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The most biologically-inspired artificial neurons are those of the third generation, and are 
termed spiking neurons, as individual pulses or spikes are the means by which stimuli are 
communicated. In essence, a spike is a short-term change in electrical potential and is the 
basis of communication between biological neurons. Unlike previous generations of artificial 
neurons, spiking neurons operate in the temporal domain, and exploit time as a resource 
in their computation. In 1952, Alan Lloyd Hodgkin and Andrew Huxley produced the first 
model of a spiking neuron; their model describes the complex electro-chemical process that 
enables spikes to propagate through, and hence be communicated by, spiking neurons. 

Since this time, improvements in experimental procedures in neurobiology, particularly 
with in vivo experiments, have provided an increasingly more complex understanding of 
biological neurons. For example, it is now well understood that the propagation of spikes 
between neurons requires neurotransmitter, which is typically of limited supply. When the 
supply is exhausted neurons become unresponsive. The morphology of neurons, number 
of receptor sites, amongst many other factors, means that neurons consume the supply 
of neurotransmitter at different rates. This in turn produces variations over time in the 
responsiveness of neurons, yielding various computational capabilities. Such improvements 
in the understanding of the biological neuron have culminated in a wide range of different 
neuron models, ranging from the computationally efficient to the biologically realistic. These 
models enable the modelling of neural circuits found in the brain. 

In recent years, much of the focus in neuron modelling has moved to the study of the 
connectivity of spiking neural networks. Spiking neural networks provide a vehicle to 
understand from a computational perspective, aspects of the brain’s neural circuitry. This 
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understanding can then be used to tackle some of the historically intractable issues with 
artificial neurons, such as scalability and lack of variable binding. Current knowledge of
feed-forward, lateral, and recurrent connectivity of spiking neurons, and the interplay between 
excitatory and inhibitory neurons is beginning to shed light on these issues, by improved 
understanding of the temporal processing capabilities and synchronous behaviour of 
biological neurons. This research topic aims to amalgamate current research aimed at tackling 
these phenomena. 
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The most biologically-inspired artificial neurons are those of the
third generation, and are termed spiking neurons, as individual
pulses or spikes are the means by which stimuli are commu-
nicated. In essence, a spike is a short-term change in electrical
potential and is the basis of communication between biological
neurons. Unlike previous generations of artificial neurons, spik-
ing neurons operate in the temporal domain, and exploit time
as a resource in their computation. In 1952, Alan Lloyd Hodgkin
and Andrew Huxley produced the first model of a spiking neu-
ron; their model describes the complex electro-chemical process
that enables spikes to propagate through, and hence be com-
municated by, spiking neurons. Since this time, improvements
in experimental procedures in neurobiology, particularly with
in vivo experiments, have provided an increasingly more com-
plex understanding of biological neurons. For example, it is now
well-understood that the propagation of spikes between neurons
requires neurotransmitter, which is typically of limited supply.
When the supply is exhausted neurons become unresponsive. The
morphology of neurons, number of receptor sites, amongst many
other factors, means that neurons consume the supply of neu-
rotransmitter at different rates. This in turn produces variations
over time in the responsiveness of neurons, yielding various com-
putational capabilities. Such improvements in the understanding
of the biological neuron have culminated in a wide range of dif-
ferent neuron models, ranging from the computationally efficient
to the biologically realistic. These models enable the modeling of
neural circuits found in the brain.

In recent years, much of the focus in neuron modeling has
moved to the study of the connectivity of spiking neural net-
works. Spiking neural networks provide a vehicle to understand
from a computational perspective, aspects of the brain’s neural
circuitry. This understanding can then be used to tackle some
of the historically intractable issues with artificial neurons, such
as scalability and lack of variable binding. Current knowledge of
feed-forward, lateral, and recurrent connectivity of spiking neu-
rons, and the interplay between excitatory and inhibitory neurons
is beginning to shed light on these issues, by improved under-
standing of the temporal processing capabilities and synchronous
behavior of biological neurons. This research topic spans current
research on neuron models to spiking neural networks and their
application to interesting and current computational problems.
The research papers submitted to this topic can be categorized
into the following major areas of more efficient neuron model-
ing; lateral and recurrent spiking neural network connectivity;

exploitation of biological neural circuitry by means of spiking
neural networks; optimization of spiking neural networks; and
spiking neural networks for sensory processing.

Moujahid and d’Anjou (2012) stimulate the giant squid
axon with simulated spikes to develop some new insights into
the development of more relevant models of biological neu-
rons. They observed that temperature mediates the efficiency of
action potentials by reducing the overlap between sodium and
potassium currents in the ion exchange and subsequent energy
consumption. The original research article by Dockendorf and
Srinivasa (2013) falls into the area of lateral and recurrent spik-
ing neural network connectivity. It presents a recurrent spiking
model capable of learning episodes featuring missing and noisy
data. The presented topology provides a means of recalling previ-
ously encoded patterns where inhibition is of the high frequency
variety aiming to promote stability of the network. Kaplan et al.
(2013) also investigated the use of recurrent spiking connectiv-
ity in their work on motion-based prediction and the issue of
missing data. Here they address how anisotropic connectivity pat-
terns that consider the tuning properties of neurons efficiently
predict the trajectory of a disappearing moving stimulus. They
demonstrate and test this by simulating the network response in
a moving-dot blanking experiment.

Garrido et al. (2013) investigate how systematic modifications
of synaptic weights can exert close control over the timing of spike
transmissions. They demonstrate this using a network of leaky
integrate-and-fire spiking neurons to simulate cells of the cere-
bellar granular layer. Börgers and Walker (2013) investigate sim-
ulations of excitatory pyramidal cells and inhibitory interneurons
which interact and exhibit gamma rhythms in the hippocam-
pus and neocortex. They focus on how inhibitory interneurons
maintain synchrony using gap junctions. Similarly, Ponulak and
Hopfield (2013) also take inspiration from the neural structure
of the hippocampus to hypothesize about the problem of spa-
tial navigation. Their topology encodes the spatial environment
through an exploratory phase which utilizes “place” cells to reflect
all possible trajectory boundaries and environmental constraints.
Subsequently, a wave propagation process maps the trajectory
between the target or multiple targets and the current location by
altering the synaptic connectivity of the aforementioned “place”
cells in a single pass. A novel viewpoint of the state-of-the-art for
the exploitation of biological neural circuitry by means of spik-
ing neural networks is provided by Aimone and Weick (2013). In
their paper, a thorough and comprehensive review of modeling
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cortical damage due to stroke is provided. They argue that a the-
oretical understanding of the damaged cortical area post-disease
is vital while taking into account current thinking of models for
adult neurogenesis.

One of the issues with modeling large-scale spiking neural net-
works is the lack of tools to analyse such a large parameter space,
as Buice and Chow (2013) discuss in their hypothesis and theory
article. They propose a possible approach which combines mean
field theory with information about spiking correlations; thus
reducing the complexity to that of a more comprehensible rate-
like description. Demonstrations of spiking neural networks for
sensory processing include the work of Srinivasa and Jiang (2013).
Their research consists of the development of spiking neuron
models, initially assembled into an unstructured map topol-
ogy. The authors show how the combination of self-organized
and STDP-based continuous learning can provide the initial for-
mation and on-going maintenance of orientation and ocular
dominance maps of the kind commonly found in the visual
cortex.

It is clear that research on spiking neural networks has
expanded beyond computational models of individual neurons
and now encompasses large-scale networks which aim to model
the behavior of whole neural regions. This has resulted in a
diverse and exciting field of research with many perspectives and
a multitude of potential applications.
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Fundamentally, action potentials in the squid axon are consequence of the entrance
of sodium ions during the depolarization of the rising phase of the spike mediated by
the outflow of potassium ions during the hyperpolarization of the falling phase. Perfect
metabolic efficiency with a minimum charge needed for the change in voltage during the
action potential would confine sodium entry to the rising phase and potassium efflux to
the falling phase. However, because sodium channels remain open to a significant extent
during the falling phase, a certain overlap of inward and outward currents is observed.
In this work we investigate the impact of ion overlap on the number of the adenosine
triphosphate (ATP) molecules and energy cost required per action potential as a function of
the temperature in a Hodgkin–Huxley model. Based on a recent approach to computing the
energy cost of neuronal action potential generation not based on ion counting, we show
that increased firing frequencies induced by higher temperatures imply more efficient use
of sodium entry, and then a decrease in the metabolic energy cost required to restore
the concentration gradients after an action potential. Also, we determine values of sodium
conductance at which the hydrolysis efficiency presents a clear minimum.

Keywords: Hodgkin–Huxley model, action potential, neuron metabolic energy, sodium entry, overlap load,

regular-spiking cells

1. INTRODUCTION
The generation of action potentials in mammalian neurons
involves the flux of different ions such as sodium, potassium,
and calcium across the cell membrane. In this process, the elec-
trochemical gradients are partially altered and must be restored
by ion pumps which move ions from one side of the mem-
brane to the other at the expense of energy. Re-establishing the
concentration gradients after electrical discharges demands most
of the energy used for neuronal metabolism (Laughlin et al.,
1998; Laughlin, 2001; Shulman et al., 2004; Siekevitz, 2004). This
requirement for metabolic energy has important implications for
the brain’s evolution and function (Attwell and Laughlin, 2001),
and the availability of energy may impose a limit on neural
activity taking into account that the brain has very small energy
reserves (Ames III, 2000). It is, however, generally accepted that
energy metabolism is highly organized within cells resulting in
energetically efficient mechanisms that transfer energy from the
site of generation to the processes that require it (Ames III, 2000;
Belanger et al., 2011).

On other hand, all energy used for neural metabolism is finally
transformed into heat (Ames III, 2000), and the metabolic brain
activation appears to be the primary cause of heat production.
Because neural properties are temperature-dependent, potential
imbalance between heat production and dissipation could lead
to overheating and aberrant functioning (Falk, 1990; Koch, 1998;
Kiyatkin, 2007). Studying the relationship between temperature,
firing frequency, sodium entry, and the energy cost required
to generate an action potential using neuron models like the
Hodgkin–Huxley model (Hodgkin, 1975) will provides a useful
framework for addressing these issues.

The Hodgkin–Huxley model representing the dynamics of
the squid giant axon continues to be the most frequently used
model to study the dynamics and other properties of actual neu-
rons. Based on biophysical considerations about the nature of
the Hodgkin–Huxley model, we have recently found an analytical
expression of the electrochemical energy involved in the dynamics
of the model, which provides a new approach for estimating the
energy consumption during the resting and active states of neu-
rons (Moujahid et al., 2011). This energy function was used as a
measure to evaluate the metabolic energy consumption of a neu-
ron to maintain its signaling activity and to estimate the metabolic
cost of transmitting information between neurons.

This approach, contrary to other methods (Attwell and
Laughlin, 2001; Lennie, 2003), does not require ion counting for
estimating the metabolic energy consumption of the generation
of action potentials, and gives us the opportunity to check in
the Hodgkin–Huxley model which ion counting gives the correct
metabolic energy consumption. In this work we investigate the
impact of ion currents overlapping on the number of adenosine
triphosphate (ATP) molecules required to restore the concentra-
tion gradients after an action potential in the Hodgkin–Huxley
model. Because the observed overlap is temperature-dependent,
we have computed the number of ATP molecules per action
potential and its corresponding energy cost at different values of
temperature. Both the classic study by Hodgkin and Huxley of the
squid axon (Hodgkin, 1975), and other recent works (Attwell and
Laughlin, 2001; Lennie, 2003) assume that the action potential
requires four times Na+ charge compared to the charge needed
for the change in voltage. This waste of Na+ charge, and accord-
ingly metabolic energy, is the result of extensive overlap between
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inward Na+ and outward K+ during the generation of action
potentials.

However, it has been demonstrated that mammalian central
neurons, characterized by action potentials similar to those of the
squid giant axon, are significantly more efficient in generating
action potentials (Carter and Bean, 2009).

We show in this work that increased firing frequencies induced
by higher temperatures in the Hodgkin and Huxley model imply
more efficient use of sodium entry and metabolic energy. The
paper is organized as follows. In section 2, the dynamics and
electrochemical energy of the Hodgkin and Huxley model are
introduced. In section 3 we discuss the overlap of ion currents
and energy efficiency as a function of temperature in the squid
axon. Finally, conclusions are drawn in section 4.

2. MATERIALS AND METHODS
2.1. THE HODGKIN–HUXLEY NEURON ENERGY
In the original Hodgkin–Huxley model (Hodgkin and Huxley,
1952), the dynamics governing the membrane potential is given
by:

C V̇ = −gNam3h(V − ENa)

−gK n4(V − EK) − gl(V − El) + I, (1)

where V is the membrane potential in mV, C the membrane
capacitance density in μF/cm2, I is the total membrane current
density in μA/cm2. gNa , gK , and gl are the maximal conductances
per unit area for ion and leakage channels, and ENa, EK , and El

are the corresponding reversal potentials.
The gating variables m, h, and n, representing, respectively,

sodium channels activation and deactivation variables, and potas-
sium channels activation variable, obey the standard kinetic
equation ẋ = αx(1 − x) − βxx, (x = m, h, n), where αx and βx

are voltage-dependent variables. For sodium channels, the acti-
vation and deactivation rates are given by,

αm(V) = (2.5 − 0.1V)/(exp(2.5 − 0.1V) − 1),

βm(V) = 4 exp(−V/18),

αh(V) = 0.07 exp(−V/20),

βh(V) = 1/(exp(3 − 0.1V) + 1).

and for potassium channels,

αn(V) = (0.1 − 0.01V)/(exp(1 − 0.1V) − 1),

βn(V) = 0.125 exp(−V/80).

In this work we have used for these parameters the standard
constant values given in Table 1 (Gerstner and Kistler, 2002).

The ion currents of sodium, potassium, and leakage (mainly
chloride) correspond, respectively, to the three first terms in the
right hand of the Equation (1), and are generated in response to a
change in the respective ion conductances.

Figure 1 shows in part (A) the shape of the sodium and potas-
sium currents corresponding to a particular action potential. The
sodium current is negative but has been depicted with a positive
sign for a better appreciation of the great extent of its overlapping

Table 1 | The parameters of the Hodgkin–Huxley equations.

x gx (mS/cm2) Ex (mV)

Na 120 115

K 36 −12

l 0.3 10.6

The membrane capacitance density is C = 1 µF/cm2. The voltage scale is

shifted so that the resting potential vanishes.
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FIGURE 1 | (A) The currents of sodium and potassium ions during an action
potential generated for an external stimulus I = 13 μA/cm2. (B) The
unbalanced ion charge resulting from the overlapping and offsetting of Na+
and K+ flux (the membrane potential is represented in dashed line). The
rising and falling phases are separated by the vertical dashed line. The area
under the curve in the rising phase region corresponds to the net
unbalanced sodium ion charge crossing into the membrane during the
rising of the action potential.

with the potassium current. Note that as sodium and potassium
currents are both of positive charges but moving in opposite
directions of the cell’s membrane they neutralize each other to
the extent of their mutual overlap. The sodium charge that is not
counterbalanced by simultaneously flowing potassium charge is
much smaller for a greater overlap.

The unbalanced current load, represented in Figure 1B, con-
sists of two components which occur, respectively, during the
depolarizing and hyperpolarizing phases of the membrane poten-
tial action. The integral of the first component of this unbalanced
load gives the net Na+ ion charge that is not counterbalanced by
simultaneously flowing K+ crossing into the membrane during
the rising of the action potential. The integral of the total unbal-
anced ionic current is directly proportional to the number of ATP
molecules required to restore the resting potential.

For the action potential represented in Figure 1B gener-
ated for an external stimulus I = 13 μA/cm2, the total sodium
charge transfer computed as the integral of Na+ current was
1168 nC/cm2 which agree with the estimate of 1098 nC/cm2

reported recently in Sengupta et al. (2010). Neutralized currents
that account for the overlapping of Sodium and potassium fluxes
give rise to an excessive overlap charge of about 1092 nC/cm2.
This overlap has been calculated as the difference between the
total Na+ current and the depolarizing unbalanced component of
Na+ current. As stated in the work of Hodgkin, the squid action
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potential is very inefficient in the sense that it requires a four-
fold Na+ charge compared to the minimum charge necessary to
depolarize a pure capacitor (Hodgkin, 1975). The efficiency of
sodium entry during the generation of action potential in the
squid axon at different temperatures is discussed in section 3. The
values of sodium and overlap load reported above correspond to
a temperature of 6.3◦C.

To estimate the energy consumption necessary to restore the
resting potential in the Hodgkin–Huxley model, we have used a
new approach not based on the ion counting method. Following
previous works of finding energy functions of neuron models of
chaotic dynamics (Sarasola et al., 2004, 2005; Torrealdea et al.,
2009), we have deduced for the model given by Equation (1) an
energy function representing the analytical expression of the elec-
trochemical energy involved in its dynamics. The procedure fol-
lowed to find this energy has been reported in detail in Moujahid
et al. (2011), and is summarized below.

It is well known that the Hodgkin–Huxley equation given by
Equation (1) expresses an electrical circuit consisting of capacitor
C and three Na, K, and L ionic channels, where gNa , gK , and gl

are the maximal conductances, and batteries stand for the Nernst
potentials of their corresponding ions. If V is the membrane
potential, the total electrical energy accumulated in the circuit at
a given moment in time is,

H(t) = 1

2
CV2 + HNa + HK + Hl, (2)

where the first term in the summation gives the electrical energy
accumulated in the capacitor and represents the energy needed to
create the membrane potential V of the neuron. The other three
terms are the respective energies in the batteries needed to create
the concentration jumps in sodium, potassium, and chloride. The
electrochemical energy accumulated in the batteries is unknown.
Nevertheless, the rate of electrical energy provided to the circuit
by a battery is known to be the electrical current through the bat-
tery times its electromotive force. Thus, the total derivative with
respect to time of the above energy will be,

Ḣ(t) = CVV̇ + iNa ENa + iK EK + ilEl. (3)

where ENa, EK , and El are the Nernst potentials of the sodium,
potassium and leakage ions in the resting state of the neuron.
And iNa , iK , and il are the ion currents of sodium, potassium and
leakage, given by,

iNa = gNam3h(V − ENa),

iK = gK n4(V − EK),

il = gl(V − El), (4)

If we substitute Equations (1) and (4) in Equation (3), we have
for the energy rate in the circuit,

Ḣ = VI − gNa m3h(V − ENa)
2 − gK n4(V − EK)2 − gl(V − El)

2,

(5)

which provides the total derivative of the electrochemical energy
in the neuron as a function of its state variables. The first term
in the right hand summation represents the electrical power
given to the neuron via the different junctions reaching the
neuron and the other three terms of the summation repre-
sent the energy per second consumed by the ion channels. This
equation permits evaluation of the total energy consumed by
the neuron and also gives information about the consump-
tion associated to each of the sodium, potassium, and leaking
channels.

Figure 2A reports the time course of the electrochemi-
cal energy consumption in nJ/s corresponding to sodium ion
channel for the particular action potential (dashed line) gen-
erated at an external constant stimulus I = 13 μA/cm2. This
energy consumption is given by the term gNa m3h(V − ENa)

2

[see Equation (5)]. The total metabolic consumption given by
the sum of the last three terms in Equation (5) is reported
in Figure 2B. The last three terms of the energy derivative
are negative definite, corresponding to an actual energy dis-
sipation of energy, but has been represented as a positive
consumption.

The total consumption of energy per second at the ion chan-
nels required to generate one particular action potential must
be replenished by the ion pumps and metabolically supplied
by hydrolysis of ATP molecules in order to maintain the neu-
ron’s activity. The higher demand of metabolic energy associated
to the generation of spikes is clearly visible, for instance at
I = 13 μA/cm2 which is the value used to generate the particu-
lar action potential analyzed previously, the average of the total
metabolic consumption depicted in Figure 2B is about 11.4 μJ/s
per membrane unit area. This consumption must be replenished
by metabolic ATP supply. The number of ATP molecules per
membrane unit area hydrolyzed by the Na+/K+ ATPase pump to
extrude the Na+ load can be deduced from the amount of Na+
ions crossing the membrane during an action potential, operating
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with a ratio of 3Na+ per ATP (Attwell and Laughlin, 2001; Crotty
et al., 2006).

The ratio of the total metabolic consumption (in J/s) to
one third of the number of Na+ load through the membrane
expressed in electronvolts per ATP represents the efficiency of
the ATP hydrolysis measured as the free energy provide by the
hydrolysis of one molecule of ATP. We will show that our cal-
culation of the actual energy consumption and the number of
ATP molecules involved in the generation of an action potential
are consistent with relevant data in the literature and that the
Hodgkin–Huxley model produces accurate estimates of energy
consumption.

3. RESULTS
3.1. ION CURRENTS OVERLAPPING
The overlap of ion currents in the Hodgkin–Huxley model
decreases as the temperature increases and the impact of overlap
on the number of ATP molecules required per action potential
can be analyzed rescaling the model equations to include the
temperature-dependence. In this work, we have adopted the orig-
inal assumption of Hodgkin and Huxley multiplying the rates
of change of the activation m, n, and inactivation h gating vari-
ables by a factor k = 3(T−6.3)/10, T [◦C] (Chandler and Meves,
1970).

To illustrate the overlap decrease with increasing temperature,
Figure 3 shows instantaneous Na+ and K+ currents elicited by
a single spike at, respectively, 6.3◦C and 18.5◦C. To perform the
simulation we have rescaled the current equations to different
temperatures between 6.3◦C and 18.5◦C which is the range of
temperatures in the original study of the squid giant axon by
Hodgkin and Huxley. It should be noticed that for higher temper-
ature the firing regime in the Hodgkin–Huxley model can only be
maintained at large values of the injected current.

To quantify the current overlap we have adopted two different
measures. Following (Attwell and Laughlin, 2001), we calcu-
lated the dimensionless charge separation as the Na+ charge
that is not counterbalanced by simultaneously flowing K+ charge
(depolarizing component of the unbalanced load depicted in
Figure 1B divided by total Na+ charge per action potential).
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overlap. Firing frequencies are 75 and 214 Hz, respectively. Sodium current
is reversed for comparison.

The relationship between charge separation and temperature is
illustrated in the inset of Figure 4A.

As it can be appreciated, charge separation shows a 2.98-fold
increase with increasing temperature and varies from 0.0652 at
6.3◦C to 0.1942 at 18.5◦C. At this temperature, Alle et al. (2009)
studying mossy fibers of the rat hippocampus report an aver-
age charge separation of 0.769. The respective consumptions per
action potential reflect this different overlap. At 18.5◦C with an
injection current I = 13 μA/cm2, the Hodgkin–Huxley model
of the squid giant axon demands 0.68 × 1012ATP/cm2 to pro-
duce one action potential (see Table 2), while according to Alle
et al. (2009), mossy fibers of the rat hippocampus demand only
0.32 × 1012ATP/cm2 per action potential.

The collected results for the number of ATP molecules per
unit membrane area to produce one action potential related to
charge separation are depicted in Figure 4A. As it can be seen the
increase in separation implies a 3.54-fold decrease in the number
of ATP molecule/cm2. At 6.3◦C the Na+ charge transfer per unit
membrane area of an action potential in the squid axon is about
1168 nC/cm2, consuming 2.43 1012 ATP molecules/cm2. While
at 18◦C, the Na+ load is 346 nC/cm2 consuming 0.72 1012 ATP
molecules/cm2. So, high frequency firing induced by high temper-
ature appears to be more efficient in the use of Na+ entry. Table 2
reports details of values achieved for these measures at different
values of temperature.

The other measure used in this work to quantify the cur-
rent overlap has dimension of charge and is computed following
(Crotty et al., 2006) as the difference between the total Na+
load and the depolarizing component of the Na+ load. Figure 4B
shows the relationship between the total Na+ load and the overlap
load measured in nC/cm2. As it can be seen the total Na+ charge
increases linearly with overlap load with a slope close to unity.
That is, the overlap load is positively correlated with the total
Na+ charge that crosses the membrane resulting in a decisive fac-
tor when analyzing the efficiency. The same behavior is observed
when considering the relationship between the total unbalanced
load computed as the sum of Na+ and K+ currents, and the
overlap load.
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Table 2 | Simulation values at different temperatures between 6.3◦C and 18.5◦C of the overlap between N+ and K+ ion currents in the squid

giant axon.

Temperature (◦C) 6.3 8 10 12 14 16 18 18.5

Firing rate (Hz) 75 88 106 127 150 177 206 214

Metabolic consumption (nJ/cm2) 152.3 126.9 102.6 83.2 67.7 55.3 45.4 43.2

Total Na+ load (nC/cm2) 1168 973 786 637 518 422 346 329

Overlap+ load (nC/cm2) 1092 897 712 564 447 354 281 265

Na+ (pmole/spike) 12.12 10.09 8.15 6.6 5.37 4.38 3.58 3.41

ATP ×1012 (molecule/spike) 2.43 2.02 1.63 1.32 1.07 0.87 0.72 0.68

The degree of overlap is measured as the difference between the total Na+ load and the depolarizing component of the Na+ load per action potential. Their

corresponding values of firing frequency, consumption rate, ATP molecules, and Na+ entry per spike are also given. All extensive magnitudes refer to cm2 of

membrane.
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FIGURE 5 | Hodgkin–Huxley model scaled for different temperatures

between 6.3◦C and 18.5◦C. In square markers, the unbalanced Na+ load
crossing the membrane during the rising phase of the action potential as a
function of overlap load. In circle markers, is represented the total
unbalanced load calculated as the sum of sodium and potassium currents
related to the overlap load.

Figure 5 reports, in the right axis, the collected values of the
total unbalanced load related to the overlap load. And, in the left
axis, the unbalanced component of Na+ load crossing the mem-
brane during the rising phase as a function of overlap. At 6.3◦C
the total unbalanced load is 175 nC/cm2 which is 2.3 times the
depolarizing unbalanced Na+ load, while at 18◦C both measures
provide close values around 65 nC/cm2. We observe that for a
decrease of overlap load between its maximum value achieved at
6.3◦C and values around 560 nC/cm2 corresponding to a temper-
ature of about 12◦C, the depolarized unbalanced load undergoes
only a slight decrease. However, further increase of temperature
causes the overlap to decrease by 2.12-fold resulting in a 1.13-fold
decrease of the depolarizing unbalanced Na+ load.

3.2. ENERGY EFFICIENCY
The calculated values of the electrochemical energy involved in
the dynamics of the Hodkin–Huxley model according to our
method are reported in Figure 6. Both the total metabolic con-
sumption and the metabolic consumption in the ionic channels
show a decreasing pattern as the temperature increases. At 6.3◦C,
the total action potential energy cost is around 152 nJ/cm2, 45%
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temperatures between 6.3◦C and 18.5◦C. (A) The total metabolic
consumption required per action potential versus temperature. (B) The
metabolic consumption in the Na+ (circle marker) and K+ (square marker)
channels related to temperature. All magnitudes refer to cm2 of membrane.

of which is consumed in the sodium channel, and the rest is
mainly consumed in the potassium channel. While at 18◦C the
energy consumed in both channels represents 49% of the total
metabolic consumption. At this temperature the total metabolic
consumption experiences a 3.35-fold significant decrease.

The total cost of one pump’s cycle, that pumps three Na+
ions out of the cell and two K+ ion in, is computed as the
ratio of the total metabolic consumption [given by the last three
terms of Equation (5)] to one third of the total number of Na+
load. According to our calculations, the liberated free energy by
hydrolyzing one ATP molecule, defined as hydrolysis efficiency,
seem to be independent of temperature and shows values around
0.39 eV which is close to other estimates in the literature (Nelson,
2004; Sinkala, 2006).

However, if we consider only the depolarizing metabolic con-
sumption in the Na+ channel associated to the depolarizing
unbalanced Na+ load, the hydrolysis efficiency seem to be affected
by temperature showing a parabolic shape with a minimum
around 0.38 eV (see Figure 7A). This minimum is observed for
a temperature around 13◦C corresponding to a firing frequency
of about 138 Hz.

The same behavior (see Figure 7B) was observed when study-
ing the depolarizing efficiency as a function of the sodium
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channel conductance. The range of variation of the ion channel
conductances was obtained multiplying the maximum conduc-
tances gNa, gK , and gl in the Hodgkin–Huxley model by the
expression k = 1.5(T−6.3)/10 for temperatures ranging between
6.3◦C and 18.5◦C according to Chandler and Meves (1970).
The maximum depolarizing efficiency occurs for a sodium
channel conductance value around 160 mS/cm2 which is close
to the biological density conductance. Crotty et al. (2006),
studying the energetic cost that arise from an action poten-
tial using computational models of the squid axon as a func-
tion of sodium channel densities, showed that the energy
cost associated with the action potential produce a convex
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conductance was obtained multiplying the maximum conductances in the
Hodgkin–Huxley model by the factor k = 1.5(T−6.3)/10 for temperatures
ranging between 6.3◦C and 18.5◦C.

curve with a minimum around the same value reported
above.

We have seen that the fast-spiking regime in the Hodgkin–
Huxley model induced by higher temperatures implies more
efficient use of sodium entry, and gives rise to energy efficient
action potentials characterized by less overlap between sodium
and potassium currents. Since this firing regime could be also
induced by raising the external stimulus, it would be interest-
ing to investigate whether the same fast-spiking regime achieved,
for one hand, by raising the temperature, and for the other
hand, by increasing the external current, contributes in the same
way in reducing both the energy consumption and the over-
lap load. To do so, we have computed the energy consumption
required to generate an action potential and the corresponding
firing frequency for different values of the external stimulus I.
We have considered values of I ranging between 13 μA/cm2 and
40 μA/cm2.

As it can be appreciated in Figure 8 (left panel), the influence
of higher stimulus on the firing frequency in the squid giant axon
is more significant only for higher temperatures. In fact, at a given
temperature, raising the external current causes the firing fre-
quency to increase by 1.46-fold, while at a given external stimulus,
the firing frequency experiences a 2.96-fold increase with increas-
ing temperature. On the other hand, according to our results, the
fast-spiking regime induced by higher stimuli is less efficient in
generating action potentials expending more energy compared
with the same fast-spiking regime induced by higher tempera-
tures. For example, at T = 8◦C and a relatively high external
current I = 39 μA/cm2 (see circle markers in Figure 8), the firing
frequency of the squid axon is of about 127 Hz, and are neces-
sary 106.75 nJ/cm2 to generate one action potential. While at a
higher temperature T = 12◦C and a low current I = 13 μA/cm2

(see square markers in Figure 8) corresponding to the same fir-
ing regime (i.e., F = 127 Hz), the energy consumption is only
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83.24 nJ/cm2. This 0.78-fold decrease in energy consumption is
accompanied by a 0.76-fold decrease in overlap load between the
spike-generating Na+ current and delayed rectifier K+ current.
The corresponding values of overlap load are 740.83 nC/cm2 and
563.92 nC/cm2, respectively. This confirms again that the overlap
load of voltage-gated currents of Na+ and K+ dominates energy
efficiency, and efficient action potentials have little overlap.

4. DISCUSSIONS
Our results with simulated spikes of the squid axon show that
increased firing frequencies induced by higher temperatures
imply more efficient use of sodium entry due mainly to the
reduced overlap load between inward Na+ current and outward
K+ current. This, corroborates what has been reported recently
in Carter and Bean (2009); Sengupta et al. (2010), and Alle et al.
(2009), i.e., the most energy efficient action potentials are those
generated by Na+ and K+ currents that have substantially reduced
overlap.

The values of sodium entry are close to the original values
calculated by Hodgkin and Huxley (1952), and are in nice agree-
ment with values reported recently by Sengupta et al. (2010).
At 6.3◦C corresponding to 75 Hz we obtain a sodium influx
of 12.12 pmole/cm2 per spike (1168 nC/cm2) while at 18◦C
and 206 Hz the sodium influx is 3.58 pmole/cm2 per spike
(346 nC/cm2) which means a 3.38-fold decrease in sodium entry
corresponding to a 2.75-fold increase in firing frequency.

Regarding the energy consumption associated to the genera-
tion of action potentials in the squid axon, we have found that
the hydrolysis of one ATP molecule liberates a free energy with
optimum values that range from 0.37 eV achieved for a sodium
conductance around 160 mS/cm2 and when only the depolarizing
components of both energy consumption and Na+ load are con-
sidered. To a value of about 0.39 eV produced when considering
the total metabolic consumption associated to the total Na+ load.

As stated before, these values of hydrolysis efficiency are in nice
agreement with other estimates, which confirms that our method
of calculation of the actual energy consumption by the pump and
the number of ATP molecules involved are consistent with other
data in the literature.

Also, we have found that the fast-spiking regime in the
Hodgkin–Huxley model induced by a higher stimulus appears to
be less efficient in generating action potentials expending more
energy compared with the same fast-spiking regime induced by a
higher temperature. Accordingly, the reduction in the overlap of
the Na+ and K+ currents is less when the firing frequency is raised
by rising the external stimulus. Carter and Bean (2009), have
suggested that the primary determinant of differences in Na+
entry efficiency among neurons is their different action poten-
tial shapes. Indeed, the shape of the action potential in the squid
axon at a given frequency is different depending on whether it
has been generated by raising the temperature or the external
stimulus.

The findings of this work were validated using others
Hodgkin–Huxley-like model neurons, in particular, we have con-
sidered the simplest model of regular spiking cells in neocortex
which consists of sodium and potassium currents responsible
for generating spikes, and an additional slow voltage-dependent
potassium current responsible for spike-frequency adaptation.
This model generates action potentials which capture the typi-
cal firing characteristics of regular spiking neurons in ferret visual
cortex in vivo (Pospischil et al., 2008). To carry out the compar-
ison, we performed the same experiment as for the squid giant
axon, i.e., rescaling the model equations given in Pospischil et al.
(2008) to include the temperature-dependence of the membrane
ionic conductances, using values that range between 20◦C and
40◦C which corresponds to the normal range of temperature
in these cells. The external current was varied between 1.5 and
5 μA/cm2. The results (see Figure 9) show a behavior qualitatively
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similar to that we observed in the squid axon. i.e., less energy is
spent per action potential at higher temperatures than at lower
ones due mainly to the reduced overlap between sodium and
potassium currents. And, the efficiency of action potentials is
more dependent on temperature than on the external stimulus. At
T = 20◦C and an external high stimulus of about 4.75 μA/cm2,
the regular spiking cell fires at a frequency of about 46.5 Hz,
and requires 90.5 nJ/cm2 to generate one action potential. While,
for a higher temperature T = 36.5◦C and relatively a small cur-
rent I = 2.75 μA/cm2, making the cell to fire at the same firing
regime (i.e., frequency of about 46.5 Hz), the energy consumption
is 29 nJ/cm2 representing only one third of the energy expended
when considering higher stimulus. This difference in energy

consumption is due to a significant reduction of the overlap load
that decreases from 506 to 88 nC/cm2.

Our principal findings were that the energy consumption
required to generate action potentials in the squid giant axon as
well as in the regular-spiking model of cells in neocortex is lower
at higher temperatures. Also, we found that for these cells, the
fast-spiking regimes induced by higher temperatures are more
energy efficient than those induced by higher stimuli. Finally, we
think that the approach considered in this work could bring a new
framework to analyze the relationship between energy consump-
tion, temperature, and firing frequency in neuronal tissues since it
could be potentially used for more relevant models of mammalian
brains.
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Spike patterns in vivo are often incomplete or corrupted with noise that makes inputs
to neuronal networks appear to vary although they may, in fact, be samples of a
single underlying pattern or repeated presentation. Here we present a recurrent spiking
neural network (SNN) model that learns noisy pattern sequences through the use of
homeostasis and spike-timing dependent plasticity (STDP). We find that the changes in the
synaptic weight vector during learning of patterns of random ensembles are approximately
orthogonal in a reduced dimension space when the patterns are constructed to minimize
overlap in representations. Using this model, representations of sparse patterns maybe
associated through co-activated firing and integrated into ensemble representations.
While the model is tolerant to noise, prospective activity, and pattern completion differ
in their ability to adapt in the presence of noise. One version of the model is able to
demonstrate the recently discovered phenomena of preplay and replay reminiscent of
hippocampal-like behaviors.

Keywords: spiking, STDP, learning, sequences, prospection, preplay, replay, memory

INTRODUCTION
The CA3 region of the mammalian hippocampus is a typical
example of a recurrent neural network in vivo (Hasselmo et al.,
1995; Rolls, 2000; Kobayashi and Poo, 2004; Kesner, 2007; Li
et al., 2010). It is known these recurrent networks are well-suited
for learning pattern sequences and pattern completion (Treves
and Rolls, 1992; Hopfield, 1995; Káli and Dayan, 2000; Gold and
Kesner, 2005; Leutgeb et al., 2007; Yassa and Stark, 2011). While
in general neural networks (Graves et al., 2009) have shown their
ability to perform tasks on highly corrupted data, spiking neural
network (SNN) models are often sensitive to input scale and must
be carefully tuned to generate the desired output (Buonomano,
2005). These issues are amplified in recurrent SNNs where insta-
bilities can result in cascades of activity even with slight input
perturbations (Gerstner and Kistler, 2002). Furthermore, biologi-
cal networks are exposed to a great degree of input variability that
can cause many simulated SNNs to fail.

In order to address input variability, recent model implemen-
tations showed that it is possible to globally scale the synaptic
weight update on afferent synapses so as to constrain the cumu-
lative weight to an artificial limit. This helps to also maintain
stability in the model (Song et al., 2000; Van Rossum et al.,
2000). However, presynaptic spike timing is primarily main-
tained locally at each synapse without evidence in vivo for an
instantaneous global rescaling of all afferent synaptic weights.
One biologically plausible solution is to incorporate homeo-
static regulation. Several forms of homeostasis exist in biologi-
cal networks that occurs at many timescales and is critical for
the stability of these networks (Malinow and Malenka, 2002;
Renart et al., 2003; Turrigiano and Nelson, 2004; Deeg, 2009;
Turrigiano, 2011). Moreover, modeling homeostasis allows for a

self-adjustment and overall scaling of input synaptic weights to
neurons in a network and can help compensate for this input
variability.

Learning of pattern sequences through the use of plasticity
has been studied before (Berthouze, 2000; Arthur, 2006). These
methods have relied on learning associations with sequences of
on-going reliable and repetitive background activity. However,
repeatable sequences have only been detected during task-related
activity (Itskov et al., 2011). Moreover, the sequencing of activity
(Diba and Buzsaki, 2007) is likely to be based on self-sustaining
recurrent pathways of activity in the network due to previous
association with sensory and spatial activity.

In this paper, we present three variations of a recurrent SNN
for learning spatiotemporal patterns of activity using spike-
timing dependent plasticity (STDP) with homeostatic regula-
tion of activity. This model can learn to integrate patterns into
pattern sequences from multiple noisy presentations and com-
plete previously learned patterns from partially available data.
Furthermore, stable pattern learning can be achieved with synap-
tic weight changes despite relative differences in intensity of the
input patterns. The network demonstrates both prospective fir-
ing of activity and pattern completion while maintaining stability
without the need to balance the input weights directly. The lessons
learned from the development of these models are discussed
and potential opportunities for handling their limitations are
noted.

MATERIALS AND METHODS
SIMPLE NETWORK MODEL
The simple network model is comprised of a recurrent popula-
tion of Izhikevich neurons (Izhikevich, 2007a) with the default
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parameters from Table 1. Each neuron connects to a fraction
(pe and pi) of all other excitatory and inhibitory neurons (see
Figure 1) with both excitatory and inhibitory connections having
a random delay (τedelay and τidelay). The network is constructed
such that for each excitatory connection, an inhibitory connec-
tion is also made between those neurons. For simplicity, one
neuron is used for both connections, however, in an alternate
larger model with different input scheme these dual paths are
implemented with separate inhibitory and excitatory neurons.
The recurrent network structure itself is random but balanced
such that each neuron has an equal number of efferent and
afferent connections and all neurons have the same number of
connections.

Neuron dynamics (Izhikevich, 2007a) are described by three
variables, membrane voltage (v), recovery (u), and excitatory

Table 1 | Simple model parameters.

Network attribute Parameter Value

Synaptic conductances Ei −81 mV

Ee 0 mV

τi 50 ms

τe 35 ms

τ
delay
i [1, 5] ms

τ
delay
e [11, 16] ms

wmax
i 0.8 nS

wmin
i 0.5 nS

wmax
e 0.8 nS

wmax
i 0 nS

Excitatory triplet STDP τLTP
e 20 ms

τLTD
e 25 ms

δLTP
e 0.020 nS

δLTD
e 0.024 nS

Inhibitory top hat STDP τLTP
i 40 ms

τLTD
i 700 ms

δLTP
i 0.02 nS

δLTD
i 0.05 nS

Homeostatic excitatory scaling τω 600 s

ωD [0.25, 0.35] Hz

1-to-1 simple network NN 480

pi 1

pe 1

Neuron model a 0.02

b 0.5

c −40 mV

d 55

vi −45 mV

vr −60 mV

vp 40 mV

C 50 pF

k 0.5

Noise ν 0.05 Hz

scaling of afferent synaptic conductances (s, long-term homeo-
static parameter):

v′ = 1

C
(k(v − vr)(v − vt) − u + Isyn + Inoise) (1)

u′ = a(b(v − vr) − u) (2)

s′ = ωD

τω

(3)

where Inoise is zero mean gaussian noise with σ = 80 pA, ωD is the
target firing rate, and τw is the time constant. Isyn is composed of
inputs from N excitatory and M inhibitory synapses:

Isyn =
N∑

j = 1

s · gj(Ee − v) +
M∑

k = 1

gk(Ei − v) (4)

where gj and gk are the excitatory and inhibitory synaptic conduc-
tances respectively. Upon action potentials (v ≥ vp),

v = c, u = u + d, and s = s − 1

τω

(5)

Integration was performed using Euler’s method for all variables
[except v where a hybrid method (Izhikevich, 2010) was used]
with a simulation time step of 0.5 ms.

The network model is designed to have inhibitory and excita-
tory connectivity between neurons so that the effective pairing
between any group of co-active neurons (an ensemble) and
another neuron scales from net inhibitory to net excitatory for a
given ensemble. Therefore, a direct connection from a neuron to
another neuron maybe strongly excitatory, while the indirect con-
nectivity between the presynaptic and postsynaptic neuron maybe
inhibitory depending on the currently active ensemble. A network
with the aforementioned properties can then associate positively
or, by default, negatively each neuron with each ensemble. As long
as the coding of the inputs and relative connectivity of the net-
work spread the representation of ensembles such that these net
effects from ensembles to any neuron can be modulated, new pat-
terns can be learned while minimally effecting the coding of other
ensembles (see Results). Thus, these networks exhibit the ability
to learn or recall spike patterns whether they code for sequential
spatial, sensory, or other data.

Two different forms of synaptic plasticity are used for the
model, one for excitatory and one for inhibitory synapses. The
inhibitory synapse rule is symmetrical, and functionally imple-
ments a rule where co-active neurons reduce their inhibitory cou-
pling, but neurons that fire independently have strong inhibitory
connectivity. Inhibitory plasticity uses an inverted top-hat shaped
symmetric STDP curve, which is similar to a Mexican-hat plas-
ticity curve (Caporale and Dan, 2008; Srinivasa and Jiang, 2013).
Upon presynaptic or postsynaptic action potential:

�wi =
⎧⎨
⎩

δLTD
i if

∣∣tpost − tpre

∣∣ < τLTD
i

δLTP
i else if

∣∣tpost − tpre

∣∣ ≤ τLTP
i

0 otherwise

(6)
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FIGURE 1 | Recurrent and input network structure and distribution.

Recurrent connections are shown only for the center recurrent neuron.
(A) Input structure of the simple model with 1-to-1 network inputs, recurrent
neurons receive input from one and only one input neuron. (B) Input
structure of the alternate model with many-to-many network inputs, each
recurrent neurons receives input from 12 random input neurons (which
project 3 outputs each). (C) Unbalanced usage of the input space with and
without input neuron allotment. Histogram shows the distribution of the

number of input spikes due to a specific neuron. (C) Shows the activity of
480 input neurons when the patterns are chosen consist of separate groups
of neurons used for simple model inputs. (D) Show the multimodal nature of
the 8000 input neurons’ activity when neurons are selected randomly
without regard for usage in other ensembles, as is the case in the alternate
model. The leftmost mode represents noise, while the successively
rightward modes of the distribution represent redundant usage of the input
neurons in the episode patterns.

where w is constrained to 0 ≤ wi ≤ wmax
i , τLTD

i is the time win-
dow of long-term depression (LTD) for inhibitory STDP. The
parameters δLTD

i and δLTP
i correspond to the change in synaptic

weights for inhibition during LTD and long-term potentiation
(LTP), respectively. The terms tpre and tpost correspond to the time
at which presynaptic and postsynaptic spike events occur.

Complementary to the inhibitory weight changes, excitatory
changes are asymmetric and strengthen synapses that contribute
to the causal activation of the postsynaptic neuron and weaken
those that are activated in reverse order unless the postsynaptic
neuron activates again. Excitatory plasticity follows a triplet-
based STDP rule (Pfister and Gerstner, 2006) and is described by
the dynamics when presynaptic or postsynaptic action potentials
occur:

�we =

⎧⎪⎨
⎪⎩

(δLTP
e + �wLTD

e )e
tpre−tpost

τLTP
e if tpost − tpre ≥ 0

δLTD
e e

tpre−tpost

τLTP
e if tpost − tpre < 0

(7)

where w is constrained to 0 = wi = wmax
i and �wLTD

e is the

change due to the last depression event. The parameters δLTD
e and

δLTP
e correspond to the change in synaptic weights for excitation

during LTD and LTP, respectively and τLTP
e is the time window of

LTP for excitatory STDP. Excitatory synaptic weights are initial-
ized with values from a uniform distribution on the interval [0,
0.1 wmax

e ).

ALTERNATE NETWORK MODEL
An alternate model of 2000 excitatory and 500 inhibitory neurons
was used for some simulations with several other modifications
detailed below. Excitatory neurons were recurrently connected
with other excitatory neurons with probability pee and with the
inhibitory neurons with probability pei. Inhibitory neurons were
recurrently connected with other inhibitory neurons with proba-
bility pii and with the excitatory neurons with probability pie, see
Table 2.

The alternate model used Izhikevich’s fast spiking (FS) model
for inhibitory neurons and increased the membrane capaci-
tance, C, of the neuron model to 500 pF for the excitatory
neurons. Furthermore, the excitatory reversal potential, Ee was
increased to 40 mV to prevent excitation lock that could occur
with the increased membrane capacitance. Excitatory-excitatory
and excitatory-inhibitory connections used the aforementioned
triplet STDP rule, while inhibitory-excitatory connections used
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Table 2 | Alternate model parameter modifications.

Network attribute Parameter Value

Network structure Ne
N 2000

Ni
N 500

pii 0.3

pie 0.3

pei 0.3

pee 0.3

Neuron model C 500 pF

Ee 30 mV

the inverted top-hat STDP rule and inhibitory-inhibitory connec-
tions used a non-inverted top-hat STDP rule. These inhibitory
connections were also changed to an order of magnitude faster
conductance decay time constant. A single inhibitory feedback
neuron with long decay time constant was added with connec-
tions to and from all excitatory neurons; these connections were
non-plastic.

PREPLAY MODEL
Patterns of place cell activity are preplayed in forward order or
replayed in reverse order at the beginning and end, respectively,
of a linear track (De Almeida et al., 2007). Similarly, one ver-
sion of our model demonstrates preplay and replay of activity.
Although less biologically plausible, this model used the same
input and recurrent connection scheme and was the same size as
the simple model with a few exceptions. Firstly, each neuron was
the regularly spiking simple four parameter model (Izhikevich,
2003) but with membrane capacitance 1000× greater, the a
parameter 1000× smaller, and the d parameter 10× smaller.
Secondly, weight changes were larger with an inverted window for
inhibitory STDP (this was allowable since the network was more
stable due to higher capacitances and slower postspike recovery).
The parameter settings for this model are summarized in Table 3.

NETWORK INPUT
Two network input structures were considered: a 1-to-1 input
neuron to recurrent neuron model and a many-to-many input
model where input neurons spread output onto three recur-
rent neurons and each recurrent neuron receive 12 connec-
tions from input neurons. 1-to-1 network inputs are used with
the simple model and preplay model; the many-to-many net-
work input structure is used with the alternate model. In the
simulations with 1-to-1 inputs, each neuron receives simu-
lated spiking input through a single large, non-plastic, excita-
tory synapse from an input neuron so that a spatiotemporal
episode can be strongly forced onto the downstream recur-
rent network model. This strong influence results in the recur-
rent network having a high likelihood to spike in a similar
manner as the upstream inputs. This input drive is modeled
as noisy frequency modulation of input spikes as shown in
Figure 2.

Twelve episodes were constructed each consisting of 25% of the
network and segmented into 30 temporal steps. These episodes

Table 3 | Preplay model alterations.

Network attribute Parameter symbol Value

Time constant for recurrent inhibitory
synaptic conductances

τi 65 ms

Time constant for recurrent excitatory
synaptic conductances

τe 120 ms

Time window for LTP portion of the
inhibitory STDP function

τLTP
i 140 ms

Time window for LTD portion of the
inhibitory STDP function

τLTD
i 56 ms

Excitatory reversal potential of neuron Ee 30 mV

were presented in blocks of four episodes each and consisting of
100% of the network for the 1-to-1 network input structure. In
each block, the episodes were presented at random (from a uni-
form distribution) and with overlap of four temporal steps. The
current step is presented with the last few patterns in decreasing
intensity each low frequency period. Neurons comprising each
temporal step are activated simultaneously (with one high fre-
quency period of jitter) for each active spatiotemporal step. As
each episode is presented, one neuron out of each temporal step
is selected at random to be removed from that presentation of the
episode.

In the alternate model, the episodes are encoded in the same
manner. However, the input neuron allotment to each episode
was performed without regard for overlap and redundant usage
during each group of episodes (see Figure 1). Additionally, a
larger network was used and as a result each temporal step
consisted of 14 neurons as opposed to 4.

In the preplay model, during each episode presentation each
temporal step was repeated 7 times before proceeding to the next
temporal step, whereas in the simple and alternate models each
step occurred once per episode.

For all models, noise was injected into the network by adding
spontaneous action potentials from the input neurons at a rate
of ν = 0.05 Hz per neuron in addition to the somatic gaussian
current input. A single, fast inhibitory, input neuron projects to
the entire recurrent network with a fixed, but varied time delay
(1–4 ms). The inhibitory input neuron supplies the network with
high frequency modulated action potentials at a rate of 250 Hz.

SIMULATION AND ANALYSIS
Simulations were performed using a custom C/C++ MPI-
based simulator and run 2–9× real time on a 2 GHz
quad-core i7 MacBook Pro with 8 GB of RAM. Spike data
and weights were analyzed using MATLAB. Local lin-
ear embedding (LLE) of weights was performed using the
MATLAB Toolbox for Dimensionality Reduction freely avail-
able at http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_
Dimensionality_Reduction.html

RESULTS
The results are summarized for the models as follows: the simple
model with the complete usage and non-overlapping allotment of
input neurons, the alternate model with the random allotment of
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FIGURE 2 | Pattern of noisy but structured network inputs. Every 1/7 of a
second (low frequency), part of a spike episode is input to the network. Each
episode is split into 30 temporal steps, each associated with a few input
neurons. Groups of four temporal steps are presented sequentially in time (in
successive high frequency, 1/49 s, blocks) with the current step being

presented at the middle of the low frequency cycle (where the darkness of
the high frequency blocks drawn above relate to the increased probability of a
spike). In each successive low frequency block, the current temporal step is
advanced by one, similar to activity reported in Maurer and McNaughton
(2007).

inputs, and the preplay model with varied input types. In most
cases, inputs are partially presented, noisy, and probabilistic (in
their occurrence) resulting in a disproportionate use of input neu-
rons (Figures 1, 2). It was necessary to use the alternate input
mapping when using random allotment to prevent the growth of
homeostatic scaling and bursting (and recruitment of the entire
network) in the recurrently connected neurons not assigned to an
ensemble (data not shown). This connection strategy ensures that
most recurrent network neurons will receive some input, since the
fraction of neurons without active inputs is small. Additionally, a
many-to-many input architecture amplifies the amount of noise
by increasing the number of input noise sources to each neuron in
the recurrent network, which prevent the uncontrolled growth of
the homeostatic parameter through direct activation of the neu-
ron and indirectly by promoting random changes in its weights
that may result in the “unused” neuron becoming active in a
random ensemble without direct stimulation.

LEARNING EPISODES
The use of low and high frequency modulated inputs force
short, high frequency bursts of spikes that replicate a sequen-
tial long time scale procession in temporal steps. After learning,
the sequential inputs activate subsequent nodes prospectively
(see Figure 3). The net inhibitory effect of on-going firing lim-
its prospective firing to a handful of future temporal steps. The
network demonstrates a cascade of activity during each low fre-
quency cycle. This cascade is preempted by the intermittent high
frequency inhibition and terminated by an increase in low fre-
quency inhibition and due to refractoriness of the neurons. The
beginning of the next low frequency cycle is marked by the input
stimulus that excites another cascade of activity.

Activity in the network is initially the direct result of activated
input neurons whether from noise or as part of the episode. As
the network adapts to the input episodes, the background noise is
suppressed and missing components of the repeated episode are

FIGURE 3 | Prospective spiking activity in the simple model. Example
raster plot of activity in the recurrent network after training of an episode in
the 1-to-1 network. Neuron have been resorted by the mean time of activity
in the interval. Spikes near and to the left of the blue line are, in general,
prospective activity.

activated along with the neurons that are soon to be activated.
Background noise is suppressed due to recurrent inhibition and
the down regulation of input scaling so as to counter the up reg-
ulation of recurrent connections between members of ensembles.
The co-activation of neurons over several presentations allow
for the learning of an episode on the basis of partial activity
of member neurons in the ensemble when the partial pattern is
reactivated as shown in Figure 4.

With 1-to-1 input structure, the simple network neurons are
excitable relative to their history of activity as expected. With
the many-to-many input structure, the alternate network neurons
that are active in fewer ensembles are excited stronger than other
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neurons in an ensemble. Neurons become active prospectively
firing prior to the presentation of input that occurs in subse-
quent temporal steps. Neurons, also, complete missing portions
of the patterns presented. The amplitude of the pattern comple-
tion and prospective activity is less than that of neurons directly
activated by episodic input (see Figure 5). The prospective and
pattern completion firing rates formed a smooth curve while the
directly stimulated activity was far greater. This leads to the notion
that the prospective firing and pattern completion are related by
a common mechanism in this model, and that the prospective
activity is pattern completion of the representation forward in
time. However, see Noise Effects for differences in the learning
of these phenomena.

SYNAPTIC WEIGHT CHANGES
To examine learning at the synapses, LLEs of the excitatory and
inhibitory weight spaces were performed over the course of learn-
ing. Briefly, LLEs map high dimensional spaces into neighbor-
hood preserving low dimensional spaces (Roweis and Saul, 2000).
The globally mapped nature of the low dimensional embedding

makes them appropriate for visualizing data and relative tra-
jectories in high dimensional spaces. Excitatory and inhibitory
dimensionality reductions were performed separately due to the
different time constants and learning rules involved. L2 distance
in the weight space served as a poor indicator of learning (data
not shown) and asymptotically demonstrated strong relation to
the simulation time difference between weight vectors during
learning.

Instead, the distance in a few dimensions of LLE space
appeared to be a better indicator of changes in the network. For
example, in a representative example, comparing three sequen-
tial sets of learning in the LLE space results in the expected
non-linear adaptation and convergence of weights of recurrent
network weights in the simple model. In this 3D LLE, these adap-
tations move along three nearly linear trajectories, each of which
are nearly orthogonal (see Figure 6). This shows that given a
global embedding into a low dimensional space, the weight vec-
tor trajectory moves from neighborhood to neighborhood in such
a way that global changes are not discordant. During adapta-
tion, the targeted correlated activity reduces inhibition, which in

FIGURE 4 | Activity in alternative network model. Instantaneous
firing rate of the input neurons and recurrent network during an
episode with many-to-many connections. Smoothed firing rate (binned
in 1/ 7 s and smoothed with a causal exponential kernel, τ = 1/ 7 s,
over 3 bins) demonstrates an example of recurrent network activity
(right) leading the input neuron activity (left) throughout the

progression of an episode near the (A) beginning, (B) middle, and
(C) end. Recurrent neurons are matched to each input neuron and
are redundantly represented for each input neuron they receive
synapses from leading to the appearance of more background noise.
Color scale ranges from dark blue to dark red representing a
0–20 Hz firing rate, respectively.

FIGURE 5 | Pattern prospection and completion in the simple model.

Instantaneous spike firing rates (in 1/ 7 s window) relative to the current step
in the episode for the (A) simple model, (B) preplay model, and (C) preplay
model with slower progressing stimulation with increased overlap. Negative
lags are yet to be stimulated. Green triangles, black squares, and blue circles

represent the average firing rate of recurrent neurons that are soon to be,
currently being, and are not but would normally be stimulated via input
neurons. Thus, they highlight prospective, active, and pattern completing
neural activity, respectively. Bars indicate the 5–95% percentiles of firing
rates for each marker.
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FIGURE 6 | Dimensionality reduction of the model weight space.

Reduction of the simple model 230,400 weight space [of (A) excitatory
and (B) inhibitory recurrent synapses] to 3 dimensional space using local
linear embedding. Black points are the initial state of the weights. Red
points indicate the learning of the first group of 4 patterns. While green
and blue represent the learning of the second and third patterns,

respectively. Note that the weight changes are nearly orthogonal in the
reduced dimensional space. There is some effect in the neighborhood
finding process that blends between neighboring points (and thus
episodes) at the tail of each segment of the episodic learning except the
last one. (C,D) Excitatory and inhibitory, respectively, weight space
reduction for the preplay model.

turn enables faster spiking and thus faster weight changes (see
Figure 7). Weight adaptation rate peaks and slows as the pattern
is learned and weights reach their maximum or minimum values.
This coincides with a peak in the combined degree of prospectiv-
ity (i.e., look ahead time window) and pattern completion ability
of the network (see Figure 5). Increasing the number of episodes
(redundant allocation) that were being learned resulted in the tra-
jectory of the learning in the first three LLE dimensions to appear
less orthogonal (data not shown). This implies that learning of
the groups of patterns does not interfere with each other when
the subsequent uses of neurons are in completely new ensembles;
however, pairwise reuse of neurons within the STDP windows
violates this condition.

NOISE EFFECTS
To define a metric to quantify network prospectivity and pat-
tern completion, the firing rate of neurons for up to 2 tem-
poral steps into the future of the episode or the neurons
from the current step that were removed from the input are

averaged and compared with the activity of the directly stimulated
neurons.

R = μ(prospection|completion) − μbackground

μactive − μbackground
(8)

where μ is the mean firing rate. Given that the inputs are not
active for prospection or completion, this relative activity mea-
sure is expected to be less than 1 as homeostatic input scaling
regulates neuron activity based on inputs as well as recurrent con-
nections. Remarkably, the network is tolerant to large amounts of
background noise for pattern completion but less so for prospec-
tive firing (see Figure 8). In contrast, the noise has little effect on
the initial learning rate, but affects the final quality of learning
(see Figure 8).

PREPLAY AND REVERSE REPLAY
The preplay network began to demonstrate prospection sooner
than other models (on the second presentation of an episode—
however each step is presented 7× longer than the other models
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FIGURE 7 | Approximate learning curve of prospection in the simple

model. Each group of episodes is shown aligned to the first presentation of
that group at time 0. Learning for Group 1 was slower due to the initial
network adjustment in homeostatic values and the settling of synaptic
weights at limit values. Learning occurred at the same rate for the two
subsequent groups. Each learning curve represents the mean performance
across four different simulation runs with four noise levels (n = 4) within a
group. The error bars represent the standard deviation in Rprospection for that
group at various episode durations.

presented), and, in general, produced better and more stable pat-
tern completion and prospective activity than the other models
presented in this paper. Although more divergent from biological
underpinnings, this model was able to demonstrate preplay and
replay of activity in the form of self-sustaining sequences in for-
ward or reverse, respectively. This is accomplished by reactivating
the ensemble at the beginning (preplay) or end (replay) of the
spatiotemporal sequence after learning has occurred. The episode
is reactivated by short gamma frequency bursts of 1–4 spikes from
each neuron in the initial or end segment of the episode (two
temporal steps were used). This could be considered reminiscent
of the upstream spiking activity due to the sensory input at the
beginning or end of a linear track. The preplay of activity (see
Figure 9) can be viewed as a full recall of a previous memory. The
recall of previous memories based on partial patterns means that
the results of various behaviors can be predicted given a similar
sensory match to other experiences. The model also exhibits var-
ious successful durations of the preplay and replay of the entire
episode that is qualitatively similar to the results to other recent
research (Foster and Wilson, 2006; Diba and Buzsaki, 2007).

However, there are several limitations of this version of the
model. This model aggressively suffered interference and learned
more slowly the second and third sets of patterns. The sequence
preplay speed did not occur on biologic timescales. The activ-
ity propagated at a much slower rate due to the high mem-
brane capacitance resulting in long time constants and the slow
inhibitory currents. The preplay propagation speed increased
when using the fast stimulation protocol used for the other mod-
els due to depression of inhibitory weights. The capacitance and
the localized slow inhibitory currents proved to be the reason for
stability in this model; reducing the capacitance, as in the other

FIGURE 8 | Effect of noise on the learning. Performance of the simple
model through learning with incomplete patterns is shown here. Solid lines
are the metric, R, for prospection. Dashed lines are the metric, R, for
pattern completion. Note, the similar slope of the curves initially as
compared to divergence in the final value relative to noise, ν. ν is expressed
in terms of per neuron noise spikes in Hz. A significant amount of noise
tolerance exists considering the input signals are an average of 6 spikes per
presentation of each episode (which equates to a brief instantaneous firing
rate of 10 Hz but averages out to 0.3 Hz over the course of the learning
trial). The error bars represent the standard deviation in either Rpropsection or
Rcompletion for various episode durations. The results also show that the
network is more robust to noise for pattern completion (solid lines)
compared to prospective recall (dashed lines).

FIGURE 9 | Preplay of an episodic spike pattern. Left, activation of the
episode that was previously learned. Activity to the left of the blue line is
prospective. Right, fast preplay of the episode to the right.

models, results in less stability, yet, faster response times in the
cascade or sequencing of activity. When forming symmetric exci-
tatory connections between neurons (in the triplet STDP case,
and needed for reverse replay), faster response times gives the net-
work the ability to recruit a major portion of the network and
this in turn leads to bursting activity in the network. A better
method of achieving a balance between the stability-sustainability
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trade-off in the model could come from compartmental models
and more robust and targeted inhibition.

The preplay model was only able to demonstrate replay when
the triplet STDP rule was used in conjunction with a temporal
blurring of the input patterns as opposed to the sharp proba-
bility peaks seen in Figure 2. A preplay model with traditional
couplet STDP could learn, form prospective activity, and demon-
strate preplay, however, reverse replay could never be achieved
even when using shifted or noisy windows (Babadi and Abbott,
2010). Another interesting aspect of this model was the fleeting
fragments of episodes were reignited (primarily forward and on
the same time scale as preplay) when not driven by an episode
pattern but still receiving random noise inputs (supplementary
video available online).

DISCUSSION
We demonstrated recurrent SNNs capable of learning episodes
operating with missing, noisy, and unbalanced data was demon-
strated. This learning is demonstrated by the prospective firing of
neurons attributed to subsequent stimuli and the completion of
missing portions of the patterns. This prospective firing is excited
by recurrent connections from neurons in the currently active
ensemble. The active ensemble contains neurons that are com-
ponents of temporally adjacent (both previous and subsequent)
ensembles; however, the previous neurons were just active and are
generally in a refractory state and moderately inhibited.

These recurrent spiking models provide a means to store pat-
terns and recall or even predict them given a previously encoded
pattern (Lisman and Redish, 2009). In the many-to-many input
coding of the alternate model, the input to recurrent network
mapping results in a randomized and more distributed encod-
ing. This spreads activation through the recurrent neurons to
preferentially recruit neurons that are not utilized or rarely uti-
lized.

Our model maintains stability through strong high frequency
inhibition to limit the network activity to be cyclic and by intro-
ducing the input pattern such that its driving force terminates at
the peak of the low frequency cycle enabling recurrent activity to
trail-off in the second half of the cycle. Therefore, the network is
stable as long as network activity is always decaying which can be
ensured by limiting the upside of excitatory weights, the downside
of inhibitory weights, and using a time constant for inhibition
that is slower than excitation. This balance enables the scaling of
weights to modulate, on a neuron-to-neuron basis, the duration
of time for which the net recurrent activity is excitatory before
turning inhibitory. Setting the weight ranges so that the maxi-
mum duration is half of the low frequency cycle designates the
spiking activity due to inputs to become inhibitory to the network
and thus a stabilizing force (see Figure 10).

Other models exist which relate learning and sequences of
spiking activity (O’Keefe and Recce, 1993; Rao and Sejnowski,
2001; Buonomano, 2005; Lisman et al., 2005). Another method
proposed by Buonomano (2005), uses the scaling of the presynap-
tic component of the weight to learn a time delay and sequence
a spiking pattern. However, those authors admit the difficulty
with learning multiple different patterns. This work does not use
the pattern correcting and forward lookup circuitry proposed

FIGURE 10 | Relative effect of synaptic connections with two time

constants. The temporal length of excitation can be controlled by changes
in the weights of dual synapse with different time constants. Blue lines
conductance trace examples at two weights for slow inhibitory time
constant. Green line is an excitatory conductance trace. Vertical, dashed
red and black lines show the time point at which inhibition begins to exceed
excitation.

in Lisman et al. (2005). However, this simple recurrent network
is able to do both. As a result though, there is a tendency in
this model to bring temporal associations forward and back-
ward in the sequence learning—a separate pattern correction and
completion network may solve this issue. Regardless, a spiking
network that can perform free recall of multiple episodes has yet
to be demonstrated in a simulated network that first learned the
multiple episodes concurrently.

LINK TO BIOLOGY
Recurrent neural networks have been found throughout the
brain (Rao and Sejnowski, 2001; Kobayashi and Poo, 2004;
Buzsaki, 2006). Specifically, our network employs neural archi-
tecture design that can produce hippocampal-like behaviors
including reactivation, preplay and replay (Pavlides and Winson,
1989; Wilson and McNaughton, 1994; Louie and Wilson, 2001;
Andersen et al., 2006; Rasch and Born, 2007; O’Neill et al., 2008;
Dragoi and Tonegawa, 2010; Gupta et al., 2010; Buhry et al.,
2011). This enables the network to automatically load balance
densely coded downstream networks through homeostatic reg-
ulation and sparse upstream coding. Furthermore, the low and
high frequencies used here are similar to the theta and gamma
rhythms found in the hippocampus (Buzsaki et al., 1992; O’Keefe
and Recce, 1993; Skaggs et al., 1996; Penttonen et al., 1998; Bragin
et al., 1999; De Almeida et al., 2007; Lenck-Santini and Holmes,
2008; Pastalkova et al., 2008; Zhang et al., 2011; Penley et al.,
2012).

However, this network is appreciably simpler than the one
found in the hippocampus, including the neural dynamics, learn-
ing rules, and homeostasis. The 80:20 ratio for excitatory to
inhibitory connections is lower than that found in the CA3 region
of the hippocampus but similar to cortical areas (Buzsaki, 2006).
Moreover, we believe that the memory capacity of this network
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to be markedly smaller than of a more complex network where
feedback inhibition is present in the form of multiple indepen-
dent neurons and target specific regions of the principal cell’s
dendrites, soma, and axon. Also, the mammalian hippocampus is
thought to encode through the sparse representation of the den-
date gyrus (DG) and recall using a direct entorhinal cortex to CA3
pathway that contain several smaller connections as opposed to
the DG-CA3 pathway (Treves and Rolls, 1992; Nolan et al., 2011)
which was adopted here.

FUTURE WORK
Stability in this model is fragile with large weight changes, mean-
ing that increased excitation or increased recruitment can easily
lead to cascades of activity that result in bursts like many recur-
rent networks (Wagenaar et al., 2006). Once the network bursts,
the network continues to burst due to both the positive feed-
back effect of triplet STDP and the negative feedback effect of
inhibitory STDP during bursting. Separating late and early phase
LTP (Adams and Dudek, 2005) may prevent infrequent occur-
rence of bursts from having these catastrophic ramifications.
However, this may not be the case since an analogous develop-
ment occurs in vivo; for example, tetanic hippocampal stimuli
evolve into epilepsy (Sanchez et al., 2006). Alternatively, the use
of reward-based learning methods may increase the speed and the

specificity with which learning occurs by identifying new patterns
and promoting learning via neuromodulation (Izhikevich, 2007b;
O’Brien and Srinivasa, 2013).

In the preplay iteration of this model, there is evidence that this
rudimentary kind of network supports replay and preplay at com-
pressed timescales (Diba and Buzsaki, 2007). Due to the use of the
triplet based rule, symmetric excitatory connections are formed
between neurons allowing for both the forward or reverse propa-
gation of activity. However, the triplet rule does not promote the
robust symmetric connections found in the hippocampus with
short bursts of post-then-pre-synaptic spikes. We believe that the
use of a more phenomenological rule (Markram et al., 2012)
would promote further symmetry in learning and robust replay
on par with preplay without requiring as much blurring and over-
lap of spike trains. Further investigation of preplay is necessary to
determine if the compression factor seen in vivo (Euston et al.,
2007) occurs as a natural result of propagating neural activity
without theta frequency resets.
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Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input
to establish a coherent representation of the world. Although it is becoming generally
accepted, it is not clear on which level spiking neural networks may implement
predictive coding and what function their connectivity may have. We present a network
model of conductance-based integrate-and-fire neurons inspired by the architecture
of retinotopic cortical areas that assumes predictive coding is implemented through
network connectivity, namely in the connection delays and in selectiveness for the tuning
properties of source and target cells. We show that the applied connection pattern leads
to motion-based prediction in an experiment tracking a moving dot. In contrast to our
proposed model, a network with random or isotropic connectivity fails to predict the path
when the moving dot disappears. Furthermore, we show that a simple linear decoding
approach is sufficient to transform neuronal spiking activity into a probabilistic estimate
for reading out the target trajectory.

Keywords: motion detection, motion extrapolation, probabilistic representation, predictive coding, network of

spiking neurons, large-scale neuromorphic systems

1. INTRODUCTION
1.1. PROBLEM STATEMENT
In a dynamical world, prediction is a highly relevant evolution-
ary advantage. This is crucial in sensory systems, as the raw data
that is processed is most often noisy, and possibly ambiguous or
distorted. Take for example the task performed by the primate
visual system of tracking the trajectory of a moving object and
accurately moving the eyes in order to stabilize the image on the
retina. The image of the object may be blurred, or the measure
of its velocity may depend on its geometry instead of its trajec-
tory. Another problem occurs when the object is occluded, or
simply when the observer blinks. It is an advantage to be able
to predict the position and speed of the object at the end of this
blanking period. This problem is classically referred to as motion
extrapolation (see Figure 1). While predictive coding mechanisms
may have different aspects and occur at different levels ranging
from the retina to higher level areas (Gollisch and Meister, 2010),
we will focus on this particular phenomenon as prototypical
example.

Particularly in primates, object motion information is
extracted along a cascade of feed-forward cortical areas, where
primary visual area (V1) extracts local motion information that
is integrated in extra-striate middle temporal (MT) and medial
superior temporal (MST) areas (Newsome et al., 1988). MT
and MST process visual motion and oculomotor signals driv-
ing pursuit (see Ilg, 1997 for a review) and are therefore key
elements in motion extrapolation. Specifically, we will focus on
the dynamics of neural activity during the period without infor-
mative sensory input (to which we will refer as the blank) and

just after its reappearance. Indeed, the capacity of the dynam-
ics to transform such fragmented input into a correct, con-
tinuous representation is a major pressure on the evolution of
the visual system (Gollisch and Meister, 2010). It was shown
in the monkey visual system that neural activity was mostly
absent during the blank in lower areas of the visual hierar-
chy while it was maintained in some higher level areas (Assad
and Maunsell, 1995). More precisely, neural activity in MT is
driven by the motion of the dot and quickly devolves to spon-
taneous activity during a blank, while activity in its efferent area
MST is maintained to the level of neural activity expected if the
dot was not blanked when there is no retinal image motion.
This can happen during a transient image occlusion (Newsome
et al., 1988) or while tracking an imaginary target covering
the visual field outside of the receptive field currently being
recorded (Ilg and Thier, 2003). Similar sustained activity dur-
ing target occlusion has been found in primate posterior parietal
cortex, and it is linked to image motion prior to target disap-
pearance (Assad and Maunsell, 1995), that is, by a predictive
signal.

Motion extrapolation is also seen in lower level neuronal
structures, such as the retina (Berry et al., 1999), and calls for
a more generic computational framework. However, direct evi-
dence for such neural mechanisms is still lacking. Before propos-
ing a solution using a connectivity pattern based on motion-based
prediction, we will first review some existing experimental and
theoretical evidence. Along this study, our aim is to provide a basis
for future applications of neuromorphic hardware (Schemmel
et al., 2010; Brüderle et al., 2011).
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FIGURE 1 | The motion extrapolation problem. Sensory input, such as
the smooth motion of a dot in visual space, may be perturbed by
disruption of sensory drive, like when the eye blinks during a visual
stimulation. It is essential that some mechanisms may fill this blank: this
defines the motion extrapolation problem. We first define the problem by
parameterizing a generic input and its perturbation. Left: The input is a
Gaussian hill of activity in a topographically organized space, moving on a
straight trajectory. We show here a snapshot in time of the input (blue)
and the resulting input activity to the network (gray) for a period of
400 ms. This corresponds for instance to the activation of a low-level
visual area to a single dot represented by a bell-shaped hill of activity
(blue blurred circle). In addition, this input carries information about the
motion of the object (blue arrow) and drives neurons which have a close

selectivity in position and velocity (gray arrows). Right: We show the
time course of the input for one representative neuron (denoted by the
yellow star in the left panel). Top: The blue trace shows the envelope of
the inhomogeneous Poisson process that creates the input spike train.
For 0 ms < t ≤ 200 ms and 600 ms < t ≤ 800 ms the stimulus is blanked,
that is, that all neurons in the sensory layer receive input from a Poisson
process with the same rate. We permuted the input vector fed into the
network among all the cells in the network for each time step during the
blank. Black vertical lines indicate input spikes. Bottom: Histogram of the
input spike train with a bin size of 50 ms. This shows clearly the missing
information during the blank. We define the goal of solving the motion
extrapolation problem as representing the prediction of information on
motion (speed and position) during the blank.

1.2. NEURO-PHYSIOLOGICAL CORRELATES OF PREDICTION FOR
MOTION EXTRAPOLATION

At the neural level, it seems that the topography of neural rep-
resentation is an essential constraint to prediction. Indeed, it is
more efficient that populations of neurons that represent similar
parameters should be adjacent. This is due to the cost of wiring
neurons (length and volume of axon and dendrites) Chklovskii
et al. (2002) but also due to the limited speed of information
propagation in neural wires. Such aspect is particularly acute
on the surface of the cerebral cortex and this hypothesis has
been an efficient construct to understand the organization of
visual areas (Miikkulainen et al., 2005). This is also implemented
in other cerebral structures and species such as the conver-
gence of inputs from place cells in the hippocampus of rats
that code for path integration of body position in an environ-
ment (McNaughton et al., 2006). Physiological evidence shows
that similar mechanisms are present in the deep superior collicu-
lus of primates allowing for the integration of the belief on the
position of a visual target in visual space for the guidance of sac-
cadic or smooth eye movements (Krauzlis, 2004). Here, we will
focus on low-level visual areas based on the neurophysiology of
the macaque brain (V1, MT and MST), but we will keep a rather
generic formulation to explore the functional role of some key
parameters.

Neurons in such areas receive connections from neighboring
neurons in the same cortical area (local connectivity) but also
respectively by feed-forward or feed-back connections from lower
or higher areas. Focusing on area MT, early physiological studies
in macaque monkey identified this area as a specialized module
for visual motion processing (Dubner and Zeki, 1971; Allman
et al., 1973). This involves extracting speed and direction of the
moving object. MT neurons respond selectively to visual motion

and are tuned for local speed and direction of luminance fea-
tures moving in their receptive fields (Maunsell and Van Essen,
1983). Concerning motion integration, Pack and Born (2001)
have shown that the temporal dynamics of behavior can corre-
spond with the firing rates of MT neurons. They showed that
neuronal responses quickly progress from local to global motion
direction in about 100 ms, suggesting that such integrative mech-
anisms are dynamical and progressive. These results pinpoint
the key role of MT neurons in local motion analysis and global
motion integration. Area MT and MST receive feed-back connec-
tions that may modulate the activity of their neurons (Salin and
Bullier, 1995). However, these connections (mostly myelinated)
introduce constant delays and are mostly related to higher level
contextual modulations. Provided that motion extrapolation is
implemented in one single cortical area, a finely structured set of
diffusive mechanisms would be required. A potential candidate is
naturally the dense network of lateral interactions found in sub-
cortical and cortical structures involved in sensory processing and
sensorimotor control. Of particular relevance is the role of the
connectivity pattern in the emergence of a solution to this prob-
lem. In this paper we will focus on a smaller spatio-temporal scale
and study the role of lateral, intra areal (mostly unmyelinated)
connections.

A possible correlate of prediction may lay in the traveling
waves of neural activity that may be observed on the cortical
surface. Bringuier et al. (1999) was the first to show a precisely
tuned synaptic integration field (Bringuier et al., 1999) [see (Sato
et al., 2012) for a review]. Theoretical studies suggest that for
such waves to exist, there should exist some specific anisotropy
connectivity pattern (Bressloff and Coombes, 1998). It is estab-
lished that the speed of propagation of activity along these mostly
unmyelinated connections is of the order 0.1–0.4 m/s but there

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 112 | 27

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kaplan et al. Motion-based prediction in a spiking neural network

is an ongoing debate on their selectivity. In the primary visual
cortex, a set of patchy connections in the long-range horizontal
connections found in superficial layers of cortex (Bosking et al.,
1997) that preferentially connect columns with similar orienta-
tion preference has been observed in ferrets. This is consistent
with the fact that columnar interactions determine horizontal
propagation of recurrent network activity in neocortex (Wester
and Contreras, 2012). It has also been observed that activity in cat
V1 spreads anisotropically for all orientation columns (Chavane
et al., 2011). Anisotropies in the connectivity pattern necessarily
lead to a wide range of traveling wave parameters (speed, direc-
tion) and introducing inhomogeneities can in addition lead to
more complex wave profiles and possibly even wave propagation
failure (Bressloff, 2001). However, the function of these traveling
waves, and therefore the underlying structure of the intracortical
connectivity, is mostly unknown.

1.3. EXISTING NEUROMORPHIC MODELS FOR PREDICTION
There have been numerous attempts at modeling generic pre-
dictive neural mechanisms. Here, we review some prototypical
examples at different modeling levels, from a more abstract level
to a neuromorphic implementation.

Following the idea of the Kalman filter as an adaptive predic-
tive filter and extending the work of Montagnini et al. (2007),
Bogadhi et al. (2011) proposed a hierarchical recurrent Bayesian
framework to understand the behavioral response to motion
extrapolation as observed in smooth pursuit eye movements.
Indeed, probabilistic inference has been successful in explain-
ing motion perception to a variety of stimuli (Weiss et al.,
2002) under the hypothesis that sensory areas use predictive
coding as a generic neural computation (Rao and Ballard,
1999). They are somewhat similar to engineering models pro-
posed earlier (Nowlan and Sejnowski, 1995) but allow for a
more explicit formulation of the underlying hypothesis. Such
a framework accommodates uncertainty in the motion infor-
mation of the measurement likelihoods (Weiss et al., 2002;
Stocker and Simoncelli, 2006; Hedges et al., 2011). Representing
uncertainty in the measurements and prior expectation gives
a simple, yet powerful framework to investigate the predic-
tive behavior of the system, and offers the possibility to opti-
mally adapt to changes in the measurements. The approach
from Bogadhi et al. (2011) allows for a mix of prediction and
measurement based on their reliability measured from their
respective variances. The combined estimate is used to drive
the pursuit response. The hierarchical framework allows inves-
tigation of the adaptive behavior of pursuit as well as the role
of prediction on motion integration as observed in pursuit
responses. Such Bayesian models give a generic account of the
motion extrapolation mechanism but do not provide a neural
implementation.

A direct translation could in theory be performed by a prob-
abilistic population code approach (Beck et al., 2008). This
requires that neural responses represent probability distributions
and assume “Poisson-like” spike response variability. Under that
hypothesis, one could derive from a Bayesian model the archi-
tecture of a network of spiking neurons. Another approach is to
use a global and generic functional cost for the problem (such

as the free-energy of a system designed to track a dot) and
derive the optimal system. Such endeavors allow one to pro-
pose a hierarchical neural architecture (Friston, 2009), which
predicts behavioral results under visual occlusion for control and
schizophrenic patients (Adams et al., 2012). Such models are in
essence similar to other modeling approaches where neural activ-
ity is represented by average firing rate on a cortical map (forming
a so-called neural field). Such models were successful in account-
ing for a large range of classical and non-classical receptive field
properties of V1 including orientation tuning, spatial and tem-
poral frequency tuning, cross-orientation suppression, surround
suppression, and facilitation and inhibition by flankers and tex-
tured surrounds (Spratling, 2010). Similar models were applied
to problems specific to motion detection and a link can be drawn
between such solutions and classical solutions drawn in computer
vision (Tlapale et al., 2010). However, these models do not take
advantage of the specificity of computing with spiking neurons,
that is the dual property of being able to integrate information
and detect synchrony in the input.

Some models propose solutions related to motion extrapola-
tion using neuronal networks (spiking and non-spiking). A recent
model of spiking units (Lim and Choe, 2008) explains the phe-
nomenon of the flash-lag effect (Nijhawan, 2008) by a motion-
extrapolation mechanism provided by facilitating synapses, but
acts on the single cell level only. Baldo and Caticha (2005) present
a feed-forward network of leaky integrate-and-fire (LIF) neu-
rons performing prediction, but that does not account for the
role of recurrent connectivity abundant in cortical networks.
In this regard, Liu and Wang (2008) proposed a more realis-
tic recurrent network but focused on a binary decision task,
whereas we aim at a more generic solution for the problem
by studying prediction performance for a spectrum of pos-
sible directions. Recently, Jancke and Erlhagen (2010) used a
recurrent neural field model to explain visual illusions like
the Fröhlich, the flash-lag, and the representational momen-
tum effects. Our approach is similar to theirs in the sense that
the mechanism for motion-extrapolation can be seen in spread-
ing activation to surrounding neuronal populations, but differs
fundamentally in the way that connections are set up, as connec-
tion selectivity for directional tuning is not considered in their
model.

As an intermediate observation, we see that though there
exist a wide spectrum of models, a common feature is that
these models use diffusive mechanisms implemented by the
connectivity to propagate predictive information (probabilities,
population activity, spikes) from a local to a global scale. The
richness of behaviors is then mostly obtained by using differ-
ent types of neurons (for instance by varying their polarity—
excitatory or inhibitory, or the time constant of the synapses),
which implements complex non-linear mechanisms such as gain
control. This may be sufficient to account for motion extrap-
olation. However, it should also be highlighted that all these
models assume a prediction in all directions and therefore
that the connectivity is a priori isotropic. We challenge this
assumption by introducing anisotropy in the connectivity as a
key mechanism transporting motion information in a coherent
manner.
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1.4. OUR APPROACH: AN ANISOTROPIC CONNECTIVITY PATTERN
IMPLEMENTING MOTION-BASED PREDICTION

At the behavioral level, Yuille and Grzywacz (1989) have shown
that motion integration in humans is highly dependent on the
smoothness of the trajectory of the stimulus. Humans can detect a
target dot moving in a smooth trajectory embedded in randomly
moving dots, while the target dot is not distinguishable from noise
in each frame separately. Introducing a preference for smooth tra-
jectories, the activity from local motion detectors are made more
coherent in space and time and this globally lowers the thresh-
old for detecting stimuli moving in smooth versus segmented
trajectories. In particular, during a transient blanking, it is most
likely that such processes (along with the knowledge that the
sensory input was indeed blanked and not definitively removed)
underlie motion extrapolation. For instance, when a moving tar-
get disappears, smooth pursuit eye movements continue at the
same velocity during the initial period of occlusion (Bennett and
Barnes, 2003). Therefore, it seems that neural computations take
advantage of the information about motion, but it is yet not clear
how this can be done efficiently in a network of spiking neurons.

At an abstract level, a preference for temporal coherency of
motion can be defined in a probabilistic framework. This was
formulated theoretically by Burgi et al. (2000), who proposed a
neural field implementation including local to short-range con-
nectivity. However, it lacked the precision needed to efficiently
represent realistic input sequences. In our earlier work (Perrinet
and Masson, 2012), we implemented an efficient prior for smooth
trajectories to investigate different aspects of spatio-temporal
motion integration. Particularly, this model focused on the aper-
ture problem and proposed that local, diffusive predictive coding
is sufficient to infer global motion from local, ambiguous sig-
nals. The aperture problem is a challenging problem to study
integration of local motion information (Pack and Born, 2001).
The model proposed that instead of specific mechanisms such
as line-ending detectors, the gradual spatio-temporal integration
of motion relies on prediction based on the current knowledge
of motion in terms of its velocity and position (motion-based
prediction). Compared to previous models the main difference
of this implementation is that, it is possible to predict that
information about motion velocity at a known position will be
transported in the direction given by the velocity.

Indeed in motion-based prediction, the retinotopic position
of the velocity of motion is an essential piece of information that
allows routing information and allow implementation of predic-
tive coding on smooth trajectories. By including explicitly the
dependence of local motion signals between neighboring times
and positions knowing the current speed along a smooth trajec-
tory, incoherent features should get canceled out, while coherent
information should get progressively enhanced. As such, this
context-dependent, anisotropic diffusion in the probabilistic rep-
resentation of motion also results in the formation of a tracking
behavior favoring temporally coherent features. Such a model was
recently extended to account for motion extrapolation (Khoei
et al., 2013) and has been able to replicate some behavioral results
from Bogadhi et al. (2011). Our goal here is to show that the
idea of motion-based prediction [as described in Perrinet and
Masson (2012)] can be implemented in a generic network of

spiking neurons through anisotropic connectivity and that this
is sufficient to solve a motion extrapolation task. The novelty
compared to previous studies is the transition from an abstract,
probabilistic framework to a spiking neural network and the
link between anisotropic connectivity to motion-extrapolation,
a task of functional relevance. Of course, we will not exclude
that other complementary solutions may exist, but we will argue
that it constitutes one of the simplest solutions for a network
of spiking neurons. For that purpose, we will use a classical
implementation of recurrent networks using conductance-based
integrate-and-fire neurons with three prototypical connectivities:
random, isotropic or anisotropic. While the consequence of non-
homogeneous connectivities has been somewhat explored (Voges
and Perrinet, 2012), it is—up to our knowledge—the first study
of the functional consequence of anisotropic connections in a
large-scale neural network.

1.5. OBJECTIVES AND OUTLINE
This paper is organized in the following order: First, we develop
a network of spiking neurons with the connectivity directly
drawn from the probabilistic modeling framework proposed for
the solution to the aperture problem (Perrinet and Masson,
2012), and that was extended to the motion extrapolation prob-
lem (Khoei et al., 2013). We will include in Section 2.1 details on
structure and implementation of the model but also details from
the experimental and numerical aspects.

Then, we report results in Section 3 from simulations where we
studied the network response to a disappearing moving dot under
three different connectivities: random, isotropic or anisotropic.

Finally in the discussion (Section 4), we interpret these results
in the light of current knowledge on probabilistic inference and
dynamical systems, and we will discuss the limitations of the
current study along with suggestions for future work.

2. METHODS
2.1. NEURON PARAMETERS
Simulations were performed with PyNN (Davison et al., 2008) as
interface to the NEST simulator (Gewaltig and Diesmann, 2007)
on a Cray XE6 system using 96 cores. For analysis we used python
modules numpy (Oliphant, 2007), scipy (Oliphant, 2007) and
visualization was performed using matplotlib (Hunter, 2007).
Neurons were simulated as LIF neurons with conductance based
synapses. The membrane potential V of a neuron with index k
obeys the following equation:

Cm
dVk

dt
= gl (El − Vk(t)) +

∑
j

[
gj, k, E(t) (EE − Vk(t))

+ gj, k, I(t) (EI − Vk(t))
]
, (1)

where j is the index of the sources, gj, k(t) = wj, k · exp
(
− t − tspike

τp

)

is the synaptic conductance time course with p ∈ {E, I}: τp are
the synaptic time constants, and Ep is the reversal potential for
excitatory (p = E) and inhibitory (p = I) synapses respectively, gl

is the constant leakage conductance, and El the leakage or resting
potential. When the membrane potential V is above the threshold
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Table 1 | Neuron parameters.

Name Cm gl τm El EE EI τE τI

Value 1 0.1 10 −70 0 −70 5 10

Unit nF μS ms mV mV mV ms ms

voltage Vthresh = −50 mV a spike is emitted and V is set to
Vreset = −70 mV for a refractory period of τrefrac = 1 ms. Table 1
lists the parameters used for both excitatory and inhibitory neu-
rons. The cell and synapse parameters have been chosen to be in
a similar range as seen in experimental studies [see Table 3 in the
study by Rauch et al. (2003)] to allow for comparison between
future modeling and experimental studies. The model is in princi-
ple not dependent on the cell parameters and different parameters
would not change the fundamental outcome, but returning of
other parameters like connection strengths would be necessary.
The initial values of the membrane potentials are drawn from
a normal distribution around Vinit = −65 mV with a standard
deviation of 10 mV.

2.2. TUNING PROPERTIES
The model is inspired by retinotopic cortical areas like areas V1 or
V5/MT in primates. In our model, each neuron has four tuning
properties: (xi, yi, ui, vi) parameterizing the center of the spatial
receptive field of neuron i at position �xi = (xi, yi) and its preferred
direction �vi = (ui, vi). The width of this receptive field defines the
tuning selectivity of neurons and is parameterized by βX and βV ,
respectively for space (x and y) and velocity (u and v). The spa-
tial receptive fields are arranged in a hexagonal grid to optimally
cover the input space which is set to span a 1 × 1 area in arbitrary
units. As we will implement a network size of approximately 104

neurons, this will in practice correspond to a spatial scale of the
order of millimeters.Velocities should therefore be in the range of
m s−1.

In order to have receptive fields for all possible directions
(up to a certain maximum velocity of approximately |�vmax| =
4.0 ms−1) at all positions, the midpoint of each of the 100 hexag-
onal grid cells contains neurons with ten different preferred
velocities for ten different angles, hence 100 different preferred
directions per hexagonal grid cell. The lengths of preferred direc-
tions are distributed according to a distribution favoring low
velocities (Weiss et al., 2002) with a logarithmic scale for the
speed according to Weber’s law (Stocker and Simoncelli, 2006).
In order to avoid boundary effects, both spatial dimensions are
closed and continuous. This leads to a horn torus as input space,
i.e., if a stimulus leaves the 1 × 1 space it reappears on the oppo-
site side (so-called “pac-man topology”). This topology holds also
for the network connectivity, e.g., connections reaching beyond
the virtual border at xtarget = 1 will be wrapped around. After all
tuning properties are set, they get dispersed to account for natural
variability (Paik and Ringach, 2011).

2.3. INPUT STIMULUS
A classical way of studying motion extrapolation is by pre-
senting a moving target that travels behind an occluder for a
short period of time. A seminal study used timing estimation
by asking participants to make a button press response at the

time they judge the occluded target to have reached a partic-
ular point (Rosenbaum, 1975). Motion extrapolation can be
carried out for lateral motion with the target moving across the
fronto-parallel plane, or for approaching motion, when the object
moves toward the observer (DeLucia, 2004). Herein, we investi-
gate visual, lateral motion extrapolation only. For simplicity, we
study the network’s response to a moving dot stimulus and the
network’s ability to predict the trajectory of the dot when it dis-
appears behind an obstacle producing a blank gap in the input
signal.

From the definition of the tuning properties of a neuron i, we
may model the response to a moving dot as an inhomogeneous
Poisson process with a parametrically defined envelope. Indeed,
we will use the following input stimulus Li(t) as the envelope for a
Poisson process with a maximum of 5 kHz (when Li(t) reaches 1)
and a time step of 0.1 ms:

Li(t) = exp

(
−‖�xstim(t) − �xi‖2

2β2
X

− ‖�vstim − �vi‖2

2β2
V

)
(2)

where �xi is the neuron’s receptive field central position, �vi the
neuron’s preferred direction, �xstim(t), (�vstim) is the position (direc-
tion) of the moving dot (see Figure 1). As the trajectory of the dot
is rectilinear and constant, we have

�xstim(t) = �xstim(0) + �vstim · t (3)

The resulting inhomogeneous Poisson spike train is connected
to the respective neurons via one excitatory synapse of strength
winput = 5 nS. This formalization allows to study for the different
roles of theses parameters. In particular, the tuning width may
play an important role as it is known that in low level visual areas
(such as the retina), receptive fields are small (position is accurate,
motion is imprecise) while in higher level areas motion is more
finely represented, while position is less precise (as the receptive
fields’ size increase). In the rest, all neurons have the same tuning
width defined by βX = 0.15 and βV = 0.15s−1. The βX, V values
have been set so that a reasonable part of the network receives
sufficient input from the moving dot stimulus. Increasing βX, V

would make the dot appear broader, whereas smaller βX, V would
make a smaller fraction of the network respond to the stimulus.
Changes in the βX, V parameters would not change the working
concept of the model, but would require a retuning of connec-
tivity parameters like number of connections and connection
strengths.

For simplicity, we studied only networks in which excitatory
neurons receive input because inhibitory neurons primarily pro-
vide a normalization mechanism in our model, even though this
might not reflect real cortical circuits (Frégnac et al., 2003). All
neurons receive additional noise in form of Poisson spike trains
with a rate of fnoise = 2 kHz injected via excitatory and inhibitory
synapses with a weight of wnoise = 4 nS to simulate the input from
external networks. For all simulations of this paper, the network
was stimulated with a dot moving at a speed of �vstim = 0.5 s−1

from left to right (and an initial position defined by �xstim(t=0) =
(0.1, 0.5)). Crucially, during the blank phase, the stimulus vec-
tor in the network was permuted randomly at each time step
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among the whole excitatory population, so that the selectivity of
the input was completely lost while keeping a similar input aver-
age frequency as compared to phases when stimulus is active.As
the input vector is shuffled the network does not receive a coher-
ent continuous input signal. During the blank phase, cells that
are well-tuned to the stimulus receive input spike trains with a
larger inter-spike-interval leading to a decrease in the effective
input. This is due to the integration of post-synaptic potentials
on the membrane in the context of LIF neurons. Compared to an
empty input vector, this input vector shuffling during the blank
phase elevates the mean membrane potential of the population
slightly which can help the network to fill the blank phases with
meaningful input.

2.4. NETWORK CONNECTIVITY
The network study consists of an excitatory population with
Nexc = 13000 neurons and an inhibitory population with Ninh =
2520 neurons (that is, with a ratio of 16.2% inhibitory cells
over the whole population). Both populations are mutually and
recurrently connected in one of the following ways which will
be explained in the next sections: randomly, isotropically or
anisotropically.

2.4.1. Random and isotropic connectivities
Connections within and between populations can be set up in an
isotropic manner that does not depend on the source or target
neuron’s tuning properties. When neurons are connected in this
way, connection probabilities are computed according to:

pij = pmax · exp

(
−

d2
ij

2 · σ2
X

)
(4)

where pmax is a normalizing factor and dij = ∥∥�xi − �xj

∥∥ repre-
sents the distance (in visual space) between both neurons. pmax

is set so that the total number of connections between two pop-
ulations drawn isotropically is equal to an overall probability
of pk, l, (k, l) ∈ {E, I}. The connection probabilities utilized are:
pEE = 0.5%, pEI = 2%, pIE = 2%, pII = 1%.

Weights are drawn from a normal distribution with mean μiso
w

and standard deviation σiso
w = 0.2 · μiso

w . The value of μiso
w is set so

that the expected sum of incoming weights equals a certain target
value wkl specific to the type of the source and target population
(k, l ∈ {E, I}): wEE = 0.3 μS, wEI = 1.8 μS, wIE = 0.8 μS, wII =
0.15 μS (if not stated differently).

Delays are drawn from a normal distribution with a mean
value μiso

δ = 3 ms and a standard deviation of σiso
δ = 1 ms. Self-

connections have been discarded. A completely random connec-
tivity may be then achieved by setting σX to a sufficiently big value
(relative to the scale of the spatial period). This results in a flat,
uniform probability of connection over the whole population.

2.4.2. Anisotropic, motion-based prediction connectivity
Inspired by motion-based prediction (Perrinet and Masson,
2012), we may define a connectivity by wiring neurons that
are linked by a smooth trajectory with a higher probability.
Connectivity will then be specifically anisotropic as it provides

a mechanism for motion-based prediction by diffusing motion
information across the network in a forward, asymmetric man-
ner. Specifically, we will take advantage of the latency that exists
between neurons in the same cortical area and use that parame-
ter to connect cells matching a smooth trajectory. The motivation
underlying this formula is based on the idea that smooth trajec-
tories are more likely seen in natural scenes and are promoted
by the network connectivity. If the target position is situated at
the position where the source neuron predicts the stimulus to be
in a certain time τij and if the target neuron predicts the stim-
ulus to move in a similar direction �vj as the preferred direction
of the source neuron �vi, the source neuron connects with a high
probability to the target neuron.

As a consequence, the connection probability is computed
from the tuning properties of the source neuron i and target neu-
ron j according to the sampling of the prior defined in Perrinet
and Masson (2012):

pi,j = pmax · exp

⎛
⎜⎝−

∥∥∥�x∗
i, j − �xj

∥∥∥2

2 · σ2
X

⎞
⎟⎠ · exp

(
−
∥∥�vi − �vj

∥∥2

2 · σ2
V

)
(5)

�x∗
i, j = �xi + �vi · τi, j (6)

τij =
∥∥�xi − �xj

∥∥
∥∥�vi

∥∥ (7)

In this formulation, �x∗
i, j is the position predicted for a motion

that would leave the source neuron’s receptive field (therefore
from position �xi and with velocity �vi) after a latency τij. Then,
parameter τij corresponds to the expected latency knowing the
respective position and velocity of source and target neurons. In
Equation (5), the parameters σX and σV determine the strength of
the tuning properties of motion-based prediction. Unless stated
otherwise, we will use σX = 0.1 and σV = 0.1−1 (see Figure 2).
Note that the precision of prediction in the velocity domain (that
is σV ) determines a scaling factor for the degree of anisotropy: the
lower σV is, the more the outgoing connections of a neuron are
aligned with the preferred direction of the source neuron. Note
also that only σV includes the predictive prior on velocity and
that we may retrieve an isotropic connectivity by setting σV to
a sufficiently high value.

The probabilities are then sorted and each target neuron
receives input from 0.5% of the source neurons that have the
highest connection probability. Those 0.5% highest probabilities
are converted to connection weights so that the sum of incom-
ing weights per neuron equals a certain target value wkl specific to
the type of the source and target population (k, l ∈ {E, I}): wEE =
0.20 μS (for motion-based connectivity and wEE = 0.25 μS for
direction-based connectivity), wEI = 1.8 μS, wIE = 0.8 μS, wII =
0.15 μS (these values are only for the example networks and
might differ depending on the exact implementation and require
an adjustment for different network sizes).This means the con-
nectivity becomes deterministic (based on the tuning properties
of the source and target cell) and the term probability refers only
to the overall selection of source cells in the network.
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FIGURE 2 | From aniso- to iso-tropic connectivities. We propose that
the local connectivity pattern of lateral connections play a crucial role in
solving the motion-extrapolation problem. In order to show that, we
compared different connectivity patterns in response to the blanked input
(see Figure 1). In the three panels, we show the incoming and outgoing
connections for the same single neuron (as marked by the yellow
diamond) for different connection rules. The preferred direction of that
neuron is shown by the yellow arrow. Cells targeted by the yellow cell are
marked with black circles and cells projecting to the yellow cell are marked
with red triangles. The relative weights of incoming (outgoing) connections
are indicated by the size of the source (target) neuron, respectively. The
preferred direction of source and target neurons is shown by solid arrows.
Connection delays are color coded. Left: Motion-based prediction
anisotropic connectivity. Inspired by previous work on motion-based
prediction (Perrinet and Masson, 2012), we propose a first pattern of
connectivity based on connecting a source neuron to a target neuron if and
only if the position and velocity of the target is compatible with a smooth
trajectory that would originate from the source neuron. The strength of this

prediction is parameterized by the width of the lateral tuning selectivity
and here we show the prototypical pattern for σX = 0.3 and σV = 0.3 ms−1

(as used for the simulations). Middle: Direction-dependent connectivity. To
create a more realistic connectivity pattern, we used the same rule but
independently of speed (i.e., the modulus of velocity), but only as a
function of the direction of motion. The target neuron is connected if and
only if its direction is close to the source’s direction and if its position is
predicted to be in the direction given by the source neuron. Additionally, to
account for physiological constraints on lateral interaction, only connections
within a radius of rConn = 0.10 or latencies shorter than 100 ms are
allowed. This leads to a more local connectivity and smaller connection
delays compared to the previous connectivity. We show here the resulting
connectivity pattern for σX = 0.3 and σV = 0.3 ms−1 with the
motion-dependent connectivity and σX = 1.0 and σV = 1.0 ms−1 with the
direction-dependent connectivity. Right: An isotropic connectivity pattern
was chosen as a control. There is no prediction in velocity space, but we
still predict that activity should diffuse locally, as the connection probability
drops with the distance between cells.

2.4.3. Anisotropic, direction-based prediction connectivity
However, if we use the previous equation to connect cells
[Equation (5)], and scale our network realistically, it appears that
latencies depend on the velocity coded by the cells, and in turn,
this leads to unrealistically high delay values with the range of
velocities we used. As a consequence, we defined another way
of setting up the connectivity which only take into account the
angle between source and target cells and the angle between the
directions coded for by the source and target cells. It is therefore
independent of the preferred speed (modulus of velocity) of the
neurons and on the latency used to connect the cells.

We use von Mises probability distribution functions to define
the tuning in the range of all directions:

pi,j = pmax · exp

(
cos

(�xj − �xi, �vi
)

σ2
X

)
· exp

(
cos

(�vi, �vj
)

σ2
V

)
(8)

The first term guarantees that information spreads in the direc-
tion that is preferred by the source cell (and where σX gives
approximately the width of tuning in radians). The second term
ensures that information is passed only to cells that code for
motion moving in a similar direction as preferred by the source
cell (and where similarly σV gives approximately the tuning width
in radians). Note that in position-velocity space, the probability
of connection is maximal in the direction given by the pre-
ferred velocity of the source cell and centered on the position

of that cell’s receptive field. The density therefore defines a cone
around this half-line, defined by widths σX and σV [see middle
panel in Figure 2]. Note that this formulation may be derived
from the formulation of motion-based prediction by lowering
the strength of prediction on the radial component of velocity.
As such, this connection probability gives a similar mechanism
for promoting smooth trajectory, and provides the diffusion of
motion information in the direction detected by the network. A
comparison of these two network connectivities is visualized in
Figure 2.

Whereas encoding and decoding of direction information is
now largely understood in various neuronal systems, how the
human brain accurately represents speed information remains
largely unknown. Speed tuned neurons have been identified in
several early cortical visual areas in monkeys. However, how
such speed tuning emerges is not yet understood. A working
hypothesis is that speed tuned neurons non-linearly combine
motion information extracted at different spatial and tempo-
ral scales, taking advantage of the statistical spatiotemporal
properties of natural scenes. Furthermore, the population code
underlying perceived speed is not yet elucidated and there-
fore we are still far from understanding how speed information
is decoded to drive and control motor responses or percep-
tual judgments. As a consequence, such a connectivity profile
will serve as a further control to test if restraining the predic-
tion to direction is sufficient to solve the motion extrapolation
problem.
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2.5. CHOICE OF PARAMETERS
The number of receptive fields has been set so that the four-
dimensional space of tuning properties is covered with a reason-
able density of cells. Decreasing the number of receptive fields
would decrease the number of cells in the network and would
impede the diffusion of information between cells. This is because
the weight of connections is sensitive to the distribution of cells in
the tuning property space, and a over-sparsely populated tuning
property space can lead to unwanted effects for activity spread in
the network. The parameters describing receptive field sizes, βX

and βV , determine the distribution of the input signal in the net-
work. They have been chosen so that a small part of the network
receives a sufficient amount of excitation that brings this small
part above the spike threshold and initiates the spread of activity,
and by that, the diffusion of motion-information in the network.
Increasing βX, V would make the stimulus appear fuzzier and,
consequently the extrapolation task more difficult. A decrease
of βX, V would make the stimulus appear sharper. But it would
not necessarily make the task easier since the source of activity
would be smaller and the seed for the diffusion of information
could possibly be too small to propagate through the network,
depending on the network connectivity parameters. The param-
eters determining the network connectivity pk, l and wk, l, (k, l) ∈
{E, I} were chosen to be in a range comparable to physiologi-
cal values for large networks. Especially the connection weights
needed to be fine tuned to solve the motion-extrapolation task.
Redistributing the tuning properties could easily lead to insta-
bilities, i.e., that the trajectory could not be extrapolated, and
too high weights could lead to an explosion of activity in the
network.

2.6. PREDICTION READOUT
A crucial issue when trying to map a Bayesian inference algorithm
to a network of spiking neurons is to understand how proba-
bility can be expressed in terms of neural activity. Herein, we
applied a simple vector averaging method to infer the prediction
about stimulus position and direction from the activity of the
excitatory population. Indeed such decoding scheme may be jus-
tified as a simple implementation of probabilistic codes as done
by Beck et al. (2008). Their approach requires several assump-
tions which are not guaranteed in our model: First of all, neurons
are assumed to have Poisson-like spiking statistics, which is obvi-
ously not true in our model since activity is strongly driven by
the stimulus and hence neuronal activity is not Poisson-like (see
3). Secondly, they assume that network activity is uncorrelated
on timescales of 50 ms, which is likewise not realistic for our
model. Furthermore, their approach works on probability dis-
tributions gained over several trials, which could principally be
done with our model, but it is computationally more expensive
than the single-trial vector-averaging method described above.
However, this provided a decoding approach which seemed to
robustly represent the activity in the network.

In particular, we used a similar formulation as the decoding
framework proposed for neurons in area MT (Jazayeri and
Movshon, 2006). Indeed, the definition of our model fits well
to their implementation. In both models, the activity of sensory
neurons is pooled in a simple additive feed-forward architecture,

In contrast to their model, we extend the application beyond the
angle of motion and apply the readout framework to position
and direction. More precisely, the tuning properties are in the
exponential family and tile uniformly the position-velocity space.
Thanks to the definition of the tuning selectivity of the neurons
in the network, the position and velocity corresponding to the
Maximum Likelihood estimation corresponds to the average
over all neurons of each central tuning parameter weighted by
the activity of the neuron (independently of βX and βV as they
are uniform for all neurons). To define a continuous activity
at each time bin a weight pi(t) is defined for each excitatory
neuron i based on the number of output spikes fired during a
time bin t:

pi = ni(t)
/Nexc∑

i

ni(t) (9)

where ni(t) is the number of spikes fired by neuron i. The time bin
size was set to 50 ms, but it could be chosen differently without
qualitative changes.

Such decoding schemes are classically implemented on
unbounded variables. However, we defined space on a torus in
order to avoid edge effects. Hence, the network average must be
computed for circular quantities (Mardia and Jupp, 2009): The
idea behind Equation 10 is that in order to compute the mean of a
circular quantity, the position and direction first need to be trans-
formed into an angle, which is then projected to the 2D unit circle
where the arithmetic mean is computed. After that, the angle that
the mean position forms is transformed back from an angle to
space. For positions, this takes the form:

xnet
pred(t) = 1 + 1

2π
arctan2

(
Nexc∑

i

pi(t) sin (2πxi − π),

Nexc∑
i

pi(t) cos (2πxi − π)

)
(10)

where xi is the center of the spatial receptive field of neuron i (the
same formula is applied to compute ypred(t)). The subtraction of
pi in the sin and cos functions is necessary to map the interval
of position which is between 0 and 1 to the interval of (−π,π)

required for the projection of position on the unit circle.
Similarly, for reading our the direction of the stimulus

predicted by the network:

vnet
pred(t) = 1

π
arctan2

(
Nexc∑

i

pi(t) sin (πvi),

Nexc∑
i

pi(t) cos (πvi)

)

(11)

The difference between Equations 10 and 11 lies in the fact that
positions are bound to be between 0 and 1, whereas directions
can be negative and larger than 1 or −1, which changes the trans-
formation to and from angles for position and direction. Taken
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together, this gives an easy decoding scheme from the neural
activity to a probabilistic read-out.

3. RESULTS
3.1. ANISOTROPIC DIFFUSION TRANSPORTS INFORMATION DURING

THE BLANK
Recurrent excitatory connectivity is a candidate for providing
mechanisms for motion-based prediction. In order to prove the
functionality of our approach, we show results for single exam-
ple networks of three different connectivity types applied to the
recurrent excitatory population: isotropic, anisotropic motion-
based (speed tuning dependent) and anisotropic direction-based
(speed tuning independent). For simplicity, the other connectivi-
ties are set up according to the isotropic scheme. Networks using
the anisotropic scheme for one or more of the other pathways
(E − I, I − E, I − I) could be tuned to perform similarly (not
shown).

The connectivity in our model is mainly controlled by two
parameters: the sum of incoming weights and the number of
connections received by a cell. The sum of incoming weights
for excitatory-excitatory connections have been tuned so that the
activity initiated by the stimulus is strong enough to propagate
through the network when the stimulus is turned off after 400 ms
of input driven activation. Weights from the excitatory to the
inhibitory population have been chosen so that inhibitory neu-
rons exhibit a reasonable level of average activity of approximately
5 Hz when the stimulus is driving the excitatory population. The
role of inhibitory to excitatory connections is to balance the
network activity when the stimulus is active after the blank. In
contrast to balanced random networks, the inhibitory to excita-
tory weights could not be set to high values that compensate for
the higher number of excitatory neurons as in previous mod-
els [e.g., (Brunel, 2000; Morrison et al., 2007)] because strong
isotropic inhibitory feedback would silence excitatory neurons in
the vicinity and impede the propagation of motion information
during the blanking period. The interplay between the excita-
tory and inhibitory populations is crucial for balancing network
activity, but more importantly, for suppressing activity that cre-
ates false predictions about the target trajectory. All connectivity
parameters were tuned so that the spread of activity within the
excitatory population is strong enough to fill a realistically long
blanking period, where the average duration of a single blink is
between 100 and 400 ms (Schiffman, 2001).

Before stimulus onset, the network input consists of back-
ground noise that persistently drives the network at low firing
rates. The stimulus spike trains are dispersed over the whole exci-
tatory population (see Figure 3). As this input is not coherent,
the type of connectivity has no effect on the activity before onset.
The stimulus activates the network between 200 and 600 ms of
the simulation before another blank phase of 200 ms in which the
input is equal to the phase before stimulus onset. Neurons that
are well tuned to the stimulus fire at very high rates (temporar-
ily up to 250 Hz) when the stimulus is present. This is due to the
strong input stimulus and the amplification by the recurrent exci-
tation. The average firing rate of neurons being active at least once
during the simulation grows to up to 20 Hz when the stimulus is
persistently present.

FIGURE 3 | Rasterplot of input and output spikes. The raster plot from
excitatory neurons is ordered according to their position. Each input spike is
a blue dot and each output spike is a black dot. While input is scattered
during blanking periods (Figure 1), the network output shows shows some
tuned activity during the blank (compare with the activity before
visual stimulation). To decode such patterns of activity we used a
maximum-likelihood estimation technique based on the tuning curve of the
neurons.

During the blank phase the global network activity drops
rapidly to a low average rate of approximately 2 Hz and those neu-
rons that convey the remaining motion information fire approx-
imately 5–15 spikes during the blanking period, as individual
output rates remain elevated to levels of 25–75 Hz. Due to the
anisotropic connectivity the activity triggered by the stimulus
propagates through the network in the direction that was initiated
by the target (see Figures 3, 4).

We observed that there needs to be a balance between stim-
ulus induced excitation and the recurrent excitation: When
recurrent excitation is too strong, the internal neural dynam-
ics dominate over the activity triggered by the stimulus and it
is likely that false tracking behavior occurs, i.e., network activ-
ity spreads too fast in the direction of the stimulus and the
predicted trajectory gets ahead of the target. When recurrent exci-
tation is not strong enough, the network activity fails to fill the
blank by its own dynamics like in the network with isotropic
connectivity.

The connectivity parameters σX and σV need to be chosen dif-
ferently for the two anisotropic networks, because their role in
determining the connection probability between cells is slightly
different according to Equations 5 and 8. For motion-based (MB)
connectivity we used σMB

X, V = 1, and for direction-based (DB)

σDB
X, V = 0.5. When σX < σV two main effects could be observed.

As the network connectivity is more specific in the spatial domain,
the prediction performance in the target direction tends to be
lower and in the target position gets more precise. But the pre-
diction can get ahead of the stimulus because excitation spreads
to fast along the predicted trajectory. In the opposite case, when
σV < σX , the prediction of target direction gets more precise.
Since the connectivity is spatially more distributed, the network
is less likely to fill the blank because excitation is diluted across
space.
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FIGURE 4 | Probabilistic population decoding and the resolution of the

motion extrapolation problem using anisotropic connectivity. The
computed prediction confidence resulting from our simulations is shown
using the motion-based anisotropic connectivity pattern with respect to time.
The three vertical dashed lines correspond to: the onset of the stimulus, the
onset of the blank and finally the reappearance of the stimulus, respectively.
The cells’ prediction confidence is defined in Equation 9 and have been

sorted and binned according to their tuning properties. The accumulated
confidence within each time bin is color coded. Top: left (right): We show the
prediction confidence of movement direction u = vx (v = vy ). Bottom: left
(right): Prediction confidence about x and y position, respectively. While
information is distributed before stimulation and quickly converges during
stimulation, it is predicted during the blank: the motion extrapolation is solved
and information is very quickly recovered at the reappearance of the stimulus.

3.2. READING-OUT THE POPULATION RESPONSE
Jazayeri and Movshon (2006) presented a framework for a
generic representation of likelihoods of sensory stimuli by
neural activity. Here, we used a similar approach (see 2.6)
which allows us to transform the binary spiking activity
into a continuous valued representation of probability about
the target motion. By these means, the activity of individ-
ual neurons can be interpreted as time-continuous confidence
measure.

The phase before stimulus onset is like a prior probability. It
is dominated by noisy activity that seems uniform and does not
converge into a coherent probability distribution (see Figure 4).
At stimulus onset, the network activity increases instantaneously
and the probability distribution changes into a meaningful rep-
resentation of motion information. During the blank period, the
network activity drops rapidly (sometimes more gradually) and
the probability distribution becomes more noisy, but changes
less dramatically. Hence, despite the overall decrease in activity,
information is not lost when the stimulus disappears. Instead,
activity continues to propagate through the network, driven by
the anisotropic connectivity. When the stimulus reappears the
network activity grows again and continues to grow up to an

average rate of 20 Hz until it is counterbalanced by the inhibitory
feedback.

3.3. MOTION-BASED PREDICTIVE ANISOTROPIC DIFFUSION SOLVES
MOTION EXTRAPOLATION

In order to get a global estimation of the motion information
we combine the probability estimates of individual neurons as
described earlier (see 2.6) by a linear weighting of their time-
varying activity. This provides a single valued, time-continuous
prediction, i.e., readout signal of target position and direction.
We will now compare the maximum confidence response for the
three different connectivities to the exact same input in order to
investigate the effect of the network connectivity on the readout
signal.

Before stimulus onset the readout signal of all three networks
follows the same noisy time course (see Figure 5). After stimulus
onset and after the blank, all three estimations coincide with the
actual target position and are very close to the target direction.
This shows that our simple linear decoding approach is sufficient
to translate the network activity into a meaningful readout signal.

The difference between the three networks can be seen dur-
ing the blank phase. During this period, the readout signal of
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FIGURE 5 | Comparison of prediction performance for the different

connectivities. The performance of direction (top) and position
(bottom) prediction as decoded from the network activity is shown
(see Equations 10, 11). First and second columns show the horizontal
and vertical components, respectively, while the last column shows
the mean squared error of the predicted position with respect to the
known position of the target. The color of the lines correspond to

the different connectivities presented in Figure 2: motion-based
prediction (solid blue), direction-dependent prediction (dashed green),
isotropic (dash-dotted red). While an isotropic connectivity clearly fails
to predict the fate of the input during the blank, we show here
that the anisotropic connectivities may efficiently solve the motion
extrapolation problem, even with an approximate solution such as the
direction-based prediction.

the network with the isotropic connectivity returns to the noisy
time course, just like before the stimulus onset. In contrast, read-
out from the networks with anisotropic connectivity continues
to give a precise estimation of the target position and direction of
motion, as can be seen from the low prediction error (see the right
most columns of Figure 5). The readout from the direction-based
connectivity is less accurate than the motion-based connectivity,
but it still shows that the direction-based diffusion mechanism
allows for inference of the target position and direction during the
blank phase. Thus, it can solve the motion extrapolation problem.

In some experiments, we observed that direction prediction
appears to be biased toward higher velocities - especially dur-
ing the blank. Improvements to the connectivity rule might
be necessary to gain a “perfect” prediction performance (zero
root-mean-square error). The reason for the drift toward higher
velocities can be seen as an unbalanced distribution of incom-
ing weights. Neurons with higher velocities are more seldom
and hence have less cells with similar tuning properties in their
vicinity. Due to the fact that all cells receive the same sum of
incoming weights, the comparatively few cells that project to cells
with high preferred velocities do this via few, strong connec-
tions, possibly leading to the observed drift and instabilities in
the network dynamics. This could possibly be solved by improv-
ing how probabilities are mapped to connection weights, e.g., by
introducing a non-linearity that prohibits weights above a cer-
tain value. Nevertheless, it was not our objective to present an
optimal ad-hoc connection algorithm that gives perfect predic-
tion performance, but to prove the fact that anisotropic, tuning
property-based connectivity could be an important mechanism
achieving motion-based prediction.

3.4. CONCLUSION
The comparison of the prediction performance of the three dif-
ferent networks shows two main points. Anisotropic connectivity
provides a mechanism for the diffusion of motion information,
which is relevant to predict future trajectories in noisy environ-
ments where the flow of information is interrupted frequently.
Also, our simple approach to read out network activity linearly is
sufficient to solve the given task, and does not require knowledge
about probability distributions gained over many trials.

4. DISCUSSION
4.1. SUMMARY AND COMMENTS
Following our previous study (Perrinet and Masson, 2012), we
have confirmed that anisotropic diffusion of information is a suf-
ficient mechanism to realize motion-based prediction as tested by
the moving-dot blanking experiment. We have studied the role
of different anisotropic and isotropic connectivity patterns and
have shown that network connectivities that take into account
the tuning properties of neurons and prefer smooth trajectories
are more efficient in predicting the trajectory of a disappearing
moving stimulus than isotropic networks. The main contribu-
tion of this study is to show that anisotropic diffusion of motion
information can be implemented in networks of spiking neu-
rons and thus could be a generic mechanism for motion-based
prediction. Furthermore we have presented, to the best of our
knowledge, the first model for motion prediction using spiking
neurons and selective anisotropic connectivity that is inspired by
a probabilistic framework.

The presented model is certainly limited and unrealistic
in many ways. We have intentionally chosen a simple model
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(in terms of neuronal and synaptic features) to focus on the effects
of connectivity patterns and to explore possible future applica-
tions for neuromorphic hardware systems (Schemmel et al., 2010;
Brüderle et al., 2011). One of the main limitations consists of
using long interconnection delays that are necessary to achieve
its main function in the current state of the model. According
to the spatial scale and the conduction delays of cortical net-
works, the connection delays resulting from our model are not
on the same order of magnitude. Assuming that the concept of
anisotropic diffusion of information operates in motion process-
ing networks, neuronal mechanisms other than such long delays
would be required to achieve the desired predictive function. One
reason for long delays is likely the size of our network and that
we are sub-sampling neurons in comparison to realistic cortical
network sizes. In larger networks it would be sufficient to have
recurrent excitation working on a more local scale and long-range
connectivity would implement the transport of an expectation
signal, possibly in the subthreshold domain. We have successfully
explored one possibility to relieve the need for long delays by con-
straining the connectivity to more local scales, which reduced the
required delays by more than one order of magnitude. Instead
of the axonal delays as employed by our model, dendritic delays,
long synaptic time constants (provided e.g., NMDA or GABA-
B currents), or a combination of those three mechanisms could
be used to implement the same principle. In summary, larger
network sizes and longer synaptic time constants would likely
help to realize our approach with shorter, more realistic connec-
tion delays. The fact that both models with longer and shorter
delays show very similar performance could be a hint for the gen-
erality of the idea of motion information being transported by
anisotropic connectivity.

4.2. CONTEXT OF EXISTING MODELS
Based on early ideas by Hubel and Wiesel (1962), models employ-
ing anisotropic connectivity have been used to describe orien-
tation selectivity (Finette et al., 1978) and its general use for
visual information processing of static images with non-spiking
units (Rybak et al., 1991). Models that are more similar to ours in
motion coherence and the representation of motion trajectories
[e.g., (Burgi et al., 2000; Jancke and Erlhagen, 2010)] do not use
anisotropy in setting up the network connectivity. Other contin-
uous recurrent network models have been used for various tasks
like spatial working memory (Compte et al., 2000) and categori-
cal discrimination with veridical judgment of motion (Liu and
Wang, 2008). Our model works on a different level, but com-
bines the functional features of previous models in the sense that
motion trajectories are represented in a spiking and probabilistic
way. Prediction signals are transported through recurrent connec-
tivity, but none of the earlier models has shown that anisotropy
could be a key element for this.

The dynamics of our network show some similarity to syn-
fire chains (Prut et al., 1998) and we believe a model with similar
dynamics and functionality could be implemented by attractor
networks making use of a columnar organization (Lundqvist
et al., 2006) that is prominent in motion processing areas like
are V5/MT (Albright et al., 1984). Work by Bressloff (2001) has
shown that weak heterogeneities in excitable neural media can

lead to wave propagation failure. We have shown that in prin-
ciple, it is favorable to have heterogeneity (i.e., the anisotropy
in connectivity) to promote the spread of activity in a mean-
ingful way. Still, there is much experimental evidence showing
that cortical networks can spread activity in the form of traveling
waves (Sato et al., 2012), and it is believed that long-range hor-
izontal connections might be one of the underlying mechanism.
It is arguable how well the conclusions of the Wilson-Cowan for-
malism used by Rybak et al. (1991); Bressloff (2001); Jancke and
Erlhagen (2010) can be translated into the context of spiking
networks, especially if the neuronal and synaptic machinery get
more complex. We leave it for future analysis to determine if our
network model could show behaviors similar to ones observed
in experiments [for a review on traveling waves see Sato et al.
(2012)].

We applied a simple vector averaging strategy to decode
the position and motion direction from the network’s response
(Georgopoulos et al., 1986), but the optimal way of decoding is
up to debate. Several studies (Priebe and Lisberger, 2004; Pack
et al., 2005) suggest a vector averaging approach with a bias
term to estimate speed, but more recent experiments suggest
that “perceived speed is not based on a labeled-line interpreta-
tion of MT cells” (Krekelberg et al., 2006). Alternative decoding
approaches involve a winner-take-all mechanism (Liu and Wang,
2008) or probabilistic codes (Beck et al., 2008). We may use an
existing method to decode the optimal estimate from the pop-
ulation of neurons as is done in real neural data (Jazayeri and
Movshon, 2006), though our goal here was to show in a simple
way that anisotropic and selective connectivity could be of great
importance for motion prediction.

Based on the results of our model, we predict that the con-
nectivity in higher cortical motion-processing areas like MT or
MST is not isotropic, but that effective connectivity between cells
depends on their tuning properties. A sign of this anisotropic,
tuning-property based connectivity could possibly be seen in
future experiments similar to those in Guo et al. (2007) in the
form of an anticipatory signal in cells that “expect” to receive
stimulus input via the recurrent network connections.

4.3. OUTLOOK AND FUTURE WORK
After having shown a proof-of-concept for the idea that motion-
based prediction can be achieved through anisotropic connectiv-
ity, many problems could be explored by the presented frame-
work. One of the most urgent challenges in our view is the
question how the recurrent connectivity can develop in a self-
organized and robust manner. In order to integrate our model
into the visual hierarchy, we need to understand how the tun-
ing properties introduced in our model could be constructed
through either feed-forward connections from lower cortical
areas, through recurrent mechanisms that shape the desired prop-
erties, or both. Similarly important is the question of how a
selective connectivity involving the inhibitory population influ-
ences the effective receptive field sizes along with the perfor-
mance and stability of the presented framework. Another future
challenge future is to use our probabilistic framework of spik-
ing neurons for more realistic input and toward real-world
applications.
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The way long-term synaptic plasticity regulates neuronal spike patterns is not completely
understood.This issue is especially relevant for the cerebellum, which is endowed with sev-
eral forms of long-term synaptic plasticity and has been predicted to operate as a timing and
a learning machine. Here we have used a computational model to simulate the impact of
multiple distributed synaptic weights in the cerebellar granular-layer network. In response
to mossy fiber (MF) bursts, synaptic weights at multiple connections played a crucial role
to regulate spike number and positioning in granule cells. The weight at MF to granule
cell synapses regulated the delay of the first spike and the weight at MF and parallel fiber
to Golgi cell synapses regulated the duration of the time-window during which the first-
spike could be emitted. Moreover, the weights of synapses controlling Golgi cell activation
regulated the intensity of granule cell inhibition and therefore the number of spikes that
could be emitted. First-spike timing was regulated with millisecond precision and the num-
ber of spikes ranged from zero to three. Interestingly, different combinations of synaptic
weights optimized either first-spike timing precision or spike number, efficiently controlling
transmission and filtering properties. These results predict that distributed synaptic plas-
ticity regulates the emission of quasi-digital spike patterns on the millisecond time-scale
and allows the cerebellar granular layer to flexibly control burst transmission along the MF
pathway.

Keywords: spiking network, spike timing, cerebellum, granular layer, LTP, LTD

INTRODUCTION
By operating in a continuously changing environment, neuronal
networks have evolved precise processes regulating the number
and positioning of spikes (Rieke et al., 1999). Spike timing has
been revealed in afferent sensory pathways and in cortical networks
(Mackevicius et al., 2012), in which millisecond-scale correla-
tions among neurons are thought to improve information storage
capacity and computational capabilities (Petersen et al., 2009;
Eldawlatly and Oweiss, 2011; Kimura et al., 2011). Spike timing
can be controlled by long-term synaptic plasticity (Nieus et al.,
2006), which regulates the strength and dynamic properties of
synaptic connections. Nevertheless, it is not clear how differential
distribution of synaptic weights could fine-tune spike timing in
central networks expressing multiple distributed forms of synaptic
plasticity.

The cerebellum has long been proposed to operate as a “timing
machine” (Eccles, 1967) and a “learning machine” (Ito, 2006), but
the intrinsic nature of these operations has not been resolved yet.
Interestingly, the cerebellum controls motor behavior with mil-
lisecond precision (Timmann et al., 1999; Osborne et al., 2007),
so it is expected that its computations are performed on a com-
parable or even faster time-scale. There are indications, mostly

derived from cellular investigations in rat cerebellar slices, that the
granular layer (see Figure 1) is capable of exerting a close con-
trol on spike timing (D’Angelo and De Zeeuw, 2009). The granule
cells (GrCs) generate brief spike bursts in the axon initial seg-
ment, which are almost instantaneously (<0.3 ms) transmitted to
the dendrites and to synapses on the axonal ascending branch
(Diwakar et al., 2009, 2011). Moreover, the mossy fiber (MF) –
GrC EPSCs have extremely fast kinetics [rise time <1 ms (Silver
et al., 1992)] and can therefore excite the GrCs with high temporal
precision (Cathala et al., 2005). Finally, GrCs are endowed with
specific ionic mechanisms capable of controlling the delay and
persistence of spike emission (D’Angelo et al., 2001). A theoretical
analysis has revealed that half of the information carried by MF
spike trains is retransmitted by GrCs as first-spike delay with mil-
lisecond precision and half as spike frequency (Arleo et al., 2010).
Interestingly, long-term potentiation (LTP) and long-term depres-
sion (LTD) have been shown to regulate both first-spike delay and
spike frequency through different mechanisms (Nieus et al., 2006).
The outstanding timing capabilities of this system have been sum-
marized into the “time-window” hypothesis, which considers how
these mechanisms compete with feed-forward synaptic inhibition
mediated by Golgi cells (GoCs) in order to control spike emission
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FIGURE 1 | Schematic drawing of the cerebellar granular-layer model
adopted in this work. The network includes 350 mossy fibers (MFs), 4500
granule cells (GrCs) and parallel fibers (PFs), 300 stellate cells (SCs), and 27
Golgi cells (GoCs). Three different versions of the model have been studied.
The basic one (black lines) includes the excitatory pathway (MF-GrC),
feed-forward inhibitory loop (MF-GoC-GrC) and the feed-back inhibitory loop
(GrC-GoC-GrC). The extended versions add the GrC-SC-GoC-GrC loop
(green line) and the GoC-GoC inhibitory connection (blue lines) (Barmack
and Yakhnitsa, 2008; Hull and Regehr, 2012).

from the GrCs during a period of a few milliseconds after MF burst
discharge (D’Angelo and De Zeeuw, 2009; D’Angelo et al., 2013;
D’Angelo et al., submitted).

A precise understanding of spike timing in the granular layer
needs to consider long-term synaptic plasticity not just at the MF –
GrCs synapse but also at other synapses (Gao et al., 2012). Recent
results indicate that LTD may indeed occur at the parallel fiber
(PF) – GoC synapse (Robberechts et al., 2010), while evidence
for long-term synaptic plasticity in the feed-forward MF – GoC –
GrCs inhibitory loop is still lacking. However, forms of adaptation
may occur at the GoC – GrC synapse (Rossi et al., 2006; Brandalise
et al., 2012). The other important element to consider is how net-
work inhibition is organized. Different reports have indicated the
presence of stellate cell (SC) – GoC inhibitory synapses (Casado
et al., 2000), of GoC – GoC inhibitory synapses (Hull and Regehr,
2012), and of GoC–GoC gap junctions (Vervaeke et al., 2010). This
complex connectivity could have an impact on spike timing.

Given the large number of variables, it is desirable that a the-
oretical and computational analysis is anticipated to predict how
a distributed regulation of synaptic weights could control spike
timing. To this aim, we have constructed a granular-layer spiking
network model accounting for different hypotheses on connec-
tivity in the inhibitory loops and for different assets of weights in
circuit synapses. In response to burst stimulation of the MFs, GrCs
in the model showed a permissive time-window regulated by inhi-
bition. Variations in the weights at multiple synapses effectively
tuned the windows boundaries and the efficiency of inhibition,
regulating the delay to first-spike, and the overall number of spikes

emitted. Therefore, distributed plasticity can implement an exten-
sive and flexible control over spike timing and bursting on the
millisecond time-scale, which could have important implications
for cerebellar mechanisms of function.

MATERIALS AND METHODS
OVERVIEW OF THE COMPUTATIONAL MODEL
A granular-layer model was built using the EDLUT simula-
tor (http://edlut.googlecode.com) (Ros et al., 2006). This model
accounts for the topology of connections and neuronal elements
included into the realistic granular-layer model developed by Soli-
nas et al. (2010). However, since the aim of this work was to
investigate the influence of synaptic weights at multiple connec-
tions, neurons were simplified using leaky integrate-and-fire (LIF)
models, and synapses were simplified using exponential mod-
els (Gerstner and Kistler, 2002). The source code of the model
is available at ModelDB (https://senselab.med.yale.edu/modeldb/
ShowModel.asp?model=149913).

The differential equations were solved using the fourth order
Runge–Kutta method with a fixed time-step of 100 µs. Simulations
of 4-s activity trials were carried out on a 152-node cluster located
at the Centro de Investigación en Tecnologías de la Información y las
Comunicaciones (CITIC) in the University of Granada.

THE NETWORK STRUCTURE
Figure 1 shows the model of the granular layer including 5177
single-compartment cells. Network topology was developed in
two different steps. Initially, the number of constitutive elements
was calculated following anatomical studies of cell densities in the
granular layer (Korbo et al., 1993). Then, we have connected those
elements respecting convergence-divergence ratios and connectiv-
ity rules based on biology (Eccles, 1967; Harvey and Napper, 1988,
1991).

The granular-layer model which has been simulated in this
work is composed of the following elements:

i. Mossy fibers (MFs) (350 fibers): MFs convey the input stimuli
and activate GrCs and GoCs.

ii. Granule cells (GrC) (4500 neurons): The population of GrCs
has a number of connections per cell (from MFs) that follows
a Gaussian distribution with a mean of four connections and
a standard deviation of one connection (Nieus et al., 2006).

iii. Golgi cells (GoC) (27 neurons): Each GoC receives excita-
tory connections from 100 GrCs (Nieus et al., 2006) and 50
MFs. The output of each GoC inhibits 667 GrCs (on average).
In some simulations, the network included also inhibitory
GoC-GoC connections (10:1 convergence).

iv. Stellate cells (SC) (300 neurons): Each SC receives excitation
from 100 GrCs and inhibits the activity of 4.5 GoCs (on aver-
age). The SCs have only been included in the model when
explicitly stated. Otherwise, the connections between SC and
GoC have been disabled.

Since this work is focused on temporal properties, while
neglecting specific topologies like the center-surround organi-
zation imposed by lateral inhibition [see (Solinas et al., 2010)],
all connections have been generated randomly (with the only
restriction of avoiding duplication of source-target cell pairs).
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THE NEURON AND SYNAPSE MODELS
Neurons were modeled using modified versions of the LIF model
(Gerstner and Kistler, 2002; Gerritz et al., 2011). In the LIF model,
membrane potential (V m) is computed through the differential
equation (Eq. 1A), which accounts for the effect of chemical
synapses [including AMPA, NMDA, and gamma-aminobutyric
acid (GABA) receptors] and resting conductance (Grest),

Cm
dVm

dt
= gAMPA (t ) (EAMPA − Vm)

+ gNMDA (t ) g∞,NMDA (Vm) (ENMDA − Vm)

+ gGABA (t ) (EGABA − Vm)+ Grest (Erest − Vm)

(1a)

g∞,NMDA(Vm) =
1

1+ e−αVm [Mg2+]/β
(1b)

Where Cm denotes the membrane capacitance, EAMPA, ENMDA,
and EGABA are the reversal potentials of each synaptic conductance
and Erest is the resting potential. The conductances g AMPA, g NMDA,
and g GABA integrate all the contributions received through indi-
vidual synapses for each of the receptor types (AMPA, NMDA, and
GABA, see below). Finally, Eq. 1B determines g∞,NMDA(V m), the
gating function of the NMDA channels accounting for voltage-
dependent magnesium block (Jahr and Stevens, 1990), with
α= 62 V−1, [Mg2+]= 1.2 mM and β= 3.57 mM (adapted from
Gabbiani et al., 1994).

The synaptic conductances have been modeled following Eqs
2A–C:

gAMPA (t ) =

{
0 , t < t0

gAMPA (t0) e−(t−t0)/τAMPA , t ≥ t0
(2a)

gNMDA (t ) =

{
0 , t < t0

gNMDA (t0) e−(t−t0)/τNMDA , t ≥ t0
(2b)

gGABA (t ) =

{
0 , t < t0

gGABA (t0) e−(t−t0)/τGABA , t ≥ t0
(2c)

Where t denotes the simulation time and t 0 denotes the time
at which an input spike is received. g AMPA and g NMDA represent
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
and NMDA (N -methyl d-aspartate) receptor-mediated conduc-
tance respectively, which provide excitation, and g GABA represents
the GABA receptor-mediated conductance, which provides inhi-
bition. τAMPA, τNMDA, and τGABA are the decaying time constants
of each receptor type. The synaptic conductances were modeled
as decaying exponential functions, which provide a reasonable
accuracy as well as computational efficiency (Ros et al., 2006).

The parameters of each cell type (Eqs 1A–C) and synaptic
receptor (Eqs 2A–C) have been chosen to model granule cell, stel-
late cell, and Golgi-cell dynamics (see Table 1) (Silver et al., 1996;
Tia et al., 1996; Nusser et al., 1997; Rossi and Hamann, 1998).

Table 2 shows the synaptic connections which have been
included in the developed model, the convergence and divergence
ratios, and the different kinds of receptors under consideration.
While both AMPA and NMDA receptors have been included in

Table 1 | Parameters of the model cells.

Parameter GrC SC GoC

Membrane capacitance (Cm; pF) 2 4 50

Firing threshold (θVm; mV) −40 −40 −50

Resting potential (E rest; mV) −65 −56 −65

Excitatory reversal potential (EAMPA, ENMDA; mV) 0 0 0

Inhibitory reversal potential (EGABA; mV) −65 −58 −65

Resting conductance (Grest; nS) 0.2 0.2 3

Resting time constant (τm; ms) 10 20 16.7

AMPA receptor time constant (τAMPA; ms) 0.5 0.64 0.5

NMDA-receptor time constant (τNMDA; ms) 40 – –

GABA-receptor time constant (τGABA; ms) 10 2 10

Spikelet time constant (τEC; ms) 1 1 1

These parameters have been obtained from the following references: GrC

(D’Angelo et al., 1993, 1995, 1998, 2001; Gabbiani et al., 1994; Nieus et al., 2006),

SC (Häusser and Clark, 1997; Carter and Regehr, 2002; Kreitzer et al., 2002;

Chavas and Marty, 2003; Suter and Jaeger, 2004), and GoC (Forti et al., 2006;

Solinas et al., 2007a,b). Synaptic connectivity is defined in Table 2 and synaptic

conductances are reported inTable 3.

Table 2 | Synaptic connections in the network model.

Connection Divergence Convergence Receptors

MF-GrC 1:51.4 4:1 AMPA, NMDA

MF-GoC 1:3.9 50:1 AMPA

GoC-GrC 1:666.7 4:1 GABA

GrC-GoC 1:0.6 100:1 AMPA

GrC-SC 1:6.7 100:1 AMPA

SC-GoC 1:4.5 50:1 GABA

GoC-GoC 1:26 26:1 GABA

This table reports the convergence and divergence ratios and the receptors imple-

mented in the model.The GoC inhibitory connections (SC-GoC and GoC-GoC) are

included only when explicitly mentioned.The convergence and divergence ratios

have been taken from the literature (Nieus et al., 2006; Solinas et al., 2007a,b,

2010; Mapelli et al., 2009; Hull and Regehr, 2012).

MF-GrC synapses, only AMPA transmitters have been imple-
mented at the remaining excitatory synapses (MF-GoC, GrC-GoC,
and GrC-SC). This decision emerges from available evidence sug-
gesting, through in situ hybridization studies, that adult GoCs do
not express NR2B (Ottersen and Storm-Mathisen, 2000). More-
over, patch-clamp recording experiments suggest that NR2D-
containing receptors are expressed only extra-synaptically on these
cells (Cull-Candy et al., 2001; Brickley et al., 2003).

THE SYNAPTIC WEIGHTS
Synaptic weights have been derived from previous network mod-
els (Maex and Schutter, 1998; Solinas et al., 2010). As a strategy,
we first established the weight of MF-GrC connections and then
adjusted the others to calibrate network responses. Reflecting
physiological determinations, the simulated network generated
singlets in control and increased its output to doublets and triplets
when inhibition was reduced or the MF-GrC synapse was potenti-
ated (Mapelli and D’Angelo, 2007; Roggeri et al., 2008; Andreescu
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et al., 2011; Diwakar et al., 2011). We have defined three different
plasticity states at the MF-GrC connection: LTD, control, and LTP
(D’Errico et al., 2009). The weights in control derived from global
peak conductance values (i.e., the maximum conductance result-
ing from the simultaneous activation of all the synapses impinging
on a single GrC) measured in neurophysiological recordings. In the
control state, the peak conductance of AMPA-receptor channels at
each MF-GrC synapse was set at 3.49/4= 0.87 nS (Gabbiani et al.,
1994). With an AMPA/NMDA ratio of 9.94, the peak conductance
of NMDA-receptor channels at each MF-GrC synapse was set at
0.87/9.94= 0.087 nS. In the LTP (LTD) state, peak conductance
at the MF-GrC connection was allowed to increase (decrease) by
30%, i.e., to 1.131 nS (0.609 nS) (Maffei et al., 2002; D’Angelo
et al., 2005). The inhibitory synaptic weights at the GoC-GrC
synapse were also set similar to those reported experimentally
(Mapelli et al., 2009), therefore implementing an appropriate exci-
tatory/inhibitory balance in GrCs. Once the GrC synaptic weights
had been established, the model allowed investigating the full para-
meter space including all the synaptic weights in the inhibitory
loops (that is, MF-GoC, GrC-GoC, and GoC-GrC), which ranged
between the boundaries reported in Table 3. Throughout the
paper, the AMPA/NMDA ratio was maintained constant and only
the AMPA synaptic weight has been indicated in the figures.

It should be noted that in this paper we did not implement
intrinsic learning mechanisms but rather we investigated how
multiple changes at different synapses could modify the network
functional state. Therefore, synaptic weights have been systemati-
cally changed either independently or in various combinations.
The implementation of network learning rules for distributed
synaptic plasticity goes beyond the present aims and represents
a further step that will be required in order to investigate network
self-organization.

STIMULATION PROTOCOL
In order to analyze the response of the network to realistic patterns,
our model was stimulated with 100 Hz MF spike bursts (Mapelli
and D’Angelo, 2007; D’Angelo and De Zeeuw, 2009). The indi-
vidual spike times were extracted from a Gaussian distribution.
In order to avoid GrC saturation, some preliminary simulations
were run to study the influence of two main parameters: the firing
probability of each single MF and the standard deviation of firing
times. By lowering firing probability, the response of the GrCs was
reduced. Similarly, by increasing sparseness of MF input activity,
the amount of response decreased due to the lack of coincidence
between incoming spikes. A 5-Hz basal random MF activity was
included based on previous investigations (Solinas et al., 2010). In
aggregate, the stimulation protocol was composed of MF bursts
with a maximum of three spikes burst and average inter-spike fre-
quency of 100 Hz. Spikes were generated with a probability of 0.7
followed a Gaussian time distribution with SD 1 ms.

ANALYSIS OF SIMULATED RESULTS: EXCITATORY/INHIBITORY
BALANCE
Since GrCs encode information both in the delay of the first spike
and in the spike count, we have evaluated the peri-stimulus his-
togram (PSTH) in response to the first spike of the MF burst and
the number of spikes (usually singlets, doublets, or triplets) elicited

Table 3 | Synaptic weights used for model simulations.

Connection LTD (nS) Control (nS) LTP (nS)

MF-GrC AMPA: 0.609 AMPA: 0.87 AMPA: 1.131

NMDA: 0.062 NMDA: 0.087 NMDA: 0.114

MF-GoC 0.5 1 2

GoC-GrC 0.75 1.5 3

GrC-GoC 1.5 3 6

GoC-GoC 0 1 3

SC-GoC 0 0.25 1

The table reports the synaptic weights in control, LTD, and LTP states for each

connection. The configurations are based on previous works (Maex and Schut-

ter, 1998) and on preliminary simulations. The synaptic connections traditionally

described in the literature (MF-GrC, MF-GoC, GoC-GrC, and GrC-GoC) have been

studied conjointly (i.e., simulating all the possible four-dimensional weight combi-

nations), while the GoC inhibitory connections (SC-GoC and GoC-GoC) have been

added to simulations separately.

in response to the whole burst. In order to determine the activ-
ity state of neurons under combined excitatory and inhibitory
synaptic drive, we have defined the GrC excitatory/inhibitory
conductance balance using the following equation.

E/Ig balance (t ) =
1

#P

∑
i∈P

∑
j∈Ei

(
gAMPA,i,j (t )+ gNMDA,i,j (t )

)

+

∑
j∈Ii

gGABA,i,j (t )

 (3)

where E/I g balance (t ) represents the average excitatory/inhibitory
balance at time t, P represents the set of cells under study. Ei

and Ii represent all the sources of excitation and inhibition.
g AMPA,i,j (t ) and g NMDA,i,j (t ) represent the AMPA-receptor and
NMDA-receptor-mediated conductances at the j-th excitatory
synapse reaching the cell i, as previously defined in Eq. 3. Sim-
ilarly, g GABA,i,j (t ) represents the GABA-receptor conductance at
the j-th inhibitory synapses reaching the cell i. In Eq. 4, the excita-
tory conductances (AMPA and NMDA) have been considered with
negative sign, and the inhibitory conductance (GABA) has been
considered positive. Indeed, a negative value at the conductance
balance indicates the predominance of excitation over inhibition
in the cell.

RESULTS
In order to investigate the consequences of distributed synaptic
plasticity on spike timing, we have analyzed the impact of weights
at the different synapses of the granular layer in a spiking net-
work model (Figure 1). Background activity was generated by
random low-frequency activity in MFs (average frequency= 5 Hz)
and three-spike 100-Hz bursts were then used to elicit network
responses to impulsive stimulation.

The response of single neuronal elements is represented in
Figure 2A. With control weight settings [see Table 3 (Solinas
et al., 2010)], GrC responses manifested a marked dependence
on activity in the inhibitory loops. When the inhibitory loops
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FIGURE 2 | Neuronal responses and excitatory/inhibitory
conductance balance in the granular-layer model. Response of the
model to a stimulation burst composed of three spikes at 100 Hz over a
5 Hz background activity generated by random low-frequency firing in the
MFs. (A) Electrical response of single GrCs and GoCs in control (inhibition
ON) and in the absence of inhibition (inhibition OFF). In each panel, four
traces are shown superimposed and arrows indicate the mossy fiber
stimulation time. Note that the same seeds are used for initializing the

random number generator in all simulations. The GrC and GoC output
bursts are much stronger when GoC-GrC inhibition is blocked. Dotted lines
represent the threshold potential for each cell model. (B) Average E /I g
balance (see Methods) of the GrC population in response to the MF spike
burst. Inhibitory conductance is upward, excitatory conductance is
downward. In control conditions, the E /I g balance is in favor of excitation
only in response to the fist spike, then it turns in favor of inhibition. When
inhibition is turned off, the E /I g balance remains always negative.

were active, the GrCs usually generated a single spike followed by
sub-threshold membrane potential changes, while in the absence
of inhibition the GrCs generated multiple spikes in response
to burst stimulation (D’Angelo et al., 1995, 2001). This is an
implementation of the time-window effect, which predicts that
the feed-forward inhibitory loop passing through the MF-GoC-
GrC connections can curtail the GrC response (D’Angelo and De
Zeeuw, 2009). The GoCs efficiently followed the input bursts, as
expected from their high reactivity to synaptic inputs through
the MFs (Kanichay and Silver, 2008). GoC activity increased
when GoC-GrC transmission was blocked, since GrC disinhibition
enhanced activity at PF synapses. Thus, the major functional prop-
erties of the circuit revealed in electrophysiological experiments
were captured by the model. Nevertheless, it must be noted that

theta-frequency auto-rhythmicity of GoCs was not implemented
(Forti et al., 2006).

The regulation of GrC responsiveness by inhibition was
reflected by the average GrC synaptic conductance, which pro-
vided an effective measure of the Excitatory/Inhibitory balance
(E/I g balance). Following a MF burst, the E/I g balance showed an
initial negativity (net excitatory conductance) followed by a large
positivity (net inhibitory conductance), which was eliminated by
switching-off GoC-GrC transmission (Figure 2B).

The behavior of the entire network is represented in Figure 3A.
Random low-frequency activity in MFs generated sparse GrC
spikes with an average frequency of about 0.1 Hz (Solinas et al.,
2010) without remarkably engaging GoCs. MF bursts raised the
probability of spike emission from GrCs up to around 25%, which
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FIGURE 3 | Response patterns in the granular-layer model. Response
of the model to a stimulation burst composed of three spikes at 100 Hz
over 5 Hz background activity generated by random low-frequency firing in
the MFs. (A) Response of network elements in control conditions. (Top)
Raster plots of activity recorded in the MF (left ), GrC (center ), and GoC
(right ) populations, respectively. Note the three-spike bursts in MFs with
100-Hz average frequency and firing probability 0.7. GrC activity rises
sharply in response to the first spike in the burst generating a single
output spike. Then GrC activity is inhibited by the GoCs, which keep on
firing in response to all the three MF burst spikes. (Bottom)

Peristimulus-time histograms (PSTH) in MFs (left ), GrCs (center ), and
GoCs (right ) respectively. Note the single PSTH peak in GrCs in response
to the first MF burst (bin size 1 ms). (B) PSTHs taken from GrCs and GoCs
around the first MF spike are shown over-imposed on expanded scale. The
Input/Output offset (I/O offset) represents the time with respect to the
MF stimulation. Given the probabilistic distribution of MF burst activity
around a mean time value (dotted line), the I/O offset can assume negative
values at the beginning of discharge. Note that the GrC and GoC PSTH
peaks are delayed with respect to the MF PSTH peak due to the
integration time of incoming activity in the cells.

is in the range estimated for active granular-layer clusters activated
by impulsive sensory stimulation in vivo (Diwakar et al.,2011). The
GoCs emitted synchronous spike triplets, which caused a powerful
GrC inhibition summating along the burst (Mapelli et al., 2009).
In this configuration, the network efficiently filtered the second
and third spikes that would otherwise be generated in the absence
of inhibition. Therefore, the major question was how the weights
at the various synapses could regulate and modify these filtering
properties.

The input/output (I/O) function of the circuit was analyzed
by evaluating the relationship between input and output bursts in
GrCs, which represent the output element of the circuit. I/O plots
for the first GrC spike showed the GrC response as a function
of the time-offset with respect to MF discharge (Figure 3B). By
counting the spikes emitted by GrCs, this PSTH summarizes the
intensity, delay, and duration of the discharge and can be used to
analyze the I/O behavior of the circuit.

THE EFFECT OF MF-GrC WEIGHTS
The MF-GrC connection has been shown to express forms of
LTP and LTD (Hansel et al., 2001) and has been proposed to
significantly influence cerebellar signal processing (Nieus et al.,
2006; D’Angelo and De Zeeuw, 2009; Arleo et al., 2010). In our
simulations, synaptic weights at MF-GrC connections effectively
modified spike transmission. By increasing the MF-GrC weight
(LTP condition), the GrC spike response occurred earlier and
with higher probability, while the opposite occurred by reducing
weights (LTD condition). This caused corresponding changes in
the first-spike GrC PSTH (Figure 4A), which became smaller and
shifted to the right while moving from higher to lower weights.
Consistently, the average I/O offset (Figure 4B) decreased monot-
onically by decreasing the MF-GrC synaptic weight, indicating
shortening of the GrC response delay. Moreover, average GrC fir-
ing probability increased as expected from a stronger excitatory
input (Figure 4B), but then tended to stabilize (or even slightly
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FIGURE 4 | Effect of MF-GrC synaptic weight on GrC activity. In these
simulations the following weight configuration was used: MF-GrC AMPA
receptor 0–1.74 nS (NMDA-receptor weight has been proportionally set),
MF-GoC 1 nS, GrC-GoC 3 nS, GoC-GrC 1.5 nS, SC-GoC 0 nS, and GoC-GoC
0 nS. (A) GrC response with three different MF-GrC weights (reported for
AMPA): LTD (0.61 nS; green), Control (0.87 nS; red) and LTP (1.13 nS; blue).
The theoretical distribution of the MF stimulation burst is shown with a
dashed line. (Top) Membrane potential in a single GrC and its firing threshold

(dotted straight line at −40 mV). (Middle) E /I g balance of the GrC population
with the three MF-GrC weight settings. (Bottom) PSTH of the GrC response
after the first spike in the burst. Note that LTP produces greater and earlier
responses, while the opposite occurs with LTD. These changes in the PSTH
are consistent with those in the E /I g balance. (B) Plots of the average
input/output offset (top) and of the GrC firing probability (bottom) with respect
to MF-GrC weights. (C) Relative number of GrCs generating zero, one, two, or
three spikes in response to the stimulation burst.

decreased) beyond a certain MF-GrC synaptic weight. The origin
of this plateau effect is that, as the GrC response increases due
to higher MF-GrC weight, the inhibitory feed-back loop is more
intensely activated preventing a further increase in GrC firing (this
revealed that the feed-back loop exerted a homeostatic feed-back
effect, as further considered in the discussion). Finally, MF-GrC

synaptic weights had an impact on the spike pattern emitted by
GrCs, which changed from a small number of singlets in the LTD
state toward a higher amount of singlets and some doublets in
the LTP state (Figure 4C). Further modulation of this pattern will
occur by combining plastic changes at multiple synaptic sites, as
reported below.
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THE EFFECT OF MF-GoC WEIGHTS
There is currently no evidence for long-term synaptic plasticity
between MFs and GoCs, but its potential existence is of rele-
vance. Here we considered that, in the model, a change in MF-GoC
weights could have as much the same effect as a change in the num-
ber of active MF-GoC synapses, which is a plausible mechanism of
GoC regulation. By adjusting the MF-GoC synaptic weights, the

model showed remarkable changes in GrC activation (Figure 5A).
Not unexpectedly, higher weights at the GoC input anticipated
GoC firing and GoC inhibition on the GrCs. The final effect was
to reduce the time window for GrC firing and therefore the GrC fir-
ing probability. This is clearly reflected into the GrC PSTH, which
shows a shortening of the time window as the MF-GoC weights
move from LTD to LTP. In parallel the GrC E/I g balance showed

FIGURE 5 | Effect of MF-GoC synaptic weight on GrC activity. In these
simulations the following weight configuration was used: MF-GrC 0.61 nS
(LTD), 0.87 nS (control), or 1.87 nS (LTP) (AMPA-receptor weight), MF-GoC
0–3 nS, GrC-GoC 3 nS, GoC-GrC 1.5 nS, SC-GoC 0 nS, GoC-GoC 0 nS. (A) GrC
response with MF-GrC control configuration and three different MF-GoC
weights: LTD (0.5 nS, green), Control (1 nS, red), and LTP (2 nS, blue). The
theoretical distribution of the MF stimulation burst is shown with a dashed
line. (Top) Membrane potential in a single GrC and its firing threshold (dotted
straight line at −40 mV). (Middle) E /I g balance of the GrC population.

(Bottom) PSTH of the GrC response after the first spike in the burst. MF-GoC
LTD produces greater and more protracted responses, while the opposite
occurs with LTP. (B) Average input/output offset (top) and GrC firing
probability (bottom) with respect to MF-GoC weights. The changes observed
in conjunction with three different MF-GrC weights are shown for comparison
(MF-GrC LTD dot dash line; MF-GrC control solid line; MF-GrC LTP dashed
line). (C) Relative number of GrCs generating zero, one, two, or three spikes
in response to the stimulation burst. These are reported for three different
MF-GrC weights, as specified in (B).
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an increase in inhibitory strength (Figure 5B). The impact of MF-
GoC synaptic weights on the spike pattern emitted from GrCs was
to change it from low number of singlets in the LTP state toward
higher number of singlets and a considerable amount of doublets
in the LTD state (Figure 5C). These effects were modulated by
plasticity at the MF-GrC synapse, in a way that the amount of
doublets markedly increased with combined increase of MF-GrC
and decrease of MF-GoC weights. These observations suggest that
distribution of plasticity at multiple sites can effectively regulate
the GrC firing pattern, as further considered below.

THE EFFECT OF GoC-GrC WEIGHTS
There is currently no evidence for LTP or LTD at the GoC-GrC
synapse, although protracted forms of regulation with a poten-
tial homeostatic significance have been reported (Rossi et al.,
2006; Mapelli et al., 2009; Brandalise et al., 2012). Our simula-
tions showed that higher weights reduced GrC firing and lower
weights enhanced GrC firing, but these changes were poorly effec-
tive in controlling the initiation of GrC activity. Thus, the GrC
PSTH showed no remarkable changes concerning the first-spike
probability and timing (Figure 6A). Nonetheless, the GrC I/O
g balance showed remarkable changes after emission of the first
spike, bringing about remarkable consequences for the generation
of subsequent spikes. Accordingly, no remarkable changes were
observed in I/O offset and firing probability plots for the first GrC
spike (Figure 6B). The impact of GoC-GrC synaptic weights on
the spike pattern emitted from GrCs was to change it from sin-
glets in the high-weight state toward doublets and triplets in the
low-weight state (Figure 6C). These effects were modulated by
plasticity at other synapses in the feed-forward loop, in a way that
the amount of doublets and triplets markedly increased when a
decrease in GoC-GrC weights was combined with an increase in
MF-GrC weights and a decrease in MF-GoC weights.

THE EFFECT OF GrC-GoC WEIGHTS
Recently, the existence of forms of plasticity at the GrC–GoC con-
nection has been reported suggesting that this synapse can undergo
persistent transmission changes (Robberechts et al., 2010). Our
simulations showed that higher weights reduced GrC firing and
lower weights enhanced GrC firing, but these changes were poorly
effective in controlling the initiation of GrC activity. Indeed, this
inhibition reached the GrCs only at the final part of the excitatory
window due to accumulation of delays in the feed-back inhibitory
loop. Thus, the GrC PSTH showed no remarkable changes con-
cerning the first-spike probability and timing (Figure 7A). Indeed,
the GrC conductance balance showed no remarkable differences
compared to control (cf. also Figure 4A). The inhibitory strength
was similar with low GoC-GrC weights and with high GoC-GrC
weights. Accordingly, no remarkable changes were observed in
I/O offset and firing probability plots for the first GrC spike,
unless when the MF-GrC weight were set at medium-high val-
ues (Figure 7B). Nonetheless, the impact of GrC-GoC synaptic
weights was to control the emission of spikes when the activ-
ity of the GrC was high (Figure 7C). Thus, the combination of
high weights at MF-GrC and GrC-GoC connections effectively
shifted the average firing time in the GrC while keeping the fir-
ing rate at the same range of activity. These results show that the

feed-back loop effectively behaves as a homeostatic mechanism of
the granular activity.

THE EFFECT OF INHIBITION ONTO GoCs
Recent results have provided evidence for two modalities of GoC
inhibition, namely through GoC-GoC (Hull and Regehr, 2012)
and SC-GoC (Casado et al., 2000) connections. In this model,
both the GoC-GoC and SC-GoC synapses proved able to regulate
the generation of GrC spikes in response to MF burst stimula-
tion. With either GoC-GoC or SC-GoC synaptic connections, the
GoCs tend to generate action potentials every second spike of the
MF burst, while keeping the GrCs at a reduced level of inhibition
in correspondence of other spikes (Figures 8A and 9A). Thus,
higher GoC-GoC or SC-GoC weights enhanced GrC firing, while
lower weight reduced GrC firing without affecting the initiation of
GrC activity. Consistently, the GrC PSTH showed no remarkable
changes concerning first-spike probability and timing (Figures 8A
and 9A). Nonetheless, in the I/O GrC conductance balance, the
inhibitory strength for subsequent spikes was reduced with high
GoC-GoC weights and increased with low GoC-GoC weights
(Figure 8A). Accordingly, no remarkable changes were observed
in I/O offset and firing probability plots for the first GrC spike
(figure not shown), but the impact of GoC-GoC synaptic weights
was observed on the emission of late spikes. Eventually, the GoC-
GoC connection could markedly increase the emission of doublets
and even some triplets in the high-weight state (Figure 8B).

A similar behavior was observed by regulating the weights
of SC-GoC loop (Figure 9), although we could not take into
account the complex regulatory mechanisms of the molecular
layer interneuron network, which could substantially modify the
impact of this pathway.

DISCUSSION
This paper shows that distributed synaptic plasticity allows simulta-
neously regulating multiple processing features of the cerebellum
granular-layer network. By adjusting synaptic weights at the MF-
GrC synapse, in feed-back and feed-forward inhibitory loops and
in the interneuron inhibitory network, the probability, position-
ing, and number of spikes emitted by the GrCs changed generating
quasi-digital spike patterns. The relevance of these effects for
cerebellar regulatory mechanisms and network computation is
discussed.

CONTROL OF SPIKE TIMING BY DISTRIBUTED SYNAPTIC PLASTICITY
Simulations showed that MF bursts caused the emission of GrC
spikes through a permissive time-window limited by inhibition,
which controlled the evolution of the response (D’Angelo and De
Zeeuw, 2009). The precise timing of the first spike was mostly regu-
lated by the MF-GrC connection strength. Then, the granular-layer
inhibitory loops regulated GrC activity in response to the second
and subsequent spikes in the MF burst. In particular, simulations
showed that LTP at MF-GrC synapse reduced the GrC reaction
times and LTP at MF-GoC shortened the excitatory time-window
generating more precise (i.e., less time-dispersed) PF responses.
The synaptic weights at GoC-GrC connections influenced the
strength and duration of the inhibitory window. In the feed-back
inhibitory loop, regulation of weights at the GrC-GoC synapses
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FIGURE 6 | Effect of GoC-GrC synaptic weight on GrC activity. In these
simulations the following weight configuration was used: MF-GrC 0.61 nS
(LTD), 0.87 nS (control), or 1.13 nS (LTP) (AMPA-receptor weight), MF-GoC LTD
(0.5 nS), Control (1 nS) and LTP (2 nS), GrC-GoC 3 nS, GoC-GrC 0-3 nS, SC-GoC
0 nS, GoC-GoC 0 nS. (A) GrC response with MF-GrC and MF-GoC control
configurations and three different GoC-GrC weights: LTD (0.75 nS, green),
Control (1.5 nS, red), and LTP (3 nS, blue). The theoretical distribution of the
MF stimulation burst is shown with a dashed line. (Top) Membrane potential
in a single GrC and its firing threshold (dotted straight line at −40 mV).
(Middle) E /I g balance of the GrC population. (Bottom) PSTH of the GrC

response after the first spike in the burst. GoC-GrC did not influence the GrC
response during the initial part of the burst. (B) Average input/output offset
(top) and GrC firing probability (bottom) with respect to GoC-GrC weights. The
changes observed in conjunction with three different MF-GrC weights (LTD
dot dash line; control solid line; LTP dashed line) are shown for comparison.
(C) Relative number of GrCs generating zero, one, two, or three spikes in
response to the stimulation burst. These are reported for three different
MF-GrC weights and for three MF-GoC weights. GoC-GrC LTD weight
noticeably increased the proportion of GrCs firing doublets and even triplets
(especially with MF-GrC LTP and with MF-GoC LTD].

transformed the increasing activity at the PFs in shorter, and more
precise excitatory windows. The inhibitory connections imping-
ing onto GoCs effectively controlled generation of late spikes. The
control of synaptic weights in the feed-forward and feed-back
inhibitory loops and in the interneuron inhibitory network indeed
allowed generating a large variety of patterns in GrCs determin-
ing the number and timing of emitted spikes. While long-term

synaptic plasticity has been demonstrated at the MF-GrC synapse
LTD may indeed occur at the PF – GoC synapse (Robberechts
et al., 2010), it is currently unknown if and how the MF-GoC,
GoC-GrC, SC-GoC, and GoC-GoC connections undergo plastic
changes, whose investigation is therefore of interest. In general,
the concept of plasticity should refer to any kind of changes in
the number and strength of connections between these neurons
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FIGURE 7 | Effect of GrC-GoC synaptic weight on GrC activity. In these
simulations the following weight configuration was used: MF-GrC 0.61 nS
(LTD), 0.87 nS (control), or 1.13 nS (LTP) (AMPA-receptor weights), MF-GoC
1 nS, GrC-GoC 3 nS, GoC-GrC 1.5 nS, SC-GoC 0 nS, GoC-GoC 0 nS. (A) GrC
response with MF-GrC control configuration and three different GrC-GoC
weights: LTD (1.5 nS, green), Control (3 nS, red), and LTP (6 nS, blue). The
theoretical distribution of the MF stimulation burst is shown with a dashed
line. (Top) Membrane potential in a single GrC and its firing threshold
(dotted straight line at −40 mV). (Middle) E /I g balance of the GrC
population. (Bottom) PSTH of the GrC response after the first spike in the

burst. GrC-GoC did not influence the GrC response during the initial part of
the burst in MF-GrC control conditions. (B) Average input/output offset
(top) and GrC firing probability (bottom) with respect to GrC-GoC weights.
The changes observed in conjunction with three different MF-GrC weights
(LTD dot dash line; control solid line; LTP dashed line) are shown for
comparison. Note that the effect of GrC-GoC becomes patent only in
conjunction with medium/high MF-GrC weights (control and especially
LTP). (C) Relative number of GrCs generating zero, one, two, or three
spikes in response to the stimulation burst. These are reported for three
different MF-GrC configurations.

occurring during ontogenesis or as a consequence of modulation
and learning.

The present model was made of LIF neurons and was not
endowed with realistic ionic channels properties of the kind
characterizing neuronal membranes and synaptic connections.

Therefore, it revealed fundamental network-dependent properties,
which could then be compared with intrinsic properties of neurons
and synapses. Interestingly, the most relevant properties of neu-
rons and synapses reported so far are congruent with the network
properties reported here. (i) The nature of GrC synaptic receptors
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FIGURE 8 | Effect of GoC-GoC synaptic weight on GrC activity. In these
simulations the following weight configuration was used: MF-GrC 0.61 nS
(LTD), 0.87 nS (control), or 1.13 nS (LTP) (AMPA-receptor weight), MF-GoC
1 nS, GrC-GoC 3 nS, GoC-GrC 1.5 nS, SC-GoC 0 nS, GoC-GoC 0 nS
(LTD/disabled, green), 1 nS (control, red), or 3 nS (LTP, blue). (A) GrC response
with MF-GrC control configuration and the three GoC-GoC configurations. The
theoretical distribution of the MF stimulation burst is shown with a dashed
line. (Top left corner ) Membrane potential in a single GrC and its firing

threshold (dotted straight line at −40 mV). (Bottom Left ) E /I g balance of the
GrC population. (Top right corner ) PSTH of the GrC response after the first
spike in the burst. GoC-GoC did not influence the GrC responsiveness during
the initial part of the burst. (B) Relative number of GrCs generating zero, one,
two, or three spikes in response to the stimulation burst. These are reported
for three different MF-GrC configurations. Note that GoC-GoC LTP
configuration noticeably increased the proportion of GrCs that fire doublets in
MF-GrC control and LTP configurations.

is such that they can precisely control both first-spike timing on the
sub-millisecond scale through AMPA receptors (Silver et al., 1992;
D’Angelo et al., 1995; Cathala et al., 2003) and the continuation of
burst discharge through NMDA-receptors (D’Angelo et al., 1990).
(ii) Presynaptic regulation of release probability during LTP and
LTD (Nieus et al., 2006; D’Errico et al., 2009) efficiently regulates
first-spike timing. (iii) GrC and GoC discharge properties revealed
by electrophysiological investigations (D’Angelo et al., 1998; Forti
et al., 2006; Solinas et al., 2007b; Kanichay and Silver, 2008) are
consistent with network behaviors emerging in our experiments.
In aggregate, the cellular and synaptic properties of the granular-
layer match fundamental regulatory properties embedded into the
network structure and tuned by distributed synaptic plasticity.

THE EFFECT OF COMBINING SYNAPTIC CHANGES AT MULTIPLE SITES
The present simulations show that there are combinations of
synaptic weight changes, which can achieve differential con-
trol over network processing, alternatively increasing or filtering
spike transmission, maximizing first-spike precision or bursting
(Table 4; Figure 10).

Increasing transmission
Spike transmission through the MF-GrC relay can be increased
by lowering activity in the feed-forward and feed-back inhibitory
loops and by strengthening inhibition of GoCs. This occurs at the
expense of first-spike precision and bursting. It is not clear when
this condition could be exploited, as there is normally a strong
inhibitory activity in the granular layer (Roggeri et al., 2008).
However, there could be activity states in which maximizing trans-
mission might be useful to improve subsequent pattern emergence
through learning. Indeed, LTP generation is strongly dependent on
removal of inhibition, which could be controlled by local release of
specific neuromodulators (Prestori et al., 2013). Plasticity would
then turn network weight settings in favor of first-spike precision
or bursting.

Filtering
Filtering requires LTD at the MF-GrC synapse and high activity
in the feed-forward inhibitory loop. LTD at the MF-GrC synapse
may reflect protracted uncorrelated low-frequency activity in MFs.
In this state, the network can filter spurious spikes allowing
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FIGURE 9 | Effect of SC-GoC synaptic weight on GrC activity. In
these simulations the following weight configuration was used: MF-GrC
0.61 nS (LTD), 0.87 nS (control), or 1.13 nS (LTP) (AMPA-receptor weight),
MF-GoC 1 nS, GrC-GoC 3 nS, GoC-GrC 1.5 nS, SC-GoC 0 nS
(LTD/disabled, green), 0.25 nS (control, red), 1 nS (LTD, blue), GoC-GoC
0 nS. (A) GrC response with MF-GrC control configuration and three
different SC-GoC configurations. The theoretical distribution of the MF
stimulation burst is shown with a dashed line. (Top left corner )
Membrane potential in a single GrC and its firing threshold (dotted

straight line at −40 mV). (Bottom Left ) E /I g balance of the GrC
population. (Top right corner ) PSTH of the GrC response after the first
spike in the burst. SC-GoC did not influence the GrC responsiveness
during the initial part of the burst in MF-GrC control conditions. (B)
Relative number of GrCs generating zero, one, two, or three spikes in
response to the stimulation burst. These are reported for three different
MF-GrC configurations. Similarly to the GoC-GoC connection reported in
Figure 8, SC-GoC LTP configuration noticeably enhanced the proportion
of GrCs that fire doublets in MF-GrC control and LTP.

transmission of just highly synchronous spikes. Interestingly, var-
ious mechanisms based on NMDA and GABA-A receptors, make
this filtering function of the granular-layer frequency-dependent
(Mapelli et al., 2010).

Maximize time precision
The precision of first-spike emission can be maximized by rais-
ing all the weights. This state may emerge at the end of a learning
process and is likely to be modified in accordance with the needing
for spike filtering and patterning. Traditional pattern recognition
models are based on fast responses to known patterns and on the
absence of responses to non-correlated activity (Masquelier et al.,
2008). Accordingly, the GrCs fire quickly in response to the earliest
spikes of the MF burst and the inhibitory loops silence the GrC
response to the latest spikes of such burst. The GoC inhibitory con-
nections maintain a high GrC precision by anticipating the onset of
inhibition and preventing multiple GrC spikes. The plausibility of
this mechanism is evident when considering the numerous mech-
anisms implementing high-precision first-spike timing in GrCs
(Silver et al., 1992; Cathala et al., 2003). Moreover, the information

transmitted through the MF-GrC relay is largely due (about 50%)
to millisecond precision first-spike timing (Arleo et al., 2010).

Maximize bursting
The bursts emitted by GrCs, which are composed of spike dou-
blets/triples, in response to MF input bursts, can be optimized by
combining LTP at the MF-GRC synapse with low activity in GoCs
(obtained by weakening the inhibitory loops and by strengthening
GoC inhibition). The composition of the output burst is critical for
cerebellar network computation, as shown by the powerful regula-
tion exerted by NMDA receptors (D’Angelo et al., 1995) and by the
motor dysfunction that emerges when this control system is dis-
rupted (Andreescu et al., 2011). The generation of doublets/triples
could be critical to control activation of Purkinje cells (PCs) and
molecular layer interneurons, which are highly sensitive to tem-
poral summation through short-term synaptic plasticity (Dittman
et al., 2000) and may also control long-term synaptic plasticity at
the same synapses (Casado et al., 2000).

As long as spike bursts are regulated to achieve specific com-
putational effects, the granular-layer circuit needs to maintain a
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Table 4 | Summary table of combinations of synaptic plasticity changes.

Synapses Increasing transmission Filtering Maximize time precision Maximize bursting

MF-GrC Control LTD LTP LTP

MF-GoC LTD LTP LTP LTD

GrC-GoC LTD Not relevant LTP LTD

GoC-GrC LTD LTP LTP LTD

GoC-GoC LTP Not relevant LTP LTP

SC-GoC LTP Not relevant LTP LTP

Description The number of spikes

transmitted through the

MF-GrC relay is maximized at

the expense of spike timing

precision and noise filtering

The GrCs remain predominantly silent

by strengthening all inhibitory loops.

This mechanism allows filtering

uncorrelated incoming activity

The precision of spike emission

through the MF-GrC relay is maximized

by raising the probability of the first

spike and reducing late spikes in the

burst

The GrCs emit

doublets or triplets

that could regulate

Purkinje cell activity

The main transmission pathway is indicated in red, the feed-back and feed-forward GrC inhibitory loops are indicated in blue, and the GoC inhibitory loops are indicated

in green. The specific synaptic weights, which define either LTD or control or LTP states in every single synapsis, are shown inTable 3.

homeostatic balance in order to prevent saturation of PF activity
(Marr, 1969). The granular-layer circuit is intrinsically homeo-
static in that GrC activity can be depressed by raising activity
in the feed-back inhibitory loop. It is probable that homeostasis
occurs, together with the various optimization processes, in order
to balance network activity. Homeostasis may extend over space,
for example balancing LTP and LTD over neighboring granular-
layer areas (Mapelli and D’Angelo, 2007; Diwakar et al., 2011).
There is also evidence that homeostasis may exploit specific mech-
anisms raising GrC responsiveness when inhibition is persistently
increased (Rossi et al., 2006; Mapelli et al., 2009; Brandalise et al.,
2012). Finally, it should be noted that during protracted bursts
GrC firing is maintained higher than expected from a pure time-
window mechanism (Kanichay and Silver, 2008; Mapelli et al.,
2010), suggesting that additional mechanisms are indeed at work.
Further physiological experiments and larger scale models should
be developed to investigate the issue.

MILLISECOND-PRECISE QUASI-DIGITAL SPIKE PATTERN
By fully implementing the time-window mechanism (D’Angelo
and De Zeeuw, 2009; Solinas et al., 2010), distributed synaptic
plasticity can fine-tune the initiation of first-spike emission as
well as the burst spike pattern (Figure 10). Regulation of first-
spike delay is almost fully determined at the MF-GrC synapse
with millisecond precision. Low MF-GrC weights and high activ-
ity in the inhibitory loops favor generation of singlets, while high
MF-GrC weights and low activity in the inhibitory loops favors
generation of doublets and triplets. The exact number of spikes
emitted in specific functional contexts is not fully clear. In response
to a single MF impulse, local field potentials, cell-attached and
whole-cell recordings in brain slices reveal mostly singlets, while
doublets and triplets become common after blocking synaptic
inhibition and generating MF-GrC LTP (Mapelli and D’Angelo,
2007; Andreescu et al., 2011). In anesthetized rats in vivo, sensory
stimulation generates short spike bursts and whole-cell recordings
from GrCs show generation of a new burst (Chadderton et al.,
2004; Rancz and Hausser, 2006; Duguid et al., 2012). Spike pat-
terns reported in vivo in response to MF bursts show on average
five EPSCs and one to three spikes in GrCs (e.g., see Duguid
et al., 2012), and the composition of GrC bursts is regulated by

the inhibitory circuit. In these papers, emphasis has been put on
tonic inhibition (a form of inhibition caused by ambient GABA
in the cerebellar glomerulus), but the impact of the inhibitory
circuit on spike timing or the duration of the discharge has not
been analyzed. However, in local field potential recordings in vivo,
an apparent reduction of response duration was observed when
the inhibitory circuit was blocked and a clear anticipation of the
response emerged when LTP was induced at the MF-GrC synapse
(Roggeri et al., 2008; Diwakar et al., 2011), as much as it was
observed in the PSTHs reported in this paper (see Figures 4,
5, and 10). Therefore, the onset and duration of spike bursts
in GrCs can be regulated in vivo in a way consistent with that
predicted here.

The importance of this quasi-digital GrC spike pattern becomes
evident when considering that PC responses are differentially sen-
sitive to the number of spikes transmitted by GrCs along the PFs.
First of all, the PF-PC synapse shows a pronounced short-term
facilitation, so that single PF spikes are not transmitted but trans-
mission becomes effective with two or more spikes (Casado et al.,
2000; Dittman et al., 2000). A more puzzling effect is that presy-
naptic LTD at the PF-PC synapse is induced by spike triplets, which
are needed to unblock presynaptic NMDA receptors (Casado et al.,
2000). Importantly, a precise timing is implied by the millisecond
precision of PC responses in relation to movements (Timmann
et al., 1999; Osborne et al., 2007).

GENERAL CONCLUSIONS AND IMPLICATIONS FOR CEREBELLAR
NETWORK COMPUTATION
These simulations show that distributed synaptic plasticity fully
implements the time-window mechanism (D’Angelo and De
Zeeuw, 2009) causing the emission of quasi-digital spike patterns,
with differential regulation of the precision and probability of the
first spike compared to that of late spikes. This, in turn, gives a spe-
cific significance to distributed plasticity, which is shown to control
spike transmission much better than plasticity at a single synapse.
Moreover, distributed synaptic plasticity can determine multiple
activity states of the network, alternatively increasing or filtering
transmitted spikes or maximizing first-spike precision and burst-
ing. These states may be inter-converted, modified, or stabilized by
exploiting biological properties of plasticity, like reversibility and
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FIGURE 10 | Effect of suggested weight configurations in the GrC
response. In these simulations the weights were set according to the four
configurations reported inTable 4: increasing transmission (green), filtering
(blue), maximize time precision (red), and maximize bursting (black). (A)
Raster plots of the network responses to the same MF stimulation (left ) with
each weight configuration. Raster plots of activity recorded in the GrC
(center ) and GoC (right ) populations with the hypothesized weight
configurations (one per row), respectively. (B) PSTH of the GrC response after
the first spike in the burst. (C) Relative number of GrCs generating zero, one,

two, or three spikes in response to the stimulation burst. (D) (Left ) Relative
number of GrCs generating one spike after the first spike in the stimulation
burst. Average (center ) and offset variance (right ) of the spikes elicited by the
GrCs in response to the first spike in the burst. Maximize time precision
configuration noticeably reduces and anticipate the activity of the GrCs.
Increasing transmission configuration enhances the activity in response to
the first and second spikes in the burst. Maximize bursting configuration
increases the number of doublets and triplets elicited. Finally, filtering
configuration nearly avoided the GrCs firing.
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consolidation. In this flexible scenario, the specific asset of synaptic
weights at a given time could be strictly dependent on ontogenetic
factors and on gating processes controlling network plasticity in
relation to brain states (Schweighofer et al., 2004). Most of the
information available on the potential mechanisms controlling
the formation of plasticity in the cerebellar granular-layer network
concerns the MF-GrC relay. For example, acetylcholine (Prestori
et al., 2013) can gate MF-GrC LTP raising precision and bursting
of GrC spiking. In response to MF bursts, nitric oxide (NO) can
favor MF-GrC LTP and orchestrate the LTP/LTD balance in the
surrounding circuit area (Maffei et al., 2003). A powerful orga-
nizing mechanism for LTP and LTD could also be provided by
theta-frequency oscillation and resonance (Gandolfi et al., 2013).
Finally, mechanisms intrinsic to the cerebellar glomerulus can
raise GrC excitability under conditions of weak MF transmis-
sion or strong GoC activity (Mitchell and Silver, 2003; Rossi
et al., 2006; Brandalise et al., 2012) and other mechanisms located
on GoC dendrites can silence the Golgi cell following intense
GrC – GoC transmission (Watanabe and Nakanishi, 2003). This
latter set of synaptic and non-synaptic mechanisms could imple-
ment a homeostatic balance preventing neuronal activity from
exceeding the functional limits of the network. The identification

of the biochemical and physiological mechanisms orchestrating
this multitude of network operations and determining network
learning represents a challenge for future research.

These simulations also address one major issue in cerebel-
lar modeling. Theoretical models of the cerebellum assume that
learning is driven by some optimization factors related to gain,
signal-to-noise ratio, and mutual information transfer. Although
some models consider only learning at the PF-PC synapse (e.g.,
Schweighofer et al., 1998; Medina and Mauk, 2000; Kawato et al.,
2011), others implement learning (Schweighofer et al., 2001) or
non-recurrent state-generation in the granular layer (Yamazaki
and Tanaka, 2007). Here we show that timing and bursting could
also be important parameters, which can be optimized by distrib-
uted plasticity in the granular layer. Future theoretical modeling
should consider this issue.
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Gamma (30–80 Hz) rhythms in hippocampus and neocortex resulting from the interaction
of excitatory and inhibitory cells (E- and I-cells), called Pyramidal-Interneuronal Network
Gamma (PING), require that the I-cells respond to the E-cells, but don’t fire on their own. In
idealized models, there is a sharp boundary between a parameter regime where the I-cells
have weak-enough drive for PING, and one where they have so much drive that they fire
without being prompted by the E-cells. In the latter regime, they often de-synchronize and
suppress the E-cells; the boundary was therefore called the “suppression boundary” by
Börgers and Kopell (2005). The model I-cells used in the earlier work by Börgers and Kopell
have a “type 1” phase response, i.e., excitatory input always advances them. However,
fast-spiking inhibitory basket cells often have a “type 2” phase response: Excitatory input
arriving soon after they fire delays them. We study the effect of the phase response
type on the suppression transition, under the additional assumption that the I-cells are
kept synchronous by gap junctions. When many E-cells participate on a given cycle, the
resulting excitation advances the I-cells on the next cycle if their phase response is of
type 1, and this can result in suppression of more E-cells on the next cycle. Therefore,
strong E-cell spike volleys tend to be followed by weaker ones, and vice versa. This often
results in erratic fluctuations in the strengths of the E-cell spike volleys. When the phase
response of the I-cells is of type 2, the opposite happens: strong E-cell spike volleys delay
the inhibition on the next cycle, therefore tend to be followed by yet stronger ones. The
strengths of the E-cell spike volleys don’t oscillate, and there is a nearly abrupt transition
from PING to ING (a rhythm involving I-cells only).

Keywords: gamma oscillation, feedback inhibtion, cell assembly, attentional selection, type 2 neuron

1. INTRODUCTION
Gamma-frequency (30–80 Hz) oscillations in hippocampus and
neocortex are known to result, in many instances, from the
interaction of excitatory pyramidal cells (E-cells) and fast-
spiking inhibitory interneurons (I-cells) (Whittington et al.,
2000; Börgers and Kopell, 2003; Bartos et al., 2007; Traub and
Whittington, 2010). Rhythms arising in this way are called
Pyramidal-Interneuronal Network Gamma (PING) rhythms. The
PING mechanism requires that the I-cells respond to the E-cells,
but do not fire on their own; thus the drive to the I-cells must
be sufficiently weak, in comparison with the drive to the E-cells.
In idealized model networks, there can be a sharp boundary in
parameter space between a regime in which the I-cells have weak-
enough drive for PING, and a regime in which they have so much
drive that they fire without being prompted by the E-cells. In the
latter regime, they often de-synchronize, and suppress the E-cells
altogether; the boundary in parameter space was therefore called
the “suppression boundary” in Börgers and Kopell (2005). [The
loss of synchrony among the I-cells is the result of heterogeneity in
drives (White et al., 1998), and would not be expected in a homo-
geneous network (Achuthan and Canavier, 2009)]. However, the
transition from PING to suppression is truly discontinuous only
under very idealized circumstances. We therefore replace the term

“suppression boundary” by “suppression transition” in this paper.
Even in networks with heterogeneous neuronal properties, this
transition can be narrow (Börgers et al., 2008). Thus, a small
amount of modulation of the excitability of the neurons can result
in crossing from the PING regime to the suppression regime or
vice versa, and therefore cause a dramatic change in network
dynamics. In Börgers et al. (2005), it was explained how this
mechanism could be exploited in attentional processing, turning
on or off the processing of certain stimuli.

There was no gap-junctional coupling among I-cells in Börgers
and Kopell (2005) and Börgers et al. (2005), even though such
coupling is known to be present among fast-spiking interneurons
in neocortex (Galarreta and Hestrin, 2002) and hippocampus
(Fukuda and Kosaka, 2000). Furthermore, the model I-cells used
in Börgers and Kopell (2005) and Börgers et al. (2005) have
a type 1 phase response, i.e., excitatory input always advances
them. However, fast-spiking inhibitory basket cells often have a
type 2 phase response: they are delayed by excitatory input arriv-
ing soon after they fire (Tateno and Robinson, 2007, Figure 5).
We study the effect on the suppression transition of introducing
I-cells with type 2 phase response, and coupling them with gap
junctions strong enough to keep them synchronous (Kopell and
Ermentrout, 2004; Ostojic et al., 2009).
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The type of the phase response is not the only notion of neu-
ronal type in mathematical neuroscience. The bifurcation from
rest to spiking is said to be of type 1 if it is a saddle-node bifurca-
tion on an invariant circle, and of type 2 if it is a Hopf bifurcation
(Rinzel and Ermentrout, 1998). The frequency-current (f -I) rela-
tion is said to be of type 1 if it has no discontinuity, i.e., if
arbitrarily slow spiking is possible for drives sufficiently close to
(but above) threshold, and of type 2 if it has a discontinuity at
spike onset. [This last notion of neuronal type was described by
Hodgkin (1948)]. The three kinds of neuronal type often coin-
cide. For instance, the classical Hodgkin–Huxley model is of type
2 according to all three definitions, and for each of the three
model neurons used in this paper, the three notions of type coin-
cide. However, there is reason to be cautious about identifying
the types of bifurcations, phase response curves, and f -I relations:
Ermentrout et al. (2012) recently gave an example showing that a
type 1 bifurcation can be associated with a type 2 phase response.
What matters to us in this paper is the type of the phase response.
When we call a model neuron “of type 1,” we mean that weak exci-
tatory inputs always accelerate it. When we call it “of type 2,” we
mean that weak excitatory inputs arriving early in the cycle hold
it back.

If type 2 I-cells are introduced in the models of Börgers
and Kopell (2005) and Börgers et al. (2005), but without gap-
junctional coupling, or if the type 1 I-cells are kept, but coupled
by synchronizing gap junctions, we find that the suppression
transition becomes considerably less tight. However, a sharp
suppression transition is restored when I-cells of type 2 and syn-
chronizing gap-junctional coupling among them are introduced
at the same time; crossing it causes a nearly abrupt transition from
PING to ING (Whittington et al., 2000), i.e., to a gamma rhythm
involving the rhythmic firing of I-cells only, with the E-cells sup-
pressed. We give an analysis explaining why in the presence of
synchronizing gap junctions among the I-cells, the suppression
transition is much tighter with I-cells of type 2 than with I-cells
of type 1.

In summary, the idea that the suppression transition may play
a central role in attentional processing remains intact when the
I-cells are of type 2, connected by gap junctions.

2. MODELS
2.1. A VARIATION OF THE ERISIR INTERNEURON MODEL
Erisir et al. (1999) proposed a model of inhibitory interneurons
in mouse somatosensory cortex. We use it here because it is the
simplest Hodgkin–Huxley-like interneuron model of type 2 that
we know of. Because several variants of the Erisir model have
appeared in the literature, and because we use a variant slightly
different from any of those in the literature, we will state our
equations here. The form of the differential equations is

C
dv

dt
=gNam∞(v)3h(vNa−v) + gK n2(vK −v) + gL(vL−v)+I, (1)

dx

dt
= x∞(v) − x

τx(v)
, x = h, n. (2)

Deviating from Erisir et al. (1999), we take the activation variable
m of the sodium current to be a direct function of v. Following

Erisir et al. (1999), the second power of n appears in the delayed
rectifier potassium current, even though in the original Hodgkin–
Huxley model (Hodgkin and Huxley, 1952) and almost all similar
models, the fourth power appears there. The original model of
Erisir et al. (1999) also included a weak, slow, depolarization-
induced potassium current, which plays no role in our discussion,
and will be omitted here.

The letters C, v, t, g, and I in Equations (1) and (2) denote
capacitance density, voltage (membrane potential), time, con-
ductance density, and current density, respectively, measured in
μF/cm2, mV, ms, mS/cm2, and μA/cm2; we will usually omit
units from here on. The reversal potentials are, following (Erisir
et al., 1999), vNa = 60, vK = −90, vL = −70. Erisir et al. spec-
ified conductances and currents; to translate to conductance
and current densities, we assume, following Erisir et al., that
the neuron is a sphere of radius 8 μm. The parameter choices
of (Erisir et al., 1999) then become, using the units specified
above and rounding to three significant digits, C = 1, gNa = 112,
gK = 224, and gL = 1.24. Gouwens et al. (2010) reduced the
leak conductance, using a value which translates into a con-
ductance density of approximately 0.5 mS/cm2; this is the value
that we use here. The lowest possible firing frequency of the
Erisir neuron with gL = 1.24 is quite high, about 65 Hz; with
gL = 0.5, it is significantly lower, approximately 37 Hz. The gat-
ing variables m, h, and n are non-dimensional quantities varying
between 0 and 1. The equations for x∞ (x = m, h, n) and τx

(x = h, n) are

x∞ = αx

αx + βx
, x = m, h, n,

τx = 1

αx + βx
, x = h, n,

αm(v) = 40(75.5 − v)/(exp((75.5 − v)/13.5) − 1),

βm(v) = 1.2262/ exp(v/42.248),

αh(v) = 0.0035/ exp(v/24.186)),

βh(v) = −0.017(v + 51.25)/(exp(−(v + 51.25)/5.2 − 1),

αn(v) = (95 − v)/(exp((95 − v)/11.8) − 1),

βn(v) = 0.025/ exp(v/22.222).

We have corrected a typographical error in the formula for
αm in Erisir et al. (1999) [pointed out by (Gouwens et al.,
2010)], and made a slight correction in the formula for βh: Erisir
et al. wrote 0.8712 + 0.017v instead of 0.017(v + 51.25). Up to
rounding, these two expressions are equal, but if one writes
0.8712 + 0.017v, then βh has a singularity, since the denomina-
tor vanishes at v = −51.25, whereas the numerator vanishes at
v = −0.8712/0.017 ≈ 51.247; we have found that this can in fact
have adverse effects during simulations.

We define the “firing times” of the neurons as times at which
v = −20 and dv/dt < 0. If the firing period is T > 0, the fre-
quency is f = 1000/T. The factor of 1000 arises because we
measure time in ms, but frequencies not in reciprocal ms, but in
reciprocal s, namely, in Hz.
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We compute the frequency-current (f -I) relation of the Erisir
model neuron as follows. We begin with a simulation for I =
6, starting at (v, h, n) = (−20, 1, 0). The computed trajectory
converges to a fixed point which appears to be globally attract-
ing. We then raise I, in steps of 0.05, from 6.0 to 7.5, starting each
new simulation at the point in phase space at which the previous
simulation ended. As soon as I rises above 7.0 (approximately),
periodic spiking begins, at an onset frequency of approximately
60 Hz. The dots in Figure 1A indicate the spiking frequency f as a
function of I. We then lower I, in steps of 0.05, from 7.5 to 6, again
starting each new simulation at the point in phase space at which
the previous simulation ended. Periodic spiking continues as I
falls below 7, and ceases only when I falls below 6.5. The circles in
Figure 1A indicate f as a function of I, as I is gradually lowered.
For I approximately between 6.5 and 7, there is bi-stability: both
rest and periodic spiking are possible and stable in this range.

The f -I-relation shown in Figure 1A is typical of a subcritical
Hopf bifurcation (Strogatz, 1994). Specifically, the figure sug-
gests that the resting state loses its stability in a subcritical Hopf
bifurcation as I rises above approximately 7, and the stable limit
cycle corresponding to periodic spiking is annihilated, likely in a
saddle-node bifurcation of cycles (Strogatz, 1994), as I falls below
approximately 6.5.

We also compute a phase response curve for the Erisir
interneuron, defined as follows. Assume that I is large enough
to allow periodic firing (above 6.5, approximately). Denote the
firing period by T. Suppose that (v, h, n) = (−20, h0, n0) is the
uniquely determined point on the limit cycle with v = −20 and
dv/dt < 0. At time t = 0, we start a simulation at this point. At
time ϕT, with 0 < ϕ < 1, we abruptly increase v by 1mV; this cor-
responds to an instantaneous charge injection at time ϕT. Denote
by T̃ the next time when v = −20, dv/dt < 0. The phase advance
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FIGURE 1 | (A) f -I relation for the Erisir interneuron. Dots show f as a
function of I as I is slowly increased. Open circles show f as a function of I
as I is slowly decreased. (B) Phase response of the Erisir interneuron
(I = 7.2) to an instantaneous increase in the membrane potential by 1 mV.
(C) Phase response of the Erisir interneuron (I = 7.2) with an inhibitory
autapse (modeled as described in Section 2.4, with maximal conductance
equal to 0.2) to an instantaneous increase in the membrane potential
by 1 mV.

produced by the input is

g(ϕ) = T − T̃

T
.

Figure 1B shows the phase response curve, that is, the graph
of the function g, for I = 7.2. It is of type 2: Excitatory input
received early in the cycle delays the next spike instead of advanc-
ing it. Since in our network simulations, the I-cells inhibit each
other, we also compute the phase response curve for the Erisir
interneuron with an inhibitory autapse, modeled as described in
Section 2.4, with maximal conductance equal to 0.2. The self-
inhibition makes the type 2 character of the phase response more
pronounced; see Figure 1C.

Figure 2 presents a closer look at the transition from rest to
firing in the Erisir interneuron, and in particular provides strong
evidence for a subcritical Hopf bifurcation. The figure shows the
range 6.2 ≤ I ≤ 7.4. For I = 6.2, there is a single stable fixed
point. Figure 2A tracks this fixed point as I rises.1 Figure 2A shows
the membrane potential at the fixed point, as a function of I,
with blue indicating stability, and red instability. At a value of I
near 6.5, a stable limit cycle arises; Figure 2A indicates the max-
imum and minimum membrane potentials along the limit cycle
in black. The fixed point becomes unstable at a value of I very
slightly above 7.

To confirm that the fixed point loses its stability in a Hopf
bifurcation, we plot, in Figure 2B, the non-real eigenvalues of
the Jacobi matrix at the fixed point, for the range of drives I in
Figure 2A. There is indeed a complex-conjugate pair of eigenval-
ues that crosses the imaginary axis. The parameter value at which
the crossing occurs is ≈7.03.

2.2. THE WANG–BUZSÁKI (WB) INTERNEURON MODEL
We compare networks in which the I-cells are the Erisir neurons
presented in the previous section with networks in which they are

1Two additional unstable fixed points come into existence as I rises above a
critical value very close to 6.3, but that bifurcation is not our interest here,
and is not shown in Figure 2.

A B

FIGURE 2 | (A) Membrane potential v of fixed point of Erisir interneuron, as
a function of I (blue and red indicate stability and instability, respectively),
and maximum and minimum membrane potentials along the stable limit
cycle (black). (B) Non-real eigenvalues of Jacobian at fixed point, for values
of I as in panel (A). The crossing of the imaginary axis from the left half
plane to the right occurs for the critical value of I at which the fixed point in
A loses its stability.
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Wang–Buzsáki (WB) neurons (Wang and Buzsáki, 1996), mod-
eling fast-firing interneurons in rat hippocampus. We use
the equations without any change from Wang and Buzsáki
(1996). Figure 3 shows the f -I relation and the phase response
curve, without self-inhibition (panel B) and with self-inhibition
(panel C). The f -I relation now indicates no region of bi-stability,
and is of type 1, with a square-root-like appearance. The phase
response is of type 1 as well, positive throughout.

2.3. REDUCED TRAUB-MILES (RTM) MODEL OF PYRAMIDAL NEURONS
The pyramidal cell model used in this article is that of Kopell et al.
(2010). We refer to Kopell et al. (2010, Appendix 1) for the details.
The model is a slight variation of that of Olufsen et al. (2003),
which in turn is a slight variation of that of Ermentrout and
Kopell (1998), a one-compartment reduction of a model of a rat
hippocampal pyramidal neuron due to Traub and Miles (1991).
Figure 4 shows the f -I relation and the phase response curve. The
f -I relation and the phase response curve are of type 1.

2.4. NETWORKS
We use the network model described in Kopell et al. (2010,
Appendix 1). For clarity and completeness, we briefly recapitu-
late this model here, and we state the specific parameters used in
our simulations.

We denote by NE the number of E-cells, and by NI the num-
ber of I-cells. For our larger networks (Figures 5, 6, and 9),
NE = 160 and NI = 40. We also report on numerical exper-
iments with networks of one E- and one I-cell (Figure 7).
The drive to each cell of the network is constant in time. We
denote the drive to the i-th E-cell by IE,i, and the drive to the
j-the I-cell by II,j. The values of these drives will be varied;
see Results.
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FIGURE 3 | (A) f -I relation for the Wang–Buzsáki (WB) interneuron. Dots
show f as a function of I as I is slowly increased. Open circles show f as a
function of I as I is slowly decreased. The dots and the circles coincide for
this model. (B) Phase response of the WB interneuron (I = 1.0) to an
instantaneous increase in the membrane potential by 1 mV. (C) Phase
response of the self-inhibiting WB interneuron (I = 1.0, maximal inhibitory
conductance = 0.2) to an instantaneous increase in the membrane
potential by 1 mV.

Each synapse is characterized by a synaptic gating variable s
associated with the presynaptic neuron, 0 ≤ s ≤ 1, with

ds

dt
= ρ(v)

1 − s

τR
− s

τD
,

where ρ denotes a smoothed Heaviside function,
ρ(v) = (1 + tanh(v/4))/2, v denotes the presynaptic mem-
brane potential, and τR and τD are the rise and decay time
constants, respectively. To model the synaptic input from
neuron i to neuron j, we add to the right-hand side of the
equation governing the membrane potential vj of neuron j a
term of the form gijsi(t)(vrev − vj) where gij denotes the maximal
conductance associated with the synapse, si denotes the gating
variable associated with neuron i, and vrev denotes the synaptic
reversal potential. For excitatory, AMPA-receptor-mediated
synapses, we use τR = 0.1, τD = 3, and vrev = 0; for inhibitory,
GABAA-receptor-mediated synapses, τR = 0.3, τD = 9,
and vrev = −80.

In comparison with many of the values reported in the litera-
ture, our choice of vrev is low. Hyperpolarizing reversal potentials
of GABAA-receptor-mediated inhibition have been reported, for
instance, in Wang and Buzsáki (1996), Connors et al. (1988,
Table 1), Sanchez-Vives and McCormick (1997), and Traub et al.
(1996). Higher (sometimes much higher) reversal potentials have
been reported by others; see for instance McCormick (1989);
Vida et al. (2006); Bartos et al. (2007); Gouwens et al. (2010),
but also Bregestovski and Bernard (2012). We have not system-
atically investigated the effect of a higher reversal potential on
our conclusions. Powerful inhibition often seems to be needed
for an abrupt suppression transition. However, inhibition can be
sufficiently powerful for several reasons: low reversal potential,
strong inhibitory conductance, or relatively low excitability of the
post-synaptic cells.
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FIGURE 4 | (A) f -I relation for the reduced Traub-Miles (RTM) rneuron. Dots
show f as a function of I as I is slowly increased. Open circles show f as a
function of I as I is slowly decreased. The dots and the circles coincide for
this model. (B) Phase response of the RTM neuron (I = 1.0) to an
instantaneous increase in the membrane potential by 1 mV.
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Connectivity is all-to-all in our networks. (Sparse, random
connectivity would not yield substantially different results. The
randomness would add heterogeneity, with effects similar to those
of heterogeneity in external drives.) The value of gij depends only
on the types (E or I) of neurons i and j. For instance, we denote by
gEI the value of gij when the i-th neuron is an E-cell, and the j-th
neuron is an I-cell. Parameters gIE, gII , and gEE are defined simi-
larly. We scale these parameters with network size: gEI = ĝEI/NE,
gIE = ĝIE/NI , gII = ĝII/NI , gEE = ĝEE/NE . We choose parameters
similar to those in Börgers and Kopell (2005): ĝEI is so strong
that a population spike volley of the E-cells promptly triggers
one of the I-cells (but not much stronger), and ĝIE is significantly
stronger: ĝEI = 0.2, ĝIE = 0.8, ĝII = 0.2, ĝEE = 0. The value of ĝIE

is varied in Figure 8.
In some of our networks, the I-cells are also gap-junctionally

coupled. The i-th and j-th I-cells are gap-junctionally connected
with probability 1/5. If vi and vj are the membrane potentials of
the two cells, we add to the right-hand side of the equation for vi

the term ggap(vj − vi), and to the right-hand side of the equation
for vj the term ggap(vi − vj), with ggap = 0.8; this ensures that the
I-cells remain synchronous when there are gap junctions.

Each figure in this paper was generated by a stand-alone
Matlab code, available from the first author upon request.

3. RESULTS
3.1. SIMULATION RESULTS FOR LARGE NETWORKS
Figure 5 shows spike rastergrams resulting from simulations in
which the mean drive to the I-cells, II , increases linearly with time.

The drive to the I-cells is heterogeneous, here and in all of our
large network simulations; actual drive to the j-th I-cell is

II,j =
(

0.85 + j − 1/2

40
× 0.30

)
II , 1 ≤ j ≤ 40.

The simulations are 1000 ms long, and II varies from 0 to 2 for
WB neurons, and from 6 to 8 for Erisir neurons. The horizontal
axis shows II . Panel (A) of the figure illustrates the “suppres-
sion boundary” as described in Börgers and Kopell (2005). The
I-cells are WB neurons here [in Börgers and Kopell (2005), they
were theta neurons, which are also of type 1], and there is [as in
Börgers and Kopell (2005)] no gap-junctional coupling among
them. The abrupt cessation of gamma oscillations and suppres-
sion of the E-cells when the mean drive to the I-cells exceeds
(approximately) 0.9 indicates the crossing of the suppression
boundary.

Panels (B) through (D) of Figure 5 illustrate what happens
when the WB interneurons are replaced by Erisir interneurons,
or gap-junctional coupling among I-cells is introduced, or both.
When only one of those two changes is made, the suppression
transition broadens considerably, with a fairly large intermedi-
ate regime of cycle-skipping emerging (panels B and C). When
both changes are made at the same time, however, one returns
to an abrupt suppression transition (panel D). In the presence
of gap junctions (panels C and D of Figure 5), the I-cells do not
de-synchronize after they suppress the E-cells. The gap junctions
together with the I→I-synapses synchronize the I-cells in spite

A

B

C

D

FIGURE 5 | Illustration of the suppression transition. Red dots indicate
spikes of E-cells, and blue dots indicate spikes of I-cells. The mean drive,
II , to the I-cells rises linearly, from 0 to 2 in panels (A) and (C), and from 6
to 8 in panels (B) and (D). The horizontal axis indicates II (or, equivalently,

time in units of 500 ms). (A) I-cells are WB neurons, and there are no gap
junctions. (B) I-cells are Erisir neurons, and there are no gap junctions. (C)

I-cells are WB neurons, with gap junctions. (D) I-cells are Erisir neurons,
with gap junctions.
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of the fact that the external drive to the I-cells is heterogeneous
(Kopell and Ermentrout, 2004).

In Figure 5, all E-cells receive the same constant drive, IE = 2.
This, of course, is not realistic. When the network is less perfect,
for instance when different E-cells receive different amounts of
drive, the suppression transition becomes broader. This is illus-
trated by Figure 6, which is analogous to 5, but with drive to the
E-cells uniformly distributed between 1.85 and 2.15: The i-the
E-cell receives drive

IE,i = 1.85 + i − 1/2

160
× 0.30, 1 ≤ i ≤ 160.

Panels (A) through (C) of Figure 6 show a transition regime in
which stronger and weaker E-cell population spike volleys alter-
nate somewhat erratically. Panel (D) of Figure 6 shows results of
a simulation in which the I-cells were gap-junctionally coupled
Erisir neurons. In this case, the transition regime is much nar-
rower. It is also more orderly: the number of suppressed E-cells
increases monotonically with II . We discuss these two points in
greater detail in sections 3.2 and 3.3.

3.2. WITH GAP-JUNCTIONS, I-CELLS OF TYPE 2 PRODUCE A TIGHTER
SUPPRESSION TRANSITION THAN I-CELLS OF TYPE 1

Our main goal in this section is to explain why the suppression
transition is gradual in Figure 5C, but sudden in Figure 5D. In
these simulations, the E-cell population is tightly synchronous
because there is no heterogeneity in drive to the E-cells, and
the I-cell population is tightly synchronous because of gap-
junctional coupling. Much about these simulations can therefore

be understood by thinking about networks consisting of just one
E-cell and one I-cell.

If one couples an RTM neuron with a WB neuron, there is
typically a fairly broad range of drives, II , to the I-cell for which
the E-cells skip every second cycle; see Figure 7A for an exam-
ple. Figure 7B shows the inter-spike intervals of the I-cell in this
example: they alternate between longer and shorter intervals. On
one cycle of the I-cell, the E-cell fires immediately prior to the
I-cell. Because the excitatory synaptic currents have a positive
decay time constant, the excitation resulting from the E-cell spike
lingers slightly beyond the I-cell spike and into the next I-cell
cycle. Recall that the WB neuron has a type 1 phase response
curve; see Figure 3. The next I-cell spike is thereby advanced, and
this can result in suppression of the E-cell on the next cycle.

Figures 7C,D show a similar experiment for a two-cell net-
work consisting of an RTM neuron and an Erisir neuron. For
the value of II = 7.27 shown in the figure, there is no cycle-
skipping, and the network settles into an oscillation with a period
of approximately 26 ms. If II is raised from 7.27 to 7.28 (not
shown in the figure), the E-cell is suppressed altogether, and the
period of the I-cell falls to approximately 23 ms. Because the I-cell
is of type 2, the input from the E-cell, by lasting for a few mil-
liseconds beyond the spike of the I-cell, does not advance the next
I-cell spike; it delays it. Thus if the I-cell is unable to suppress the
E-cell on a given cycle, it will be delayed on the next cycle, and is
therefore even less able to suppress the E-cell on the next cycle. As
a result, the E-cell is either suppressed on all cycles, or on none.

In Figure 8, we show further results of simulations for two-
cell networks, illustrating the transition from gamma frequency
firing to suppression of the E-cell, and in particular the effect of

A

B

C

D

FIGURE 6 | As Figure 5, but with heterogeneous drive to the E-cells, rising with neuronal index from 1.85 to 2.15.
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FIGURE 7 | (A) Spikes of an RTM neuron (red) and a WB neuron (blue), with
IE = 2 and II = 1. (B) Inter-spike intervals of the I-cell in panel (A), alternating
between short ones (following a spike of the E-cell) and long ones (following

suppression of the E-cell). (C) Spikes of an RTM neuron (red) and an Erisir
neuron (blue), with IE = 2 and II = 7.27. The E-cell would be entirely
suppressed if II were 7.28. (D) Inter-spike intervals of the I-cell in panel (C).

varying the strength of inhibition. Here we plot the number, fE,
of E-cell spikes in 1000 ms (that is, the E-cell frequency in Hz) as
a function of II , with gIE = 0.5 (blue), 0.8 (black), and 1.1 (red).
The figure confirms that there is an abrupt suppression transition
when the I-cell is an Erisir neuron (panel B), but not when it is a
WB neuron (panel A).

In Figure 8, note that an increase in II typically causes either an
abrupt drop in fE, or a slight increase. The reason for the increase
in fE with increasing II is that the enhanced drive to the I-cells
makes them fire earlier on each cycle, thereby allowing the E-cell
to fire earlier on the next cycle, unless there is a change in entrain-
ment pattern, and the E-cell is suppressed on more cycles than
before. When there is a change in entrainment pattern as a result
of an increase in II , the frequency fE drops abruptly.

3.3. WITH GAP-JUNCTIONALLY COUPLED I-CELLS OF TYPE 2, THE
DYNAMICS IN THE TRANSITION REGIME ARE MORE REGULAR
THAN WITH I-CELLS OF TYPE 1

There are seemingly irregular sequences of strong and weak E-cell
spike volleys in Figure 6C, while much more regular behavior is
seen in Figure 6D. We now discuss this difference. The behavior
in Figure 6C becomes clearer when one fixes the mean drive, II ,
to the I-cells in the transition regime. For illustration, Figure 9
shows a simulation similar to that of panel (C) of Figure 6—WB
interneurons, gap junctions, heterogeneous drive to the E-cells—
but with a fixed drive of 0.9 to the I-cells. We see a rather

irregular sequence of stronger and weaker E-cell population spike
volleys.

To understand this irregularity, we reduce the network dynam-
ics to a one-dimensional map, examining how the strength of a
given E-cell spike volley depends on the strength of the previ-
ous volley. We denote by sk the number of E-cells that fire on the
k-th gamma cycle in Figure 9. In Figure 10A, we have plotted the
pairs (sk, sk+1) for the simulation of Figure 9, run over 10,000 ms.
If sk < 160, then sk+1 can be deduced from sk, approximately at
least:

sk + 1 = g(sk),

and the figure suggests that g has exactly one fixed point s∗, which
is unstable: g ′(x∗) < −1. If sk = 160, then sk+1 is not determined
by sk. Instead, sk+1 then depends on the precise placement of the
inhibitory spike volley in the k-th cycle, relatively to the exci-
tatory one. If the inhibitory spike volley comes early, then the
following I-cell spike volley comes so early that it largely or com-
pletely suppresses the E-cell spike volley; see Figure 10B. If the
inhibitory spike volley comes late, then the following I-cell spike
volley comes so late that it is ineffective at suppressing the E-cell
spike volley on the next cycle; see Figure 10C.

To construct a figure analogous to Figure 10A for Erisir
interneurons is more difficult. There is no transition regime in
which the behavior is irregular, and therefore simply running a
long simulation does not produce many pairs (sk, sk+1). However,
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we describe now a method for constructing an idealized version
of Figure 10A, and this method generalizes to the case of Erisir
interneurons, leading to a better understanding of the difference
between Figures 6C and 6D.

We start the simulation of the network, at time t = 0, in a
point, X0, in phase space chosen so that a full population spike
volley of the E-cells is imminent within a few milliseconds. Exactly
how X0 is defined is largely irrelevant. We obtain it from the simu-
lation of Figure 9 by recording all dependent variables 4 ms prior
to the 5th population spike volley of the E-cells. (All E-cells hap-
pen to participate in that volley.) Within a few milliseconds, at
time t = t0 > 0, we re-set the phase space variables associated
with the I-cell population to a point Y0 to force an immediate
population spike volley of the I-cells. Again, it is largely irrelevant
exactly how Y0 is defined. We obtain it from the simulation of
Figure 9 by recording all dependent variables associated with the
I-cells at the onset of the 4th population spike volley of the I-cells.

Depending on the choice of t0, the first E-cell spike volley may
be suppressed partially or completely. The number, s1, of E-cells
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FIGURE 8 | Frequency of E-cell in a two-cell network as a function of

drive to the I-cell, for gIE = 0.5 (blue), 0.8 (black), and 1.1 (red). The
I-cell is either a WB neuron (panel A), or an Erisir neuron (panel B). The
transition from firing to suppression of the E-cell is much cleaner and more
abrupt with the Erisir neuron.
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t

FIGURE 9 | Simulation with II = 0.9 fixed, all else as in panel (C) of

Figure 6: I-cells were WB-neurons, coupled with gap junctions. Drive to
the E-cells was heterogeneous, increasing from 1.85 to 2.15 with increasing
neuronal index.

firing soon after time t = 0, 0 ≤ s1 ≤ 160, is a function of t0 ≥ 0;
see Figure 11A. We then record the number, s2, of E-cells firing
in the second E-cell spike volley, and plot it as a function of t0

(Figure 11B), and also s2 as a function of s1 (Figure 11C). Note
that Figure 11C is strikingly similar to Figure 10A.

The procedure used to generate Figures 11A–C can be applied
to generate analogous figures for a network in which the I-cells are
Erisir interneurons; see Figures 11D–F. The mean external drive
to the I-cells in Figures 11D–F is II = 7 (this is near the lower
end of the transition regime, see Figure 6D). Since the simula-
tion with II = 7 does not produce any full E-cell population spike
volleys, it cannot be used to initialize the network so that a full E-
cell population spike volley is imminent; we therefore obtain the
points X0 and Y0 just as described earlier, but based on a prelim-
inary calculation with the reduced value II = 6.5, for which the
E-cells do fire full spike volleys.

Comparing Figures 11C,F, we see that s2 is a decreasing func-
tion of s1 when the I-cells are WB neurons, but an increasing
function of s1 when the I-cells are Erisir neurons. The difference
in monotonicity is the crucial point here. It is a reflection of the
difference in the types of the phase response curves: for type 1
interneurons, the firing of a greater number of E-cells accelerates
the inhibitory response, reducing the number of E-cells firing on
the next cycle; for type 2 interneurons, the opposite is true.

An iteration of the form sk+1 = g(sk), where g = g(s) is a
smooth function defined for 0 ≤ s ≤ 160 with 0 ≤ g(s) ≤ 160,
may not have a stable fixed point when g is decreasing, but it
does have at least one stable fixed point when g is increasing. So
the mapping from s1 to s2 has an attracting fixed point when the
interneurons are of type 2, but not necessarily, and in particular
not in the example shown in Figure 11C, when they are of type 1.
This is why type 2 interneurons yield periodic behavior (E-cell
spike volleys of a steady size) after a transient, whereas type 1
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FIGURE 10 | (A) The strength, sk+1, of the (k + 1)-st spike volley as a
function of the strength, sk , of the k-th, for the simulation of Figure 9, run
over 10,000 ms. (B and C): Closeups of Figure 9: What happens after a full
E-cell spike volley depends sensitively on when, relative to the E-cell spike
volley, the I-cell spike volley occurs.
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FIGURE 11 | (A–C) Results from simulations of a PING network
consisting of 160 RTM cells (E-cells) and 40 WB cells (I-cells). At the
start of the simulation, at time 0, the E- and I-cells are close to firing
spike volleys. At time t0 > 0, a spike volley of the I-cells is forced.

(A) Strength of the first E-cell spike volley, s1, as a function of t0.
(B) Strength of the second E-cell spike volley, s2, as a function of t0.
(C) s2 as a function of s1. (D–F) Similar results for a network in which
the I-cells are Erisir neurons.

interneurons may produce more complicated, possibly chaotic
dynamics in the transition regime.

3.4. NETWORKS WITHOUT GAP-JUNCTIONAL COUPLING AMONG
THE I-CELLS

Simulations similar to that of Figure 5A were studied, for net-
works of theta neurons, in Börgers and Kopell (2005). Recall that
the drive to the I-cells is heterogeneous; II denotes the mean
drive to the I-cells. With increasing II , increasingly many I-cells
have enough drive to fire without being prompted by the E-cells.
Once enough I-cells are in this group, the E-cells are suppressed
altogether. In a network of cells coupled by inhibitory chemical
synapses, but not by gap junctions, heterogeneity of drives typi-
cally prevents synchronization (White et al., 1998); this is why the
I-cells in Figure 5A become asynchronous as soon as they begin
firing without being prompted by E-cell spike volleys.

This discussion suggests that even in Figure 5A, considering
that different I-cells receive different drives, the transition from
PING to suppression of the E-cells should not be abrupt. Rather,
one would expect that in an intermediate regime, some I-cells
(the more strongly driven ones) are asynchronously active with-
out being prompted by the E-cells, while others (the less strongly
driven ones) only fire in synchronous volleys immediately fol-
lowing E-cell spike volleys. This is in fact so, but not visible in
Figure 5A because the intermediate regime is quite narrow, and
the rising II passes through it rapidly.

Figure 5B is in some regards similar to Figure 5A. The transi-
tion regime in which some I-cells fire without being prompted
by the E-cells, but the E-cells still fire population spike volleys
occasionally, is now much broader, and clearly visible. The most
striking difference between Figures 5A,B is that in Figure 5B,

some I-cells are completely suppressed even when the mean
drive to the I-cells gets strong, whereas the same is not true in
Figure 5A. We have not attempted a theoretical explanation of
this difference; it seems natural to hypothesize that it is due to
the difference in the types of the f -I relations of WB and Erisir
neurons.

Figures 6A,B are similar. The suppression transitions are soft-
ened considerably because of heterogeneity in drive to the E-cells.
With Erisir interneurons, one sees a broader suppression tran-
sition than with WB interneurons. This is opposite to what is
seen in the presence of gap junctions. We have no explanation
of this effect. In particular, our arguments based on the phase
response of the I-cells do not apply when the I-cells are not kept
synchronous by gap junctions: once the I-cells de-synchronize,
they receive excitatory input from the E-cells at all phases, not
just at the early phases at which type 2 I-cells are delayed by such
inputs.

4. DISCUSSION
The fast-spiking inhibitory basket cells believed to be central in
the formation of gamma rhythms are in fact gap-junctionally
connected (Beierlein et al., 2000). There is direct experimental
evidence that they have type 2 phase response curves (Tateno and
Robinson, 2007, Figure 5). In addition, there are reports that they
also have type 2 frequency-current relations, i.e., that their fir-
ing starts at a non-zero frequency (Beierlein et al., 2003; Tateno
et al., 2004; Tateno and Robinson, 2006, 2009). Further, there are
several papers documenting resonance properties of fast-spiking
interneurons; e.g., (Pike et al., 2000). These are properties usually
associated with a Hopf bifurcation, and a type 2 phase response
curve. It therefore appears that the biologically most relevant case

Frontiers in Computational Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 33 | 66

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Börgers and Walker Suppression boundary

is that of gap-junctionally connected I-cells with a type 2 phase
response curve—precisely the case that yields the narrowest and
most orderly suppression transition.

In this paper, we have discussed the loss of gamma rhythms
due to too much excitation of the I-cells. By contrast, a recent
paper of Börgers et al. (2012) investigated the loss of gamma
rhythms due to too little excitation of the I-cells. Moca et al.
(2012) discussed a different way in which the type of the interneu-
rons may be important in gamma oscillations: they found that
resonance properties of the interneurons, associated with bifur-
cation type 2, may contribute to stabilizing the gamma frequency.

All numerical experiments in this paper have been for “strong
PING,” that is, for PING oscillations in which participating E-cells
fire at or near gamma frequency. By contrast, “weak PING” oscil-
lations are noise-driven, and individual participating E-cells fire
on a small, randomly selected fraction of cycles only. In Börgers
et al. (2005), it was suggested that weak PING might be associated
with general alertness or vigilance, while strong PING might be a
model of a cell assembly in a state of actively processing a specific
item. We would expect our main conclusion, that I-cells with type
2 phase response curves result in a tighter suppression transition,
to hold for weak PING as well. The reason is simply that for type
2 I-cells, the spiking of a few E-cells promotes the spiking of other
E-cells on the next cycle, whereas for type 1 I-cells, it may make it
harder for other E-cells to fire on the next cycle.

Our discussion suggests that the competition among E-cells
associated with PING oscillations [see for instance (Olufsen et al.,

2003; Börgers et al., 2008)] is less fierce when the I-cells have a
type 2 phase response. We think that this is true only in a narrow
time window: an E-cell that lags behind others by just a mil-
lisecond or two can fire more easily when the I-cells are type 2
than when they are type 1, since the firing of the E-cells that are
ahead delays the firing of the I-cells on the next gamma cycle.
In other words, I-cells of type 2 may allow for less tightly syn-
chronous PING assemblies. However, even with I-cells of type 2,
a cell assembly can suppress a less strongly driven competitor if
the difference in drive is just slightly greater.

In summary, we have found that in the presence of gap junc-
tions, when the I-cells are of type 2, the suppression transition
tends to be both narrower and more orderly than when the I-
cells are of type 1. It is tempting to speculate that fast-spiking
inhibitory basket cells might have evolved to have type 2 phase
response curves precisely because that leads to clean suppression
transitions, reducing the amount of modulation of local recurrent
inhibition needed to turn gamma frequency cell assemblies off or
on, an operation that seems likely to be crucial in brain function.
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Efficient path planning and navigation is critical for animals, robotics, logistics and
transportation. We study a model in which spatial navigation problems can rapidly be
solved in the brain by parallel mental exploration of alternative routes using propagating
waves of neural activity. A wave of spiking activity propagates through a hippocampus-like
network, altering the synaptic connectivity. The resulting vector field of synaptic change
then guides a simulated animal to the appropriate selected target locations. We
demonstrate that the navigation problem can be solved using realistic, local synaptic
plasticity rules during a single passage of a wavefront. Our model can find optimal
solutions for competing possible targets or learn and navigate in multiple environments.
The model provides a hypothesis on the possible computational mechanisms for optimal
path planning in the brain, at the same time it is useful for neuromorphic implementations,
where the parallelism of information processing proposed here can fully be harnessed in
hardware.
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dependent plasticity, hippocampus, neuromorphic systems

AUTHOR SUMMARY
Humans and animals can quickly and reliably solve spatial
navigation and path planning tasks. However, neural mecha-
nisms underlying these processes are not completely understood.
Discovery of, so called, place cells—the hippocampal cells getting
activated whenever an animal enters a certain spatial location—
gave rise to the idea that the hippocampus contributes to the
creation of internal, neural representations of the environment.
Here we demonstrate that spatial navigation can rapidly be solved
in the hippocampus-like neural network by parallel mental explo-
ration of alternative routes. A possible biological mechanism to
implement parallel exploration is through propagating waves of
neural activity spreading across the entire network representing
a given environment. We present a model, where such waves of
spiking activity alter synaptic connectivity through spike-timing-
dependent plasticity and create a vector field, which can guide
an animal through the environment to selected target locations.
In a set of computational experiments we demonstrate that plan-
ning can be solved during a single wavefront passage through the
network. Moreover, the model is capable of suggesting an opti-
mal solution for multiple competing targets, and it can embed
multiple environments for trajectory planning.

INTRODUCTION
One of the central problems for neurobiology is to understand
the computational effectiveness of the brains of higher animals.
Brains rapidly carry out extraordinary feats of visual scene analy-
sis or problem solving through thinking on “wetware” that is tens
of millions times slower than modern digital hardware. Part of the
explanation is brute-force anatomical parallelism.

In this paper we develop a model of parallel computational
processing in the context of path planning and spatial navigation.
We propose that spatial navigation can be solved through simul-
taneous mental exploration of multiple possible routes. A typical
mental exploration task for an animal might involve knowing an
extensive terrain containing a few water sources, being motivated
(being thirsty) to seek the nearest water source. Hopfield (2010)
recently described a way that serial mental search for a useful
route could be done by a moving clump of activity and synapse
modification in a hippocampus-like neural network 1. We show
here that a best path can rapidly be found by parallel search in the
same kind of network, but by a propagating wave of spiking activ-
ity. The process of path planning and navigation, as proposed in
our model, consists of the following steps: (1) expanding waves
of neural activity are initiated from the place cells correspond-
ing to selected target location(s); (2) the propagating waves alter
synaptic connectivity within the network through spike-timing-
dependent plasticity and create a directed synaptic vector field
(SVF) converging on the goal locations; (3) this vector field is
used by an animal to navigate toward targets; (4) whenever a new
planning process is necessary, all synapses are reset to the baseline
state and waves of activity can be initiated from the new target
locations.

Can animals employ such parallel mental exploration to solve
novel problems? Indeed can humans do so? Recent electrophysiol-
ogy experiments demonstrated existence of expanding, traveling
waves of neural activity in the hippocampus, associated with

1We use the term “clump of activity” to refer to a localized neural activity of a
cluster of place cells representing nearby spatial locations.
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theta-oscillations (Lubenov and Siapas, 2009; Patel et al., 2012),
as well as with much faster sharp wave ripples (Ellender et al.,
2010), yet, no link between such waves and spatial planning has
been shown so far.

One of the major roles of theory is to elucidate interest-
ing consequences and possibilities inherent in our incomplete
experimental knowledge of a system. The fact that hippocampus-
like neural substrate can support parallel mental exploration, as
explored here, is such a possibility. New experimental paradigms
could easily test for parallel mental exploration in rats. These
ideas also form the basis for novel neuromorphic circuits in engi-
neering, which could be used to implement effectively certain
Artificial Intelligence algorithms such as those based on the idea
of a wave-front propagation (Dorst and Trovato, 1988; Dorst
et al., 1991; LaValle, 2006) by taking advantage of the true par-
allelism of the neuromorphic hardware systems (Boahen, 2005;
Misra and Saha, 2010).

RESULTS
We consider like (Hopfield, 2010) a network of excitatory “place”
cells for a very simple model animal. Through experience in an
environment, each cell has learned synaptic connections from a
sensory system (not specified here) that make it respond strongly
only when the model animal is near a particular spatial loca-
tion. These response place fields are our modeling equivalent
of the response place fields observed in the rodent hippocam-
pus (O’Keefe and Dostrovsky, 1971). For display purposes, the
activity of each place cell can be plotted at the spatial location
of the center of the receptive field corresponding to that place
cell. In such a display there is a localized activity clump sur-
rounding the actual spatial position of the model animal. When
the animal moves, this activity region follows the location of
the animal. If an animal wanders throughout an environment
over an extended time, the synaptic plasticity will result in exci-
tatory synaptic connections being made only between cells that
are almost simultaneously active (Hebb, 1949). If the exploration
process is not systematically directional and is extensive, connec-
tions will on average not have directionality. The CA3 region of
the hippocampus has such intra-area excitatory connections with
the requisite spike-timing-dependent plasticity, or STDP (Amaral
and Lavenex, 2006).

The fundamental neural network to be studied is thus a sheet
of place cells, each having excitatory connections to the others
with centers within its receptive field footprint, but not to dis-
tant neurons. Experimental support for the existence of such
connections (direct or indirect) comes from the coordinated
phase-change-like response of place cells, trained in two envi-
ronments, experiencing a visual environment that mixes the two
environments (Wills et al., 2005).

The model neurons considered in our study are of the
integrate-and-fire type with a short dead-time and spike-
frequency adaptation (implementation details are provided in the
Methods section at the end of the paper).

We investigate whether and how the described setup can
implement parallel search for optimal pathways in the envi-
ronment represented by the neural network. Because we rely
on simulations of a system whose mathematics we cannot fully

analyze, it is sensible to present a line of argument that develops
insight about expected behaviors. Consider a simplified model
comprising of a line of neurons, each reciprocally connected to its
two nearest neighbors (cf. Figures 1A,B). With specific parameter
settings, a single spike can initiate an activity pattern that consists
of a pair of spikes marching from the initiation site toward the
ends of the line at constant speed, one in each direction (Aertsen
et al., 1996). In a system with intrinsic neuronal adaptation, there
is a dead time before another pair can be propagated in this same
region.

A similar phenomenon can be observed also in a two-
dimensional sheet of neurons with recurrent local connections
over a small but extended region. In an example presented in
Figures 2A,B, the synaptic connection strengths are chosen so
that a few pre-synaptic cells must spike almost simultaneously
to fire the post-synaptic cell. Seeded with a few approximately
synchronized firings of nearby cluster of neurons, a propagating
circular wavefront of activity is observed in which each neuron
fires only once (Kumar et al., 2008). A second wavefront cannot
be initiated in a region that the initial wavefront has traversed
until the adaptation has decayed (cf. Figures 2C,D). Note, that
although in our model we consider a single-spike activity, the
basic activity events propagated through the network may in prin-
ciple also consist of short bursts of spikes, which is biologically
more realistic in the context of the hippocampal cell activity.

Propagating wavefronts can have profound effects on synaptic
modifications through STDP. Consider again a one-dimensional
network as illustrated in Figure 1. Any non-symmetric STDP
rule will produce, in one dimension, synaptic change patterns
that display whether the “front” of activity that went by was
going toward the left or toward the right. Normal or “forward”
STDP which enhances synapses at which the pre-synaptic spike
comes before the post-synaptic spike will result in rightward-
going synapses being stronger than leftward-going synapses if the
wavefront passes moving to the right (Figure 1A). “Reverse” or
“anti-” STDP which enhances synapses at which the pre-synaptic
spike comes after the post-synaptic spike (Bell et al., 1997; Kampa
et al., 2007; Roberts and Leen, 2010) will result in leftward-going
synapses being stronger than rightward-going synapses if the
wavefront passes moving to the right (Figure 1B). The same basic
idea intuitively extends to two dimensions, where STDP results in
synaptic change that can be interpreted as a vector field (in the fol-
lowing we shall call it a synapse vector field or SVF), showing the
orientation of the propagating wavefront that caused the synap-
tic change. In all our simulations we use reverse STDP induced by
propagating spike wavefronts that creates an SVF pointing toward
the center (initial point) of the waves. Our use of reverse STDP is
motivated by certain conceptual and technical advantages of this
approach over regular STDP, as it will be described later in the
paper.

SIMPLE PATH PLANNING PROBLEM
Consider for definiteness the “T” shape environment shown in
Figure 2A. We presume that by exploring the environment, each
neuron has acquired a place field such that it is driven strongly
only when the simulated animal is near the place field cen-
ter and the drive to the cell falls off smoothly away from that
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FIGURE 1 | Synaptic vector field formation. (A,B) Illustration of the
synaptic strength changes in a one-dimensional network altered by “causal”
STDP (A) and “anti-causal” STDP (B) after a neural activity was propagated
from the neuron k in the directions denoted by the arrows. The connections
are shown as arcs with the direction of connection denoted by little dots
representing synapses. Stronger connections are represented by the thicker

lines. Left panels are the schematic illustrations of the synaptic weight
changes �w as a function of the time lag �t between the post and
presynaptic spikes, for STDP (A) and anti-STDP (B). (C) Due to the
asymmetry in the strength of connection from- and to- any particular neuron
in the network, the mean neural activity observed in the network is shifted
with respect to the input current distribution.

location. For display purposes, in all figures the cells are arranged
so that whatever property of the cell is being plotted, its (x,y)
plot location is the location of its place field center. The recep-
tive fields considered in our experiments are assumed to have
Gaussian shapes and to cover 25–50 cells in their footprints in
a simulation using a network with 2000 place cells. In such a
setup, if an animal explores an environment, synapses with simple
STDP will form strong connections between neurons with simi-
lar place fields, i.e., between neurons that are close together. To
this point, the general approach is like that previously used in
Hopfield (2010).

Imagine that the simulated animal, in exploring an environ-
ment, finds a target T, such as a source of water, to which it may
later want to return. Let the dendrites of the place cells in the
vicinity of T become connected to axons from an “exciter” which,
when activated, can briefly drive these place cells to fire. Such
activation will result in an outgoing wave of single spike activity
emanating from T as center as illustrated in Figure 2A (where the
cyan field represents the T location). This wave will spread until
every neuron has fired an action potential. As noted before, the
next wavefront is possible only after the neural adaptation fades
away. Also, to prevent runaway, we use a global inhibitory mech-
anism, where inhibition is proportional to the network activity,
resulting in a balanced excitation-inhibition (for more details we
refer to the Methods section).

The propagating wave and the asymmetric synaptic plasticity
implicitly define a vector field, which represents the local direc-
tion of the wavefront, i.e., the vector is normal to the wavefront
and points in the direction of propagation. We should define what
is meant by “shortest path” or more generally “optimal path”
for present purposes. While the synapse vector field is defined
only at the discrete locations of place cell centers, the synapses
themselves will be used to control the continuous motion of an
animal in real space. The discreteness of the place cell represen-
tation will contribute fine-scale noise in the actual physical path.
The optimality we are interested in is macroscopic optimality—
for example, choosing the right way to go around an obstacle. The
physical pathlength contribution introduced by jitter from the
discreteness of the neural representation is not of interest. Before
the single-spike activity wave was initiated, all directions were
equivalent, and the SVF was zero everywhere. Afterward there is
a local directionality, because the timing of pre-post spike pairs
depends on the spatial separation of the pairs projected on the
direction of wavefront propagation. Sample SVFs that result from
the anti-STDP rule are shown in Figures 3A–D. Here the vector
fields are illustrated using directed arrows originating from the
preferred locations of each place cell in the network. The direction
and the length of each arrow represent, respectively, the direc-
tion and the strength of the vector field in a given location (see
Methods for details).
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FIGURE 2 | Wavefront propagation and neuronal adaptation. Illustration
of a wavefront propagation in a network of synaptically connected place
cells for two different environments (A,B). Cyan fields are the initiation
points of the wavefronts. Red dots are the action potentials that occurred
in a time window of 0.002 s centered at the times indicated. Plots (C,D)

show color maps of the average level of a neural adaptation in the
particular regions of the network after a single wavefront passage up to
the states illustrated in the right-far plots in (A,B), respectively. Brighter
colors in these maps represent lower excitability of the neurons at the
corresponding locations.

The SVF can be used for finding the shortest pathway to the
location being the source of the propagated wave. Intuitively, since
the first wave to arrive at your position comes via the fastest path,
if you simply backtrack, always going backward along this vector
field, you will reach the target by the shortest path. In either case,
the synapse vector field contains the information necessary to find
the shortest route to the target. It is merely a question of following
the vector field forward (anti-STDP) or backward (STDP).

OBTAINING MOTOR COMMANDS FOR FOLLOWING THE SYNAPTIC
VECTOR FIELD
For illustrating an idea of how the SVF can be used for guiding
an agent (a simulated animal or a robot) movement, we return
to the one-dimensional case (Figure 1C). In 1 dimension, if the
propagating wavefront has passed by locations k through (k-n)
while moving leftward, and the anti-STDP rule has been applied,
rightward-directed synapses [e.g., (k-1) → k] are strengthened
more than leftward ones (k → (k-1)). Before this process, if the
animal was located at a particular location in space, a bump of
place cells would be active, symmetrically located around that
location. In the presence of the asymmetric synapse modifica-
tion, the bump of activity is biased and no longer centered on
the actual physical location (Figure 1C; cf. Levy, 1989; Blum and
Abbott, 1996). This bias can be converted into a motor command
proportional to the bias and pointing toward the direction of a
wavefront passage.

Precisely the same problem occurs in earlier work on
a hippocampus-like model of actions based on “thinking”
(Hopfield, 2010). In that model there were two clumps of activ-
ity, one representing the present position of the animal and the
other representing where the animal thought it should be a short
time later. The difference between the locations of these two
clumps was used to produce motor commands that moved the
animal toward the desired future location. The model was fully
implemented with spiking neurons.

Since the task of generation of motor command is not the
major focus of our paper, here we use a simplified approach.
Namely, we assume that a receptive field corresponding to the
present animal location is activated by applying tonic excitation to
the corresponding place cells and then any place cell firing a spike
causes a pulse of force moving an agent toward the preferred
location of that cell. The asymmetry in the weight configura-
tion around the receptive field results in a higher probability of
firing of those adjacent place cells that are located along a direc-
tion of a vector field. As a consequence an agent moves to a
spatial new location along the optimal pathway. The details of
the algorithm are provided in the Methods section at the end of
the paper.

Sample movement trajectories resulting from applying the
described procedure to a simulated animal are shown in
Figures 3E,F (see also Movies S1 and S2 in Supplementary
materials). These trajectories result from the SVFs illustrated
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in Figures 3A,C and Figures 3B,D, respectively. In particular,
Figure 3F illustrates the shortest path aspect of the available
information—because the target is located above the midline,
the wavefront arrives at the branch containing the animal at S
from above before the wavefront from below (cf. Figures 2B, 3B).
Neural adaptation prevents the wavefront arriving from below
from penetrating this region. Thus, the SVF leads to a route from
S to T going upward.

Notwithstanding the fact that the algorithm used here is not
providing details on the possible neural implementation of action
execution, it is important to emphasize that the actions are trig-
gered by individual spikes and hence each spike contributes to
the agent behavior change. The average population activity pat-
tern determines the mean movement trajectory along the vector
field, whereas the particular spikes add some stochasticity to the
behavior (reflected, e.g., in a small trial-to-trial variability of the
movement pathways observed in Figures 3E,F). Such stochastic-
ity has some advantage in certain situations. For example, it may

FIGURE 3 | Synaptic vector field and spatial navigation. (A,B) Synaptic
vector fields resulting from the wavefront initiated at point T and
propagated as illustrated in Figures 2A,B, respectively. (C,D) The insets
show details of the vector fields around the bifurcations in the simulated
mazes. (E,F) Typical movement trajectories observed in the considered
models resulting from the vector fields from (A,B), respectively. The
trajectories begin in points “S” and end in the target locations “T.” For
additional results see also Movie S1 in supplementary materials.

be useful for avoiding local minima, or for selecting one choice
when several alternatives have equal probability.

NAVIGATION IN AN ENVIRONMENT WITH MULTIPLE TARGETS AND
VALUES
Several different relevant targets might be simultaneously avail-
able in an environment. For simplicity, the case when all targets
have the same intrinsic value is first considered. Figure 4A shows
the SVF that results when single spike propagating circular waves
simultaneously originated at three targets. Because the single-
spike wavefront cannot propagate into a region that another
wavefront has recently traversed, any subregion is therefore tra-
versed by only a single wavefront, the one that arrives first, and is
thus closest to its source. Within that subregion, the vector field is
the same as it would have been if only the source responsible for
the traversing wave had been present. The three subregions of the
three possible targets of Figure 4A are shown in Figure 4B (com-
pare to Movie S2 in the Supplementary materials). Which target is
nearest, and thus should be navigated to, depends on the current
location of the agent. The same figure illustrates the paths fol-
lowed for three possible initial agent locations. Note that the SVF
is defined everywhere, independent of the location of the agent
when the wavefront is generated.

When multiple targets are present, an optimal choice will
involve balancing the cost due to the length of a path and the
reward that will result if that path is followed. For a single tar-
get, the net reward due to following a path of length L is R–CL,
where C is the cost per unit length of following any path, and
optimizing net reward simply minimizes L over the set of possible
paths. When multiple targets of equal value are present, the same
net reward expression applies, but the set of relevant paths over
which a minimum is sought includes paths to each possible tar-
get. Accordingly, if the targets all have equal value, the described
procedure selects the target that can be reached by the shortest
possible route.

FIGURE 4 | Navigation in a system with multiple targets. (A) Synaptic
vector field created in the network with targets in locations Tl, T2, T3. (B)

Typical movement trajectories observed in the system for the initial agent
locations as indicated by spots Sl, S2, S3. The path selection and the path
shapes are determined by the shape of the vector field and by the initial
agent location’s. The vector field has three basins of attraction
corresponding to the particular targets—the bounds of the basins of
attraction are indicated by the gray dotted lines. For additional results see
also Movie S2 in supplementary materials.
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Now suppose that different possible targets Tk, k = 1, have
different rewards Rk. When all wavefronts propagate with the
same velocity, it is useful to think in terms of times rather than
lengths. Rk then can be seen as an effective shortening of the
time to navigate to a reward. A simple way to implement it is
to initiate wavefronts first at the target locations corresponding
to greater rewards and later at the locations with lower rewards.
The introduction of these differential delays represents the value
differentials between the various targets. These delays shift the
boundaries of the regions such as those of Figure 4B in a way that
represents the differing values of the target. The optimal relative
initiation times can be learned on the basis of maximizing the
term (Rk–CL). For any winning target, the path followed to that
target is the same as would have been used if that target alone were
present.

DEALING WITH NOISE
Noise can adversely affect the ability of the network to propagate
a wavefront in the ideal fashion to set up the desired synaptic
field. Figure 5 illustrates what can happen when noise is severe.
Spurious single spikes are generated, and spikes can fail to occur.
When spurious spikes cluster, they can serve as initiation sites for
new circular waves centered at locations where there is no target.
In addition, spurious and absent spikes cause irregular wavefront
propagation or even wavefront extinction.

The major noise issues concern setting up the SVF. Once it is
set up, the motor control system effectively averages over the vec-
tor field in a small region, and noise in following the SVF is not a
major issue.

Having a large system is the first defense against noise. As the
system size grows, the number of neurons making synapses onto
a particular cell, which must be simultaneously active to initiate
a spike in that cell, can be increased, and the likelihood of spu-
rious single spikes decreases. The likelihood of a spatial cluster
of spurious spikes being large enough to trigger a new wavefront
is also reduced. There is considerable latitude for exploiting the
large number of cells available in real neurobiology.

There are also cellular means to suppress the effect of noise.
Set the threshold for spike generation at some particular level,

and consider the ability of N cells connected to this one to trig-
ger it to spike when a passing wavefront goes by. There will never
be exact synchrony in the firing of the presynaptic cells, so while
N cells firing may typically be required to fire the cell, less than
N may also sometimes do so, and more than N may fail to fire
it. Reliable wavefront propagation is enhanced by any biophysi-
cal effect that sharpens this threshold on N. One way to sharpen
this threshold is by determining whether a particular neuron in
a network is excited by spikes coming from a small number of
neurons being unusually effective (for example because of noise),
or by a larger number of neurons with typical effectiveness. A
method of making this distinction can be implemented in a bio-
logically realistic way by using supra-linear spatial summation,
a phenomenon observed in biological neural circuits (Nettleton
and Spain, 2000; Urakubo et al., 2004). In our work we use a sim-
ple phenomenological model of such a supra-linear integration
that favors weak excitation from multiple inputs over strong exci-
tation from a few inputs. This is achieved through a non-linear
summation of synaptic input currents to the neuron, such that the
effectiveness of presynaptic spikes is increasing with a number of
simultaneously active inputs to the neuron (see Methods section
for details). Although, in this algorithm the appropriate setting of
the neuron activation threshold is still important, it is no longer
a critical factor for the problem at hand. With this approach
more emphasis is put on how many presynaptic neurons are
active simultaneously, rather than how strong the particular con-
nections are. In this way the algorithm works better than the
threshold algorithm for networks with greater heterogeneity of
synaptic connection strengths.

NAVIGATION IN MULTIPLE ENVIRONMENTS
When a rat is familiar with multiple environments, a particular
hippocampal neuron can have place fields in more than one envi-
ronment, with no apparent coordination between them (Bostock
et al., 1991; Wilson and McNaughton, 1993). We also therefore
investigate whether our network model can learn and effectively
perform navigation in multiple environments when each neuron
has a place field in each environment. When the place cells in
one-environment and place cells for a second environment are

FIGURE 5 | Effects of noise on wavefront propagation. (A) A single
wavefront is initially started from the point T. Noise results in spurious single
spikes or missing spikes. When spurious spikes cluster, they can serve as
initiation sites for new circular waves centered at locations where there is no

target. In addition, spurious and absent spikes cause irregular wavefront
propagation or even wavefront extinction as illustrated in (B,C). Network
activity shown at times as indicated. The noise is modeled by injecting spike
currents to randomly selected neurons at random time steps.
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uncorrelated, the synaptic connections needed in both environ-
ments can be simultaneously present. If the number of neurons is
sufficiently large, when the sensory signals come from one envi-
ronment there is little crosstalk between the representations of
both environments, and the presence of the second set of synapses
simply inserts a modest level of noise. One can similarly anticipate
that single spike wavefronts can be initiated and will propagate
in any particular environment when multiple environments are
known. The wavefronts will produce a vector field that can later
be used to guide the animal in this particular environment. This
is a significant extension, for without it each neuron needs to be
specific to a single environment, which would be both inefficient
and not in correspondence with biology.

Consider a network that is supposed to operate on two dif-
ferent environments as illustrated in Figure 6. Due to their
shapes we call these environments “A” and “∞.” While in the
rat many place cells would be specific to one environment, such
specificity reduces the crosstalk between the environments, and
de-emphasizes the crosstalk effect we wish to evaluate. Here,
however, we assume that each place cell represents the animal’s
locations in both environments.

A spike generated in any cell will produce excitatory postsy-
naptic potentials in all its neighbor cells in one environment and
all its neighbor cells in another environment. As in the previous
experiment, the model parameters are set such a single spike can-
not cause action potentials in the postsynaptic neurons. As before,
supra-linear summation helps to promote stable propagation of
the existing wavefronts, and to prevent single, isolated spikes from
producing new wavefronts.

Consider a network activity caused by the simultaneous exci-
tation of a certain set of the topologically nearby cells in the
environment “A.” When a plot is made with each cell located at the
preferred location it represents in environment “A,” the dynamics
of this neural activity will be seen as a wave propagated through
the network (Figure 6A, left). The same activity observed from
the perspective of the “∞” environment (that is by reorganizing
the network by putting place cells at the locations they represent
in the “∞” environment) would appear as a random network
activity (Figure 6A, right). Since the spikes observed in the “∞”
environment appear sparse, they are unlikely to initiate a wave-
front in this representation. Similarly, at any particular moment
while a wavefront in the “A” environment is propagating, the
synaptic connections representing the “∞” environment intro-
duce drive to neurons that should not be driven at that moment.
Occasionally such neurons can produce crosstalk-induced spu-
rious spikes (cf. solitary spikes in the left panel in Figure 6A,
occurring far away from the wavefront).

Figures 6B–D illustrates that at the level of two environments
and around 2000 place cells, there is little effect of crosstalk
on the ability to function in each environment as though the
other did not exist. Figure 6B (left) shows that the SVF induced
by a wavefront initiated at T (cf. Figure 6A, left) develop as
expected, representing a flow back toward the target from all
points in the “A” environment. Figure 6B (right) shows the SVF
for the same synaptic changes, but calculated for the place cell
locations in the “∞” environment. Here the vectors point in ran-
dom directions because there is no spatial organization to the

FIGURE 6 | Synaptic vector field formation in multiple environments.

(A, left) Wavefront propagation in environment “A” short time after the
activity wave initiation at the target T. (A, right) The same activity pattern as
in (A, left), but displayed in the “∞” environment plotting representation.
(B, left) Synaptic vector field resulting from the propagation of a wavefront
illustrated in (A, left). Note a single attractor corresponding to the location T,
that is the center of the wavefront. (B, right) The synapse vector field due
to the same synapse changes as in (B, left), but calculated using the
positions of the neurons in the “∞” environment. (C,D) The same plots as
for (A,B) except that the wavefront has been initiated at target T in the
“∞” environment. All results are qualitatively like those in (A,B), except
that the roles of the two environments are reversed. Synaptic vector fields
in plots (B,D) are visualized using the same normalization factor (arrow
scale) for both environments.

synapse change in this representation. The same kind of result
is obtained when the wavefront is initiated in the “∞” environ-
ment as in Figures 6C,D with the roles of the two environments
reversing. In each case the vector field created by the single-spike
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wavefront successfully navigates an animal from a starting
point in the given environment to the target as illustrated in
Figure 7.

DISCUSSION
The problem of planning and executing a complex motion over a
protracted time-period which will optimally take an autonomous
agent from its present location and configuration to a desired
target location and configuration is common to both animal
behavior and robotics. In its simplest manifestation there is only a
single target, a single known environment, and a short or fast path
is preferred over a longer or slower one. The trajectory planning
must accommodate the physical constraints posed by the environ-
ment. Additional complexities might include the simultaneous
presence of multiple targets, possibly of different intrinsic val-
ues, terrain which affects the value of trajectories in a non-trivial
fashion, and multiple environments.

The neurally-inspired network presented in our work has been
shown to solve the planning problem in several steps. First, in
an exploratory phase it learns an environment by developing a
set of “place” cells whose locations reflect all possible trajectory
boundaries due to kinematic constraints or constraints in the
behavior arena. It develops in this exploration process intercon-
nections between all pairs of places that can be visited in temporal
contiguity, and thus can be possible candidates for a section of
a trajectory. Second, given the expected set of synaptic connec-
tions, the excitation of a target location (or locations) initiates a
wavefront of single spike- or single burst activity that propagates
outward from the initiation site(s). The wave propagation process
is terminated when a wavefront reaches the present location of the
agent. The passage of such a wavefront produces synapse modifi-
cation pattern that can be described as a vector field. The desired
trajectory is simply the path along the SVF from the present loca-
tion to the (or a) target. Since the SVF lines are produced by an
expanding circular wavefront, they converge when followed back-
ward toward a source, and thus provide stable guidance for going
to a target location.

The full extent of the parallelism available in our concept is
perhaps best illustrated in Figure 4. The system simultaneously
selects the closest target and the best route to that target from

FIGURE 7 | Navigation in multiple environments. Sample movement
trajectories in the environment “A” (left panel) and “∞” (right panel)

resulting from the synaptic vector fields shown in (left) and (right),
respectively. Three different trials for each environment are illustrated.
The trajectories start in the S locations and end in the T locations.

a single propagation of the exploration wave. Conventionally,
a best path would be found for each target sequentially, using
a serial algorithm to rate possible paths, and a choice of tar-
get then made between these optimal single-target paths. The
conceptualization of the parallel search method and the demon-
stration by simulation that best trajectories can be followed in
neuromorphic simulation are the major accomplishments of this
paper.

NETWORK ANALYSIS
As mentioned before, the goal of our paper was to present a con-
cept of parallel exploration through propagating waves of neural
activity and STDP-altered SVFs. We have illustrated our concept
in a set of simulations, but we have not attempted to quantify our
results. An interesting extension of our work thus would be to
perform an analysis of the properties of our system. Interestingly,
such an analysis has recently been offered for the network pro-
posed in (Hopfield, 2010), which is of the same type and topology
as the one considered in our work. Indeed, Monasson and Rosay
(2013) provided an indepth theoretical analysis of the dynamics
and storage capacity of that network as a function of such param-
eters as: network size, level of neural activity, level of noise, or size
of place cells. Specifically, using the statistical mechanics tools, the
authors analysed conditions necessary for the network to learn
multiple maps (environments). The storage of a map manifests
itself through the fact that the neural activity is localized, and
acquires a clump-like shape in the corresponding environment.
Remarkably, according to the analysis performed by the authors,
a moderate level of noise can slightly increase the capacity storage
with respect to the noiseless case. However, when the number of
environments or the noise are too high the neural activity can-
not be localized any longer in any one of the environments. For
high noise, the activity, averaged over time, becomes uniform over
space. For high loads the activity is not uniform, but is delo-
calized with spatial heterogeneities controlled by the cross-talks
between the maps. The paper provides quantitative results for the
transition between these states. The authors also analyse storage
capacity of the network, that is a maximum number of environ-
ments for which a stable representation of a given environment
can still be retrieved, as a function of network size and topology.
For the network of the type considered in (Hopfield, 2010), and
so also in our work, the storage capacity is proportional to the
network size and is estimated to be of the order of 10−3 bits per
synapse (for the 2 dimensional space representation and under
the optimal conditions). Interestingly, these results are consistent
with an earlier analysis for a network with a similar topology
but with a different neuron type given in Battaglia and Treves
(1998).

RELATED MODELS
The wave-propagation concept has first been introduced by Dorst
and Trovato as an efficient parallel method for path planning
(Dorst and Trovato, 1988; Dorst et al., 1991) and since then
has widely been used in robotics and computer science (LaValle,
2006). The wave-front methods are essentially the same as
exhaustive or heuristic versions of a classical A∗ search algorithm
(Dijkstra, 1959; Hart et al., 1968) of whose optimality is proven.
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Several neural models for spatial navigation using the concept
of propagating waves have been proposed so far (for reviews
see, e.g., Lebedev et al., 2005; Qu et al., 2009). However, only a
few models addressed a question on how the propagating neu-
ral activity can be transformed into an appropriate configuration
of synaptic connectivity able to later guide an agent to a target
location (Roth et al., 1997; Gorchetchnikov and Hasselmo, 2005;
Qu et al., 2009; Ivey et al., 2011). To the best of our knowledge,
our model is the first one to demonstrate that biologically plausi-
ble, temporally asymmetric synaptic plasticity rules can achieve
this goal. Also, most of the previous models assumed multiple
trials for learning a complete set of optimal paths for every new
selected target location. In contrast, in our model, once an agent
becomes familiar with an environment, a single passage of an
activity wavefront through the network is sufficient to create a
SVF guiding an animal from any possible location in the experi-
enced environment to a target location. Interesting enough, such
an ability of animals to rapidly replan routes if the starting and
goal points are changed to new, random locations within a known
environment has recently also been observed experimentally
(Pfeiffer and Foster, 2013).

BIOLOGICAL RELEVANCE
Parallel exploration as proposed in our model requires mech-
anisms that support stable propagation of expanding waves of
neural activity throughout the network. Conditions for such sta-
ble propagation of spiking activity in biological neural circuits
have been examined both theoretically (Diesmann et al., 1999;
Kumar et al., 2008, 2010) and experimentally (Reyes, 2003; Wu
et al., 2008; Nauhaus et al., 2012). Recent electrophysiological
results suggest existence of expanding waves of neural activity
in the hippocampus during, so called, sharp wave ripple (SWR)
episodes (Ellender et al., 2010). Sharp wave ripples are brief high-
frequency bursts of neural activity observed during sleep or at
awake rest (Buzsaki, 1986). Hippocampal SWRs are frequently
accompanied by sequential reactivation of place cells occuring in
the same- or reverse temporal order as previously experienced
during behavior, but replayed at a compressed time scale (Pavlides
and Winson, 1989; Wilson and McNaughton, 1994; Foster and
Wilson, 2006). Interestingly, reactivation patterns observed in the
awake animals are not always just a simple function of experi-
ence (Gupta et al., 2010), and have also been reported to represent
trajectories never directly or fully experienced by an animal, sug-
gesting a possible role of the awake SWRs in planning, navigation
or decision making (Pastalkova et al., 2008; Buhry et al., 2011;
Foster and Knierim, 2012; Singer et al., 2013). These results point
to the awake-state SWRs as a possible biological candidate pro-
cess for parallel mental exploration as required in our model.
Moreover, it has been suggested that the SWRs provide optimal
conditions for the activation of synaptic plasticity processes, such
as STDP (Sadowski et al., 2011)—which, again, is consistent with
our assumption that a propagating wave of neural activity should
be able to modify connectivity within the network in order to
create structured SVFs.

The SVFs are in turn used in our model to guide behavior.
Indeed we assume that the movement of an agent (an animal)
is guided by the activity of places cells surrounding the present

agent location. Therefore, the problem is to generate motor forces
which will bring into better alignment two “bumps” of neural
activity, one coming from the sensory system representing the
actual location of the agent, and the other clump of neural activity
having a location biased by the modified synapses. In our paper,
this problem is solved by a mathematical algorithm (cf. Methods).
However, neurophysiological experiments suggest that the same
problem can also be solved by a biological neural network, for it
is isomorphic to the problem of moving the two eyes so that the
image of one bright spot is centered on both fovea (Ohzawa et al.,
1990, 1997). A relatively inefficient but fully neural solution to
this two-bump problem was given in (Hopfield, 2010).

As mentioned already, generation of directed connections for
SVFs requires asymmetric STDP rules. Such asymmetry in the
STDP learning windows has been found in the synaptic connec-
tions between hippocampal cells, first in cultured cells (Bi and
Poo, 1998) and more recently also in slice preparations (Aihara
et al., 2007; Campanac and Debanne, 2008).

“Anti-” or “reverse-” STDP, in which a pairing of a pre-
synaptic spike that precedes a post-synaptic spike decreases the
strength of a synapse (Bell et al., 1997; Kampa et al., 2007), was
used in our model to produce the SVF. There are two important
reasons for why “normal” (or “pro”) STDP cannot be used in the
model. If parameters are set in the fashion of (Hopfield, 2010) so
that a clump of activity, once initiated by sensory input, is stable
when sensory input is removed, that clump of activity will move,
following the vector field. Thus, when the “anti” sign is used, the
agent can rehearse mentally the chosen trajectory from its present
location to the chosen goal. It could even, with slight elabora-
tion, communicate a sequential list of way points. Such a natural
behavior of mental rehearsal in sequential order from the starting
point is not available with “pro” STDP, for the clump of activity in
this case moves away from the target. Initiating a clump of activity
at the target location does not create an equivalent in reverse order
because the vector field diverges from that point. Another advan-
tage of using anti-STDP over STDP is apparent for navigation
in the presence of neural noise or external perturbation (physi-
cal forces pushing the agent away from the original path). When
using anti-STDP, flow field lines converge when looking toward
the source of the expanding circular wavefront that generated the
field. When following in this direction, nearby vector field lines all
converge toward the same destination, so noise is attenuated by
the following process and has little effect. When following away
from a source, as would be the case for normal STDP, vector field
lines diverge, the effect of a noise error is amplified, and effects of
noise accumulate.

Our model assumes that whenever a new planning process is
necessary, all synapses are reset to the baseline state and waves of
activity can be initiated from the present target locations to cre-
ate new SVFs. There are several candidate phenomena observed
in the nervous system that could potentially realize the neces-
sary resetting mechanism. One hypothesis, that seems to have
both theoretical and experimental support, is that the popula-
tion bursts during sharp wave ripples could serve this task by
desynchronizing neurons through STDP (Mehta, 2007; Lubenov
and Siapas, 2008). If this is the case indeed, the SWR episodes
in our model would need to serve both tasks: memory erasing
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(hypothetically during the synchronious activation of popula-
tions of neurons) and formation of new memories (during the
reactivation). To the best of our knowledge though, no such
double-function of the SWR has been reported in the experimen-
tal literature so far. Another hypothetic mechanism for resetting
synaptic connectivity in the hippocampus is through the neuro-
modulators. For example Bouret and Sara (2005) point to the role
of noradrenaline in reorganizing the network structure in a way
necessary for memory erasing.

We recognize that not all mechanisms proposed in our work
have experimental support from the studies on hippocampus.
Hence, biological relevance of our model remains hypothetical.
Nevertheless, we believe our approach is useful as a conceptual
model, laying grounds for efficient parallel neural computation
for navigation and path planning.

OUTLOOK
Our model can be usefully expanded in many ways. As mentioned
before, different costs can be associated with the particular path-
ways or spatial locations through the uneven distribution of place
cells and/or uneven distribution of strength of synaptic connec-
tions. This will affect the speed and the shape of the particular
wavefronts, and consequently will determine the boundaries of
the basins of attraction and best path within each basin.

Giving an animal the ability to actively control the speed
of the wavefront propagation through the different regions of
the network would provide a way to encode certain features of
the environment in the path planning algorithm. Imagine that
there is a cost associated with a certain path, e.g., an animal
has to go through a “hazardous” area. This cost can be rep-
resented in the network through relatively weaker or “shorter”
connections between neurons along this path. As a consequence,
a wavefront will have a lower velocity when propagating through
the place cells associated with this path, making the choice of
this pathway less likely. Another possible way to dynamically
control the local speed of the wavefront propagation as a func-
tion of environmental features, is by enabling interactions of
the mental map considered in our present model with other
mental maps, each one encoding for different features of the
same environment. In this case, mental selection of particu-
lar path planning criteria (for example, “find the shortest/the
fastest/the safest path”) would activate interactions between the
“path planning map” and the appropriate feature maps. These
interactions could be implemented through the local excitatory or
inhibitory feedback loops between the “path planning” map and
the selected “feature maps,” triggered by the propagating wave-
front and resulting in the local changes of neuronal excitability,
and so of the wavefront propagation speed in the “path planning
map.”

In our model we use place cells distributed uniformly, having
a single spatial scale, and a simple place field in each of several
separate environments. None of these are literally true in the hip-
pocampus. However, by being an oversimplified idealization, it
has allowed an exploration of rapid computational possibilities in
a network that perhaps over-represents space, and seems a profli-
gate use of neurons. An interesting extension of our work could be
a hierarchical model, where space (or more generally memories)

would be represented by different groups of neurons at different
levels of abstraction.

Several recent studies suggest that the hippocampus can
encode memories at multiple levels of “resolution,” from a
detailed rendition of specific places or events within a single expe-
rience, to a broad generalization across multiple environments
or experiences (Steinmetz et al., 2011; Komorowski et al., 2013).
Indeed, when we think about our own experience, we seem to
be using a context-dependent switching between different rep-
resentations of space. For example, when we plan to drive from
our present location to another place in a town, we typically only
focus on specific points in space when decisions about further
route need to be taken (e.g., “turn left or turn right”)—at this
point we typically don’t think about the details of a highway we
drive on, but rather on “when and where to turn or what exit to
take.” To the contrary, when we need to change a lane on a high-
way, we quickly switch to the “high-resolution” local map and we
use a spatial map of our surround to navigate between other cars
and objects. A similar mechanism could be used in an extension
of our model to increase efficiency of the implementation and to
reduce the demand on resources (number of neurons), without
compromising performance and robustness of computation.

From the application point of view our neural model can be
extended to the path planning problems in systems with more
than two dimensions or in tasks with extra constraints, such as,
e.g., non-holonomic navigation, arm movement planning. Our
model, as a particular implementation of the wavefront expan-
sion algorithm, can also be used for solving variety of optimality
problems from other domains than motor control (Dorst et al.,
1991; LaValle, 2006).

METHODS
The place cell models considered in the paper have been sim-
ulated using adapting leaky integrate and fire neurons. The
dynamics of the neuron models between spikes are defined by the
following formula:

τm
dum(t)

dt
= − (um(t) − ur)

+ Rm(isens(t) + isyn(t) + ins(t) − iinh(t) − iCa(t)),
(1)

τCa
diCa(t)

dt
= − iCa(t), (2)

where um(t) is the membrane potential, τm = CmRm is the mem-
brane time constant, Cm = 1 nF and Rm = 20 M� are the mem-
brane conductance and resistance, respectively, ur = 0 mV is the
membrane potential at rest, isens(t) is the sensory input, isyn(t) is a
sum of the currents supplied by the particular excitatory synapses
entering the given neuron, ins(t) is the non-specific background
current modeled as a gaussian process with zero mean and vari-
ance 5 nA , iinh(t) is the global inhibitory current, iCa(t) represents
a neuron-specific inhibitory current that could be caused by
calcium-activated potassium channels in real neurons.

The neuron produces an instantaneous action potential when
um(t) reaches a threshold of 10 mV, and then um(t) is reset to 0
and held at that value for 2 ms to produce an absolute refractory

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 98 | 78

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Ponulak and Hopfield Parallel mental exploration

period. Each action potential produced by the neuron allows for
a momentary burst of calcium (Ca2+) ions to flow into the cell
(through high-potential Ca2+ channels) and increments iCa(t)
upward. Calcium ions also leak out, with a characteristic time τCa

usually set at 1–5 s. Because iCa(t) and the internal Ca2+ ion con-
centration of the neuron are proportional, the adaptive effect can
be written in terms of the variables iCa(t), and the cellular inter-
nal Ca2+ concentration is needed only to understand a possible
mechanism of spike-frequency adaptation. The timescale of adap-
tation is set by the size of increment to iCa(t) that occurs when a
neuron spikes.

For the calculation of the total synaptic currents isyn(t) injected
into the particular neurons we use a supra-linear spatial summa-
tion model (Nettleton and Spain, 2000; Urakubo et al., 2004). The
model favors a near simultaneous activation of a neuron from
multiple presynaptic neurons over the activation from a single
neuron. This approach is supposed to decrease the probability of
initiating random wavefronts arising from isolated spikes in the
noisy network. The model for supralinear summation used in our
simulations is described by the following equation:

isyn(t) = asyn = tanh

⎛
⎝bsyn

∑
j

H
(
ij(t)

)
⎞
⎠∑

j

wj(t)ij(t), (3)

where ij(t) is the synaptic current of the j-th input; wj(t) is the
synaptic strength of the j-th input; H(x) is the step function
[H(x) = 1 for x > 0 and H(x) = 0 for x = 0]; asyn and bsyn are
the positive constants. The particular synaptic currents ij(t) rise
instantaneously and decay exponentially with a 25 ms time con-
stant. The supralinear summation function given by Equation 3
is illustrated in Figure 8.

Sensory currents isens(t) for each place cell are modeled as
having an isotropic Gaussian form around the center of the recep-
tive field for that cell, with the same width and strength for each
neuron. When modeling multiple environments, each cell has a
receptive field in each environment, assigned randomly.

It is assumed that the modeled network contains a set of
inhibitory interneurons whose function is to limit the total activ-
ity of the network. Because the inhibitory feedback is assumed
to be global, and because this essential function is computation-
ally trivial, its effect is modeled in a continuous fashion and using
global variables rather than by using spiking interneurons. Hence
the dynamics of inhibitory population are given by the following
equations:

τe
die(t)

dt
= −ie(t) + ae

∑
j

∑
f

δ
(

t − t
f
j

)
. (4)

{
Ainh(t) ∝ (ie(t) − Ie0) if ie(t) > Ie0,

Ainh(t) = 0, otherwise.
(5)

The variable ie(t) represents the input current to the inhibitory
population from all excitatory cells in the network, whereas
Ainh(t) reflects the activity of the inhibitory population.
According to (4) the current ie(t) decays with a time constant τe

and is incremented by ae by each individual spike fired at time

FIGURE 8 | lllustration of the supralinear and linear summation. The
supralinear function is given by Equation 3. The linear summation function
is defined by: isyn(t) = �j wj ij (t). Here, for the supralinear function we
took asyn = 10, bsyn = 0.05, and for both functions we assumed
wj ij (t) = 1 for all j.

t
f
j (with f -being the label of the spike) by any excitatory neuron

j in the network. The parameters τe and ae are positive and con-
stant; a Dirac function δ(.) is defined as: δ(t) = 0 for t �= 0 and∫

δ(t)dt = 1. According to (5) the population activity Ainh(t) is
proportional to the current ie(t) with a firing threshold Ie0. Given
the activity Ainh(t), the global inhibitory feedback iinh(t) to every
excitatory neuron in the network is assumed:

iinh(t) = ainhAinh(t), (6)

where ainh is a binary gating variable. The gating variable ainh

is set to 1, and accordingly the inhibition is active, during
the network exploration or during the navigation task; whereas
ainh = 0 and the inhibition is deactivated during the wavefront
propagation.

A fully connected network with excitatory connections has
been assumed in all simulations, with all network connections
being initially silent. A typical size of the simulated networks var-
ied from 2000 to 4000 place cells in the particular experiments.
The simulations were carried out using an Euler integration of
the differential equations and a 0.2-ms time step.

SYNAPTIC PLASTICITY
Synaptic connections have been altered according to the STDP
model described by the following equation [cf. Kempter et al.
(1999)]:

dwji(t)

dt
= a + d

⎡
⎣Si(t)

∞∫

0

aij(s)Sj(t − s)ds + Sj(t)

∞∫

0

aji(s)Si(t − s)ds

⎤
⎦,

(7)
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where wji(t) is the synaptic coupling from neuron i to neuron
j, a < 0 is the activity-independent weight decay, Si(t) and Sj(t)
are the pre- and postsynaptic spike trains, respectively. A spike
train is defined as: S(t) = �f δ

(
tf − t

)
, where tf is the f -th fir-

ing time. The terms aij(s) and aji(s) are the integral kernels, with
s being the delay between the pre-and post-synaptic firing times(

s = t
f
i − t

f
j

)
. The kernels aij(s) and aji(s) determine the shape

of the STDP learning window. In our model we use exponential
functions given by (8) to describe the STDP curve, however, other
shapes are also possible.

{
aji(−s) = +Aji · exp

(
s/τji

)
if s ≤ 0,

aij(s) = −Aij · exp
(−s/τij

)
if s > 0,

(8)

Here, Aji, Aij are the amplitudes and τji, τij are the time con-
stants of the learning window. In our model we assume that
Aji > Aij >0 and τji = τij > 0. The parameter d in (7) controls
the polarity of the STDP process and can be linked to the concen-
tration of specific neuromodulators known to be able to change
the polarity of the synaptic plasticity in biological synapses (Seol
et al., 2007). For simplicity, in our model d = {−1, 0, 1}. We
assume that during the environment exploration phase d = 1,
and consequently the synaptic connections undergo STDP with
a positive net effect (because Aji > Aij). During the wavefront
propagaton phase: d = −1 and accordingly the synaptic connec-
tions are altered by the reversed STDP rule. No synaptic plasticity
is assumed during the movement execution phase (d = 0).

SYNAPTIC VECTOR FIELD ILLUSTRATION
In Figures 4, 5, 8 we present sample SVFs created by the propa-
gating activity wavefronts. These vector fields are illustrated using
directed arrows originating from the preferred locations of each
place cell in the network. The direction and the length of each
arrow represent, respectively, the direction and the strength of the
vector field in a given location. Here we describe an algorithm
used to illustrate the vector field.

For each neuron ni in the network consider a set Nji of all neu-
rons nj on which ni makes direct synaptic projections. Now for
the neuron ni we define a vector ri(t):

ri(t) =
∑

j

wji(t)
(
xj − xi

)
/
∑

j

wji(t), (9)

We assume that the vector ri(t) begins in the preferred location
xi of place cell ni and ends in a center of gravity of the preferred
locations xj of the neighboring place cells nj ∈ Nji, weighted by
the corresponding connection strengths wji(t).

EXPLORATION ALGORITHM
An exploration procedure was used to establish a set of synaptic
connections appropriate to the topology of a particular envi-
ronment, based on earlier work (Hopfield, 2010). The trajectory
followed was a noisy straight line with constant speed, with a
directional persistence length of the same scale as the largest
dimension of an environment. The trajectory made a specu-
lar bounce when it encountered a wall. During this exploration
the place cells had sensory inputs according to their spatial

receptive fields. Place field centers were assigned on a reg-
ular grid, with Gaussian noise around those locations. Pre-
post synaptic spike pairs were accumulated for each intra-place
cell synapse during the exploration. The potential for synapse
change was evaluated over these spike pairs with a weight-
ing function dwji(t)/dt = exp

(−|ti − tj|/τe
)

and used to select
which synapses should be established. In the equation, wji(t)
is the strength of the synaptic equation from a presynaptic
neuron i to a postsynaptic neuron j; ti and tj are the fir-
ing times of the pre- and postsynaptic neuron, respectively;
τe is the learning time constant. When the exploration is fin-
ished, each place cell j was given incoming synapses of the
same size to the set of m neurons with the largest values of
weights wji.

This procedure is insensitive to the details. Since any trajec-
tory could be traversed in either direction, it will yield virtually
the same set of synapses over a large range of parameters and
variations in the form of S, as long as there is a net positive area
under the curve S, and the exploration is extensive. The resulting
connection matrix is similar to that which would be achieved by
connecting each place cells to its m nearest neighbors.

NAVIGATION ALGORITHM
Once a vector field is created, a simple motor control algorithm is
applied for the animal navigation. The algorithm is performed in
the following steps:

1. A receptive field corresponding to the present animal loca-
tion is activated by applying tonic excitation to the corre-
sponding place cells

2. A weak global, activity-dependent inhibition (cf. Equations
4–6) is applied to suppress random spikes resulting from
the background noise or from crosstalk between different
environment representations.

3. Every spike observed in the network is supposed to act as an
instantaneous attractor causing a pulse of force moving the
animal toward the preferred location of the active place cell:

F(t) = aF

∑
j

∑
f

δ
(

t
f
j − t

) (
xj(t) − xa(t)

)
(10)

H(xa)ẍa + c(xa, ẋa, Fext) − F = 0. (11)

Equation 10 defines the force vector F(t) caused by spikes gen-
erated by place cells active at time t. Equation 11 describes the
dynamics of the animals movement in the physical world. Here
xa(t), x′

a(t) and x′′
a (t) are, respectively, the location, velocity and

acceleration of the animal’s center of mass (for clarity we omit-
ted the symbol t in Equation 11); xj—is the preferred location of

the place cell nj; as before, t
f
j is the firing time of the f -th spike in

neuron nj; δ(.) is the Dirac function; aF is the constant gain, Fext

denotes all possible external forces acting on the animal, H is the
inertia matrix and c is a bias force (Craig, 2004).
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Movie S1 | Path planning and navigation in a network of place cells using

a wavefront expansion concept. This movie is related to Figure 3 and

illustrates two processes: (1) path planning and (2) navigation. In the first

phase—path planning—a wavefront is initiated at the place cells

representing the navigational target B. The wavefront propagating through

the network modifies synaptic connections and creates a SVF with a

single attractor at the location B. Red dots are the action potentials. A

simulated animal is initially located at point A. Activation of the place cells

at A through the passing wavefront triggers the second phase of the

process—the navigation. In this phase, the place cells with receptive

fields covering the current animal location receive strong excitatory

currents from sensory inputs. These cells are indicated in the movie by

green dots. The current animal location is denoted by the yellow circle.

The stimulated cells fire and in turn excite neighboring cells. Due to the

SVF the active cells excite most strongly these neighbors that are located

along an optimal pathway toward the target. A simple motor control

algorithm (Equations 10, 11) is used to move the animal toward the

locations represented by the firing cells, up to the target location.

Movie S2 | Path planning and navigation in a system with multiple

targets. This movie is related to Figure 4. Three wavefronts are initiated

simultaneously at the place cells representing target locations B1, B2, B3.

The expanding waves create SVFs with centers corresponding to the

points of the wavefront initiation. The wavefronts inhibit each other

effectively. The points where the wavefronts meet define borders of the

basins of attractions of the particular SVFs. Red dots flashing on the

screen represent action potentials. A simulated animal is initially located

at point A. Activation of the place cells at A through the passing wavefront

triggers the second phase of the process—the navigation. In this phase,

the place cells with receptive fields covering the current animal location

receive strong excitatory currents from sensory inputs. These cells are

indicated in the movie by green dots. The current animal location is

denoted by the yellow circle. The stimulated cells fire and in turn excite

neighboring cells. Due to the SVF the active cells excite most strongly

these neighbors that are located along an optimal pathway toward the

nearest target. A simple motor control algorithm (Equations 10, 11) is used

to move the animal toward the locations represented by the firing cells, up

to the target location.
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Mathematical modeling of anatomically-constrained neural networks has provided
significant insights regarding the response of networks to neurological disorders or
injury. A logical extension of these models is to incorporate treatment regimens to
investigate network responses to intervention. The addition of nascent neurons from
stem cell precursors into damaged or diseased tissue has been used as a successful
therapeutic tool in recent decades. Interestingly, models have been developed to
examine the incorporation of new neurons into intact adult structures, particularly the
dentate granule neurons of the hippocampus. These studies suggest that the unique
properties of maturing neurons, can impact circuit behavior in unanticipated ways. In
this perspective, we review the current status of models used to examine damaged
CNS structures with particular focus on cortical damage due to stroke. Secondly,
we suggest that computational modeling of cell replacement therapies can be made
feasible by implementing approaches taken by current models of adult neurogenesis. The
development of these models is critical for generating hypotheses regarding transplant
therapies and improving outcomes by tailoring transplants to desired effects.

Keywords: neurogenesis, functional integration, stroke, embryonic stem cells, induced pluripotent stem cells,

dentate gyrus, cerebral cortex

INTRODUCTION
In addition to describing normal neural function, new compu-
tational modeling paradigms have successfully recapitulated vari-
ous aspects of neurodegeneration and injury. For instance, mod-
els of Parkinson’s Disease (PD) have demonstrated overt motor
deficits as well as subtle cognitive symptoms due to loss of striatal
dopamine and suggested new hypotheses regarding PD as a disor-
der of altered synaptic plasticity and not simply of motor function
(Wiecki and Frank, 2010). Models of ischemic stroke have success-
fully recapitulated the reorganization of cortical receptive fields
(RFs) after lesion, lending credence to a number of hypothesized
mechanisms underlying cortical network dynamics (Duch, 2007).
In addition, stroke models employing behavioral metrics have
also simulated use-dependent recovery of movement strength that
closely mimic clinical observations in stroke patients (Reinkens-
meyer et al., 2012).

While a major goal of computational neuroscience is to
improve therapeutics for neurological disorders, an as-yet over-
looked avenue for treatment modeling has been the incorporation
of new cells into an impaired network. Cell replacement therapies
have shown significant promise in pre-clinical and clinical trials
(Lindvall et al., 2012), where multiple sources of stem cell-derived
neurons are effective at ameliorating behavioral deficits of disease
models including PD, Huntington’s disease, age-related demen-
tia and stroke (Bjorklund and Lindvall, 2000; Koch et al., 2009).
Interestingly, while many mechanisms may cooperate to produce
transplant-mediated recovery, evidence suggests that functional

integration of transplanted cells with existing circuitries is critical
for the long-term benefits of cell replacement.

Notably, modeling therapeutics presents an additional chal-
lenge beyond simply reversing the effects of the neurological
perturbation. Impaired neural circuits are often moving targets,
changing themselves continuously in response to their altered
state. Likewise, the effects of proposed therapies have their own
temporal and spatial dynamics (Figures 2C, D) . This perspective
will focus on the current status of cell replacement for neurolog-
ical disorders, and will utilize the framework from the adult neu-
rogenesis field to provide a template for understanding how the
addition of neurons to adult networks can affect overall network
function.

We have developed a set of criteria that we believe will be
required for an accurate predictive modeling resource (Table 1).
We advocate the use of anatomically accurate models of a neu-
ral system (I); while such models are considerably more chal-
lenging, the value of an abstract model to examine therapies is
likely limited. Related, the model should have the capacity to
respond to simulated injury or disease in a biologically realistic
way, and should be capable of exhibiting response/recovery pro-
cesses observed in vivo (II). Next, the model should provide a
readout that maps to a behavioral metric to examine clinical effi-
cacy of a treatment regimen (III). As for the therapy, it is essential
that a mechanistic representation of the therapy itself be incorpo-
rated (IV), including temporal and spatial dynamics to the extent
possible (V). To illustrate how this approach will apply to an exist-
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Table 1 | Criteria for computational models of cell replacement.

I. Accurate anatomical and circuit-level representations
II. Response to injury in an experimentally-validated manner
III. Incorporation of behavioral metric(s) that can be measured clinically

in patients
IV. Transplants should include all relevant physiological and anatomical

features.
V. Transplants should include temporal dynamics of synaptic connec-

tivity and functional maturation.

ing paradigm we will discuss the computational modeling impli-
cations of using cells derived from human pluripotent stem cells
(hPSCs) in the context of stroke, as this area has proven a signifi-
cant target for both modeling and cell replacement.

COMPUTATIONAL MODELING OF CORTICAL
REORGANIZATION AND STROKE
Stroke lesions in humans typically result from damage to, or
occlusion of the middle cerebral artery (MCA), which supplies
blood flow to the basal ganglia and nearly the entire dorsolateral
surface of the temporal and parietal cortices (Mohr et al., 1998;
Ng, 2007). Following mild ischemic injury the brain demonstrates
a remarkable ability to compensate for lost or damaged tissue by
reorganizing peri-lesional regions of cortex (Nudo, 1997). Recov-
ery is correlated with increases in axonal and dendritic sprouting
in peri-infarct regions as well as alterations in synaptic strengths
between surviving thalamic and cortical neurons (Stroemer et al.,
1995; Brown and Murphy, 2008). Recent in vivo imaging stud-
ies in mice have revealed that peri-infarct sensory regions can
“remap” their RFs after stroke, responding to peripheral stimu-
lations that were previously restricted to now-damaged cortices
(Brown et al., 2009; Sigler et al., 2009).

Due to the hierarchical nature of the cerebral cortex, its devel-
opment and reorganization following injury have been signifi-
cant targets for modeling studies (Willshaw and von der Mals-
burg, 1976; Armentrout et al., 1994; Reggia et al., 1996). Many
early models focused on the formation of topographic maps of
sensory cortex through experience-dependent remodeling. Mod-
els that incorporated Hebbian learning paradigms could account
for the experimental observations of the “inverse magnification”
rule, where small areas of peripheral sensory organs had large
cortical representations due to innervation density. Interestingly,
even these early abstract models based on self-organizing maps
(SOMs) successfully predicted the remapping of somatosensory
or visual cortices following lesions (Reggia et al., 1996), as well as
changes to RFs based on stimulation and deafferentation (Pear-
son et al., 1987). However, while SOM models can demonstrate
comparable recovery, they are likely too abstract to represent sub-
tle aspects of diseases and therapies such as connectivity dynamics
following lesion (Butz et al., 2009).

More anatomically-relevant models have developed hypothe-
ses as to the mechanisms underlying alterations in RFs. For
instance, models of sensory cortex that incorporate laterally pro-
jecting excitatory and inhibitory units demonstrate immediate
expansion of RFs near to the lesion site due to disinhibition; units
near the lesion site no longer receive lateral inhibitory connec-

tions from ablated cells, unmasking weaker afferent synaptic con-
nections (Sober et al., 1997). Increasingly complex models have
incorporated neural spiking dynamics, thalamic relay neurons
and neurotransmitter receptors to uncover more subtle changes.
A report using this model demonstrated two temporal phases dur-
ing RF reorganization due to peripheral amputation: a fast (mil-
lisecond) phase of “dynamic plasticity” based on simple electrical
properties after loss of input, and a slower (hours to days) phase in
which NMDA receptor-dependent synaptic plasticity allowed for
the reorganization of network dynamics to incorporate surviving
cortical cells into remaining circuits (Mazza et al., 2004).

One of the key aspects for modeling stroke recovery in vivo
and in silico is an effective measure of behavioral output (Lyt-
ton et al., 1999; Rohrer et al., 2002). Using a simple virtual arm
simulation with three pairs of abductors and adductors, Goodall
and colleagues successfully demonstrated muscle “weakness” in
response to acute lesions of somatosensory cortex (Goodall et al.,
1997). Similar models have been used to examine the observa-
tion of decreased “smoothness” of movement in stroke patients
(Rohrer et al., 2002). A recent report incorporated a measure of
wrist flexion force as a function of firing rates of efferent motor
neurons along with a stochastic local search algorithm to feed-
back to the circuit after cortical lesion. In this way the authors
successfully modeled motor recovery (increased flexion force) as
a function of plasticity within residual, fixed pathways, without
alterations in structural dynamics (Reinkensmeyer et al., 2012).
Thus, existing models that incorporate multi-layered input and
output pathways with lateral connectivity, spiking behavior, and
behavioral metrics satisfy our first three criteria for assessing cell-
replacement interventions (Table 1) and can likely be extended to
examine cell replacement relatively quickly.

FUNCTIONAL INTEGRATION OF STEM CELL-DERIVED
NEURONS AFTER TRANSPLANTATION
While physical rehabilitation can assist stroke patients with
regaining motor function, neither spontaneous recovery nor
current intervention strategies provide complete symptom
amelioration (Kalra, 2010), and no therapies exist to recover lost
tissue following ischemic insult. In recent years, cell replacement
therapies have become an attractive option in pre-clinical studies
of ischemic injury, demonstrating transplant-mediated behav-
ioral recovery using multiple cell types and animal models (Bliss
et al., 2007). hPSC-derived neurons (hPSNs) can ameliorate limb
asymmetries and amphetamine-induced rotational behavior in
animals with unilateral MCA lesions, the effects of which can
be maintained for months after transplantation. Successful pre-
clinical studies have prompted a number of phase I clinical studies
which verified safety and feasibility for such therapies in stroke
patients (Kondziolka et al., 2000, 2005; Bang et al., 2005). While
these studies were not designed to demonstrate efficacy, notable
improvements were observed in some patients (Bliss et al., 2010).

While multiple mechanisms may underlie transplant-
mediated recovery (Lee et al., 2008; Ohtaki et al., 2008; Horie
et al., 2011; Oki et al., 2012; Polentes et al., 2012) incorporation
of transplanted cells into host circuitry is thought to be critical
for long-term benefits (Bjorklund and Lindvall, 2000; Dunnett
et al., 2001). PSNs display all basic physiological capabilities
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of neurons in vivo, including voltage-gated currents, spiking,
synaptic activity (Muotri et al., 2005; Johnson et al., 2007; Wu
et al., 2007), and integration with existing circuitries. Benninger
et al. (2003) showed that stimulation of intact perforant path
fibers could elicit post-synaptic responses in PSC-derived neu-
rons grown on rat dentate gyrus (DG) within hippocampal slice
cultures. Furthermore, optical stimulation of hPSNs expressing
Channelrhodopsin-2 (Boyden et al., 2005; Weick et al., 2010)
caused rapid alterations in whole network activity of established
mouse networks both in vitro and in vivo (Weick et al., 2011;
Pina-Crespo et al., 2012), confirming a reciprocal interaction
between graft and host.

With respect to stroke, transplanted cells improve behavioral
outcomes, extend processes into brain parenchyma, and express
synaptic proteins (Ishibashi et al., 2004; Daadi et al., 2008; Dihne
et al., 2011). Importantly, a temporal correlation exists between
the maturation of hPSNs and the recovery of lost contralesional
motor function (Gomi et al., 2012; Polentes et al., 2012). Lastly,
electrical stimulation of endogenous cortical neurons in peri-
lesional regions was shown to trigger immediate post-synaptic
responses in transplanted neurons in animals with MCA lesions
(Oki et al., 2012). Thus, stem cell-derived neurons are capable of
reciprocally integrating with host brain tissue either in normal or
diseased animals, and are capable of altering network function via
synaptic activity.

CELL TYPE AND NETWORK FUNCTION OF CORTICAL-LIKE
STEM CELL-DERIVED NEURONS
As mentioned, a major consideration for modeling therapeutics is
the incorporation of an accurate mechanistic and temporal repre-
sentation of the therapy itself (Table 1; criteria IV and V). Critical
features include the proportion and connectivity of neurons with
various spiking phenotypes, as well as the temporal maturation of
developing neurons. In the case of stroke this means recapitulat-
ing spiking phenotypes of afferent sensory, excitatory projection,
and inhibitory interneurons (Xing and Gerstein, 1996; Mazza
et al., 2004). At least four major classes of neurons exist according
to intrinsic spiking patterns in the cerebral cortex (Gupta et al.,
2000; Contreras, 2004) including Regularly spiking (RS), Irreg-
ularly spiking (IS), Fast spiking (FS), intrinsically bursting (IB),
but also include multiple subcategories such as adapting, non-
adapting, delayed, accelerating and stuttering (Ascoli et al., 2008).
While most cortical excitatory projection neurons are RS neurons,
inhibitory interneurons and excitatory neurons of various sub-
cortical nuclei display a range of spiking phenotypes (Llinas and
Jahnsen, 1982), which can have significant consequences to infor-
mation processing capabilities (Jahnsen and Llinas, 1984; Koch
and Segev, 2000; Pissadaki et al., 2010).

Unfortunately, most publications measuring functional prop-
erties of hPSNs demonstrate report only RS phenotypes (Wernig
et al., 2004; Johnson et al., 2007; Wu et al., 2007). In our hands,
hPSNs derived from the WA09 (H9) cell line display primarily RS
neurons with a frequency range of 10 to 36 Hz (Figure 1A). In
approximately 10% of cells however, we observed delayed spik-
ing phenotype (Figure 1B), while an even smaller minority dis-
played IS behavior (Figure 1C), with no evidence of IB neurons.
However, it is likely that that the dearth of variation is partially

due to the immature nature of most hPSNs reported, as many
display relatively depolarized resting membrane potentials (RMP)
and diminishing action potential (AP) amplitude during current
pulses (Johnson et al., 2007).

Interestingly, the development and incorporation of hPSNs
into existing neural networks shares many features of adult neu-
rogenesis. Most importantly is the progressive maturation of
excitable properties including synaptogenesis (Zhao et al., 2006;
Ge et al., 2007), where unitary and network-based synaptic poten-
tials can be observed only after several weeks in the presence of
mature cells (Weick et al., 2011; Pina-Crespo et al., 2012), much
slower than their rodent counterparts (Johnson et al., 2007).
Thus, an additional benefit of computational models may be
to examine the incorporation of cells with primate characteris-
tics into a “rodent” network, which will likely affect pre-clinical
assessments of cell replacement.

FIGURE 1 | Spiking properties of hPSNs. (A–C) Voltage clamp traces of
three different hPSNs during current injection illustrating various spiking
capabilities including RS (A), IS (B), and delayed spiking (C).
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LESSONS FROM ADULT STEM CELLS: NEW NEURON
INCORPORATION IN THE DENTATE GYRUS
In order to illustrate the complexity of incorporating new neu-
rons into existing circuits, it is useful to consider systems in which
there is ongoing integration of new neurons within the normal
brain. Adult neurogenesis in the DG region of the hippocampus
provides just such a system (Zhao et al., 2008), with DG neuroge-
nesis producing new excitatory granule cells throughout life. Nat-
urally occurring adult neurogenesis provides the following sev-
eral important insights into different functional considerations
for induced neurogenesis.

1. The maturation process is non-trivial. New neurons pass
through several distinct functional stages prior to settling into
long-term behaviors (Figure 2A; Aimone et al., 2010). In the
DG, new neurons require approximately 2 weeks to start form-
ing functional connections, at which point they begin to form
afferent and efferent synapses (Zhao et al., 2006). Over the fol-
lowing weeks, young neurons appear to be considerably more
responsive than mature neurons due to their reduced synaptic
inputs and different intrinsic properties. They are also highly
plastic, both in terms of their dendritic inputs (Ge et al., 2007)
and axonal outputs (Gu et al., 2012). From a modeling per-
spective, it does not appear sufficient to simply represent new
neurons as equivalent to existing units. Rather, it will be nec-
essary to understand the temporal dynamics of any cellular
replacement process at a fairly exhaustive level to adequately
capture the functional implications of the treatment (Aimone
et al., 2009; Aimone and Gage, 2011).

2. Maturation affects other neurons in circuit. One computation-
ally intriguing observation regarding adult neurogenesis is the
direct interaction between new neurons and mature neurons
in the network. Electron microscopy studies suggest that young
neurons preferentially target existing synapses, both dendritic
and axonal, as a prelude to formation of new synapses (Toni
et al., 2007, 2008). Thus it appears that synapse formation is
not entirely de novo, but at least in some cases involves subvert-
ing existing synaptic machinery. While synaptic competition
presents intriguing computational possibilities for DG neuro-
genesis, namely a mechanism for young neurons to sharpen
tuning curves of mature neurons, this interaction represents a
potential concern with respect to adding neurogenesis to other
regions.

A direct interaction between young and old neurons may
be suitable for the DG; its primary function is thought to be
in facilitating memory encoding, not memory storage. As a
result, sharpening RFs over time could be beneficial (O’Reilly
and McClelland, 1994; Aimone et al., 2011). In contrast, it is
possible that changing otherwise stable RFs in regions involved
in motor control or sensory perception would be disruptive.
One consideration is that neuronal replacement therapies are
generally going to target areas in which neurons have been lost,
suggesting that a number of synapses would have been vacated
(Lehmann et al., 2005; Butz et al., 2008). Together these
possibilities highlight the need to capture the full complexi-
ties of the disease and treatment in a theoretical framework
(Figure 2B).

FUTURE PERSPECTIVES FOR MODELING FUNCTIONAL
TRANSPLANTATION
The above summary highlights two major computational
considerations that must be accounted for when approaching
neuronal replacement therapy. First, new neurons do not mature
in isolation, and the progression from a progenitor state to a
fully functional neuron is complex. While neurogenesis has been
evolutionarily preserved in the DG, networks normally lacking
neurogenesis may be more sensitive to the addition of neurons. It
would not be unreasonable to expect that the addition of neurons
could shift the balance of a network out of normal operating
bounds, causing either seizures or depressed overall activity
(Schneider-Mizell et al., 2010).

Second, the functional displacement of an impairment, either
acute or through degeneration, is not static. Rather, compen-
satory mechanisms are initiated almost immediately. While such
compensation can be clinically beneficial it represents an addi-
tional challenge for cell replacement. In the time that it takes for
a replacement therapy to begin and the neurons to be incorpo-
rated, the network itself will have changed; as a result, “revers-
ing” the effects of disease may no longer be sufficient (Figure 2C).
Rather, we need a theoretical understanding of the post-disease,
steady-state circuit to design an approach to regain a functional
equivalence to the pre-disease state (Figure 2D).

What should a model capable of addressing these issues look
like? Although not used to model stroke, the three-layer GENE-
SIS model used by Mazza et al. (2004) is among the most neu-
robiologically realistic as it uses several thousand conductance-
based, multi-compartment neurons and accurately reorganizes in
response to peripheral lesions. Accordingly, we recommend that
the neurogenesis process be appropriately mapped to the pri-
mary somatosensory cortex, which could follow the model used
in Aimone et al. (2009), whereby the biophysical properties and
connectivity of maturing neurons are dynamic over extended time
scales similar to hPSNs. This type of hybrid model would pro-
vide insight into how remapping could be altered by synaptic con-
nections between hPSNs and host neurons at various levels (e.g.,
cortical vs. thalamic relay neurons). Alternatively, motor output
could be monitored by the creation of a hybrid model using
parameters from Reinkensmeyer et al. (2012) and a two-layer
GENESIS model to incorporate new neurons into motor cortex,
which could allow the system to “learn” to use transplanted cells.

While large-scale, biophysically realistic models are currently
time-consuming to construct and computationally expensive
to simulate, we envision that future simulation tools and high
performance computing capabilities will facilitate such mod-
eling endeavors. We hope that our outlined vision for how to
approach these efforts will provide a roadmap for understanding
the computational implications of cell replacement therapy.
The extent to which insights from adult neurogenesis apply to
stem cell therapies remains to be seen, and future models will
have to consider not only the proposed therapy but also the
unique aspects of the brain region affected, its function, and the
disease. Nonetheless, improved modeling tools and approaches in
recent years provide computational neuroscience with a unique
opportunity to influence the development of an exciting area of
therapeutic development.

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 150 | 86

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Computational_Neuroscience/archive


Aimone and Weick Modeling new neurons in damaged circuits

FIGURE 2 | Incorporation of new neurons into normal or damaged

circuitry. (A) Natural context for DG neurogenesis. The DG has a roughly
feed-forward architecture, allowing a sophisticated maturation process
(different panels). Neurons are born continuously, so there is always a mixed
population of neurons at different developmental stages (faded green). (B)

Therapeutic context for cortical neural replacement. Injured or diseased
region may suffer considerable neuronal loss and initiate restructuring of the
local network. Proper cell replacement therapy, in which the correct types of

new neurons are appropriately positioned in the region, could still suffer from
aberrant maturation if the unique properties of developing neurons cause
affect the functional wiring of the circuit. Ideal maturation would instead
result in not only the proper neuronal layout, but also an appropriate
functional circuit as well. (C) Cartoon illustration of how the dynamics of
neural maturation can complicate a cell replacement therapy. (D) Cartoon
illustration of how compensation makes simple reversal of impairments an
insufficient strategy for returning system to normal function.
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Much progress has been made in uncovering the computational capabilities of spiking
neural networks. However, spiking neurons will always be more expensive to simulate
compared to rate neurons because of the inherent disparity in time scales—the spike
duration time is much shorter than the inter-spike time, which is much shorter than
any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking
neurons are also much more difficult to study analytically. One possible approach to
making spiking networks more tractable is to augment mean field activity models with
some information about spiking correlations. For example, such a generalized activity
model could carry information about spiking rates and correlations between spikes
self-consistently. Here, we will show how this can be accomplished by constructing a
complete formal probabilistic description of the network and then expanding around a
small parameter such as the inverse of the number of neurons in the network. The
mean field theory of the system gives a rate-like description. The first order terms in
the perturbation expansion keep track of covariances.

Keywords: mean field theory, theta model, fokker-planck, correlations, finite size networks, wilson-cowan model,

population rate, fluctuations

INTRODUCTION
Even with the rapid increase in computing power due to Moore’s
law and proposals to simulate the entire human brain notwith-
standing Ailamaki et al. (2012), a realistic simulation of a func-
tioning human brain performing non-trivial tasks is remote.
While it is plausible that a network the size of the human brain
could be simulated in real time Izhikevich and Edelman (2008);
Eliasmith et al. (2012) there are no systematic ways to explore the
parameter space. Technology to experimentally determine all the
parameters in a single brain simultaneously does not exist and
any attempt to infer parameters by fitting to data would require
exponentially more computing power than a single simulation.
We also have no idea how much detail is required. Is it suffi-
cient to simulate a large number of single compartment neurons
or do we need multiple-compartments? How much molecular
detail is required? Do we even know all the important biochemical
and biophysical mechanisms? There are an exponential number
of ways a simulation would not work and figuring out which
remains computationally intractable. Hence, an alternative means
to provide appropriate prior distributions for parameter values
and model detail is desirable. Current theoretical explorations of
the brain utilize either abstract mean field models or small num-
bers of more biophysical spiking models. The regime of large but
finite numbers of spiking neurons remains largely unexplored. It
is not fully known what role spike time correlations play in the
brain. It would thus be very useful if mean field models could be
augmented with some spike correlation information.

This paper outlines a scheme to derive generalized activ-
ity equations for the mean and correlation dynamics of a fully
deterministic system of coupled spiking neurons. It synthesizes

methods we have developed to solve two different types of prob-
lems. The first problem was how to compute finite system size
effects in a network of coupled oscillators. We adapted the meth-
ods of the kinetic theory of gases and plasmas Ichimaru (1973);
Nicholson (1993) to solve this problem. The method exploits the
exchange symmetry of the oscillators and characterizes the phases
of all the oscillators in terms of a phase density function η(θ, t),
where each oscillator is represented as a point mass in this den-
sity. We then write down a formal flux conservation equation
of this density, called the Klimontovich equation, which com-
pletely characterizes the system. However, because the density is
not differentiable, the Klimontovich equation only exists in the
weak or distributional sense. Previously, e.g., Desai and Zwanzig
(1978); Strogatz and Mirollo (1991); Abbott and van Vreeswijk
(1993); Treves (1993) the equations were made usable by taking
the “mean field limit” of N → ∞ and assuming that the den-
sity is differentiable in that limit, resulting in what is called the
Vlasov equation. Instead of immediately taking the mean field
limit, we regularize the density by averaging over initial condi-
tions and parameters and then expand in the inverse system size
N−1 around the mean field limit. This results in a system of cou-
pled moment equations known as the BBGKY moment hierarchy.
In Hildebrand et al. (2007), we solved the moment equations for
the Kuramoto model perturbatively to compute the pair corre-
lation function between oscillators. However, the procedure was
somewhat ad-hoc and complicated. We then subsequently showed
in Buice and Chow (2007) that the BBGKY moment hierarchy
could be recast in terms of a density functional of the phase den-
sity. This density functional could be written down explicitly as
an integral over all possible phase histories, i.e., a Feynman-Kac
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path integral. The advantage of using this density functional for-
malism is that the moments to arbitrary order in 1/N could be
computed as a steepest-descent expansion of the path integral,
which can be expressed in terms of Feynman diagrams. This made
the calculation more systematic and mechanical. We later applied
the same formalism to synaptically coupled spiking models Buice
and Chow (2013b).

Concurrently with this line of research, we also explored the
question of how to generalize population activity equations, such
as the Wilson-Cowan equations, to include the effects of correla-
tions. The motivation for this question is that the Wilson-Cowan
equations are mean field equations and do not capture the effects
of spike-time correlations. For example, the gain in the Wilson-
Cowan equations is fixed, (which is a valid approximation when
the neurons fire asynchronously), but correlations in the firing
times can change the gain Salinas and Sejnowski (2000). Thus,
it would be useful to develop a systematic procedure to aug-
ment population activity equations to include spike correlation
effects. The approach we took was to posit plausible microscopic
stochastic dynamics, dubbed the spike model, that reduced to the
Wilson-Cowan equations in the mean field limit and compute the
self-consistent moment equations from that microscopic theory.
Buice and Cowan (2009) showed that the solution of the mas-
ter equation of the spike model could be expressed formally in
terms of a path integral over all possible spiking histories. The
random variable in the path integral is a spike count whereas in
the path integral for the deterministic phase model we described
above, the random variable is a phase density. To generate a sys-
tem of moment equations for the microscopic stochastic system,
we transformed the random spike count variable in the path
integral into moment variables Buice et al. (2010). This is accom-
plished using the effective action approach of field theory, where
the exponent of the cumulant generating functional, called the
action, which is a function of the random variable is Legendre
transformed into an effective action of the cumulants. The desired
generalized Wilson-Cowan activity equations are then the equa-
tions of motion of the effective action. This is analogous to the
transformation from Lagrangian variables of position and veloc-
ity to Hamiltonian variables of position and momentum. Here,
we show how to apply the effective action approach to a deter-
ministic system of synaptically coupled spiking neurons to derive
a set of moment equations.

APPROACH
Consider a network of single compartment conductance-based
neurons

C
dVi

dt
= −

n∑
r = 1

gr
(
xr

i

)
(Vi − vr) +

N∑
j = 1

gijsj(t)

τr
i

dxr
i

dt
= f (Vi, xi)

τj
dsj

dt
= h

(
Vj, sj

)

τg
dgij

dt
= φ

(
gij, V

)

The equations are remarkably stiff with time scales spanning
orders of magnitude from milliseconds for ion channels, to sec-
onds for adaptation, and from hours to years for changes in
synaptic weights and connections. Parameter values must be
assigned for 1011 neurons with 104 connections each. Here, we
present a formalism to derive a set of reduced activity equations
directly from a network of deterministic spiking neurons that cap-
ture the spike rate and spike correlation dynamics. The formalism
first constructs a density functional for the firing dynamics of all
the neurons in a network. It then systematically marginalizes the
unwanted degrees of freedom to isolate a set of self-consistent
equations for the desired quantities. For heuristic reasons, we
derive an example set of generalized activity equations for the first
and second cumulants of the firing dynamics of a simple spiking
model but the method can be applied to any spiking model.

A convenient form to express spiking dynamics is with a phase
oscillator. Consider the quadratic integrate-and-fire neuron

dVi

dt
= Ii + V2

i + αiu(t) (1)

where I is an external current and u(t) are the synaptic cur-
rents with some weight αi. The spike is said to occur when
V goes to infinity whereupon it is reset to minus infinity. The
quadratic non-linearity ensures that this transit will occur in a
finite amount of time. The substitution V = tan(θ/2) yields the
theta model Ermentrout and Kopell (1986):

dθi

dt
= 1 − cos θi + (1 + cos θi) (Ii + αiu) (2)

which is the normal form of a Type I neuron near the bifur-
cation to firing Ermentrout (1996). The phase neuron is an
adequate approximation to spiking dynamics provided the inputs
are not overly strong as to disturb the limit cycle. The phase neu-
ron also includes realistic dynamics such as not firing when the
input is below threshold. Coupled phase models arise naturally in
weakly coupled neural networks Ermentrout and Kopell (1991);
Hoppensteadt and Izhikevich (1997); Golomb and Hansel (2000).
They include the Kuramoto model Kuramoto (1984), which we
have previously analyzed Buice and Chow (2007); Hildebrand
et al. (2007).

Here, we consider the phase dynamics of a set of N coupled
phase neurons obeying

θ̇i = F(θ, γi, u(t)) (3)

u̇(t) = −βu(t) + βν(t) (4)

ν(t) = 1

N

N∑
j = 1

∑
l

δ
(

t − tl
j

)
(5)

where each neuron has a phase θi that is indexed by i, u is a
global synaptic drive, F(θ, γ, u) is the phase and synaptic drive
dependent frequency, γi represents all the parameters for neuron
i drawn from a distribution with density g(γ), ν is the popula-
tion firing rate of the network,tl

j is the lth firing time of neuron j
and a neuron fires when its phase crosses π. In the present paper,
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we consider all-to-all or global coupling through a synaptic drive
variable u(t). However, our basic approach is not restricted to
global coupling.

We can encapsulate the phase information of all the neurons
into a neuron density function Buice and Chow (2007, 2011,
2013a,b); Hildebrand et al. (2007).

η(θ, γ, t) = 1

N

N∑
i = 1

δ(θ − θi(t)) δ(γ − γi) (6)

where δ(·) is the Dirac delta functional, and θi(t) is a solution to
system (3–5). The neuron density gives a count of the number
of neurons with phase θ and synaptic strength γ at time t. Using
the fact that the Dirac delta functional in (5) can be expressed
as
∑

l δ(t − tl
j) = θ̇jδ(π − θj), the population firing rate can be

rewritten as

ν(t) =
∫

dγ F(π, γ, u(t))η(π, γ, t) (7)

The neuron density formally obeys the conservation equation

∂

∂t
η(θ, γ, t) + ∂

∂θ
[Fη(θ, γ, t)] = 0 (8)

with initial condition η(θ, γ, t0) = η0(θ, γ) and u(t0) = u0.
Equation (8) is known as the Klimontovich equation Ichimaru
(1973); Liboff (2003). The Klimontovich equation, the equation
for the synaptic drive (4), and the firing rate expressed in terms
of the neuron density (7), fully define the system. The system is
still fully deterministic but is now in a form where various sets
of reduced descriptions can be derived. Here, we will produce
an example of a set of reduced equations or generalized activ-
ity equations that capture some aspects of the spiking dynamics.
The path we take toward the end will require the introduction of
some formal machinery that may obscure the intuition around
the approximations. However, we feel that it is useful because it
provides a systematic and controlled way of generating averaged
quantities that can be easily generalized.

For finite N, (8) is only valid in the weak or distributional
sense since η is not differentiable. In the N → ∞ limit, it has
been argued that η will approach a smooth density ρ that evolves
according to the Vlasov equation that has the same form as (8) but
with η replaced by ρ Ichimaru (1973); Desai and Zwanzig (1978);
Strogatz and Mirollo (1991); Nicholson (1993); Hildebrand et al.
(2007). This has been proved rigorously in the case where noise is
added using the theory of coupled diffusions McKean Jr (1966);
Faugeras et al. (2009); Baladron et al. (2012); Touboul (2012).
This N → ∞ limit is called mean field theory. In mean field
theory, the original microscopic many body neuronal network
is represented by a smooth macroscopic density function. In
other words, the ensemble of networks prepared with different
microscopic initial conditions is sharply peaked at the mean field
solution. For large but finite N, there will be deviations away
from mean field Buice and Chow (2007); Hildebrand et al. (2007);
Buice and Chow (2013a,b). These deviations can be characterized
in terms of a distribution over an ensemble of coupled networks

that are all prepared with different initial conditions and param-
eter values. Here, we show how a perturbation theory in N−1

can be developed to expand around the mean field solution. This
requires the construction of the probability density functional
over the ensemble of spiking neural networks. We adapt the tools
of statistical field theory to perform such a construction.

FORMALISM
The complete description of the system given by equations
(4, 7, 8) can be written as

u̇(t) + βu(t) − β

∫
dγ F(π, γ, u(t))η(π, γ, t) = 0 (9)

∂

∂t
η(θ, γ, t) + ∂

∂θ
[F(θ, γ, u(t))η(θ, γ, t)] ≡ Lη = 0 (10)

The probability density functional governing the system specified
by the synaptic drive and Klimontovich equations (9) and (10)
given initial conditions (η0, u0) can be written as

P[η, u] =
∫

Du0(t)Dη0(θ, γ) P[η, u|η0, u0] P0[η0, u0, γ] (11)

where P [η, u|η0, u0] is the conditional probability density func-
tional of the functions (η, u), and P0 [η0, u0] is the density
functional over initial conditions of the system. The integral is
a Feynman-Kac path integral over all allowed initial condition
functions. Formally we can write P [η, u|η0, u0] as a point mass
(Dirac delta) located at the solutions of (9) and (10) given the
initial conditions:

δ [Lη − η0δ(t − t0)]

δ

[
u̇ + βu − β

∫
dγ F(π, γ, u(t))η(π, γ, t) − u0δ(t − t0)

]

The probability density functional (11) is then

P[η, u] =
∫

Du0(t)Dη0(θ, γ) δ [Lη − η0δ(t − t0)]

× δ

[
u̇ + βu − β

∫
dγ F(π, γ, u(t))η(π, γ, t)

− u0δ(t − t0)

]
P0 [η0, u0, γ] (12)

Equation (12) can be made useful by noting that the Fourier rep-
resentation of a Dirac delta is given by δ(x) ∝ ∫

dk eikx. Using the
infinite dimensional Fourier functional transform then gives

P[η, u] =
∫

Dη̃Dũ e−NS[η,η̃,u,ũ].

The exponent S[η, u] in the probability density functional is
called the action and has the form

S = Su + Sϕ + S0 (13)
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where

Sϕ =
∫

dθdγdt ϕ̃(x) [∂tϕ(x) + ∂θF(θ, γ, u(t))ϕ(x)] (14)

represents the contribution of the transformed neuron density to
the action,

Su = 1

N

∫
dt ũ(t)

(
u̇(t) + βu(t)

− β

∫
dγF(π, γ, u(t))[ϕ̃(π, γ, t) + 1]ϕ(π, γ, t)

)
(15)

represents the global synaptic drive, S0[ϕ̃0(x0), u0(t0)] represents
the initial conditions, and x = (θ, γ, t). For the case where the
neurons are considered to be independent in the initial state, we
have

S0 [ϕ̃0(x0), u0 (t0)] = − 1

N
ũ(t0)u0 (16)

− ln

(
1 +

∫
dθdγϕ̃0 (θ, γ, t0) ρ0 (θ, γ, t0)

)

where u0 is the initial value of the coupling variable and ρ0(θ, γ, t)
is the distribution from which the initial configuration is drawn
for each neuron. The action includes two imaginary auxiliary
response fields (indicated with a tilde), which are the infinite
dimensional Fourier transform variables. The factor of 1/N
appears to ensure correct scaling between the u and ϕ vari-
ables since u applies to a single neuron while ϕ applies to the
entire population. The full derivation is given in Buice and Chow
(2013b) and a review of path integral methods applied to dif-
ferential equations is given in Buice and Chow (2010). In the
course of the derivation we have made a Doi-Peliti-Jannsen trans-
formation Janssen and Täuber (2005); Buice and Chow (2013b),
given by

ϕ(x) = η(x)e−η̃(x)

ϕ̃(x) = eη̃(x) − 1

In deriving the action, we have explicitly chosen the Ito conven-
tion so that the auxiliary variables only depend on variables in
the past. The action (13) contains all the information about the
statistics of the network.

The moments for this distribution can be obtained by
taking functional derivatives of a moment generating func-
tional. Generally, the moment generating function for a ran-
dom variable is given by the expectation value of the expo-
nential of that variable with a single parameter. Because our
goal is to transform to new variables for the first and second
cumulants, we form a “two-field” moment generating func-
tional, which includes a second parameter for pairs of random
variables,

exp(N W[J, K]) =
∫

Dξ exp

[
−NS[ξ] + N

∫
dx Ji(x)ξi(x) + N

2
∫

dxdx′ξi(x)Kij(x, x′)ξj(x′)
]

(17)

where J and K are moment generating fields, ξ1(x) = u(t),
ξ2(x) = ũ(t), ξ3(x) = ϕ(x), ξ4(x) = ϕ̃(x), and x = (θ, γ, t).
Einstein summation convention is observed beween upper and
lower indices. Unindexed variables represent vectors. The inte-
gration measure dx is assumed to be dt when involving indices
1 and 2. Covariances between an odd and even index corresponds
to a covariance between a field and an auxiliary field. Based on
the structure of the action S and (17) we see that this represents
a linear propagator and by causality and the choice of the Ito
convention is only non-zero if the time of the auxiliary field is
evaluated at an earlier time than the field. Covariances between
two even indices correspond to that between two auxiliary fields
and are always zero because of the Ito convention.

The mean and covariances of ξ can be obtained by taking
derivatives of the action W[J, K] in (17), with respect to J and
K and setting J and K to zero:

δW

δJi
= 〈ξi〉|J, K = 0

δW

δKij
= 1

2
〈ξiξj〉

∣∣∣∣
J, K = 0

Expressions for these moments can be computed by expanding
the path integral in (17) perturbatively around some mean field
solution. However, this can be unwieldy if closed form expres-
sions for the mean field equations do not exist. Alternatively, the
moments at any order can be expressed as self-consistent dynami-
cal equations that can be analyzed or simulated numerically. Such
equations form a set of generalized activity equations for the
means ai = 〈ξi〉, and covariances Cij = N[〈ξiξj〉 − aiaj].

We derive the generalized activity equations by Legendre trans-
forming the action W , which is a function of J and K, to
an effective action � that is a function of a and C. Just as a
Fourier transform expresses a function in terms of its frequen-
cies, a Legendre transform expresses a convex function in terms
of its derivatives. This is appropriate for our case because the
moments are derivatives of the action. The Legendre transform of
W[J, K] is

�[a, C] = −W[J, K] +
∫

dxJiai + 1

2

∫
dxdx′

[
aiaj + 1

N
Cij

]
Kij

(18)
which must obey the constraints

δW

δJi
= ai

δW

δKij
= 1

2

[
aiaj + 1

N
Cij

]
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and

δ�

δai
≡ �i, 00 = Ji + 1

2
aj

[
Kij + Kji

]

δ�

δCij
≡ �0, ij = 1

2N
Kij (19)

The generalized activity equations are given by the equations of
motion of the effective action, in direct analogy to the Euler-
Lagrange equations of classical mechanics, and are obtained by
setting Ji = 0 and Kij = 0 in (19).

In essence, what the effective action does is to take a prob-
abilistic (statistical mechanical) system in the variables ξ with
action S and transform them to a deterministic (classical mechan-
ical) system with an action �. Our approach here follows that
used in Buice et al. (2010) to construct generalized activity equa-
tions for the Wilson Cowan model. However, there are major
differences between that system and this one. In Buice et al.
(2010), the microscopic equations were for the spike counts of an
inherently probabilistic model so the effective action and ensu-
ing generalized activity equations could be constructed directly
from the Markovian spike count dynamics. Here, we start from
deterministically firing individual neurons and get to a proba-
bilistic description through the Klimontovich equation. It would
be straightforward to include stochastic effects into the spiking
dynamics.

Using (18) in (17) gives

exp(−N �[a, C])=
∫

Dψ exp

[
−NS[ξ] + N

∫
dx Ji (ξi − ai)

+ N

2

∫
dxdx′

[
ξiξj − aiaj − 1

N
Cij

]
Kij
]

(20)

where J and K are constrainted by (19). We cannot com-
pute the effective action explicitly but we can compute it
perturbatively in N−1. We first perform a shift ξi = ai +
ψi, expand the action as S[a + ψ] = S[a] + ∫

dx(Li[a]ψi +
(1/2)

∫
dx′Lij[a]ψiψj) + · · · and substitute for J and K with the

constraints (19) to obtain

exp(−N �[a, C]) = exp
(
−NS[a] − NTr �0, ijCij

)

∫
Dψ exp

[
−N

∫
dx

(
Li[a]ψi + 1

2

∫
dx′Lij[a]ψiψj

)

+ N

∫
dx �i, 00ψi + N2

∫
dxdx′ψiψj�

0, ij
]

(21)

where

Tr AijBij =
∫

dxdx′Aij(x, x′)Bij(x, x′) (22)

Our goal is to construct an expansion for � by collecting terms in
successive orders of N−1 in the path integral of (21). Expanding
� as �[a, C] = �0 + N−1�1 + N−2�2 and equating coefficients
of N in (21) immediately leads to the conclusion that �0 = S[a],

which gives

exp(−N �[a, C]) = exp
(
−NS[a] − Tr �

0, ij
1 Cij

) ∫
Dψ

exp

[
−N

2

∫
dxLij[a]ψiψj + N

∫
dx �

0, ij
1 ψiψj

]

where higher order terms in N−1 are not included. To lowest non-

zero order �0, ij = N−1�
0, ij
1 since �0 is only a function of a and

not C. If we set

�
0, ij
1 = (1/2)Lij − (1/2)Qij, (23)

we obtain

exp(−N �[a, C]) = exp

(
−NS[a] − 1

2
Tr LijCij + 1

2
Tr QijCij

)

×
∫

Dψ exp

[
−N

2

∫
dx Qij[a]ψiψj

]
(24)

to order N−1. Qij is an unknown function of a and C,
which we will deduce using self-consistency. The path inte-
gral in (24), which is an infinite dimensional Gaussian that

can be explicitly integrated, is proportional to 1/
√

det Qij =
exp(−(1/2) ln det Qij) = exp(−(1/2)Tr ln Qij), using properties
of matrices. Hence, (24) becomes

exp(−N �[a, C])

= exp

(
−NS[a] − 1

2
Tr LijCij − 1

2
Tr QijCij + 1

2
Tr ln Qij

)

and

�[a, C] = S[a] + 1

2N
Tr LijCij + 1

2N
Tr ln Qij − 1

2N
Tr QijCij

Taking the derivative of � with respect to Cij yields

�0, ij = 1

2N

(
Lij + (Q−1)kl ∂

∂Cij
Qlk − ∂

∂Cij
(QklClk)

)

Self consistency with (23) then requires that Qij = (C−1)ij which
leads to the effective action

�[a, C] = S[a] + 1

2N
Tr ln(C−1)ij + 1

2N
Tr LijCij (25)

where

∫
dx′ (C−1)ik(x, x′)Ckj(x′, x0) = δijδ(x − x0)

and we have dropped the irrelevant constant terms.
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The equations of motion to order N−1 are obtained from (19)
with Ji and Kij set to zero:

δS[a]
δai

+ 1

2N

δ

δai
Tr LijCij = 0 (26)

1

2N
[−(C−1)ij + Lij] = 0 (27)

and (27) can be rewritten as

∫
dx′Lik(x, x′)Ckj(x′, x0) = δijδ(x − x0) (28)

Hence, given any network of spiking neurons, we can
write down a set of generalized activity equations for the
mean and covariance functions by (1) constructing a neu-
ron density function, (2) writing down the conservation law
(Klimontovich equation), (3) constructing the action and (4)
using formulas (26) and (28). We could have constructed
these equations directly by multiplying the Klimontovich
and synaptic drive equations by various factors of u and
η and recombining. However, as we saw in Buice et al.
(2010) this is not a straightforward calculation. The effec-
tive action approach makes this much more systematic and
mechanical.

PHASE MODEL EXAMPLE
We now present a simple example to demonstrate the con-
cepts and approximations involved in our expansion. Our
goal is not to analyze the system per se but only to demon-
strate the application of our method in a heuristic setting.
We begin with a simple non-leaky integrate-and-fire neu-
ron model, which responds to a global coupling variable.
This is a special case of the dynamics given above, with F
given by

F[θ, γ, u] = I(t) + γu (29)

The action from (14) and (15) is

S[a] =
∫

dθdγdt a4(x) [∂ta3(x) + ∂θ(I + γa1(t)) a3(x)]

+ 1

N

∫
dt a2(t)

(
ȧ1(t) + βa1(t) − β

∫
dγ (I + γa1(t))

[a4(π, γ, t) + 1] a3(π, γ, t)) (30)

and we ignore initial conditions for now.
In order to construct the generalized activity equations

we need to compute the first and second derivatives of
the action Li and Lij. Taking the first derivative of (30)
gives

L1[a] (x, x′) = δS[a(x)]
δa1 (t′)

=
∫

dθdγ dtγa4(x)∂θa3(x)δ
(
t − t′

)

+ 1

N

[∫
dt a2(t)

d

dt
δ
(
t − t′

)+ βa2
(
t′
)

− a2
(
t′
)
β

∫
dγ γ

[
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

L2[a](x, x′) = δS[a(x)]
δa2(t′)

= 1

N

[
da1

dt′
+ βa1(t′) − β

∫

dγ
(
I + γa1(t′)

) [
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

L3[a](x, x′) = δS[a(x)]
δa3(x′)

=
∫

dt a4(θ
′, γ′, t)∂tδ(t − t′)

+
∫

dθa4(θ, γ
′, t′)∂θ(I + γ′a1(t′))δ(θ − θ′)

− β

N
a2(t′)

(
I + γ′a1(t′)

) (
a4(π, γ′, t′) + 1

)

× δ(π − θ′)

L4[a](x, x′) = δS[a(x)]
δa4(x′)

= ∂t′a3(x′) + ∂θ′
(
I + γ′a1(t′)

)
a3(x′)

− β

N
a2(t′)

(
I + γ′a1(t′)

)
a3(π, γ′, t′)δ(π − θ′)

(31)

The mean field equations are obtained by solving Li = 0 using
(31). We immediately see that a2 = a4 = 0 are solutions, which
leaves us with

ȧ1 + βa1 − β

∫
dγ(I + γa1) a3(π, γ, t) = 0 (32)

∂ta3 + (I + γa1) ∂θa3 = 0 (33)

The mean field equations should be compared to those of the
spike response model Gerstner (1995, 2000). We can also solve
(33) directly to obtain

a3(x, t) = ρ0

(
θ −

∫ t

t0

dt′
[
I�(t′) + γa1(t′)

]
, γ, �

)

where ρ0 is the initial distribution. If the neurons are initially dis-
tributed uniformly in phase, then ρ0 = g(γ)/2π and the mean
field equations reduce to

ȧ1(t) + βa1(t) − β

2π
(I + γ̄a1(t)) = 0 (34)

which has the form of the Wilson-Cowan equation, with
(β/2π) (I + γ̄a1) acting as a gain function. Hence, the Wilson-
Cowan equation is a full description of the infinitely large system
limit of a network of globally coupled simple phase oscillators
in the asynchronous state. For all other initial conditions, the
one-neuron conservation equation (called the Vlasov equation in
kinetic theory) must be included in mean field theory.
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To go beyond mean field theory we need to compute
Lij(x, x′, x′′) = δLi(x, x′)/δaj(x′′):

L11[a] = 0

L12[a] = 1

N

[
− d

dt′′
+ β − β

∫
dγ γ

[
a4(π, γ, t′′) + 1

]
a3(π, γ, t′′)

]
δ(t′′ − t′)

L13[a] =
[
γ′′
∫

dθ a4(x)δ(γ − γ′′)∂θδ(θ − θ′′)

− β

N
γ′′a2(t′)

[
a4(π, γ′′, t′′) + 1

]
δ(π − θ′′)

]
δ(t′ − t′′)

L14[a] =
[
γ′′∂θ′′ a3(x′′) − β

N
γ′′a2(t′′)a3(π, γ′′, t′′)δ(π − θ′′)

]

δ(t′ − t′′)

L21[a] = 1

N

[
d

dt′
+ β − β

∫
dγ γ

[
a4(π, γ, t′) + 1

]
a3(π, γ, t′)

]

δ(t′ − t′′)

L22[a] = 0

L23[a] = − β

N
(I + γ′′a1(t′))

[
a4(π, γ′′, t′)) + 1

]
δ(π − θ′)

δ(t′ − t′′)

L24[a] = − β

N
(I + γ′′a1(t′))a3(π, γ′′, t′)]δ(π − θ′′)δ(t′ − t′′)

L31[a] =
[∫

dθ a4(θ, γ
′, t′)γ′∂θδ(θ − θ′) − β

N
a2(t′)γ′

[
a4(π, γ′, t′) + 1

]
δ(π − θ′)

]
δ(t′ − t′′)

L32[a] = − β

N

(
I + γ′a1(t′)

) (
a4(π, γ′, t′) + 1

)
δ(π − θ′)

δ(t′ − t′′)

L33[a] = 0

L34[a] = [
δ(θ′ − θ′′)∂t′′ − ∂θ′′

(
I + γ′a1(t′)

)
δ(θ′′ − θ′)

− β

N
a2(t′)(I + γ′a1(t′))δ(π − θ′)δ(π − θ′′)

]

δ(γ′ − γ′′)δ(t′′ − t′)

L41[a] =
[
∂θ′γ′a3(x′) − β

N
a2(t′)γ′a3(π, γ′, t′)δ(π − θ′)

]

δ(t′ − t′′)

L42[a] = − β

N
(I + γ′a1(t′))a3(π, γ′, t′)δ(π − θ′)δ(t′ − t′′)

L43[a] = ∂t′δ(x′ − x′′) + ∂θ′
(
I + γ′a1(t′)

)
δ(x′ − x′′)

− β

N
a2(t′)

(
I + γa1(t′)

)
δ(π − θ′)δ(π − θ′′)

δ(γ′ − γ′′)δ(t′ − t′′)

L44[a] = 0

The activity equations for the means to order N−1 are given by
(26). The only non-zero contributions are given by L13 and L31

resulting in

L2 + 1

2N

δ

δa2

∫
dxdx′(L13C13 + L31C31) = 0

L4 + 1

2N

δ

δa4

∫
dxdx′(L13C13 + L31C31) = 0

since a2 = a4 = 0 and correlations involving response variables
(even indices) will be zero for equal times. The full activity
equations for the means are thus

ȧ1 + βa1 − β

∫
dγ(I + γa1) a3(π, γ, t)

− β

N

∫
dγ γC(π, γ, t) = 0 (35)

∂ta3 + (I + γa1) ∂θa3 + 1

N
γ∂θC(θ, γ, t) = 0 (36)

where C(θ, γ, t) = C13(t; θ, γ, t) = C31(θ, γ, t; t).
We can now use the Lij in (28) to obtain activity equations

for Cij. There will be sixteen coupled equations in total but the
applicable non-zero ones are

[
d

dt
+ β − β

∫
dγ γa3(π, γ, t)

]
C11 (t; t0)

− β

∫
dγ (I + γa1) C31 (π, γ, t; t0)

− β

∫
dγ (I + γa1(t)) a3(π, γ, t)C41(π, γ, t; t0) = 0 (37)

[
d

dt
+ β − β

∫
dγ γa3(π, γ, t)

]
C13(t; x0)

− β

∫
dγ (I + γa1) C33 (π, γ, t; x0)

− β

∫
dγ (I + γa1(t)) a3(π, γ, t)C43 (π, γ, t; x0) = 0 (38)

γ∂θa3(x)C11 (t; t0) + [∂t + (I + γa1) ∂θ] C31(x; t0)

− β

N
(I + γa1(t)) a3(π, γ, t)δ(π − θ)C21(t, t0) = 0 (39)

γ∂θa3(x)C13(t; x0) + [∂t + (I + γa1(t)) ∂θ] C33(x, x0)

− β

N
(I + γa1(t)) a3(π, γ, t)δ(π − θ)C23(t, x0) = 0 (40)

Adding (38) and (39) and taking the limit t0 → t and setting
θ0 = θ, γ0 = γ gives

∂tC(θ, γ, t) +
[
β − β

∫
dγ′ γ′a3(π, γ′, t) + (I + γa1) ∂θ

]
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C(θ, γ, t) − β

∫
dγ′ (I + γ′a1

)
C33(π, γ′, t; x)

− 2β (I + γa1(t)) a3(π, γ, t)δ(π − θ) + γ∂θa3(x)C11(t; t) = 0

where we use the fact that C21(t, t′) = N and C43(x; x′) = δ(θ −
θ′)δ(γ − γ′) in the limit of t′ approaching t from below and equal
to zero when approaching from above. Adding (37) and (40) to
themselves with t and t0 interchanged and taking the limit of t0

approaching t gives

[
d

dt
+ 2β − 2β

∫
dγ γa3(π, γ, t)]

]
C11(t; t)

− 2β

∫
dγ (I + γa1) C(π, γ, t) = 0

[∂t + (I + γa1(t)) ∂θ] C33(x; x) + 2γ[∂θa3(x)]C(x) = 0

because C41(x; t) = 0 and C23(t; x) = 0. Putting this all together,
we get the generalized activity equations

da1

dt
+ βa1(t) − β

∫
dγ (I + γa1(t)) a3(π, γ, t)

− β

N

∫
dγ γC(π, γ, t) = 0 (41)

∂ta3(θ, γ, t) + (I + γa1) ∂θa3(θ, γ, t)

+ 1

N
γ∂θC(θ, γ, t) = 0 (42)

∂tC(θ, γ, t) +
[
β − β

∫
dγ′ γ′a3(π, γ′, t) + (I + γa1) ∂θ

]

C(θ, γ, t) − β

∫
dγ′ (I + γ′a1

)
C33(π, γ′, t; θ, γ, t)

− 2β (I + γa1(t)) a3(θ, γ, t)δ(π − θ)

+γ∂θa3(θ, γ, t)C11(t; t) = 0 (43)
[

d

dt
+ 2β − 2β

∫
dγ γa3(π, γ, t)

]]
C11(t; t)

− 2β

∫
dγ (I + γa1) C(π, γ, t) = 0 (44)

[∂t + (I + γa1(t)) ∂θ] C33(θ, γ, t; θ, γ, t)

+ 2γ∂θa3(θ, γ, t)C(θ, γ, t) = 0 (45)

Initial conditions, which are specified in the action, are required
for each of these equations. The derivation of these equations
using classical means require careful consideration for each par-
ticular model. Our method provides a blanket mechanistic algo-
rithm. We propose that these equations represent a new scheme
for studying neural networks.

Equations 41–45 are the complete self-consistent generalized
activity equations for the mean and correlations to order N−1. It
is a system of partial differential equations in t and θ. These equa-
tions can be directly analyzed or numerically simulated. Although
the equations seem complicated, one must bear in mind that

they represent the dynamics of the system averaged over ini-
tial conditions and unknown parameters. Hence, the solution
of this PDE system replaces multiple simulations of the original
system. In previous work, we required over a million simula-
tions of the original system to obtained adequate statistics Buice
and Chow (2013b). There is also a possibility that simplify-
ing approximations can be applied to such systems. The system
has complete phase memory because the original system was
fully deterministic. However, the inclusion of stochastic effects
will shorten the memory and possibly simplify the dynamics.
It will pose no problem to include such stochastic effects. In
fact, the formalism is actually more suited for stochastic systems
Buice et al. (2010).

DISCUSSION
The main goal of this paper was to show how to systematically
derive generalized activity equations for the ensemble averaged
moments of a deterministically coupled network of spiking neu-
rons. Our method utilizes a path integral formalism that makes
the process algorithmic. The resulting equations could be derived
using more conventional perturbative methods although possi-
bly with more calculational difficulty as we found before Buice
et al. (2010). For example, for the case of the stochastic spike
model, Buice et al. (2010) presumed that the Wilson-Cowan
activity variable was the rate of a Poisson process and derived
a system of generalized activity equations that corresponded to
deviations around Poisson firing. Bressloff (2010), on the other
hand, assumed that the Wilson-Cowan activity variable was a
mean density and used a system-size expansion to derive an alter-
native set of generalized activity equations for the spike model.
The classical derivations of these two interpretations look quite
different and the differences and similarities between them are
not readily apparent. However, the connections between the two
types of expansions are very transparent using the path integral
formalism.

Here, we derived equations for the rate and covariances
(first and second cumulants) of a deterministic synaptically cou-
pled spiking network as a system size expansion to first order.
However, our method is not restricted to these choices. What
is particularly advantageous about the path integral formal-
ism is that it is straightforward to generalize to include higher
order cumulants, extend to higher orders in the inverse sys-
tem size, or to expand in other small parameters such as the
inverse of a slow time scale. The action fully specifies the sys-
tem and all questions regarding the system can be addressed
with it.

To give a concrete illustration of the method, we derived the
self-consistent generalized activity equations for the rates and
covariances to order N−1 for a simple phase model. The resulting
equations consist of ordinary and partial differential equations.
This is to be expected since the original system was fully deter-
ministic and memory cannot be lost. Even mean field theory
requires the solution of an advective partial differential equa-
tion. The properties of these and similar equations remain to
be explored computationally and analytically. The system is pos-
sibly simpler near the asynchronous state, which is marginally
stable in mean field theory like the Kuramoto model Strogatz and
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Mirollo (1991) and like the Kuramoto model, we conjecture that
the finite size effects will stabilize the asynchronous state Buice
and Chow (2007); Hildebrand et al. (2007). The addition of noise
will also stabilize the asynchronous state. Near asynchrony could
be exploited to generate simplified versions of the asynchronous
state.

We considered a globally connected network, which allowed
us to assume that networks for different parameter values and
initial conditions converge toward a “typical” system in the large
N limit. However, this property may not hold for more realistic
networks. While the formalism describing the ensemble average
will hold regardless of this assumption, the utility of the equa-
tions as descriptions of a particular network behavior may suffer.
For example, heterogeneity in the connectivity (as opposed to the
global connectivity we consider here) may threaten this assump-
tion. This is the case with so called “chaotic random networks”
Sompolinsky et al. (1988) in which there is a spin-glass transi-
tion owing to the variance of the connectivity crossing a critical
threshold. This results in the loss of a “typical” system in the large
N limit requiring an effective stochastic equation which incorpo-
rates the noise induced by the network heterogeneity. Whether
the expansion we present here is useful without further consider-
ation depends upon whether the network heterogeneity induces
this sort of effect. This is an area for future work. A simpler issue
arises when there are a small discrete number of “typical” sys-
tems (such as with bistable solutions to the continuity equation).
In this case, there are noise induced transitions between states.
While the formalism has a means of computing this transition
Elgart and Kamenev (2004), we do not consider this case here.

An alternative means to incorporate heterogeneous connec-
tions is to consider a network of coupled systems. In such a
network, a set of generalized activity equations, such as those
derived here or simplified versions, would be derived for each
local system, together with equations governing the covariances
between the local systems. Correlation based learning dynam-
ics could then be imposed on the connections between the local
systems. Such a network could serve as a generalization of cur-
rent rate based neural networks to include the effects of spike
correlations with applications to both neuroscience and machine
learning.
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This study describes a spiking model that self-organizes for stable formation
and maintenance of orientation and ocular dominance maps in the visual cortex
(V1). This self-organization process simulates three development phases: an early
experience-independent phase, a late experience-independent phase and a subsequent
refinement phase during which experience acts to shape the map properties. The ocular
dominance maps that emerge accommodate the two sets of monocular inputs that arise
from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps
that emerge feature well-developed iso-orientation domains and fractures. During the last
two phases of development the orientation preferences at some locations appear to rotate
continuously through ±180◦ along circular paths and referred to as pinwheel-like patterns
but without any corresponding point discontinuities in the orientation gradient maps. The
formation of these functional maps is driven by balanced excitatory and inhibitory currents
that are established via synaptic plasticity based on spike timing for both excitatory and
inhibitory synapses. The stability and maintenance of the formed maps with continuous
synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a
prolonged exposure to repeated stimuli does alter the formed maps over time due to
plasticity. The results from this study suggest that continuous synaptic plasticity in both
excitatory neurons and interneurons could play a critical role in the formation, stability, and
maintenance of functional maps in the cortex.

Keywords: spiking networks, STDP, learning, functional maps, orientation selectivity, ocular dominance, stability

INTRODUCTION
The spatial and temporal properties of a distributed pattern of
neural activity in V1 with differentially tuned responses of indi-
vidual neurons to features of visual space such as orientation,
spatial frequency, and direction of motion were first recognized
by Hubel and Wiesel (1962, 1963, 1968, 2005). Using micro-
electrodes and neuroanatomical tracers, they established that the
neural activity of a population of neurons with such differentia-
tion represented functional maps. This seminal work has inspired
a large body of subsequent research to understand the proper-
ties of these functional maps and its relation to cortical function
as well as to understand the mechanisms by which these maps
are formed during development (Blakemore and Cooper, 1970;
Miller, 1996; Rao et al., 1997; Buonamano and Merzenich, 1998;
Miller et al., 1999; Yuste and Sur, 1999; Basole et al., 2003, 2006;
Hensch, 2005; Schummers et al., 2005; Yu et al., 2005; Shapley
et al., 2007; White and Fitzpatrick, 2007; Huberman et al., 2008;
Xing et al., 2011).

Two types of functional maps have been particularly well
explored. The first map called the ocular dominance maps, or
ODM, is based on interactions between axons of the neurons in
the lateral geniculate nucleus (LGN) and neurons in layer 4 of V1.
Here clusters of thalamocortical axon terminals that serve the left
or right eye are organized in layer 4 via the topological relations
established in the LGN to form ODMs. The second functional
map called the orientation selectivity map, or OSM, is a map of

orientation preference that is elaborated with a high degree of
selectivity in V1 but not in the LGN. A key mechanism implicated
in the formation of these functional maps during development is
activity-dependent plasticity (Purves and Lichtman, 1985; Katz
and Shatz, 1996; Ruthazer and Stryker, 1996; Crair et al., 1998;
Crowley and Katz, 1999).

A number of in vitro experimental studies (Levy and Steward,
1983; Magee and Johnston, 1997; Markram et al., 1997; Bi and
Poo, 1998; Debbane et al., 1998; Caporale and Dan, 2008) suggest
that repeated pairing of pre- and postsynaptic activity in the form
of action potentials, or spikes, can lead to long-term changes in
synaptic efficacy. The sign and magnitude of the change in synap-
tic efficacy depends upon on the relative timing between the pre-
and postsynaptic spikes and is known as spike-timing-dependent
plasticity (STDP). STDP is now a well-established physiological
mechanism of activity-driven synaptic regulation in vivo as well as
observed in the Xenopus visual system (Mu and Poo, 2006; Vislay-
Meltzer et al., 2006), the locust mushroom body (Cassenaer and
Laurent, 2007), and rat visual (Meliza and Dan, 2006) and barrel
(Jacob et al., 2007) cortex. STDP has also shown to have better
explanatory power than more conventional Hebbian correlation-
based plasticity at explaining both cortical reorganization in cat
primary visual cortex (Young et al., 2007) and connectivity in
locust olfactory system (Finelli et al., 2008). The STDP is a local
learning rule that forces synapses to compete such that the spik-
ing activity of a post-synaptic neuron becomes selective to a small
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subset of pre-synaptic input spikes. This feature was exploited in
some spiking models to demonstrate map development (Bartsch
and van Hemmen, 2000; Song and Abbott, 2001; Billings and van
Rossum, 2009).

In the present study a spiking model is described that pro-
vides a plausible set of mechanisms based on STDP for the
formation and maintenance of ODMs and OSMs. This develop-
mental model simulates functional map formation during three
phases: an early experience-independent phase, a late experience-
independent phase, and a subsequent refinement phase during
which experience acts to shape map properties. There are other
models that have also modeled developmental phases of func-
tional maps in the visual cortex (Sirosh and Miikkulainen, 1995;
Bauer et al., 2000; Swindale, 2000; Bednar and Miikkulainen,
2004; Yang et al., 2012). However, we present a spiking model that
employs STDP as the basis to form and stabilize functional maps
across the three phases of development. The resulting ODMs rep-
resent V1 neurons that show eye selectivity in response to two sets
of monocular inputs from the LGN. The OSMs on the other hand
feature pin wheel-like patterns to represent orientation preference
in a smooth and continuous fashion. However, point discontinu-
ities that appear at the center of these pin wheels in animal data
(Maldonado et al., 1997) is not found in our model simulations.
It also contains other forms of discontinuities such as fractures
and breaks as will be defined in the next section.

MATERIALS AND METHODS
For the purpose of simplicity and clarity, the focus of this study
will be on the dynamics of interaction between the neurons in
LGN and layer 4 in V1. The model is developed in three phases
where the first and second phases correspond to a pre-critical
period while the third phase corresponds to a critical period
(Hensch, 2005). In the early experience-independent phase, spon-
taneously generated neuronal activity in the cortex and LGN
facilitates activity-dependent plasticity and formation of OSMs
and ODMs (Wiesel and Hubel, 1974; Chapman et al., 1996;
Crair et al., 1997; Ferster and Miller, 2000; Trachtenberg et al.,
2000; Chiu and Weliky, 2001; Huberman et al., 2006). This is
followed by a late-experience-independent phase where interac-
tions between LGN and layer 4 are driven by the influence of
retinal waves (Godfrey and Swindale, 2007) to enable the refine-
ment of ODMs and OSMs (Crair et al., 1997; Crowley and Katz,
1999, 2002; Butts, 2002; Katz and Crowley, 2002; Huberman
et al., 2006; Feller, 2009). In the final experience-dependent phase,
neuronal activity is driven by natural visual stimuli from the
environment that drives the maturation of the already formed
ODMs and OSMs (Crair et al., 1998; Sengpiel et al., 1999; White
et al., 2001; Coppola and White, 2004; Smith and Trachtenberg,
2007; White and Fitzpatrick, 2007). It should be noted that
the model results are meant to show that the maturation of
the formed OSMs and ODMs are driven by activity-dependent
plasticity while qualitatively simulating some of the process con-
straints (such as the influence of retinal waves) during various
stages of development. These maps have some similar quali-
tative properties as those found in animals but this does not
imply actual adherence to the maps or process in any particular
species.

MODEL ARCHITECTURE
The spiking model architecture in this study assumes that the ini-
tial structure of connections despite being random and local in
nature is nevertheless present from the beginning. It is known
that this initial formation of the map depends upon molecular
gradients that serve as guides for axons to topologically appro-
priate portions of the map (Yuste and Sur, 1999; Crowley and
Katz, 2002; Hensch, 2005; Taha and Stryker, 2005; Huberman
et al., 2006; White and Fitzpatrick, 2007). The model also assumes
that the neurons are mature unlike in reality where neurons are
immature during very early stages of development and are char-
acterized by a high concentration of Cl− ions as a result of which
all neurons are depolarizing (Hensch, 2005).

The model is designed to address the thalamocortical circuit
where thalamic afferents from the LGN activate the principal
cells of layer 4 of V1 via geniculocortical synapses (Antonini and
Stryker, 1978; Ursey et al., 1999; Yuste and Sur, 1999; Bartsch and
van Hemmen, 2000). For convenience, the principal cells within
layer 4 will be referred to as E neurons while all the inhibitory
interneurons will be referred to as I neurons throughout the arti-
cle. The E neurons are connected to other local E neurons and I
neurons to form a dense local recurrent network. In our model,
the E and I neurons will make up two sub-layers within layer 4.
Similarly the LGN in the full model architecture (Figure 1) is
also modeled as an Excitatory-Inhibitory (E-I) network. The E-I
network model is a commonly used design to simulate models
of thalamocortical areas (Binzegger et al., 2004; Kremkow et al.,
2007; Kumar et al., 2008). The synapses in the model are plas-
tic throughout all phases of development (Hensch, 2005) and
the self-organization process refers to the change in the synaptic
conductance during development.

In general, neurons in the cerebral cortex are densely con-
nected to neurons close to it and sparsely connected to neurons
far away from it (Schummers et al., 2004; Song et al., 2005; Perin
et al., 2011; Voges and Perrinet, 2012). In particular, models of
cortical function often assume that cortical circuitry acts in a
center–surround fashion, whereas separated pairs of cells have a
mutually suppressive influence. Further, to make the enhanced
cortical patterns congruent with the sensory representation of the
system, the cortical interactions must depend on the functional
distance between the cells, determined by the features coded by
them. This functional circuitry, known as “Mexican hat” orga-
nization, has been adopted in network models of orientation
selectivity (Somers et al., 1995; Kang et al., 2003). In our model,
we make a similar assumption where the Gaussian distribution of
synaptic connections for the excitatory or glutamatergic synapses
is dense and narrow in its spatial extent (Figure 2A) compared
to the inhibitory or GABAergic synapses which are more broadly
distributed.

The E neurons in layer 4 (Figure 2B) are connected to its
neighboring E neurons and I neurons in I layer of layer 4.
Similarly, I neurons in layer 4 are connected to its neighboring
I neurons as well as the E neurons in layer 4. Thus there are
four types of synapses depending on the pre- and post-synaptic
neuron: E → E, E → I, I → E, and I → I. The first two types of
synapses are excitatory in nature and obey E-STDP rule while the
last two synapses are inhibitory in nature and obey the I-STDP
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FIGURE 1 | The complete network model (A) with thalamocortical circuit

where thalamic afferents from the LGN activate the principal cells of

layer 4 of V1 via geniculocortical synapses. The layer 4 and LGN are both
modeled as an E-I network. There are two inhibitory populations in layer 4:
the feedback inhibitory population I1, which does not receive any inputs from
LGN but only from the E neurons of layer 4 and the feedforward inhibitory
population I2, which does. The LGN receives spikes from retinal ganglion
cells (RGC). The LGN and layer 4 neurons in the model are separated by the
dashed line in the figure. This complete model is used for simulating the

experience-dependent phase of development. For each network layer, 60%
of randomly chosen neurons are injected with background noise in form of
currents (Iinj) for 30 ms. A new of set of 60% randomly chosen neurons at all
layers are selected again after that and are injected with background noise.
This process is repeated throughout all three phases of development. For
simulating early experience-independent phase (Phase 1) the complete
network is purely driven by the background noise at both LGN and layer 4. For
simulating late experience-independent phase (Phase 2) the LGN is activated
by spikes due to retinal waves from RGC.

rule for plasticity (Woodin et al., 2003; Caporale and Dan, 2008;
Hartmann et al., 2008). The synaptic connections are initialized
with random synaptic strengths and obey the connection density
as prescribed by the Gaussian distribution shown in Figure 2A for
all four types of synapses. An example of a 10 × 10 set of E neu-
rons in layer 4 with E → E synaptic connectivity is provided in
Figure 2D. Without loss of generality, the E and I layers in layer
4 in all our simulations will consist of a 2-D sheet of 128 × 128
neurons. The LGN in the full model (Figure 1) is also composed
of an E-I network similar to layer 4. The E and I layers within the
LGN consist of 48 × 48 neurons and there are two such E-I net-
works in the LGN corresponding to each eye. Each LGN E neuron
from both the eyes makes sparse and random synaptic connec-
tions to E neurons in layer 4 (Figure 2C). In addition to these
LGN → E synaptic connections, the LGN neurons are also con-
nected to a feedforward inhibitory population of neurons which
provide feedforward inhibition to the same E neighborhood in
layer 4. Feedforward inhibition is known to play a role in input
normalization and expansion of cortical dynamic range (Pouille
et al., 2009). The ultimate distribution of synaptic strengths in
model synapses is dictated by E-STDP and I-STDP during the
developmental process.

The spiking model simulations were performed using the
HRLSim (Minkovich et al., under revision) which is a multiple
graphical processing unit (GPU) based spiking simulator in C++.
This simulator is an extension of a single GPU developed pre-
viously (Nageswaran et al., 2009) and uses an MPI interface and
other optimizations to enable scalable and real-time simulation of
large scale spiking neural networks. The computations to estimate
the ODM and OSM were performed in MATLAB. The details

of the neuronal and synaptic mechanisms and the performance
metrics and measures used for the various experiments are now
provided.

NEURON MODEL
In this study the leaky integrate and fire neuron model (Vogels
et al., 2005) is used where each neuron receives multiple input
current signals and the dynamics of its membrane potential V can
be determined as:

τm
dV

dt
= (Vrest−V) +

∑
w(t)(Eex−V) −

∑
z(t)(Em−V) + Iinj

(1)
when V reaches a threshold voltage VT , the neuron fires a spike,
and V is reset to Vreset. This basic model provides several control
variables for the membrane voltage including synaptic conduc-
tance w (excitatory) and z (inhibitory), membrane time constant
τm, reversal potentials Eex and Ein, and resting voltage Vrest.
The parameter Iinj represents the current injected into the neu-
ron. Synaptic inputs to the neuron are modeled as conductance
changes where a single pre-synaptic spike at time t generates a
synaptic conductance for excitatory and inhibitory synapses as
follows:

w(t) = we
−t

τAMPA (2)

z(t) = ze
−t

τGABA (3)

where the time constants τAMPA and τGABA are used to model the
kinetics of AMPA and GABA receptors. The value of the excita-
tory and inhibitory synaptic conductance w and z in Equation (1)
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FIGURE 2 | The synaptic connectivity density distribution for the

network. (A) From any E-neuron to any other neuron (E or I) in
shown in green and from any I-neuron to any other neuron (E or I) is
shown in red. (B) There are four types of synapses depending on the
pre- and post-synaptic neuron: E → E, E → I, I → E, and I → I. It should
be noted that the network has periodic boundary conditions such that
topmost and bottommost neurons are regarded as neighbors, as are
the leftmost and rightmost columns within each layer. The
neighborhood around each E or I neuron is shown as a dotted circle.
(C) The LGN network is also an E-I network as shown here with
mutually inhibiting connections between neurons that receive inputs
from the RGCs (not shown) from the left and right eye. Each LGN
neuron from both eyes project to a neuron and its neighborhood in

layer 4. For convenience, only one such projection is shown here. The
LGN network (2 × 48 × 48) is smaller than the layer 4 network
(128 × 128). In addition, the LGN inputs from the left and right eye
populations project to the I2 population in layer 4 which consists of
48 × 48 inhibitory neurons as well. (D) The synaptic connections for a
set of 10 × 10E neurons in layer 4 are shown here. The red square
shows a single E neuron with a 19 × 19 neighborhood. The white
pixels within each such square indicate synaptic connections with
maximum synaptic strength while black pixels indicate synaptic
connections with zero synaptic strength. A closer look at the 19 × 19
neighborhood for one of E-neuron shows the initial strengths of
synapses from the E-neuron in the center to its neighboring E
neurons. These synaptic strengths are randomly distributed.
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Table 1 | Neuron parameters.

Parameter Value

τm 20 ms

EEx 0.0 mV

Einh 0.0 mV

Vreset −60 mV

Vrest −74 mV

VT −54 mV

τAMPA 10 ms

τGABA 50 ms

is determined by STDP. Table 1 provides a list of values for all
the constants used to simulate the neuron model. During model
simulations, the continuous membrane equation is updated using
Euler integration with a time step of 1 ms.

EXCITATORY STDP
The E-STDP function modulates the excitatory synaptic con-
ductance w based on the timing difference (tpre − tpost), or
�t, between the spike times of pre- and post-synaptic neu-
ron (Figure 3A). The control parameters (A+, A−, τ+, τ−) can
be used to modify the amount of potentiation and depression
(Table 2). The synaptic conductance is computed as:

wnew = wold + �w (4)

where

�w = gmax × F(�t) (5)

and

F(�t) =
⎧⎨
⎩

A+ × exp
(

�t
τ+

)
, if �t < 0

−A− × exp
(

�t
τ−

)
, if �t ≥ 0

(6)

If wnew > gE
max, then wmax = gE

max. On the other hand if
wnew < 0, then wnew = 0. The factor β = |A−τ−|/|A+τ+| con-
trols the relative amounts of depression to potentiation during
learning.

INHIBITORY STDP
The I-STDP function modulates the inhibitory synaptic conduc-
tance z based on the timing difference � t between the spike
times of pre- and post-synaptic neuron (Figure 3B). The synaptic
conductance is computed as:

znew = zold + �z (7)

The change � z = B+ is more inhibitory when −λ ≤ �t ≤ λ.
The change �z = B− is less inhibitory when −λ − δ ≤ � t <

−λ or λ < �t ≤ λ + δ. There is no change in inhibition if either
�t ≤ −λ − δ or �t ≥ λ + δ . If znew < 0 then znew = 0. On the
other hand, if znew > gI

max then znew = gI
max. The control param-

eters (B+, B−, λ, and δ) (see Table 2) can be used to vary the
relative amounts of potentiation and depression during learning.

MODEL SYNAPTIC CONNECTIVITY
The synaptic connectivity in layer 4 and LGN is initialized using a
Gaussian density function as:

p(x, y) = α × e
−[(x − x0)2 + (y − y0)2]

2 × σ (8)

The point (x0, y0) represents the center neuron and (x, y) rep-
resents the position of neurons within its neighborhood. The
constants α and σ (Table 3) control the maximal distribution
probability and distribution variation.

BACKGROUND SIGNAL AND NOISE
A random voltage injection is used to mimic cortical input spikes
generated from brain regions (or background) as well as noise.
The injected voltage Vinj(t) is modeled as:

Vinj(t) = Au(r), t ∈ [t1, t1 + �t] (9)

with

u(r) =
{

1 r ≥ μ

0 otherwise
(10)

The constant A determines the amplitude of voltage injec-
tion. The variable r is a random variable uniformly distributed
in the range (0, 1.0). The parameter �t (Table 3) is the
voltage injection duration while the parameter μ represents
the percentage of neurons that receive voltage injection ran-
domly. Thus, the injection time duration �t is used to set
an injection frequency. In our model, before the eyes open,
the spiking activity of neurons is driven primarily by random
current injection Iinj (in Equation 1) by multiplying Vinj(t)
into currents using a fixed synaptic conductance constant of
0.00125 nS.

RETINAL WAVE MODEL
Before the onset of stimulus driven activity, which helps refine
neural organization in later developmental stages, neural cir-
cuits generate spontaneous patterns of activity which guide early
development (Katz and Shatz, 1996). In the retina, spontaneous
activity takes the form of coordinated bursts of spikes in the
neighboring retinal ganglion cells (RGC) that slowly spread across
the retina. They can initiate at any retinal location and cover
the entire retina in minutes (Schiller, 1992; Butts, 2002; Godfrey
and Swindale, 2007; Feller, 2009). The retinal waves were gen-
erated in our model as follows. The retina is assumed to have
48 × 48 neurons or RGCs. For each eye, a randomly chosen set
of N RGCs are selected for retinal wave initiation. For each ini-
tiation site, a direction d is selected for wave propagation from
a set of eight possible directions (i. e., 0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 270◦, and 315◦). At each initiation site, RGCs within a
neighborhood of size 10 × 10 are then activated at the first time
step (t = 1 ms). The strength of the stimulation is varied in a
Gaussian fashion where neighbors at closer distance are stim-
ulated more strongly than neighbors that are further apart. In
the next time step (t = 2 ms) the next RGC to be stimulated is
selected after moving by two steps (i.e., velocity is 2 steps/ms)
in the direction d. The newly stimulated RGC is used to activate
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FIGURE 3 | (A) The E-STDP function modulates the excitatory synaptic
conductance w based on the timing difference (tpre

i − tpost
j ) between

the action potentials of pre-synaptic neuron i and post-synaptic neuron
j. The control parameters (A+, A−, τ+, and τ−) can be used to modify
the amount of potentiation and depression (see “Materials and
Methods”). (B) The I-STDP function modulates the inhibitory synaptic

conductance z based on the timing difference (tpre
i − tpost

j ) between the
action potentials of pre-synaptic neuron i and post-synaptic neuron j
(see “Materials and Methods”). If the timing difference is > λ, then
the synapses become less inhibitory and the change itself is of a
smaller magnitude while it is the opposite case when the timing
difference is < λ.

RGCs within a 10 × 10 neighborhood and the process is contin-
ued. The total duration for each retinal wave for each eye is set
to 10 ms. The activity of the RGCs is converted into spike trains
as described below. The process is continued to generate several
retinal waves during the late activity-independent developmental
phase.

SPIKE ENCODING OF RETINAL WAVES AND NATURAL IMAGES
The input visual images are in the form of either retinal waves
or other natural images. For natural images, we use the Caltech
101 image dataset (Fei et al., 2006). A total of two thousand
48 × 48 images were cropped from the database as follows. A
subset of images was selected from the database such that the cen-
tral portion of the image had some texture and contrast in them.

These original images of size 320 × 200 were down-sampled to
128 × 128 images and then a 48 × 48 portion from the center of
these images (see Figure 11) was extracted. These 48 × 48 images
were provided as RGC inputs to the LGN after spike encoding
the images as described below. While the Caltech 101 dataset
was developed for object recognition purposes, the statistics of
the images extracted is still representative of natural images in
general.

We created stereo pairs from every image in the dataset by
shifting the right eye image by a maximum of 10 pixels to the left
or right and 10 pixels to the top or bottom with respect to the left
image. This simulates disparity in the two images. In addition to
disparities, we also scale the right image by a small scaling factor
between 1 and 1.05 to simulate small perspective changes. Such
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Table 2 | STDP parameters.

STDP Parameter Value

E-STDP

gE
max 0.035 nS

A+ 0.0 mV

β 1.02 nS

τ+ 20 ms

τ− 20 ms

I-STDP

gl
max 0.0035 nS

B+ 0.045 nS

B− 0.025 nS

λ 12 ms

δ 40 ms

Table 3 | Other model parameters.

STDP Parameter Value

SYNAPTIC CONNECTIVITY

σE 1.0

σl 0.5

αE 2.5

αl 3.5

τ− 20 ms

BACKGROUND AND NOISE

A 1.07

�t 30 ms

μ 0.65

t1 0 s

t2 6000 s

OSM COMPUTATION

φ 0◦, 45◦, 90◦, 135◦

σa 2.5

σb 5.7

ϒ [−8.0, 8.0]

affine transforms are commonly used in computer vision (Zhang
and Xu, 1998).

The images are converted into spike sequences by an encod-
ing process, and the sequences serve as input to neurons in the
LGN layer. The encoding process is generated based on Poisson
statistics where the Poisson distribution is used to generate the
interspike interval (ISI) for each pixel. The mean value of pixel
intensities in the image serves as the mean value of the Poisson
distribution. The Poisson distribution is given as:

P(x) = λxe−λ

x! (11)

where λ is the mean value of pixel intensities and x is the ISI. To
generate the spikes for a given pixel at a given time, we randomly
select a probability value P(x) at each time step and then compute
x using Equation (11). This sets the time step at which the next
spike is generated as part of the encoding process.

RECURRENT CORTICAL MAP COMPUTATION
The recurrent cortical map (RCM) computation is based on the
synaptic conductances between E → E neurons in layer 4. The
purpose of RCM computation is to identify evolution of local
synaptic connectivity within the E sub-layer of layer 4 during the
various phases of development. The RCM is estimated by using a
Gaussian bar function as an orientation template (Bartsch and
van Hemmen, 2000) to search for the best orientation match
within its neighborhood. The E neurons are color coded based
on the best match score. The resulting image of the color coded E
neurons constitutes a RCM.

Assuming that an E neuron is located at p, the Gaussian bar
function is given by:

Gxy(φ, p) = exp

{−[x cos φ + y sin φ − γ]2

2 × σ2
a

}

× exp

{
−[y cos φ − x sin φ]2

2 × σ2
b

}
− G0(φ, p) (12)

where the variables x and y varies within E-neuron’s locally con-
nected neighborhood and

∑
xy Gxy(φ, γ) = 0. For each of the

four orientations, φ ∈ {0◦, 45◦, 90◦, 135◦}, the parameter γ is
varied to determine the maximal orientation match as:

R (φ) = max
p

⎡
⎣∑

xy

w
(
x, y

)
Gxy (φ, γ)

⎤
⎦ (13)

With the maximal orientation match, a direction vector
→
d (φ) =

(R(φ), 2φ) is constructed for each orientation. Then, the four
direction vectors of the four orientations are combined into a final
direction vector as:

→
S = (Rs, φs) = →

d (0◦) + →
d (45◦) + →

d (90◦) + →
d (135◦) (14)

The orientation of synaptic weights for the E-neuron is deter-
mined by

φor = φs/2 (15)

The RCM is obtained by color coding each E neuron in layer 4
using φor. The RCMs does not reflect orientation selectivity of
OSMs since they are not measured based on inputs from the LGN
and only show anisotropies in the local pattern of connectivity
within layer 4.

ODM COMPUTATION
The ODM was computed using the following procedure. Each E
neuron in layer 4 receives inputs from E neurons in the LGN.
The initial synaptic conductance values for all input synapses
from LGN are set to the same value. Thus, the E neurons ini-
tially start off by responding equally to inputs from both the eyes
and are thus labeled as binocular. These geniculocortical synapses
are tuned using STDP during the three phases based on random
activity, retinal waves and with natural stimuli. The number of
afferent synapses into an E neuron of layer 4 after each phase
of development is tracked from each eye and the E neuron is
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assigned a membership to one of the two eyes based on the eye
for which the sum of synaptic conductances from LGN → E
is greater. It should be noted that this eye selectivity naturally
emerges without the need for setting any arbitrary thresholds due
to two factors. The first factor is due to mutual inhibition between
the LGN neurons corresponding to the left and right eye (see
Figure 2C). I-STDP in these inhibitory synapses forces the LGN
neurons to compete and this competition affects the ability of E
neurons in LGN to influence the E neurons in layer 4. The second
factor is that E-STDP in the synapses from LGN → E pathway
also creates a competition between synapses from the two eyes
(Miller et al., 1989). These two competitive factors combine to
break the symmetry in the geniculocortical synapses from the two
eyes by increasing the synaptic conductances for inputs from the
eye that attains a positive bias and vice versa.

Over time, if there is some spatial structure in the inputs (as it
happens after Phase 1), the synaptic conductances in the LGN
→ E pathway become more separated in magnitude based on
the eye due to aforementioned competition until the difference
becomes stable. This causes the inputs from one eye in the LGN to
eventually dominate the response of E neurons in layer 4. The rea-
son for the appearance of contiguous patches of eye preference is
due to the stable formation of the RCM. This map indicates local
structure in the lateral excitation of neighboring E neurons (see
Figure 2B) in layer 4 to similar stimuli. Thus, as a given E neuron
develops a preference for one eye due to bottom–up competition
as described above, the neighboring E neurons in layer 4 also tend
to receive excitation from this E neuron and thus can influence
their preference as well over time such that a well-developed and
stable ODM emerges.

In order to measure the emergence of eye selectivity during
various phases of development, we compute the sum of synap-
tic conductances for the geniculocortical synapses from the left
and right eye separately for each E neuron. We then compute
the average and standard deviation of the difference between
the two sums for all the E neurons in layer 4. If the ODMs are
truly mature, then this average should be substantial in terms of
the total dynamic range of the synaptic conductances while the
standard deviation must be very small. Furthermore, these val-
ues must also stabilize over time indicating that the ODMs are
both mature and stable. It should be noted that ODM maps gen-
erated in all phases are smoothed using a median filter of size
3 × 3 to remove small speckle noise due to some neurons devel-
oping opposite eye preference on occasion in a neighborhood of
E neurons that have the same eye preference.

OSM COMPUTATION
For clarity, we follow the definition of orientation preference and
orientation selectivity provided in Blasdel (1992). Orientation
preference of an E neuron in layer 4 is the orientation that yields
the strongest response while orientation selectivity is the rate at
which responses fall to zero with increasing displacement from
the preferred orientation. The orientation selectivity of E neurons
in layer 4 cannot be computed using RCMs since that computa-
tion does not involve input stimuli from LGN to the E neurons of
layer 4. In order to derive OSMs, we stimulate the LGN at a given
location p within it (on both eyes) using an oriented rectangular

bar with a length of 15 pixels and a width of 5 pixels. At the end of
each phase of development, the oriented bar in a given orientation
α is moved bilaterally by different amounts (each amount being
less than <7 pixels) during odd and even trials within the LGN
layers and the resulting spikes from the stimuli (Equation 1) are
used to stimulate the E neurons that receive these spikes in layer 4.
The firing rate of spikes generated by each E neuron in layer 4 in
response to the LGN inputs is calculated by counting the number
of spikes in a 10 s (or 10,000 steps) time window. The resulting
spike activity provides a sense for which E neurons respond more
strongly to the input spikes from LGN for a given bar orientation.
In other words, it provides an estimate of orientation selectivity
of the E neurons in layer 4 to that particular oriented bar in the
LGN. This process is repeated for four different orientations of
the bar (i. e., α = 0◦, 45◦, 90◦, and 135◦).

Using the firing rates of E neurons we then apply the algo-
rithm described in Blasdel (1992) to compute OSM as follows.
First, we compute the differential between positive and negative
images corresponding to complimentary stimuli—for example,
α = 0◦ and α = 90◦ would correspond to a positive and nega-
tive image. The negative image is subtracted from the positive
and this reveals the change in the response to the stimulation
due to the horizontal and vertical bar in the LGN. The dif-
ferential image is then transformed at every location, in every
image, into vectors displayed either as cosine and sine pairs, in
Cartesian coordinates, and as magnitudes and angles in polar
coordinates with angles corresponding to twice the positive stim-
ulus orientation, and lengths corresponding to net intensities.
The resulting vectors from the transformed images are added
to reflect orientation-weighted contributions from each image.
Since stimulus orientations are multiplied by two, contributions
generated by similar orientations reinforce one another, while
those generated by orthogonal orientations cancel. The polar
coordinates (angles and magnitudes) that are computed from the
summed image reflect the orientation preference and selectivity of
the E neurons in layer 4 (Blasdel, 1992; Miikkulainen et al., 2005).

The orientation preferences are analyzed with respect to their
gradient that measures the rate of change at every point in two
dimensions. Following Blasdel, we compute the gradient in x and
y and then convert the result to Polar coordinates. The magnitude
of the gradient calculated from the polar coordinates indicates the
steepest rate of change at any point irrespective of direction. The
gradient magnitude is used to find discontinuities which appear
as short lines or dots running across a region of continuous tone
(Blasdel, 1992). These discontinuities can signify either a fracture
if it appears as a short line between two contiguous regions with a
gradient of 90◦ or more, or signify pinwheel formation, if the gra-
dient magnitude plot contains dots. This entire process described
above was repeated after each developmental phase to assess the
formation of OSM.

In order to get robust orientation gradients as well as orien-
tation selectivity and preferences, the Blasdel approach averages
the raw data from the summed Cartesian images (see Figure 13
in Blasdel, 1992). The purpose of this averaging process was to
smooth out noise and improve the signal-to-noise ratio in these
images. We smooth the summed x and y Cartesian images from
our model using a median filter and then convert them into polar
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representation to obtain the orientation preference and selectiv-
ity of the E neurons. In order to estimate the correct filter size for
smoothing, we adopt an iterative convergence process as follows.
We first compute the orientation gradient responses for the raw
OSMs. The raw OSM data in our model has small patches of noisy
neuron orientation preference responses amidst regions of uni-
form orientation preference. The orientation gradients computed
with such noise yields spurious discontinuities in the form of
extraneous dots and lines. To mitigate this, we gradually increase
the filter size of the median filter and repeat the above process
to compute the orientation gradients until there are no spurious
discontinuities due to those noisy neurons. This process does not
change the resulting orientation preference maps in any qualita-
tive fashion but filters out the noisy neuron preferences. We find
that a median filter of 9 × 9 was sufficient to avoid any orienta-
tion gradient artifacts due to noisy orientation preferences. This
approach was used to compute orientation selectivity, orientation
preference and orientation gradients as well as perform analysis
on the resulting functional maps after each phase of development.

While the smoothing operation during OSM computation
based on the Cartesian images (as described above) helps remove
the salt and pepper noise in the orientation gradient maps to
produce robust fractures, they also remove any point singulari-
ties as well. However, visual inspection of the OSMs shows that
the orientation preferences rotate continuously through ±180◦
along circular paths. This feature is characteristic of a pinwheel
(Ohki et al., 2006). A better model of how the signal is smoothed
in animal experiments could possibly help mitigate this prob-
lem. At this point, since our methodology does not obtain precise
point singularities in the orientation gradient maps, we call these
formations pinwheel-like patterns.

STABILITY ASSESSMENT
In order to measure the stability of functional map or RCM,
a similarity measure between the synaptic conductance maps
that reflect that particular structure in one developmental phase
is compared against the synaptic conductance maps in another
developmental phase based on Kullback–Leibler (KL) distance
(Kullback, 1987). For example, the stability of the RCMs is deter-
mined by the least change in the KL distance. Mathematically,
let h1(w) and h2(w) represent the two synaptic conductance his-
tograms for synaptic conductance maps from two different devel-
opmental phases, W1 and W2. By normalizing the histograms, the
synaptic conductance distribution functions are obtained as:

pi(w) = hi(w)

max[hi(w)] , i = 1, 2. (16)

The similarity between synaptic conductance maps is then com-
puted as:

S(W1, W2) = 1

2

[∑
w

p1(w) log

(
p1(w)

p2(w)

)

+
∑

w

p2(w) log

(
p2(w)

p1(w)

)]
(17)

This KL measure provides a way to track changes in synaptic con-
ductance during development and thus provides a measure of
stability in the evolving functional maps or RCMs.

RESULTS
PHASE 1: EARLY EXPERIENCE-INDEPENDENT OSM AND ODM
FORMATION
The first phase of development begins with an E-I network that
models the local recurrent microcircuit in layer 4 (Figure 1).
This network consists of a 2-D lattice of 128 × 128 neurons
with a 19 × 19 local neighborhood of synaptic connections to
other E neurons (see Figures 2A,B). Neurons on the borders were
assumed to have periodic boundary conditions such that top-
most and bottommost neurons are regarded as neighbors, as
are the leftmost and rightmost columns within each layer. The
neurons exhibit spontaneous spiking activity (Chiu and Weliky,
2001; Huberman et al., 2006, 2008). This condition is simu-
lated by injecting a constant small background current into a
sub-population of both E and I neurons in layer 4 and LGN
neurons of the network (see “Materials and Methods”). The con-
ductance based synapses along with the recurrent connections
within layer 4 ensures that the network is able to maintain this
spontaneous activity (Kumar et al., 2008). The key aspect of the
early experience-independent phase in our model is the absence
of any retinal inputs (Figure 2B).

As the neurons in the network begin to spike due to spon-
taneous activity, STDP alters the synaptic strengths w and z
(Equations 6, 7) and thus the connectivity between various neu-
rons. Using our initial network model architecture (see “Materials
and Methods”) combined with STDP in both excitatory and
inhibitory synapses helps to achieve a good balance of excitation
and inhibition. It is becoming more apparent that the ongoing
balance of cortical excitation and inhibition plays a role in early
development (Xing et al., 2011). The interesting aspect of our
model is that inhibitory plasticity helps maintain this balance in
the cortex that is qualitatively similar to observations in some
recent experimental studies (Akerman et al., 2002)

This aspect of development was tested by performing three
types of experiments. In the first experiment, both w and z
synapses obeyed STDP and in this case the network is able to
operate at much lower firing rates (average of ∼10 Hz). As w
strengthens and create an imbalance in synaptic currents, z get
rapidly potentiated due to an order-independent I-STDP where
inhibition increases irrespective of the order of occurrence of
pre- and post-synaptic spikes (Caporale and Dan, 2008) for
small timing differences between pre- and post-synaptic spikes
(Equation 7). This results in a rapid compensatory increase in
inhibitory currents into the neurons in a self-organized manner
thus effectively preventing the neurons from exceeding VT more
often (Vogels et al., 2011). This enables a good balance between
excitation and inhibition and results in the emergence of RCM
that have a locally smooth structure (Figure 4A).

In the second experiment all inhibitory synapses are turned
off (i. e., z = 0). It was observed that firing rate of the E neu-
rons was high on average (∼100 Hz) but there was no emergent
structure (Figure 4B). A high firing rate of neurons due to lack
of inhibition forces the synapses to compete at a faster rate due
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FIGURE 4 | Model architecture and simulations of first phase of

recurrent cortical map (RCM) formation for three different cases are

illustrated here. The patterns of the RCM are aligned systematically with
the Caretsian grid on which the population is laid out but the emergence
of smooth organization is due to synaptic plasticity that changes the
connectivity of neighbors to become similar to each other. (A) When STDP
in both excitatory and inhibitory synapses are active, RCMs are formed
with a clearly developing structure. The RCM is created using the E → E

synaptic conductance values (“Materials and Methods”). The average firing
rate of the E neurons of layer 4 is ∼10 Hz. Low firing rates indicate a good
balance between excitation and inhibition. (B) When there is no inhibition,
RCMs fail to emerge and the average firing rate of the network is
∼100 Hz. (C) In the case of fixed inhibition in the network, RCMs do
emerge for some but not for all fixed inhibition settings. The average firing
rate of the network for one such example setting of fixed inhibition for
which no RCM emerges is ∼75 Hz.

to the asymmetric E-STDP rule (Equation 6) that results in a
rapid rise in synaptic conductances for some synapses and a
rapid fall in synaptic conductances for most others (due to a bias
toward depression—see “Materials and Methods”). These rapid
changes in synaptic conductance appear to be detrimental to the
emergence of structure.

In third experiment excitatory synapses obeyed the STDP rule
while plasticity was turned off for all the inhibitory synapses.
Instead the inhibitory synapses were fixed (i. e., z = const) in
synaptic strength. The exact setting for the fixed inhibitory synap-
tic conductance values was critical in order to see any emergence
of structure. The firing rate was lower on average (∼75 Hz) and
was not conducive for the emergence of structure in most cases
(Figure 4C).

The emergence of RCM during the first phase of development
is captured in Figure 5. The time taken for the emergence is just
an artifact of the model parameter settings and reflects upon the
fact that activity-dependent plasticity caused by STDP enables
the emergence of RCMs (see “Materials and Methods”). The
distribution of E → E synapse conductances (Figure 5A) shows
smoothly varying structure in synaptic conductances within a
neighborhood (Figure 5B). The distribution of synaptic conduc-
tances (Figure 5C) shows that the initial bimodal distribution
becomes more separated and sparse in strong connections that is
due to the competitive nature of STDP (Song and Abbott, 2001)
and this competition between synapses that are pre-synaptic to

neurons in layer 4 results in the modification of their synaptic
connectivity and results in the emergence of RCMs.

In order to test the orientation selectivity of E neurons in
layer 4, the following experiment was performed (see “Materials
and Methods”). The LGN neurons from both eyes were stim-
ulated with oriented bar stimuli and the spiking activity of E
neurons in layer 4 were measured in time windows of 10 ms
and then averaged to compute their firing rates. The goal was
to observe if there was preferential firing of V1 neurons to cer-
tain orientation of the bar stimuli presented in the LGN. A
strong selectivity response feature required the adaptation of both
the geniculocortical (LGN → E) and cortico-cortical (E → E)
synapses such that the firing response of E neurons in layer 4
is strong to particular orientations and not others. The results
show that the E neurons in layer 4 develop preferential firing
to certain orientations and not to others (Figure 6). This illus-
trates that there was an emergence of OSMs with characteristic
iso-orientation domains and fractures in the orientation gradi-
ent maps. However, there were no point singularities indicating
the absence of any pinwheel-like formations. There were also no
linear zones formed.

The feedforward inputs triggered by spontaneous background
spiking activity in the LGN results in the excitation of layer 4 neu-
rons via the geniculocortical synapses (i.e., LGN → E synapses).
The synaptic inputs originating from LGN can be partitioned into
two groups based on the origin of LGN neurons: left and right
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FIGURE 5 | Evolution of RCMs during Phase 1 at three different stages

of development. (A) After 0.1 million steps of simulation the RCM is well
formed but not completely stable. The second stage after 0.5 million steps
of simulation shows the emergence of structure in local synaptic
connectivity between the E neurons in layer 4 (see “Materials and
Methods”). The RCMs are stable after 1 million steps. (B) The synaptic
conductances within the pin wheel for a 40 × 40 neighborhood (black
square) is shown where there is a clear lack of appearance of structure
after the first stage. After a 1 million steps of simulation, the RCM is well

formed and the synaptic conductances show well developed structure
except at the pin wheels. (C) The histogram of the synaptic conductances
in the E → E synapses of layer 4 shows that the initial histogram of
synaptic conductance values is bimodal with most of the synapses fixed at
a value of 0.12. As the RCM evolves, this bimodal distribution changes due
to competition between E → E synapses that is caused by STDP. This
competition creates a sparse network with a majority of the synapses
becoming zero while a fewer set of E → E synapses are fully potentiated
to 1.0.

eyes (Figure 7A). Initially the synapses are all of equal strength
(i.e., no bias) such that the E neurons in layer 4 respond equally
to spikes from LGN neurons corresponding to both the eyes
(Figure 7C). However, noisy background spiking activity in LGN
causes STDP to select some synapses to potentiate while others
to depress depending on temporal correlations among the spikes
that impinge on the E neurons in layer 4. This process results
in introducing a bias in the synaptic strengths from LGN → E
neurons in layer 4 due to STDP induced competition among all
geniculocortical synapses at any given E neuron. As a result, the
strength of geniculocortical synapses from one eye ends up being
more than from the other eye (Figure 7A) and thus E neurons in
layer 4 begins to develop eye selectivity. The eye selectivity of E
neurons across layer 4 manifests as an ODM (Figure 7D). This
early experience-independent formation of ODM while balanced
(i. e., number of E neurons that are selective to the left and right
are equal) is still fragmented without any contiguous patches of
neurons as found in the visual cortex of several species. This is
because in our model, the LGN neurons are primarily stimulated
via background activity that has no temporal or spatial contiguity
during Phase 1. The mean value of the difference in synaptic con-
ductance between the geniculocortical synapses from both eyes
increases slowly (Figure 7B). However, the standard deviation of

the difference is higher than the mean implying that many of the
E neurons have a very small difference in synaptic conductances
while a few have a much larger difference. This measure shows
that the ODMs are not really stable during the Phase 1.

PHASE 2: LATE EXPERIENCE-INDEPENDENT ODM AND OSM
REFINEMENT
In the second phase of development, in addition to the basic tha-
lamocortical circuit of Phase 1, the LGN is now connected to two
groups of RGC corresponding to the two eyes (Figure 1). The
RGC inputs to LGN represent internally generated spikes in the
form of retinal waves (“Materials and Methods”) that provide a
robust signal to drive activity in both the LGN and in layer 4 of
V1. Such spontaneous activity has been implicated in the devel-
opment of ODMs and retinotopy in V1 (Mooney et al., 1996;
Butts, 2002; Godfrey and Swindale, 2007; White and Fitzpatrick,
2007; Huberman et al., 2008; Feller, 2009). An example of a reti-
nal wave generated for a given eye with N = 10 is shown in
Figure 8A. The retinal waves after 300 and 200,000 waves are
shown in Figures 8B,C, respectively. It can be noted that by the
end of 200,000 waves, all the RGCs have been selected as initiation
sites and the distribution of RGC activity resembles a Gaussian
random field.
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FIGURE 6 | Various aspects of formed OSM at the end of Phase 1

including orientation gradients, orientation selectivity, and orientation

preferences of neurons are shown here. (A) The oriented bar stimuli are
provided as input to the LGN neurons and the raw firing rates of the E
neurons in layer 4 are measured (“Materials and Methods”). (B) The
smoothed responses (see “Materials and Methods”) of orientation
preferences is computed and plotted in color. The oriented bars on the
right provide the cyclic color code ranging from 0◦ to 180◦. (C) Orientation
selectivity of each E neuron is indicated using a grayscale map. The
brighter colors indicate high selectivity where those E neurons in layer 4
respond sharply to a very narrow range of orientations and vice versa. The
color scale shows the magnitudes of responses in a relative fashion. For
example, neurons in the neighborhood of neuron at (110, 100) show strong

selectivity (score of 110) to only 120◦ but not to other orientations while a
neuron at (80, 50) shows a weak selectivity (score of 8) to all orientations
including its preferred orientation of 150◦ . (D) The absolute magnitude of
the orientation gradients at each E neuron is shown here. Here lighter
values indicate high gradients (closer to 90◦) while black indicates there
neighborhoods have similar orientation preferences and thus no gradient at
all. Orientation selectivity and orientation gradients are linked such that
regions of high selectivity typically have low gradients while regions of low
selectivity have high gradients in a manner qualitatively consistent with the
data from the Blasdel paper. The discontinuous changes either occur alone
(singularities), or they group together along lines (fractures). While there
are many lines of fracture in this phase, there are no singularities, linear
zones or pinwheels.

In this model, the spikes generated by retinal waves are trans-
mitted via geniculocortical synapses to activate the E neurons in
layer 4. It should be noted that our model assumes that in this
phase of development, there is no separation of RGCs into ON
and OFF ganglion cells (Myhr et al., 2001; Huberman et al., 2008).
The distribution of the geniculocortical synapses to E neurons is
sharpened further due to STDP and the resulting ODM shows
more distinct patches selective to a given eye compared to ODMs
in Phase 1 (Figure 9A).

The emergence of ODMs was also analyzed based on lesion
studies. There are animal studies that suggest, for example, that
retinal wave disruption caused by intraocular injection of epibati-
dine reduces firing of the RGC thereby affecting the development
of eye-specific retinogeniculate projections and eventually the
development of functional maps as well (Wong, 1999; Feller,
2009). In our model, we qualitatively simulate the disruption
of retinal waves by cutting off neural activity in a percentage
of neurons in the right eye of the LGN. The resulting RCMs,
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FIGURE 7 | Formation of ODMs during Phase 1. (A) The methodology of
constructing the ODMs is outlined here (see “Materials and Methods”).
The synaptic conductance changes induced due to STDP at the
geniculocortical synapses from the LGN neurons corresponding to each
eye are tracked over time. If the E neuron in layer 4 has a stronger set of
afferents from the LGN from the left eye compared to the right eye, then
the E neuron is labeled as “left” and color coded as green in the ODM.
The exact opposite scenario results in the E neuron labeled as “right” and
color coded as red in the ODM. If there is a tie (as in the beginning), then
the E neuron is labeled as “binocular” and color coded as blue in the
ODM. (B) The sum of the synaptic conductances from the LGN neurons
corresponding to the left eye is compared against the sum of the synaptic
conductances from the LGN neurons corresponding to the right eye at
each E neuron. Each of these neurons are labeled as “left” or “eye” as
described above. Then the mean and standard deviation of the difference
between left and right eye afferent synapses for the neurons (nleft) labeled
“left” is computed and plotted in a semilog format with the ordinate
plotted in log scale while the abscissa data is plotted in regular scale. It
can be seen that the mean value of the difference increases slowly.

However, the standard deviation of the difference is higher than the mean
implying that many of the E neurons have a very small difference in
synaptic conductances while a few have a much larger difference. Similar
behavior was observed for the right eye as well. This measure shows that
the ODMs are not really stable during the Phase 1 in our model. (C) Early
ODM appears to have several binocular E neurons since all the
geniculocortical synapses are initialized with the same synaptic strength
and there have not been sufficient inputs to alter the synaptic strengths
via STDP. (D) At the end of Phase 1, the E neurons in the ODM shows
eye selectivity with an even split of neurons becoming selective to one of
the two eyes. There are no more binocular neurons. The ODM, however,
appears fragmented with no large contiguous areas of neurons showing
preference to one eye and not the other. Instead it has lots of small
contiguous areas of various sizes. This is due to random stimulation of the
LGN neurons with background activity with no temporal or spatial
contiguity during Phase 1. The STD and mean data in (B) also provides
further support to this basic phenomenon during this phase. However, this
improves during the second and third phases of development as shown in
Figures 10, 12 when there is more structure in the input data.

OSMs, and ODMs (Figures 9B–D) are compared against the
case of normal development (Figure 9A). In our model, this bias
emerges due to the competitive nature of the STDP rule. When
more inputs are received from the left eye, there is a higher

probability for the geniculocortical synapses from the left eye
to cause a post-synaptic spike. This in turn implies that the
geniculocortical synapses from the left eye are going to poten-
tiate a lot more than those from the right eye and thus the E
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FIGURE 8 | The retinal wave model. (A) Shows 128 × 128 RGCs from one
retina. After 1 ms of spontaneous firing of RGCs, there are 10 sites that are
randomly initiated to generate spikes. These sites create further activity
among neighboring RGCs to propagate a wave of spikes as shown for
t = 6 ms and t = 10 ms. Each such spontaneously initiated wave activity is
terminated at the end of 10 ms. The 128 × 128 retinal wave image is

donw-sampled to a 48 × 48 image and provided as input to the LGN. (B) The
superposition of all spike activity after 300 retinal waves shows a good spatial
distribution of spike activity covering all parts of the retina. (C) The late
experience-independent phase in our model lasts for around 200,000 retinal
waves when all the RGCs in the retina are activated at least once and the
spiking activity of RGCs resembles a Gaussian random field-like distribution.

neurons in layer 4 become more selective to spikes from the
left eye.

RCM development is only affected in a minor fashion due
to lesions to the LGN cells because RCM formation is primarily
dictated by the E → E synaptic conductance maps while ODM
and OSM formation is dictated by both LGN → E and E → E
synapses. Since the changes in inputs from retinal waves drive
the geniculocortical synapses, the spikes in the E neurons in layer
4 are primarily caused by the LGN. So, the synaptic changes
in geniculocortical synapses (which affects ODM and OSM) are
more dramatic than in the cortico-cortical synapses (which affects
OSM and RCM).

The ODMs formed in Phase 2 show more contiguous patches
of eye selectivity (Figure 10A) compared with Phase 1. The mean
and standard deviation of difference in synaptic conductances
(Figure 10B) show a more clear separation on the semi-log plot
indicating that the ODM formed in Phase 2 is more stable than
in Phase 1. The orientation tuning of E neurons in layer 4 during
Phase 2 was evaluated by stimulating the LGN neurons for both
eyes using the same oriented bar stimuli (Figure 6) during Phase
1. The results show that the E neurons in layer 4 develop more
well-defined iso-orientation domains (Figure 10E) and fractures
(Figure 10C) in Phase 2 compared to Phase 1. This change is
caused by STDP due to a spike inputs from the geniculocorti-
cal synapses in Phase 2 due to the retinal waves that have more
spatial and temporal contiguity compared to noisy background

level activity in Phase 1. The peak firing response of E neu-
rons in layer 4 are on the average larger than in Phase 1 as
indicated by the larger dynamic range in orientation selectivity
maps (Figure 10D). This shows that the E neurons in Phase 2
have developed sharper orientation selectivity and the OSM is
actively evolving due to activity-dependent plasticity. There are
also three clear pinwheel-like patterns that emerge in this stage
as depicted in black circles (Figure 10E) where the orientation
preferences rotate continuously through ±180◦ along circular
paths. However, there were no corresponding point singulari-
ties that could be extracted from the orientation gradient due
to the limitations of the methodology used (see “Materials and
Methods”).

PHASE 3: EXPERIENCE-DEPENDENT OSM AND ODM REFINEMENT
AND MAINTENANCE
For the third phase of the developmental process, the model
is exposed to sensory experience in the form of images from
a database of real-world images from the Caltech 101 database
(see “Materials and Methods”) to study the effects of experience-
dependent plasticity (Yao and Dan, 2001) on the refinement of
OSMs and ODMs. In our model, the RGCs in this phase are
assumed to be segregated into ON and OFF neurons as evident in
animals after eye opening (Koehler et al., 2011). The ON and OFF
regions each contain 48 × 24 neurons. The ON neuron responses
are encoded as spikes (see “Materials and Methods”). The OFF
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FIGURE 9 | The formation of RCMs, OSMs, and ODMs under normal

development and with lesion in the LGN → E pathway is shown here.

The RCMs are the most stable since they are fully dependent on local
recurrent connections within layer 4. The OSMs are altered more since their
formation is dependent on both local recurrent connections as well as
feedforward connections from LGN to layer 4. The ODMs are the most
affected by lesions since they are primarily affected by LGN to layer 4
connections. (A) The column shows the RCM, OSM, and ODM after 4 million
steps. The eye selectivity of the E neurons in layer 4 appears to be evenly
balanced between the two eyes. The ODM appears to have more contiguous
patches of neurons that respond to only one of the two eyes. The OSM is
developed with more patches of iso-orientation domains. (B) The
development of ODMs is affected with more E neurons tuned to the left eye

compared to the right eye when 25% of RGCs in the right eye are prevented
from stimulating the right LGN neurons. The OSMs also show a
reorganization of the map albeit without any dramatic changes. The RCMs
are still stable. (C) The development of ODMs is more severely affected
compared to (B) when 50% of RGCs in the right eye are prevented from
stimulating the right LGN neurons. The OSMs still show iso-orientation
domains but there is a re-organization of the patches relative to the 25%
lesion case. (D) The development of ODMs is even more severely affected
compared to (C) when 75% of RGCs in the right eye are prevented from
stimulating the right LGN neurons. The RCMs on the other hand do not
appear to be that dramatically affected. The OSMs still show some
differentiation in its orientation preferences albeit undergoing more
re-organization compared to the 50% lesion case.

neuron responses are computed by taking the inverse of the ON
image and then rectifying the image so that there are no nega-
tive values (Figure 11). The resulting image is encoded as spikes
(Equation 11).

The ODMs formed in Phase 3 show contiguous patches of
eye selectivity (Figure 12A) in a manner similar compared with
Phase 2. The mean and standard deviation of difference in synap-
tic conductances (Figure 12B) show an even more clear separa-
tion on the semi-log plot indicating that the ODM formed in
Phase 3 is more stable than in Phase 2. The results also show
that E neurons in layer 4 are more finely tuned to particular
orientations compared to Phase 2 (Figure 12E). The dynamic
range of the orientation selectivity map (Figure 12D) is larger
than in Phase 2. There are four distinct pinwheel-like pat-
terns that emerge after learning in Phase 3 (Figure 12B) but
do not have any point discontinuities in the orientation gradi-
ent maps at the centers of these pin wheel patterns. The ODM

maps are also more refined and develop noticeable contiguous
regions of eye selectivity. The interesting aspect here is that the
RCMs seem to have stabilized in Phase 2 and appear quali-
tatively similar between Phase 2 and Phase 3 while the ODM
and OSM continue to undergo refinements after exposure to
the images from the Caltech 101 database for over 6 million
steps. This is qualitatively consistent with some experimental
observations (Chapman et al., 1996; Crair et al., 1998) where
the orientation tuning responses change with environmental
stimuli.

STABILITY OF FUNCTIONAL MAPS
The network was analyzed for stability across all three phases of
development. In Phase 1, the balance in synaptic currents driving
neurons of layer 4 for this phase of development was measured
by computing the difference between excitatory and inhibitory
currents at each E neuron by averaging across a time window
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FIGURE 10 | ODM and OSM formation during Phase 2. (A) The ODM
appears to have large more contiguous patches of eye selectivity
compared to the output after Phase 1. (B) This maturity in ODM formation
is caused by more stability in the divergence between the mean and
standard deviation calculations in the semilog plots shown here. This
divergence is very clear unlike in Figure 7. The mean and standard
deviation also seem to stabilize in the later parts of Phase 2. (C) The
absolute magnitude of the orientation gradients at each E neuron shows
singularities and fractures. Here white indicates high gradient values while
black indicates no gradient at all. The gradients image show several
fractures in the data. The average fraction of the total synaptic drive at
each E neuron selective to a given eye was also calculated. For example,
for the “left” E neurons, (

∑
i w left −∑

i w right)/(
∑

i w left +∑
i w right), was

∼71%. Similarly, the fraction was ∼70% for the “right” E neurons at the
end of Phase 2. (D) Orientation selectivity shows brighter colors that
indicate high selectivity with those E neurons in layer 4 respond to a very
narrow range of orientations and vice versa. The color scale shows the

magnitudes of responses in a relative fashion. For example, neurons in the
neighborhood of neuron at (85, 80) show strong selectivity (score of 270)
to only 30◦ but not to other orientations while a neuron at (60, 60) shows
a weak selectivity (score of 3) to all orientations including its preferred
orientation of 60◦. (E) The smoothed orientation preference map shows
iso-orientation domains and three weakly formed pinwheels marked by the
three black circles. We call these weakly formed pin wheels since they are
not corroborated by singularities in the orientation gradient maps. This is
because the smoothing operation on the Cartesian images removes the
spurious edges created by noisy neuron responses while also removing
any trace of the singularities as well. However, close inspection shows
that there are three locations marked with black circles where the
orientation preferences rotate continuously through ±180◦ along circular
paths. We refer to these patterns as a pinwheel-like pattern. It should be
noted that there are no clear appearance of point discontinuities in the
orientation gradient maps to corroborate the pin-wheel centers within
these pinwheel-like-patterns that clearly appear in animal data.

of 200 ms. Simulations show that the net current during this
phase moves from an initial bias toward excitation to a more
negative bias toward inhibition that slowly reaches a steady state
value (see red line in Figure 13A). The negative bias shows that
on average the influence of inhibition is stronger than excitation
so as to compensate for the imbalance in the number of E to I
neurons in layer 4. This dynamic ensures that the firing rates of
the neurons are low and conducive for learning the RCMs and
functional maps.

The distribution of synaptic conductances was also tracked
dynamically throughout the learning process by computing the

difference between the normalized distribution of synaptic con-
ductances (E → E, E → I, I → E, and I → I as shown in
Figure 14) using the KL measure (Equation 17) once every 5000
simulation steps (or 5 s). This dynamic captures a measure of
stability in the learning process during development. The results
show that all the four types of conductances slowly reach a steady
state at the end of Phase 1 with the KL divergence showing very
small fluctuations.

The network exhibits a better balance between excitation and
inhibition progressively as a function of development (Shapley
et al., 2003; Okun and Lampl, 2008) (see Figure 13). The stability
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FIGURE 11 | Natural stimuli during Phase 3. (A) The input image from the
Caltech database is down sampled from a 320 × 200 image to a 128 × 128
image and pixels from within a 48 × 48 window from the center of the
sub-sampled image (red box) are used to create the stereo pair. The resulting
image for the right eye is obtained by shifting the fovea to the right and
applying a scaling factor of 1.025 on the left image. The resulting stereo pair

is finally processed to generate ON and OFF images for each eye (see
“Materials and Methods”). (B) A second example of an image from the
Caltech 101 database using the same scaling and pixel shift as in (A) is used
for extracting the down sampled ON and OFF images. The appearance of the
pixels in the ON and OFF images for both examples has similar statistics in
terms of the contrast and oriented edges.

of the formed RCMs in the second phase of development is mea-
sured using KL divergence in synaptic conductances (Figure 14).
The results show that the network is progressively more stable
during development since the KL divergence is lower progres-
sively for all four types of synaptic conductances in layer 4.

The OSMs and ODMs undergo refinement throughout the
three phases of development. The primary cause for the refine-
ment is the change in the nature of LGN inputs from random
activity in Phase 1 to retinal waves in Phase 2 to natural stim-
uli in Phase 3. At the end of Phase 3 (i. e., after over 5.5 million
steps of natural image stimuli) the OSMs and ODMs appear to
stabilize such that the orientation responses of neurons in layer
4 no longer shift as observed earlier (compare Figures 6, 10,
and 12).

It is known that OSMs and ODMs continue to undergo
noticeable refinements if there is substantial change in the input
environment (Blakemore and Cooper, 1970; Sengpiel et al., 1999;
Krelle et al., 2011). We conducted an experiment to verify if this
occurs in our model. We created a set of new flag patterns pri-
marily consisting of horizontal and vertical bars (Figure 15A).
This stimulus is considerably different from the Caltech 101
database images since they do not provide contrast information

in any other direction except 0◦ or 90◦. These inputs stimuli were
provided as stereo inputs to the LGN (“Materials and Methods”).
Despite repeated presentations of such stimuli ranging from short
(TF < 1 s) to longer durations (TF = 10 s), the OSMs and ODMs
are not affected and remain stable (Figure 15B). This is due to an
exquisite balance in currents created by the E-STDP and I-STDP
plasticity mechanisms where any instantaneous imbalance in cur-
rents is rapidly compensated by plasticity to restore the balance
(Figure 13).

If there is a volley of high-frequency spikes due to stimuli
during such short durations that cause the E neurons to spike
more rapidly, the inhibitory plasticity for both feedforward and
recurrent synaptic connections enables the system to increase the
synaptic conductance z of the inhibitory synapses. This results
in increased inhibitory currents to the active E neurons thereby
removing the imbalance (Vogels et al., 2011). Thus E-STDP and
I-STDP enables the stable maintenance of OSMs and ODMs
despite continuous plasticity.

We also applied the same flag patterns with horizontal and
vertical bars for a very long duration (TF = 5000 s). The OSMs
and ODMs do see changes (Figure 15C) after this long expo-
sure reflecting that only prolonged and consistent presentations
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FIGURE 12 | Functional maps summary and orientation selectivity of

neurons in OSMs during Phase 3. (A) Comparison of functional map
development during all three phases shows the progressive refinement of
the ODM, RCM, and OSM. The ODM is stable and shows well-defined and
contiguous patches of eye selectivity. (B) The mean and standard deviation
parameters as described in Figures 7, 10 show more divergence and stability
compared to Phase 2 The average fraction of the total synaptic drive for the

“left” E neurons was ∼123% and ∼124% for the “right” E neurons at the
end of Phase 3. (C) The resulting orientation gradient maps show
well-defined fractures but no singularities. (D) The orientation selectivity has
similar characteristic to that of Phase 2 except that the peak magnitude of
selectivity showing more sharpness (i.e., higher magnitude). (E) The
orientation preference maps show clearly defined iso-orientations and four
weakly formed pinwheels marked by four black circles.

of stimuli can change the orientation tuning response of the
E neurons in layer 4. This change is again possible due to
activity-dependent STDP that slowly changes the tuning prop-
erties of E neurons during the small windows of opportu-
nity where E neurons in layer 4 spike despite operating in a
well-balanced regime between excitation and inhibition. Since
these spikes are sparse, our model requires prolonged periods
of stimuli exposure to effect changes in the stabilized ODM
and OSM. These results qualitatively agree with experimen-
tal results (Blakemore and Cooper, 1970; Sengpiel et al., 1999;
Krelle et al., 2011) that suggest that influence due to envi-
ronmental stimuli can affect functional maps in V1. It also
shows that the number of E neurons that respond to 90◦ (blue
regions) or 0◦ (red regions) increases by 25% or more com-
pared to OSM at the end of 10 million steps (Figure 15C). This
is also qualitatively consistent with observations in the visual
cortex (Sengpiel et al., 1999). It is interesting that RCMs are
not affected much because geniculocortical synapses are affected
more by new inputs from LGN compared to cortico-cortical
synapses.

DISCUSSION
The proposed spiking model is the first to cover the three devel-
opmental phases during the formation of OSMs and ODMs
with continuous synaptic plasticity in the form of STDP. The
model offers a biologically plausible explanation for this for-
mation in which E-STDP and I-STDP at the excitatory and
inhibitory synapses, respectively combine to enable the devel-
opment and maintenance of these functional maps. This is
consistent with recent models that suggest that cortical reorgani-
zation is reliant on spike timing (Song et al., 2000; Young et al.,
2007). It is also consistent with a recent model that suggests
that inhibitory plasticity could play a key role in the formation
and maintenance of functional cortical circuitry (Vogels et al.,
2011).

It is possible for our model to demonstrate OSM and ODM
formation directly via external simulations (i.e., experience) and
skipping the two experience-independent phases. However, our
simulations demonstrate that STDP based learning driven by
spontaneous intra-cortical spiking activity can result in the for-
mation of orientation maps and ocular dominance maps as
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FIGURE 13 | The average synaptic current difference between

excitation and inhibition is plotted as a function of developmental

time. (A) Experience-independent OSM development (Phase 1).
(B) Experience-independent ODM development (Phase 2).
(C) Experience-dependent refinement of both OSM and ODM (Phase
3). In all the plots, the instantaneous current difference at each time

step is shown in blue while the average current difference is shown in
red. The plots show that the stability of the functional maps are
correlated closely to the fact that the average current differences
become progressively smaller as the maps develop. This is enabled by
inhibitory plasticity and helps in preventing any rapid changes in
synaptic conductances.

suggested by prior research (Huberman et al., 2006; White
and Fitzpatrick, 2007). In this early experience-independent
phase ODMs and OSMs appear due to spontaneous activity
between LGN neurons and the E neurons in layer 4. In the
late activity-independent phase where the spontaneous activity
in the LGN is generated via retinal waves (Butts, 2002; Godfrey
and Swindale, 2007), the ODMs appear to become selectively
tuned to one of the two eyes due to competition induced by
E-STDP between geniculocortical synapses (Feller, 2009) thus
dividing the cortical layer 4 into ocular dominance patches. The
important point here is that the model qualitatively shows that
there is no need for external input to enable the development
of ODMs or OSMs as long as there is STDP driven plastic-
ity in both E and I synapses. The influence of external inputs,
however, does improve the sharpness of the tuning responses
in V1.

However, the model in this study should be considered a
simple model that is biologically incomplete in its complex-
ity. It does not consider the development of retinogeniculate
synapses (Chen and Regehr, 2000; Feller, 2009) nor does it
model the differential sensitivities of the ON and OFF cells in
their response to variations in contrast relative to mean lumi-
nance (Zaghloul et al., 2003). It also does not consider other
types of plasticity found in biology such as short term plasticity
(Tsodyks and Markram, 1997; Tsodyks et al., 1998) that affects
population dynamics during different functional states (Mark
and Tsodyks, 2012) and homeostatic plasticity (Turrigiano and
Nelson, 2004; Watt and Desai, 2010). It also does not model
the complexity in structure and function of neurons including
multiple compartments (Hodgkin and Huxley, 1952; Izhikevich,
2004) and other forms of plasticity such as dendritic plastic-
ity and its relation to STDP (Williams et al., 2007; Sjostrom
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FIGURE 14 | The change in synaptic conductance distributions

during the course of learning. (A) The E → E change shows a
gradual decrease in the change with the lowest values in the third
phase indicating stability in the formed OSM and ODMs. (B) The
E → I change shows a similar trend as in (A). (C) The I → E change
also shows gradual stabilization as a function of development. (D) The

I → I change achieve stability very early and remain very stable after
indicating that the synaptic conductances between inhibitory
interneurons are stabilized rapidly compared to the other three types
of synapses. In all the plots, the instantaneous change in synaptic
conductance distributions at each time step is shown in blue while
the average change is shown in red.

et al., 2008; Froemke et al., 2010). It should be noted that
in this model, neurons are assumed to be mature from early
stages of development. However, in reality there are immature
depolarizing neurons in the early stages of development that
are characterized by a high concentration of Cl− ions (Hensch,
2005). This aspect of development is not considered in this
model.

The model is currently being extended to account for the
development of direction selectivity. It is well known that
some neurons in the visual cortex are selective to direction
of motion of visual stimuli (Weliky et al., 1996; White and
Fitzpatrick, 2007). Furthermore, direction selectivity map (DSM)
formation appears to lag behind OSM in its formation (Li
et al., 2006). Recent physiological evidence suggests that the
DSMs in the cortex are nested geometrically within OSMs
such that an iso-orientation domain is subdivided into a pair
of smaller domains that represent opposite directions of stim-
ulus motion (Kisvarday et al., 2001; White and Fitzpatrick,
2007). Finally, there is also mounting evidence that activity-
dependent plasticity such as STDP enables the formation of

DSMs (Fiser et al., 2004; Carver et al., 2008; Markram et al.,
2011) and recent models show the possibility of forming DSMs
using STDP (Buchs and Senn, 2002; Wenisch et al., 2005).
Thus a natural extension of the proposed model is to account
for the formation of DSMs using STDP within the context
of development of all other functional maps such as OSMs
and ODMs.

In summary, the present study developed a simple model
of a thalamocortical circuit with an initial unstructured map
topology that is refined using continuous plasticity in a self-
organized fashion to form RCMs, OSMs, and ODMs based on
neural activity during three phases of development: endoge-
nously generated cortical activity, followed by activity that arises
endogenously in the form of retinal waves and finally activity
evoked during sensory experience. Continuous plasticity based
on STDP in both excitatory and inhibitory synapses serves as
the key mechanism for the development, refinement, and sta-
ble maintenance of the formed maps and could also serve as
a basis for the development of other functional maps such
as DSMs.
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FIGURE 15 | ODM and OSM change in response to new stimuli.

(A) Stability of the development process was tested using a
sequence of test patterns shown here as stereo pairs with ON and
OFF images for each pair. The test patterns consist of mixtures of
horizontal and vertical lines that combine to form flag-like patterns.
These flag-like patterns are presented for total duration of TF

seconds. The duration of each flag-like pattern was between 10 and
100 ms. (B) OSM, RCM, and ODM maps after presenting the flag
patterns for a duration of TF = 10 s after Phase 3 shows that the
maps are stable (compared to Figure 12) despite constant variations

in the duration of presentation of each flag-like patterns. (C) OSM,
RCM, and ODM maps after presenting the flag patterns continuously
for a duration of TF = 5000 s after Phase 3 shows that the ODM
and OSM change while RCM does not change much at all
(compared to panel B). The change in orientation selectivity in the
early and late stage of input patterns shows a noticeable change in
the OSMs. The number of neurons with responses close to 0◦ or
180◦ (red and magenta) and 90◦ (cyan and green) have gone up
compared to the plot in panel (B) indicating that the change
reflects the dominance of vertical and horizontal bars in the stimuli.
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