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Editorial on the Research Topic

Advanced Time Series Analysis in Geosciences

A time series is an ordered sequence of data indexed by time. In other words, it is a sequence of
discrete-time data, usually obtained at equally spaced points in time. Time series analysis is the
attempt of extracting meaningful characteristics and statistical information from data organized in
chronological order.

Nowadays, there are numerous types of data analysis approaches available for time series which
are suitable for different purposes: diagnosing past behavior, prediction and forecasting, curve fitting,
interpolation and extrapolation, classification and clustering, segmentation and decomposition,
frequency characterization, etc.

The theoretical advances in time series analysis started early at the beginning of the last century
with new developments in the field of stochastic processes. The first actual application of
autoregressive models to time series can be identified in the work of Yule (1927) and Walker
(1931). But it is since the pioneering book “Time Series Analysis” by Box and Jenkins in the 1970s
(Box and Jenkins, 1970), that many lines of study in time series analysis have been developed.

Today we are witnessing a rapid increase in quantity, quality and importance of time series data in
Earth Sciences. Across its vast number of subdisciplines, the massive production of data, e.g., through
the growth of continuous monitoring networks and the availability of abundant remote sensing data,
is making increasingly important the use of analysis tools capable of synthesizing information
contained in large time series.

To deal with the increasing amount of available data in an automated way, the first emerging
approaches of machine learning in time series analysis date back to the early 1980s (Nielsen, 2019). At
present, although classical methods are still dominant, machine learning is rapidly emerging as a valid
alternative approach to time series analysis, finding effectiveness especially in multivariate time series.

It is clear to everyone that, as continuous monitoring and data gathering become even more
common in geosciences, the need for powerful time series analysis techniques, either classical/
statistical or machine learning based techniques, will further increase. The impact of this need is
proven by an exponential growth shown by the occurrence of the keyword “time series analysis” in
papers published from 1985 to 2020, as indicated by both WoS (https://webofknowledge.com/) and
Scopus (https://www.scopus.com/) databases (Figure 1).

In this context, this Research Topic collects some illustrative examples of state of the art research
from across the world to delineate the dramatic and diverse nature of time series analysis in
geosciences. With the analysis of data over time providing the basis of many modern scientific
disciplines, this research covers a variety of applications in the field of geosciences.

Bueno et al. (https://doi.org/10.3389/feart.2019.00335/full) develop an innovative algorithm to
detect volcanic explosions in infrasound time series. The algorithm makes extensive use of classical
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signal processing techniques combined together to characterize
continuous volcano-acoustic records and detect explosive events.

With a similar aim, and for a closely related type of
observational signals, Sciotto and Montalto (https://doi.org/10.
3389/feart.2020.579923/abstract) propose to use a subspace-
based trigger algorithm to automatically detect also weak
events and outperform the classical STA/LTA (short-time
average/long-time average) detection algorithm, commonly
used in seismic time series.

Staying on the same kind of acoustic infrasound data in
volcanoes, De Angelis et al. (https://doi.org/10.3389/feart.2020.
00169/full) propose a way to process the signals recorded through
arrays of microphones to detecting and tracking acoustic sources
from multiple craters and active vents associated with different
types of volcanic activities. The proposed algorithm is based on
least-squares beamforming, and allows to evaluate the direction
and speed of propagation of acoustic waves between source and
array, and includes a quantitative assessment of the uncertainty
on array measurements based on error propagation theory.

In active volcanic areas, seismo-acoustic events represent a
great source of information on volcano status. Giudicepietro et al.
(https://doi.org/10.3389/feart.2020.581742/full) introduce a
modern unsupervised neural network approach for clustering
experimental seismo-acoustic events. The technique belongs to
the growing field of machine learning applications, and the
authors show its appropriateness for clustering natural events
such as the seismo-acoustic transients accompanying
Strombolian explosions. They also state that their
parameterization strategy may be suitable to extract significant

features of the seismo-acoustic signals linked to the physical
conditions of the volcanic system.

Still focusing on a volcano-related topic, another interesting
paper has been published by Rodríguez-Molina et al. (https://doi.
org/10.3389/feart.2020.577588/full), where heterogeneous
volcano deformation time series are analyzed to reconstruct
the evolution of volcanic source volumes and understand the
time scale of inter-eruptive processes. The adopted techniques
draw inspiration from the classical regularized linear regression
and Bayesian inversion.

In the context of oil extraction, Mancinelli (https://doi.org/10.
3389/feart.2020.00285/full) show how a 3D forward density
model can be used to compute the differential gravity
signature through time, e.g., before and after a production
period, thus helping to locate the causative source due to fluid
production.

Moschella et al. (https://doi.org/10.3389/feart.2020.00114/
full) analyze and put in a relation time series of microseism
recorded by seismic coastal stations with time series of significant
sea wave height measured offshore. They adopt some state-of-
the-art machine learning algorithms to create a regression model
able to link the two different kinds of signals.

As for the climate change topic, Diodato et al. (https://doi.org/
10.3389/feart.2020.561148/full) use statistical techniques to build
a model able to reconstruct the world longest time series of annual
number of days of snow on the ground (1,681–2018).

Within the same field, Li et al. (https://doi.org/10.3389/feart.
2020.00059/full) analyze the time series of net primary
production of China, and two indices linked with droughts.

FIGURE 1 | Yearly number of publications with the keyword “time series analysis” per year during 1985–2020 from WoS (A) and Scopus (B) database.
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They employ statistical approaches to analyze the data both in
spatial and time domains.

Guignard et al. (https://doi.org/10.3389/feart.2020.00255/full)
present a more theoretical paper with broad possible applications.
They propose the Fisher-Shannon information method as an
effective data exploration tool able to give diverse insights into
complex non-stationary time series. They also provide a Python
toolbox for the Fisher-Shannon method.

Smaï andWawrzyniak (https://doi.org/10.3389/feart.2020.00296/
full) produced an open source Python library, called Razorback,
implemented to handle, manipulate, and combine time series of
synchronous data produced in magnetotelluric studies.

Finally, Loose et al. (https://doi.org/10.3389/feart.2020.
537028/full) propose two machine learning-based methods (a
generalized additive model and a long short-term memory neural
network model) for bias correction of in situ sensor data. In
particular, such methods are applied to data from submersible
and shipboard mass spectrometers.

Of the great variety of techniques and applications in time
series analysis, in this collection we have seen how the human
ability to analyze data is still irreplaceable, despite the glimpse of
the great potential in artificial intelligence approaches for
scientific time series studies.
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Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom, 3Department of Geological

Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, 4Department of Theoretical Physics and

Cosmos, University of Granada, Granada, Spain, 5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Pisa, Italy

Infrasound is an increasingly popular tool for volcano monitoring, providing insights of the
unrest by detecting and characterizing acoustic waves produced by volcanic processes,
such as explosions, degassing, rockfalls, and lahars. Efficient event detection from large
infrasound databases gathered in volcanic settings relies on the availability of robust and
automated workflows. While numerous triggering algorithms for event detection have
been proposed in the past, they mostly focus on applications to seismological data.
Analyses of acoustic infrasound for signal detection is often performed manually or by
application of the traditional short-term average/long-term average (STA/LTA) algorithms,
which have shown limitations when applied in volcanic environments, or more generally
to signals with poor signal-to-noise ratios. Here, we present a new algorithm specifically
designed for automated detection of volcanic explosions from acoustic infrasound data
streams. The algorithm is based on the characterization of the shape of the explosion
signals, their duration, and frequency content. The algorithm combines noise reduction
techniques with automatic feature extraction in order to allow confident detection of
signals affected by non-stationary noise. We have benchmarked the performances of the
new detector by comparison with both the STA/LTA algorithm and human analysts, with
encouraging results. In this manuscript, we present our algorithm and make its software
implementation available to other potential users. This algorithm has potential to either be
implemented in near real-timemonitoring workflows or to catalog pre-existing databases.

Keywords: volcanic infrasound explosions, automatic detection, signal processing, characteristic function,

sub-band processing

1. INTRODUCTION

Seismic and acoustic signals are key in monitoring and characterizing volcanic unrest. Recent
technological advances in sensor development, data transmission, and archival protocols have
made the collection of large amounts of geophysical data commonplace at active volcanoes and
other monitoring environments. The sheer amount of data recorded makes their manual analysis
a challenging, frequently unfeasible, task. The implementation of automated tools to address this
challenge is, thus, vital for effective monitoring operations.

Automatic event detection and classification work-flows applied to seismic data include an
initial segmentation stage, commonly via the application of short-term average/long-term average
(STA/LTA) algorithms in order to parse the continuous seismograms into individual earthquake
waveforms with varied characteristics and sources (Allen., 1982). In more advanced processing
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work-flows, this is followed by automatic classification of
the signals by different methods, including Neural Networks
(Scarpetta et al., 2005), pattern recognition (e.g., Curilem
et al., 2014), Hidden Markov Models (Ibáñez et al., 2009),
Support Vector Machines (Giacco et al., 2009), or statistical
properties (Bueno et al., 2019). A wealth of new algorithms are
constantly published in the literature in order to improve the
efficiency of automatic detection and classification procedures for
different types of signals, including those associated with tectonic
earthquakes (Di Stefano et al., 2006; Álvarez et al., 2013; Bhatti
et al., 2016), low-frequency volcano-seismic events (Frank and
Shapiro, 2014), avalanches (Marchetti et al., 2015), and debris
flows (Schimmel and Hübl, 2016). Collectively, these algorithms
represent an important toolbox for the creation of high-quality
research databases.

Volcano infrasound is becoming increasingly popular as a
monitoring tool (Johnson and Ripepe, 2011; Fee et al., 2013);
among other applications, acoustic data are frequently used
for detection and characterization of explosive volcanic activity
(e.g., Garcés et al., 1999; Johnson et al., 2004; Vergniolle and
Ripepe, 2008; Caplan-Auerbach et al., 2010; Fee and Matoza,
2013; Lamb et al., 2015; De Angelis et al., 2019). Volcanic
explosions are commonly recorded by infrasound microphones
in the 0.01–20 Hz frequency band as signals characterized by
impulsive onsets followed by codas with variable duration, from
few seconds to several minutes. Due to the increasing amount of
acoustic infrasound data routinely collected on active volcanoes,
the development of tools for automated signal detection is
crucial for efficient monitoring. Here, we introduce an adaptative
infrasound detector based on time- and frequency-domain
characterization of volcanic explosion signals. We take advantage
of advanced signal processing techniques, in combination with a-
priori knowledge of recorded explosions, to implement a robust
infrasound detector based on adaptive multi-band processing.
The datasets selected for this study are obtained from two
previous monitoring campaigns at Santiaguito (Lamb et al.,
2019) and Mount Etna (Diaz-Moreno et al., 2019) volcanoes.
On Mount Etna volcano, Diaz-Moreno et al. (2019) studied
an inversion modeling workflow to derive infrasound acoustic
sources and estimate rate and volume of erupted materials.
On Santiaguito volcano, Lamb et al. (2019) provides a seismic
and infrasound analysis of three eruptive phases in a multi-
parametric monitoring framework, associating infrasound and
seismic signals. Hence, the sheer volume of recorded explosions
at both volcanoes makes an ideal ground for testing the VINEDA
algorithm, as the geological properties are already known.

2. DETECTION OF INFRASOUND
EXPLOSIONS

2.1. Algorithm Description
Detection of volcanic explosions in infrasound data streams is an
important and challenging task. The algorithm detailed here, the
Volcanic INfrasound ExplosionsDetectorAlgorithm (VINEDA),
parses raw acoustic data streams, x(n) into a normalized
characteristic function (CF) within a given frequency range

[flow,fhigh]; the frequency band is chosen to include themajority of
energy transported by explosion infrasound. Explosion temporal
boundaries are defined by the abrupt onset arrival and return
to background amplitude, with expected average durations
given by D = {Dmin . . .Dmax}, with Dmin and Dmax the
minimum and maximum expected duration of infrasound
explosions, respectively. The number of duration bands used
in the discriminant analysis is defined as Ndb. Background
amplitude is defined as characteristic low-amplitude stationary
signals (i.e., wind, noise, or lack of infrasound activity). The data
processing pipeline is illustrated in Figure 1, key parameters for
the algorithm are given in Algorithm 1, and Figure 2 shows the
outputs of each step of the workflow using infrasound recorded
of an explosion at Santiaguito volcano, Guatemala.

As the first step, an anti-aliasing Finite Impulse Response
(FIR) low-pass filter is applied with a corner frequency fhigh,
corresponding to the highest frequency component of interest
in the explosion signal investigated. This stage eliminates
noise outside the frequency band of interest for explosions,
eases computational load and reduces signal complexity, while
preserving important signal onset information. The sampling
frequency, fs, is usually much higher than fhigh (typical values
for fs and fhigh are of the order of 100 Hz and below 5
Hz, respectively); this allows, in the second processing step,
downsampling of the input signal, x(n), by a factor of R = fs/fs′,
being fs′ = 2 · fhigh. Downsampling is performed by a poly-
phase anti-aliasing filter to compensate for potential delays due
to re-sampling computations.

An adaptive de-trending filter is then applied to remove
noise that could affect the lower frequency range of infrasound
explosions, such as from wind or long-period instrument drift.
Detrending is implemented as a zero-phase high-pass FIR filter.
The order of this filter is given by the maximum duration of
the explosion (Dmax), whereas the cutoff frequency is fixed at
flow Hz. This filter also helps to mitigate the influence of low
frequency noise, such as microbaroms, which is often located at
very low frequency bands (i.e. [0.1–0.5] Hz) (Landès et al., 2012)
A median filter is further applied to remove spikes in the signal,
such as those associated with instrument or data transmission
noise. This filter reduces extreme values and smooths the input
signal (Figure 2B).

Since explosions are characterized by sharp onsets, a multi-
band filter stage has been specifically designed to provide no
edge delay (Álvarez et al., 2013). The design of the filter bank
(number of bands, central frequencies and bandwidths) depends
on the frequency content of the explosions to be detected.
Figure 2E depicts an instance of the impulse response of the FIR
filters designed. The center frequencies are uniformly distributed
within the frequency band of the explosion signal [flow, fhigh],
according to:

fck = flow + (k− 1) ·
(fhigh − flow)

Nfb

+
1

2
·
(fhigh − flow)

Nfb
with k = 1, . . . ,Nfb (1)

where Nfb is the number of sub-bands of the filter bank.
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FIGURE 1 | VINEDA Algorithm block diagram. (A) The signal is decimated and filtered in order to suppress noise and avoid spike distortions. (B) Successive steps
focus on the detection of infrasound explosions onset, using specialized designed filters and a discriminant detector based on a priori knowledge of the infrasonic
explosions. The computed characteristic function CF contains the detected explosions.

Algorithm 1 VINEDA parameters definition.

Input:

x: Trace containing the infrasound waveform in data samples.
fs: Sampling frequency of the infrasound waveform (Hz).
flow: Lower frequency content of the explosions to be detected
(Hz).
fhigh: Upper frequency content of the explosions to be detected
(Hz).
Nfb: Number of sub-bands used in the filter bank.
Dmin: Minimum duration of the explosions to be detected (s).
Dmax: Maximum duration of the explosions to be detected (s).
Ndb: Number of duration bands used in the discriminant
analysis.
β : Penalty factor for non-impulsive onsets.
Output:

CF: Characteristic function containing the detected explosions.
fs′ : Sampling frequency of the characteristic function (Hz).

Once the multi-bank filter is applied, signal envelopes are
computed within each sub-band; the envelope, ek(n

′), for each
sub-band is estimated as:

ek(n
′) =

√

sk(n′)2 + ŝk(n′)2 with k = 1, . . .Nfb (2)

where ŝk(n
′) is the Hilbert Transform of sk(n

′) (Bracewell, 1999).
All the sub-band envelopes are then added to obtain the signal
e(n′). This global envelope allows characterizing how energy is
delivered at the explosion onset (i.e., an abrupt rise followed by a
slow decay). Figure 2C shows the detected envelope e(n′) of the

explosion. The abrupt onset is detected, and the smooth decay
is preserved.

The next step in the detection algorithm is the application
of a discriminant filter to the signal e(n′) in order to compute
a characteristic function, CF(n′), and detect explosion onsets
(Figure 2D). The impulse response h(n′) of the proposed
discriminant filter is shown in Figure 2F; this filter is designed
to enhance signals with a sharp rise and gradual decay, such
as infrasound explosions, with a duration in the order of D.
Thus, the discriminant detector mitigates the effect of non-
stationary noises while finding the best match of infrasonic
signals (Álvarez et al., 2013). A penalty factor for non-impulsive
onsets, β , is added to increase the robustness of the filter
with respect to background noise. The value of β controls the
impulsivity of the signal we are going to detect, and it should
be selected on the basis of the expected onset. Larger β values
are required to detect very impulsive onsets with respect to
background noise.

In the final stage of the detection workflow, the characteristic
function, CF(n′), is normalized following a non-linear
companding method to emphasize onset arrivals without
loosing amplitude information (Rabiner and Gold, 1975). The
peak of CF(n′) corresponds to the onset of the detected explosion
event (Figure 2D).

The sequence of filtering stages is summarized in
Figures 2A–D. Note that the spike present in the raw signal x(n)
at ∼18 s is suppressed during processing and the long-period
trend is removed while the onset of the explosion signal is
preserved. The CF(n′) for the original explosion waveform is
shown in Figure 2D. The amplitude of the CF is proportional
to the sharpness of the original explosion onset. Notice that the
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FIGURE 2 | Output example for all intermediate steps of the VINEDA workflow. (A) The original infrasound signal of an explosion at Santiaguito volcano, Guatemala,
x(n). (B) The signal y(n′) is the output after decimation, detrending and median filtering stages. (C) The signal e(n′) represents the output of the no edge delay filter
bank. (D) A characteristic function CF (n′) is obtained from the signal, which can be used to perform the automatic detection. (E) Example of the impulse response of
the bandpass filters. (F) Impulse response for the proposed discriminant detector (Álvarez et al., 2013).

discriminant detector has suppressed background noise, thus
highlighting the explosion onset.

Finally, VINEDA is designed to be used with any single-
station recordings. However, the flexibility of VINEDA allows its
configuration in a parallel framework to work in a multi-station
setting. Once the signals have been detected, derived CFs can be
merged or interfaced with physical propagation models to locate
the events of interest.

2.2. Multi-Station Application Example on
Etna Volcano
VINEDA is a highly flexible algorithm that can be applied
to network data to enhance detection of infrasound signals
associated with volcanic explosions. Here, we demonstrate an
application to network data recorded at Mt. Etna volcano by
three infrasound sensors, during June 2017, with a frequency
content between [1.0–3.0] Hz and maximum duration of
Dmax = 5.0 s (Diaz-Moreno et al., 2019). Each sensor is
independently processed, as we aim to investigate how VINEDA

detects infrasound explosions from stations installed at different
locations from the volcanic vent.

Figure 3 shows the CFs along with signal envelopes (e1(n′),
e2(n′), e3(n′)) for each of the input signals (x1(n), x2(n), x3(n)).
Note that, generally, the proposed pre-processing steps yield
robust envelopes, as noise and long-period trends have been
filtered out, and the no-edge delay filter along with the envelope
detector characterize explosion onsets. However, when stations
are closer to the vent, the recorded explosions are less attenuated
with larger amplitudes and more obvious onsets (ET01, ET04,
and ET10 located at 1.0, 1.3, and 6 km from the vent, respectively;
Diaz-Moreno et al., 2019). While closer stations exhibit larger
CFs as observed for CF1(n′) and CF2(n′), the detector is still able
to observe a signal at the farthest station, CF3(n′). The results
presented in Figure 3 highlight the capabilities of VINEDA
to suppress much of the noise and still being able to detect
attenuated explosions at greater distances. The robustness of the
algorithm to perform multi-station detection permits a direct
embedding with atmospheric propagation models to compute
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FIGURE 3 | Application example on a multi-station configuration at Etna volcano in three different stations (ET01, ET04, and ET10 located at 1.0, 1.3, and 6 km from
the vent, respectively; Diaz-Moreno et al., 2019). Even if attenuated, the detector can recognize explosions at distant stations. When deployed on a single station, CF3
could be considered as a false positive. However, when complemented with other CFs and propagation models, the number of false positives could be
further reduced.

travel times based on VINEDA detections, thus reducing false
positives and easing the location of infrasound sources.

3. DATA EXPERIMENTATION AND
RESULTS

We applied the VINEDA algorithm to infrasound data from
low-intensity Strombolian explosions recorded at Mt. Etna
volcano during an experiment in the summer of 2017 (Diaz-
Moreno et al., 2019). Additionally, the generalization capabilities
of the algorithm across different volcanic settings are tested
with infrasound data from Santiaguito (Lamb et al., 2019). A
traditional STA/LTA algorithm is compared with VINEDA in
order to assess its detection performance and robustness. In
addition, 2 days of continuous data from both volcanoes were
also manually evaluated by a group of 6 experts. For every

waveform of a detected event, each individual expert checks the
presence/absence of an event and assign a quality factor Q. Faced
with the question “Is this an explosion?”, experts chose one of
three quality assessments: “strongly agree” (Q= 1), “agree” (Q=

2), and “undecided” (Q = 3). Figure 4 depicts three infrasound
signals with different quality factors, as reviewed by experts.
Notice that signal to noise ratio (SNR) along is the highest for Q1,
where the explosion is clearly visible. For lower quality values,
the segmented explosion is almost masked with background
fluctuations. All our experiments were performed on a 64 bit
computer with an i7-8700k CPU (3.70 GHz) processor, 16 GB
RAM, and Ubuntu 16.04. On this machine, VINEDA takes and
average of 0.72 s (over 10 runs) to process 1 day of infrasound
data of both volcanoes.

The Receiver Operating Characteristic (ROC) curve is an
excellent graphical technique to visualize the trade-off between
the sensitivity and the specificity of any detection system, for a
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particular decision threshold (Fawcett, 2006). The sensitivity is a
metric to evaluate the goodness of a model to detect true events
and according to the common definition from Signal Detection
Theory, the sensitivity can be calculated as:

sensitivity =
TP

FN + TP

where infrasound explosions are successfully detected (making a
true positive, TP), mistakenly ignored (making a false negative,
FN), and vice versa: other events or noise can be mistakenly
detected as explosions (making a false positive, FP).

FIGURE 4 | Infrasound signals from Etna 2017 experiment, as presented to
the experts during the annotation process. The assigned quality factors
(Q1,Q2,Q3) is also shown. Notice that the highest quality of Q1 implies the
best signal to noise ratio, with the explosion clearly distinguishable. For Q2, the
event is detected by VINEDA, despite lower amplitude values. For Q3,
atmospheric disturbances affect the infrasound signal, and even if the
explosion is detected, a multi-station analysis would help to decrease
false positives.

The specificity measures the proportion of actual negatives
that are correctly identified as such. Since VINEDA is a detector
(it detects infrasound explosions in an input signal in which
an event could be found at any time) but not a classifier, the
specificity of the detector is expressed as the rate of false positives
per hour (FP/h).

Figure 5 illustrates the ROC curves of detection for Etna
(left) and Santiaguito (right) volcanoes performed by VINEDA
algorithm (red) when compared to STA/LTA algorithm (blue),
and two quality criteria Q ≤ 2 and Q ≤ 3 as assessed by human
analysts. For Santiaguito volcano, explosions were characterized
by a duration of 4 s, with a frequency content in the range of
[1.0–3.0] Hz. Mount Etna explosions were characterized by an
average duration of 2 s, and a frequency content in the range
of [1.0–3.0] Hz. In both settings the parameters β and Nfb were
fixed to 3. Note that, from Equation (1), a Nfb = 3 yields
a set of central frequencies that covers the range of infrasonic
explosions for both volcanoes. The definition of the frequency
band [flow, fhigh] is essential to guarantee correct segmentation
boundaries. For Etna and Santiaguito volcano with given band
of 1.0–3.0 Hz., the computed frequencies for the multi-band
analysis are fc = [1.33, 2.00, 2.67] (see Equation 1), encompassing
the range of frequencies of interest for all explosive activity
analyzed. Similarly, a value of β = 3 helps to select events with
sharp onsets mitigating the influence of the background noise.
Given the mathematical design of the discriminant filter, larger
values of β fit sharp onsets whilst decreasing the computed CF
function for smaller (or attenuated) explosions. The vector range
of durations D is defined, for both volcanoes and a delta time-
step of 1 s, between Dmin = 2.0 and Dmax = 5.0 s. In practice,
the selected parameters suffice for the range of frequencies in
infrasonic explosions for these volcanoes, but this definition is
highly flexible and is left to the analyst on a per-case basis.

All streams were sampled at fs =100 Hz. The detection
thresholds (thr) varied between 0 and 240. STA/LTA is a simple
and effective method to detect transient events that defines a
characteristic function for detection as the ratio between the STA
and the LTA (the absolute values of the seismogram averaged
over short and long windows, respectively). In such way, the LTA
tracks the background seismic noise, while the STA/LTA ratio
increases when there is a sudden increase in signal amplitude

FIGURE 5 | ROC curve for ETNA (A) and Santiaguito (B) volcanoes comparing VINEDA and STA/LTA algorithms for different quality assessments of the experts (thr =
thresholds).
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FIGURE 6 | Values of the characteristic function in the VINEDA algorithm for Etna (A) and Santiaguito (B) volcanoes, for the events manually assessed by the experts
with the three different quality criterion considered: “strongly agree” (Q = 1), “agree” (Q = 2), and “undecided” (Q = 3). N indicates the total number of detected
explosions by the algorithm with the assigned quality factor.

(Allen., 1982). Using the infrasound data gathered at Santiaguito
and Mount Etna, STA/LTA was applied to the band of interest
([1.0–3.0] Hz for both volcanoes), with short and long windows
of 1 and 10 s, respectively.

The area under the ROC curve could provide an idea of the
benefits of any particular algorithm. For an algorithm with a
good performance, the area under this curve would be maximum
since the ideal detection threshold would be the one providing a
result closest to Sensitivity= 1 and FP/h= 0. Figure 5 shows that
VINEDA detector outperforms STA/LTA for both volcanoes. The
performance including events in which experts are “sure” (Q ≤ 2)
is better than that for “not sure” events (Q ≤ 3) in all cases.
The improvement in sensitivity and rate of false positives per
hour for VINEDA compared to STA/LTA in all cases is associated
to the specific processing of infrasound explosion signals that
the algorithm VINEDA carries out. The maximum value of the
CF function depends on the quality of the explosion signal.
Figure 6 shows the real value of the CF against the quality factor
assigned by the experts, in combination with the total number of
detected explosions (N). We observe that higher values on the CF
function are obtained for events with better quality. These events
would be detected using high values of the detection threshold,
while keeping the number of detected explosions low. This is
in line with the design of the algorithm, as restrictive detection
thresholds will only retrieve very distinctive explosions with
abrupt onsets, discarding the rest. By contrast, for less demanding
thresholds, the number of detected explosions increases but the
maximum value of the CF decreases. This behavior is expected,
and should be taken into account to set the detection threshold
depending on the particular needs or application.

The ever-increasing availability of infrasonic data requires
the development of mathematical routines that can be used
to detect events of geophysical interest. We have presented
VINEDA; a generic and scalable multi-step algorithm designed
to detect infrasound explosions. Our experimental evaluation
with data from two volcanoes, Santiaguito and Etna, suggest
that VINEDA improves performance over STA/LTA approaches.
For both volcanoes, the refinement of the detector shown
in the ROC curve, jointly with the value of the estimated

CF function, confirms the capabilities of VINEDA to surpass
STA/LTA. The discriminant detector helps to filter out non-
stationary noises and acts as a penalty to temporally longer
infrasound events, such as rockfalls, avalanches, or degassing.
Further, the quality of detections is strengthened by VINEDA’s
capabilities to function in a multi-station setting. We suggest
that the procedure described here can be used to annotate high-
quality data from sequential infrasound streams for further post-
processing, including the training of advanced machine learning
models, picking algorithms or geo-statistical modeling.

4. CONCLUSIONS

Acoustic infrasound provides unique insights on the dynamics
of erupting volcanoes. The detection and characterization of
explosions from large streams of continuous, multi-channel,
infrasound data is a challenging task. In this manuscript,
we have introduced VINEDA, an infrasound detector which
makes extensive use of signal processing techniques in order
to characterize continuous volcano acoustic records and extract
explosion signals. This algorithm stands as a middle point
between the complete knowledge of the target signal beforehand,
and incomplete knowledge of the explosions on the recorded
infrasonic-stream as some prior knowledge of signal features
suffice for VINEDA to detect target signals. VINEDA is
suitable for deployment within volcano monitoring systems and
offers a trade-off between quality and quantity of detections.
We suggest that real-time implementations of algorithms like
VINEDA are crucial to improve existing infrasound datasets
and ultimately, increase our ability to monitor unrest at
active volcanoes.
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The terrestrial ecosystem productivity (hereafter, TEP) is a key index of global carbon
cycles and a fundamental constraint of carbon sequestration capacity, and also an
important measure of ecosystem services and food security. However, the TEP has been
significantly affected by the long-lasting droughts. Identifying the spatial relationship
between droughts and the TEP is crucial for enhancing ecosystem services in China.
Here the net primary production (hereafter, NPP) derived from the Carnegie-Ames-
Stanford Approach model (CASA-NPP) and two drought indices, namely the Standard
Precipitation Index (hereafter, SPI) and the Standard Precipitation Evaporation Index
(hereafter, SPEI), are used to examine the spatial relationship between droughts and
the NPP in China for the period of 1982–2012. Our main results have shown that: (1)
China’s annual NPP has increased slowly from 3.82 to 4.35 PgC per year (hereafter,
PgC/yr), while droughts have become much severer from 1982 to 2012; (2) on the 3-
month timescale, the NPP in arid and semi-arid ecosystems has decreased at a rate
of 1.28 TgC per month with per “unit” decrease in the drought index (indicating drier
conditions). (3) Overall, the NPP in China has increased 5.71 TgC per month with per
“unit” increase in the drought index (indicating wetter conditions); the contribution of
this NPP increase is mainly from forests and farmlands; (4) the SPEI is a relatively more
effective and sensitive index in representing China’s droughts. In southern China, the
lagging period for the NPP response to droughts is about 3-month, while a 6-month
lagging period is found in the arid and semi-arid ecosystems in northern China.

Keywords: terrestrial ecosystem productivity, the Chinese NPP trends, SPI/SPEI drought indices, the lagging
responses of Chinese NPP to droughts, ecological effect

INTRODUCTION

The terrestrial ecosystem productivity (hereafter, TEP) is the fundamental indicator for ecosystem
services, and an integrated component of global carbon cycles, biodiversity, and regional food
security (e.g., Piao et al., 2005; Zhu and Pan, 2007; Luo et al., 2019) and is generally controlled by
many interplaying factors (Li et al., 2018; Liu et al., 2019). Under the threats of global warming, both
the broadness and devastation of droughts and floods will continue to intensify, which will greatly
affect the TEP, especially under long-lasting droughts (e.g., Yu et al., 2007; Doughty et al., 2015; Lei
et al., 2015; Huang et al., 2016; Su et al., 2018; Gherardi and Sala, 2019; Xu et al., 2019). Droughts are
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a comprehensive and frequently occurred natural disaster,
involving both precipitation and temperature changes, and
they also control the soil moisture and vapor pressure deficit
that will greatly influence the plant growth (Eamus et al.,
2013). Many studies have shown that long-lasting droughts can
significantly constrain vegetation activity and reduce the net
primary production (hereafter, NPP) (e.g., Zhao and Running,
2010; Mk et al., 2011; Pei et al., 2013; Hou et al., 2014; Lai
et al., 2018; Anderegg et al., 2019; Li et al., 2019a). As one of
the major agricultural countries in the world, China has suffered
from the strong interannual variability of monsoonal climate
changes (e.g., Liu and Wang, 2011), the higher frequency of floods
and droughts, especially in northern China. According to the
“China Flood and Drought Disaster Bulletin” (2016), on average,
2.17 × 105 km2 farmlands were influenced by droughts each
year from 1950 to 2007, resulting in a loss of nearly 15.8 billion
kilograms of grain, accounting for 60% of the total loss caused by
all-natural disasters (MWRPRC, 2016).

Droughts can significantly diminish plant growth by cutting
back the availability of soil water and therefore reducing crop
yields (e.g., Chen et al., 2013; Heyer et al., 2018). A previous
study has revealed that the grain loss induced by droughts has
contributed about 7% of the total reduction of the global grain
yield (Lesk et al., 2016). During a drought, plants can survive
by closing their stomata, stabilizing intracellular water potential,
and reducing the rate of autotrophic respiration, which can
remarkably decrease the gross primary production (e.g., Mk et al.,
2011; Doughty et al., 2015; Su et al., 2018; Kannenberg et al.,
2019). There are wide-range differences among the responses
of the plant growth to droughts for different ecosystems and at
different spatial–temporal scales.

As concluded from previous studies, the effect of droughts on
NPP variation has generally been examined at annual timescale
or specific events (e.g., Huang et al., 2016; Li et al., 2019a). For
example, an earlier study has argued that the interannual NPP
variation in semi-arid and arid ecosystems was driven mainly by
droughts (Huang et al., 2016). Their study has shown that about
29% of the interannual variation of the global NPP is explained
by droughts-dominated NPP in semi-arid ecosystems, and 33%
of the interannual variation of the global NPP is contributed
by droughts prone ecosystems in the Southern Hemisphere
(Huang et al., 2016). Furthermore, Zhao and Running (2010)
have reported that a total loss of 0.55 PgC/yr global NPP between
2000 and 2009 could be explained by droughts, occurred in the
Southern Hemisphere. Compared with forest ecosystems, grass
ecosystems are more sensitive to droughts (e.g., Lei et al., 2015;
Fei et al., 2018). In addition, long-lasting and severe droughts
can also significantly lower the regional NPP in semi-humid
and humid areas (Vicente−Serrano et al., 2015). Many drought
indices can be used to represent regional drought level and
further to explore the impact of the droughts on ecosystem
evolution, such as Palmer Drought Severity Index (hereafter,
PDSI, reference-PDSI) and Standardized Precipitation–
Evapotranspiration Index (hereafter, SPEI, reference-SPEI),
Standardized Precipitation Index (hereafter, SPI, reference-
SPI), and standardized evapotranspiration deficit index
(hereafter, SEDI, reference-SEDI) (e.g., Li et al., 2016, 2019a;

Peng et al., 2016). Vegetation growth is generally controlled
by periodic/seasonal and interannual changes of major driving
factors, including climatic factors and human activities.
Therefore, it is crucial to investigate the NPP variation and
meteorological droughts overall a wide range of timescales.
Compared with the PDSI and SEDI, the multi-timescale
indices of SPI and SPEI have a remarkable advantage in
representing the impacts of droughts to consider their delayed
impacts on ecosystems.

However, the relationships between the monthly variability of
NPP and intensive droughts in China are still unclear, because the
drought distribution and plant growth processes are controlled
by inconclusive factors at different spatial–temporal scales. In
particular, determining the interannual relationship between
NPP and intensive droughts cannot reveal the actual influence
of droughts on monthly ecosystem production, which may result
in some misleading conclusions (e.g., Zhao and Running, 2010;
Zarei and Eslamian, 2017; Piao et al., 2019). Most previous studies
have paid more attention to responses of the forest NPP to annual
droughts (Vicente−Serrano et al., 2015), and the grassland and
farmland NPP to annual droughts (Ji and Peters, 2003). Other
studies have mainly focused on the issues of different timescales
and lagging effects of droughts (e.g., Vicenteserrano et al., 2013;
Anderegg et al., 2015; Wu et al., 2015; Huang et al., 2016; Huang
and Xia, 2019). In China, the terrestrial ecosystems are so diverse
that the relationships between NPP and intensive droughts at
multiple spatiotemporal scales need further detailed analyses.
Moreover, how and to what extent droughts affect monthly NPP
variation in China are still unclear (Pei et al., 2013). Precisely
determining the effect of droughts on monthly NPP changes is
beneficial to assess the impacts of the potential extreme climate
on TEP in the near future.

Our main objectives here are: (1) to identify the hotspots
where droughts have some significant impacts on the NPP, (2)
to examine the response time or lagging effect of ecosystems
to droughts, and (3) to determine a suitable drought index
representing the relationship between the monthly variability
of NPP and droughts well. The following paper is arranged as
below. The section “Materials and Methods” describes briefly
the datasets used and our methods. The section “Results and
Analyses” presents our main results. The discussion is shown in
the section “Discussion,” followed by the section “conclusion.”

MATERIALS AND METHODS

In this study, two drought indices, namely the SPI and the
SPEI, are used to estimate the impact of droughts on NPP
in China at monthly timescales (see Supplementary Section
S3 for more details). The NDVI images used to estimate the
parameter, FPAR for CASA model (see Supplementary Section
S1 for more details), are from the Global Inventory Modeling and
Mapping Studies-NDVI dataset (see GIMMS-NDVI1) (Ruimy
et al., 1994). The GIMMS-NDVI dataset is constructed by
Tucker et al. (2004), which includes the 31-year (372-month)

1https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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period from 1982 to 2012, and covers the whole China at a
spatial resolution of 8 km × 8 km. The NPP in China during
the period of 1982–2012 is estimated using the CASA model
(Zhu et al., 2006). The meteorological data (including monthly
precipitation, monthly mean temperature, and monthly total
solar radiation, see Supplementary Section S2 for more details)
is downloaded from the China Meteorological Administration
(CMA) Meteorological Data Center2 (in total 823 meteorological
stations, see Figure 1 for locations of these meteorological
stations). All meteorological data downloaded from the Data
Center of CMA is imported into ArcGIS 10.2, and then
spatially interpolated to a grid space of 8-km in order to obtain
maps of monthly precipitation, monthly mean temperature,
and monthly total solar radiation using the inverse distance
weight method (Bartier and Keller, 1996). The detailed processes
for all datasets and the CASA-NPP model can be found in
Supplementary Sections S1–S3.

RESULTS AND ANALYSES

The Evaluation of Derived NPP
In this study, the CASA model shown in Supplementary Section
S1 is employed to derive the NPP in China from 1982 to 2012,
which includes the annual NPP and monthly net photosynthesis.
On average, our derived NPP has continuously increased from
3.7 PgC/yr in 1982 to 4.35 PgC/yr in 2012. Our result is similar
to the work of Tao et al. (2003) and Yuan et al. (2014), but
much larger than the results of Liu et al. (2013) and Piao
et al. (2005). The different parameters in CASA model, namely
the maximum efficiency of light energy utilization, and the
more realistic classification of vegetation types, may explain
the different results (Zhu and Pan, 2007). Our NPPs using
the CASA model are generally higher than those derived from
the MODIS products (MOD17 A3), which are produced by
the Numerical Terradynamic Simulation Group (NTSG) of
University of Montana (UMT) using MOD17 algorithm (Asrar
et al., 1992; Figure 2). In fact, the MOD17 algorithm integrates
maximum light energy utilization derived from Biome-BGC
model, which does not consider many local factors (e.g., the water
stress and vegetation types) that influence vegetation growth
based on the high-precision vegetation classification. Therefore,
the uncertainty of MOD17-derived NPP is relatively larger. To
verify our estimation, mean NPPs in higher vegetated (e.g.,
humid zone) and lower vegetated (e.g., semi-arid and arid zones)
regions have been extracted and compared with those derived
from MOD17A3 dataset (Figure 2). Overall, our NPP in humid
zones is larger than that derived from MOD17A3. In particular,
from 2000 to 2006, our NPP is∼400 gC/m2/yr larger (Figure 2A).
Using FPAR constrained from the satellite NDVI retrieval, CASA
model calculates more realistic NPPs in densely vegetated regions
(Figure 2A). On the other hand, in arid and semi-arid zones,
our estimated NPP is on average ∼100 gC/m2/yr smaller than
that derived by MOD17A3 (Figure 2B). We speculate this may
be caused by the different spatial resolutions between CASA

2http://data.cma.cn/

and MOD17A3 calculations. At 1 km × 1 km resolution, the
assignment of deserts in MOD17A3 is more realistic than that
in CASA at 8 km × 8 km resolution. In China, deserts cover
1.33 million km2, 13.6% of the total land area of China. Deserts
have been assigned a zero NPP in MOD17A3 and CASA.
However, at 8 km× 8 km resolution, the same assignment of the
wide-spread deserts is much larger than that in the MOD17A3
model, which may directly result a potential reduction in the NPP
calculation in CASA model for the arid and semi-arid regions.

Table 1 shows a comparison of NPP values in the year
2005 for different plant functional types within China. Most of
our derived NPPs is similar to those observed, except for the
farmland NPP. CASA model has underestimated the farmland
NPP compared to observation (eddy covariance tower). This
is because in the CASA model, factors involving agricultural
productions (e.g., fertilization, agricultural management, and
irrigation) have been excluded. In fact, these factors play an
important role in promoting agricultural yield (Knapp and van
der Heijden, 2018). Compared to other studies, our derived
NPPs for evergreen broad-leaf forest and deciduous needle-leaf
forest are very similar to observed NPP. However, our derived
NPPs are significantly different from the result of Piao et al.
(2005) and Shang et al. (2018). We speculate that this is mainly
due to the difference in the maximum light use efficiency and
other constraint factors, such as temperature and soil water
content in CASA model.

The Characteristics of Annual Mean NPP
in China From 1982 to 2012
Figure 3A shows the annual NPP in southern China is generally
higher than in northern China. In addition, the annual NPP
in western China is remarkably lower than in eastern China.
The spatial distribution of Chinese NPP ranges from 0 to
2108 gC/m2/yr with a mean value of 433.04 gC/m2/yr. The lowest
NPP values are found in the northern Tibet Plateau, southern
Xinjiang, northern Gansu, and western Inner Mongolia. The
highest NPP values are mainly located in the Qinling Mountains,
southwestern Sichuan Mountains, Yarlun-Tzanpo River valley,
the areas to south of the Yangtze River basin, and most of
Hainan, Yunnan, and Taiwan. The NPP hotspots (locations with
annual NPP values over 1600 gC/m2/yr) are found in the Hainan
province and southern Yunnan where the tropical rainforest is
widely distributed. As shown in Figure 3B, the annual total NPP
in China has increased substantially from 1982 (3.82 PgC/yr) to
2012 (4.35 PgC/yr), at an average rate of 16.97 TgC/yr.

The Characteristics of Droughts in China
The SPI and SPEI indices are characterized by multi-timescales,
such as 3-, 6-, 9-, and 12-month (and longer) timescales.
The drought status over a 3-month period (including current
month) can be identified by using the SPI3 and SPEI3 indices.
According to the SPEI ranking criteria (Yang et al., 2018), three
classifications are defined: (1) SPEI < 0 (mild drought), (2)
SPEI < −1 (moderate drought), and (3) SPEI < −1.5 (severe
drought). In this study, our drought frequency has been defined
as the ratio between the total month of drought’s occurrences
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FIGURE 1 | The meteorological stations (red dots), carbon flux observation station (green triangles), and our study area including the DEM in color shades.

FIGURE 2 | A comparison of two NPP estimations across different vegetation zones. (A) Higher vegetation coverage zones. (B) Lower vegetation coverage zones.

TABLE 1 | A comparison of derived NPPs using CASA model of this study with previous studies and eddy covariance tower data for the year of 2005 (unit: gC/m2/yr).

Plant functional types Pixels Our
NPP

Observed
NPP

Observations from station* Piao et al. (2007) Ni (2010)

Evergreen broad-leaf forest 6375 1046.32 1125.17 Qianyanzhou 525 945

Evergreen needle-leaf forest 14,579 1253.36 997.29 Changbai Mountain 354 439

Farmland 26,406 903.56 1403.16 Yucheng 216 N/A

Grassland 6596 458.13 462.17 Neimenggu N/A N/A

*Data for observed NPP were obtained using eddy covariance tower in Chinese national observation network (Source: http://rs.cern.ac.cn/data/initDRsearch?classcode=
SYC_A02), in which NPP is derived using this formula: NPP = NEE (Net Ecosystem Productivity) + Reco (Ecosystem Respiration) − AR (Autotrophic Respiration) (Fei et al.,
2018). The carbon flux stations are plotted in Figure 1 as green triangles. The Chinese forestry data was listed in Supplementary Section S6, which was used to validate
the precision of our CASA-NPP model.
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FIGURE 3 | (A) The spatial distribution of annual mean NPP in China from 1982 to 2012 and (B) the timeseries of total annual NPP in China.

and the whole study period (372 months from 1982 to 2012)
(see Supplementary Section S4.1 and Eq. 3). In this study, the
datasets of SPI and SPEI were derived and validated based on
the dataset at each meteorological station (see Supplementary
Sections S3, S5). Figure 4A shows the mild drought is mainly
located in the middle of the Tibet plateau. According to Eq. 3

in Supplementary Section S4.1, the frequency of mild drought
is above 50% in most parts of China with a mean value
of 56.25% (Figure 4A). The average frequency of moderate
and severe droughts in China is 19.48 and 8.85%, respectively
(Figures 4B,C). The areas to the north of Qinling Mountains-
Huaihe River line generally have a higher severe drought
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FIGURE 4 | The frequency of droughts in China from 1982 to 2012 (SPEI3). (A) Mild droughts (SPEI3 < 0), (B) moderate droughts (SPEI3 < –1), and (C) severe
droughts (SPEI3 < –1.5).

FIGURE 5 | The significant correlation coefficient (hereafter CC) between SPI/SPEI and monthly NPP (P < 0.1 or 90% significance level). (A) CC between SPI3 and
monthly NPP, (B) CC between SPI6 and monthly NPP, (C) CC between SPI12 and monthly NPP, (D) CC between SPEI3 and monthly NPP, (E) CC between SPEI6
and monthly NPP, and (F) CC between SPEI12 and monthly NPP.

frequency (see Figure 4B, >20%), among which eastern Shanxi
and western Hebei are the most pronounced areas. For moderate
droughts, higher frequency (>40%) is mainly distributed in
Turpan and Hami of Xinjiang province. Nevertheless, higher
drought frequency (Figure 4C) appeared in farming-pastoral
ecotones (around the Heihe-Tengchong line), where agriculture
and animal husbandry are developed very rapidly, indicating a
high risk to China’s NPP.

The Correlation Between Droughts and
Monthly NPP in China
At different timescales, the SPI and SPEI drought indices are
used to examine the relationships between droughts and monthly
NPP in China (i.e., net photosynthesis), respectively, and also to
show the reliability of our correlation analyses using different
drought indices (i.e., SPI and SPEI). Pixels with significant
coefficient of correlation (P < 0.1 or 90% significance level)

are plotted. Figure 5 suggests that regardless which drought
indices used, the results across different timescales (e.g., 3-, 6-,
and 12-month) are quite similar. At the 3-month timescale,
positive relationships between the monthly NPP and drought
index are found in the Loess Plateau and the XilinGol League
of Inner Mongolia (Figures 5A,D), in which corn planting and
grassland are extensive. This indicates that the localized NPP
(mainly from the agricultural production) would be significantly
increased (decreased) under a wetter (drier) condition. The
areas with negative relationships, mainly locate in Yangtze River
Basin and its south, suggesting that excessive rainfall in these
areas could cause a negative impact on the localized NPP at
shorter timescales (i.e., 3 months). Our result is supported by
a previous study about the heavy rainfall triggering saturated
ground water and surface flooding, further decreases plant
growth efficiency and results in hypoxia or death in some
extreme cases (Tan et al., 2009). In southern China, very heavy
rainstorms and typhoons often occur in the summer that will
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FIGURE 6 | The contributions (unit: gC/m2 per unit of drought index) of SPI/SPEI to monthly NPP as defined by Eq. 6 in Supplementary Section S4.4. (A) SPI3
contributions, (B) SPI6 contributions, (C) SPI12 contributions, (D) SPEI3 contributions, (E) SPEI6 contributions, and (F) SPEI12 contributions. Only 90% statistically
significant pixels are plotted here.

likely intensify this negative impact on the regional NPP. At the 6-
month timescale (Figures 5B,E), the negative impact in southern
China disappears. On the other hand, the positive correlation
in northern China continues to increase, showing expanding
influences of droughts at longer timescales (Figure 5B). The
expanded areas now cover the whole Sanjiangyuan region,
northern Sichuan, western Chongqing, and most parts of Shanxi
and Gansu Provinces. Compared with the SPI, the more diverse
relationships between the SPEI and monthly NPP have been
identified, especially in the high mountains of western China.
The positive relationship is mainly found in the northern and
central China largely due to insufficient water supply in those
arid and semi-arid regions. On the other hand, the negative
relationship generally distributes in the shadow and nearby snow
line (Figure 5E). At the 12-month timescale (Figures 5C,F),
the statistically significant regions mainly concentrate in western
China, especially in the Xinjiang and Sanjiangyuan regions. The
main reason could be that everlasting droughts have significant
impacts on arid or semi-arid ecosystems during the longer
timescale (Chen et al., 2012). In summary, the areas with a
significant relationship between drought indices and monthly
NPPs at the 3-month timescale are much larger than those at 6-
and 12-month timescales regardless which drought index is used.

The Contributions of the SPI/SPEI to
Monthly NPPs Across Different
Timescales
Contributions of the SPI/SPEI to the variability of NPP are
determined using Eq. 5 in Supplementary Section S4.5, which
represents the amount of NPP variation under the per-unit
change of the drought index (unit: gC/m2 per unit change of

drought index). Our results (Figures 6A,D) show that significant
contributions of droughts on monthly NPP have been identified
in northern and southern China over shorter timescales (e.g.,
SPI3 and SPEI3). At longer timescales, positive contributions of
droughts tend to become significant in the semi-arid and arid
ecosystems in western and northern China. In areas with positive
impacts between the drought index and monthly NPP, the mean
values of contributions are 2.28, 3.55, and 1.75 (unit: gC/m2 per
unit change of drought index) at 3-, 6-, and 12-month timescales,
respectively (Figures 6A–C). Our result shows that monthly NPP
variation of arid and semi-arid ecosystems is driven mainly by
the 6-month timescale droughts. On the 3-month timescale,
droughts can only affect the monthly NPP in northern China,
such as the North China Plain, the Chinese Loess Plateau, and the
farming-pastoral ecotones. The strongest positive contribution is
found in the catchment of River Wei and Guanzhong Plain in the
southern boundary of the Chinese Loess Plateau (Figures 6A,D).
Here, an increase of 20 gC/m2 monthly NPP could occur under
an increase of per unit of drought index (wetter conditions).
Conversely, at 3-month timescale, the negative contributions
are mainly found in southern China (Figures 6A,D), such
as Jiangxi, Fujian, and Guangdong provinces, with a monthly
NPP decrease of 2.54 gC/m2 would result from per drought
index unit increase (wetter conditions). The strongest negative
contributions are found in the Sanjiangyuan Region and southern
Sichuan Province. The probable reason for this phenomenon is
that the ongoing increase in temperature (lowering the drought
index) in these areas promotes the melting of snow and ice,
causing a further increase of monthly NPP. On the 6-month
timescale, the significant contributions between droughts and
the NPP in southern China tend to disappear, while the same
contributions are enhanced in semi-arid and arid regions in
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FIGURE 7 | The R2 of monthly NPP and SPEI 3 in different months over a period of 1982–2012. From Images (A) to (L) stands from January to December.

northern China. At the 12-month timescale, the stronger positive
contributions are found in semi-arid and arid regions in northern
China (Figures 6C,F). In addition, the influences of droughts
on monthly NPP variation in eastern China tend to become
weaker at longer timescales, except for the North China Plain.
Compared to the SPI, the SPEI index is more effective to
contribute to monthly NPP variation in China due to a relatively
higher coefficient and larger areas with statistically significant
relationships (see Figure 6, P < 0.1 or 90% significance level).

Relative Contributions of Droughts
(SPEI3) to Monthly NPP Changes in
Individual Months
Based on the section “The Correlation Between Droughts and
Monthly NPP in China,” the SPEI3 is selected to examine the
relative contribution (R2, unitless, and in percentage) of droughts

to monthly NPP in individual months (January–December) as
explained in our Eq. 7 in Supplementary Section S4.5. Figure 7
suggests that a unimodal tendency of R2 (at first an increase
followed by a decrease) is observed from January to December.
Across different months, minimal impacts of droughts are found
in December with a mean value of 12.25%. However, the greatest
impacts are identified in June with a mean value of 22%. The
greatest impact occurs between June and September, with a mean
value of over 20%. In January–February, the strong relationships
are mainly in the North China Plain. The average impacts are
generally lower due to the non-growing season, with a mean
value about 16%. Between March and May, the influence level
of water tends to increase in southern China (to nearly 18%),
especially in Sichuan, Hunan, Chongqing, Guizhou provinces,
and a small portion of Jiangxi province. This is because the
evergreen forests begin to grow in these areas and vegetables
are sowing and germinating at that time. During this period, the

Frontiers in Earth Science | www.frontiersin.org 8 March 2020 | Volume 8 | Article 5922

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00059 March 13, 2020 Time: 17:19 # 9

Li et al. Impacts of Drought on the TEP Changes

northern winter wheat is in the tillering stage, and spring wheat
is sown, which results in an increasing demand for water. Hence,
the impacts continue to increase in northern China (however,
the pixels with higher percentages are scatteredly distributed;
see Figure 7). In June and July, the main grasses (Leymus
chinensis, Agropyron grass, Stipa grandis, and Artemisia frigida)
and corn in northern China begin to grow (Zhang and Yang,
2007); hence, the impact of droughts on monthly NPP increases
to 50% in the Xilingol grassland and the Chinese Loess Plateau
due to water deficits. In August and September, much more
water is needed due to the growth of vegetables and upland
crops in southern China as well as the grass and staple crops in
northern regions. This causes a significant increase in the impact
of drought, but the areas with a significant value of R2 (P < 0.1
or 90% significance level) gradually decreases. Between October
and December, the significant drought impact tends to decrease
continuously. Interestingly, the period from May to September
is the key season for vegetation growth in the Tibet Plateau and
agricultural production of the isolated oasis farms in western
China, which is significantly impacted by droughts.

DISCUSSION

Droughts can significantly limit plant growth and further
decrease the NPP by restricting the availability of soil water
(Xu et al., 2019). In this study, the strongest correlation
between drought and monthly NPP is identified in the semi-
arid ecosystems in the farming-pastoral ecotones in northern
China (Figure 5). This information will help to promote
the terrestrial ecosystem management in the area. At multi-
timescales, the strategies for coping with droughts are different
among individual biomes (Vicente−Serrano et al., 2015).
The humid biomes are usually sensitive to droughts, and
their NPP tends to sharply decrease under the water stress
(Vicenteserrano et al., 2013). However, except for upland
crops, the resistance of arid or semi-arid biomes to water
deficits is much stronger when they change leaf and root
morphology to reduce evaporation and retain water during
long-term droughts. Therefore, the monthly NPP of semi-
arid biomes tends to decrease gradually. The response time of
biomes toward drought is called the “lagging time.” Concerning
interannual NPP variation, a significant lagging time usually
exists in trees, and a period of 1–4 years is usual among the
Pinaceae family (Anderegg et al., 2015). However, the lagging
time in semi-arid ecosystems may be 16–19 months (Huang
et al., 2016). In addition, the monthly NPP of grassland and
farmland in semi-arid ecosystems is sharply reduced during
droughts. Lei et al. (2015) reported that droughts could account
for 51.75% of NPP loss in grasslands in Inner Mongolia of
northern China. A total reduction of 154 gC/m2/yr of the
NPP can occur due to droughts in grasslands in China (Xiao
et al., 2009). About 53% of the areas of China are occupied
by arid or semi-arid ecosystems, of which 22% are semi-
arid ecosystems where agriculture and animal husbandry are
developed. However, severe droughts in these areas occur
frequently (Figure 4), causing substantial fluctuations in the

annual NPP. A previous study reported that the farmlands in
China obviously have been moved to the north and across
the Yellow River, indicating that there is no doubt that the
future Chinese NPP will be threatened profoundly by droughts
(Liu et al., 2009).

Over the past 20 years, the increasing annual NPP in the
northern hemisphere, including China, has been verified by many
studies (Liu, 2001; Lee and Veizer, 2003; Piao et al., 2007; Zhao
and Running, 2010; Kim et al., 2012). In China, significant
increasing trends in annual NPP (Figure 8) are mainly located in
the southwestern China, including Sichuan, Guizhou, Yunnan,
Guangxi, Guangdong, Hainan provinces, and the eastern Tibet
Plateau, where an increase of 26.64 gC/m2/yr of the annual NPP
is identified during our study period (Figure 8). We also notice
that the greening project led by the so-called “grain-for-green”
policy in the Chinese Loess Plateau has resulted in a remarkable
increase in vegetation activities. Our derived annual NPP has
shown this significant increase, which has been confirmed by
other studies (Peng et al., 2007; Persson et al., 2013; Jiang X. et al.,
2019). However, in areas with strong human activities and/or an
unreasonable combination of water and heat (e.g., urban zones
and high mountains), the annual NPP tends to decrease in our
study period. Our results have been supported by previous studies
(Liu, 2007; Xu et al., 2017). The mean annual NPP decreasing
rate of 42.82 gC/m2/yr is found in those areas. On the 3-month
timescale, increased SPEI3 index (indicating wetter conditions)
can significantly enhance the monthly NPP in northern China,
but significant heavy rain at shorter timescales (e.g., 3-month)
in southern China can reduce the monthly NPP. Considering
the extent of influence from droughts, the 3-month timescale is
appropriate to evaluate the relationships between water shortage
and monthly variability of NPP in China, which is consistent
with the result of Yang et al. (2018). In addition, at the 6-month
timescale, droughts can only be used to assess the relationships
between water shortage and the monthly variability of NPP in
northern and western China. Our results suggest that the 3- to
6-month drought indices (e.g., SPEI3 and SPEI6) are appropriate
for evaluating the relationships between droughts and monthly
variability of NPP in China.

According to Figure 7, the NPP in China is mostly sensitive
to droughts in the March–October season, among which the
period of May–July is the most important months. Here, our
result agrees with Ji and Peters (2003). During May–July, the
average contribution from droughts on monthly NPP is >22%
(Figure 7). The greatest contributions of droughts to monthly
NPP have been found in the Tibet Plateau and northwestern
China, including the middle of the Tibet Plateau, the Yarlun-
Tzanpo River Valley, and the Tianshan Mountains of western
China, especially the variation of alpine meadow (Figure 7). More
importantly, according to our results (Figure 7), the greatest
impacting month of droughts on the NPP in southern China
occurs in May, but in northern China, it occurs in June.

Previous studies have reported that longer and severe
droughts, as represented by the PDSI and SEDI, can remarkably
reduce the NPP in China over the past 30 years (e.g., Li et al.,
2016, 2019a). Although soil moisture content and soil water loss
have been considered in the PDSI, which is beneficial to reflecting
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FIGURE 8 | The long-term trends of annual NPP in China from 1982 to 2012 (P < 0.1 or 90% significance level).

the actual status of droughts, lagged response from vegetation
to soil water deficit can result in some unreliable results for
quantitatively determining the relationship between PDSI and
NPP. In this study, an outstanding 3–6-month lagging period
of vegetation to droughts has been found; therefore, a multi-
timescale drought index (e.g., 3–6-month drought index) can
provide a reliable investigation about the lagged relationship
between droughts and NPP changes. In previous studies, the
effect of individual drought events on NPP has been focused
broadly (e.g., Lai et al., 2018; Li et al., 2019a). However,
compared with individual drought events, the evolution trend of
droughts generally have greater impacts on vegetation activities
at longer timescales (Piao et al., 2019). Thus, exploring the
relationship between drought trends over longer timescales and
their impacts on NPP changes has played a key role in revealing
the mechanism of future TEP evolution within the context of
extreme climate events.

More importantly, NPP variations are generally controlled
by many inter-playing factors, including from both natural
and anthropogenic sources. First, different tillage practices and
grazing policies can all have profound impacts on farmland and
grassland NPP changes, respectively. In general, ever-advancing
tillage practices (fertilization, pesticides, plastic mulch, and
irrigation) have significant and positive impacts on increasing
NPP in farmlands. For instance, higher maize NPP (yield)
can be achieved by improving tillage practices at a planting
date ranging from late April to early May and an N-fertilizer
input rate of 180–210 kgN ha−1 with two timing splits in
northeastern China (Jiang R. et al., 2019). Furthermore, severe
grazing can remarkably reduce the NPP in grass ecosystem
and further result in desertification that has been verified

in a case study of Xilingol Grassland, northern China (Chi
et al., 2018). The study revealed that 94.6% of the area of
Xilingol grassland showed a negative correlation between
NPP residuals and grazing pressure (Chi et al., 2018). Second,
at shorter timescales, human activities play some important
roles in driving NPP variations. In the developing world,
the rapid urbanization has an obviously negative impact on
regional NPP changes (Li et al., 2019b). Under the processes
of urbanization, large amounts of farmlands, wetlands, and
forests are overall replaced with poorly permeable surfaces
of cement and asphalt that result in the NPP reduction. Liu
et al. (2019) have reported that the rapid urban expansion in
the period of 2000–2010 has in turn reduced global terrestrial
NPP, with a net loss of 22.4 Tg carbon per year (Tg C yr−1),
which can overall offset 30% of the climate-driven NPP increase
(73.6 Tg C yr−1) over the same period. Li et al. (2018) has
shown that 63.02% of total NPP losses in China could be
explained by the conversion from farmland to suburban land.
Furthermore, different feedbacks and interactions between
vegetation growth and human activities have been identified.
For example, Piao’s group has demonstrated that an increasing
vegetation greenness (likely higher NPP) caused by human
activities (land-use practice, CO2 fertilization, and nitrogen
deposition) has significantly changed regional water cycle
and evapotranspiration, especially in dry regions. Data have
revealed that the global leaf area index (LAI) has enhanced 8%
between the early 1980s and 2010s, which will cause a global
increase of 12.0 ± 2.4 mm yr−1 in evapotranspiration and
12.1 ± 2.7 mm yr−1 in precipitation representing about 55 ± 25
and 28± 6% of the observed increases in land evapotranspiration
and precipitation, respectively (Zeng et al., 2018;
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Piao et al., 2020). Chen et al. (2019) has demonstrated that
human land use practice has contributed a larger proportion
to Earth greening (over 33%). However, in our study, the
anthropogenic factors mentioned above were not considered
mainly due to factor of the large-scale nature of our study,
and the lack of localized observations to match with policy-
driven and LULC impacts on the NPP. Therefore, in the future,
a process-based model (e.g., CLM4.5, ISAM, LPJGUESS, LPJ,
and LPX) involving many interplaying factors can be used
to accurately explore the relationships between the NPP and
natural/anthropogenic factors (Ding et al., 2018).

CONCLUSION

The total annual NPP in China has increased from 1982 to 2012
with a mean rate of 433.04 gC/m2/yr. In our study period, a
total NPP increase of 16.97 TgC/yr is found mainly located in
southern and southwestern China. Droughts in China continue
to be severe, and the frequency of moderate drought is >20% in
northern China. The frequency of severe drought is >10% across
farming-pastoral ecotones. The strongest relationships between
drought and monthly NPP in China are located in the farming-
pastoral ecotones of semi-arid ecosystems. On the 3-month
timescale, a negative contribution of droughts on the monthly
NPP in southern China has been found, in which a mean NPP
reduction of 2.54 gC/m2 can be found with per-unit increases in
the drought index (wetter conditions). However, the interannual
NPP in the same areas has continued to increase due to the global
warming, nitrogen deposition, and advances in agriculture that
can compensate for the monthly NPP losses caused by flooding
(higher SPEI index). On the 6-month timescale, the strongest
correlations between drought and monthly NPP are located
in farming-pastoral ecotones of arid and semi-arid ecosystems
covering grassland and corn fields.

The SPEI is more effective in defining the relationships
between droughts and monthly NPP in China. The response
period (e.g., the lagging time) of monthly NPP to droughts in
southern China is about 3 months. The lagging time in arid
and semi-arid ecosystems of northern China is nearly 6 months.
The drought accounts for >15% of monthly NPP variation in

China each month. Over the whole China, the lowest impact
season of droughts on monthly NPP has been found during the
December–February period, but the greatest impact period has
been determined in the months of May–July. Regionally, the
greatest impact season for the middle of the Tibet Plateau, Yarlun-
Tzanpo River valley, and the Tianshan Mountains of western
China is the July–September period. While in northern China,
the greatest impact month of droughts on monthly NPP is in
June; this becomes May in southern China.
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In this work, we investigated the microseism recorded by a network of broadband
seismic stations along the coastline of Eastern Sicily. Microseism is the most continuous
and ubiquitous seismic signal on Earth and is mostly generated by the ocean–solid earth
interaction. On the basis of spectral content, it is possible to distinguish three types of
microseism: primary, secondary, and short-period secondary microseism (SPSM). We
showed how most of the microseism energy recorded in Eastern Sicily is contained in
the secondary and SPSM bands. This energy exhibits strong seasonal patterns, with
maxima during the winters. By applying array techniques, we observed how the SPSM
sources are located in areas of extended shallow water depth: the Catania Gulf and a
part of the Northern Sicily coastlines. Finally, by using the significant wave height data
recorded by two buoys installed in the Ionian and Tyrrhenian Seas, we developed an
innovative method, selected among up-to-date machine learning techniques (MLTs),
able to reconstruct the time series of sea wave parameters from microseism recorded
in the three microseism period bands by distinct seismic stations. In particular, the
developed model, based on random forest regression, allowed estimating the significant
wave height with a low average error (∼0.14–0.18 m). The regression analysis suggests
that the closer the seismic station to the sea, the more information concerning the sea
state are contained in the recorded microseism. This is particularly important for the
future development of an experimental monitoring system of the sea state conditions
based on microseism recordings.

Keywords: microseism, machine learning, sea waves, array techniques, random forest

INTRODUCTION

Microseism is the most continuous and ubiquitous seismic signal on Earth and is mostly generated
by the ocean–solid earth interaction (Tanimoto et al., 2015). On the basis of its source mechanism
and spectral content, it is classified as: primary microseism (hereafter referred to as PM), secondary
microseism (SM), and short-period secondary microseism (SPSM) (Haubrich and McCamy, 1969).
Concerning PM, it shares the same spectral content as the ocean waves (period band 13–20 s)
and its source is associated with the energy transfer of ocean waves breaking/shoaling against
the shoreline (Hasselmann, 1963; Ardhuin et al., 2015). As for SM, it is likely to be generated by
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FIGURE 1 | (a) Bathymetric and topographic map (EMODnet Bathymetry Consortium, 2018), with the locations of the seismic stations (black dots), used to perform
spectral and amplitude analysis of the microseism and to investigate its relationship with significant wave height, recorded by Catania and Cetraro buoy stations
(gray squares). (b) Digital elevation model of Mt. Etna, with the locations of the seismic stations (black dots), used to perform array analysis.

interactions between waves of the same frequency traveling in
opposite directions, has roughly twice the frequency of ocean
waves (period band 5–10 s), and generally shows a higher
amplitude than does PM (Longuet-Higgins, 1950; Oliver and
Page, 1963; Ardhuin et al., 2012, 2015). Finally, SPSM is
characterized by a period shorter than 5 s and is generated by
local nearshore wave–wave interaction (Bromirski et al., 2005).

Because of its source mechanism, microseism has been used
to make inferences on climate changes (e.g., Grevemeyer et al.,
2000; Aster et al., 2008; Stutzmann et al., 2009). For instance,
Grevemeyer et al. (2000) analyzed a 40-year-long record of
wintertime microseism and observed an increase in the number
of monthly days with strong microseism activity, hence inferring
an increase over time in surface air temperatures and storminess
of the northeast Atlantic Ocean.

Microseism amplitudes show strong seasonal modulation.
Indeed, at temperate latitudes, microseism shows periodicity,
with maxima during the winter seasons, when the oceans are
stormier, and minima during the summers (Aster et al., 2008).
This modulation is different along the coastlines of the Glacial
Arctic Sea and the Southern Ocean where, during the winters,
because of the sea ice, the oceanic waves cannot efficiently excite
seismic energy (Aster et al., 2008; Stutzmann et al., 2009; Tsai and
McNamara, 2011; Cannata et al., 2019).

Concerning the source location, microseism signals are non-
impulsive, and the sources are generally diffuse and variable in

time (e.g., Bromirski et al., 2013). Hence, the classical location
algorithms, used in earthquake seismology and based on the
picking of the different seismic phases, cannot be applied to locate
microseism sources. Array processing techniques can overcome
the above-mentioned difficulties and provide information on
the microseism source areas that generally coincide with coastal
regions and/or oceanic storm systems (e.g., Chevrot et al.,
2007; Juretzek and Hadziioannou, 2017; Pratt et al., 2017;
Lepore and Grad, 2018).

The link between microseism amplitudes and the ocean wave
height has been empirically explored by several authors (e.g.,
Bromirski et al., 1999; Bromirski and Duennebier, 2002; Ardhuin
et al., 2012; Ferretti et al., 2013, 2018). For instance, Bromirski
et al. (1999) determined site-specific seismic-to-wave transfer
functions in the San Francisco Bay area (California). Ferretti et al.
(2013, 2018) found empirical relations to predict the significant
wave height along the Ligurian coast (Italy). In addition, other
authors have derived physics-based models of the generation of
the different kinds of microseism from the sea state (e.g., Gualtieri
et al., 2013; Ardhuin et al., 2015; Gualtieri et al., 2019).

Microseism investigations and, more generally, seismological
studies are currently undergoing a rapid increase in dataset
volumes (e.g., Kong et al., 2018; Jiao and Alavi, 2019). For this
reason, nowadays, applications of machine learning techniques
(hereafter referred to as MLTs) on seismological data are
increasing in number day by day. Such techniques are used
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FIGURE 2 | Significant wave height time series recorded by the Catania (A) and Cetraro (B) buoys.

to extract information directly from data using well-defined
optimization rules and help unravel hidden relationships between
distinct parameters, as well as to build predictive models (e.g.,
Kuhn and Johnson, 2013; Kong et al., 2018). Examples of the
applications of MLTs to seismology include earthquake detection
and phase picking (e.g., Wiszniowski et al., 2014) and earthquake
early warning (e.g., Kong et al., 2016).

In spite of the availability of seismic and buoy data in the
Ionian and Tyrrhenian Seas and coastlines, the link between sea
waves and microseism has never been explored in such areas.
Furthermore, although the spectral features of the microseism
recorded in this area have been studied (e.g., De Caro et al.,
2014), the locations of its sources have never been constrained.
In this work, we will study the microseism recorded along the
coastline of Eastern Sicily in terms of spectral content, amplitude
seasonal pattern, and source location. In addition, we will present
a novel algorithm, based on up-to-date MLTs, able to reconstruct
significant wave height time series in points located in both the
Ionian and the Tyrrhenian Seas from the microseism recordings.

MATERIALS AND METHODS

Data
In order to investigate microseism, seismic signals recorded
from 2010 to 2014 by the vertical component of six stations,
belonging to the seismic permanent network run by Istituto
Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo –
Sezione di Catania (INGV-OE), were used (Figure 1a).
These stations are equipped with broadband three-component
Trillium 40-s seismometers (NanometricsTM) recording at a
sampling rate of 100 Hz.

Moreover, to carry out array analysis, seismic signals recorded
in January 2010–February 2012 by the vertical component of
the seven stations (equipped with the same sensors as above),
composing the summit ring of the Mt. Etna permanent seismic
network, were used (Figure 1b). These stations were chosen
because of: (i) the availability of continuously recorded data
during the time interval 2010–beginning of 2012 (in February–
March 2012, EBEL and ETFI stations were destroyed by lava
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FIGURE 3 | (A) Spectrograms of the seismic signal recorded by the vertical component of the six considered stations. (B) Median spectra of the seismic signal
recorded by the vertical component of the six considered stations. The acronyms PM, SM, and SPSM indicate primary microseism, secondary microseism, and
short-period secondary microseism, respectively.
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FIGURE 4 | RMS amplitude time series of the seismic signal recorded by the vertical component of the six considered stations and filtered in the bands (A) 2.5–5.0 s
(SPSM, short-period secondary microseism); (B) 5–10 s (SM, secondary microseism); and (C) 13–20 s (PM, primary microseism).

flows); (ii) the ring-shaped geometry; and (iii) the distance from
the coastline (and then from the prospective closest microseism
sources associated with the nearshore wave–coast or wave–
wave interaction).

Finally, to make quantitative comparisons between the
microseism and wave height time series in the Ionian and
the Tyrrhenian Seas, significant wave height data, recorded
from 2010 to 2014 with a 30-min sampling step by two
stations (Catania and Cetraro; see Figure 1A) belonging to
the Italian Data Buoy Network, managed by Istituto Superiore
per la Protezione e la Ricerca Ambientale (ISPRA), were used
(Bencivenga et al., 2012; Figure 2). The significant wave height
is defined as:

Hs = 4
√
M0 (1)

where M0 is the 0-moment of the auto-spectral correlation of
the Fourier transformations of the buoy displacements in the
frequency/time domain (Steele and Mettlach, 1993):

M0 =

fu∑
fl

(S(f )d(f )) (2)

where the sum of the spectral density S(f ) is over all
frequency bands, from the lowest frequency fl to the highest

frequency f u of the non-directional wave spectrum (calculated
only for the elevation of the sea surface), and d(f ) is the
bandwidth of each band.

Spectral and Amplitude Analysis
The spectral content of the seismic data, recorded by the vertical
component of the six seismic stations shown in Figure 1a, was
analyzed as follows: (i) spectra over non-overlapping 81.92-s-
long sliding windows were computed; (ii) to obtain daily spectra
(that is, spectra representing the frequency features of the signal
acquired during a given day), all the spectra computed in (i)
falling on the same day were averaged by Welch’s segment
averaging estimator (Welch, 1967); (iii) all the daily spectra were
collected and visualized as spectrograms, which are 3D plots with
time on the x-axis, frequency on the y-axis, and power spectral
density (PSD) indicated by a color scale (Figure 3A).

Besides, to obtain information on the spectral features of
the seismic signals recorded by the different stations during
the whole investigated period, all the daily spectra composing
the spectrograms were averaged. Hence, spectra showing the
general spectral features of the 5-year-long seismic signals were
shown (Figure 3B).

In addition, the time series of the root mean square (RMS)
amplitude of the seismic signal, filtered in three period bands
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FIGURE 5 | RMS amplitude time series smoothed by a 90-day-long moving median, split into 1-year-long windows, stacked, and normalized for all the considered
seismic stations (see the legends on the bottom right corner of (A). In particular, regarding the period bands (A) 2.5–5 s (SPSM), (B) 5–10 s (SM), and (C) 13–20 s
(PM). The time on the x-axis of (A–C) indicates the window onset of the 90-day-long moving median.

FIGURE 6 | Array response functions of the seven stations composing the summit ring of the Mt. Etna seismic permanent network (see Figure 1b) for a unit
amplitude incident wave with slowness of 0 s deg-1 at periods of 2.5 s (A), 5 s (B), and 13 s (C).
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FIGURE 7 | (A,B) Time series of significant sea wave height recorded by the Catania and Cetraro buoys (red lines) and the RMS amplitude computed in the period
band 2.5–5.0 s (SPSM) by EPOZ and MSRU stations (blue lines) in 2011. (C,F) Maps of a portion of the Mediterranean Sea showing the spatial distribution of the
significant wave height on 26/04/2011 at 12:00 and on 18/12/2011 at 12:00, respectively (MEDSEA_HINDCAST_WAV_006_012 product from
http://marine.copernicus.eu/services-portfolio/access-to-products/). (D,G) Digital elevation models of Eastern Sicily with rose diagrams, located at the center of the
seismic summit ring of Mt. Etna (see Figure 1b), showing the distribution of the back azimuth values on 26/04/2011 and 18/12/2011, computed by f–k analysis.
(E,H) Maps showing the bathymetry of portions of Sicily coastlines (EMODnet Bathymetry Consortium, 2018).
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(PM, 13–20 s; SM, 5–10 s; and SPSM, 2.5–5.0 s), were computed
with both daily and hourly rates. The daily RMS amplitude
time series (Figure 4) were smoothed by a 90-day-long moving
median, split in year-long windows, stacked, and rescaled
between 0 and 1 (Figure 5).

Array Analysis
To get an idea on the locations of the main microseism sources
surrounding the Eastern Sicilian coastlines, the seven stations
composing the summit ring of the Mt. Etna seismic permanent
network were used as a roughly circular array (Figure 1b). The
array response functions (ARFs) were computed for the PM,
SM, and SPSM for a plane wave arriving with a slowness of
0 s deg−1 (Figure 6). Such ARFs exhibit that only the SPSM
case shows a fairly good resolution. This is due to the very
long wavelength of PM and SM compared to the array aperture
(∼5 km). Indeed, taking into account a velocity of the S-waves
(Vs) in the first kilometers of the crust equal to ∼2 km/s (e.g.,
Hirn et al., 1991; Patanè et al., 1994), the wavelengths of PM,
SM, and SPSM are ∼26, 10, and 5 km, respectively. When the
wavelength is much greater than the array aperture (as in the
case of PM and SM), the array behaves like a single station (e.g.,
Schweitzer et al., 2012).

The portions of the Ionian and Tyrrhenian coastlines, where
the microseism sources closest to the array could supposedly be
located, are characterized by a minimum distance of ∼20 and
∼45 km, respectively, from the array center. Such distances are
greater than two to three times the array aperture, and hence,
on the basis of the synthetic tests performed by Almendros et al.
(2002), the Etna summit ring array should be able to locate the
microseism sources with a planar wavefront assumption.

Then, to apply array analysis, the following processing
steps were carried out on the seismic signals: demeaning and
detrending, correction for the instrument response, filtering
within a 0.2- to 0.40-Hz band by a second-order Butterworth
filter, and subdivision in 60-s-long windows, tapered with a
Tukey window. The filter is also used to exclude volcanic
tremor, whose energy at Mt. Etna is mainly radiated in the band
0.5–5.0 Hz (Cannata et al., 2010). Successively, the STA/LTA
technique (acronym for short time average over long time
average; e.g., Trnkoczy, 2012) was applied to detect prospective
amplitude transients that could be related to volcano activity
(i.e., long period events and very long period events). Windows
containing amplitude transients were excluded from the array
analysis. Finally, the frequency–wavenumber (f –k) analysis was
carried out, allowing to calculate the power distributed among
different slownesses and back azimuths (e.g., Capon, 1973;
Rost and Thomas, 2002).

The array analysis was performed in January 2010–February
2012 on specific time intervals characterized by one of the
following two conditions: (i) intense wave activity in the Ionian
Sea, as shown by the Catania buoy data and/or by the high RMS
amplitude values at EPOZ station; or (ii) intense wave activity in
the Tyrrhenian Sea, as suggested by the Cetraro buoy data and/or
by the high amplitude RMS values at MSRU station. Examples
of the results for the days 26/04/2011 and 18/12/2011, exhibiting
conditions (i) and (ii), respectively, are shown in Figures 7, 8.

FIGURE 8 | Histograms showing the apparent velocity estimated by f–k
analysis on 26/04/2011 (a) and on 18/12/2011 (b).

To evaluate the error associated with the back azimuth
estimation, the jackknife technique (Efron, 1982) was employed
as follows. Firstly, the signal window was analyzed by the f–k
technique by using all the seven stations composing the array.
Successively, the analysis was repeated seven times, leaving one
station out at a time, so providing further seven back azimuth
values. An arithmetic mean of these estimates was assessed by the
following equation:

P̄ =
1
n

n∑
i=1

Pi (3)

where Pi is the back azimuth value computed by omitting the
i-th station and n is the number of stations composing the array.
Then, it is possible to estimate the i-th so-called pseudovalue as:

Ji = nP̂ − (n− 1)Pi (4)

where P̂ is the back azimuth value computed by considering all
the seven array stations. The jackknife estimator of parameter P
is given by:

J(P̂) =
1
n

n∑
i=1

Ji = nP̂ − (n− 1)P̄ (5)

The standard error of the jackknife estimates is given by:

δJ(P̂) =

√√√√ 1
n(n− 1)

n∑
i=1

(Ji − J(P̂))2 (6)

Finally, median error estimations were calculated separately for
the back azimuths oriented toward the Ionian Sea and the
Tyrrhenian Sea [the above-mentioned conditions (i) and (ii)].
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FIGURE 9 | Scheme of the modeling analysis to obtain the time series of significant wave height in the Catania and Cetraro buoy locations by using the microseism
(see text for details). MLT, machine learning technique; MAE, mean absolute error; “σMAE”, standard deviation computed on the mean absolute error; SVM support
vector machine.
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FIGURE 10 | Results of the machine learning analysis. (A,B) Average (blue bars) and standard deviation (red bars) of the mean absolute error (MAE), estimated by
k-fold cross-validation, for the Catania and Cetraro buoy data, respectively. (C,D) Index of importance for all the input taken into account to model the Catania and
Cetraro buoy data, respectively. (E,F) Aggregation through a summation of the input importance allowing to rank the microseism bands for the Catania and Cetraro
buoy data prediction, respectively. (G,H) Aggregation through a summation of the station importance for the Catania and Cetraro buoy data prediction plotted versus
the distance from the Catania and Cetraro buoys, respectively.
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FIGURE 11 | Measured (blue line) and predicted (red line) significant wave height time series of the Catania buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D).

Regression Analysis by Machine
Learning
Modern MLTs have been tested to build reliable predictive models
able to calculate the time series of significant wave height from
microseism data. The method, similar to the one proposed by
Cannata et al. (2019) to spatially and temporally reconstruct the
sea ice distribution around Antarctica based on the microseism
amplitudes, is composed of four main steps (summarized in
Figure 9): (a) data preparation; (b) training; (c) cross-validation;
and (d) testing.

Step (a) consisted of centering and scaling the predictor
variables (Kuhn and Johnson, 2013), that is, the 18 time series
of the microseism hourly RMS amplitudes from January 2010
to August 2014 (six stations by three frequency bands). The
remaining data (September–December 2014) is used for testing
step (d). To center the microseism predictor, the average is
subtracted from all the values. Successively, to scale the data,
each value of the microseism predictor is divided by its standard

deviation. Hence, all the time series of the microseism RMS
amplitudes share a common scale.

As for step (b), we made use of the following four MLTs to
build predictive models: (i) random forest (RF) regression; (ii)
K-nearest neighbors (KNN) regression; (iii) linear regression;
and (iv) support vector machine (SVM) regression.

As for the RF technique, it is based on decision trees often
used for classification and regression (Ho, 1995). One of the main
problems with decision trees is the need to increase accuracy and
avoid overfitting at the same time (Ho, 1998). RF overcomes such
a limitation by generating many decision trees and aggregating
their results (Liaw and Wiener, 2002). Recently, RF has had
many applications in geosciences, such as geochemical mapping
(Kirkwood et al., 2016) and the lithological classification of
underexplored areas by geophysical and remote sensing data
(Kuhn et al., 2018).

K-nearest neighbors is a non-parametric technique applied
for both classification and regression tasks (Altman, 1992). KNN
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FIGURE 12 | Measured (blue line) and predicted (red line) significant wave height time series of the Cetraro buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D).

regression simply predicts a new sample using the K-closest
samples from the training set (Altman, 1992; Kuhn and Johnson,
2013). Hence, for a new input, the output is the average of
the values of its K-nearest neighbors in the feature space of
the training set. Such a method has been extensively used
to classify remote sensing images (e.g., Li and Cheng, 2009;
Noi and Kappas, 2018).

Concerning linear regressions, relationships are modeled
using linear predictor functions; that is, the relationship between
predictors and responses falls along a hyperplane (Kuhn and
Johnson, 2013). Such linear relationships can be written as
(Kuhn and Johnson, 2013):

yi = b0 + b1xi1 + b2xi2 + · · · + bnxin + ei (7)

where yi is the output for the i-th sample, b0 is the estimated
intercept, bj represents the coefficient for the j-th predictor, xij
represents the value of the j-th predictor for the i-th sample,
and ei represents random error for the i-th sample. Similar to

the two previous machine learning methods, linear regressions
have been used in many fields of Earth Sciences, such as iron
mineral resource potential mapping (Mansouri et al., 2018) and
catchment-level base cation weathering rates (Povak et al., 2014).

Finally, SVMs are supervised learning models for both
classification and regression analysis (e.g., Drucker et al., 1997;
Kuhn and Johnson, 2013). As for regression, the SVM’s goal is to
find a function that deviates from each training point by a value
no greater than a chosen constant, and at the same time is as flat
as possible (e.g., Vapnik, 2000; Kuhn and Johnson, 2013). Also,
SVM has been applied in Earth Sciences, for instance to map
landslide susceptibility (Reza Pourghasemi et al., 2013) and to
classify remote sensing data (Jia et al., 2019).

Each of the four aforementioned techniques has its own
advantages and disadvantages (e.g., Kuhn and Johnson, 2013;
Yang et al., 2019). The main advantages of RF are its high accuracy
and robustness to outliers and noise; also, RF parameter tuning
does not have a drastic effect on performance. The disadvantages
are the expensive training time and overfitting in the case of small
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FIGURE 13 | Scatter plots showing the measured versus the predicted significant wave heights of the Catania buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D). The red dashed line in (A–D) is the y = x line. The
value of the determination coefficient (R2) is also reported in the bottom right corner of the plots.

datasets. KNN is effective and non-parametric, but it is not robust
in the presence of noise and it is not easy to identify the best
K value. As for linear regressions, they require short training
times, and the results are easy to visualize and understand, but
they are not suited to model non-linear relationships. Finally,
SVMs are easy to implement and show good efficiency in
training and generalization, but the tuning of parameters can be
quite difficult.

For all the above-mentioned MLTs, the 18 time series
of the centered and scaled seismic RMS amplitudes from
January 2010 to August 2014 were used as the input, while
the two time series of significant wave heights, recorded
by the Catania and Cetraro buoys, were resampled by a
sampling step of 1 h (the same rate as the seismic RMS

amplitude time series) and considered as the output to build the
regression models.

Step (c) consisted of evaluating the best MLT by carrying
out the k-fold cross-validation (Kuhn and Johnson, 2013).
The cross-validation implies partitioning the original input
and output datasets into complementary subsets, constraining
a model on one subset (called “training set”), and validating
the model performance on the other subset (called “validation
set”). In particular, in the performed k-fold cross-validation, the
microseism amplitude and significant wave height samples are
partitioned into 10 (k = 10) sets of consecutive samples. Ten
models are trained by using all samples except one subset, which
is used to validate the models. The parameters we used to estimate
the model performance are: mean absolute error (MAE) between
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FIGURE 14 | Scatter plots showing the measured versus the predicted significant wave heights of the Cetraro buoy from 1 September to 31 December 2014. The
prediction was carried out by RF regression (A), KNN regression (B), linear regression (C), and SVM regression (D). The red dashed line in (A–D) is the y = x line. The
value of the determination coefficient (R2) is also reported in the bottom right corner of the plots.

the observed significant wave height and the predicted one and
the corresponding standard deviation (σMAE). The former was
estimated by the following equation:

MAE =
∑n

i=1
∣∣yi − xi

∣∣
n

(8)

where xi and yi are the predicted and observed significant sea
wave height values at the i-th time sample and n is the number
of samples in x and y. The results are shown in Figures 10A,B.

The final model was trained with the whole dataset from
January 2010–August 2014 and tested on the test set from
September–December 2014 [testing step (d)]. The comparisons
between the predicted and measured significant wave heights for
the testing period are reported in Figures 11–14.

RESULTS

Microseism recorded in Eastern Sicily shows the highest
amplitude in the bands 2.5–5.0 and 5–10 s (SPSM and SM,
respectively) at all the considered stations (Figures 3, 4).
Moreover, evident amplitude seasonal modulation is shown in
Figures 4, 5, with maxima reached during the winter (December–
February) and minima during the summer (June–August).

As for the array analysis, the summit ring of Mt. Etna seismic
permanent network turned out to be effective in locating the
microseism sources in the SPSM band (Figure 6A). During
Ionian stormy days, the back azimuth values indicate the Catania
Gulf, while during Tyrrhenian stormy days the back azimuth
rotates, pointing north–westward. In both cases, the SPSM
sources appear to be located in areas of extended shallow water
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depths (Figure 7). Concerning the median error in the back
azimuth estimations obtained by the jackknife technique, it was
equal to 21◦ and 12◦ for back azimuths oriented toward the
Tyrrhenian and Ionian Seas, respectively. As for the apparent
seismic velocity estimations, the histograms in Figure 8 show
values of∼1.5–2.0 km/s.

Finally, MLTs have been able to reconstruct the time series
of significant sea wave height on the basis of microseism data.
The technique showing the best performance was RF regression
(Figures 10A,B), allowing to get the minimum MAEs equal
to 0.14 ± 0.02 m and 0.18 ± 0.05 m for the Catania (the
Ionian Sea) and Cetraro (the Tyrrhenian Sea) data, respectively.
It has to be underlined that the RF, linear, and SVM regressions
show very similar MAE values, especially in the case of the
Catania buoy. The RF approach has the advantage of easily
supplying an index of predictor importance (Figures 10C,D),
calculated by exploiting the random permutation of out-of-
bag samples (Breiman, 2001). To get information on the
importance of the different microseism bands in the prediction,
aggregation through summation was performed (Figures 10E,F),
showing how the SPSM band has the highest weight in
reconstructing the significant wave height time series at the
two buoys. In addition, aggregation through summation was
performed also for the station importance and exhibited how
the importance tends to decrease with increasing distance of
station–buoy (Figures 10G,H).

Finally, the comparison between the measured and predic-
ted significant wave height data during the testing period
(September–December 2014; Figures 11–14) showed very similar
patterns for the two time series, as also confirmed by the
high values of determination coefficient equal to 0.7 and 0.84
for the Catania and Cetraro buoys, respectively, in the case
of RF regressions.

DISCUSSION AND CONCLUSION

We investigated the microseism recorded close to the Eastern
Sicily coasts and its relationship with the significant wave
height recorded by two buoys installed in the Ionian and
Tyrrhenian Seas. Concerning the microseism characterization,
as measured in the seismic signals acquired worldwide (e.g.,
Aster et al., 2010), most of its energy is contained in the
SPSM and SM bands (Figures 3, 4). Also, the observed seasonal
amplitude modulations (Figures 4, 5) are a common feature of
the microseism recorded at temperate latitudes, characterized
by stormier seas during the winters (e.g., Aster et al., 2008;
Stutzmann et al., 2009).

Taking into account the array analysis, performed by the
seven seismic stations in Figure 1b by the f –k array technique
in the SPSM band, we were able to obtain the slowness vector
direction and, therefore, to get an idea on the locations of the
microseism source in the SPSM band. It was observed that the
SPSM sources appear to be located in areas of extended shallow
water depths: the Catania Gulf and a part of the Northern Sicily
coastlines (Figure 7).

The array analysis results are in agreement with Chen et al.
(2011), who analyzed microseism data collected in Taiwan and
showed how a stronger excitation in SPSM takes place in the
narrow Taiwan Strait where the water depth is very shallow,
while the excitations are relatively weak in the eastern offshore
area, an open sea with water depth increasing rapidly off the
coast. Although Juretzek and Hadziioannou (2017) focused on
a different frequency band (PM), they also constrained the
source locations of the microseism recorded in Europe in regions
with extended shallow water areas, that is, Norwegian and
Scottish coasts.

It has to be noted that the error associated with the microseism
source locations is higher in the case of the Northern Sicily
coastlines compared to the Catania Gulf. It derives from both the
higher back azimuth error (21◦ for the Tyrrhenian Sea versus 12◦
for the Ionian Sea) as well as from the longer distance array–
Northern Sicily coastlines (∼45 km) compared to the distance
array–Catania Gulf (∼20 km).

The apparent seismic velocity estimations of 1.5–2.0 km/s in
the SPSM band (Figure 8) are in agreement with the Rayleigh
wave velocity calculated by using beamforming analysis, applied
on the ambient seismic noise in New Zealand, by Brooks et al.
(2009), as well as with the results obtained from investigating the
seismic noise in the northeast of the Netherlands by Kimman
et al. (2012). In addition, Rivet et al. (2015) also estimated
comparable velocities (of 1.5 km/s at 1 Hz and 2.0 km/s at 0.5 Hz)
by using a time–frequency analysis to measure the group velocity
of Rayleigh wave on noise cross-correlation.

Finally, we propose an innovative method, based on up-to-
date MLTs, able to reconstruct the time series of significant
wave height by using microseism recorded in different period
bands by distinct seismic stations. Such a method allows to
reliably compute the significant wave height in two locations,
coinciding with the two buoys in the Ionian and Tyrrhenian
Seas, with fairly low error (MAE equal to ∼0.14 m for the
Catania buoy and∼0.18 m for the Cetraro buoy; Figures 10A,B).
In particular, the MLT which showed the best performance
was the RF regression. This can be related to several factors,
such as: (i) the performance of the RF regression is not much
affected by parameter selection (e.g., Li et al., 2011; Kuhn
and Johnson, 2013); (ii) by making use of an ensemble of
decision trees, RF regression does not overfit with respect to the
source data (e.g., Li et al., 2011); and (iii) RF shows robustness
to outliers and noise (Breiman, 2001). Finally, compared to
linear regressions, RF regression is able to deal with non-linear
relationships between the input and output. Indeed, according
to Essen et al. (2003) and Craig et al. (2016), the relationship
linking microseism amplitude and significant wave height is likely
to be non-linear.

Focusing on the comparison between the highest measured
and predicted (by RF regression) significant wave height data
during the testing period, it is possible to note a slight
underestimation and overestimation of the predicted values
compared to the measured ones in the Catania and Cetraro
cases, respectively (Figures 13A, 14A). These different behaviors
could be related to the different distances between the seismic
stations and the buoys.
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Although buoys are considered the most used and reliable
instruments for in situ measurements of sea waves (Orasi et al.,
2018), the high maintenance costs, together with the recurring
damages and then lack of data, make the proposed microseism-
based method a valid complementary tool for the monitoring
of the sea state. Furthermore, once the regression model has
been determined and if the seismic data are available, such a
method could allow reconstructing the time series of sea wave
height during periods prior to the buoy installation, with wide
applications in many fields, first of all climate studies.

The RF regression also provides an index of importance of the
distinct predictor variables, which are the seismic RMS amplitude
time series. The aggregated importance of the different frequency
bands exhibits how the SPSM band contains most of the
information for the buoy data reconstruction (Figures 10E,F).
According to the literature (e.g., Bromirski et al., 2005; Chen
et al., 2011; Gualtieri et al., 2015), such a microseism band,
characterized by high frequencies and then by quick attenuation
with distance, is mostly generated by sources located in relatively
shallow water close to the shelf break, close to the seismic stations.
Such sources are likely related to local nearshore non-linear
wave–wave interaction (e.g., Bromirski et al., 2005). This is in
agreement with the location of the considered buoys, close to
the coastlines, in shallow water conditions (90 and 100 m for
Catania and Cetraro, respectively; Bencivenga et al., 2012). Both
PM and SM turned out to have a much smaller importance for
the buoy data reconstruction. Indeed, as for PM, its dominant
source regions can be located thousands of kilometers away from
the seismic stations (Gualtieri et al., 2019). Concerning SM, it has
been shown how it can also have pelagic sources in deep ocean
(e.g., Chevrot et al., 2007; Kedar et al., 2008).

In addition, the difference in the predictors with the maximum
importance for the two buoys (EPOZ-SPSM for the Catania buoy
and MSRU-SPSM for the Cetraro buoy; Figures 10C,D) reflects
the different locations of the seismic stations. Indeed, EPOZ is
very close to the coastline of the Ionian Sea, where the Catania
buoy is installed, while MSRU is placed nearby the Tyrrhenian
Sea, where the Cetraro buoy is located (Figures 1, 10G,H).
Hence, the closer the seismic station is to the sea, the more
information concerning the sea state are contained in the
recorded microseism. From a future perspective, this finding is
important to build an experimental monitoring system of the sea
conditions (mainly in terms of significant wave height) based on
microseism recordings.
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The injection of gas and pyroclastic material from volcanic vents into the atmosphere is

a prolific source of acoustic waves. Infrasound arrays offer efficient, cost-effective, and

near real-time solutions to track the rate and intensity of surface activity at volcanoes.

Here, we present a simple framework for the analysis of acoustic array data, based

on least-squares beamforming, that allows to evaluate the direction and speed of

propagation of acoustic waves between source and array. The algorithms include a new

and computationally efficient approach for quantitative assessment of the uncertainty

on array measurements based on error propagation theory. We apply the algorithms to

new data collected by two 6-element infrasound arrays deployed at Mt. Etna during the

period July–August 2019. Our results demonstrate that the use of two infrasound arrays

allowed detecting and tracking acoustic sources from multiple craters and active vents

associated with degassing and ash-rich explosions, vigorous and frequent Strombolian

activity, opening of new eruptive fractures and emplacement of lava flows. Finally, we

discuss the potential use of metrics based on infrasound array analyses to inform

eruption monitoring operations and early warning at volcanoes characterized by episodic

intensification of activity.

Keywords: volcano infrasound, infrasound arrays, volcanic degassing, ash explosions, lava flow, Mt. Etna

1. INTRODUCTION

Over the past two decades infrasound has become an increasingly popular tool to monitor
volcanoes (e.g., Fee and Matoza, 2013; McNutt et al., 2015). Because of its ability to detect and
discriminate shallow and sub-aerial volcanic activity (Matoza et al., 2019) infrasound is a desirable
complement to seismology formonitoring unrest, and to detect and track the evolution of eruptions
in real- or near real-time (e.g., Ripepe et al., 2009, 2018; Cannata et al., 2013; Coombs et al., 2018)
that is over time scales of the order of few seconds to few minutes. Acoustic waves are generated
when the atmosphere is perturbed from equilibrium (e.g., Garcés et al., 2009). At volcanoes, small
and large explosions, gas-and-ash jets and plumes, sector collapses, rockfalls, pyroclastic flows, and
lahars, are likely to generate infrasound over a wide range ofmagnitudes, frequencies, and durations
(Johnson and Ripepe, 2011; Fee and Matoza, 2013; Johnson and Palma, 2015; McNutt et al., 2015;
Matoza and Fee, 2018). Infrasound is recorded by band-sensitive microphones at different scales
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(Fee and Matoza, 2013) from local (<20 km) to regional (several
10s to few 100s of km), and even global (several 100s to
1,000s of km).

At the local scale, microphones are deployed either as
individual sensors within distributed networks or as small-
aperture arrays (i.e., tight clusters of three or more instruments
at 50–150 m from one another) at distances of between few
hundreds of meters to within 20 km of an active volcanic
vent. Data from distributed networks have traditionally been
used for absolute source location and event discrimination
(e.g., Cannata et al., 2009), and to evaluate eruption source
parameters (e.g., Caplan-Auerbach et al., 2010; Fee et al., 2017;
De Angelis et al., 2019; Diaz-Moreno et al., 2019). On the other
hand, the close spacing between sensors deployed as a small-
aperture array allows detection of coherent infrasound even
in low signal-to-noise ratio (SNR) conditions, characterization
of the direction-of-arrival (DOA), and the apparent speed of
propagation of acoustic waves. Notably, the use of infrasound
arrays even at distances of a few tens of kilometers from active
vents provides robust and efficient remote detection of eruptive
activity and source discrimination (e.g., Fee et al., 2010), thus
reducing risks for observatory personnel during field campaigns.
Johnson (2004) and Ripepe et al. (2007) discussed applications of
infrasound arraymethods to track degassing and eruptive activity
from multiple active vents at Stromboli volcano (Italy). Ripepe
et al. (2018) reported on over a decade of acoustic monitoring
at Mt. Etna (Italy) with two small aperture infrasound arrays,
demonstrating the ability to detect eruption onset in real-time,
discriminate source position, and dispatch rapid notifications of
the ongoing activity to local civil protection authorities. Matoza
et al. (2007) analyzed array data during activity at Mt. St. Helens
(USA) from October 2004 to March 2005; they discussed the key
role of infrasound in separating surface from deeper processes
and in identifying the timing and assessing the magnitude of
eruptive events.

Previous studies focussing on (local scale) infrasound
array applications to volcano monitoring do not provide
quantitative estimates of the true uncertainty associated with
their measurements. In this manuscript we tackle this issue
presenting a simple framework for infrasound array processing
based on least-squares beamforming (Olson and Szuberla, 2005;
Haney et al., 2018) and introducing a new scheme for quantitative
assessment of the uncertainty on estimates of DOA and apparent
velocity. We test the method on data collected by two arrays
deployed at Mt. Etna (Italy) during the summer of 2019
(Figure 1). We describe the array processing workflow, and show
how infrasound data can be used to discriminate and track
volcanic activity, from background degassing to individual ash-
rich explosions, persistent Strombolian activity and lava effusion.

2. ACTIVITY AT MT. ETNA: JULY–AUGUST
2019

Mt. Etna, Italy, is one of the most active volcanoes in the
world. Several eruptive episodes have taken place in the past two
decades, at its summit, from the North East (NEC), Voragine

(VOR), Bocca Nuova (BN), and New South East (NSEC) craters.
Since 2011, more than 50 effusive events have taken place in
the area, which is visited by thousands of tourists every year
(e.g., De Beni et al., 2019; Sciotto et al., 2019). During the
last decade lava fountaining has frequently been observed from
the NSEC, as well as shorter episodes of Strombolian activity
from BN, VOR, and the NEC (Sciotto et al., 2019). Eruption at
Etna occasionally evolves into episodes of more intense activity
referred to as paroxysms that is, a significant increment in the
rate and intensity of explosions from one or multiple active vents
accompanied by emplacement of lava flows and/or generation
of significant ash plumes. Activity at Mt. Etna during July–
August 2019 was marked by the occurrence of two paroxysms
on 18 and 27–28 July, accompanied by the emplacement of
lava flows from lateral vents in the NSEC area (Figure 1). The
weeks preceding each paroxysm were characterized by both
sustained and explosive degassing occasionally punctuated by
ash-rich explosions (Figures 2A,B). The Istituto Nazionale di
Geofisica e Vulcanologia (INGV) reported intense degassing
and observations of four large explosions from the NEC on
2, 3, 8, and 13 July (Figure 2B). Degassing activity from VOR
was low-to-moderate, whilst BN produced deep intra-crater gas
explosions with minor amounts of ash (Figure 2A). Activity
at the NSEC increased gradually from vigorous degassing to
ash-rich Strombolian activity throughout the first week of July;
degassing-only activity resumed on 7 July and escalated again
into strong and nearly continuous Strombolian explosions on 18
July. Explosion rates varied from one every 1–2 min to several
per minute, eventually leading to the opening of a fracture
and subsequent emplacement of a lava flow on the NE flank
of the NSEC (23:09 UTC on 18 July). During the night on
19 July, Strombolian activity shifted from NSEC to NEC, and
gradually decreased until it completely halted—including lava
flow effusion—in the morning of 20 July.

On 25 July, a new phase of eruption began at the NSEC
with the onset of Strombolian activity, transitioning into nearly
continuous lava fountaining early in the morning of 27 July.
This activity was accompanied by sustained ash emissions
(Figures 2C,D) just a few hours before the opening of two new
vents on the southern flank of the NSEC from which two new
lava flows developed (Figure 1). A strong explosion occurred on
July 27 at 12:21 UTC, accompanied by an ash plume that reached
nearly 4 km above the vent (Figure 2C). Strombolian activity
ceased on 28 July at 03:40 UTC, while lava flows continued
until late that day. The remainder of our deployment period
was characterized by background levels of degassing from NSEC,
VOR, and BN, while NEC continued producing episodic ash
explosions during August.

INGV reported no major changes in deformation during
the 2 months of our temporary deployment, while daily gas
emissions increased notably during 15–29 July and then returned
to background levels. Seismic tremor fluctuated with marked
peaks on 6 July, coincident with the increase in Strombolian
activity at NSEC. Seismic tremor remained stable, at high levels,
during both paroxysms, and eventually returned to background
during August. Finally, infrasound locations provided by INGV
successfully identified the first paroxysm on July 18, but high
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FIGURE 1 | (A) Map showing: (1) the locations of two infrasound arrays (green triangles), ENEA and ENCR, deployed at Mt. Etna, Italy, during July–August 2019; (2)

approximate locations of vents active in the summit area (white circles of variable size according to vent dimensions as qualitatively inferred from visual observations)

during the deployment period; (3) active lava flows during the deployment period. (B,C) Details of the geometry of the two infrasound arrays, ENEA and ENCR.

FIGURE 2 | Images of eruptive activity at Mt. Etna, Italy, during July–August 2019: (A) Intense sustained degassing activity from the North East Crater (NEC) and deep

intra-crater gas-rich explosions from Bocca Nuova (BN) recorded during a UAV flight on 5 July 2019 at 08:00 UTC (Photo credit: A. Diaz-Moreno, University of

Liverpool); (B) Ash-rich explosion from NEC on 3 July 2019 at 10:06 UTC (Photo credit: A. Diaz-Moreno, University of Liverpool); (C) Explosive activity accompanied

by sustained ash emissions observed on 27 July 2019 at 12:21 UTC from the New South East crater (NSEC) area (Photo credit: Giuseppe Di Stefano/Marco Restivo,

Etna Walk); (D) Intense Strombolian activity and lava flow originating from a vent in the NSEC area on 27 July 2019 (Photo credit: INGV-Osservatorio Etneo).
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wind conditions on 27–28 July prevented the network from
detecting the second paroxysm. The activity recorded during the
summer of 2019 is typical at Mt. Etna; other eruptions with a
similar fingerprint have been reported in the past (Corsaro et al.,
2017; De Beni et al., 2019; Polacci et al., 2019).

3. DATA

In this study, we used data recorded by two 6-element infrasound
arrays (ENEA and ENCR, Figure 1), deployed at Mt. Etna
between 2 July and 25 August 2019. Changes in eruptive activity
during this period, summarized in section 2 of this manuscript,
are reported in the INGV activity bulletins and were confirmed
by both Unmanned Aerial Vehicle (UAV) imagery (Figure 2A)
and ground-based visual observations (Figures 2B–D) gathered
during the deployment by the authors. The ENEA and ENCR
arrays were installed at distances of between 1 and 1.8 km from
the active vents (Figure 1). Each had similar configurations,
deployed with an ∼100m aperture (i.e., the largest distance
between any two elements within an array) pentagon shape with
a central element. Care was taken, considering the constraints
imposed by topography, that the difference in elevation between
any two microphones within each array was small; for both
arrays, this difference did not exceed ∼30 m (see Methods
section for additional details). The arrays were designed to have
apertures large enough to discriminate acoustic arrivals and small
enough to record coherent infrasound across all microphones
(Ripepe et al., 2007). Data from both arrays were recorded on-
site with a sampling frequency of 100 Hz at 24-bit resolution
using DiGOS Data-cube digitizers (https://digos.eu/seismology-
and-cubes/); ENEAwas equipped with Chaparral Model 60 Ultra
High Pressure microphones (full-scale range of 2000 Pa peak-to-
peak, flat response between 0.03 and 245 Hz), and ENCR with
IST2018 sensors (full-scale range of 480 Pa peak-to-peak, flat
response between 0.1 and 40 Hz, as described in Grangeon and
Lesage, 2019). Pressure amplitudes recorded by the two arrays
ranged from few Pa for signals associated with both sustained
and explosive degassing, to several tens of Pa during intense and
persistent Strombolian activity. Examples of multi-channel data
recorded by both ENEA and ENCR are shown in Figures 3A–E;
these include an ash-rich explosion from NEC (Figure 3C) and
repeated deep intra-crater explosions from BN (Figure 3D) on 2
July 2019, as well as Strombolian activity from NSEC on 18 July
2019 (Figure 3E). It is worth noting how infrasound waveforms
in Figures 3B,E exhibit a marked asymmetry, although the
investigation of this intriguing feature falls beyond the scopes of
this manuscript.

4. METHODS

Here we discuss an array processing workflow to derive estimates
of DOA and horizontal velocity from volcano infrasound array
data. The method solves, via least-squares inversion, the problem
of fitting a plane wave arrival traveling from an azimuth θ with
horizontal velocity v to a vector of measured time delays between
traces across the array (e.g., Claerbout, 1986; Olson and Szuberla,

2005; Haney et al., 2018). We also introduce a new method to
quantify errors on the measurements of θ and v using standard
propagation of error. For an array of n sensors, a data vector
d = (δt1, δt2, . . . , δtN) of N = n(n − 1)/2 delay times between
the elements of the array can be estimated, for instance using
waveform cross-correlation; a linear relationship exists between
d and a model vector, m = (sx, sy)T = (sin θ/v, cos θ/v)T of
slowness (defined as the inverse of velocity) in the East-West (sx)
and North-South (sy) directions:

d = Gm (1)

where G is a Nx2 matrix of horizontal distances between all
pairs of array elements. When the measurements of delay times
are affected by error, Equation (1) can be re-written to explicitly
include it as:

d = Gm+ ǫ (2)

where ǫ is the vector of errors in the estimates of time delays.
These errors can be assumed to be normally distributed, with
zero mean and variance σ 2

τ (Olson and Szuberla, 2005). The
solution to (2) for m is then found by minimizing the sum of
squared errors:

E = ǫǫT = (d− Gm)T(d− Gm) (3)

that is:

m = (GTG)−1GTd (4)

Finally, DOA and apparent trace velocity across the array can be
estimated from the solution vectorm as:

{

v = 1/
√

s2x + s2y

θ = tan−1(sx/sy)
(5)

It is important to note that the beamforming analysis in (1–
5) is carried out in the horizontal plane (Edwards and Green,
2012), that is under the assumption that the contribution of
differences in sensor elevations to the time delay measurements
can be neglected; for this reason it is crucial that such differences
are small.

For the most part, studies that apply array processing to
volcano infrasound data either provide qualitative statements
on the uncertainty associated with estimates of DOA and trace
velocity or discuss the theoretical azimuthal resolution of the
array in terms of its aperture in relation to the wavelength of
the signals analyzed (e.g., Ripepe et al., 2018). The statistical
confidence in the estimates of θ and v are rarely discussed (e.g.,
Szuberla and Olson, 2004); precise estimates of DOA and trace
velocity are made difficult by the ubiquitous presence of noise in
the data and the complex propagation of the acoustic wavefield,
which affect measurements of time delays across arrays. Under
the assumption that errors on the measurements of time delays
across an array are normally distributed, with zero mean and
variance σ 2

τ , the deviation of m from its expected value, due to
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FIGURE 3 | Infrasound data recorded by the ENEA (blue) and ENCR (black) arrays during July 2019: (A) 5 min of continuous infrasound activity recorded by ENEA on

2 July 2019; (B) 6 h of intense Strombolian activity recorded by ENCR on 18 July 2019; (C,D) Detail (gray shaded areas in A) of ENEA infrasound associated with an

ash-rich explosion from the NEC and deep intra-crater gas explosions from BN, respectively; (E) Detail (gray shaded area in B) of ENCR infrasound recorded during

vigorous Strombolian activity on 18 July 2019. Note the difference in infrasound amplitudes between signals in (A,B).

errors in the estimates of time delays, is described by the model
covariance matrix, C(m), given by:

C(m) = σ 2
τ (G

TG)−1 = σ 2
τ D (6)

The matrix C(m) is symmetrical and can be written in terms of
the variances (σ 2

sx , σ
2
sy ) and covariance (σ 2

sx ,sy ) of sx and sy:

C(m) =

[

σ 2
sx σ 2

sx ,sy
σ 2
sx ,sy σ 2

sy

]

(7)
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FIGURE 4 | Array processing of 35 min of data recorded at ENEA on 2 July 2019 between 9:50 and 10:25 UTC. Note (bottom panel) consistent detection of deep

intra-crater activity from BN briefly interrupted by a larger ash-rich explosion from NEC (see section 2).

Equations (6) and (7) provide a link between the variances
and covariance of sx and sy, and the variance of time delay
measurements, that is:











σ 2
sx = σ 2

τ D(1, 1)

σ 2
sy = σ 2

τ D(2, 2)

σ 2
sx ,sy = σ 2

τ D(1, 2)

(8)

We are interested in error estimates on DOA and trace velocity,
which are non-linear functions of sx and sy as shown in (5).
In order to estimate the variances for θ and v (σ 2

θ and σ 2
v ,

respectively) we apply standard propagation of errors theory
(e.g., Vardeman and Jobe, 2001) to (5). Neglecting high-order
terms we obtain:







σ 2
v ≈ σ 2

sx

(

∂v
∂sx

)2
+ σ 2

sy

(

∂v
∂sy

)2
+ 2σ 2

sx ,sy

(

∂v
∂sx

) (

∂v
∂sy

)

σ 2
θ ≈ σ 2

sx

(

∂θ
∂sx

)2
+ σ 2

sy

(

∂θ
∂sy

)2
+ 2σ 2

sx ,sy

(

∂θ
∂sx

) (

∂θ
∂sy

) (9)

The terms in (9) are obtained by simply differentiating (5) and
evaluating them at the values for sx and sy given by the solution
of (4), that is:

{

σ 2
v ≈ σ 2

sx s
2
xv

6 + σ 2
sy s

2
yv

6 + 2σ 2
sx ,sy sxsyv

6

σ 2
θ ≈ σ 2

sx s
2
yv

4 + σ 2
sy s

2
xv

4 + 2σ 2
sx ,sy sxsyv

4 (10)

Finally, the standard deviations of trace velocity andDOA, σv and
σθ , are obtained by taking the square root of (10).

5. RESULTS

We applied the array processing workflow described in section
4 of this manuscript to continuous infrasound data recorded at
Mt. Etna between 2 July 2019 and 25 August 2019. Data collected
by two infrasound arrays, ENEA and ENCR, were pre-processed
by applying a band-pass (2-pole, zero-phase) filter within the
frequency band of interest, which for the activity recorded during
our experiment was between 0.7 and 15 Hz. The delay times
between pairs of sensors across each array were determined using
cross-correlation with sub-sample accuracy (e.g., Haney et al.,
2018) within 10-s sliding windows overlapping by 5 s. DOA
and trace velocity were calculated for all data windows by least-
squares inversions according to (1–5), and their variances were
calculated according to (7–9). The mean of the normalized cross-
correlation maxima (MCCM) within each data window reflects
the level of coherence between signals across the array; only
values of DOA and trace velocity corresponding to MCCM >

0.5 were considered to ensure that inversion was performed for
coherent signals across the arrays.

Examples of estimates of DOA and trace velocity, along with
their uncertainties, are shown in Figures 4, 5. In Figure 4 we
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FIGURE 5 | Array processing of 51 h of data recorded at ENEA and ENCR, starting on 18 July 2019, 00:00 UTC: (A) ENCR shows stable detections during

Strombolian activity (18:00–24:00 on 18 July and 12:00–22:00 on 19 July) as well as during a period of lava effusion from the NE flank of NSEC (23:09 on 18 July, see

section 2 in this manuscript); (B) ENEA captures the most intense Strombolian activity from the NSEC but shows larger fluctuations in DOA (direction of arrival) than

ENCR. This is due to less favorable signal-to-noise ratio for activity at the NSEC as well as its proximity to secondary sources within the BN crater. Both arrays detect

a clear shift in activity from NSEC to NEC late during the night between 19 and 20 July. Note how uncertainties and scatter in locations are consistently smaller at the

array closer to the active vent.

show data recorded at ENEA on 2 July 2019 (the only array
installed at this time). Figure 5 illustrates results from both
ENEA and ENCR for just over 2 days of activity starting on

18 July 2019. These examples are representative of the variable
activity, during July–August 2019, frommultiple vents (Figure 1)
and across all summit craters at Mt. Etna. Figure 4 shows stable
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locations in the direction of BN associated with deep intra-
crater explosions (Figures 2A, 3D) and a sharp change in DOA
at about 10:06 UTC, which corresponds to a larger ash-rich
explosion from the NEC (Figures 2B, 3C); trace velocities are
of the order of 330–335 m/s with standard deviations of 5–15
m/s, and uncertainties on DOA estimates of 0.5–2◦ (≈10–40m at
the distance between ENEA and the vent). Locations in Figure 5

are dominated by activity at NSEC, in particular between 18:00
and 24:00 on 18 July and during 12:00–19:00 on 19 July, when
frequent and intense Strombolian activity was observed at this
crater (Figures 3B,E). Values of trace velocities at ENEA during
this period are of the order of 310–335 m/s, with uncertainties
of 5–15 m/s and standard deviations on DOA between 1 and 2◦

(≈30–60 m); at ENCR, trace velocities are in 330–335 m/s range
with uncertainties of 2–8 m/s, and uncertainties on DOA of 0.5–
2◦ (≈10–40 m). Notably, both arrays detected a shift in activity in
the direction of the NEC, also reported by INGV at about 23:00
on 19 July (section 2).

The two arrays were installed to provide the best coverage
of all active craters at Mt. Etna (within limitations imposed
by site access and safety). Owing to their positions relative to
the active vents ENEA was ideally located to independently
discriminate activity from NEC, whereas ENCR was positioned
to optimize detection of activity from the NSEC area (Figure 1).
In Figure S1, we have provided an additional example of array
locations showing the stability and low uncertainties associated
with detections at ENCR during a period of Strombolian activity,
lava fountaining and sustained ash emissions at the NSEC on
27–28 July 2019 (see section 2 in this manuscript, Figures 2C,D).

6. DISCUSSION AND CONCLUSIONS

We have presented an algorithm for the inversion of infrasound
array data that allows estimating DOA with apparent sound
velocity, and their associated uncertainties. We have applied the
workflow to data collected by two 6-element infrasound arrays
deployed at Mt. Etna during the summer of 2019; continuous
detections from the two arrays tracked the activity observed
at the volcano, including shifts in degassing and eruptions
across multiple summit craters and vents. The results presented
in Figures 4, 5, suggest that: (i) array location relative to a
complex system of active vents is key to allow discrimination
of variable activity across multiple craters, and (ii) the quality
of detection and thus the final estimates of uncertainties are
crucially influenced by SNR levels. Figure 5, for instance, shows
higher quality (i.e., lower uncertainties) detections from ENEA
for activity located at the NEC, while ENCR seems better suited
to track eruptions in the NSEC area; ENEA is also able, albeit
with comparatively large uncertainties, to track small intra-
crater explosions from BN (Figure 5B) even during periods of
elevated Strombolian activity at the NSEC. At the first order,
this observation arguably reflects variable SNR at the two sites,
resulting from the interplay between array proximity to the
source (NEC and BN closer to ENEA; NSEC closer to ENCR)
and wind noise levels (qualitatively observed to be consistently
higher at ENEA). Wind strength and direction are factors that

can potentially introduce a bias in the estimates of DOA and
trace velocity from infrasound arrays (e.g., Schwaiger et al.,
2020). At large source-receiver distances time reversal location
of infrasound sources, propagating the acoustic wavefield in a
windy atmosphere, has been used to assess the misfit between
known source backazimuths and DOA estimates (e.g., Lonzaga,
2016). At the local scale, Johnson et al. (2012) demonstrated how
temporal variations in acoustic parameters, such as infrasound
travel times over short distances—<20 km—can be exploited
to infer atmospheric conditions, including the strength of wind
in a vertically stratified atmosphere. In theory, appropriate
corrections for the effect of wind on infrasound measurements
could be introduced in array inversion workflows; the main
challenge for this lies in the fact that wind measurements or
models with the required temporal and spatial resolution for
the local scale are generally not available. In addition to wind
noise, uncertainty on estimates of DOA and sound velocity are
further linked to array configuration and its position relative
to the sources; these factors control the degree to which the
measured time delays across the array correspond to a physically
realizable set of delays associated with the propagation of a plane
wave across the array (Szuberla and Olson, 2004). Qualitatively,
the plane wave approximation is considered valid at source-
to-array distances much greater than the aperture of the array
(e.g., Almendros et al., 1997), a condition met in our study for
all source-array combinations. Finally, effects from topography,
such as diffraction can affect acoustic propagation and introduce
additional bias in array estimates of DOA and sound speed.
At the local scale Fee et al. (2019) recently investigated the
effects of topography on back-projection locations of volcano
infrasound sources integrating improved travel time calculations
from finite difference modeling of the acoustic wavefield. At
Mt. Etna, specifically, Diaz-Moreno et al. (2019) performed 3D
finite difference simulation of acoustic wavefield propagation;
their results suggest that the effects of topography on acoustic
propagation from sources in the area of the summit craters to the
locations of the arrays used in this study are minor.

A quantitative estimate of how well the measured time delays
correspond to a plane wave crossing the array is directly provided
by the a priori variance of the time delay measurements, which is
given by (Szuberla and Olson, 2004):

σ 2
τ =

R20
N − r

(11)

where (following the same notation of Equations 1–10) R20 =

dT(I − R)d, with I being the identity matrix and R =

G[(GTG)−1 − 1]GT ; N is the number of station pairs and r is the
rank of R. We calculated σ 2

τ for periods with high MCMM > 0.5;
values were of the order of 10−2 s, that is ≈ 1/fs (with fs being
the data sampling frequency) as also reported in other studies
(e.g., Szuberla and Olson, 2004). This gives confidence that the
plane wave assumption does not introduce significant bias on the
results of our array analysis. On the other hand for data with low
MCMM, that is no coherent signal traveling across the array, the
values of σ 2

τ were very high, up to a few seconds.
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FIGURE 6 | One-minute Infrasound Parameter during July–August 2019 for arrays ENEA (A) and ENCR (B); periods when no data were available are also indicated.

Detail (zoom in of gray areas in A,B) of Infrasound Parameter values at ENEA (C) and ENCR (D) for the period 17–21 July 2019. The figure shows an obvious increase

in both occurrence (i.e., increasing array detections per minute) and intensity (increasing signal amplitude) of Strombolian activity; the Infrasound Parameter peaks in

coincidence with the opening of a new fracture and emplacement of a lava flow on the NE flank of the NSEC, late during the night on 18 July (see sections 2 and 6).

In our workflow, uncertainties on apparent velocity and DOA
are evaluated using the theory of error propagation. While
the variances estimated using this method are a first order
approximation to the true uncertainty, this solution is easy to
implement with very low computational overhead, an obvious
advantage for deployment within real-time volcano monitoring
systems. An exact solution for the statistical confidence in the
estimates of DOA and signal velocity for planar arrays (i.e.,
without significant variations in elevation across the array) is
discussed in Szuberla and Olson (2004). We benchmarked the
results of our workflow against this solution and found good
agreement between the two approaches (Figure S2).

Our study also reveals that combining estimates of DOA
from multiple arrays improves the ability to discriminate
multiple active vents. The ENEA and ENCR arrays were
ideally positioned to independently discriminate sources within

the NEC and NSEC, respectively (Figure 1). In the absence
of complementary observations, however, resolving activity
from variable vents within the other two summit craters
(BN and VOR) frequently requires joint measurements from
two arrays; combining the DOAs obtained from both arrays,
a source location could be uniquely identified (Figure S3).
Finally, we note that our workflow implicitly assumes a single
arrival within each signal window analyzed. At volcanoes with
multiple vents separated by a small distance different sources
could be simultaneously active, and thus, produce multiple
arrivals within a signal analysis window. This is discussed, for
example, by Yamakawa et al. (2018) at Stromboli; the authors
demonstrate how the MUSIC algorithm can help to resolve
multiple active sources. We find that when active vent are
separated by comparatively large distances and have different
characteristic dimensions, such asMt. Etna, appropriate selection
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of the signal analysis window and filters still allows effective
source discrimination.

A key advantage of using infrasound arrays over individual
microphones is that with a single data processing step multi-
element arrays can provide information on source location, as
well as the levels of volcanic activity in terms of both signal
amplitude and rates of detection. This is an ideal scenario to
inform early warning and assessment of alert levels during period
of unrest accompanied by elevated surface activity at volcanoes.
Ripepe et al. (2018) proposed an efficient way to combine the
output of infrasound array processing into a single metric, the
Infrasound Parameter, calculated as the product IP = Ap · Nd

between the mean infrasound amplitude, Ap, and the number
of array detections per minute, Nd. They calculated IP at Mt.
Etna for a continuous period of about 8 years, and discussed
the implementation of an alert color code used to dispatch early
warnings of impending paroxysmal activity to the local civil
protection authority. Here, we estimated a modified IP during
July-August 2019 by taking the product between the mean of the
maximum signal amplitude within each array detection window
over a minute and the number of detections per minute. For
this calculation we selected only high-quality detection windows,
corresponding to MCMM > 0.5. The results for both arrays
during the entire deployment period are shown in Figures 6A,B.
Figures 6C,D show details of IP during 17–21 July 2019, when
Strombolian activity escalated at the NSEC from one explosion
every 1–2 min to several events within a minute, eventually
leading to the opening of a fracture and emplacement of a lava
flow on the NE flank of the NSEC late during the night on
18 July. The temporal evolution of the IP parameter represents
changes in surface activity; Ripepe et al. (2018) reported that this
behavior, typical of eruptions at Mt. Etna, reflects the transition
from rapid Strombolian explosions, driven by the repeated
ascent of gas slugs in the shallow conduit, to a churn flow
regime when gas discharge increases and the eruption becomes
sustained. The pattern observed in Figures 6C,D suggests that IP,
when appropriately calibrated, may provide a valuable metric to
monitor escalating surface activity, inform changes in alert color
codes, and issue early warnings. While its use has been, thus far,
limited to monitor activity at Mt. Etna, it may also be applicable
at other basaltic volcanoes characterized by periodic occurrence
of paroxysms.

In conclusion, we have presented a framework for the
inversion of infrasound array data to provide rapid estimates
of source location and apparent sound velocity during periods
of elevated volcanic activity. Our algorithms include a new, and
computationally efficient, procedure for quantitative assessment
of the uncertainties on array measurements, which is particularly
well-suited for real-time implementation. We applied the
proposed workflow to data gathered at Mt. Etna during July–
August 2019. Our results demonstrate that infrasound arrays
allowed detection and tracking of variable activity from multiple
active vents at Mt. Etna. Owing to the fact that infrasound
propagates efficiently over large distances (e.g., Fee and Matoza,
2013), we suggest that this data analysis framework may also
hold potential to monitor eruptive activity at the regional scale

(i.e., source-array distances of up to several hundreds of km), in
particular in remote areas where local monitoring of individual
volcanoes is not viable (Fee et al., 2019). We have further
discussed a simple metric derived from infrasound array analyses
that may be suitable to inform monitoring operations and form
the basis to issue early warnings of impending paroxysms at
basaltic volcanoes. We surmise that infrasound offers a simple
and effective tool to track the temporal evolution of volcanic
activity and to assist with real-time volcano monitoring, as well
as the potential to inform models of the processes that control
degassing and eruption at volcanoes.
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Model in a Deep Reservoir
Paolo Mancinelli*
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In this work, we calculate the gravity signature of small density changes in a real-case
deep reservoir. Based on the 3D forward density modeling of constrained geometries
and using parameters of the involved rocks and fluids, we compute the differential gravity
signature before and after the production period of the Volve oil field in the North Sea.
Causative sources of the retrieved residuals are spatially correlated with positions of the
most productive wells, locating areas of maximum density change. Results show that
the 4D gravity forward model is capable of resolving residual gravity signatures also for
deep and small density changes. In particular, we locate ∼−13 µGal gravity minima
over the 2750 m deep reservoir; this minima was caused by the −53 kg m−3 density
change related to production and injection activity.

Keywords: 4D modeling, gravity forward modeling, production data constraints, deep source, small density
contrast

INTRODUCTION

Using gravity data for sub-surface modeling of geological structures may represent a useful tool
to address open questions about geological or geophysical processes at the crustal or local scale.
Application of 2D or 3D forward or inverse techniques depends on real gravity data availability
over the target area (e.g., Mancinelli et al., 2015; Dressel et al., 2018; Fedi et al., 2018; Mancinelli
et al., 2019, 2020; Sobh et al., 2019) but often the smaller gravity signatures are concealed and hard
to elaborate through filtering. In the last two decades, the increase in gravimeters’ precision allowed
the development of 4D gravity models monitoring fluid-related density changes at increasing
resolution (e.g., Hare et al., 1999; Eiken et al., 2000, 2008; Ferguson et al., 2007, 2008; Vasilevskiy and
Dashevsky, 2007; Alnes et al., 2008; Davis et al., 2008; Gasperikova and Hoversten, 2008; Stenvold
et al., 2008; Jacob et al., 2010; Krahenbuhl et al., 2011; Krahenbuhl and Li, 2012; Wilson et al., 2012;
Reitz et al., 2015; Elliott and Braun, 2016, 2017). It should be noted that in all these case histories,
the top of the gravity source was always above 2500 m depth. The depth of the source is the most
critical parameter affecting the resolvability of a gravity anomaly (e.g., Blakely, 1996). In the case
of CO2 storage, the depth of 2500 m is considered a threshold between shallower (thus resolvable)
and deeper (very difficult to resolve) field applications (Cooper et al., 2009).

The evolution of gravity modeling techniques has closely followed the technological
improvements that allowed significant increase in precision and accuracy of gravimeters over the
last decades. A compelling revision is provided by Van Camp et al. (2017). The goal of lowering the
threshold for stable measurements, together with the increased ability of identifying noise sources,
has allowed to reach precisions below 1 nm s−2 – i.e., 0.1 µGal, also for transportable absolute
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gravimeters (Ménoret et al., 2018). Seafloor gravimeters can
achieve measurements with time-lapse accuracy better than
5 µGal (Eiken et al., 2000; Sasagawa et al., 2003; Stenvold et al.,
2008). However, the monitoring of fluid-induced density changes
at production or storage sites through gravity 4D models has not
evolved in a similar way. In fact, very few production and storage
reservoirs have been investigated using 4D gravity methods. This
is likely due to problems related to three main sources: (i) size
of the production/injection process in terms of depth, thickness,
volumes, and densities of the involved deposits and fluids; (ii)
high-quality gravity data availability due to costs for gravimeters
and data acquisition and knowledge about noise sources; and (iii)
best familiarity with the 4D seismic method which is preferred
to any other approach. If the first two are related to the non-
uniqueness of the modeling solution, the third is related to the
results offered by modern 3D and 4D seismic surveys, even if the
method has also limitations in locating fluid content, porosity,
and saturation changes (Devriese and Oldenburg, 2014).

In this work, we calculate the gravity response of small density
changes in a small and deep reservoir with a size/depth ratio
slightly lower than 1. This scenario represents the worst case
for the application of gravity methods to locate density changes
related to fluid production or injection. Through 3D forward
modeling of the reservoir geometries as obtained from seismic
and borehole data, we model production-related density changes
to retrieve the gravity response before and after production.
Modeling is constrained by volumes and densities of produced
and injected fluids at reservoir conditions.

DATA AND METHODS

The Volve Field Database
The Volve field is located in the Central North Sea (Figure 1A),
and it was discovered in 1993 by the well 15/9-19 SR. It is
located ∼5 km north of the Sleipner East field (e.g., Alnes et al.,
2008, 2011) and production started in February 2008 (Production
data report in the Volve field dataset). Oil and gas production
ended in September 2016 after a total production of 1.5 × 109

Sm3 including oil, gas, and formation water. Among the several
wells drilled in the field, the majority of the production (∼98%)
was achieved by wells 15/9-11, 15/9-12, and 15/9-14 (Figure 1).
The Volve reservoir is located in the Hugin Jurassic sandstones
between 2750 and 3120 m total vertical depth (TVD) below sea
level (Discovery report in the Volve field dataset). Hugin sands
were deposited in a nearshore marine setting, show high total
organic carbon (up to 80%), and are gas prone with the capability
to generate also light liquid hydrocarbons (e.g., Isaksen et al.,
2002). According to well data in the Volve field, the thickness of
the Hugin formation can range between a few tens of meters up to
∼150 m where all the 18 levels of the formation have been drilled.
Production at Volve was sustained by formation water injection
of a total volume of 3 × 107 Sm3 from the wells 15/9-F-4 and
15/9-F-5 that were active between April 2008 and September 2016
(Production data report in the Volve field dataset).

After shut down and removal of the production equipment in
summer 2017, the entire dataset regarding seismic volumes, well

logs, and petrophysical and geological characterization of the field
was disclosed by Statoil (now Equinor) in June 20181.

The Volve dataset encompasses over 5 Tbytes of data counting
over 11000 files including both raw data and interpretations
of the formation tops and faults. It includes also the 3D
models used for production simulations as resulting from
the seismic data interpretation and well logs. Locations of
production and injection wells, daily and monthly reports on
production, and injection activities are available as well. Finally,
geochemical analyses of formation fluids at reservoir conditions
of pressure and temperature are provided together with detailed
characterization of the involved formations. The availability
for the scientific community of such a detailed and complete
database regarding a reservoir system and its production history
represents a unique opportunity and allows the community for
unprecedented attempts in testing modeling techniques.

Modeling Procedure
In order to provide an input geometry for the forward gravity
model, we first created a 3D model of the reservoir using Hugin
top and bottom surfaces as provided in the Volve dataset. The
surfaces of the main faults in the area were depth-converted
as they are provided as two-way travel-times (TWT) in the
dataset only. This step was carried out using TWT-depth data
provided in well logs and reports on well activities included in
the dataset. Finally, the 3D model of the reservoir was obtained by
intersection of the top and bottom of the Hugin formation with
the bounding faults (Figure 1B). We chose to not include other
structures in the model to keep the geometry as simple as possible;
moreover, we assume that all bounding faults are sealing – i.e., all
density changes are contained within the reservoir volume.

Once the geometry of the reservoir was defined, we discretized
the ∼4.3 × 109 m3 Hugin volume in 275642 cubic cells with size
25 m × 25 m × 25 m and included it in a larger 3D mesh with
same cell size. In this geometric model, the only surface included
together with the Hugin volume is the sea bottom representing
the major density contrast between sea water and the underlying
rock volume (Figure 2). Despite the seafloor effect is obviously
removed by the 4D approach, it was included in the single 3D
models to evaluate the gravity signature related to bathymetry.
Seafloor is found between 85 and 100 m below sea level, and the
bathymetry shows a main step (∼10 m) in the eastern area of
the modeled region and a gentle westward descending gradient
across the entire area (Figure 1B).

Within the geometric model, we set density values according
to the petrophysical and geochemical data recovered from the
reports available in the Volve database. In particular, by averaging
the density values provided for the units surrounding Hugin, we
set a bulk reference density for the volume of 2670 kg m?3. This
value was used to calculate density contrasts of sea water volume
(−1640 kg m−3) and the Hugin volume (−70 kg m−3) – i.e.,
we assume that seawater and Hugin have a density of 1030 and
2600 kg m−3, respectively. The density contrasts were used as
input for a pre-production 3D forward model.

1https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-
field-data-village-download.html

Frontiers in Earth Science | www.frontiersin.org 2 July 2020 | Volume 8 | Article 28558

https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
https://www.equinor.com/en/how-and-why/digitalisation-in-our-dna/volve-field-data-village-download.html
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


feart-08-00285 July 7, 2020 Time: 19:46 # 3

Mancinelli 4D Gravity Forward Modeling

FIGURE 1 | (A) Free-air anomaly at sea and Bouguer anomaly on land over the study region (mod. from Olesen et al., 2010). (B) 3D model of the Volve field
reservoir. Light gray surfaces represent bounding faults used to delimit Hugin top and bottom surfaces. Spacing between gray lines in the bounding box provides
horizontal and vertical scales: spacing in the X–Y plane is 2 km while spacing in depth is 0.5 km. Coordinates are in ED50 UTM 31N.

The procedure to calculate the forward gravity
models of the volumes is based on the algorithm
proposed by Li and Oldenburg (1998).

The vertical component of the gravity field produced by the
density ρ(x,y,z) is given by:

gz(r0) = γ

∫
V

ρ(r)
z − z0

|r − r0|
3 dv (1)

whereV is the anomalous mass volume, r0 = (x0, y0, z0) is a vector
locating the observation point, r = (x, y, z) locates the source, and
γ is the gravitational constant.

Assuming a constant density contrast within each prismatic
cell in a 3D orthogonal mesh, the gravity field at the ith
observation location is given by:

gz(r0i) =

M∑
j=1

ρj

{
γ

∫
1Vj

z − z0

|r − r0i|
3 dv

}
(2)

where ρj and 1Vj are the density and volume of the jth
cell, respectively.

To evaluate density changes induced by fluid production
and injection, we recovered data from the activity reports
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FIGURE 2 | Geometries of the Hugin reservoir and sea water (blue volumes) within the entire model. (A) Perspective, (B) northward, (C) eastward and (D) downward
view of the mesh. All scales are in meters. This mesh was used for the pre- and post-production 3D forward models. Cell size is 25 m × 25 m × 25 m. Y axis
locates geographic north. Coordinates are in the same system as in Figure 1.

provided in the Volve dataset. The total reported volume
balance accounting for 1.5 × 109 Sm3 of volumes produced
and 30 × 106 Sm3 of injected water is 1.47 × 109 Sm3 (Sm3

stands for standard cubic meters and is referred to 15◦C and
1010 × 102 Pa) including oil, gas, and water production and
injection. At reservoir conditions (106◦C and 3.28 × 107 Pa),
this volume becomes 3.21 × 108 m3. At the same temperature
and pressure conditions, the fluids in the reservoir have a
density of 710 kg m−3 as reported in the geochemical analyses
of samples from the discovery well 15/9-19-SR and included
in the Volve dataset. Thus, the mass loss in the reservoir,
accounting for production and injection activities and reservoir
conditions, is of 2.28 × 1011 kg. Considering that injection
of water was contemporaneous to production (wells 15/9-F-4

and 15/9-F-5 were active between April 2008 and September
2016), we assume zero compaction of the Hugin sandstones
during this period.

If a homogeneous mass loss across the entire reservoir is
assumed, after the production each cell in the discretized Hugin
volume should weigh 8.27× 105 kg less than before production –
i.e., the total mass loss divided by the total number of cells. In
other words, knowing the volume of each cell (1.56 × 104 m3),
the production and injection activities resulted in a reservoir
formation density loss of ∼53 kg m−3. We note here that
this configuration of the post-production model provides no
preferential “paths” for density variations within the reservoir
because it is not including constraints regarding injection and
production wells’ locations. Finally, the achieved density loss
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value is used to correct the pre-production density of the Hugin
volume and perform a post-production 3D gravity forward
model of the total volume that is compared with the pre-
production model to evaluate gravity changes related to the
production activity.

RESULTS

Figure 3 shows the gravity signatures obtained after 3D forward
calculation of the pre-production model (Figure 3a) and of the
post-production model (Figure 3b) and the differential signature
obtained by removing the forward-calculated gravity of the pre-
production gravity from the post-production (Figure 3c). All
these maps are produced with regular station spacing of 50 m

located on sea surface, but similar results are obtained using a
double station spacing of 100 m.

Despite the results of the pre- and post-production, forward
models are extremely similar in the way that it would not
be possible to qualitatively locate any local undulation; the
difference between these two gravity data highlights a∼−13 µGal
(−130× 10−9 m s−2) minimum centered at 435256 E, 6478496 N
(ED50, UTM 31N). Considering the modeled volume and
the imposed density change, we interpret this minimum as
representing the gravity effect of oil, gas, and water production
and injection activities at the Volve field between February 2008
and September 2016.

The resulting residuals are in the same order of magnitude
than those retrieved in the Sleipner field through gravity data
acquisition (e.g., Alnes et al., 2008, 2011).

FIGURE 3 | Forward-calculated gravity signature of the pre-production (a) and post-production (b) models. (c) Differential gravity signature calculated by subtraction
of pre-production (a) from post-production gravity (b). Spacing between stations for forward calculations is 50 m. (d) Horizontal gradient of the tilt derivative (THDR)
computed from (c). Contours locate areas with value <1 milliradians m−1.
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In a final processing step, we calculate the tilt derivative
(Miller and Singh, 1994a; Verduzco et al., 2004) of the anomaly
in Figure 3c. The horizontal gradient of the tilt derivative
(THDR) is computed in order to locate zero values of the
THDR representing the boundary of the causative source (e.g.,

Miller and Singh, 1994b). Projecting the calculated THDR
(Figure 3d) on the reservoir top (Figure 4), we note that
the THDR values ≈0 are surrounded by the most producing
wells – i.e., 15/9-11, 15/9-12, and 15/9-14 whose production
accounts for more than 98% of the total volume (Figure 4B).

FIGURE 4 | (A) Three-dimensional view of the THDR over the Volve field. The contoured values (thin black lines) were projected to the top Hugin at depth for spatial
comparison with reservoir geometry and wells locations. (B) Map view of the reservoir top (i.e., top of the Hugin formation) compared with THDR values <0.6
milliradians m−1 and locations of the contacts between well tracks and top Hugin (triangles). Percentage values within parentheses represent the production over
total mass balance achieved by each well. Contour lines are spaced 0.1 milliradians m−1. Horizontal and vertical scales are the same as in Figure 1.
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This evidence supports the former interpretation concerning the
gravity minima observed in Figure 3c being caused by reservoir
production and injection activities.

DISCUSSION

The 4D gravity approach is not a new idea to monitor
fluid-related density variations, but its application has always
relied on high-precision gravity data acquisitions repeated in
time and on source depth <2500 m (e.g., Ferguson et al.,
2007; Vasilevskiy and Dashevsky, 2007; Alnes et al., 2008,
2011; Elliott and Braun, 2016). In this work, we applied a
simple modeling procedure to evaluate the 4D gravity response
computed from 3D forward models repeated at pre-production
(February 2008) and post-production (September 2016) time
steps. This procedure allowed to evaluate the gravity effects of
pre-determined density changes in the >2750 m deep Volve
reservoir without gravity data acquisition. The procedure was
constrained by production data and geometry of the reservoir
resulting from seismic and well data.

We assumed sealing conditions of the bounding faults and
isotropy of the reservoir volume. Without detailed data about
fault behavior and anisotropies within the reservoir levels, we
made these assumptions to confine the mass variation within
the modeled reservoir and to homogeneously distribute the
mass change within the entire reservoir volume. However,
the reference volume can be further parametrized in order to
locate density changes according to available data or simulated
scenarios. For example, to investigate eventual effects on the
spatial distribution of density changes after introducing a leaking
fault in the model, the reservoir volume should be extended
beyond the investigated leaking fault and be parametrized
with proper pre-production and post-production density
contrasts. Furthermore, volume parametrization allows to model
also eventual noise sources – e.g., topography/bathymetry,
local density changes in surrounding volumes, as long as
these are quantifiable by density or volume changes within
the modeled period.

Based on the well-known algorithm proposed by
Li and Oldenburg (1998), we modeled the gravity signature
without filtering any regional or topographic components
that are naturally removed by the differential approach. The
only requirements are given by well-constrained geometries of
the reservoir, availability of data about produced and injected
volumes, and petrophysical properties of the fluids and reservoir
formation. All these data are normally produced for oil and gas
field characterization.

Interestingly, the procedure locates the causative source of
the residual anomaly (Figure 3c), within the area of maximum
production, where THDR values≈ 0 are surrounded by the three
most productive wells (Figure 4). In general, it is not surprising
that a gravity low is centered over its causative source’s top as
we observed in the Volve field (Figure 4). However, what is
surprising in this case is the observation per se of a minima being
caused by ∼−53 kg m−3 density change at reservoir conditions
and whose source is below 2750 m depth. In fact, the Volve

field represents a challenging study case for the gravity method
because, with a size/depth ratio slightly below the critical value
of 1, gravity signatures related to density changes within the
modeled volume should not be detectable because of the rapid
attenuation of the gravity signal with increasing distance between
the observation point and the source – e.g., Stenvold et al. (2008)
and references therein.

This outcome strengthens the conclusions obtained by
Stenvold et al. (2008) by expanding the retrievable depth for
fluid-related density changes below the threshold of 2500 m.
Furthermore, the Volve case modeling demonstrates that even
without a detailed parametrization of the reservoir units,
the simple forward calculation based on reservoir geometry
and produced and injected volumes may prove reliable. The
applicability of this method depends on the size/depth ratio of
the source and on the magnitude of the density change both
in terms of the density contrast imposed in the single cell
and of thickness of the modeled reservoir carrying a density
contrast. Approximating the reservoir shape to a horizontal slice
of a cylindrical source (Telford et al., 1990; Stenvold et al.,
2008) with radius 1.5 km, the imposed density change of 53 kg
m−3 at a depth of 2750 m should produce a 10 µGal gravity
change with reservoir thickness of ∼40 m (eq. 1 in Stenvold
et al., 2008). Following the same approximation, a reservoir
thickness of 100 m with the same density change and the
same radius should produce a gravity change of ∼10 µGal at
a depth of ∼4000 m. Of course, these approximations are not
valid when dealing with complex structures and morphologies
such as those often found in real geological contexts like
the Volve field.

Considering the position of the gravity minimum and that
the post-production input model assumed a homogeneous
density change within the entire reservoir volume without
constraints regarding injection and production wells, this
outcome strengthens the reliability of the retrieved gravity
anomaly. Moreover, we expect this approach to retrieve higher
amplitude differential gravity residuals when dealing with higher
density contrasts than those modeled at the Volve field. In fact,
a scenario where reservoir fluids (typically oil, water, and gas)
are replaced by CO2 sequestration or gas storage should produce
higher density contrasts and in turn should allow to resolve
density changes related to gas propagation better.

CONCLUSION

In this work, we successfully locate the causative source
for −53 kg m−3 density changes due to fluid production
from a reservoir by 3D forward calculation of gravity
at pre- and post-production time steps. The Volve field
was chosen as test site because it represents a challenging
reservoir with a size/depth ratio slightly below 1, and
in these conditions, gravity methods should not allow
detection of fluid-induced small density changes. Moreover,
the Volve field represents a unique opportunity because in
this case, data that usually are kept confidential also after
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exploitation have been made available to the community allowing
the parametrization of the models.

The density change used as input for the post-production
model, once removed the pre-production gravity signature,
resulted in differential gravity residuals with a −13 µGal
minimum above the Volve field. Unsurprisingly, despite the
input density variation was distributed within the entire reservoir
volume, THDR minimum located on top of the reservoir,
between the three most productive wells in the field, whose total
production accounted for more than 98% of total mass balance.

This work demonstrates that the 4D gravity method, whether
it is constrained to gravity data acquisitions or to forward
modeling of known geometries and density changes, represents
a reliable technique even in challenging cases. Interestingly,
the production-related anomalies observed at 2750 m depth in
the Volve field should be theoretically retrievable by seafloor
gravimeters with 5 µGal accuracy. However, this goal is still
difficult to achieve and likely requires significant efforts in terms
of number of stations in order to cover small sources like
the Volve field.

Finally, relying on the availability of data that are confidential
in the case of oil fields or very expensive to produce for research
purposes, this approach has intrinsic limitations in the possibility
of being tested in more complex geological scenarios. However,
the owners of such data should follow the example of Equinor
and release data regarding fields that are no longer exploited;
this will likely open new ways in understanding geological and
geophysical processes.
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Complex non-linear time series are ubiquitous in geosciences. Quantifying complexity

and non-stationarity of these data is a challenging task, and advanced complexity-based

exploratory tool are required for understanding and visualizing such data. This paper

discusses the Fisher-Shannon method, from which one can obtain a complexity measure

and detect non-stationarity, as an efficient data exploration tool. The state-of-the-art

studies related to the Fisher-Shannon measures are collected, and new analytical

formulas for positive unimodal skewed distributions are proposed. Case studies on both

synthetic and real data illustrate the usefulness of the Fisher-Shannon method, which can

find application in different domains including time series discrimination and generation of

times series features for clustering, modeling and forecasting. The paper is accompanied

with Python and R libraries for the non-parametric estimation of the proposed measures.

Keywords: Fisher-Shannon complexity, Fisher-Shannon information plane, Shannon entropy power, Fisher

information measure, statistical complexity, non-linear time series, dynamical behavior characterization, high

frequency wind speed

1. INTRODUCTION

The ubiquity and extensive growth of available temporal data requires the development of reliable
techniques to extract knowledge from them and to understand multifaceted time-dependent
phenomena. Over the last decades, an increasing attention was payed toward the use of
Fisher-Shannon information as a measure to characterize the complexity and non-stationarity
of non-linear time series. Originally proposed for statistical estimation purposes (Fisher, 1925),
the Fisher information measure (FIM) has been extensively used in theoretical physics (Frieden,
1990). FIM and Shannon entropy power (SEP) (Shannon, 1948) are closely related, as shown
by information theory (Dembo et al., 1991; Cover and Thomas, 2006). The Fisher-Shannon
complexity (FSC)—the FIM and SEP product—was proposed as a possible definition of atom
complexity (Angulo et al., 2008; Esquivel et al., 2010).

Following Frieden work, FIM has found applications in non-linear time-series analysis. Martin
et al. (1999) analyzed complex non-stationary electroencephalographic signals and showed that
FIM can have better discrimination performance than Shannon entropy. FIM was also used
to detect behavior changes of dynamical systems (Martin et al., 2001). Vignat and Bercher
(2003) showed that a joint analysis of both SEP and FIM can be required to perform effective
discrimination of non-stationary signals.
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The Fisher-Shannon method has been used to analyse
complex dynamical processes in geophysics. Discrimination
between the electric and magnetic components of magnotelluric
signals is performed in Telesca et al. (2011). Tsunamigenic and
non-tsunamigenic earthquakes were efficiently separated in the
Fisher-Shannon information plane, using FSC (Telesca et al.,
2013). Micro-tremors time series were identified depending
on the soil characteristics of the measurement sites (Telesca
et al., 2015b). Telesca et al. (2015a) proposed a classifier of
(non-)tsunamigenic potential of earthquake build on several time
series features, including FIM, SEP, FSC. Finally, FIM was also
used dynamically with sliding window techniques in order to
study precursory patterns in seismology (Telesca et al., 2009b)
and volcanology (Telesca et al., 2010).

Many environmental processes have also been studied using
the Fisher-Shannon method. Lovallo et al. (2013) and Pierini
et al. (2011) studied climatic regimes identification in rainfall
time series. Hydrological regimes discrimination have also been
investigated (Pierini et al., 2015). Analyzing remotely sensed sea
surface temperature, Pierini et al. (2016) have shown that the
Fisher-Shannon method is able to clearly identify the Brazil-
Malvinas Confluence Zone, which is known to be one of the most
energetic area of oceans. Telesca and Lovallo (2011) analyzed
more than 10 years of hourly wind speed data in the Fisher-
Shannon information plane. The same authors studied yearly
variation of the FIM, the SEP and the FSC onwindmeasurements
(Telesca and Lovallo, 2013). Guignard et al. (2019b) have found
correlations between daily variance of temperature and daily
FSC of high-frequency wind speed records in urban area.
Authors have also pointed out relationships between Fisher-
Shannon analysis of wind speed daily means and topographical
features—height and slope—in complex mountainous regions
(Guignard et al., 2019a). Telesca et al. (2009a) discriminated
some pollutants, including cadmium, iron, and lead, in the
Fisher-Shannon plane. Similarly, Amato et al. (2020) have shown
a relationship between the Fisher-Shannon analysis outputs of
three air pollutants—Nitrogen dioxide, Ground level ozone and
Particulate Matter—and measurement location in term of land
use and of anthropogenic sources of pollutant emission.

The research involving Fisher-Shannon method is rather
scattered and comes from various fields, e.g., information theory,
physics, dynamical systems, machine learning, and statistics.
Therefore, the present paper contributes to the methodological
studies on Fisher-Shannon information measures along with
some applications.

The main objectives of this research can be summarized
as follows:

• discussing the state-of-the-art of Fisher-Shannon information
measures and their applications,

• identifying FSC as a sensitivity measure of the SEP and as a
scale-independent non-Gaussianity measure of data,

• presenting some new theoretical results on FIM and SEP,
• developing operational FIM and SEP tools for the nonlinear

time-series analysis,
• demonstrating through two case studies, based on

simulated (chaotic) and real data (high frequency wind

speed measurements), the efficiency and usefulness of the
proposed methods.

The remainder of the paper is organized as follows. Concepts
of Fisher-Shannon analysis, including SEP, FIM, FSC, and
information plane, are presented and reviewed in section
2. Section 3 provides analytical formula for such quantities
in the particular cases of random variables following some
positive skewed distributions, namely Gamma, Weibull, and log-
normal ones. Then, a non-parametric kernel based estimation
of the density function—for which Python and R packages are
proposed—is presented in section 4. Experiments on simulated
and real-world data are performed in section 5. Finally, section 6
concludes the paper.

2. FISHER-SHANNON ANALYSIS

2.1. Shannon Entropy Power and Fisher
Information Measure
Let us consider a univariate continuous random variable X with
its probability density function (PDF) f (x), which is supposed
to be sufficiently regular for the exposition of our purpose. Its
differential entropy (Cover and Thomas, 2006) is defined as

HX = E
[

− log f (X)
]

= −

∫

f (x) log f (x) dx. (1)

For example, if X is a centered Gaussian random variable of
variance σ 2, a direct computation gives HX = 1

2 log(2πeσ
2).

However, it will be more convenient to work with the
following quantity, called the Shannon Entropy Power
(SEP) (Dembo et al., 1991),

NX =
1

2πe
e2HX , (2)

which is a strictly monotonically increasing transformation of
HX . The SEP is constructed such that in the Gaussian case we
have NX = σ 2. Very often, entropies HX and NX are interpreted
as global measures of disorder / uncertainty / spread of f (x). The
higher the entropy, the higher the disorder.

The Fisher Information Measure (FIM) (Vignat and Bercher,
2003), also known as the Fisher information of X with respect to a
scalar translation parameter (Dembo et al., 1991), is defined as

IX = E

[

(

∂

∂x
log f (X)

)2
]

=

∫

[

∂
∂x f (x)

]2

f (x)
dx. (3)

This quantity should not be confused with the Fisher information
of a distribution parameter. In particular, the derivative of the
log-density is relative to x and not to some parameter. However,
the FIM is equivalent to the Fisher information of a location
parameter of a parametric distribution (Cover and Thomas,
2006). Under mild regularity conditions, one has the following
alternative formulation (Lehmann, 1999),

IX = E

[

−
∂2

∂x2
log f (X)

]

. (4)
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The quantity IX is sometimes interpreted as a measure of order
/ organization / narrowness of X. If X is Gaussian, IX = 1/σ 2.
It should be noted that HX ,NX , and IX only depend on the
distribution f (x).

2.2. Properties
The SEP and the FIM respect several properties. First, both
quantities are positive. It is also easy to see the scaling properties
of the SEP and the FIM (Rioul, 2011),

NaX = a2NX ,

IaX = a−2IX .
(5)

for any real number a 6= 0, by change of variable. Notice also that
the SEP and the FIM are invariant under additive deterministic
constant, by the same argument. Harder to show are the entropy
power inequality (Dembo et al., 1991) and its dual the Fisher
information inequality (Zamir, 1998),

NX+Y ≥ NX + NY , (6)

I−1
X+Y ≥ I−1

X + I−1
Y , (7)

for a random variable Y independent of X, with equality if X and
Y are Gaussian.

Moreover, several relationships show that the FIM closely
interact with the SEP and the differential entropy. Let Z be
a random variable independent of X with finite variance σ 2

Z .
The de Bruijn’s identity (Cover and Thomas, 2006; Rioul, 2011)
states that

d

dt
HX+

√
tZ

∣

∣

∣

∣

t=0
=

1

2
σ 2
ZIX , (8)

i.e., the variation of the differential entropy of a perturbed X
is proportional to IX . Therefore, a possible interpretation of
the FIM is that it quantifies the sensitivity of HX to a small
independent additive perturbation Z. Using the entropy power
inequality (6) and de Bruijn identity (8), one can show the
isoperimetric inequality for entropies,

NXIX ≥ 1, (9)

with equality if and only if X is Gaussian. The proof and the
nomenclature motivation of equation (9) can be found in Dembo
et al. (1991), where a remarkable analogy is done with geometry.
This shows that SEP and FIM are intimately interlinked.

2.3. Fisher-Shannon Complexity
The joint FIM/SEP analysis has been used as a statistical
complexity measure, albeit there is no clear consensus about
the definition of signal complexity (Esquivel et al., 2010). The
Fisher-Shannon Complexity (FSC) is defined as CX = NXIX
(Angulo et al., 2008). From the scaling properties (5), it is easy
to show that the FSC is constant under scalar multiplication and
addition. In particular, normalization or standardization of X has
no effect on the FSC. Additionally, the isoperimetric inequality
for entropies (9) states that CX ≥ 1, with equality if and only if
X is Gaussian. An interpretation of this quantity is the following.

FIGURE 1 | The Fisher-Shannon information plane with a random variable X of

FSC equal to 10. Scalar multiplication of X corresponds to a displacement

along the iso-complex curve passing through X. The unreachable points are in

gray. Note the logarithmic scale.

If Z is independent of X and has a finite variance σ 2
Z , one obtains

the following relationship by using the de Bruijn identity (8),

d

dt
NX+

√
tZ

∣

∣

∣

∣

t=0
= 2NX

d

dt
HX+

√
tZ

∣

∣

∣

∣

t=0
= σ 2

ZNXIX = σ 2
ZCX .

Hence, the FSC can be interpreted as a sensitivity measure of NX

to a small independent additive perturbation.

2.4. Fisher-Shannon Information Plane
The PDF of X can be analyzed displaying the SEP and FIM
within the so-called Fisher-Shannon Information Plane (FSIP),
see Figure 1 (Vignat and Bercher, 2003). Although standard
linear scale plot are very often used for the FSIP in the literature,
a log-log plot is more adequate in practice. In the FSIP, the only
reachable values are in the set D = {(NX , IX) ∈ R

2|NX > 0, I >
0 and NXIX ≥ 1}, due to (9). Vignat and Bercher (2003) showed
that for any point (N, I) ∈ D, it exists a random variable X (from
an exponential power distribution) such thatNX = N and IX = I.

A curve in D is said to be iso-complex if the FSC along the
curve is constant. As CX is constant up to a multiplicative factor
a 6= 0, and looking up at the scaling properties (5), one can
move on any iso-complex curve by varying a. Figure 1 shows
the iso-complex curve of complexity CX = 10 as an example.
The boundary of D is the iso-complex curve with FSC equal to
1, and is reached if and only if X is Gaussian, as states by (9).
On this boundary, the standard deviation σ (which plays the role
of the scaling parameter in the Gaussian case) is equivalent to
the multiplicative factor a. Hence, while a point in the FSIP is
described by (NX , IX), one can also describe it by (a,CX). In the
light of this, one can also think of FSC as a scale-independent
measure of non-Gaussianity of X.
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3. ANALYTICAL SOLUTIONS FOR
SOME DISTRIBUTIONS

In this section, we propose analytical formulas for the SEP, FIM
and FSC for several parametric distributions. They can be used
directly for parametric estimations. Vignat and Bercher (2003)
obtained analogous results for the Student’s t-distribution and
the exponential power distribution (also known as generalized
Gaussian distribution). The Gaussian case was already presented
in section 2 as an example.

The differential entropy of the distributions proposed in this
section have been computed by Lazo and Rathie (1978), from
which the SEP is directly obtained. However, to our knowledge,
the FIM-based calculations for Gamma, Weibull and log-normal
distributions were never presented. Proofs can be found in
the Appendix.

3.1. Gamma Distribution
The PDF of a Gamma random variable X is given by

f (x) = f (x; θ , k) =
xk−1e−

x
θ

θkŴ(k)
, for x ≥ 0,

and f (x) = 0, for x < 0, where Ŵ denotes the gamma function
and θ , k > 0 are, respectively, the scale and shape parameters.

Proposition 1. The SEP of the Gamma distribution with scale
θ > 0 and shape k > 0 is

NX(θ , k) =
θ2Ŵ2(k)

2πe
e2[(1−k)ψ(k)+k],

where ψ is the digamma function.
The FIM and the FSC of the Gamma distribution with scale

θ > 0 and shape k > 2 are, respectively,

IX(θ , k) =
1

(k− 2)θ2
,

CX(k) =
Ŵ2(k)

2πe(k− 2)
e2[(1−k)ψ(k)+k].

3.2. Weibull Distribution
The PDF of a Weibull random variable is

f (x) = f (x;µ, λ, k) =
k

λ

(

x− µ

λ

)k−1

e−( x−µ
λ

)k , for x ≥ 0,

and f (x) = 0, for x < 0, where µ is the location parameter, λ > 0
is the scale parameter and k > 0 is the shape parameter.

Proposition 2. The SEP of the Weibull distribution with location
µ, scale λ > 0 and shape k > 0 is

NX(λ, k) =
(1− α)2λ2e

2π
e2αγ ,

where α = k−1
k and γ is the Euler-Mascheroni constant.

The FIM and the FSC of the Weibull distribution with location
µ, scale λ > 0 and shape k > 2 are, respectively

IX(λ, k), =
α2

(1− α)2λ2
Ŵ(2α − 1),

CX(k) =
α2e

2π
Ŵ(2α − 1)e2αγ .

3.3. Log-Normal Distribution
The log-normal PDF with parameters µ and σ > 0 is

f (x) = f (x;µ, σ ) =
1

xσ
√
2π

e−
(log x−µ)2

2σ2 , for x > 0,

and f (x) = 0, for x ≤ 0.
The notation of the parameters µ and σ are motivated by the

fact that the logarithm of a log-normal random variable follows a
normal distribution of mean µ and variance σ 2. However, µ and
σ play, respectively, the role of the scale parameter and the shape
parameter for the log-normal distribution.

Proposition 3. The SEP, the FIM and the FSC of the log-normal
distribution with µ and σ > 0 are given by

NX(µ, σ ) = σ 2e2µ,

IX(µ, σ ) =

(

1+
1

σ 2

)

e2(σ
2−µ),

CX(σ ) = (1+ σ 2)e2σ
2
.

4. DATA DRIVEN NON-PARAMETRIC
ESTIMATION

Complex real-world data sets rarely follow parametric
distributions. Providing enough data, it is also possible to
carry out Fisher-Shannon analysis with a non-parametric
estimation of density, which release parametric assumptions
on the distribution (Telesca and Lovallo, 2017). In this paper,
integral estimates of the SEP and the FIM are considered, which
consist of substituting the kernel density estimators (KDE) of
both f (x) and its derivative in the integral forms of (1) and (3)
(Bhattacharya, 1967; Dmitriev and Tarasenko, 1973; Prakasa Rao,
1983; Györfi and van der Meulen, 1987; Joe, 1989). Python and
R implementations of this section content are proposed, see the
software availability section at the end of this paper.

Following (Wand and Jones, 1994), letX1, . . . ,Xn be a random
sample of size n from a PDF f (x). Consider also the kernel K(u), a
bounded PDF which is symmetric around zero, has a finite fourth
moment and is differentiable. The KDE of f (x) is

f̂h(x) =
1

nh

n
∑

i=1

K

(

x− Xi

h

)

, (10)

where h > 0 is the bandwidth parameter. In this paper, the
Gaussian kernel defined by K(u) = (2π)−1/2 exp(−u2/2) is used
and the estimator (10) becomes

f̂h(x) =
1

√
2πnh

n
∑

i=1

exp

{

−
1

2

(

x− Xi

h

)2
}

.
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The integral estimate of (2) is

N̂X =
1

2πe
exp

{

−2

∫

f̂h(x) log f̂h(x) dx

}

.

Let us note f ′, the derivative of f with respect to x. Usually, f ′

is estimated by f̂ ′h. With the Gaussian kernel we obtain

f̂ ′h(x) =
−1

√
2πnh3

n
∑

i=1

(x− Xi) exp

{

−
1

2

(

x− Xi

h

)2
}

.

Then, the integral estimate of (3) is

ÎX =

∫

(

f̂ ′h(x)
)2

f̂h(x)
dx.

The FSC is estimated by multiplying N̂X by ÎX .
Several techniques exist in order to automatize the bandwidth

choice (Wand and Jones, 1994). In the following, the 2-stages
direct plug-in method (Sheather and Jones, 1991) is used.
This method estimates the optimal bandwidth regarding the

asymptotic mean integrated squared error of f̂h. The interested
reader can found further technical details in (Wand and Jones,
1994) and (Sheather and Jones, 1991).

FIGURE 2 | Logistic map with different level of noise. From top to bottom : bifurcation diagram, SEP, FIM, FSC, and Lyapunov exponent sliding windows. Note the

logarithmic scale on the y-axis for SEP, FIM, and FSC.
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FIGURE 3 | Trajectory of the logistic map in the FSIP.

5. CASE STUDIES

In this section we explore two applications of SEP, FIM and
FSC to time series. First, a synthetic experiment is used to
show the usefulness of the method in detecting the dynamical
behavior of chaotic systems. Then, an example of application
of the proposed method to real complex environmental data
is discussed.

5.1. Logistic Map
A synthetic experiment is designed to investigate how SEP, FIM,
and FSC can be used to detect behavioral changes in non-
linear dynamical systems. In the present research, the well-known
logistic map is considered as a benchmark simulated case study,
that illustrates and helps to understand important features of the
considered measures.

Following the experiment proposed by Martin et al. (2001),
the logistic map defined by

xn+1 = cxn(1− xn), x0 ∈ [0, 1], c ∈ [0, 4],

where c is the control parameter, is analyzed using sliding window
technique. Analysis within the sliding window pursues the goal
of revealing dynamical evolution of properties of time series like
Gaussianity and non-stationarity.

The sequence (xn) is computed up to n = 1, 000 for c ∈

[3.5, 4]. Centered Gaussian noise with different level of variance,

0.05, 0.10, 0.15, is added to xn. The well-known bifurcation
diagram of the logistic map is displayed in Figure 2. The SEP,
FIM, and FSC are computed on data included in the overlapping
windows of width 2.5 · 10−3 along the control parameter, and the
results are shown in the same figure. The Lyapunov exponent is
also added for comparison reasons (Kantz and Schreiber, 2004).
The results are also displayed in the FSIP, see Figure 3.

Analyzing the results obtained from the data without noise,
it is easy to see how the SEP, FIM and FSC peak occurrences
correspond to dynamic changes shown by the bifurcation
diagram and the Lyapunov exponent. With the logarithmic
scale on the y-axis, the behavior of the SEP is somewhat
symmetric to the behavior of the FIM, i.e., the FIM seems to be
inversely proportional to the SEP. However, this is not exactly
the case, otherwise the FSC would be constant. In some sense,
the perturbations in the FSC reflect the departure from the
inverse proportionality between the SEP and the FIM. In the
FSIP, perfect inverse proportionality corresponds to iso-complex
curves. Indeed, the trajectory of the logistic map in the FSIP is
stretched along iso-complex curves, see Figure 3.

Adding noise shows that most of the peaks become
undetectable, see Figure 2. However, FSC seems to be the
measure which suffers the least to noise in data. Note also,
that FIM is less impacted than SEP. The noise effect is more
interesting in the FSIP, see Figure 3. While the uncorrupted data
is quite hard to interpret due to the superposition of the trajectory
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FIGURE 4 | High-frequency wind speed time series. From top to bottom : time series, SEP, FIM, and FSC moving windows, histograms and Q-Q plots of some time

series subsets.

with itself, adding some noise seems to clarify complexity and
trajectory behaviors in the FSIP. Noise stimulates the emergence
of protuberances roughly corresponding to “islands of stability”

of the (uncorrupted) bifurcation diagram, where Lyapunov
exponent is negative. This emergence is due to the fact that FIM
is less impacted than SEP, as it was seen above.
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FIGURE 5 | Scatter plot of hourly variance against hourly mean of the

high-frequency wind speed data.

5.2. Application to High Frequency
Wind Data
The Fisher-Shannon information method can find a wide
application in the geo-environmental domains. In the present
section, we demonstrate how they can be applied to retrieve
relevant knowledge from environmental time series. Specifically,
high frequency wind speed data are analyzed. The time series
consists of 1Hz frequency wind speed data, from 28 November
2016 to 29 January 2017 (Figure 4). The data (motus.epfl.ch)
were measured at 25.5 m above the ground by a sensor which
is placed on meteorological mast located on the campus of the
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
Notice that the mast is surrounded by a building layout of 10 m
average height. More information on these measurements can be
found in Mauree et al. (2017a,b).

The Fisher-Shannon quantities are computed with non-
overlapping moving windows of 1 hour width along the time
axis. Globally, all quantities vary with time, indicating non-
stationarity, see Figure 4. The SEP seems to roughly replicate the
behavior of the original time series. This is due to a proportional
effect between the mean and the variance of the data, as shown
in Figure 5. As for the logistic map case, the FIM is roughly
inversely proportional to the SEP (not shown in logarithmic
scale). The FSC is close to 1 during long period of time, e.g.,
between the 17th and the 27th January 2017. This should indicate
a local behavior of wind speed close to a Gaussian one. During
these periods, wind speed is not necessarily calm, e.g., the 17th
January. Conversely, The FSC also exhibits some peaks where
wind speed is rather low, which should indicate a more complex
distribution of the data.

To verify this, a closer exploration of the data is required. To
this aim, we considered four subsets of 3 hours length, denoted
by A, B, C, and D and represented on Figure 4 by color red,
purple, blue, and green, respectively. Histograms and quantile-
quantile (Q-Q) plots of these data subsets are also plotted with
the corresponding colors. The subset D is chosen during the

period of almost unitary FSC. The corresponding histogram and
Q-Q plot confirms the very-close-to-Gaussian behavior of the
data. The subset C is also chosen with a FSC close to 1, but
centered on the maximum of SEP of the 17th January 2017 which
corresponds also to a high wind speed activity. The histogram
shows again a distribution close to a Gaussian one, but with
a higher variance than C. This was an expected output, since
for Gaussian distribution the SEP equals to the variance and
C was chosen with a high SEP. The Q-Q plot shows little
departure for the left tail, but the data are still relatively close
to what was expected. The subset B is centered on a peak of
FSC. The histogram shows a distribution which is very far from
Gaussianity. It is clearly asymmetric and has at least twomodes—
maybe three. The Q-Q plot shows a strong departure from the
Gaussian distribution, especially on the left tail. The subset A is
centered on the highest FSC value. Its histogram shows three—
maybe four—modes. The corresponding Q-Q plot shows how for
this subset data are even farther from Gaussianity than for the
previous subset.

These results show the high complexity of these data,
whose behavior can rapidly change locally in time or even
during calm weather. Further analysis on a larger set of these
measurements using the FSC can be found in Guignard et al.
(2019b), where authors analyzed wind speed and temperature
data gathered by sensors similar to the one used to collect
the data analyzed in this section, fixed along a mast located
in a urban canyon. A FSC analysis suggested different wind
dynamics induced by the building layout. The daily variation
of temperature was also found to be an important predictor
for high-frequency wind speed daily complexity. Moreover, FSC
was used to show that wind speed and height are related by a
non-linear relationship. More generally, this demonstrates the
high versatility of analysis based on Fisher-Shannon information,
which had yield numerous and various insight on these data.

6. CONCLUSIONS

The paper discusses the Fisher-Shannon information method as
an effective data exploration tool able to give diverse insights into
complex non-stationary time series. The Fisher-Shannonmethod
was presented in a unified framework and new interpretations of
FSC were pointed out. In particular, the FSC was identified as a
sensitivity measure of the SEP and as a scale-independent non-
Gaussianity measure, which both provide interpretation of this
quantity as well. The detection of potential Gaussian behavior
in the data was successfully showed on high-frequency wind
speed data.

In the methodological part of the paper, FIM and FSC were
computed in closed forms for several parametric distributions
which are widely used in geo-environmental data analyses.
Theoretical formulas for other random variables can be derived
depending on the problem at hand. Furthermore, it was
also shown—by injecting noise in the logistic map—how
these information measures can be used to detect potential
dynamic changes in a quite robust manner—especially with
FSC. While SEP, FIM and FSC were presented as versatile
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information-based exploratory tools, they can also be used as
time series discrimination or, more generally, to generate time
series features for clustering, modeling, and forecasting.

The Fisher-Shannon method has been widely used in
geosciences, as shown in the first part of this paper. However,
according to our opinion, its full potential is still unexploited
and underestimated. To simplify the access to this method for
environmental data analysis and foster reproducibility, open
source libraries written in R and Python for the computation
of the three measures via a non-parametric kernel density
estimation are provided.

From a theoretical point of view, future studies should
involve generalization of the Fisher-Shannon method to the
multivariate case. Several numerical investigations could be
carried out for the KDE of the FIM. In particular, other
estimates could be provided by re-substitution techniques as
with entropy. Optimal bandwidth choice regarding to asymptotic
mean squared error of FIM—or even FSC—could be derived.
More practically, a challenging exploratory analysis of spatio-
temporal data is planned.

SOFTWARE AVAILABILITY

A Python package is proposed on PyPI and GitHub
(https://github.com/fishinfo/FiShPy), as well as
an R package available on CRAN and GitHub
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users to compute non-parametric estimation of the SEP, FIM
and FSC.
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7. APPENDIX

The differential entropyHX for Gamma,Weibull and log-normal
distributions can be found in (Lazo and Rathie, 1978) and (Cover
and Thomas, 2006). The SEP is simply a non-linear transform
of HX .

Proof of proposition 1: Computing the second derivative of
log f (x), one has

∂2

∂x2
log f (x) = −

k− 1

x2
,

and then, using (4), the variable change x = θy and the properties
of the Gamma function,

IX = (k− 1)E[X−2]

=
k− 1

θkŴ(k)

∫ ∞

0
xk−3e−

x
θ dx

=
k− 1

θ2Ŵ(k)

∫ ∞

0
yk−3e−y dy

=
(k− 1)Ŵ(k− 2)

θ2(k− 1)(k− 2)Ŵ(k− 2)
,

yielding the FIM for the Gamma distribution. The FSC is directly
obtained by multiplying the SEP and the FIM.

Proof of proposition 2: Starting from the Weibull PDF, one has

∂2

∂x2
log f (x) = −

k− 1

(x− µ)2
−

k(k− 1)

λk
(x− µ)k−2 ,

and with the variable change y = ( x−µ
λ

)k,

IX = (k− 1)E
[

(X − µ)−2] +
k(k− 1)

λk
E

[

(X − µ)k−2
]

=
k(k− 1)

λ3

[

∫ ∞

0

(

x− µ

λ

)k−3

e−( x−µ
λ

)k dx

+ k

∫ ∞

0

(

x− µ

λ

)2k−3

e−( x−µ
λ

)k dx

]

=
k− 1

λ2

[∫ ∞

0
y−

2
k e−y dy+ k

∫ ∞

0
y1−

2
k e−y dy

]

=
k− 1

λ2

[

Ŵ

(

1−
2

k

)

+ kŴ

(

2−
2

k

)]

=
k− 1

λ2

[

1+ k

(

1−
2

k

)]

Ŵ

(

1−
2

k

)

=
(k− 1)2

λ2
Ŵ

(

1−
2

k

)

.

Proof of proposition 3: The second derivative of log f (x) is

∂2

∂x2
log f (x) =

log x− µ+ σ 2 − 1

σ 2x2
,

and using the variable change y = log x− µ, one have

IX =
1

σ
√
2π

∫ ∞

0

1− σ 2 − (log x− µ)

σ 2x3
e−

(log x−µ)2

2σ2 dx

=
1

σ
√
2π

∫ ∞

−∞

1− σ 2 − y

σ 2
e−

y2

2σ2
−2y−2µ dy.

Note that

−
y2

2σ 2
− 2y− 2µ = −

(y+ 2σ 2)2

2σ 2
+ 2(σ 2 − µ).

Using this and the definition of a Gaussian distribution
N (−2σ 2, σ ),

IX =
1

σ
√
2π

∫ ∞

−∞

(

1− σ 2

σ 2
−

y

σ 2

)

e
−

(y+2σ2)2

2σ2
+2(σ 2−µ)

dy

=
e2(σ

2−µ)

σ 2

[

1− σ 2

σ
√
2π

∫ ∞

−∞

e
−

(y+2σ2)2

2σ2 dy

−
1

σ
√
2π

∫ ∞

−∞

ye−
(y+2σ2)2

2σ2 dy

]

=
e2(σ

2−µ)

σ 2

[

1− σ 2 + 2σ 2]

=
1+ σ 2

σ 2
e2(σ

2−µ),

and the FIM is obtained. The FSC is

CX = (1+ σ 2)e2µ+2(σ 2−µ) = (1+ σ 2)e2σ
2
.

Frontiers in Earth Science | www.frontiersin.org 11 July 2020 | Volume 8 | Article 25576

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


TECHNOLOGY AND CODE
published: 02 September 2020
doi: 10.3389/feart.2020.00296

Frontiers in Earth Science | www.frontiersin.org 1 September 2020 | Volume 8 | Article 296

Edited by:

Reik Donner,

Hochschule Magdeburg-Stendal,

Germany

Reviewed by:

Leonardo Guimarães Miquelutti,

Universidade Federal Fluminense,

Brazil

Pavel Pushkarev,

Lomonosov Moscow State University,

Russia

Jared Peacock,

United States Geological Survey

(USGS), United States

*Correspondence:

Pierre Wawrzyniak

p.wawrzyniak@brgm.fr

Specialty section:

This article was submitted to

Solid Earth Geophysics,

a section of the journal

Frontiers in Earth Science

Received: 05 February 2020

Accepted: 25 June 2020

Published: 02 September 2020

Citation:

Smaï F and Wawrzyniak P (2020)

Razorback, an Open Source Python

Library for Robust Processing of

Magnetotelluric Data.

Front. Earth Sci. 8:296.

doi: 10.3389/feart.2020.00296

Razorback, an Open Source Python
Library for Robust Processing of
Magnetotelluric Data
Farid Smaï and Pierre Wawrzyniak*

BRGM, French Geological Survey, Orléans, France

Magnetotellurics (MT) is a geophysical method that investigates the relationships among
the different components of the natural electromagnetic field related to the geoelectric
structure of the subsurface. Data can be contaminated by anthropic noise sources and
suffer from transient noise to signal variations. Since the 80s, robust processing methods
have been introduced to minimize the impact of noise on sounding quality. This paper
presents Razorback, an open source Python library, implemented to handle, manipulate,
and combine time series of synchronous data. This modular library allows users to plug
in data prefilters and includes both M-estimator and bounded influence techniques, as
well as a two-stage multiple remote reference. Validation of this library is performed on
a real data set by comparing the results with those of an existing code. In contrast to
standalone codes, the developed library allows for the design of complex and specific
processing procedures. As examples, Razorback is used to perform (i) continuous time
lapse processing and (ii) processing of one site in a peri-urban context. In the latter
case, we have tested all possible combinations of remote reference stations in an MT
array. Our phase tensor analysis shows that the bounded influence outperforms the M-
estimator in reducing the impacts of man-made electromagnetic noise onmagnetotelluric
soundings. The Razorback library is available at https://github.com/BRGM/razorback.
Jupyter notebooks for data handling and MT robust processing are available at https://
github.com/BRGM/razorback/blob/doc/docs/source/tutorials/.

Keywords: magnetotellurics, time-series analysis, Fourier analysis, robust methods, Python, M-estimator,

bounded influence, remote reference

1. INTRODUCTION

The magnetotelluric (MT) method studies the relationships in the frequency domain among
components of the natural electromagnetic (EM) field (Vozoff, 1972). MT fields are generated
(i) by external geomagnetic sources (ionospheric currents) at frequencies under 1 Hz and (ii) by
atmospheric lightnings propagating through the earth-ionosphere waveguide at frequencies above
1 Hz. Recorded at the ground surface, MT fields are supposed to be plane waves. As stated byWard
(1967), noise in EM fields can be either instrumental noise, “geological” noise or disturbance field
EM noise. The latter is caused by fluctuations of the natural sources (mainly related to solar activity
above 1 Hz) and artificial/man-made sources. In urban and industrialized areas, man-made EM
sources contaminate MT fields and cause divergence from the plane wave model.
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The first step in MT analysis is estimating transfer functions
(TFs) between horizontal components of the electric and
magnetic fields (i.e., the MT impedance tensor) and between
the vertical and horizontal components of the magnetic field
(the so-called tipper) (Sims et al., 1971; Vozoff, 1972). Such
TF estimates were originally performed using the classical least-
squares approach (Sims et al., 1971) but generally provide biased
results (Goubau et al., 1978). To reduce the impact of noise on
MT TFs, Gamble et al. (1979) introduced the remote reference
method, where synchronous measurements of MT fields are
performed at a second site to remove bias from the local TF
estimates. This method still produces biased TFs if correlated
noise contaminates both local and remote sites.

In the 80s, robust estimation techniques were introduced
(Egbert and Booker, 1986; Chave et al., 1987) to handle a
reasonable proportion of outliers in MT data sets. M-estimator
(Chave and Thomson, 1989) and later bounded influence
estimator (Chave and Thomson, 2004) are considered to be the
most effective techniques for TF estimation and yield unbiased
MT estimates if at least one of the remote sites is uncontaminated
by correlated noise. Note that robust estimation techniques
are also now used in controlled-source EM data processing to
estimate TFs between transmitter and receiver data (Streich et al.,
2013). An alternative procedure, the robust multivariate errors-
in-variables (RMEV) approach, was proposed by Egbert (1997).
This procedure aims to identify by principal component analysis
the different sources present in the acquired data and separate
correlated noise from plane wave MT data. However, despite
successful examples of coherent noise removal (Di Giuseppe
et al., 2018), no automatic RMEV approach is currently available
(Chave and Jones, 2012).

When considering “the future of magnetotellurics,” Chave
and Jones (2012) noted the significant improvement resulting
from robust estimation techniques but also stressed that a major
challenge remains, namely, data contamination by man-made
correlated noise sources, which can be permanent or intermittent
(Szarka, 1988; Junge, 1996). Wavelet transform of MT fields
can be used to select geomagnetic events in the time-frequency
plane (Zhang and Paulson, 1997) and to identify intermittent
or permanent correlated noise sources in the data (Trad and
Travassos, 2000; Escalas et al., 2013; Carbonari et al., 2017). Once
data filtering is performed, classical weighted least squares or a
robust TF estimator are still used on a reduced filtered subset of
the Fourier or wavelet transforms (Larnier et al., 2016).

Existing standalone robust codes have specific input formats
(time series of electric and magnetic fields, for example) that
may be incompatible with Fourier data pre-filtering and that
are controlled at a higher level by parameter files. Once the
code is launched, tracking the influence of processing parameters
in the framework of the code can be difficult. At present,
MT processing faces the need for integration and requires an
approach to conveniently combine the available techniques as the
steps of a full process.We suggest that an easy-to-use open source
library would greatly help integrate and experiment with the
well-established, the new and the forthcoming techniques. Thus,
we implemented the library in Python, a modern programming
language that allows modular codes and that is being increasingly

adopted in scientific computing. A similar approach has already
be taken by the MTPY library (Krieger and Peacock, 2014;
Kirkby et al., 2019) that assists with MT data processing,
analysis, modeling, visualization and interpretation while the
focus of the present library is the actual processing of MT
data. The Razorback library is constructed over elementary
components that, when combined, allows for a simple modular
implementation of classical weighted least squares and robust
TF techniques, such as the M-estimator and bounded influence
estimator for MT. The library aims to allow the user to
be in control of data transformation at each step of the
processing. In MT robust processing, it implies accessing
robust Fourier transforms of electric and magnetic fields in
the time-frequency representation (i.e., view of electric and
magnetic signals, initially taken to be a functions of time
represented over both time and frequency) to track which ones
are rejected/down-weighted during pre-filtering and during the
robust TF estimation procedure.

In this paper, we first recall the basics of MT TF theory.
Next, we define the features, functions and objects provided
by the Razorback library. Then, MT data processing examples
are shown for validation. Finally, we show two uses of the
standard package with higher level functions: (a) performing
processing with all possible combinations of synchronous remote
reference stations, and (b) performing time lapse processing
by subdividing continuous data in consecutive and overlapping
window portions. The Razorback library is licensed under GPL
v3.0 and is available at https://github.com/BRGM/razorback.
Jupyter notebooks for data handling and MT robust processing
are available at https://github.com/BRGM/razorback/blob/doc/
docs/source/tutorials/.

2. MT TRANSFER FUNCTIONS

MT is a natural source geophysical method introduced by
Tikhonov (1950) and Cagniard (1953), linking surface electric
and magnetic field measurements to subsurface electrical
properties. In MT theory, surface EM fields are assumed to be
plane waves.

The common practice is to perform a Fourier transform of the
MT time series, leading to a set ofN complex coefficients for each
MT field channel and for each frequency. For a fixed frequency,
one horizontal component of the electric field ei ∈ C

N , indexed
by i ∈ {x, y}, is linked to the horizontal magnetic field b ∈ C

N×2

through the relation

ei = bzi + ǫ (1)

where zi ∈ C
2 denotes the MT impedance associated with

direction i of the electric field, expressed in millivolts per km
per nanotesla [mV/(km× nT)], and ǫ ∈ C

N is the error. The
impedance z can be regarded as a TF to be estimated. Hereafter,
O denotes an operator yielding such estimations, namely, zi ≃

ẑi = O(ei, b). Residual ri ∈ C
N is classically computed from

ri = ei − b O(ei, b) (2)
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Similarly, the vertical magnetic field bz ∈ R
N is related to the

horizontal components of the magnetic field:

bz = bt + ǫ (3)

where t ∈ C
2 is the dimensionless tipper representing the tipping

of the magnetic field out of the horizontal plane (Vozoff, 1972).
The same approach can be used to estimate the tipper t with
t ≃̂t = O(bz , b).

In the presence of noisy data, the definition of the operator
O is not unique. The following sections present several ways to
define and compute this operator.

2.1. Single Site Least-Squares Estimate
Under the Gauss–Markov conditions on the noise (zero mean,
homoscedasticity, i.e., all the data don’t have the same finite
variance, and no correlation), the ordinary least squares (OLS)
operator OOLS can be applied to impedance estimation for a
single site (SS) dataset:

ẑi =
(

bHb
)−1 (

bHei
)

. (4)

The accuracy of the OLS estimates can be compromised because
(i) data rarely satisfy the homoscedastic assumption due to
transient noise sources and (ii) the electromagnetic field data
deviate from the plane wave assumption.When a small portion of
the dataset is corrupted by (i) and (ii), the OLS method can still
provide a reliable estimate. However, correlated EM noise that
may exists between the local electric and magnetic fields can lead
to strongly biased estimates.

2.2. Remote Reference Least-Squares
Estimate
The remote reference (RR) method introduces an additional
magnetic field (br) from a distant second site to minimize the
impact of noise. The RR method requires uncorrelated noise
between the RR site and the local station. The RR-OLS impedance
estimate is given by

ẑi =
(

bHr b
)−1 (

bHr ei
)

. (5)

MT data can still be affected by correlated noise between the
RR and the local station, whose impact can be reduced with
several RR stations.

2.3. Two-Stage Remote Reference
Estimate
Chave and Thomson (2004) proposed a generalization of the RR
method to multiple RR data sets. The principle is to use a set of q
RR horizontal magnetic fields, collected in the array Q ∈ C

N×q.
The local magnetic field is linked to Q by

b = QW + ǫ, (6)

whereW ∈ C
q×2 is a TF between local and remote magnetic field

data. The predicted local magnetic field̂b is expressed as

̂b = Q̂W, with ̂W = O(b,Q), (7)

where O denotes the operator used to estimate the TF W. The
impedance can then be estimated by using the predicted local
magnetic field̂b rather than the local magnetic field b:

ẑ
q
i = O(ei,̂b) (8)

This formulation for multiple RR impedance estimates
(Equations 7 and 8) will be referred as the two-stage RR
estimate. Chave and Jones (2012) demonstrated that when
only one RR (q = 2) and the OLS are used (O = OOLS),
the two-stage RR estimate is equivalent to the classical RR
OLS estimate.

MT data suffer from time and frequency-dependent
signal-to-noise ratio variations, and the Gauss–Markov
conditions to use the OLS method are violated even
if several remote stations are involved. To overcome
those problems, robust methods were introduced in
the 80s.

2.4. M-estimator
The M-estimator (Egbert and Booker, 1986) is a robust TF
estimator designed to minimize the influence of data associated
with large residuals (Equation 2) in the regression.

The M-estimate of the MT impedance TF, ẑ, is obtained
through the non-linear weighted least squares operator denoted
OME and defined by the implicit relation

ẑi = OME(ei, b) =
(

bHv(ẑi)b
)−1 (

bv(ẑi)ei
)

(9)

where v(̂z) ∈ R
N×N is the weighting diagonal matrix depending

on the residual and given by

vj,j(ẑi) = v(xj(ẑi)) , x(̂z) =
1

d
(ei − bẑi). (10)

Here, d is an estimate of the scale of the residual population.
The weighting function, v(x), must be designed to reduce the
influence of large residuals.

In practice, Equation (9) is solved iteratively, starting with an
initial value ẑ0i and defining the sequence (̂zki )k≥0 by

ẑk+1
i =

(

bHv(̂zki )b
)−1 (

bv(̂zki )ei
)

for k ≥ 0. (11)

The convergence of the above sequence is not guaranteed
in general. However, for some weighting functions, the
procedure (Equation 11) is stable in the sense that the
sequence converges to the same limit independently
from ẑi0. In practice, the procedure is stopped
when the variation of the weighted residuals sum of
squares, rHi ri, is lower than a user-defined tolerance tol
(typically 1%).

The two key parameters of the M-estimator method are the
scale of the residual population d and the weighting function v of
equations (10) (Chave et al., 1987). The scale d is approximated
by the median absolute deviation (MAD) from the median
computed from the first iteration (with ẑik=0) given by

d =
1

0.44845
median

(

|rk=0
i −median(rk=0

i )|
)

.
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Here, the scale is computed with k = 0 and is fixed for k ≥

1. Two weighting functions are proposed, namely, the Huber
weighting function,

vHuber(x) =

∣

∣

∣

∣

∣

1 if |x| ≤ α

α/|x| if |x| > α
, α = 1.5 (12)

and the Thomson weighting function,

vThomson(x) = exp
(

exp(−ξ 2)
)

exp
(

− exp(ξ ((|x| − ξ) )
)

,

ξ =
√

2 log (2N) (13)

where ξ is the N-th quantile of the Rayleigh distribution
and N is the size of the sample. The choice of the weighting
function v depends on the robustness and the stability of
the procedure defined by (11). Robustness means lowering
the influence of large residuals, and stability corresponds
to the existence and uniqueness of ẑ. The Thomson
function is more robust, but unlike the Huber function,
it does not ensure stability. The non-stability encountered
with the Thomson function can be overcome in practice
by using a good initial value for ẑ when solving (9). A
procedure to compute the impedance M-estimate with the
Thomson weighting function can be implemented with the
following steps:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Input: e, b

1. Compute ẑOLS defined by Equation (4).

2. Compute ẑHuber defined by Equation (11) with

vHuber (12) as weighting function

and ẑOLS as initial value.

3. Compute ẑThomson defined by Equation (11) with

vThomson (13) as weighting function

and ẑHuber as initial value.

Output: ẑ = ẑThomson
(14)

The M-estimator TF provides reliable protection against
strong data residuals but remains highly sensitive
to extreme values of the magnetic field, known as
leverage points.

2.5. Bounded Influence Estimator
To prevent the effect of leverage points, Chave and Thomson
(2004) proposed using the diagonal part of the hat matrix for
improving the weighting matrix of the M-estimator method. The
hat matrix H depends on the diagonal weighting matrix v and is
defined as

H(v) =
√
vb

(

bHtvb
)−1

bH
√
v (15)

Chave and Thomson (2003) showed that the hat matrix diagonal
follows the beta distribution, β(h, p,M−p), where h is a diagonal
element, p is the number of independent sources (p = 2
for MT), and M is the diagonal size. In practice, M ≫ p,

and the distribution of y = hM tends toward the gamma
distribution with f (y) = 1

(p−1)!y
p−1e−y as the probability density

function. The corresponding cumulative distribution function
is the regularized lower incomplete gamma function γ (p, y).
Note that the expected mean of hM/p is 1 for both beta and
gamma distributions. If we take a probability of rejection prej of
2 × 0.05, we expect that 90% of the values of hM/p associated
with non-leverage points lie in the interval [χlower;χupper],

with χlower = 1
pγ

−1(p, 0.05) and χupper = 1
pγ

−1(p, 0.95).

For p = 2, the interval is approximately [0.178; 2.372] and
increases for smaller probabilities of rejection. In contrast,
the hat matrix values associated with leverage points do not
follow the beta distribution and are more likely to lie outside
the interval.

This information can be integrated in the weights by replacing
the definition (11) of the sequence (ẑik)k by

ẑi
k+1 =

(

bHwkv(ẑi
k)b

)−1 (

bwkv(ẑi
k)ei

)

for k ≥ 0 (16)

Here, wk is the diagonal matrix of the leverage weights, and its
diagonal elements lie in [0; 1] such that wk

ii is close to 1 when

hii(vk−1)M/p ∈ [χlower;χupper] and close to 0 otherwise. Several

definitions of wk are possible. The simplest definition would
be the indicator function of the interval [χlower;χupper]. One
can also use a smooth approximation of the indicator function,
such as

f (y) = exp
[

e−χ2
upper − eχupper(yi−χupper) + e− log(χlower)

2

−elog(χlower)(log(yi)−log(χlower))
]

(17)

from which we can define wk by wk
ii = f (hii(vk−1)M/p).

To avoid oscillations preventing the convergence of
(ẑik)k, Chave and Thomson (2003) proposed computing

wk as wk
ii = wk−1

ii f (hii(vk−1)M/p). This ensures that
excluding an extreme value at one step of the iterations
is permanent.

As with the M-estimate computation, the most robust
weighting is not stable; thus, a sequence of estimates are
computed beginning with the most stable weighting and ending
with the most robust. We define a sequence of NBI leverage
intervals [χ i

lower;χ
i
upper], where

χ i
lower =

1

2NBI−i
χlower and χ i

upper = 2NBI−iχupper (18)
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The impedance bounded influence estimate is then computed
as follows:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1. Compute ẑOLS defined by Equation (4).

2.1 Compute ẑ1Huber defined by Equation (16) with

vHuber (12) as weighting function,

ẑOLS as initial value

and [χ1
lower;χ

1
upper] as leverage weight interval.

2.2 Compute ẑ2Huber defined by Equation (16) with

vHuber (12) as weighting function,

ẑ1Huber as initial value

and [χ2
lower;χ

2
upper] as leverage weight interval.

. . .

2.NBI Compute ẑNBI
Huber defined by Equation (16) with

vHuber (12) as weighting function,

ẑNBI−1
Huber as initial value

and [χNBI
lower;χ

NBI
upper] as leverage weight interval.

3. Compute ẑThomson defined by equation (16) with

vThomson (13) as weighting function,

ẑNBI
Huber as initial value

and [χNBI
lower;χ

NBI
upper] as leverage weight interval.

(19)

2.6. Discrete Fourier Transform
Computation and Prefilters
Given magnetic and electric time-series data of duration D
(in seconds), it can be split into Nstat time windows of the
same size and evenly spaced. For each window and for each
time signal, one Discrete Fourier Transform (DFT) coefficient
will be computed for the target frequency fk. In practice, the
window length is adapted to the target frequency fk by fixing the

number period, Nper , thus the duration of one window is
Nper

fk
.

Further more, the shifting between two consecutive windows can
be controlled to increase Nstat or on the contrary to decrease
the correlation between windows. This shifting is expressed by
the overlapping ratio, coverlap. All these parameters are linked
together by the relationship:

D = coverlapNstat
Nper

fk

that is used to determined the number of windows as follow

Nstat =
Dfk

coverlapNper
.

Once time series are divided into Nstat time portions, DFTs
are computed using Slepian data taper windows (also known
as discrete prolate spheroidal Slepian sequences), using a time
bandwidth τ (τ=1, 2, 3 or 4). No prewhitening is performed on
the data.

After DFT computation, MT data coefficients can be pre-
filtered using thresholds on the coefficient of determination.
One can use both a lower and an upper threshold value. The
filtering eliminates some of the DFT pairs and keeps the others
unchanged. The filter works on blocks of consecutive DFT pairs
(EB or BBr). It computes the coefficient of determination for the
block (a default value of 10 data by block is used). The block is
eliminated if this coefficient is outside the thresholds.

Available thresholds are (i) ThEB when pairs of local electric
and magnetic fields are considered and (ii) ThBBr when pairs of
local magnetic and remote magnetic fields are considered.

3. MAIN FEATURES OF THE RAZORBACK
LIBRARY

In this section, we describe three core features of Razorback:
handling time-series data, computing Fourier coefficients, and
estimating the response function. We show how they are
designed to preserve modularity and flexibility. The presentation
relies on the theoretical background presented in section 2 and
is accompanied by code examples. The full documentation is
available at http://razorback.readthedocs.io.

3.1. Handling Time-Series Data
Time-series data are the primary material of the processing.
Handling these data does not involve sophisticated algorithms;
however, such algorithms should be easy to work with,
particularly when one aims to consider several combinations
among many data. This is what Razorback proposes by
introducing dedicated structures with specific behaviors.
Appendix 1 presents an extended example of time data
manipulation with the library.

3.1.1. SyncSignal
The most elementary time data that we consider are sampled
signals. A sampled signal is fully described by the sequence of
the values taken by the signal, the sampling rate and the starting
time. However, somemeasuring instruments provide a raw signal
that differs from the signal of interest. The filter to be applied
depends on the instrument, and the corresponding TF is called
the calibration function. Rather than forcing an early conversion
from a raw signal to a calibrated signal, Razorback proposes the
possibility of attaching a calibration function to any raw signal.

Razorback adopts a strict definition for synchronous signals:
two signals are synchronous when they have the same sampling
rate, the same starting time and the same length. According
to this definition, one can easily store a group of synchronous
signals in an object gathering the common sampling rate,
the common starting time, and, for each individual signal,
the sequence of values and the calibration function. The
corresponding class is named SyncSignal. In this simple
structure, an individual signal can be retrieved from its index.

3.1.2. SignalSet
With our strict definition of synchronousness, there are many
cases where one cannot store all the relevant data in one
SyncSignal object. For instance, the starting and ending
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times of acquisition may differ for some signals, acquisition
may be discontinuous and present time intervals without any
data, or consecutive acquisitions may have been run with
different sampling rates. These complications are overcome by
the SignalSet object, which gathers distinct acquisition runs
of the same channels. In practice, a SignalSet object is a
group of SyncSignal objects with a labeling system. All the
SyncSignal objects handled by a SignalSet object must
have the same number of individual signals, and they cannot
overlap in time. These restrictions ensure that at any given time,
either all channels of a SignalSet have one and only one value
or there is no value for any channel. The labeling system is a
meaningful way to retrieve one channel, or a group of channels,
from a SignalSet object. It associates some character strings
to groups of one or more indices. In this way, one can refer to
channels, or groups of channels, by names rather than by indices.

To gather the relevant set of data to process in one
SignalSet object from among all the available data, it is
possible to group or split existing SignalSet objects to
produce new ones. These operations do not duplicate the data
values, which allows building any combination without memory
cost. SignalSet objects can be grouped in two ways: joining
different acquisition runs of the same channels or merging
distinct channels. They can also be split in several ways: selecting
some channels and runs or narrowing the time range.

3.1.3. Inventory
A SignalSet object is able to gather all the time data
required to compute the TF between different channels. Building
it requires exploring among all the available data to select
and combine the relevant ones; this process can be performed
using the SignalSet features. Razorback also provides the
Inventory object to ease this task. An Inventory object is a
container that gathers several SignalSet objects without any
constraints. The Inventory object offers two types of behavior.
On the one hand, it can build a new Inventory containing less
data by selecting some channels and runs or by narrowing the
time range. On the other hand, it can produce a SignalSet
that contains as many signals as possible. In practice, we start
by constructing an Inventory object that gathers all the data
acquired for the survey. Then, for each site, we extract a sub
Inventory, produce the adapted SignalSet and estimate
the TF.

The data volume of an entire survey exceeding the available
computer memory is not rare. This would prevent fully using the
Inventory object. Razorback overcomes this limitation thanks
to the Dask library (Dask Development Team, 2016). By storing
the time data in a dask.array object rather than a classical
(Numpy) array, the memory cost of the Inventory of an entire
survey becomes negligible. The time data files are only loaded
when needed during the computation of the Fourier coefficients,
and then they are unloaded.When we use the dask.array, the
memory footprint of the processing no longer depends on the size
of the survey.

A jupyter notebook dedicated to data handling is provided
by the authors and available at https://github.com/BRGM/
razorback/blob/doc/docs/source/tutorials/signalset.ipynb.

3.2. Computing Fourier Coefficients
The SyncSignal and SignalSet objects provide the
method fourier_coefficients(freq, Nper,
overlap, window) to compute the Fourier coefficients
of time data. Here, freq is the frequency of interest fk, Nper
is the number of 1/fk periods, overlap is the overlapping
coefficient 0 < c < 1, and window is an object coding the data
taper window. The window argument must be a function that
takes the size of the window (a positive integer) and returns a
discrete data taper (an array of the given size).When a calibration
has been provided to the SyncSignal or SignalSet object,
the calibration value at the given frequency is integrated in
the resulting Fourier coefficients. More precisely, the returned
value is the Fourier coefficient computed from the raw time
value divided by the calibration value. Razorback provides
the slepian_window(half_bandwidth) function that
builds the window argument corresponding to the Slepian data
taper with a given half bandwidth. The following code shows
how to compute the Fourier coefficients from a given signal:

>>> from razorback.fourier_transform import
slepian_window

>>> window = slepian_window(4)
>>> coeffs, winfo = signal.fourier_coefficients (freq

, Kper, overlap, window)
>>> Nw, Lw, shift = winfo

As shown, two values are returned, coeffs and winfo.
coeffs contains the Fourier coefficients of the different
channels of signal. winfo summarizes information on the
sliding window: the number of windows, the size of the discrete
window and the index shift between consecutive windows. Note
that this code works forSyncSignal andSignalSet objects.
However, a SignalSet object can hold multiple runs, possibly
at different sampling rates. In that case, coeffs contains the
Fourier coefficients of all the runs, and winfo describes the
sliding window on each run.

3.3. Estimating Response Function
Algorithms (14) and (19) show a similar structure. They compute
a sequence of TFs, where each step of the sequence uses a different
weighting strategy and is initiated with the result of the previous
step. Each step solves a non-linear weighted least squares
problem; see equations (11) and (16). Razorback provides a
single function that implements the common logic of these
algorithms: transfer_function(outputs, inputs,
weights=(None,), init=None, invalid_
idx=None). Here, outputs is the list of arrays of the
Fourier coefficients of the output (electric field components in
MT), inputs is the list of arrays of the Fourier coefficients of
the input (magnetic field components in MT), weights is the
list of functions implementing the weighting strategy at each
step, init is the initial estimate of the TF, and invalid_idx
is the array of indices of the initially rejected coefficients.
The important argument here is weights. Depending on
its value, the function transfer_function can perform
algorithm (14) or (19). It also allows performing other algorithms
with different weighting strategies. When the special value None
is placed in the list weights, it indicates that the corresponding
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step is the least squares estimation (see equation (4)). Thus, None
is often the first element of weights. In Razorback, a weight
function is a function that returns a one-dimensional array of
the size of the data that contains the computed weight values.
The function signature must be func(it, residual,
outputs, inputs, invalid_idx), where it is the
iteration number of the inner loop (see Equation 11 or 16),
residual is an array containing the residual values (see
Equation 2), outputs and inputs are the same as for
transfer_function, and invalid_idx is the array of
indices of the rejected coefficients at the current step.

In the following, we show how the function
transfer_function is used to perform the least squares
estimator (4), the M-estimator (14) and the bounded influence
estimator (19). We consider two arrays of complex values and
size 2 × Nk, E and B, that contain the Fourier coefficients of
the two electric field components and those of the magnetic
field components. Computing the least squares impedance
estimate (4) with the function transfer_function is
simply done by using the default parameter values:

from razorback.mestimator import transfer_function
Z_lsq, rixd = transfer_function(E, B)

For the M-estimate, we need to specify the weights argument
according to (14). Razorback provides implementations of the
Huber weighting function (12) and the Thomson weighting
function (13). The code is written as follows:

from razorback.mestimator import transfer_function
from razorback.weights import Huber, Thomson
weights_mest = [None, Huber(), Thomson()]
Z_mest, rixd = transfer_function(E, B, weights_mest)

The weighting function sequence for the bounded influence
method (see Algorithm 19) is more elaborate. Preparing the
weights argument can be performed as follows:

from razorback.mestimator import transfer_function
from razorback.weights import Huber, Thomson,

BoundedInfluenceStep
from scipy.special import gammaincinv
p = 2 # for MT
n_bi_steps = 3 # number of intermediate BI step
reject_prob = 0.1
lower = gammaincinv(p, 0.5*reject_prob)
upper = gammaincinv(p, 1-0.5*reject_prob)
weights_bi = ([None]

+ [BoundedInfluenceStep(Huber(), lower*2**-i,
upper*2**i)

for i in range(n_bi_steps)[::-1]]
+ [BoundedInfluenceStep(Thomson(), lower, upper)

])
Z_bi, rixd = transfer_function(E, B, weights_bi)

To ease the use of the M-estimator and bounded influence
methods, Razorback provides helpers for the corresponding
weighting function sequences. Here is a shorter way to compute
the same quantities Z_mest and Z_bi as above:

from razorback.mestimator import transfer_function
from razorback.weights import mest_weights,

bi_weights
Z_mest, rixd = transfer_function(E, B, mest_weights)
Z_bi, rixd = transfer_function(E, B, bi_weights(

reject_prob, n_bi_steps, p){)}

The use of a pre-filter on the Fourier coefficients
is achieved thanks to the invalid_idx argument
of transfer_function. Razorback provides an
implementation of the filter described in section 2.6. Using
the M-estimator with this filter can be performed as follows:

from razorback.mestimator import transfer_function
from razorback.weights import mest_weights
from razorbck.prefilter import cod_filter
filtered_idx = [cod_filter(ei, B) for ei in E]
Z_mest, rixd = transfer_function(E, B, mest_weights,

invalid_idx=filtered_idx)

The two-stage RR estimate defined in Equation (8) can also easily
be computed by using thetransfer_function function. For
instance, we show how it can be computed in combination with
the M-estimator. Here, Q is an array of complex values of size
q×Nk that contains the Fourier coefficients of all the components
of the RR magnetic fields:

from razorback.mestimator import transfer_function,
merge_invalid_indices

from razorback.weights import mest_weights
T, rr_ridx = transfer_function(B, Q, mest_weights)
predicted_B = T.dot(B)
rr_ridx = len(E) * [merge_invalid_indices(rr_idx)]
Z_rr, ridx = transfer_function(E, predicted_B,

mest_weights, invalid_idx=rr_ridx)

3.4. Helper Function for Impedance
Estimate
Section 3.3 shows how to use the low-level function
transfer_function to compute an impedance estimate
for given data Fourier coefficients with different algorithms.
At a higher level, Razorback provides the helper function
impedance that integrates the different algorithms, the use
of a pre-filter and the computation of the Fourier coefficients.
It aims to provide a simple yet fully controlled use of the
methods described in section 2. The function signature is
impedance(data, l_freq, weights=(None,),
prefilter=None, fourier_opts=None,
remote=None, remote_weights=None,
remote_prefilter=None, tag_elec=’E’,
tag_mag=’B’). The first two arguments are the SignalSet
object containing all the relevant channels and the list of the
frequencies to investigate. The other arguments are optional
and are used for customizing the processing. The weights
and prefilter arguments correspond to those described in
section 3.3. The fourier_opts argument corresponds to the
options to pass to the fourier_coefficients method
described in section 3.2. Its default value is dict(Nper=8,
overlap=.71, window=slepian_window(4)). The
remote, remote_weights and remote_prefilter
arguments are relative to the two-stage RR method defined in
equation (8) and illustrated in section 3.3. To activate the RR
method, one must provide the tag gathering the remote channels
in data to the remote argument. The remote_weights
and remote_prefilter arguments are used to customize the
first stage of the method, and the default value None indicates to
use the corresponding settings for the second stage (weights

Frontiers in Earth Science | www.frontiersin.org 7 September 2020 | Volume 8 | Article 29683

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Smaï and Wawrzyniak Razorback, an Open Source Python Library

and prefilter). The tag_elec and tag_mag arguments
are the tags gathering the electric and magnetic channels, and
their default values are ’E’ and ’B’.

The following code shows the computation of impedance for
5 frequencies using the RR method with the bounded influence
estimator:

>>> from razorback.utils import impedance
>>> from razorback.weights import bi_weights
>>> l_freq = [0.125, 1, 8, 64, 512]
>>> result = impedance(data, l_freq, bi_weights(0.1),

remote=’Bremote’)
>>> result.impedance # computed impedance at each

frequency
>>> result.error # estimated error on impedance at

each frequency
>>> result.invalid_time # rejected times at each

frequency

The value returned by the impedance function contains three
values: the estimated impedance tensor at each frequency, the
estimated error and the times of the sliding windows excluded by
the robust estimator. Using the impedance function is simple;
it mainly requires the preparation of the SignalSet object (the
data argument) as described in section 3.1.

4. VALIDATION

We perform data processing using single site (SS) and two-stage
RR configurations with both the M-estimator (ME) operator
OME and bounded influence (BI) operator OBI . We compare
the ME and BI results obtained with Razorback and the BIRRP
code (bounded influence remote reference processing, Chave and
Thomson, 2004) using the same processing parameters.

The dataset consists of two synchronous and permanent
MT stations installed on the La Fournaise volcano (Réunion
Island, France): the BAV station is located 8.2 km northwest
of the summit of the volcano, while the CSV station is on the
western base of the caldera (see Figure 1). Both stations recorded
the horizontal NS and EW components of the electromagnetic
field with a 50 mHz sampling rate during the year 1997. A
detailed description and analysis of the dataset can be found in
Wawrzyniak et al. (2017).

The CSV data are processed using SS configuration, and RR
configuration with BAVmagnetic data. Sixteen target frequencies
(fk)k are defined ranging from 1.56 to 12.5 mHz. Kper is fixed
to 128, and coverlap is 0.71. This yields a number Nstat of 10,000
data Fourier coefficients for the highest frequency and 1,000 for
the lowest. The time bandwidth factor τ (parameter TBW in the
code) is 4, and the lower thresholds ThBBr and ThEB are set to 0.
The BI regression is controlled by the probability of rejection prej,
which is 0.05, and the number of BI iterations NBI is set to 3.

The ME and BI results in SS configuration are shown in
Figures 2 and 3, respectively. First, we observe SS apparent
resistivity relative difference and phase difference between BIRRP
and Razorback. The ME apparent resistivity differs by less than
10% on the xy, yx, and yy components (Figure 2). The phase
difference is less than 2◦. The relative differences on the xx
component are higher, but the absolute value ρxx is two orders
of magnitude lower than ρxy, ρyx, and ρyy.

The BI apparent resistivity differs from less than 12% on the
xy and yx components to less than 20 % on the yy component
(Figure 3). The phase difference is less than 3◦ on xy and yx and
4◦ on yy. Although the principle is the same, our implementation
of the bounded influence algorithm differs in the computation of
leverage weights from the hat matrix and in the definition of the
increment of intermediate steps of the BI algorithm.

The two-stage RR ME (Figure 4) shows the apparent
resistivity relative difference reaching 20 % on the xy component,
less than 3 % on the yx component and less than 30 % on yy.
The xy and yy components involve the Hy local and remote
magnetic fields. The remote magnetic field component Hy has
been diagnosed as biased in Wawrzyniak et al. (2017).

Thus, the impact of introducing a noisy RR station in the two-
stage RR method leads to a moderate discrepancy between the
BIRRP and Razorback estimates.

The two-stage RR BI (Figure 5) shows the apparent resistivity
relative difference reaching 10 % on the xy and yx component
and reaching several tens of percent on xx and yy. Absolute phase
difference is still below 3◦ onxy and yx.

Apart from the data loading [the load_data() function],
the impedance estimates presented in Figures 5, 3 for Razorback
are obtained with the following code:

>>> data = load_data(’path/to/data/file’)
>>> print(data)
SignalSet: 6 channels, 1 run
tags: {’B’: (2, 3), ’Hremote’: (4, 5), ’E’: (0, 1)}
---------- ------------------- -------------------
sampling start stop

0.05 1997-01-01 00:00:00 1997-12-31 23:59:40
---------- ------------------- -------------------

>>> # frequency parameters
>>> freq_min = 0.0015625
>>> freq_max = 0.02187
>>> Nfreq = 16

>>> # weighting parameters
>>> prej = 0.05
>>> n_bi_steps = 3

>>> # Fourier parameters
>>> TBW = 4
>>> c_overlap = 0.71
>>> Nper = 120

>>> l_freq = np.logspace(np.log10(freq_min), np.log10
(freq_max), Nfreq)

>>> z_ss, l_ivt_ss, l_err_ss = impedance(
... data, l_freq,
... weights=bi_weights(prej, n_bi_steps, 2),
... fourier_opts=dict(Nper=Nper, overlap=

c_overlap, window=slepian_window(TBW))
...)

>>> z_rr, l_ivt_rr, l_err_rr = impedance(
... data, l_freq,
... weights=bi_weights(prej, n_bi_steps, 2),
... fourier_opts=dict(Nper=Nper, overlap=

c_overlap, window=slepian_window(TBW)),
... remote=’Hremote’
...)
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FIGURE 1 | Sketch of La Fournaise volcano, from Wawrzyniak et al. (2017). BAV and CSV are the electromagnetic stations. Lava flows emitted by Krafft, Kapor, and
Hudson cones are in dark gray color. Dashed lines represent the main fracture zone along which most fissure eruptions occur. The gray rectangle illustrates the
regional N120◦E volcanic and fissural axis. Gray cross pattern corresponds to the trace of main earthquakes associated with the March 9, 1998, crisis.

5. ADVANCED USES

5.1. Testing All Possible Remote Reference
Combinations
In the following, we show how the Razorback library allows the
user to run one processing method, such as classical M-estimator
or bounded influence regression, on a given signal set for any
combination of RR stations.We assess the efficiencies of bothME
and BI methods on a noisy peri-urban dataset.

Our experimental dataset is a synchronous array of MT
stations from a CSEM/MT survey realized in the framework
of the European FP7 project IMAGE. The survey area is a 10
by 10 km square located on the western side of the city of
Strasbourg (Figure 6). The main geothermal targets in the Upper
Rhine Graben are fractured zones within the basement or at the
transition zone between the basement and the sedimentary cover.
Unfortunately, in such a peri-urban context, the exploration of
sedimentary basins using MT is challenging due to the presence
of anthropogenic sources (DC railway, factories, power lines and
so forth), leading to biased MT soundings.

We use 6 synchronous MT stations (ADU07 acquisition
system, Metronix). Four “local” stations are located in the

area of interest (stations 2, 4, 6, and 9) and have a 128 Hz
sampling rate. Two “distant” remote reference stations are also
used: one is installed in Schwabwiller (5 channel MT station,
30 km North), and the other is the Welschbruch geomagnetic
observatory (recording horizontal magnetic field only, located at
the Welschbruch pass, Le Howald, 30 km South).

We process station 4 using sites 2, 6, and 9 as “local”
remote stations and Schwabwiller (RR99) and Welschbruch
(RR100) stations as “distant” remote stations. This allows
31 possible combinations of remote stations in addition to
the single site processing. We perform two-stage M-estimate
(ME) and bounded influence (BI) robust processing without
pre-filtering for both the first and second stages. Thirty-
two output frequencies, ranging from 1 mHz to 32 Hz, are
targeted. At the lowest frequencies, for some combinations
of RRs, the computation does not converge. This is due
to the weak signal-to-noise ratio and the small amount of
Fourier data.

Quality assessment is performed on the MT soundings
obtained from combinations of remote channels. First,
components of apparent resistivity ρa

xy,yx and impedance
phase φxy,yx are displayed in Figure 7 for ME and BI. ME
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FIGURE 2 | M-estimator results in SS configuration. Upper left: apparent resistivity xy in blue and yx in red from birrp (circles) and razorback (crosses) with scales on
the left axis, relative differences between birrp and razorback results (dotted lines) for xy (blue) and yx (red) with scales on the right axis. Lower left: same as upper left
but for phase but with absolute differences (dotted lines). Upper Right: apparent resistivity xx in green and yy in black from birrp (squares) and razorback (plus) with
scales on the left axis, relative differences between birrp and razorback results (dotted lines) for xx (green) and yy (black) with scales on the right axis. Lower Right:
same as upper left but for phase but with absolute differences (dotted lines).

FIGURE 3 | Bounded Influence results in SS configuration. Same legend as Figure 2 but for BI results.

soundings (Figure 7, upper part) exhibit significant variability in
the [20mHz–1Hz] band. Some combinations show non-physical
resistivity and phase variations (i.e., artifacts up to one order of
magnitude on the ρyx component and 40◦ on φyx). BI soundings

(Figure 7, lower part) show less variability in the same frequency
band as soon as distant RRs are used. Similar to the ME results,
φyx exhibits a 35◦ shift, centered on the 0.1 Hz frequency,
but with a narrower frequency band imprint. There are more
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FIGURE 4 | M-estimator results in RR configuration. Same legend as Figure 2 but for RR results.

FIGURE 5 | Bounded Influence results in RR configuration. Same legend as Figure 2 but for RR results.

artifacts with wider frequency bands and larger amplitudes in the
ME results than in the BI results.

The sounding quality assessment is completed with phase
tensor (PT) analysis (Caldwell et al., 2004). Booker (2014)
suggests that “smooth variation of the phase tensor with period
and position is a strong indicator of data consistency.” Some
main features of the PT are the orientation of its principal axis
α − β ; the length of its principal axis 8max; its ellipticity λ that

ranges from 0 to 1, and its skew angle β which are indicators of
the dimensionality of the data. Low values of ellipticity indicate
a 1D medium (Bibby et al., 2005), whereas absolute values of β

angles below 10◦ indicate a 2D medium (Booker, 2014). A 1D
medium is characterized by a low λ value and associated with
|β| <10◦. A 2D medium is characterized by larger values of
λ and |β| <10◦. A 3D medium is characterized by |β| >10◦.
Consequently, the normalized phase tensor, i.e., the PT with the
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FIGURE 6 | Map of the MT stations deployed on the western side of Strasbourg. Black dots: complete station set. Red crosses: “local” station inserted in the
SignalSet object. Green lines: major geological faults. Red line: seismic profile. Yellow area: geothermal plant area.

longer axis 8max normalized to 1, is displayed for all frequencies
and RR combinations. Ellipses are filled with a color bar indexed
either on their ellipticity value (left panel in Figure 8) or their β

angle (right panel, same figure).
Comparing upper and lower part of Figure 8 highlights

the superiority of BI processing in the [0.2–2 Hz] band. In
this band, the M-estimator leads to high ellipticity values,
which would be associated with a 3D medium. In contrast,
the BI results indicate a 1D medium with low ellipticity
values. In addition, the BI PT curves exhibit smoother
frequency variations.

An important observation can be made from the M-
estimator results: the combination of a maximum of RR
leads to discontinuous PT behavior. Smoother behavior is
obtained for combinations of sites 02, 99 and 100. When
sites 06 and 09 are added as RRs, discontinuous PTs are
observed. This can have a high impact for any MT operator
working on a peri-urban context and using ME two-stage

processing: introducing additional noisy RR can degrade the
sounding quality.

However, ME MT soundings associated with a selection of
PT curves (RRs 99, 100, 99+100, 6+99+100, 6+9+99+100, and
2+6+9+99+100) are shown in Figure 9, upper part. The selected
results are scattered, and phase and apparent resistivity artifacts
still persist in the [0.02–1 Hz] band. Similarly, the BI soundings
associated with the same combinations of RRs in Figure 9, lower
part. Since 4 remotes are used, the MT soundings are similar.
However, both phases φxy and φyx show sharp variations in
the [0.5–1 Hz] band that can be attributed to persistent noise
contamination of the data. Multiple RR two-stage BI processing
helps reduce noise contamination of the dataset but cannot
eliminate it in this case.

A jupyter notebook dedicated to the robust processing
and handling of this data set is provided by the authors
and available at https://github.com/BRGM/razorback/blob/doc/
docs/source/tutorials/survey-study.ipynb.
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FIGURE 7 | Upper section: M-estimator results. SITE 04 with local RRs 2, 6, and 9 and distant RRs Welschbruch (RR100) and Schwabwiller (R99). No error bars. TF
estimates for all possible combinations of RR stations. Apparent resistivity curves ρxy (top left) and ρyx (top right) and phases φxy (bottom left) and φyx (bottom right) are
shown in dots, with a color code corresponding to the associated combination of RR stations(the associated legend is displayed on the center). Lower section:
bounded Influence results. Same legend as above.
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FIGURE 8 | Upper section: M-estimator results. Site 4 with local RRs 2, 6, and 9 and distant RRs Welschbruch (rr100) and Schwabwiller (rr99). Left: normalized
phase tensor for all combinations of RR as a function frequency filled with their ellipticity λ value (1D indicator). Right: normalized phase tensors filled with β angle (2D
indicator) value; the color bar is limited to [-10◦ 10◦] range. Lower section: bounded influence results. Same legend as above.

5.2. Time-Lapse Magnetotellurics
The library also allows performing continuous time-lapse
processing. InWawrzyniak et al. (2017), time-lapseMT estimates
were computed using bounded influence robust processing in
both single site and RR configurations in the framework of
volcano monitoring. The time resolution between consecutive
estimates is of 48 h.

The dataset is the same as in section 4. Horizontal components
of the electric and magnetic fields were sampled every 20 s.
Continuous time series were available from 1996 to 1999 at CSV
and from 1997 to March 20, 1998, at BAV. In March 1998, a

major eruption occurred and lasted for 6 months, during which
60 106 m3 of lava was expelled.

RR (not shown here) and single site processing at a
period of 80 s show apparent resistivity determinant variations
synchronous with the eruption (Figure 10). At CSV, the
resistivity shows a continuous two order of magnitude decrease,
reaching several local minima until April, and then slowly
recovers its pre-eruptive values when the volcanic crisis reduced
in activity. BAV shows a short one and a half order of magnitude
decrease at the beginning of the eruptive crisis. Further data
analyses are provided in Wawrzyniak et al. (2017).
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FIGURE 9 | Upper section: selected M-estimator results. SITE 04 with local RRs 2, 6, and 9 and distant RRs Welschbruch (RR100) and Schwabwiller (R99). No error
bars. TF estimates for a selection of combinations of RR stations. Apparent resistivity curves ρxy (top left) and ρyx (top right) and phases φxy (bottom left) and φyx

(bottom right) are shown in dots, with a color code corresponding to the associated combination of RR stations(the associated legend is displayed on the center).
Lower section: selected Bounded Influence results. Same legend as above.

6. CONCLUSIONS

This paper shows the advantages of using a modular library for
robust processing of MT array data. Razorback is designed to
handle and process the large datasets commonly encountered in
MT exploration surveys, with minimal memory footprint. After

validation of TF estimates by comparison with existing codes,
two kinds of study have been performed. First, we explored
combinations of RRs for different robust procedures. This results
in a large amount of estimates of one TF. The phase tensor
analysis is used to compare the quality of the estimates.Moreover,
the ability of the different robust methods to reduce the impact of
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FIGURE 10 | Time-Lapse bounded influence processing, in single site configuration, from Wawrzyniak et al. (2017). From top to bottom: resistivity of the determinant
of the impedance tensor values at CSV and BAV for the 80 s period computed by single MT method between 1996 and the end of 1999, tremor activity and daily
number of earthquakes, and daily rainfall.

noise on soundings has been investigated. This is of particular
interest for geophysicists processing a full MT survey dataset in
anthropogenic environment. In addition, continuous time-lapse
MT processing has been performed and shows promising results
for subsurface monitoring of volcanoes or geothermal reservoirs.

The MT processing workflow mainly consists of (i) data
analysis and transformation, (ii) TF estimation, and (iii) quality
check of estimated quantities. We propose the open source
Razorback library as a collaborative tool to perform these
different tasks. For the first step, the library offers elaborated
time series manipulations, state of the art DFT computation, and
coefficient of determination pre-filtering. Alternate types of pre-
filtering exists and can be included. Provided a detection method,
the current features can eliminate the identified corrupted
time segments. Concerning the second step, a category of
standard robust procedures has been implemented. A well-
tested set of weighting function sequences is available and
can be easily enriched. Alternative categories of TF estimation
procedures (e.g., the RMEV approach proposed by Egbert, 1997)
could be included and would benefit from the other library
features. Regarding the third step, a range of quality check
methods exists and could be integrated in the library. Using the
modular Razorback library, theMT practitioner fully controls the
above workflow.
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Emerging negative trends in snow depth and cover days highlight the challenges
posed by changing snow patterns around the world. They suggest that snow-
dependent regions in southern Europe could be affected by these changes
because the number of days with snow on the ground (DSG) determines soil
processes and water-flow in rivers, streams, lakes and reservoirs. We present here
the first homogeneous, annually-resolved (from October to April), multi-centennial
(1681–2018 CE) DSG time-series for the Parma meteorological observatory (OBS), in
northern Italy, which to date is also the longest DSG series reconstructed in the world.
DSG data are in fact still poorly documented and misunderstood due to the limited and
fragmentary data measurements of the past. DSG recording only began in 1938 at
Parma OBS. To generate the long-term annual DSG time-series at the study site, we
develop a model consistent with calibration (1938–1990 CE) and validation
(1991–2018 CE) samples of observed data. We show that the variability of DSG
depends on winter precipitation and air temperature, as well as on winter-spring
temperature variability, suggesting that long sequences of DSG are dominated by cold
air masses in years with cold weather and high variability. Modeled DSG data show a
downward trend from the 19th century, in the transition period from the cold of the
Little Ice Age to the warmth of modern times, followed by a more rapid decline in the
five most recent decades. The DSG at Parma OBS appear to have followed over the
last century trends similar to those observed throughout Eurasia and across the
Northern Hemisphere, where a marked decline of snow-cover duration has been
reported in the transition seasons (spring and autumn).

Keywords: snow cover, snow on the ground, negative trend, Southern Europe, Parma, multi-centennial,
reconstruction, historical dataset
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INTRODUCTION

Publio Virgilio Marone – Georgiche, I century B.C.,
Libro III (Italian translation from Latin: Clemente
Bondi, 1801; our translation to English).

Every snowfall deposits its own layer on the soil surface. The
timing, duration and persistence of the snowfall, which depend
on climatic conditions, influence the amount of water stored in
soils and its use for agriculture and other sectors such as
industry, urban and rural domestic water supply (e.g., Lute
et al., 2015; Barnhart et al., 2016; Wang et al., 2018a; Jennings
et al., 2018). Large-scale snow-cover anomalies also cause
important changes in the diabatic heating of the Earth’s
surface by enhancing the fraction of solar radiation reflected
away by the surface (i.e., the surface albedo), thus becoming an
essential component of the terrestrial radiation balance (e.g.,
Cohen and Rind, 1991; Goward, 2005; Sandells and Flocco,
2014). Snow cover affects the timing and magnitude of flow
peaks generated by snowmelting (Wang et al., 2006). By delaying
the transfer of precipitation to surface runoff and infiltration in
catchment areas, it also influences flow reduction and the extent
of the flow network during summer baseflow (Yarnell et al., 2010;
Godsey et al., 2014).

Knowledge of past climate is an important key to
understanding long-term snow-cover variability. For instance,
capturing anomalously cold and snowy winters can be consistent
with, and help explain, a persistence of snow cover on the surface
in late spring (after Jungclaus, 2009; Handmer et al., 2012; Enzi
et al., 2014). In particular, the interannual variability of the
number of days of snow on the ground (DSG) is an important
part of the climate signal to detect potential changes of snowfall
intensity and spatial distribution of snowpack variables that may
have important impacts on both the environment and the society
(Changnon and Changnon, 2006; O’Gorman, 2014). Our
understanding of the DSG characteristics in several regions of
the world is limited because of the short records available and a
poor knowledge of the complex weather and climate patterns
that occur locally. In Europe, the snowfall dynamics depend on
the latitude and atmospheric circulation patterns, modulated by
local orographic situations (Croce et al., 2018; Kretschmer et al.,
2018). Polar maritime air masses originating from over the
Atlantic collide here with the polar continental air masses
connected with the Asian high pressure (Bednorz, 2004). The
temperature control is dominant in the transient snow regions
where the mean winter temperature is slightly below, and often

crosses, the melting point (Diodato and Bellocchi, 2020). The
situation is different in regions where the mean winter
temperature is well below 0°C, as is the case of the Alps,
where increases in DSG are controlled mainly by precipitation
inputs (Clark et al., 1999). At lower-elevations, DSG are instead
affected principally by air temperature and only secondarily by
precipitation conditions.

Data on snowfall and the persistence of snow cover on the
surface are becoming increasingly important due to the high
variability of snowfall rates worldwide (e.g., Davi et al., 2012),
and the impact that snow cover can have on society,
agriculture and water resources. A quantitative assessment
of the long-term and interannual DSG variability is
noticeable for the identification and framing of signals of
climate change, the validation of climate models, and a
better understanding of the interactions among the different
spheres of the Earth system, including the geosphere,
biosphere, atmosphere, hydrosphere and cryosphere
(Brown, 2014). Documentary sources, usually in
manuscripts or annotations in different formats, provide
evidence and useful information to study the variability of
the climate over historical periods (Glaser and Riemann, 2009;
Dobrovolný et al., 2010). However, the quality and quantity of
sources are often unevenly distributed in space and time
(Bradley and Jones, 1992; Mann et al., 2000; Brázdil et al.,
2005; Adamson, 2015). This is especially true for snowfall,
considering that in situ continuous snow monitoring is an
arduous task (De Walle and Rango, 2008) and satellite remote
sensing data capturing the snow-cover evolution are limited to
recent decades (e.g., Pimentel et al., 2017). Also for historical
times, snow characteristics data remain still poorly
documented and understood due to limited and fragmented
measurements (Kunkel et al., 2016; Figure 1). One of the
longest-running snowfall records is the series of Parma
observatory (Parma OBS), in the Padan plain (northern
Italy), where however recording of DSG only started in the
winter season 1937–1938. This coincides with the setup of new
measuring meteorological facilities at ground level and no
longer on the tower of the OBS, the suburbs and the city center.

Centrally located in the Po River Basin (PRB), the Parma OBS
started weather observations on 1777 thanks to the local Jesuit
community with the support of the University of Parma, but only
in the 20th century regular and continuous daily snowfall
measurements were recorded. Diodato et al. (2020a) provided

Escon gli armenti; e non appar su i campi Get the herds; and not in the fields
Erba, o fronda su gli alberi, ma sotto Grass, or branch on the trees, but below
Monti di neve desolata giace Mountains of desolate snow lies
La terra intorno, e d’aspro gel coperta, The earth around, and rough ice covered,
Che alto a più braccia sovra lei s’indura. (‥.) That high in more arms above her hardens. (‥.)
Cade la neve a larghi fiocchi intorno. Snow falls broadly around.
Ne muor la greggia intirizzita, e oppressi The flock dies, numb, and oppressed
Vi rimangono i buoi; ristretti in branco The oxen remain there; restricted in herds
Giacciono i cervi, e torpidi e sepolti. The deer lie, and sluggish and buried.
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the series of monthly snowfall reconstruction in Parma over the
1777–2018 period, with the detailed analysis of metadata. In this
regard, Italian regions hold among the world’s longest monthly
snowfall time series (Enzi et al., 2014), going back to 1780 at
Rome (Mangianti and Beltrano, 1993), 1788 at Turin (Leporati
and Mercalli, 1994) and 1884 at Montevergine (Diodato, 1997).
Nevertheless, Parma OBS possesses the longest continuous
record, as it goes back to 1777, although we know (Camuffo
and Bertolin, 2012) that meteorological observers were already
active in Parma from 1654 to 1660, supported by the Grand Duke
of Tuscany Ferdinand II de’ Medici (1610–1670).

The current work presents the first annually-resolved
reconstruction of DSG since 1681 (i.e., the snow winter season
going from October 1680 to April 1681) for the Parma OBS. A
day with snow cover is a day with snow of at least 0.01 m depth
observed in over 50% of an open neighboring area (UNESCO/
IASH/WMO, 1970; WMO, 2008). Winter maximum number of
days with snow depth matching these criteria was used to
characterize snow cover duration for the purpose of this study
(e.g., Falarz, 2004; Petkova et al., 2004). We first acquired a
comprehensive knowledge about potential drivers of DSG in the
PRB (Materials and Methods), where snowfall occurs from
October to April, and then we used these factors (amounts of
precipitation and air temperature) to develop a tight or
“parsimonious” model for reconstructing annual DSG data
over the period 1681–2018 CE (Results and Discussion). This
allowed us to capture a wide range of climate variability and

identify patterns of snowfall changes reported and discussed in
section.

MATERIALS AND METHODS

Environmental Setting and Data
Parma OBS (44° 48′ N; 10° 19′ E, 49 m a.s.l.) is located in the
central part of the PRB, in the Italian administrative region
Emilia-Romagna (Figure 2A). This area is surrounded by the
pre-Alps to the north and by the Emiliano Apennine to the south
(Figure 2B). The interaction between these morphology and
weather characteristics governs the occurrence of DSG (whose
measurements are available since July 1937) under different
conditions. The Parma OBS (black dot in Figure 2C) outlines a
separation between the snowy peaks over the northern and western
pre-alpine and alpine chains and the Apennines to the south where
the climate is less continental. Complex reliefs, different slope
exposures, as well as various distances to sea (Figure 2B), exert
highly contrasting effects on snow-cover depth, persistence and
spatial extent. The colored bands in Figure 2C do explain the
amplitude of sub-regional variations around the Parma OBS. For
instance, south of Parma the average snow-cover duration rises up
to ∼80 days year−1 in the Apennines.

During the year, cyclonic Atlantic air masses and areas of anti-
cyclonic airflows from central and eastern Europe alternate.
Fields of variable winds are associated with wet air masses

FIGURE 1 | (A) The Parma meteorological observatory from a historical picture; (B) monthly summary of precipitation records (rainfall and snowfall) for the year
1839 (note the absence of recording in days with snow on the ground). Historical pictures are: (A)made freely available from Fabrizio Bonoli (University of Bologna, Italy)
through the web-based content store (in Italian) of Ravenna Planetarium (http://planet.racine.ra.it/testi/astr_it.htm) [Accessed September 10, 2020]; (B) an excerpt of a
printed image from Colla. (1840).
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FIGURE 2 | Geographical setting: (A) North Italy (blue square); (B) the Po River Basin (black curve) with main locations and Parma OBS; (C) related winter
(November-March, 2000–2011) snow-cover duration. Maps are authors’ own elaboration from free, public domain images: (A) ESRI (http://www.esri.com) [Accessed
September 10, 2020]; (B) Elastic Terrain Map (http://elasticterrain.xyz) [Accessed September 10, 2020]; (C) Dietz et al. (2012).

FIGURE 3 |Monthly mean distribution of days of snow on the ground (DSG) at Parma OBS (gray bars) with the related 98th percentile (empty bars), calculated over
the period 1938–2018.
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from southwest, and dry and continental winds from northeast.
Snowfall increases with elevation until 2000 m a.s.l. Figure 3
(gray bars) refers to observed monthly snow cover days. At Parma
OBS, which can be assumed sufficiently representative of the PRB
area, the average of DSG in the period 1938–2018 is about
20 days year−1. Over this period of 81 years, the month of
January had the greatest number of days with snow cover,
with the soil covered by snow for about 10 days on average.
On February, the number of days with snow on the ground
roughly doubled the days of snow coverage in December. March
and November had a similar number of days with snow cover,
while the lowest number was registered in October. A similar
distribution is noticeable for the 98th percentiles (Figure 3, empty
bars).

Themost abundant snowfall in the Alps and Apennines occurs
during cold periods, in particular with the arrival of warmer and
moist air from the south, with a rise in temperatures up to about
0°C. If plain areas are exposed to a degree of cold sufficiently
intense, with temperature values below 0°C, snowfall and its
persistence on the ground are also possible at very low
altitudes (Bettini, 2016). This is what happens in the central-
western sector of the PRB, when warm and humid air coming
from the Mediterranean Sea slips on the cushion of cold air
previously trapped in the low layers of mountain landscapes in
the Alps and Apennines. There is a chance that the arrival of
below-freezing temperatures can also bring snow along the PRB.
In the presence of air masses close to saturation, very cold air
suddenly entering the PRB raises near saturation leading wet air
to condensation. This phenomenon, although rare, can be
observed in the PRB when cold Siberian air penetrates
westward into northern Italy, while very damp air or even a
misty blanket stagnates in the plains. In these cases, snowfall is
weak, of short duration and limited to the plains or the lowest
slopes of the pre-Alps.

As covariates for the modeling of DSG, we referred to winter
precipitation, and winter and spring air temperatures. Winter and
spring are defined as periods from December to February, and
from March to May, respectively. For the precipitation input, we
used the seasonally-resolved data with 0.5° resolution, as arranged
from Pauling et al. (2003). Likewise, we used seasonally-resolved
winter and spring temperatures as arranged by Luterbacher et al.
(2004) since 1500, and interpolated at the Parma OBS grid point.
Both datasets were updated from the Climatic Research Unit global
climate dataset (Jones and Harris, 2018). The database of observed
DSG contains also the year 2019 (with 4 days of snow cover on the
ground) but this year was left out of the analysis because the
Climatic Research Unit data are updated until 2018 (checked on
June 2020). For both winter precipitation and temperature, the
analysis of the yearly data used (1681–2018CE) shows that they are
compliant with a normal distribution using the Kolmogorov-
Smirnov test p > 0.05 (Supplementary Appendix A).

Development and Parameterization of the
Statistical Model
The principle of parsimony as described in Mulligan and
Wainwright (2013) states that a parsimonious model is the

one with the greatest explanation or predictive power and
least parameters or process complexity. Based on this
principle, we developed a parsimonious model that could be
easy parameterized and validated, and is reliable and applicable to
the reconstruction of long-term historical DSG data. To increase
predictability and minimize uncertainties in the modeling of
annual DSG data, we built a nonlinear-multivariate regression
with three input variables and three parameters considering the
original observational 1938–2018 CE timeframe. The data
resource of annual DSG data (81 years) was separated into two
sub-sets to use roughly two-thirds (53 years) for calibration
(1938–1990 CE) and one-third (28 years) for validation
(1991–2018 CE). The calibration effort was thus anchored to
the reality of snow-cover duration in the past to enable a
reasonably accurate reconstruction of historical snow-cover
days. A number of monthly climatic explanatory variables was
considered during the input selection process. First, in order to
reduce the number of inputs, we investigated the effects of single
variables, or sets of variables, on DSG over some climatologically
meaningful periods. Then, an iterative process (trial-and-error to
decompose relevant drivers) enabled us to explain the dynamics
of DSG in relatively simple terms. A stepwise selection logic was
used to alternate between adding and removing terms. The
following nonlinear multivariate regression model -
DSG(Parma) - was thus derived to estimate DSG (day year−1)
at Parma OBS:

DSG(Parma) � A · [ln(PW) · (β − Tw)η · VC( SDη

Mean
)

× (T(w→ s)t�0t�−1)]
(1)

FIGURE 4 | Monthly snow-cover extent in Parma territory (100-km
square grid cell), with the associated driving factors. Monthly mean values (red
line) were calculated on data provided for the period 1966–2018 by Global
Snow Lab - Rutgers University Climate Lab (https://climate.rutgers.edu/
snowcover) via KNMI-Climate Explorer Climate Change Atlas (http://climexp.
knmi.nl) [Accessed September 10, 2020]. The three main terms of Eq. 1 are
reported.
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where: A (day year−1) is a scale parameter corresponding to the
number of DSG when the term between brackets is equal to unity;
β (°C) and η are process parameters. Winter temperature, Tw (°C),
is negatively related to DSG, as mediated by the shape in
parameter η. Winter (w) and spring (s) temperature variability
accounted for by the term VC is indicative of the instability of air
masses near the Parma OBS. This approach discloses the
association between the snowfall response variable DSG
(Parma) and multiple predictors, such as the winter
precipitation amount (P_w), winter mean air temperature
(Tw), and winter-spring modified variation coefficient VC, that
is, a standard deviation/mean ratio of winter and spring
temperatures (T(w→s)), calculated across the current (t � 0)
and previous (t � −1) years. This variability term is a key factor to
infer inter-seasonal temperature fluctuations, as it is larger in the
presence of snow.

The concept of the model (Figure 4) summarizes the
mechanisms mostly driving the common patterns of change of
snow-cover extent and duration (e.g., Brown et al., 2010; Brown,
2019). It shows that ∼10–15% of the Parma territory (central
tendency) is covered by snow over wintertime. In this context,
cool-season precipitation amounts are particularly important
because the majority of annual precipitation occurs during the
wintertime at medium-high latitudes, and preferentially as snow
at high elevations through orographic enhancement (e.g.,
Dettinger et al., 1998; Selkowitz et al., 2002; Terzago et al.,
2012; Luce et al., 2013). The logarithmic transformation of the
total (solid and liquid) winter precipitation (ln(Pw)), which acts as
snow-depth index in the model, was applied to underweight the
amount of freshly fallen snow associated with broad-scale mixed
precipitation over flat areas (e.g., Meir et al., 2016; Fehlmann
et al., 2018). Snow-cover response to temperature includes the
spatial extent (0.5°-grid resolution of winter temperatures) and
the temporal scale (winter and spring months) over which the
thermal forcing becomes important, by assuming that the object
under study is a fractal (i.e., the site is a fractal element of the
area). In this case, the scaling of the site can be reasonably
modeled by a power-law process relationship, whose exponent
η quantifies the spatial dependence (scaling nature) of the snow-
cover days (Zhang et al., 2013). This is an issue of determining
how the climate of a specific surface type differs from a grid-
average climate, without formulating different model equations
(Harvey, 2013). In particular, the η exponent does not only
provide a parsimonious description of the process under
study, but it is also a generic mechanism governing the
process. In particular, higher exponent values obtained at a
single site (compared to mean areal response) suggest that
they can be regarded as a method to downscale areal
(smoothed out) approximations to finer units (e.g., Spence and
Mengistu, 2019).

We have also found that a strong correlation (r � 0.84) exists
between snowfall frequency and snow-cover duration at Parma in
the period 1938–2018 CE (Supplementary Appendix B).
However, since snowfall frequency measurements (i.e., snow
days per year) only started in 1777 at Parma OBS, we
excluded this input from the model, which was built on the
temperature- and precipitation-based proxies allowing to extend

the reconstruction period back to 1681. With this long-term
series, we can detect patterns of climate change explaining
fluctuations and tendencies in DSG data. Going back about
100 years before the beginning of the snowfall-frequency
observations at Parma OBS, we could in fact start our DSG
series at the turning point of the 17th and 18th centuries, at the
so-called Maunder Minimum, which started in 1645 and lasted
until 1715, a period characterized by exceedingly rare sunspots
and lower-than-average temperatures (Eddy, 1976).

Spreadsheet-based model development and assessment were
performed with the analytical and graphical support of
STATGRAPHICS (Nau, 2005) and WESSA (Wessa, 2009)
statistical software. The Mean Absolute Error (MAE,
day year−1) was calculated to quantify the differences between
actual and modeled DSG values, while the Kling-Gupta index
(−∞<KGE ≤ 1; Kling et al., 2012) was used as efficiency measure
(with KGE > –0.41 indicating that a model is better performing
that the mean of observations as a benchmark predictor; Knoben
et al., 2019). The Nash-Sutcliffe efficiency (−∞<EF ≤ 1, optimum;
Nash and Sutcliffe, 1970) was also calculated as an uncertainty
indicator of the model performance because greater values than
0.6 indicate limited model uncertainty, likely associated with
narrow parameter uncertainty (Lim et al., 2006). With the
determination coefficient (0 ≤ R2 ≤ 1, optimum), or the
correlation coefficient (r � ��

R2
√

), and the slope of the
regression actual vs. modeled data (b � 1, optimum), we
selected the set of important covariates for the parsimonious
model for estimating DSG (after Mulligan and Wainwright,
2013). F-ratio p-values were used to present the statistical
significance of the linear regression between actual and
estimated data, and of the inputs’ relationship to the
dependent variable. The Durbin-Watson statistic (Durbin and
Watson, 1950; Durbin and Watson, 1951) was used as a test for
autocorrelation in the model residuals, considering that strong
serial dependencies may induce spurious correlations (Granger
et al., 2001). Exploratory and time-series analysis were carried out
using AnClim (http://www.climahom.eu/software-solution/
anclim). A MATLAB toolbox (https://noc.ac.uk/business/
marine-data-products/cross-wavelet-wavelet-coherence-toolbox-
matlab) was used for wavelet coherence analysis (Grinsted et al.,
2004).

RESULTS AND DISCUSSION

Model Parameterization and Evaluation
For the reconstruction of a long-term annually-resolved DSG
series, we first calibrated the DSG(Parma)model. The calibration
work was performed through a trial-and-error process comparing
the model estimates with observations until smallMAE and large
R2 values were obtained. Then, for the final selection of the
parameter values, a third criterion (KGE closer to 1) was
additionally involved. The calibrated parameters are: A �
0.0404 day year−1, β � 6.80°C, and η � 2.00. The value of the
R2 statistic of observed (y) vs. modeled (x) data (Figure 5A)
indicates that the fitted model explains 72% of the observed
variability. The regression line y � 4.36 (±8.39) + 0.83 (±0.27)·x
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has intercept (a � 4.36) and slope (b � 0.83) with a relatively high
standard error of the intercept (±8.39 days year−1) and a root
mean standard error of the fit equals to 0.24 day year−1. This
indicates the model’s lesser predictive ability for near-zero DSG,
there is a superior predictive ability of Eq. 1 compared with a
purely linear multivariate regression against the same
independent variables, which produces several (unrealistic)
negative values of DSG in both the calibration and validation
periods (Supplementary Appendix C). The Nash-Sutcliffe
efficiency value obtained in the calibration stage (EF � 0.73)
indicates limited uncertainty in model estimates. Since the F-ratio
p-value is less than 0.05, the linear regression between actual and
estimated data is statistically significant. The mean absolute error
(MAE), used to quantify the amount of error, was equal to
8.9 days year−1, which is lower than the standard error of the
estimates (10.9 days year−1), while the Kling-Gupta index of 0.6
suggests a model of sufficient quality. The Durbin-Watson
statistic (DW � 1.72, p � 0.14) reveals that there is no
significant autocorrelation in the residuals.

The model residuals approximate a normal distribution
(Figure 5B; normality test, p > 0.05, Jarque and Bera, 1981)
and the Q-Q plot (Figure 5C) exhibits a distribution of sample-

quantiles around the theoretical line, indicating only a few biased
high DSG values.

At the validation stage, the value of the R2 statistic indicates
that 56% of the total variability in the observation is explained by
the model, while MAE is equal to 4.4 days year−1, which is lower
than the standard error of the estimates (5.7 days year−1), while
the Kling-Gupta index is 0.6 (equal to the value obtained with the
calibration set). Also in this case, the Durbin-Watson statistic
(DW � 1.60, p � 0.13) indicates that there is no significant
autocorrelation in the residuals. The timeline of DSG
validation period shows the coevolution of observations and
estimates (Figure 6A). The related distribution of model
residuals (Figure 6A1) does not deviate significantly from
normality (p > 0.05). In Figure 6B, the model estimates are
compared to the decreasing trend (from 1950 to 2005) of the
index obtained by De Bellis et al. (2010) for the Emilian
Apennine, by averaging the snow-cover values of different
mountain stations normalized with respect to the variability.
We evaluated the relative performance of the DSG(Parma)
model, without comparing the absolute estimates. Coevolution
between the SCNI (snow-cover normalized index) and the
modeled DSG illustrates a substantial agreement (r � 0.74).

FIGURE 5 | (A) Scatterplot of observed and modeled (Eq. 1) DSG at Parma OBS for the calibration sub-set (1938–1990), with regression line (red line), the bounds
showing 90% confidence limits (pink colored band); (B) histogram of residuals; (C) Q-Q plot (sample vs. theoretical quantile values).

FIGURE 6 | (A) Timeline evolution of observed (blue curve) and modeled (Eq. 1, orange curve) DSG for the validation sub-set (1991–2018); (A1) histogram of
residuals; (B) timeline coevolution of observed Snow-Cover Normalized Index (SCNI) for the Emilian Apennine mountain range (blue curve) and modeled DSG at Parma
OBS (orange curve) for the period 1950–2004.
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We could get a slightly better performance by replacing Pw in
Eq. 1 with the square root of snow days per year during both the
calibration (R2 � 0.76, KGE � 0.81, MAE � 8.6 days year−1) and
validation (R2 � 0.61, KGE � 0.52, MAE � 4.6 days year−1)
periods. We concluded that this improvement is not such as
to justify the limitation of the reconstruction to the SDY
observation period alone (1777–2018). Equation 1 thus
supports a broader reconstruction perspective. In
determining whether the DSG (Parma) model can be
simplified, we have fitted a multiple linear regression model
to describe the relationship between DSG and the three
independent variables Pw, Tw and VC in Eq. 1. The analysis
of variance of the model gave p < 0.05 for each independent

variable, the highest p-value being 0.04 for the term VC. This
means that the model cannot be simplified further and its results
correspond to criteria of stability, interpretability and usefulness
(after Royston and Sauerbrei, 2008).

Time-Series Reconstruction of Snow-Cover
Persistence on the Ground (1681–2018 CE)
Equation 1was used to reconstruct the evolution of DSG over the
period 1681–2018 CE (Figure 7A). The reconstructed time-series
was then analyzed to find out possible climate patterns explaining
variation in long-term trends of DSG, and to compare
contemporary with historical DSG anomalies.

FIGURE 7 | Overview of days with snow on the ground (DSG) patterns at Parma OBS along the period 1681–2018 CE: (A) Timeline evolution of DSG data
reconstructed by Eq. 1 (light blue curve), with over-imposed 11-years Gaussian-filtered series for the whole period (bold blue curve) and the observational period
1938–2018 CE (red curve); (B)Mann-Whitney-Pettitt test statistic with the change point of 1897 (vertical red arrow); (C) time series of the Atlantic Multidecadal Variability
(AMV; Wang et al., 2017) together with a polynomial (third-order) interpolation curve; (D) wavelet-coherence spectrum of the standardized DSG and AMV time
series; bounded colors identify the 0.05 significance level areas; the bell-shaped, black contour marks the limit between the reliable region and the region below the
contour where the edge effects occur (a.k.a. cone of influence); black arrows show the relative phase relationship, with in-phase pointing right, anti-phase pointing left,
and AMV leading DSG by 90° pointing straight down.

Frontiers in Earth Science | www.frontiersin.org October 2020 | Volume 8 | Article 5611488

Diodato et al. 1681–2018 Snow Cover Reconstruction, Parma

101

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


Overall, the temporal evolution of annual values presents a
downward trend (Mann-Kendall M-K trend test p < 0.01;
Kendall, 1975), which appears more prominent in recent times
(Figure 7A, blue curve and related Gaussian fitting; Figure 7B,
Mann-Whitney-Pettitt statistic). We have used different statistical
methods to identify distinct climatic patterns in the long-termDSG
series. In fact, different test statistics are variously sensitive to change
points located at the beginning, in themiddle, or at the end of a time
series (Martínez et al., 2009; Toreti et al., 2011), and a combination
of statistical methods is considered to be most effective to track
down change points (e.g.,Wijngaard et al., 2003). The application of
test statistics by Pettitt (1979) and Buishand (1982) suggests the
existence of a change point in the year 1897. Since the late 19th
century, the Atlantic Multidecadal Variability (AMV) has
experienced a significant upward trend (Si et al., 2020),
coinciding with the onset of the warming period (Figure 7C).
Based on terrestrial proxy records from the circum-North Atlantic
region, the AMV reconstruction by Wang et al. (2017) exhibits
pronounced variability on multidecadal time-scales. This multi-
decadal climate mode originates dynamically in the North Atlantic
Ocean and propagates throughout the Northern Hemisphere via a
suite of atmospheric and oceanic processes (Wyatt et al., 2012;
Wang et al., 2018b). Sutton and Dong (2012) argued for the
existence of a causal link between a positive phase of the AMV
and drier conditions over the Mediterranean Basin. It is also known
that winter precipitation in northern Italy is mainly caused by large-
scale fronts of North Atlantic and Mediterranean synoptic low-
pressure systems, which produce moderate but continuous
precipitation (Hawcroft et al., 2012). Interannual to multi-
decadal variability of this kind of precipitation is mainly
modulated by the North Atlantic Oscillation (NAO; Pinto and
Raible, 2012; Gómara et al., 2014; Gómara et al., 2016), describing
the fluctuations in the difference of atmospheric pressure at sea level
between the Icelandic Low and the Azores High.

Other test statistics detected a change point in 1830 (SNHT-double
shift; Alexandersson and Moberg, 1997) or 1967 (Worsley likelihood;
Worsley, 1986; penalized maximal t-test; Wang et al., 2007; SNHT-
single series, Alexandersson, 1986), whichmerely support the idea of a
long transition period going from the final phase of the Little Ice Age
(LIA;∼1300–1850CE;Miller et al., 2012) to themost recent warming.
These different statistically-relevant years provide a loose picture of
climate-related DSG variations with changing climate patterns, where

the cold conditions of the LIA are still dominating after the end of the
Daltonminimum of reduced solar activity (∼1790–1830;Wagner and
Zorita, 2005) until toward the end of the 19th century, but in the
process of evolving into an incipient warming that becomes noticeable
later in the 20th century (mostly by about 1960s).We refer hereafter to
the year 1897 as a relevant change-point year, which is also the starting
point of more erratic weather conditions. The long-term mean value
of DSG (Table 1) is equal to 28 days year−1 (±16.8 days year−1
standard deviation) until the change-point year (Figure 7B) and to
21 days year−1 (±14.8 days year−1) after that point for the continuous
predicted time series (Figure 7A, blue curve), while it is equal to
20 days year−1 (±11.9 days year−1) for the joined modeled and
observed series (Figure 7A, joined blue and ochre curves after the
year 1897).

Considering that these two series, as well as the predicted and
observed series for the period covered by observations
(1938–2018 CE), are not statistically different (paired Student-
t test, p-values >0.05), our analysis was based on the modeled
values only. Table 1 also shows that the median and the 75th
percentile values were higher over the period 1681–1897 CE,
while more extreme values (95th percentile) were higher after the
change point. The trend toward anomalously warm conditions
over the 20th century and the beginning of the 21st century
indicates that increasing temperatures represent the main factor
triggering the decline of DSG, in particular over the most recent
five decades where DSG have been subject to further decrease.
This is in agreement with the contraction of snow-cover extent
recently observed across Siberia and North America (e.g.,
Musselman et al., 2017; Zhang and Ma, 2018). It is striking
that snow covered the ground over 145 days in the year 1830 and
only over 99 days in the year 1709 (Figure 7A). The latter proved
to be the coldest in memory, with a particularly long and hard
freeze in a winter passed to the historical chronicles because of its
cold and snowstorms. In the central Mediterranean, the severity
of this winter was accompanied by ice and frozen water bodies
like lakes and rivers (Glaser et al., 1994; Grove and Conterio,
1994), while snowfall continued from late December to mid-
February, after which rain and snowmelt caused several rivers to
overflow (Diodato et al., 2019). However, the 1829–1830 winter
was not only described as harsh in all parts of Europe, but also
early, with long and heavy snowfall from mid-November to the
end of March (Corradi, 1865–1890, vol. III, p. 403). In January

TABLE 1 | Descriptive statistics of the DSG (days with snow on the ground, day year−1) time series for two climatic periods.

Climatic periods DSG statistics

Mean Median 75th percentile 95th percentile

Until the change point (1681–1897 CE) 28 25 37 53
After the change point (1898–2018 CE) 21 18 26 67

Il massimo freddo osservato fu nel gennajo in cui nel giorno due
giunse a gradi 9 sotto lo zero, limite però inferiore a quello degli
anni 1795, 1800, 1812, 1826, 1830, senza ricordar quello di
epoca più remota.

The maximum cold observed was in January where, in the day
two, it reached degrees 9 below zero, a limit however lower than
that of the years 1795, 1800, 1812, 1826, 1830, without recalling
the most remote epoch.
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1830, even the press was suspended because the roads, due to the
abundance of snow, had not allowed the arrival of newspapers.
The year 1830 was rather the end of a period that extended over
important parts of the LIA, during which Europe experienced
predominant cooling (Xoplaki et al., 2001). In fact, winter
1835–1836 was also remarkable for Milan and its region but
not quite as severe as others (Stella, 1836, pp. 350–351):

The year 1684, at the beginning of our series, is also
distinguished by a high number of days with snow on the
ground (88 days). In this regard, Corradi Annals’ (1865–1890,
vol. II, p. 257) define 1684 as the year in which snow covered the
ground until after Easter:

After Xoplaki et al. (2001), the severe conditions during the
winter 1683–1684 can be attributed to the presence of an
extended high-pressure system over central and western
Europe, with its center over north Iberia. This distribution of
atmospheric pressure centers in Europe led to persistent
northwesterly and/or northeasterly circulation over the
Balkans and the eastern Mediterranean. These cold air
outbreaks caused low or extremely low temperature conditions
connected with precipitation events (rainfall and/or snowfall).
Also noteworthy are the years 1947 and 1963, with snow on the
ground over 79 and 73 days, respectively. January 1947 was
recognized as historical for Italy, with very strong waves of
frost and snow all over the country. The coldest winter in the
post-World War II period was, however, 1962–1963: started on
December, it continued with an escalation of continuous Siberian
cold spell, alternating with Atlantic phases, until the month of
March, which was equally rigid. In Britain, although the Thames
had not frozen as in previous centuries, that winter turned out to
be not only the coldest of the century but among the coldest ever.
After that winter, the DSG median dropped further (only 15 days
per year), and with it also the 95th percentile reached the lowest
values ever (30 days per year). These trends are confirmed by the
decrease in snow-cover extent in spring, as observed in Eurasia.
Although the extent of the autumn snowpack has been limited in
recent decades, and the winter trend has remained unchanged in
Europe and Asia, a decrease in the snowpack extent and a greater
variability in the transition seasons (spring and autumn) have
been documented at the hemispheric scale since the 1920s
(Krasting et al., 2013). Such snow-cover reduction was
particularly significant in the mid-latitudes (40°–60°) of the
Northern Hemisphere (Brown, 2000). Accordingly, Déry and
Brown (2007) noted that the mean monthly snow-cover extent
strongly anti-correlates with the mean air temperature in the
Northern Hemisphere. This occurs particularly in April–June,
when extended snow-cover duration is accompanied by intense
incoming solar radiation.

We used the wavelet-coherence analysis for highlighting the
time and frequency intervals when DSG and AMV have a

significant interaction (Grinsted et al., 2004). The wavelet
coherence method offers a bivariate extension of the wavelet
analysis to identify regions with large common power in the
time-frequency domain of the two time series, and reveals
information about their phase relationship (which may be
suggestive of dependency; Maraun and Kurths, 2004). The
wavelet-coherence spectrum of the two time series
(Figure 7D) displays sporadic high-frequency periodicities
around 11 years. The quasi-11-year sunspot cycle is a main
feature of solar activity (as identified by Wolf, 1852; Wolf,
1853). However, the 5% significance level is a not a reliable
indication of dependency for erratic periods in the long-term
behavior although Italian Alps snow-cover trends have been
observed to oscillate with 11-year periods (Valt and Cianfarra,
2010). The region of the spectrum at lower-frequency periodicity
of ∼60 years is quite extensive and suggestive of a causal AMV-
DSG relationship emerging at the onset of the warm period
(across the change-point year of 1897 with AMV leading in
time), which appears to be linked to North Atlantic internal
ocean-atmosphere variability (e.g., Knudsen et al., 2011;
Mazzarella and Scafetta, 2012). However, the significant area
falls outside of the cone of influence where edge effects become
important and prevents this analysis from obtaining a robust
interpretation in this sense.

Influence of Atmospheric Circulation
Patterns of Snow-Cover Periods
The occurrence of snow events in Parma is to some extent
related to the presence of a low-pressure system over the central
Mediterranean area, which is a favourable configuration for
several snow days and persistent snow. In order to discover if
different climatic periods are somewhat the result of changes
occurred in the continental atmospheric circulation, we created
composite plots of sea-level pressure for the winters of the late
Maunder Minimum (Figure 8A), the late LIA until the change-
point year (Figure 8B) and the modern warming (Figure 8C).
These climatic sub-periods reflect many dominant types of
large-scale atmospheric circulation patterns, which are
responsible for wintertime conditions over the Mediterranean
region. During the first period, 1681–1715 (Figure 8A), the
atmospheric pattern shows that the central Mediterranean area
is characterized by a winter depression, which attracts cold
arctic air masses from the north/northeast of Europe. In the
period 1716–1897 (Figure 8B), a similar atmospheric
circulation pattern continued to favor the transition of cold
air masses from northern Europe though with a shallower
depression center lessening snowfall and snow-cover
duration. There were certainly less frequent and severe cold
spells during the late LIA than in the Maunder Minimum.

Poichè di nevi ebbe tanta abbondanza, che nemmeno i più vecchi
ricordavano, non che l’eguale; per questo la terra ne restò coperta
fin dopo Pasqua, ed il freddo fu così crudo che il Po e l’Arno
ghiacciarono; tanto freddo fu universale: sul Tamigi passavano i
carri

For the snow was so abundant that not even the elders
remembered it, not that there had been any equal; so the Earth
was covered with snow until after Easter, and the cold was so raw
that the Po and the Arno froze; so the cold was universal: the
chariots passed over the Thames.
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However, the late LIA was also characterized by some severe
winters. To give an example, taken from Corradi (1865–1890,
vol. II, p. 623), in 1782 the whole of Italy was besieged by a
deadly bad weather:

The exit of the LIA generally offered less inclement winter
weather. The map of the third period, 1898–2008 (Figure 8C),

shows the squeezing and reabsorption of the depression center by
two anticyclones, which is indicative of snow weather (both mean
and extreme snowfall) becoming less common. The two high-
pressure systems (Azores high to the west and Russian high to the
east) prevented the Mediterranean from prolonged snow events
of certain importance, as compared to the previous periods.

CONCLUSION

The annually-resolved DSG (days with snow on the ground)
time-series reconstruction documents variations at Parma OBS
since 1681. With this reconstruction, unprecedented in time
length, we have deepened our understanding of the
characteristics of snowfall in the Po valley (northern Italy)
and reported the consistency of our model-based
reconstruction of DSG with historical data. That consistency
suggests that the reconstructed historical signal may be
representative of real multi-decadal variations. In fact, our
339-year long time series of DSG shows a particularly marked
downward trend in recent decades, after the change point
detected in 1897, and suggests that important shifts in mean
DSG values and their variability may be resolved by extended
reconstruction. Interannual and inter-decadal variations are
evident in the reconstruction. While the causes of the

decrease observed in DSG are manifold and varied, two
factors are recognisable: an increase in seasonal temperatures
(Dobrovolný et al., 2010; Serquet et al., 2013) and a contraction
in the variability of snow precipitations from 1 year to the next.
With respect to the latter, we highlight a general shortening of
snow duration due to a delay in the start date of snow cover in

autumn and an advancement of the end date in spring,
associated with a retreat of glaciers, mainly due to a decrease
in winter precipitation (Vincent et al., 2005; Huss et al., 2008).
However, other factors besides the increase in temperature may
have caused a decrease in the snow-cover duration. Already in
1881, on the occasion of the royal meeting of the Accademia dei
Lincei (“Lincean Academy”) in Rome (Italy), the Italian Catholic
priest and geologist Antonio Stoppani (1824–1891) in a speech
Sull’attuale regresso dei ghiacciai sulle Alpi (“On the current
regression of glaciers in the Alps”) provided as a main cause of
the regression of the glaciers, not the variations of temperature
(even if they were of common knowledge), but the reduction of
snowiness (e.g., Scaramellini and Bonardi, 2001). In fact, in that
period the number of snow days had been reduced to roughly a third
in just about 50 years, a worrying phenomenon, especially because at
that time there were no dams and artificial reservoirs, and glaciers
were among the few large reserves of water (e.g., Stoppani, 1876).
Again, from 1797 to 1806 the days of snow inMilan (Italy) had been
243 (i.e., 26 on average per year), but the situation had substantially
changed from 1857 to 1876 with 166 snow days (i.e., eight snow days
per year). Recently, Diodato et al. (2020b) provided evidence for
Switzerland that this decrease is continuing in the Alpine range.

In our study, we report the results without providing conclusive
evidence regarding the causes of the observed changes in the
reconstructed DSG. Our model results offer robustness against

FIGURE 8 | Mean reconstructed sea-level pressure (SLP) maps over southern Europe over the winters (December to March) of three periods: (A) late Maunder
Minimum (1681–1715 CE); Late Little Ice Age (1716–1897 CE); (C) Modern Warming (1897–2008). L � low-pressure system (cyclone), H � high-pressure system
(anticyclone). Maps are authors’ own elaboration using Climate Explorer (https://climexp.knmi.nl/start.cgi) [Accessed September 10, 2020] on data from: (A,B)
Luterbacher et al. (2002); (C) from Küttel et al. (2010), which stops at year 2008.

Il freddo acuto e straordinario del mese di Febbraio è avvertito
altresì dei Diarj Manoscritti di Montecassino, i quali pure lamentano
la mortalità degli animali: secondo il Calandrelli nella campagna
romana perirono nel Marzo, a cagione dei geli del mese
precedente, da 102000 bestie, e pecore sopratutto.

The sharp and extraordinary cold of the month of February is felt
also by the Diarj Manuscripts of Montecassino, who also complain
about the mortality of the animals: according to Calandrelli, in the
Roman countryside by 102000 beasts perished in March, and
especially sheep, due to the frosts of the previous month.
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anthropogenic disturbance in urban environments. The latter is
relevant for the Parma territory, where Zanella (1976) showed an
average difference of 1.4°C betweenurban and rural temperature data in
the period 1959–1973, and reported that the difference varied seasonally
(especially in spring and summer). Heat islands may thus have been a
contributing factor of the snow-cover decline (e.g., Musco, 2016)
observed in this urban site (from about 80 days year−1 in the 1940s
to <20 days year−1 in the most recent years), which appears to be
sufficiently captured by themodeled time series.We have corroborated
ourfindings suggesting that change points in snowfall series in northern
Italy can be linked to large-scale changes in the modes of climate (e.g.,
the Atlantic Multidecadal Variability), identifying in this way the need
for future research on the subject. Though the long-term trend of the
DSG series may be represented by a combination of intermittent
periodicities, due to the brevity of the time interval the presence of
these periodicities and their relationship with snowfall mechanisms in
northern Italy should be regarded as tentative, and in need of
confirmation by additional studies on extended spatial scales.
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Instrument Bias Correction With
Machine Learning Algorithms:
Application to Field-Portable Mass
Spectrometry
B. Loose1*, R. T. Short2 and S. Toler2

1Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States, 2Advanced Technology and
Systems Division, SRI International, St. Petersburg, FL, United States

In situ sensors for environmental chemistry promise more thorough observations, which
are necessary for high confidence predictions in earth systems science. However, these
can be a challenge to interpret because the sensors are strongly influenced by
temperature, humidity, pressure, or other secondary environmental conditions that are
not of direct interest. We present a comparison of two statistical learning methods—a
generalized additive model and a long short-term memory neural network model for bias
correction of in situ sensor data. We discuss their performance and tradeoffs when the two
bias correction methods are applied to data from submersible and shipboard mass
spectrometers. Both instruments measure the most abundant gases dissolved in water
and can be used to reconstruct biochemical metabolisms, including those that regulate
atmospheric carbon dioxide. Both models demonstrate a high degree of skill at correcting
for instrument bias using correlated environmental measurements; the difference in their
respective performance is less than 1% in terms of root mean squared error. Overall, the
long short-term memory bias correction produced an error of 5% for O2 and 8.5% for CO2

when compared against independent membrane DO and laser spectrometer instruments.
This represents a predictive accuracy of 92–95% for both gases. It is apparent that the
most important factor in a skillful bias correction is the measurement of the secondary
environmental conditions that are likely to correlate with the instrument bias. These
statistical learning methods are extremely flexible and permit the inclusion of nearly an
infinite number of correlates in finding the best bias correction solution.

Keywords: neural network, long short-term memory, mass spectrometry, generalized additive model, bias, ocean
carbon, ocean oxygen

INTRODUCTION

The uncalibrated signal (s) produced by an environmental sensor contains the superposition of
multiple influences. These include the instrument response to an environmental property of interest:
y( x→, t), but it also includes some instrument responses (β) that are not of interest, as well as some
uncorrelated or random error (ε). The undesirable influences in β can be represented if the
environmental influences or correlates, X, are separately measured. An example of β(X) would
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be changes in the internal resistance of a circuit board as the room
temperature varies. We refer to β(X) as instrumental bias, and
their influence on s can be treated as additive,

s � y( x→, t) + β(X) + ε (1)

and therefore separable from y( x→, t), the desired environmental
response.

Experimental chemistry has been slow to consider bias and
systematic error, in part because the end goal of many studies was
the demonstration of a corollary relationship rather than a
process model (Newman, 1993). However, when the same
relationships are used in a predictive capacity, the uncorrected
bias can lead to erroneous results. Recently, bias has been given
more explicit treatment through applications such as air quality
for human health (Delle Monache et al., 2006) and charge state in
electric vehicles (Sun et al., 2016). These and other applications
demand accurate forecasts, thereby renewing focus on
elimination of bias from the process model.

Within the geosciences, the problem of chronic undersampling
in diffusive environments, such as air and water (Pimentel, 1975),
has created a strong incentive to take instruments out of the lab to
increase sample density and better characterize the tracer field. If
samples are analyzed in a discrete fashion, instrumental drift that
leads to bias can be accounted for with pre/postcalibration to
constrain the instrument drift. This was the approach adopted
by, e.g., Guegen and Tortell (2008) to measure dimethyl sulfide
(DMS) and carbon dioxide—two climatically important
gases—during a shipboard expedition in the Southern Ocean.
However, the continuous sampling that takes place with in situ
or underway chemical sensors requires a slightly different approach
to account for instrument drift as a source of bias. One clever
solution has been to switch to reference compound(s) at regular
intervals as part of the measurement protocol. This has the effect of
chopping up the time series and introducing data gaps, but these
gaps are often small (minutes) in comparison to the averaging
interval (tens of minutes to hours) that is utilized for final data
presentation. Takahashi et al. (2002) and Takahashi et al. (2009)
have used the approach of reference compounds at intervals to
create very precise coverages of ocean surface carbon dioxide
concentration for several decades. Cassar et al. (2009) showed
that mass spectrometer drift, while measuring oxygen and argon,
could be characterized by switching regularly to measure
atmospheric air. Saltzman et al. (2009) describe a detailed
method for continuous measurement of DMS using a chemical
ionization mass spectrometer. Their approach, which uses DMS
isotope dilution, also uses switching at intervals to characterize
several bias corrections and account for internal sources of DMS, as
well as sensitivity of the instrument to changes in seawater
temperature and other environmental factors. These biases are
reported at less than 1% of the overall DMS signal.

The approach of regular switching to a reference compound is a
proven means to correct for drift in continuous instruments.
However, the instrumental conditions that we confront in this
study differ in two significant ways from the previously described
continuous measurement methods. The first difference has to do
with the magnitude of the bias, compared to the signal of interest.

Previous underway studies have confronted bias corrections of a few
to 10% of the overall instrumental signal, while the instrumental
bias that we face can vary by 100% or more. The magnitude of this
bias renders the true environmental signal unrecognizable until the
correction has been applied. The second major difference is that
previous studies have identified the most likely sources of bias, but
they have not quantified those sources to implement the bias
correction. When the instrumental bias masks the true
environmental signal, the bias must be treated as a continuously
varying function, and therefore, a simple linear correction to
baseline drift is not adequate. This bias correction problem lends
itself to time series and multivariate regression techniques,
including partial least squares, ridge regression, generalized
linear, and generalized additive models (Hastie et al., 2001).

Multivariate time series predictions have undergone a period
of rapid development and availability thanks to the popularity of
another member of the statistical learning family, neural
networks, which have proven facile at, e.g., image and speech
recognition. Neural networks are also suited for time series
applications including forecasting or prediction (Brownlee,

FIGURE 1 | A schematic depiction of the effect of environmental factors
on the introduction of bias into in situ chemical instrumentation and the
subsequent identification and removal of bias using environmental covariates
to train a statistical learning engine.
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2019a). Specifically, the long short-term memory (LSTM)
algorithm combines the learning power of neural networks
with a capacity to down-weight or “forget” information that
does not prove relevant, leading to the overall stability of the
network optimization (Hochreiter and Schmidhuber, 1997).

In this application, we apply and compare a generalized
additive model (GAM) and a LSTM neural network model to
observe their performance in baseline correction to mass
spectrometer data. A schematic depiction of the bias
correction workflow can be observed in Figure 1. Both the
GAM and LSTM models use the statistical learning approach
to optimize their calibration and weight coefficients. However,
there is a fundamental difference in approach and user control.
The LSTM weights and tradeoffs are largely abstracted from the
user; one has to trust the algorithm without being able to
interrogate the details of the solution. The consolation is the
tremendous skill that the LSTM models exhibit in preserving the
information that is necessary to discriminate or predict while
avoiding the spurious oscillations that can characterize simpler,
stiffer models. Unlike the LSTM, the GAM represents a linear
combination of regression models (Wood, 2017) between each
environmental correlate (Xi) and the instrument signal (s). This
allows the user to observe and evaluate the partial dependence of
the GAM solution on each Xi and to alter the functional form
(e.g., linear, polynomial, and cubic spline) that is fit between s and
each Xi. The effect is to give the user greater control over the
functional form and the partial influence of each correlate on the
total solution.

The signals of interest to this study are measurements of
gases dissolved in water and seawater using field-portable
quadrupole mass spectrometers (QMS). We present examples
of the GAM and LSTM applied to data from a submersible wet
inlet mass spectrometer (SWIMS) that was used to measure
dissolved oxygen in the top 150 m of the Sargasso Sea and Gulf
Stream, in the subtropical Atlantic Ocean. We present a second
example of signals collected with a similar mass spectrometer
aboard a ship that was used to measure dissolved carbon dioxide
at the ocean surface, within the sea ice-covered Ross Sea,
Antarctica.

Throughout this text, we make references to Python modules
that were used to implement the individual solutions. The
implementation of the GAM backfit algorithm, as well as
example scripts for applying these methods to SWIMS data,
can be found in the Supplementary Material and in the
Acknowledgments.

METHODS

The bias correction models were each applied to ocean
measurements of gases dissolved in seawater. These
measurements were made using a QMS. The QMS is an
ideal tool for ocean measurements because it is compact,
and it can scan over a large range of atomic masses. In this
study, we refer to the mass-to-charge ratio (m/z), where m
represents the atomic mass of the molecule of interest, and z
represents the positive charge state. For example, water vapor

is measured in the QMS at m/z � 18, and molecular oxygen
(O2) is measured at m/z � 32. In this study, z � 1 in every
instance. The QMS can be connected to a variety of gas inlet
configurations. Further detail on the principles of quadrupole
mass spectrometry can be found in Dawson and Herzog,
1995, but they are not needed to follow the methods
presented here.

Ocean Data Used to Evaluate the Bias
Correction Models
Submersible Wet Inlet Mass Spectrometer Tow
The first ocean dataset was collected in July 2017 along a
dynamic section of the subtropical Atlantic between 35° and
40° N latitude (Figure 2). The QMS was incorporated into a
submersible wet inlet mass spectrometer (SWIMS), which is
capable of in situ gas analysis to a water depth of 2000 m; in this
application, we towed the mass spectrometer through water
depths from 0 to 150 m aboard a Triaxus tow vehicle,
corresponding to a region where sunlight penetrates the
surface ocean. The triaxus tow vehicle was also equipped
with a CTD to measure water column properties. The
SWIMS position can be visualized by the gray saw-tooth
pattern in panel b of Figure 3. Calibration of the SWIMS
instrument is described below in In Situ Calibration of the
Submersible Wet Inlet Mass Spectrometer.

This ocean section began in the North Atlantic subtropical
gyre, a circulation feature that is known to be highly depleted of
nutrients with low biomass (Jenkins, 1982). In summer, surface
waters in the Gulf Stream and gyre can exceed 30°C, and nearly
1% of temperature measurements in this section fell between 30°

and 35°C (Figure 3). North of the Gulf stream, waters cool and
become significantly fresher, reflecting river inputs and the
influence of the southward-flowing Labrador Current
(Chapman and Beardsley, 1989). We chose to test the bias
correction models in this region because the environment is
highly changeable on a small horizontal and vertical scale; so,
the SWIMS is subjected to a wide range of environmental
conditions, including temperature, salinity, and dissolved
organic matter—all of which can cause the dissolved gas
burden of the seawater to vary.

The SWIMS was being used to measure oxygen, argon,
carbon dioxide, nitrogen, and methane in the surface ocean.
Each of these dissolved gases has significance for biology and
geochemistry of the ocean. Our in situ calibration system
included reference gases for each of these compounds,
allowing the SWIMS to reproduce realistic concentration
distributions for each analyte. Here, we will restrict
analysis of the bias correction to the SWIMS signal at m/z
� 32, corresponding to dissolved oxygen. By developing the
bias correction at m/z � 32, we are able to take advantage of
independent measures of dissolved oxygen using a membrane
oxygen sensor, the Seabird model SBE 43, which allows for a
detailed reference time series, throughout the vehicle tow.
Ultimately, we use the root mean square error between the
SBE43 and the SWIMS to establish a truly independent
measure of the bias correction algorithm.
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Shipboard Quadrupole Mass Spectrometers
The bias correction models were also tested on data from a
shipboard QMS that continuously sampled dissolved gases in the
Ross Sea sector of the South Atlantic, south of 75°S. These
measurements were collected between May 16 and June 4,
2017. The partial pressure of carbon dioxide (pCO2) was
measured by connecting the QMS directly to a turbulent air-
water equilibrator of the type described by Takahashi (1961). The
same equilibrator was used to measure pCO2 by infrared
absorption spectroscopy (Takahashi et al., 2002; Takahashi
et al., 2009); again, this provided an independent measurement
to compare against the bias correction. The QMS was connected
to the equilibrator with a 2 m × 50 μm (len × dia) capillary, which
served to throttle the gas flow into the QMS and thereby maintain
a vacuum below 10–5 torr.

Carbon dioxide was measured with the QMS by scanning at
the atomic mass m/z � 44. The reconstruction of pCO2 was
carried out with a daily 3-point linear calibration with reference
gases of pCO2 � 0%, 0.4%, and 0.1%. These signals can be seen
in the expanded scale on the right side of Figure 4. Unlike the
SWIMS tows, these calibrations were not long enough in
duration to record the bias while sampling from a stable gas
concentration. Therefore, we apply the bias correction to a time
series of CO2 partial pressure (pCO2) measured at atomic mass
m/z � 44. Instead, the GAM and LSTM models were trained on
relatively stable ion current signals measured during a four-day
period between May 27 and June 1.

This late autumn period in the Southern Hemisphere was cold
and windy with continual disaggregated ice formation in the
surface ocean. The principal source of bias appeared from the
thermal cycling in the room where the QMS and equilibrator
were operating (Figure 4). The heating system in that room
would cause the temperature in the room to increase and decrease
by 2-3°C every 30 min. Additionally, the seawater intake was
periodically clogged with ice crystals, causing the equilibrator
flow rate to vary.

In Situ Calibration of the SWIMS Instrument
The SWIMS passes seawater directly over a gas-permeable
silicone membrane under conditions that approach a constant
flow rate while maintaining constant water temperature using a
resistive heater and aluminum block (Short et al., 2001; Wenner
et al., 2004). The wet membrane inlet is a simple and elegant
design that allows for a submersible instrument, but it is subjected
to a number of confounding environmental influences that
complicate interpretation of the SWIMS ion current. The most
significant of these is a change in membrane permeability as it is
compressed under the increasing water pressure (Bell et al., 2007).
The permeability behavior is made more complex by hysteresis
between the compression and decompression cycles (Futó and
Degn, 1994; Lee et al., 2016). Over progressive cycles, the silicon
membrane can become tempered and eventually exhibits less
compressibility (Futó and Degn, 1994; Lee et al., 2016), which
indicates that any bias correction should include multiple

FIGURE 2 |Maps showing the ocean regions where QMS data were collected as part of oceanographic surveys. Panel (A) is a region in the Ross Sea, along the
coast of Antarctica in the Atlantic sector; panel (B) shows a region of the North Atlantic, including the Gulf Stream and Labrador water. The measurements collected at
these locations are the subjects of the additive model and neural network bias correction algorithms that we compare in this study.
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compression-decompression cycles to capture the longer term
transients. To capture this and other sources of bias, we designed
an in situ calibration method that involves connecting the
SWIMS to a 1 L Tedlar bag that contains seawater,
equilibrated with a reference gas mixture. The sample in the
compressible Tedlar bag is subjected to the same pressure
variations as the water column sample, but gas concentrations
remain constant because there is no gas headspace in the bag.
Using a 3-way solenoid switching valve, the SWIMS can change
states from sampling the environment to sampling the constant
reference gas. Because the gas concentration is invariant, any
trends in ion current that are observed must be due to
instrumental bias. An example of this instrumental bias can be
observed in Figure 5, which shows the environmental correlates
measured during approximately 4.8 tow cycles while measuring
from the in situ calibration reference. These signal variations are
what we seek to correct.

Calibration after Bias Removal
To discover the instrument response, it is necessary to remove
β(X), the instrumental bias, and rearrange Eq. 1 as follows:

y( x→, t) � f (s − β(X)). (2)

Here forward, we drop the explicit reference to uncorrelated error
(ε), which means that this error source is still a part of s.After bias
correction, it is still necessary to estimate the uncertainty on y that
is caused by ε, but that topic is extensively covered by other
studies, so it will not be addressed here.

Therefore, the steps to obtain y are to the first model β(X), so
that it can be removed, and then to calibrate to obtain the
empirical dependency, f (), between y and the bias-corrected
signal. To make this procedure less abstract, we focus on
measuring the oxygen concentration in seawater y � [O2]
using the ion current measured at m/z � 32. The raw ion
current (s) in amps at m/z � 32 responds directly not only to
the amount of O2 dissolved in the water but also to other
environmental correlates, X. The values of X must be
measured as a time series, coincident with the instrument’s
deployment. Other properties that we might include in X are,
for example, the duty cycle of a heater or chiller, the atmospheric
pressure, the temperature of a chemically reactive solute (e.g., pH-
sensitive dye), or the electrical conductivity of a water solution.
The environmental correlates used to model β(X) in the SWIMS
are shown in Figure 5, and the correlates used to model β(X) in
the shipboard QMS are shown in Figure 4.

After bias removal, s reflects only the environmental signal of
interest and some component of random error; s−β denotes the
ion current after bias removal, and this term is calibrated against
the reference gas concentrations using a linear equation,

f (s−β) � m(s−β) + b or

y( x→, t) � m(s−β) + s0.
(3)

Here, the terms m and s0 are the slope and intercept, and these
terms are estimated as described in Ocean Data Used to Evaluate
the Bias Correction Models. Practically, we estimate m as

m � y − y0

s−β − s0−β
. (4)

At the limit of y0 � [O2] � 0, the ion current does not reach zero
because of electronic noise, and the potential for “virtual leaks” as
gas is desorbed from the walls of the QMS under vacuum. In other
words, y0 is always zero, but in practice, s0−β in Eq. 3 reflects the
nonzero ion current at undetectable gas concentrations leaving
the following linear calibration:

y( x→, t) � m(s−β − s0−β). (5)

The technique for determining m and s0−β for the shipboard QMS
was determined by measuring m/z � 44 at pCO2 � 0 in ultrapure
N2 gas, as described in Ocean Data Used to Evaluate the Bias
Correction Models. The SWIMS determination of m occurred
during in situ calibration, which took place ca. every other day;
however, we did not determine s0−β, so it became necessary to
account for baseline drift in the SWIMS using an external
reference. We implemented a reference to the equilibrium
oxygen solubility, based on seawater temperature and salinity.
We also used the SBE43 as a daily reference.

FIGURE 3 | Ocean properties during the SWIMS tow in the N. Atlantic,
across the Gulf Stream and into coastal waters influenced by the Labrador
Current. The track lines of the tow are shown in panel (B).
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General Approach of Statistical Learning
The bias corrections that we evaluate here belong to a family of
statistics called supervised learning. These corrections compare
correlating inputs with corresponding outputs to develop a
predictor that can be applied to any set of inputs. To develop the
prediction, a sufficiently large dataset is divided into subsets—often
referred to as “train” and “test” subsets (Ahmed et al., 2010). Separating
in this manner allows the learning algorithm to develop a fit using the
“train” dataset and evaluate the quality of that fit by predicting the data
in the “test”dataset. The Scikit-learnmodule library in Pythonhas been
designed around the test-train convention and allows the user to subset
using a number of different methods (Pedregosa et al., 2011). Last, the
“test” dataset is used to estimate general error between the bias
corrector and the actual data (Hastie et al., 2001).

Statistical learning models are exceedingly flexible and conform
to almost any feature at any scale within a time series. This can
result in “overfitting,” a condition where the learning algorithm
attempts to reproduce small scale noise or other shapes in the data
that do not improve the prediction or bias correction. Overfitting
results because of the imperfect separation between the bias and the
random error. This imperfect separation between β and ε, called the
bias-variance tradeoff (Wood, 2017), results in a degradation of the
fit as greater degrees of freedom are introduced to the model.
Statistical learning algorithms included penalty parameters that can
be adjusted to iteratively reduce the degrees of freedom. When this
is done iteratively, one can probe the range ofmodel-datamisfit and
determine the point where improved fitting becomes overfitting
and then choose penalties accordingly in a process called
regularization (Hastie et al., 2001). We describe the application
of penalty regularization to the GAM in Implementation of the
Generalized AdditiveModel and Backfit Algorithm and to the LSTM
in Implementation of the Long Short-Term Memory Algorithm.

Implementation of the Generalized Additive
Model and Backfit Algorithm
A GAM achieves smooth fitting by using the sum of fitting
functions that individually represent the covariance between
an individual input (X � pi, qi, ri) and the response (yi) data,

yi � y0 + f1(pi ) + f2(qi ) + f3(ri ) + εi. (6)

The choice for fitting functions (fj) is flexible, although a typical
choice is a natural cubic spline. Natural cubic splines are a
collection of polynomials, with second derivative equal to zero
at the endpoints or knots. By specifying more knots, the splines
can represent a higher frequency fluctuations. The fit between y
and f1(p) can be generated through any penalized linear least-
squares algorithm,

‖y − f j(x)‖ + λ∫
1

0
[f j″(x)]2dx � 0. (7)

The fit penalization, λ, is the primary means by which the solution
is tuned. The fit between y and the sum of fj’s means that the
influence of each fj on the global solution can be observed, plotted,
and evaluated. As mentioned, this is one of the principal strengths
of the GAM, and it permits a more interactive and nuanced
approach to determining the significance of each input variable
and the behavior of each fj.

We implemented the penalized least squares using the ridge
regression algorithm in the Scikit-learn library with a specified
value for penalization and normalization of all input variables;

>> model � Ridge(alpha � λ, normalize � true).

FIGURE 4 | Time series of environmental correlates used to bias correct
the pCO2 signal measured by shipboard QMS at m/z � 44 (panels (C) and (F)).
Panels (A) and (D) show the lab temperature and QMS vacuum pressure;
panels (B) and (E) show water vapor (m/z � 18) and m/z � 15. Panels
(D), (E), and (F) show the time series for one 12 h period on June 1, 2017.

FIGURE 5 | The six environmental correlates that were measured by the
SWIMS instrument or CTD to capture variations in the environment that are
likely to influence the signal response (s) of the SWIMS for m/z � 32 and other
dissolved gases. Panel (A) shows instrument water depth as hydrostatic
pressure and the ion current for water vapor (mass 18). Panel (B) shows the
temperature of the electronics (uC temp) and the water temperature. Panel
(C) shows the sample temperature or temperature of the heater block where
gas is introduced across the membrane, and it shows ion current at mass 5,
the electronic noise baseline.
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The natural cubic spline matrix with k � 9 knots was
implemented using the Patsy module.

>> basis � dmatrix(“cr(train, df�10)-1”, {“train”: X[j]}).
We incorporated this penalized regression into the global fit

using the backfit algorithm (Wood, 2017), which permits an
iterative approach to fitting where each environmental correlate,
j, is fit against the partial residuals (ep), or the difference between
the signal response (s) and the spline fit to all inputs except Xj,

ejp � ŝ −∑
k≠ j

fk(Xk ). (8)

Here, s has already been standardized or normalized to have zero
mean. The backfit algorithm described by Wood (2017) has been
reproduced here for clarity. The Python code can be found in the
Supplementary Material.

(1) Standardize or remove the mean from s: ŝ � s − s
(2) Set the initial spline functions to zero: f j � 0
(3) Use linear regression to fit fj to ep: basis � model.fit(basis,ep)
(4) Estimate y from fj: ŝ � ∑

j
f̂ j, news � basis.predict(dmatrix (“cr

(valid, df � 10)-1”, {“valid”: X[j]})))

(5) Recompute ep: e
j
p � ŝ − ∑

k≠ j
f̂ k(xk )

(6) Repeat steps 3 thru 5 until ep stops changing

More complex examples, involving other link functions
between y and fj and the imposition of different probability
distributions on yi (e.g., Gamma, Poisson or exponential), are
all treated in more detail in Hastie et al. (2001).

To determine the optimal fit, we iteratively apply the backfit
algorithm to the training data subset and then compute the
generalized cross validation (GCV), as it varies with λ, the
penalization parameter,

V(λ) �
1
n ‖I − A(λ)y‖2

[1n tr(I − A(λ))]2
. (9)

In Eq. 9, n is the number of records of instrument signal response,
I is the identity matrix, and A is the “influence”matrix, reflecting
the penalized linear least-squares solution that can be applied as a
step during the GAM fit (Golub et al., 1979),

A(λ) � X( XTX + nλI)− 1
XT . (10)

The GCV approach is to look for the minimum in V(λ) to
determine the most appropriate regularization penalty and strike
the best balance between fit complexity and overfit. The GCV
metric is better suited for this task than seeking the minimum
residual sum of squares because that value decreases continuously
with n and with the magnitude of λ.

The GCV score can be computed directly using Eq. 9. It is also
computed and can be output by the Scikit-learn regression()
toolbox.We used ridge regression, and the GCV score is output as
>> model � Ridge (alphas � λ, store_cv_values �
True).fit(X_train, s_train).

>> gcv � model.score (X_test, s_test).

Because the components of the GAMmodel are separable, it is
also possible to determine which environmental correlates
contribute most to the best-fit solution. This avoids the
inclusion of correlates that make no contribution or may even
degrade the GAM solution. The Bayesian information criterion
(BIC) considers the model fit quality but also penalizes for models
of increasing complexity (Burnham and Anderson, 2004),
providing a measure for each correlate’s contribution to the
GAM solution,

BIC � n loge(RSS/n) + kloge(n). (11)

This version of the BIC applies when using amaximum likelihood
estimator (such as ridge regression). The term k is the number of
parameters included in the model. In this case, k is equivalent to
the number of environmental correlates. The absolute value of
BIC is not important; rather, the goal is to seek a minimum in
BIC, which indicates the model best fit with the fewest
parameters. For this task,

ΔBICi � BICi −min(BIC) (12)

will achieve a value of zero when the best set of environmental
correlates have been used. The ΔBIC is further useful as it allows
the user to determine if certain environmental correlates degrade
the overall solution or make no contribution (Figure 6).

Implementation of the Long Short-Term
Memory Algorithm
Recurrent neural networks (RNN) can be used to interpret
sequential data, like time series, where each data record may
be related to the records that preceded it. The neural network uses
functional dependencies along a network of nodes, and the
influence of these dependencies is weighted based on their
relative importance. The RNN keeps track of these network
weights as a means to archive predictive information as
memory (Brownlee, 2019b). Since their development, RNNs
sometimes have difficulty converging to a solution when
attempting to optimize weights at all the nodes. This problem
was solved by the LSTM algorithm (Hochreiter and
Schmidhuber, 1997) that discards or “forgets” weight
information that is not pertinent to the solution. The
documentation of RNN theory, concepts, and implementation
is very extensive, rapidly evolving, and available in the public
domain, so we will move straight to a discussion of the
implementation for instrument bias correction. We used the
Keras API (Chollet, 2018) which serves as an interface to the
TensorFlow toolbox to develop, train, and implement the LSTM
network.

Taxonomy of the Time Series Forecast
Because there are so many types of problems that can be solved
using neural networks, it is helpful to list out the characteristics of
this particular time series solution because this affects the
structure of the neural network (Brownlee, 2019b). In our
case, we are determining a single output from multivariate
inputs; the neural network is a regression, rather than
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classification; we seek amultitime step output to be able to predict
over an unspecified range of time, and the current solution is
static because it has been trained using in situ calibration data
and does not update the solution over time. The exogenous
inputs are water temperature and water hydrostatic pressure
that the SWIMS experiences. The endogenous inputs, which are
coinfluenced by the environment are water vapor inside the
SWIMS detector, measured at m/z � 18, the sample
temperature, the circuit board temperature, and the mass
spectrometer background noise measured at m/z � 5
(Figure 4).

Instrument bias correction can be thought of as time series
prediction. Even though our approach is to use a multivariate
set of inputs to help develop the bias prediction, the potential
for long-term transients in the instrument signal encourage
the interpretation of bias correction as a sequential and time-
dependent statistical problem. Examples of instrumental
memory can include, e.g., the silicon membrane stiffening
(In Situ Calibration of the Submersible Wet Inlet Mass
Spectrometer) or the thermal inertia, a pressure casing that
may dampen the heat transfer between the environment and
electronics inside the housing.

We use the Keras sequential() model. The 2D
environmental array X of n data records through time by k
input parameters (e.g., temperature and pressure) must be
reshaped into a 3D array or tensor. The n data records in
time are decomposed into p sequences of t time steps: n � p × t
(Stevens and Antiga, 2019). Tensor creation provides the RNN
with multiple time series realizations against which to train and
develop network weights. The fundamental choice for the user
is to decide how many t time steps to include in each sequence.
If data are periodic, it may be instructive to break the data into

lengths that roughly capture an interval of the period. For
example, two years of solar radiation data or sea level data
measured every 10 min may be naturally broken into t � 144 or
t � 36 time steps corresponding to the 1-day or one half tidal
period. However, this choice is rarely carried out a priori and
must be determined iteratively.

After the p × t × k tensor dimensions have been established,
the user must choose a functional relationship or “activation
function” between input and response at each network node, the
number of iterations or “epochs” over which the RNN algorithm
will train, and the number of “neurons” and the “optimizer” or
metric that is used to evaluate the goodness of fit. As with the time
steps, the settings for these parameters cannot be determined a
priori, so we establish appropriate values through iteration
(Brownlee, 2019b).

Keras allows a user to take control of when the RNN
weights are updated; this is known as controlling the
model state or “stateful � True.” By default, Keras updates
the LSTM state after a “batch” is processed. A batch is a
collection of sample sequences, where each sample sequence
has t timesteps, as we defined above. A batch size of one
causes the model weights to be updated after each sample, but
the penalty in processing speed and computation often
requires a large batch size. Ideally, the batch size is a
factor of p, the number of sample sequences; otherwise, a
set of left over sequences are processed in an additional step
(Brownlee, 2019b).

Determining Fit Quality
During tuning and iteration of the GAM model, we used
GCV(λ) to test for overfitting and the root mean square
error (RMSE), which is a measure of the deviation between

FIGURE 6 | The normalized Bayesian information criterion (ΔBIC) which was used to determine the set of the environmental correlates that best reproduce the bias
in the GAMmodel. The black line with red dots indicates environmental correlates that did not measurably improve the ΔBIC score. These were left out of the final set of
environmental correlates, which are indicated by the green line and green dots.
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modeled bias β̂(X) and instrument bias, using the train
datasets. We also evaluated the neural network LSTM
model using the RMSE between β̂(X) and the instrument
bias, measured during in situ calibrations.

To evaluate the overall fit quality, we measured the RMSE
between the independent O2 and CO2 instruments (yind), and the
bias-corrected signal from the QMS and SWIMS instruments as
defined by Eq. 5, (y( x→, t)):

RMSE �
����������������
1
n
(y( x→, t) − yind)

2
√

. (13)

RESULTS AND DISCUSSION

The bias correction workflow is depicted in Figures 1 and 7;
the calibrated GAM solution is shown in Figure 7 panels b
through d, but the steps are essentially the same for the
LSTM solution. In this section, we present the details of the
GAM and LSTM fits and contrast the two bias correction
models.

Generalized Additive Model Fit
The ability to choose a functional form for each Xj environmental
correlate was an attractive feature of the GAM because early tests
revealed that oxygen (m/z � 32) strongly correlated with water
vapor (m/z � 18), and signal from the SWIMS showed m/z � 18
ion currents outside the range observed during in situ calibration.
Consequently, it appeared necessary to have a linear or
proportional correction to m/z � 18. Water is present in
solution at nearly 1 mol/mol; so, its concentration far exceeds
the other analytes. Somewhat counterintuitively, m/z � 18
correlated positively with m/z � 32, perhaps suggesting a
similar response to membrane permeability rather than
competition for ionization inside the SWIMS source
(Supplementary Figure S1).

All the environmental correlates (Figure 5) negatively
covaried with the water depth. More subtle features, such as
lag between the circuit board temperature (uC temp) and the
sample temperature can also be observed in the SWIMS
electronics temperature (Figure 5, panel b). Using the
flexibility of the GAM, we tested both linear and quadratic fits
between m/z � 18 and the target output variable [O2] or m/z � 32.
While these parameterizations showed a stiffer, more
proportional response to the large-scale variations in m/z �
18; ultimately, the natural cubic spline produced the best
RMSE solution.

Having chosen a cubic spline functional form for f() for each
Xi, there remain only two additional parameters that can be used
to tune the solution—the number of knots in each spline and the
value of the penalty function, λ (Eq. 9). We tested the fit to in situ
calibration data for a range from 3 to 30 knots and observed no
significant change in fit quality above 10 knots, so all cubic spline
fits used a total of 10 knots. The term GCV(λ) was computed
iteratively over a range from λ � 10–10 to λ � 1010 (Figure 8); the

minimum GCV(λ) suggests the region where fit complexity and
minimization of bias are optimal (Wood, 2017). We found
GCV(λ) was not sensitive to the penalty, outside the range
10–2 < λ < 105, with a minimum near λ � 105, so this value of
the penalty was implemented in the solution.

Long Short-Term Memory Fit
As noted, the Keras LSTM algorithm requires iteration to
choose appropriate values for the t time steps in each
sample, the batch size, and epochs, as well as the choice for
how often to update the weights of the RNN or statefulness.
We chose to optimize based on the RMSE and used a
hyperbolic tangent activation function. We found the LSTM
solution was most sensitive to batch size and the number of
epochs, especially as they related to overfitting. To mitigate
overfitting, we implemented node dropout regularization
using the Keras dropout() attribute. The approach is to
assign a dropout likelihood between 0 and 1, wherein the
model will randomly remove some nodes during training,

FIGURE 7 | Sequence showing the SWIMS tow and bias correction
using the generalized additive model (GAM). Panel (A) reveals the depth
recorded by the Triaxus CTD during vertical tows; panel (B) shows the raw
signal recorded for oxygen at m/z � 32 and the estimate of instrumental
bias. Panel (C) shows the corrected ion current, and panel (D) shows the
calibrated ion current in O2 concentration units, alongside the Seabird DO
sensor.
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thereby reducing codependence and overweighting of certain
nodes (Srivastava et al., 2014).

Because the choice of batch_size, epoch number, and dropout
regularization cannot be determined a priori, but have a
preponderant influence on overfitting, we objectively
determined the optimal values for these three hyper
parameters using the GridSearchCV() algorithm in Keras. The

approach tries all permutations of the hyper parameters and
measures the fit quality using the RMSE and a k-fold cross
validation (with k � 5). The k-fold cross validation randomly
samples the training data to produce test data subsets, which are
then used to measure fit quality k times. We tested batch_sizes
ranging from 20 to 80, epoch numbers ranging from 5 to 30, and
dropout likelihood ranging from 0.1 to 0.8. The smallest k-fold
RMSE value was found at with a batch_size � 80, epochs � 20, and
dropouts � 0.4. The residual error between the training data and
the LSTM solution, “train RMSE” in Figure 9, reveals a continual
reduction in both test and train RMSE through epoch � 20.
Beyond epoch � 20, the test RMSE increases, suggesting an overfit
(Figure 9).

Finally, the choice of t timesteps in each sample can be an
important consideration. Because time series may have
quasiperiodic correlations, it is desirable to have t be large
enough to capture the full period, in order to make future
predictions based on past time series behavior (Brownlee,
2019a). The Triaxus tow vehicle was programmed to ascend
and descend at 0.2 m/s, so a full tow from surface to 150 m and
back to the surface took approximately 25 min or t � 750 time
steps at data reported every 2 s, which is the scan rate of the
SWIMS. Initially, we anticipated that a sample size of t > 750
would provide the best fit. However, splitting the in situ
calibration data into a test and train subset did not permit the
inclusion of sample sizes of t � 750 because we felt it is necessary
to validate against a test dataset that was at least 2 t in length. In
practice, we tested values of t � 50, 100, 200, and 300. The test
RMSE actually improved significantly as t was reduced.
Eventually, t � 100 provided both computational efficiency
and low RMSE, even though this number of time steps does
not encompass the full profile tow. The tow profile may not be as
necessary, suggesting that the information used to reconstruct the
bias comes from the environmental correlates that are available at
the prediction timestep, rather than from the learned temporal
dependence.

GAM vs. LSTMBias Correction, SWIMS Tow
Normally, the procedure to evaluate a statistical learning
algorithm involves validating the solution against the test data
(General Approach of Statistical Learning), which was set aside
before the training stage. However, the independent
measurement of oxygen by the SBE43 (Ocean Data Used to
Evaluate the Bias Correction Models) provides an opportunity
to quantify the bias correction against an entirely unique measure
of oxygen. It should be noted that the SBE43 probe can also be
subject to its own sources of bias, some of which may not be
accounted for, but this instrument has a long performance history
in oceanography (e.g., Helm et al., 2011) that supports the choice
to use it as a reference instrument.

The final list of environmental correlates was determined
using the ΔBIC metric (Eq. 12). In addition to water vapor, we
tested for environmental covariation in the water pressure,
seawater temperature, the sample temperature inside the
SWIMS heater block, the circuit board temperature, the
temperature of the turbo pump, current draw of the turbo

FIGURE 8 | Test of the GAM solution using a range of values for the
penalty term λ in Eq. 9. Orange circles represent the GAM reconstruction and
blue circles represent the raw ion current during in-situ calibration.

FIGURE 9 | Root mean squared deviation between the train and test
subsets during successive training epochs. While the training RMSE
continually decreases, suggesting improvement, the test RMSE begins to
increase after 20 epochs, suggesting that the solution is being overfit.
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pump, and the duty cycle of the membrane heater. Using ΔBIC, it
was determined that these last parameters did not add any
meaningful additional constraints beyond what the first six
environmental correlates. That is, ΔBIC achieved a minimum
after including water vapor, water pressure, circuit board
temperature, sample temperature, and instrument noise at m/z � 5
(Figure 6). The remaining correlates were eliminated from the GAM
solution.

The SWIMS tow between 35° and 40° N recorded a total of N
� 49,181 individual measurements of dissolved O2. A contour
plot of dissolved O2 reveals the tracer field in Figure 10. The
RMSE between SBE43 and bias-corrected SWIMS data using the
GAM was 11.2 µM (micromoles per liter of seawater); the units
of RMSE are the same as the concentration data itself. The mean
[O2] in this section was 196 µM, suggesting a 5.7% deviation
between the two instruments. Within the same section, the
neural network LSTM bias correction yielded RMSE � 9.8 µM
or 5.0% deviation overall. Both GAM and LSTM bias
corrections tended to fit some regions better than others;
however, the fit quality of the GAM and fit quality of the
LSTM did not degrade in the same places, suggesting some
differences in how the two models respond to the
environmental correlates (Figure 5).

It should be noted that we are focusing on interpretation of
the relative RMSE between the GAM and LSTM solutions. The
absolute value of the RMSE is less meaningful because the
calibration intercept (s0) was not measured on the SWIMS
in-situ calibrations. This term, s0, represents the instrument
baseline drift, and so, we determined s0 by optimal fit to the
SBE43. The same baseline drift can be determined by fitting to
another independent reference, such as the equilibrium oxygen
solubility (Garcia and Gordon, 1992). When we use equilibrium
solubility, the shape or trend in the daily estimates of s0 remains
the same, but the magnitude of s0 shifts, causing a larger misfit
between the SBE43 and the SWIMS. During future in situ
calibrations, we think it is possible to implement a workable
measure of s0 by shutting off the water pump, causing all the gas
around the silicon membrane to be depleted and achieving a
practical value of zero concentration for all gases except
water vapor.

GAM vs. LSTM Bias Correction, Shipboard
Quadrupole Mass Spectrometers
The bias corrections in the shipboard QMS were fit using
training data over a four-day period of the surface ocean
equilibrator time series from May 27 to June 1. The RMSE
between the GAM solution and training data subset was 3.5%,
and the LSTM misfit was 1.8%. Unlike the SWIMS tows, it was
not possible to evaluate β(X) independent of the environmental
signal y( x→, t). The daily calibrations with reference gases did
not take place for long enough to properly observe and
decompose the time series aliasing. Instead, it was necessary
to train the LSTM and GAMmodels on a section of the real-time
series. This approach can lead to muddling the separation
between y( x→, t) and β(X), potentially correcting away some
of the environmental signals in pCO2 during the bias correction.

However, the ambient changes in pCO2 should reflect the
biology and chemistry which in turn are only partly
dependent on the exogenous environmental correlates. The
endogenous environmental correlates reflect instrument
behavior, which should have zero correlation with
environmental pCO2. The environmental correlates used to
develop the bias correction model included, 1) temperature
of the lab where the QMS was installed, 2) the total gas
pressure in the QMS measured as voltage, 3) the seawater
flow rate through the turbulent equilibrator, 4) water vapor
measured at m/z � 18, and 5) m/z � 15. Similar to the SWIMS
tow, we found that three environmental correlates caused an
increase (no decrease) in ΔBIC metric, signaling that they
contributed no meaningful constraint. Consequently, the IR
pCO2 cell temperature, the water wall flow rate, and the second
equilibrator temperature reading were eliminated from the bias
correction solutions (Figure 6).

After bias correction, the raw ion current was calibrated to
CO2 partial pressure, using the three-point calibration of

FIGURE 10 | North Atlantic section, including Gulf Stream and Labrador
waters showing temperature (top) and oxygen from the Seabird SBE 43
membrane and the SWIMS with bias corrections using GAMs and the neural
network LSTM model.
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reference standards that were measured daily. There are
additional corrections to gas measurements that are made
using a turbulent equilibrator, and these are described by
Takahashi et al. (2009). These corrections have not been
implemented here; while their implementation might improve
the overall misfit between the two measurements of pCO2, they
would drop out of the comparison between GAM and LSTM bias
corrections; so, these additional data corrections are not material
to this evaluation.

In this case, the GAM model was better at removing the
periodic oscillation in the QMS ion current at m/z � 44 ().
However, a level of noise persists even after the bias correction,
suggesting that the environmental correlates may be missing
some components of the bias. In total, the 18-day time series
contains 5043 unique measurements of pCO2 by infrared
absorption spectroscopy and by QMS. The RMSE between the
IR pCO2 and GAM-corrected pCO2 was 31.3 μatm; the average
pCO2 was 411 μatm, revealing an overall misfit of 7.5%
(Figure 11). The LSTM RMSE was 35.2 μatm or 8.5% of the
mean pCO2. In this case, it appears the LSTM (not pictured) may
have slightly overfit the training data, resulting in a degraded fit to
the overall time series. Nevertheless, the difference in RMSE
between GAM and LSTM was less than 1%, which suggests that
both methods produce very similar overall bias correction
outcomes.

SUMMARY

This study presents two models for instrument bias correction, a
GAM and a LSTM neural network model. The two models
represent philosophically different approaches to the
multivariate prediction; the GAM allows the user to
investigate the intermediate model fit products and choose
the functional form f() for optimal regression between the
results and the individual environmental correlates in X. This
advantage was particularly useful when interrogating which
environmental influences to include as correlates in the
model solution, using the BIC criterion. This calculation is
straightforward and can be determined offline without
iteration of the GAM model, precisely because the solution is
separable. The procedure eliminated three environmental
correlates from both Shipboard and SWIMS ocean datasets
(Figure 6). The six remaining correlates were also used to fit
the LSTM solution.

The LSTM RNN model gives the user fewer intermediate
diagnostics, which produces an initial lack of confidence in the
robustness of the solution because it can be challenging to
understand or visualize the nature of the solution.
Nevertheless, there is an emerging recognition that, compared
to the human brain, computers are much more capable
instruments at assigning appropriate weights to an
n-dimensional set of variates in pursuit of a solution. By
accepting these models, we implicitly acknowledge that the
multivariate weights in the solution are beyond our capacity to
evaluate simultaneously, thus rendering the “black box” criticism
somewhat moot. However, the procedures for implementing

RNNs, including the grid search or random search (B. Nakisa
et al., 2018; Bergstra and Bengio, 2012), provide a systematic
approach to determining the optimal tuning of hyperparameters
(e.g., times steps, batch size, epochs, and hidden nodes), and the
eventual robustness of the solution has held up under rigorous
testing and comparison. In the SWIMS dataset with in situ
calibration, the LSTM solution proved more effective at
removing bias in the high gradient oceanic region, with tows
across the Gulf Stream. However, the GAM exhibited better fit
quality in the Antarctic shipboard QMS dataset, as compared to
the LSTM.

The difference between GAM and LSTM RMSE was 1% or
less for both ocean sections, suggesting that both models
performed similarly well. The RMSE for both methods were
better than 6% for O2 and less than 9% for CO2, demonstrating a
predictive accuracy of better than 91% for both dissolved gases.
The quality of the bias removal solution was significantly more
dependent on the availability of coincidently sampled
environmental correlates as inputs. We further found that
the in situ calibration for SWIMS data was a significant
factor in producing a high fidelity bias correction. Several
attempts were made to produce the same bias correction
using just SWIMS tow data (without the in situ calibration)
as training data, and the solution was significantly diminished
with an RMSE for the LSTM model of 17% as compared to 5%
with the in situ calibration. These results demonstrate that the
bias corrections are most effective when they can be tuned using
the in situ calibration with an invariant reference gas to reveal
the instrument bias.

The overall performance of the GAM and LSTM models was
highly comparable, making it difficult to declare a clear
winner in this case. The primary advantage conferred by
the GAM model is the ability to evaluate the fit to each
individual correlate, separately. This is a big advantage

FIGURE 11 | Bias-corrected and calibrated pCO2 from shipboard QMS
alongside measurements of pCO2 by infrared absorption spectroscopy (IR
pCO2) in the Ross Sea, 2017.
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when it is necessary to better understand an instruments
behavior and might even lead to engineering solutions that
eliminate the biggest source of bias. In comparison, the skill
that an LSTM RNN brings to time series prediction can
potentially serve to model longer-term transients in the
signal, which could lead to a better bias model when few
or no environmental correlates been measured.
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Time-Scales of Inter-Eruptive Volcano
Uplift Signals: Three Sisters Volcanic
Center, Oregon (United States)
Sara Rodríguez-Molina1, Pablo J. González2,3*, María Charco1, Ana M. Negredo1,4 and
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A classical inflation-eruption-deflation cycle of a volcano is useful to conceptualize the time-
evolving deformation of volcanic systems. Such a model predicts accelerated uplift during
pre-eruptive periods, followed by subsidence during the co-eruptive stage. Some
volcanoes show puzzling persistent uplift signals with minor or no other geophysical or
geochemical variations, which are difficult to interpret. Such temporal behaviors are usually
observed in large calderas (e.g., Yellowstone, Long Valley, Campi Flegrei, Rabaul), but less
commonly for stratovolcanoes. Volcano deformation needs to be better understood during
inter-eruptive stages, to assess its value as a tool for forecasting eruptions and to
understand the processes governing the unrest behavior. Here, we analyze inter-
eruptive uplift signals at Three Sisters, a complex stratovolcano in Oregon
(United States), which in recent decades shows persistent inter-eruptive uplift signals
without associated eruptive activity. Using a Bayesian inversion method, we re-assessed
the source characteristics (magmatic system geometry and location) and its uncertainties.
Furthermore, we evaluate the most recent evolution of the surface deformation signals
combining both GPS and InSAR data through a new non-subjective linear regularization
inversion procedure to estimate the 26 years-long time-series. Our results constrain the
onset of the Three Sisters volcano inflation to be between October 1998 and August 1999.
In the absence of new magmatic inputs, we estimate a continuous uplift signal, at
diminishing but detectable rates, to last for few decades. The observed uplift decay
observed at Three Sisters is consistent with a viscoelastic response of the crust, with
viscosity of ∼1018 Pa s around amagmatic source with a pressure change which increases
in finite time to a constant value. Finally, we compare Three Sisters volcano time series with
historical uplift at different volcanic systems. Proper modeling of scaled inflation time series
indicates a unique and well-defined exponential decay in temporal behavior. Such
evidence supports that this common temporal evolution of uplift rates could be a
potential indicator of a rather reduced set of physical processes behind inter-eruptive
uplift signals.

Keywords: inter-eruptive deformation, characteristic relaxation time, continuous GPS, interferometric synthetic
aperture radar, geodetic time series, Three Sisters volcano
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1 INTRODUCTION

Many volcanoes follow a common deformation pattern
consisting of uplift during inter-eruptive periods and
subsidence in co-eruptive stages, occasionally interrupted by
periods of quiescence or subsidence. Some other volcanoes do
not however exhibit this simple behavior (Biggs and Pritchard,
2017). Part of them show puzzling non-steady persistent uplift
signals that can last from days to years with minor or no other
geophysical or geochemical variations, which are difficult to
interpret. Therefore, uplift during inter-eruptive episodes
cannot be only interpreted as a pre-eruptive precursory
indicator. Such temporal behavior is usually observed in large
calderas (e.g., Yellowstone, Long Valley, Campi Flegrei, Rabaul),
but less commonly for stratovolcanoes.

An important goal in volcano eruption forecasting is to find
how the deformation time-series can distinguish among physical
processes, especially during inter-eruptive periods leading to a
pre-eruptive scenario. The latter are characterized by new
injections of magma/increment of volatiles, viscoelastic
relaxation of the media, or a mixing of different coeval
processes. Therefore, we must constrain what controls usually
long-lived or persistent uplift at volcanic centers. Le Mével et al.
(2015) show that the temporal evolution of deformation
surprisingly follows the same pattern for different volcanic
systems at specific analyzed periods (Yellowstone, Long Valley,
Laguna de Maule and Three Sisters). This is consistent with the
hypothesis that similar processes may be at work in similar
volcanoes. After this stage, these volcanoes presented an
eventual pause and/or change to subsidence (related to seismic
events and/or hydrothermal changes), but did not produce an
eruption.

Stratovolcano behavior contrasts with better documented
restless calderas (Acocella et al., 2015; Galetto et al., 2017).
Calderas usually show long repose periods between large
eruptions, but without quiescence (e.g., resurgent volcanism,
subsidence, multiple pulses of uplift) (Biggs and Pritchard,
2017). The Three Sisters complex volcano is a good example
of a system with long lasting monotonous inter-eruptive uplift
without associated eruptive activity or significant seismicity and
might correspond with different magmatic system behaviors.

In this work, we studied the decadal deformation time-series of
the Three Sisters volcano in order to understand the processes
governing its unrest behavior and to find out whether it is still
inflating. For this purpose, we needed to perform a consistent
analysis of the volume change time-series underlying the Three
Sisters uplift signal, which is a challenging task. We analyze
available continuous GPS data since 2001 and multiple
satellite interferometric data spanning the 1993–2020 period.
We proposed combining multiple geodetic data-sets using an
improved linear regularization method based on Truncated
Singular Value Decomposition (TSVD) (González et al., 2013)
to find an optimal regularization criteria for Three Sister data-set
combination. We obtained a seamless, continuous time series of
volume change (and its uncertainties) with which to rigorously
assess changes over the 26-years studied period. Finally, we
compared the Three Sisters temporal behavior to other well-

known examples of uplifting volcanoes to understand 1) whether
a variety or not of physical mechanism are at work behind
deformation and, if so, 2) if uplift time-scales are informative
of whether a certain volcano is on a late or early stage of the inter-
eruptive period.

2 BACKGROUND

The Three Sisters Volcanic Complex forms a N-S chain of
stratovolcanoes located at 44.1+N in the central Oregon
Cascades (Figure 1), an active volcanic arc produced by the
subduction of the Juan de Fuca and Gorda plates beneath the
North American plate. In addition to this convergent motion,
there is an oblique relative plate motion and northward push of
the Sierra Nevada-Great Basin microplate, favoring a N-S stress
orientation of the vents within the Oregon Cascades (Mccaffrey
et al., 2007). South Sisters is near the propagating tip of a crustal
melting anomaly westward across Oregon, progressing since the
mid-Miocene, going through the Cascades in the Quaternary
(Fierstein et al., 2011). All these circumstances influence on the
eruptive history of Three Sisters.

The Three Sister area includes shields, composite volcanoes
and cinder cones, with basaltic to rhyolitic volcanism. The three
eponymous volcanoes are progressively younger from north to
south and exhibit little family resemblance (Hildreth et al., 2012).
North Sister is a monotonously mafic edifice created 120 ka ago,
formed by long-lived effusive volcanism (Schmidt and Grunder,
2011); Middle Sister is an andesite-basalt-dacite cone constructed
between 48 ka and 14 ka and South Sister is a bimodal rhyolitic-
intermediate edifice built between 50 ka and 2 ka, both with
histories of explosive volcanism (Scott et al., 2001). However,
most of the volcanic activity is identified with mafic shields and
cones around the major composite volcanoes (Hildreth, 2007).
Geochemical anomalies suggest that episodes of intrusion may be
more frequent in the Three Sisters area than the age of eruptive
vents would involve (Evans et al., 2004). The most recent
eruptions were rhyolitic close to South Sisters, 2000 years ago
(Hildreth et al., 2012). There is a potential volcanic hazards threat
if future eruptions are similar to South Sister’s recent past. Tephra
fallout might accumulate to 1–2 cm thick in the Bend area, and
small-volume lahars and pyroclastic flows could pose a hazard to
nearby areas (Sherrod et al., 2004).

Before 2001, Three Sisters was considered a dormant volcano.
Nonetheless, ERS-1/2 satellite interferometric synthetic aperture
data (InSAR) analysis from 1992 to 2000 revealed active uplifting
located 6 km west of South Sister (Wicks, 2002). Geodetic
information for Three Sisters volcanic center has been
accumulating since this discovery. Nowadays, deformation is
continuously monitored through Leveling surveys since 2002,
Continuous GPS (CGPS), GPS campaign since 2001 and Semi
Permanent GPS (SPGPS) since 2009 (Dzurisin et al., 2009;
Dzurisin et al., 2017). The uplift at Three Sisters has been
aseismic except for a swarm of ∼300 small earthquakes (Mmax �
1.9) in March 2004 (Moran, 2004; Dzurisin et al., 2009). Previous
studies (Wicks, 2002; Dzurisin et al., 2006; Dzurisin et al., 2009;
Riddick and Schmidt, 2011) show evidence that observed uplift
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can be described by a spherical point source within an
homogeneous isotropic elastic half-space. Nevertheless,
deformation source geometry is non-unique and sources as
horizontal crack, vertical prolate spheroid, and sill-like have
been proposed at Three Sisters to fit geodetic data.
Interpretation of the temporal evolution of InSAR, leveling
and GPS data suggests the beginning of deformation in late
1997 or 1998, with a maximum uplifting rate of 3-5 cm/year
during 1998–2001. Microgravity data collected between 2002
and 2009 show no significant change in the mass flux across the
deforming area (Zurek et al., 2012). No studies have been
published about the uplift evolution over the last decade. The
uplift process was still on-going in January 2020, when this
manuscript was prepared.

3 GEODETIC DATA PROCESSING

We aim to extend the detailed uplift history at Three Sisters
already mentioned above to the present (2020) by using the
available CGPS and InSAR data-sets.

3.1 Continuous GPS
In May 2001, the U.S Geological Survey (USGS), in collaboration
with the U.S. Forest Service, installed a continuous GPS station
(HUSB) near the actively deforming area. It was strategically
installed at a location approximately ∼2 km northwest of the
detected uplift center. HUSB is part of the USGS Pacific
Northwest Network, so it is automatically processed to obtain
daily coordinates. No other regional and local continuous GPS
station falls within the deformation area. Hence, the HUSB time-

series is particularly important to understand the surface
deformation time-scales at Three Sisters.

Daily GPS data (coordinates and their uncertainties) are
analyzed by the USGS using GIPSY/OASIS II software.
Common-mode daily biases are estimated and removed using
QOCA (Dzurisin et al., 2009). Three Sisters is located near the
actively deforming Cascadia margin, so any geodetic data and
coordinates must consider the wider regional deformation
patterns. The motion of a background steady rigid-body with
a rotation pole situated near the eastern limit of Oregon must
therefore be removed from the time-series, and a correction for
predicted horizontal tectonic motion should be applied. Here, we
remove a linear trend of 4.29 mm/yr for the North component
and 1.50 mm/yr for the East component. This model prediction
represents an update and improved version of the horizontal
displacements at HUSB (Dzurisin et al., 2006; Dzurisin et al.,
2009; M. Lisowsky personal communication; Cascades Volcano
Observatory, 2017).

Figure 2 shows the resulting GPS displacements between July
2001 and January 2020. CGPS data reveals several gaps that
occurred due to snowfall in the winter seasons. Furthermore,
CGPS shows a gap and a posterior data offset during August
2017-August 2018. USGS data site reports some readjustment of
HUSB permanent station during this period and these could
explain some of the gaps and offsets in the time series.

3.2 Interferometric Synthetic Aperture
Radar (InSAR)
Our InSAR data set includes 85 interferometric pairs, with
temporal baselines from 35 to 2,894 days, from four satellite

FIGURE 1 | (A) Shaded relief map for the Cascade range, with locations of representative Cascade volcanoes. Three sisters volcano is highlighted with black
squares. (B) Regional map of Three Sisters volcano complex. The continuous GPS station HUSB, located at ∼5 km west of South Sister volcano, is shown as a purple
circle with black outline.
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missions (ERS, ENVISAT, ALOS-1 and Sentinel-1). ERS and
ENVISAT SAR images were acquired during summer and fall
between 1993 and 2010 (descending orbits, tracks 113 and 385;
ERS and ENVISAT look angles 20.2° and 19.8°, respectively). We
used 51 interferograms processed with the ROI PAC software
(Rosen et al., 2004) and unwrapped using SNAPHU (Chen and
Zebker, 2002), with perpendicular baselines up to 500 m, as
explained by Riddick and Schmidt (2011).

To improve the temporal coverage of InSAR observations,
we also analyzed data from the ALOS-1 and Sentinel-1 SAR
data missions. The mean line-of-sight velocity of ALOS-1 data
(path 219, ascending orbit, look angle 38.7°) was obtained
during January 2007- March 2011. Most individual
interferograms in the Cascades range show poor coherence
because of vegetation and seasonal snow coverage, hence we
also processed 4 Sentinel-1 summer-to-summer and summer-
to-late spring interferometric pairs, between September 2015
and May 2018, for descending (path 115, look angle 39.8°) and
ascending (path 137, look angle 38.8°) orbits. To provide
deformation data during the GPS gap mentioned above,
two Sentinel-1 interferometric pairs cover that period. We
used JPL InSAR Scientific Computing Environment (ISCE)
software (Rosen et al., 2012), processing Level-0 raw ERS-1
and ALOS-1, and SLC-level Sentinel-1 radar data. All
interferograms were corrected for orbital and topographic
contributions using precise orbit information and the SRTM
digital elevation model (Farr et al., 2007). We also reprocessed
a highly coherent interferometric pair for ERS-1 track 365
(descending orbit, corresponding to August 1997 - September
2000). This interferogram was essential to further re-evaluate
the magmatic source location and constrain its uncertainties.

L-band data (wavelength ∼24 cm) from ALOS-1 were very
useful to avoid decorrelation owing to the vegetation
encompassing the Three Sisters area. Although the LOS
deformation rate from 2006 to 2010 is small (about 6–8 mm/yr)

FIGURE 2 | North (UNorth), east (UEast) and vertical (Uup) components of the continuous GPS displacements at HUSB.

FIGURE 3 | The linear surface deformation LOS velocity (mm/year)
obtained for the ascending Path 219 ALOS-1, using the small baselines
method implemented in StaMPS (Hooper et al., 2012) for the period January
2007 to March 2011. Positive LOS velocity values corresponds to
displacements toward the satellite, i. e., uplifting. Black triangles and star
represent the Three Sister complex volcano system and the approximate
center of the uplifting area. StaMPS LOS velocity results were noisy and we
post-processed to reduce undesirable oscillations of non-volcanic origin. We
applied a band pass filter to retain spatial deformation signals between 10 and
0.8 km using a median filter (GMT blockmedian). Results indicate a 6 km
circular uplift pattern west of South Sister with a mean LOS velocity of
approximately 5–10 mm/year, consistent with a value obtained for the
Husband CGPS station during the same period (5.21 mm/year), shown as
circle with a black outline.
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FIGURE 4 |Wrapped InSAR data andmodel results for Track 385 of the ERS satellite. (A, D, G) Line-of-sight (LOS) deformation observed in a nearly 3 years period
from August 24, 1997 and September 17, 2000, considering only pixels with coherence >0.2. Green triangles represent the Three Sister complex volcano system. (B, E,
H) Bayesian model and horizontal location for the median a posteriori probability solution (blue star) for a predicted Mogi, sill-like and prolate spheroid source,
respectively. (C, F, I) Residual maps for Mogi, sill-like and prolate spheroid source. The model parameters results are presented in Figure 5 and Tables 1, 2.
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making it difficult for a single L-band interferogram to detect the
deformation signal (Riddick and Schmidt, 2011), a cumulative LOS
deformation time-series can detect such changes in rate. The
corresponding time-series was processed by StaMPS Version
3.3.b1 to study the surface deformation, applying the Small
Baselines method for 30 interferometric pairs (Hooper et al.,
2012; Bekaert et al., 2017). Small Baselines method minimizes
decorrelation in natural terrains. So, it is an appropriate method for
the Three Sisters area, which lacks man-made structures and hence
offers few dominant persistent scatterers.

Due to the small deformation rate (5.8 mm/year for the period
June 2015 - January 2020) and low signal-noise ratio in the
Cascades, geodetic data must be analyzed carefully (Poland et al.,
2017). Following this recommendation, we consider a 1 cm
standard deviation for neighboring pixels in all interferograms.
Only four good quality interferometric pairs were used for the
Sentinel-1 observation period. Adding more interferograms did
not significantly improve the analysis of the volume change time-
series. Moreover, the analysis of a 6-years long Sentinel-1 dataset
in Turkey indicates that surface displacement rate uncertainties
are mostly dominated by length of observation, rather than larger
numbers of available interferograms (Weiss et al., 2020). Hence,
we consider Sentinel-1 summer-to-summer and summer-to-late
spring InSAR data to avoid decorrelation due to snow coverage,
and to fill a noticeable GPS time-series gap. However, the
deformation rates could be reexamined in future, using longer
Sentinel-1 datasets.

Figure 3 represents the mean LOS velocity (mm/year) for the
ascending path 219 ALOS-1 from January 2007 toMarch 2011. Due
to the high signal-to-noise ratio, the StaMPS LOS velocity results
were noisy and we post-processed them to reduce undesirable
oscillations of non-volcanic origin. We applied a band pass filter
to retain spatial deformation signals between 10 and 0.8 km, using a
median filter (GMT blockmedian). Although close to the signal-to-
noise ratio value, results indicate a 6 km circular uplift patternwest of
South Sister with a mean LOS velocity of ∼5–10mm/year. This
mean velocity is consistent with a value obtained for the HUSB
CGPS station during the same period (5.2 mm/year).

4 METHODS

Here, we introduce a mathematically rigorous strategy for the
joint inversion of time-dependent InSAR (different look angles
and sensors, high spatial resolution) and continuous GPS (daily
sampling) data to achieve a complete timeline of volcanic activity
and quantify a single time series of volume flux rates. The strategy
captures the benefits of each system avoiding the time evolution
determination on a point-by-point basis. It is based on the two-
step approach proposed by González et al. (2013) that produces
time series of volume from sets of different look angles and
satellite sensors once an active source is determined for an
inflation period. In this section, we provide a description of
the González et al. (2013) algorithm and extent it 1) to
include continuous GPS data and therefore to combine
different components and/or look vectors using a unique
source model and 2) to afford a defined method of truncation

of the TSVD technique used to regularize the inverse problem,
with the goal of finding the time evolution of volume and
therefore to improve the accuracy on the estimation of volume
time series. First, we show how the active source location
(horizontal position and depth) and geometry is determined
using a Bayesian inversion approach. Subsequently, we solve
for temporal evolution of volume.

4.1 Source Characterization
First of all, we infer the active magmatic source through a Bayesian
inversion, using InSAR data spanning the period of maximum
displacement. The horizontal location, depth and geometry of the
inflation source at Three Sisters were computed using the
MATLAB®-based software package GBIS (Geodetic Bayesian
Inversion Software) (Bagnardi and Hooper, 2018), which
estimates source parameters through a Markov chain Monte
Carlo method and uses, among others, analytical forward models
from dMODELS software package (Battaglia et al., 2013). It obtains
the posterior probability distributions (PDFs) for all model
parameters by taking into account uncertainties in the data (e.g.,
data errors). To achieve this, considering the pattern of surface
deformation, we employ simple elastic models such as point source
(Mogi, 1958), prolate spheroid (Yang et al., 1988) and sill-like (Fialko
et al., 2001) models. An elastic, homogeneous and isotropic half-
space is assumed in all the approaches with Poisson’s ratio 0.25. We
assumed, as previous studies (Dzurisin et al., 2006, 2009; Riddick and
Schmidt, 2011), a stationary source and we used an interferogram
spanning August 1997 - September 2000 to look for source
parameters. This interferogram fulfills two important conditions
to determine the best-fitting static displacements: 1) it spans the
shortest time during the period of maximum deformation; 2) it
shows acceptable signal-to-noise ratio. InSAR spatially correlated
error (causedmainly by the “wet” tropospheric delay) is estimated by
modeling experimental semivariograms in deformation-free regions
(Bagnardi and Hooper, 2018). InSAR data are subsampled with an
adaptative quadtree method (Decriem et al., 2010) to reduce the
computational cost of the Bayesian inversion, particularly for sill-like
and prolate spheroid sources. The inversion computes 2×106
iterations for spherical point source, 5×106 iterations for sill-like
source and 8×106 iterations for prolate spheroid, which stabilizes the
inversion procedure.

4.2 Temporal Evolution of the Source
Volume Changes
Once the magmatic source is fixed, we perform the quasi-
dynamic time-dependent model using a linear inversion
scheme to look for the volume changes at each interferogram’s
period and the cumulative volume changes since the first GPS
observation. Both volume changes at each interferogram and
cumulative volume changes from the GPS data are used to solve
for the time evolution of volume using TSVD.

4.2.1 First Step: Piecewise Volume Changes Over
Temporal Data Periods
Once the location and geometry of the inflation source are fixed,
we determine the volume changes over the corresponding time
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intervals (increments of volume changes, ΔV) for both, InSAR
and CGPS data sets, which are assumed to be uncorrelated. In this
way, observations from several interferograms and GPS sites can
be combined to estimate increments of volume changes assuming
a unique source model. Each volume change, ΔVij, records 1) the
incremental volume change between two acquisition dates, ti and
tj from an interferogram or 2) the cumulative increment of
volume since the first observation, i.e., tj � t0, being t0 the
starting date of CGPS.

A linear inversion scheme using Weighted Least Squares
(WLS, Menke, 1989) is applied. The inversion is constrained
by 55 interferometric pairs (ERS, ENVISAT, Sentinel-1), one
ALOS-1 interferogram (cumulative LOS deformation time-
series) and a 3-component GPS time series. The forward
problem is defined by d � Gm, where d is the data vector
(InSAR or GPS), m is the model parameter (ΔV) vector, and
G is the Green’s function matrix representing the impulse
response for the specific elastic source, projected into the three
components of GPS or the satellite line-of-sight. Therefore, a total
of 5,064 independent linear inversions were performed to find the
increments of volume changes, ΔVij, given the set of
interferograms and 5,008 cumulative GPS displacements.

The least square estimator of each inversion, m̂, is given by:

m̂ � [GTC−1
d G]− 1GTC−1

d d, (1)

with the cofactor matrix Cm̂ � [GTC−1
d G]− 1. We considered a

diagonal variance-covariance matrix, Cd, assuming that all data
are independent, which significantly reduces the computation
time of the inversions. Hence, we ignore the possible spatial and
temporal correlation noise in InSAR data (e.g., pixel correlation
due to atmospheric artifacts, topography structures, repeated
acquisitions) and between GPS components (Lohman and
Simons, 2005; Biggs et al., 2010).

4.2.2 Second Step: Volume Changes Time-series
Wewant to solve for the temporal evolution of volume change for
each observed epoch tk from ΔVij obtained on first step
considering both InSAR and CGPS data. Instead of volume
change itself, the rate of volume changes is inverted as a
function of time by applying the Short Baseline Subset
Approach (SBAS, Berardino et al., 2002). This prevents the
presence of large discontinuities in the final solution.

Let ΔV be the data vector of volume changes over the
corresponding time intervals (N × 1), and _V the unknown
vector of volume change rates (M × 1) between adjacent
epochs, tj where the overdot means differentiation over time.
Then,

_V �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

_v1 � v1
t1 − t0
«

_vM � vM − vM−1
tM − tM−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

The usual method of converting the observations ΔV on volume
change rates is:

B _V � ΔV, (3)

where B is the design matrix (N × M). To determine the
components of B, we define a (M × 1) vector E, containing
the single epochs tj present in all time intervals and sorted in
chronological order, for j � 1, ...,M; and a (N × 2) vector F, whose
columns are the slave (tslavei) and master (tmasteri) epochs of each i
time interval, for i � 1, ...,N. Therefore, the (i, j) component of the
design matrix is Bij � (tj+1 − tj) for tslavei ≤ tj < tmasteri , and zero
elsewhere. In the case of cumulative ΔV (i.e., continuous GPS), B
presents lower triangular matrix blocks. For example, if volume
changes are obtained over different time intervals, i.e., if tAB, tBC,
and tAC (from InSAR data), and tCD, tCE, tCF, (from CGPS data)
are ΔvAB, ΔvBC , ΔvAC , ΔvCD, ΔvCE and ΔvCF , the design matrix is
given by:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(tB − tA) 0 0 0 0
0 (tC − tB) 0 0 0

(tB − tA) (tC − tB) 0 0 0
0 0 (tD − tC) 0 0
0 0 (tD − tC) (tE − tD) 0
0 0 (tD − tC) (tE − tD) (tF − tE)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

_vAB
_vBC
_vCD
_vDE
_vEF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔvAB
ΔvBC
ΔvAC
ΔvCD
ΔvCE
ΔvCF

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

To illustrate the simple example in Eq. 4, let all dates, tA, tB, tC, tD,
tE, and tF be equally spaced at time intervals of 1 year, i.e., tAB �
1 year and so on, and ΔV � [2, 1, 3, 1, 2, 3] ×106 m3. In this case,
standard least squares can be applied, given
_V � [2, 1, 1, 1, 1] × 106 m3/year. The cumulative volume times
series is then V � [2, 3, 4, 5, 6] × 106 m3, meaning a linear
inflation rate of 2 × 106 m3/year in time interval tAB and a
posterior linear inflation rate of 1 × 106 m3/year.

However, the set of ΔVij forms, in general, an unconnected set of
observations with at least one time step not directly related to data,
making Eq. 4 an ill-posed problem without solution even in the least
square sense. Thus, given P a definite positive matrix, a least-square
solution, _̂V � (BTPB)− 1BTΔV, is not possible sinceEq. 4 constitutes
an ill-posed unstable model, with one or more eigenvalues of the
normal matrix BTPB close to zero. This fact is responsible for large
uncertainty on the estimated volume change rates, _̂V. Alternatives
to the least square method can be proposed for an improved estimate
of _̂V: Tikhonov regularization (Tikhonov and Arsenin, 1977),
Bayesian and stochastic inferences (Backus, 1988), Truncated
Singular Value Decomposition (TSVD) or Principal Components
(Lawless and Wang, 1976; Hansen, 1990; Hansen, 1992). Here, we
consider TSVD as proposed by González et al. (2013).

4.2.3 Regularized Linear Joint Inversion
A key difficulty in applying the TSVD method is how to set up
proper criteria to truncate eigenvalues due to the lack of a
theoretically solid foundation to discard small nonzero
eigenvalues. We developed a strategy to circumvent this
difficulty based on Picard condition and L-curve methodology.
In such way, we are assured a good balance, filtering out enough
noise without losing too much information in the computed
solution (Hansen and O’Leary, 1993). Furthermore, we included
some estimations of the error of data (ΔV) to establish some
uncertainty in the _̂V estimator. To estimate the uncertainties, the
Weighted Generalized Inverse method (Menke, 1989) permitted
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the use of the “a priori” information from the data CΔV (and
optional model, C _V � ATPA) covariance matrix. Such matrices
can be decomposed as:

CΔV � [DDT]− 1
C _V � [SST]− 1 (5)

where the D (N × N) and S (M × M) matrices are determined
from the eigenvalue problem of each covariance matrix. In our
case, no model covariance information is used, so C _V � I.CΔV is
obtained by error data propagation through Δ̂V estimator. The
utility ofD and S is the introduction of a transformed coordinate
system where data (and optional model) parameters each have
uncorrelated errors and unit variance. Therefore, ΔVnew � DΔV,
_Vnew � S _V and Bnew � DBS−1 give the transformation of data,
model parameters and forward operator in the new system of
coordinates. TSVD is applied to Bnew with a specific
regularization method to find the Principal Components of the
observation set (ΔV). Then, the problem is back to the original
coordinates to achieve the solution and finally, the volume change
time-series is obtained by integrating the volume change rate in
time:

V(t) � ∑


_Vδt (6)

4.2.4 Regularization: Techniques Used for Truncation
of Small Eigenvalues
Some workable criteria for truncation in interdisciplinary
problems include L-curve, Discrete Picard condition and
Generalized cross validation (GCV) (Hansen, 1992; Hansen,
2007; Hansen and O’Leary, 1993). Methods like GCV
sometimes fail to find the appropriate regularization parameter
(flat local minima), whereas the L-curve gives a robust estimation
(Hansen and O’Leary, 1993) and the appropriate smoothing
solution, which is very attractive from a mathematical point of
view. We thus designed a strategy based on a L-curve to set up
proper criteria to truncate the eigenvalues.

First, we considered the Discrete Picard condition to explain
the instability of the transformed linear inverse problem (Eq. 3)
and disregarded the smallest singular values (Hossainali et al.,
2010; Hansen, 1990; Hansen, 2007):

���� _V − _VT1

����2≤ P
1
2 max
1≤ i≤M−P{

∣∣∣∣uT
i ΔVi

∣∣∣∣
si

} (7)

where
���� _V − _VT1

����2 is the regularization error, _V and _VT1 being the
exact and truncated SVD solutions; P is the regularization
parameter value, si are the singular values, and

∣∣∣∣uTi ΔVi

∣∣∣∣ are
called Fourier coefficients (ΔVi are data and ui the
corresponding eigenvectors of the data space). The Discrete
Piccard condition is satisfied if, for all singular values larger
than P, the corresponding Fourier coefficients decay faster on
average than si.

The L-curve method is applied to _VT1 resulting in turn from
applying (Eq. 7) through a log-log plot of the norm of a
regularized solution

���� _VT2

����2 vs. the norm of the corresponding

residual norm
����B _VT2 − ΔV

����2. As recommended by Hansen
(1992) we fit the log-log plot of discrete points with some
curves, choosing a 2D spline curve and then search for the
truncation parameter by computing the L-corner (maximum
curvature point). This corner of the spline curve is
approximated to the closest discrete point. The L-corner is
located exactly where the solution changes in nature from
being dominated by regularization errors to being dominated
by the residual size. This regularization filters out the
contribution of small singular values and noisy data.

5 RESULTS

5.1 Re-Evaluation of Source Location and
Geometry
We performed the Bayesian inversion for point source, prolate
spheroid and sill-like sources, with similar results. The results are
represented in Figures 4, 5 and Tables 1, 2 report the prior
information and the PDFs with the 95% credible intervals for all
model parameters, respectively. The inversion reveals that the
surface displacements can be explained by a spherical point
source with depth (4500–6000)m and ΔV (7–13)×106 m3, by a
sill-like source with depth (5600–7200)m, radius (220–400)m and
dimensionless excess pressure 0.05–0.30 and by a prolate
spheroid source with depth (5300–7400)m, major semi-axis
(240–720)m, aspect ratio (0.22–0.37)m, dimensionless excess
pressure 0.38–8.61, strike angle (49–102)° and plunge (78–85)°.
The descending ERS Track 385 wrapped interferogram reveals a
near axisymmetric deformation pattern, with a maximum LOS
surface displacement of ∼5 cm recorded at the center of the
uplifting pattern (Figures 4A, D and G). Figures 4B, E and H
present the predicted spherical point, sill-like and prolate
spheroid forward models, using the median value of the PDF
of the model parameters. As expected from the deformation
pattern, spherical point and sill-like models are very similar,
suggesting that the geometry of the source is far from unique. The
extra modeling parameters of the prolate spheroid do not
improve the misfit. Therefore, we favor the simplest spherical
point source model over a sill-like and prolate spheroid source, to
fit deformation pattern displayed in Figures 4A, D and G. Blue
stars represent the horizontal location of spherical point, sill-like
and prolate spheroid estimated sources (Table 2). Figures 4C, F
and I show the residuals between observed LOS displacement,
and spherical point, sill-like and prolate spheroid model
predicted displacements. The residual is larger close to the
Three Sisters complex volcano (green triangles), due to orbital
and topographic contributions, and also in the western half of the
uplift pattern, where data are less dense.

Figure 5 displays the histograms of marginal PDF for the four
spherical point, five sill-like and eight prolate spheroid source
parameters. Black solid lines show the optimal values for the
corresponding model parameters. For the sill-like source, the
radius and dimensionless excess pressure PDFs exhibit bi-
modality (slightly unstable inversion result). For the prolate
spheroid source, the aspect ratio between semi-axes and the
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FIGURE 5 | Posterior probability distributions for the Mogi, sill-like and prolate spheroid source models. Black solid lines show the optimal value for the
corresponding model parameter (Tables 1, 2).
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excess pressure PDFs display also a bi-modal shape. The major
semi-axis PDF exhibits multi-modality.

5.2 Source Inflation Time-Series
We performed a CGPS and InSAR joint inversion to obtain the
time-line of volume changes, considering the best fitting source
location for the point source geometry to better characterize the
time-dependent inflation of the magma source at Three Sisters.

To apply our two-step-approach (section 3.2), we use the
median, and 5% and 95% percentile values of the PDF of depth
estimated by the Bayesian inversion. The corresponding values
are: dmedian � 5000 m, d5% � 4500 m and d95% � 6000 m. The
volume change time-series is determined using InSAR data from
four satellite missions (ERS, ENVISAT, ALOS-1 and Sentinel-1),
on five different tracks and look angles, and CGPS data
from HUSB.

First, we obtain the increments of each volume change, ΔVi,
relating the Green’s functions (representing the source impulse
for a buried point source) to the LOS deformation data observed
along each satellite track and the three component CGPS data.
Figures 6, 7 respectively show results regarding estimation of the
median value of source depth (dmedian � 5000 m) for InSAR and
CGPS data. The cumulative increments of volume changes
detected at HUSB show gaps due to ice and snow
accumulation during winter. By means of the daily GPS
measurements, the corresponding increments of volume
change, ΔVi, are more uniform for the CGPS data sets
(Figure 7), but more variable for the individual SAR data sets
(Figure 6).

Finally, we applied the Picard Plot condition suitable to
understand the conditions of the ill-posed problem (Eq. 3).
Figure 8A shows how si only decays faster than the Fourier
coefficients (

∣∣∣∣uTi ΔVi

∣∣∣∣) for the smallest nonzero singular values.
Hence, the problem can be considered stable, discarding the last
10% of the singular values. Due to the stability of the problem, the

Picard Plot provides no clues about the appropriate level of
truncation (Eq. 7). Therefore, we use L-curve to determine the
truncation level. L-curve criterion is fulfilled when L-corner �
1198, i.e., when only the first 24.1% nonzero singular values are
used in the inversion (Figure 8B).

The analysis and results of the final inflation time-series are
shown in Figures 9 and 10, and Tables 3 and 4. The inflation
time-series associated with the median estimation of the source
depth suggests a maximum volume change rate of ∼ 1.60 ×
106 m3/yr during 1999–2001 and a subsequent rate as much as
∼ 0.75 × 106 m3/yr for the period 2015- January 2020. Data since

FIGURE 6 | Increments of volume change obtained for all interferograms (ERS, ENVISAT, ALOS-1 and SENTINEL-1), according with the median value for the
source depth.

TABLE 1 | Prior information for the Elastic half-space Spherical Point Pressure
(Mogi, 1958), Penny-shaped sill-like (Fialko et al., 2001) and Spheroid (Yang
et al., 1988) deformation sources.

Lower Upper Step Start

Mogi
Xcenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Ycenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Depth (m) 5 × 102 2.00 × 104 50 1.00 × 103

ΔV (×106m3) 0.1 1.00 × 104 1.00 × 10−3 0.1
Sill
Xcenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Ycenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Depth (m) 5 × 102 2.00 × 104 50 1.00 × 103

Radius (m) 100 4,000 50 100
ΔP/μ 1 × 10−5 10 1 × 10−6 1 × 10−2

Spheroid
Xcenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Ycenter (m) −1.00 × 103 1.50 × 104 25 2.00 × 103

Depth (m) 5 × 102 2.00 × 104 50 1.00 × 103

Major semi axis (m) 100 4,000 50 100
Aspect ratio 0.2 0.99 0.01 0.5
ΔP/μ 1 × 10−5 10 1 × 10−6 1 × 10−2

Strike (°) 1 359 1 270
Plunge (°) 0 90 1 45

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 57758810

Rodríguez-Molina et al. Inter-Eruptive Volcano Uplift Time-Scales

132

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


2018 show a subtle, but significant change in the trend, instead of
following asymptotic behavior.

6 DISCUSSION

6.1 Source Characterization
Studies at Three Sisters using InSAR interferometric pairs and
stacks (Wicks, 2002; Riddick and Schmidt, 2011), GPS (campaign
and continuous) and leveling (Dzurisin et al., 2009) assessed

various source geometries such as spherical point, sill-like or
crack and ellipsoidal. These different sources can all fit the data in
a satisfactory way. Our results are consistent with previous
findings (Table 3). However, volume change rates and depths
vary slightly, possibly due to the fact that: 1) there may be a poorly
resolved deeper magma source, 2) inversions were limited to
purely kinematic models, 3) the source not being a stationary,
pressurized cavity in an isotropic elastic half-space, thus
producing bias due to spatial or temporal considerations, 4)
diverse inversion techniques and related possible mathematical
artifacts, 5) different types of data sets and 6) ambiguity of source
geometries. We assumed a simple, stable, purely kinematic model
as a valid approach, following the results of Dzurisin et al. (2009)
and Riddick and Schmidt (2011), for estimating volume time
series. Now, we focus on discussing the implications of 3), 4), 5),
and 6).

We revisited the assumption of location stationarity of the
inflation source, with focus on the most recent periods. Riddick
and Schmidt (2011) already showed that the temporal evolution
of the uplift signal can be represented by a stationary volcanic
source geometry and location with a decreasing inflation rate at
least from 1992 to 2010. The extent of deformation pattern
remains constant over 1992–2010 time period providing a
source depth range compatible with the uncertainties of
inversion models, as it is expected given that the extent of
deformation pattern mainly depend on the source depth and
strength. The inversion for source parameters using Sentinel-1
interferograms (2014–2018) reveals very large uncertainties on
the parameters. Such results could be due to the interferograms’
low signal-to-noise ratio caused by slower uplift rates during this
period. Nevertheless, the best fitting spherical sources are not able
to predict the observed displacements in the HUSB CGPS
displacement time series. Moreover, the lack of substantial
changes in the trends of each component of the HUSB CGPS
time series indicates that the source might not have changed

FIGURE 7 | Cumulative increments of volume changes for the CGPS station, Husband. The figure shows the results according with the median value for the
source depth.

TABLE 2 | Bayesian inversion results, with the median a posterior probability
solution and the 95% credible intervals, for the Elastic half-space Spherical
Point Pressure (Mogi, 1958), Penny-shaped sill-like (Fialko et al., 2001) and
Spheroid (Yang et al., 1988) deformation sources.

median 5% 95%

Mogi
Lon (°) −121.8382 −121.8418 −121.8350
Lat (°) 44.1055 44.1030 44.1082
Depth (m) 5,000 4,500 6,000
ΔV (×106m3) 8.99 6.98 12.66
Sill
Lon (°) −121.8368 −121.8398 −121.8339
Lat (°) 44.1018 44.0997 44.1041
Depth (m) 6,300 5,600 7,200
Radius (m) 250 220 400
ΔP/μ 0.23 0.05 0.30
Spheroid
Lon (°) −121.8707 −121.8791 −121.8616
Lat (°) 44.1187 44.1130 44.1228
Depth (m) 6,100 5,300 7,400
Major semi-axis (m) 400 240 720
Aspect ratio 0.28 0.22 0.37
ΔP/μ 1.85 0.38 8.61
Strike (°) 68 49 102
Plunge (°) 82 78 85

Geo-reference point is [−121.9, 44.03]°.
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position. Therefore, we assumed the source has not changed
significantly either in shape nor in location since the onset of
deformation.

A range of common techniques to estimate source location has
been used, like forward modeling, grid search by iteratively fixing
of one parameter, arithmetic mean to obtain range values, or grid
search. However, the Bayesian approach presents important
advantages: 1) robust inversion for a single or more InSAR
interferograms with an acceptable signal-to noise-ratio and/or
GPS data, 2) rapid simultaneous inversion of all model
parameters; 3) use of data uncertainty and prior model
information; and 4) efficient sampling of posterior PDFs to
estimate optimal model parameters and the associated range
of error. Bearing in mind such advantages, to obtain a robust
estimate of source geometry and location we only need geodetic
data with high spatial coverage, spanning the most appropriate
period (shortest time, high deformation). For this, we use the

period undergoing maximum deformation, displaying as much as
∼5 cm of line-of-sight deformation (Figure 4). Selection of the
ERS-1 track 365 (descending orbit) interferometric pair spanning
August 1997- September 2000 satisfies both criteria. To reduce
the signal-to-noise ratio, the interferogram is filtered for a pixel
coherence threshold of 0.2. Other ERS-1 InSAR data were also
processed for similar periods of time, but not used due to the low
signal-to-noise ratio. No GPS data were available until 2001 and
cannot be used to study the maximum uplift rate period.

We favor the simplest source, a spherical point source, to infer
volume time series at Three Sisters. Our inversion results for
spherical, prolate spheroid and a sill-like sources showed
quantitatively similar results, in terms of data misfit and
surface displacement pattern. We noted that there is slightly
elongated pattern of the InSAR data in the North-South direction
(Figure 4). This pattern cannot be perfectly reproduced with an
axisymmetric source geometry. The elongation could be also be

FIGURE 8 | (A) Discrete Picard Plot condition, suited for the analysis of ill-posed problems. The solution is stable when the Fourier coefficients,
∣∣∣∣uTi ΔVi

∣∣∣∣, on average
decay to zero faster than the reciprocal singular values, si. In this case, the problem can be consider stable, discarding the last 10% singular values. (B) L-curve showing
the trade-off between minimizing the residual norm (

����B _VT2 − ΔV
����2) and minimizing the regularized solution size (

∣∣∣∣∣
∣∣∣∣∣ _VT2

∣∣∣∣∣
∣∣∣∣∣2). The L-corner (represented in red) is located

exactly where the solution changes in nature from oversmoothing (i. e, dominated by regularization errors) to being dominated by residual size.
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caused by the topography of Three Sisters area at the east side of
the deforming area or tropospheric delays in the interferometric
data. To robustly distinguish between different source geometries,
we must have full three dimensional surface displacements
(Dieterich and Decker, 1975). Therefore, in our case, the
almost symmetric shape of the 2D deformation pattern
implies that source geometry remained far from being
uniquely resolved. Nevertheless, to accept more complex
geometries than spherical, we should have obtained
significantly lower data misfit values. Furthermore, the
spheroid modeling residuals are not fully consistent with the
observed pattern in the western area of deformation (Figures 4I).
In this case, we also consider that the topography could have a
minor effect because the highest topographic relief is
concentrated on the far field area of deformation signal.
Therefore, we assume that the noted asymmetry in the InSAR
data should not affect the overall interpretation of the time series
of volume changes.

The differences between inversion methods and data selection
might explain that our optimal inversion results suggest a slightly
shallower source with a corresponding smaller increment of
volume change. Despite that, considering that the models fit
the data well and yield similar misfit values, we conclude that it is

reasonable to assume the spherical point source as the simplest
kinematic model that explains the signal. Furthermore, the values
for depth and increments of volume change lie within our 95%
credible intervals (Table 3). Wicks (2002) processed three
interferograms, obtaining an increment of volume change of
ΔV � 23 × 106 m3 and depth of 6500 m for the one with the
largest apparent signal-to-noise ratio. Ultimately, a deeper source
will trade-off with a greater ΔV , to fit the same surface
deformation. Although the time acquisition of the best
interferogram of Wicks (2002) spans only 1 year more than
our InSAR data interferometric pair, the important difference
between our ΔVrate � ∼ 3.00 × 106 m3/yr and their ΔVrate �
∼ 5.75 × 106 m3/yr is mainly due to their depth estimation.
Our InSAR interferogram matches one of the other two by
Wicks (2002). For that interferogram, their model gives depths
∼1 km shallower, being closer to our depth estimation.

6.2 Time Series of Volume Changes:
Regularization Using the Truncated SVD
To assess the effect of the regularization, we compared the
increments of volume change (ΔVi, Eq. 1) and the
corresponding simulated observations ( ΔVireconstruction �

FIGURE 9 | ΔVi data (increment of volume change obtained from InSAR and CGPS deformation data, Eq. 1), vs. Simulated observations (ΔVireconstruction � V(i+1) − Vi ,
Eq. 6). (A, B) Inversion solutions with regularization, using only the first 0.2 and 2% nonzero singular values, respectively (oversmoothing solution). (C) Regularized
solution using the L-curve criteria corresponding with 24.1% nonzero singular values (appropriate smoothing solution). (D) No regularization case (undersmoothing
solution).

TABLE 3 | Source location comparison for Three Sisters (assuming a Mogi source) from Previous Studies and the bayesian inversion carried out in this Study.

Inversion Depth (m) ΔV (106 m3) ΔVrate (106 m3/yr)

1996–2000, InSARa 6500 ± 400 23.00 ± 3.00 ∼5.75 ± 0.75
2001–2008, Geodetic ground base datab 5,800 22.20 ∼3.14
1993–2008, InSARc 5200 ± 100 57.00 [+1.95, −3.60] ∼3.80 [+0.13, −0.24]
1997–2000, InSAR [this study]d 5000 [+1000, −500] 8.99 [+3.67, −2.01] ∼3.00 [+1.22, −0.67]
aERS Descending (08/1996–10/2000) (Wicks, 2002).
bCampaign GPS, CGPS and Leveling (05/2001-late 2008) (Dzurisin et al., 2009).
cERS Track 385 Descending (08/1993-08/2008) (Riddick and Schmidt, 2011).
dERS Track 385 Descending (08/1997-09/2000).
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V(i+1)inversion − Viinversion from the results of Eq. 6) for different
levels of regularization. Figures 9A, B show the solution for
an extreme regularization, using only the first 0.2% and 2%
nonzero singular values (oversmoothing solutions). For the
0.2% case, the values of ΔVi associated with the InSAR data
display a wide dispersion, and the ΔVi associated with GPS
data acquire discrete values, i.e., the same ΔVi value is
obtained for many different time intervals. Figure 9D
represents the case of non-regularization (less filtering,
maximum solution size and minimum misfit). The residual
in Figure 9D is minimized because the solution reproduces
even the seasonal perturbations of the GPS data
(undersmoothing solution). There is a seasonal
deformation of the crust associated with the surface load
of the snow cover. It is possible that the magma reservoir’s
internal pressure also fluctuates seasonally in response to this
effect. However, from CGPS data alone we cannot resolve the
cause of these fluctuations. Therefore, a smoother solution is
preferred to depict the long-term deformation time series.
This is given by the combination of Picard condition and
L-curve criteria; it corresponds to the appropriate smoothing
solution, i.e, 24.1% nonzero singular values (Figure 9C).

6.3 Time-Scales of Inter-Eruptive Uplift
Signals: Three Sisters and Other Volcanoes
The continuous and extended regularized time-series of volume
change allows us to study the inflation process in detail. Riddick and
Schmidt (2011) proposed a piece-wise linear parametrization with
two changes in rate provides a good fit to uplift rates till 2009
explaining two different inflation processes beginning at 1998 and
2004 at Three Sisters. Thismodel was supported by the detection of a
seismic swarm in 2004. Our denser, longer time-series clearly shows
a smooth and continuous function, which we interpret as a fast
inflation followed by relaxation of the crust (Figure 10). We are
specifically interested on the interval of decaying rates.
Consequently, the time-series is divided into two main
intervals separating increasing and decaying behavior of
volume rates. An exponential function can reasonably
reproduce the relaxation process. Therefore, we propose a
piece-wise parametric of the form:

V(t) � { d, t < t0
a − bexp − (c · (t − t0)), t ≥ t0

(8)

where a, b and d are constants, 1/c � ϵ is the characteristic relaxation
time constant, here after named e-folding parameter, and t0 is the
start of the exponential trend. We solved the parameters of this
model using a non-linear least-square fit. To minimize the influence
of outliers, we used regression method: the Least Absolute Residuals
(LAR) and Bisquare weights methods, considering also the data
uncertainties (weighted). Four methods (Bisquare, Bisquare-
Weighted, LAR, LAR-Weighted) show very similar fit, LAR
performing the best (Figure 10; Table 4). Time-series from the
median, and 5% and 95% percentiles of the PDF distribution for
depth, along with the variance of the curve fitting, permit

FIGURE 10 | Volume change time series for a Mogi source (constrained by both the GPS and InSAR data), at different depth estimations (Table 1): median value
(light green), 95 and 5% percentile values (yellow and dark green). Cian solid lines represent predicted curves through Non Linear Least Squares (NLS), Least Absolute
Residuals (LAR) method, following the e-folding characteristic shape function of Eq. 8. Stars show the location of the beginning of the exponential function: for data
associated with median depth value estimation (light green), 95 and 5% percentile values (yellow and dark green).

TABLE 4 | e-folding parameters obtained by NonLinear Least Squares, using the
Least Absolute Residual method (LAR).

Value c (yr−1) 1/c(yr) t0 (yr) R–square RMSE

Optimal 0.1055 9.48 1999.09 0.989 0.60 × 106

Lower bound 0.1042 9.60 1998.75 0.998 0.18 × 106

Upper bound 0.1074 9.31 1999.59 0.988 0.87 × 106

Upper and lower bounds for the curve fitting parameters, encompassing the results for
the volume changes series related to the 5%, median and 95% percentile values of
source depth estimate.
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constraining the lower and upper limits of e-folding and t0
parameters.

Our time-series spans 26 years and presents a characteristic
time constant of 9.48 [+0.12,−0.17] years. This new result
updates the value of 5.3 years obtained by Dzurisin et al.
(2009) from an 8-years time-series of GPS displacements from
2001 to late 2008. Riddick and Schmidt (2011) hyphotesized that
one injection of magma started between June 1996 and July 1997,
given StaMPS results for T385 ERS. The updated volume time-
series presented in this study shows a clear exponential decay
trend. We estimate a start date for the exponential trend between
October 1998 and August 1999 (Table 4). These results suggest
that the continuous uplift signal will be detectable for a few
decades, considering volume change rates as low as 0.1×106 m3.
As late as January 2020, our inflation time-series indicated that
the cumulative volume of a spherical point source with dmedian �
5000 m is 29.1×106 m3. For d5% � 4500 m and d5% � 6000 m, the
values are 22.7×106 and 39.9×106 m3, respectively. This range of
values is consistent with those predicted by Dzurisin et al. (2009)
for a prolate spheroid model, 44.9 to 51.6×106 m3 (where the
uncertainty is 10–20% of those values). This estimation of the

cumulative volume is 10–20 times less than the volume erupted
from Mount St. Helens in May 1980 (Wicks, 2002).

To compare the characteristic relaxation time for other
volcanoes with recent and well-studied unrest episodes, we
compiled and modeled the available geodetic and volume
time-series of the following volcanic systems: Okmok (Biggs
et al., 2010), Long Valley (Hill et al., 2020), Uturuncu (Lau
et al., 2018), Laguna del Maule (Le Mével et al., 2015),
Yellowstone (Tizzani et al., 2015), Campi Flegrei (Troise et al.,
2007), Santorini (Parks et al., 2015), Alutu (Hutchison et al.,
2016), Agung (Syahbana et al., 2019). We have selected unrest
periods showing deformation that deviates from the background
trend and are characterised by an exponential decay. These unrest
periods span from the beginning of the deformation series or
from a new increment of uplift, until it occurs a new change in the
trend, indicated by a departure from the flattened part of the
exponential behavior. Therefore, the analyzed periods are based
solely on the exponential shape of data regardless of the unrest
outcome (non-eruptive unrest or pre-eruptive unrest) and of the
duration of the entire inter-eruptive period. Only a posteriori can it
be known whether a period of uplift with exponential decay trend

FIGURE 11 | (A) Estimated e-folding parameter of other available geodetic and volume time series from volcanoes with recent and well-studied unrest episodes:
Okmok (Biggs et al., 2010), Long Valley (Hill et al., 2020), Uturuncu (Lau et al., 2018), Laguna del Maule (Le Mével et al., 2015), Yellowstone (Tizzani et al., 2015), Campi
Flegrei (Troise et al., 2007), Santorini (Parks et al., 2015)), Alutu (Hutchison et al., 2016), Agung (Syahbana et al., 2019). (B) Geographic location and classification
according to the type of Volcano. (C, E, F) Normalized uplift or volume change, y′ (Eq. 9) as function of normalized time, t′ (Eq. 10).
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can be taken as indicative or related to volcanic eruptions.
Considering this, and to avoid possible bias, we analyze a
heterogeneous group of volcanoes (different types, diverse
geographical locations, distinct deformation/volume change
time-series and different stages within each inter-eruptive
period), in order to discern whether the e-folding parameter
may be or not a useful parameter for understanding posterior
volcanic activity. We estimated the e-folding parameter and t0
following Eq. 8 in order to compare different volcanic systems.
Greater e-folding indicates longer characteristic relaxation times, as
shown in Figure 11A. The estimated e-folding parameters vary
between 0.033 and 10 years, for uplift and inflation episodes lasting
between 60 days and 26 years. Our selected volcanoes, particularly
those of the North and South American volcanic arcs, present the
longest e-folding times (Figure 11B).

From the small selection of volcanoes, neither the type nor
composition of the volcanoes seems to be decisive for the
characteristic relaxation time associated with their inter-eruptive
periods. However, those with a shorter e-folding display significant
changes in their behavior. For instance, Campi Flegrei exhibited an
increment in displacement from 1968–1972, with an e-folding of
1.38 years. Next, the subsidence rate was small until 1982, and the
deformation trend changed due to a new uplift episode during
1982–1984, followed by subsidence during 1985–2004. Those
features were related to an overpressure in the magmatic source
and fracturing of the rock volume between the magmatic fluids and
the aquifer (Troise et al., 2007). Alutu underwent two inflation
pulses, the latest showing a short e-folding of 0.033 years, during the
period October-December 2008, then a slow deflation took place.
These short time-scale suggest the migration of hydrothermal or
magmatic fluids or volatiles (Hutchison et al., 2016). Agung went
through an uplift from August-October 2017, characterized by an
e-folding of 0.038 years, then in late November, a phreatomagmatic
eruption and stronger explosions took place (Syahbana et al., 2019).
Santorini presented a source inflation process with an e-folding of
0.28 years for the period October 2011- August 2012 (Parks et al.,
2015). Then, its subsidence rates increased in the post-unrest period
2012–2017, suggesting the superimposition of various deformation
sources (Papageorgiou et al., 2019). The Okmok inflation episode
during the period May 2002 - September 2007 had an e-folding of
1.24 years. Although there was a small amount of deflation (Biggs
et al., 2010), the general trend can be modeled as an exponential
decay. After this inter-eruptive episode, a phreatomagmatic eruption
occurred in July–August 2008 (Larsen et al., 2015). Long Valley
deformation series presents an e-folding of 5.31 years for the period
1978–1988. No significant seismicity was detected during the
interval ∼1986–1988. After the exponential decaying trend, there
was a renewed unrest, characterized by recurring earthquake swarms
and tumescence of the resurgent dome (Hill et al., 2020).
Yellowstone went through an uplift during 2005–2010, with an
estimated e-folding of 2.1 years. Since 2015, subsidence of
Yellowstone caldera has occurred at an average rate of 2–3 cm
per year, as reported by Yellowstone Volcano Observatory (USGS).
Laguna del Maule is the only volcano that yields a high relaxation
time value for a short inter-eruptive period (2010–2014), according
to Le Mével et al. (2015). However, the fit of the data for this period
could also be due to a linear inflation pulse superimposed on an

exponentially decaying deformation rate. On the other hand,
Uturuncu and Three Sisters present the longest e-folding
(8.93 years and 9.48 years), without showing significant changes
in their volcanic activity. Although the e-folding parameter seems
to be an informative variable in the magnitude of the inter-eruptive
period time scales, it does not provide any parametric information
that differentiates pre-eruptive unrest (Agung, Okmok) from non-
eruptive unrest (e.g. Alutu, Campi Flegrei).

We re-scaled the observed time-series to properly emphasize
similarities on the exponential decay.We normalize displacement
or volume change (y′), as a function of normalized time by means
of the e-folding parameter (t′):

y′(t) � (y(t) − y0)/(yt∞ − y0) (9)

t′ � (t − t0)/ϵ (10)

where y0 is the displacement or volume change at t0, yt∞ is the
value after total relaxation (i.e., at t � t∞), and t0 is the onset of
the exponential function. It is worth noting that using the
e-folding parameter accurately represents the characteristic
relaxation times, and hence re-scales invariantly the observations.

Figures 11C,D,E show the resulting normalized time-series for
each volcano, revealing a strikingly similar pattern. This behavior
seems to be independent of the e-folding value or duration of the
inter-eruptive episode. Accordingly, the temporal invariance could
indicate that there is a limited set of physical scenarios underlying
inter-eruptive inflation episodes. This evidence seems to support
inter-eruptive physical processes with exponential time-dependent
solution. Several physical models could explain deformation with
this pattern (e.g., Lengliné et al., 2008; Reverso et al., 2014; Walwer
et al., 2019). Dzurisin et al. (2009) put forward several mechanistic
explanations for Three Sisters: 1) hydraulic pressurization or
instantaneous response of the crust to continued intrusion at
depth; 2) pressurization of the hydrothermal system; 3)
viscoelastic response of the crust due to an intrusion emplaced at
depth. Our analyses estimate the start of the exponential decay
around 1998–1999, in agreement with previous studies (Wicks,
2002; Dzurisin et al., 2006; Dzurisin et al., 2009; Riddick and
Schmidt, 2011). Although not unique on which physical
mechanism is acting at Three Sisters, the observed uplift decay is
consistent with a viscoelastic response of the crust.

The lack of hot springs and thermal pools rules out that the
deformation could be due to an active hydrothermal system (Wicks,
2002). Recent rhyolitic eruptions close to South Sisters, 2000 years
ago (Hildreth et al., 2012), and the evidence of a long-livedmagmatic
source at depth in Three Sisters, from spring geochemistry studies
(Evans et al., 2004), are indicative of magma evolving during
thousand of years before eruption. This is compatible with the
formation of viscoelastic aureoles as a result of the alteration of the
mineralogical and rheological properties of the surrounding rocks.
Previously, Zurek et al. (2012) concluded, based on the lack of gravity
change from 2002–2009, that deformation at Three Sisters reflects a
viscoelastic response of the crust to an intrusion of magma. The
estimated e-folding indicates viscosities of ∼1018 Pa s of a viscoelastic
shell surrounding the magmatic source with a pressure change
which increases in finite time from 0 to a constant value,
considering theoretical estimations on the time constants and
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viscoelastic medium parameters (e.g., Newman et al., 2001; Bonafede
and Ferrari, 2009; Del Negro et al., 2009; Segall, 2016).

7 CONCLUSION

The evolution of volume change time-series at active volcanoes can be
studied by combining heterogeneous geodetic datasets. For Three
Sisters volcano, we combined high spatial coverage from multiple
InSAR satellite data and long term temporal information on the three-
components of the only available continuous GPS. We improved a
previous two-step approach to volume time-series reconstruction, by
including a non-arbitrary truncation level. The cut-off criterion for
truncation (i.e., type of filter) is necessary to obtain a solution without
too much loss of resolution affecting the stability of the inversion. We
proposed a method that combines the Discrete Picard Condition and
the L-curve. Furthermore, our approach takes propagation errors into
account in all inversion steps. The final time-series is determined
considering volume change rates instead of increments of
displacement, avoiding problems deriving from the amplification of
uncorrelated noise between adjacentGPS data or propagation through
the time-series of the uncertainty of the first acquisition.

The inflation time-series of Three Sisters since 2018 shows a
noticeable change in the trend, which departs from the previous
asymptotic trend toward a constant decay rate. This change can be
explained by a fixed step in the position, such as that caused by a
change in the instrumentation or monument stability. However, we
cannot rule out a minor injection of magma or fluid pressurization
beneath Three Sisters. Considering thewide range of eruptedmagma
compositions and eruption styles, any changes in the Three Sisters
background uplift behavior should be evaluated as an important
indicator of future volcanic activity.

The Three Sisters volcano uplift is still on-going. The Bayesian
inversion of source parameters gives 95% credible intervals, the
depth for a spherical point source being between (4500–6000)m.
Parametric modeling of the inflation time-series associated with the
median, and 5% and 95% percentiles of source depth allows us to
constrain the onset of the exponential trend to between October
1998 and August 1999 and the characteristic relaxation time to
9.48 [+0.12,−0.17] years. Therefore, in the absence of different or
new unrest signals, we estimate a continuous uplift signal, at
diminishing but detectable rates, lasting for few decades
(currently estimate to 2054 [ ± 2 years]). The observed uplift
decay is consistent with a viscoelastic response of the crust. Our
future efforts will be focused on elucidating whether the deformation
could be a viscoelastic response to a very rapid magma emplacement
or to several years of active intrusion of magma.

This analysis is a step toward understanding the time-scale of
inter-eruptive processes. Inter-eruptive uplift/volume change signals
of analyzed volcanoes show rather simple and time-scale invariant
behavior, after a proper scaling. We interpret this observation as
pointing to a rather reduced set of physical mechanisms underlying
inter-eruptive inflation episodes that are consistent with exponential
decay (viscoelastic response and/or hydraulic pressurization).
Furthermore, we suggest that the magnitude of the characteristic
relaxation time can be indicative of significant changes of the
background behavior on volcanoes. Temporally persistent, long-

lasting and overlapping uplift signals are potential confounding
indicators for the classic inflation-eruption-deflation cycle model.
We highlight the importance of high-temporal and continuous
surface deformation monitoring to identify any departures from
background temporal behavior (potentially very complex), as an
indicator of future eruption hazard in persistent uplifting volcanoes.
In regards to eruption forecasting, the uplift/inflation itself cannot be
used as a pre-eruptive precursor without knowing what controls it
through the combination of petrological and/or geophysical data.
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The analogue experiments that produce seismo-acoustic events are relevant for understanding
the degassing processes of a volcanic system. The aimof this work is to design an unsupervised
neural network for clustering experimental seismo-acoustic events in order to investigate the
possible cause-effect relationships between the obtained signals and the processes. We
focused on two tasks: 1) identify an appropriate strategy for parameterizing experimental
seismo-acoustic events recorded during analogue experiments devoted to the study of
degassing behavior at basaltic volcanoes; 2) define the set up of the selected neural
network, the Self-Organizing Map (SOM), suitable for clustering the features extracted from
the experimental events. The seismo-acoustic events were generated using an ad hoc
experimental setup under different physical conditions of the analogue magma (variable
viscosity), injected gas flux (variable flux velocity) and conduit surface (variable surface
roughness). We tested the SOMs ability to group the experimental seismo-acoustic events
generated under controlled conditions and conduit geometry of the analogue volcanic system.
We used 616 seismo-acoustic events characterized by different analoguemagma viscosity (10,
100, 1000 Pa s), gas flux (5, 10, 30, 60, 90, 120, 150, 180× 10−3 l/s) and conduit roughness (i.e.
different fractal dimension corresponding to 2, 2.18, 2.99). We parameterized the seismo-
acoustic events in the frequency domain by applying the Linear Predictive Coding to both
accelerometric and acoustic signals generated by the dynamics of various degassing regimes,
and in the time domain, applying a waveform function. Then we applied the SOM algorithm to
cluster the feature vectors extracted from the seismo-acoustic data through theparameterization
phase, and identified four main clusters. The results were consistent with the experimental
findings on the role of viscosity, flux velocity and conduit roughness on the degassing regime.
The neural network is capable to separate events generated under different experimental
conditions. This suggests that the SOM is appropriate for clustering natural events such as the
seismo-acoustic transients accompanying Strombolian explosions and that the adopted
parameterization strategy may be suitable to extract the significant features of the seismo-
acoustic (and/or infrasound) signals linked to the physical conditions of the volcanic system.

Keywords: self-organizing map, neural network, seismo-acoustic signals, experimental volcanology, clustering
method
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INTRODUCTION

In recent years, neural networks have been increasingly used
thanks to the rapid progress of computer performances and the
continuous growth of digital data worldwide, which are difficult
to analyze with traditional search and classification methods. In
the field of geophysics and volcanology, both supervised and
unsupervised neural networks have been used in many
applications, including tasks for the classification and
recognition of seismic signals in volcanic (Carniel, 1996; Del
Pezzo et al., 2003; Scarpetta et al., 2005; Ersoy et al., 2007; Langer
et al., 2009; Messina and Langer, 2011; Esposito et al., 2013a;
Carniel et al., 2013; Unglert et al., 2016; Burzynski et al., 2018; Ren
et al., 2020; Watson, 2020) and tectonic (Köhler et al., 2009;
Giudicepietro et al., 2017) environments, analysis of petrographic
patterns (Esposito et al., 2020a; Esposito et al., 2020b), predictive
analysis of seismicity (Esposito et al., 2014) and radon emissions
(Ambrosino et al., 2020). In particular, among unsupervised
neural networks, the Self-Organizing Map (SOM) is suitable
for the discrimination of seismic signals generated by different
sources in a composite seismic wavefield. For instance, several
neural network based methods have been applied to study the
seismicity of Stromboli (Esposito et al., 2006a, Esposito et al.,
2008; Esposito et al., 2013b, Esposito et al., 2018), that is an
example of seismo-acoustic wavefield dominated by signals
produced by different sources linked to the degassing through
a basaltic magma. More in general, the seismic and acoustic
wavefield of an open conduit volcano might be originated from a
wide spectrum of processes; unsupervised neural networks are
fundamental for discriminating different sources of signals.
Noteworthy, the investigation of seismo-acoustic transients,
related to unsteady explosive activity, is known to provide
fundamental information on the degassing dynamics also at
other volcanoes such as Erebus (Rowe et al., 2000; Johnson
et al., 2008) and Yasur (Spina et al., 2015; Capponi et al.,
2016; Simons et al., 2020).

In parallel, analogue models of volcanic degassing have been
developed to better understand the dynamics of open conduit
volcanoes and define the elastic signature of magma-gas
interaction with the volcanic conduit (e.g. James et al., 2004;
James et al., 2006; Arciniega-Ceballous et al., 2014; Spina et al.,
2018; Spina et al., 2019). Indeed, the laboratory approach offers
the advantage of controlling physical properties and the
thermodynamic state of the investigated systems. This is
convenient for investigating physical processes whose
controlling parameters are inaccessible to direct observation,
as in a volcanic environment. The potentiality of constraining
subsurface degassing dynamics by laboratory experiments on
accurately scaled two-phase analogue systems has induced a
flourishing number of literature studies focusing on the source
of acoustic events (e.g. Vidal et al., 2006; Vidal et al., 2009; Divoux
et al., 2008; Kobayashi et al., 2010; Lyons et al., 2013) or on the
seismic signature of the ascent of volcanic gas slugs (e.g. James
et al., 2004; James et al., 2006) and of the fragmentation processes
(Arciniega-Ceballos et al., 2014; Arciniega-Ceballos et al., 2015).
Moving from the evidence that conduit discontinuities are
specific sites where pressure and momentum changes in the

fluid are effectively coupled to the Earth (Chouet and Matoza,
2013 and references therein), Spina et al. (2019) assessed the effect
of cross-sectional changes in the conduit geometry (in terms of
irregularity of the conduit surface) and of physical properties on
radiated seismic and acoustic signals. Noteworthy, cross-sectional
changes of conduit shape are expected to result from the coupling
between conduit shape and volcanic flow (Macedonio et al.,
1994).

Innovative approaches to data analysis such as machine
learning are important for studying the signals produced by
analogue experiments. Actually, these data analysis techniques
help to discover the relationships between experimental data and
physical processes. The main objective of this work is to identify
data preprocessing and clustering techniques capable to highlight
a similarity among signals obtained from experiments featuring
analogous starting conditions. In this way, the data similarity
must reflect the activity of similar source processes, establishing a
link between the signals that we can record and the physical
processes that generate them, which in the case of natural systems
are unknown. In this work, we apply a SOM based method for
clustering a dataset of experimental events obtained through a
novel experimental protocol described in Spina et al. (2019)
suitable to investigate the seismo-acoustic signals generated at
different experimental conditions (gas flux and liquid viscosity),
taking into account analogue conduits with different extent of
roughness of the internal wall. The dataset used in this work was
produced by analogue experiments aimed at investigating the
interplay among surface irregularity of the conduit, physical
properties of the analogue magma in a range of viscosities and
gas flux representative of basaltic systems (Spina et al., 2018,
Spina et al., 2019).

Initially, we used two well established signal preprocessing
approaches (Del Pezzo et al., 2003; Scarpetta et al., 2005) to
extract the appropriate features to represent in a compressed
form the significant characteristics of the signals such as the
spectral content and the temporal evolution of the waveform.
Then, we designed a SOM to group the experimental events.
The results indicate that we are able to discriminate between
analogue events generated under different experimental
conditions, and thus this methodology may be applicable to
volcanic datasets.

MATERIALS AND METHODS

The Experimental Setup
The experimental setup for generating seismo-acoustic events
(Figure 1) is fully described in Spina et al. (2018), Spina et al.
(2019) and consists of two main parts: 1) the analogue volcano
that reproduces volcanic degassing phenomena, and 2) the sensor
system, used to measure the seismo-acoustic signals, i.e. the
elastic energy radiated by the degassing processes.

Part (1) is made up of a compressor system, connected to a set
of flow-meters and injecting the air-gas into an epoxy conduit
with a mean diameter of 3 cm and length of 80 cm. In order to
investigate the role of conduit irregularity, a novel technique was
developed to build epoxy conduits with different fractal
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dimension (FD) of the internal surface. Three conduits were used
to carry out the experiments: a smooth cylinder (SM, FD � 2), and
two cylinders with increasing extent of roughness of the internal
wall (F1 and F2, FD � 2.18 and 2.99 respectively). The conduits
were filled with silicone (Wacker©) oils as an analogue for
magma, with viscosities in the range 101–103 Pa s and density
of 970 kg/m3.

The sensor system mainly consists of a ceramic shear
accelerometer ICP J352C33 model (PCB Piezotronics) with a
sensitivity of 0.1 V/g in the band 0.5–10,000 Hz, and a
microphone ICP 378B02 model (PCB Piezotronics) with a

sensitivity of 50 mV/Pa in the band 7–10,000 Hz (±1 dB). The
digital acquisition system is a DAS50 (SEFRAM) with four
channels and sampling rate up to 1 MHz. In our case signals
are sampled at 50 kHz. Since the accelerometer and microphone
have slightly different frequency responses (e.g. the lower
frequency limit is different) both seismic and acoustic signals
were band-pass filtered in the range 10–10,000 Hz, interval of
common flat response of accelerometer and microphone. A
video-camera (25 fps) allowed observation of the degassing
regimes through the optically clear analogue magma and link
them with the recorded seismo-acoustic signal.

FIGURE 1 | (A–C) Top pictures of the analogue conduits SM (FD � 2), F1 (FD � 2.18) and F2 (FD � 2.99), respectively. (D) Simplified sketch of the experimental
device (not to scale; modified from Spina et al., 2019). The tubes shown in (D) are 80 cm high. Modified from Spina et al. (2019).
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The Dataset
The dataset used in this work includes 616 experimental
seismo-acoustic events generated under different
experimental conditions. Each event is represented by a
seismic recording and by an acoustic recording; therefore
our dataset consists of 616 pairs of seismic and acoustic
signal records (1232 files in total).

Three parameters were systematically changed to investigate
the variability of the seismo-acoustic signals with different
degassing states: the roughness of the epoxy conduits (SM, F1
and F2), the viscosity of the analogue magma (10, 100 and
1000 Pa s) and the air flow rate (5, 10, 30, 60, 90, 120, 150,
180 × 10–3 l/s). Figure 2 shows two examples of seismo-acoustic
signals. The first (Figure 2A) was generated using the smooth
experimental conduit (SM), analogue magma with viscosity of
10 Pa s and a flow rate of 120 × 10–3 l/s. The second one
(Figure 2B) was also generated with viscosity of 10 Pa s and a
flow rate of 120 × 10–3 l/s, but using a F2-type experimental
conduit.

The seismo-acoustic transients collected in the dataset
were recorded during different degassing regimes, from
bubbly flow (i.e. bubbles passively transported in the
analogue magma) to slug regime (i.e. individual conduit-
filling bubbles) to churn-annular flow (i.e. the gas phase is
able to support the upward movement of the liquid along the
conduit wall).

Feature Extraction Methods
The feature extraction (data preprocessing) is an important phase
that precedes the application of the SOM neural network for the
clustering. It provides an alternative data representation by
removing redundant information and identifying the
significant ones that uniquely describe them. In this way a
compact and robust coding is obtained. There are several
methods to do this, which depend on the particular
application and its complexity degree. The crucial aspect is to
choose the features that are relevant for the examined task. In our
case, in order to select the most appropriate features, we took into
account the information usually considered by analysts for the
signal discrimination, i.e. the signal spectral content and
waveform, in the frequency and time domain respectively.
Then, to feature extraction techniques we relied on the good
results obtained in Del Pezzo et al. (2003), Scarpetta et al. (2005),
Esposito et al., (2006a), by using the Linear Predictive Coding
(LPC) technique (Makhoul, 1975; Marple, 1980) for the
frequency information and a waveform parametrization, for
the amplitude-versus-time information, respectively. The
advantage of using LPC over raw spectra is that LPC provides
a more compressed representation of frequency content
information. This aspect was discussed in Del Pezzo et al. (2003).

LPC is a widely used method in the speech recognition field to
extract compact spectral features from audio signals, which are
acoustic signals just like those considered in this work. However,

FIGURE 2 | Comparison between the raw signal and the spectrogram of a seismo-acoustic event generated with a smooth SM-type conduit, viscosity � 10 Pa s,
flow velocity � 120 × 10–3 l/s (A), and an event generated with a F2-type conduit, viscosity � 10 Pa s, flow velocity � 120 × 10–3 l/s (B).
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it has also been successfully applied in the geophysical and
volcanological fields (Esposito et al., 2013a; Giudicepietro
et al., 2017; Esposito et al., 2018). In particular, the features
extracted with the LPC were given in input both to unsupervised
neural networks, such as the Self-Organizing Map (SOM)
(Esposito et al., 2006a, Esposito et al., 2006b; Masiello et al.,
2006), and supervised neural networks, such as the Multi-Layer
Perceptron (MLP) (Del Pezzo et al., 2003; Scarpetta et al., 2005;
Giudicepietro et al., 2017; Esposito et al., 2018). Therefore, we
decided to use this technique following the good results provided
in the previously mentioned works.

LPC predicts a signal sample through a linear combination of
its previous samples:

x̂(n) � ∑
p

i�1
aix(n − i)

where x̂(n) is the predicted signal value for the sample n, x(n − i)
are the previously observed values, p≤ n is the model order and ai
are the prediction coefficients. The prediction coefficients are
given by an optimization procedure that tries to reduce the error
between the real signal and its LPC estimate. The number of
prediction coefficients p is problem dependent and it must be
determined via a trade-off between the information content and
the representation compactness. We used the librosa python
library (McFee et al., 2015) to obtain the LPC coefficients.

The waveform parametrization (WP) is performed by a
function defined as the normalized difference between the
maximum and minimum signal amplitude computed in an
arbitrary duration window. In Scarpetta et al. (2005) it was
shown that the addition of this feature as further information
on the data led to an improvement in the performance of the
neural network up to 5% (reaching 100% in some experiments
aimed at the classification of seismic signals at Mt. Vesuvius)
compared to the performance obtained using only the LPC
features.

Waveform parametrization is expressed as:

fm � (max(Ai,m) −min(Ai,m))pN
∑N
m�0

(max(Ai,m) −min(Ai,m))

where Ai,m are the amplitudes in the signal window and N is the
total number of windows.

In general, the choice of the features used to represent the data
can influence the results of the final clustering; for this reason this
choice is critical for the good neural network performance. We
chose the above described preprocessing methods because we are
confident of their appropriateness for feature extraction on the
basis of good results obtained in the previous cited works (Del
Pezzo et al., 2003; Scarpetta et al., 2005; Esposito et al., 2006a;
Esposito et al., 2018).

Self-Organizing Map (SOM)
SOM (Kohonen et al., 1996) is a special class of unsupervised
artificial neural network (ANN) extensively used as a clustering
and visualization tool in exploratory data analysis. In general,
when a large data set is available and no information about which

similarity measure is more appropriate to group them, then it
may be useful to apply an unsupervised technique. Classic
methods of cluster analysis often make assumptions regarding
linearity, normal distribution or intrinsic clustering relationships
in the data. For these reasons, they can fail for data with a complex
structure.

Contrary to classical methods, the main advantages of using
the SOM technique are that it does not require any a-priori
assumption on the data structure and it is able to manage large
data sets with high-dimension inputs to detect patterns and
isolated structures in the data. Moreover, it provides an easy
visualization and interpretation of the results.

SOM performs a nonlinear mapping of the input space into a
two-dimensional grid, called map, by preserving the topological
and metric relationships of the data. This makes the SOM an
effective method to visualize the similarity and the distances
between the input vectors.

The SOM architecture has typically two layers, the input and
the output one, with the nodes of the input layer directly
connected to those of the output layer (Figure 3). Nodes in
the output layer are arranged in a topological structure, usually a
bi-dimensional grid, since it is generally agreed that a two-
dimensional map provides a better representation of the clusters.

Usually, the network topology is divided into two factors: the
local lattice structure and the global map shape. The first one can
be rectangular or hexagonal. In the rectangular one each internal
node has four neighbors, while in the hexagonal one six. Hence,
the hexagonal structure is usually preferred since it displays
greater variance in neighborhood size. The global map shape
instead can be sheet, cylinder or toroid. In our experiment, we
used a SOM map with a local hexagonal structure (Figure 4A)

FIGURE 3 | Example of the architecture of a Self-Organizing Map. The
network has two layers: the input and the output layer, with the nodes of the
input layer directly connected to those of the output layer.
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and a global toroid shape (Figure 4B) visualized as a sheet to get a
better interpretation of the obtained clusters.

The SOM algorithm is unsupervised: this means that the
network tries to discover the hidden relationships in the data
by applying a competitive learning rule where the output nodes
compete among themselves for representing the vectors of the
input space. In this competition only the node whose weight
vector is most similar to the input vector will be the winner or the
Best Matching Unit (BMU). To find the BMU, in each training
step, the distances between an input vector, chosen randomly,
and all the weight vectors of the SOM are computed by using the
Euclidean distance method, as suggested by Kohonen et al.
(1996). After finding the BMU, the prototype of the winning
node is updated toward the input vector and also the prototypes
of the neighborhood nodes are adjusted (cooperative aspect) in a
way that depends on the neighborhood function. We adopted a
Gaussian neighborhood function. The learning rate, which
controls the intensity of the attraction of the input vector, and
the neighborhood radius, which controls the number of vectors
attracted other than the winning node, depend on the Gaussian
function. The learning rate and the neighborhood radius are
time-dependent functions and their values decrease during the
training phase. At the end of the iterative process, there is the
convergence phase in which the prototypes of the different nodes
reach their final values and the final map is obtained.

In this work, the SOM parameter were chosen according to the
SOM toolbox for Matlab (http://www.cis.hut.fi/somtoolbox/, last
accessed 25 October, 2020) and Kohonen et al. (1996).

RESULTS

Data Preprocessing
Before extracting the features from the accelerometric and
acoustic data produced during the experimental events, we cut
the recordings using a standard Short Time Average/Long Time
Average trigger algorithm (STA/LTA; e.g. Allen, 1978; Withers
et al., 1998; Trnkoczy, 2012) to have a uniform criterion to
generate the signal windows for preprocessing and analysis.
Actually, the purpose of our study is not to develop an
automatic system, but to discover the fingerprints of the

degassing processes in seismo-acoustic signals; therefore the
automatic procedure is used only to facilitate the picking of
the event onsets.

We performed the automatic trigger of the events (Figure 5)
using a classic STA/LTA algorithm (length of short time window
� 0.01 s, length of long time window � 0.1 s, trigger on threshold
� 2.5), included in the Python toolbox Obspy (Krischer et al.,
2015). The STA/LTA was applied on the acoustic signals, and,
each time an acoustic event was identified, 0.03 s windows of both
acoustic and accelerometric signals (starting 0.002 s before each
trigger time) were extracted. Although the microphone and
accelerometer are located at different positions in the setup,
their short distance (∼60 cm) allows for a delay time on the
order of 10−3 s, which is by far smaller than events recurrence
time (Figure 11 in Spina et al., 2019) and of the selected signal
windows. Accordingly, we are confident that triggered seismic
and acoustic signals share the same source. Thus, we obtained a
dataset of 616 events, each composed by seismic and acoustic
recordings of 1500 samples (both signals being sampled at 50,000
samples per second). Finally, we parameterized the events in the
frequency domain, through LPC, and in the time domain,
through the waveform function described above (WP).

By using the librosa python library (McFee et al., 2015), we
applied the LPC algorithm to extract the spectral content features.
We made several experiments using a different number of
windows and finally we found that the most appropriate
solution to encode the LPC features of our data was to use a
single 1024-sample length window for each signal, in order to
correctly represent even the lower frequency events. So, we
calculated the LPC on one signal window (first 1024 sample),
extracting 46 LPC coefficients for each window. We chose the
number of LPC coefficients as a trade-off between an adequate

FIGURE 4 | Examples of a local hexagonal lattice structure (A), and a
global toroid map shape (B). In this article the toroid shape, visualized as
sheet, is used (see Results section).

FIGURE 5 | Examples of automatic picking of two acoustic events by
STA/LTA algorithm. Both events were generated with a F1 fractal roughness
conduit but with different viscosity and flux rate conditions. For the event in
plot (A) viscosity � 10 Pa s and flux rate � 60 × 10−3 l/s; for event in plot
(B) viscosity � 100 Pa s and flux rate � 180 × 10−3 l/s.
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encoding of the spectral content and the compactness of the
information. Thus, we encode the spectral content features of the
experimental events with 46 features for each one of the seismic
and acoustic signals.

For the waveform parameterization, we used only the acoustic
signal features and we chose a 50 sample-long window, so
obtaining 30 parameters from each 1500 sample-long
recording. In order to avoid undesirable effects due to the
automatic trigger of the signals that in different events can
result in different pre-event signal segment, we sorted the
waveform parameterization features in descending order.
Finally, we took only the first 20 of these features, neglecting
the queue which is less representative of the sorted signal.
Therefore the waveform parameterization results in a 20-
dimensional feature vector for each type of signal, acoustic
and seismic. In this way the acoustic and seismic signals were
encoded using for each of them 46 LPC features and 20 WP
features. Finally, we combine the LPC features and the waveform
parameterization (WP) of the acoustic signal obtaining the input
vector of 46 + 46 + 20 � 112 features for each experimental event.

To scale the amplitude of the features extracted from acoustic
and seismic signals, which are different in size and units of
measurement (Figure 6A), we applied a feature scaling-
normalization and obtained input vectors such as the one
shown in Figure 6B.

SOM Clustering
In this study, we chose a SOM with a local hexagonal structure
(Figure 4A) and a toroid shape (Figure 4B). The map size

depends on the specific application. A “right number of
nodes” does not exists, it depends on the detail one wants to
have with the generated clusters. In our case we chose a map size
of 14 × 8 nodes based on the number of events in the dataset. The
map has 112 (14 × 8) nodes and the dataset contains 616 events,
so we considered the ratio 616/112 � 5.5 that is a good
compromise for data clustering.

Figure 7A shows the SOM map obtained on the examined
dataset. The yellow hexagons indicate the non-empty nodes.
Their size is proportional to the number, or data density, of
input vectors, which fall in each of them. The numbers on the
outside of the map (Figure 7A) indicate the order or numbering
of the nodes on the map, that is, from top to bottom and from
right to left. For some significant nodes the number is also
reported inside the yellow hexagon.

The gray hexagons among the yellow ones are not real nodes
and are used to represent the Euclidean distances between the
nodes according to a gray scale. Also the empty nodes, i.e. those
that do not contain any input vector, are filled according to the
Euclidean distance gray scale. White or light gray indicates that
neighborhood nodes are similar to each other and therefore may
belong to the same cluster. Dark gray or black mark a clear
separation between the nodes. In this way a visual qualitative
measure of the cluster structure discovered by the SOM is
possible, which allows identifying areas where the nodes are
more similar to each other.

Following this qualitative approach and based on the analysis
of the content of each node, on the SOM in Figure 7A we identify
four main areas of nodes more similar to each other or four main
clusters that we represent on the map with different colors. The
clusters are mainly characterized by the degree of roughness of
the conduit and by the viscosity of the analogue magma. The cyan
dotted line in Figure 7A marks the Cluster 1 (130 events) that
groups events that were generated mainly with smooth conduit
(SM) and an analogue magma viscosity of 10 Pa s. Cluster 2 (63
events) is delimited by a blue dotted line and mainly includes
events generated in experiments with a F1 conduit and an
analogue magma viscosity of 10 Pa s. It also includes some
nodes that are at the bottom of the map. This is because we
used a toroidal map, so the upper and lower part and the right and
left one are to be considered united. In Figure 7A we displayed
the map as a two-dimensional sheet to allow an easy
interpretation of the results. Cluster 3 (176 events),
surrounded by a red dotted line, mainly groups events
generated in experiments with a F2 conduit and an analogue
magma viscosity of 10 Pa s. Finally, Cluster 4 (66 events),
delimitated by a magenta dotted line, mainly contains events
generated in experiments with analogue magma viscosity of
100 Pa s. This cluster also includes most of the events
generated with a viscosity of 1000 Pa s, which are relatively
few in the dataset because the increase in analogue magma
viscosity dramatically decreases the number of events (Spina
et al., 2019). In fact, the time elapsed between consecutive
explosions positively correlates with viscosity both in
volcanoes environment (Dominiguez et al., 2016) and in our
laboratory experiments (Spina et al., 2019). The roughness of the
conduit relating to the events of Cluster 4 is mixed; indeed the

FIGURE 6 | (A) Acoustic and seismic signals of an experimental event;
(B) input vector with the features extracted from the acoustic and seismic
signals.
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cluster contains events generated with SM, F1 and F2 conduit
roughness. This result suggests that in low viscosity experiments,
e.g. 10 Pa s, the conduit roughness signature in the seismo-
acoustic signals is clear, whereas in the experiments conducted
with higher viscosity (e.g. 100 or 1000 Pa s) the conduit roughness
imprint is less distinguishable in the signal features and the effect
of viscosity prevails. However, in some nodes there are events
produced with high viscosity (100 or 1000 Pa s) that were
characterized by a prevailing type of conduit roughness. This
is the case of the nodes 62, 79, 101 and 102 shown in Figure 7B.
For the analysis of the other nodes, see the Supplementary
Material, which contains the results of all the nodes of the
SOM map.

Analyzing the distribution of the flux rate (5, 10, 30, 60, 120,
150, 180 × 10−3 l/s) for all the nodes of the four main clusters we
find that it is less characterizing than the distribution of the
analogue magma viscosity and the conduit roughness. However,
we can note that in Cluster 4 the low flux rate classes (5, 10, 30 ×
10−3 l/s) are missing. Furthermore, the few experimental events
characterized by viscosity of 100 Pa s in Cluster 2 (most of the

events that fall into this cluster were generated in experiments
with analogue magma viscosity of 10 Pa s) systematically exhibit
flux rate equal or below 60 × 10−3 l/s.

Figure 8 shows a summary of the distribution of experimental
events of the four main clusters in the analogue magma viscosity
(Figure 8A,D,G,J), conduit roughness (Figure 8B,E,H,K) and
flux rate (Figure 8C,F,I,L) classes. An overall picture of the
distribution of the 435 events contained in the four main
clusters with respect to the different classes of conduit
roughness, viscosity and gas flow rate is shown in Figure 9.
We can see that seismo-acoustic signals produced in experiments
conducted with low analogue magma viscosity (10 Pa s) are
separated into Clusters 1 (cyan), 2 (blue) and 3 (red), which
are characterized by different degrees of conduit roughness (SM,
F2 and F3, respectively), whereas the events generated in high
viscosity condition (100 Pa s and a few examples with 1000 Pa s),
belonging to Cluster 4 (green), are distributed in all three conduit
roughness classes (SM, F2 and F3). Furthermore, most of the
events that fall into Cluster 4 were generated with flow rate > �
60 × 10−3 l/s.

FIGURE 7 | (A) The SOMMap with 14 × 8 � 112 nodes. Not-empty nodes are shown as yellow hexagons and their size represents the data density. The numbers
on the outside of the map indicate the numbering of the nodes that is also reported in some significant nodes. The gray hexagons interposed between the yellow ones
indicate the Euclidean distance between the nodes according to a gray scale. Cluster 1 (cyan), Cluster 2 (blue), Cluster 3 (red) and Cluster 4 (green) are highlighted by
dotted outlines. On the right (B) the compositions of nodes n.62, n.79, n.101 and n.102 are shown. The labels SM, F1 and F2 indicate SM (smooth), F1 (FD � 2.18)
and F2 (FD � 2.99) conduit roughness, respectively. The number preceded by V indicates the viscosity in Pa s and the number preceded by R indicates the gas flow rate
in 10−3 l/s.

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 5817428

Giudicepietro et al. Experimental Seismo-Acoustic Events SOM Clustering

149

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


DISCUSSION

In the present work, we applied SOM to perform the analysis of
experimental events and investigate the links between seismo-
acoustic signals and their source processes, which in the case of
analogue experiments are known and controlled. In this way,
we benefit of joint information deriving from an efficient
seismo-acoustic signal clustering method and the
experiments conducted under controlled physical conditions.
This approach can help us to increase our understanding of the
degassing processes from basaltic open conduit systems and of

their elastic markers. For this reason, we developed a
parameterization strategy of seismo-acoustic experimental
signals inspired by the one we have successfully used to
cluster natural events (Ham et al., 1999; Del Pezzo et al.,
2003; Esposito et al., 2007; Esposito et al., 2013a;
Giudicepietro et al., 2017; Esposito et al., 2018; Nuha et al.,
2019), but with appropriate modifications to better extract the
features of the experimental data. Furthermore, we chose to
jointly use the acoustic and seismic information that together
cover the radiation emitted by the entire process of rising in the
conduit and bursting to the free surface of the gas bubbles.

FIGURE 8 | Histograms of the distribution of Cluster 1 (cyan), Cluster 2 (blue), Cluster 3 (red) and Cluster 4 (green) events in the analogue magma viscosity,
analogue conduit roughness and flux rate classes. Plots (A), (D), (G), and (J) show the distribution of events belonging to the four clusters in the classes of viscosity,
expressed in Pa s (B), (E), (H), and (K) represent the conduit roughness classes (SM: smooth; F1: FD � 2.18; F2: FD � 2.99). The flux rate (expressed in 10–3 l/s)
histograms are shown in (C), (F), (I), and (L) plots.
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For the extraction of features, we used the LPC, which provides a
compressed representation of the signal in the frequency domain of
the seismic and acoustic recordings of each event. We have also
adopted a parameterization in the time domain using a waveform
function and rearranging the features in descending order, in order
to avoid the problems related to the picking of the onset of the
seismo-acoustic transients. This waveform parameterization
technique, used for the first time to extract features for a seismic
event classification problem applied toMt. Vesuvius data, improved
by 5% the performance obtained with this method (Scarpetta et al.,
2005).

Experimental results of the degassing pattern have shown that
at constant viscosity the increase in gas flux rate generates
progressively longer and less-spaced slug bubbles which, at a
given threshold of flux rate, merge leading to the transition from
slug flow to churn-annular flow (e.g. Fabre and Linè, 1992;
Paglianti et al., 1996). All the same, at medium-low gas flux
rate an increase in liquid viscosity favors the coalescence of
bubbles and the transition from slug flow to churn-annular
flow (e.g. Pioli et al., 2012; Spina et al., 2019).

Based on the analysis of our SOM map, we identified four
main clusters (Figure 7A) characterized by events generated
under different experimental conditions, highlighting
differences in the degassing patterns. In particular, most of the
events of Cluster 1 are generated in experiments with low
viscosity magma and smooth conduit and are associated with
elongated slugs (Figure 10A). Notably, the few cases exhibiting a
viscosity of 100 Pa s are characterized by relatively low gas flow
rate (<60 × 10−3 l/s). Most of the events included in Clusters 2 and
3 were also generated in low viscosity conditions (10 Pa s), but

they are clearly separated according to the roughness of the conduit
which for Cluster 2 is of type F1 (FD � 2.18), whereas for Cluster 3
it is of type F2 (FD � 2.99). On the opposite, events of Cluster 4 are
characterized by higher analogue magma viscosity (100 Pa s and
few cases with 1000 Pa s) and gas flux generally above the threshold
of 60 × 10−3 l/s. The degassing pattern in such cases is mostly
represented by a chain of over-pressurized slugs that tend to
coalesce with an irregular profile, suggesting the onset of churn-
annular flow (Figure 10B). Increasing the viscosity of the liquid
phase, the threshold of gas flux ratemarking the transition between
degassing regimes decreases (e.g. Pioli et al., 2012). Hence, the
clusters associating 10 Pa s events (Cluster 1, 2, 3) and the one
(Cluster 4) that groups high viscosity (100–1000 Pa s) and
moderate to high gas flux events might actually reflect different
degassing regimes, i.e. slug or churn-annular flow. Moreover, the
features of the seismic and acoustic signals can be influenced by the
flow regime that is generated in the experiment, which can be
determined by different combination of viscosity of the analogue
magma and gas flow rate. This can explain the characteristics of the
events generated with different analogue magma viscosity and
grouped in the same cluster.

Notably, gas flow rate and viscosity are the main controlling
factors in determining the transition between different degassing
patterns (e.g. Pioli et al., 2012). Clustering of seismo-acoustic events,
here performed, demonstrated that different degassing regimes are
clearly linked to different features of the radiated elastic energy, with
fundamental implications for monitoring purposes.

The clustering results suggest also that the viscosity of the liquid,
where gas flows through, plays an important role in determining the
features of the seismic and acoustic signals generated by such a gas

FIGURE 9 | Overall picture of the distribution of events belonging to the four main clusters with respect to the viscosity of the analogue magma, roughness of the
analogue conduit and the flow rate. Cluster 1 is indicated in cyan (squares), Cluster 2 in blue (circles), Cluster 3 in red (diamond) and Cluster 4 in green (thin diamond). The
size of the squares is proportional to the number of events that share the same viscosity, roughness and flux values and belong to the same cluster.
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uprising. Lyons et al. (2013) also found that fluid viscosity plays amajor
role in controlling the character of seismic and acoustic source
generation. The same conclusion was reached by Clarke et al.
(2019), who recorded in laboratory acoustic emissions, resulting
from fracturing and fluid depressurization through the fractured
rock. They concluded how the viscosity of volcanic fluids may
affect the spectral content of the volcano seismicity. Actually,
magma viscosity is a factor that significantly affects the eruptive
style of volcanoes (e.g. Cassidy et al., 2018). Also field studies have
shown that the waveform and spectral characteristics of the seismic
signals acquired on volcanoes are influenced by the properties of the
fluids filling the plumbing system (e.g. Kumagai and Chouet, 2000;
Kumagai et al., 2002; Ichihara et al., 2013). This relationship between
magma properties and explosive mechanisms is also highlighted by
studies conducted at Stromboli volcano (Esposito et al., 2008;
Giudicepietro et al., 2019; Giudicepietro et al., 2020; Witsil and
Johnson, 2020), which is considered a natural laboratory for this
type of activity, where the characteristics of the seismic signals
produced by the explosions are influenced by the physical
properties of the magma, e.g. gas content. However, our
experiments show that the SOM map also identifies clusters (e.g.
Cluster 1 Cluster 2 and Cluster 3) characterized by the prevalence of
events generated with a specific analogue conduit roughness (e. g.
smooth, fractal FD � 2.18 and fractal FD � 2.99). Asmentioned above,
the roughness of the conduit seemed to be amost prominent feature for
clustering in low viscosity runs (10 Pa s). Basing on image analysis only
(evaluation of slug velocity and rate), Spina et al. (2019) has also
hypothesized a more dominant effect of conduit roughness at 10 Pa s

compared to higher viscosity runs (10 and 1000 Pa s). In fact, the effect
of conduit roughness is predominant in the inertia driven regime (i.e.
for significant high values of superficial gas to liquid velocity ratio) and
for higher values of two phase gas flux and gas content (Shannak, 2008;
Bhagwat and Ghajar, 2016). This is promising to better understand the
contribution of conduit roughness in natural systems.

The method tested in this article can be applied to seismic and/
or acoustic events recorded in other laboratory experiments in order
to analyze the characteristics of the produced data and their
similarities. The necessary requirement to apply the method to
other laboratory experiments is that the data are similar to those
here examined and the dataset is composed of a sufficient number of
events. Moreover, this method can easily be applied to analyze
naturally recorded seismic and acoustic events, appropriately
scaling the duration of the signal windows and the other
parameters. Of course, experimental data are simple signals
compared to real world observations. For example they lack of
seismo-acoustic coupling, whereas acoustic wave propagation is
known to couple into the seismic wavefield (e.g., Jolly et al., 2017;
Matoza et al., 2019). These characteristics must be taken into account
when addressing the feature extraction strategy of real signals. It is
worth noting that each experiment was performed under steady
conditions, in terms of conduit roughness, analogue magma viscosity
and air flow rate, while on volcanoes such parameters can be space-
and time-dependent. For instance, the material filling the conduit is
assumed to be stratified, with a high-viscosity layer of melt in the
uppermost part, whose features can gradually evolve in time (e.g.
Lautze and Houghton, 2005; Capponi et al., 2016). In spite of these

FIGURE 10 | Examples of images of the experiments that generated events belonging to Cluster 1 (A) and Cluster 4 (B). V indicates the analogue magma viscosity
in Pa s and R indicates the gas flow rate in 10−3 l/s. The tubes in the picture are 80 cm high and are smooth.
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differences between laboratory experiments and real volcanoes, the
findings of this work suggest how seismo-acoustic signals can contain
plenty of information about the conditions of the uppermost part of
the plumbing system and its variations over time.

CONCLUSION

In this work we present an application of the unsupervised SOM
network on a dataset of experimental events obtained under different
physical conditions. For the first time SOM network are used on an
analogue experimental data set in order to better understand the
relationship between degassing behavior and seismo-acoustic signals.
The seismo-acoustic signals have been obtained by varying three
parameters: the roughness of the epoxy conduits (SM, F1 and F2), the
viscosity of the analogue magma (10, 100 and 1000 Pa s) and the gas
flow rate (5, 10, 30, 60, 90, 120, 150, 180 × 10–3 l/s). An automatic
trigger technique has been applied to identify the events. In order to
group the data, we have first performed a processing phase in which
the events have been represented through a 112-feature vectors
encoding both spectral, by using the LPC method, and time (WP)
information from seismo-acoustic event pairs generated by
experimental runs, conducted under different physical conditions,
and included in the dataset (616 pairs). The obtained feature vectors
became the input of the selected neural network, the SOM, to perform
clustering. The SOM is a projection technique able to identify and
visualize at the same time on a bi-dimensional plane the hidden
structure of the data. The results are very promising as the SOM was
capable to separate events generated with low viscosity analogue
magma from those generated with high viscosity magma and to
discriminate among those generated with different roughness of the
conduit. The promising results obtained from the data generated by
the analogue experiments demonstrate that the method could be a
valuable tool in volcano monitoring to provide interpretative tool on
clustering that can be obtained on real data. Moreover, our study
confirms that seismic and acoustic signals recorded on volcanoes can
provide insights into the characteristics of the fluids in the plumbing
system and their temporal evolution. In particular, viscosity, which
most affects the clustering results, is one of the main parameters
controlling the style of degassing and eruptions.
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Application of Subspace-Based
Detection Algorithm to Infrasound
Signals in Volcanic Areas
Mariangela Sciotto* and Placido Montalto

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Catania, Italy

Infrasonic signals investigation plays a fundamental role for both volcano monitoring
purpose and the study of the explosion dynamics. Proper and reliable detection of
weak signals is a critical issue in active volcano monitoring. In particular, in volcanic
acoustics, it has direct consequences in pinpointing the real number of generated events
(amplitude transients), especially when they exhibit low amplitude, are close in time to each
other, and/or multiple sources exist. To accomplish this task, several algorithms have been
proposed in literature; in particular, to overcome limitations of classical approaches such
as short-time average/long-time average and cross-correlation detector, in this paper a
subspace-based detection technique has been implemented. Results obtained by
applying subspace detector on real infrasound data highlight that this method allows
sensitive detection of lower energy events. This method is based on a projection of a sliding
window of signal buffer onto a signal subspace that spans a collection of reference signals,
representing similar waveforms from a particular infrasound source. A critical point is
related to subspace design. Here, an empirical procedure has been applied to build the
signal subspace from a set of reference waveforms (templates). In addition, in order to
determine detectors parameters, such as subspace dimension and detection threshold,
even in presence of overlapped noise such as infrasonic tremor, a statistical analysis of
noise has been carried out. Finally, the subspace detector reliability and performance, have
been assessed by performing a comparison among subspace approach, cross-
correlation detector and short-time average/long-time average detector. The obtained
confusion matrix and extrapolated performance indices have demonstrated the
potentiality, the advantages and drawbacks of the subspace method in tracking
volcanic activity producing infrasound events. This method revealed to be a good
compromise in detecting low-energy and very close in time events recorded during
Strombolian activity.

Keywords: infrasound signal, subspace detector, trigger algorithm, Infrasound volcano monitoring, strombolian
activity, Infrasound events, Etna volcano, Infrasonic tremor

INTRODUCTION

Amplitude transient detection plays a fundamental role in volcano monitoring, allowing counting
amplitude transients, identifying amplitude and occurrence rate variations. Besides, it is an essential
step to localize seismic sources and their possible migration, which could be related to changes in
volcano state and dynamics.
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Classical methods for signal detection in seismology and volcano-
seismology are grouped into two main categories: energy and
correlation detectors. The former, called incoherent energy
detectors, include algorithms searching for signals which are not
or poorly known, such as STA/LTA (short-time average/long-time
average) algorithm (Allen, 1978; Trnkoczy, 2012). These techniques,
routinely used in volcano seismology, need no data pre-processing,
beside the filtering applied to identify the desired signals, such as
volcano-tectonic (VT) earthquakes or long period (LP) events. This
approach suffers from high rate of false alarms or even of missed
detections, due mainly to the background noise strongly affecting the
reliability of this technique. This is especially true on active volcanoes
with continuous volcanic tremor, which could dramatically reduce
the signal (intended as the amplitude transients) to noise ratio. The
latter group, correlation detectors, consists of algorithms based on the
cross-correlation between a known waveform and the continuously
recorded signal. These algorithms are very sensitive, give low false
alarm rate but have the disadvantage of being able to detect only
signals which are very similar to the template waveform, which in
turn needs to be well known (Withers et al., 1999; Gibbons et al.,
2007). In volcano acoustics, similar techniques (e.g., Cannata et al.,
2013a; Cannata et al.,2013b; Thompson, 2015; Hotovec-Ellis and
Jeffrines, 2016;Matoza et al., 2019a; Senobari et al., 2019), ormethods
making use of advanced signal processing techniques (Bueno et al.,
2019), are implemented to identify and extract amplitude transients
from the real-time streaming of signals, that characterize explosive or
degassing activity. In particular, energy detectors, such as STA/LTA,
are efficient algorithms when multiple infrasound sources are active
(as at multi-vent volcanoes) and exhibit space-time variations, while
correlation detectors are a powerful tool when we want to identify
amplitude transients produced by a single and/or stable infrasound
source in order to study its physical properties (Montalto et al., 2010;
Sciotto et al., 2013; Cannata et al., 2013a; Hotovec-Ellis and Jeffrines,
2016; Yokoo et al., 2019).

Subspace-based detectors overcome the aforementioned
limitation, in that they operate a comparison between the
continuous signal and a set of reference waveforms hereafter
called templates (Harris, 2006). One of the strong points of this
method is the assumption on noise statistical features: it is
supposed to be uncorrelated zero-mean gaussian noise. Signals
acquired on active volcanoes generally are affected by band
overlapped noise (e.g., volcanic tremor and volcanic
infrasound tremor; e.g., Cannata et al., 2013b; Cannavò et al.,
2019). In the light of it, without loss of generality, well known
sources of noise, like infrasound tremor, can be preventively
filtered. While in correlation detectors the waveform is a single
template or a stacked waveform (Gibbons and Ringdal, 2006), in
the subspace approach the designed set of templates is built by
means of the Singular Value Decomposition (SVD) of a matrix
whose columns are a variable number of templates. Subspace
methods have been carried out mainly in seismology, where they
have been applied for earthquakes tracking, especially in case of
aftershock sequences (Harris and Dodge, 2011; McMahon et al.,
2017), as well as to identify low-frequency earthquakes in non-
volcanic tremor (Maceira et al., 2010).

Volcano acoustic plays a fundamental role for both
monitoring purpose and the study of the explosion dynamics

and revealed to be a reliable tool to characterize eruptive activity
and shed a light into the shallow plumbing structure system at
Etna (Cannata et al., 2013a; Sciotto et al., 2013, Spina et al., 2015;
Cannavò et al., 2019; Sciotto et al., 2019). Proper detection of
signal of interest is a crucial, and at the same time critical, issue in
volcano seismology, in that it allows extracting and collecting
amplitude transient waveforms (events), which are therefore
analyzed to provide information about spectral content and
source location. In particular, in volcano monitoring, events
detection has direct consequences in pinpointing the real
number of generated events and identifying amplitude and
occurrence rate variations. This information can be of support
to follow the explosive activity and to improve the assessment of
volcanic activity. This is particularly true on Etna, where multiple
open-conduit vents exist, whose activity often consists of
persistent Strombolian explosions, producing low amplitude
and very close in time infrasound events. In order to
accomplish the detection task, several algorithms have been
proposed in literature; in particular, to overcome limitations of
classical approaches such as short-time average/long-time
average and cross-correlation detector, in this paper a
subspace-based detection technique has been implemented.

In this paper, we attempt to clear the way to the application of
subspace detection method in volcano-acoustics, previously
investigated in Sciotto et al., (2011) in a preliminary study,
comparing its performance with correlation and STA/LTA
detectors. In particular, we test this technique on signals
recorded by the infrasound permanent network deployed at
Mt. Etna, which represents an ideal dataset to lead tests on
this matter. Indeed, infrasound activity at Mt. Etna is almost
continuous, and is also characterized by both discrete amplitude
transients and continuous tremor, produced by several summit
craters and eruptive fractures often opening on the flanks of the
summit cones. Moreover, the infrasound signals are generated by
different source mechanisms related to explosive activity, such as
Strombolian activity and lava fountaining, as well as to degassing
phenomena (Cannata et al., 2013a; Sciotto et al., 2013; Spina et al.,
2015; Sciotto et al., 2019). Therefore, in a multi-vent and open-
conduit volcano such as Mt. Etna, where volcanic activity is
almost persistent and prone to eruptive fracture opening,
infrasound signal can consist of a superposition of signals
from different time-variant and stationary infrasound sources.
If on the one hand each infrasound source is repetitive, on the
other hand it can undergo modifications in time. In these cases,
correlation detector may fail in detection of the variation in
infrasound waveforms caused by these factors. Subspace detector
is supposed to accomplish these two tasks: high sensibility and
high flexibility.

DATA AND METHOD

For the purpose of subspace-based detection implementation,
theory of detection problem is first introduced. Successively
subspace approach is explained and an empirical procedure
used to build and design signal subspace described. Other two
sub-sections are dedicated to discuss the statistical analysis of
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noise related to parameter estimation, both for subspace,
correlation and STA/LTA detectors.

Subspace Detection Problem
Detectors usually implement a binary hypothesis test on the
presence or absence of the signal of interest in a data
observation window (Van Trees, 1968). In particular, the test
is aimed to choose between the null hypothesis H0, where noise
only is present, and the alternative hypothesis H1, where both the
signal of interest and noise are present.

x[n] � η under hypothesisH0, (1)

x[n] � s + η under hypothesis H1. (2)

where x[n] is the n-long window of continuous data, s is the signal of
interest and η is the background noise assumed zero-mean Gaussian
and temporally and spatially uncorrelated. In general, considering a
multi-channel data acquisition, if Nt is the number of samples of
observation window and Nc is the total number of data channel
streams, the total number of samplesN of a multiplexed data stream
vector x[n] is:

N � Nt . (3)

In our framework, infrasound sensor acquires only one
channel, so in Eq. 3 N � Nt .

Signal s in Eq. 2 is assumed deterministic and dependent on a
vector of an unknown parameters a and expressed by unknown
linear combination of a basis waveform:

s � Ua, (4)

where U is a N × d matrix of d unknown signals that represent
the subspace bases. The subspace dimension d takes value from 1
to length of vector x[n]: d ∈ [1N]. Without loss of generality, U
can be made orthonormal:

UTU � I, (5)

where I is d × d matrix.
Under these assumptions, the probability densities function

(pdf) for the recorded data under the null hypothesis H0 (no
events present) is:

p(x[n]|H0) � [ 1
2πσ2

]
N/2

exp( − 1
2σ2

xt[n]x[n]), (6)

while, under the null hypothesis ofH1 (events present), pdf can be
expressed as:

p(x[n]|H1) � [ 1
2πσ2

]
N/2

exp( − 1
2σ2

(x[n] − Ua)t(x[n] − Ua)).
(7)

FIGURE 1 | Digital elevation model of Etna (Tarquini et al., 2007) with the location of the infrasonic station used in this work (green triangle EMFO), summit crater
acronyms (VOR, Voragine; BN, Bocca Nuova; NEC, North-East Crater; SEC, South-East Crater; NSEC, New South-East Crater), infrasonic tremor source locations (red
circles) and infrasonic event source locations (blue circles).
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As formulated by Harris (2006), the detection rule is a
likelihood ratio test comparing the probability that the
observed data are due to signal and noise to the probability
that they are due to noise alone:

Λ(x[n]) � p(x[n]|H1)
p(x[n]|H0)< c, (8)

using Eqs. 6, 7, the likelihood ratio test expressed in Eq. 8 can be
rewritten as a Generalized Likelihood Ratio Test (GLRT; Van
Trees, 1968):

Λ(x[n]) �
max
{a.σ} p(x[n]|H1)
max
{σ} p(x[n]|H0) < α. (9)

Using natural logarithm, Eq. 9 can be rewritten as:

l(x[n]) � l(Λ(x[n])) � −N
2
(x

t[n]x[n] − xtp[n]xp[n]
xt[n]x[n] )

� −N
2
(1 − c[n]), (10)

where l(x[n]) � l(Λ(x[n])) when the pdfs are in the exponential
family, xp[n] is the least-squares estimate of the signal x[n] in the
detection window:

xp[n] � UUTx[n], (11)

and c[n], known as the subspace detection statistics, represents
the ratio of the energy projected into the signal subspace U to the
energy in the original data, and is given by:

c[n] � xTp [n]xp[n]
xT[n]x[n] ∈ [0 1]. (12)

The generalized likelihood ratio test (Eq. 9) detects an event of
interest if the generalized log likelihood ratio (Eq. 10) exceeds a
certain threshold α:

l(x[n]) � −N
2
(1 − c[n])> α. (13)

Considering the subspace detection statistics c[n], an event is
detected if:

c[n]> c, (14)

where c is the threshold for the subspace and needs to be defined.
In order to apply subspace detector based on Eq. 14, the first step
is the construction of the signal subspace U, starting from the
template matrix.

This matrix has peculiar characteristics, which are described in
the Template Matrix, and consists of templates, representing
previously observed events of interest, and is a fundamental
tool for building the subspace. The number and type of
templates needed to build the matrix depends on detector
design. Signal subspace is the core of the algorithm, since it is
the vector subspace used to represent the reference templates to
be found into the signal. In order to extract orthonormal bases,
Singular Value Decomposition (SVD) is applied to the template
matrix, and then the dimension of the subspace is chosen. The

dimension determines the amount of energy that the subspace is
able to capture. Once the SVD is applied, d singular values are
used to build the subspace (Eqs. 4, 11). A few approaches have
been implemented in literature to set this parameter, aiming to
gain a compromise between detecting weak and less represented
events (characterized by waveforms quite different from the
reference templates) and having low false alarm or loss of
significant events. In this paper, following Harris (2006), we
selected the dimension parameter by means of an empirical
approach making use of two different graphs as explained in
Subspace Design.

Regarding the definition of the threshold c, Harris (2006)
studied the distribution of c[n] statistics and derived the
threshold using the Neyman-Pearson criterion (Van Trees,
1968). Under this criterion, the subspace dimension d is
firstly determined by maximizing the probability of
detection PD for a fixed false alarm rate PF using the
following equations:

1 − Fd,N−d( c

1 − c

N − d
d

) � PF , (15)

1 − Fd,N−d( c

1 − c

N − d
d

, fc.N .SNR, (1 − fc).N.SNR) � PD.

(16)

where PF is evaluated from the cumulative central F distribution
with d and N-d degrees of freedom under the null hypothesis H0

and PD is expressed in terms of the cumulative doubly non-
central F distribution (Mudholkar et al., 1976) with the same
degrees of freedom, fc.N.SNR is the non-centrality parameter for
the numerator, [(1 − fc).N.SNR] is the non-centrality parameter
for the denominator, f�c is the average fraction of energy for all
design set events,N is the embedding space dimension, and (N-d)
is the dimension of the orthogonal complement of the signal
subspace; finally SNR is the signal-to-noize ratio in the detection
window.

Dataset
In order to design a dataset for the analysis, we chose a 1-h-long
time interval (13:30–14:30 of May 30, 2019) of infrasound
continuous signal recorded at EMFO station. This station
belongs to the Infrasound Permanent Network run by Istituto
Nazionale di Geofisica e Vulcanologia (INGV), is equipped with a
GRAS 40AN microphone with a flat response at a sensitivity of
50 mV/Pa in the frequency range of 0.3–20,000 Hz and sampling
rate of 50 Hz, and is located about 8 km far from Etna summit
craters and about seven from the eruptive fracture (Figure 1).
This station, together to ESLN (which is deployed at about the
same distance from the summit area), was the only station able to
record the explosive activity, is one of the less noisy stations
among the permanent network, and, if compared with summit
stations (located at higher altitude) is less affected by wind noise
that can hide weak amplitude transients.

Signal buffer is characterized by infrasound events generated
by an intense Strombolian activity that occurred at an eruptive
fracture opened southeast of New Southeast Crater on the firsts

Frontiers in Earth Science | www.frontiersin.org March 2021 | Volume 8 | Article 5799234

Sciotto and Montalto Subspace Detection of Infrasound Events

159

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


hours of May 30, 2019 (here after NSEC, INGV-OE Internal
Report, 2019). Here lava flows, ash emission, Strombolian and
spattering activity took place. Explosive activity produced
infrasound amplitude transients characterized by most of
energy in the band 2.5–10 Hz, which are identifiable in the
spectrogram from about 07:00 UTC, and with amplitude
varying in a wide range (Figure 2). From about 14:00 UTC
infrasonic activity at this fracture became more energetic,
explosion generated infrasound events were more energetic
and very close in time (Figure 2). Higher amplitude infrasonic
events were detected and located by the real-time automatic
system in force at INGV-OE (INGV-OE Internal Report,
2019) in correspondence of the eruptive fracture, as shown by
blue circles in Figure 1.

In addition to infrasound events from the eruptive fracture, an
overload continuous low frequency infrasonic tremor (∼0.6Hz,
Figure 2), whose source was located at Bocca Nuova crater (BN;
red circles in Figure 1), was recorded. These characteristics make the
dataset particularly useful to be used as test for an automatic detection
algorithm. In particular, the chosen signal is suitable for verifying the
subspace capability to detect the maximum number of infrasound
events, especially of low amplitude ones, and to compare its
performance with other detection algorithms. Furthermore, it

allows us to verify this triggering technique in presence of noise,
which is represented by the overlying low frequency infrasonic tremor.

Subspace Algorithm Implementation
The subspace algorithm for event detection needs several key steps to
be accomplished in order to be efficiently implemented, which are
examined in following subsections and are summarized as follows:

• events of interest selection and pre-processing of template
matrix (Template Matrix);

• statistical analysis of noise aiming to choose the threshold
value (Subspace Design);

• subspace design (SVD and setting up of required parameters
for subspace building) (Threshold Setting).

Three buffers of infrasound signal were selected for subspace
method application (Figure 2): 1) a 1 h-long time interval of signal
consisting of background noise, and with no infrasound events,
recorded during the same day of the dataset of analysis, to carry
out statistical parameter estimation (00:00–01:00 of May 30, 2019; all
times are in GMT); 2) a 3 h-long time interval of signal characterized
by infrasound events of interest, for waveform templates selection (12:
00–15:00 of May 30, 2019); and 3) 1 h-long time interval to test the

FIGURE 2 | Infrasound signal recorded at EMFO station on May 30, 2019 including the three buffers took into account in this work for statistical parameter
estimation (00:00 -01:00), templates selection (12:00 -15:00) and subspace detector application (13:30 -14:30) (top) and normalized spectrogram, where spectra are
averaged in 2-min-long windows (bottom).
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subspace detector and searching for events of interest (13:30–14:30 of
May 30, 2019).

We performed a first test by detrending and filtering each
signal window between 1 and 10 Hz, to get rid of noise such as
wind and low frequency tremor generated by a second infrasound
source (Figures 1, 2), and set to zero mean and unit variance. A
second test was performed by filtering signal between 0.5 and
10 Hz, in order to include the low frequency infrasonic tremor,
and verify its influence on the detection.

Template Matrix
Building the template matrix is the preparatory step for subspace
design. The template matrix is thought to consist of events of
interest we are searching into the continuous signal. These can be
manually selected, or, for a more robust procedure, waveforms
can be automatically detected by a trigger algorithm (Maceira
et al., 2010; Song et al., 2014). We made use of this last approach,
and first triggered the events by means of STA/LTA energy
detector. Secondly, we applied waveform cross-correlation,
choosing an appropriate threshold, and selected the first event
of each family, related to the infrasound source of interest
(Figure 3A) in which the events were grouped. Once
extracted, waveforms were aligned (Figure 3B); the algorithm
has been designed to allow the operator to choose the alignment
method. Waveforms can be aligned based on maximum or
minimum amplitude value, or by means of manual picking.
Successively, they were placed as columns in the template matrix.

Subspace Design
Signal subspace (U in Eq. 4) is the vector subspace used to
represent the reference templates we want to find into continuous
signal. The SVD provides the singular values allowing to build the

subspace of the signal, that is a low-dimension representation of
signal. Meaning of the dimension of subspace relies in the amount
of energy that it is able to capture, and hence in the degree of
waveform variation the algorithm is capable to detect. A few
approaches have been implemented in literature (e.g., Harris,
2006; Song et al., 2014) to set this parameter, aiming to gain a
compromise between detecting weak and less represented events
(that is events having waveform quite different from reference
template) and having low false alarm rate and possible loss of
significant events. In this paper, following Harris (2006), we
selected the dimension parameter by means of an empirical
approach, making use of two different graphs. First, the
fractional energy captured for each event is calculated:

f ic � aiTd a
i
d , (17)

where f ic is the fraction of energy captured by the ith template and
aid is the ith unknown parameter of the coefficient matrix (Eq. 4,
see Song et al., 2014 for further details). Figure 4A shows fc of
each template in function of the dimension of representation. The
second plot is built by calculating the difference between the
average captured energy in function of the dimension
(Figure 4C):

Δfc � fc(d + 1) − fc(d), (18)

where fc is the average fraction of energy captured by each of the d
templates. Values of f ic and Δfc determined for our dataset of
analysis are plotted in Figure 4. In particular, in Figure 4A the
dimension d, instead of maximizing PD value (Eq. 16), is
graphically determined as the lower value so that all curves (or
the average curve) lay above the assumed percentage of energy we
want to capture (e.g., 80 or 90%). As an alternative, in Figure 4C

FIGURE 3 | Event waveforms composing the template matrix before (A) and after (B) pre-processing.
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an adequate dimension is the value beyond which the amount of
energy increase is negligible. Once the dimension is selected, the
subspace is built.

The sufficient statistic for the subspace can be now calculated
by implementing Eqs. 11, 12, by means of windows of signal
subspace sliding against the continuous signal, and compared
against the threshold (Eqs. 13, 14) to declare if an event is present.

In subspace detector algorithm, signal in a detection
window is projected into a subspace spanned by the d
columns of the subspace representation. The statistic is
therefore the ratio of the squared norm of the projected
vector to the squared norm of the original data vector (Eq.
12). It ranges between 0 and 1 and is a measure of the linear
dependence between the signal and the orthonormal bases
constituting the signal subspace. Every time the sufficient
statistic exceeds the given threshold (c) a detection is
declared.

Threshold Setting
The choice of the threshold c is always a compromise between
an aggressive value, with the highest number of detections, even
of less energetic events and leading to a high number of false
detections, and a conservative value, when we want a minimum
number of false detections at the cost of less true detections.
Usually, threshold choice is based on the operator background
experience and signal characteristics, that makes its value pretty
subjective. In this paper, we tried to derive an empirical
threshold value based on the data statistics and on the nature
of the problem, e.g., waveform of events to be identified into
incoming signals. In order to objectively compare the
performance of subspace detector, we determined threshold
of the three different applied triggering algorithms (subspace
detector, correlation detector and STA/LTA) by means of the
same approach.

FIGURE 4 | Fraction of captured energy by each template of the designed matrix in function of the subspace dimension for signal filtered in the band 1–10 Hz (A)
and in the band 0.5–10 Hz (B). Black curve represents captured energy by each template, red curve the average captured energy, while, blue and light blue lines
represent the 90 and 80 percentage of captured energy, respectively. Increment of average fractional captured energy (Δfc), in function of subspace dimension for signal
filtered in the band 1–10 Hz (C) and in the band 0.5–10 Hz (D).
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Following Harris (2006) and Song et al. (2014), we
implemented the Neyman-Pearson decision criterion (Van
Trees, 1968). In the criterion, the threshold c is derived from
the false alarm rate with Eq. 15. In order to obtain the detection
threshold, a few parameters need to be determined: 1) the false
alarm probability (Eq. 15), 2) subspace dimension and 3) N.
Regarding this latter, we should discuss about noise. Indeed, noise
in the detection windows is assumed to be statistically
uncorrelated. As Wiechecki-Vergara et al. (2001) point out,
the effective dimension of the embedding space can be
significantly lower than N if the data are filtered prior to
detection. Noise could be correlated and could reduce the
effective dimension of the embedding space even if data are
not filtered. As Song et al. (2014) suggested, we applied the
correction for the influence of the correlated noise, and
estimated the effective embedding space dimension of
detection windows N̂ used in subspace/correlation, and in
STA/LTA detectors. According to Wiechecki-Vergara et al.
(2001), the effective dimension of the embedding space N̂ is
related to the variance of the sample correlation coefficient ĉij
between noise data ηj and event signal si.

ĉij � siTηj											
(siT si)(ηjTηj)

√ . (19)

In particular, once calculated the cross-correlation values
using the specific window length N, the variance is obtained
and the effective embedding space of the respective detection
window (subspace, correlation, STA/LTA) are calculated by
means of:

N̂ � 1 + σ−2 ≤ N , (20)

in the light of it, Eq. 15 can be rewritten as:

1 − F
d,N̂−d(

c

1 − c

N̂ − d
d

) � PF . (21)

Hence, simple correlation detector can be written as:

ĉ � sTmx										
(sTmsm)(xTx)

√ , (22)

where sm is the master event data, x is data to be detected. A
comparison between Eq. 12 and Eq. 22 shows that the correlation
coefficient ĉ is equivalent to the square root of the subspace
detection statistics c[n]with a signal subspace dimension of d � 1.
Here cross-correlation threshold is cc and both detectors have a
false alarm rate:

1 − F
1,N̂−1(

cc
1 − cc

N̂ − 1
1

) � PF . (23)

After obtaining N̂ for subspace, next step is related to
estimation of false alarm probability PF by means of Eq. 23.

In order to accomplish this task, threshold cc is obtained by
cross-correlating each template with noise data by means of
Eq. 19 (see Song et al., 2014 for further details). Cross-

correlation value distribution is then plotted and the detection
threshold is set aiming to obtain the minimum number of false
detection (Figure 5). In this paper, we empirically estimated the
correlator threshold as the value corresponding to a chosen
percentile of the distribution.

Once the cross-correlation threshold cc and the effective
embedding space of detection window (N̂) are known, false
alarm probability can be estimated by inverting Eq. 23.

At this stage of the processing, we own all parameters needed
to derive c from Eq. 21, that is: 1) the false alarm probability PF
(Eq. 23), 2) the effective dimension of the embedding space N̂ ,
and 3) the subspace dimension (whose method of derivation is
exposed in following sub-section).

With the aim of evaluating the advantages/effectiveness of the
subspace-based detector, we make a comparison with the
performance of STA/LTA and the simple correlator trigger
algorithms. As regards the former, the detection statistic is
calculated:

r[n] � xTSTA[n]xSTA[n]/NSTA

xTLTA[n]xLTA[n] /NLTA
, (24)

where x are data to be scanned, and the detection problem is
formalized as:

r[n]> cr . (25)

The STA/LTA threshold was determined by means of cr the same
approach implemented for subspace, once computed N̂STA,
N̂LTA (obtained by Eqs. 19, 20) and PF (obtained by Eq. 23),
solving the following equation:

PF � 1 − F
N̂STA,N̂LTA

(cr). (26)

Regarding the STA/LTA detector, based on event spectral
content, we empirically set STA and LTA window length equal to
3 and 25 times the dominant period (Withers et al., 1998)
respectively, corresponding with the lower frequency
characterizing infrasound events.

Correlation detector was instead implemented as a subspace
detector in which d � 1, by means of Eq. 22. Detection window
length chosen for subspace and correlator scan was set to 4 times
the dominant period to include the entire waveform
(Figure 3B).

RESULTS

Subspace-based algorithm, as well as correlation detector and
STA/LTA, were applied to the dataset of 30/May/2019 (13:
30–14:30), which consists of the infrasound signal recorded by
EMFO station, and is characterized by infrasound events
located at the eruptive fracture and infrasonic tremor
located at BN (Figures 1, 2). Concerning the subspace
method, we used, as event templates, waveforms extracted
from signal recorded at the same station (Figure 3A), by
means of the approach described in Template Matrix,
setting a cross-correlation threshold equal to 0.6. Once
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template matrix has been designed, waveforms were cut in
62 points-long windows, filtered, normalized and aligned by
their positive peaks (Figure 3B). A first test was carried out by
filtering signal in the frequency band 1–10 Hz. This frequency
band was chosen with the aim of filtering out the correlated
low frequency tremor.

We performed two computations, by using 99.9 and 99.99,
as percentile for statistic threshold estimation (Eqs. 22, 23,
Figure 6), and built the subspace by using a dimension of
representation equal to 4 (Figures 4A,C). The estimated

thresholds and other setting parameters are reported in
Table 1.

One subspace detection statistic c[n] value is calculated in
each detection window, with a sliding step of three points, we
obtain Ntot/3 c[n], where Ntot is the signal buffer length. In
Figure 6, the recorded signal and the sufficient statistics of
subspace detector (c[n]) above the estimated threshold
are shown.

With the aim of avoiding more values of detection statistics for
each triggered event, we extrapolated one detection in a 1 s long

FIGURE 5 | Histograms of cross-correlation value distributions between event templates and noise data where infrasonic tremor is filtered out (A), and with
presence of infrasound tremor (B).

FIGURE 6 | Signal recorded at EMFO station and filtered in the band 1–10 Hz (top) and subspace detection statistic values (c(n)) above the estimated threshold (ɣ).
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window. For the purposes of the comparison among subspace,
correlator and STA/LTA performance, the detections computed
by the aforementioned algorithms are overlapped to the
continuous signal in Figure 7A. Histograms, obtained by
counting detections in 2 min long windows for all algorithms,
are shown in Figure 7B.

Plots of the occurrence rates show that subspace succeeds in
detecting a higher number of amplitude transients, especially if
compared with the STA/LTA triggered events (Figure 7B).

Results reveal the capability of the subspace-based algorithm
to detect infrasound events of lower amplitude, while STA/LTA
algorithm is able only to detect high amplitude transients. Figures
8A,B, which reports a zoom of continuous signal and the detected
event positions, shows that subspace-based algorithm detected
even more transients than correlator.

Successively, with the aim of highlighting the influence and
the importance of parameter setting in this kind of approach,
we run the detectors by setting the percentile equal to 99.99

TABLE 1 | Setting parameters estimated or fixed in the detection.

Parameter Estimated (E) or fixed (F) value

Filtering band 1–10 Hz 1–10 Hz 0.5–10 Hz
Percentile 99.9 (F) 99.99 (F) 99.9 (F)
Probability of false alarm (PF) 7.4 e−04 (E) 6.02 e−05 (E) 8.9 e−04 (E)
Subspace dimension (d) 4 (E) 4 (E) 5 (E)
Threshold for subspace (Y) 0.45 (E) 0.53 (E) 0.63 (E)
Threshold for STA/LTA (Yr) 2.33 (E) 2.74 (E) 2.18 (E)
Threshold for correlator (Yc) 0.28 (E) 0.37 (E) 0.38 (E)
Detection window length for subspace/correlation 62 pt (F) 62 pt (F) 62 pt (F)
Detection window length for STA 43 pt (F) 43 pt (F) 43 pt (F)
Detection window length for LTA 375 pt (F) 375 pt (F) 375 pt (F)
Number of detections with subspace 881 (E) 483 (E) 201 (E)
Number of detections with STA/LTA 101 (E) 47 (E) 93 (E)
Number of detections with correlator 581 (E) 278 (E) 164 (E)

FIGURE 7 | Signal recorded at EMFO station and filtered in the band 1–10 Hzwith the overlapped positions of detections obtained in 1-s longwindow by subspace
(blue asterisks), correlation (green asterisks) and STA/LTA (red asterisks) detection algorithms for 99.9 percentile and using four SVD (A). Event occurrence rate resulting
from STA/LTA, correlation and subspace (bottom) detection algorithms counted in 2-min-long window (B).
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instead of 99.9, used to obtain the respective detection
threshold. The estimated parameters are reported in
Table 1. By using a 99.99 percentile, detection threshold of
the three detectors raises and, as a consequence, we observe a
decrease of detection number as also demonstrated by the
occurrence rates (Figure 9 and Table 1). Furthermore,
subspace and correlator exhibit a similar trend of the event
occurrence rate.

In the first case (percentile 99.9), the three detectors trigger
more events with respect to the second one (percentile 99.99)
(Figures 8, 9). In particular, the subspace succeeds in the
detection of very low amplitude transients. Nevertheless, a
lower threshold can imply the identification of a higher
number of false detections. By an inspection of signal buffer
reported in Figures 8, almost all the detections are real and not
false positives.

Reliable estimation of the detection capability when correlated
noise, due to low frequency infrasonic tremor, is overlapped, was
tested using the three described methods. In the light of it, signal
was previously filtered in the band 0.5–10 Hz. In such a way,
signal to be scanned is characterized by both infrasound events,
exhibiting a frequency content in the band 2.5–10 Hz, and the
infrasonic tremor, whose spectral peak is at ∼0.6 Hz (Figure 2).

The resulting cross-correlation value distribution is shown in
Figure 5B. A value of 99.9 as percentile was chosen, and the
subspace was built by means of five SVD (Figures 4B,D). By
introducing a correlated continuous tremor on the signal, the

subspace and correlator thresholds result higher, due to the
increase of variance, as expected (Table 1).

In this case, comparison with STA/LTA detector is
inconsistent due to a not well defined statistics (Eqs. 19, 20,
26) used in the threshold cr computation. Despite this, simple
correlation detector and subspace detector, from a practical point
of view, exhibit robustness in the detection of waveforms
transient as reported in Figure 10.

Comparison between Figures 7B, 10B, whose results were
obtained by using similar false alarm probability (Table 1),
reveals that, if the low frequency infrasonic tremor is
overlapped to the signal and not filtered out, the number of
detections by means of both subspace and correlation based
methods is lower. Furthermore, even in this case, subspace
method succeeds in event detection with respect to the
correlator detector.

DISCUSSION AND CONCLUSION

In the present work, we applied a subspace-based trigger
algorithm for the automatic detection of infrasound amplitude
transients in volcanic area. A 1 h-long buffer of continuous
infrasound signal characterized by amplitude transients related
to Strombolian activity, taking place at an eruptive fracture, was
analyzed (Figure 1). In order to test the feasibility and
performance of this technique, we made a comparison among

FIGURE 8 | Zoom in of Figure 7A (example 1, A and example 2 in B) by using 99.9 as percentile and respective comparison with results of Figure 9A using 99.99
as percentile (C,D).
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FIGURE 9 | Signal recorded at EMFO station and filtered in the band 1 -10 Hz with the overlapped positions of detections obtained in 1-s long window by subspace
(blue asterisks), correlation (green asterisks) and STA/LTA (red asterisks) detection algorithms for 99.99 percentile and using four SVD (A). Event occurrence rate
resulting from subspace, correlation and STA/LTA detection algorithm counted in 2-min-long window (B).

FIGURE 10 | Signal recorded at EMFO station and filtered in the band 0.5–10 Hz with the overlapped positions of detections obtained in 1-s long window by
subspace (blue asterisks) and correlation (green asterisks) detection algorithms for 99.9 percentile and using five SVD (A). Event occurrence rate resulting from subspace
and correlation detection algorithm counted in 2-min-long window (B).
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results obtained by implementing STA/LTA, correlation and
subspace detectors. Several computations were carried out by
using different setting parameters (Table 1).

Results highlight that subspace detector succeeds in
detection of explosive activity related infrasound events.
Indeed, Figures 7B and 9B, show that subspace detector
turns out to detect a higher number of amplitude
transients with respect to both correlation and STA/LTA
trigger algorithms. This is particularly true for a lower
false alarm probability (that is choosing 99.99 as percentile
of cross-correlation distribution values in Eq. 22, Figure 5A).
Indeed, the ratio between the total number of detections of
subspace with respect to correlation and STA/LTA is higher
than for a higher false alarm probability (that is choosing
99.9) (Table 1).

It is worth noting that subspace detector is able to detect even
infrasound events of low amplitude (Figure 8), which, especially
in presence of noise, are difficult to be triggered by means of an
energy detector. Several runs were performed by using variable
setting parameter values. These tests demonstrate that the choice
of setting parameter plays a fundamental role in the outcomes of
elaborations. In particular, an in-depth statistical analysis of noise
needs to be carried out, in that distribution value of cross-
correlation between template waveform and noise determines
the threshold of the detector.

Succeeding in the detection of all amplitude transients
allows to monitor the time variation of occurrence rate, and
thus to follow the evolution of explosive activity. Indeed,
energy-based trigger algorithm (as STA/LTA) often fails in

detection of low amplitude transients, events with low signal
to noise ratio and events too close in time to each other.

With the aim of performing a quantitative estimate of the
subspace effectiveness, especially in terms of false alarms and
missed detections, and in general, to validate the results, a visual
inspection of the 1 h-long signal buffer (Figure 6) and its
comparison with the results obtained by means of the three
algorithms were carried out. In particular, concerning the
performance assessment goal, we chose to analyze the results
of the second test presented into the work (Figures 8C,D, 9), that
is the one with percentile equal to 99.99 (which is the most
conservative test), and inspected the true and false positive, and
true and false negative events. We collected a dataset of 669 true
events belonging to the same family (same source). Successively,
by comparing waveforms with the detections (Figure 9A), a
confusion matrix was calculated, for each of the three algorithms
(Figure 11). The performance indices were then extrapolated
from each confusion matrix (Table 2).

The validation results show that the subspace detector is
generally characterized by the best indices among those
derived from the confusion matrix (Figure 11; Table 2). In
particular, it performs the best error rate (number of all
incorrect predictions divided by the total number of dataset),
accuracy (correct predictions divided by the total number of the
dataset), and sensitivity, also called true positive rate, which is the
number of correct positive predictions divided by the total
number of positive, compared to the other two methods. In
particular, STA/LTA gives the poorest results, as expected
(Table 2). Nevertheless, it has to be highlighted that the

FIGURE 11 | Confusion matrices of subspace, correlator and STA/LTA triggering algorithms. True positive (TP), false positive (FP), true negative (TN) and false
negative (FN) values were obtained by an accurate analysis consisting of a visual inspection of the 1 h-long buffer of continuous infrasound signal and its comparison with
the detections.

TABLE 2 | Performance indices, with relative equations, calculated from confusion matrices (see Figure 11) for subspace, correlator and STA/LTA triggering algorithms.

Performance indices

Error rate
(ERR %)

Accuracy (ACC %) Precision (PR %) Sensitivity (SN %) Specificity (SP %) False positive
rate (FPR %)

F-score (FS %)

EQUATION FP + FN
TP + TN + FP + FN 1 − ERR TP

TP + FP
TP

TP + FN
TN

TN + FP
FP

TN + FP � 1 − SP 2×SN ×PR
SN +PR

Subspace 16.78 83.22 86.77 64.72 94.16 5.83 74.14
Correlator 22.94 77.06 95.39 40.20 98.85 1.15 56.57
STA/LTA 34.78 65.22 100.00 6.43 100.00 0.00 12.08
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correlator and STA/LTA show the best precision, which
quantifies the number of correct positive predictions divided
by the total number of the positive prediction, specificity
(representing the true negative rate) and false positive rate,
due to the lower false positive values and higher true negative
values (Figure 11; Table 2). Finally, F-Score, providing a single
score balancing both precision and sensitivity, shows the highest
value in case of the subspace detector, due to the high rate of the
actual triggered waveforms (Figure 11; Table 2). In the light of
this, the subspace detector method can be considered a good
compromise in recognizing low-amplitude waveforms,
particularly useful in tracking volcanic activity producing low-
energy and very close in time events.

As regards the better performance of subspace over correlation
detector, in terms of error rate, accuracy, and sensitivity, this can be
ascribed to the events waveform variability. Indeed, subspace
method allows making a comparison between the continuous
signal and a set of waveforms of interest (templates) and the
linear combination among them, instead of a single one or
multiple in few cases (Hotovec-Ellis and Jeffrines, 2016; Senobari
et al., 2019), as the correlation detector does. This makes the
subspace detector particularly attracting and suited to detect
infrasound events undergoing slight modifications in waveforms
due for example to geometrical characteristic variations (e.g., vent/
crater enlargement) (e.g., Cannata et al., 2011; Fee et al., 2017;
Matoza et al., 2019b).

Automatic detection of seismo-volcanic events (seismic and
infrasound) in monitoring framework and/or analyses of huge
dataset is successfully currently carried out by means of energy
detectors, correlation-based algorithms or methods making use of
advanced signal processing techniques (e.g., Cannata et al., 2013a,
Cannata et al., 2013b; Thompson, 2015; Hotovec-Ellis and Jeffrines
2016; Bueno et al., 2019; Matoza et al., 2019b; Senobari et al., 2019).
Among more recent developed trigger algorithms, for example,
VINEDA, designed for infrasound event detection (Bueno et al.,
2019), parses the original signal into a characteristic function, whose
amplitude is proportional to the sharpness of the original explosion
onset. This latter method is very useful to increase signal to noise
ratio, much better than the STA/LTA approach, and is able to detect
even low-amplitude transients. Another recent method, REDPy
(Hotovec-Ellis and Jeffrines, 2016), designed for earthquake
detection, consist in performing a STA/LTA, storing the triggered
events, and then cross-correlating waveforms to find similar events.
REDPy is an effective tool in order to discover events belonging to
the same family and offers the advantages and the disadvantages of
both STA/LTA and cross-correlation. In the framework of our goal,
that is to identify and extracting waveforms similar to each other
(hence, belonging to the same source), subspace detector exhibits the
advantages of being able to detect low-amplitude transients
associated to a specific source, as well as transients showing
slight waveform modifications. The latter feature is related to
the use of SVD and the subspace method, which consists of the
scanning of the signal buffer with all the linear combinations
among basis vectors derived from the template matrix
(previously designed). An additional feature of the subspace
method lies in its reliability in the detection of events that are
close in time to each other.

Furthermore, in the proposed subspace-based detection method,
algorithm parameters are automatically tuned by implementing a
statistical analysis of the background noise.

In general, as reported in Song et al., 2014, the limitation of the
subspace detector is the complexity and relatively large computation
cost in building the signal subspace. Nevertheless, the aim of our
work focused on the statistical analysis of noise in order to optimize
the quality of the trigger, in terms of low-amplitude event number.

In future developments, the subspace detector method has the
potentiality to be adapted to multi-station framework, considering
multiple instances or by multiplexing the data (e.g., Song et al., 2014;
McMahon et al., 2017). In the perspective of a real-time
implementation, a detector should scan a 2-min-long buffer.
Actually, using simple Matlab scripts, it takes 0.4 s on average to
process 2 min of infrasound data, seeming suitable for real-time
processing. Future work will be dedicated to optimization and code
compilation to build a module working in a real-time framework.

Findings of this work reveal the potentiality of subspace-based
method in infrasound event detection. Advantages of this technique
are particularly interesting in infrasound recorded in open-conduit
volcanoes such Mt. Etna, where activity at summit craters often
consists of persistent Strombolian explosions, producing infrasound
events very close in time, that can take place at several vents, thus
giving rise to multiple and time varying infrasound sources.

This first application of a subspace-based detection algorithm to
infrasound signal proves that this is an efficient technique for
identification and triggering of events in volcanic area.
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