and confirmed the feasibility of

multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.

Keywords: community detection, network neuroscience, modularity, electroencephalography, statistical analysis
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INTRODUCTION

The convergence of networks science to neuroscience has opened
the way to the currently well-established network neuroscience
framework (Bassett and Sporns, 2017), an emerging field that
aims to investigate brain organizational principles by means of
networks science tools. This shift was driven by two aspects. On
one side, the development of tools to investigate complex systems
has exploded, as more and more complex data from different
fields (i.e., social, transportation, and biological sciences) become
available (Newman, 2003; Boccaletti et al., 2006). On the other
side, the advancements in neuroimaging techniques led to
consequent improvements in the field of brain connectivity
(Jirsa and McIntosh, 2007), which allows modeling of brain
structure and function as a result of complex networks of
brain areas (nodes) anatomically or functionally interconnected
(Sporns, 2011).

An emergent property of networks representing real complex
systems is the community structure (Porter et al., 2009; Newman,
2012). A specific type of communities is the modules, groups
of nodes densely connected which can be related to specific
functions of the system and widely observed in brain networks
(Meunier et al., 2010; Sporns and Betzel, 2016; Betzel, 2021).
Previous studies pointed out how a modular structure represents
a mean to reveal non-trivial relationships between topological
and functional features of the complex networks (Guimerà and
Amaral, 2005). This property of the brain network is located
halfway between global and local scales, at a mesoscale level,
which is informative of the network’s organization (Betzel and
Bassett, 2017). In fact, while at local and global scales the focus
is on the fundamental units of the network (nodes) and on
the network as a whole, at this intermediate scale, we can
observe how the network’s elements organize themselves, e.g.,
into clusters, to form efficient systems. In this sense, communities
underpin the brain network’s organization: their composition
shapes the communication patterns of the system and promotes
well-balanced and efficient mechanisms of integration and
segregation between brain sub-systems (Betzel et al., 2013;
Sporns, 2013; Wig, 2017).

While most of the studies on community detection in
brain graphs deal with single-layer networks, especially in
electroencephalographic (EEG) applications (Chavez et al., 2010;
Ahmadlou and Adeli, 2011; Zippo et al., 2018), brain networks
are intrinsically multilayer (Hutchison et al., 2013; Muldoon and
Bassett, 2016; De Domenico, 2017). There is no single neuronal
connectivity pattern able to fully represent brain functioning:
rather, brain interactions vary across multiple domains. They
evolve in time or according to the subject’s conditions, the
tasks, or the frequency span (in M/EEG acquisitions). Thus, a
multilayer framework better accounts for the complexity and
diversity of cerebral interactions, resulting suitable to analyze
brain connectivity without either throwing away or combining
different information.

A multilayer network is a sequence of linked single-layer
networks, each one encoding specific attributes of the system.
It allows the integration of multiple channels of connectivity to
provide a more natural description of the brain system, as the

nodes (brain areas) can show different sets of interactions at each
layer. A particularly interesting case for EEG-based analysis is
represented by time-varying multilayer networks. Being able to
track the brain organization during a task or a cognitive state is of
interest because changes, as well as steady states, of the network’s
structure could be physiologically meaningful. For this reason, it
is worthwhile to investigate modular structure in brain networks,
especially those reconstructed from EEG signal, which benefit
from an excellent temporal resolution. Under this perspective,
multilayer analysis of EEG-derived networks can be successfully
used to gain insights in applications that require an accurate
temporal resolution, like epilepsy, vision, or cognition (Zahra
et al., 2017).

Recovering communities in a multilayer network is usually
done algorithmically because of the real networks’ usually big
dimension and complexity. A range of algorithms have been
proposed, spanning along three main approaches:

(i) The first one trivially consists of applying a single-
layer clustering algorithm to each slice of the multilayer
network. Previous comparative analysis (Lancichinetti and
Fortunato, 2009) has highlighted the good performances
of those based on modularity optimization (Girvan and
Newman, 2002; Newman and Girvan, 2004). In particular,
the one introduced in Leicht and Newman (2008), which,
from now on, we will call ModStat (stationary modularity),
showed good performances with directed EEG brain
networks (Puxeddu et al., 2017).

(ii) The second approach is based on the optimization of
a multilayer formulation of modularity (Mucha et al.,
2010). The implementation of this approach is provided
in (Jeub et al., 2019) and is known as genLouvain.
This algorithm represents an extension of the classical
modularity maximization (Blondel et al., 2008), to which
it adds a term that considers the coupling of the nodes
across layers. This term is proportional to a resolution
parameter, ω, which determines the stability of the network
partitioning across the slices.

(iii) The third approach consists of the optimization of a multi-
objective function (Chakrabarti et al., 2006), which aims
to maximize both the accuracy of the partitions at each
layer and the smoothness across all the layers. Two widely
used algorithms reflecting this last approach are DynMoga
(Folino and Pizzuti, 2014) and FacetNet (Lin et al., 2008,
2009). The former is a genetic algorithm that optimizes
modularity and mutual information of consecutive layers.
The latter discovers communities iteratively, taking into
account both the observed data and a probabilistic model
given by all the single community structures.

To date, an agreement on which is the most advantageous
approach is missing. In the recent years, some efforts have been
made on investigating their behavior on multilayer networks.
A conventionally used approach, even in single-layer network
analysis, consists of testing the algorithms on a real network with
a known community structure (Lancichinetti and Fortunato,
2009). In Silva et al. (2016), for example, the authors compared
the behavior of algorithms based on evolutionary clustering on

Frontiers in Systems Neuroscience | www.frontiersin.org 2 March 2021 | Volume 15 | Article 624183229

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Puxeddu et al. Multilayer Community Detection in EEG

a high school network, the MIT Social Evolution dataset and
the Brazilian Congress network, in which the ground truth is
respectively represented by classes, dormitory sectors (Dong
et al., 2011), and political alignment of the congressmen based
on their party. However, this approach might lack generalization,
and the obtained results would be limited to that specific network
properties. Moreover, a brain network in which the community
structure is known a priori does not exist. Hence, the lack
of ground truth for brain communities, together with their
ubiquity, requires the implementation of benchmark networks
with a known community structure and realistic features to
test different community detection algorithms. In Silva et al.
(2016), the authors also tested the algorithms on a synthetic
network. Nevertheless, it is a simple network with few nodes and
three clusters that can hardly be encountered in neuroscience.
In Schmidt et al. (2018), the authors tested two multilayer
clustering approaches on an artificial network with more realistic
properties. However, the test made on a single network, as
previously said, might lack generalization of the results. Other
already existing tools (Lin et al., 2008; Kim and Han, 2009)
are a multilayer version of the Girvan and Newman model
(Girvan and Newman, 2002) and do not allow a deep analysis
of the algorithms, as they constrain most of the parameters
characterizing the network (e.g., number of nodes, number of
clusters, etc.). In Granell et al. (2015), the authors propose a tool
in which a potential user can set some parameters of interest,
such as the number of nodes, number of clusters, and ratio
between intra-cluster and inter-cluster density. However, such
tool does not address some aspects that are pivotal for EEG-based
networks, like the noise level.

The principal aim of this work is to identify the most suitable
approach to recover communities in EEG-based multilayer brain
networks. For this purpose, we aim to perform a comparative
analysis whose results will furnish practical guidelines about the
use of multilayer community detection algorithms in the context
of EEG-derived brain networks. Thus, we introduce a flexible
toolbox able to generate artificial networks with a modular
structure, with manifold features. This tool is a multilayer
extension of the single-layer generator introduced in Puxeddu
et al. (2017). The number of nodes, graph density, number
of clusters, noise level in the community structure (modeled
as a random permutation of a certain number of links), and
percentage of nodes moving from a module to another one
at a given layer can be set by the user. With respect to the
previously described tools, we can also generate networks with
different levels of noise to take into account the false positives and
false negatives resulting from any brain functional connectivity
estimation. In the case of EEG signals, the noise might depend
on different factors, such as physiological/instrumental artifacts
(Fisch, 1999; Riitta Hari and Aina Puce, 2017) and fluctuations
in the EEG activity, or it may arise as a result of the connectivity
estimation methods (Astolfi et al., 2007; He et al., 2019).

Using the proposed benchmark graphs, we performed a
comparative analysis of the different multilayer clustering
algorithms, testing them on graphs generated accounting for
a wide range of network features systematically varied in the
range typical of EEG-based brain networks. Furthermore, here

for the first time we considered two scenarios: one in which
the community structure is stationary across the layers and
one in which it changes dynamically. Both cases are of great
interest in real applications. In the first case, we aim to get
a single partition out of a multilayer network with persistent
organizational features. This is the case of layers associated to
time points of stationary phenomena or to different subjects of
the same category (e.g., healthy subjects or patients) for which
we are interested in using the multilayer approach to extract
enduring features. In the second case, we aim to track mesoscale
organization in multilayer networks underlying non-stationary
phenomena or different clinical cohorts. In both cases (stationary
and evolving community structure), we statistically evaluated the
algorithms’ performances under different conditions by means of
an analysis of variance (ANOVA).

Finally, as a proof of concept, we applied the four approaches
to a brain functional multilayer network estimated from EEG
signals acquired in a healthy subject during resting state at
closed eyes and open eyes. We report the differences between
the community structure subtending the two phases obtained
by using the investigated algorithms, with the aim to test their
accordance with the guidelines provided by the simulation
studies. This application to real data has the purpose of validating
the results of the simulation studies in a well-known and
studied condition in order to check the applicability of multilayer
community detection tools to EEG-based brain networks.

METHODS

Benchmark Network Generation
The toolbox that we developed generates pseudo-random
multilayer networks with a defined community structure and
consists of an algorithm implemented in Matlab environment
(release 2017b). A preliminary version of the toolbox was
reported in Puxeddu et al. (2019). This toolbox allows
a potential user to create networks with either stationary
or evolving community structure with features spanning a
variety of conditions experimentally observable in EEG-based
brain networks. In the following paragraphs, we describe the
implementation of the toolbox for each of the above-mentioned
two cases.

Networks With Stationary Community Structure
The network generated by the toolbox, in this case, presents a
stationary modular structure, in which the composition of the
clusters across the layers does not change. Here the variability
between layers is only due to the noise level, which might make
some links appear or disappear. Figure 1A shows an example
of two layers of a multilayer network generated in this fashion.
As mentioned before, the main advantage of this toolbox is its
flexibility. In fact, the users can set several features which will
characterize the network: number of nodes (N), graph density
(D), number of clusters (CN), the ratio between intra-cluster and
inter-cluster density (dr), the noise level (no), and the number
of layers (nL). Once the set of desired features is selected, the
algorithm proceeds by two main steps:
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FIGURE 1 | Examples of synthetic multilayer networks generated through the toolbox. (A) Two snapshots (t1 and t2 ) of a multilayer network with stationary community

structure. (B) Two snapshots (t1 and t2 ) of a multilayer network with evolving community structure. In the second t2, the nodes are re-ordered to represent clusters on

the main diagonal. (C) Sankey diagram of the network generated in (B).

(a) Creation of a single-layer network (binary and directed)
exploiting the algorithm described in Puxeddu et al. (2017)—
we will use this network as a basis for each layer.

(b) Addition of the percentage of noise (i.e., percentage of links
randomly shifted) set as input to each layer.

With these two steps, we obtain a multilayer network in which
each slice has the same imposed community structure obtained
in (a), and the inter-layer variability is only due to the presence
of noise applied to each network (b). Step (a), in turn, consists of
four stages:

(a.i) Setting of the size of the communities by randomly
choosing CN integers, with the only constraint that their sum
is equal to N.

(a.ii) Wiring of the network by randomly filling an N
× N empty matrix observing the imposed specifics
(about density and ratio between intra-cluster and
inter-cluster density).

(a.iii) Checking the absence of isolated nodes inside the
clusters, and if present, the algorithm rewires the intra-
cluster connections.

(a.iv) Ensuring that the internal degree of each node is
higher than the external degree (with respect to its cluster)
by rewiring.

Networks With Evolving Community Structure
In this second case, we want our toolbox to simulate a
multilayer network with a community structure that changes
node composition across the layers. In this case, the algorithm
in the toolbox also starts generating a first layer (with the same
stages described above), but then it generates the following slice
so that a certain percentage of nodes (pn, set as input by the user)
changes its allegiances to modules. The algorithm acts only on
the connections related to the nodes that change membership,
maintaining the rest of the networks as it was originated at the
beginning. Similarly, it can also increase or decrease the number
of clusters, CN, moving some nodes into a new community
or moving all the nodes belonging to one community in the
remaining ones. In this way, the user can obtain controlled
variations of different entities of the community structure
according to the selected percentage of nodes that must change
cluster (pn) and to the possible creation or disappearance of
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communities. Figure 1B reports an example of two layers of
a multilayer network with changing community structure, in
which pn has been set to 30% and the number of clusters increases
with the appearance of a new one (in purple in the figure). We
represent this dynamic community structure through the Sankey
diagram in Figure 1C.

Simulation Studies for the Algorithm

Comparison
Stationary Community Structure
We made a simulation study testing the algorithms on
benchmark networks with a stationary community structure
generated as described in “section Networks With Stationary
Community Structure.” We exploited the tool by systematically
varying the network features represented by the input
parameters. In particular, we explored a range of values for
the parameters according to those experimentally met in
EEG-based functional brain networks:

• N = 60
We selected this value to mimic the 61-channel configuration
typically used in most EEG studies.

• D= [0.10, 0.30]
We simulated sparse networks with two different density levels
in a range usually met with real data.

• CN= [2, 4, 6]
We simulated different parsing of the network to have coarser
as well as finer community structures.

• dr= 2
We generated networks in which the intra-cluster density
is twice with respect to the inter-cluster one. We do this
in order to start from a very convenient condition for
the algorithms that we will gradually deteriorate by adding
different noise percentages.

• no= [10, 25, 50%]
These noise percentages were chosen to reproduce networks
with different levels of module clearness.

• nL= [2, 10, 50, 100]
We consider networks with different numbers of layers to
see if this factor influences the algorithms’ performance.
Indeed we expect multilayer algorithms exploiting a higher
dimensionality to mitigate the noise effect.

Then, we run the four algorithms (genLouvain, ModStat,
DynMoga, and FacetNet). To evaluate the effect of the factors
algorithm, number of clusters, noise level, and number of layers,
we performed a repeated-measure ANOVA using three figures of
merit as dependent variables in order to capture different aspects
of the performance:

I. Accuracy: To evaluate the algorithms’ accuracy, we used the
normalized mutual information (NMI) (Danon et al., 2005).
This is an index borrowed from the field of information
theory and used to estimate the similarity between two
objects. It can range between 0 (completely different objects)
and 1 (identical objects). It has been already employed in
this context to calculate the similarity between two given
partitions that, in our case, are the ones obtained from the

clustering algorithms and the known community structure.
We computed the NMI between these two partitions in each
layer, and thenwe used the average of all these values as index
of accuracy. We will refer to this index as NMIacc.

II. Stability: In networks with stationary community structure,
it is also important to assess how much the clustering
algorithms provide for a stable partition across all the layers.
Thus, we computed the NMI between each layer and the
following one, and we computed the average of these values
to obtain an index of stability.We named this index NMIstab.

III. Global performance. We finally wanted an index
summarizing the global performances of the algorithms,
simultaneously considering accuracy and stability. We
computed this index as the Euclidean distance between
two points, A and B, in the xy plane where the x and y
axes represent, respectively, the values of accuracy and
stability. A is the point [x(acc), y(stab)] associated to the actual
values of accuracy and stability assumed by the algorithm,
and B is the point [1, 1] that represents the optimum
(both stability and accuracy reach their highest score,
which is 1). In this way, the Euclidean distance between
A and B, which we used as index of global performance,
represents the distance of the algorithms’ performance from
the optimal one. An example of this index is shown in
Figure 2B. We will refer to this index as GSind, and it varies
between 0 (optimal performances, A = B) and

√
2 (worst

performances, NMIacc =NMIstab = 0, A is the point [0, 0] in
the xy plane).

Since the algorithms genLouvain and FacetNet depend on
the inter-layer resolution parameters ω and λ, we made two
preliminary analyses exploring the behavior of the algorithms
under different values of these parameters in order to select
the best possible values of ω and λ for the stationary condition
to be used in the comparative analysis. For this purpose, we
performed two more ANOVA tests for repeated measures, one
for genLouvain and one for FacetNet, considering values of
ω and λ in the range [0.1, 10] and [0.1, 1], respectively. The
first study was aimed at evaluating the effect of the factors
ω (levels: 0.1, 0.2, 0.5, 1, 2, 5, 10), cluster number, noise
level, and number of layers on the performance of genLouvain.
Similarly, the second one was meant to evaluate the effect
of λ (levels: 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, 1), cluster number,
noise level, and number of layers on the performance of
FacetNet. The results of these two analyses are detailed in the
Supplementary Material, sections 1 and 2, and have been used
in the main comparative analysis to run the two algorithms
with the appropriate choice of ω and λ according to the
network’s features.

Evolving Community Structure
To generate benchmark networks with dynamic community
structure, we exploited the toolbox in the version introduced
in “section Networks With Evolving Community Structure.”
We generated the networks by setting the input parameters
to the same values reported in “section Stationary Community
Structure,” but here we also included the parameter pn
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FIGURE 2 | Example of dynamic and global indices computation. (A) Dynamic index. Top figure: normalized mutual information computed between the output of the

algorithms genLouvain and FacetNet and the actual community structure of a generated network with 100 layers. Lower left figure: normalized mutual information

from the snapshot in which community structure changes and threshold samples (from which the algorithms go to regime) identified through the dynamic index.

Lower right figure: sign of the first derivative smoothed and threshold samples. (B) The global index is indicated with the dark blue continuous line. A is the point

corresponding to the actual values of NMIacc and NMIstab/Dynind, while B is the point corresponding to the maximum values reachable by the indices.

(percentage of nodes changing allegiance to modules) with the
following values, chosen to simulate progressive variations of the
community composition: 10, 30, 50, 70, and 100%.

The resulting networks present a variation only between the
first and the second half of the layers, while within the two
halves the community structure is stationary, to simulate the
transition between two different tasks or two classes of subjects
(e.g., healthy subjects vs. patients). We run the four algorithms
again, and we performed an ANOVA for repeated measures
using, as dependent variables, three different indices to capture
different aspects of the performances:

I. Accuracy: To evaluate the algorithms’ accuracy, we used
the normalized mutual information (NMIacc) defined as in
“section Stationary Community Structure.”

II. Dynamics: In networks with evolving community structure,
it is also important to assess the rapidity with which
the algorithms recognize the variation of the modules’
composition. Thus, we defined and implemented an index
that points out how much it takes for the algorithms,
in terms of number of layers, to exactly detect the new
structure. The index mathematically identifies the layer
(lthr) from which the NMIacc (Figure 2A, upper panel)—
which decreases in proximity of nL/2, where the community
structure changes—becomes stable and enters a sort of
plateau after the transition (Figure 2A, lower left panel). The
idea is that the incremental ratio (IR) of the NMIacc curve
from nL/2 to nL will be positive until the algorithm goes to
regime and null from that point on. Thus, we computed the
IR, we smoothed it to avoid spurious peaks due to the noise,

and we considered the sign to capture when it becomes zero
(Figure 2A, lower right panel). We find the threshold layer
through the formula:

lthr ∈

[
nL

2
+ 1, nL

]

: =
argmax
lthr






∑lthr
l= nL

2 +1
sign(IRsmoothed)

∑nL
l=lthr+1 sign(IRsmoothed)




(1)

It scans all the layers from nL/2 +1 to nL, and for each
l it computes the ratio between the sum of this function
sign(IRsmoothed) before and after l. Then, it takes as threshold
the lthr to which the maximum of this ratio corresponds.
Ideally, at lthr, the numerator is positive (i.e., before lthr, the
trend of NMIacc is ascendant), and the denominator is equal
to 0 (i.e., after lthr, the trend of NMIacc is stable), so that
the argument is infinite—the maximum possible. Once lthr
is obtained, we normalized it for nL/2 to obtain an index
that varies in the range [0, 1], independently of the values
of nL considered. We will refer to this index as to Dynind.
The lower it is, the fastest are the algorithms in recovering
the structure modification.

III. Global performance: In analogy to the previous analysis,
we computed an index that summarizes the global
performances of the algorithms, considering at the same
time accuracy and dynamics. It is computed as explained in
“section Stationary Community Structure,” but here, instead
of NMIstab, we consider the complement to unity of Dynind.
We will refer to this index as GDind.
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TABLE 1 | Results of the ANOVA test executed for the comparative analysis on networks with stationary community structure and graph density equal to 0.3.

NMIacc NMIstab GSind

dof(b) dof(w) F p dof(b) dof(w) F p dof(b) dof(w) F p

Alg 3 891 5393.2 <10−4 2 594 13096 <10−4 3 891 10549 <10−4

No 2 594 9110.4 <10−4 2 594 7458.2 <10−4 2 594 9392.2 <10−4

nL 3 891 1481 <10−4 3 891 129.87 <10−4 3 891 1427.1 <10−4

CN 2 297 473.31 <10−4 2 297 163.81 <10−4 2 297 420.19 <10−4

Alg*no 6 1782 844.84 <10−4 4 1188 2544.1 <10−4 6 1782 1752.3 <10−4

Alg*nL 9 2673 476.30 <10−4 6 1782 54.923 <10−4 9 2673 392.78 <10−4

Alg*CN 6 891 75.997 <10−4 4 594 580.84 <10−4 6 891 28.266 <10−4

Alg*no*nL 18 5346 163.8 <10−4 12 3564 5.6138 <10−4 18 5346 143.14 <10−4

Alg*no*CN 12 1782 115.89 <10−4 8 1188 174.06 <10−4 12 1782 170.10 <10−4

Alg*nL*CN 18 2673 56.64 <10−4 12 1782 14.881 <10−4 18 2673 51.239 <10−4

Alg*no*nL*CN 36 5346 36.189 <10−4 24 3564 3.1725 <10−4 36 5346 29.976 <10−4

For each considered index (dependent variables of the test) we report the degrees of freedom (dof), F, and p-values relative to single factors and the interactions among them.

In the case of evolving communities also, we performed a
preliminary analysis to determine the optimal setting of the
parameters ω and λ for the algorithms genLouvain and FacetNet
to be used in the comparative analysis. The results of this test can
be found in the Supplementary Material, sections 1 and 2. It is
worth to note that the values of ω and λ selected for the evolving
community structure are different from those resulting from the
study on stationary community structure.

Multilayer Community Detection on Rest

CE/OE EEG Brain Networks
For the purpose of validating the results of the simulation studies,
we tested the algorithms in real EEG brain networks with features
analogous to those investigated in the simulations, relative to a
simple and controlled condition.

EEG data have been recorded and amplified by a commercial
EEG system (BrainAmp, Brainproducts GmbH, Germany) using
61 electrodes (according to the extended 10–20 International
System), with reference attached to the forehead and sampling
frequency of 250Hz, in a healthy subject (female, 33 years old)
during rest with closed eyes (CE) and open eyes (OE). The
subject gave informed consent prior to her participation, and
the experiment was approved by the local ethics committee
before the data acquisition started. Data were acquired at
the Neuroelectrical Imaging and BCI Laboratory at IRCCS
Fondazione Santa Lucia in Rome. The session was composed of
26 trials of 200 s each. In the first 100 s, the subject was asked
to keep her eyes closed (task 1—CE), while in the last 100 s
she was asked to keep her eyes open (task 2—OE). We pre-
processed the data through band-pass filtering (1–45Hz) and
segmentation in 2-s epochs. The data were visually inspected
to exclude the presence of artifacts. For each segment, we
estimated brain functional connectivity through partial directed
coherence (Baccalá and Sameshima, 2001; Astolfi et al., 2006),
a spectral estimator based on Granger causality which provides
an estimation of the network for each frequency point. We then
mediated the estimations in four EEG frequency bands, defined

according to individual alpha frequency (IAF) (Klimesch, 1999)
(IAF = 10Hz), focusing in the alpha range (IAF-2, IAF+2),
as of interest for resting state (Karbowski, 1990; Niedermeyer,
1997; Compston, 2010). We assessed the significance of the
connections through the asymptotic statistics (Takahashi et al.,
2007; Toppi et al., 2016).

For each of the two tasks, we obtained 50 {200 s/[2 s (epoch)
∗ 2 (tasks)]} binary networks of dimension 61 × 61. Then,
we selected nL/2 layers from task 1 (CE) and nL/2 from
task 2 (OE) and concatenated them so as to obtain four
multilayer networks under different conditions of nL, like in the
simulations. The obtained networks were sized 61ch∗61ch∗(2,
10, 50, 100) nL. Finally, we run all the algorithms 100 times
on the four multilayer networks to take into account their
stochastic nature, which implies that theymight provide (slightly)
different partitions even if applied to the same network. In
the simulation studies, this issue was addressed as we perform
an ANOVA test for repeated measures, which implies that for
each combination of the parameters we compute the community
detection several times.

RESULTS

Simulation Studies for Algorithm

Comparison
Algorithm Comparison in Networks With Stationary

Community Structure
In Table 1, we reported the results of the ANOVA comparative
analysis made by exploiting simulated multilayer networks with
stationary community structure and graph density equal to 0.3.
Analogous results have been obtained, setting the graph density
to the lower level, D = 0.1, and this can be found in the
Supplementary Material, section 4.

The related plot of means are reported in Figure 3, where the
performances of the algorithms in terms of accuracy (NMIacc),
stability (NMIstab), and both (GSind) are shown as the number
of clusters (CN), the level of noise (n), and the number of
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layers (nL) changed. For the sake of clarity, in each panel of
Figure 3, we report the performances of the algorithms with
respect to one factor, irrespective of the other two. In the
Supplementary Material, section 3, the same results are reported
extensively, and we can observe algorithm performances for each
combination of the three ANOVA factors.

As for the accuracy (Figure 3, first row), all the algorithms
have performance that is inversely proportional to the level
of noise and directly proportional to the number of clusters
simulated in the network. However, in noisy networks (no
= 50%), genLouvain and FacetNet show an improvement of
accuracy as the number of layers increases, above all if CN
>2. In particular, genLouvain reaches almost the same level
of accuracy in noisy and non-noisy networks, if nL ≥ 10 (see
Supplementary Figure 9). On the contrary, as expected, the
accuracy of ModStat is not affected by the number of layers, as
it considers each slice of the network independently. Compared
with the other algorithms, genLouvain displays a high level of
accuracy in most combinations of noise, cluster number, and
number of layers. The only exceptions are the case of low cluster
number and low noise [CN= 2, no= 10%, nL= (2, 10, 50, 100)]
in whichModStat has higher NMIacc values for every value of nL.

Regarding the analysis of stability (Figure 3, second row),
namely, the algorithms’ capability to recover a stable partition
across the layers of the network, the algorithm with the highest
performance is genLouvain for each combination of the ANOVA
factors. In fact, it always reaches the optimal value of NMIstab
despite the level of noise, number of clusters, and number of
layers. For this reason, in this case, we excluded it from the
ANOVA, as its NMIstab distribution is not normal. On the
contrary, the other algorithms are more sensitive to the ANOVA
factors, especially to the level of noise and the number of clusters.
The algorithmModStat shows high values of NMIstab (close to 1)
in networks with low noise (no = 10%), while its performances
decrease with higher noise levels. Overall, FacetNet displays high
performances, with NMIstab >0.8 for each combination of the
factors, while for DynMoga, the results show NMIstab < 0.6 in
every condition.

The evaluation of the global performances summarizes what
is observed so far (Figure 3, third row).

In general, the results of ANOVA together with Tukey’s
post-hoc tests show all the algorithms having significantly
higher performances in networks with low level of noise and
high number of clusters. Overall, the figures show genLouvain
outperforming the other algorithms.

Algorithm Comparison in Networks With Evolving

Community Structure
In Table 2, we report the results of the comparative analysis
made to test the algorithms onmultilayer networks with evolving
community structure, with density equal to 0.3 and cluster
numbers unchanged. We observed analogous results in networks
with lower density, D = 0.1, and increasing/decreasing cluster
numbers, and we report them in the Supplementary Material,
sections 4 and 5.

In Figure 4, we represent the performances of the algorithms
in terms of accuracy (NMIacc), dynamics (Dynind), and both

(GDind) as a function of the number of clusters (CN), the level
of noise (no), the number of layers (nL), and the percentage of
nodes changing modules (p) change. As in the previous study,
to have more clear and informative representation of the results,
in each panel of Figure 4, we report the performances of the
algorithms with respect to one factor, irrespective of the other
three. In the Supplementary Material, section 3, we reported the
extensive results.

Regarding the accuracy, we show in the first row of Figure 4
the behavior of the algorithms with different levels of noise and
number of layers. With a low level of noise, all the algorithms
show a high accuracy in terms of NMIacc, regardless of the
number of layers, while as the noise increases, there is a loss of
accuracy. However, if nL ≥ 10, both genLouvain and FacetNet
have a significant improvement of accuracy. All the algorithms
are more accurate when applied on networks with CN ≥ 2,
above all if nL ≥ 10. The percentage of nodes that change
allegiance to modules does not substantially affect the accuracy
of the algorithms. However, FacetNet and DynMoga show a
little increase of performances when pn increases (see also
Supplementary Figure 11), meaning that they can easily detect
big changes. Overall, genLouvain has the highest NMIacc values
for each combination of the factors under analysis. The only
exception is when CN = 2 and nL = 2, in which ModStat shows
higher NMIacc values.

As for the evaluation of the algorithm’s dynamic (Figure 4,
second row), we only considered the performances of
genLouvain, DynMoga, and FacetNet. Considering also
ModStat would not be meaningful, as it addresses each layer
independently. Moreover, we considered only values of nL
≥ 2. GenLouvain displays the lowest Dynind values for each
combination of the factors under analysis, no, nL, CN, and
p, meaning that it is the fastest in identifying changes of the
community structure. Overall, the rapidity of the algorithms
is directly proportional to the number of layers and the
number of clusters while being inversely proportional to the
noise level.

Finally, the global index (Figure 4, third row) confirms
what was shown with the previous indices. It suggests that
the factors that have the greatest influence on the algorithms’
performances are the level of noise and the number of layers:
an increase of their value provokes, respectively, a breakdown
and a boost of the performances. The number of clusters
is also proportional to the algorithms’ performances, while
the percentage of nodes that change a community does not
substantially affect their behavior. The most sensitive to the
network’s features is genLouvain, which, in the comparative
analysis, is the outperforming one, while DynMoga is globally the
less sensitive.

The results of ANOVA together with Tukey’s post-hoc
tests show all the algorithms having significantly higher
performances in networks with a low level of noise and a
high number of clusters. In reverse, the factor percentage
of nodes moved (pn) does not dramatically affect the global
performances of the algorithms under analysis, meaning that
the algorithms can detect small as well as big changes in
community structure.
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FIGURE 3 | Plot of means and standard deviations of the three indices used to execute the comparative analysis on networks with stationary community structure.

Each row of the figure corresponds to one index (NMIacc, NMIstab, GSind ). For each index we report three panels where we show the algorithms’ performances with

respect to the Clusters Number (first column), Noise level (second column), and number of network’s layer (third column). Algorithms are identified through a color

code (blue-genLouvain, green-ModStat, red-DynMoga, orange-FacetNet). In each panel we can see how the performance of the algorithms varies according the

values the ANOVA factors and which algorithm reaches highest performances, in terms of accuracy (NMIacc), stability (NMIstab) or both (GSind ). The optimal

performances are indicated though a red dotted line.
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TABLE 2 | Results of the ANOVA test executed for the comparative analysis on networks with evolving community structure and graph density equal to 0.3.

NMIacc Dynind GDind

dof(b) dof(w) F p dof(b) dof(w) F p dof(b) dof(w) F p

Alg 3 2241 122200 <10−4 2 1494 2932.5 <10−4 2 1494 36095 <10−4

No 2 1494 255900 <10−4 2 1494 255.81 <10−4 2 1494 23219 <10−4

nL 3 2241 36813 <10−4 2 1494 2577.4 <10−4 2 1494 6071.1 <10−4

p 4 2988 37.25 <10−4 4 2988 7.81 <10−4 4 2988 16.17 <10−4

CN 2 747 14392 <10−4 2 747 477.02 <10−4 2 747 11828 <10−4

Alg*no 6 4482 18575 <10−4 4 2988 162.4 <10−4 4 2988 347.9 <10−4

Alg*nL 9 6723 12252 <10−4 4 2988 101.44 <10−4 4 2988 946.99 <10−4

Alg*p 12 8964 289.11 <10−4 8 5976 4.32 <10−4 8 5976 6.81 <10−4

Alg*CN 6 2241 425.4 <10−4 4 1494 341.71 <10−4 4 1494 475.52 <10−4

Alg*no*nL 18 13446 4514.8 <10−4 8 5976 7.11 <10−4 8 5976 91.28 <10−4

Alg*no*p 24 17928 46.64 <10−4 16 11952 2.31 0.002 16 11952 5.43 <10−4

Alg*no*CN 12 4482 3301.2 <10−4 8 2988 14.24 <10−4 8 2988 224.63 <10−4

Alg*nL*p 36 26892 33.27 <10−4 16 11952 3.25 <10−4 16 11952 1.19 0.262

Alg*nL*CN 18 6723 856.5 <10−4 8 2988 17.01 <10−4 8 2988 5.56 <10−4

Alg*p*CN 24 8964 308.26 <10−4 16 5976 6.56 <10−4 16 5976 13.88 <10−4

Alg*no*nL*CN*p 144 53784 44.58 <10−4 64 23904 1.41 0.017 64 23904 1.99 <10−4

For each considered index (dependent variables of the test) we report the degrees of freedom (dof), F, and p-values relative to single factors and the interactions among them. Statistically

non significant values have been reported with italic characters.

Multilayer Community Detection on Rest

CE/OE EEG Brain Networks
In this section, we present the results of the application of the
four algorithms under analysis to EEG networks subtending CE
and OE resting state in alpha band. In Figure 5, we report the
trend of the normalized mutual information computed between
the output of the algorithms across consecutive layers for all
the estimated networks with nL = (2, 10, 50, 100). The black
dashed line divides the CE state from the OE. Ideally, one would
expect high and stable values of NMI in the two halves and a
collapse of the index near to the dashed line. That would mean
that the algorithm is able to extract two steady partitions in the
two conditions which are different from each other and to detect
the transition. In the case of nL = 2 instead, a value of NMI
inferior to 1 is desirable, hopefully low. In line with the simulation
study, genLouvain, with the resolution parameter set through
the guidelines given by the preliminary analysis, is the algorithm
that better approximates this behavior. Both genLouvain and
FacetNet show higher stability and maximum discriminability
between the two conditions when the number of layers increases.
As also proven in the previous section, between the two, FacetNet
results to be slower in detecting the change between the two tasks,
and within each task, it is less stable and thus less accurate in
detecting the community structure during CE or OE. DynMoga
shows a mild increment of performance with a higher number of
layers, even if they are lower compared to the other algorithms.
Conversely, ModStat behaves independently from the number of
layers, as it works on a single-layer level.

We finally show in Figure 6A how these multilayer networks
are parsed in clusters by genLouvain, which is the most
advisable algorithm after our simulations. The figure reports, as
representative, one of the 100 repetitions computed which, as

indicated by the narrow confidence interval in Figure 5, are very
much similar among them. The partitions are consistent across
all the levels of nL, and in Figures 6B,C, we show the partitioning
of the network for each condition, CE andOE in the case in which
nL = 50. During the CE phase, there is a cluster that involves
the occipital electrodes and two clusters composed by electrodes
from the left and the right hemisphere, respectively. During
the OE phase, the first cluster is dismembered between the left
and the right hemispheres, and one can observe the modules
becoming more hemisphere specific. Such results are observed
both in the EEG network made of nL = 2 and in the ones with
nL > 2, with different ω-values properly chosen according to the
preliminary analysis (Supplementary Material, section 1).

DISCUSSION

This work aims to provide guidelines for the use of multilayer
algorithms of community detection on EEG-based brain
multilayer networks. For this purpose, we tested and compared
them on an artificial dataset that spans a wide range of
network features.

We obtained our dataset by defining and implementing a
tool able to generate pseudo-random multilayer networks with
community structure. Among all the definitions of communities,
we are considering the assortative one, namely, communities
made of groups of nodes densely connected with each other
and poorly connected with the other nodes of the network.
In fact, previous findings have shown that this is a very
plausible way with which nodes organize themselves in brain
networks (Bertolero et al., 2015; Sporns and Betzel, 2016).
With respect to the tools previously available in the literature
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FIGURE 4 | Plot of means and standard deviations of the three indices used to execute the comparative analysis on networks with evolving community structure.

Each row of the figure corresponds to one index (NMIacc, Dynind, and GDind). For each index, we report four panels where we show the algorithms’ performances with

respect to the cluster number (first column), noise level (second column), number of network’s layer (third column), and percentage of nodes changing module (fourth

column). Algorithms are identified through a color code (blue—genLouvain, green—ModStat, red—DynMoga, orange—FacetNet). In each panel, we can see how the

performance of the algorithms varies according to the values of the ANOVA factors and which algorithm reaches highest performances in terms of accuracy (NMIacc),

stability (Dynind), or both (GDind). The optimal performances are indicated though a red dotted line.

(Lin et al., 2008; Kim and Han, 2009; Granell et al., 2015),
we conceived this generator so that it can take as input as
many settable parameters as possible; thus, we could be able to
systematically test the algorithm under a variety of conditions
and to evaluate the dependence of the performances on different
factors. Specifically, a potential user can set as input the
number of nodes, graph density, number of communities, ratio
between intra-cluster and inter-cluster density, level of noise
of the network, percentage of nodes shifting community across
layers, and if the number of clusters diminishes, increases, or

remains unchanged across layers. Thus, the main advantage
of this generator is its flexibility in creating networks with
different properties.

To test the algorithms, we simulated multilayer networks
with features that are observable in brain functional networks
estimated from EEG signals. We then considered two scenarios,
one in which the community structure is stationary, the other
is when it shows an evolution across the layers. While previous
studies essentially focused on the second case, both cases are of
interest in the neuroscience field.
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FIGURE 5 | Normalized mutual information (NMI) computed between the output of the algorithms, identified with a color code, at consecutive layers of the multilayer

network. As we run the algorithms 100 times, we report the means of the NMI at each snapshot, bounded by the confidence interval, represented with a lighter color.

Each graph corresponds to one of the four networks extracted with different numbers of layers.

In the first scenario, we aim to extract homogeneous
community partitions among a certain number of noisy layers,
and this could be useful when layers model either snapshots
of a task in which the brain connectivity pattern is supposed
to be stationary (with the only variations due to the noise) or
groups of subjects with the same features. In this case, we seek for
algorithms able to keep as stable as possible despite the presence
of noise, one that, in an EEG-based network, could arise because
of the variability of the signals, of the low SNR, or of the error
intrinsic in any connectivity estimation procedure.

In the second scenario, we want our algorithm to track
small and large variations in an evolving community structure.
Examples of this scenario include when we want to discover the
evolution of the modular organization underpinning cognitive
functions causing time-varying connectivity patterns or relative
to heterogeneous groups of people (e.g., healthy subjects
and clinical cohorts). Here the capability of the methods

to track the network’s dynamics is the main feature we
seek for.

The results of our extensive simulation studies show that
all the algorithms are sensitive to the network features that
we simulated. As expected, their performances decrease as
the level of noise simulated increases because the community
structure gets less and less clear. Moreover, their ability to exactly
recover the imposed community structure diminishes when such
structure is made of few clusters. This could happen because
all the algorithms were introduced in a context other than
neuroscience, where networks present thousands of nodes and
many more clusters. In the case of time-varying communities,
our analysis suggests that the proportion with which the
clusters reconfigure does not affect consistently the algorithms’
performances, except in a few cases in which, intuitively, the
more it changes, the easiest the algorithms detect the variation.
The genLouvain and, partially, the FacetNet algorithms were
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FIGURE 6 | Example of partitions obtained by running genLouvain on the EEG brain networks. (A) The four images stand for the four networks with different numbers

of layers. Each image has on the y-axis the nodes (channels) and on the x-axis the layers, and the cluster’s membership is represented through colors. (B,C) Reported

projections of the detected communities on a 3D model of scalp for the two conditions, closed eyes and open eyes, respectively. In each panel, the 3D model is seen

from above, with the nose pointing to the upper side of the page, and laterally. The dots are the 61 electrodes grouped into clusters and displayed with different colors.

shown to be able to compensate for the presence of noise
as the number of layers increases, returning more and more
stable and accurate partitions in both scenarios explored here.
Overall, genLouvain, which is based on multilayer modularity
optimization, outperforms the others in most conditions. It
has the best performances in most conditions. A single-layer
modularity approach is also appropriate in case of few layers
and low percentage of noise. FacetNet shows intermediate
performances, as it seems to be able to mitigate the effect of a high
level of noise when it has a high number of layers to work with.

Our work is not the first one attempting to address the
issue of multilayer clustering algorithms’ performances. In Silva
et al. (2016) and Schmidt et al. (2018), the authors propose
analysis with the same purpose. However, in the former, the
focus is only on algorithms based on evolutionary clustering,
which have been tested in a simple synthetic network and

in three real networks not related to neuroscience. In the
latter, the authors tested two approaches based on consensus
clustering on a synthetic network. Such testing still has no
statistical validity, as the two approaches have only been tested
in one network, even if more realistic and closer to those
experimentally estimated from EEG signals. Moreover, their
main purpose was to exploit multilayer clustering approaches
to threshold fully connected networks. For this reason, they
introduced two new community detection algorithms, rather
than considering the well-established multilayer optimization
of modularity, which has already been proven to provide
interesting insights in brain functioning and organization, as
in Bassett et al. (2011). Another testing of the clustering
algorithms has been done in Bazzi et al. (2020) on benchmark
networks similar to those proposed here. However, the main
focus of that work was on introducing a generative model for
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multilayer networks; therefore, the algorithms’ performances
were evaluated by only varying the coupling across layers. Here
we performed a more comprehensive analysis: starting from
preliminary analysis made to properly use the algorithms in
different conditions determined by the network’s properties, we
compared the algorithms’ behavior by systematically varying
a set of the network’s features, like cluster number, level
of noise, coupling across layers, number of layers and
network’s density.

After having tested the algorithms on artificial networks,
we applied them to a time-varying network obtained from a
real EEG dataset under controlled conditions, from which we
estimated multilayer networks, including a transition from one
condition to the other. The experimental design has precise
features designed to obtain accurate multilayer brain networks
reflecting those simulated in the methodological analysis. Data
was acquired from an adult healthy subject during a simple task,
the resting state, composed by two distinct phases: OE and CE.
The choice of taking a healthy subject rather than a patient
spared us from making hard hypotheses on the underlying brain
network. The same applies for the choice of the resting state,
instead of more complicated cognitive or motor tasks, which
would have required further hypotheses. At the same time, the
two distinct consecutive phases (OE–CE) of the resting state
guarantee a change in brain activity and, consequently, in brain
connectivity and brain network, which is what we analyzed in
the simulation study. Moreover, we established the number of
EEG channels, the length of the trials, as well as their numerosity
prior to the acquisition in order to obtain networks with the exact
number of nodes and layers used in the simulation study. The
data so collected have specific peculiarities that make it suitable
for the validation of the algorithms’ analysis. By applying the
four algorithms on the obtained EEG multilayer networks, we
could evaluate if, and how fast, such algorithms were able to
recognize the two distinct phases. The results are consistent with
what were found in simulations. GenLouvain outperforms the
other algorithms by detecting stable communities within each
condition and differences in the partitioning between the two
conditions in the neighborhood of the transition. The topological
representation of the community organization underlying the
two conditions, shown in Figure 6, indicates that the closed eyes
condition gives rise to a cluster of occipital electrodes which,
during the open eyes condition, splits into two clusters, one for
each hemisphere, and generally all the clusters become more
hemisphere specific. This result is physiologically plausible. In
fact, during the resting state at closed eyes, there is an increase of
alpha rhythm associated with circuits originated in the occipital
region, which disappear if the subjects open their eyes.

The purpose of the application to an EEG dataset was three-
fold. First, it confirms the results obtained with the simulation
studies. Moreover, as an indirect consequence, it validates the
goodness of our model and of the generator with which we
tested the algorithms, paving the way to its use in other studies.
Finally, it supports the applicability of multilayer community
detection to EEG-based brain networks. In fact, while several
studies already showed the potentiality of employing graph
theory instruments in EEG-derived networks to investigate brain

functioning (Micheloyannis et al., 2006; Fallani et al., 2010;
Toppi et al., 2012; Petti et al., 2016; Pichiorri et al., 2018),
community detection and multilayer tools have been scarcely
used in the electrophysiological context so far, despite promising
results like those reported in a recent work (Kabbara et al.,
2021) where authors investigated the modular structure of
multilayer resting state networks with single-layer tools. Most
of the studies on brain communities (e.g., Bassett et al., 2011;
Betzel et al., 2014, 2017; Wig, 2017; Puxeddu et al., 2020)
are conducted on brain networks obtained from functional
magnetic resonance images (fMRI). fMRI data have the privilege
of having a good spatial resolution. However, fMRI networks
make a coarse assumption of stationarity. In fact, the BOLD
signal peaks seconds after the neuronal activity, violating most
of the brain information processing timescale, which ranges
100ms (Park and Friston, 2013). EEG signals instead have a
great temporal resolution, which is suited to the study of time-
varying phenomena through a multilayer topological analysis.
One could also think of invasive methods to obtain signals
that are both spatially and temporally accurate. However, the
invasiveness provides a strong limitation to the applicability of
such an approach. Moreover, it currently allows to acquire data
from a limited portion of the brain, failing to provide large-
scale networks suited for an analysis of the communities which
sustain the structure of most human brain functions. For these
reasons, EEG-based brain networks represent a fair compromise
between spatial and temporal resolution, and the study of their
community structure can provide important insights into the
brain dynamical organization.

After having studied the best practices and verified
community detection applicability to multilayer EEG networks
in a controlled case, future efforts will be put on studying how
community structure evolves during tasks that elicit a dynamic
configuration of the brain network. For this purpose, richer open
EEG datasets could be investigated (i.e., van der Meer et al.,
2016; Wong et al., 2018; Artoni et al., 2019), focused on resting
state as well as more complex tasks, like working memory or
auditory attention. This might provide physiological insights
into brain functional organizational principles underlying
cognitive functions.

Future investigations might also include the use of the toolbox
that we provided to extend our analysis to other cases. For
example, similar analysis could be performed in generating
networks with a higher number of nodes and a higher number
of clusters. Ultimately, this work could be useful in a cross-
disciplinary way, regardless of our specific attention to EEG-
based brain networks. The guidelines that we provide can be
applied to every network with the simulated features, where
community structure is supposed to be assortative.

CONCLUSIONS

In conclusion, this work operated an extensive and systematic
comparative analysis among multilayer community detection
algorithms. We selected three different clustering approaches
and four algorithms based on single-layer modularity, multilayer
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modularity, and evolutionary clustering. We tested them on
artificial networks with modules generated through a toolbox
defined for this purpose, which allows us to set most of the
parameters characterizing the graphs that we systematically
varied in a range typical of EEG-based brain networks to provide
a comprehensive analysis of the algorithms. Specifically, we
tested the algorithms’ ability to recover stable and dynamic
partitions out of multilayer networks with stationary and
evolving community structure, respectively. Our results suggest
that the performance of the algorithms depends on the network
features, such as number of clusters, number of layers, and level
of noise in the network. From the simulations, the community
detection algorithm based on the optimization of the multilayer
formulation of modularity turned out to be the most suitable
within the explored conditions. The application of the algorithms
to real networks estimated from EEG signals confirms these
results and proves the applicability of such algorithms to
electrophysiological data.
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Chimera and Solitary states have captivated scientists and engineers due to their peculiar

dynamical states corresponding to co-existence of coherent and incoherent dynamical

evolution in coupled units in various natural and artificial systems. It has been further

demonstrated that such states can be engineered in systems of coupled oscillators

by suitable implementation of communication delays. Here, using supervised machine

learning, we predict (a) the precise value of delay which is sufficient for engineering

chimera and solitary states for a given set of system’s parameters, as well as (b) the

intensity of incoherence for such engineered states. Ergo, using few initial data points

we generate a machine learning model which can then create a more refined phase

plot as well as by including new parameter values. We demonstrate our results for

two different examples consisting of single layer and multi layer networks. First, the

chimera states (solitary states) are engineered by establishing delays in the neighboring

links of a node (the interlayer links) in a 2-D lattice (multiplex network) of oscillators.

Then, different machine learning classifiers, K-nearest neighbors (KNN), support vector

machine (SVM) and multi-layer perceptron neural network (MLP-NN) are employed by

feeding the data obtained from the network models. Once a machine learning model

is trained using the limited amount of data, it predicts the precise value of critical delay

as well as the intensity of incoherence for a given unknown systems parameters values.

Testing accuracy, sensitivity, and specificity analysis reveal that MLP-NN classifier is better

suited than Knn or SVM classifier for the predictions of parameters values for engineered

chimera and solitary states. The technique provides an easy methodology to predict

critical delay values as well as intensity of incoherence for that delay value for designing

an experimental setup to create solitary and chimera states.

Keywords: multiplex network, delay, solitary states, chimera states, 2-D lattice, machine learning algorithms

1. INTRODUCTION

In the year 2002, a new area was introduced in the field of nonlinear dynamics when Kuramoto
et al. brought to light the phenomenon of occurrence of symmetry breaking in a system of
identically coupled oscillators [1]. Apart from synchronous and asynchronous states, they identified
a remarkable hybrid dynamical structure where both the asynchronous and synchronous regions
coexisted in a system of identical oscillators. Later, this mixed state of coherence and incoherence
was termed as “chimera,” coined by Strogatz and Abrams [2]. Initially identified in a system
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of identical Kuramoto oscillators, the chimera state has been
pinpointed in a variety of other network models such as
FitzHugh-Nagumo oscillators [3, 4], Rössler oscillators [5], van
der Pol oscillators [6], coupled Rulkov maps [7], coupled maps
[8], coupled chaotic oscillators [9], multi-layer neuronal models
[10], Morris-Lecar neurons [11], modular neural network [12],
neuronal network model of the cat brain [13], and data-driven
model of the brain [14]. Over the years, the researchers have
spotted similar fascinating chimeric patterns and labeled them as
virtual chimera [15], traveling chimera [16], breathing chimera
[17], spike-burst chimera states [18], and others [19, 20]. Several
approaches were made to provide an analytical explanation for
the emergent chimera state [21, 22]. A comprehensive review on
the development of chimera states in a variety of systems can be
found in [23, 24].

Recently, another chimera-like pattern, the solitary states,
has attracted tremendous attention of the scientific community.
The word solitary originated from Latin “solitarius” stands
for “alone” or “isolated.” In solitary states, unlike chimeric
patterns, a few identical oscillators are split off from different
isolated locations in the synchronized cluster, possessing
different frequencies and phases. Hence, k-solitary states
comprise k isolated elements [25]. Recently, the existence
of solitary states has been demonstrated in a network of
ensembles having attractive and repulsive interactions at
the edge of synchrony [26] and partial synchrony [27],
inertial Kuramoto model [28], oscillators with negative
time-delayed feedback under external forcing [29], identical
populations of Stuart-Landau oscillators [30], FitzHugh-
Nagumo neurons in the oscillatory regime [4], and neuronal
oscillators and coupled chaotic maps in the presence of
delayed links [31]. The occurrence of solitary states can be
observed in power grid networks in which individual grid-
units gradually desynchronize during a partial or complete
blackout [32].

Furthermore, in real-world complex systems, a set of
interacting units may have different types of interactions among
them, with each type of interaction affecting functionality
of other types. In such scenarios, the multiplex (multilayer)
framework turns out to be an apt contender in representing
different dynamical processes acting on the same set of units
through different layers comprising different genres of links
having different connectivity among the same set of interlinked
nodes [33–35]. Recently, the investigations pertaining to the
emergence of chimera states and solitary states have been
extended to multilayer networks subjected to a variety of
dynamical models [36–42].

The occurrence of chimera or solitary states have been
designed through experimental setup comprising Huygens clock
mechanical oscillators [43], coupled candle-flame oscillators
via quenching and clustering [44], modular networks of
electrochemical oscillations [45], and locally and non-locally
coupled Stuart-Landau oscillator circuits [46].

Furthermore, machine learning techniques have been
successfully being applied for prediction of system properties or
emergent phenomena covering a broad areas of interdisciplinary

research which ranges from non-linear dynamics, quantum
physics, astrophysics to bio-medics [47–49]. The field of complex
systems and nonlinear dynamics has also witnessed a recent
spurt in the use of machine learning techniques, particularly
in characterization or identification of a variety of system
properties or phenomena. For instance, the machine learning
algorithms have been successfully implemented in community
detection in networks [50], finding fixed points attractors [51],
spatiotemporal chaotic systems [52], detecting phase transition
[53], prediction of chaotic systems [54], and identification of
chimera states [55].

In the present work, by employing machine learning
techniques we predict the value of delay for engineering chimera
or solitary state for a given set of systems parameters. First off,
we generate chimera state and solitary state in two altogether
different network architectures, 2-D lattice and multiplex
network. The presence of delay in neighboring connections of
a node in a 2-D lattice structure gives rise to ripples of wave
like chimera states, labeled as rippling chimera. Whereas, for the
occurrence of solitary states, inter-layer connections delays of a
multiplex network is established which prohibits few individual
node to fall within the synchronized clusters of identical nodes.
Note that the presence of delays in either neighboring links in 2-D
lattice or inter-links in multiplex network induces perturbations
only in the dynamical evolution of the nodes and does not
compromise with the structural symmetry of either network.
Thereafter, for given data sets we employ multiple machine
learning algorithms to train a model which is then used to predict
the critical value of delay for yielding the chimera state and the
intensity of the rippling chimera for a given choice of system’s
parameters. The K-nearest neighbors (KNN), support vector
machine (SVM), and multi-layer perceptron neural network
(MLP-NN) classifier are used utilizing the data generated from
the two models. The analysis unveil that multi-layer perceptron
neural network (MLP-NN) classifier is the best candidate in
precisely predicting the critical delay values for engineering
chimera and solitary states. Finally, we plot the entire phase space
diagram using the trainedmachine learningmodel describing the
parameter regimes having chimera and non-chimera states.

2. METHOD AND TECHNIQUE

This article considers two different coupled dynamics on network
models to demonstrate the implementation of machine learning
techniques for predicting the value of delays to design the
solitary and the chimera states. Furthermore, using the trained
machine learning model a more refined phase plots describing
various dynamical states for the entire parameter region are
plotted. In the following, first we discuss the coupled dynamics
on network models to demonstrate occurrence of chimera and
solitary states by introducing delays in the coupling between pairs
of oscillators in their respective network structures. Thereafter,
we will describe the machine learning techniques used here
to create a model for predicting delay values for engineering
chimera and solitary states.
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FIGURE 1 | (A) Schematic diagram of 100 identical nodes networked in a 2-D lattice formation assuming periodic boundary condition. (B) Schematic diagram of a

multiplex network of two globally coupled networks having mirror inter-layer links. For a suitable choice of systems parameters, the state of multiplex network (B)

demonstrating coherence for undelayed inter-layer links and (C) demonstrating solitary states in the presence of a few delayed interlayer links.

2.1. Chimera States in 2-Dimensional
Lattice
We consider N nodes, each having 4 nearest neighbors, arranged
in a 2-dimensional lattice formation assuming periodic boundary
condition (see Figure 1A), with the local dynamics at each node
governed by the Kuramoto oscillators. Such 2-D lattice exhibits
coherence at large coupling strength. However, when a delay is
introduced in each neighboring link of a randomly selected node,
referred as delayed node, the delayed node and its neighboring
then start exhibiting incoherence in the synchronous chunk, thus
giving rise to chimera. The presence of delays in the coupling
links for a node means that the information the node receives
from its neighbors are delayed in time.

Thus the evolution of phase of an un-delayed and a delayed
node i is respectively given by

θ̇i = ω + µ

N
∑

j=1

Aij sin (θj(t − τi)− θi(t)), (1)

where θi (i= 1, . . . ,N) denotes the phase of ith node, ω denotes
the identical intrinsic frequency of the nodes, µ is the coupling
strength and τi is the value of delay introduced in the links of
ith node. For delayed nodes τi 6= 0 and for non-delayed nodes
τi = 0. Aij is the element of adjacency matrix of the network
defined as.

Aij =

{

1 if i and j are connected,

0 if, otherwise.

2.2. Solitary States in Multiplex Network
To demonstrate the occurrence of solitary states by setting up a
discrete arrangement of delayed inter-layer links in a multiplex

network, we begin with considering a multiplex network of two
identical globally connected rings (of size N) whose nodes obey
the dynamics of Kuramoto oscillators. Figures 1B,C illustrate a
schematic representation of a multiplex network in the absence
and the presence of delayed inter-layer links. In the absence of
delay, both the layers of the multiplex network are in coherent
state at sufficiently large coupling strength. However, as the delay
is established in one of its inter-layer links, two end nodes of the
delayed link then get dislodged from their coherent state.

To fabricate the delayed environment in the system, we take
into account delayed couplings at a number of arbitrarily chosen
but discretely located inter-layer links in the multiplex network,
referred to as inter-layer delays for the sake of convenience.
Hence, time update of the dynamics of Kuramoto oscillators in
the multiplexed identical layers 1 and 2 under the delayed setting
is governed by:

θ̇1i = ω + µ1

N
∑

j=1

sin(θ1j − θ1i )+

σ 12 sin(θ2i (t − τi)− θ1i (t)),

(2)

θ̇2i = ω + µ2

N
∑

j=1

sin(θ2j − θ2i )+

σ 21 sin(θ1i (t − τi)− θ2i (t)),

(3)

where ω is the identical intrinsic frequency, θi is the phase of ith
(i= 1, . . . ,N) node, µ is the intra-layer coupling strength of a
layer and σ 12 = σ 21 = σ is the inter-layer coupling strength
representing the impact of dynamics of one layer on the other. τi
is an element of a delay-vector τ (of length N), which contains
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particulars about the position and the amplitude of delayed inter-
layer links and is directed along either σ 12 or σ 21. We assume
a fraction Nτ (significantly smaller than N) of arbitrarily picked
discrete locations in τ , which contains time-delays (τi 6= 0)
either drawn from a uniform random distribution or of identical
amplitude. The remaining fraction (N − Nτ ) of τ contains no
delay, i.e., τi = 0. Therefore, the number Nτ determines the
number of coveted solitary states, i.e., the system can have 1-
solitary state, 2-solitary states, or maximum possible Nτ -solitary
states in a layer. Also, the fraction of heterogeneous (identical)
(τi 6= 0) delays in τ would give rise to solitary points with unequal
(equal) phase displacement from the synchronous cluster.

2.3. Machine Learning Techniques
In this paper, three different supervised machine learning
algorithms are employed to predict the precise value of delay
to engineer solitary and chimera states for a given set of
network parameters. These machine learning algorithms are
K-nearest neighbors (KNN) classifier, support vector machine

(SVM) classifier and multi-layer perceptron neural network
(MLP-NN) classifier.

KNN classifier is a non-parametric classification algorithm,
which has been proven to be effective in numerous cases. If
we represent our data in a vector space, each point in this
vector space can be classified based on the classes of k nearest
neighbors of the data point. The k nearest neighbors are selected
based on a distance parameter. Most commonly, the euclidean
distance is used to determine the k nearest neighbors. Therefore,
KNN divides our data’s vector space into different regions
corresponding to different classes. The parameter k plays a very
important role in deciding how well KNN will perform while
dividing the vector space into different regions and classifying the
points in that vector space [56].

SVM classifier is a supervised machine learning model, which
performs by estimating the most appropriate hyperplane that can
separate our training data into two different distinct classes. The
hyperplane estimation is achieved by maximizing the distance
between the nearest training data point and the proposed

FIGURE 2 | Phase and frequency snapshot of 2-D lattice of N = 100 nodes and µ = 1. (A) Phase and frequency snapshot of the nodes in the absence of delay

(τ = 0). (B) A frequency snapshot and (C) a phase snapshot of the nodes in the presence of delay (τ = 10) in all the links to 45th node. (D) A heatmap representation

of the phases in (C). (B–D) Demonstrate rippling chimera states.
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hyperplane. This distance is also called margin. Simple SVM can
only produce linear hyperplanes. One can use kernels to estimate
nonlinear hyperplanes. A kernel functions by transforming
our training data from a lower-dimensional space into a
higher-dimensional space and estimating a linear hyperplane in
that higher-dimensional space. When the higher-dimensional
hyperplane is transformed back to the lower-dimension, we get
a nonlinear hyperplane that can classify each point of our data’s
vector space into different classes [56].

MLP-NN classifier functions by creating an artificial neural
network consisting of many different layers of nodes. There
exist three types of layers in a neural network, the input layer,
hidden layer, and the output layer. One can have any number
of hidden layers, and each hidden layer can have any number
of nodes. The neural network takes the input data and tries
to estimate the weights of each link between the nodes of the
network. A neural network can be called a trained model if
the algorithm can successfully estimate the weights of the links
such that the model can categorize our data into their correct
classes [56].

3. RESULTS

First off, we numerically demonstrate the occurrence of chimera
and solitary states in the models discussed in section 2.
Thereafter, we make predictions for the precise value of critical
delay required for the engineering chimera states and solitary
states by employing machine learning classifiers. Here, we
numerically demonstrate the occurrence of chimera and solitary
states in two distinct network structures.

3.1. Engineering Chimera States
To engineer chimera states, the intrinsic frequency of the N =

100 nodes are considered to be the same, i.e., ω = 1 and their
initial phases are assigned randomly in the interval [0, 2π]. We
begin with an un-delayed but synchronous 2-D lattice obtained
for coupling constant µ = 1 as shown in Figure 2A. Starting
from a set of initial random phases, after sufficiently high intra-
layer coupling strength, all the oscillators settle into the steady
phase with constant frequency (ω = 1). However, when a delay
is instituted in all the neighboring links to a node (say 45th node)
of the lattice, this produces the perturbation in the neighboring
links and hence giving rise to chimera states (see Figures 2B,C).
Such emergent chimera pattern resembles to the ripples on the
surface of water, originating from the delayed (ith) node, hence is
termed as rippling chimera states.

When the lattice evolves in the presence of delay at
neighboring links to a node (say 45th node), as expected
the phase and the frequency of the delayed node (45th)
and its neighboring nodes (for example: 35th and 46th) get
desynchronized from their respective synchronous clusters (rest
of the nodes). Nevertheless, the rest of the nodes remain
synchronous and their frequency still closely follows the intrinsic
frequency. Moreover, a gradual steep fall in the amplitude of
both the phase and frequency starting off the delayed node
through neighboring nodes until the rest synchronous chunk is
quite apparent from Figures 2B,C, mimicking the ripples on the
surface of synchronous cluster. This phenomena is also reflected
from Figure 2D, the heatmap representation of the phases of the
nodes for a delay present in the neighboring links of 45th node.
The desynchronized delayed node and its neighboring nodes are
referred here as drifting oscillators. Thus, the inclusion of delayed

FIGURE 3 | Snapshots of the layers of the multiplex network displaying (A) a flat frequency profile with undelayed inter-layer links (B) introduced delay profile at

inter-layer links (C) Phase and (D) frequency profile for the solitary state with introduced delayed interlayer links. System parameters are µ1 = 0.5, µ2 = 3 and σ = 1.
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FIGURE 4 | Snapshots of the layers of the multiplex network with (top row) different inter-layer delay profile, resulting in (mid row) Phase; (bottom row) frequency

profile for (A) 2- (B) 5- (C) 10- solitary states with the introduced inter-layer delays (as depicted in top row), respectively.

links to a node give rise to the rippling chimera states, whereas the
delayed node and its neighbors form the incoherent regime and
the rest of the nodes remain part of the synchronous regime.

3.2. Engineering Solitary States
Solitary states are spatiotemporal patterns obtained from the
dislodgement of a few nodes from the main synchronous
cluster, which possess frequencies different than that of the
synchronous cluster. To exhibit the emergence of solitary states
in the multiplex network with the aid of inter-layer delays, we
select initial phases of the nodes drawn randomly from the
interval θ

1,2
i ∈ [0, 2π). We start off with an un-delayed but

synchronized multiplexed rings, each of 100 nodes, which is
obtained for intralayer coupling constants µ1 = 0.5, µ2 =

3 and interlayer coupling constant σ = 1 as shown in
Figure 3A. Now the presence of delay in one of the interlayer
links (with end nodes i, i = 50,N+50; see Figure 3B) exhibits
dislodgement of the phases (frequencies) of the interconnected
nodes from their respective phase (frequency) synchronized
clusters (see Figures 3C,D) resulting in two 2-solitary states, one
for each layer. Note that the choice of µ1 = µ2 (one yielding
synchronous clusters) can also result in splitting off phases from
the main synchronous clusters; however, this does not induce
dislodgement in frequencies of the same nodes, hence can not be

delineated as solitary states. A mismatch in intra-layer coupling
strength µ1 and µ2 ensures splitting off the frequencies along
with the phases of the end nodes of inter-layer delays. In similar
fashion, 2Nτ solitary states are accrued from the presence of
Nτ delayed inter-layer links as shown in Figure 4. Figures 4A–C
corresponding to Nτ = 2, 5, and 10 exhibit 4, 10, and 20-
solitary states.

Delay is integral to our scheme to get solitary states. The
phase difference between the dislodged nodes and the bulk of
synchronous nodes can be different; however, the corresponding
frequency mismatch remains almost the same for any value
of delay for a set of structural parameters µ1,µ2, and σ . The
presence of delay in an inter-layer link makes the dynamics of
the nodes at its two ends either slower or faster than the rest
bulk of synchronized nodes. Therefore, the employed scheme
allows us to settle on the appropriate values for the delay and
the inter-layer coupling strength (σ ), which can substantially
change the frequencies of the end nodes of the inter-layer
delays than those of the rest of the nodes, yielding pronounced
solitary states.

Note that besides generating tailored solitary states, the
employed scheme can generate chimera states as well when the
fraction of delays are installed in a string of inter-layer links
instead of globally spread ones.
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3.3. Implementation of Machine Learning
Techniques
In this section, three different supervised machine learning
algorithms trained on the input data obtained from simulations
in 3.1 are used for the model-free prediction of factors
determining or controlling the intensity of chimera and solitary
states emergent in different network structures.

3.3.1. Predicting Intensity of Rippling Chimera and

Critical Delay Using Machine Learning
Here, we make the prediction for the intensity of chimera
states using machine learning classifiers discussed in section 2.
To generate the data used in training the machine learning
models, the network is allowed to evolve in time (using RK4
algorithm with time-steps 1t = 0.01) for different values of
coupling constant and delay. The coupling constant is varied
from 0.5 to 2 with interval of 0.075. The delay is varied from
0 to 1 with interval of 0.05 and from 1 to 20 with interval
of 1. Total 800 simulations are carried out and the number of
drifting oscillators is recorded at the end of each simulation.
Phase diagram is then plotted using the raw data obtained
from the simulations (Figure 5a). Figure 5a unveils that the data
contains a lot of noise, which arises due to the inaccuracies in
the numerical simulations. From the inspection of data, only one
boundary can be drawn with certainty as shown in Figure 5b.
This diagram provides a parameter space for which synchronized
and chimera regimes are distinguishable, however it lacks in
capturing some useful information that our data contains. For
instance, the exact number of drifting oscillators or the intensity
of chimera state can not be discovered by the inspection of
this diagram.

To construct amore detailed phase diagram,machine learning
techniques are used. The data is tabulated in three columns
where first, second, and third column contain the value of µ,
τ , and number of drifting oscillators corresponding to the pair

of delay and coupling constant, respectively. The data structure
looks like Table 1. The data is randomly split into the training
and the testing set in the ratio of 4:1. Our task here is to train
a machine learning model to predict the number of drifting
oscillators for an input pair of µ and τ . The number of drifting
oscillators is calculated for each pair of µ and τ at the end
of numerical simulation as shown in Table 1. The number of
drifting oscillators is determined from the number of points in
the node index vs frequency plot (e.g., Figure 2B), which are far
apart from the natural frequency of the oscillators.

Machine learning algorithms have hyperparameters which
determine how well a trained machine learning classifier will
perform on a given data. In order to get the best possible
predictive model which an algorithm is capable of generating,
one needs to find the optimal hyperparameters for that algorithm,
which depend on the given dataset. One by one, we provide
the details of hyperparameters for the three algorithms put
into practice.

TABLE 1 | Data structure for Rippling data: there are 800 rows in total in this table.

Coupling constant Delay No. of drifting oscillators

: : :

: : :

0.875 0.5 0

0.875 0.6 9

0.875 0.7 13

: : :

1.1 1 21

1.1 2 21

: : :

: : :

FIGURE 5 | (a) Phase diagram for 2D lattice in two parameter space of τ and µ. This phase diagram is plotted using the data which is directly obtained from the

simulations. (b) This is a filtered version of (a). All the regions in (a) with positive values for “number of drifting oscillators” are merged here to form green region, which

represents chimera state. The number of drifting oscillators in blue region is zero, which represents a synchronized state.
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FIGURE 6 | Validation curve for KNN obtained using 5-fold cross validation of data. The parameter K is varied from 1 to 20. The value of K at which a KNN model

yields high training accuracy as well as high validation accuracy is the optimum value of K for the dataset. K = 1 leads to overfitting as in that case the training

accuracy is 1 but the validation accuracy is very low. The validation curve suggests that the best possible KNN model that one can obtain for our dataset is for K = 5.

Blue and orange line represent training set accuracy and validation set accuracy, respectively.

TABLE 2 | Parameters for Machine learning models trained using dataset of 2D lattice network.

KNN SVM MLP-NN

Description Value Description Value Description Value

K 5 Regularization Parameter 10

Total number of layers 4

Number of hidden layers 2

Number of nodes in each hidden layer 30

Weight Function Uniform Kernel EBF

Number of nodes in the output layer 8

Optimizer Adam

Learning rate 10−3

Distance Metric Euclidean Gamma 0.5

L2 Penalty 10−4

Activation ReLU

Batch size 200

Epochs 200

(a) KNN: The validation curve is plotted to find the optimal
hyperparameter K for KNN as shown in Figure 6. The optimal
hyperparameters for KNN is given in Table 2.

(b) SVM: SVM has three hyperparameters which are
kernel, regularization parameter, and gamma. To find the
optimal hyperparameters for SVM, the grid search analysis

is performed. The optimal hyperparameters for SVM is
given in Table 2.

(c) MLP-NN: All the optimal hyperparameters and other
information about the MLP-NN is given in Table 2.
Next 1,000, 1,000, and 100 models are generated for KNN, SVM,
and MLP-NN, respectively, by choosing different training sets at
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random for each iteration. The final prediction for the number
of drifting oscillators using KNN, SVM, and MLP-NN classifiers
is obtained by aggregating the results of these 1,000 KNN, 1,000
SVM, and 100 MLP-NN models.

Training accuracy measures how well an algorithm learns
from the training data whereas testing data measures how
well an algorithm can train a model which can classify a
data which it has never seen before. Higher value of testing
accuracy is more desirable than higher value of training accuracy.

TABLE 3 | Accuracy of different algorithms.

Algorithm Training accuracy Testing accuracy

KNN 85.449 77.66

SVM 85.455 80.821

Neural Network 83.012 82.725

High training accuracy but low testing accuracy can mean
that the algorithm is over-fitting our data. Table 3 shows that
out of the three algorithms, neural network is the best at
classifying any unknown data. The lower value of training
accuracy for MLP-NN is due to the fact that MLP-NN is able
to identify the noise present in the training data (Figure 5a).
It classifies the noisy data-points into their correct classes
(Figure 7c), which lowers it’s training accuracy as compared to
KNN (Figure 7a) and SVM (Figure 7b) which are not good
at classifying the noisy data-points into correct classes. The
phase diagrams obtained using each algorithm (Figures 7a–c)
shows that out of the three algorithms, neural network is
significantly better at segregating different regions in a phase
space (τ -µ) corresponding to different intensities of chimera.
Figures 8A–C show the confusion matrix for KNN, SVM, and
MLP-NN classifiers, respectively. Tables 4, 5 show the sensitivity
and specificity of each algorithm, respectively. Comparisons of

FIGURE 7 | Phase diagrams of 2D lattice in τ and µ parameters space employing (a) KNN, (b) SVM, and (C) MLP-NN algorithm. Here, the region boundaries are

determined using a trained machine learning model. These are filled contour plots where each color represents a different value for “number of drifting oscillators”

found in the engineered chimera state. (a) Using KNN algorithm: the value of parameter K = 5 for training this model is obtained using validation curve analysis (see

Figure 6). (b) Using SVM algorithm: RBF kernel are used while training this SVM model. The value of parameters C = 10 and gamma = 0.5 is obtained used grid

search analysis. (c) Using MLP-NN algorithm: ReLU activation function is used while training this MLP-NN model. Apart from the input and output layer, the artificial

neural network used in this algorithm contains 2 hidden layers with 30 nodes each. (d) The behavior of critical delay as a function of µ for a 2D lattice network. The

values of critical delay in this plot are calculated using a trained MLP-NN machine learning model.
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FIGURE 8 | (A) Confusion matrix for classification of intensity of chimera in a 2D lattice network using a trained (A) KNN model (B) SVM model and (C) MLP-NN

model. In (A–C), numbers on x and y axis correspond to different values of “total number of drifting oscillators” found in a 2D lattice network. (D) Confusion matrix for

classification of state of a multilayer network using a trained MLP-NN model. In (D), on the x and y axis, 0 represents a synchronized state and 1 represents a

solitary state.

sensitivity and specificity for each algorithm confirm that MLP-
NN is the best one out of the three algorithms in identifying
the noise present in the training data and classifying the
noisy data-points into their correct classes. Therefore, MLP-NN
algorithm stands out in predicting the intensity of chimera state
in a system.

For a value of coupling constant, the minimum value of delay
which transitions the network from a synchronized to chimera
state is known as critical delay of the network corresponding to
that value of coupling constant. The trained MLP-NN machine
learning model was used to predict the exact values of critical
delay for a set of coupling constant values (Figure 7d). To predict
the exact value of critical delay corresponding to a coupling
constant, µ is kept fixed and τ is increased from τ = 0 in the
steps of 0.001 and the final collective behavior of the network

TABLE 4 | Sensitivity of different algorithms for 2D lattice network.

Sensitivity

Algorithm Zero One Five Nine Thirteen Twenty

one

Twenty

five

Twenty

nine

Knn 1 0 0 0.817 0.676 0.949 0.166 0

SVM 0.995 0 0 0.796 0.669 0.955 0.166 0

Neural network 0.984 0 0 0.72 0.633 0.964 0 0

for each pair of µ and τ is predicted using the MLP-NN model.
The smallest value of τ for which the MLP-NN model predicted
the final collective state to be a chimera, is the critical delay
corresponding to the given value of µ. Using this technique,

Frontiers in Physics | www.frontiersin.org 10 April 2021 | Volume 9 | Article 513969254

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Kushwaha et al. Machine Learning Assisted Chimera States

TABLE 5 | Specificity of different algorithms for 2D lattice network.

Specificity

Algorithm Zero One Five Nine Thirteen Twenty

one

Twenty

five

Twenty

nine

Knn 0.98 0.999 1 0.965 0.953 0.902 1 1

SVM 0.975 1 1 0.967 0.958 0.892 1 1

Neural network 0.969 1 1 0.966 0.953 0.879 1 1

TABLE 6 | Data structure for Solitary data: there are 8,000 rows in total in this

table.

Interlayer coupling Intralayer coupling Delay State

: : : :

: : : :

3.60 0.86 0.50 0

3.60 0.88 0.50 0

3.70 0.1 0.50 1

: : : :

2.00 0.20 2.00 1

2.00 0.22 2.00 0

: : : :

: : : :

TABLE 7 | Sensitivity and specificity of MLP-NN predictive model for multilayer

network.

Sensitivity Specificity

0 (Sync.) 1 (Solitary) 0 (Sync.) 1 (Solitary)

0.9951 0.9802 0.9802 0.9951

TABLE 8 | Parameters for neural network model trained using dataset of

multilayer network.

Description Value

Total number of layers 4

Total number of hidden layers 2

Number of nodes in each hidden layer 30

Number of nodes in the output layer 2

Optimizer Adam

Learning rate 10−3

L2 Penalty 10−4

Activation ReLU

Batch size 200

Epochs 200

critical delay corresponding to any value of coupling constant
can be found. The advantage of using a ML model to find critical
delay is that it is very fast as we don’t have to run any simulation
once the machine learning model is trained, to predict those
values of critical delays.

3.3.2. Predicting Value of Critical Delay for

Emergence of Solitary State
Here, we precisely forecast the value of critical delay required to
delineate solitary states using the machine learning algorithms.
First, the coupled dynamic Equations (2) and (3) are allowed to
evolve for different values of interlayer coupling strength (σ ) and
intra-layer coupling strength of layer 1 (µ1). µ2 = 3 is kept
fixed in all the analysis done in this section. In total 1,600 such
simulations are performed and the frequency difference between
the delayed nodes and rest of the synchronized nodes is recorded
at the end of each simulation. This is performed for 5 different
values of delay, i.e., 0, 0.5, 1, 2, 4. Therefore, the total number
of simulations performed are 8,000. For a given pair of values
of inter-layer and intra-layer coupling, the system can achieve
solitary state if a necessary amount of delay is applied to the
system. It is rather difficult and computationally demanding to
find the exact value of delay at which the system transits from the
synchronized to the solitary state for given values of inter-layer
and intra-layer coupling strength.

For that matter, we use machine learning techniques to find
the precise value of the critical delay for a given set of values of
inter-layer and intra-layer coupling strength.

The data that is used to train our model is tabulated in
four columns where first, second, third and fourth column
contain the values of interlayer coupling constant (σ ), intra-layer
coupling constant (µ1), delay (τ ), and 0 (1) for the synchronized
state (solitary state), respectively. A system is solitary or not
is decided by looking at the frequency difference between the
excited (delayed) node and a synchronized node. If the frequency
difference is more than threshold value of 0.01 the system’s state
is then delineated as solitary state. The data structure looks like
Table 6.

In order to predict the values of critical delay corresponding
to any given set of values for inter-layer and intra-layer coupling
strength, one trains a machine learning model to predict the final
state [synchronized (0) or solitary (1)] of the multilayer network
after feeding the input values of µ1, σ , and τ . The value of delay
is increased by 0.001 in each iteration while keeping the values
of µ1 and σ fixed. The prediction of MLP-NN model for each
combination of µ1, σ , and τ is then recorded for each iteration.
The lowest value of delay is recorded for which the network
makes transition from a synchronized state to solitary state. This
way the value of critical delay is obtained for a given pair of µ1

and σ .
We have seen for a 2D lattice network that MLP-NN is

the algorithm best suited to train a machine learning model
to predict the exact value of critical delay. Therefore, we use
MLP-NN again for generating a prediction model fed on the
dataset of the emergent solitary states in multilayer network (see
Table 8). The data is randomly split into training and testing set
in the ratio of 4:1. Parameters selected for the neural network
are shown in Table 7. We first generated 50 neural network
models with randomly chosen different training sets for each
iteration and then the output is averaged for each model to
obtain a final value of the critical delay. The confusion matrix
for the MLP-NNmodel is shown in Figure 8D. We also study the
sensitivity and the specificity of the MLP-NN model as shown in
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FIGURE 9 | The behavior of critical delay as a function of (a) µ1 and (b) σ for a multiplex network with σ = 2.81 and µ1 = 0.43, respectively. (c) Exhibits a heatmap in

µ1 and σ parameters space for the multiplex network. The colorbar represents the value of critical delay. The values of critical delay in (a–c) are calculated using a

trained MLP-NN machine learning model. (d) The critical delay as a function of µ1 for the multiplex network with σ = 3.82. Each line corresponds to a different value

of threshold for frequency difference between the desynchronized node and the synchronized nodes, to determine if a state is solitary or not. For a value of threshold

between 0.001 and 0.02, the predicted value of the critical delay using machine learning model does not see any significant change. Once the value of threshold

exceeds 0.02, the machine learning model starts yielding bad predictions.

Table 7. Using the trained multi layer perceptron neural network
model, the exact value of the critical delay can be calculated
for any pair of interlayer and intra-layer coupling strength
(Figures 9a–c).

The impact of the threshold for frequency difference to
differentiate between solitary state and synchronized state
is also studied (see Figure 9d). It is observed that if the
value of threshold frequency difference is low then changing
the threshold value does not have any significant effect
on the prediction of the critical delay but as soon as
the threshold is changed to a larger value such as a
value >0.02 then the machine learning model starts giving
wrong predictions.

4. CONCLUSION

In this paper, different supervised machine learning algorithms
have been employed for the model-free prediction of factors
characterizing the intensity of chimera and solitary states. We
demonstrated success of the scheme for two different model
systems namely, 2-D lattice and multilayer network. First,
chimera states (solitary states) are constructed by instituting
delays in the neighboring connections for a selected node (a
few isolated interlayer connections) in a 2-D lattice (multiplex
network) of Kuramoto oscillators. Next, three machine learning
algorithms, K-nearest neighbors, support vector machine and
multi-layer perceptron neural network are then put into practice
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to train the data obtained from the evolution of two network
models for the prediction of intensity of rippling chimera states
and the value of critical delay to characterize solitary states. It
is found that multi-layer perceptron neural network (MLP-NN)
classifier makes the most precise prediction in identifying the
possible desynchronized oscillators in the rippling chimera states
and the value of delay required to tailor the solitary states for
a given set of multiplex structural parameters. Furthermore, the
trained machine learning model was used to plot the entire phase
diagram for the rippling chimera and the solitary state.

To conclude, we demonstrated the success of powerful and
model-free machine learning algorithms in tailoring the chimera
and the solitary states and anticipate that this investigation
would be fruitful in broadening the scope of machine learning
techniques in characterizing other dynamical properties and
phenomena such as occurrence of explosive synchronization.
The study is particularly useful is accessing the systems
parameter for experimental setup toward engineering chimeras
and Solitary states.
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The anterior cingulate cortex (ACC) and hippocampus (HIPP) are two key brain regions
associated with pain and pain-related affective processing. However, whether and how
pelvic pain alters the neural activity and connectivity of the ACC and HIPP under
baseline and during social pain, and the underlying cellular and molecular mechanisms,
remain unclear. Using functional magnetic resonance imaging (fMRI) combined with
electrophysiology and biochemistry, we show that pelvic pain, particularly, primary
dysmenorrhea (PDM), causes an increase in the functional connectivity between ACC
and HIPP in resting-state fMRI, and a smaller reduction in connectivity during social
exclusion in PDM females with periovulatory phase. Similarly, model rats demonstrate
significantly increased ACC-HIPP synchronization in the gamma band, associating with
reduced modulation by ACC-theta on HIPP-gamma and increased levels of receptor
proteins and excitation. This study brings together human fMRI and animal research
and enables improved therapeutic strategies for ameliorating pain and pain-related
affective processing.

Keywords: pelvic pain, anterior cingulate cortex, hippocampus, neural circuits, functional magnetic resonance
imaging, electrophysiology

INTRODUCTION

Pain, which is a negative experience involving sensory, emotional, cognitive and social dimensions,
is classified into physical and social pain, which is defined as the painful feelings following
social rejection, exclusion, or loss (Eisenberger, 2015; Williams and Craig, 2016). Growing
evidence suggests that the experience of social pain relies on some of the same neurobiological
processes underlying experiences of physical pain (Eisenberger, 2012). Pelvic pain, such as primary
dysmenorrhea (PDM) which is menstrual pain without organic causes affecting approximately half
of menstruating females (Iacovides et al., 2015), contains both acute and chronic components of
pain (Wei et al., 2016) associated with impaired sensory and affective processes (Rhudy and Bartley,
2010), and structural and functional brain alterations (Low et al., 2018). It is becoming increasingly
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clear that PDM results in aberrant processing of physical and
social pain (Pitangui et al., 2013; Yu et al., 2018). Interactional
processing of physical and social pain (Borsook and MacDonald,
2010) involves similar brain regions, including the anterior
cingulate cortex (ACC) and the adjacent medial prefrontal cortex
(Bliss et al., 2016). Chronic pain causes increased neuronal
activity in the ACC in humans (Hutchison et al., 1999), non-
human primates (Iwata et al., 2005), and rodent pain models
(Zhang et al., 2017), and is accompanied by neurophysiological
and psychological changes (Bushnell et al., 2013), including
depression and anxiety (Zhuo, 2016). Negative emotional stimuli,
such as social exclusion (social pain), activate a range of brain
areas involving the ACC (Eisenberger et al., 2003). Together, the
above studies linked increased ACC neuronal activity to negative
experience, highlighting the role of the ACC in processing and
even potentially integrating physical and social pain. However,
how pelvic pain, such as PDM, alters ACC-related neuronal
pathways involved in the processing of neurophysiological and
psychological stressors has not been tested in detail.

A key feature of chronic pain is the amplified affective
response to nociceptive inputs (Zhou et al., 2018). The
ACC processes and regulates both the sensory and affective
component of pain (Eisenberger, 2012; Wager et al., 2016)
and the hippocampus (HIPP) has been shown to participate
in the integrative processing of pain (Bushnell et al., 2013).
In particular, neuropathic pain alters HIPP-mediated behavior,
synaptic plasticity and neurogenesis in rodents (Mutso et al.,
2012). Moreover, the HIPP is involved when pain moves
from an acute toward a chronic state, indicating a shift in
the representation of pain in the brain from nociceptive to
emotional circuits (Hashmi et al., 2013). Furthermore, the ACC
interacts with the HIPP to mediate both cognitive and affective
components of pain (Bliss et al., 2016). Increased activation of
the ACC and HIPP is observed in post-traumatic stress disorder
during the encoding of negative words (Thomaes et al., 2013).
These findings implicate a critical role for both ACC and HIPP in
the processing and integration of physical and social pain (Bliss
et al., 2016; Jiang et al., 2018).

Functional connectivity (FC) between distant brain areas
reflects neuronal and synaptic communications for the
entrainment of various cognitive, emotional and sensory
processing (Friston, 1994; Arieli et al., 1996; Tobia et al., 2017).
Oscillatory activities, and their interplay, such as theta and
gamma rhythms, render neuronal communication effective,
precise, and selective, of which oscillatory coherence functions
as a general indicator of communication between brain areas
(Fries, 2015). Low frequency neural oscillations reflect large-scale
network-level coordination across different neural circuits
(Buzsaki and Draguhn, 2004). A recent human study highlighted
the possible role of a disturbed dynamic coordination of the
brain network in the pathophysiology of PDM and revealed
abnormal low frequency theta oscillations in physical and
social pain processing areas of the brain, such as the insula,
parahippocampal gyrus, and cingulate cortex of PDM females
(Lee et al., 2017). On the other hand, gamma oscillations
represent the neuronal coordination of different brain regions
(Gregoriou et al., 2009). Recent animal and human studies

provide converging evidence that gamma oscillations are closely
related to pain perception (Hu and Iannetti, 2019; Tan et al.,
2019). In addition, cross-frequency phase-amplitude coupling
(PAC), in which the amplitude of higher (e.g., gamma) rhythms
is particularly modulated by the phase of lower (e.g., theta)
rhythms, indicates a more complex regulatory feature through
interactions between different frequency bands, such as long-
range theta and local gamma communication (Wirt and Hyman,
2019; Chen et al., 2021). However, the possible abnormalities
induced by PDM in ACC-HIPP connectivity and the underlying
mechanisms of the condition remain unclear.

To address these issues, we employed integrative methods,
including resting-state and task state (social exclusion task)
functional magnetic resonance imaging (fMRI) in PDM humans,
in combination with pharmacological, in vivo and in vitro
electrophysiological, biochemical, and behavioral techniques in
a pelvic pain rat model. We hypothesize that pelvic pain, such
as PDM, may cause abnormal neuronal activity in the ACC and
HIPP, and subsequent disruption in the connectivity between the
two structures. The results obtained improve our understanding
of how pelvic pain, including PDM, causes neural circuit changes
and reveal that brain networks known to modulate both physical
and social pain might display markers of central nervous system
(CNS) abnormality in pelvic pain. The study provides some new
preliminary support for the use of cross-species experiments
to investigate pelvic pain, which may facilitate the search for
relevant treatments.

MATERIALS AND METHODS

Participants
This study was approved by the South China Normal University
and Guangzhou University Institutional Ethics Review Board
(2017–139). Human participants provided written informed
consent prior to participation. A total of eighty right-handed
(Li et al., 2017; Wasylyshyn et al., 2018) university female
students (ages 18–25) who came to the recruitment were
enrolled in this study which included 38 PDM and 42 non-PDM
controls. PDM and control subjects were matched according
to gynecological age. Demographic and clinical information are
shown in Table 1. College students with dysmenorrhea (DM)
were selected and PDM was further diagnosed in Sun Yat-sen
Memorial Hospital, where magnetic resonance imaging (MRI)
was performed to ensure there was no macroscopic structural
abnormality inside or outside the uterus. Briefly, the diagnostic
criteria for PDM were similar to those defined by the American
College of Obstetricians & Gynecologists (American College of
Obstetricians and Gynecologists, 2006). The following inclusion
criteria were used for PDM participants: (1) a menstrual cycle of
average 30 days; (2) a history of menstrual pain over more than
12 months; (3) a self-assessed severity of the average menstrual
pain of 5 and above over the previous 6 months based on the
visual analog scale (VAS, 0 = not at all, 10 = the worst imaginable
pain); and (4) a pelvis MRI scan did not show any anatomical
pelvic disease. The inclusion criteria for the controls were similar
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TABLE 1 | Demographic and clinical information of the PDM subjects and controls used in human MRI.

Resting-state fMRI (M ± SD) Task fMRI (M ± SD) Structural MRI (M ± SD)

PDM (n = 35) Ctrl (n = 38) p value PDM (n = 30) Ctrl (n = 31) p value PDM (n = 38) Ctrl (n = 42) p value

Age, yearsa 20.49 ± 1.20 20.58 ± 1.52 0.694 20.70 ± 1.12 20.45 ± 1.06 0.326 20.55 ± 1.22 20.60 ± 1.47 0.633

Age of onset of menstruation, yearsa 12.60 ± 1.31 13.05 ± 1.51 0.196 12.53 ± 1.31 12.32 ± 2.75 0.952 12.63 ± 1.28 12.95 ± 1.50 0.364

Menstrual duration, yearsa 7.89 ± 1.75 7.53 ± 1.70 0.417 8.17 ± 1.76 8.13 ± 2.90 0.479 7.92 ± 1.71 7.64 ± 1.66 0.551

Menstrual cycle, daysa 30.63 ± 2.77 29.13 ± 2.53 0.019 29.67 ± 3.16 28.74 ± 2.62 0.120 30.50 ± 2.82 29.17 ± 2.51 0.023

Pain begin age, years 15.14 ± 1.99 N/A N/A 14.93 ± 2.12 N/A N/A 15.03 ± 1.98 N/A N/A

Pain duration year, years 5.14 ± 2.13 N/A N/A 5.53 ± 2.22 N/A N/A 5.29 ± 2.12 N/A N/A

Pain degree 6.54 ± 1.09 N/A N/A 6.77 ± 1.03 N/A N/A 6.61 ± 1.10 N/A N/A

Positive emotion

Pre-testa N/A N/A N/A 15.03 ± 5.93 16.45 ± 5.54 0.188 N/A N/A N/A

Post-testa N/A N/A N/A 13.13 ± 4.96 14.71 ± 5.69 0.304 N/A N/A N/A

p-value within groupb N/A N/A N/A 0.088 0.059 N/A N/A N/A N/A

Negative emotion

Pre-testa N/A N/A N/A 12.23 ± 2.54 11.39 ± 2.35 0.151 N/A N/A N/A

Post-testa N/A N/A N/A 12.67 ± 3.17 12 ± 3.54 0.155 N/A N/A N/A

p-value within groupb N/A N/A N/A 0.771 0.297 N/A N/A N/A N/A

BNQ

Pre-testc N/A N/A N/A 2.33 ± 0.42 2.42 ± 0.40 0.407 N/A N/A N/A

Post-testc N/A N/A N/A 3.11 ± 0.42 3.10 ± 0.46 0.988 N/A N/A N/A

p-value within groupd N/A N/A N/A <0.001 <0.001 N/A N/A N/A N/A

PDM, primary dysmenorrhea; Ctrl, controls; BNQ, basic needs questionnaire. aMann–Whitney test; bWilcoxon test; cTwo-sample t-tests; dPaired-sample t-tests; M, mean
value; SD, standard deviation; N/A, non-applicable.

to those for the PDM subjects except that the controls had a self-
assessed VAS of 0. Exclusion criteria included pregnancy, organic
pelvic disease, alcohol or drug abuse, failure of MRI scans due to
metal or pacemaker implants, and formal diagnosis of psychiatric
conditions. Urinary luteinizing hormone tests were performed
to verify experimentally whether the participants were in their
periovulatory phase (i.e., days 12–16 of the menstrual cycle),
which is the phase when influence of chronic PDM was usually
evaluated (Wei et al., 2016; Liu J. et al., 2017; Liu et al., 2018).

Human Experimental Procedure
The scheme of the experiment is presented in Figure 2A.
After arriving at the lab, participants were asked to complete a
detailed consent form. Psychological questionnaires (including
the Positive and Negative Affect Scale, PANAS (Watson et al.,
1988), and the Basic Needs Questionnaire, BNQ) (Bernstein and
Claypool, 2012) were processed to obtain the baseline emotional
state. Next, participants with PDM underwent abdominal and
pelvic cavity, uterus and accessory MRI scans, and clinicians
made the final diagnosis on whether the subjects were PDM
patients. Participants who met the inclusion criteria then read
the instructions outside the MRI room, and the researcher orally
interpreted the instructions to the participants, indicating the
duration of the experiment, the requirement to keep the head
fixed and to warn about the noise of the machine and related
equipment. Then, groups of three participants (including one
real participant in the study and two fixed female ‘actors’)
engaged in a 10-min group interaction session, after which
participants were told to begin a Cyberball game, a paradigm
based on a virtual ball-tossing game, where participants believe

they are playing with other real participants, although in
fact these are computer-generated (Eisenberger et al., 2003).
Blood oxygenation level-dependent (BOLD) signal changes were
recorded during the Cyberball task.

In the scanner, participants saw an animated ball-tossing
game, with an icon representing their own hand at the bottom
and the two other players depicted as animated icons in the upper
corners. The names of the group members were shown next to
each icon and participants could throw the ball to whoever they
liked. Pressing "1" delivers the ball to the member in the upper
left corner, while pressing "2" throws the ball to the member
in the upper right corner. Participants were instructed to throw
the ball within 2 s of receiving it. If the time exceeds 2 s, the
system will temporarily transfer the ball randomly. The computer
players waited 0.5–2.0 s before making a throw to heighten
the sense that the participant was actually playing with other
individuals. Each participant participated in three rounds of the
Cyberball game during three fMRI scans. Each round of the
Cyberball program consisted of 60 throws (including participant
and computer players’ throws) and lasted 3 min. The three
rounds of Cyberball (Figure 2B) were as following, (1) Cyberball
observation, implicit social exclusion (ISE), where participants
were told that the intranet connection was not effective yet
because of technical problems, but that they could watch the
other participants playing; (2) Cyberball inclusion (INCL), where
participants were told they were connected and played with
the other players, participant and other players were equally
likely to throw the ball; and (3) Cyberball exclusion, explicit
social exclusion (ESE), where participants received three throws
and were then excluded from the game (i.e., the other players
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started playing exclusively together, and the real participant never
received the ball again) (Eisenberger et al., 2003).

Participants and experimenters were in a double-blind
state, namely, participants were told that the purpose of the
study was to examine the effect of imagination on mission
performance; the experimenter did not know who among
the participants was a PDM subject. Immediately following
the scanning session, participants completed the PANAS and
BNQ questionnaires again. At the end of the experiment,
participants were asked whether they believed they were playing
the Cyberball game with the other two participants (i.e.,
the ‘actors’ they met initially). Subjects who failed to initiate
social exclusion were excluded according to their answers (for
example, if they did not believe that they were playing a real
game of pitching, but thought it was a pre-set experimental
procedure) and the PANAS and BNQ scales scores before and
after the Cyberball game were compared (Eisenberger et al.,
2006). In this study, both PDM subjects and controls showed
a significantly higher post-BNQ score than pre-BNQ score,
indicating that the participants noticed the exclusion and felt
excluded (Table 1). Finally, each participant received 70 yuan
(RMB) as compensation and was thoroughly debriefed about the
purpose of the study.

MR Data Acquisition and Preprocessing
Magnetic resonance (MR) data were acquired on a 3.0
Tesla clinical scanner (Achieva TX; Philips Healthcare, Best,
Netherlands) with an 8-channel head coil in Sun Yat-sen
Memorial Hospital, Sun Yat-sen University. We performed
resting-state fMRI (rs-fMRI) before task fMRI (T-fMRI) using a
T2∗-weighted fast-field echo-planar imaging (FFE-EPI) sequence
(rs-fMRI/T-fMRI TR = 2000 ms/3000 ms, TE = 30 ms, FA = 90◦,
FOV = 240 mm × 240 mm, acquisition matrix = 64 × 64,
thickness = 4.0 mm, 33 transverse slices covering the whole
brain; 240/60 volumes were obtained for rs-fMRI/each round
of T-fMRI). High-resolution structural images were collected
using a T1-weighted 3D FFE sequence (TR = 8.2 ms,
TE = 3.7 ms, FA = 8◦, FOV = 256 × 256, acquisition
matrix = 256× 256, thickness = 1 mm; 168 sagittal slices covered
the whole brain).

Rs-fMRI data were preprocessed using SPM 121 and the
DPABI v3.1 toolbox2 in MATLAB. For each subject, the first
10 functional images were discarded to reach magnetization
equilibrium and to allow adaptation to the MR environment.
Then, a slice-timing correction was conducted by setting the
middle slice (17th) as the reference. Realignment was performed
to estimate head motion, and two PDM subjects were excluded
due to excessive head motion (translation more than 2 mm, or
rotation more than 2◦). We also calculated the mean frame-
wise displacement based on Jenkinson’s model (FD-Jenkinson),
and ensured there was no significant group effect on the FD-
Jenkinson (Jenkinson et al., 2002). High-resolution structural
images were co-registered into functional images and segmented
into white matter, gray matter and cerebrospinal fluid. Then,

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
2http://www.rfmri.org/

we spatially normalized the functional images to the individual
structural image in standard MNI-152 standard space with
a resampled voxel size of 3 mm × 3 mm × 3 mm; one
PDM and four healthy subjects were excluded due to bad
normalization (such as, no alignment between functional image
and MNI-152 template; functional signal loss of normalization
map). Furthermore, nuisance covariates (Friston 24 head
motion parameters, mean white matter and mean cerebrospinal
fluid) were regressed out to reduce the effect of complex
noise. Finally, we further conducted spatial smoothing with
a Gaussian kernel of 4 mm full-width at half maximum
(FWHM) and performed band-pass filtering (0.01–0.1 Hz) to
reduce high-frequency physiological noise. Finally, 35 PDM
subjects and 38 controls were included in the further rs-
fMRI analysis.

In the T-fMRI, 34 PDM subjects and 36 controls completed the
three rounds of Cyberball. For each round of this task, the first
five volumes were removed to control for interference between
rounds. Other T-fMRI preprocessing steps, including slice-
timing, realignment, co-registration, normalization and spatial
smoothing, were conducted as for rs-fMRI preprocessing. A high-
pass filter (cutoff 128 s) was used to remove low-frequency noise.
After quality control, nine subjects with excessive head motion or
bad normalization were excluded, leaving 30 PDM subjects and
31 healthy controls for further analysis.

Static FC Between ACC and HIPP in the
rs-fMRI
Since static FC assumes that brain connectivity is temporally
stationary (Fox and Raichle, 2007), we calculated the correlation
coefficient between ACC and HIPP over the whole scan
time to reflect the overall connections. The bilateral ACC
and HIPP were selected as regions of interest (ROIs) for
ROI-based FC based on the Automated Anatomical Labeling
atlas (AAL) (Rolls et al., 2015), which is widely used for
human brain imaging analysis. The specific MNI locations
of the ROIs (ACC and HIPP) are viewed on the ICBM152
human brain surface (Mazziotta et al., 2001; Figure 1A).
For each participant, we extracted the time courses of
each ROI from preprocessed images. Then, the Pearson’s
correlation coefficients (r) between ACC and HIPP were
computed. To improve the normality of group analysis, Fisher’s
z-transformation was performed to convert the r-value into a
z-value.

Dynamic FC Between ACC and HIPP in
the rs-fMRI
Dynamic FC between ACC and HIPP was calculated using a
sliding time-window approach. We fixed the length of the time-
window at 20 TRs (40 s) and the sliding step to 1 TR: 211 FC
matrices between ACC and HIPP were obtained for each subject
[time points: TP = 230 TRs; length of time-window (L) = 20 TRs;
sliding step = 1 TR; dynamic FC matrices: T = TP – L+ 1 = 211]
(Li et al., 2014). The standard deviation of FC across all 211
slide-window FC matrices was calculated as FC variability, which
reflects the discreteness of FC.
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FIGURE 1 | Greater static FC and FC variability between ACC and HIPP, with unchanged GM volumes, in PDM females. (A) Three-dimensional brain view of the
ICBM152 MNI depicting the location of the bilateral ACC (red) and HIPP (yellow) based on the Anatomical Automatic Labeling (AAL) atlas. (B) In the static FC, PDM
subjects exhibited increased FC between ACC.L-HIPP.L, ACC.L-HIPP.R, ACC.R-HIPP.L, and ACC.R-HIPP.R. (C) The PDM group exhibited significantly greater FC
variability between ACC.L-HIPP.L and ACC.R-HIPP.L than controls. (D) The GM volume of both ACC and HIPP did not change significantly in PDM females
compared to controls (p > 0.05). L, left hemisphere; R, right hemisphere. Error bars = ± 1 SE. n = 35 (38) and 38 (42) for PDM and control females in the static FC,
FC variability (GM volume) analysis, respectively. Non-parametric permutation test with days of menstrual cycle as regressor for static FC, FC variability and GM
volume. ∗p < 0.05; **p < 0.01.
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GLM and PPI Analysis in the T-fMRI
Whole-brain general linear model (GLM) analysis was performed
using standard hemodynamic response function to identify brain
activation during the Cyberball task. Each round of Cyberball
(ISE, INCL, ESE) was modeled using a block design. The
contrasts of interest – implicit exclusion compared with inclusion
(ISE-INCL), explicit exclusion compared with implicit exclusion
(ESE-ISE), and explicit exclusion compared with inclusion
(ESE-INCL) – were then computed to depict social exclusion
resulting from peer rejection. The GLM parameter maps of
the contrasts were generated for each participant. Significant
differences in brain activation were evaluated by performing a
group comparison of the GLM-parameter maps.

Psychophysiological interaction (PPI) analysis (Friston et al.,
1997) was conducted to determine which cerebral regions were
functionally connected with the ROI for each of the ISE-
INCL, ESE-ISE, ESE-INCL contrasts separately. Prior studies
suggested that the ACC is activated by social exclusion (Bolling
et al., 2011; Masten et al., 2011) and therefore the ACC
(ACC.L/ACC.R/combined bilateral ACC) was chosen to initiate
the PPI analysis. The deconvolved activity time-series of the left
ACC, right ACC, and combined bilateral ACC were extracted
and adjusted for effects of interest (ISE-INCL, ESE-ISE, ESE-
INCL), and the PPI term was created using the ROI eigenvariate
and the specific task contrasts (ISE-INCL, ESE-ISE, ESE-INCL).
Finally, a second GLM was performed with a condition-specific
regressor probing each contrast (ISE-INCL, ESE-ISE, ESE-INCL)
to obtain the PPI parameter map, allowing the identification of
ACC-connectivity changes for social exclusion during Cyberball.
To further clarify the connectivity between ACC and HIPP under
social exclusion conditions, the mean PPI parameter of HIPP was
extracted for the group comparison.

Voxel-Based Morphology Analysis of the
Structural MRI
The T1-weighted structural images were preprocessed with the
VBM toolbox in the SPM12. The GM volume of each subject was
evaluated using voxel-based morphology (VBM) analysis. First,
the structural image was manually reoriented to MNI space and
centered on the anterior commissure to facilitate the following
segmentation step. The reoriented image was then segmented
into GM and white matter using the unified segmentation
approach. Spatial smoothing with 4 mm FWHM was performed
on the warped and modulated GM map to improve the spatial
resolution. Finally, we restricted our search regions to the ACC
and HIPP, rather than the whole brain. To achieve this, we
extracted the GM signal of the ACC and HIPP for each subject.

Experimental Animals
Female Sprague-Dawley (SD) rats were purchased from the
Laboratory Animal Center of Southern Medical University
(Guangzhou, China) and kept at the School of Life Sciences,
South China Normal University, with controlled humidity and
temperature, and a 12 h (6:30 AM to 6:30 PM) light–dark
cycle. Rats involved in experiments were used according to
international and university ethical standards. Food and water

were available ad libitum. Animals weighing 250–300 g (120–
150 days old) were given on average 7 days to adjust to the new
environment prior to the experiments. Pelvic pain model was
generated by intraperitoneal (IP) injection of estradiol benzoate
and oxytocin (both Ningbo Hormone Inc., China).

Rat PDM Model
The experimental procedures of this study were approved by
the Animal Protection and Use Committee of Guangzhou
University and South China Normal University. The chronic
PDM rat model was generated by modification of an acute
PDM mouse model (Chen et al., 2013; Jesuino et al., 2019).
Briefly, estradiol benzoate was injected (IP, two times/week,
4 mg/Kg) for eight consecutive weeks (wks). From the
fourth wk through the eighth wk, PDM rat model were
injected with oxytocin (IP, one injection/week, 20 IU/Kg/per
injection) 24 h after injection of estradiol benzoate. Control rats
received injections of an equal volume of estradiol benzoate
and saline. Paw withdrawal mechanical threshold (PWMT)
(Chaplan et al., 1994; Liu Y. et al., 2017), electrophysiological
and biochemical evaluations were conducted in control
and PDM rats between 24 and 72 h following the last
oxytocin injections.

In vivo Surgery and Extracellular
Recording
In vivo dual-site extracellular recordings were conducted as
described with a few modifications (Noguchi et al., 2017;
Chen et al., 2019). Rats were anesthetized with pentobarbital
sodium (IP 80 mg/kg, Sigma, United States) then head-fixed
in a stereotaxic apparatus (RWD Life Science, China) with
body temperature maintained between 36 and 37◦C. When
necessary, a supplemental dose of anesthesia was given based
on tail reflex. After a midline skin incision was made, two
skull holes were drilled above the ACC (2.5 mm anterior
to the bregma, 0.4 mm lateral to the midline, 1.7-2.0 mm
depth) and the dorsal CA1 subregion of the HIPP (3.6 mm
posterior to the bregma, 2.0 mm lateral to the midline, 2.2–
2.5 mm depth, 10◦) under a stereomicroscope (Sunny Optical
Technology, China). Two glass microelectrodes for recording
(filled with 0.5 M NaCl, resistance 4–6 M�) were slowly
inserted until the tips of the electrodes reached the ACC
and hippocampal CA1. Each recorded signal was amplified
(1,000x) by an electrometer amplifier (Model 3000; A-M Systems,
United States) and digitized via a D/A converter (Micro
1401; Cambridge Electronic Design, Ltd., United Kingdom),
then sent to data acquisition software (Spike2; Cambridge
Electronic Design).

LFP Analysis
Extracellular recording data were analyzed offline in MATLAB.
For processing the local field potential (LFP), a Butterworth low
pass filter (300 Hz) was applied to the raw recorded data. Power
spectral density was computed using Thomson’s multitaper
method for a fast Fourier transformation (FFT) to determine
the power for specific frequency bands. Frequency ranges were
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defined as follows: delta: 1–4 Hz; theta: 4–12 Hz; gamma: 30–
100 Hz, of which theta frequency covers a wider range in the
rodent (Buzsaki and Draguhn, 2004; Tamura et al., 2017).

We performed synchronization analysis in line with our
established methodological protocol (Chen et al., 2019).
Simultaneous signals were subjected to cross-correlation
estimation to quantitatively evaluate the similarity. The maximal
offset was set to ±1 s. After the calculation, spectral coherence
between the two LFPs from the ACC and HIPP was analyzed
using a FFT number of 212, and the values ranged from 0
to 1, meaning non-correlated or completely correlated in the
frequency domain.

To further evaluate the synchrony between the oscillations of
ACC and HIPP, weighted phase lag index (WPLI) analysis, which
is based on the complex conjugate of spectral coherence (Vinck
et al., 2011), was conducted to the same dataset. The indices were
shown from 0 to 1 as mentioned above.

To access the modulation strength of cross-frequency
oscillations, we first derived the instantaneous phase and
amplitude from the targeted signals of both areas, then
analytically clustered the theta phases binned into 20◦ intervals
with the corresponding gamma amplitude at the same time in
the other region. Both directions were analyzed to compare the
influence of the theta band on the interregional gamma band.

Whole-Cell Patch-Clamp Recording
Acute brain slices containing ACC and HIPP (350 µm) were
prepared according to routine procedures (Chen et al., 2017; Luo
et al., 2019), from control and PDM rats using a vibratome (VT
1000S, Leica, Germany) in oxygenated ice-cold cutting solution
containing (in mM), 119 NaCl, 2.5 KCl, 2.5 CaCl2,1.3 MgSO4, 1
NaH2PO4, 11 D-glucose, 26.2 NaHCO3 (pH 7.2-7.4), saturated
with 95% O2/5% CO2. Slices were kept in artificial cerebrospinal
fluid (aCSF) containing (in mM) 140 NaCl, 4.7 KCl, 2.5 CaCl2,
1.2 MgCl2, 11 D-glucose, 10 HEPES (pH 7.2-7.4), and gassed
with 95% O2/5% CO2. Slices were incubated for 1 h at 30–32◦C
before recording and then transferred to a submerged recording
chamber where temperature was held at 32 ± 0.5◦C with an
automatic temperature controller (TC-324B, Warner Instrument
Corporation) with aCSF flow set at 2–3 ml/min.

Pyramidal neurons were identified by their morphology,
typically characterized by a triangular-shaped soma, in brain
slices (Ramaswamy and Markram, 2015). To record miniature
excitatory and inhibitory postsynaptic currents (mEPSCs and
mIPSCs) from pyramidal neurons of the ACC and HIPP, voltage
was held at –60 and 0 mV, respectively. To block fast sodium
channel activity and thus action potential, 1 µM TTX was added
to the aCSF (Chen et al., 2017). The pipette was filled with the
following internal solution (mM): 100 mM Cs-gluconate, 5 mM
CsCl, 10 mM HEPES, 2 mM MgCl2, 1 mM CaCl2, 11 mM
BAPTA, 4 mM ATP, and 0.4 mM GTP (pH 7.3, adjusted with
KOH) at an osmolality of 280–290 mOsm. Data were collected
with a MultiClamp 700 B amplifier (Axon Instruments) and
filtered during acquisition with a low pass filter set at 2 kHz
using pCLAMP10 software (Molecular Devices, United States).
The data were analyzed offline using Mini Analysis Program
(Synaptosoft Inc., United States).

Western Blotting Analysis
Rat brains were dissected and ACC and HIPP tissues were
removed on ice as previously described (Chen et al., 2017).
Tissues were then homogenized in SDS buffer (50 mM Tris pH
7.5, 150 mM NaCl, 5 mM EDTA pH 8.0, 1% SDS). Cellular debris
was removed by centrifugation at 4◦C (14,000 rpm for 10 min)
and the supernatant was collected for analysis. Tissue lysates
were subjected to SDS-PAGE, and transferred to nitrocellulose
membranes. The membranes were blocked with 5% non-fat
dry milk and incubated with specific primary antibodies GluR1
(Abcam, ab31232; dilution 1:1000), GluR2 (Abcam, ab206293;
dilution 1:2000), GluR4 (Abcam, ab119995; dilution 1:4000),
NMDAR1 (Abcam, ab109182; dilution 1:4000) or NMDAR2B
(Abcam, ab65783; dilution 1:4000) overnight at 4◦C. GAPDH
(Beyotime, AF0006; dilution 1:5000) or anti-β-actin antibody
(Sigma, United States; dilution 1:5000) was used as a loading
control. After three washes with TBST, HRP-labeled secondary
antibody (CWS, China) was added at room temperature for 1 h
using 5% milk in TBST followed by three additional washes
with TBST. The Immobilon ECL western system (Millipore,
United States) was then used to visualize the bands, which were
quantified and analyzed with Gel-Pro Analysis software (Media
Cybernetics, United States).

Statistical Analysis
Normal distribution was tested in demographics and
psychological data. Except for the BNQ score, all data were
not distributed normally. Thus, Mann–Whitney tests were
used to detect differences in age, age of onset of menstruation,
menstrual duration, menstrual cycle, and PANAS between the
PDM subjects and healthy controls. Wilcoxon test was used
to detect difference in PANAS between pre- and post-tests.
Parametric tests (including two-sample t-tests and paired-sample
t-tests) were performed to determine differences in BNQ between
and within group, respectively. Two-sample t-tests were also
performed to detect group differences in the GLM-parameter
map and PPI-parameter map, to identify abnormal regional
brain activity and abnormal regions functionally connected with
the ACC. Multiple comparison corrections were conducted using
an AlphaSim correction (both voxel-wise threshold and cluster
threshold were set as p < 0.05) and the Gaussian Random Field
correction (voxel-wise threshold: p < 0.01; cluster threshold:
p < 0.05) separately. A non-parametric permutation test was
conducted to identify between-group differences in the static
FC, FC variability, GM volume and ACC-HIPP PPI parameters.
In the calculation, we took the menstrual cycle as covariate
and regressed it out if there was a significant difference in the
menstrual cycle between PDM subjects and controls. For LFP
analysis, the data were first tested for normal distribution. None
of the datasets were distributed normally, therefore a non-
parametric test was used for two-group comparisons. Student’s
t-test was used in two-group comparisons of western blotting
results. For comparisons of multiple groups, one-way ANOVA or
two-way ANOVA with post hoc tests were used. Data are shown
as mean ± SEM unless otherwise stated. Statistical significance
threshold was set at p < 0.05.
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RESULTS

Demographic and Clinical Information of
PDM Subjects and Controls Used in MRI
For the rs-fMRI and structural MRI, no significant differences
were found for the age, age of onset of menstruation or menstrual
duration between the PDM subjects and controls, while a longer
menstrual cycle was found in the PDM subjects. For the T-fMRI,
there were no significant between-group differences for age, age
of onset of menstruation, menstrual duration, menstrual cycle,
PANAS, and BNQ. Both groups showed no significant difference
in PANAS between pre- and post-test values, and a significantly
higher post-BNQ score than pre-BNQ score. The specific values
are presented in Table 1.

Significantly Increased FC in rs-fMRI
Between ACC and HIPP in PDM Women
To examine the synchronization of blood oxygenation level
dependent (BOLD) signals between the ACC and HIPP, we
first evaluated FC, utilizing rs-fMRI, for both static and
dynamic FC in 35 PDM women with 5.14 ± 2.13 years
dysmenorrhea and 38 age-matched controls (Table 1). Static FC
increased significantly in PDM subjects between left/right ACC
and left/right HIPP (ACC.L-HIPP.L, ACC.L-HIPP.R, ACC.R-
HIPP.L, ACC.R-HIPP.R) compared to controls (p < 0.05;
Figure 1B), indicating that experiencing 5 years of PDM changes
brain FC between the ACC and HIPP. Given that the human
brain is a complex and interactive system that dynamically
processes information flow and that changes in FC over time
are not revealed by static FC evaluations (Hutchison et al.,
2013), we next examined the variability in FC, i.e., changes in
the connections between the ACC and HIPP, using a sliding
time window (see section “Materials and Methods” for details).
The dynamic FC calculations revealed significantly increased FC
variability between the left ACC and left HIPP (ACC.L-HIPP.L)
as well as between the right ACC and left HIPP (ACC.R-HIPP.L)
in the PDM cohort (p < 0.05; Figure 1C). Thus, both static
and dynamic FC suggest an overall increase in communication
between the ACC and HIPP in PDM females.

Alterations in FC Revealed by T-fMRI
During Social Exclusion Induced by
Cyberball
Given that being socially integrated is a primary human need
(Adolphs, 2010), and that emotional/mental stimuli can lead to
altered activation of brain areas, such as the ACC (Singer et al.,
2004), we next asked whether the experience of PDM, a type of
physical pain, would change the brain activation and FC when
dealing with negative and positive emotional stimulations, i.e.,
social exclusion and inclusion conditions. To do so, we used
the Cyberball task, a paradigm based on a virtual ball-tossing
game, including three scenarios of implicit social exclusion (ISE),
inclusion (INCL), and explicit social exclusion (ESE) (Williams
et al., 2000; Eisenberger et al., 2003).

We first evaluated the condition-related differences in regional
brain activity as measured by T-fMRI utilizing the general
linear model (GLM), a method used to evaluate differences
in activation under various conditions by subtracting one
condition from another, i.e., in this case, ISE-INCL, ESE-
ISE, and ESE-INCL (Friston et al., 1997). In the GLM
analysis, PDM females showed decreased activation of the
right Crus II of the cerebellar hemisphere (CERCRU2) in
the ESE-ISE contrast compared to controls (Figure 2C and
Table 2). No significant difference was found in the ISE-
INCL and ESE-INCL contrast between PDM subjects and
controls (Table 2).

We next conducted psychophysiological interaction (PPI)
analysis (Friston et al., 1997) to determine which brain
regions were functionally connected with the ACC. In
the ISE-INCL contrast, the FC between ACC.L-brainstem
and ACC-brainstem (including the right parahippocampal
region, PHIPP.R) was higher in PDM females than in
controls (Figure 3A and Table 3). In the ESE-INCL
condition, PDM females demonstrated increased connectivity
between ACC.L-right thalamus (THA.R)/PHIPP.L/right
inferior frontal gyrus, triangular part (IFGtriang.R), ACC.R-
HIPP.R/HIPP.L/IFGtriang.R/right superior frontal gyrus
(SFG.R), and ACC-HIPP.R/HIPP.L/right middle frontal gyrus
(MFG.R) (Figure 3B and Table 3). Identical FC between regions
connected with ACC.L/ACC.R/ACC was observed in PDM
subjects and controls in the ESE-ISE contrast. Together, the
results indicate increased connections between the ACC and
the above brain areas in response to Cyberball-induced social
exclusion in PDM females.

We further evaluated the FC of the ACC-HIPP pathway
using PPI analysis to reveal whether and how this specific
pathway differs between PDM subjects and controls. We
found that in the ISE-INCL contrast, PDM females showed
significantly increased FC in the ACC.L-HIPP.L and ACC.R-
HIPP.L circuits (Figure 3C). Furthermore, the combined
ACC analysis, i.e., not separating left and right ACC, also
showed significantly increased ACC-HIPP FC in the ISE-
INCL contrast in PDM subjects (Figure 3C1). In the ESE-
ISE contrast, overall ACC-HIPP FC did not differ significantly
in PDM women (Figure 3D1), although FC of the ACC.L-
HIPP.L and ACC.R-HIPP.L connections was significantly lower
(Figure 3D). The results suggest that exclusion, whether explicit
or implicit, triggered similar FC in the ACC-HIPP pathway
in PDM and control females. In the ESE-INCL contrast,
PDM subjects also showed significantly higher FC for all four
ACC-HIPP connections (Figure 3E) as well as the combined
analysis (Figure 3E1).

Identical GM Volume in PDM and Control
Subjects
Prolonged nociceptive input to the CNS has been shown to
induce functional and structural alterations throughout the
nervous system (Denk and McMahon, 2017). Having shown
that significant differences occurred in the static and dynamic
FC of PDM females, we investigated the GM volume of the
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FIGURE 2 | Abnormal brain activation in the right CERECRU2 for the ESE-ISE contrasts in PDM females. (A) Scheme of the experiment: baseline emotional state
was collected using psychological questionnaires including Positive and Negative Affect Scales (PANAS) and Basic Needs Questionnaire (BNQ) for each subject.
Then, MRI scans were performed in the resting-state and during three Cyberball scenarios. Finally, the PANAS and BNQ were conducted again to record the
post-emotional status of the subjects. (B) Schematic representation of the three Cyberball scenarios: Cyberball observation represents ISE, where participants were
told that the intranet connection was not yet effective due to technical issues, but that they could watch other participants play; Cyberball inclusion, INCL, where
subjects participated in the social activity of passing the ball; Cyberball exclusion, ESE, individuals were prevented from participating in the social activity of passing
the ball by other players playing among themselves only. (C) Significantly reduced activation in the right CERCRU2 for the ESE-ISE contrasts in the PDM group
compared to Controls. The GLM-parameter (β value) for each region was extracted to reflect the brain activation in the PDM and Controls. n = 30 and 31 for PDM
and control females, respectively. Error bars = ± 1 SEM. Two-sample t-test and AlphaSim correction with voxel-wise threshold of p < 0.05 and a cluster threshold of
p < 0.05 were used to determine the brain regions with significantly abnormal activity. The color bar represents the t-value. CERCRU2, Crus II of cerebellar
hemisphere; R, right hemisphere. ***p < 0.001.

ACC and HIPP using a voxel-based morphometry (VBM)
approach. However, we found no significant differences between
PDM subjects and controls (Figure 1D). Thus, the above
abnormal connections between ACC and HIPP are not due to
GM volume changes.

Increased Writhing and Reduced Pain
Threshold in a Pelvic Pain Rat Model
Given the ethical constraints of human studies, cellular and
molecular studies using rodent models are beginning to be
used to provide insights into the mechanisms that give rise

to chronic pain (Zhuo, 2014). However, this has not been
tested directly in PDM due to the lack of a chronic PDM
rodent model. Therefore, we generated a chronic pelvic pain
rat model that mimics dysmenorrhea-like pain experience based
on an existing acute rodent PDM model (Chen et al., 2013;
Jesuino et al., 2019), which was characterized by evaluating the
levels of prostaglandin F2α and prostaglandin E2, endometrial
thickness, and uterine artery blood flow velocity, etc., features
that are similar to those found in human PDM (Yang
et al., 2015). In this study, after 4 weeks of intraperitoneal
(IP) estradiol benzoate injections, which promotes enhanced
sensitivity of the uterus to oxytocin (Chen et al., 2013),
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TABLE 2 | Specific brain regions show significant group differences in activation for ISE-INCL, ESE-ISE, ESE-INCL contrasts.

Peak location
(AAL-90)

No. of voxels Peak t-value Peak coordinate in MNI
space

Included
other regions

GLM-parameter (β value)
(mean ± SEM)

X Y Z PDM Ctrl

ISE-INCL

PDM-Ctrl N/A N/A N/A N/A N/A N/A N/A N/A N/A

ESE-ISE

PDM-Ctrl CERCRU2.R 196 –3.655 36 –78 –48 CERCRU1.R,
ITG.R

–0.873 ± 0.241 0.298 ± 0.224

ESE-INCL

PDM-Ctrl N/A N/A N/A N/A N/A N/A N/A N/A N/A

ISE, implicit social exclusion; INCL, inclusion; ESE, explicit social exclusion; PDM, primary dysmenorrhea; Ctrl, controls; GLM, general linear model; MNI, Montreal
Neurological Institute; AAL, automated anatomical labeling atlas; CERCRU2, Crus II of cerebellar hemisphere; CERCRU1, Crus I of cerebellar hemisphere; ITG, inferior
temporal gyrus; SEM, standard error of mean; R, right hemisphere. N/A, non-applicable.

oxytocin (PDM) or saline (Control) was IP-injected 24 h after
estradiol benzoate and repeated for five consecutive weeks
(Figure 4A). The rats given estradiol and oxytocin injections
exhibited pain induced writhing, indicating abdominal/visceral
pain (Supplementary Material 1), i.e., dysmenorrhea-like
behavior, due to uterine contraction (Sun et al., 2002). The
number of writhing events within a 30 min time window
was evaluated (Figure 4B). Average writhing latency was
less than 10 s after each oxytocin injection (Figure 4C). In
agreement with findings suggesting that women with PDM
have elevated pain reactivity (Iacovides et al., 2013), rat with
pelvic pain showed a significantly decreased paw withdrawal
mechanical threshold (PWMT) (Figure 4D), indicating that
these rats are hypersensitive to pain. We next conducted
electrophysiological and biochemical experiments in model and
control rats to uncover molecular and cellular alterations induced
by chronic pelvic pain.

Alterations in Oscillatory Power in the
ACC and HIPP
Neuronal oscillatory activity, which is the neural basis of MRI
and is preferentially sensitive to BOLD (Logothetis et al.,
2001), is fundamental for the entrainment of precise temporal
relationships between neuronal responses involved in cognition,
perception and emotion (Mathalon and Sohal, 2015). To further
evaluate whether the rat model is indeed representative of PDM,
we examined whether abnormal neural oscillations occur in
pelvic pain model rats by simultaneous dual-site LFP recording
in the ACC and dorsal HIPP (Figure 5A). We found that the
model rat demonstrated significantly enhanced theta power in
the ACC (Figure 5B) and significantly enhanced gamma power
in the HIPP (Figure 5C).

Increased Gamma Coherence and WPLI
Between ACC and HIPP in Model Rats
Functional coupling of oscillatory activities between pain
processing and affective brain areas underlies the suffering
associated with chronic pain (e.g., cognitional and emotional
alterations), but this cannot easily be studied in PDM women.
We thus examined electrical connectivity between the ACC and

HIPP using cross-correlation analysis of LFPs (Engel et al., 2001).
Model and control rats demonstrated similar correlation values
in both ACC-leading and HIPP-leading directions (Figure 5D),
suggesting the existence of similar bidirectional communication
between the ACC and HIPP.

We next evaluated ACC-HIPP connectivity in the frequency
domain (Figure 5E) by coherence analysis (Chen et al., 2021), and
observed significantly increased coherence in the gamma range
in model rats (Figure 5F). To better understand the connectivity
in more precise phase ranges, we next used WPLI analysis
(Vinck et al., 2011) which can reduce the contingency caused by
the bidirectional connection. The result showed a significantly
increased gamma-specific WPLI in model rats (Figures 5G,H),
which was in agreement with the coherence analysis. Given
that resting state FC indicated by BOLD output reflects the
contributions of low frequency LFP signals and their dynamic
changes (Shi et al., 2019), and that gamma band modulations co-
localize with BOLD (Lachaux et al., 2007; Scheeringa et al., 2011),
the enhanced synchronization observed between the ACC and
HIPP in the gamma range reflects the increased FC shown by
rs-fMRI in the ACC-HIPP pathway of PDM females.

Reduced ACC Theta Modulation on HIPP
Gamma Oscillations in Model Rats
The above results uncovered, in addition to increased ACC-
HIPP connectivity, altered theta and gamma oscillations in the
ACC and HIPP, respectively. The ACC is a key cortical region
for pain perception (Vogt, 2005; Zhuo, 2008) and increased
theta oscillation may indicate an alteration in how the ACC
modulates HIPP activity. To confirm this, we next determined
the strength of cross-frequency PAC between ipsilateral ACC
and HIPP (Figure 5I). Despite an increase in the power of ACC
theta oscillations, the modulating effect of ACC theta on HIPP
gamma oscillations decreased significantly. At the same time,
the modulatory effect by HIPP-theta on ACC-gamma oscillations
remained unchanged (Figures 5J,K). Thus, chronic pelvic pain
results in a reduction of ACC theta-HIPP gamma coupling,
suggesting that pelvic pain, such as PDM may change top-down
ACC informational input into the HIPP.
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FIGURE 3 | Abnormal connectivity between ACC and HIPP in PDM females revealed by PPI analysis. (A,B) The PDM cohort has increased ACC connectivity in the
ISE-INCL and ESE-INCL contrasts. In the ISE-INCL contrast (A), PDM females show increased ACC.L/ACC connectivity with brainstem. In the ESE-INCL contrast
(B), PDM women demonstrate increased connectivity between ACC.L/ACC.R/ACC and other brain regions, including frontal cortex, thalamus, and HIPP. (C–E) The
PDM group exhibits a significant difference in ACC-HIPP connectivity compared to controls. For the ISE-INCL contrast (C), PDM subjects show increased
ACC.L-HIPP.L and ACC.R-HIPP.L connectivity. ACC.L-HIPP.R and ACC.R-HIPP.R connectivity is identical. In the ESE-ISE contrast (D), the PDM group show
decreased connectivity for the ACC.L-HIPP.L and ACC.R-HIPP.L circuits. ACC.L-HIPP.R and ACC.R-HIPP.R connectivity is also identical. In the ESE-INCL
comparison (E), PDM subjects demonstrate increased connectivity for all ACC-HIPP combinations. Combining the bilateral regions also shows that PDM women
have an overall increased ACC-HIPP connectivity in the ISE-INCL contrast (C1) and the ESE-INCL contrast (E1); and no significant difference in the ESE-ISE
contrast (D1). Given that the PPI value is negative, the increased ACC-HIPP connectivity in the PDM indicated less connectivity reduction in the ISE-INCL and
ESE-INCL contrast. L/R, left/right hemisphere; n = 30 and 31 for PDM and control females, respectively. The color bar represents the t-value. Error bars = ± 1 SEM.
Two-sample t-test and Gaussian Random Field (GRF) correction with voxel-wise threshold of p < 0.01 and cluster threshold of p < 0.05 were used to determine the
significantly abnormal brain regions functionally connected with ACC.L/ACC.R/ACC. A non-parametric permutation test was used for the specific ACC-HIPP
connectivity with p < 0.05. *p < 0.05; **p < 0.01.
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TABLE 3 | Specific brain regions show significant group differences in functional connectivity with ACC.L/ACC.R/ACC for ISE-INCL, ESE-ISE, ESE-INCL contrasts.

ROI Peak
location
(AAL-90)

No. of
voxels

Peak
t-value

Peak coordinate in MNI space Included other regions PPI-parameter (β value) (mean ± SEM)

X Y Z PDM Ctrl

ISE-INCL (PDM-Ctrl)

ACC.L N/A 198 3.659 9 –18 –33 Brainstem, CER4_5.L 0.571 ± 0.312 –1.095 ± 0.35

ACC.R N/A N/A N/A N/A N/A N/A N/A N/A N/A

ACC N/A 208 3.678 9 –18 –33 Brainstem, PHIPP.R,
AMYG.R, HIPP.R

0.63 ± 0.309 –1.08 ± 0.356

ESE-ISE (PDM-Ctrl)

ACC.L/ACC.R/ACC N/A N/A N/A N/A N/A N/A N/A N/A N/A

ESE-INCL (PDM-Ctrl)

ACC.L PHIPP.L 770 4.292 –15 0 –29 INS.L, HIPP.L, PHIPP.R –1.511 ± 0.251 –3.21 ± 0.292

IFGtriang.R 556 3.897 39 33 18 MFG.R, PUT.R, CAU.R,
ACC.R, INS.R

–2.653 ± 0.312 –4.382 ± 0.365

THA.R 1076 3.94 6 –12 20 MCC.L, MFG.L, SFG.L,
MCC.R, SFG.R, SMA.R,

PreCG.L

–2.744 ± 0.348 –4.561 ± 0.344

ACC.R N/A 579 4.484 –15 –15 –30 HIPP.L, PHIPP.L, –1.119 ± 0.226 –2.652 ± 0.267

IFGtriang.R 287 4.057 39 33 18 MFG.R, IFGoperc.R, INS.R,
PreCG.R

–2.498 ± 0.323 –4.228 ± 0.34

HIPP.R 241 3.839 30 –36 0 THA.R, THA.L, CAU.L –2.727 ± 0.311 –4.262 ± 0.278

SFG.R 261 3.497 18 24 42 MCC.L, MFG.L, SFG.L,
SMA.R

–2.885 ± 0.399 –4.771 ± 0.349

ACC N/A 652 4.478 –15 –15 –30 HIPP.L, PHIPP.L, PHIPP.R, –1.14 ± 0.227 –2.672 ± 0.269

MFG.R 489 4.21 42 33 21 IFGtriang.R, IFGoperc.R,
INS.R, PreCG.R

–2.489 ± 0.313 –4.24 ± 0.355

HIPP.R 391 3.934 30 –36 0 THA.R, THA.L, CAU.R,
CAU.L

–2.707 ± 0.311 –4.305 ± 0.308

ACC, anterior cingulate cortex; ISE, implicit social exclusion; INCL, inclusion; ESE, explicit social exclusion; PDM, primary dysmenorrhea; Ctrl, controls; PPI,
psychophysiological interaction; ROI, region of interesting; MNI, Montreal Neurological Institute; AAL, automated anatomical labeling atlas; CER4_5, lobule IV, V of
cerebellar hemisphere; PHIPP, parahippocampal gyrus; AMYG, amygdala; HIPP, hippocampal gyrus; INS, insula; IFGtriang, inferior frontal gyrus, triangular part; MFG,
middle frontal gyrus; PUT, putamen; CAU, caudate nucleus; ACC, anterior cingulate cortex; THA, thalamus; MCC, middle cingulate cortex; SFG, superior frontal gyrus;
SMA, supplementary motor area; PreCG, precentral gyrus; IFGoperc, inferior frontal gyrus, opercular part; SEM, standard error of mean; L/R, left/right hemisphere;
N/A, non-applicable.

Increased mEPSC Amplitude in ACC and
HIPP in Model Rats
Brain oscillations emerge as a consequence of local interactions
between excitatory and inhibitory synaptic activities (Verret et al.,
2012). Thus, the abnormal oscillations observed in the present
study may implicate altered synaptic activities, because theta
and gamma oscillatory activities relate to synaptic plasticity, in
addition to network synchronization and memory formation
(Tesche and Karhu, 2000; Buzsaki and Draguhn, 2004). We
therefore examined whether or not abnormal excitatory and
inhibitory synaptic activity in the ACC and HIPP underlie the
aberrant oscillatory activity. Whole-cell patch-clamp recordings
were conducted in brain slices containing either ACC or HIPP
(Figure 6A). In voltage clamp mode and in the presence of
TTX to block fast sodium channels and thus action potentials,
the amplitude and frequency of mEPSCs and mIPSCs in the
pyramidal neurons of the ACC and HIPP were measured.

A significantly increased mEPSC amplitude was observed in
pyramidal neurons in both the ACC and HIPP of model rats
(Figures 6B,C,F,G), in agreement with the reported hyperactivity
of ACC (Zhang et al., 2017; Zhou et al., 2018) and HIPP
(Cardoso-Cruz et al., 2013) neurons during chronic pain.
In contrast, mEPSC frequency in both ACC (Figure 6C)
and HIPP (Figure 6G), as well as mIPSC amplitude and
frequency (Figures 6D,H), was identical. These results suggest
that increased excitation, which in turn leads to changes in
the excitation/inhibition ratio, may contribute to abnormal
oscillatory activities (Verret et al., 2012) in the ACC and HIPP.

Upregulation in Levels of Excitatory
Receptor Proteins in Model Rats
Postsynaptic excitatory responses are mediated mainly by
two groups of glutamatergic receptors, AMPA and NMDA
receptors (AMPARs, NMDARs) (Dai et al., 2019). The observed
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FIGURE 4 | Behavioral evaluations in model rats. Schematic diagram showing the timeline and treatments used in generating the pelvic pain model, together with
subsequent measurements. Starting from week four, oxytocin or saline was injected 24 h after estradiol benzoate for pelvic pain (PP) and control animals,
respectively (A). Writhing and pain threshold was measured 24 h after the last dose of oxytocin or saline, LFPs were recorded on days 58 and 59. (B,C) Number of
writhing events (30 min time window) (4 weeks: PP: 28.442 ± 3.217; 5 weeks: 37.154 ± 3.485; 6 weeks: 27.442 ± 3.156; 7 weeks: 22.308 ± 2.133; 8 weeks:
20.481 ± 2.789) (t = 9.947, p = 1.627 × 10-18) and latency (4 weeks: 5.072 ± 1.694 s; 5 weeks: 4.302 ± 1.544 s; 6 weeks: 7.069 ± 1.882 s; 7 weeks:
4.334 ± 0.950 s; 8 weeks: 7.820 ± 1.834 s) (n = 26). (D) Model rats show significantly reduced paw withdrawal mechanical threshold (PWMT) compared to control
rats (n = 8–10) (PP: 6.199 ± 1.296 g; Control: 25.368 ± 0.000 g) (t = –16.667, p = 1.558 × 10−11), suggesting increased pain sensitivity in model rats, which is in
agreement with observations in PDM women. Values represent mean ± SEM. ***p < 0.001.

enhancement of mEPSC amplitude could be accounted for
by increased levels of AMPARs and/or NMDARs. We next
performed western blotting experiments with anti-AMPAR- and
anti-NMDAR-subunit antibodies on ACC and HIPP lysates of
model and control rats, which revealed significantly increased
levels of both the AMPAR subunit, GluR1, and the NMDAR
subunit, NR1, in the ACC (Figure 6E) and the HIPP (Figure 6I)
of model rats. Together with the data showing increased
mEPSC amplitude, these results suggest that upregulated levels of
excitatory receptors may underlie hyperactivity of the ACC and
HIPP in chronic PDM female.

DISCUSSION

We demonstrate here with two lines of evidence, human fMRI
and animal electrophysiological, molecular and biochemical
evaluations, that chronic pelvic pain, such as PDM, alters the
FC of the ACC-HIPP pathway. In the first part of our study,
in humans, we investigated the FC between the ACC and other
brain areas, with an emphasis on the ACC-HIPP pathway, using
fMRI in both rs-fMRI and T-fMRI, which can identify brain

activation during social pain. In the second part of our study,
we sought to fill a gap in the literature, i.e., the lack of a chronic
animal model of PDM, and investigated the potential correlation
between data obtained from female humans with PDM and the
rat model that mimics PDM experience. We performed in vivo
evaluation of LFPs in the ACC and HIPP, in vitro evaluation
of whole-cell mEPSCs and mIPSCs, and tested levels of related
proteins. Together, the results uncover changes caused by pelvic
pain at the molecular, cellular, and systematic levels. The current
findings represent, to the best of our knowledge, the first report
linking alterations in the ACC-HIPP circuit in both human
PDM subjects and a rodent model of pelvic pain. Therefore, this
study provides an opportunity to determine common features
that reliably contribute to pain perception and its modulation
and emotional processing in pelvic pain, and should also allow
testing of potential therapies for pelvic pain, including PDM,
in the rat model.

Primary dysmenorrhea females show increased FC between
the caudal ACC and primary somatosensory cortex, the
perigenual ACC and caudate, and the subgenual ACC and medial
prefrontal cortex (Liu et al., 2018). Our rs-fMRI results here
extend this knowledge by revealing greater FC and FC variability
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FIGURE 5 | Altered oscillations and connectivity in ACC and HIPP of model rats. (A) Schematic diagram showing the timeline of model rat’s generation and dual
channel in vivo LFP recordings in the left hemisphere. Starting from week 4, oxytocin was IP injected 24 h after injection of estradiol. The last dose of oxytocin was
injected on day 57 and LFPs were recorded on days 58 and 59. (B) Representative traces of extracellular LFPs, as well as filtered delta, theta and gamma
oscillations in the ACC of both groups (left). ACC oscillatory power in the theta band increases significantly in model compared to control rats, while delta and
gamma oscillations remain identical between the two groups (z = –0.281, p = 0.779 for delta; z = –2.209, p = 0.027 for theta; z = 0.114, p = 0.909 for gamma;
Mann–Whitney test). (C) Representative traces of extracellular LFPs, as well as filtered delta, theta and gamma oscillations in the HIPP of both groups (left). HIPP of
model rats show significantly increased oscillatory power in the gamma band, while delta and theta oscillations remain identical between the two groups (z = –1.45,
p = 0.147 for delta; z = –0.88, p = 0.379 for theta; z = –2.723, p = 0.006 for gamma; Mann–Whitney test). (D) The simultaneous LFP signals between ACC and HIPP
have approximately symmetrical cross-correlation values at positive (ACC leading) and negative (HIPP leading) time lags in model and control animals, suggesting
bidirectional communication between these two brain areas. (E) Averaged coherence curve between LFPs in ACC and HIPP. Notably, model rat differs significantly
from control rats in the gamma band. (F) Gamma coherence between ACC and HIPP in model rats is significantly higher than that of controls (z = –2.289, p = 0.022;
Mann–Whitney test). (G) Averaged WPLI curve between LFPs recorded in ACC and HIPP. (H) Gamma WPLI between ACC and HIPP is significantly higher in model
rats (z = –2.711, p = 0.0067; Mann–Whitney test). (I) Probability distribution of cross-frequency theta-gamma coupling in both directions. (J,K) Quantification shows
significantly reduced modulatory effect of ACC theta on HIPP gamma activity (p = 0.034), while modulation by HIPP theta of ACC gamma remains unchanged
(p = 0.818; two-way ANOVA). Values represent mean ± SEM. n = 10–12; *p < 0.05, **p < 0.01.
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FIGURE 6 | Increased mEPSC amplitude and levels of excitatory postsynaptic receptors in model rats. (A) Diagram showing model generation and patch
clamp/western blot analysis. (B) Representative mEPSC (left) and mIPSC (right) traces recorded in the ACC. (C) Statistical analysis indicating significantly increased
amplitude but not frequency of mEPSCs in model rat ACC (frequency: Control, 1.92 ± 0.06 Hz, PP, 1.71 ± 0.124 Hz, p = 0.136; amplitude: Control, 12.26 ± 0.48
pA, PP, 14.22 ± 0.55 pA, p = 0.012; Control, n = 21 cells of five rats; PP, n = 18 cells of five rats). (D) Identical mIPSC frequency and amplitude in control and model
ACC (frequency: Control, 2.00 ± 0.11 Hz, PP, 1.95 ± 0.11 Hz, p = 0.20; amplitude: Control,13.06 ± 0.59 pA, PP, 11.67 ± 0.55 pA, p = 0.09; Control, n = 22 cells
of five rats; PP, n = 22 cells of five rats). (E) Example of immunoblots of ACC extracts probed with anti-GluR1, GluR2, GluR4, NR1, and NR2B antibodies and
quantification of the immunoblots revealing significant increases in levels of GluR1 (p = 0.014) and NR1 (p = 0.024), but not GluR2, GluR4 and NR2B.
(F) Representative mEPSC (left) and mIPSC (right) traces in the HIPP. (G) Statistical analysis showing significantly increased mEPSC amplitude, but not frequency, in
model rats (frequency: Control, 1.36 ± 0.12 Hz, p = 0.23; PP, 1.31 ± 0.15 Hz, p = 0.23; amplitude: Control, 10.89 ± 0.78 pA, PP, 12.67 ± 0.84 pA, p = 0.02;
Control, n = 21 cells of five rats; PP, n = 20 cells of five rats). (H) Identical mIPSC frequency and amplitude in HIPP of control and model rats (frequency: Control,
0.98 ± 0.14, PP, 0.76 ± 0.18, p = 0.43; amplitude: Control, 10.71 ± 0.53, PP, 9.82 ± 0.59, p = 0.36; Control, n = 22 cells of 5 rats; PP, n = 22 cells of five rats).
(I) Example of immunoblots probed with anti-GluR1, GluR2, GluR4, NR1, and NR2B antibodies and quantification of the immunoblots revealing a significant increase
in levels of NR1 (p = 0.029). Values represent mean ± SEM. One-way ANOVA was used for mEPSCs and mIPSCs, and two-sample t-test for western blotting.
*p < 0.05, ***p < 0.001.
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between the ACC and HIPP in PDM females, which was further
confirmed by LFP analysis that reveals increased communication
in the theta and gamma range in the model rats. Specifically, the
static and dynamic FC between the ACC and HIPP, structures
critically involved in processing sensory, cognitive and affective
components of pain (Rainville et al., 1997; Hutchison et al.,
1999; Hashmi et al., 2013), were significantly enhanced in PDM
females in rs-fMRI experiments, i.e., under basal conditions
(without stimulation).

In T-fMRI experiments, we first revealed that PDM subjects
have a lower, but controls a higher, level of CERCRU2 activation
in the ESE condition compared to ISE. This result preliminarily
suggests a role for the cerebellum in the response of implicit
and explicit rejection, which requires confirmation in future
studies due to the limitations of liberal correction used here.
Moreover, our PPI analyses between the ACC and other brain
regions demonstrate that PDM subjects have more ACC-
brainstem/HIPP/THA/frontal lobe connections in the ISE-INCL
and ESE-INCL. Furthermore, the PPI results suggest that ACC-
HIPP coupling differs in a social experience-dependent manner
in PDM women, representing higher ACC-HIPP connectivity
overall in the ISE-INCL and ESE-INCL contrasts. Given that
PPI values are negative here (Figure 3E), higher PPI values
(FC) indicate that PDM females demonstrate a smaller reduction
in connectivity during social exclusion, suggesting that PDM
alters the response of the ACC-HIPP pathway under social
pain conditions.

Interestingly, our previous behavioral evaluations showed that
PDM females have a higher physical pain threshold in social
exclusion situations (Yu et al., 2018). Therefore, the smaller
reduction in FC between the ACC and the HIPP, as reported
here, seems to be associated with a higher threshold of physical
pain and reduced pain perception during social exclusion in
PDM females. It is commonly accepted that negative emotional
situations, e.g., social exclusion and pessimism, are associated
with increased pain, while positive emotions are associated with
decreased pain perception (Hanssen et al., 2013). In our study,
social exclusion decreased pain perception in PDM females,
which was consistent with findings in fibromyalgia patients
(Canaipa et al., 2017). Social pain and physical pain have similar
psychological and neurological processing (Eisenberger, 2012).
The experience of long-term physical pain may lead to social-
pain numbing (DeWall and Baumeister, 2006; Canaipa et al.,
2016, 2017). Thus, social exclusion (social pain) has less influence
on PDM females. Together, our previous and current studies
implicate a potential link between ACC-HIPP connectivity and
pain perception, highlighting the importance of evaluating pain
networks, including those involving the ACC, in a broader social
context (Sturgeon and Zautra, 2016), which, no doubt, will result
in better treatment of pelvic pain.

It is noteworthy that we did not observe significantly altered
GM volumes of either the ACC or HIPP in PDM females, which
differs from a previous report (Tu et al., 2010), which showed
increased GM volume in PDM females as measured by voxel-
based morphometry in several brain areas, including the ACC
and HIPP (right posterior), in the absence of pain. We think
that this difference in findings might be due to the different pain

history of the respective PDM cohorts, because the subjects used
for GM volume estimation in our study have a PDM history
of 5.29 ± 2.12 years, whereas there was a longer PDM history
(10.19± 3.25 years) in the earlier study.

What is largely lacking in the field is a cellular and
molecular understanding of how distinct areas of the brain
interact to process sensory and affective components of pelvic
pain. We found in the present study that ACC neurons
exhibit hyperexcitation, in line with previous studies showing
hyperactivity of the ACC in various physical and social pain
conditions (Hutchison et al., 1999; Zhuo, 2014). Moreover,
significantly increased theta power in the ACC of a model rat
suggests that an increase in theta oscillations might be a common
abnormality in both human (Lee et al., 2017; Ploner et al., 2017)
and rodent models of pelvic pain. We also observed that ACC-
HIPP synchrony of gamma oscillations increased significantly,
which further suggested an upregulated FC of neuronal dynamics
in this pathway, associated with reduced modulation by ACC
theta oscillations of HIPP gamma oscillations.

Indeed, despite the stronger integration of the ACC-HIPP
pathway in both human and model rat, we observed a
smaller reduction in connectivity between ACC and HIPP
(as shown by an increased FC value) during social exclusion
in PDM women and reduced regulation of HIPP gamma
by ACC theta in the PDM rat model. Considering ACC
theta oscillations modulate HIPP high frequency activities via
both direct and indirect ways in contextual processing during
remote recall (Wirt and Hyman, 2019), it is likely that the
increase in the ACC theta is an attempt by the regulatory
circuit to compensate for the abnormally enhanced HIPP-
gamma oscillations observed, although clearly this regulation
is insufficient to restore normal levels. This might suggest
that ineffective regulation of HIPP activity by the ACC may
contribute, at least in part, to the abnormal ACC-HIPP FC and
altered physical pain threshold in social exclusion situations (Yu
et al., 2018) in PDM females. Thus, manipulating the ACC-HIPP
circuit may ameliorate processing of physical and emotional pain
in subjects with pelvic, such as PDM. Furthermore, our whole-
cell patch clamp recording and western blotting analysis revealed
an increased mEPSC amplitude associated with upregulated
levels of NMDAR and AMPAR in both ACC and HIPP, thus
highlighting some of the cellular and molecular mechanisms
underlying pelvic pain.

There are differing reports on whether pain and social
rejection are represented in the same (Eisenberger, 2015) or
distinct (Woo et al., 2014) neural substrates; the present study
suggests that physical and social pain may indeed interact
in PDM subjects, leading to altered ACC-HIPP connectivity
and physical- and social-pain processing. Although important
questions remain open, human MRI together with LFP results
obtained from model rat suggest a defective ACC-HIPP pathway
in chronic pelvic pain. Therefore, the present study improves
our understanding of how the coordination between ACC and
HIPP becomes maladapted in chronic PDM, leading to aberrant
processing of pain perception and pain-associated emotion. Thus,
our work should also facilitate therapeutic targeting of pain-
related psychiatric conditions.
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