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Editorial on the Research Topic

Criticality in neural network behavior and its implications for

computational processing in healthy and perturbed conditions

The aim of this Research Topic is to summarize the current state-of-the-art in the

context of key conceptual, methodological, and analytical tools concerning criticality in

neural networks within the context of the brain connectome. This includes emergent

behavior such as memory and cognition, dynamic morphology-activity relationships at

the micro, meso, and macroscale in response to perturbations, as for example, trauma

or neurodegenerative disease. As such, the topic provides insights and perspectives on

the relevance of criticality in the context of studying and understanding information

processing in neural networks in health and disease in preclinical models and in

the clinic.

Zimmern takes into consideration the clinical relevance of the topic and presents

a comprehensive overview and explanation of central concepts and terminology in

criticality, such as power laws, phase transitions, and the branching processes. The

article provides a discussion and critique regarding the application of such concepts in

the analysis of human neural data, with special focus on current controversies in the

literature, and concludes with recommendations about how brain criticality may in the

future add the diagnosis and treatment of diseases affecting the brain.

Carvalho et al. examine scaling relations observed in experimental data obtained

from the anesthetized rodent cortex, which suggest a phase transition in firing rate

variability that apparently differs from the canonical model of brain criticality and the

branching process. The authors apply subsampling and two different models within the
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same universality class as the branching process and

demonstrate that the experimental results can be reproduced in

this manner.

Bellay et al. investigate how single neuron activity

contributes to avalanches observed in the primate cortex by

comparing LFP recordings obtained from multiple sites with

concomitant single neuron extracellular and intracellular

activity. Their results support a selective contribution of single

neurons to specific LFP-based avalanche patterns and thus align

with the notion that information processing in the cortex is

supported by Hebbian cell assemblies.

Heiney et al. discuss the role of criticality in neural systems

taking into consideration the principles of self-organization and

neuroplasticity, within the context of the dynamic, reciprocal

relationships between underlying network topologies and

function. The review highlights the relevance and application of

criticality for experimental neuroscientists, especially in terms of

how changes in underlying structure-function relationships, for

example due to damage or disease, affect critical dynamics and

neural computation. As such, the article also provides insights as

to the role of criticality for clinical translation.

Gross presents a dynamical systems perspective and

its implications on criticality and neural dynamics. The

article provides a comprehensive overview of bifurcation

theory concluding that several critical manifolds, rather

than one critical state, can explain neural dynamics, such

as self-organization and information processing. The article

thus highlights the need for the development of new

theoretical models that take the high-dimensional parameter

into consideration.

Shaheen et al. present a mathematical model that can be

applied in the investigation of altered neuron-glial interactions

as an underlying neuropathology, such as Alzheimer’s disease.

The model proposes a shift of astrocytic function toward

exosome-dependent release of Ca2+ that might contribute to the

accumulation of pathological protein aggregates.

Arvin et al. examine how underlying network topology

is associated with neural activity and critical dynamics.

By applying the small-world model of Watts and Strogatz

and Kuramoto’s model of coupled oscillators, the authors

demonstrate that the dynamics of the system are shaped by

short-range connections, while the state of the system, for

example its response to a perturbation, is driven by long-range

connections. This differential but synergistic contribution of

short- and long-range connections thus confers the required

neuromodulation to the system.

Alamian et al. assess baseline cognitive function in

schizophrenia patients using magnetoencephalography and

reveal changes in self-similarity and multifractality values

in affected brain regions consistent with altered criticality

properties, thus illustrating the relevance and potential

application of criticality in the evaluation of this patient group.

Finally, Beggs addresses controversies in the field regarding

the criticality hypothesis, which poses that healthy biological

neural networks demonstrate optimal information capacity

when they operate at the near critical point. The author

concludes that such controversies are an essential element of

scientific discourse and, as such, they are valuable for the

refinement of relevant research questions in the field.
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Why Brain Criticality Is Clinically
Relevant: A Scoping Review
Vincent Zimmern*

Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States

The past 25 years have seen a strong increase in the number of publications related
to criticality in different areas of neuroscience. The potential of criticality to explain
various brain properties, including optimal information processing, has made it an
increasingly exciting area of investigation for neuroscientists. Recent reviews on this
topic, sometimes termed brain criticality, make brief mention of clinical applications of
these findings to several neurological disorders such as epilepsy, neurodegenerative
disease, and neonatal hypoxia. Other clinicallyrelevant domains – including anesthesia,
sleep medicine, developmental-behavioral pediatrics, and psychiatry – are seldom
discussed in review papers of brain criticality. Thorough assessments of these
application areas and their relevance for clinicians have also yet to be published. In
this scoping review, studies of brain criticality involving human data of all ages are
evaluated for their current and future clinical relevance. To make the results of these
studies understandable to a more clinical audience, a review of the key concepts
behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized
criticality, power laws, branching processes) precedes the discussion of human clinical
studies. Open questions and forthcoming areas of investigation are also considered.

Keywords: criticality, brain, long-range temporal correlation, neurodevelopment, neurodegeneration, sleep,
epilepsy, anesthesia

INTRODUCTION

The brain criticality hypothesis suggests that neural networks and thus, many aspects of brain
activity self-organize into a critical state (Wilting and Priesemann, 2019). Critical states are unique
configurations of physical systems that have been a central focus of statistical physics for more
than a century. Criticality, which is a synonymous term for “critical phenomena” or “critical states,”
marks the transition between ordered and disordered states. The theory of critical phenomena
has found applications in many scientific fields, including neuroscience and clinical neurology
(Sornette, 2004; Cocchi et al., 2017). In the neurosciences, criticality is appealing because theory
and modeling suggest that neural networks at criticality exhibit optimal processing and computing
properties (Beggs, 2008; Shew and Plenz, 2013). These properties include information transmission,
information storage, dynamic range, metastable states, and computational power (Maass et al.,
2002; Bertschinger and Natschläger, 2004; Latham and Nirenberg, 2004; Haldeman and Beggs,
2005; Kinouchi and Copelli, 2006; Tanaka et al., 2009; Boedecker et al., 2012; Shriki et al., 2013;
Gautam et al., 2015; Shriki and Yellin, 2016; Hoffmann and Payton, 2018). The term “brain
criticality” is used in this review as a catch-all term for the various manifestations of critical
phenomena in human neuroscience.
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This scoping review of the brain criticality literature will start
with a section that reviews the physics-based ideas behind brain
criticality, including a discussion of the Ising model. It will then
review the brain criticality literature in each of seven domains
(i.e., anesthesia, epilepsy, neurodegeneration, neurodevelopment,
cognition, sleep medicine, and psychiatry), focusing on the
clinical applications. This review should serve as an entry-point
for clinicians and translational researchers interested in using
this conceptual framework and its associated tools to advance
patient care. Understandably, it is not possible to summarize
nearly a century of developments in statistical physics − not to
mention 30 years of applications of these physical concepts to
neuroscience−in a single review paper. An excellent introductory
paper for newcomers to criticality is Beggs and Timme, 2012.
References are available for those interested in diving into the
technical details of critical phenomena (Nishimori and Ortiz,
2011; Tomko et al., 2018), including two books on criticality in
neural dynamics (Plenz and Niebur, 2014; Tomen et al., 2019).
In this section, criticality is introduced from the perspective of
phase transitions and is illustrated using the two-dimensional
Ising model (see Figure 1). This is followed by a discussion
of the various characteristics of critical phenomena and a brief
discussion of self-organized criticality.

CRITICALITY AND ASSOCIATED
CONCEPTS

In statistical physics, criticality refers to the behavior that is
seen when a physical system undergoes a specific kind of phase
transition. Typically, a macroscopic property of the system called
the order parameter changes as a function of an underlying
feature called the control parameter. In the example of a vapor-
to-water phase transition, the order parameter is the macroscopic
appearance reflective of the phase’s entropy (i.e., water or vapor),
and the control parameter is the temperature (Hesse and Gross,
2014). Generally, gradual changes in the control parameter lead
to similarly gradual changes in the order parameter. However, at
specific points, the order parameter changes abruptly. On a plot
of the order parameter on the y-axis and the control parameter
on the x-axis (i.e., a phase diagram), there is either a jump (i.e., a
discontinuity) or a sharp corner (i.e., a non-differentiable point)
at the transition point of a phase transition. If the change in the
order parameter is a jump, the phase transition is known as first-
order or discontinuous. If the change in the order parameter is
a sharp corner, the phase transition is known as second-order or
continuous. The second-order phase transition allows a system
to be at the exact transition point at the interface between two
very different states, with usually one state being more disordered
than the other. The system is said to be “at criticality” or in the
critical state (Nishimori and Ortiz, 2011; Hesse and Gross, 2014).
The phase in which the control parameter is below the critical
value is called the subcritical phase, while the phase in which
the control parameter is above the critical value is called the
supercritical phase. It is important to note that the theory of phase
transitions usually involves systems at the thermodynamic limit,
i.e. infinitelylarge volume. When not at the thermodynamic limit,

phase transitions occur over a parameter range called a Griffiths
phase rather than at a single critical point and are sometimes
referred to as quasi-critical states (Moretti and Munoz, 2013).
Quasi-critical states obey many of the properties of a critical
system but are not entirely critical.

These concepts can be illustrated with the help of the two-
dimensional Ising model, which is a classic example of a critical
transition in ferromagnetism (Beggs and Timme, 2012). The
Ising model consists of a lattice in a piece of iron, with each
site of the lattice corresponding to a dipole moment (i.e., an
up or down spin) (Figure 1B). Each dipole moment operates
like a bar magnet and can influence its nearest neighbors to
align in the same direction. At a low temperature, nearest-
neighbor effects will dominate the system. At a fixed temperature
below the critical temperature, a cluster of aligned spins will
get larger and larger, and, with time, will take over the entire
lattice to make a uniform dipole moment (Figure 1A). Thus,
at this low temperature, the piece of iron will behave like a
magnet because the spins will align throughout the lattice to
yield a strong net magnetization (i.e., order parameter). However,
as temperature (i.e., control parameter) increases, the energy
from heat begins to jostle the spins. Past a critical temperature
called the Curie temperature (Tc), the disordered spins from the
added heat will overwhelm the ordering effect of the nearest-
neighbor interaction, leading to a loss of the magnetization
(Figures 1A–C). Heat, therefore, takes the system from a
subcritical, magnetic phase through a critical phase transition and
on to a supercritical, non-magnetic and disordered phase. At the
critical temperature, a critical phase emerges where order and
disorder are evenly matched (Nishimori and Ortiz, 2011; Beggs
and Timme, 2012). The correlation length (i.e., how far a single
spin change can propagate through the system) is maximized
in this phase (Figure 1D), and in the infinitely large system,
goes to infinity at the critical point. The order parameter (i.e.,
magnetization)−along with other observables like magnetization
domain size and magnetic susceptibility−become power-law
distributed with unique power-law exponents (Figure 1F). Power
laws refer to a probability density function of the form of p(x) =
C x−α for some x > xo and with αcorresponding to the power-law
exponent. Power laws exhibit scale invariance and are therefore
called scale-free. A function f (x) is scale invariant if f (cx) ∝
f (x), where α signifies “proportional to.” In other words, scaling
the argument of the function is equivalent to a proportional
scaling of the function itself. In the case of the power-law,
f (cx) = (cx)−α = c−α x−α =c−α f(x) ∝ f (x). Moreover, because
log

(
f (x)

)
= log ∝ (x−α) = −αlog (x), a log-log plot of a power-

law distributed dataset should produce a straight line with slope
−α. Caveats on using this log-log plot technique to extract the
power-law exponent are addressed in a subsequent section.

The Ising model can lead to very complex behavior patterns
and has been used to model neural networks (Fraiman et al.,
2009; Beggs and Timme, 2012; Deco et al., 2012; Marinazzo
et al., 2013; Stramaglia et al., 2017). The Ising model and
several other well-characterized models have led to a better
understanding of how critical systems behave. Nevertheless,
critical systems remain difficult to identify because the relevant
order and control parameters may not always be readily available
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FIGURE 1 | Continued
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FIGURE 1 | Illustration of critical phase transition using the two-dimensional (2D) Ising model. For more information on the Ising model, see Nishimori and Ortiz
(2011), Beggs and Timme (2012). (A) Simulation of 2D Ising model with length = 256 in subcritical, critical, and super-critical states as temperature increases from
left to right. Black and white areas represent magnetization domains with differing spins. Simulations were generated using open-source code from Matt Bierbaum
(mattbierbaum.github.io/ising.js) using the Metropolis algorithm. (B) Illustration of 2D Ising spin lattice to show differing spin states during phase transition. Image
adapted with permission from Beggs and Timme (2012). The organized spins in the subcritical state give way to random spin arrangements in the supercritical state,
passing through an intermediate critical state with a complex arrangement of spins. (C) The order parameter of the system decreases smoothly as the control
parameter increases, until it abruptly changes at the critical temperature (Tc or the Curie temperature). (D) The correlation length is maximized at the critical point.
(E) A branching parameter of 1 allows an aggregate one-to-one transmission of neural signals. Branching parameter greater than 1 leads to supercritical, run-away
neuronal excitation. Branching parameter less than 1 leads to subcritical dying-off of the neuronal transmission. (F) At the critical point, observables of the system,
including the order parameter, obey a power-law or scale-free distribution, seen as a straight-line on a log-log plot. The order parameter remains constant in the
subcritical case, while it drops off exponentially in the supercritical state.

for experimentation, making it difficult to construct a complete
phase diagram. In the absence of a complete phase diagram, one
can use several known markers of criticality, as follows:

Branching Parameter
A branching parameter σ, in the setting of brain criticality, is
the ratio of downstream activated neurons to upstream activated
neurons (Harris, 1963). In other words, as in Figure 1E, a
branching parameter of 1 means that every activated neuron
on average fires or activates one other downstream neuron
(Hobbs et al., 2010). Branching parameter less than 1 indicates
a subcritical phase that evolves with time to a quiescent,
inactive state. On the other hand, a branching parameter
greater than 1 indicates a supercritical phase of increasing
activity. Of course, branching parameters are variable and
dynamic. Caution is needed in the interpretation of the
branching parameter, however, because a branching parameter
of 1 can also be observed in certain supercritical states
(Hesse and Gross, 2014).

Long-Range Temporal Correlation,
Critical Slowing, and Flickering
In critical systems, the response of the system to external
stimuli – called the dynamic range or dynamic correlation – is
maximized. Small perturbations of the system at criticality lead
to geometric (rather than exponential) returns to the steady-
state (Hesse and Gross, 2014), leading to long-range temporal
correlation (LRTC or long-memory). One can measure LRTC
in multiple ways. Popular methods include the Hurst exponent
(through various estimators) and detrended fluctuation analysis
(DFA) (Peng et al., 1995a,b; Simonsen et al., 1998; Hardstone
et al., 2012). DFA produces a scaling exponent over a defined
time period (see Figure 2 for an illustration of DFA). If that
scaling exponent is between 0.5 and 1, with a good fit (see
Figure 2), one can conclude that the time series exhibits LRTC
over that time period.

This geometric rate of return to steady-state is also called
critical slowing down (Scheffer et al., 2009; Van De Leemput
et al., 2014). More generally, at the critical point, the dynamic
correlation of the system diverges such that avalanches (i.e.,
network activity) occur at all scales of the system (Hesse and
Gross, 2014). Another phenomenon seen at the critical transition
is called flickering, which emerges when noise allows a system
to migrate back-and-forth between two attractor basins (Wang

et al., 2012). This phenomenon is not to be confused with flicker
noise or 1/f noise, which is discussed next.

The Emergence of Power-Law (1/f) Noise
and Power-Law Observables
Critical systems, when perturbed by weak inputs, will exhibit
superposed geometric responses to the inputs, which yields
1/f noise, also called pink noise, power-law noise, or flicker
noise (see Figure 3C). Many authors employ these terms
synonymously with long-range dependence or long-memory, as
these are identical phenomena. The term 1/f noise refers to
the phenomenon in which the power spectrum S(f ) of a time
series obeys a power law of the formS(f ) = α f−β. Historically,
the cases of β = 0, β = 1, β = 2 are referred to as “white”
noise, “pink” noise, and “brown” noise, respectively (Li et al.,
2005). The range 0.5 < β < 1.5 is commonly accepted as 1/f
noise. While all critical systems should exhibit 1/f noise, not
all 1/f noise is indicative of criticality (Bédard et al., 2006;
Hesse and Gross, 2014).

As mentioned earlier, multiple observables will follow a
power-law distribution when in a critical state. However, power
laws are necessary but not sufficient to prove the existence
of criticality – many other processes can generate a power-
law distribution. For more on this topic, see the following
references (Mitzenmacher, 2004; Newman, 2005; Touboul and
Destexhe, 2010). Demonstrating the existence of a power law
is not straightforward. As a rule, power laws take the form of
Y = C x−α for some x>xo. For many years, it was common
practice to plot y against x (from the previous formula) in
log-log coordinates – if a straight line emerged, the slope of
that line was interpreted as the power-law exponent α (see
Figure 3B). This approach led to many false claims of power-
laws since many other finite datasets (e.g., from a log-normal
distribution) can also approximate a straight line on a log-
log plot. Since Clauset et al. (2009) and subsequent work,
researchers have had access to more sophisticated statistical
methodology to argue that their variable obeys a power law, as
opposed to other heavy-tailed distributions. While definitions
vary, heavy-tail distributions are probability distributions whose
tails are “heavier” than the exponential distribution, of which
the Gaussian is a sub-type. Examples include the Fisher-Tippett
(double-exponential) distribution, the log-normal distribution,
the Weibull distribution, among many others. An exhaustive
review of several heavy-tailed distributions and their role in
neuroscience can be found in Roberts et al. (2015). In this
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FIGURE 2 | Figure legend taken from Moran et al. (2019) and reproduced with permission. This figure depicts the steps of the detrended fluctuation analysis (DFA).
(A) 200 s EEG recording that has been band-pass filtered (13–25 Hz, channel 01 = Cz) in a patient with schizophrenia. (B) A close-up view (9 s) of the band-pass
filtered EEG along with the amplitude envelope derived from the Hilbert transformation (in green), which is used for estimating the scaling exponent. (C–D) Two
examples of the amplitude envelope with two window sizes. In the left graph, no detrending (i.e., removal of the trend line) has been applied whereas in the right
graph, detrending has been applied. For each time window size, the fluctuation of the detrended signal is calculated as the mean standard deviation over all identical
sized segments (E) The DFA scaling exponent is given by the slope of the log-log plot between fluctuation F and window size. A DFA scaling exponent between 0.5
and 1 indicates the presence of LRTC – in this case, the correlation extends up to 20 s. In this example, the DFA scaling exponent for the beta-band-oscillations in
this channel is α = 0.628. It is common to report the R2 value of the linear regression of the log-log plot as a goodness-of-fit score.

review, publications that claim a power-law distribution based on
current practices are contrasted with publications that rely on the
previously accepted “log-log approach.”

Relationship of Power-Law Exponents to
Each Other
In systems at criticality, many observable variables (e.g.,
correlation, size distribution) obey power laws. The different

exponents of these power laws are inter-related. The
details of these mathematical relationships are beyond
the scope of this review but represent a fascinating topic
in their own right. To give but one example, avalanche
size distribution with power exponent α and avalanche
lifetime distribution with power exponent β should be
related to avalanche lifetime γ by the following equation:
γ =

β−1
α−1 . This relationship has been experimentally
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FIGURE 3 | (A) The sandpile model is a classic model of self-organized criticality (SOC), derived as a though experiment (Bak et al., 1988) and proven later with rice
piles (Frette et al., 1996). Sand is dropped continuously at a fixed rate onto a flat surface. A sandpile forms. As the sand is added, the slope of the pile increases and
avalanches of sand grains begin to occur. If the slope exceeds a “critical slope,” small and large avalanches will decrease the slope back closer to the critical slope.
(B) At the critical slope, the distribution of avalanche sizes (i.e., number of sand grains) is power-law distributed. On a log-log plot, the slope of a
power-law-distributed variable gives the power-law exponent. Most avalanches are small but a non-negligible number are quite large, up to nearly the size of the
entire system. (A,B) reused with permission from Hesse and Gross (2014). (C) Neurophysiologic measurements such as voltage from an EEG recording can be
displayed as time series that exhibit characteristic spectral densities S(f ). (C) Figure reused with permission from Scholarpedia and E. Izhikevich. Plot of different
color-coded time series (left) and a log-log plot of their respective spectral densities (right). In Gaussian “white” noise, each frequency has equal energy, leading to a
constant spectral density. “Pink” noise, which is characteristic of SOC but arises in many other settings, has a spectral density given by 1/f, thus the name “1/f
noise.” “Brown” noise refers to Brownian or random motion, whose spectral density is typically given by 1/f2.
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FIGURE 4 | Avalanches recorded from neural tissue. (A) Micrograph of a cortical slice on an electrode array, represented by a black rectangle. (B) Electrical potential
recorded from an electrode. Arrow points to a spike from an individual neuron. The spike is expanded in panel (C) and marked by a black dot. (D) Raster plot of
spike times (dots) from multiple neurons over time. (E) Expanding the view of the raster plot reveals an avalanche. Each frame represents the electrode array during a
single 5 ms period. Black dots are spikes detected on the array. An avalanche is made up of consecutively active frames, beginning and ending with inactive frames.
(F) Plotting the number of spikes in each frame versus time produces an avalanche shape. (G) Avalanche shapes are produced by averaging the temporal profiles of
all avalanches of a particular duration from an experimental dataset close to criticality. Different colors here represent different durations. (H) The collapses are plotted
by rescaling the horizontal and vertical axes. The tight overlap after rescaling is indicative of criticality. Images reproduced with permission Beggs and Timme (2012)
and Friedman et al. (2012).

validated in individual neurons (Beggs and Timme, 2012;
Friedman et al., 2012).

Scaling Function
Because of the self-similar or fractal nature of the avalanches of
activity in critical systems, the “shape” of avalanche activity is also
expected to behave as a fractal (see Figures 4A–G). Therefore,
all cascades of activity at criticality ought to be re-scalable to
a unique shape, as a function of time (or duration) and power
exponents (see Figure 4H). This phenomenon of critical systems
allows a “data collapse” or “shape collapse” of all activity onto
a single unique shape (Friedman et al., 2012). In some neural
avalanches, this shape takes the form of an inverted parabola
(Beggs and Timme, 2012). This kind of shape collapse has been

observed in many critical systems (Perković et al., 1995; Mehta
et al., 2006; Papanikolaou et al., 2011).

There are various theories as to how physical systems can
bring themselves to criticality. In the case of the brain, one of
the popular theories is called self-organized criticality or SOC
for short (Bak et al., 1987; Christensen et al., 1992; Hesse
and Gross, 2014). It is also referred to as self-organized quasi-
criticality (Bonachela and Muñoz, 2009) since, as mentioned
earlier, true criticality occurs only in infinitelysized systems.
Introduced initially by Bak et al. (1987), the idea of SOC is that
the control parameter is constantly being adjusted to the critical
value by a decentralized feedback mechanism. In other words, the
control parameter spontaneously decreases when the system is in
a supercritical phase and increases when in a subcritical phase.
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FIGURE 5 | PRISMA-ScR flow chart.

The use of the term “control parameter” is maintained, even if
the parameter is not being controlled externally but rather by the
system itself (Hesse and Gross, 2014). Figure 3A illustrates one of
the earliest models of SOC, called the sandpile model (Bak et al.,
1988; Frette et al., 1996). Imagine that sand is accumulating at a
certain rate on a flat surface. As the sandpile rises, the slope of the
sandpile increases. At a critical point, the distribution of sand-
pile avalanche sizes (i.e., a few grains of sand or the entire pile)
obeys a power-law. With a power-law or scale-free distribution,
avalanches of all scales can occur, but most avalanches will be
small with a few being very large (Figure 3B). As sand continues
to be added at the same rate, larger avalanches take place and
the slope decreases back to the “critical slope.” The criticality in
this system is therefore self-organized and the control parameter
does not have to be tuned externally, as it does for example in
the Ising model.

The internal “tuning” of SOC models for the brain is
reminiscent of the concept of homeostatic plasticity. Homeostatic
plasticity refers to the capacity of neurons to regulate their
excitability based on network activity (Turrigiano and Nelson,
2004). Criticality seems to be connected to homeostatic plasticity

though the exact details remain unclear. A recent experiment,
however, has cast some light on this question. Rat cortical
networks exhibiting criticality in controlled circadian conditions
lost their network criticality when deprived of visual inputs.
However, signs of criticality resumed in under 48 h with neuronal
firing rates being maximally inhibited. This finding suggests that
homeostatic regulation of inhibition plays an important role in
generating criticality (Ma et al., 2019).

ARTICLE SELECTION

The preceding review was conducted to set the stage for a scoping
review of the literature (Colquhoun et al., 2014) using PRISMA-
ScR methodology (Moher et al., 2009). A scoping review
format was chosen since the nature of this literature is large,
heterogeneous, and not amenable to a more precise systematic
review. See Figure 5 for a schematic of the article selection
process. PubMed and Web of Science databases were searched
from their inception until March 2020. The search terms were:
“criticality anesthesia,” “criticality brain,” “criticality epilepsy,”
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FIGURE 6 | These plots illustrate long-range temporal correlation (LRTC) in
different clinical areas as a function of criticality. Figure adapted from Colombo
et al. (2016) with permission. The black parabolic curve represents the
dynamics of long-range temporal correlation from the subcritical state,
reaching a theoretical maximum at the critical point, and decreasing in a
supercritical state. The gray blurred rectangle represents the physiological
range of brain dynamics, which is thought to be near or below the critical
point. Black arrows (excluding the x- and y-axes) represent deviations toward
subcriticality (to the left) or toward supercriticality (to the right) with associated
decreases in correlation along the black parabolic curve. Double arrows imply
that evidence for both increases and decreases (or absence) in LRTC have
been reported in that disease process. See the relevant tables for further
detail.

“criticality neural,” “criticality neurology,” “criticality seizure,”
and “criticality sleep.” A snowball approach identified additional
studies that were not captured by the search terms. The reviewer
screened titles and abstracts for English language original
articles with full-text availability. The following manuscripts were
excluded: (1) reviews of a general nature, conference proceedings,
and publications offering new theories but without empirical
evidence, (2) papers based on non-human data, on connectome
data, or mainly on modeling or simulation, (3) duplicates and
studies not relevant to brain criticality. The remaining articles
were then evaluated for eligibility based on clinical relevance.
Ultimately, seventy-eight studies met study criteria for the
scoping review. These articles were then analyzed according to
seven major categories: anesthesia, epilepsy, neurodegeneration,

neurodevelopment, cognition, psychiatry, and sleep medicine.
Figure 6 summarizes the changes in LRTC along a subcriticality–
supercriticality spectrum that are thought to occur in disease
states belonging to these seven clinical categories.

CLINICAL APPLICATIONS OF BRAIN
CRITICALITY

Anesthesia
The literature on criticality in anesthesia is limited but has already
shown signs of significant clinical promise. From this small
body of research, one can extract two areas of clinical relevance:
markers for the depth of anesthesia and predictors of recovery
from a persistent comatose state. This literature harmonizes well
overall with that of sleep medicine (see Sleep Medicine below).

Three studies have reported on criticality-based markers
of the anesthesia depth (see Table 1). An electrocorticogram
(ECoG) study of patients undergoing anesthesia for surgical
removal of epileptic foci showed that the critical eigenvalues of
matrices obtained from a vector auto-regressive (VAR) model
could potentially serve as a marker of the depth of anesthesia
(Alonso et al., 2014). A scalp electroencephalogram (EEG) study
of patients under anesthesia found that LRTC, in combination
with oscillation amplitude, could help differentiate between
consciousness and anesthesia-induced unconsciousness (Thiery
et al., 2018). The authors found that, under anesthesia, LRTC
increases in the beta frequency range in frontocentral channels.
This increase may reflect decreased neuronal excitability, leading
to signal persistence and a resulting limitation on cognitive
processes (He, 2014; Thiery et al., 2018). The results of
this study contradict a previous study that had found a
decrease in LRTC during anesthesia (Krzemiński et al., 2017).
However, the contradiction may be secondary to significant
differences between the experiments. Thiery et al. (2018)
examined human subjects undergoing light anesthesia with
sevoflurane, while Krzemiński et al. (2017) examined macaques
undergoing deep anesthesia with different anesthetic agents.
These differences suggest that future research should focus on
identifying criticality-based metrics (e.g., power-law estimation,
VAR eigenvalues, LRTC) that are specific to each anesthetic agent
at different depths of anesthesia.

Another area of ongoing research is the use of criticality
signatures to distinguish persistent coma from other forms of
unconsciousness, including deep sleep and anesthesia-induced
unconsciousness. A function magnetic resonance imaging
(fMRI) study compared both blood oxygen level-dependent
(BOLD) signals and brain networks between patients undergoing
anesthesia and patients in unresponsive wakefulness syndrome
(UWS or persistent coma) (Liu et al., 2014). While the node
size in these brain networks was power-law distributed in
both patient groups, the node degree distribution (i.e., the
number of connections between nodes in the brain network) was
only power-law distributed in the healthy patients undergoing
anesthesia. The authors offer a helpful analogy from the world of
airports and air traffic control. In patients under anesthesia, both
the airport size and the air traffic follow a power-law distribution.
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TABLE 1 | Summary of anesthesia-related criticality literature.

Study Study population Modality Analysis Main findings

Alonso
et al., 2014

3 adult subjects
with intractable
epilepsy
undergoing surgical
removal of an
epileptic focus

ECoG
under
propofol
anesthesia

Vector
auto-regressive
(VAR) model; critical
eigenvalues

• Eigenvalues of VAR matrices change significantly as anesthesia is induced.
This finding is robust to changes in how data is normalized and could be
used as a metric for depth of anesthesia.

• As anesthesia is induced, high frequency modes are damped, suggesting
that cognitive processes associated with higher frequencies are being
tuned out while lower frequency processes are associated with maintaining
the patient alive during anesthesia.

• Self-organized criticality (SOC) could be result of synaptic adaptation.
Disrupting synaptic adaptation should lead to loss of SOC.

Liu et al.,
2014

8 healthy adults
receiving propofol
infusion; 5 adults
with unresponsive
wakefulness
syndrome (UWS)

fMRI Power-law
estimation

• Node degree distribution was power-law distributed for healthy participants
throughout all phases of anesthesia, but was never power-law distributed
for patients with UWS, regardless of spatial scale. Node size distribution
was power-law distributed for both. Study did not meet (Clauset et al.,
2009)criteria for power law.

• Criticality would not be needed for wakefulness alone but would underlie the
brain’s ability to recover from anesthesia or deep sleep. Future research
should investigate whether power laws or other markers of SOC are helpful
predictors of recovery from coma or other minimally conscious states

Thiery
et al., 2018

7 adults receiving
sevoflurane
anesthesia

EEG DFA • Unconsciousness under sevoflurane was associated with increases in LRTC
in beta amplitude over frontocentral channels and decrease in alpha
amplitude over occipito-parietal channels.

• LRTC and oscillation amplitude may reflect different properties of the brain
that are impacted during anesthesia.

ECoG, electrocorticogram; fMRI, functional magnetic resonance imaging; EEG, electroencephalogram.

But in patients with UWS, the airport size remains power-law
distributed while the air traffic loses its power-law distribution.
This loss may reflect changes in underlying neuronal network
topology that give UWS such a poor prognosis. However, more
research in this area is required since the node degree distribution
in this study does not meet the power-law criteria of Clauset
et al. (2009) and, therefore, may follow a different distribution.
In fact, another study found an exponentially truncated power
law for both patients groups (anesthetized and UWS patients),
which suggests the absence of a distinctive signature for the
UWS group (Achard et al., 2012). Significant technical differences
between Liu et al. (2014) and Achard et al. (2012) make a
direct comparison difficult. Nevertheless, these studies raise the
possibility that SOC underlies the brain’s ability to rebound
quickly from anesthesia or deep sleep, but not from UWS or
other major brain insults. Future research in this area will benefit
intensivists and neurologists looking for prognostic markers of
irreversible brain damage.

Epilepsy
Epilepsy, a disorder characterized by multiple seizures and
affecting 1% of the world’s population, represents a significant
clinical challenge (Fiest et al., 2017). There is a robust body
of work examining the applications of critical phenomena to
epilepsy, as summarized in Table 2. From this literature, the
following four topics emerge as clinically relevant areas of
ongoing research: seizure prediction, seizure localization, seizure
characterization, and quantitative analysis of seizure genesis
and termination.

Seizure prediction is an important goal in epileptology
(Mormann et al., 2007). Efficient seizure prediction, even if only
by a few seconds to minutes, may allow patients enough time

to administer anti-epileptic medications before seizure onset,
either by themselves or through automated implanted devices
(Cook et al., 2013). To this end, several studies have identified
criticality-based signatures that may help predict the onset of a
seizure. For example, critical systems near a phase transition will
exhibit signs of “critical slowing.” A combined EEG and ECoG
study of children with epilepsy found evidence of such critical
slowing in synchronous fluctuations up to 1 h before seizure
onset (Cerf et al., 2004). Other studies have taken advantage of an
uncanny similarity between seizures and earthquakes. Seizures,
like earthquakes, exhibit several properties that are characteristic
of SOC (Bak and Tang, 1989; Bak et al., 2002). For example,
both seizures and earthquakes cluster temporally, such that
the likelihood of the next seizure or earthquake decreases the
longer the seizure-free or earthquake-free interval (Omori, 1895;
Sornette and Sornette, 1989; Osorio et al., 2009, 2010). Studies
have identified other SOC properties in seizures. These include
a power-law distribution of inter-seizure intervals (Osorio et al.,
2009, 2010; Cook et al., 2014) and of time intervals between
non-ictal epileptiform discharges, including burst suppression in
neonatal hypoxia (Worrell et al., 2002; Roberts et al., 2014a). By
better characterizing these properties, one could hope to identify
parameters that can help predict a future seizure−much the same
way that seismologists would like to predict the next earthquake
(Meisel and Loddenkemper, 2019).

The predictability of these seizures may be related to increased
temporal correlation or long memory. A study of long-term
ECoG recordings found that epileptiform discharges and seizures
in some patients were consistent with long-memory processes,
with signal correlations going as far back as 40 days before
seizure onset (Cook et al., 2014). Long memory suggests a
decrease in signal complexity and, thus, more predictability.
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TABLE 2 | Summary of epilepsy-related criticality literature.

Study Study population Modality Analysis Main findings

Worrell
et al., 2002

7 adult patients
with medication-
resistant temporal
lobe epilepsy

Interictal ECoG Power-law
estimation

• Study found evidence of SOC in interictal epileptiform discharges and
suggested SOC-based method for identifying seizure focus.

Cerf et al.,
2004

6 pediatric patients
with presurgical
epilepsy evaluation

Pre-ictal and
inter-ictal ECoG,
scalp EEG

Critical
slowing-down of
pre-ictal amplitude

• Study found evidence of criticality in synchronous fluctuations up to 1 h
prior to seizure onset.

• Root mean square amplitude or excess energy content were suggested as
possible criticality order parameters.

Parish
et al., 2004

5 adult patients
with unilateral
mesial temporal
lobe epilepsy

Wake, sleep,
pre-ictal and
ictal/post-ictal
ECoG

DFA • LRTC in energy fluctuations over seconds to minutes was seen in both
epileptogenic and non-epileptogenic hippocampus.

• DFA exponents for non-epileptogenic regions were smaller compared to
epileptogenic regions, but no difference in DFA exponents was noted
between pre-ictal and baseline state.

Monto
et al., 2007

5 adult patients
with medication-
resistant
neocortical
epilepsy; 2 patients
received lorazepam

Inter-ictal ECoG DFA • LRTC was present near the seizure focus, and seen prominently in beta
band (14−30 Hz). Lorazepam decreased beta-band LRTC near the focus
and increased LRTC in other cortical areas.

• Anti-epileptic mechanism of benzodiazepines may be related to
normalization or reduction of LRTC in epileptic focus and may serve as
biomarker during presurgical localization of epileptic foci.

Osorio
et al., 2009

60 adult patients
with mesial
temporal and
frontal lobe
medication-
resistant
epilepsy

Pre-ictal and ictal
ECoG

Power-law
estimation

• Study finds evidence of power law distribution for seizure energy and
inter-seizure interval time. Moreover, study found that seizures tend to occur
in clusters, obeying an Omori-type law in which the likelihood of next
seizure decreases the longer the seizure-free interval. These insights
suggested a strong analogy between seizures and earthquakes, which
behave in a self-organized critical way.

Osorio
et al., 2010

60 adult patients
with mesial
temporal and
frontal lobe
medication-
resistant
epilepsy

Pre-ictal and ictal
ECoG

Power-law
estimation

• Five statistics from seismology (including energy, inter-event waiting time,
direct and inverse Omori law, time to next earthquake) were compared to
analogous statistics in seizures. Insights from SOC in earthquakes were
applied to seizures.

Hobbs
et al., 2010

6 pediatric epilepsy
patients

LFPs from removed
epileptic brain
tissue

Branching
parameter,
correlation,
power-law
estimation

• Some epileptic brain tissue exhibited prolonged hyperactivity. Study found
positive correlation between firing rate and critical branching parameter
during this prolonged hyperactivity, suggesting possible existence of
positive feedback loop in some forms of epilepsy.

Meisel
et al., 2012

8 adult patients
with focal epilepsy

Pre-ictal, ictal,
post-ictal ECoG

Power-law
estimation*

• Study found a robust power law distribution of phase-locking intervals and
saw this as evidence of SOC. Variations in goodness-of-fit suggested that
not all brain regions are tuned to criticality at the same time.

• Significant deviation from power law during seizure suggested departure
from critical state, in part due to excessive synchronization.

Meisel and
Kuehn,
2012

8 adult patients
with intractable
epilepsy

Pre-ictal, ictal
ECoG

Variance of signal
amplitude

• The inverse of the signal variance followed a scaling law and decreased as a
seizure approached.

• Oscillations in variance leading toward seizure onset were suggestive of
critical transition characterized by a Hopf bifurcation.

Kramer
et al., 2012

19 adult patients
with different
epilepsy etiologies

ictal and post-ictal
from scalp EEG,
ECoG, LFP and
MUA

Critical slowing
down, temporal
and spatial
correlations,
flickering

• Multi-scale analysis suggested seizure termination happens through a
critical transition, modeled by a discontinuous fold bifurcation.

• Status epilepticus may represent a system’s inability to cross a critical
transition, instead reverberating between ictal and post-ictal attractors.

Roberts
et al.,
2014a

13 term neonates
with either birth
hypoxia or
circulatory collapse

Non-ictal EEG of
burst suppression
seen within 18 h of
birth

Power-law
estimation*, scaling
relations, burst
shape analysis
(skewness,
kurtosis)

• Power law relationship was seen between burst size and duration. The
scaling exponent of that relationship increased as burst suppression gave
way to normal EEG activity.

• Shape analysis revealed leftward skewness, also seen in crackling noise like
Barkhausen noise. Skewness resolved as burst suppression gave way to
normal EEG activity. Leftward skewness may be related to state-dependent
metabolite depletion.

• Other signs of criticality include evidence of shape scaling function and
inter-relationship of power-law exponents for burst area, duration, and
area-duration relationship. There is evidence of critical phase transition from
burst suppression to resumption of normal EEG.

(Continued)
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TABLE 2 | Continued

Study Study population Modality Analysis Main findings

Cook et al.,
2014

15 adult patients
with refractory
epilepsy

ECoG recorded
over 0.5−1.8 years

Power-law
estimation; Hurst
exponent

• Study found evidence of a power law for inter-seizure interval in large
human dataset, with scaling exponent −1.5 consistent with previous
studies. Hurst analysis was consistent with a long-memory process in most
subjects, with memory ranging from 3 to 40 days.

• The presence of long-memory implies a less complex and more predictable
system−epilepsy prediction may depend on the existence (or not) of
long-memory in different types of epilepsy.

Minadakis
et al., 2014

2 adult patients
(iEEG); 6 adult
patients (scalp
EEG)

Pre-ictal and ictal
ECoG and scalp
EEG

Q-parameter, Tsallis
entropy, volumetric
energy density

• While seizures showed consistently elevated q-parameter in range 1.6−1.8,
inter-ictal and pre-ictal EEG could not be readily distinguished by
q-parameter alone.

• There was evidence of intermittent criticality (IC), which may generalize to
SOC on larger time scales. Tsallis entropy did not change significantly from
pre-ictal to ictal, suggesting other forms of complexity may be involved in
the ictal period. The concept of “fractures and faults in the brain,” a
continuation of the earthquake-seizure analogy, may be a fruitful framework
for advancing seizure prediction.

Yan et al.,
2016

3 adult patients
with refractory
temporal lobe
epilepsy

Pre-ictal, ictal,
post-ictal ECoG

Power-law of
wavelet spectral
density, Hurst
exponent, linear
correlation
coefficient

• The pre-ictal to ictal transition was characterized by transition from
anti-correlation to correlation as given by Hurst exponent and fractional
Brownian motion (fBm) model.

• Hurst exponent changes in ictogenesis happened throughout the brain and
not just at epileptic foci. In posti-ical state, high Hurst exponents were seen
throughout the brain, suggesting seizure was result of breakdown of global
neuronal network.

• Wavelet-based spectral density approach in setting of fBm model may be
helpful tool for seizure prediction.

Arviv et al.,
2016

12 adult and 8
pediatric patients
with refractory
epilepsy; 18
age-matched
healthy controls

Inter-ictal MEG Power-law
estimation*,
branching
parameter,
avalanche shape
analysis

• Patients with drug-resistant epilepsy showed deviations from expected
branching parameter at criticality, especially at interictal epileptiform
discharges.

• Quantitative analysis of MEG using criticality-related parameters may allow
better evaluation of excitation-inhibition balance in sleep-related disorders
and in epilepsy.

Witton
et al., 2019

2 pediatric and 1
adult patients with
medication-
resistant
epilepsy

MEG, beamformer
source models,
volumetric maps

Hurst exponent,
rogue wave
analysis, kurtosis of
inter-ictal spikes

• Hurst exponent analysis, kurtosis, and rogue waves could serve as
important parameters in automatic classifiers for epilepsy detection, as well
as for patients referred for pre-surgical MEG evaluation who do not have
interictal spikes.

• Epileptiform activity was strongly persistent, suggesting that Grainger
causality is not suitable for epilepsy data.

Asterisk (*) represents power-law estimations that meet criteria equivalent to or more stringent than Clauset et al. (2009). MEG, magneto-encephalography; ECoG,
electrocorticogram; LFP, local field potential; MUA, multi-unit activity; DFA, detrended fluctuation analysis.

These studies open up the possibility of using LRTC and
other correlation measures to predict impending seizures. While
there is no gold-standard approach for seizure prediction at
this time, the brain criticality framework offers new insights
that will hopefully produce several candidates for effective
seizure prediction. Some of these candidates include excess
energy content of EEG signals (Cerf et al., 2004), heavy-tailed
distributions of inter-ictal discharges (Osorio et al., 2010), signal
variance (Meisel and Kuehn, 2012), Hurst exponent analysis
(Cook et al., 2014; Yan et al., 2016), q-parameter, and volumetric
energy density from Tsallis non-extensive statistical mechanics
(Minadakis et al., 2014).

The surgical removal of epileptic foci for treating refractory
epilepsy requires adequate localization of the source of
epileptiform discharges (Mu et al., 2014). Localizing the epileptic
focus remains a challenging part of this process. Epileptic foci
exhibit many critical features, like power-law distributions and
LRTC, that are useful for localization. In an ECoG study of
patients with temporal lobe epilepsy, the epileptic foci produced

a power-law-like behavior of seizure energy and inter-seizure
intervals (Worrell et al., 2002). An ECoG study of epileptic
patients found that both non-epileptic and epileptic foci in the
hippocampus exhibited LRTC (Parish et al., 2004). However,
the epileptic foci had larger scaling exponents compared to
the non-epileptic foci. Another ECoG study found a similar
result, namely stronger LRTC near the seizure focus (Monto
et al., 2007). More recently, a magnetoencephalography (MEG)
study found that the Hurst exponent – a metric of LRTC –
improved the detection of seizure foci (Witton et al., 2019). These
studies globally suggest that observables of critical phenomena,
like power-law regimes and increased correlation, can improve
seizure localization techniques.

The lens of criticality is also casting new light on the
characteristics and dynamics of seizures themselves. Several
publications have argued that seizures and inter-ictal epileptiform
discharges, including burst suppression, represent a critical
phenomenon that is power-law distributed (Worrell et al., 2002;
Cerf et al., 2004; Osorio et al., 2009, 2010; Roberts et al., 2014a). If
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this is correct and the reported power-law exponents for seizure
energy are between 2 and 3 (as many are), then it follows that, at
least mathematically, seizures ought to have a finite mean (energy,
size, duration) but infinite (energy, size, duration) variance. Some
have argued that this may account for status epilepticus, the
phenomenon of prolonged seizures lasting hours to days. The
theoretically infinite variance of seizure energy would lead to
prolonged seizures that would ultimately resolve because of the
finite metabolic supply available to neurons (Osorio et al., 2010;
Roberts et al., 2014b). Moreover, if seizures represent a power-
law distributed critical phenomenon, they cannot be described by
their mean values, since, in a scale-free distribution, there is no
“typical” value or mean. Thus, there may be no point in reporting
mean seizure duration or energy in clinical publications. Rather,
in future clinical and epidemiological studies, it may be more
pertinent to report power-law exponents, which best characterize
this distribution (Osorio et al., 2009).

However, other publications have argued that the normal
brain at rest is in a critical state. Therefore, seizures and
interictal epileptiform activity should represent a departure
from criticality. This departure from criticality perhaps arises
from synchronization effects and characteristic scales present
in seizures that become dominant, thus diminishing the scale-
free distribution (Osorio et al., 2009; Meisel et al., 2012; Arviv
et al., 2016). This departure from a scale-free distribution has
been confirmed visually with a “knee,” “shoulder,” or “bump” –
different words for the same anomalous deviation−in the log-
log plot of several probability density functions, including that
of seizure energy (Osorio et al., 2009), phase-locking intervals
(Meisel et al., 2012), neuronal avalanche size (Arviv et al., 2016)
and burst area in burst suppression (Roberts et al., 2014a).
The evidence suggesting that the resting brain is in a critical
state is strong (Kitzbichler et al., 2009; He, 2011; Tagliazucchi
et al., 2012; Daffertshofer et al., 2018), even if some of that
evidence (Kitzbichler et al., 2009; Meisel et al., 2012) has been
challenged (Botcharova et al., 2012). Seizures would logically
seem to represent a departure from the resting state of the
brain and thus from a critical state. How then can one reconcile
this with all the evidence suggesting that seizures behave like a
critical phenomenon?

Perhaps one way to reconcile this information is to look more
closely at the types of variables (Milton, 2012). In cases that have
identified power-laws in the resting brain (with departures during
seizures), the variables studied were usually neuronal avalanche
size and duration, in what could be called an “avalanche
approach.” On the other hand, studies that found power-law
behaviors of seizures took more of an “earthquake approach” in
which the variables were usually seizure energy and inter-seizure
interval (Worrell et al., 2002; Osorio et al., 2009). Since different
properties, or “laminar phases,” are being examined in each case,
it may not be reasonable to compare their power-law exponents
(Milton, 2012).

Moreover, the range of power-law exponents found in both the
avalanche and earthquake approaches is broad and overlapping.
The exponents encompass the range of –3/2, which is expected
for avalanche size in SOC, up to−5/3, characteristic in turbulent
dynamical systems (Milton, 2012). This broad range may result

from particular experimental conditions (including digitization
rates of instruments). But this range may also reflect the reality
that neurons, unlike earthquakes and sand-piles, learn and adapt
(Bonachela et al., 2010). The existence of characteristic scales
(“bumps”) on log-log plots, which perturb the expected scale-
free distribution, may also be due to characteristic scales from
rare neurological events such as dragon-kings (Pisarenko and
Sornette, 2012; Sachs et al., 2012). Finally, since many control
parameters may be involved in governing these systems, the
possibility of “double criticality” whereby critical regimes coexist
with different order and control parameters may also be at work
in this apparent disagreement (Hesse and Gross, 2014). Resolving
this disagreement on both theoretical and experimental grounds
will be an important area of future research.

Brain criticality also offers insights into seizure initiation.
Epileptic foci removed from pediatric epilepsy patients exhibited
neuronal hyperactivity, whose increased firing rate correlated
with an increased branching parameter (Hobbs et al., 2010). This
finding suggests that in some epileptic syndromes, a positive
feedback loop between firing rate and branching parameter may
be responsible for generating seizures as a super-critical state.
An ECoG study found oscillations in signal variance in the
lead-up to a seizure (Meisel and Kuehn, 2012). These pre-ictal
oscillations were suggestive of a critical transition, characterized
mathematically by a Hopf bifurcation. Despite the small number
of studies in this area, research on seizure generation using
criticality is promising.

Several studies suggest that seizure termination may also
involve a critical transition. In one study by Kramer et al.
(2012) the brain’s inability to complete a critical transition results
in status epilepticus, in which the brain dynamics constantly
reverberate between the ictal and post-ictal state (i.e., attractor),
without ever crossing the threshold that effectively ends a seizure.
In a study of neonates with birth hypoxia, researchers found
evidence of a critical phase transition in the shift from burst
suppression to the resumption of normal EEG patterns (Roberts
et al., 2014a). The role of benzodiazepines in seizure termination
may also be related to criticality. In a small ECoG study of
patients with epilepsy, study authors found that a decrease in
LRTC in the ictal focus accompanied the clinical resolution
of a seizure after benzodiazepine administration (Monto et al.,
2007). These studies all suggest that criticality plays a role in
seizure termination.

Neurodegeneration
A small number of studies (see Table 3) have examined the
role of critical phenomena in neurodegenerative diseases, like
Alzheimer’s disease (AD) and Parkinson’s disease (PD). These
studies reveal new insights about the pathophysiology of these
diseases and suggest novel markers for disease monitoring.

Cognition requires production and subsequent decay of
synchronization in neural networks (Breakspear and Terry,
2002). Moreover, in healthy adults, spontaneous fluctuations in
synchronization are known to follow a power-law distribution,
suggestive of an underlying SOC state (Stam and de Bruin,
2004). Does AD represent a departure from critical dynamics?
Is synchronization perhaps a control parameter given its
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TABLE 3 | Summary of neurodegeneration-related criticality literature.

Study Study Population Modality Analysis Main Findings

Stam et al.,
2005

24 adults with AD,
19 non-demented
adults with
subjective memory
complaints

EEG during
eyes-closed resting
state

DFA • Study examined mean synchronization in different frequency bands. Mean
EEG synchronization and spontaneous fluctuations of synchronization were
lower in AD in upper alpha and beta bands compared to non-AD patients.
Mean synchronization level and DFA exponents were correlated to MMSE
score. Both patients and controls showed scale-free patterns of
synchronization fluctuations, extending to up to 10 s.

• AD patients may have brain electrical pattern consistent with SOC but
exhibit decreased processing speed from decreased fluctuations of
synchronization.

Montez
et al., 2009

19 adults with
early-stage AD, 16
age-matched
controls

MEG during
eyes-closed resting
state

DFA, burst statistics • Using criticality-based “avalanche analysis,” study found that AD patients
had a strongly reduced incidence of alpha-band oscillation bursts over
temporo-parietal regions and markedly weaker autocorrelations on long
time scales (1–25 s).

• Study suggested that criticality-related measurements of amplitude
dynamics of oscillations may prove useful as neuroimaging biomarkers of
early-stage AD.

Hohlefeld
et al., 2012

10 adults with
idiopathic PD

LFP from bilaterally
implanted
electrodes from
STN DBS

DFA • Study examined LRTC of the amplitude envelope of LFPs recorded from
subthalamic nucleus, both on and off of levodopa. “On levodopa” state was
characterized by stronger LRTC (up to 50 s) than the “off” state in beta and
high-frequency oscillations.

• Weaker LRTC in off state might indicate limited information processing in
dopamine-depleted basal ganglia. Study suggests LRTC may serve as
possible biomarker of pathological neuronal processes in PD.

Ruiz et al.,
2014

1 adult with severe
idiopathic PD,
treated with STN
DBS

Inter-onset interval
(time between note
onset of two
subsequent notes)
while playing piano,
with STN DBS both
on and off

DFA, spectral
density

• Study investigated temporal deviations during skilled piano performance of
a non-professional pianist with severe PD treated with STN DBS. In
tremor-affected right hand, timing fluctuations of the performance exhibited
random correlations while off DBS. When DBS was on, LRTC increased
along with general motor improvement.

• The authors remark that the presence of LRTC and 1/f laws in performance
(improved by DBS) can be related to the brain operating near criticality.

Vyšata
et al., 2014

110 adults with
moderate-to-severe
AD, 110 healthy
controls

EEG during
resting-state

Power-law
estimation, spectral
density

• Study evaluated power-law exponents for power-law distribution of EEG
spectrogram from patients with AD compared to healthy controls.
Power-law exponent was found to be a specific marker of AD in the frontal
EEG channels. Authors suggest that loss of functional connectivity may
explain these differences in power-law exponents. Clinical utility of
power-law exponent of spectrogram would require repeating the study on
patients with mild cognitive impairment or early stages of AD.

West et al.,
2016

12 adults with PD
who received
bilateral STN DBS

LFP while on and
off dopaminergic
medications

Spectral density,
signal coherence,
DFA

• Study examined LFPs from PD patients undergoing STN DBS surgery, on
and off of dopaminergic medications. Authors demonstrated up-modulation
of alpha-theta (5−12 Hz) band power with L-DOPA treatment, whilst low
beta band power (15−20 Hz) band-power was suppressed. Using DFA
adapted to phase synchrony (DFA-PS), study found LRTC in phase
dynamics of coupled left and right STN region for low beta band. Low beta
band DFA-PS scaling exponent magnitude for interhemispheric pairs was
positively correlated with PD symptom severity in the off-medication state.
Findings suggested that the more severe the motor impairment, the closer
the subthalamic network was to onset of synchronization, implying shift of
network toward supercritical regime.

AD, Alzheimer’s disease; PD, Parkinson’s disease; STN DBS, subthalamic nucleus deep brain stimulation; MMSE, Mini-Mental Status Examination; LFP, local field potential.

importance in cognition? To begin to answer these questions,
researchers compared various measures of synchronization on
EEG between patients with AD and non-demented patients
with subjective memory problems (Stam et al., 2005). While
both cohorts maintained a scale-free distribution of spontaneous
fluctuations of synchronization, the mean synchronization and
its fluctuations were both decreased in the upper alpha and
beta frequency range in the AD patients compared to the non-
demented patients. This finding is consistent with the view
that AD patients maintain a SOC state but with decreased

ability to generate and destroy synchronized neural networks.
The authors go on to speculate that perhaps synchronization
loss in the upper alpha and beta band is one of the first
quantifiable changes in AD since it is statistically different
from non-demented patients who report memory impairment.
Moreover, the mean synchronization level and the DFA exponent
of synchronization fluctuations were both correlated to the Mini-
Mental State Examination (MMSE) score. Synchronization-
based metrics may, therefore, prove helpful for diagnosis and
monitoring of early-onset AD.
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Other metrics inspired by brain criticality show promise
for the diagnostic evaluation of early-onset AD. A MEG study
discovered a decreased incidence of alpha-frequency oscillation
bursts and weaker auto-correlations in patients with early-
onset AD compared to controls (Montez et al., 2009). Its
authors concluded that oscillation amplitude dynamics may be
beneficial for early-onset AD detection. Operating from the
framework of SOC, a large, resting-state EEG study of patients
with moderate-to-severe AD compared to healthy controls also
identified a possible marker for early AD detection (Vyšata
et al., 2014). The power-law exponents for spectral densities
(per brain region) were compared between AD and healthy
patients. A statistically significant difference in the power-law
exponent in the frontal and pre-frontal lobes was noted. This
result is perhaps not so surprising given that frontal lobe
atrophy typically accompanies AD dementia. Interestingly, the
most highlyspecific and predictive area of the brain for AD
in this study was the temporal region (Vyšata et al., 2014).
Future studies using this approach and focusing on the temporal
region may be able to validate this power-law approach as a
diagnostic metric in patients with early manifestations of AD.
To this point, a recent fMRI-connectome study showed that
a combination of criticality-based metrics can help distinguish
neurotypical adults from those with mild cognitive impairment
or AD (Jiang et al., 2018).

Parkinson’s disease (PD) may be a case of how deviation
from a critical state in crucial motor circuits leads to motor
symptoms like tremors, bradykinesia, and rigidity. Researchers
have identified LRTC from the subthalamic nuclei (STN) of
patients with PD undergoing deep brain stimulation (DBS)
(Hohlefeld et al., 2012). These correlations increased with the
administration of levodopa, one of the common medications for
treating PD. In a rat model of PD, LRTC also increased following
administration of apomorphine (Cruz et al., 2009), which
suggests that restoration of LRTC may be related to symptomatic
improvement in PD. A study of PD patients who underwent DBS
surgery found LRTC in the dynamics of the bilateral STN, both
on and off medications (West et al., 2016). Using an adaptation of
DFA to study synchronization called DFA-PS (Botcharova et al.,
2015), the authors found that the DFA-PS exponent was positively
correlated with motor symptom severity when patients were not
receiving dopaminergic medications. Therefore, these authors
suggested that patients with more severe motor symptoms are
closer to the onset of pathological synchronization, which may
reduce effective information transfer in these important neural
circuits (Hanslmayr et al., 2012; West et al., 2016). In this regard,
PD may represent a situation of departure from a critical state
toward perhaps a hyper-synchronized supercritical state.

Obtaining recordings from deep brain structures like the basal
ganglia is not usually possible outside of DBS. Since DBS is not
the first-line therapy for PD, it seems unlikely that LRTC will
develop into a helpful marker of PD onset and progression. Gait
analysis and related behavioral metrics, on the other hand, may
offer a more convenient way to follow the clinical evolution of
PD. Healthy human gait is characterized by 1/f noise, which is
known to be a feature of SOC systems (Hausdorff, 2009). This 1/f
noise disappears in PD but resumes with non-invasive auditory

rhythmic stimulation (Hove et al., 2012). In a unique study, a
single patient with idiopathic PD and right-handed tremor, who
happened to be an accomplished pianist, received DBS and was
subsequently asked to perform works of piano both with and
without active DBS (Ruiz et al., 2014). Without DBS, correlations
in the inter-onset interval (i.e., the time between note onset of
subsequent piano notes) were random. But with active DBS, long-
range correlations of inter-onset interval emerged, along with
general motor improvement of the affected right hand on the
Unified Parkinson’s Disease Rating Scale (UPDRS) - III scale.
The authors suspected that DBS provides a similar stimulus to
the non-invasive rhythmic stimulation of Hove et al.’s (2012)
experiment, which restores the 1/f noise of gait, presumably by
restoring a critical state in the motor basal ganglia circuit (Ruiz
et al., 2014). Future research should focus on establishing whether
restoration of 1/f noise is necessary for motor improvement in
PD and whether gait-based metrics can serve a clinical purpose
in either diagnosing or monitoring PD.

Neurodevelopment
The brain criticality hypothesis also applies to the newborn brain
that matures and ages across an average human lifespan. As it
grows, the brain’s electrical signature undergoes changes that are
helpful markers of typical development. Research in this area
has taken shape around two central themes (see Table 4). The
first is the study of brain oscillations in premature infants or
infants with birth asphyxia (hypoxemic-ischemic encephalopathy
or HIE). The other is the study of brain oscillations in children,
adolescents, and adults to characterize the electrical patterns that
correlate with structural and anatomic changes of aging.

If the mature human brain exhibits signs of criticality, it
seems reasonable to ask whether those signs are also present
in the term or pre-term neonate. Studying burst activity on the
EEG of pre-term infants, Hartley et al. identified LRTC and
dynamics that were suggestive of a phase transition (Hartley et al.,
2012). Despite several infants having intracranial hemorrhages,
the Hurst exponents describing the LRTC were similar for
infants with and without bleeding. This finding suggested that
the brain maintains temporal complexity despite this vascular
insult. Another EEG study showed that power-law exponents of
electrical bursts were predictive of neurodevelopmental sequelae
in term infants with HIE (Roberts et al., 2014a). This fascinating
discovery led to a similar EEG study in extremely preterm infants,
searching for criticality-based metrics that could predict long-
term sequelae. A careful analysis of several parameters from
shape analysis led to the identification of the slope of burst
shape, among other parameters, that could serve as a sensitive
and specific predictor of neurocognitive and motor sequelae in
this unique population (Wikstro et al., 2015). In sum, shape
analysis and power-law exponents predict clinical outcomes in
preterm and term infants, respectively. Regardless of hemorrhage
status, the brains of preterm infants exhibit LRTC. These findings
suggest that criticality plays a vital role in the dynamics of the
preterm and term infant brain.

How criticality or near-criticality emerges and evolves in the
infant’s brain through adolescence into adulthood is another
crucial area of investigation. Jannesari et al. (2020) studied term
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TABLE 4 | Summary of neurodevelopment-related criticality literature.

Study Study population Modality Analysis Main findings

Suckling
et al., 2008

22 healthy adults
(11 in the age range
20−25 years old,
11 in the age range
60−70 years old),
matched for
education.

Task and
resting-state fMRI;
double-blind,
randomized
administration of
subcutaneous
scopolamine or
saline (placebo)

Hurst exponent,
singularity
spectrum using
wavelet transform
maximum modulus
method, multifractal
parameters

• Previous research had shown that healthy aging and cholinergic blockade
with scopolamine were associated with increase in Hurst exponent,
implying a marker of suboptimal neurophysiological dynamics (Wink et al.,
2006). However, previous research had also shown that faster processing
speed in certain tasks also led to increased Hurst exponent (Wink et al.,
2008). This study used multifractal approach to tease apart the discrepancy
and used (Castaing et al., 1990) algorithm to identify the role of turbulence.
Authors conclude that turbulence has limited validity, while invariance of
energy dissipation is better explained by critical phenomena.

Thatcher
et al., 2009

458 healthy
pediatric subjects
(age 2 months to
16 years old)

resting-state EEG Mean phase shift
duration,
phase-locking
intervals, power-law
estimation, spectral
density analysis

• Study explored development of SOC as measured by EEG phase reset−a
combination of phase shift followed by phase stability (or phase locking) –
from infancy to adolescence. Mean duration of phase locking (150−450 s)
and phase shift (45−67 s) increased as a function of age. Development and
number of synaptic connections may be a possible order parameter for
SOC during human brain maturation.

Berthouze
et al., 2010

36 healthy subjects
(age 0–55 years
old)

EEG during
wrist-extension
task

Spectral density
analysis, DFA

• In physical systems, SOC states take time to develop. Study found that
there is a scale-free nature to EEG LRTCs from early childhood through to
maturity but that the magnitude of these effects changed with age.

Smit et al.,
2011

1433 healthy
subjects (age
5–71 years old)

Resting-state EEG DFA, spectral
density, principal
component
analysis

• Study observed significant increases in LRTC from childhood to
adolescence and into early adulthood. PCA of the spatial distribution of
LRTC showed functional-anatomic segregation between frontal,
occipito-temporal, and central regions that became more integrated with
development. DFA scaling analysis may be useful as a biomarker of
pathophysiology in neurodevelopmental disorders like ADHD and
schizophrenia.

Hartley
et al., 2012

11 pre-term
newborns
(23−30 weeks
gestation)

EEG Hurst exponent
(Whittle estimator
and DFA)

• LRTC were identified in very pre-term infants through two estimate of Hurst
exponents of EEG bursts. The study found no difference in Hurst exponents
between subjects with and without brain hemorrhages, indicating that
despite lower burst event frequency for newborns with hemorrhages, signal
complexity was maintained. Overall EEG pattern was suggestive of
relaxation dynamics as can be seen near a phase transition.

Mares
et al., 2013

17,722 healthy
adults (ages
18−70 years old)

Resting-state EEG Spectral density,
power-law
estimation

• Study investigated parameters of colored noise in EEG in healthy adults.
Absolute value of power spectra exponent decreased significantly with age,
perhaps indicative of age-related changes in self-organization of brain
activity due to brain atrophy. Globally, there was a trend from pink noise to
white noise with age that was seen consistently in beta and delta bands.

Fransson
et al., 2013

fMRI: 18 term
newborns and 17
healthy adults (ages
22−41 years old);
EEG: 15 term or
post-term
newborns, 7
healthy adults (ages
14−53 years old)

EEG in stage 2
sleep, fMRI

power-law
estimation

• Study found that newborn brain dynamics follow apparently scale-free
frequency power distribution across several orders of magnitude in both
fMRI and EEG signals. In newborns, primary sensory areas exhibit larger
power-law exponents than higher associative cortical areas, in contrast with
the adult brain.

• High power-law exponents in newborns were likely due to spontaneous
activity transients (SATs) or bursts that seem to underlie brain activity in the
first neuronal networks in the human brain (Vanhatalo and Kaila, 2006).

Thatcher
et al., 2014

70 healthy subjects
(age 13−20 years
old)

LORETA (EEG) of
the Brodmann
areas of the default
mode network in
the delta frequency
band

Phase shift
duration, phase
lock duration

• Study found no significant correlation between age and phase shift and
phase lock duration from EEG of the default mode network. Study findings
were globally consistent with SOC.

Frohlich
et al., 2015

39 preschool-age
healthy subjects

EEG Frequency
variance,
power-law
estimation

• Study quantified variance of rate of change of signal phase (i.e. frequency
variance) as a proxy for phase reset (or signal stability). Frequency variance
increased with age in preschool age children. This method is helpful in
pediatric studies because it does not require long recordings. Authors
suggest that phase resets are critical fluctuations driven by SOC.

Iyer et al.,
2015

43 preterm
neonates
(23−28 weeks
gestation)

Resting-state
single-channel EEG
recorded at 12, 24,
48, and 72 h of life

Power-law
estimation*, burst
shape analysis,
generalized linear
model

• Study found scale-free properties of EEG bursts in extremely preterm
infants as soon as 12 h after birth. Metrics of burst shape were predictive of
neurodevelopmental outcomes using Bayley scales. Specifically, symmetric
bursts that are relatively flat at long time scales suggested a favorable
neurodevelopmental outcome. Conversely, skewed and highlykurtotic
bursts in neonates shortly after birth were suggestive of long-term

(Continued)
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TABLE 4 | Continued

Study Study population Modality Analysis Main findings

disability. Low burst slope values, moderated by effect of gestational age,
correlated with poor scores on the Bayley scales or early death.

Padilla
et al., 2020

33 children born
extremely
prematurely and 29
children born term

fMRI and diffuse
MRI at 10 years old

Ignition analysis,
structural and
connectivity
matrices,
whole-brain Hopf
model

• Study compared 10 year-old children who were either born extremely
pre-term (EPT) or born at term, using fMRI with ignition analysis. Intrinsic
ignition events allow propagation of neuronal activity to other regions over
time which drives global integration. Extremely pre-term children had
reduced intrinsic ignition events, consistent with previous study that had
shown reduced spontaneous neuromagnetic activity in pre-term children.
Study found that the hierarchy of information processing based on the
variability of intrinsic ignition events was predominantly driven by visual and
sensory region in EPT children compared to the higher-order processing
areas like the fronto-temporal region and the associative area in term
children.

Jannesari
et al., 2020

19 term infants High-density EEG
during an oddball
auditory task

Power-law
estimation*, DFA

• Study evaluated infants at 6 and 12 months of age during auditory odd-ball
task to see if the bursting, scale-free activity of pre-term infants continues
as scale-free avalanche activity outside the newborn period. Suprathreshold
events organized as spatiotemporal clusters whose size and duration were
power-law distributed while time series of these events showed significant
LRTCs. Power law was a better distribution fit than log-normal and
exponential. No significant differences were noted between 6 and
12 months, suggesting stability of avalanche dynamics and LRTCs in the
first year after birth.

Asterisk (*) represents power-law estimations that meet criteria equivalent to or more stringent than Clauset et al. (2009). LORETA, low-resolution electromagnetic
tomography; PCA, principal component analysis; ADHD, attention deficit hypersensitivity disorder; MDI, motor development index.

infants at 6 and 12 months of life using high-density EEG to
see if scale-free brain activity that was already known to exist
at birth (Fransson et al., 2013) continued in the first year of
life (Jannesari et al., 2020). At both 6 and 12 months, the
EEG organized spatiotemporally according to a power-law with
significant LRTC. The authors found no significant differences
between the 6- and 12-month data, suggesting a degree of stability
in neuronal avalanche dynamics after the newborn period. But
while there do not seem to be significant differences in LRTC
and power-law distributions during the first year of life in term
babies, a significant difference does exist between pre-term babies
and term babies, even a decade after birth. Using functional and
diffusion MRI, researchers examined the brain dynamics of 10-
year-old children, roughly half of whom were born extremely
premature, and the other half at term (Padilla et al., 2020).
Extremely premature (EP) children generated fewer electrical
events (i.e., decreased ignition) compared to the term children –
suggesting decreased global integration from decreased firing
to other important brain regions over time (Deco et al., 2017).
EP children also exhibited abnormal hierarchical organization,
which autistic children are also known to exhibit (Parr et al.,
2018), further linking prematurity and autism (Padilla et al.,
2017). EP children’s brain dynamics showed decreased synchrony
and sub-criticality compared to term children, mainly in brain
areas with rich-club architecture (Ball et al., 2014). This difference
in synchronization perhaps occurs due to abnormal development
of white matter in EP children (Uhlhaas et al., 2010). Yet, whereas
extreme prematurity seems to predispose to some degree of sub-
critical brain dynamics, it seems from other studies that term
infants go on to exhibit similar power-law-like brain dynamics as
adults. In an EEG-fMRI study, newborn brain dynamics followed

scale-free power (frequency) distributions across several orders of
magnitude, with larger power-law exponents in primary sensory
areas compared to associative cortical areas (Fransson et al.,
2013). In contrast, power-law exponents for adult brain dynamics
were highest in associative cortices. While both adults and term
infants exhibit scale-free dynamics, the increased exponents in
different brain areas suggest that development and aging control,
to some degree, the cartography of near-criticality in the brain.

As for aging, the development of criticality and its suspected
decay with age have been the subjects of several studies (see
Table 4). Phase reset (PR), a combination of phase-shift followed
by phase-locking of EEG signals, is a powerful marker of SOC
used in many age-based studies of criticality. In a study of
PR in close to 460 subjects in the age range of 2 months to
16 years old, PR followed a 1/f distribution, with a longer mean
duration of both phase-shift and phase-locking as a function
of age (Thatcher et al., 2009). The presence of this distribution
argues in favor of scale-invariant fluctuations in PR, consistent
with SOC (Thatcher et al., 2009, 2014). In a study of pre-
school children, EEG frequency variance, a proxy for PR, was
also power-law distributed and increased with age (Frohlich
et al., 2015). Like PR, frequency variance may reflect critical
fluctuations driven by SOC.

LRTC has also been found to correlate with aging. A study
of about 1430 subjects from ages 5 to 71 revealed significant
increases in LRTC from childhood through adolescence into early
adulthood (about age 25), after which LRTC stabilized (Smit
et al., 2011). Scale-free modulations of resting-state oscillations,
therefore, seem to reflect brain maturation. Moreover, principal
component analysis (PCA) showed progressive integration
of segregated functional-anatomic brain regions with age –
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consistent with increased spatial correlation from critical
dynamics. In a smaller study of subjects ages 0 to 55, EEG
LRTC was present from early childhood into adulthood but
with magnitudes that changed differently depending on age,
EEG electrode, and frequency band (Berthouze et al., 2010).
For example, LRTC magnitude increased with age in the beta
band in central and parietal electrodes but decreased with age
in the theta frequency range. But temporal correlation is not
the only observable that appears to decrease with age in some
frequency bands. A study of resting-state EEG in nearly 18,000
individuals ages 18 to 70 found a decrease in the power-law
exponent of spectral density with age (Vyšata et al., 2014).
The authors theorized that brain atrophy with age might lead
to loss of neuronal connections (Morrison and Hof, 1997),
which would shift the neural networks away from their scale-
free topology (Barabási and Albert, 1999) and thus away from
power-law dynamics.

While there may be some appearance of contradiction in
these results (i.e., increased LRTC in one frequency range versus
another with aging), there is precedent for contradictory results
finding resolution when the right tool is applied. For example,
both healthy aging and anticholinergic medications increase the
Hurst exponent (Wink et al., 2006). Yet, faster processing speeds,
which are not characteristic of aging, also lead to increases
in the Hurst exponent (Wink et al., 2008). Suckling et al.
(2008) reconciled these results with the introduction of a multi-
fractal approach and demonstrated that criticality offered a better
explanation than turbulence for these brain dynamics. This
example highlights how the right methodology and tools can help
make sense of disparate results. Methodological developments,
like the index of functional criticality (Jiang et al., 2019), will
hopefully generate more useful clinical results in this area. The
applications of criticality to aging and geriatric medicine are still
in their infancy but deserve more emphasis in a society with an
increasingly elderly population.

Cognition, Attention, Learning, and
Autism
In computational and theoretical models, criticality optimizes
certain features of learning, including optimal information
capacity and transmission (Shew et al., 2011; Shew and Plenz,
2013; Del Papa et al., 2017). Important aspects of human learning,
including cognition and attention, have been analyzed through
the lens of criticality (see Table 5). Studies on attention-deficit
hypersensitivity disorder (ADHD) and autism, in which features
of neurotypical cognition and attention are disrupted, are few in
number but appear promising.

In the area of cognition, researchers have wondered whether
criticality plays a role in the brain’s response to increasing
cognitive loads. In a study of healthy adults undergoing working
memory and response tasks, Altamura et al. (2012) found power-
law-like behavior in the upper tails of the cumulative distribution
of response times. One possible interpretation of this result is
the emergence of scale-free behavior in response to increased
cognitive loads. In other words, increased cognitive load shifts
random behavior toward scale-free behavior near a critical point.

Another study of healthy adults undergoing a cognitive task
also showed a power-law scaling of response time fluctuations
(Simola et al., 2017). Furthermore, Simola et al. (2017) found
autocorrelations and LRTC of response time fluctuations, with
the LRTC scaling exponents correlating negatively with error
rates and positively with executive function testing scores. As
the authors pointed out, LRTC can originate in the setting
of criticality but also exist in systems with a slow decay of
memory. The negative correlation of LRTC scaling exponent
with error rates suggests increased cognitive flexibility, which
is more consistent with criticality than with a system that
operates with slowlydecaying memory. Without criticality, LRTC
would decrease cognitive flexibility because long-memory would
not allow reconfigurations. Patients with ADHD are known to
show increased response time variability in these kinds of tasks.
However, in this study, the LRTC scaling exponents were not
correlated to response time variability or mean response time,
implying that another brain process may be involved in ADHD.
Studies of behavioral dynamics (e.g., response times on tasks)
in ADHD patients compared to neurotypical patients may grant
further insights into the role of scale-free, critical dynamics
in ADHD.

But while the behavioral response (i.e., response times) to
increased cognitive load may be power-law-like, studies of
the electrical brain response to increased cognitive load show
more mixed results. A MEG study of neurotypical children
and children with high-functioning autism undergoing executive
function tasks demonstrated a decrease in power-law scaling of
phase synchrony as cognitive tasks became more difficult, i.e.,
increased cognitive load (Tinker and Velazquez, 2014). Power-
law distributions were uncommon in this study in both autistic
and neurotypical children and were more likely to co-exist with
other distributions (e.g., exponential). These results suggest that
metastable, rather than purely critical, dynamics are at play in
the brain’s response to increased cognitive loads (Bressler and
Kelso, 2001; Deco and Jirsa, 2012). Along similar lines, an EEG
study of healthy adults during a working memory task found an
inverse correlation between LRTC in the theta frequency range
and memory performance (Euler et al., 2016). This result is
perhaps the opposite of what one might have predicted from work
that had found indications of criticality in behavioral dynamics
(Altamura et al., 2012; Simola et al., 2017).

But not all brain studies of human cognition have argued
against the existence of critical dynamics. An EEG study of
210 neurotypical adults undergoing an object recognition task
showed that variation in 1/f noise was a robust predictor of
cognitive processing speed (Ouyang et al., 2020). Moreover, the
power-law exponent of the 1/f noise was most predictive of
person-to-person processing speeds. While there are many non-
critical sources of 1/f noise, this study harmonizes well with the
theoretical literature on criticality’s optimization of information
transmission. In an EEG study of healthy adults undergoing an
action adjustment task, midfrontal theta – an electrical signature
known to correlate with real-time error correction (Cavanagh
and Frank, 2014) – displayed scale-free-like fluctuations over
durations of up to tens of seconds (Cohen, 2016). The author
suggested that fluctuations may modulate the midfrontal theta
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TABLE 5 | Summary of cognition-related criticality literature.

Study Study population Modality Analysis Main findings

Lai et al.,
2010

30 male adult
subjects with
autism or
Asperger’s
syndrome, 33 age-
and IQ-matched
male adult controls

fMRI during
resting-state

Hurst exponent • Study examined complexity of endogenous, low-frequency
neurophysiological processes in patients with ASD compared to control
patients. Study confirmed that spontaneous BOLD signal fluctuations in the
brain, specifically in regions implicated as atypical in previous autism
neuroimaging studies, had small but significant decrease in Hurst
exponents in the autistic compared with neurotypical group. This finding
indicated a shift-to-randomness of brain oscillations in the autistic brain.

• Though the meaning of the Hurst exponent ins limited by our understanding
of neuronal and blood-supply sources to the measured BOLD signal,
nevertheless fractal scaling may serve as indicator of organizational
properties of local neural circuits.

Altamura
et al., 2012

12 healthy adults Response times to
working memory
and response tasks

Probability density
functions,
power-law
estimation

• Power law-like behavior was noted in the upper tails of the CDF of response
times for working memory tasks. This finding possibly reflects emergence of
scale-free behavior in time series as an adaptation to increased cognitive
requirements. Increasing cognitive load could shift random behavior to
scale-free behavior near a critical point.

Dimitriadis
et al., 2013

23 children with
reading difficulties,
27 age- and
IQ-matched
children

MEG during
resting-state

DFA • Study examined MEG in children with reading difficulties compared to
children without reading difficulties. Children with reading difficulties had
decreased overall network organization across all frequency bands (global
efficiency decrease) and a decrease in temporal correlations between
sensors covering the left temporoparietal region. Study suggested that the
specific parameters of SOC vary systematically in presence of reading
difficulties. Both groups exhibited scale-free global network connectivity
dynamics.

Tinker and
Velazquez,
2014

15 children with
high-functioning
autism, 16
neurotypical
children (ages
7−16 years old)

MEG during two
executive function
tasks

power-law
estimation

• Study examined scaling of phase synchrony in MEG in patients with ASD
compared to controls. Power-law scaling of phase synchrony was not
common in either group. Its frequency of occurrence diminished with
increased cognitive load/effort as children performed more difficult tasks.
Power law distribution coexisted with other distributions (e.g., exponential)
suggesting a sign of the metastability of brain dynamics.

Fagerholm
et al., 2015

18 healthy adults EEG-fMRI during
rest and a
visuomotor
cognitive task

Power-law
estimation*, shape
analysis

• Study examined combined EEG and fMRI in healthy volunteers during rest
and cognitive task. Resting-state EEG cascades were associated with
approximate power-law distribution, while task state was associated with
subcritical dynamics. Decreased response times during the cognitive task
were associated with better approximation of a power-law form of cascade
distribution. Findings suggest that resting-state was associated with
near-critical dynamics while focused cognitive state induced subcritical
dynamics with a lower dynamic range to reduce interference with task (i.e.
promoting task performance).

Euler et al.,
2016

54 healthy adults EEG at rest and
during a working
memory task

DFA • Study finds evidence of inverse relation between theta band LRTC and
working memory performance−higher scaling exponent was related to
poorer cognitive performance. Authors suggest that since elevated LRTC
have been noted in epilepsy, increases in LRTC are not always beneficial.

Cohen,
2016

21 healthy adults EEG during action
adjustment task

Demeaned
fluctuation analysis
(DMA)

• Real-time error correction has been correlated to an idiosyncratic
electrophysiological signature called midfrontal theta. This study found that
midfrontal theta is a transient but non-phase-locked response modulated
by task performance over three time scales, including scale-free-like
fluctuations over many 10 s. The phasic midfrontal theta brain response to
errors or error corrections is modulated by slow fluctuations in criticality.

Simola
et al., 2017

27 healthy adults Response times
during a Go/NoGo
task

Autocorrelation,
spectral density,
DFA

• Response time fluctuations in the Go/NoGO task exhibited a power law
frequency scaling, autocorrelations and LRTCs, with LRTC scaling
exponents negatively correlated with the commission error rates. Finding
suggested that LRTCs co-exist with cognitive flexibility which is in line with
the criticality hypothesis. LRTC scaling exponents were uncorrelated to the
mean response time (MRT), suggesting that performance variables derive
from distinct processes than brain criticality. Understanding the individual
variation in scale-free behavioral dynamics may improve utility of
neuropsychiatric assessment in ADHD.

(Continued)
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TABLE 5 | Continued

Study Study population Modality Analysis Main findings

Irrmischer
et al.,
2018a

28
meditation-trained
healthy adults, 21
meditation-naïve
healthy adults

EEG during
eyes-closed rest
and meditation

Spectral density,
DFA

• Study evaluated EEG from meditation practitioners and meditation-naive
participants from independent labs. In practitioners, but not in controls,
meditation strongly suppressed LRTC of oscillations relative to eyes-closed
rest, across all frequency bands and scalp locations. Sustained practice led
to reduction in LRTC during meditation after 1 year of additional training.
Practice also impacted normal waking brain dynamics as reflected in
increased LRTC during eyes-closed rest state, indicating an alteration
beyond merely meditation. Authors suggested that meditation-induced
release of GABA may lead to subcritical regime.

Irrmischer
et al.,
2018b

57 healthy adults EEG during
eyes-open,
eyes-closed, and
temporal
expectancy task

Spectral density,
DFA

• High levels of alpha band LRTC in sensorimotor region during rest predicted
good reaction-time performance in attention task. During task execution,
fast reaction times were associated with high-amplitude beta and gamma
oscillations with low LRTC.

• Authors hypothesize that focus and attention move the neural system from
near-criticality optimized for environmental and internal demands, to a state
of reduced input propagation but increased attentional stability, leading to
suppression of LRTC.

Jia et al.,
2018

35 children with
ASD (ages
4−9 years old), 31
age- and
gender-matched
neurotypical
children

Functional
near-infrared
spectroscopy
(fNIRS) while
watching a cartoon

DFA • The hemoglobin concentration signals (i.e., oxy-Hb and deoxy-Hb) of young
children with ASD and normal children were recorded via fNIRS while
watching a cartoon. DFA exponents of young children with ASD were
significantly smaller over left temporal region for oxy-Hb signal, and over
bilateral temporo-occipital regions for deoxy-Hb signals, indicating a
shift-to-random-ness of brain oscillations in children with ASD. Testing the
relationship between age and DFA exponents revealed that this association
could be modulated by autism.

• Studying the temporal structure of brain activity via fNIRS technique may
provide physiological indicators for autism. Authors speculated about a
connection with SOC, though functional significance of DFA exponent is
unclear. LRTC could play a role in evaluating disease progression in ASD.

Bongers
et al., 2019

22 healthy
university students

EEG during
computerized
learning and
resting-state

Irregular
Resampling
Auto-spectral
Analysis (IRASA),
power-law
estimation

• Study identified power law exponent of fractal signal during continuous EEG
of computerized chemistry learning. Mixed power increase of broadband
frequencies, which reflected an overall increase in fractal power, was seen
during learning. A low power law exponent with increased band power of
the fractal component seemed to correlate to high learning gains.

Kwok et al.,
2019

41 healthy children
(ages 4−6)

High-density EEG
during eyes-open
and eyes-closed

Spectral density,
DFA

• Study used resting state EEG of children with typical development to
explore relation between alpha (7−10 hz) oscillations and oral language
ability. Higher language scores were correlated with lower alpha power and
increased temporal correlations. Findings further demonstrated existence of
critical state dynamics as important for language acquisition.

Ezaki et al.,
2020

138 healthy adults Resting-state fMRI;
IQ scores

Correlation
between spin-glass
susceptibility and
performance IQ
score

• Study added support to criticality hypothesis by showing moderate but
clear correlation between IQ scores and distance from criticality at an
individual level using dynamic fMRI signals. A model of criticality using spin
glasses was compared to data from healthy adults with a range of fluid
intelligence IQs. Human fMRI data was found to be within paramagnetic
phase close to the boundary with the spin-glass (SG) phase if using the
framework of the Ising model. High fluid intelligence was associated with
proximity to boundary between paramagnetic and SG phases. SG phase
yields chaotic dynamics in spin systems, consistent with idea of enhanced
computational performance “at the edge of chaos.”

Ouyang
et al., 2020

210 healthy adults EEG during
eyes-open,
eyes-closed
resting-state, and
object recognition
task

Structural equation
modeling; fitting
oscillations and
one-over-f (FOOOF)
methodology;
IRASA

• The goal of this study was to investigate how individual differences in
cognitive processing speeds could be predicted by the power spectrum of
resting-state EEG signals. Alpha oscillations were not significantly
associated with cognitive processing speed once the 1/f noise was
eliminated by SEM. Variation in 1/f was revealed to robustly predict
cognitive processing speed in eyes open and eyes closed. Slope of the
power law decaying function was most predictive of between-person
processing speed.

Asterisk (*) represents power-law estimations that meet criteria equivalent to or more stringent than Clauset et al. (2009). ASD, autism spectrum disorder; BOLD, blood
oxygenation level-dependent; CDF, cumulative distribution function.
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brain response to errors at a critical point (Cohen, 2016). In
summary, evidence from both brain dynamics and behavioral
dynamics points to some aspects of criticality in human cognition
(Altamura et al., 2012; Cohen, 2016; Simola et al., 2017; Ouyang
et al., 2020) while other studies do not (Tinker and Velazquez,
2014; Euler et al., 2016).

Studies of human attention have centered on the roles of
criticality in meditation and its possible applications to ADHD,
as mentioned earlier. There are many forms of meditation,
and a commonly practiced form, called focused attention
(FA) meditation, helps its practitioners improve their ability
to focus (e.g., on their breath, on their bodily sensations).
An EEG study of FA meditation-trained subjects compared
to meditation-naïve subjects found that FA meditation in
practitioners led to strong suppression of LRTC in oscillations
across all frequency bands and electrodes, compared to the eyes-
closed state (Irrmischer et al., 2018a). Meditation-naïve subjects
did not show this suppression of LRTC. A year’s worth of
meditation practice led to more permanent changes since FA
meditation practitioners had increased LRTC during eyes-closed
rest state when they underwent EEG a year later. The authors
hypothesized that meditation-related release of GABA might be
contributing to excess inhibition and a subcritical regime as
seen by decreased DFA exponent (i.e., LRTC suppression). In
a similar EEG study of healthy subjects, high levels of alpha
frequency LRTC in the sensorimotor region of the brain during
rest predicted strong reaction-time performance in an attention
task (Irrmischer et al., 2018b). During the execution of the
task, on the other hand, suppressed LRTC in beta and gamma
frequencies was associated with fast reaction-time performance.
This study complements the results obtained in an earlier
EEG-fMRI study of healthy adults during a visuomotor task
and at rest. It found that the resting-state is associated with
near-critical dynamics, while focused cognitive tasks induce
subcritical dynamics that may reduce interference with the
task at hand (Fagerholm et al., 2015). The upshot of these
three studies is that focused attention – whether meditation-
related (Irrmischer et al., 2018a) or visual attention (Fagerholm
et al., 2015; Irrmischer et al., 2018b) – is associated with a
reduction in criticality fluctuations. Generalized human attention
at rest, on the other hand, balances a certain degree of
focus with the ability to respond quickly to both internal and
external stimuli. That balance should theoretically be optimal
near criticality.

A handful of studies have examined the role of criticality in
human learning, both in children and in adults. A MEG study
of children with reading difficulties showed decreased temporal
correlations in the left temporoparietal region compared to age
and IQ matched children without reading difficulties (Dimitriadis
et al., 2013). While this study examined subjects at rest
instead of in a reading activity, its results dovetail well with
previous studies that showed aberrant cortical activation in
left posterior and temporal regions in children with severe
reading difficulty during a reading assignment (Hoeft et al.,
2007; Cao et al., 2008). Both groups of children exhibited
scale-free global network connectivity, suggesting that local,
rather than global, decreases in LRTC may be involved in

reading difficulties and dyslexia. A high-density EEG study of
neurotypical children found that lower alpha frequency power
and increased LRTC correlated positively with language scores
(Kwok et al., 2019). This study confirmed the findings of
Dimitriadis et al. (2013) that critical state dynamics are important
for language acquisition.

A recent resting-state fMRI study of neurotypical adults with a
range of IQ scores found that high fluid intelligence is associated
with proximity to a critical phase transition in a spin-glass model
(Ezaki et al., 2020). This finding was consistent with previous
work suggesting near-criticality as perhaps optimal for learning
(Gisiger et al., 2014). From an EEG study of healthy university
students learning organic chemistry, it is also known that a lower
power-law exponent of the fractal component of EEG signals
correlates with higher learning gains during a computerized
learning task under EEG (Bongers et al., 2019). While this latter
study makes no claims regarding criticality, one can infer that
the scale-free behavior of neurons matters for the acquisition of
complex new knowledge.

Only a few studies have examined the role of criticality-related
markers in autism. A resting-state fMRI study of adult males with
autism spectrum disorders, including high-functioning autism,
detected a small but significant decrease in the Hurst exponent
compared to controls in brain regions implicated in autism by
previous neuroimaging studies (Lai et al., 2010). This decrease
in the Hurst exponent indicates a shift toward randomness of
fluctuations in blood oxygen level-dependent (BOLD) signals
in the brain impacted by autism. Though the interpretation of
the Hurst exponent in BOLD signals is challenging because of
the unclear roles of blood supply and neural circuits among
many others, the use of fractal scaling can serve as a barometer
of underlying coordination and organization of neural circuits.
In this study, the shift toward randomness in BOLD signals
may indicate decreased coordination of small-scale circuits,
to the disadvantage of larger brain circuitry. This hypothesis
harmonizes well with one of many prevailing theories about
the origins of autism, namely the local overconnectivity theory
(Belmonte et al., 2004; Baron-Cohen and Belmonte, 2005).
A more recent study of children with autism spectrum disorders
(ASD) used functional near-infrared spectroscopy (fNIRS) to
compare LRTC with age and gender-matched neurotypical
children (Jia et al., 2018). Consistent with the findings of
Lai et al. (2010) this study found that DFA exponents (i.e.,
LRTC scaling exponents) were significantly smaller over the
left temporal region for the oxy-hemoglobin (oxy-Hb) signal in
children with ASD compared to controls. DFA exponents were
also significantly smaller over both temporo-occipital regions
for deoxy-hemoglobin (deoxy-Hb) signals in children with ASD
compared to controls. DFA exponents correlated well with
age in neurotypical children, consistent with findings discussed
previously (Smit et al., 2011). However, DFA exponents of
oxy-Hb in the left temporal region correlated negatively with
autism symptom severity on a parental questionnaire. This result
dovetails nicely with a previouslyidentified negative correlation
between cerebral blood flow to the left superior temporal gyrus
and Autism Diagnostic Interview-Revised scores (Meresse et al.,
2005). While the authors of this fNIRS study suspect that
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autism may represent a departure from SOC, it seems further
neuroimaging studies using criticality-based approaches will be
needed before one can safely reach that conclusion.

Psychiatry
Researchers have turned to criticality-based tools to improve
their understanding of common psychiatric conditions like
depression, schizophrenia, anxiety, post-traumatic stress disorder
(PTSD) (see Table 6). Insights from criticality theory have
also helped describe the psychological effects of neurofeedback
and psychedelics.

Studies of major depressive disorder (MDD) or unipolar
depression have mostly relied on the search for temporal
correlations (LRTC) using DFA. A small MEG study of patients
with MDD and healthy controls found absent LRTC in the theta
frequency band in patients with MDD compared to controls
(Linkenkaer-Hansen et al., 2005). The study authors suggested
that abnormal temporal structure of theta oscillations could
reflect an underlying defect in limbic-cortical networks identified
in anatomic-functional studies of MDD. Another small EEG
study of patients with MDD and healthy controls did not
reproduce this finding of absent theta LRTC (Lee et al., 2007).
Instead, the study authors found that increased LRTC scaling
exponents (i.e., slower decay of LRTC) correlated positively with
the severity of depression over most EEG channels. This finding
led the authors to speculate that rumination and psychomotor
retardation – typical features of MDD – may be responsible for
this persistence of LRTC.

Other studies have examined whether depression leads to
alterations in LRTC during sleep. A small sleep EEG study of
patients with untreated, acute episodes of MDD found a decrease
in LRTC scaling exponents in NREM2, NREM3, and NREM4
compared to healthy controls (Leistedt et al., 2007b). However,
this decrease was not statistically significant. A similar study by
the same research team, this time with patients in remission
from MDD, found no differences in LRTC through the stages of
sleep (Leistedt et al., 2007a). In addition to demonstrating the
existence of LRTC during sleep (see Sleep Medicine section for
more details), these results argue against the “depressive scar”
hypothesis, according to which depression leads to permanent
residual defects.

Researchers have also taken an interest in negative emotional
regulation as a precursor for MDD. A large EEG study of
non-depressed undergraduate students found a positive linear
correlation between LRTC scaling exponents of theta and
broad-band frequencies and negative emotional regulation on
various questionnaires (Bornas et al., 2013). Their research
suggested that negative emotional control may anticipate full-
blown MDD by several years. While this study broadly agreed
with the findings of Lee et al. (2007), it disagreed with
Linkenkaer-Hansen et al.’s (2005) conclusions with regards to
the magnitude of scaling exponents with worsening rumination.
A more recent, large EEG study found that, at baseline,
patients with MDD have higher LRTC scaling exponents in
the theta frequency range than healthy controls (Gärtner et al.,
2017). After intervention with either mindfulness training or
stress reduction training, both groups experienced a reduction

in the strength of LRTC. This latter result suggests a new
approach for examining the physiological mechanism by which
psychotherapeutic interventions improve depressive symptoms.
Given the inconsistencies in findings, more extensive studies
will help clarify the nature of the LRTC in the various
frequency bands and the multiple stages of depression (acute,
treated, etc. . .). Future studies could assess whether LRTC
changes significantly after initiation of first-line pharmacological
intervention for MDD. Other criticality-based metrics could be
useful to characterize the nature of brain dynamics in MDD as
either sub-critical or, less likely, super-critical.

Criticality-based studies of schizophrenia are few but have
opened up new horizons. An EEG study of around 30 patients
with schizophrenia and schizoaffective disorders used a fractal
analysis of 1/f EEG rhythm fluctuations to try to distinguish
the brain dynamics of schizophrenia from that of healthy
controls (Slezin et al., 2007). A frontal electrode (F4) exhibited
increased instability and randomness in the alpha band for
patients with schizophrenia and schizoaffective disorders. The
theta band, on the other hand, exhibited increased stability and
decreased complexity in patients with schizophrenia compared
to healthy controls. A subsequent fMRI study of patients with
schizophrenia compared to healthy controls (Radulescu et al.,
2012) also identified decreased complexity of brain dynamics, but
different from that of Slezin et al’s. (2007)study. In Radulescu
et al’s. (2012) study, a sophisticated analysis pipeline, including
power spectrum scale invariance (PSSI) and Poincare maps
(a measure of signal variance), found that signals coming
from Brodmann area 10 (BA10) exhibited lower power-law
exponents in schizophrenic patients than in healthy controls. In
other words, schizophrenic patients displayed white (Gaussian
or random) noise in this brain region, compared to pink
(1/f) noise in healthy patients. This finding is consistent with
previous research documenting the role of BA10 in executive
function, working memory, and emotion regulation (Radulescu
et al., 2012). This transition from pink noise to white noise in
schizophrenia suggests, from the perspective of criticality, a loss
of responsiveness to stimuli.

While the studies mentioned above took a fractal and power-
law approach to signal analysis, others have taken the route
of studying LRTC in schizophrenia. Their results complement
and refine those obtained using fractal approaches. A high-
density EEG study of LRTC in adults with schizophrenia and
schizoaffective disorders found strong attenuation of LRTC
scaling exponents in alpha and beta frequency bands in patients
compared to healthy controls (Nikulin et al., 2012). While Slezin
et al. (2007) did not study the beta frequency range, they did
observe increased complexity in the alpha range, which is globally
consistent with the findings in this study. These attenuated
scaling exponents indicate decreased temporal correlation and
a decrease in temporal precision of neuronal firing compared
to healthy subjects. This interpretation fits well with at least
two theories for the origins of schizophrenia, namely that of
excessive neuronal noise and variability (Rolls et al., 2008) and
the “disconnection hypothesis” of dysfunctional relationships
between neural networks (Friston et al., 2016). A follow-up study
found similar results (Moran et al., 2019). In this high-density
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TABLE 6 | Summary of psychiatry-related criticality literature.

Study Study population Modality Analysis Main findings

Linkenkaer-
Hansen
et al., 2005

12 adults with
MDD, 10
age-matched
healthy controls

MEG during
eyes-closed resting
state

DFA, linear
correlation of DFA
exponent to
Hamilton
Depression Rating
Scale

• This study recorded MEG data from patients with MDD compared to
healthy controls during eyes-closed wakeful rest and quantified LRTC in
amplitude fluctuations of different frequency bands. Temporal correlations in
theta band were absent in the 5−100 s time range in patients but were
prominent in controls. The magnitude of temporal correlations over left
temporo-central region predicted severity of depression in patients. LRTCs
in theta oscillations are a salient characteristic of healthy human brain and
may have diagnostic potential in psychiatric disorders.

Lee et al.,
2007

11 unmedicated
adults with MDD
per DSM-IV, 11
non-depressed
age-matched
controls

EEG during resting
state

DFA • Study compared LRTC in depressed subjects compared to controls. Study
found a significant linear correlation between severity of depression and
scaling exponent over most channels. There was slower decay of LRTC
and persistence of LRTC in depressed patients associated with severity of
depression over most cortical areas.

Slezin
et al., 2007

33 patients with
paranoid
schizophrenia,
schizotypal
disorder,
schizoaffective
disorder per
ICD-10, 23 healthy
controls

EEG during resting
state

Spectral density,
power-law
estimation

• Study applied multifractal analysis of 1/f EEG rhythm fluctuations in patients
with schizophrenia-related disorders compared to controls. Study found
increased instability and randomness of alpha rhythm in the F4 electrodes
in schizophrenia-related disorders. Theta rhythm, on the contrary, showed
increased stability, regularity, and decreased complexity compared to
normal/healthy controls in the same disorders.

Leistedt
et al.,
2007b

10 untreated
inpatients with an
acute episode of
MDD per DSM-IV,
14 healthy controls

EEG during sleep spectral density,
DFA

• Major depressive episodes are characterized by modification in correlation
structure of sleep EEG time series. Power law exponents were lower but
not statistically significant in stage 2 and NREM3-4. These changes in
scaling behavior could provide an explanation for why patients with acute
depression have sleep fragmentation.

Leistedt
et al.,
2007a

10 untreated men
in full or partial
remission from
MDD per DSM-IV;
14 healthy controls

EEG during sleep DFA • Goal of the study was to investigate the scaling properties of the sleep EEG
in remitted depressed men and to see whether history of MDD could
significantly alter dynamics of sleep EEG as a “scar marker.” No significant
differences were noted between the two groups during sleep. There were
no functional sequelae of past history of one or more unipolar MDD
episodes on fluctuation properties of sleep EEG. Study argued against
"depressive scar hypothesis" in which some permanent residual defect is
created by depressive disease. Study also confirmed LRTC in human sleep
EEG.

Tolkunov
et al., 2010

50 healthy adults
without psychiatric
history

fMRI during visual
stimulus testing

power spectrum
scale invariance
(PSSI)

• Study examined whether patients with higher levels of trait anxiety would
show less efficient regulation of limbic responses using a visual stimulus
during fMRI. Significant positive correlations were found between beta
frequency for limbic control circuit and trait anxiety. Dysregulated outputs
from limbic system in trait anxiety also led to dysregulated inputs to the
autonomic nervous system.

Radulescu
et al., 2012

9 adults with
schizophrenia per
DSM-IV, 26 healthy
controls

fMRI scan during
affect-valent
stimulus

Power spectrum
scale invariance
(PSSI), Poincare
maps

• Study hypothesized that paranoid schizophrenia might be result of
optimization abnormalities in the prefrontal-limbic circuit that regulates
emotion. Patients and controls showed distinct PSSI in the
orbitofrontal/medial prefrontal cortex (Brodmann 10). Poincare maps
showed less variability in patients compared to controls. PSSI may be
useful for psychiatric diagnoses, partly for the spatial localization it affords.

Nikulin
et al., 2012

18 adults with
schizophrenia, 3
with schizoaffective
disorder per
DSM-IV, 28 healthy
age- and
gender-matched
controls

high-density EEG
during resting state

DFA,
cross-frequency
correlations

• Study evaluated LRTC in schizophrenia-related disorders compared to
healthy controls. LRTCs were significantly decreased in patients with
schizophrenia in both alpha and beta frequency ranges. Authors
hypothesize that decrease in LRTC arises from increased variability in
neuronal activity in patients with schizophrenia. Haloperidol dosing and
scaling exponent did not correlate in electrodes or frequency bands, which
argues against the effects of anti-psychotics on the noted differences in
LRTCs.

Bornas
et al., 2013

56 healthy
undergraduate
students

EEG during
eyes-open,
eyes-closed resting
state; Beck
Depression

DFA, linear
correlation between
questionnaire
scores and DFA
exponents

• Goal of study was to look for possible differences in LRTC in brain signals
from people with different negative emotion regulation strategies, including
rumination, that lead to a depressed lifestyle. Study identified linear positive
correlations between the scaling exponents of both broad band and theta
band oscillations and negative emotion regulation strategies and depression

(Continued)
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TABLE 6 | Continued

Study Study population Modality Analysis Main findings

inventory and
emotion regulation
questionnaires

scores. Authors suggested that differences may exist between depressed
and non-depressed even before depression manifests, though depressed
mental state clearly impacts the degree of correlation.

Tagliazucchi
et al., 2014

15 healthy adult
subjects

fMRI before, during,
and after IV
psilocybin and
placebo infusions

Variance and total
spectral power

• Study aimed to quantify the repertoire of neural states under the influence of
psychedelics like psilocybin. Changes in spectral scaling exponents and
variance of BOLD signals exclusively affected higher brain systems. Authors
found that psilocybin resulted in a larger repertoire of connectivity states at
rest than in control conditions, consistent with brain criticality.

Zhigalov
et al., 2016

9 healthy adult
subjects (ages
18−23 years old)

EEG while resting
with eyes-closed
during closed-loop
and sham NFB
sessions

Spectral density,
DFA

• Study hypothesized that LRTC could be manipulated by closed-loop NFB
stimulation. Over multiple sessions, there emerged a significant difference in
LRTCs of α-band oscillations, with LRTCs stronger during NFB than sham.
Study served as a proof-of-concept that EEG LRTCs, and thus critical brain
dynamics, could be modulated with closed-loop stimulation.

Ros et al.,
2014

40 healthy adults;
21 adults with
PTSD per DSM-IV,
with 30 age- and
gender-matched
healthy controls

fMRI scan before
NFB, EEG during
NFB or sham-NFB,
and fMRI scan after
NFB

DFA • Study aimed to evaluate possibility of manipulating LRTC in patients
suffering from PTSD. Brain areas with low LRTCs in PTSD subjects
normalized toward healthier population levels with application of
neurofeedback compared to sham. Authors suggest that LRTC changes
seen with NFB are due to fluctuations in excitation-inhibition balance.

Gärtner
et al., 2017

71 depressed adult
patients per
DSM-IV, 25 healthy
controls

EEG before and
after mindfulness
training or stress
reduction training

DFA • Study sought to understand whether neural dynamics improved in patients
with MDD after psychological treatment. Depressed subjects exhibited
stronger LRTC in theta oscillations (4–7 Hz) at baseline compared to
controls. Following the psychological interventions both groups exhibited
decreased LRTC in the theta band, with marginal numerical differences
between the groups. Future of this research area will involve uncovering
how psychological interventions effectively reduce LRTCs.

Moran
et al., 2019

23 patients with
schizophrenia per
DSM-IV, 24
education-,
handedness-, age-,
and
gender-matched
healthy controls

EEG with
eyes-open

DFA, LORETA • Patients with schizophrenia showed area of significantly reduced beta-band
LRTC over bilateral posterior regions compared to controls. Absence of
alpha band differences (contrary to Nikulin et al., 2012) could be related to
eyes-open EEG used in this study.

DSM-IV, Diagnostic and Statistical Manual, 4th edition; MDD, major depressive disorder; NFB, neurofeedback.

EEG and standardized low-resolution brain electromagnetic
tomography (sLORETA) study of patients with schizophrenia
compared to healthy controls, there was a significant reduction
in LRTC in the beta-band over the bilateral posterior regions
in patients compared to healthy controls. This study found no
differences in the alpha frequency between patients and controls.
However, the study authors suggested that the eyes-open state of
their study (compared to the eyes-closed, resting state of Nikulin
et al., 2012) may have eliminated an underlying difference in
that frequency range. More importantly, both studies confirm
the importance of LRTC as markers of network instability
in schizophrenia.

A much smaller number of studies have examined the role
of neurofeedback (NFB) as a treatment modality for psychiatric
disorders. A small study of healthy adults randomized to
either closed-loop NFB or sham NFB found that, after three
sessions, LRTC in the alpha frequency band was stronger
in the NFB group compared to the sham (Zhigalov et al.,
2016). This difference was statistically significant and did not
involve any statistically significant topographical changes in
alpha power. The study provided proof-of-concept that closed-
loop NFB can restore critical brain dynamics by altering

the excitation-inhibition balance in psychiatric disorders with
decreased LRTC. A larger EEG and fMRI study of healthy
patients confirmed this improvement in LRTC after closed-loop
NFB compared to sham. The study also involved a population
of patients with PTSD, whose LRTC improved with closed-
loop NFB (Ros et al., 2014). The study authors speculated that
NFB leads to stronger excitation with an associated increase
in temporal correlation and symptomatic improvement. While
it is unclear whether NFB can help in disorders characterized
by super-criticality (e.g., seizures), NFB has already shown
benefit in several disorders characterized to some degree by sub-
criticality, including schizophrenia (Surmeli et al., 2012) and
major depression (Escolano et al., 2014).

A few criticality-based studies have taken an interest in the
role of psychedelics in treating mental illnesses. Researchers
have focused on psilocybin, the active ingredient in “magic
mushrooms,” and lysergic acid diethylamine (LSD). In an fMRI
study of healthy patients receiving psilocybin versus a placebo,
study authors found an increased variance in BOLD signals in
the hippocampi of psychedelic recipients (Tagliazucchi et al.,
2014). The increased variance implies increased synchronization,
consistent with a super-critical state of brain dynamics. This
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TABLE 7 | Summary of sleep-related criticality literature.

Study Study population Modality Analysis Main findings

Nikulin and
Brismar,
2004

12 healthy adults EEG with
eyes-open and
eyes-closed

DFA • LRTC in alpha oscillations were not changed significantly by wakefulness
level while beta oscillation scaling exponent significantly increased in the
closed eye condition.
Increased synaptic activity associated with arousal/wakefulness may
interfere with dynamics of LRTC. Study confirmed existence of LRTC in
both awake and closed eyes but more consistently in closed eye state and
may be reflective of underlying SOC.

Weiss
et al., 2011

22 healthy adults EEG during REM,
NREM2, NREM4
sleep

Hurst exponent,
power spectral
measures

• Study assessed various metrics of sleep EEG including monofractal,
multifractal, and spectral power measures. Sleep stage discrimination with
multifractal measure was superior to relative band powers, spectral edge
frequency, or Hurst exponent.

• Study found higher H exponent, DFA exponent, and fractal exponent in
deep sleep, while multifractal measure was decreased. These findings
indicate a decrease of multifractality and an increase in long memory in
deep sleep.

Dehghani
et al., 2012

2 adult patients
with intractable
epilepsy

iEEG from temporal
gyrus in awake
state, REM, and
slow-wave sleep

Power-law
estimation*

• Study investigated power-law distribution of neuronal avalanches (spikes)
from iEEG data. Neuronal avalanches (spikes) did not clearly follow
power-law in awake, SWS, or REM states and instead followed closer to
exponential distribution. Positive and negative LFPs followed apparent
power laws with log-log analysis but closer examination with CDF-based
testing did not confirm power law and favored double exponential
distribution. In cases where power laws were seen with log-log analysis,
exponents were too high for SOC systems.

• These results contradict those of prior studies (Petermann et al., 2009;
Ribeiro et al., 2010) and perhaps could be harmonized with prior results by
taking into account recording methods or volume conduction effects.

Meisel
et al., 2013

8 healthy adults EEG during 40 h of
sustained
wakefulness

Power-law
estimation*,
branching
parameter, spectral
density

• Study evaluated evolution of criticality parameters during prolonged
wakefulness. At the start of sleep deprivation, coherence potentials were
organized as neuronal avalanches in space and time with power law −3/2
and branching parameter 1.17, both of which suggest a system near
criticality. With increased duration of wakefulness, size distributions of
coherence potentials and PLIs developed larger tails, an increase in
branching parameter, and an increase in mean synchronization while
variability of synchronization decreased.

• These findings suggested that, during sustained wakefulness, the neural
networks move from a critical to a supercritical state, perhaps as a result of
increased excitation and decreased inhibition (Shew et al., 2009; Yang
et al., 2012). Sleep might serve to reorganize network dynamics to critical
state in order to assure optimal computational capabilities while awake.

Priesemann
et al., 2013

5 adults with
refractory epilepsy

iEEG (depth
electrode)

Power-law
estimation*,
branching
parameter

• Neuronal avalanches were recorded from intracranial depth electrodes in 5
epilepsy patients over two nights through all sleep stages. Avalanches were
described by power laws in all cases but with different dynamics depending
on sleep stages. SWS showed the largest avalanches, wakefulness showed
intermediate-sized, while REM showed smallest. Differences in avalanche
distributions implied that not all vigilance states could be derived from SOC.

• Modeling suggested that human brain operates within subcritical regime,
near criticality where differences between vigilance states can be mediated
by small changes in effective synaptic strength which allow the brain to tune
closer to criticality (SWS) or farther away (REM). SWS showed increased
correlations between cortical areas due to increased criticality, while REM
sleep showed more fragmented dynamics than SWS and wakefulness.

Lo et al.,
2013

48 healthy adults
and 48
age-matched
adults with
obstructive sleep
apnea (OSA)

Polysomnogram
recorded for 2
consecutive nights

Probability transfer
matrix, power-law
estimation

• Study found a power law distribution of wake and arousal durations in sleep
using log-log analysis. Power-law exponents were different between
patients with OSA and healthy controls.

• Using novel probability transfer matrix and SOC, authors revealed sleep
transition pathways that could be reduced to two basic and independent
transition paths. Study also found that sleep micro-architecture at scales
from seconds to minutes exhibits a non-equilibrium behavior reminiscent of
critical systems.

Tagliazucchi
et al., 2013

63 healthy adults fMRI and EEG
during NREM sleep

DFA • Study hypothesized that breakdown of LRTC would occur during descent
into deep sleep. Authors found that Hurst exponent decreased during N2

(Continued)
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TABLE 7 | Continued

Study Study population Modality Analysis Main findings

sleep confined to DMN and attention networks. Study also discovered that
autocorrelation in fronto-parietal areas diminish from wakefulness to deep
sleep.

Allegrini
et al., 2013

29 healthy adults Polysomnogram Random walks,
DFA, fractal
intermittency

• Study hypothesized that a renewal point process describing fractal
intermittency could be a correlate of consciousness. Fractal intermittency
can be seen in EEG data by sequence of global rapid transition processes
(RTP) with power law distribution of waiting times. During sleep, Hurst
exponent switched from 0.75 in wake and REM phases to 0.5 in deep
sleep, suggesting fractal intermittency in wake and REM but short-time
correlations in SWS.

Allegrini
et al., 2015

29 healthy adults Polysomnogram Random walks,
DFA, fractal
intermittency

• Study evaluated fractal intermittency (see Allegrini et al., 2013) during sleep.
While critical avalanches remained unchanged, there was a breakdown in
intermittency and functional connectivity during shallow and deep NREM
sleep. The authors provided a theory for fragmentation-induced
intermittency breakdown. The possible role of critical avalanches in
dreamless sleep is to provide rapid recovery of consciousness if stimuli
arouse the person out of sleep.

Colombo
et al., 2016

52 adults with
insomnia disorder
(ID), 42 age- and
sex-matched
controls

High-density EEG
with eyes-open
(EO) and
eyes-closed (EC)

DFA • There were no differences in DFA exponents between ID and controls in any
frequency bands during EO or EC. However, during EO, individuals with
worse sleep quality had stronger LRTC, suggesting that subjective insomnia
complaints involve distinct processes in people with ID and controls.
However, the measurement of insomnia severity was based on subjective
report, not polysomnography. Future studies should examine
polysomnographic data as well as examine frequency (rather than
amplitude) fluctuations.

Meisel
et al., 2017

8 healthy adults EEG during 40 h of
sustained
wakefulness

DFA,
autocorrelation
function, spectral
density

• Study evaluated LRTCs in resting state human EEG during 40-h sleep
deprivation experiment. LRTCs declined as sleep deprivation progressed,
even when taking into account changes in signal power. LRTCs naturally
emerged in vicinity of critical state. Authors argued that the increased
LRTCs seen in insomnia patients (Colombo et al., 2016) could be due to
signal power changes associated with worse sleep quality.

Bocaccio
et al., 2019

18 healthy adults fMRI and EEG
during wakefulness
and all sleep stages

Power-law
estimation*

• Study observed scale-free hierarchy of co-activated connected clusters
using point-process transformation of fMRI data recorded during wake and
NREM sleep. Sleep stage had significant impact on scaling parameter of
power law, which was robust to spatial coarse-graining, alternative
statistical models, and disappearing with phase shuffling of fMRI time
series. These findings suggest the existence of larger clusters or avalanches
during N2 sleep. Criticality may help with the “pretty hard problem of
consciousness” by offering metrics that behave one way in conscious
states and differently in another.

Asterisk (*) represents power-law estimations that meet criteria equivalent to or more stringent than Clauset et al. (2009). SWS, slow-wave sleep; REM, rapid eye-
movement; NREM, non-rapid eye-movement; PLI, phase-locking interval; DMN, default mode network.

super-critical state could account for the hyper-associative
cognition characteristic of psychedelics (Carhart-Harris et al.,
2014; Carhart-Harris, 2018). While this review limits itself
to non-connectomic data, the works of Atasoy et al. (2017,
2018) deserve mention here. Using a unique connectome-
harmonic decomposition approach, her research team has found
in several studies that infusions of psychedelics “push” brain
dynamics out of baseline sub-criticality toward criticality (Atasoy
et al., 2017, 2018). More and more studies are finding that
psychedelics are helpful adjuncts to psychotherapy (Atasoy et al.,
2017). A psychedelic-induced transition out of a sub-critical
disorder like depression and closer to criticality may account
for this benefit.

Sleep Medicine
Sleep medicine deals with human sleep and its associated
disorders, including insomnia, sleep apnea, and narcolepsy.

There are multiple stages of sleep, including rapid eye movement
(REM), non-rapid eye movement (NREM), which is further
divided into light sleep (NREM1 and NREM2) and deep
sleep (NREM3 and NREM4). A typical night’s sleep runs
through several cycles of each of these sleep stages. The
brain criticality literature centers on two key areas of sleep
medicine – characterization of sleep stages and the physiology of
sleeping disorders.

Researchers have tried improving the classification of sleep
stages with the help of criticality-based metrics. The results of
these studies seem, for now, largely inconsistent. An EEG study
of healthy patients found LRTC in brain oscillations in both
the open-eye and closed-eye states (Nikulin and Brismar, 2004).
LRTC was more consistent, however, in the closed-eye state, with
a significant difference in the scaling exponent between closed
and open eye conditions in the beta frequency range. Building
on this initial result for LRTC, an EEG study of healthy patients
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examined the ability of various fractal and spectral metrics to
distinguish REM, NREM2, and NREM4 (Weiss et al., 2011).
The authors found that the multifractal metric was superior to
other metrics for sleep stage classification. From wakefulness to
deep sleep, multifractality decreased while monofractality (e.g.,
the Hurst exponent) increased. The loss of multifractality and
disruptions in the 1/f noise in the deep sleep stages suggested
that sleep-specific brain rhythms (e.g., sleep spindles) disrupt the
day-time self-similarity. Previous studies had shown an increase,
not a decrease, in multifractality in deepening sleep (Ma et al.,
2006). These differing results suggest that additional studies of
multifractality are needed.

The increase in mono-fractality that accompanied deep sleep
in the study by Weiss et al. (2011) suggested increased long-
memory (LRTC) in sleep, similar to the increase in scaling
exponent noted in the closed eye state by Nikulin and Brismar
(2004). Subsequent studies, however, have produced results that
seem to contradict these findings. Using EEG-fMRI data from
healthy adults in NREM sleep, Tagliazucchi et al. (2013) found
that a breakdown in LRTC happened as patients moved into the
deeper sleep stages. Specifically, the Hurst exponent decreased
in the default-mode network (DMN) and attention centers of
the brain during NREM2 (Tagliazucchi et al., 2013). Two studies
of polysomnogram data from a different cohort of healthy
adults found a similar result (Allegrini et al., 2013, 2015). The
monofractal metric (i.e., the Hurst exponent) decreased from
∼0.75 during wakefulness and REM, to ∼0.5 in NREM3 and
NREM4. Recall that a Hurst exponent of 0.5 indicates random,
white noise, while 0.75 suggests a moderate amount of positive
correlation. This finding suggested the existence of a breakdown
in LRTC when entering deep sleep. Complicating matters further
is that studies showing decreases in LRTC during sleep did not
control for changes in signal power that naturally occur during
sleep (Meisel et al., 2017). More studies on the existence and
changes of LRTC during sleep, taking into account fluctuations
in signal power, are needed if these are to become useful in sleep
stage classification or in understanding sleep microarchitecture.

There are also conflicting results in the literature when it
comes to power-law distributions of various observables during
sleep. In an EEG study, researchers noted that subjects in
normal states of wakefulness exhibited a power-law distribution
of coherence potentials and phase-locking intervals (PLI)(Meisel
et al., 2013). Also, their EEG signals produced a branching
parameter near one, which suggests a system at or near criticality
(Yang et al., 2012; Meisel et al., 2013). As patients were kept awake
longer and deprived of sleep, the distributions of coherence
potentials and PLIs developed larger tails along with an increase
in the branching parameter, a decrease in the variability of
synchronization, and an increase in mean synchronization – all
suggestive of a supercritical state. The authors suggested that
prolonged wakefulness leads to a supercritical state through
excess excitability of neurons (Shew et al., 2009), as is also thought
to occur in epilepsy. Meisel et al. (2013) proposed that, during
restorative sleep, a decrease in synaptic strength should lead to
a shift away from super-criticality, back toward a critical regime.
This view is in line with a similar theory that sleep is designed
to restore brain dynamics to a slightly subcritical or near-critical

regime to avoid the risk of run-away excitation in a supercritical
state (Pearlmutter and Houghton, 2009, 2013).

An ECoG study of patients during sleep revealed power-
law distributions of neuronal avalanches in local field potentials
(LFPs), but with different exponents depending on the sleep
stage (Priesemann et al., 2013). After making adjustments for
the fact that LFP amplitude naturally increases from wakefulness
to deep sleep, the study authors found that slow-wave sleep
(SWS or NREM3) displayed large avalanches. Wakefulness
and REM sleep, on the other hand, displayed intermediate
and small avalanches, respectively. Because the study found
a branching parameter less than one during wakefulness, the
authors concluded that the awake human brain at rest is in
a subcritical state rather than in a critical state as had been
previously argued (Meisel et al., 2013). The authors suggest that
brain dynamics shift closer to criticality during SWS and then
back into sub-criticality during REM sleep (Priesemann et al.,
2013). Their data and additional computational modeling found
that small changes in effective synaptic strength could tune the
brain closer to a critical state during SWS or closer to a subcritical
state with fragmented dynamics during REM. Of note, this study
did not find power-law distributions under the more stringent
criteria of Clauset et al. (2009). Moreover, a small study of
power-law distributions of cortical spikes and LFPs under awake,
SWS, and REM sleep conditions could not confirm a power-law
distribution of those brain signals using the Clauset et al. (2009)
criteria (Dehghani et al., 2012).

While the study of Dehghani et al. (2012) casts doubt on
these power-law findings, a recent study of EEG-fMRI data in
healthy patients during sleep suggests that critical dynamics may
be involved nonetheless (Bocaccio et al., 2019). A power-law
distribution of co-activated connected clusters (voxel groups)
from fMRI data during sleep was confirmed using the Clauset
et al. (2009) criteria. As in Priesemann et al. (2013), this study
found larger neuronal avalanches in NREM compared to REM or
wakefulness. Moreover, each particular sleep stage impacted the
power-law exponent significantly – a result that was independent
of spatial coarse-graining of the fMRI data and which could not
be accounted for by the presence of evoked neural bistabilities
(e.g., K complexes).

All in all, while there are discrepancies in the results obtained
from studies in this area, one can be optimistic about the
role of criticality-based metrics in refining the understanding
of sleep stages and their classification. Research into the role
of LRTC (with adjustments made for signal power during
sleep), branching parameters, power-law distributions of various
metrics (coherence potential, PLI, LFP), mean synchronization,
and other criticality parameters should lead to robust classifiers
of sleep stages.

The conceptual framework of criticality is also helping
researchers better understand various sleep pathologies (Iyer,
2018). Many animal and computational models show that critical
dynamics play a central role in sleep stage transitions (Comte
et al., 2006; Wang et al., 2019; Lombardi et al., 2020). Human
studies are also beginning to capture this essential role by
studying various sleep disorders. In the previouslymentioned
EEG study of sleep deprivation (Meisel et al., 2013), there was
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a progressive decline in markers of criticality and an increase
in markers of supercriticality as the sleep deprivation worsened.
This finding supports the idea that sleep restores healthy brain
function by bringing dynamics back toward criticality. This study
was followed up by an evaluation of LRTC in the same cohort
under similar conditions of sleep deprivation (Meisel et al., 2017).
After controlling for signal amplitude changes, LRTC strength
declined as sleep deprivation progressed, consistent with the view
that sleep restores brain criticality.

In contrast with forced sleep deprivation, insomnia disorder
(ID) leads to chronic sleep deprivation despite the patient’s
attempts to fall asleep. In a study of patients with ID, there were
no statistically significant differences in the LRTC during eyes-
open and eyes-closed testing between patients and their age and
sex-matched controls (Colombo et al., 2016). However, patients
who subjectively reported lower quality sleep had increased
LRTC during the eyes-open state. The study authors suggested
that an increased excitation-inhibition ratio during wakefulness
may translate into similar excitation during sleep, leading to
lower sleep quality. Similar processes seem to be at work in
obstructive sleep apnea (OSA), one of the most common sleep
disorders. A polysomnogram study of patients with OSA and
healthy controls found a power-law distribution of wakefulness
durations during sleep in both groups (Lo et al., 2013). But
the study did find a statistically significant difference between
the power-law exponents. This finding reinforces the prospect
that power-law exponents, perhaps in combination with other
established metrics like the apnea-hypopnea index, could prove
to be a helpful marker of diagnosis and monitoring of OSA. In the
future, a study of LRTC in patients with OSA and ID compared
to healthy patients in sleep could help determine whether the
prevalent theory of sleep as a safety margin from supercriticality
is correct. More broadly, the theory of brain criticality is likely
to offer a different but complementary perspective on many
sleep disorders (including narcolepsy, restless legs syndrome, and
circadian disorders). See Table 7 for a summary of findings from
the sleep-related criticality literature.

CONCLUSION

This scoping review surveyed the brain criticality literature,
focusing on seven major domains of clinical application.
Wherever possible, an effort was made to emphasize areas
of future research for those interested in pursuing a “critical
approach” to these clinical questions. In this concluding section,
controversies that continue to be problematic for the field of brain
criticality as a whole are addressed.

Brain criticality is both an established area of neuroscience
research and yet remains controversial in several regards
(Wilting and Priesemann, 2019).

1. Diverse and inconsistent uses of the terms “critical”
and “criticality” have led to confusion. In this review,
criticality has mostly referred to avalanche dynamics that
behave at the limit between stability and instability. But
other variants of criticality exist (Wilting and Priesemann,

2019). These include criticality between ordered and
chaotic phases called the “edge of chaos” (Boedecker
et al., 2012), criticality between synchrony and asynchrony
(Botcharova et al., 2014), and multiple paradigms for
the time-evolution of a critical phase transition as
in extended criticality, intermittent criticality, and self-
organized criticality (Saleur et al., 1996; Huang et al.,
1998; Sammis and Smith, 1999; Bowman and Sammis,
2004). These forms of dynamical criticality are also distinct
from statistical criticality (Mora and Bialek, 2011; Tkačik
et al., 2013). How these all inter-connect is a topic of
ongoing research. Rigorously defining these states and
enforcing a more consistent vocabulary would allow for
better study comparison.

2. Proving the existence of a control parameter has been
difficult. Candidates have included synchronization,
excitation-inhibition balance, and synaptic conductance
(Beggs and Timme, 2012). Feedback processes between
these properties may make it difficult to prove that they
behave as genuine control parameters in isolation.

3. Many of the publications that lay the groundwork
for brain criticality did not have the benefit of a
reliable statistical framework for verifying a power-law
distribution. While publications since Clauset et al. (2009)
have mostly implemented strong statistical testing of power
laws, many of the initial papers and even some more
recent publications suffer from this deficit. Establishing
a standard pipeline of statistical analysis for common
datasets (e.g., EEG, MEG, LFP) – a kind of statistical “best
practices”−will eliminate a source of confusion and help
clarify the clinical situations in which power-law regimes
do and do not exist. Moreover, arguing for a mechanism
that generates a power-law – whether criticality or another
mechanism−may be as important as the discovery of the
power-law distribution itself (Stumpf and Porter, 2012).

4. In many publications, the objects of study are defined
differently from one paper to the next. Such is the
case, for example, with neuronal avalanches (Wilting and
Priesemann, 2019) and seizure energy (Worrell et al., 2002;
Osorio et al., 2009). While flexibility in definitions may
help with making discoveries or adjusting for specific
experimental situations, frequent changes in definition
make it difficult to compare results, which slows down the
progress of the field as a whole.

5. A common strategy, especially since the invention of
DFA, is to look for LRTC as an indication of criticality.
However, recent research suggests there may be different
types of LRTC at play in these various systems and not
distinguishing them carefully may be leading to false
conclusions about criticality. For example, the discovery
of crucial events in the area of turbulence led to the
identification of “crucial event LRTC” or CELRTC (Bohara
et al., 2018; Culbreth et al., 2019). CELRTC emerges
in critical systems, specifically self-organized temporal
criticality (SOTC) and is based on a slowly-decaying, non-
stationary correlation function (Mahmoodi et al., 2017).
CELRTC is distinct from Hurst exponent LRTC (HLRTC)
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which is based on a slowlydecaying but stationary
correlation function, and which may not be indicative of
underlying criticality. Future papers relying on detection
of LRTC should incorporate this methodology in order to
clarify the origin of the long-range correlation.

6. DFA was introduced for the study of non-stationary
datasets. Yet there is evidence that this approach may not
be adequate for that purpose (Bryce and Sprague, 2012).
The introduction of a finite-size effect by DFA, leading
to artifact, may have led to spurious results in many
publications mentioned in this review. Future research
should clarify the relevance of DFA-based methods for the
purpose of LRTC detection.

Despite these challenges and controversies, there is also room
for optimism. There has been rapid growth in the number of new
articles published in this area. In fact, approximately two-thirds
of the clinical articles discussed in this review were published in
the last 8 years. The range of tools and concepts available from
statistical physics and complexity science with which to tackle
these problems is staggeringly broad and continually expanding.
Determining how these tools and concepts inter-relate and in
which research situation to use them should be an ongoing focus
of research. Insights from other sciences−including geophysics,
finance, applied physics, and signal processing, where these ideas
are also commonly circulated – will undoubtedly shape the future
of this already multidisciplinary field.

The future of criticality in the clinical arena will depend
in large part on the formation of multidisciplinary teams in
which physicists, mathematicians, data scientists, and clinicians
collaborate to better answer a clinical question through the lens
of criticality. While none of the applications mentioned in this
review has yet to become mainstream or routine, it is conceivable
that, under the broad umbrella of quantitative analysis of EEG,

MEG, and fMRI, several of these techniques may transition to
the bedside if they prove helpful in the diagnosis, prognosis, or
treatment of diseases. In addition to more detailed studies in the
clinical areas mentioned in this review, one can expect the next
decade to see innovative studies, anchored in criticality, in areas
like addiction medicine, stroke, neuro-immunology, traumatic
brain injury, and headache medicine.

There are inevitable hurdles when concepts from one field (i.e.,
statistical physics) are translated into another (i.e., biomedicine).
Still, there can be no doubt that these hurdles are worthwhile if
they open up new horizons for both the understanding and the
treatment of brain-related diseases.
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Recent experimental results on spike avalanches measured in the urethane-anesthetized

rat cortex have revealed scaling relations that indicate a phase transition at a specific level

of cortical firing rate variability. The scaling relations point to critical exponents whose

values differ from those of a branching process, which has been the canonical model

employed to understand brain criticality. This suggested that a different model, with a

different phase transition, might be required to explain the data. Here we show that

this is not necessarily the case. By employing two different models belonging to the

same universality class as the branching process (mean-field directed percolation) and

treating the simulation data exactly like experimental data, we reproduce most of the

experimental results. We find that subsampling the model and adjusting the time bin

used to define avalanches (as done with experimental data) are sufficient ingredients to

change the apparent exponents of the critical point. Moreover, experimental data is only

reproduced within a very narrow range in parameter space around the phase transition.

Keywords: subsampling, neuronal avalanches, brain criticality, scaling relations, cortex, urethane

1. INTRODUCTION

In the first results that fueled the critical brain hypothesis, Beggs and Plenz (2003) observed
intermittent bursts of local field potentials (LFPs) in in vitro multielectrode recordings of cultured
and acute slices of the rat brain. Events occurred with a clear separation of time scales, and were
named neuronal avalanches.

A neuronal avalanche can be characterized by its size S, which is the total number of significant
voltage deflections recorded by electrodes between periods of silence, and by its duration T, which
is the number of consecutive time bins spanned by an avalanche. Beggs and Plenz found power-law
distributions for the sizes of avalanches,

P(S) ∼ S−τ , (1)

with τ ≃ 3/2, and suggested, based on their data, a power-law distribution of avalanche duration,

P(T) ∼ T−τt , (2)
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with τt = 2. These scale-invariant distributions were interpreted
as a signature that the brain could be operating at criticality—
a second-order phase transition (Beggs and Plenz, 2003; Beggs,
2007; Chialvo, 2010; Shew and Plenz, 2013; Plenz and Niebur,
2014; Tomen et al., 2019).

In particular, these two critical exponents together are
compatible with a branching process at its critical point (Harris,
1963), a conclusion that was further strengthened by the
experimentally established critical branching parameter of 1 for
neuronal avalanches (Beggs and Plenz, 2003). This points to
a phase transition between a so-called absorbing phase (zero
population firing rate) and an active phase (non-zero stationary
population firing rate).

Due to its appeal, simplicity, and familiarity within the
statistical physics community, the critical branching process has
become a canonical model for understanding criticality in the
brain. In fact, these exponents are compatible with a larger
class of models, namely, any model belonging to the mean-
field directed percolation (MF-DP) universality class (Muñoz
et al., 1999). In the theory of critical phenomena, two models
which can be different in their details are said to belong
to the same universality class when the critical exponents
which characterize their phase transition coincide (Binney
et al., 1992). In general, probabilistic contagion-like models
which have a unique absorbing state (all sites “susceptible” or
in the neuroscience context, all neurons quiescent) and no
further symmetries tend to belong to the directed-percolation
universality class (Janssen, 1981; Grassberger, 1982; Marro and
Dickman, 1999). If the network has topological dimension above
4 (such as random or complete graphs), the model usually
belongs to the MF-DP universality class.

More recently, these ideas were tested with more advanced
experimental techniques, highlighting the prospect of criticality
in the awake brain. Two studies have shown that different
types of anesthesia strongly affect avalanche statistics. In voltage
imaging recordings of the mouse cortex, size distributions were
more closely compatible with τ = 1.5 for awake animals than
for animals anesthetized with pentobarbital (Scott et al., 2014).
A similar trend was observed in two-photon imaging of the
rat cortex, where avalanche distributions become increasingly
compatible with τ = 1.5 and τt = 2 as the animals recover from
isoflurane anesthesia (Bellay et al., 2015).

Other experimental results, however, challenged the MF-DP
scenario originally proposed by Beggs and Plenz (2003). For
instance, avalanche exponents in ex-vivo recordings of the turtle
visual cortex deviated significantly from τ = 3/2 and τt = 2
(Shew et al., 2015). Discrepancies in exponent values were also
observed in spike avalanches of rats under ketamine-xylazine
anesthesia (Ribeiro et al., 2010) and M/EEG avalanches in resting
or behaving humans (Palva et al., 2013; Zhigalov et al., 2015),
among others.

Furthermore, Touboul and Destexhe (2017) argued that
the power-law signature alone in the distributions of size
(Equation 1) and duration (Equation 2) of avalanches is
insufficient to claim criticality, since power laws can be observed
in non-critical models as well. They suggested that another
scaling relation should be tested as a stronger criterion. This was

based on the result that at criticality the average avalanche size 〈S〉
for a given duration T must obey

〈S〉 ∼ T
1

σνz , (3)

where 1/(σνz) is a combination of critical exponents that
at criticality satisfy the so-called crackling noise scaling
relation (Muñoz et al., 1999; Sethna et al., 2001; Friedman et al.,
2012)

1

σνz
=

τt − 1

τ − 1
. (4)

Equation (4) is a stronger criterion for criticality because it is
expected not to be satisfied by non-critical models (Touboul
and Destexhe, 2017). In the MF-DP case, the avalanche
exponents obey (τt − 1)/(τ − 1) = 2 and 1/(σνz) = 2,
independently. The absolute difference between the two sides
of Equation (4) can even be employed as a metric for the
distance to criticality (Ma et al., 2019), or to identify criticality
in more general phase transitions of neuronal networks (Girardi-
Schappo and Tragtenberg, 2018). Indeed, Ponce-Alvarez et al.
(2018) have investigated the crackling noise relation in zebrafish
whole-brain activity, obtaining 1/(σνz) ≃ 2 but values of τ

and τt incompatible with MF-DP. Miller et al. (2019) have also
found 1/(σνz) ≃ 2 in LFP avalanches from awake non-human
primates, when the impact of ongoing gamma-oscillations was
accurately taken into account.

Recently, cortical spike avalanches of urethane-anesthetized
rats were investigated under this methodological lens by
Fontenele et al. (2019). This experimental setup is known to
yield spiking activity which is highly variable, ranging from very
asynchronous to very synchronous population activity (Clement
et al., 2008). These regimes can be characterized by different
ranges of the coefficient of variation (CV) of the population firing
rate (de Vasconcelos et al., 2017), which is thought of as a simple
marker of cortical states (Harris and Thiele, 2011). By parsing
the data according to levels of spiking variability, Fontenele
et al. (2019) found that the scaling relation Equation (4) was
satisfied at an intermediate value of CV , suggesting a phase
transition away from both the synchronized and desynchronized
ends of the spiking variability spectrum. In particular, the
values of the avalanche exponents where the scaling relation
was satisfied were not all compatible (within error bars) with
MF-DP values: 〈τ 〉 ≃ 1.52 ± 0.09, 〈τt〉 ≃ 1.7 ± 0.1 and
〈1/(σνz)〉 ≃ 1.28 ± 0.03 (Fontenele et al., 2019). This was
interpreted as an incompatibility with the theoretical MF-DP
scenario (Fontenele et al., 2019), thus requiring the formulation
of models belonging to other universality classes and undergoing
other phase transitions.

One hypothesis to explain this controversy is that the study
of spike activity is strongly affected by subsampling effects, that
is, the measured activity is based on a tiny fraction of the
total number of neurons in a given area of the brain. Different
groups have shown that subsampling indeed affects the apparent
distribution of avalanches (Priesemann et al., 2009, 2014; Ribeiro
et al., 2010, 2014; Girardi-Schappo et al., 2013; Levina and
Priesemann, 2017; Wilting and Priesemann, 2019). For example,
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an avalanche evaluated on all elements (full sampling) can be
broken into smaller avalanches when recorded in a subset of
the network (subsampling). In addition, we highlight that this
effect is different from the well-studied phenomenon of finite-size
scaling, which is the study of how statistical properties change as
the size of the system increases and activity recorded in all sites is
analyzed (see e.g., Levina and Priesemann, 2017).

Here, we revisit this issue by studying the data produced by
two theoretical models in the MF-DP universality class. We start
by showing that the models reproduce well-known analytical
results, which however fail to reproduce the experimental data.
Then we proceed to treat the model results under the same
conditions as those of experimental data. Despite the large
number of simulated neurons (∼ 105), we intentionally restrict
the theoretical analysis to a small subset of cells (∼ 102),
mimicking the fact that one can only record a few hundred
neurons among the millions that comprise the rat’s brain (the
subsampling issue). Here we show that by combining the
subsampling of the model with the analysis pipeline that has been
applied to the experimental data (Fontenele et al., 2019), we can
reconcile the empirical power-law avalanches with the theoretical
MF-DP universality class.

2. METHODS

2.1. A Spiking Neuronal Network With
Excitation and Inhibition
We used the excitatory/inhibitory network of Girardi-Schappo
et al. (2020), where each neuron is a stochastic leaky integrate-
and-fire unit with discrete time step equal to 1 ms, connected in
an all-to-all graph. A binary variable indicates if the neuron fired
[X(t) = 1] or not [X(t) = 0]. The membrane potential of each
cell i in either the excitatory (E) or inhibitory (I) population is
given by

V
E/I
i (t + 1) =

[

µV
E/I
i (t)+ Ie +

J

N

NE
∑

j=1

XE
j (t)

−
gJ

N

NI
∑

j=1

XI
j (t)

]

(

1− X
E/I
i (t)

)

, (5)

where J is the synaptic coupling strength, g is the inhibition
to excitation (E/I) coupling strength ratio, µ is the leak time
constant, and Ie is an external current. The total number of
neurons in the network is N = NE + NI = 105, where the
fractions of excitatory and inhibitory neurons are kept fixed at
p = NE/N = 0.8 and q = NI/N = 0.2, respectively, as reported
for cortical data (Somogyi et al., 1998). Note that the membrane
potential is reset to zero in the time step following a spike.

At any time step, a neuron fires according to a piecewise linear
sigmoidal probability 8(V),

8(V) ≡ P (X = 1|V) = Ŵ (V−θ)2(V−θ)2(VS−V)+2(V−VS),

(6)
where θ = 1 is the firing threshold, Ŵ is the firing gain constant,
VS = 1/Ŵ+θ is the saturation potential, and2(x > 0) = 1 (zero

otherwise) is the step function. For simplicity, the parameter
µ = 0 is chosen without lack of generality, since it does not
change the phase transition of the model (Girardi-Schappo et al.,
2020). The external current Ie > VS is used only to spark a new
avalanche in a single excitatory neuron when the network activity
dies off (it is kept as Ie = θ otherwise).

This model is known to present a directed percolation critical
point (Girardi-Schappo et al., 2020) at gc = p/q− 1/(qŴJ) = 1.5
(forŴ = 0.2 and J = 10), such that g < gc is the active excitation-
dominated (supercritical) phase and g > gc corresponds to the
inhibition-dominated absorbing state (subcritical). The synapses
in the critical point gc are dynamically balanced: fluctuations in
excitation are immediately followed by counter fluctuations in
inhibition (Girardi-Schappo et al., 2020). The initial condition
of the simulations has all neurons quiescent except for a seed
neuron to spark activity. This procedure was repeated whenever
the system went back to the absorbing state.

2.2. Probabilistic Cellular Automaton Model
The spiking model described in section 2.1 is certainly not
the simplest model to present a phase transition in the
MF-DP universality class. Therefore, to probe the robustness
of our findings, we also simulated a much simpler model:
a network of probabilistic excitable cellular automata in a
random graph (Kinouchi and Copelli, 2006). This model closely
resembles a standard branching process and is known to mimic
the changing inhibition-excitation levels of cortical cultures
(Shew et al., 2009).

Each site i (i = 1, . . . ,N) has five states: the silent state,
si = 0, the active state, si = 1, corresponding to a spike, and
the remaining three states, si = 2, 3, 4, in which the site will not
respond to incoming stimuli (absolute refractory states). Each site
receives input from K presynaptic neighbors which are randomly
selected at the start and kept fixed throughout the simulations. A
quiescent site i becomes excited [si(t) = 0 → si(t + 1) = 1] with
probability pij if a presynaptic neighbor j is active at time t. All
presynaptic neighbors are swept and independently considered
at each time step, so that

P
(

si(t + 1) = 1|si(t) = 0
)

= 1− (1− hi)

K
∏

j∈N (i)

[

1− pijsj(t)
]

,

(7)
where hi is the probability of unit i spiking due to an external
stimulus and N (i) is the set of presynaptic neighbors of i. The
remaining transitions happen with probability 1, including the
transition 4 → 0 that returns the site to its initial quiescent state.
The time step of the model corresponds to 1 ms.

We initially chose the random variables {pij} from a uniform
distribution in the interval [0, 2λ/K]. The so-called branching
ratio λ = K〈pij〉 is the control parameter of the model.
This model undergoes a MF-DP phase transition at λ = λc = 1
(Kinouchi and Copelli, 2006). For λ < 1, the system is in
the subcritical phase and eventually reaches the absorbing state
(si = 0, ∀i). For λ > 1, the system presents self-sustained
activity, i.e., a non-zero stationary density of population firings
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(the supercritical phase). The critical point is not affected by the
number of refractory states (Kinouchi and Copelli, 2006).

In our simulations we used K = 10 neighbors for each of the
N = 105 sites. Similarly to the spiking neuronal network model,
a single random neuron was stimulated (hi = 1) only when the
system reached the absorbing state, sparking the network activity
and subsequently being set back to hi = 0. The initial condition
was set with a single randomly chosen site active and the others
in the silent state.

2.3. Experimental Data Acquisition
Urethane is a well-established drug that provides
spontaneous changes of brain states that resemble sleep
state alternations (Clement et al., 2008). In the last decade,
experimental preparations using urethane have helped elucidate
questions concerning mechanisms and the functional relevance
of state-dependent patterns of brain activity (Curto et al., 2009;
Renart et al., 2010; Mochol et al., 2015; de Vasconcelos et al.,
2017). The property to promote spontaneous change in the levels
of spiking variability cannot be achieved in other anesthesia
approaches, such as pentobarbital and isoflurane.

The data used in this paper is original and corroborates
the results of Fontenele et al. (2019). We used five rats Long-
Evans (Rattus norvegicus) (male, 280–360 g, 2–4 months old).
They were obtained from the animal house of the Laboratory
of Computational and Systems Neuroscience, Department of
Physics, Federal University of Pernambuco (UFPE). The animals
were anesthetized with urethane (1.55 g/kg), diluted at 20%
in saline, in three intraperitoneal (i.p.) injections, 15 min
apart (Sakata and Harris, 2009). Some animals demanded
supplement (max 5%) of urethane to reach the proper level of
analgesia. In order to ensure that the animals are maintained
at the correct depth of anesthesia, responses to painful stimuli
(pinching the animal’s toes, ears and tail) were always checked
throughout the experiment. Once the anesthesia reached its
proper level, the rats were placed in a stereotaxic frame and
the coordinates to access the primary visual cortex (V1) were
marked (Bregma: AP = −7.2, ML = 3.5) (Paxinos and Watson,
2007). A cranial window in the scalp was opened using this
coordinate as center, with an area of ∼3 mm2. We performed
recordings of extra-cellular voltage of neuronal populations by
using a 64-channel multielectrode silicon probe (Neuronexus
technologies, Buzsaki64spL-A64). This probe has 60 electrodes
disposed in six shanks separated by 200 µm, 10 electrodes per
shank with impedance of 1–3 MOhm at 1 kHz. Each electrode
has 160 µm2 and they are in staggered positions 20 µm apart.
We recorded from deeper layers of the rat cortex, similarly to
what was previously done in Ribeiro et al. (2010) under ketamine-
xylazine and Fontenele et al. (2019) under a setup similar to the
one presented here.

Data was sampled at 30 KHz, amplified and digitized in a
single head-stage (Intan RHD2164) (Siegle et al., 2017). We
recorded spontaneous activity, during long periods (≥3 h). We
used the open-source software Klusta to perform the automatic
spike sorting on raw electrophysiological data (Rossant et al.,
2016). The automatic part is divided in two major steps,
spike detection and automatic clustering. The first step detects

action potentials and the second one arrange those spikes
into clusters according to their similarities (waveforms, PCA,
refractory period). After the automatic part, all formed clusters
are reanalyzed using the graphic interface phy kwikGUI1. Manual
spike sorting allows the identification of each cluster of neuronal
activity as single-unit activity (SUA) or multi-unit activity
(MUA). We used both SUA and MUA clusters for our study.

2.4. Avalanche Analysis With CV Parsing
To study neuronal avalanches at different levels of spiking
variability (Shadlen and Newsome, 1998), we segmented both
the neurophysiological and simulated data in non-overlapping
windows of width w = 10 s (unless otherwise stated) (Gervasoni
et al., 2004). Each of these 10 s epochs was subdivided in non-
overlapping intervals {ζj} of duration 1T = 50 ms (unless
otherwise stated) in which we estimated the population spike-
count rate Rj. We then calculated the coefficient of variation (CV)
for the i-th 10 s window:

CVi =
σi

µi
, (8)

where CV is dimensionless, and σi and µi correspond to the
standard deviation and the mean of {Rj}, respectively.

For each 10 s window with a particular CV level, we
proceeded with the standard avalanche analysis of Beggs and
Plenz (2003). The summed population activity was sliced in non-
overlapping temporal bins of width 1t = 〈ISI〉 (the average
inter-spike interval). Ribeiro et al. (2010) and Yu et al. (2017) have
shown that an adaptive bin, evaluated according to the current
dynamical state, renders signatures of scale-free dynamics more
robust. Following this strategy, we have separately computed
1t = 〈ISI〉 for each 10 s window. Population spikes preceded
and followed by silence define a spike avalanche. The number of
spikes correspond to the avalanche size S, whereas the number of
time bins spanned by the avalanche is its duration T. Following
this methodology, we associated each 10 s CVi window with its
corresponding set of ni avalanche sizes Si ≡

{

Si1, Si2, . . . , Sini
}

and durations Ti ≡
{

Ti1,Ti2, . . . ,Tini

}

.
To estimate the avalanche exponents τ and τt , we first ranked

the sets {Si} and {Ti} according to their CV values. Next, in order
to increase the number of samples while preserving the level of
spiking variability, we pooled NB consecutive ranked blocks of
similar CV values (NB = 50 unless otherwise stated). For each
set of NB blocks we calculated the average coefficient of variation
〈CV〉. The exponents of the size and duration distributions
were obtained via a Maximum Likelihood Estimator (MLE)
procedure (Deluca and Corral, 2013; Yu et al., 2014; Marshall
et al., 2016) on a discrete power-law distribution

f (x) =
1

∑xmax
x=xmin

( 1x )
α

(

1

x

)α

. (9)

The standard choice of fitting parameters, for both experimental
and subsampled simulated data, was Smin = 2 and Smax = 100
for size distributions and Tmin = 2 and Tmax = 30 for duration

1https://github.com/cortex-lab/phy
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TABLE 1 | Limits chosen for the calculation of the α exponent (Equation 9) via

Maximum Likelihood Estimator (MLE) only for the model data shown in

Figures 4C,D (1t = 1 ms).

n Size distribution Duration distribution

Smin Smax Tmin Tmax

100 2 30 2 15

200 2 100 2 50

500 2 200 2 70

1,000 2 200 2 70

2,000 2 300 3 100

5,000 2 500 4 100

10,000 5 3,000 5 150

20,000 5 5,000 5 200

30,000 10 10,000 10 200

40,000 10 10,000 10 250

50,000 10 10,000 10 300

100,000 10 20,000 10 300

See text for details.

distributions. The exceptions to this choice were for the data
shown in Figures 4C,D, due to a change of orders of magnitude
in the number of neurons sampled. The specific parameters for
these cases are shown in Table 1.

After the MLE fit we used the Akaike Information Criterion
(AIC) as a measure of the relative quality of a given statistical
model for a data set:

AIC = 2k− 2 ln(L̂)+
2k2 + 2k

N − k− 1
, (10)

where L̂ is the likelihood at its maximum, k is number of
parameters and N the sample size (Akaike, 1975). Starting from
the principle that lower AIC indicates a more parsimonious
model, we defined 1 ≡ AICln − AICpl, where AICln and AICpl

correspond to the AIC of a log-normal and a power-law model,
respectively. Therefore, 1 > 0 implies that a power-law model
is a better fit to the data than a log-normal. Our scaling relation
analyses were restricted to distributions that satisfied 1 > 0.

2.5. Pairwise Correlations
Pairwise spiking correlations were estimated using only the SUA
or the simulated data in the following way: first, for each cell
k we obtained a spike count time series R(k)(t) at millisecond
resolution (1T = 1 ms), then each spike count time series R(k)

was convolved with a kernel ht1 ,t2 (t) to estimate the k-th mean
firing rate n(k)(t):

n(k)(t) = ht1 ,t2 (t) ∗ R
(k)(t) , (11)

where ht1 ,t2 (t) is a Mexican-hat kernel obtained by the difference
between zero-mean Gaussians with standard deviations
t1 = 100ms and t2 = 400 ms (Renart et al., 2010). The nk(t)

were employed to calculate the spiking correlation coefficient
between two units k and l:

r(k,l) =
Cov

(

n(k), n(l)
)

√

Var
(

n(k)
)

Var
(

n(l)
)

, (12)

where Var and Cov are the variance and covariance over
t, respectively.

3. RESULTS

3.1. Avalanches in the Fully Sampled Model
We start by illustrating the second order phase transition that the
model undergoes at a critical value gc = 1.5 of the inhibition
parameter (Girardi-Schappo et al., 2020). As shown in Figure 1A,
the stationary density of active sites ρ̄ is positive for g < gc (the
supercritical regime) and null for g > gc (the subcritical regime).

At the critical point g = gc, the distribution of avalanche
sizes and duration obey the expected power laws (Equations 1
and 2) with exponents τ = 3/2 and τt = 2 (Girardi-Schappo
et al., 2020). Subcritical avalanches are exponentially distributed,
whereas the supercritical distribution has a trend to display larger
and longer avalanches (Figures 1B,C). Both sides of the scaling
law in Equation (4) independently agree, since the fit to 〈S〉(T)
yields 1/(σνz) = 2 on the critical point (Figure 1D). Figure 1E
shows typical time series of firing events for the three regimes.
These exponents and dynamic behavior of the model are typical
of a system undergoing a MF-DP phase transition.

3.2. Comparison of Subsampled Model and
Experiments Stratified by CV
We now revisit the model by subjecting it to the same constraints
that apply to experimental datasets (Fontenele et al., 2019) and
compare the results between the two. More specifically: (1)
data analysis necessarily uses only a tiny fraction of the total
neurons in the system and (2) in urethane-anesthetized rats,
cortical spiking variability is a proxy for cortical states (Harris
and Thiele, 2011) and changes a lot during the hours-long
recordings (Clement et al., 2008; de Vasconcelos et al., 2017).

Starting with the experimental results, Figure 2A shows
the time series of the coefficient of variation (CV) of the
population spiking activity. The lowest CV values correspond
to asynchronous spiking activity, whereas the highest values
correspond to more synchronized activity (both shown in
Figure 2B). When we parsed the data by CV percentiles and
evaluated neuronal avalanches for different percentiles, the
distributions varied accordingly, with exponents τ , τt , and
1/(σνz) varying continuously across the CV range (Figure 2C)
as expected (Fontenele et al., 2019).

Can the MF-DP spiking network model reproduce these
experimental results? We found that by sampling only a few
neurons out of the entire network, indeed it can. Out of N = 105

simulated neurons, we sampled only n = 100, a number that
is of the same order as the amount of neurons captured in our
empirical data (Fontenele et al., 2019). Then, we applied to the
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FIGURE 1 | Spiking model results with full sampling. Behavior of the spiking model (N = 105) for different values of the control parameter g. (A) Stationary density of

firings ρ̄ as a function of the inhibition strength g (critical point is the red circle at gc = 1.5). Solid line is the mean-field solution (Girardi-Schappo et al., 2020), points

are simulation results. Distribution of avalanche sizes (B) and duration (C) for the subcritical (g > gc), critical (g = gc) and supercritical (g < gc) regimes. (D) Average

avalanche size 〈S〉 of a given duration (T ). (E) Time series of the density of active sites for the three regimes.

FIGURE 2 | Comparison between empirical data and subsampled spiking model. CV time series and distribution for (A) experimental data (single animal) and

(D) model with n = 100. Raster plots and population firing rate in cases of low (▼) and high (▲) values of CV for (B) experimental data and (E) model. Scaling

exponents τ , τt, and 1/(σνz) for three different values of CV (denoted by different symbols): (C) experimental data and (F) model. For both experimental data and

model, w = 10 s.
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FIGURE 3 | Scaling relation and parametric plot of avalanche exponents. Right- and left-sides of Equation (4) (line and shade are average and standard deviation

across the group) as a function of the average CV for (A) experimental data and (C) subsampled model (n = 100; note that color code and values of g are the same

as in Figures 2D,F). Scatter plot in the (τ , τt ) plane for (B) experimental data and (D) subsampled model. In both cases, 1t = 〈ISI〉 and w = 10 s. The star points in

(B,D) indicate the values of τ and τt that satisfied Equation (4) in (A,C). In Supplementary Figure 2, we show the same result in (A) for each rat separately.

subsampled simulation data exactly the same analysis pipeline
used for experiments (section 2.4).

In the model, we changed the E/I level g to control for the
spiking variability level CV . For a fixed value of parameter g, CV
is a bell-shaped distribution with finite variance. The CV(t) time
series of the model for a single g does not present the dynamical
complexity observed experimentally (compare Figures 2A,D).
By varying g within a narrow interval around the critical point
gc, the CV distribution of the model covers the values observed
experimentally (Figure 2D), with less synchronous behavior for
low CV and more synchronous activity for high CV (Figure 2E;
the full behavior of theCV distribution as a function of parameter
g is shown in Supplementary Figure 1A). Parsing the data by
CV and running the avalanche statistics for the subsampled
model, we obtained scaling exponents that vary continuously,
in remarkable similarity to what is observed in the experimental
data (Figure 2F).

A critical system with an absorbing-active phase transition
which satisfies Equations (1)–(3) is also expected to satisfy the so-
called crackling noise scaling relation of Equation (4). Figure 3A
shows the independent experimental fits for the left- and right-
hand sides of Equation (4) as a function of CV . The crossing at
CV∗ ≃ 1.46±0.08 is consistent with the phase transition reported
by Fontenele et al. (2019). In the crossing CV∗, we obtain
τ∗ = 1.54± 0.12, τt∗ = 1.73±0.18, and 1/(σνz)∗ = 1.30± 0.02.
Plotting τ vs. τt , the experimental data scatter along the line with
slope given by 1/(σνz)∗ for different values of CV (Figure 3B).
These results are in agreement with those of Fontenele et al.

(2019), again suggesting an incompatibility with the MF-DP
universality class.

The results for the subsampled spiking model, however,
suggest otherwise. We did exactly the same procedure with the
subsampled model and found a similar CV for the crossing of the
critical exponents, CVmodel

∗ ≃ 1.41± 0.05, when controlling for
the E/I ratio g very close to the critical point gc = 1.5 (Figure 3C).
On the crossing CVmodel

∗ , we obtained τ∗ = 1.65± 0.02,
τt∗ = 1.87± 0.03, and 1/(σνz)∗ = 1.34± 0.02. Note that these
critical exponents are not the true exponents of the model. In
fact, they are apparent exponents generated by subsampling the
network activity. The true critical exponents are τ = 3/2, τt = 2
and 1/(σνz) = 2 (as shown in Figure 1).

To reproduce the experimental results, the control interval
of g was slightly biased toward the supercritical range:
gmin ≃ 1.47 ≤ g ≤ gmax ≃ 1.50. Our model predicts,
then, that the whole range of experimental results is produced
by fluctuations of only about 2% around the critical point
(Figure 3D). For instance, for g = 1.55 (3% above the critical
point in the subcritical regime), the scaling relation is no longer
satisfied and the measured exponents fall far away from the linear
relation observed experimentally in the (τ , τt) plane (Figure 3D).

This result shows that the MF-DP phase transition under
subsampling conditions is capable of reproducing a whole range
of experimentally observed avalanches across a range of CV
values. To test the robustness of our findings, we employed
exactly the same procedure to a simpler model, a probabilistic
cellular automaton (section 2.2). This model is also knowingly
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FIGURE 4 | Dependence of the apparent critical exponents on the sampling parameters at criticality. In (A,C), we show both sides of the scaling relation (Equation 4)

for all values of CV observed in the simulations. For each value of n/N, one has the equivalent of the projection of Figure 3C onto its vertical axis. For 1t = 〈ISI〉,

(A) the scaling relation is satisfied for increasing number of sampled neurons (B) with exponents that agree with experimental data. Since 〈ISI〉 decreases with n [inset

of (B)], this analysis breaks down when n is so large that 〈ISI〉 becomes smaller than 1 ms [gray region in (A)], which is the time step of the simulations. For 1t = 1 ms,

(C) the scaling relation is satisfied for small n/N, within a relatively wide range of CV values [inset of (C)]. For n/N → 1, results converge to MF-DP values (C,D), as

expected. Simulations with N = 105 and gc = 1.5.

of the MF-DP type (Kinouchi and Copelli, 2006), but has a
random network topology. All the results were similar (see
Supplementary Figure 3), showing that the apparent exponents
are a direct consequence of subsampling.

3.3. Dependence on Sampling Fraction and
Time Bin Width
How robust are the results of the model at criticality against
variation in the sampling size (n) and time bin width (1t)?
First, we considered the time bin width as the population
interspike interval 1t = 〈ISI〉. The minimum sampling size
we employed was n = 30 so that power laws still satisfied
Akaike’s Information Criterion. The agreement of both sides
of the scaling law enhances with growing sampling fraction
(Figures 4A,B). However, 〈ISI〉 decreases with the number of
neurons sampled (inset of Figure 4B). When the natural bin
decreases below 1 ms (the time step of the model), the analysis
no longer makes sense. As n increases, the relation between τ and

τt converges to the apparent critical scaling that fits experimental
results (Figure 4B).

To check whether we could recover theMF-DP real exponents
from their apparent values as n increases, we chose the smallest
time bin possible, 1t = 1 ms. We observed that for a small
fraction of sampled units [n/N ∼ O(10−2)] the scaling relation
(Equation 4) is satisfied (Figure 4C) with apparent critical
exponents that match the experimental results (Figure 4D). In
fact, the scaling relation in Equation 4 is satisfied for a range of
CV values (inset of Figure 4C). Increasing the sampling further
[n/N ∼ O(10−1)], the scaling relation ceases to be satisfied
(Figure 4C) and the avalanche exponents get separated from the
experimental scaling relation (Figure 4D). But as n → N, the
MF-DP scaling relation is recovered (as it should).

We have further tested the robustness of these
findings by varying the time bin width used to defined
avalanches (0.75 ≤ 1t/〈ISI〉 ≤ 2). We observed
that experiments and model have very similar behavior
(Supplementary Figures 4A,B). Furthermore, both model
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FIGURE 5 | Correlation structure. The experimental pairwise correlation of firing rates is shown as a function of 〈CV〉 (black line is the average r̄, while gray shading is

the standard deviation of the distribution). It is compared with theoretical results for (A) the spiking neuronal network with n = 100 sampled neurons, and (B) the

cellular automaton model with n = 500 sampled sites.

and experiments are virtually insensitive to the width of the
CV window w (Supplementary Figures 4C,D). Finally, we
also tested whether allowing for small changes of g around
gc with n = N would lead to apparent exponents compatible
with experimental data. We observed in this case that the
exponents and the scaling relation cluster around MF-DP
values (Supplementary Figure 5), reinforcing the idea that
subsampling is a necessary ingredient for the model to reproduce
the experimental results.

3.4. Pairwise Correlation Structure
We also tested the correlation structure of the model and
compared it to experimental results. In the literature on cortical
states, asynchronous states are associated with pairwise spiking
correlations r(k,l) which are distributed around an average r̄ close
to zero, whereas synchronous states have positive average (Harris
and Thiele, 2011). This was quantified in Figure 5A, where r̄ is
shown to increase monotonically with CV . For the experimental
data, r̄ reaches zero within the standard deviation of the
distribution for sufficiently small CV .

Compared with the experimental results, the spiking
model with inhibition generally overestimates r̄ (Figure 5A).
This could be due to its all-to-all connectivity. The cellular
automaton model on a random graph yields quantitatively
better results (Figure 5B). In either case, we observed
again that, just like for the scaling relation (Figure 3), the
correlation structure of the experimental data was relatively
well-reproduced by very small deviations around critical
parameter values.

4. DISCUSSION AND CONCLUSIONS

We revisited the results recently published by Fontenele et al.
(2019) by repeating their analyses on new experimental data
and two different models. To test the idea that the urethanized
cortex hovers around a critical point, we stratified the avalanche
analyses across cortical states. For the new experimental data, we

verified that the scaling relation combining the three exponents
(Equation 4) was indeed satisfied at an intermediate value CV∗,
away from the synchronous and asynchronous extremes. At
this critical value, the three exponents differ from those of the
MF-DP universality class, thus confirming previous findings
(Fontenele et al., 2019).

We addressed whether the exponents of the MF-DP
universality class and those observed experimentally could be
reconciled, despite their disagreement. In other words, we
returned to the question: if the brain is critical, what is the
phase transition? Do the experimental results presented here and
in Fontenele et al. (2019) refute branching-process-like models
as explanations?

To answer these questions, we relied on two models: an
E/I spiking neuronal network in an all-to-all graph; and a
probabilistic excitable cellular automaton in a random graph.
Despite the simplicity and limitations of these models (which
we discuss below), they have a fundamental strength that led
us to choose them: they are very well-understood analytically.
In both cases, mean-field calculations agree extremely well
with simulations, so that we are safe in locating the critical
points of these models (Kinouchi and Copelli, 2006; Girardi-
Schappo et al., 2020). This is very important for our purposes,
because it allows us to test whether the models can reproduce
the data, and if so, how close to the critical point they
have to be. Besides, their universality class is also well-
determined: the exponents shown in Figures 1B–D are those of
with MF-DP.

The crucial point is that the results in Figure 1 are based
on avalanches which are measured by taking into account all
simulated units of the model, a methodological privilege that is
not available to an experimentalist measuring spiking activity of
a real brain with current technologies. In fact, a considerable
amount of work has shown that subsampling can have a drastic
effect on the avalanche statistics of models (Priesemann et al.,
2009, 2014; Ribeiro et al., 2010, 2014; Girardi-Schappo et al.,
2013; Levina and Priesemann, 2017; Wilting and Priesemann,
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2019). Therefore, here we set out to test whether MF-DP models
could yield results nominally incompatible with that universality
class if they were analyzed under the same conditions as the data,
i.e., with CV parsing and severe subsampling.

Both subsampled models quantitatively and qualitatively
reproduced the central features of the experimental results. The
scaling relation (Equation 4) was satisfied at an intermediate
value 〈CV〉∗, with the correct qualitative behavior of both sides of
the equation: 1/(σνz) increasing with CV , while (τt − 1)/(τ − 1)
decreasing (see Figures 3A,C and Supplementary Figure 3D).
In fact, the values of 〈CV〉∗, and those of the apparent
exponents of the subsampled MF-DP models, τ∗, τt∗,
and 1/(σνz)∗, agreed with the experiments within error
bars. Moreover, even away from the point 〈CV〉∗ where
Equation (4) was satisfied, the spread of the exponents τ

and τt of the subsampled models followed an almost linear
relation (Figure 3D and Supplementary Figure 3E), in good
agreement with not only our experimental results (Figure 3B),
but also with those of other experimental setups (Fontenele
et al., 2019). When we sampled from the whole network,
we recovered the true critical exponents of the model
(Figures 4C,D), confirming that spatial subsampling and
temporal binning are sufficient ingredients to push its critical
exponents toward apparent values, hiding its true critical
phase transition.

Knowing analytically the critical points of the models, we
checked in which parameter range they successfully reproduced
the experimental results. As it turns out, the scaling relation
and the linear of spread of exponents are reproduced by the
subsampled models only if they are tuned within a narrow
interval around their critical points. The subsampled model still
fits well the urethanized cortex data up to 3% off criticality,
slightly biased toward the supercritical state. Note that if the
model becomes too subcritical, the size and duration exponents
fall very far apart from the experimentally observed linear
relation (Figure 3D). If it is too supercritical, there are not
enough silent windows to distinguish avalanches in the first place.
Whether or not the fluctuations around the critical point of the
model could be compatible with a scenario of self-organized-
quasi-criticality (Buendía et al., 2020; Kinouchi et al., 2020)
remains to be investigated.

Despite the small variation of the model E/I levels
controlled by g, the variation of CV is large enough to
essentially cover the range of experimentally observed values
(Figures 2A,D and Supplementary Figure 3B). This is due in
part to the fact that we evaluated CV within finite windows of
width w = 10 s. In Supplementary Figure 6 we show that, for
the model, the standard deviation of CV is a decreasing function
of the time used to estimate, all the way up to w = 500 s. For
the data, on the other hand, a better resolution for CV can
be obtained by increasing w up to about 20 s, above which
the standard deviation no longer decreases. It is important to
note, however, that in experiments one needs to reach a good
trade-off between a better statistical definition of CV and not
mixing different cortical states due to the non-stationarity
characteristic of the urethane preparation (as depicted
in Figure 2A).

Perhaps even more important than the range of CV values
obtained around the critical point of the models is the richness
of the experimentally observed temporal evolution of CV
(Figure 2A). The model needs to be fine tuned to different
values of E/I levels in order to get different average values of
CV . This is one of the limitations of the models which would
be worth addressing next. One possibility would be to replace
static models (i.e., with fixed control parameters) with ones with
plasticity, in which coupling parameters are themselves dynamic
variables and the critical point is obtained via quasicritical self-
organization (Costa et al., 2015, 2017; Brochini et al., 2016;
Campos et al., 2017; Kinouchi et al., 2019, 2020; Buendía et al.,
2020; Girardi-Schappo et al., 2020).

Moreover, both models failed to capture the steep drop
of (τt − 1)/(τ − 1) as a function of CV that is observed
in the experimental data above CV∗ (compare Figure 3A

with Figure 3C and Supplementary Figure 3D). This region
corresponds to high CV , where the models, which are entering
their subcritical regimes, seem unable to quantitatively account
for the statistics of the increasingly bursty behavior of the data.
Whether different models (or a refinement of the ones presented
here) could reproduce these results more accurately remains to
be studied.

Another limitation of the models is their simple topology,
which in future works could be improved to come closer to
cortical circuitry (Potjans and Diesmann, 2014). This would
likely come at the cost of foregoing analytical results to start
with, thus augmenting the computational efforts involved. But
it would certainly allow to probe the robustness of the results
presented here against more realistic topologies. On the other
hand, there is quantitative agreement between the apparent
exponents of both models (each having a different topology) with
the experimental exponents. This suggests that at the scale of
the present phenomenology, the average topology should play a
minor role.

It is also interesting to compare the performance of the
two models in reproducing the experimental results. The
cellular automaton model has the advantage of simplicity,
corresponding essentially to a minimal model in the MF-DP
universality class. The E/I balanced network, on the other hand,
has the advantage of incorporating inhibition, which is an
important ingredient for modeling cortical circuitry. As shown in
detail in Supplementary Figure 4, the cellular automaton results
generally agreed with experimental results, but those of the E/I
balanced network had a consistently better agreement. The only
exception in this trend was the correlation structure shown in
Figure 5, in which the cellular automatonmodel fared better than
the E/I balanced network. In this sense, the models complement
each other.

Our model predicts that, for a fixed bin size, increasing the
sampling of the data would eventually lead exponents to coincide
with those of MF-DP (Figure 4C). However, below a sufficiently
high sampling [see, e.g. n/N ∼ O(10−1) in Figure 4C], the
scaling relation would not be satisfied for any CV even if
the system were critical (as the model is). An experimental
verification of these predictions would require the recording of
a much larger number of neurons than we have presented here.
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The fact that subsampling seems to be a crucial ingredient for
explaining the data is a double-edged sword. On the one hand,
it allowed us here to reconcile MF-DP models with results for
spiking data in the anesthetized rat cortex. On the other hand,
note that even measurements which should in principle be less
prone to subsampling, such as LFP results in the visual cortex
of the turtle (Shew et al., 2015), still fall on the same scaling
line of τ vs. τt (Figure 3B) as those of spiking data (Fontenele
et al., 2019), both having apparent non-MF-DP critical exponents
(note, however, that better controlled LFP results in Miller et al.,
2019 are in line with MF-DP). This issue is not addressed by
the current model and deserves further investigation. Our results
point only to MF-DP models as sufficient, not as necessary, to
explain the observed phenomenology. So it is at least conceivable
that different models with different phase transitions (di Santo
et al., 2018; Dalla Porta and Copelli, 2019; Pinto and
Copelli, 2019) could also yield non-trivial true or apparent
exponents compatible with the data, even without subsampling
(Fontenele et al., 2019).

Finally, our simulation results underscore the methodological
vulnerabilities of assessing criticality exclusively via avalanche
analysis. Not only areMLE power-law fits sensitive to parameters,
but even a more stringent analysis, requiring the crackling noise
scaling relation, leads to non-trivial apparent exponents which
are an artifact of subsampling, as we have shown. Therefore,
the development of additional figures of merit, such as control
and order parameters, susceptibilities and others (Tagliazucchi
et al., 2012; Yang et al., 2012; Yu et al., 2013; Mora et al.,
2015; Tkačik et al., 2015; Girardi-Schappo et al., 2016; Girardi-
Schappo and Tragtenberg, 2018; Lotfi et al., 2020), remains
a very important line of research to strengthen studies of
brain criticality.
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Neuronal avalanches are scale-invariant neuronal population activity patterns in the
cortex that emerge in vivo in the awake state and in vitro during balanced excitation
and inhibition. Theory and experiments suggest that avalanches indicate a state of
cortex that improves numerous aspects of information processing by allowing for the
transient and selective formation of local as well as system-wide spanning neuronal
groups. If avalanches are indeed involved with information processing, one might expect
that single neurons would participate in avalanche patterns selectively. Alternatively, all
neurons could participate proportionally to their own activity in each avalanche as would
be expected for a population rate code. Distinguishing these hypotheses, however, has
been difficult as robust avalanche analysis requires technically challenging measures of
their intricate organization in space and time at the population level, while also recording
sub- or suprathreshold activity from individual neurons with high temporal resolution.
Here, we identify repeated avalanches in the ongoing local field potential (LFP) measured
with high-density microelectrode arrays in the cortex of awake nonhuman primates and
in acute cortex slices from young and adult rats. We studied extracellular unit firing
in vivo and intracellular responses of pyramidal neurons in vitro. We found that single
neurons participate selectively in specific LFP-based avalanche patterns. Furthermore,
we show in vitro that manipulating the balance of excitation and inhibition abolishes this
selectivity. Our results support the view that avalanches represent the selective, scale-
invariant formation of neuronal groups in line with the idea of Hebbian cell assemblies
underlying cortical information processing.

Keywords: nonhuman primate, rat, prefrontal cortex, primary motor cortex, high-density microelectrode array,
local field potential, whole-cell patch recording, cell assemblies

INTRODUCTION

Understanding how the collective dynamics of the cortex emerges from neuronal interactions is a
fundamental challenge in neuroscience. Given the limitations in accurately recording from many
neurons simultaneously, this challenge is typically approached by studying how the activity of
single neurons correlates with the dynamics of the network. Of particular interest in this context has
been the discovery of ‘‘neuronal avalanches’’ in spontaneous (Beggs and Plenz, 2003; Petermann
et al., 2009; Miller et al., 2019) and evoked cortical activity (Shew et al., 2015; Yu et al., 2017) in
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which the collective dynamics of the cortex has been mapped
using the local field potential (LFP). More specifically, it has
been reliably found for slice cultures, acute slices, rodents,
and nonhuman primates that the spatial and temporal spread
of transient and fast deflections in the cortical LFP, when
tracked using high-density microelectrode arrays (MEAs), obeys
a power-law relationship in the size of LFP patterns, which
is the hallmark of avalanches (Yu et al., 2014) and is in line
with expectations for critical dynamics (for review see Plenz
and Thiagarajan, 2007; Chialvo, 2010; Mora and Bialek, 2011;
Plenz, 2012; Hesse and Gross, 2014; Markovíc and Gros, 2014;
Muñoz, 2017).

The power law in avalanche size demonstrates that large
avalanches, i.e., those that engage a large part of the cortical
areamonitored, are significantly more common than expected by
chance (Yu et al., 2014). Hierarchical clustering in vitro further
demonstrates that large avalanches exhibit diverse, yet distinct
spatial patterns, i.e., families (Beggs and Plenz, 2004; Stewart
and Plenz, 2006). This organization then raises the question
of whether the activity of single neurons correlates selective
with some avalanche families. Using 2-photon imaging, the
spontaneous and evoked firing in groups of cortical neurons
have been found to organize as scale-invariant avalanches (Bellay
et al., 2015; Karimipanah et al., 2017; Bowen et al., 2019;
Ribeiro et al., 2020). Similarly, extracellular unit recordings in
the rodent during wakefulness, exploration, and sleep identified
state-specific and repeated spike avalanche patterns (Ribeiro
et al., 2016). Yet, it is currently not known how supra- and
subthreshold activity of individual neurons relate to large and
diverse avalanches encountered in the LFP.

Theory and experiment suggest that neuronal avalanches
indicate a critical state of cortex at which numerous aspects of
information processing are maximized such as dynamic range
(Kinouchi and Copelli, 2006; Shew et al., 2009; Gautam et al.,
2015; Shriki and Yellin, 2016; Clawson et al., 2017; Gollo,
2017) and information capacity (Shew et al., 2011; Yang et al.,
2012; Fagerholm et al., 2016; Agrawal et al., 2018). Simulations
suggest avalanche dynamics confer benefits as to how networks
learn new input-output associations while staying adaptive (de
Arcangelis et al., 2006; de Arcangelis and Herrmann, 2010;
Rybarsch and Bornholdt, 2014; Stepp et al., 2015; Del Papa et al.,
2017; Hernandez-Urbina and Herrmann, 2017; Michiels van
Kessenich et al., 2018; Skilling et al., 2019; Zeng et al., 2019). An
understanding of these beneficial aspects of avalanche dynamics
concerning network properties requires insight into the cellular
composition of avalanche activity.

Here, we studied the relationship between avalanche and
single-neuron activity by comparing multi-site LFP recordings
with simultaneously measured extra- and intracellular activity
of single neurons. More specifically, when a spatial pattern of
the LFP was found to repeat during a recording, we searched
for reliable recruitment of single neurons during each repeated
occurrence. First, we studied the extracellular unit activity and
LFP signals recorded during ongoing activity from layers 2/3 of
the premotor cortex in awake nonhuman primates. Since it
is not feasible to separate the effects of local and distant
sources of the LFP in awake animals, we next carried out

complementary studies in acute slices of the rat cortex, for which
the origins of the LFP signals are intrinsic to the cortex. For
the slice studies, we combined intracellular whole-cell patch
recordings of pyramidal neurons in layer 2/3 with multi-site
LFP recordings. In line with our hypothesis, both in vivo and
in vitro, we found that neurons participate selectively and
reliably in particular avalanche patterns. We further demonstrate
that this selective relationship between neurons and avalanches
requires intact synaptic inhibition. Our findings suggest that
the diversity of neuronal avalanches in the cortex emerges from
diverse and distinct neuronal groups at the balance of excitation
and inhibition.

MATERIALS AND METHODS

Nonhuman Primate Recordings
Two adult nonhuman primates (Macaca mulatta), one female
(monkey 1; Victoria) and one male (monkey 2; Noma) were
studied. High-density MEAs (96 electrodes, 10 × 10 grid
configuration with no corner electrodes, 0.4 mm inter-
electrode spacing, and 1.0 mm electrode length; from Blackrock
Microsystems, Salt Lake City, UT, USA) were chronically
implanted in the arm representation region of the left pre-motor
cortex. Recordings were done at least 1 week following surgery
within the context of a behavioral study during which the
animals were trained to make a specific arm movement or
perform a visual-motor mapping task (for details see Yu et al.,
2017). Ongoing activity was recorded for 30 min during which
the monkey was seated head-fixed and awake but did not
perform any behavioral task. Extracellular signals were recorded
at 30 kHz. In post-recording processing, LFP signals were
down-sampled to 500 Hz and band-pass filtered at 1–100 Hz.
One exception was the analysis presented in Figure 1D, for which
the band-pass was set to 3–100 Hz.

Spike Sorting
Extracellular signals were band-pass filtered (0.3–3 kHz) to
reveal unit activity. Potential extracellular spike waveforms
were detected during recording by adaptive threshold crossing
(Blackrock Microsystems, Salt Lake City, UT, USA). The 400 µs
preceding and 1,200 µs following each threshold crossing were
stored and used for spike sorting. Manual spike sorting was
performed with Plexon Offline Sorter. The first three principal
components, peak-to-trough amplitude, and non-linear energy
were the waveform features used for sorting. The initial
waveform detection was deliberately liberal, such that it detected
most unit activity as well as some noise fluctuations. The noise
fluctuations provided an important baseline comparison for
strict spike sorting. The degree to which a unit was different from
noise was quantified with amultivariate ANOVA test (dependent
variables included at least two of the waveform features). A unit
was considered well isolated if the null hypothesis (unit and noise
waveforms drawn from distributions with the same mean) was
rejected with p< 0.001. If more than one unit was detected from
a single electrode, each pair of units was also required to pass the
same test. Moreover, each unit was required to have less than 1%
of its inter-spike-intervals (ISI) less than a 1 ms refractory period.
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To compute the crosscorrelation in spike count between each
pair of units recorded during the ongoing activity we followed
established methods (e.g., Renart et al., 2010). First, to obtain
spike count vectors, the spike time stamps of each unit were:
(1) binned with 1 ms temporal resolution; and (2) convolved
with a Gaussian window with 50 ms width. The crosscorrelation
coefficient was computed between all pairs of spike count vectors
(2,145 pairs for monkey 1,780 pairs for monkey 2).

Definition of LFP Avalanches
As established previously (Shew et al., 2009), we first detected
negative LFP deflections (nLFPs) falling below a threshold of
−3.5 standard deviation (SD) of ongoing fluctuations in vivo and
−6 SD of noise in vitro. Unlike in vivo, periods of quiescence
between population events were clear in the in vitro recordings
and used to define the noise baseline. nLFPs were found to
occur in clusters and their sizes were distributed according to a
power law, the hallmark of neuronal avalanches. Two consecutive
nLFPs (on any electrode) belonged to the same avalanche if the
time interval between themwas smaller than a threshold τ , which
was determined using the probability distribution of inter-nLFP
time intervals (Beggs and Plenz, 2003). We also repeated our
analysis for different nLFP detection thresholds in vivo: 2.5, 3,
3.5, 4.25, and 5 SD, which has previously been demonstrated to
not affect the power-law behavior in avalanche size distribution
(Petermann et al., 2009). Our main findings were unchanged
(see also ‘‘Definition of Avalanche Families’’ section). A complete
scaling analysis of LFP avalanches for these two monkeys can be
found in a recent publication (Miller et al., 2019).

Definition of Avalanche Families
First, each spatiotemporal avalanche was represented as a binary
spatial pattern with one bit per MEA electrode (Yu et al., 2011).
Bits were set to 1 if the corresponding electrode recorded an
nLFP during the event and otherwise set to 0. Next, patterns
that included only one active site were excluded to minimize the
potential inclusion of noise events. Then we sorted the events
into families with similar binary patterns. K-means sorting in
MATLAB (Mathworks) was employed with randomly chosen
seed patterns and a Euclidean distance metric. The number k
of families to search for was decided based on the number N of
population events being sorted k =

√
N/2 (Sánchez et al., 1979).

Family-Triggered Peri-Event Time
Histograms
To characterize the relationship between every unit and every
avalanche family, we computed family-triggered PETHs. If the
family was comprised of N avalanches, then the trigger times
for the PETH were the N timestamps of the first nLFPs in each
avalanche. The PETHs included the 750 ms periods preceding
and following the trigger times. The bins were 50 ms in width. A
PETH peak was deemed ‘‘selective’’ if two conservative criteria
were met. First, the integrated spike rate within a ±200 ms
interval around the trigger time must be three times larger than
the baseline spike rate computed in the two intervals −750 to
−200 ms and 200 to 750 ms, relative to the trigger time.
This criterion effectively reduces false positives but may classify

units with very broad PETH peaks as non-selective. Second,
the spike count in the ±200 ms interval around the trigger
time must occur with a probability of less than 0.01 assuming
Poisson spike generation of the neuron with rate λ. The rate λ
was the mean spike rate calculated during the ±10 s intervals
around the trigger times. The second criterion greatly reduces
false positives for neurons with low firing rates, which can be
common. As discussed in the main text, the number of expected
false positives using these criteria was fewer than five times less
than the observed number of selective unit-family pairs. To assess
the delay t and width σ of significant PETH peaks, we fit the
PETH with a four-parameter Gaussian function: f (x) = A+
B exp((−(x− t)2)/2 ∗ sigma2). The fit parameters A, B, t, and σ
were determined by minimizing the summed squared differences
between spike counts in each bin and the fit function. The
minimization was performed with a simplex search method
(MATLAB function—fminsearch).

Acute Slice Preparation and Recording
Media
Coronal slices from the medial prefrontal cortex (mPFC) or
somatosensory cortex of Sprague–Dawley rats were cut at
400 µm thickness (VT1000S; Leica Microsystems, GmbH) in
the chilled artificial cerebral spinal fluid (ACSF). In this study,
we used two different types of ACSF during recordings, one
for each of the two age groups. The first protocol, referred
to as the DA/NMDA protocol in the main text, has been
successfully used in prior studies (Beggs and Plenz, 2003;
Stewart and Plenz, 2006) to induce avalanches in adult rats.
Accordingly, slices were cut from adult rats (age 7–9 weeks) in
ACSF saturated with 95% O2 and 5% CO2 (310 ± 5 mOsm)
containing (in mM) 205 sucrose, 0.5 CaCl2, 7 MgSO4, 3.5 KCl,
26.2 NaHCO3, 0.3 NaH2PO4, 10 D-glucose. Prior to recording,
slices were stored submerged at room temperature in ACSF
containing (in mM) 124 NaCl, 1.2 CaCl2, 1 MgSO4, 3.5 KCl,
26.2 NaHCO3, 0.3 NaH2PO4, and 10 D-glucose. The recording
was done in the same ACSF as used for storage, but with
bath-application of 30 µM of dopamine (Sigma–Aldrich) and
5 µM of NMDA (Sigma–Aldrich). The second protocol, referred
to as the ACSF protocol in the main text, induces neuronal
avalanches in cortex slices from immature, young rats (Shew
et al., 2010) in which we recorded under normal ACSF perfusion,
but stored slices in a modified ACSF before recording. In
the modified storage ACSF, Na was replaced with choline
and spontaneous population activity arises without further
pharmacological manipulation when switching to the recording
ACSF. Moreover, this protocol may provide a practical in vitro
model for the study of cortical regions that have reduced
dopamine receptor density. For this protocol, slices were cut
from young rats (ages 2–3 weeks) in modified ACSF containing
(in mM) 124 choline-Cl (Sigma–Aldrich), 1.2 CaCl2, 1 MgSO4,
3.5 KCl, 0.3 NaH2PO4, 26.2 NaHCO3, 10 D-glucose, and
saturated with 95% O2 and 5% CO2 (310 ± 5 mOsm). Note that
choline replaces the sodium of normal ACSF. The slices were
stored submerged at room temperature in the same modified
ACSF as used for slicing. MEA recordings were performed in
normal ACSF.
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All recordings were performed with ACSF saturated with
95% O2 and 5% CO2, perfused at 3–4 ml/min at 35.5 ± 0.5◦C.
Disinhibited activity was recorded by bath-application of
picrotoxin (50 µM, Sigma–Aldrich) to the respective normal
recording medium.

Recording LFP Avalanches In vitro
Spontaneous LFP activity was recorded with integrated
planar MEAs (Multichannel Systems; GmbH) that contained
59 electrodes arranged on an 8 × 8 grid with an inter-electrode
spacing of 200 and 30 µm electrode diameter (four corner
electrodes and one ground electrode missing). Extracellular
signals were recorded with a 1 kHz sample rate and low-pass
filtered between 1 and 200 Hz to obtain the LFP. The activity
was recorded for 20–45 min. Experiments with fewer than
100 nLFPs were not included in our analysis. Avalanches and
avalanche families were defined as described above for the
in vivo recordings.

Whole-Cell Patch Recordings
The intracellular patch solution contained (in mM)
132 K-gluconate, 6 KCl, 8 NaCl, 10 HEPES, 0.2 EGTA,
2.2 Mg-ATP, 0.39 Na-GTP (Sigma–Aldrich). The pH was
adjusted to 7.2–7.4 with KOH. The final osmolarity of the
pipette solution was 290 ± 10 mOsm. Biocytin hydrochloride
(0.3%; Sigma–Aldrich) was added to the pipette for use in
post-fixation (4% paraformaldehyde) anatomical reconstruction.
A putative pyramidal cell (∼100 µm from the slice surface) was
visually identified by its somatic shape and prominent apical
dendrite and later confirmed by reconstructed morphology
and/or electrophysiology. Intracellular membrane potentials
were recorded in current-clamp mode (Axopatch 200B, Axon
Instruments, Missouri City, TX, USA), pre-amplified and
low-pass filtered at 10 kHz (Cyberamp380, Axon Instruments,
Missouri City, TX, USA), and digitized at 25 kHz for voltage and
5 kHz for current using the CED 1401 (Cambridge Electronic
Design, UK). Data were collected with Spike2 (CED) and
analyzed off-line. Neurons were included in the analysis if
their membrane potential was stable below −60 mV and if
their action potential half-width was <2.5 ms (see Table 2 for
the presentation of more electrophysiological parameters). To
visualize the morphology of patched cells (e.g., Figure 5B), a
subset of slices (n = 9) was post-processed with streptavidin-
conjugated Texas Red (Molecular Probes, Inc.), imaged with a
Zeiss LSM 510 confocal microscope, and were stitched, projected
and traced offline using Fiji ImageJ1.

RESULTS

Extracellular Units and LFP During
Ongoing Activity in Awake Nonhuman
Primates
We first studied the relationship between LFP-based avalanches
and single-neuron activity in the ongoing activity of nonhuman
primates. LFP recordings (1–100 Hz) were performed with

1https://imagej.net/Fiji

high-density MEAs chronically implanted towards superficial
layers of the premotor cortex over the arm representation region
in two macaque monkeys (Figure 1A). During the 30 min
recordings, the monkeys were awake, but not engaged in a
task. Spike sorting was used to identify 66 and 51 well-isolated
extracellular units in monkeys 1 and 2, respectively (for details
see ‘‘Materials and Methods’’ section). The firing rates of the
units were 3.6 ± 9.4 Hz (mean ± SD) ranging from 0.03 to
52 Hz. The trough-to-peak time difference of unit waveforms
was 345 ± 140 µs. We found average pairwise spike correlation
coefficients of 0.050 ± 0.002 and 0.015 ± 0.001 for our monkeys
1 and 2, respectively consistent with previous reports (e.g., Ecker
et al., 2010; Renart et al., 2010). In line with previous studies
(Gray and Singer, 1989; Murthy and Fetz, 1996; Destexhe et al.,
1999; Pesaran et al., 2002; Nauhaus et al., 2009; Petermann
et al., 2009; Kelly et al., 2010; Okun et al., 2010), we observed
a tendency for units to coincide with negative excursions in
the LFP (Figure 1A). This was quantified by computing the
spike rate as a function of LFP amplitude recorded within
a 50 ms windows at the same site. In Figure 1B, which
displays the average over all units and all times, we show that
the rate increases with negative LFP amplitude as reported
previously for high-density arrays based on tungsten electrodes
(Petermann et al., 2009).

Averages Reveal Non-selective, Widely
Distributed Unit-LFP Relationships In vivo
Having demonstrated that the LFP and extracellular units are
related at individual electrodes, we next explored traditional
spike-triggered and LFP-triggered relationships for our
recordings to identify spatial selectivity in the LFP or unit activity
concerning activity on the array. The example in Figures 1C,D,
in which the location of the trigger unit is marked by the red
triangle, draws attention to the spatially widespread, seemingly
non-selective average nLFP activity related to local spiking.
When slow LFP fluctuations were included in the analysis,
i.e., band-pass filtering between 1 and 100 Hz, we found that the
spike-triggered LFP waveform exhibited a broad (∼0.5 s negative
deflection with a minimum close to the trigger time, Figure 1C).
When very slow fluctuations were excluded, by band-pass
filtering the LFP between 3 and 100 Hz, the spike-triggered
average LFP waveform displayed a sharp (∼20 ms) negative
peak with the largest amplitude at the recording site nearest the
triggering unit, in line with previous studies (Nauhaus et al.,
2009; Petermann et al., 2009), yet it systematically decayed with
distance from the recorded unit (Figure 1D). This suggests a
rather non-selective spatial relationship between low-frequency
components in the LFP and single-unit activity. Next, we
computed LFP-triggered averages of unit activity using the peak
times of the nLFPs for triggers (Figure 1E). We considered all
nLFPs that fell below −3.5 SD. For this and the remainder of
the analysis in this article, we studied the 1–100 Hz frequency
band of LFP signals. Consistent with previous studies in awake
animals (Destexhe et al., 1999; Petermann et al., 2009), we found
that peri-event time histograms (PETHs) of unit counts often
indicated peak firing centered on the nLFP times. Consistent
with Figure 1C, units that were distant from the nLFP recording
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FIGURE 1 | On average, local unit activity associates with negative local field potential (LFP) deflections over the spatially extended cortical area in the monkey
cortex. (A) Left: a 96 channel electrode array (blue) was implanted within superficial layers of the premotor cortex in two macaque monkeys. Right: simultaneous
recordings of awake-state ongoing LFP (black) and single-unit activity (red—spike times) from three recording sites. Units exhibit increased firing around the time of
negative LFP deflections. (B) Unit activity increases with negative LFP amplitude. Unit spike rate as a function of LFP amplitude computed for all times (in
consecutive 50 ms windows). Units and LFP recorded at the same site were compared. Displayed is the average over all sites and units for both monkeys. Large
deviations from the average relationship are typical (shaded region—lower to upper quartile, line—median). (C) Spike-triggered average LFP waveforms indicate that
widespread, slow negative LFP fluctuations are associated with local spiking (red triangle indicates the site of the local unit). LFP was band-pass filtered between 1
and 100 Hz. (D) Same as in panel (C), but with low-frequency components of the LFP removed (band-pass, 3–100 Hz), spike-triggered average LFP waveforms
indicate that local, sharp negative LFP deflections are typically associated with spiking as reported previously (Petermann et al., 2009). (E) The peak times of large
amplitude negative LFP deflections (nLFPs; bandpass filter, 1–100 Hz) were used to compute nLFP-triggered average spike count histograms. Consistent with (C),
units both near to and distant from the trigger site (blue dot) exhibited significant increases in firing with no clear decaying relationship over distance. For (C–E) all
units were compared to all LFP recordings and then averaged together keeping track of relative locations of the unit concerning the LFP recording site.

site displayed a PETH peak that was comparable with that of
nearby units, on average.

Figure 1 demonstrates that, on average, the spiking activity
of single neurons is related to the LFP signal. However, the
spike-triggered average LFP waveform for the average unit
peaks around 1–10 µV (Figures 1C,D), which is much smaller
than the 100 s of µV moment-to-moment fluctuations in the
LFP (see Figure 1A; standard deviation over all electrodes was
35 ± 5 µV). Similarly, the nLFP-triggered spike histogram
revealed an average increase in firing of less than 1 Hz
(Figure 1E), which is a small change relative to ongoing 100 s
of Hz fluctuations in spike rate. The coefficient of variation for
the ISI distributions was 2.2 ± 0.5 and the standard deviation of
instantaneous spike rates (1/ISI) was 75± 35 Hz.

Moment-to-Moment Fluctuations in the
Spatial LFP Are Organized as Avalanche
Families
These observations raise the question to what extent do average
relationships faithfully represent the moment-to-moment

relationships between spiking and LFP signals? The analysis that
follows was designed to answer these questions and consisted
of three main steps. First, we identified neuronal population
events based on the spatial patterns of LFP signals afforded by
multi-site recordings. Second, we sorted the population events
into ‘‘families’’ of like events, based on which sites exhibited
negative LFP deflections during each event. Third, we tested
each unit individually for family-specific changes in the firing.
If our hypothesis is correct, we should find that certain units
fire selectively during certain families, while other units prefer
other families.

Our definition of a population event is motivated by two
observations: (1) nLFPs are associated with increased spiking
activity; and (2) LFP signals recorded simultaneously from
different sites are often highly correlated (e.g., Figures 1A, 2A;
Destexhe et al., 1999; Leopold and Logothetis, 2003; Nauhaus
et al., 2009). Therefore, we define a population event to be a
set of nLFPs (typically from many recording sites), which occur
together sufficiently close in time. Specifically, if the time interval
between two consecutive nLFPs is less than a threshold τ , we
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assign them to the same population event. The threshold τ

is chosen based on the inter-nLFP-interval distribution, which
was bimodal; τ is between the peaks in the distribution, thus
distinguishing the long time-scale which separates events and
the short time-scale of within-event nLFPs (τ = 130, 114 ms for
monkey 1, 2). In line with previous studies of ongoing activity
in nonhuman primates (Leopold and Logothetis, 2003; Miller
et al., 2019), slow timescale dynamics were dominant, although
monkey 1 did show a slight increase in gamma-band power
near 30 Hz compared to the 10–20 Hz range (Figure 2B). We
recorded 1,308 and 2,016 population events for monkeys 1 and
2, respectively. Population events were diverse in spatial extent,
spanning 9.6 ± 16.5 and 9.4 ± 16.2 electrodes (mean ± SD) for
monkeys 1 and 2.We defined the size of a population event as the
summed amplitudes of all the nLFPs comprising the event and
demonstrate that the distribution of the population event sizes
was close to a power-law with exponent −1.5 (Figure 2C). This
power-law event size distribution indicates that the dynamics we
study here are ‘‘neuronal avalanches’’ (Beggs and Plenz, 2003),
in line with previous studies of ongoing activity in the cortex
of awake monkeys (Petermann et al., 2009; Klaus et al., 2011;
Miller et al., 2019). Next, for each avalanche, we generated a
representative binary 10 × 10 pixel pattern (corner electrodes
missing), which indicates which sites were active during the
event (1 = active, 0 = inactive; Yu et al., 2011). Figure 2A
exemplifies 3 s of simultaneous LFP recordings with an avalanche
occurring about 1.5 s into the example (red dots mark nLFPs).
The upper left in Figure 2D shows the corresponding binary
pattern for this occurrence. We then used a k-means algorithm
to find families of avalanches with similar activation patterns
(Beggs and Plenz, 2004; Stewart and Plenz, 2006). Four example
patterns from one family are shown in Figure 2D. The nLFP
raster in Figure 2E shows all nLFP times and sites during a
30 min recording from monkey 1 with corresponding color-
coded avalanche families. The occurrence-times of events in one
family were typically scattered throughout the 30 min recording.
Figure 2F displays the corresponding binary patterns derived
from the nLFP raster sorted into families of similar patterns.
The sorted raster of binary patterns for monkey 2 is shown
in Figure 2G.

We note that k-means sorting resulted in spatially
wide-spread patterns. It also results in one ‘‘misfit’’ family
comprised of many small and local events that repeated rarely
during the recording and will not be considered further for
this analysis (e.g., family a in Figure 2F). Our objectives and
the results of the k-means sorting were only to establish several
families, within which events had similar spatial patterns of
activation. Practically, as k is reduced, families include more
population events and units become less selective for families.
We quantified this trend by computing the ratio of the peri-event
time histogram (PETH) peak height Hf of selective unit-family
pairs to the nLFP-triggered PETH peak height Hnf, which
disregards families. We found that for k = 30, 20, 10, 5, 4,
3, the ratio Hf/Hnf = 4.8, 4.4, 3.4, 3.2, 2.2, 1.0, respectively
(monkey 1). Note that

√
N/2 = 20 for monkey 1. Our main

conclusions are not qualitatively affected by changes in k
between 10 and 30. Higher values of k tended to reduce the

number of events in each family, resulting in poor statistics.
Moreover, using hierarchical clustering as reported previously
(Beggs and Plenz, 2004; Stewart and Plenz, 2006) did not
significantly change our results (data not shown). We also
repeated this analysis for different nLFP thresholds and found
that for thresholds of 2.5, 3, 3.5, 4.25, and 5 SD, the ratio
Hf/Hnf = 2.6, 3.5, 4.4, 6.0, 4.7, respectively (monkey 1). Thus,
for all thresholds, we found a greater than 100% increase in
selectivity compared to nLFP-triggered PETHs which disregard
families of population events.

Unit-Firing Is Selective for Avalanche
Families
With the population events sorted into avalanche families,
the next step was to determine whether units fired selectively
for families. To accomplish this, we computed the family-
triggered spike rate PETHs. One PETH was computed for
each unit-family pair, triggered on the times of the first
nLFP in each family. Examples for five units and a subset of
families are displayed for monkey 1 in Figures 3A–F. The large
spatial extent of each family is clearly visible in the family
averages (Figure 3A) contrasted by the selectivity in family-
triggered PETHs for units (Figures 3B–F; red histograms).
Our main finding was that extracellular units were reliably
and selectively active for avalanche families identified in the
LFP. Some units were reliably active during multiple families
(e.g., families o and d in Figures 3B–D), while other units
(Figures 3E,F) fired reliably for only one family. The locations
of the five units which fired reliably for families in Figure 3A
were distributed diffusely over the majority of the 4 × 4 mm
recording region (Figure 3A; right). The locations of all units
in monkey 1 that were selectivity for the families displayed in
Figure 3A are shown in Figures 3G,H for firing increase and
decrease, respectively.

A closer inspection of the color-coded locations of the units
reveals that spatial location is not predictive for family selectivity.
For example, unit orange did not respond to family r who
overlapped with its location but was selective for family o
and d, who are most active at non-overlapping locations on
the array.

All units and their respective family selectivity with
corresponding negative or positive modulation are summarized
in Figure 4A for both monkeys. In monkey 1, we found
124 selective unit-family pairs with a strong change in firing
revealed by the family-triggered PETH. In monkey 2, we found
29 selective unit-family pairs. Here, we adopt a conservative
definition of ‘‘selective,’’ requiring a strong increase or decrease
in firing compared to baseline. In both monkeys, the number of
strong relationships was more than five times greater than the
number expected by chance (nine and five for monkeys 1 and 2),
demonstrated by repeating our analysis with randomized spike
times—each time was shifted by a random amount between 1 and
10 s. Most units were selective for only one family as shown in
the distribution of unit selectivity for families for both monkeys
in Figure 4B. Units selective for multiple families could exhibit
various combinations in the direction of modulation. Several
units were positively modulated by some families but negatively
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FIGURE 2 | Ongoing neuronal avalanches are composed of repeating spatial nLFP patterns. (A) Displayed are 3 s LFP recordings arranged to match the spatial
layout of the 96 recordings sites. Multiple nLFPs (red dots) often occurred together within ∼100 ms across multiple sites—we defined such occurrences as
“population events” (see Experimental Procedures). (B) Power spectra of LFP were broadband showing that low-frequency fluctuations dominate the signal. A
prominent ∼30 Hz oscillation was present in monkey 1 (see also Miller et al., 2019). All recording sites were analyzed—median (line) and lower to upper quartile
(shaded region) are shown. (C) Distributions of population event sizes s demonstrate that the activity is neuronal avalanches, defined by Pr(s) ∼ s-1.5 (Beggs and
Plenz, 2003; Petermann et al., 2009). (D) The spatial locations of nLFP avalanches were represented with a binary pattern (Yu et al., 2011). The upper left pattern
corresponds to population event in panel (A). The other three patterns were similar but occurred at different times and are shown as typical like-examples extracted
by our algorithm use. (E) Raster of all nLFP times and locations. Vertical clusters of nLFPs with matching color belong to one avalanche. (F) Avalanches were sorted
into families with like patterns. The sorted avalanche raster of monkey 1 is shown. Color code identifies family and is same as in panel (E). Note that family a (gray,
left) is comprised of typically small avalanches that were not similar to many others. (G) Sorted avalanche raster of monkey 2.
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FIGURE 3 | Reliable ensembles of spiking units underlie avalanche families. (A) The average pattern for eight example avalanche families. Letter family labels
correspond to Figures 2E,F of monkey 1. Grayscale indicates the fraction of events in which the site participated. Right: color code for locations of units in panels
(B–F). (B–F) Each column displays family-triggered spike rate PETHs (top) and spike rasters (bottom) for five example units. For example, the left-most PETH and
spike raster in (B) indicates that this unit increases its firing rate selectively during the occurrence of family o. The temporal bin width for the PETHs was 50 ms. The
second to right column shows the average response to avalanches of size 1 (pattern a), excluding large avalanche families. The right-most column includes PETHs
and rasters triggered on all nLFPs recorded at the same site as the unit, disregarding family categorization. Red histograms indicate the family specificity of the unit.
(G,H) Array location of units (triangles) that selectively increased (G) or decreases (H) their firing in response to families shown in panel (A). The colors within each
triangle indicate which families the unit was selective for.

modulated by other families (Figure 4A; units with at least
1 white and one black square in a row,M1 #1, 3, 17, 20, 28, 29 and
M2 #8). On the other hand, some units were only negatively
modulated by multiple families (Figure 4A; units with >1 black
square in a row, M1 #35, 36 and M2 #19).

Among the units and families that were strongly related,
we found that the temporal precision of unit participation
in families was varied. For example, Figures 3B,C reveal
PETH peaks that are broader than those in Figures 3E,F.
Moreover, the latency from trigger time to PETH peak also
varied. To quantify the width and latency of the PETH peaks,
we fit a Gaussian function to the PETH (Figure 4C, inset,
Experimental Procedures). We found that the PETH peak
widths, i.e., standard deviation parameter of the Gaussian fit,
were 140 ± 136 ms and 170 ± 110 ms and the latencies
were broadly distributed 5 ± 107 ms (mean ± SD) and
0.4 ± 106 ms for monkeys 1 and 2 respectively (Figures 4C,D).
Both width and latency variability suggest the temporal
precision of unit-family relationships to be of the order
of 10–100 ms.

The grand average nLFP-triggered spike histograms and
spike-triggered average LFP shown in Figure 1 conceals
the richness of the relationship between different units
and different families of LFP population events. For
example, comparing the nLFP-triggered spike histograms
in Figure 1E to the family-triggered PETHs in Figure 3,
we see that family-triggered PETHS often had much larger
or sharper peaks. This can also be seen by comparing
the family-triggered PETHs to the rightmost PETHs in
Figure 3, which were triggered on the times of all nLFPs
that occurred on the electrode which recorded the unit.
Quantitatively, we found that the selective unit-family
pairs (as defined above) exhibited a PETH peak that
was 4.4 ± 8.8 times larger than the nLFP-triggered
PETH peak for monkey 1 and 4.3 ± 6.9 times larger for
monkey 2. These results demonstrate that if all units and
population events are averaged together as in Figures 1B–E,
one underestimates the strength and spatiotemporal
complexity of the relationship between unit activity and
the LFP.
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FIGURE 4 | Summary in family selectivity and temporal precision in a
unit-family relationship. (A) Summary of all unit-family relationships for both
monkeys. White pixels indicate firing increase, black pixels indicate a
decrease in the firing. (B) Histogram of units and the number of selective
families for both monkeys. (C) We estimated the latency t to peak firing and
the width σ of the PETH peak for each strong unit-family pair, by fitting a
Gaussian function with an offset (inset). The distribution in PETH widths
peaked around 100 ms but was also widespread. (D) Peak unit firing
centered near t = 0 but could precede or follow the occurrence of a family by
up to 100 ms.

Synaptic Inputs to Layer 2/3 Pyramidal
Neurons Selectively Occur During
Avalanche Families in Rat Acute Slices
We have shown above that select ensemble of spiking neurons
are closely related to LFP-based avalanche patterns in the cortex
of awake monkeys. We next carried out combined whole-cell
patch-clamp and multi-site LFP recordings in acute slices of rat
somatosensory and medial prefrontal cortex (Figure 5). Since
afferent fibers from distant regions are severed in the acute slice,
this preparation allows us to investigate the selectivity of intrinsic
dynamics in local cortical circuits. We focused on the role of
layer 2/3 pyramidal neurons and carried out control experiments
with pharmacologically blocked fast GABAA-receptor-mediated
synaptic inhibition.

In a first set of in vitro experiments, population activity was
elicited in acute coronal slices from medial prefrontal cortex
(mPFC) and motor cortex (M1) of adult rats (age 7–9 weeks)
induced by continuous bath application of 30 µM dopamine
(DA) and 3 µM NMDA in ASCF as reported previously (Beggs
and Plenz, 2003; Stewart and Plenz, 2006). In the second
set of experiments, slices were taken from mPFC and M1 of
young rats (age 2–3 weeks) using a choline-based, protective
slicing solution followed by recording spontaneous activity in
normal ACSF only (for details see Experimental Procedures).
Multi-site LFP was recorded using planar 60-electrode MEAs

covering a 1.6 × 1.6 mm2 region with an interelectrode
distance of 200 µm (Figure 5A). There were several notable
differences in basic parameters between these two protocols.
Spontaneous LFP activity in normal ACSF of young slices was
about 10 times higher in rate and aggregate LFP amplitude
compared to the DA/NMDA induction protocol for slices
from adult rats (Table 1). We identified all cells as putative
pyramidal neurons based on a combination of morphology, I/V-
responses, and action potential properties (Figure 5B; Table 2).
For most cells, we also obtained extensive measures of action
potential firing, which demonstrated that the increase in LFP
activity for the younger slices correlated with a significantly
longer action potential width for pyramidal neurons typical
for immature neurons (Table 2). Thus, the two protocols
allowed for examining avalanche and single-neuron activity
under two largely different rates of activity. Except where noted,
the following observations were found for both protocols. We
defined neuronal avalanches as described previously (Beggs and
Plenz, 2003; Stewart and Plenz, 2006) and sorted them into
families exactly as in the in vivo data analysis.

An example of a simultaneously recorded intracellular
membrane potential from a layer 2/3 pyramidal neurons and the
spontaneous LFP on the MEA is shown in Figures 5B,C. Upon
wash-in of DA/NMDA, ongoing LFP activity emerged and the
intracellular membrane potential depolarized by ∼4.0 ± 3.5 mV
(Figures 5D,E).

We note that, unlike our in vivo recordings in which the
MEAmatrix was placed horizontally within layer 2/3, the in vitro
MEA spanned multiple cortical layers across the coronal slice
with the uppermost row placed along the medial (mPFC) or
dorsal/dorsolateral border of the cortex (M1). In line with our
previous reports (Stewart and Plenz, 2006, 2007; Petermann
et al., 2009), we found that LFP activity occurred predominantly
in layer 2/3 (Figure 6A) for both protocols. In line with
our in vivo observations, these predominantly layer 2/3 nLFP
patterns distributed in sizes according to a power law that was
sensitive to temporal shuffling, again as shown in our original
article on neuronal avalanches in the acute cortex slice (Beggs and
Plenz, 2003; Figures 6A,B).

As observed in vivo, LFP avalanche patterns were very
diverse, but certain patterns tended to repeat during a recording.
Figure 7A displays an unsorted nLFP raster of avalanches
indicating the color-coded families and their time of occurrence.
Figure 7B shows the corresponding sorted raster into avalanche
families. Since action potential firing was very low in the patched
neurons (<1 Hz), our goal here was to test whether neurons
displayed significant subthreshold membrane potential changes
concerning particular families. To this end, we performed family-
triggered averages of the membrane potential recordings.

Our main finding from the in vitro recordings was that
pyramidal neurons displayed reliable subthreshold membrane
potential responses only from select avalanche families, in
line with our selectivity results in vivo. Examples of family-
triggered changes in membrane potentials for one neuron
using the DA/NMDA protocol are shown in Figure 7
below the average activity pattern for the corresponding
families in Figure 7C. A corresponding example from
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FIGURE 5 | Simultaneous multi-site LFP and whole-cell patch recordings in vitro. (A) Trans-illuminated pictures that display placement of acute coronal slices from
rat cortex on a planar microelectrode array (MEA), visible as straight connection leads ending in recording electrodes (black dots). Left: example for medial prefrontal
cortex (mPFC) recordings. The medial cortex border is oriented upwards. Right: example of somatosensory cortex (M1) recording. The dorsolateral axis is oriented
upwards. Scale: inter-electrode distance is 200 µm. Orange broken line: cortical border. WM, white matter; CP, caudate-putamen. (B) Example of a reconstructed
layer 2/3 pyramidal neuro (confocal image) to illuminate size relationships between single neurons and spacing of MEA electrodes (gray dots). (C) Sub- and
suprathreshold voltage responses to step current injections of a whole-cell patched pyramidal cell. (D) Example of spontaneous nLFP activity on the full array
(electrodes 1–60 ordered in groups of eight per row) in the presence of NMDA/DA, which typically lasts for >30 min (Stewart and Plenz, 2006). The time course of
the simultaneously recorded intracellular membrane potential from a whole-cell patched neuron is displayed at the bottom. (E) Five seconds of ongoing LFP
population activity recorded from a subset of MEA electrodes spanning layer 2/3 and intracellular membrane potential taken from the period in panel (D; blue bar) at
higher spatiotemporal resolution. Red dots indicate suprathreshold nLFPs. Note the absence of any apparent, straightforward relationship between single-neuron
activity and nLFPs.

the normal ACSF protocol for young slices is shown
in Figure 8.

We identified neurons with significant input during families
by comparing membrane potential fluctuations before (−500 to
−50 ms; baseline) and after (50–250 ms) family triggers. An SD
in deflections at least three times bigger than the SD in baseline
fluctuations (−500 to −50 ms) was considered significant. Out
of 84 recorded cells, only about 50% received input from just a
few avalanche families (for a summary see Figures 9A,B). Thus,
we conclude that the participation of single neurons in avalanche
dynamics was typically selective.

As in our in vivo results, the relationship between the input
to the neuron and the population activity in Figures 7, 8 would
be missed or, at best, underestimated if one averaged over all
avalanches and all neurons. Here we emphasize this point by
computing the average membrane potential triggered on all
avalanches except the selective family (Figures 7C, 8C; control),
which results in no significant average membrane deflection.
These results indicate that accounting for the spatial pattern of
avalanches is crucial to identify the relationships we present. LFP

activity recorded with a randomly chosen single electrode from
our multi-site recordings is likely to be uncorrelated to the input
to any, particularly patched neuron.

Avalanche Diversity and Selectivity in
Synaptic Input Is Abolished by Disinhibition
Finally, we investigated whether the selectivity encountered in
our analysis might be due to a lack of excitability in the acute slice
or might be maintained dynamically by the cortical network. To
this end, we examined the role of fast GABAA-receptor mediated
synaptic inhibition. It is well established that suppression of
inhibition destroys avalanche dynamics in vitro (Beggs and
Plenz, 2003; Stewart and Plenz, 2006; Pasquale et al., 2008).
Accordingly, we tested whether the diversity and selectivity for
families of ongoing LFP patterns depend on inhibitory signaling.
We added the GABAA receptor antagonist picrotoxin (50 µM)
to our avalanche induction protocol for adult and young slices
respectively. Under such disinhibited conditions, spontaneous
nLFP count and rate increased by a factor of 10 in adult
slices and by 50–100% in young slices (Table 1). Ongoing
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TABLE 1 | Comparison of in vitro population activity for the three different
recording conditions (mean ± SEM).

DA/NMDA ACSF PTX

Number of slices (n) 85 42 9
Spontaneous activity
duration (s)

1,486 ± 538 1,586 ± 667 1,306 ± 629

Total nLFP count from all
sites (n)

596 ± 810 5,700 ± 9,130 4,733 ± 6,677

Rate of nLFPs at single
site (Hz)

0.38 ± 0.46 3.7 ± 4.8 4.3 ± 5.1

Integrated nLFP amplitudes
from all sites (mV)

−5.8 ± 7.1 −80 ± 113∗
−158 ± 186

Number of families/
experiment (n)

14.9 ± 2.4 17.61 ± 5.4 6.6 ± 3.1∗

Families w/neuron
response (%)

6.7 ± 2.9 5.7 ± 2.9 42.9 ± 34.9∗

∗p < 0.05.

TABLE 2 | Action potential electrophysiological parameters for whole-cell patch
recordings of pyramidal neurons (mean ± SEM).

DA/NMDA ACSF PTX

Number of cells (n) 71 36 12
Resting potential (mV) −71 ± 4 −68 ± 5 −71 ± 5
Action potential threshold (mV) −35 ± 5 −38 ± 4 −34 ± 6
Action potential amplitude (mV) 88 ± 9 87 ± 9 87 ± 7
Action potential width (ms) 1.0 ± 0.4 1.68 ± 0.6∗ 1.0 ± 0.5
After hyper-polarization 8.8 ± 2.7 8.2 ± 2.5 10 ± 4
amplitude (mV)
After hyper-polarization time (ms) 19 ± 7 21 ± 6 16 ± 11

∗p < 0.05. Only neurons for which reliable action potential measures were obtained
are listed.

activity was comprised of stereotyped population events with
large LFP amplitude and spatial extent resulting in bimodal size
distribution of population events (Figure 6C, arrow; Figure 10).
About three times fewer families were observed and a single
slice-spanning family dominated most of the activity when
compared to intact inhibition (Table 1). On average, neurons
exhibited a 10 times loss in selectivity, i.e., most neurons
participated in about half of all families and neurons revealed
membrane depolarization or action potentials during nearly
every population event (Figures 9C, 10; Table 1).

DISCUSSION

We simultaneously recorded single neuron and multi-site LFP
activity from the cortex of awake monkeys and rat acute
slices. In both preparations, spatiotemporal LFP patterns were
distributed in sizes according to a power law, the hallmark of
neuronal avalanches. The power-law quantifies a high incidence
of large avalanches suggestive of a non-selective relationship
between spatially extended LFP population signals and single-
neuron activity. On the contrary, though, we found that
diverse ensembles of extracellular units were selectively and
reliably activated with particular avalanche patterns during
ongoing activity in the premotor cortex of awake monkeys.
We confirmed this selectivity in acute slices of rat cortex
under two different activity levels, demonstrating reliable input
to layer 2/3 pyramidal neurons during select and repeated

FIGURE 6 | Overview of total avalanche activity and location of whole-cell
patched pyramidal neurons in layer 2/3 for all recording conditions.
(A) Avalanche size distribution obtained under artificial cerebral spinal fluid
(ACSF) + DA/NMDA conditions for mPFC and M1 acute slices from adult rats.
Size distributions reveal power laws in line with neuronal avalanches, which
are destroyed by shuffling (red). Numbers indicate the total number of slice
experiments for each region. Bottom density plots indicate population activity
measured on the MEA aligned to medial (mPFC) and dorsal (M1) border
averaged over all slice experiments. Approximate layers as a visual guide
indicated on the left (MEA, 8 × 8 electrodes, 200 µm interelectrode distance,
corner electrodes missing, additional ground electrode in 4th row on the
right). The color indicates the activation rate (averaged over experiments).

(Continued)
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FIGURE 6 | Continued
Black markers indicate soma locations of patched neurons on the array.
(B) Same as in panel (A) for ACSF condition in slices from young rats
prepared under-protected choline condition. (C) Disinhibited condition due to
the addition of picrotoxin (+PTX) for slices from adult and young rats
combined. Red arrows point to the predominance of system size
spontaneous activations.

LFP avalanches. We demonstrated that this selectivity breaks
down during disinhibition and is not predicted by the spatially
wide-spread correlation found with traditional spike-triggered or
LFP-triggered average relationships. The selective participation
of single neurons in repeated avalanches supports the view
that avalanches are composed of highly diverse, yet selective
neuronal ensembles.

Our work is related to previous studies in which multi-site
recordings of LFP activity was compared to the activity of single-
units (Destexhe et al., 1999; Rasch et al., 2008; Katzner et al., 2009;
Nauhaus et al., 2009; Petermann et al., 2009; Kelly et al., 2010).
Nauhaus et al. (2009) reported that the spiking activity of neurons
generates negative LFP deflections near the neuron and decays
with distance from the neuron. This conclusion was based on
the spike-triggered average LFP recorded from anesthetized cats
and monkeys. Our unit-triggered averages of LFP (Figure 1D)
confirm these findings in awake monkeys. However, when
lower frequency signals are not filtered out, i.e., 1–100 Hz is
considered rather than 3–100 Hz as Nauhaus et al. (2009) did,
the decay of the spike-triggered average LFP peak with distance
is less prominent (Figure 1C). The converse relationship,
i.e., LFP-triggered average spike histograms, revealed spatially
widespread spiking during negative LFP deflections (Figure 1E).

This observation is also consistent with previous observations
of nLFP-triggered spike histograms (Destexhe et al., 1999;
Petermann et al., 2009). Katzner et al. (2009) found that LFP
signals originate from neurons within a 250 µm radius of
the recording site. They reached this conclusion by comparing
the orientation tuning of units and LFP signals in the visual
cortex of anesthetized cats. Our results do not contradict this
study, but we emphasize that neuronal avalanche dynamics
is sensitive to anesthetics (Scott et al., 2014; Bellay et al.,
2015) limiting extrapolations of previous findings to the
current study in awake nonhuman primates. Indeed, previous
studies have shown that LFP signals can be highly correlated
over many millimeters of the cortex (Destexhe et al., 1999;
Leopold and Logothetis, 2003; Nauhaus et al., 2009). When
considered as a whole, our study demonstrates that large
repeated population events involve selective ensembles of units
distributed all across the 4 × 4 mm sized recording region.
Some previous studies investigated the spike-LFP relationship
by using spike trains to predict the LFP traces (Rasch et al.,
2008) or vice versa (Kelly et al., 2010). Our work suggests
that the success of such predictions would be substantially
improved if algorithms take into account unit activity far from
the LFP recording site as well the multi-site spatial pattern of
the LFP.

Our analysis of population events are also related to previous
studies using voltage-sensitive dye imaging (Tsodyks et al.,
1999; Kenet et al., 2003; Han et al., 2008), which provides
a spatially extended view of population activity similar to
multi-site LFP recordings. As in our study, Kenet et al. (2003)
and Han et al. (2008) found that population activity patterns
repeat during ongoing cortical activity. Similar to our finding,

FIGURE 7 | Select responses in layer 2/3 pyramidal neurons to families of NMDA/DA induced LFP avalanches. (A) nLFP raster on the MEA with color-coded
avalanche families and their temporal occurrences during spontaneous activity (15 min recording, mPFC). (B) Corresponding family-sorted avalanche raster. (C) Top:
average spatial LFP pattern for all avalanche families. Grayscale indicates the fraction of site participation for each family. The red cross marks the soma location of
the patched pyramidal neuron. Control includes all avalanches except those in family f. Bottom: family-triggered average intracellular membrane potential time course
(black). The number in brackets indicates family members. Pre-averaged individual traces are shown in gray. Family f generated reliable input to the patched cell.
Corresponding control demonstrates no reliable trigger with other family patterns outside f.
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FIGURE 8 | Select responses in layer 2/3 pyramidal neurons to avalanche families in normal ACSF from young slices. (A) nLFP raster on the MEA with color-coded
avalanche families and their temporal occurrences during spontaneous activity in young slices (10 min recording, M1). Note higher rate of avalanche occurrence
compared to slices from adult rats (see Figure 7). (B) Corresponding family-sorted avalanche raster. (C) Top: average spatial LFP pattern for all avalanche families.
Grayscale indicates the fraction of site participation for each family. The red cross marks the soma location of the patched pyramidal neuron. Control includes all
avalanches except those in families a, g. Bottom: family-triggered average intracellular membrane potential time course (black). The number in brackets indicates
family members. Pre-averaged individual traces are shown in gray. Note that families d and i do not reveal significant intracellular responses despite substantial
spatial overlap with soma location. Families a and g correlated with reliable intracellular responses in the patched pyramidal neuron. Corresponding control
demonstrates no reliable trigger with non-a, g families.

Tsodyks et al. (1999) showed that a single neuron may fire
selectively during certain ongoing ‘‘preferred cortical states,’’
which were defined by the spike-triggered average population
pattern. However, our results indicate that single neurons
are often selective for multiple different population events,
specifically avalanche families, not just one ‘‘preferred cortical
state.’’ Moreover, Tsodyks et al. (1999) restricted their attention
to population events that resemble those caused by sensory
stimuli, which, unlike our study, excludes the possibility that
a neuron might be selected for an internal cognitive process
unrelated to sensory stimulation.

The present study exclusively analyzed periods of ‘‘ongoing’’
activity, during which the animals did not perform any specific
task but remained seated, with their head fixed. We considered
ongoing activity in vivo to be the most appropriate comparison
with spontaneous activity induced in our in vitro experiments.
In the absence of a behavioral read-out during these periods,
the origins of fluctuations in nLFP rate during ongoing activity

are not known but might include visual saccades, spontaneous
posture adjustments, minor limb movements, and changes in
arousal amongst others. In a recent study from our group
(Yu et al., 2017), we demonstrated scale-free LFP-avalanches
during a simple movement task and a visual-motor mapping
task in nonhuman primates suggesting that spontaneous,
non-monitored movements should not qualitatively change
our results.

Our objectives and the results of the k-means sorting were:
(1) to establish several avalanche families, within which events
had similar spatial patterns of activation; and (2) to identify
a comparable number of families with relatively large spatial
extent for both in vivo and in vitro data to facilitate comparison
between the two approaches. Typically the number of in vitro LFP
avalanches was at the order of ∼10 lower than in vivo. In our
view, there is no single ‘‘correct’’ choice of k for experimentally
recorded cortical population events that are not likely to ever
repeat exactly.
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FIGURE 9 | Summary of significant membrane potential responses within each experimental group. (A) NMDA/DA condition in slices from adult rats: 42 neurons
were found to receive reliable and selective input from particular avalanche families. Left: the subset of 11 family-triggered average membrane potential time courses
with large amplitude changes ranked according to trigger-preceding average membrane potential shown at the left of each trace. The number of family triggers
indicated by the number in brackets to the right. Note that responses could be depolarizing, hyperpolarizing or a depolarization followed by a hyperpolarization.
Right: summary plot of the total number of avalanche families and the number of families with select intracellular responses. Note that most families will not trigger a
response in a randomly recorded pyramidal neuron. (B) Summary for ACSF condition in slices from young rats. (C) Summary for PTX condition.

The Complementary In vivo and In vitro
Approaches in Assessing Single-Neuron
Selectivity During Avalanches
Here we measured the relationship between LFP-based
avalanches and single-neuron activity using two very different
approaches, each of which provided distinct advantages as
well as profound limitations. The advantages of our in vivo
recordings are: (1) the embedding of MEA tips in an intact
three-dimensional cortical space biased towards superficial layers
in an awake animal; (2) that single-neuron activity was measured
near the electrode tip ensuring a close spatial relationship
between maximal local LFP activity and single-neuron activity;
and (3) the ability to simultaneously probe many neurons from
the same network. Major disadvantages are: (1) the limitation
to neuronal firing that is single neuron output; and (2) the
ambiguity as to LFP contributions from remote, potentially
extracortical sources. Our in vivo analysis demonstrates that
single neuron output is selective for avalanche families.

The advantages of our in vitro recordings are: (1) intracellular
whole-cell patch recordings that allow for studying the neuronal
input during avalanching; and (2) that LFP avalanches must
arise from sources that are part of the local microcircuit. Major
disadvantages of this approach are: (1) recording from only
a few, typically 1 randomly selected neuron per slice; and
(2) LFP recording sites being distant from the site of single-
neuron recording and neuronal activity generation. The latter
problem arises from the fact that in the acute slice, oxygen
diffusion is limited to about 150 µm from the slice surface
leading to a ∼200 µm thick zone of hypoxic tissue separating

the gas-impermeable planar MEA surface from the region
of neuronal activity in the slice. With intracellular recording
typically within the first 100 µm from the slice surface, we
estimate that the typical distance between local LFPmeasurement
sites and neuronal recording sites are of the order of 200–400µm,
much larger than in vivo. These spatial constraints should
reduce the probability of finding tight coupling between the
LFP and neuronal firing. This disadvantage as well as the low
neuronal yield per experiment, though, is expected to be partially
compensated for by dendritic arborizations of the recorded
neurons which allow for subthreshold monitoring of remote
network activity. Accordingly, our findings show that single
neuron input is selective for avalanche families complementing
our in vivo findings. Both approaches support the conclusion that
the actual number of suprathreshold neurons during avalanching
must be low even for large LFP patterns. Future experiments
should target the selectivity encountered for single neurons
during avalanches in vivo, for example using genetically encoded
calcium indicators that monitor the neuronal firing, i.e., output,
in combination with genetically encoded voltage indicators,
which also monitor subthreshold activity (Knöpfel, 2012).

We note that when trying to assess the relationship
between nLFP patterns and single-neuron activity, both
extracellular and intracellular approaches naturally exhibit
a bias against the identification of transient activity
suppression. If extracellular unit firing is low, disfacilitation
or active inhibition of firing is more difficult to identify
because it can not be easily distinguished from unrelated
quiet times in firing. For the intracellular membrane
potential, active inhibition typically does not lead to a
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FIGURE 10 | Global disinhibition reduces family diversity uncovering system-wide synchronization and tightly coupled neuronal firing. (A) Disinhibition induces
synchronous nLFP activity on the MEA time-locked with a single neuron firing. PTX (50 µM) was bath applied at the beginning to block fast GABAA receptor
mediated inhibition. Top: nLFP raster. Bottom: intracellular membrane potential of a whole-cell patched pyramidal neuron. (B) Enlarged period in a demonstrating
synchronous time course of nLFPs and corresponding large intracellular depolarization with spiking activity. Sequential occurrence of four population events grouped
in time (discontinuity indicated by a forward slash). (C) nLFP raster on the MEA with color-coded avalanche families and their temporal occurrences. Note few
families and tight firing for system-wide population event, identified as family d. (D) Corresponding family-sorted raster. (E) Most population events belong to family d,
which spans most recording sites and always caused the patched cell to fire, i.e., the patched neuron was unselectively involved in network dynamics. Top: average
patterns for each family. The red triangle marks the soma location of the patched neuron. The numbers of trigger events are shown in parentheses. Bottom:
family-triggered average membrane potential waveforms (black). Pre-averaged individual traces are shown in gray. Vertical scale bars—2 mV (families a, b, and c),
50 mV (family d).

hyperpolarization unless the neuron is already depolarized.
Both approaches thus bias detection of single-neuron—LFP
relationships to transient excitation/depolarizations, potentially
followed by suppression/hyperpolarization, in line with our
experimental results.

The Change in Neuronal Response and
Avalanche Patterns Under Global
Disinhibition In vitro
Bath-application of the GABAA-antagonist picrotoxin blocks
inhibitory synaptic transmission in the cortical slice independent
of the type of interneuron involved and subcellular location

of the receptor. Non-selectively removing inhibition has been
historically used in vitro (Beggs and Plenz, 2003; Pasquale et al.,
2008) and in simulations (e.g., Tetzlaff et al., 2010) to collapse
the power law in avalanche size into bimodal size distributions.
Our study for the first time demonstrates this collapse to also
drastically alter the relationship of single-neuron responses and
spatially extended LFP patterns in the system. The non-selective
reduction in GABAA-mediated, i.e., fast synaptic transmission,
uncovered one to two orders of magnitude higher spontaneous
activity levels compared to DA/NMDA induced avalanches in the
adult slice (see Table 1). Specifically, the nLFP rate increased by
a factor of 10, and total activity increased by a factor of 100 for
similar recording periods (∼20–25 min) besides expanding
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into deep layers (see Figure 6). This remarkable difference
demonstrates that: (1) fast synaptic inhibition is required
to induce and maintain avalanche dynamics; (2) avalanche
dynamics allows layer-wide events to be produced despite the
circuit being orders of magnitude below its full capacity in
excitability; and (3) spontaneous avalanche activity is biased
towards superficial layers despite deep layers in principle being
excitable. Disinhibition in young slices also increased activity, yet
less dramatically than in the adult slice confirming the general
immature state of GABAA mediated inhibition in the young
cortex. These differences suggest developmental changes in the
suppression of run-away excitation in the cortex and in the early
support of avalanching in the neocortex.

Our family-triggered averages uncovered short-
lasting depolarizations followed by hyperpolarization, or
depolarizations and hyperpolarizations only. These subthreshold
events and their respective order support the interpretation
of inhibition being triggered by local recurrent excitation in
the slice as an avalanche unfolds reminiscent of the synaptic
‘‘shadow’’ of a remotely propagating avalanche in the network.

To provide further insights into the inhibitory mechanisms
involved in avalanche regulation, selective manipulation of
distinct inhibitorymicrocircuit components e.g., interneuron cell
types, will be required using e.g., optogenetical manipulation.
Intracellular perfusion of whole-cell patched neurons with
picrotoxin might allow for identifying excitatory inputs that
underlie the selective sub- and suprathreshold responses of
pyramidal neurons during avalanches.

LFP Based Avalanches and Their
Composition of Selective Neuronal
Ensembles In vivo
Our treatment of LFP population events was motivated by our
studies of neuronal avalanches identified in the LFP in vitro
(Beggs and Plenz, 2003, 2004; Stewart and Plenz, 2006, 2007;
Shew et al., 2009, 2011; Yang et al., 2012), ex vivo turtle cortex
(Shew et al., 2015) and in vivo in the rat (Gireesh and Plenz,
2008) and nonhuman primate (Petermann et al., 2009; Yu et al.,
2017; Miller et al., 2019). Our observations that spatial nLFP
patterns repeat during ongoing activity was shown previously
for neuronal avalanches, but only in vitro (Beggs and Plenz,
2004; Stewart and Plenz, 2006). A common view of LFP signals
is that their physiological origins are too poorly understood
to provide concrete information about cortical dynamics. Our
work suggests that this view is due for an update. We show
that traditional spike- and LFP-triggered average relationships
are much weaker than the fluctuating moment-to-moment
spike-LFP relationships. Individual units are not well represented
by the ‘‘average unit’’ and individual LFP population events are
not well represented by the ‘‘average event.’’ When these effects

are accounted for, we show that diverse and reliable spiking
ensembles underlie the cortical LFP-based avalanche.

Our work here demonstrates that neuronal avalanches are
underpinned by selective, reliable spiking ensembles of neurons.
This selectivity thus supports neuronal avalanches to be proposed
(Plenz and Thiagarajan, 2007; Plenz, 2012) as a spatiotemporal
organization of Hebbian cell assemblies (Hebb, 1949) lending
strong experimental support to a large body of simulations
on Hebbian plasticity, neuronal avalanches, and criticality (de
Arcangelis et al., 2006; de Arcangelis and Herrmann, 2010;
Rybarsch and Bornholdt, 2014; Stepp et al., 2015; Del Papa
et al., 2017; Hernandez-Urbina and Herrmann, 2017; Michiels
van Kessenich et al., 2018; Skilling et al., 2019; Zeng et al., 2019).
By extension, the temporal organization of avalanches (Lombardi
et al., 2014, 2016) or avalanches within avalanches (Petermann
et al., 2009) and corresponding firing patterns of spike avalanches
(Ribeiro et al., 2016) might provide a template for Hebb’s
‘‘phase sequences.’’
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It has been hypothesized that the brain optimizes its capacity for computation by

self-organizing to a critical point. The dynamical state of criticality is achieved by

striking a balance such that activity can effectively spread through the network without

overwhelming it and is commonly identified in neuronal networks by observing the

behavior of cascades of network activity termed “neuronal avalanches.” The dynamic

activity that occurs in neuronal networks is closely intertwined with how the elements

of the network are connected and how they influence each other’s functional activity. In

this review, we highlight how studying criticality with a broad perspective that integrates

concepts from physics, experimental and theoretical neuroscience, and computer

science can provide a greater understanding of the mechanisms that drive networks

to criticality and how their disruption may manifest in different disorders. First, integrating

graph theory into experimental studies on criticality, as is becoming more common

in theoretical and modeling studies, would provide insight into the kinds of network

structures that support criticality in networks of biological neurons. Furthermore, plasticity

mechanisms play a crucial role in shaping these neural structures, both in terms of

homeostatic maintenance and learning. Both network structures and plasticity have

been studied fairly extensively in theoretical models, but much work remains to bridge

the gap between theoretical and experimental findings. Finally, information theoretical

approaches can tie in more concrete evidence of a network’s computational capabilities.

Approaching neural dynamics with all these facets in mind has the potential to provide

a greater understanding of what goes wrong in neural disorders. Criticality analysis

therefore holds potential to identify disruptions to healthy dynamics, granted that robust

methods and approaches are considered.

Keywords: criticality, connectivity, neural disorder, in vitro neural networks, complexity, neuronal avalanches,

neural computation, plasticity
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INTRODUCTION

Researchers have long grappled with the question of how
the brain is able to process information, and many have
recently turned to studying brain dynamics armed with tools
from statistical physics and complexity science. In many
physical systems, such as magnetic or gravitational systems,
certain macroscopic features arise from the interactions of the
constituent elements in a way that is unpredictable even from a
perfect understanding of the behavior of each component; this is
known as emergence (Chialvo, 2010). In the context of the brain,
emergent phenomena encompass behavior and cognition, arising
from the interaction of the vast number of neurons in the brain.
Approaching the study of neural systems from this perspective
entails studying neuronal behavior at the network or population
level—observing and understanding emergent behaviors in the
system rather than zeroing in on the behavior and connections
of each individual neuron on its own. While exhibiting some
computational power on their own, neurons are truly remarkable
in their computational capacity when taken collectively.

It is hypothesized that the cortex may optimize its capacity for
computation by self-organizing to a critical point (Beggs, 2008;
Chialvo, 2010; Plenz, 2012; Shew and Plenz, 2013; Cocchi et al.,
2017; Muñoz, 2018; Wilting and Priesemann, 2019a). Criticality
is a dynamical state poised between order and disorder, or, more
precisely, a transition between an absorbing phase in which
activity gradually dies out and an active phase in which activity
perpetuates indefinitely (Brochini et al., 2016). Critical systems
must necessarily contain a large number of interacting non-
linear components, though these conditions are not sufficient to
ensure criticality; in the space of possible system states, criticality
occupies a vanishingly small region, with chaotic and quiescent
systems at the two opposite extremes (Brochini et al., 2016;
Muñoz, 2018). A system operating in the critical state shows
complex spatiotemporal behavior, and there is no scale, in space
or time, that dominates the behavioral patterns of the system.
That is, taking a closer or wider view of the system will show
some variant of the same snapshot of the behavior. This mode
of behavior is manifested by spatial and temporal correlations
scaling as a power law over several orders of magnitude, giving
rise to the presence of self-similar fractal-like structures over
many scales. The brain exhibits complex spontaneous activity
that crosses many time scales, a feature associated with criticality,
and this activity is postulated to contribute to how the brain
responds to stimuli and processes information.

In this review, we highlight network features evidenced to
contribute to the emergence of critical dynamics in neural
systems and discuss the benefits of experimentally studying the
interplay between these features. Crucially, we also note here
that care must be taken when extrapolating from theoretical
findings on criticality to the more recent experimental research
on criticality in neural systems observed at different scales.
In particular, experimental explorations of criticality in neural
systems point to the importance of considering the structures
(Massobrio et al., 2015) and plastic mechanisms (Ma et al., 2019)
that support this dynamical regime. Thus, critical dynamics in
neuronal networks may be better understood by characterizing

their connectivity and how this connectivity changes over time
or in response to inputs and perturbations. Additionally, as
discussed in detail by Shew and Plenz (2013), there is also
much to be learned about the computational and functional
benefits that criticality confers; thus, complementing graph
theoretical and criticality metrics with an information theoretical
approach can further shed light on the functional benefits of this
dynamical regime.

Note that we aim here to focus on relevant considerations for
empirical assessments of criticality in biological neural systems,
particularly at the network level, and on how experimentalists
may build upon the existing theoretical foundations to address
the criticality hypothesis from a data-driven perspective. This
review thus aims to provide the reader with basic insights on
criticality and how it relates to neuroscience, rather than an
in-depth discussion of the physics of criticality. Furthermore,
we approach modeling studies with an eye on how they can
inform our understanding of experimental systems but do not
exhaustively review the vast field of model neural systems, as this
is a topic of review unto itself.

In the remainder of this section, we present an overview of
the theoretical benefits of criticality and experimental evidence
supporting its emergence in living neural systems. The next
section then focuses on the intersection between network
neuroscience and criticality and discusses the connectivity
features that can support critical dynamics. In the subsequent
section, we consider the plasticity mechanisms that allow these
networks to form, learn in response to inputs, and remain
stable against perturbation or failures in the network. Finally,
we conclude with a discussion of how approaching the study of
criticality with a diversity of perspectives may prove more fruitful
than any single directed approach.

Why Is Criticality Important?
The term self-organized criticality was coined as such to reflect
the similarity of this phenomenonwith the critical point observed
in phase transitions in statistical mechanics, wherein a parameter,
such as temperature, can be tuned to bring the system to a state
between multiple phases of matter (Bak et al., 1988). However,
a crucial point that distinguishes self-organized criticality from
the conventional critical point in statistical mechanics is that the
system tunes itself to criticality without the need for external
tuning via a control parameter. In a self-organized critical system,
the critical point is an attractor, meaning the system tends to
evolve toward that point from a wide range of starting points;
to again consider the parallel with thermodynamic criticality, if
a thermodynamic system were to show self-organized criticality,
intrinsic mechanisms would drive the system to return to the
critical point between the liquid, solid, and gaseous phases.
Obviously this is not the case, as matter in each of these
phases can exist stably, but there are many fascinating properties
conferred by criticality, as we will discuss in this section.

Many natural systems have been observed to show critical
or critical-like behavior (Paczuski et al., 1996; Chialvo, 2010),
including forest fires (Malamud et al., 1998; Buendía et al.,
2020; Palmieri and Jensen, 2020) and flocks of birds (Cavagna
et al., 2010), which has led researchers to explore the possibility
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BOX 1 | Cellular automata at the “edge of chaos.”

A binary cellular automaton (CA) is an n-dimensional array of binary cells whose states are updated synchronously in discrete time steps. The state of each cell at time

t + 1 depends on the states of the cells in its neighborhood at time t. Such CAs are among the simplest systems to show complex behavior. Langton (1990) used

the binary CA as a lens to assess the conditions under which a physical system may show the capacity to support computation. In a sweep of the possible rulesets

for a one-dimensional binary CA, he demonstrated that a small subset of rules produce behavior compatible with the necessary tenets of computation, namely, the

storage, transmission, and modification of information.

FIGURE 1 | Illustrative examples of the behavior observed in different classes of one-dimensional binary CAs. In these CAs, each row represents the CA at a given

time step, and the two states of the cells are represented by black and white. Complex behavior arises in the critical regime, which becomes vanishingly small as

the system increases in size. Langton (1990) characterized these CAs with the λ parameter, which represents the ratio of transitions to an arbitrary state selected as

the “quiescent state.” Adapted from Langton (1990).

Examples of different “classes” of CA (Wolfram, 1984) corresponding to different dynamical regimes are shown in Figure 1, with class IV representing a transitional

state analogous to criticality. He also demonstrated that these CAs occupy a small region, where mutual information is maximized at a point of intermediate entropy.

This maximal mutual information indicates that these CAs at the “edge of chaos” have struck a balance between the competing needs of information storage, which

requires low entropy, and information transmission, which requires high entropy, thereby allowing complex patterns of activity to propagate through the system over

time and space without rapidly dying out or overwhelming the system. Despite its simplicity, the CA demonstrates how some sets of rules balancing quiescence and

transmission can lead to complex patterns that allow for the transfer of information, an appealing property for neural systems.

of a similar phenomenon in the brain in a conjecture
known as the criticality hypothesis (Beggs and Plenz, 2003;
Beggs, 2008). This hypothesis states that the brain self-
organizes into the critical state in order to optimize its
computational capabilities.

The canonical sandpile model by Bak et al. (1987, 1988)
describes a system slowly driven by the addition of grains of
sand until an instability occurs and the sand is redistributed to
restabilize the system. Because of the dynamical minimal stability
of the system, the chain reactions set off by the external drive,
with sand traveling from site to site until the system restabilizes,
called “avalanches,” display the self-similar power-law scaling
mentioned above. This means that the disruption of a single
element in the system has a small but non-zero chance to change
the state of the whole system. Work on emergent properties
of dynamical systems has indicated that systems tuned to the
critical regime show optimal information processing capabilities
(Langton, 1990; Shew et al., 2009, 2011; Plenz, 2012; Shew and
Plenz, 2013).

To provide a conceptual image of the complex behavior that
can arise from even very simple parts and lay a foundation for

how computation can emerge in such a system, we consider as
an illustrative example the binary cellular automaton (CA), a
system consisting of many stationary binary cells whose behavior
is influenced by the states of the cells in their immediate
neighborhood. Box 1 gives a brief definition of the CA and

summarizes the important findings obtained by Langton (1990)

in his work on how computation may emerge in physical systems

at the “edge of chaos.” It should be noted, however, that although

this regime was initially assumed to exhibit a continuous

second-order phase transition, as classically described for critical
dynamics, it has recently been found to show a discontinuous

first-order transition (Reia and Kinouchi, 2014, 2015). In a

vanishingly small region in the state of all possible CAs of the type

Langton (1990) considered, quite interesting behavior emerges:

complex patterns of activity are preserved over long distances

in space and time. In the regime between the two extremes of

quiescence and disorder (Kinouchi and Copelli, 2006), the system

optimizes its capacity to perform the functions of information

transmission, modification, and storage that are necessary to
support computation.
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Although the transition hypothesized to occur in neural
systems is distinct from the “edge-of-chaos” transition shown
in Box 1, the features captured in this simpler system can
help us understand why the dynamics at phase transitions may
be relevant for information processing in the brain. In the
transitional regime, patterns of activity are preserved over space
and time, which means that spatially disparate elements of the
system can communicate with each other and that informational
representations are propagated in time. Different inputs produce
distinguishable outputs, allowing systems near criticality to
respond to stimuli in a meaningful way. These concepts underlie
how information is encoded and transmitted in dynamical
systems at criticality and highlight how studying criticality in
experimental studies on neural computation can inform our
understanding of how the brain processes information.

What does this have to do with computation? In a general
sense, computation is a process, either natural or artificial,
by which information is communicated and manipulated to
produce some kind ofmeaningful behavior in a system (Denning,
2007). More concretely, computation is the act of solving a
“computational problem”: a set of related questions with given
information (input), each with its own distinct answer (output).
Criticality has been found to optimize characteristics related
to better performance at solving computational problems. For
example, recurrent network models showing critical dynamics
outperform their sub- and supercritical counterparts in terms of
their input-to-output mappings; that is, the outputs produced
from different inputs are more separable, or distinguishable, in
critical networks (Bertschinger and Natschläger, 2004). Critical
systems also show a maximal dynamic range (Kinouchi and
Copelli, 2006; Gautam et al., 2015), which is the span of
inputs distinguishable by the system. Additionally, the number
of metastable states is maximized in networks with a critical
branching ratio (Haldeman and Beggs, 2005), where a metastable
state is defined as a cluster of similar output patterns produced
by the same input. Information transfer and storage, represented,
respectively, by the information shared between a source node
and a destination node and that between a node’s past and future
states, is also optimized at criticality (Boedecker et al., 2012).

Although criticality is recognized to optimize many properties
associated with computation, as discussed above, it should also
be noted here that there are also some properties associated
with criticality that may run counter to computational function
in the sense described here (Wilting and Priesemann, 2019a).
For example, the maximal dynamic range of a system in the
critical state causes the specificity of the system to suffer; that is,
a system that can sensitively respond to a wide range of inputs
also shows more overlap between responses to similar inputs
(Gollo, 2017). Thus, recent research has shifted from a singular
focus on criticality to a broader realm of dynamical possibilities,
including heterogenous networks composed of both critical and
slightly subcritical subgroups (Gollo, 2017), the presence of a
“reverberating regime,” enabling the task-dependent switching
or combining of critical and slightly subcritical dynamics to
enjoy the benefits of both states (Wilting et al., 2018), and the
concept of self-organized quasi-criticality, which accounts for
non-conservative dynamics in systems that show critical-like

behavior over a finite range of scales (Bonachela and Muñoz,
2009; Bonachela et al., 2010; Buendía et al., 2020; Kinouchi et al.,
2020). These findings show promise for the advancement of a
more detailed and physically accurate view of how criticality
is realized in living neural systems; however, we refrain in this
review from venturing too far into the details of these topics and
direct the interested reader to the cited literature.

Experimental Evidence of Criticality in
Neural Systems
Beggs and Plenz (2003) were the first to experimentally
demonstrate that the spontaneous behavior of in vitro cortical
networks displays features consistent with critical dynamics
in their landmark study on neuronal avalanches in cortical
slices interfaced with microelectrode arrays (MEAs). At its
most general, a neuronal avalanche extends over the duration
of persistent activity propagating through the network and is
punctuated by silent periods preceding and following the active
period, as shown in Figure 2A. In the case of in vitro systems
(i.e., slices or dissociated cultures), “activity” may refer to either
the higher-frequency spikes or the lower-frequency local field
potentials (LFPs), as both modalities have been studied (e.g.,
Beggs and Plenz, 2003; Pasquale et al., 2008). Criticality has also
been studied at the macroscale using electroencephalography
(EEG) (e.g., Meisel et al., 2013; Lee et al., 2019).

Regardless of the scale or method of data collection, one main
hallmark of criticality is that neuronal avalanches show power-
law scaling in both space and time, with sub- and supercritical
behavior being characterized by exponential and bimodal
distributions, respectively. Beggs and Plenz (2004) demonstrated
that neuronal avalanches show diverse spatiotemporal patterns
that are stable over several hours, highlighting their capacity to
represent a wide range of information in a reproducible manner.
It should be noted that a simple power-law fitting alone is not
sufficient to identify criticality (Goldstein et al., 2004; Priesemann
and Shriki, 2018); in fact, this was far from the only approach
used by Beggs and Plenz (2003), who also evaluated the branching
ratio and the effect of using only a subset of all recording points.
In addition to the methods first used by Beggs and Plenz (2003),
a number of criticality measures have since been put forward.
Providing empirical evidence of criticality is challenging, and it
is suggested that a range of measures be applied (Priesemann and
Shriki, 2018); we present a selection of some such measures in
Box 2.

Avalanche behavior during development was first observed in
organotypic cortical cultures by Stewart and Plenz (2008), and
they found that avalanches persisted throughout development
over periods of up to 6 weeks in vitro, despite large changes in
activity levels, suggesting homeostatic regulation to maintain this
mode of activity. It has also been demonstrated that dissociated
cortical networks may self-organize into the critical state after
a period of maturation, though not all such networks reach
the critical state and reports on the time course of maturation
differ (Pasquale et al., 2008; Tetzlaff et al., 2010; Yada et al.,
2017). The reported results on dissociated networks suggest
that after a period of low activity, networks tend to pass
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BOX 2 | Experimental metrics of criticality.

To pursue further investigation of the criticality hypothesis, we must be armed with the appropriate tools for identifying a network’s dynamic state. Power laws are

notoriously challenging to handle in empirical data (Clauset et al., 2009) and can also arise in non-critical systems (Martinello et al., 2017; Touboul and Destexhe, 2017;

Priesemann and Shriki, 2018). Thus, additional measures are needed to accurately identify when a network is in the critical state, and each measure should also be

applied to appropriate null models for comparison. This box lists the main approaches currently used to identify criticality from empirical data, but it should be noted

that the development of such methods remains an active area of research. Some of the measures listed below have been implemented in a freely available MATLAB

toolbox called the Neural Complexity and Criticality Toolbox (Marshall et al., 2016), and detailed statistical analysis for fitting and analyzing power-law distributions

can be performed with an open Python package called powerlaw (Alstott et al., 2014).

FIGURE 2 | Definition of a neuronal avalanche and examples of empirical measures of criticality. (A) Definition of a neuronal avalanche. The top panel shows a raster

plot divided into time bins, and the avalanche in the plot spans six active frames preceded and followed by inactive frames. An alternate view of the activity in the six

frames is shown below, where each square represents an active electrode in an 8 × 8 grid. The bottom panel shows the definition of the avalanche shape, which is

obtained by taking the number of active electrodes in each frame. (B) Illustration of the branching ratio. Blue nodes are active, and gray are inactive. A branching

ratio of 1 allows activity to persist without overwhelming the system. (C) Shape collapse. In a critical system, all avalanches should show the same mean temporal

shape profile across different size scales. Adapted from Marshall et al. (2016).

• Power-law scaling of neuronal avalanches: One hallmark of criticality in neuronal networks is the power-law scaling of the size S and duration T of neuronal

avalanches. That is, P(S) ∝ S−α and P(T ) ∝ T−β , where P(·) is the probability distribution function. The size is generally defined as the number of activated

electrodes or neurons, and the duration is the number of active time bins. When the time bin width is selected to correspond to the average inter-spike interval,

the power law exponents of the size and duration have been shown to be approximately α = 1.5 and β = 2.0. However, the power-law scaling should persist

(Continued)
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BOX 2 | Continued

across a range of temporal resolutions close to the order of magnitude of the average inter-spike interval, with the exponent α changing systematically with the

selected time bin size (Beggs and Plenz, 2003; Pasquale et al., 2008). Power-law scaling should also remain when a more coarse-grained spatial resolution

is considered, by using only a subset of all recording points. As stated above, there is an open Python package called powerlaw that can be used for detailed

statistical analysis of power-law distributions (Alstott et al., 2014). As an additional power-law related metric, the κ parameter (Shew et al., 2009) gives a quantitative

measure of the difference between the experimental and fitted cumulative probability distributions when using power-law fitting.

• Branching ratio: The branching ratio σ is the ratio of the number of descendants to the number of ancestors, where activity on an ancestor electrode or neuron

immediately precedes activity on a descendant electrode or neuron (Beggs and Plenz, 2003). A system in the critical state has a branching ratio of approximately 1,

allowing activity to flow through the network without dying out (σ < 1) or overwhelming the entire network (σ > 1), as shown in Figure 2B. A modified version of

the branching ratio that is specific to LFP data has also been introduced, where the ratio is instead taken between the baseline-to-baseline areas of the negative

LFP deflections (nLFPs) in successive time bins, rather than the number of nLFPs (Plenz, 2012). The nLFP area is correlated with the number of neurons firing

and thus provides a better measure of group activity during an avalanche than the nLFP count.

• Shape collapse: When a system is in the critical state, avalanches should show the same mean temporal profile across scales. The temporal profile of an avalanche

represents the number of active sites as a function of time, and for a system in the critical state, the temporal profiles of all avalanches collapse onto the same

profile shape when spatiotemporally scaled with a scaling exponent γ close to 2 (Figure 2C), as described by 〈S〉(T ) ∝ T−γ , where 〈S〉(T ) is the average size of

all avalanches of a given duration T. Details can be found in Sethna et al. (2001) and Friedman et al. (2012), and an experimental demonstration of shape collapse

in non-human primates can be found in Miller et al. (2019). The deviation from criticality coefficient (DCC) by Ma et al. (2019) is related to the concept of shape

collapse and is computed from the difference between the scaling exponent γ calculated from empirical data using linear regression and the expected value

calculated from the power-law exponent α of the size distribution.

• Spatial subsampling: Because of the nature of observing neuronal systems, only a subset of the system components can be sampled. This spatial subsampling

can sometimes lead to erroneous conclusions about the nature of the system’s underlying dynamics. Methods involving the scaling of spatial subsampling (Levina

and Priesemann, 2017) and a subsampling-invariant estimator (Wilting and Priesemann, 2018) have been developed to allow for the evaluation of dynamic states

of subsampled systems.

• Other measures: Some researchers have developed other quantitative measures to describe the dynamical state of the system. One notable example is the use

of statistical scaling laws related to a phenomenon called “critical slowing down,” which refers to the tendency for systems to require more time to recover from

a perturbation the closer they are to criticality (Meisel et al., 2015a). Additionally, detrended fluctuation analysis (DFA) offers a framework to understand scale-free

oscillations in a range of systems (Hardstone et al., 2012).

through periods of first subcritical then supercritical behavior
before settling into the critical state, though not all networks
reach this state. This behavior has been hypothesized to stem
from an initial overproduction of connections followed by a
period of pruning excess connections (Pasquale et al., 2008;
Yada et al., 2017). Additionally, experiments in which chemical
perturbation is applied to increase excitation or inhibition in the
network indicate that networks at criticality exhibit a balanced
excitation-to-inhibition (E/I) ratio (Shew et al., 2009, 2011;
Heiney et al., 2019). Together, these experimental findings point
to the importance of a balance in both network structure and
network dynamics to achieve criticality.

Shew et al. (2009, 2011) have explicitly linked the dynamic
state of a cortical network with its information processing
capacity by demonstrating that networks at criticality show
maximal dynamic range, information transmission, and
information capacity in comparison with their counterparts in
the sub- and supercritical states. These properties harken back
to the original requirements posed by Langton (1990) for a
system to be capable of computation and further emphasize the
role of the dynamical state in governing the functional behavior
of a neuronal network. These studies highlight the functional
benefits conferred by the critical state and give credence to the
criticality hypothesis (Shew and Plenz, 2013). But how does a
system organize itself to become capable of supporting critical
dynamics? In the following sections we explore the relationship
between the structure of a network and its dynamical behavior
and consider the plasticity mechanisms that form and maintain
target structures.

CRITICALITY AND NETWORKS

Biological neural networks are interconnected networks of
individual information processing units (neurons). When
considering how information is processed within the network,
it is vital to understand the interactions of the individual units,
the organization of the brain network, and the integration of
activity of widely distributed neurons (Bressler andMenon, 2010;
van den Heuvel and Sporns, 2013). Underlying the aggregate
activity of groups of neurons are the structural and functional
connectivity of the network, which determine where signals pass
and which neurons act in consort (Sporns, 2002; Womelsdorf
et al., 2007). This in turn influences the information processing

capabilities of neural networks, and network structure therefore

contributes to determining the emergence of critical properties
in neural networks. The question is then how the organization
of biological neural networks can support critical dynamics
to optimize computational efficiency. This section examines
a selection of experimental and simulation-based studies that
address this question.

Network Neuroscience
The application of modern network science to the brain and
networks of neurons has flourished over the past two decades.
The complex network of the brain has information processing
as its primary goal and attempts to maximize this capacity while
under multiple constraining influences, such as availability of
space, energy, and nutrients, and thus must strike a balance
between computational capacity and wiring cost (Laughlin and
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Sejnowski, 2003; Cuntz et al., 2010). These two factors are
often in a tradeoff relationship; for example, direct connections
facilitate the most effective signal transmission, but the long-
range connections this requires are very costly to grow and
maintain (Buzsáki et al., 2004). Additionally, the network must
meet the changing demands of the organism while remaining
resilient to damage to or failure of parts of the network, such as
the loss of neurons or the connections between them (Pan and
Sinha, 2007). Some of the basic network science principles that
are commonly applied in neuroscience studies are highlighted in
Box 3.

Multiple lines of evidence now show that brain networks
have a small-world organization, with high local clustering
and low average path length, which facilitates segregated
local specialization and global integration. Low-cost, short-
range connections dominate, while a smaller number of long-
range connections allow for few intermediaries between distant
components (Bullmore and Sporns, 2012). Brain networks also
show evidence of link clustering, where strong connections
preferentially form between nodes with similar neighborhoods
(Pajevic and Plenz, 2012). Some evidence also indicates brain
networks are scale-free, with a heavy-tail degree distribution
that follows a power law (Eguíluz et al., 2005). Components
with high degrees furthermore tend to connect to other high-
degree components in a “rich club,” which are hub regions
of high connectivity that facilitate integration across distinct
areas and wide propagation of signals and information (Sporns,
2013). The central nervous system (CNS) is also divided into
specialized areas at multiple levels, from brain lobes to smaller
but separate modules within these lobes, which can again
be subdivided into further modules. This is characteristic of
hierarchical modularity, which facilitates flexibility in adaptation
because it can incorporate changes within a single module
without affecting other, nearby modules. This makes the system
at the same time robust and flexible (Meunier et al., 2010). The
combination of these network architectures—small-world, scale-
free, and modular—creates an efficient network well-suited for
computation, as will be discussed in the following section.

Neural Network Topology Facilitates
Criticality
Modeling work has provided evidence that the network features
outlined above contribute to the emergence of critical dynamics
as a means to support computation in networks of neurons.
This provides some motivation to translate these findings into
the experimental realm, but little work has been done thus
far in this regard, despite the expanding experimental work
on criticality, as already detailed above, and the large body
of work on network neuroscience (Bassett and Sporns, 2017).
However, one noteworthy methodological study has identified
small-world organization in the effective (causal) connectivity
of a cortical slice culture (Pajevic and Plenz, 2009). With
further applications of such measures of connectivity to assess
avalanche propagation in vitro, it will be possible to evaluate
if network features found to be beneficial in modeling studies,
such as small-worldness, can be experimentally confirmed. In

this section, we will examine criticality and complex network
features, but it should also be noted that criticality can also be
demonstrated in random (Kinouchi and Copelli, 2006; Costa
et al., 2015; Campos et al., 2017) and complete (Levina et al., 2007;
Bonachela et al., 2010; Brochini et al., 2016; Costa et al., 2017;
Kinouchi et al., 2019; Girardi-Schappo et al., 2020) networks. In
a study specifically examining the impact of network structure
on network dynamics in silico, Massobrio et al. (2015) showed
that random network topology can only support power-law
avalanche scaling under a narrow range of synaptic constraints
and firing rates. Furthermore, of the topologies they investigated,
only scale-free networks with a high average node degree and
small-world features were able to display behavior consistent with
experimental criticality.

Simulation studies on complex networks have found that
features of criticality can emerge with biologically plausible
regulatory mechanisms. Shin and Kim (2006) found that,
for a network initialized as complete, i.e., fully connected,
and allowed to change its connections over time by spike-
timing-dependent plasticity (STDP), the network reorganizes
into a scale-free network with small-world properties that
shows evidence of self-organized criticality. Other studies
have also found that concurrently scale-free and small-
world networks recapture critical dynamics with exponents
comparable to those found experimentally (Lin and Chen, 2005;
Pellegrini et al., 2007; de Arcangelis and Herrmann, 2012).
Complementary to this, Rubinov et al. (2011) demonstrated
that a hierarchically modular structure with a preponderance
of within-module connections, which have a relatively low
wiring cost, produced a much broader critical regime than
was observed in corresponding non-hierarchical networks. It
has also been shown that in the Bak–Tang–Wiesenfield (BTW)
model, also referred to as the “sandpile” model, self-organized
criticality emerges as a result of the formation of modular
clusters with biologically relevant dimensions, lending further
evidence to the importance of modular network structures
(Hoffmann, 2018).

When focusing on the activity of ensembles of neurons, it is
common to consider bursting activity that encompasses multiple
units and how these units coordinate their activity. In dissociated
cortical neurons, networks that spontaneously develop critical
dynamics display a level of synchrony higher than what is seen
in uncoordinated subcritical activity but lower than that seen
in highly regular supercritical activity (Pasquale et al., 2008;
Valverde et al., 2015; Cocchi et al., 2017). This is also consistently
reported in modeling studies and can be related to the branching
ratio, or how many downstream neuronal responses are elicited
by a single active neuron (Box 2). When the branching ratio
is balanced near 1, the network is in a state of intermediate
synchrony and tends to display critical avalanche dynamics in
a way that maximizes the number of adaptive responses the
network can produce to stimulus (Haldeman and Beggs, 2005;
Shew and Plenz, 2013). However, despite bursting activity often
being considered highly coordinated, critical networks in vitro
have been observed to show more burst-dominated activity than
their supercritical counterparts, with critical networks showing
a higher proportion of spikes contained in bursts and an
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BOX 3 | Bene�ts of network topology.

Network neuroscience encompasses an approach to studying brain function that considers the ways in which neurons communicate, anatomically and functionally,

across multiple scales (Bassett and Sporns, 2017). It is informed by complex systems theory, which states that the emergent behavior of a system cannot necessarily

be understood simply by the properties of its individual components. It further applies mathematical techniques such as graph theory and algebraic topology to

describe networks (graphs) in terms of their individual units (nodes) and their connections (edges). A node in this context can be a brain area, a single neuron, a

recording electrode, a voxel, pixel, or any unit which describes the activity of a discrete part of a neural network. Edges can be physical connections obtained from

connectivity mapping or functional connectivity based on correlation or other measures (Bullmore and Sporns, 2009). This approach has yielded great insight into

how the brain is organized and how communication within brain networks occurs (Newman, 2003). While numerous methods exist for extracting the structural,

functional, effective, weighted, or binary networks from living neural systems (for a review see Bullmore and Sporns, 2009; Bastos and Schoffelen, 2016; Hallquist

and Hillary, 2018), there are several features among these considered to play an important role in neuronal organization and function.

FIGURE 3 | Network characteristics associated with healthy brain networks. In normal conditions, brain networks show hallmarks of multiple network models. This

includes an intermediate state between order and randomness in small-world organization, the power-law degree distribution of a scale-free network, and modular

clusters organized in a hierarchical fashion. The integration of these different network types may be an evolutionary adaptation driven by the multi-constraint

optimization of brain wiring. Deviations from the hallmarks of these network structures may be associated with abnormal brain function and disease.

Small-World Network: A small-world network is typically defined by how closely it approaches the small world ideal of high clustering and low characteristic path

length (Watts and Strogatz, 1998). One way to produce a small-world network is to begin with a regular (or lattice) network, where each node is connected only

with its nearest neighbors, and, with probability p, rewire each connection in the network to a randomly chosen node elsewhere in the network. When p = 1,

every connection is rewired, and the result is a random network. However, at intermediate rewiring probabilities, the characteristic path length drops off drastically,

showing that only a few long-range connections are necessary to facilitate the integration of the network. Additionally, the clustering of nodes remains high,

retaining the local specialization of the original regular network. These properties make small-world networks highly advantageous for computation while reducing

wiring cost (Chklovskii et al., 2002), essentially reducing the number of connections without sacrificing the capacity for network-wide communication (Bassett and

Bullmore, 2017).

Scale-Free Network: In a scale-free network, the probability distribution of the node degree, which is the number of edges connected to each node in the network,

follows a power law, meaning most nodes have a small number of edges and few nodes have many (Barabási and Albert, 1999; Eguíluz et al., 2005). These

high-degree nodes are often called hubs, and they serve an important role in integration across the network (Sporns et al., 2004). Hubs make a scale-free network

more robust to random deletion of nodes but susceptible to targeted damage of the hub nodes (Albert et al., 2000). Especially vulnerable (but not exclusive to

scale-free networks) is the rich club (Zhou and Mondragón, 2004), a group of hubs with a high degree of interconnectivity between each other. While there is

growing evidence for the presence of rich-club topology in the brain (Griffa and Van den Heuvel, 2018; Kim and Min, 2020) the presence of scale-free topology

(Bonifazi et al., 2009) is still somewhat controversial, but it provides important insight in modeling studies of dynamics on network topology (Broido and Clauset,

2019).

Hierarchical Modularity: A modular network is characterized by the presence of clusters of nodes that are densely connected with each other and share few edges

with nodes outside the cluster. In a hierarchically modular network, these clusters can be subdivided into other clusters according to the same principle, often over

multiple scales (Figure 3). Modules are interconnected by connector nodes, which may or may not be hub nodes, allowing dissemination of signals and integration

of information across the system. Modular networks may be more robust to dynamic change within the network. The intricacies of hierarchical modularity and its

relation to other network topologies such as the rich club (McAuley et al., 2007) are extensive and, as such, beyond our scope here (for a review, see Meunier

et al., 2010).

It is important to consider that the network models described above are not mutually exclusive. Rather, it appears that the brain displays hallmarks of all these

network types (Bullmore and Sporns, 2009) and that deviations from their properties can be involved in disease (Stam, 2014), as illustrated in Figure 3.
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intermediate level of synchrony within those bursts (Pasquale
et al., 2008).

A biological constraint for the branching parameter is the
level of inhibition present as mediated by inhibitory interneurons
(Girardi-Schappo et al., 2020). In the human cortex, 15–30% of
neurons provide local inhibition, and this E/I ratio is frequently
replicated in in silico models by tuning the number of inhibitory
nodes and their connectivity within the network (Rudy et al.,
2011; Tremblay et al., 2016). In both models and biological
networks, inhibitory nodes typically constrain their connectivity
within modules or clusters. In examinations of this inhibitory
connectivity, it has been found that local inhibitors are necessary
for critical dynamics in systems combining modularity and
plasticity (Rubinov et al., 2011). Furthermore, Massobrio et al.
(2015) tested a wide range of E/I ratios on scale-free networks
and were only able to achieve critical dynamics in networks
with inhibitory nodes comprising 20–30% of all nodes. They also
observed the effect of the E/I ratio of the hub nodes specifically
and found that the same ratio of approximately 30% inhibition
in the hubs was able to support critical dynamics across a wide
range of mean degrees, whereas none of the fully excitatory hub
networks displayed critical behavior. In models and in the brain,
this balance of excitation and inhibition acts as a countermeasure
against runaway excitation and stabilizes the network dynamics
(Fingelkurts et al., 2004; Shin and Kim, 2006; Meisel and Gross,
2009; Naudé et al., 2013; Salkoff et al., 2015). Furthermore,
through the careful tuning of the E/I balance, multiple dynamic
states can also be achieved in the samemodel (Li and Shew, 2020).

The Brain May Operate in a Critical Region,
Not at a Critical Point
While the criticality hypothesis of the brain is attractive because
it provides a model for brain activity that optimizes information
processing and storage, aspects of the model are difficult to
reconcile with knowledge of the brain’s activity. For instance,
the brain’s activity and dynamics are not constant but fluctuate
widely depending on multiple factors. That this widely variable
and adaptable dynamic system can be tuned to a specific critical
point can therefore seem counterintuitive. However, a finite
system at criticality does not have to be tuned to a specific point
but rather exhibits critical behavior over a particular region.
The phase transition can be continuous, such that there exists a
range of states within the system that support critical dynamics
(Hesse and Gross, 2014). This extended model of criticality
appears muchmore compatible with our knowledge of the brain’s
dynamics than the notion of a strict critical point. One such form
of critical range is referred to as the Griffith’s phase and appears
to be facilitated by hierarchical, modular network architectures,
which are consistent with the previously investigated small-
world architecture of the brain (Gallos et al., 2012; Moretti and
Muñoz, 2013; Ódor et al., 2015; Girardi-Schappo et al., 2016).
A wide critical range would appear to be advantageous for
the network, making the critical dynamics more robust against
failure or perturbation than in the case where criticality can only
be achieved in a narrow range or single point (Li and Small,
2012;Wang and Zhou, 2012). This range appears to be dependent

on the level of structural heterogeneity or disorder within the
network, including variance in the node in-degree distribution
(Muñoz et al., 2010; Wu et al., 2019).

Additionally, as mentioned in the section on the importance
of criticality, recent evidence suggests that a strict adherence
to criticality may not be the sole aim of network organization
(Wilting and Priesemann, 2019a). On the basis of these findings,
it has been hypothesized that some brain networks may self-
organize to points in a slightly subcritical range, where they could
then flexibly tune their dynamics in accordance with the demands
of a given task (Wilting and Priesemann, 2018; Wilting et al.,
2018). Following this hypothesis, certain tasks may benefit from
a reduced dynamic range in the network to subsequently reduce
interference from non-task-specific inputs. Networks may also
show heterogeneous local dynamical states, with a mixture of
critical and subcritical regions balancing the competing demands
for specificity and sensitivity (Gollo, 2017).

Although we have highlighted in this review how the
underlying network structure may influence the emergence of
critical dynamics here, it is not evident that these topological
features are in and of themselves necessary for a network to
be considered critical. As mentioned, simulation studies have
found that power-law avalanche scaling can be obtained in
regular, random, and small-world networks (de Arcangelis and
Herrmann, 2012; Michiels Van Kessenich et al., 2016), and
regardless of the edge directedness or the presence of inhibitory
edges (Ódor and Kelling, 2019). Furthermore, it is possible to
achieve power-law avalanche scaling in networks with only weak
pairwise correlations and not the more complex patterns of
functional connectivity seen in biological networks (Thivierge,
2014). The relationship between critical dynamics in the brain
and its underlying network structure may therefore reflect a
balance between computational capacity, the metabolic cost of
the network activity (Thivierge, 2014), wiring cost in network
development (Laughlin and Sejnowski, 2003; Cuntz et al.,
2010), and the resilience of the network against perturbations
(Goodarzinick et al., 2018). Though certain complex network
topologies may better accommodate and broaden the range of
critical dynamics (Li and Small, 2012; Moretti andMuñoz, 2013),
they are only one component of a neural system.

PLASTICITY IS NECESSARY TO ACHIEVE
AND MAINTAIN CRITICALITY

How efficient network structures are formed in different
dynamical systems varies widely from system to system, and
numerous models have been developed to describe the growth
of efficient networks. The first general model for scale-free
network formation was proposed by de Solla Price (1965)
and popularized by Barabási and Albert (1999). Through
the addition of nodes as the network evolves, each new
node is preferentially attached to an existing node with high
connectivity, resulting in a “rich-get-richer” hub formation
and power-law-distributed connectivity. However, such models
cannot represent neural growth, as they forego an important
consideration of neural network formation: self-organization
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FIGURE 4 | Schematic overview of the interplay between Hebbian and

homeostatic plasticity. Hebbian plasticity serves to strengthen and form

connections between neurons that fire together, whereas homeostatic

plasticity maintains a balance in connections and activity levels. The lowermost

case demonstrates how an absence of homeostatic plasticity would allow

runaway Hebbian plasticity to overwhelm the network with activity.

into an efficient topology depends not only on the connectivity
but also on synaptic strength, E/I ratio, and, vitally, the
plasticity that defines all of these network parameters. In
this section, we will first focus on the role of plasticity
in activity-dependent network formation and then consider
how networks maintain the critical state through homeostatic
plasticity (Stepp et al., 2015). The interplay between activity-
dependent and homeostatic plasticity is schematically illustrated
in Figure 4.

Establishing Critical Dynamics in Neuronal
Networks
Whereas network models may be constructed in a variety
of ways to display critical dynamics and scale-free structures,
actual neuronal networks form and maintain connections under
numerous constraints. It is generally acknowledged that during
development, neurons overshoot the number of necessary
connections and then go through a phase of pruning before
reaching a relatively stable state of connectivity (Low and
Cheng, 2006). There is also evidence that cortical networks
in vitro go through this same sequence of overshoot and
pruning as they mature, and after this stage they may exhibit
critical dynamics, though not all networks do (Stewart and
Plenz, 2006; Pasquale et al., 2008; Yada et al., 2017). Van
Ooyen et al. (1995) and Okujeni and Egert (2019) showed
that a simple axon growth model assuming activity-dependent
radial growth could form a network similar to those found
in vitro by utilizing activity spontaneously arising in the
network. Even with only a simple activity-dependent growth
rule applied to systems with random initial placement, these

systems have been shown to grow into a state supporting
avalanches with power-law scaling in the behavior of the final
networks (Abbott and Rohrkemper, 2007; Kossio et al., 2018).
Correspondingly, the trajectory of the dynamic state in vitro
appears to move from a subcritical to a supercritical state
before ultimately reaching criticality. As the supercritical state
in this case produces network-wide synchrony, it is probable
that plasticity mechanisms reduce the global excitation level as a
result of this synchrony and drive the network toward criticality.
To mimic some of this development, numerous models have
attempted to generate critical networks using plasticity rules
applied to random, small-world, and scale-free topologies (de
Arcangelis et al., 2006; Rubinov et al., 2011; de Arcangelis and
Herrmann, 2012; Teixeira and Shanahan, 2014; Michiels van
Kessenich et al., 2018, 2019). These models typically apply local
Hebbian mechanisms, such as STDP, to rewire the network
into a weight distribution or topology capable of achieving
critical dynamics, thus recapitulating certain facets of biological
network development.

Simple plasticity mechanisms based on correlated firing,
such as STDP, can shift the topology of networks by
changing the connection weights, resulting in directed and
more complex networks. In observations of activity-dependent
neural development in computational models, a number of
researchers have observed the same general trend: that these
mechanisms tend to drive the dynamics toward criticality,
with the resulting topologies showing scale-free organization
(Bornholdt and Röhl, 2003; Meisel and Gross, 2009). The end
result is robust against different initial topologies and changes
to the underlying parameters, such as average connectivity.
Even when initializing a network from a random topology,
STDP is sufficient in some models to drive the network
toward critical dynamics (Teixeira and Shanahan, 2014; Li
et al., 2017; Khoshkhou and Montakhab, 2019). Li et al.
(2017) have also investigated the computational benefit of
these STDP-trained networks, which showed improved input-
to-output transformation performance at criticality (see also
Bertschinger and Natschläger, 2004; Siri et al., 2007, 2008 for
the computational benefits of criticality and Hebbian plasticity
in recurrent neural networks).

Recent studies have furthered this modeling approach with
the addition of more neurobiologically relevant features, such
as axonal delay and hierarchical modularity. The inclusion
of a time or axonal delay between pre- and post-target
activation can shift both the directionality and distribution of
synaptic strengths from a bimodal to a unimodal distribution
without a loss of critical dynamics (Khoshkhou and Montakhab,
2019). Note that the potential of Hebbian mechanisms to
produce critical dynamics is still model-dependent and can
also drive the network to supercritical states. Again, the
complexity of the network topology plays a vital role in
conjunction with these mechanisms, as modular and hierarchical
topologies both can counteract this supercritical organization
and broaden the critical regime once it arises (Rubinov
et al., 2011). Though neural development is an immensely
complicated and complex process, Hebbian mechanisms appear
to be one of many aspects that play a vital role in the
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self-organization of neural networks toward criticality and
supporting topologies.

Homeostatic Maintenance of the Critical
State
Although learning and developmental mechanisms, such as
STDP, drive networks toward certain configurations, the network
patterns formed in this way are not simply static structures
but also undergo plastic changes to maintain homeostasis and
in response to external stimuli. A number of researchers have
investigated how different forms of plasticity influence the
dynamical state of neuronal networks (Rubinov et al., 2011; Stepp
et al., 2015; Zierenberg et al., 2018; Ma et al., 2019).

A network’s resilience to damage necessitates a level of
adaptability to restore dynamics following a perturbation
beyond that offered by topologies that are robust against
component failure (see Box 3). This adaptability is hypothesized
to stem from homeostatic plasticity, which provides feedback
to restore the overall excitability in local connections and
the network. Whereas Hebbian plasticity is evidenced to give
rise to critical dynamics, homeostatic plasticity is evidenced
to maintain the network activity within this dynamic regime
despite varying input levels and intrinsic activity (Levina et al.,
2007; Naudé et al., 2013; Ma et al., 2019). This adaptive
excitability can be exemplified through the branching ratio.
A steadily increasing input level would produce branching
parameters exceeding 1, given the increasing level of extrinsic
excitation on the system. Yet by homeostatic scaling of the
excitability in the network and the input connections, the
branching parameter can be maintained, avoiding supercritical
dynamics. The inverse also holds true in the absence of inputs.
Homeostatic plasticity acts toward an intrinsic set point for
the network’s excitability and adjusts synaptic response to
maintain input specificity (Turrigiano, 2017). In the absence
of homeostatic plasticity mechanisms, such as synaptic scaling,
Hebbian mechanisms create feedback loops of excitatory
response that remove any specificity to synaptic input (Wu et al.,
2020).

Michiels van Kessenich et al. (2018, 2019) have included
global homeostatic plasticity mechanisms in their network
models to observe if the networks are able to exhibit avalanches
with power-law scaling and evaluate the performance of the
network on classification tasks. By feeding error back into the
network based on the desired outputs at certain readout sites,
they were able to train the network to recognize different
input patterns, including classifying handwritten digits. The
response of the network to inputs after this training period
showed a clear spatial organization, with distinct regions
responding to different inputs. Although the network studied
here is a simplified computational model, the results indicate
that plasticity mechanisms are able to drive networks toward
criticality and play a role in their capacity for learning and
computation. Also, as shown by Girardi-Schappo et al. (2020),
the use of multiple homeostatic mechanisms can generate
highly diverse firing patterns and promote the self-organization
of a network toward a critical point. Additionally, as with

Hebbian plasticity and criticality, the application of homeostatic
mechanisms can enhance the computational capabilities of the
network by tuning it toward criticality, and increasing both
the number of input patterns that can be distinguished by the
network and the separability of these patterns (Naudé et al.,
2013).

The role of homeostatic mechanisms in maintaining critical
dynamics is exemplified experimentally in a study by Shew
et al. (2015). There is growing evidence that homeostatic
mechanisms such as synaptic depression aid in allowing the
visual cortex to adapt to changes in sensory input and recover
critical dynamics. Using ex vivo preparations of the visual
cortex, Shew et al. (2015) demonstrated adaptation of the cortex
to stimuli; upon first exposure to a stimulus, the network
transiently showed non-critical dynamics, followed by a return
to criticality via homeostatic plasticity. In a critically tuned
model of their network, an external input similarly drove the
network out of a critical state, and critical dynamics were then
restored through the implementation of a synaptic scaling rule,
indicating a likely mechanism for the homeostatic adaptation.
While this provides evidence for short-term tuning toward
criticality, there is also recent evidence of long-term homeostatic
adaptation. Thus far, studies including homeostatic mechanisms
in criticality experiments and models have largely been focused
on such synaptic mechanisms or the E/I balance, with only
scant focus on intrinsic plasticity (Naudé et al., 2013; Li X.
et al., 2018; Zhang et al., 2019; Girardi-Schappo et al., 2020) or
metaplasticity (Kinouchi et al., 2020, in preprint; Peng and Beggs,
2013).

The effect of E/I imbalance has been well-described
in previous studies, as mentioned previously; however,
manipulation of the intrinsic mechanisms underlying the
E/I balance have largely been unexplored (Plenz, 2012). Ma
et al. (2019) attempted to bridge this experimental gap by
examining a well-established model of homeostatic plasticity in
the context of criticality. By systematically exploring the space
of possible E/I configurations, Ma et al. (2019) demonstrated
that the balance achieved by critical networks may be struck
with a number of configurations—specifically, they varied the
E/I ratio, the number of excitatory neurons receiving input from
each inhibitory neuron, and the ratio of inhibitory neurons
receiving input. This shows that different possibilities exist
for how networks may be configured to achieve criticality,
though only a small fraction of the potential combinations
yielded critical activity. Furthermore, when a combination
of E/I parameters adjacent to one of the critical regimes was
selected and further explored by allowing the network to
evolve under synaptic scaling and STDP, it was unable to
achieve critical dynamics regardless of the plasticity parameters,
demonstrating the importance of local inhibitory dynamics in
achieving criticality.

Crucially, when synaptic scaling was removed from the model
by Ma et al. (2019), the model was no longer able to recover
critical dynamics after a reduction in input. With synaptic scaling
removed from the excitatory population, reduction in input
resulted in runaway activity and increased synaptic strength
due to uncompensated STDP; removing synaptic scaling from
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FIGURE 5 | Schematic overview of in vivo experiment from Ma et al. (2019).

The overall firing rate of the network showed a delayed response to the

perturbation of removing excitatory sensory input by monocular deprivation. In

contrast, the DCC and other criticality-related measures showed an immediate

response and a more rapid return to baseline.

inhibitory neurons also shifted the network out of the critical
regime, though less dramatically, and was accompanied by a
reduction in synaptic strength. In contrast, removal of STDP
left the network unaffected by the reduction in input, indicating
the necessity of this type of plasticity for the network to give a
meaningful response to inputs.

BRAIN DISORDERS AND DISRUPTIONS
TO CRITICALITY

Up to this point we have examined criticality’s relationship
to the network topology that supports it and the plastic
mechanisms that organize and maintain it. Because of the
intricate interplay of these underlying mechanisms, disruptions
to either topology or plasticity can manifest as deviations in
the dynamic state of the network, and as such, criticality
analysis may aid in the identification of such disruptions and
provide a better understanding of the mechanisms at play.
In this section, we will detail studies that apply criticality
analysis to the identification and prediction of diseases and
disorders in the nervous system and propose suggestions
for how to expand this work moving forward. Here we
use the term “perturbation” in a medical sense to refer to
disruptive and negative impacts to a network’s baseline state,
such as the severing of axons in vitro or epileptic states
in vivo.

Criticality on Disrupted Foundations
The study by Ma et al. (2019) discussed above in the context
of plasticity also provides substantial experimental insight into
the effect of perturbations on the dynamic state of neuronal
networks. By inducing monocular deprivation in rodents with
chronic recording of the visual cortex, they were able to examine
the effect of the perturbation on cortical activity. Despite the

near complete removal of input to the cortex, the network’s
firing rate, or activity level, was initially maintained, providing no
evidence of the sensory deprivation that had occurred. However,
the neuronal avalanche behavior in the network revealed a
deviation from criticality immediately following perturbation,
despite the fact that the firing rate was maintained. Moreover,
this deviation was sustained until homeostatic mechanisms
restored it by upscaling inhibitory activity and subsequently
reducing network firing (see Figure 5). The deviation from
criticality and branching ratio measures (see Box 2) applied by
Ma et al. (2019) exemplify the capacity for criticality analysis to
identify perturbations. Additionally, this study emphasizes how
multiple mechanistic underpinnings lend themselves to critical
dynamics and the potential disparity between network dynamics
and global activity levels. The effect of these mechanisms
can be further emphasized through their disruptions during a
critical state.

Modeling studies on disrupted network topology and
impaired plasticity lend some insight into deviations from
criticality following perturbation. Within scale-free and small-
world networks, there exists a significant robustness against
structural defects, as most nodes only connect to neighbors
within a cluster or module. As a result, a large number
of these low-degree nodes can be lesioned before critical
dynamics are disrupted (Goodarzinick et al., 2018). Conversely,
any removal of high-degree nodes or long-range connections
can rapidly fragment the network structure and subsequently
abolish any critical dynamics occurring (Callaway et al., 2000;
Mizutaka and Yakubo, 2013; Valverde et al., 2015). The
network-wide synchrony that occurs with efficient network
topologies and at criticality may also enable the spread of
disruptive states such as epilepsy. This synchrony is also
dependent on a functioning and adaptive E/I balance, as
discussed below.

In investigations of criticality in biological neural networks,
it has been found that the simple addition of the GABA
inhibitor bicuculline can shift the dynamics of a network
from critical to supercritical by increasing synchrony within
the network (Beggs and Plenz, 2003; Pasquale et al., 2008).
Other studies have also shown that altering the balance of
excitation and inhibition in biological networks can drive
them into a different dynamic state. In self-organized critical
networks, pharmacologically enhancing excitation can change
the dynamics of the network from critical to supercritical, while
reducing excitation promotes subcritical dynamics (Shew et al.,
2009, 2011). Furthermore, it has been demonstrated that direct
inhibitory action by addition of GABA to a network with
supercritical dynamics can drive it into a critical state (Heiney
et al., 2019). This points to GABAergic inhibition as important
in disrupting highly synchronized activity where activity very
frequently propagates throughout the entire network, driving
it into a supercritical state. Multiple simulation studies have
also shown that emergence of critical dynamics is dependent
on a certain proportion of inhibition in the network, which
conform to physiological levels of inhibitory neurons in the brain
(de Arcangelis et al., 2006; Massobrio et al., 2015).
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The Promise of Criticality Analysis in the
Clinical Realm
Despite the rising interest in biological criticality in the last
two decades, there has been a dearth of experimental and
clinical studies connecting criticality to perturbations. Because
criticality represents an optimal state for computation, one
could expect departure from the critical state would entail
a disruption unto itself (Shew et al., 2011); however, in
practice, disruptions to network dynamics are likely more
complicated than a transition away from criticality, as such
transitions may be part of healthy activity (Stewart and
Plenz, 2006; Pearlmutter and Houghton, 2009; Allegrini
et al., 2015; Wilting and Priesemann, 2019b), though see
also (Carvalho et al., 2020, in preprint) for a counterpoint
to this. Given recent hypotheses concerning network
computation in the slightly subcritical regime, quantifying
the impact of perturbations on network dynamics necessitates
rigorous analytical tools (see Box 2) (Priesemann et al.,
2014; Wilting et al., 2018; Wilting and Priesemann, 2019a).
The potential presence of heterogeneous local dynamics
or global reverberating dynamics in the subcritical regime
demands a combined and comparative approach for any
medical application.

The existing literature detailing disorders as disrupted
criticality largely pertain to the macroscale (see Zimmern, 2020
for a comprehensive review), as examined through (i)EEG
(Thatcher et al., 2009), ECoG (Chaudhuri et al., 2018), and fMRI
(Tagliazucchi et al., 2012). Even with the growing number of
researchers examining the dynamics ofmesoscale networks, there
is still a lack of research turning these in vitro and in vivomethods
toward the dynamics of perturbed networks. Given the growing
sophistication of molecular and electrophysiological tools, the
potential for experimental manipulation of network topology
and homeostatic mechanisms is immense. In the absence of
many mesoscale investigations into criticality perturbations
(Stewart and Plenz, 2006; Gireesh and Plenz, 2008; Fekete
et al., 2018), this section will focus on macroscale network
dynamics and investigations into clinical disorders through the
lens of criticality.

The majority of today’s macroscale studies on disorders
and criticality pertain to epilepsy disorder, which provides an
example of how criticality analysis can benefit the clinical field
(Worrell et al., 2002; Li et al., 2005; Meisel et al., 2015b,
2016; Arviv et al., 2016; Meisel and Loddenkemper, 2019; Rings
et al., 2019). Given the absence of literature on other disorders
in this context and the substantial literature that exists on
network topology (Terry et al., 2012; Lopes et al., 2020) and
E/I balance (Wei et al., 2017; Du et al., 2019) as they relate
to epilepsy, we have chosen to examine this disorder here.
An epileptic state, or seizure, is characterized by a departure
from healthy dynamics to a hyper-synchronized or chaotic
state. This epileptic state can be either focal and confined to
cortical regions or circuits, or generalized and encompass the
entire brain (Terry et al., 2012; Englot et al., 2016). Currently,
diagnosing the presence of epilepsy is often based on the
presence of overt structural deficits through MRI and CT, or

through markers of infection and electrolyte testing (Stafstrom
and Carmant, 2015). When the epilepsy is rooted in less overt
factors, diagnosis becomes an issue of determining disruptive
dynamics which has thus far proved to be a substantial problem
(Stafstrom and Carmant, 2015; Meisel and Loddenkemper,
2019). To this end, the application of criticality analysis to
epilepsy has been the focus of much recent research which
we will discuss here (Meisel et al., 2015b, 2016; Arviv et al.,
2016; Meisel, 2016; Beenhakker, 2019; Du et al., 2019; Meisel
and Loddenkemper, 2019; Witton et al., 2019; Maturana et al.,
2020).

Current literature links epileptogenesis to disruptions in
network connectivity or neuronal excitability stemming from
genetic pathologies, such as ion channel mutations, or acquired
conditions, such as stroke (Terry et al., 2012; Wei et al.,
2017). Predicting if and how these disruptions will lead to
epileptogenesis has resulted in the development of measures
of network excitability and synchrony and most recently the
application of criticality analysis (Meisel, 2016). Diagnostically,
criticality analysis has been applied as a biomarker in focal

epilepsy patients, where critical slowing down, which is the

stretching of activity patterns near a critical state, has been found

to precede seizure onset (Maturana et al., 2020). Similarly, the
presence of a Hopf bifurcation has been indicated as a diagnostic
predictor based on modeled ECoG, neural field, and neural
mass dynamics (Meisel and Kuehn, 2012; Buchin et al., 2018;
Deeba et al., 2018); for a review on this topic, see Meisel and
Loddenkemper (2019). In terms of treatment, the branching
ratio computed from recordings of resting dynamics provides a
quantitative measure to characterize the effect of anti-epileptic
drugs (AEDs), as an alternative to the typically used absence
of seizure or response to transcranial stimulation (Meisel et al.,
2015b, 2016). A further study by Meisel (2020) also applied
this to show an inverse correlation between network synchrony
and AED dosage levels, indicating a shift toward a subcritical
and away from a supercritical seizure state. However, we should
note here that these promising results in the field also highlight
some of the intricacies around criticality analysis. For example,
when investigating critical slowing down and using a similar
iEEG dataset as Maturana et al. (2020), Wilkat et al. (2019)
conversely found no evidence of critical slowing down as an
epileptic biomarker.

While these studies focus largely on neuronal excitability in

isolation, the use of such analysis should also be integrated
with the substantial work underway on epilepsy networks (Terry

et al., 2012). Already, mapping of functional and structural

connectivity in epileptic networks can identify the ictal, or
seizure, onset zone and examine the spread from local to global

seizure by means of effective connectivity (Yaffe et al., 2015).
Indeed, models of seizure propagation and clinically recorded

networks show rapid spread of disruptions through small-
world networks as a result of their long-range connectivity
and hub structure (Netoff et al., 2004; Ponten et al., 2007).
With the reliance of seizure spread on network topology,
epileptogenesis can occur as a result of disruptions to functional
and structural connectivity (Avanzini and Franceschetti, 2009;
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Terry et al., 2012; Fornito et al., 2015). Functional connectivity
mapping in stroke patients often reveals hyperconnectivity,
where functional network components paradoxically show an
increase in connectivity post-stroke (Hillary and Grafman,
2017). Up to 10% of stroke patients suffer seizures either
early or late in their recovery and currently there exists no
reliable prognostic tool for determining if these will develop
into epilepsy (Myint et al., 2006). Unfortunately, application of
AEDs as a preventative measure has thus far proven ineffective,
indicating that epileptogenesis is partially independent of
neuronal excitability or subject to interference from complex
homeostatic mechanisms (Gilad et al., 2011). These forms of
acquired epilepsy highlight the heterogeneity of the disorder and
the necessity of a combined network and dynamics analysis.
The application of criticality analysis to epilepsy disorders can
potentially act as both a trial and guideline for other neurological
disorders, such as psychiatric (van Bokhoven et al., 2018),
developmental (Tinker and Velazquez, 2014; Gao and Penzes,
2015; Li L. et al., 2018), and degenerative disorders (Jiang et al.,
2018; Ren et al., 2018; Marcuzzo et al., 2019).

Still, caution must be taken when comparing these studies of
macroscale dynamics to their underlying meso and microscale
mechanisms (Meisel and Kuehn, 2012). Network scale is a
crucial feature of these mechanisms, and node and edge
descriptors at different scales substantially alter the relevant
activity dynamics. Additionally, the highly divergent methods
for avalanche detection between different assessment modalities
[macroscale: fMRI, (i)EEG, MEG, ECoG; mesoscale: spikes and
LFPs from tetrodes and MEAs] risk erroneous conflation of
results between different scales. Each method of avalanche
detection and definition requires a thorough investigation into
its relevance and robustness to multiple tests. In the final section
of this paper we will highlight steps to improve the accuracy and
standardization of criticality analysis, as well as the relationship
between structural and critical dynamics.

CONCLUSION

Network neuroscience has seen explosive growth in the clinical
field within the past two decades, providing insight into
pathophysiology and disease propagation. However, such rapid
growth comes along with the challenge of standardizing the
measures applied (Hallquist and Hillary, 2018). The current lack
of standardized graph theory measures has created a widely
dissimilar range of network definitions and graph metrics to
the point where it precludes meta-analysis. Advancements in
the empirical study of criticality in neural systems are also
beginning to see rapid growth, and it can be a struggle
to keep up with which measures are best to apply. The
consolidation and standardization of metrics used in the study
of critical dynamics and connectivity in neural networks thus
remains a considerable challenge, yet the sooner this challenge
is approached, the more it can be mitigated. Therefore, we
have highlighted certain measures that have proven useful in
the study of criticality in the context of neuroscience (see
Box 2). Given the complex and multifaceted nature of criticality,

we fully expect later studies will further expand upon and
improve measures. However, applying and comparing the same
measures across experiments will lessen the future burden
of comparison.

Criticality holds the promise of bridging several scales of
neural activity by its nature as a scale-free property. Yet as we
have examined, the step from statistical models of criticality to
experimental analysis is a difficult one, where constraints and
complicating factors arising from experimental methods and
the underlying biological mechanisms make themselves known.
As we have discussed, the different recording modalities across
scales apply disparate approaches to analyzing criticality, making
any comparison fraught with analytical pitfalls, and this issue
may be further exacerbated by more indirect measures such as
fMRI with its different timescales. While there are some groups
(Gireesh and Plenz, 2008; Miller et al., 2019) making substantial
progress on these experimental issues, as more and more groups
turn toward applying criticality-based measures in the clinic and
laboratory they need to be cognizant of the intricacies inherent
in these topics. Similarly, intuitions from theoretical work, the
idea that epileptic systems are supercritical and thus should have
branching ratios exceeding 1, can be counter to experimental
findings (Hobbs et al., 2010; Plenz, 2012), necessitating a closer
look at analytical techniques and theoretical understandings.

Throughout this review, we have attempted to highlight the
multifaceted nature of criticality and the potential its analysis
holds as a metric of network health. Criticality is closely tied
to the efficiency of its underlying network structure, as this
structure supports the propagation of dynamical activity through
the system. The emergence of these efficient topologies in turn
results from the dynamics of the structure itself: the changes
in connectivity mediated by the local and global plasticity. This
intertwining of criticality and structural dynamics is an essential
feature of the critical state, and examining in isolation any
single feature contributing to the behavior of a network may
forgo the complex interplay that gives rise to critical dynamics.
Neural networks organize into small-world and hierarchical
modular topologies in part to support critical dynamics, and both
structure and dynamics likely develop due to the computational
benefits they afford. Furthermore, there is evidence that networks
in the critical state display characteristics indicative of their
optimal computational capacity, yet few studies have explicitly
focused on highlighting these benefits conferred by criticality. A
focus on this aspect of criticality would also aid in understanding
what goes wrong—or what computational functions may be
affected—when a network is damaged or diseased. In the
future, we hope more studies take into consideration the
interplay between structure and critical dynamics, as well as the
functional benefits this confers, as criticality analysis and network
neuroscience can provide significant insight into complexity,
computation, and medicine.
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The past decade has seen growing support for the critical brain hypothesis, i.e., the

possibility that the brain could operate at or very near a critical state between two different

dynamical regimes. Such critical states are well-studied in different disciplines, therefore

there is potential for a continued transfer of knowledge. Here, I revisit foundations of

bifurcation theory, the mathematical theory of transitions. While the mathematics is

well-known it’s transfer to neural dynamics leads to new insights and hypothesis.

Keywords: neural criticality, bifurcation, multi-criticality, critical brain, phase transition, criticality

1. INTRODUCTION

The critical brain hypothesis states that the brain operates in a state that is situated at or very near
to a transition between qualitatively different dynamical regimes. Such “critical” states are thought
to convey advantageous computational properties such as optimal information retention, signal
detection and processing performance (Chialvo, 2010; Hesse and Gross, 2014; Zimmern, 2020).

The criticality hypothesis was first formulated based on the computational desirability of critical
states (Chialvo, 2010) and a mathematical analogy between neural and earthquake dynamics (Herz
and Hopfield, 1994). Subsequent works gradually build support for the hypothesis. For example
Bornholdt and Rohlf (2000) showed that self-organized criticality can emerge from simple local
rules, which was later confirmed in a more realistic models (Meisel and Gross, 2009; Kossio et al.,
2018; Das and Levina, 2019). Beggs and Plenz (2004) provided early experimental evidence by
demonstrating that in-vitro cultures of neurons sustain critical cascades of activity. Linkenkaer-
Hansen et al. (2001), Kitzbichler et al. (2009), and Meisel et al. (2012) found signatures of criticality
in MRI, MEG, and EEG recordings. More recently, Timme et al. (2016) confirmed the prediction
that criticality maximizes information theoretic complexity and del Papa et al. (2017) shows that
also learning behavior in recurrent neural networks leads to a state of criticality.

It has also been argued that brain could operate slightly below criticality. This is based on the
analysis of experimental result on spike cascades (Priesemann et al., 2014) and is consistent with
mathematical constraints on adaptive self-organization (Gross and Blasius, 2007; Kuehn, 2012;
Droste et al., 2013). It has been argued that such an operation near critical states could allow
the brain to control the desired degree of criticality (Wilting and Priesemann, 2014, 2018, 2019).
Furthermore, in networks critical-like dynamics may be expected also in the neighborhood of the
critical state in a so-called Griffith phase (Moretti and Munoz, 2013).

In the discussion of theoretical aspects of criticality many current authors resort to the toolkit of
physics and its terminology and models, such as branching processes, correlation functions, critical
exponents and the Ising model (Yaghoubi et al., 2018; Fontenele et al., 2019). However, critical
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Gross Many Critical States

phenomena can also be studied from the perspective of
dynamical systems theory, which offers a complementary
perspective to physical theory. Dynamical systems theory is the
mathematical theory of transitions between dynamical regimes.
Phase transitions then appear as so-called bifurcations of system-
level dynamical variables. In neuroscience bifurcation-based
methods are widely used in the study of smaller-scale neural
networks but are not often deeply discussed in the context of
neural criticality (although, see Meisel and Gross, 2009; Kuehn,
2012; Droste et al., 2013).

In this paper I present a mathematical view of neural
criticality, The mathematics is relatively elementary and much of
the material presented here can be found in introductory
textbooks to bifurcation theory, e.g., Kuznetsov, 2004.
However, several insights that can be gained by leveraging
this angle are, to my knowledge, presently not utilized
in the study of brain criticality. Thus it is worthwhile
to bridge the gap between the neural and mathematical
literature. Below I have tried to provide a simple and
accessible introduction to the most relevant parts of
bifurcation theory.

One particular benefit of mathematics is that it deals gracefully
with unknowns. As this ability extends to working with unknown
models, the use of mathematics allows the researcher to make
statements about criticality that hold irrespective of the specific
model under consideration.

Some highlight are as follows: In section 2.1, we revisit the
origin of power law behavior and critical slowing down that
gives critical states the ability to retain memory of perturbations.
Thereafter in section 2.2, we illustrate why critical states can
be super sensitive to parameter change. In section 2.3, we
take a closer look at super-sensitivity and find that remaining
close to a super-sensitive state places strong constraints on the
dynamics. This is further explored in the subsequent section,
starting with section 2.4, where we discuss the transcritical
bifurcation (the criticality of the SIS model). While we find
that it may play some role in neural systems, it provides
less benefits than other bifurcations. This lends weight to the
hypothesis that the criticality observed in-vitro may be of a
different form than the criticality observed in-vivo (Kanders
et al., 2017). In section 2.5, I show that pitchfork bifurcations
(the criticality of the Ising model), is an unlikely scenario for
neural criticality as it requires a specific symmetry. By contrast, in
section 2.6, we discover that the Hopf bifurcation (the criticality
of the Kuramoto model) has several advantageous properties that
make it a particularly attractive scenario for neural criticality.
In this type of bifurcation, information would be encoded
by the presence or absence of oscillations in populations of
neurons, which agrees well with empirical evidence. Finally in
section 2.7, I discuss that high-dimensional parameter spaces
have on criticality. This points to some radical perspectives:
Critical states of the brain are likely not isolated points but part
of a large high-dimensional subset of parameter space, which
could allow the brain to explore different parameter regions
while remaining critical. It could also lead to multi-critical states,
corresponding to bifurcations of high codimension, where the
brain is critical in many different ways.

2. RESULTS

To gain insights it is useful to study a series of simple but general
models. By keeping the models simple we make sure that the
results we seek are easy to compute and intuitive to understand.
By keeping them general we make sure that they are widely
applicable and do not hinge on specific assumptions.
Consider a generic dynamical system of the form

ẋ = f (x, p), (1)

where x is a dynamical variable and p is a parameter. For example
we can imagine x to be the overall level of activity in the brain
and p to be the average excitability. The dot on the left hand side
denotes a time derivative. So, the change of excitation in time is
described by some function f of the current excitation x and the
parameter p. In the following we will explore what properties of f
would be advantageous for information processing.

Let us assume that over some time (and in absence of external
stimuli) the excitation will approach a steady homeostatic level,
which we will call x∗. By definition a system that is in the steady
state remains there indefinitely unless parameters are changed or
it is subject to an external perturbation. That means in the state
x∗ there is no further change of x, which we can express as

f (x∗, p) = 0. (2)

Although the model is very minimal, we can use it to study
how dynamical systems respond to perturbations. Consider what
happens after some external force pushes the variable x out of the
steady state x∗, such that

x = x∗ + δ, (3)

where δ is the deviation from the steady state caused by the
perturbation. We assume that this deviation is initially small, but
grows or diminishes in time according to the dynamics of the
system. Substituting Equation (3) into Equation (1) we can write

d

dt
(x∗ + δ) = f (x∗ + δ, p), (4)

where we have indicated the time derivative as d/dt instead of
using the dot. Because the steady state x∗ is constant in time,
its time derivative vanishes, allowing us to return to the simpler
notation,

δ̇ = f (x∗ + δ, p). (5)

To make further progress we need one mathematical tool: The
Taylor expansion (James, 2015). The idea of a Taylor expansion is
that we can approximate the function f by

f (x∗ + δ, p) = f (x∗, p)+ δfx(x
∗, p)+

1

2
δ2fxx(x

∗, p)+ . . . (6)

where we used roman indices to indicate derivatives. So fx is the
derivative of f with respect to x and fxx is the second derivative of
f with respect to x.
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Gross Many Critical States

While the Taylor expansion formula has an infinite number
of terms on the right hand side, these terms include higher
and higher powers of δ. If δ is a small number, say 0.01 then
δ2 = 0.0001 is even smaller, and δ3 = 0.000001 is smaller yet.
Hence, the terms in the Taylor formula represent smaller and
smaller corrections.

If δ is sufficiently small then we can get an arbitrarily precise
approximation by ignoring all but the first non-zero Taylor term.
The first term f (x∗, p) is always zero by virtue of Equation (2),
hence in general the second term δfrmx(x

∗, p) is the one we need
to keep. We are left with

f (x∗ + δ, p) = f (x∗, p)
︸ ︷︷ ︸

=0

+δfx(x
∗, p)+

1

2
δ2fxx(x

∗, p)+ . . .

︸ ︷︷ ︸

≈0

. (7)

Substituting the remaining term into Equation (5) we find

δ̇ = δfx(x
∗, p). (8)

This equation tells us that the speed at which the deviation
changes is proportional to the size of the current deviation. If fx is
less than zero, the change counteracts the current deviation such
that we return to the steady state. By contrast if fx is greater zero
then the deviation grows over time.

Equation (8) is a so-called separable differential equation and
thus can be solved by the method of separation of variables
(James, 2015). The result is the size of the perturbation as a
function of time

δ(t) = δ(0) exp fxt. (9)

Here we have omitted the argument (x∗, p) behind the fx for
simplicity. The solution shows that starting from the initial
perturbation, δ(0), the deviation of system from the steady state
grows or declines exponentially in time. Specifically, we observe
an exponential growth if fx > 0 and an exponential decline if
fx < 0. In the former case, the system is fundamentally unstable;
any small perturbation launches it into dynamics that lead away
from the steady state, so finding the system in this state at all
seems implausible. In the latter case the state is stable, but the
exponential return after a perturbation means that the memory
of the perturbation is lost from the system exponentially fast.

The reasoning above illustrates a fundamental dilemma. The
system cannot operate in an unstable state, because the very
instability of the state precludes it from remaining there. By
contrast the system can be in a stable state indefinitely, but the
very stability of this state means that any information received
is quickly lost from the system because the system returns to its
previous state exponentially fast.

2.1. Origin of Power Laws and Critical
Slowing Down
Let’s explore what happens just at the boundary between stability
and instability, i.e., in a critical state. In such a state we have
fx = 0. This means that the second term in the Taylor expansion

FIGURE 1 | Critical states retain memory of perturbations. Curves show the

return to the homeostatic state after a perturbation for a non-critical state

(solid gray) and for a critical state (dashed black). The distance δ from the

homeostatic level declines significantly slower for the critical state. Parameters

have been chosen such that the curves start from the same initial perturbation

with identical slope Exponential. Exponential return: exp (−t) (cf. Equation 9).

Geometric Return: 2/(2+ 2t) (Equation 12).

(Equation 7) vanishes, so we can no longer argue that the third
term is negligible by comparison. Instead we keep the third term,

f (x∗ + δ, p) = f (x∗, p)
︸ ︷︷ ︸

=0

+ δfx(x
∗, p)

︸ ︷︷ ︸

=0

+
1

2
δ2fxx(x

∗, p)+ . . .
︸︷︷︸

≈0

. (10)

Substituting the remaining term into Equation (1) gives us

δ̇ =
δ2fxx

2
(11)

Now the speed at which the deviation changes is proportional
to the square of the current size of the deviation. Solving the
equation with separation of variables yields

δ(t) =
2

2
δ(0)

− fxxt
(12)

The term fxxt in the denominator increases linearly in time, so
after a sufficiently long time it will be much greater than δ(0).
This means in the long run the δ(0) in the equation becomes
negligible and the system behaves like 1/t. Instead of rapid
exponential decline we now have a much slower geometric return
to the stationary state (Figure 1). Hence, information about the
perturbation is retained much longer in the system, and thus
potentially long enough for slower, higher-order mechanisms of
information retention to be set in motion.
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The geometric return observed in the critical state is the cause
of the widely-discussed phenomenon of critical slowing down
(van Nes and Scheffer, 2007): Picture a system which is subject to
small perturbations from time to time. We start our system in the
stable regime, where it returns to the steady state exponentially
fast after a perturbation. If we change the parameter we may
observe that the exponential return gets slower and slower until
eventually it becomes a geometric return at the point were
stability is lost. So the recovery from perturbations slows down
as we approach criticality.

Physically speaking δ(t) ∼ 1/t is a power-law, although
the power is 1 in this case. This power-law in the response to
perturbations is the root cause of some of the power-laws that
are often observed at criticality. For example if there is some
noise present that causes repeated small perturbations the 1/t
responses to each of the perturbations add up to a power-law in
the systems power spectrum.

This is a nice result but there is still a problem: The system will
only return the to the steady state after perturbations in a certain
direction. All is well if δ(0) and fxx have opposite signs. However
if fxx and δ(0) have the same sign then there will be a time when
the denominator in Equation (12) is zero and as we approach this
point the deviation becomes arbitrarily large. Of course we won’t
expect infinite excitation to occur in the real world; after all, our
model is only valid for small deviations from the steady state.
Nevertheless the result shows that certain perturbation lead to a
dramatic departure from the steady state, so the state is unstable.

Below we describe two ways out of this stability-sensitivity
dilemma in sections 2.4, 2.6, respectively.

2.2. Sensitivity to Parameters
So far we have presented inputs into the system as short
perturbations of the system, an ecologist would call this a
pulse perturbation. There is however also another way in which
information may enter a system, the press perturbation, a
sustained change of the environment that we can model as a
change in parameters.

For example think of the parameter p as a sustained input into
the system and ask how sensitive our steady state x∗ is to this
input. We can measure this in terms of the derivative

d

dp
x∗ (13)

The straight-d derivative that appears here denotes a
differentiation where indirect effects are taken into account.
By contrast the round-d partial derivative denotes a derivative
where indirect effects are ignored.

A well-known trick to find this derivative is to differentiate the
defining equation of the steady state Equation (2),

0 = f (x∗, p) (14)

d

dp
0 =

d

dp
f (x∗, p) (15)

0 =
∂

∂p
f (x∗, p)+

(

∂

∂x∗
f (x∗, p)

) (

d

dp
x∗

)

(16)

The differentiation of f in the second step results in two terms:
The first captures the direct effect of change of p on f , whereas
the second captures the indirect effect induced by the resulting
change in x∗. This second term is the product of the actual change
in x∗ and the response of f to a change in x∗. Hence the derivative
of x∗ that we are looking for appears in the equation. Solving for
it we obtain

dx∗

dp
= −

fp

fx
(17)

where we have again used roman indices to denote the partial
(round-d) derivatives.

Now consider what happens to Equation (17) if we consider
the critical state from the previous section. Above we found that
this state is characterized by fx = 0, so that we have a infinitely
sharp response to parameter change unless also fp = 0. In
the following we call this phenomenon super-sensitivity of the
critical state.

Super-sensitivity is another attractive property of critical
states: While systems normally responds proportionally to
parameter change, a critical system can, at least potentially, show
an abrupt out-of-proportion response. To understand when such
a response is observed we have to examine the actual transitions
more closely which we do in the next section.

2.3. A Closer Look at Super-Sensitivity
Critical states lie on the edges been qualitatively different types
of behavior (phases) of a system. In the language of dynamical
systems the transition between phases that takes place at the
critical state typically corresponds to a bifurcation, a qualitative
transition in the dynamics of the system. To get a better
understanding of the transition we need to explore what happens
in the bifurcations in more detail. Instead of just considering a
perturbation of the state of the system x, we now consider also a
small perturbation ρ of the parameter, such that

p = p∗ + ρ (18)

where p∗ is the bifurcation point, i.e., the critical parameter value
where the bifurcation occurs.

To make progress we start again with our general system and
Taylor expand with respect to both x and p:

ẋ = f (x, p) (19)

= f (x∗, p∗)+ fx(x
∗, p∗)x+ fp(x

∗, p∗)p+ . . . (20)

= fxδ + fpρ (21)

In the second step we have used f (x∗, p∗) = 0 and omitted the
arguments (x∗, p∗) for clarity.

The equation so far assumes that the two leading terms fp, fx
are non-zero such that we can neglect further terms (. . .) which
contain higher powers of δ and ρ by comparison. While this is
true in general, we are particularly interested in critical states
where fx = 0. This means the first term vanishes and we have
to add some higher terms of the Taylor expansion instead

ẋ = fpρ + fxxδ
2/2 (22)
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FIGURE 2 | Fold bifurcation. As parameter p is changed two steady states

(red solid, blue dashed) collide and annihilate (cf. Equation 26). At the

bifurcation point, where the steady states meet the system is supersensitive to

parameter change. But due to the instability of the bifurcation point and the

lack of states beyond the bifurcation point, it seems implausible that the brain

could remain in such a state.

where the 2 appears due to the mechanics of the Taylor
procedure. This expansion of the dynamical system is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. We can neglect higher order terms if δ an ρ are small: fp 6= 0,

fxx 6= 0

The three conditions are of a very different nature. To satisfy the
first two, the stationarity condition and the bifurcation condition,
we must chose x and p exactly right to be in a steady state and to
be at a bifurcation. The third condition is a genericity conditions,
it will typically be met except in special cases.

To understand what happens in the bifurcation we can now
solve the expanded equation for the steady state, i.e.,

0 = ẋ (23)

0 = fpρ + fxxδ
2/2 (24)

δ = ±

√

−
fpρ

fxx
(25)

The result δ, shows us how much the steady state changes when
we move the parameter p out of the critical point by an amount
ρ. Equivalently we can write

x∗(p) = x∗(p∗)±

√

−
fp

fxx
(p− p∗) (26)

The exact shape of the branches x∗(p) depends on the values of the
derivatives under the square root, but unless we are in a special
case we always observe qualitatively the same picture. In the
critical state two branches of steady states collide and annihilate
each other (Figure 2).

At the point of collision the branches become vertical, which
explains the super-sensitivity. One can show that for systems with
one variable, one of the colliding steady states is stable whereas
the other is unstable. Beyond the bifurcation both of the steady
states involved have vanished, which means typically that the
system departs the vicinity of the former steady states.

The bifurcation from Figure 2 is known under many names
including fold bifurcation, saddle-node bifurcation, and turning
point, among others. It depicts the generic behavior that we
expect to see whenever we encounter a critical state in a system
with one variable. However, it seems implausible that the brain
would operate at such a bifurcation as the critical point is an
unstable state and a small parameter variation is sufficient to
destroy steady states entirely.

One could imagine that the brain has some mechanisms
to stabilize it’s operating point to a saddle-node bifurcation.
However, if such mechanisms exist they are part of the same
system, and by their presence may change the type of bifurcation
or remove it entirely. Let us therefore instead look at some critical
states in other types of bifurcations.

2.4. Epidemic-Like Criticality
The criticality hypothesis has long been attacked for requiring
that one parameter is tuned exactly right such that the system is at
a bifurcation point. This has become a much smaller concern as
several models have shown that the brain could reliably self-tune
its parameters to this operating point, using widely described
mechanisms of synaptic plasticity (e.g., Bornholdt and Rohlf,
2000; Meisel and Gross, 2009). However, we now make an
additional demand. Not only are the parameters tuned exactly
to the bifurcation point, but also the system is such that we do
not see a generic bifurcation, but a special case. However, there
are some well-known scenarios where fundamental physical
constraints and/or symmetries make sure that a system must
always be in such a special case.

For example in many physical systems some variables cannot
be negative by design. A prominent example is the prevalence
of an epidemic, e.g., described by the SIS model (Anderson and
May, 1979; Keeling et al., 2016). In an epidemic there is typically
a steady state when the number of infected reaches zero, and this
steady state cannot be perturbed in the negative direction as such
a perturbation would be unphysical, leading to a negative number
of infected.

Because the steady state at zero is there for a fundamental
reason (if there are no infected nobody can become infected), the
location of this steady state does not depend on parameters, and
if it undergoes a bifurcation it cannot simply vanish as we would
normally expect. Mathematically, the physical constraints on the
steady state implies fp = 0 and thus, by-virtue of the physics of
the epidemic system, it’s bifurcations at zero must always be of a
special case.
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FIGURE 3 | Transcritical bifurcation. In the transcritical bifurcation two

branches of steady states (red, blue) intersect and exchange their stability. This

type of bifurcation might play a role in the in-vitro neural networks, but several

caveats make it appear as an unlikely operating point for the brain.

For this case the Taylor expansion now reads

ẋ = fpxρδ + fxxδ
2/2 (27)

Note that every term that contains more than one ρ and one δ is
negligible in comparison to fpxρδ, moreover terms that contain
more that two δ (e.g., δ3) are negligible compared to fxxδ

2/2
and all terms that contain no δ are zero due to the physics of
the system.

This expansion is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. A genericity condition of the saddle-node bifurcation is

violated fp = 0 (also fpp = 0, . . . )
4. We can neglect higher order terms if δ an ρ are small: fpx 6= 0,

fxx 6= 0

The third condition plays the role of an additional genericity
condition for this type of bifurcation.

We can solve for the steady state

0 = fpxρδ + fxxδ
2/2, (28)

which gives us two solutions, δ = 0 and

δ = −
fpx

fxx
ρ, (29)

a second branch that crosses the branch at zero in the bifurcation
point. Stability analysis reveals that the branches exchange their

stability in the bifurcation point (Figure 3). This transcritcal
bifurcation is a typical scenario for the onset of epidemics. If
the parameter is low enough, the disease-free state is stable, but
once a threshold is crossed the disease-free state loses stability
as a new steady enters the physical space in which the disease
persists indefinitely.

Because the overall activity appears here as the order
parameter of the bifurcation this is also the dimension in which
computational benefits are reaped. It is therefore reasonable to
expect this bifurcation to play a role when information is coded
in terms of activitiy.

The transcritical bifurcation has some attractive features as
a model for neural criticality. If we are willing to neglect
spontaneous activity we can argue that the system should have
a steady state at zero. Furthermore if the variable x represents a
rate of spikes, we can argue that this variable can not be negative.
Under these assumptions the state at a transcritical bifurcation is
stable if fxx < 0, and thus the system could plausibly remain there
while profiting from the long memory that comes with criticality.

Note that the nature of the bifurcation has implications for
information processing. If we are willing to accept that the brain
operates at a transcritical bifurcation, then this would suggest
that information is coded directly in terms of activity: After a
perturbation causes increased activity, the system remains in
a state of increased activity while slowly decaying back to the
resting state where activity is zero.

There is indeed some evidence that points to transcritical-type
criticality in the brain. The state at the transcritical bifurcation
is characterized by activity cascades with branching ratio 1,
which is in agreements with observations from in-vitro cultures
(Beggs and Plenz, 2004; Hesse and Gross, 2014) and also direct
measurements in life animals (Klaus et al., 2011; Hahn et al.,
2017).

However, there are also some caveat regarding the transcritical
bifurcation. It is subject to structural instability on which we
discus in some more detail below. Additionally this bifurcation
does not create super-sensitivity; because fp = 0 the solution
branches never become vertical (Figure 3). Thus this bifurcation
scenario misses one of the two key features that make criticality
attractive for computation.

In summary the transcritical bifurcation probably plays some
role in systems of neurons. Particularly it is likely that this is the
bifurcation that is encountered when one observed the onset of
activity in neural networks and perhaps also in mature systems
grown in-vitro. Moreover the observation of activity cascades and
power-laws at in experiments supports this hypothesis. However,
both evidence for other forms of information coding, and the
caveats regarding transcritical bifurcations, suggest that other
bifurcation scenarios also play significant and perhaps greater
role for information processing in the brain.

2.5. Ising-Like Criticality
A very popular model system for criticality is the Ising model.
The bifurcation that occurs in this model is the pitchfork
bifurcation, another degenerate form of the fold bifurcation. In
this case the degenerate bifurcation appears because the model
is motivated by a physical system that has a mirror symmetry.
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Due to this symmetry all terms of the Taylor expansion that are
derivatives of even order with respect to x must be zero. This
implies fp = 0 and also fxx = 0 so both genericity conditions
of the fold bifurcation are violated.

In this case the expansion becomes

ẋ = fpxρδ + fxxxδ
3 (30)

which is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. First fold genericity condition is violated: fp = 0 (also fpp =

0, . . . )
4. Second fold genericity condition is violated: fxx = 0
5. We can neglect higher order terms if δ an ρ are small: fpx 6= 0,

fxxx 6= 0

Solving for the steady state in the steady state in this case reveals
three branches: the zero solution δ = 0 and a pair of branches

δ = ±

√

−
fpx

fxxx
ρ (31)

If fpx and fxxx have the same sign these two branches exist only
for ρ < 0, otherwise they exist only for ρ > 0. Furthermore one
can show that if fpx > 0 then the steady state at zero is stable for
ρ < 0 (and vice versa).

In the subcritical form of the pitchfork bifurcation fxxx < 0
the non-zero branches are unstable. In the bifurcation point they
collide with the stable branch at zero and vanish as the zero
becomes unstable. This leads to a catastrophic bifurcation after
which no stable steady state is left. By contrast in the supercritical
from of the pitchfork bifurcation fxxx the steady state at zero
becomes unstable as two stable non-zero branches emerge.

The supercritical pitchfork bifurcation is in principle an
attractive model for neuroscience as the critical state is stable
and has the desirable characteristics of long-term memory of
perturbations and super sensitivity to parameter change.

The major problem with this sort of bifurcation is that it is
hard to motivate why such dynamics should occur in the brain.
The bifurcation requires a perfect mirror symmetry which is easy
to motivate for the physical Ising model (spin up and spin down
states are thought to be exactly symmetrical) but is hard to justify
in a biological system.

All degenerate bifurcations, including transcritical and
pitchfork suffer from structural instability (Figure 5). For
example including even a low level of spontaneous activity
destroys the transcritical bifurcation in SIS-type models model
entirely. However, for multiple reasons we should not disregard
degenerate bifurcations altogether. Also the transcritical
bifurcation vanishes from the SIS model if spontaneous activity
is included. However, it is replace by a region where the solution
branch bends quickly, through not abruptly. This region of rapid
change will retain some semblance to a critical state.

Moreover higher-level mechanisms may exist that drive the
brain to degenerate bifurcations in a very similar way that
to proposed primary self-organization to critical states (Seung,

1996; Feudel et al., 2018). For example Seung (1996) describes
how neurons can approximate a degenerate line attractor, but
also notes some caveats.

Even in absence of mechanisms that create degenerate
situations over a broad range of operating conditions, the
pitchfork bifurcation may play a role in information processing
in decision making. Making decisions is only a challenge
when different options appear almost exactly equally desirable.
However, this equal desirability creates exactly the symmetry
needed for pitchfork bifurcations.

For example the occurrence of a pitchfork bifurcation has been
well-documented in collective decision making in fish faced with
a binary choice task (Couzin et al., 2011).

The pitchfork-in-decision scenario is interesting because we
get criticality on demand. The need for a decision, creates
a situation in which the prerequisite symmetry for pitchfork
criticality exists. The system can then be critical and profit from
the super-sensitivity that this entails. Once the decision has been
make the symmetry is broken, potentially leaving the system
non-critical in this respect. This on-demand criticality is possible
due to the difference between the slow timescale on which the
need for the decision arises and the fast timescale of decision
making processes.

2.6. Criticality at the Onset of Oscillations
In the previous sections, we have gone on a fairly exhaustive
trawl of bifurcations of systems with one variable, but from the
perspective of neuroscience none of the bifurcations scenarios
we found was completely satisfactory. Of course there are other,
even more degenerate bifurcations that we haven’t discussed.
For example there could be a transcritical-like bifurcation where
three branches intersect or a pitchfork-like bifurcation where one
branch splits into five. But essentially these are variations on a
theme. If we want super sensitivity andmemory in a stable critical
state in a system we so far need to impose mirror symmetry.

An elegant way out of the dilemma is to consider systems
with more than one variable. All the bifurcations that occur in
systems with one variable (fold, transcritical, pitchfork,...) also
occur in two-variable systems. Moreover, another type of long-
term behavior is possible: sustained oscillations. The geometrical
object in variable space on which such oscillations take place, a
cycle, can undergo the same bifurcation as a steady state in one-
variable systems, hence there can be a fold bifurcation of cycles,
in which a stable and an unstable cycle collide and annihilate.
However, all of these bifurcations present us with the same
dilemma as the bifurcations in one-variable systems.

A genuinely new bifurcation of two-variable systems that
does not have an equivalent in one-variable systems is the Hopf
bifurcation. In this bifurcation a cycle emerges from (or is
destroyed upon collision with) a steady state. The mathematical
analysis of this bifurcation is slightly more complicated, hence I
omit the expansion here (it can be found in Kuznetsov, 2004),
but the key idea in this analysis is that one can transform the two
variables of the system (say, x, y) near the bifurcation to obtain an
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FIGURE 4 | Pitchfork bifurcation. In this bifurcation a steady state (red) loses stability as either two additional branches of steady states (blue dashed) are destroyed

(subcritical case, left) or two branches of stable steady states (blue solid) emerge (supercritical, right). A system could plausibly operate at a supercritical pitchfork

and profit from persistent memory and super-sensitivity that this bifurcation conveys. However, the pitchfork bifurcation requires a special symmetry that is hard to

motivate for the brain, it therefore is an unlikely candidate for the operating point of neural criticality.

FIGURE 5 | Structural instability. The pitchfork (left) and transcritical (right) bifurcations are degenerate bifurcations: To observed their characteristic bifurcation

diagrams (thick gray lines) special cases particular symmetries must exist in a model. If we break these symmetries, e.g., by adding a low level of spontaneous activity,

then the degenerate bifurcation revert back to the generic fold bifurcation, or no bifurcation at all (red lines).

angle and radius variable,

r =

√

(x− x∗)2 + (y− y∗)2 (32)

φ = arctan((y− y∗)/(x− x∗)) (33)

so r denotes the distance from the original steady state and the φ

denotes the angle between the state of the system and the steady
state. In these new variables the dynamical equations close to the
bifurcation are captured by an expansion of the form

φ̇ = a (34)

ṙ = brρ + cr3 (35)

where a, b, and c are constants that arise from derivatives
of the dynamical equations (similarly to fx etc.) and ρ is
again our control parameter that measures the distance to
the bifurcation point. Considering these equations we can see
that the angle changes with a continuous angular velocity

a. The equation for the radius is more interesting: The

radius equation always has a stationary solution at r =

0. Even in this state the angle is constantly changing,

but because the radius is 0 our original variables x, y
remain stationary–this solution is our initial steady state.
Stability analysis shows that it is stable if bρ ≤ 0 and
unstable otherwise.

Frontiers in Neural Circuits | www.frontiersin.org 8 March 2021 | Volume 15 | Article 61426897

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Gross Many Critical States

FIGURE 6 | Hopf bifurcation. The Hopf bifurcation marks the onset of at least transient oscillation in a dynamical system. It is in many ways similar to a pitchfork

bifurcation and shares many of its attractive features. In contrast to the pitchfork, a stable cycle is created in the Hopf bifurcation (supercritical case, right) or an

unstable cycle vanishes (subcritical case, left). Moreover, the Hopf bifurcation is a generic bifurcations and thus does not require hard-to-justify assumptions. These

properties make it very attractive as an potential operating point for the brain (thin blue lines indicate some examples of the cycle, coming out of the plane of the paper).

Looking closely at the equation for r we note that this equation
has the same form as the expansion of the pitchfork bifurcation,
so at ρ = 0, where the initial steady state loses its stability, two
new stationary solutions of r emerge. One is at negative radius
and hence unphysical, whereas the other is at a positive radius.
Due to the constant progression of the angle φ this stationary
point of r is a cycle in the x, y coordinates (Figure 6).

The Hopf bifurcation inherits many properties from the
pitchfork bifurcation. Like the pitchfork it has a subcritical and
a supercritical form. In the supercritical case a stable limit cycle
emerges as the initial steady state loses stability. The existence
of stable dynamics on both sides of the bifurcation allows a
system to operate in the vicinity of the bifurcation. Moreover,
like the pitchfork, the Hopf bifurcation offers long memory of
perturbations (perturbations create long-lasting oscillations) and
super sensitivity to parameter change (quick rise of oscillation
amplitude when the bifurcation point is crossed).

In contrast to the pitchfork, the Hopf bifurcation is a generic
bifurcation. Thus we don’t have to introduce hard-to-justify
assumptions to observe this bifurcation.

In a complex system Hopf bifurcations typically occur
when the microscopic parts of the system synchronize. At
this point preexisting oscillations on the micro-level transition
from oscillating asynchronously to a synchronous mutually
reinforcing state such that detectable system-level oscillations are
produced. Such a scenario is very plausible for the brain as the
individual neurons already have oscillatory characteristics and
have been illustrated in models (Brunel, 2000).

In this case the variables x and y typically relate to the
microscopic variables of the individual oscillators. For example
in a model x could be the number of neurons that are just spiking
whereas y is the number of neurons that are currently refractory.

Seen in this light the Hopf bifurcation becomes an order-
disorder transition in which disordered phases of oscillators
become organized. It has been pointed out that systems can
self-organized robustly using simple local rules (Droste et al.,

2013). Moreover, spike-timing dependent plasticity observed in
neurons is a rule that has the right characteristic to drive the
system to such a transition (Meisel and Gross, 2009).

The assumption that the brain (or parts of the brain) operate
at a Hopf bifurcation is consistent with information coding in
terms of synchrony. The experimental evidence for this type of
information coding (e.g., de Charms and Merzenich, 1996) thus
lends further weight to this hypothesis.

Among all conceivable bifurcation scenarios on stationary
states, and cycles the Hopf bifurcation is the only scenario that
offers a stable operating point, super-sensitivity and structural
stability. These properties make it extremely attractive for the use
in computational systems.

Operating at a Hopf bifurcation point provides the
advantageous properties of long information retention and
super-sensitivity to parameter change. At the same time very
plausible mechanism exist by which the brain could self-
organize to this bifurcation and remain there indefinitely. These
advantageous features highlight models of synchronization, such
as networks of Kuramoto oscillators as promising conceptual
models for neural dynamics.

2.7. The Critical Hypersurface
So far we have only studied bifurcations in diagrams with one
parameter axis. The same is true for almost all papers that discuss
bifurcations in the context of neural criticality. However, let’s
break this convention and consider what happens in systems with
two or more parameters.

The bifurcations that we discussed so far are so-called
bifurcations of codimension 1. This means that the bifurcations
have a single bifurcation condition. To find the bifurcation we
must change the parameters until we find a parameter set where
the bifurcation condition is met. If we change one parameter we
might eventually meet the condition and observe the bifurcation
at a specific parameter value.
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Mathematically speaking we can say if we have a one-
dimensional parameter space (i.e., a parameter axis) then
codimension-1 bifurcations occur in a zero-dimensional subset
(i.e., specific points in parameter space).

Now suppose we have two parameters p1, p2. In the two-
dimensional parameter space the bifurcation condition becomes
a function of both parameters. Because we only have only one
bifurcation condition we can (in general) satisfy it already by
setting one of the parameters, say p1 to the right value. That
means (in a typical scenario) that for every value of p2 we can
find the bifurcation at some value of p1: The bifurcation points
fill a curve in the two-dimensional parameter plane.

The existence of this curves of critical point allows the system
to move around in parameter space, while remaining at criticality
all the time.

A system that has at least two parameters could self-organize
to criticality and then start to drift on a curve of critical states. As
we drift on the curve we can even encounter further bifurcations,
so-called codimension-2 bifurcation points. In such a point the
system is then critical in two different ways. For example it is
conceivable that we reach a point where a Hopf and a transcritical
bifurcation happen at the same time (a degenerate Takens-
Bogdanov bifurcation). In a neural system that could be a point
where we observe an onset of spontaneous activity (trancritical
bif.) and at the same time the onset of synchronization of
this activity (Hopf). Likewise we could imagine a higher-
codimension bifurcation where the onset of oscillations takes
place at the same time as changes in the number of synchronized
clusters. Such higher a bifurcation would be very attractive for
information processing.

In the real world much more than two parameters could be
relevant. If our system has d parameters the bifurcation points of
a codimension-1 bifurcation completely fill a (d−1)-dimensional
subspace. We can say that the form hyper-surfaces. In a high-
dimensional parameter space the existence of these hypersurfaces
gives a self-organizing system potentially a huge parameter space
to move around in while staying critical.

It is interesting to ask how many parameters exist in the
brain. So far there are only partial answers to this question.
On the one hand we might go down the list of network
properties that are known to affect network dynamics: The
include average connectivity, it’s second moment, the spectral
radius, the clustering coefficient and various other motif counts.
While it is not clear that all of these affect the network dynamics
independently we can say that there are at least several of these
topological parameters are commonly found to affect dynamical
processes on networks.

On the other hand, we could ask how many parameters are
necessary to characterize the network structure of the brain
completely. In this case the answer is at least one per synapse,
which means the effective dimensionality d of the parameter
space could be as high as the number of synapses.

So the best of the author’s knowledge we can say that the
effective dimensionality of the parameter space of the brain
is somewhere between tens and billions of parameters. Any
answer in this range means that the brain is not confined to a
single critical point in parameter space, but has in-fact a huge
high-dimensional space to explore, in which it could plausibly

sit at the threshold of many different bifurcations at the same
time. A particularly intriguing picture is to imagine the brain
poised at the critical points of a large number of different Hopf
bifurcations, each corresponding to the synchronization of a
different community of neurons.

In summary the potentially very high effective dimensionality
of the brain opens up some startling perspectives. We should
not think of the brain as a system that sits stationarily in
one point where a certain codimension-1 bifurcation happens.
Instead the brain might be at some very high-codimension that is
critical in many (and potentially very many) ways at the same
time. Alternatively, mechanism of plasticity could take it on a
self-organized journey that explores a high-dimensional critical
hyper-surface. In the authors opinion, the most likely scenario
is that both of these phenomena, drift on a critical manifold
and high-codimension multi-criticality occur simultaneously in
the brain.

3. CONCLUSIONS

In this paper I have reviewed some relatively basic and
well-known dynamical systems theory, which nevertheless has
profound implications for neural dynamics. Along the way we
have discussed some side attractions (stability constraints, origins
of power laws and critical slowing down, absence of super
sensitivity in the transcritical bifurcation). However, perhaps the
two most important messages are the ones that are hinted at in
the title. There are many critical states in at least two ways:

1. There are many different types of bifurcations that can occur
at critical points. And potentially all of the ones discussed
here play some role in neural information processing. At the
same time the supercritical Hopf bifurcation seems uniquely
attractive for cortical information processing because it is
the only scenario that allows criticality in a stable steady
state, while providing super-sensitivity without requiring a
specific degeneracy.

2. Even for a specific type of bifurcation, one should not think
of the critical point as an isolated point in parameter space.
In a high dimensional parameter space the critical points
fill an almost equally high-dimensional hyper-surface. This
means that mechanisms of self-organization can explore a
large parameter space while maintaining criticality. It also
means that the system can reach high-codimension points
where the system is simultaneously critical in several, and
potential many, different ways.

Particularly the second point highlights the need for future
theoretical work to explore how self-organized critical systems
drift on critical manifolds and assess the consequences of multi-
criticality for information processing. So far such dynamics in
high-dimensional parameter spaces remains largely unexplored.
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Exosomes are nano-sized extracellular vesicles that perform a variety of biological

functions linked to the pathogenesis of various neurodegenerative disorders. In

Alzheimer’s disease (AD), for examples, exosomes are responsible for the release of

Aβ oligomers, and their extracellular accumulation, although the underpinning molecular

machinery remains elusive. We propose a novel model for Alzheimer’s Aβ accumulation

based on Ca2+-dependent exosome release from astrocytes. Moreover, we exploit our

model to assess how temperature dependence of exosome release could interact with

Aβ neurotoxicity. We predict that voltage-gated Ca2+ channels (VGCCs) along with the

transient-receptor potential M8 (TRPM8) channel are crucial molecular components in

Alzheimer’s progression.

Keywords: brain, calcium channels, exosomes and biomarkers, molecular communication, temperature effects,

astrocytes, dynamic models, Alzheimer’s disease

1. INTRODUCTION

Protein misfolding, oligomerization, and aggregation are responsible for the initiation of
pathological disorders in the brain (Soto and Pritzkow, 2018). Nano-sized extracellular vesicles
(exosomes) are believed to be key mediators in the transfer of cytotoxic proteins between the nerve
cells, resulting in the spread of many neurodegenerative diseases, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), Huntington’s disease (HD), and Creutzfeldt-Jacob’s disease (CJD) (Jiang
et al., 2019; Luo et al., 2020; Zhang and Wang, 2020).

Exosome releases increased intracellular calcium (Ca2+) (Jain, 2019). Specifically, Veletić
et al. (2019) have shown that depolarization of neurons and glial cells, such as astrocytes, can
trigger multivesicular exosome release therefrom. Because neurons interact with astrocytes and
vice versa through a plethora of ion and molecular pathways that can reciprocally affect their
membrane electrical potential (De Pittà, 2020), a question arises whether this interaction could
be physiologically relevant for exosome release in the brain.

In AD etiology, oligomeric Aβ can substantially affect intracellular Ca2+ homeostasis both
in neurons and in astrocytes (Bezprozvanny and Mattson, 2008; Shigetomi et al., 2016), thereby
potentially regulating exosome release too. The mechanism whereby this could happen and the
relevant pathogenic factors are not known. The reason for this gap of knowledge is because of
inherent limits in the available technology, and because the biophysical framework to account for
exosomal release in the neuropil in the context of neuron-glial interactions is missing (De Pittà
and Berry, 2019a). We introduce in this study, the first model for exosomal release leveraging on
Aβ-dependent intracellular Ca2+ homeostasis.

101
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Our model design emphasizes a well-documented pathway
for Aβ regulation of intracellular calcium that is amyloid-
induced Ca2+ permeability through endogenous cation channels
(Liu et al., 2010), such as L- and N-type voltage-gated calcium
channels (VGCCs) and transient receptor potential melanostatin
8 (TRPM8) channels. These latter channels are prototypic
temperature sensors and are emerging as possible key regulators
in inflammation (Liu and Qin, 2011), often associated with
Alzheimer’s related neurodegeneration (Heppner et al., 2015).

This study is organized as follows. In section 2, we describe
our model (the schematic representation of the model is given
in Figure 1) in its different components: (i) Ca2+-dependent
exosomal release in neurons and in astrocytes, (ii) astrocytic
exosome exocytosis mediated by Aβ in AD, and (iii) temperature
dependence of neuron models including TRPM8 currents. In
section 3, we present numerical simulations based on the
developed neuron-glial model. Finally, we discuss our results and
outline future directions in section 4.

2. METHODS

2.1. Calcium-Dependent Exosome Release
in Neurons
The calcium-mediated exosomal release is restricted to active
zones that contain VGCCs that control Ca2+ from the
extracellular domain, mediate and regulate exocytosis, leading
to the exosomal release in the brain (Veletić et al., 2020).
This mechanism can be conveniently modeled by combining
the Watts-Sherman model for Ca2+ exosomal release and the
Montefusco-Pedersen models for Ca2+-regulated exocytosis, as
originally put forth by Veletić et al. (2020). To link neuronal
electrical activity and Ca2+-mediated exocytosis, we first
describe intracellular Ca2+ dynamics, paying special attention
to microdomain Ca2+ concentrations surrounding high-voltage
activated L-type Ca2+ channels (CL) when the channels are
opened (CL|opened) and closed (CL|closed), low-voltage activated T-

type Ca2+ channels, as well as the characterization of Ca2+ below
the plasma membrane (Cm) in the bulk cytosol (Cc), and in the
endoplasmic reticulum (Cr). In this fashion, exosomal release
can be expressed as a function of L-type Ca2+ microdomain
concentrations and plasma membrane Ca2+ concentrations,
respectively, are as follows:

RCL = m2
CL
hCL ·H(CL|opened,KL, nL)+ (1−m2

CL
hCL )

·H(CL|closed,KL, nL), (1)

RCm = H(Cm,Km, nm), (2)

where H(x,K, n) = xn

xn+Kn is the Hill function, CL|closed = Cm

(Montefusco and Pedersen, 2015), and the collective exosomal
release rate in neurons is given by Veletić et al. (2020):

Rn = RCL + RCm . (3)

The whole-cell intracellular Ca2+dynamics ensues from the mass
balance of Ca2+ fluxes across four different compartments: (i)

CL; (ii) Cm; (iii) Cc and (iv) Cr . The equations for compartment-
specific Ca2+ concentrations (Veletić et al., 2020):

dCL|opened

dt
= −f

(

α
ICL

λud
− Bud(CL − Cm)

)

, (4)

dCm

dt
=

f

λm

(

− αICT + NLŴm
2
CL
hCL (CL − Cm)− (5)

λckPMCACm − λcBm(Cm − Cc)

)

,

dCc

dt
= f (Bm(Cm − Cc)+ pleak(Cr − Cc)− kSERCACc), (6)

dCr

dt
=

fλc

λr
(pleak(Cr − Cc)− kSERCACc), (7)

where the relevant parameters are provided in Table 2.
In terms of coefficients of the equations, f is the ratio of free-

to-total Ca2+, Ŵ = λudBud, α is the constant that transfers
current to flux, Bd is the constant that defines the flux from
the microdomains to the sub-membrane, the flux from the sub-
membrane compartment to the bulk cytosol is defined by Bm,
while the volumes of a single microdomain, the sub-membrane
compartment, the bulk cytosol, and the endoplasmic reticulum
(r) are described by λd, λm, λc, and λr , respectively, kPMCA is the
rate of Ca2+ adenosine triphosphatase (ATPase) at the plasma
membrane level, pleak is the rate of the leak current from the r to
the cytosol, and kSERCA is the amount of Ca2+ sequestration into
the r by the sarco/endoplasmic Ca2+ ATPase pump. The gating
variables in the steady-state are defined in Table 2:

dmx

dt
=

mx,∞(vm)−mx

τmx(vm)
;
dhx

dt
=

hx,∞(vm)− hx

τhx(vm)
, (8)

where x = (CL,CT ,CN ,Na,K) and B(x, vshift , vscale) =
1

1+exp(−(x−vshift)/vscale)
.

The experimental evidence reveals that Ca2+-mediated
exocytosis by neurons is regulated by intracellular Ca2+,
where electrical activity pattern determines the exocytosis Ca2+

threshold (Pedersen et al., 2017). Electrical activity is triggered by
neuron depolarization, which entails the activation of VGCCs,
resulting in increased intracellular Ca2+concentration levels,
which interfere with the mobilization of multivesicular bodies,
resulting in the release of exosomes and evoking exocytosis
(Shaheen et al., 2021). To describe the electrical activity of a
depolarized neuron viamembrane potential, we use the modified
Hodgkin-Huxley neuron model, which includes voltage-gated
potassium (K+) channels, voltage-gated sodium (Na+) channels,
a leak current, and an induced control signal/current (Iind) as
Veletić et al. (2020):

dvm

dt
=

1

cm

(

gK(VK−vm)+gNa(VNa−vm)+gL(VL−vm)+Iind

)

,

(9)
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FIGURE 1 | (Color online) The model astrocyte with different Ca2+ fluxes and Ca2+ signals. External stimulus triggers exosome release in calcium-dependent

exocytosis. Astrocytic exosome exocytosis mediated by Aβ with the influence of the L-Type, T-Type, N-Type, and R-Type Ca2+ channels.

where cm is the membrane capacitance, VK , VNa, and VL are
Nernst potentials for K+, Ca2+, and Na+ ions and other ions
were clustered together as a “leak” channel, respectively, and gK ,
gNa, and gL are the corresponding membrane conductances. The
external stimulus Iind is the current pulses of 500 ms with varying
length and amplitude from 10 to 20 µA/cm2, voltage-gated
conductances (gK = gKm

4
K and gNa = gNam

3
NahNa) fluctuate over

time as action potentials are initiated and propagated (Shaheen
et al., 2021).

2.2. Calcium-Dependent Exosomal Release
From Astrocytes
Traditionally, astrocytes were thought to be non-excitable brain
cells that only provided structural and metabolic support to
neurons (Valenza et al., 2011). However, in the last two
decades, this viewpoint has shifted and it has been revealed
that astrocytes react to neurotransmitters and neuromodulators
by increasing cytosolic Ca2+ concentration levels (Di Garbo
et al., 2007). Indeed, a significant amount of experimental
evidence, describing the signaling processes between astrocytes
and astrocyte neurons, revealed the potential role of glial cells in
neural tissue dynamics (Escartin et al., 2021; Wang et al., 2021).
Astrocytes have glutamate-sensitive and metabotropic glutamate
receptors (mGluRs) on their plasma membranes (Veletić et al.,
2020). The glutamate initiates the intracellular release of Ca2+

ions from the endoplasmic reticulum triggered by mGluRs. This
is accomplished by chemical reactions involving IP3, a secondary
messenger molecule that is essential for Ca2+ mobilization
into the cytosol. The IP3 synthesis has been defined simply
in tripartite synapses (a term introduced to emphasize the

existence of an astrocyte in the vicinity of two neurons), with the
hypothesis that a quantized amount of IP3 molecules is released
after glutamate levels rise due to pre-synaptic spiking activity
(Veletić et al., 2019). We are interested in controlling IP3 with
a defined stimulation pattern in our scenario, where the astrocyte
differentiated from CNS functions as a neuron-independent unit.
Therefore, the IP3 production rate (P), as a function of a generic
control signal vind applied to depolarize the astrocyte, is given as
follows (Veletić et al., 2020):

dP

dt
=

P0 − P

τP
+ rP. (10)

Next, combining (Equation 9) with Ca2+ dynamics we
can propose a model with electrically silent astrocyte for
IP3 development and Ca2+-dependent exocytosis. The Ca2+

dynamics surrounding L-Type and N-type Ca2+ channels
delineate similarly to neurons. It is expected that L-type Ca2+-
channels in neurons and astrocytes have identical qualities
(Veletić et al., 2020). Hence, CL concentration in a single
astrocytic microdomains is epitomized in Equation (4) by setting
vm = Vm + vind in all corresponding equations, where Vm =

−70mV gives the resting astrocytic membrane potential. The
Ca2+ concentrations in single microdomains surrounding high-
voltage activate N-type Ca2+ channels when the channels are
opened and closed, and the plasma membrane (Cm) lead to the
following equations (Veletić et al., 2020):

dCN|opened

dt
= −f

(

α
iCaL
λud

− Bud(CN − Cm)

)

, (11)
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dCm

dt
=

f

λm

(

− αiCaT + NLŴm
2
CaL

hCaL (12)

(CL − Cm)− λckPMCACm − λcBM(Cm − Cc)

+NNŴmCaNhCaN (CN − Cm)

)

,

with CN|closed = Cm, where iCN = gCN (Vm + vind − VC)/NN

and gCN is the membrane conductance of N-type Ca2+ channels.
In modeling exosomal release from astrocytes, by manipulating
the Nadkarni-Jung model that is further based on the Li-Rinzel
model (Li and Rinzel, 1994) to define Ca2+ concentrations in
the bulk cytosol and in the endoplasmic reticulum coupled in
astrocytes, we have:

dCc

dt
= −c1v1m

3
P,∞h3P(Cc −

c0 − Cc

c1
)− c1

v2(Cc −
c0 − Cc

c1
)− v3 ·H(Cc, k3, n4), (13)

where the values of parameters used in the above equations are
given in Table 1 and the gating variable mP,∞ = H(P, d1, d6) ·
H(Cc, d5, d6), hP,∞ = H(Q,Cc, d6) adopted from Veletić et al.
(2020), moreover

dhP

dt
=

hP,∞ − hP

τhP
, (14)

and d6 = 1, τhP = 1
a2(Q+Cc)

, Q = d2
P+d1
P+d3

. The IP3 molecules

bind to receptors on the surface of the endoplasmic reticulum,
allowing Ca2+ to be released once they are generated in situ (or
obtained from other cells through gap junction). Since internal
Ca2+ stores are also responsive to Ca2+, an increase in Ca2+

concentration deploys sufficient Ca2+ release. This biological
process is known as Calcium-Induced Calcium Release (CICR)
which shows the first term of Equation (12). Additional Ca2+

flow from the endoplasmic reticulum into the cytosol usually
arises (leakage flow), while Ca2+ based ATPase pumps (SERCA)
work in the opposite direction to uptake Ca2+ (second term
of Equation 12) back into the stores for potential use (pump
flow). The balance between passive leakage from the endoplasmic
reticulum and SERCA uptake regulates Ca2+ concentration at
rest. Sneyd and Li and Rinzel have identified analytically theCa2+

dynamics and release/uptake processes triggered by IP3 (Escartin
et al., 2021). Further, the relative exosomal release rate feature in
astrocytes based on N-type Ca2+ microdomain concentrations,
as Watts and Sherman did for glucagon secretion in pancreatic
alpha cells (Watts and Sherman, 2014):

RCN = m2
CN

hCN ·H(CN|opened,KN , nN)+ (1−m2
CN

hCN )

·H(CN|closed,KN , nN). (15)

The relative exosomal release rate depending on CL, Cm

concentrations that is, RCL and RCm , follows Equations (1, 2),
respectively, and the collective exosomal release rate in astrocytes
is defined as follows (Veletić et al., 2020):

Ra = RCL + RCm + RCN . (16)

2.3. Amyloid-Beta Peptide Modulation of
Astrocytic Exosome Exocytosis
Alzheimer’s disease is one of the most prominent
neurodegenerative diseases with an unknown structure of
amyloid-beta peptide (Aβ). The distribution of Ca2+ astrocyte
signaling plays an important role in AD. We have modified
our previously elaborated model of Ca2+-mediated exosomal
dynamics in neural cells to study spontaneous Ca2+oscillations
in astrocytes in order to investigate the impact of Aβ on
intracellular Ca2+ dynamics during AD. By activating the L-type
VGCCs and metabolic glutamate receptors, or by increasing
ryanodine receptor sensitivity and Ca2+leakage, Aβ will increase
the resting concentration of intracellular Ca2+and adjust
the regime of Ca2+ oscillations. The primary target of Aβ

neurotoxicity is thought to be astrocytes (Gao et al., 2020).
Astrocytes communicate with neurons and other brain cells
in a functional way. Although astrocytes are not electrically
excitable, they have a complex repertoire of intracellular
Ca2+ signaling that changes across time and space within
single astrocytes and through astrocytic networks (Semyanov
et al., 2020). In an AD context, a computational model was
recently used to investigate the effects of Aβ on Ca2+regulation
(Latulippe et al., 2018).

In what follows, we provide further details of our new
model to address the Ca2+-mediated exosomal release in
astrocytes mediated by Aβ through four distinct pathways:
VGCCs, metabotropic glutamate receptors 5, ryanodine receptor
channels, and membrane leak (Gao et al., 2020). The Aβ

deposit and its neurotoxicity associated with AD is involved
in the disruption of Ca2+ regulation in astrocytes. Based
on our previously discussed model, we have carried out a
comprehensive simulation on Ca2+-mediated exosomal release
in astrocytes mediated by Aβ , by also incorporating induced
control signal/current. In the model of Ca2+-mediated exosomal
release in astrocytes, different types of VGCCs are responsible
for Ca2+ influx JVGCC from the extracellular to the intracellular
space. The Hodgkin-Huxley equations were used to describe the
electrophysiological properties of these VGCCs and the related
parameters are given in Tables 1, 2. Only the L-type VGCC
current was thought to be mediated by Aβ in this study (Gao
et al., 2020). All forms of Ca2+ ionic currents through VGCCs
shared the simplified HH form:

I = gmh(vm − VC), (17)

where g represents membrane conductance, m and h represent
the channel stimulation and inhibition (Zeng et al., 2009),
respectively, whose values recover gradually to their steady-state
values m̄ and h̄ given as

dy

dt
=

ȳ− y

τy
, (18)

where y = (m, h) and vm is the membrane potential as given
in Equation (9), VC is the constant Nernst potential for calcium
and other relevant parameters are given in Table 1 (Veletić et al.,
2019, 2020; Gao et al., 2020).
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TABLE 1 | Parameter set for calcium-mediated exosomal dynamics.

Parameter Value Parameter Value Parameter Value

VK −70(mV ) VL −54.4(mV ) VhCT
−52(mV )

VτhCT
−50(mV ) VτmCT

−50(mV ) VτhCL
0(mV )

VmCT
−49(mV ) VhCL

−33(mV ) VmCL
−30(mV )

VτmCL
-23(mV ) ShCL

−5(mV ) ShCT
−5(mV )

τm0VCT
0(ms) λud 2.62× 10−19(L) α 5× 10−15(µmolpm/As)

λm 5× 10−14(L) λc 5.7× 10−13(L) pleak 3× 10−4(ms−1)

f 0.01 τm0VCL
0.05(ms) kSERCA 0.100(ms−1)

Bm 0.128(ms−1) gL 0.3(mS/cm3 ) kPMCA 0.300(ms−1)

gCT 0.4(nS) gCL 0.7(nS) cm 1(uF/cm2 )

τmVCL

1(ms) Km 2(uM) nL 4

nm 4 SmCT
4(mV ) τh0VCT

5(ms)

SmCL
10(mV ) T 10oC SτmCT

12(mV )

τmVCT

15(ms) SτhCT
15(mV ) SτmCL

20(mV )

SτhCL
20(mV ) τhVCT

20(ms) λc
λr

31

gK 36(mS/cm3 ) VNa 50(mV ) KL 50(µM)

τh0VCL
51(ms) τhVCL

60(ms) VC 65(mV )

gNa 120(mS/cm3) NL 200 Bud 264(ms−1)

AVL 1 ARYR 1 Am 1

Ain 1 l 0.4, 1 k1 0.013

k2 0.18 kd 0.13 n3 3

a1 0.003 a2 0.02 n5 3.5

n4 2 λPM 4.2 λast 3.49 ∗ 1e− 13

MSERCA 15µM/s MCICR 10s−1 MPLC 0.05µM/s

MPLC 0.05µM/s n1 2.02 n2 2.2

PSERCA 0.1µM/s PPC 0.3µM/s PCA 0.15µM/s

PCI 0.15µM c0 2µM PIP3 0.1µM

Pdeg 0.08s−1 Pf 0.01s−1 ḡT 0.0600pS

ḡL 3.5000pS ḡN 0.3900pS ḡR 0.2225pS

VC 65mV 1H −156KJ/mol 1S −550J/molK

z 0.87 R 8.3144J/molK F 96485C/mol

c1 0.185 v1 6s−1 v2 0.11s−1

v3 0.9µM/s k3 0.1µM d1 0.13

d2 1.049 d3 0.943 d5 0.082

a2 0.5/(µMs) IP30 0.160µM rP 0.04µM/s

τP 1/0.000140ms Vm −70mV gCN 0.6nS

VmCN
−5mV SmCN

10mV VhCN
33mV

ShCN
−5mV τmVCN

1ms τm0VCN
0.05ms

VτmCN
−23mV SτmCN

20mV τhVCN
60ms

τh0VCN
51ms VτhCN

0mV SτhCN
20mV

NN 200 nN 4 KN 2µM

We use parameter l to reflect a fixed amount of Aβ

concentration present in the environment to investigate the
effects of Aβ . In addition, we use AVL to monitor the strength
of Aβ effects on the L-type VGCC current pathway, resulting in
a total Ca2+current as follows:

IVGCC = IC,T + (1+ AVLl)IC,L + IC,N + IC,R, (19)

where the corresponding flux is defined as

JVGCC = −
IVGCC

zFλast
. (20)

The concrete formula for each type of calcium current is given
in detail in Table 2 adopted from Zeng et al. (2009). The
synthesis of IP3 catalyzed by phospholipase (PLC) is enhanced
by cytoplasmic Ca2+ in this model. The IP3 receptors (IP3R)
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TABLE 2 | Details of voltage-gated calcium channels (VGCCs), time constants,

and gating functions.

Channel type Equation of channel kinetics

mK/Na,∞
αmK/Na

αmK/Na
+βmK/Na

hNa,∞
αhNa

αhNa
+βhNa

τhNa
1

αhNa
+βhNa

τmK/Na

1
αmK/Na

+βmK/Na

αmNa
0.1(vm + 40)B(vm, 40, 10)

βmNa
4 ∗ exp

(

− (vm + 65)/18
)

αmK
(0.01(vm + 55))B(vm, 55, 10)

βmK
0.125 ∗ exp

(

− (vm + 65)/18
)

αhNa 0.07 ∗ exp
(

− (vm + 65)/20
)

βhNa B(vm, 35, 10)

mCx ,∞ B(vm,VmCx
,SmCx

)

hCx ,∞ B(vm,VhCx ,ShCx )

T − type ICT = ḡTmT (hTf + 0.04hTs)(vm − VC)

m̄T = B(vm, 63.5, 1.5)

h̄Tf = B(vm, 76.2, 3)

h̄Ts = B(vm, 76.2, 3)

τhTf = 50 ∗ exp(−((vm + 72)/10)2)+ 10

τhTs = 400 ∗ exp(−((vm + 100)/10)2)+ 400

τmT
= 65 ∗ exp(−((vm + 68)/6)2)+ 12

L− type ICL = ḡLmLhL(vm − VC)

m̄L = B(vm, 50, 3)

h̄L = (0.00045/(0.00045+ Cc/1000))

τmL
= 18 exp(−((vm + 45)/20)2)+ 1.5

N − type ICN = ḡNmNhN ∗ (vm − VC )

mN = B(vm, 45, 7)

hN = 0.0001/(0.0001+ Cc/1000)

τmN
= 18 ∗ exp(−((vm + 70)/25)2)+ 0.3

R− type ICR = ḡRmRhR((vm)− VC)

m̄R = B(vm, 10, 10)

h̄R = B(vm, 48, 5)

τhR = 0.5 ∗ exp(−((vm + 55.6)/18)2)+ 0.5

τmR
= 0.1 ∗ exp(−((vm + 62)/13)2)+ 0.05

τmCx

τmVCx

exp(
−(vm−VτmCx

)

SτmCx

)+exp(
(vm−VτmCx

)

SτmCx

)

+ τm0VCx

τhCx

τhVCx

exp(
−(vm−VτhCx

)

SτhCx

)+exp(
(vm−VτhCx

)

SτhCx

)

+ τh0VCx

are mediated by cytoplasmic Ca2+ and IP3, inducing Ca2+

flow out of the endoplasmic reticulum by CICR. Importantly,
CICR from the endoplasmic reticulum is perhaps the most
well-studied Ca2+ signaling pathway in astrocytes (De Pittà
et al., 2019). Aβ may mediate the L-type VGCC, metabotropic
glutamate receptors 5 (mGluR5), ryanodine receptor (RyR)
channels, and membrane leak Jin (Gao et al., 2020). Next,
we define JSERCA which represents the flux of calcium ions
from the cytosol into the endoplasmic reticulum through the
sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA).
The leak flux due to the concentration gradient is indicated by the
“leak” from the endoplasmic reticulum (Jr). The otherCa

2+fluxes

JCICR, JSERCA, JRyR, Jr , Jin, and Jpm are defined as follows:

JCICR = 4MCICR ·H(PCA,Cc, n1).H(Cc, PCI , n1)

·H(IPc, PIP3 , n2)((Cr − Cc) (21)

JSERCA = MSERCA ·H(Cc, PSERCA, n4), (22)

JRyR = (k1 + k2 ·H(Cc, kd + ARyRl, n3)(Cr − Cc), (23)

Jr = Pf (Cr − Cc), (24)

Jin = a1 + a2Pc + Ainl
n5 , (25)

Jpm = λPM ·H(Cc,Kpm, n4). (26)

In Jin, JPLC, and JRyR, we also use Ain,ARyR,Am to monitor the
intensity of these different effects, as well as l to represent the
impact of Aβ . The essential parameters used in our analysis are
listed in Table 1, they have been adopted from Gao et al. (2020).
The modified Ca2+concentrations in the cytosol, endoplasmic
reticulum, and the IP3 concentrations in the IPc cell (Pc) are
defined as follows:

dCc

dt
= JVGCC + Jin + JRyR + JCICR + Pf (Cr −Cc)− JSERCA − Jpm,

(27)

dCr

dt
= JSERCA − JCICR − JRyR − Pf (Cr − Cc), (28)

dPc

dt
= JPLC − PdegPc, (29)

where the initial concentrations are Cc = 0.1µM, Pc =

0.1µM,Cr = 1.5µM at t = 0 motivated and validated by Gao
et al. (2020) and PpC is a half-saturation constant for calcium
activation of PLC, JPLC is the IP3 production rate and defined as:

JPLC = (1+ Aml)MPLC ·H(Cc, PpC, n4). (30)

In astrocytes, our model can replicate typical Ca2+ oscillations
under the influence of Aβ . In addition, Aβ-containing exosomal
release from astrocytes could be coupled by considering L-
Type, N-type, and submembrane Ca2+ concentrations defined
in Equations (4, 11–12). However, the bulk cytosol, endoplasmic
reticulum, and Pc concentrations are the same as defined in
Equations (27–29). Therefore, the relative exosomal release
incorporating Aβ would be the same as defined in Equation
(16) by using the concrete formula for each type of calcium
current is given in Table 2. Further, we recall that, in astrocytes,
transient elevations in cytoplasm-free Ca2+ levels can be
thought of as a form of Ca2+ excitability (Valenza et al.,
2011). The astrocytic plasma membrane contains a variety of
neurotransmitter receptors, and experimental findings show
that astrocytes near synapses react to neurotransmitters (such
as glutamate, GABA, ATP, and others) by increasing their

Frontiers in Computational Neuroscience | www.frontiersin.org 6 September 2021 | Volume 15 | Article 653097106

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shaheen et al. A Neuron-Glial Model

intracellular calcium levels (Di Garbo et al., 2007; Wang et al.,
2012). The release of glutamate, ATP, and other neuromodulators
substances is mediated by an increase in Ca2+, which can
regulate synaptic communication between neurons through
a biological process. Furthermore, recent studies show that
glutamate produced by astrocytes influences neuronal activity
by stimulating a depolarizing current in neurons (De Pittà,
2020). Therefore, for modeling the effect of glutamate release of
astrocytes we used the Nadkarni and Jung model (Nadkarni and
Jung, 2004) that considers a minimal neural networkmodel made
up of two coupled units: a pyramidal neuron and an astrocyte,
by means of the Ca2+ concentration to the additional current
toward the post-synaptic neuron:

Iastro = Aastro ·H[1000 · y]ln(y), (31)

where y = 1000 · Cc − 196.69, Aastro = 2.11µA/cm2, H(x) is the
Heaviside function (Valenza et al., 2011) and Cc is the cytosolic
calcium concentration in the astrocyte defined in Equation (27).
Therefore, the modified membrane potential for the neuron-
astrocyte network model is defined as follows (Di Garbo et al.,
2007):

dvm

dt
=

1

cm

(

gK(VK − vm)+ gNa(VNa − vm)

+gL(VL − vm)+ Iind + Iastro

)

. (32)

2.4. TRPM8 Channel Kinetics
In the present section, we will construct a more realistic
neuronal model where the main characteristics account for
temperature effects on Ca2+-dependant exosomal release in
the neurons given in section 2.1. It is noteworthy to mention
that in neurons potassium currents exceed sodium currents
at higher temperatures, resulting in action potential failure.
Thermal inhibition may, however, also be described by other
temperature-dependent adjustments (Ganguly et al., 2019).
Therefore, understanding the effects of temperature on Ca2+-
mediated exosomal release could be very useful for amore precise
design of strategies to control neural activity in the brain. We
will use the modified Hodgkin-Huxley model to capture the
response of Ca2+-mediated exosomal release in the neurons
by varying the peak sodium and potassium conductances with
temperature. It has been shown that the resting potential varies
with the temperature (Ganguly et al., 2019). In the simplified
neuronal model presented in section 2.1, the peak sodium
and potassium conductances gNa and gK , respectively, were
considered to be constant and temperature independent as given
in Table 1, but these values vary with temperature for a more
realistic neuronal model, i.e., (gK = gKmax(T)m

4
K and gNa =

gNamax(T)m
3
NahNa), where gKmax(T) = 1.60 exp−( T−27.88

12.85 )
2

and

gNamax(T) = 0.42 exp−( T−31.83
31.62 )

2

(Ganguly et al., 2019). Thus,
while modeling the temperature effects, only the membrane
potential, given in Equation (9), will be modified and the peak

conductances values will be computed from the temperature-
dependent gating variables defined as follows:

{

dmK/Na

dt
= φmK/Na (T)(αmK/Na (1−mK/Na)− βmK/NamK/Na),

dhNa
dt

= φhNa (T)(αhNa (1− hNa)− βhNahNa),
(33)

where the functional dependencies of φmK , φmNa , and φhNa











φmK (T) = 4.3518 · 2.7
T−20
10 ,

φmNa (T) = 4.4288 · 3
T−20
10 ,

φhNa (T) = 3.8923 · 2.3
T−20
10 ,

(34)

are adopted from Ganguly et al. (2019) for the considered
temperature of 25◦C. Furthermore, we studied the
somatosensory neuronal subset of cold thermosensors by
creating a mathematical model of a cold sensing neuron
in order to better understand the variety of ionic channels
involved in Ca2+-dependent exosomal dynamics in neurons.
Cold insensitive sodium channels are thought to play a role at
extremely low temperatures, while TRPM8 has been established
as a basic channel in characterizing cold-sensing neurons (Luiz
et al., 2019). Voltage-gated potassium channels, in addition to
these cold-specific ion channels, have been proposed to influence
the temperature threshold degree of activation (Teichert et al.,
2014). This model, in particular, shows how TRPM8 controls
temperature-dependent initiation and inhibition at the threshold
level. Note that a general Hodgkin-Huxley neuronal model
is used here, with an additional current flowing through the
TRPM8 channel (McGahan and Keener, 2020). Therefore, the
modified membrane potential is defined as follows:

dvm

dt
=

1

cm

(

gK(VK − vm)+ gNa(VNa − vm)

+gL(VL − vm)+ Iind + Im8

)

. (35)

To give a current (Im8) for the cold sensing TRPM8 channel
in contrast to the prior Hodgkin-Huxley model, prompted
by McGahan and Keener (2020), with the current taking the
following basic form:

Im8 = gm8am8(vm − Vm8), (36)

where gm8 is the maximal conductance of TRPM8 and Vm8 is
the reversal potential for TRPM8 channels. In addition, am8 is
temperature-dependent and given by Madrid et al. (2009) and
McGahan and Keener (2020).

am8 = B((T + 273.15)1S,1H − zFvm,R(T + 273.15)), (37)

where 1H and 1S are the enthalpy and entropy variations in
between closed and open states, respectively, z is the gating
charge, F and R are Faraday’s and universal gas constants,
respectively, T is the temperature in oC, and Vm8, as previously
stated, is the reversal potential of the TRPM8 channels, which
has been experimentally shown to be near 0 mV (McGahan
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and Keener, 2020) and hence for all our analysis we set
Vm8 = 0. Furthermore, we will modify the neuronal model
presented in section 2.3, where the main characteristics account
for temperature effects on Ca2+-mediated exosomal release
in astrocytes mediated by Aβ . To quantify the effects of
temperature in the developed model, the membrane potential
and the temperature dependant gating variables given in
Equations (33–35) will be used. Moreover, we will develop a
biologically driven model of a Ca2+-mediated exosomal release
in astrocytes mediated by Aβ of a specific cold thermosensor
with the existence of TRPM8 channels. Therefore, we couple the
developed neuronal model with TRPM8 channels for analyzing
the temperature threshold dependence on cold-sensing neurons,
utilizing (Equations 35–37).

3. RESULTS

3.1. Mechanism of Ca2+-Dependant
Exosome-Release Both in Astrocytes and
in Neurons
We start by quantifying the influence of Ca2+ mediated
exocytosis on the membrane potential with a focus on
microdomain Ca2+ concentrations around high-voltage
activated L-type and low-voltage activated T-type Ca2+ channels.
Also, a definition of Ca2+ below the plasma membrane, in
the bulk cytosol, and in the endoplasmic reticulum using the
Ca2+-mediated exosomal dynamics neuronal model. Moreover,
the mechanism of Ca2+-dependant exosome release in response
to square pulses of DC input currents of different amplitudes,
both in neurons and astrocytes on the Ca2+-mediated exosomal
dynamics is also investigated. The numerical results provided in
this section are obtained by using the parameter values collected
from Veletić et al. (2020), as presented in Table 1.

Motivated by Veletić et al. (2020), an external stimulus has
been applied to excite the neurons by using the induced current
pulses ranging from amplitudes of 10–20 µA/cm2 for a duration
of 500 ms, as depicted in Figure 2A. The effects of the induced
pulse of 10–20 µA/cm2 on the membrane potential have been
presented in Figure 2B. As evident from this figure, the rate
of generated sequences of the action potentials is proportional
to both the magnitude and duration of the external stimuli.
Not only this, but the spiking sequences are also significantly
increased when the stimulus effect is incorporated within the
numerical model. Importantly, these spiking sequences control
the dynamics of the VGCCs in the membrane (Veletić et al.,
2020). In addition, the rate of released exosomes from neurons
with relative contributions of Ca2+ channels (evaluated by
Equations 1–7) is shown in Figure 2C for the induced pulse
of 10–20 µA/cm2. As evident from Figure 2C, the applied
external stimulus increases action potential mediated oscillations
around the baseline, resulting in a linear increase in exosomal
release concentrations from neurons. As for astrocytes, the IP3
development rate is linearly proportional to the external stimuli
vind adopted from Veletić et al. (2020).

The corresponding exosomal release rate in astrocytes with
relative contributions of the Ca2+ channels are evaluated by

Equations (10–16) and is shown in Figure 2D corresponding
to vind = 10 − 30 mV (Veletić et al., 2020), where one can
approximate the release rate as constant during the controlling
phase. It is noteworthy to mention that for the considered
parameter set, the total concentration of exosomal release rate in
astrocytes is mainly made up of concentrations based on N-type
Ca2+ concentrations (for heavy depolarization), L-type Ca2+

concentrations, and sub-membrane Ca2+ concentrations (for
weak depolarization). Astrocytes, unlike neurons, are electrically
silent and incapable of generating action potentials (De Pittà
and Berry, 2019b). This implies a variety of mechanisms,
including chemical processes involving IP3, that cause astrocyte
intracellular Ca2+ levels to rise. As shown in Figures 2C,D,
these pathways have significantly slower dynamics than neuronal
spiking, resulting in a significantly slower exosomal release by
astrocytes as compared to the exosomal released by neurons.
We detect an almost linear rise in the concentration of released
exosomes from neurons for all stimuli intensities when non-
depleted readily releasable exosomes are present in the cytosol
throughout the stimulation period. We also found that three-
quarters of the concentration of released exosomes in the
considered scenario emanates from the concentration reliant
on sub-membrane Ca2+ concentrations. As of exosomal release
from astrocytes, we find that the concentration of released
exosomes increases for all evaluated stimulus intensities when
non-depleted readily releasable exosomes are present in the
cytosol. Indeed, Ca2+ signaling is the most often observed
readout of astrocyte activity in response to induced pulse,
whether by synaptic activity, neuromodulators diffusing in the
extracellular ambiance, or external chemical, mechanical, or
visual stimuli. As shown by this interpretation, the individual
astrocytic Ca2+ transient is viewed to some extent as an
integration of the triggering external induced pulse and
therefore is regarded as a demodulating of this pulse (De Pittà
et al., 2019). It is worth noting that exosomes released by
astrocyte activities demonstrated the capacity to specifically
target neurons. Furthermore, the influence of the generated
pulse/control signal presented in Figure 2A on the microdomain
calcium concentrations is delineated in Figure 3. As evident,
the increase in the amplitude of the control signal stimuli
from 10 to 20 µA/cm2 results in a corresponding increase in
the concentrations of Cr , Cm, Cc, while the effect on the CL

concentration is quite negligible.

3.2. Characterization of Amyloid-Beta in
Astrocytic-Calcium Signaling and
Exosome Release
Calcium mediated exosomal release in astrocytes has been
quantified for the membrane potential with particular attention
given to microdomain Ca2+ concentrations surrounding L
and T-type Ca2+ channels linked to a description of Ca2+

in the bulk cytosol, the endoplasmic reticulum, and the Pc
concentrations. The numerical results presented in this section
are based on the parameter values gathered (Ganguly et al., 2019;
McGahan and Keener, 2020; Veletić et al., 2020) as presented in
Tables 1, 2. This newly developed model aimed to explore the
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FIGURE 2 | (Color online) (A) Different amplitudes of induced control signals/currents (Iind (µA/cm2 )) considered in the present study. (B) Responses/spiking sequence

in the depolarized neurons, (C) the relative exosomal release rate in neurons, and (D) the relative exosomal release rate in astrocytes, for Iind = 20 µA/cm2.

FIGURE 3 | (Color online) Microdomain calcium concentrations: (A) CL, (B) Cm, (C) Cc, and (D) Cr corresponding to different values of control signals ranging from

Iind = 10 to 20 µA/cm2.
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importance of VGCCs in astrocyticCa2+-signaling and exosomal
release mediated by Aβ . This study reproduced typical Ca2+

oscillations with the influence of Aβ (i.e., setting l = 0.4, 1)
by integrating different types of VGCCs (Latulippe et al., 2018)
in astrocytes. However, the four separate pathways mediated by
Aβ (i.e., VGCC, mGluR5, RyR, and membrane leak Jin) act to
harm astrocytes by raising the frequency of Ca2+ oscillations,
lowering the membrane threshold for Ca2+ oscillations, and
enhancing the stable state concentration of Ca2+. Furthermore,
by increasing Jin, Aβ expands the membrane potential spectrum
and raises resting Ca2+ concentrations to a low steady-state.
The clustering of mGluR triggered by Aβ causes the oscillating
range to change to a lower potential, as demonstrated in Gao
et al. (2020). The increasing sensitivity of the RyR channel is
primarily responsible for the amplitude of the Ca2+ oscillations.
By triggering L-type VGCC, Aβ increases the resting Ca2+

at the high steady-state and moves the oscillating range to a
lower potential. Aβ will activate L-type channels, resulting in
an increase in intracellular Ca2+ concentration. We emphasize
only the transition of Cc and Pc (defined in section 2.3) by
applying an external stimulus presented in Figure 2A which
has been applied to excite the neurons in the presence of Aβ .
The effects of different values of Aβ on calcium concentrations
for Cc and Pc without applying the induced/control signals
stimulus is presented in Figure 4. It can be seen from Figure 4

that the simulated results and trends are fully consistent with
the studies reported by Gao et al. (2020). It is observed that
Aβ alters the membrane potential which in turn can enhance
the regime of Ca2+ oscillations and increase the stable state
concentration of Ca2+. The Ca2+ oscillations demonstrate that
astrocytes have ionic excitability mediated by Aβ , making them
possible targets for Aβ neurotoxicity. A pathological rise in Aβ

may cause functional and structural abnormalities in glial cells,
including Ca2+ dysregulation. This calcium/gliotransmission
alteration might route a key component in the pathophysiology
of AD. The calcium hypothesis of AD proposes that activation
of the amyloidogenic pathway retrofits neuronal Ca2+ signaling,
affecting normal Ca2+ homeostasis and the processes involved
in learning and memory. Our results show that the presence
of Aβ aggregates raises cytosolic Ca2+ levels. Exaggerated Pc
concentrations evoked Ca2+ release with the influence of Aβ

raises the amplitude of a Ca2+-activated hyperpolarizing current,
which suppresses membrane excitability. Furthermore, as AD
progresses, increasing the threshold for spike activation may
have an effect on coincidence detection and local circuit activity.
Additionally, the effect of the control signal presented in
Figure 2A on the microdomain calcium concentrations has
been depicted in Figure 5. It is evident from Figure 5 that the
increase in the amplitude of the control signal stimuli from
10 to 20 µA/cm2 results in a corresponding increase in the
concentration of Pc and Cc. Cytosolic buffering determines the
presence of a control signal across the plasma membrane in
response to an increase in free cytosolic Ca2+ concentration, the
rate of removal from the cytosol by sequestration into organelles
(primarily r), and cell extrusion over the plasma membrane.
Furthermore, external stimuli leverage subsequent Ca2+ influx
by inactivating voltage- or receptor-operated channels in the bulk

cytosol, activating K channels that lower membrane excitability,
or influencing Ca2+ release from intracellular depots. The spatial
distribution of Ca2+ signals is greatly influenced by cytosolic
Ca2+ buffering. One of the major pathways for Ca2+ release
from the endoplasmic reticulum is through IP3 receptors. The
diffusion of IP3 concentration in the IPc cell can stimulate
Ca2+ release from the endoplasmic reticulum in response to the
activation of the firing of action potentials by external stimuli.
Increased concentrations of Pc pathways may then encourage
the transition to a low-threshold activated L-type Ca2+ current,
causing additional disturbance of intracellular Ca2+ homeostasis
which is a key phenomenon for AD (Bertsch et al., 2020).

Furthermore, the Ca2+-dependant exosomal release from
astrocytes in response to different representative values of
extracellular Aβ has been presented in Figure 6 (Equation 16
used here and all relative equations found in sections 2.1, 2.2). As
depicted in Figure 6, the relative contribution to Ca2+ signaling
enhances the secretion of exosomal release in astrocytes from
all components contributing to Ca2+ signaling in the cytoplasm
(as defined in section 2.3). This means that astrocyte secretion
will generate new synaptic connections for different values of
Aβ , thus, increasing complexity of the neural network. Hence,
increasing the values of Aβ would lead to a significant increase
in the spiking sequence of exosomal release from astrocytes,
while the effect on the concentrations of exosomal release rate
is quite negligible. In addition, the effect of the control signal
presented in Figure 2A on the Ca2+-dependent exosomal release
from astrocytes has been presented in Figure 7 with and without
the influence of activity-dependent Aβ . Figure 7 depicts that the
exosomal release rate is substantially higher when the activity-
dependent Aβ is involved in the model. The external stimulus
enhances the influence of activity-dependent Aβ and the spiking
sequences are significantly larger for the release of exosomes from
astrocytes. The spiking sequences are also significantly reduced
without the influence of activity-dependent Aβ as depicted in
Figure 7.

Our findings suggest that Aβ enhances exosomal release
from the astrocytes. Astrocytes, unlike neurons, are electrically
quiet and cannot trigger action potentials. Because Aβ triggers
astrocytes and neurophysiological properties of selected neurons
by shifting from a high-threshold to a low-threshold triggered L-
type Ca2+ current, this hints that a variety of pathways, including
chemical processes involving Aβ , cause an increase in astrocyte
intracellular Ca2+ levels. It could be an underlying mechanism
for the early metabolic and noncognitive symptoms of AD caused
by hypothalamic dysfunction.

3.3. Characterization of Neural Activity in
the Presence of Exosomal Release From
Astrocytes
In this section, we will discuss the dynamics of neural activity in
the presence of exosomal release from astrocytes by analyzing
it with a model involving an astrocyte coupled to a single
neuron, as developed in section 2.3. The biological processes
involving astrocytes take place in close proximity to the synapses
of neurons. They are sensitive to neuronal activity sensors
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FIGURE 4 | (Color online) Microdomain calcium concentrations for: (A) Cc and (B) Pc with the influence of Aβ (i.e., l = 0.4, 1) without induced/control signals.

that react to glutamate synaptic release with oscillations in
intracellular calcium concentration. The concentration of Pc
is triggered by glutamate elevations in the astrocyte domain,
which activates intracellular Ca2+ dynamics. The amplitude,
frequency, and propagation of intracellular Ca2+ oscillations
produced in astrocytes are regulated by the intrinsic properties of
both neuronal inputs and astrocytes. Astrocytes can distinguish
between numerous forms of neuronal inputs and incorporate
concomitant inputs in response to calcium elevations. Calcium
dynamics are regulated by the interaction of CICR, which is
a nonlinear amplification mechanism dependent on calcium
channels opening to calcium stores, such as the endoplasmic
reticulum. The action of active transporters causes a reverse
flow (SERCA pumps). Signals impinging on the cell from an
outside environment directly regulate the level of Pc (De Pittà,
2020). As a result, the calcium signal can be viewed as
encoded information about the intensity of Pc. The release
of glutamate from the astrocyte is triggered by an increase
in intracellular calcium levels in astrocytes, which promotes a
depolarizing current in neurons (Iastro), modulating pre-synaptic
and post-synaptic neural activities. When a neuron fires, small
quantities of neurotransmitters (glutamate) are released into the
synaptic cleft. The release of intracellular Pc is triggered when
neurotransmitters bind to glutamate receptors on astrocytes.
The action potentials generated by the neuron injected with a
constant current Iind, trigger an increase of the internal Ca2+

concentration of the astrocyte. This event feedbacks an inward
current to the neuron (Iastro).

The time course of the membrane potential and cytosolic
Ca2+ concentrations in the presence of exosomal release from the
astrocyte, when the neuron is injected with the current Iind =

20 µA/cm2, are presented in Figure 8. The results presented
in Figure 8 show that the generation of firing activity in the
exosomal release from neurons occurs during the stimulation
phase alone. In this case, the elevation of the internal Ca2+ level
in the astrocyte is not sufficient to trigger a feedback response in

the neurons (see Equation 32). The increase of the production
rate of Pc amplifies the Ca2+ response in the astrocyte and
so leads to the generation of membrane potentials within a
well-defined time window. The neural dynamics of membrane
potential (vm given in Equation 32) and Cc are altered by the
surrounding activity, i.e., the astrocyte feedback. To illustrate the
impact of the astrocytic feedback on neural excitability, we study
the neural activity dynamics generated by our model both with
and without Aβ . Numerical simulations of dynamical regimes
in which neuronal firing is sustained indefinitely revealed that
cytosolic Ca2+ concentration and membrane potential fluctuate
rapidly under the control of Aβ while spiking sequences are
greatly decreased when Aβ is not present (Figure 8). This
pattern of activity is symptomatic of strong excitability of the
neuronal system that can turn into hyperexcitability during
a pathological crisis. In the time series generated by the
model without Aβ (Figures 8A,C), the neural activity and the
glutamate concentration dynamics remain unchanged after the
instantaneous increase of Iind = 20 µA/cm2, which mimics
glutamate release. In contrast, in the model with Aβ i.e., l =

0.4 (Figures 8B,D), the strong increase in the spiking sequences
of membrane potential and Cc enhance the glutamate release
that halts neuronal activity. Once the action potentials have
become sufficiently low, neural activity re-emerges and glutamate
and concentrations come back to their respective basal values,
oscillating with neural activity. Our results imply that neuronal
activity controls the regional sensitivity of Aβ formation.
Although much of this discussion focuses on Ca2+-regulated
exosomal release from astrocytes in the presence of Aβ , we cover
one transporter, in particular, the cystine/glutamate transporter,
because it is important in neurodegenerative disorders, such
as AD. Cytosolic Ca2+-regulated glutamatergic gliotransmission
activates neuronal extrasynaptic NMDA receptors, altering
neuronal excitability and regulating synaptic transmission. Our
findings point to a mechanism that might explain why neuronal
activity in AD is susceptible to Aβ deposition.
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FIGURE 5 | (Color online) Microdomain calcium concentrations for: (A) Cc and (B) Pc corresponding to control signal shown in Figure 1A ranging as Iind = 10–20

µA/cm2.

FIGURE 6 | (Color online) Ca2+-dependent exosomal release (µ M) from astrocytes corresponding to different values of Aβ, i.e., (A) l = 0.4 and (B) l = 1 without the

influence of Iind .

FIGURE 7 | (Color online) Ca2+-dependent exosomal release from astrocytes corresponding with and without the influence of activity-dependent Aβ, i.e., (A) l = 0

and (B) l = 0.4 with the influence of Iind .
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FIGURE 8 | (Color online) Behavior of membrane potential corresponding to Aβ (A) l = 0, (B) l = 0.4, and Cc (C) l = 0, (D) l = 0.4 with Iind = 20 µA/cm2.

3.4. Temperature Dependence, With
Emphasis on TRPM8-Mediated
Modulations of Membrane Potential
The excitability and response characteristics of a neuron might
change depending on the temperature of the surroundings.
The effects of the induced pulse of 20 µA/cm2 on the
membrane potential with temperature (T = 25 ◦C) and
without the temperature effects have been presented in
Figure 9. As evident from Figure 9, the pace of produced
sequences of action potentials is proportional to both the
amplitude and length of the external stimuli. Not only
that, but when temperature effects are included in the
numerical model, the spiking sequences are considerably
decreased. Importantly, these spiking sequences regulate the
kinetics of VGCCs in the membrane (Veletić et al., 2020).
Variations of membrane potential have been observed when
the membrane temperature is increased/decreased, indicating
that the cell membrane environment in neurons becomes
more electronegative/electropositive. The amplitude of action
potentials, defined as the voltage difference between the threshold
and the peak, and their duration, assessed by the breadth of
the action potential at the threshold, were both impacted by
temperature changes.

The effects of the temperature on the microdomain calcium
concentrations have been presented in Figure 10. As seen
from the analysis of this figure, the intracellular Ca2+

concentrations in the closed and open channels of L-type,
plasma membrane, bulk cytosol, and endoplasmic reticulum
are significantly overestimated if the effect of temperature

FIGURE 9 | (Color online) The effect of temperature on the responses/spiking

sequence in the depolarized neurons for Iind = 20 µA/cm2.

is neglected and the spiking sequences are also significantly
reduced. Indeed, incorporating temperature will result in
a corresponding decrease in the concentration of Cr , Cm,
Cc, and CL concentrations, and the spiking sequences are
also significantly reduced. The findings underpin Huxley’s
theory that thermally induced block is caused by increased
activation of voltage-dependent potassium ion channels in
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FIGURE 10 | (Color online) Microdomain calcium concentrations: (A) L-Type Ca2+ concentration, (B) Sub-membrane Ca2+ concentration, (C) Cytosolic Ca2+

concentration and (D) Endoplasmic reticulum Ca2+ concentration with (red color) and without (black color) temperature effects corresponding to control signal of

Iind = 20µA/cm2.

FIGURE 11 | (Color online) Microdomain calcium concentrations for: (A) L-Type Ca2+ concentration, (B) Sub-membrane Ca2+ concentration, (C) Cytosolic Ca2+

concentration and (D) Endoplasmic reticulum Ca2+ concentration corresponding to control signal of Iind = 20 µA/cm2 and Im8 for different values of temperature.

response to depolarization, particularly at higher temperatures
(Ganguly et al., 2019). The membrane depolarizes in response
to depolarizing currents produced by an advancing action

potential. The voltage-dependent potassium ion channels are
activated, allowing potassium ions to flow out of the neuron,
hyperpolarizing it. The depolarizing current that triggered these
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channels is antagonized by the hyperpolarizing current that
passes through them. As a result, this process efficiently and
quickly stops the action potential from propagating. Since
depolarizing current forms an advancing action potential, a
hyperpolarizing current is more powerful than simply blocking
all ion channels. Instead of being actively antagonized, this
action potential will spread through the passive region of blocked
ion channels, diminishing only as it leaked out through the
passive components of the neuronal membrane, such as leak
channels and capacitance. Moreover, the exosomal release rate
in neurons is directly linked with the Ca2+ concentrations in
different compartments. The exosomal release rate is relatively
higher when temperature effects are incorporated within the
model. This can be attributed to the fact that an increase in
temperature values will lead to a corresponding increase in the
net hyperpolarizing current. The sodium inward current became
shorter and the potassium outward current became faster and
larger due to the increased speed of sodium/potassium ions
gated conductances. As the membrane was depolarized by the
action potential, the net current in the neural network became
steadily outward (hyperpolarizing) with increased temperature
which enhances neural activity. Thus, the exosomal release rate
of the targeted neuron is significantly affected by the changes
in temperature.

Next, considering the state of cold sensing neurons we added
the TRPM8 component in the present model by making gm8

nontrivial (i.e., gm8 = 3). We begin by using (Equation
36) of TRPM8 channels at different physiological voltages in
response to temperature. Figure 11 represents the variation of
the TRPM8 current in response to temperature and voltage.
We combined the Equation (36) of TRPM8 channels with the
induced control signals/currents stimulation given in Figure 2A

that helps describe the overall behavior of Ca2+ concentrations
at different temperature levels (see Equation 35). From Figure 11

we observe that as the fixed temperature level is raised,
a few distinct characteristics occur. The stimulation-induced
control signals/currents show decreasing amplitudes of the
action potentials as the maximum voltage achieved for Ca2+

concentrations decreases with rising temperatures. Additionally,
as the temperature rises, the average amplitude of the TRPM8
current grows. We should recognize that since Vm8 = 0
(McGahan and Keener, 2020), the TRPM8 current will flow
both inward and outward depending on the membrane potential,
nonetheless, it is worth noting that at temperature effects ranging
from T = 5 to 15◦C there is an increase in outward current
and concentration of Cr , Cm, Cc, and CL that behave differently
corresponding to each temperature prescribed in Figure 11. The
amplitude of the action potential decreases and its duration
decreases as the temperature rises. The temperature dependence
of ion channel conductance as well as the time constants of
channel activation/inactivation factors may have an effect on
neuronal function. Thus, temperature variations significantly
affect the Ca2+ concentrations, the rates of diffusion, the rates
of conformational changes, and the rates of metabolic processes.
Similarly, as before, it is seen that an increase in temperature
will result in a corresponding increase in the concentrations of
Cr , Cm, and Cc while the effect on CL concentrations is quite

negligible. The scenario considered in this study is the presence
of cold neurons affecting the concentrations of Ca2+-dependent
exosomal release in neurons defined in section 2.1.

Examining the behavior of the established model as gm8

is increased in response to the simulated temperature ramp
shown in Figure 12A is also instructive. There are two consistent
features across the three different values of gm8, as well as one
that emerges as gm8 is increased. In Figure 12, we observe that
when the neuron turns on and off, there are large amplitude
jumps in the oscillations of membrane potential. Furthermore,
in each of the Figures 12B–D, the neural activity is asymmetric
on the down and up to temperature ramps, with the oscillations
on the up temperature ramp lasting longer. Finally, when gm8

is increased, the neuron stops oscillating in the coldest part
of the temperature ramp. The oscillations shrink in amplitude
as the neuron is osed to lower temperatures, as seen in the
plots with gm8 = 5 and gm8 = 10. While these voltage-
time plots provide an overview of the role of TRPM8 channels
in neuron activation and inactivation, they do not provide
a complete picture. In particular, in the absence of induced
control signals/currents, we wish to include a more complete
description of the interactions between each of the ionic
currents and temperature. The temperature ramp simulation
with increasing TRPM8 maximal conductance provides a better
picture of what the neurons are subjected to physiologically.
The temperature-induced scaling of the rate constants, on the
other hand, can have a significant impact on the length of the
action potential. Temperature impacts the rate of neuron firing
as well as the pace of action potential propagation. Variations
in action potential frequencies with temperature are related
to changes in resting potentials, but not in a straightforward
manner. Cooling lowers the resting potential (depolarization),
which leads to a rise in action potential frequencies, yet, when the
temperature is increased, certain nerve cells exhibit an increase
in frequency.

The effects of the induced pulse of 20 µA/cm2 on the
cytosolic calcium and the IP3 concentrations in the IPc cells
in regards to astrocytic exosome exocytosis mediated by Aβ in
AD (see section 2.3), with temperature (T = 25◦C) and without
the temperature effects have been presented in Figures 13A,B.
The kinetics of Cc and IP3 was markedly accelerated by
increasing temperature. At T = 25 oC, Figures 13A,B show that
the rate of exosomal release of the astrocytes is proportional to
both themagnitude and duration of the temperature and external
stimuli. Therefore, increasing temperature will reduce the spiking
sequences which enhance neural firing or promote neural
activity. The temperature may increase exosomal release from
neurons and glial cells, contributing to Aβ accumulation and
hyperexcitability. The effect of temperature has been examined
on cytosolic Ca2+ concentrations and the IP3 concentrations
mediated by Aβ . Importantly, Ca2+ wave propagation is thought
to be a reaction/diffusion system requiring several cycles of
Ca2+ release from IP3 clusters and diffusion to nearby clusters
to trigger CICR. The study found that the concentrations of
Ca2+ and IP3 in the IPc cells decrease monotonically with
temperature which disturbs the brain dynamics and could lead
to the pathophysiology of AD.
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FIGURE 12 | (Color online) Membrane potential in response to an external temperature ramp. The periodic spiking activity of the neuron in response to temperature

ramp (A) plotted against time with: (B) gm8 = 3, (C) gm8 = 5, and (D) gm8 = 10.

FIGURE 13 | (Color online) Microdomain calcium concentrations for (A) Cc, (B) Pc, with and without temperature effects corresponding to control signal shown in

Figure 2A.

Moreover, a study has been conducted to quantify the effects
of TRPM8 channels in the modeling of Ca2+-mediated astrocytic
exosome exocytosis mediated by Aβ (l = 0.4) in AD. The
TRPM8 part of the model is added by setting gm8 to nonzero.
The open possibility of TRPM8 channels, am8, in response to
temperature at various physiological voltages is first added. All
other parameter values are set to Hodgkin-Huxley norms and
gm8 = 3. As the fixed temperature level is raised, a few
distinct features emerge that include the amplitudes of the action

potentials increase, resulting in an increase in the maximum
voltage reached. As a result, the current model emphasizes the
importance of TRPM8 channels in determining temperature-
dependent activation and inactivation thresholds. Furthermore,
our findings shed light on what happens at the temperature
levels at which these neurons shut down, as well as the role
sodium and leak currents can play. It has been demonstrated by
using both TRPM8 and the stimulus of induced control signal
triggered the calcium concentrations of Cc and Pc defined in
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FIGURE 14 | (Color online) Microdomain calcium concentrations for (A) Cc, (B) Pc corresponding to Im8 and control signal shown in Figure 2A for different values of

temperature, in presence of Aβ.

(Equations 27, 29). From Figures 14A,B, as the fixed temperature
level is increased, a few distinct characteristics emerge in
the presence of cold sensing neurons TRPM8 channels. The
simulation shows that as the temperature rises, the amplitudes
of the action potentials decrease as the maximum concentration
of Cc and Pc declines. It can be seen from Figures 14A,B

that increasing temperature from T = 5 to 15◦C would result
in a corresponding decrease in the concentration of Cc and
Pc in the presence of gm8 = 3. However, TRPM8 channels
were shown to be expressed in the endoplasmic reticulum
where their modulation by activators and/or inhibitors was
demonstrated to be crucial for intracellular Ca2+ signaling. The
rise in inward flux is primarily responsible for the shift in
the TRPM8 current amplitude, in fact, it is worth noting that
from T = 5 to 15◦C there is an increase in outward current.
These findings imply that TRPM8 channels confer temperature
sensitivity to the endoplasmic reticulum, which permits Ca2+

release by facilitating Ca2+ efflux into the cytosol and therefore
contributing to CICR via IP3 and ryanodine receptors. Although
the IP3 evoked Ca2+ signals were qualitatively comparable at
5–15 Ca2+, this difference in temperature should take into
account the temperature sensitivity of IP3-mediated signal
amplitudes. The transition temperature was 25◦C in all cases,
which might indicate a phase change in the lipids of the
cytoplasmic membrane. Our findings demonstrate that using
this temperature range (from T = 5 to 15◦C) significantly
increases the amplitude and lowers the frequency of global IP3-
mediated Ca2+ signals, which is consistent with findings from
a variety of different cell types. For instance, fast cooling elicits
strong oscillatory Ca2+-activated leak currents when the IP3
pathway is active and has been shown to enhance the amplitudes
of IP3-mediated Ca2+ signals in several cultured glial cells,
including Schwann cells and olfactory ensheathing cells, as well as
astrocytes. As a result, the temperature sensitivity of the cytosolic
Ca2+ concentration underpinning global IP3-mediated signals
appears to be a common occurrence, which must be taken into
account when extending data obtained at room temperature to
body temperature.

4. CONCLUSION AND DISCUSSION

We presented an integrated mathematical model for therapeutic
exosomal release modulated by an externally applied stimulus.
The proposed model combines cell activation, intercellular
signaling, and exocytosis and allows to shed light on the relative
roles of different subcellular Ca2+ compartments and astrocytes
in exosomal release regulation. We implemented a novel model
for accurately quantifying the Ca2+-mediated astrocytic exosome
exocytosis mediated by amyloid-beta in AD. In addition, a
comparative analysis has been conducted to quantify the effect of
temperature and cold-sensitive neurons on the Ca2+-dependent
exosomal release mediated by VGCCs and amyloid-beta in AD.
Moreover, we calculated the astrocytic current as a function of
both the pre-synaptic neuron current and the astrocyte (Li-Rinzel
model). This work describes the synapse and astrocyte couplings
in a computationally efficient model. It is possible to simulate
real-time spiking artificial neuron-glia networks using the model
proposed in this study, revealing the mechanism that appears
to be a necessary part of the regulation of spiking activities.
We showed that this model can be used to simulate the neuron
astrocyte interaction. The results obtained with the developed
model suggest that cell depolarization in neurons is directly
related to the exosomal release which is proportional to the
applied stimulation. The novelty of the present research is in the
development of the Ca2+-mediated exosomal dynamics model of
neurons accounting for the temperature effects with emphasis on
TRPM8-mediated modulations of membrane potential. Further,
it has been observed that Ca2+ concentrations in the respective
compartments, and thus the overall Ca2+-mediated exosomal
dynamics are significantly affected by the changes in temperature
and TRPM8 channels. The findings show that TRPM8 and
VGCCs play an important role in determining temperature-
dependent activation and inactivation at numerous threshold
levels. Thermal effects caused by cold detecting neurons cause
Ca2+ to be released from the endoplasmic reticulum of primary
spiral ganglion neurons. The activation of TRPM8 channels
causes Ca2+ release, which is amplified by CICR. TRPM8
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channel that colocalizes with the endoplasmic reticulum, is
immunostained in the neurons. Indeed, the original andmodified
Hodgkin/Huxley models have a high degree of qualitative
agreement, and the findings of this study are a significant move
toward a better understanding of a novel modality for altering
neural activity. The developed neuronal model provides an
important step not only for our better understanding of the
exosomal dynamics in neurons and astrocytes but also paves
the way for the generation of new models aiming at optimizing
and designing exosome-based drug delivery systems for the
treatment of brain pathologies and neurodegenerative disorders
such as AD.

Our model supports the view that astrocytes normally serve
as neuronal signaling events, but in AD, they transform into
astrocyte-derived exosomes, which can disrupt neurons via
unknown mechanisms (Goetzl et al., 2016). The development
of methods for isolating Ca2+-dependent exosome-release both
in astrocytes and neuronally derived exosomes from plasma
has enabled researchers to quantify neuronal proteins important
in the pathogenesis of human neurodegenerative diseases. The
astrocyte-derived exosomes were shown to be positive for
neuroglobin, a protein that acts as a neuroprotectant against
cell injury (Venturini et al., 2019); the notion that exosomes
transmit neuroglobin to neurons would add another mechanism
to the possible astrocytic neuroprotectant activity. Control signal
microdomain Ca2+ concentrations unavoidably impact a wide
range of neuronal activities, from the regulation of the overall
cytosolic Ca2+ signal to the production of cell death. Multiple
changes in this particular signaling pathway are prevalent in
several neurodegenerative disorders, including AD, PD, and
amyotrophic lateral sclerosis (ALS), emphasizing its importance.
To further substantiate our findings presented on this study, a
variety of future investigations into the astrocyte sources and
cytotoxic mechanisms of complement proteins in astrocyte-
derived exosomes will be needed. However, the definitive
etiological relationships between the neuronal accumulation of
primary neurotoxic proteins such as amyloid-beta, tau, and
reductions in synaptic proteins that contribute to early synaptic
dysfunction are now being discovered (Goetzl et al., 2018). It
is worth noting that changes in intracellular Ca2+ signaling
decrease neuronal interactions and enhance both acute and
chronic degenerative diseases of the nervous system. In the
present study, we found that due to the biophysical properties
of voltage-gated and ligand-activated ion channels and receptors,
Ca2+ fluxes through the neuronal membrane are strictly time-
constrained. The neural activity could be enhanced by Ca2+-
dependent receptors and channels, constantly rearranged as they
are embedded in the crowded dynamic environment of biological
membranes, allowing for temporary interaction and the creation
of transient signals. In a highly dynamic environment, efficient
Ca2+-mediated signal transduction necessitates mechanisms
that support the very precise spatiotemporal alignment of
the Ca2+ source and Ca2+-dependent exosomal exocytosis
(De Pittà, 2020). Neuroprotective strategies that target various
aspects of the dynamic regulation of intracellular Ca2+ signaling
are a promising avenue for pharmaceutical intervention in
nervous system neurodegenerative diseases, such as AD.

Moreover, several intracellular Ca2+ signaling regulators found
on the plasma membrane and intracellular organelles have been
implicated in many of these pathophysiological processes (Valori
et al., 2019). Our current understanding sheds new light on
the essential roles of Ca2+ channels in synapse formation and
function in the healthy central nervous system. Importantly, the
previous studies were focused on the effect of temperature and
TRPM8 channels on Ca2+-dependent exosome-release, where
the temperature has been linked to dementia and may play a
role in clinical phenotypes, particularly in the frontotemporal
lobar degeneration continuum, but the cause of these symptoms
has yet to be determined (Fletcher et al., 2015; De Pittà and
Berry, 2019b; McGahan and Keener, 2020). Furthermore, altered
neural activity and temperature perceptions may be expected in
some neurodegenerative disorders, including AD, that can lead
to impairments of the integrity of distributed and temperature
processing networks. Alzheimer’s syndrome is a notable test case.
Future studies will be focused on the inclusion of other Ca2+

compartments linked to the integration of experimental mice
model data of AD and on the development of a new stochastic
model based on the ideas highlighted in this study.
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The human brain contains billions of neurons that flexibly interconnect to support local

and global computational spans. As neuronal activity propagates through the neural

medium, it approaches a critical state hedged between ordered and disordered system

regimes. Recent work demonstrates that this criticality coincides with the small-world

topology, a network arrangement that accommodates both local (subcritical) and global

(supercritical) system properties. On one hand, operating near criticality is thought

to offer several neurocomputational advantages, e.g., high-dynamic range, efficient

information capacity, and information transfer fidelity. On the other hand, aberrations

from the critical state have been linked to diverse pathologies of the brain, such as

post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain

activity, through neuromodulation, presents an attractive mode of treatment to alleviate

such neurological disorders, but a tractable neural framework is needed to facilitate

clinical progress. Using a variation on the generative small-world model of Watts and

Strogatz and Kuramoto’s model of coupled oscillators, we show that the topological

and dynamical properties of the small-world network are divided into two functional

domains based on the range of connectivity, and that these domains play distinct roles

in shaping the behavior of the critical state. We demonstrate that short-range network

connections shape the dynamics of the system, e.g., its volatility and metastability,

whereas long-range connections drive the system state, e.g., a seizure. Together, these

findings lend support to combinatorial neuromodulation approaches that synergistically

normalize the system dynamic while mobilizing the system state.

Keywords: small-world, neuromodulation, neural oscillations, topology, simulation, network, criticality

INTRODUCTION

The human brain is thought to contain billions of neurons that densely interconnect
across short and long spatial distances (von Bartheld et al., 2016). The pattern of neuronal
activity hinges on the anatomical and functional medium by which it is generated, and
in which it propagates (Figure 1) (Wolfram, 1984a,b; Perc, 2007; Wang et al., 2010). In a
hypothetical lattice, where nodes are highly ordered and hold no long-range shortcuts, signals
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FIGURE 1 | The small-world topology. Upper panel: By randomly rewiring an ordered lattice, it gradually transitions to a disordered graph. Within this transition, the

small-world arrangement defines a critical state. Green: clusters. Yellow: short-range connections. Blue: long-range connections. Red: the shortest path between

nodes x and y. Lower panel: with increasing randomness, the degree of separation between nodes in the network rapidly decreases (red), while clustering remains

practically unchanged within a wide limit (green). The small-world topology corresponds to the dashed area containing high-clustering and low-separation properties.

tend to fizzle out locally due to the resistance that high-
nodal separation exerts on global transmission (Shew and Plenz,
2012). This contrast with more disordered graphs where signals
tend to overwhelm the global network span through dense
interconnectivity. Intermediately, in the “small-world” network
formed by integrating just a few long-range shortcuts into an
otherwise ordered lattice (Watts and Strogatz, 1998), signals
tend to reverberate, perched on the edge of chaos in a so-called
“critical” state (Shew and Plenz, 2012; Kim and Lim, 2015).
Intriguingly, it is thought that the functional topology of the
brain tends to this criticality (Takagi, 2018), flexibly maneuvering
it based on an immediate operational needs; by dynamically
recruiting or abandoning short- and long-range functional
connections, e.g., through coherence of neuroelectric oscillations
(Singer, 1999; Buzsáki, 2006; Akam and Kullmann, 2014), or
neuroplasticity (Dan and Poo, 2004; Shin and Kim, 2006), the
brain maneuvers clustered and disordered topological phases
tuned to local and global operational spans, respectively. Within
this theoretical framework, the dynamics of the brain essentially
reflect a dialectic on one hand pulling the brain to its topological
extremes (Poil et al., 2012; Shew and Plenz, 2012; Hesse and
Gross, 2014), while, on the other hand, keeping it near the critical
state (Shin and Kim, 2006; Hesse and Gross, 2014; Priesemann,
2015; Takagi, 2018). Operating near criticality is thought to
offer several neurocomputational advantages, e.g., high-dynamic
range, efficient information capacity, and information transfer
fidelity. In turn, aberrations from criticality have been theorized
to underpin distinct neuropathologies, such as post-traumatic

epilepsy and consciousness disorders (Colombo et al., 2016).
Certainly, the malfunction of long- and short-range functional
connections, by injury or otherwise, could have disastrous
effects on the dynamics of the brain (Pevzner et al., 2016). In
this Original Research article, we investigate specifically how
long- and short-range connections affect the topological and
dynamical properties of the small-world network. Our results
indicate that short-range connections shape the dynamics of
the system, whereas long-range connections define its state.
We discuss the implications of these differential effects on
clinical neuromodulation.

METHODS

See Table 1 for model parameters.

Network Generation
To keep a manageable number of free parameters, and to
reduce the artifacts of boundary conditions, we restricted our
analysis to a generative ring network model based on the small-
world model of Watts and Strogatz (1998). These ring networks
were generated using custom Python code based on the open-
source module networkx. Briefly, N = 1,000 nodes were each
wired to their h nearest neighbors, thus denoted “short-range”
connections (for h well below saturation, h << N). Next, each
node on average received an additional set of g random, yet
unique, wires, which were denoted “long-range” connections (as
wires of g did not equal those of h). Concretely, long-range
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TABLE 1 | Model parameters.

Description Notation Notes

Network topology

Short-range connections h, H [4–50]

Long-range connections g, G [0.001–10]

Adjacency matrix Amn

Small-world coefficient ω [−1–+1]

Kuramoto-type simulation

Oscillatory phase θm [0◦–360◦]

Network synchrony r [0–1]

Natural frequency ǫ Gaussian: µ = 0, σ = 1

Total nodes N 1,000

connectivity g was generated by a nested loop given by g = T×u,
where T is the maximum number of additional wires per node,
and u is the average fraction of these actuated. To approximate
biological gray-white matter ratios, while retaining a connected
graph, we kept the range of short-range connectivity ∼10 times
that of long-range connections (Bajada et al., 2019; Mota et al.,
2019).

Finally, each network was defined by its adjacency matrix,
Amn, which was used for network simulation analysis (see
Kuramoto’s Model of Coupled Oscillators).

Small-World Coefficient
To quantify the extent to which a network resembled a small-
world network, we computed the small-world coefficient ω

(Telesford et al., 2011). Essentially, the small-world coefficient
compares the resemblance of a network to a perfectly ordered vs.
a perfectly disordered arrangement based on the extent to which
the nodes of the network are clustered and the extent to which
they are separated. The small-world coefficient is defined as:

ω =
Ldisordered

L
−

C

Cordered
,

where L is the average shortest path length between nodes in
the network, and C is the degree of clustering (Figure 1). The
disordered and ordered networks were generated based on the
long-range connectivity given by g = T × u (see Network
Generation). For the perfectly ordered network, no long-range
connections were added, thus u= 0, and consequently g = 0. For
the perfectly disordered network, the maximum number of long-
range connections was introduced, thus u= 1, and consequently
g= T.

The network parameters C and L were computed using
common graph theory methods. Concretely, clustering C was
computed as the network transitivity, such that:

C =
3∇

Tr

where ∇ is the number of closed triplets in the network, and Tr
is the maximum number of triplets. The average shortest path
length L was given by:

L =
∑

s,t∈V

D (s, t)

N (N − 1)
,

where V is the set of nodes in the network, D(s,t) is the shortest
path length from node s to t, and N is the total number
of nodes. Thus, when network separation L ≈ Ldisordered, and
network clustering C << Cordered, the small-world coefficient
ω ≈ +1, meaning that the network approximates a perfectly
disordered graph. Similarly, for the perfectly ordered lattice,
when network clustering C ≈ Cordered and network separation L
>> Ldisordered, the small-world coefficient approximates ω ≈−1.
Crucially, the small-world topology is defined as the critical state
possessing both qualities, namely, network clustering similar to
an ordered lattice C ≈ Cordered,and network separation similar
to a disordered graph L ≈ Ldisordered; thus, the small-world
coefficient tends to ω ≈ 0 as the network tends to the critical
small-world arrangement.

Kuramoto’s Model of Coupled Oscillators
Each node of the network was modeled as a coupled Kuramoto-
type oscillator (Yamamoto et al., 2018), described by the set of
N-coupled differential equations (Breakspear et al., 2010):

θ̇n = εn +
K

N

N
∑

m=1

Amn sin (θm − θn), n = 1, . . . , N,

where the nth oscillator with a natural frequency εn adjusts
its phase velocity θ̇n based on the pair-wise phase interactions
with its coupled peers (provided by the adjacency matrix Amn,
see Network Generation). The internodal coupling was K = 3,
and the natural frequencies were distributed according to the
Gaussian probability density with mean ε0 = 0. The state of
the node (n = 1, . . . , N) was thus defined by its phase θ , which
was calculated by the Livermore Solver for Ordinary Differential
Equations (LSODA) method with a dynamic time step.

The degree of synchrony in the network was quantified by the
order parameter r, given by:

r (θm) = reiψ =
1

N

N
∑

m=1

eiθm ,

where ψ is the mean phase of the set of oscillators N, and
the scalar r represents the order, or phase uniformity, of
the network. An open-source Python implementation of the
Kuramoto oscillatory system is available online, which was used
to generate the simulation data presented here (Damicelli, 2021).

Stability and Attractiveness Analysis
To compute the stability of different network states, we set the
initial synchrony level of the network via the initial nodal phases
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θm0. Thus, for initial synchrony r0 = 0.5, on average 50% of the
nodes of network had equal phases in the initial state. Then, at
a predefined time-step 1t = 250, not necessarily in the steady-
state, the deviation of the network from the initial synchrony
level was computed, revealing the stability of the initial state.
Specifically, larger deviations reflect weaker stability. Repeating
this process for all combinations of initial synchrony levels
and connectivity parameters produces the stability heat maps
depicted in Figure 4A.

To calculate the attractiveness of different network states, we
checked which synchrony levels the networks shifted to during
the simulations and scored the end synchrony level based on
the size of the shift. For instance, for initial synchrony r0 = 0.5,
and long-range connectivity g = 0.001, one network might end
up in end synchrony level r1 = 0.0. This adds a score of s =
|r0 – r1| = 0.5 to the end synchrony state r1. The synchrony
states holding the highest cumulative scores had the highest
attractiveness. Repeating this process for all the combinations of
initial synchrony levels and connectivity parameters produces the
attractiveness heat maps given in Figure 4B.

RESULTS

To examine the effects of long- and short-range connections
on the topological and dynamical properties of the small-
world network, we applied a variation on small-world model
of Watts and Strogatz (1998) and the Kuramoto model of
coupled oscillators (Kuramoto, 1984). Concretely, we generated
an ordered ring lattice consisting of N = 1,000 nodes, each
node connected to its h nearest neighbors. To this base, we
added, on average, g unique long-range connections per node.
Thus, by definition, long-range connections g were topologically
distinct from their short-range correlates h, holding true for
short-range connectivity well below network saturation, h <<

N. Then, to quantify the extent to which a network resembled
a small-world network, we computed the small-world coefficient
ω (Telesford et al., 2011). Essentially, the small-world coefficient
compares the resemblance of a network to a perfectly ordered
vs. a perfectly disordered arrangement based on the extent to
which the nodes of the network are clustered and the extent to
which they are separated. More specifically, ordered, subcritical
lattices tend to ω ≈ –1, having high-clustering and high-
separation parameters; disordered, supercritical graphs tend to ω

≈+1, having low-clustering and low-separation parameters; and
critical small-world topologies tend to ω ≈ 0, having both the
ordered and disordered tendencies balanced out (see Methods).
Within this definition, we visualized the topological behavior
of the network by plotting the small-world coefficient ω as a
function of the long- and short-range connectivity g and h,
respectively (Figure 2). Finally, we used the same topological
framework to generate networks of coupled Kuramoto-type
oscillators (Kuramoto, 1984).

Long-Range Connections Dominate the
Topological State
We first examined the roles of short- and long-range connections
in defining the topological state of the network, specifically by

keeping one parameter static (uppercase letters H and G) while
modulating the other (lowercase letters h and g) (Figure 2).
We found that modulations of the long-range connectivity g
offered a near full topological range despite the underlying
static short-range connectivity H (Figure 2A; ∼70% ± 0.05;
mean ± SEM). Yet, the opposite was not the case: Invariant
to the underlying long-range connectivity G, increases to the
short-range connectivity h all converged to the critical state
(Figures 2A,B). In general, less than half of the topological range
was attainable by short-range modulation alone. Thus, short-
range connections appear to be poorly suited as a modulator of
the topological state.

For further examination, we computed the first derivative
of the topological state to reveal the state mobility 1ω of
the network, i.e., how readily the network moved from one
topological state to another via changes to its connectivity
parameters h and g (Figure 2C). We found that across all
underlying long-range connectivities G, modulation of the short-
range connectivity h had near null effects on the topological state.
Modulation of the long-range connectivity g of the network,
however, offered potent state mobilization within the subcritical
and critical regimes, but near null mobility approaching
supercriticality. The dominant role of long-range connections on
the topological state was confirmed by dominance analysis (R2 ∼

0.648 for long-range vs. R2 ∼ 0.003 for short-range connections).
These results together indicate that the topological state of

the small-world network is dominantly defined by the long-
range connectivity (Watts and Strogatz, 1998) and that the
topological mobility of the network is the most potent well below
supercriticality (Carhart-Harris et al., 2014).

Short-Range Connections Shape the
Topological Dynamics
Next, we evaluated how the underlying short-range connectivity
H affects the topological behavior of the network, as reflected by
the shape of the topological state curves (Figure 2). We found
that as the static short-range connectivity H was reduced, the
state curve steepened about the critical point, thus, contracting
and “right-shifting” the critical regime to higher values of the
long-range connectivity g (Figure 2A). This indicates that, to
sustain the small-world criticality, poorly clustered networks (low
H) must integrate long-range connections to a greater extent, yet
within a narrower limit.

We then calculated the difference in state mobility of
networks that had a high-static short-range connectivity (H
= 100) and a low-static short-range connectivity (H = 10)
(Figure 2C). In this difference plot, negative values reflect a
reduction in the state mobility of the network, which essentially
equates to a stabilization of the topological state (and oppositely
for the positive values). Intriguingly, we found that, as the
static short-range connectivity H was reduced, the stability
of the topological state shifted to the subcritical regime,
strongly destabilizing the small-world criticality (Figure 2D).
This indicates that the short-range connectivity of the network
has fundamental effects on the stability of the network across
diverse topological regimes.
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FIGURE 2 | The small-worldness of networks with varying long- and short-range connectivity values. (A) Small-world coefficients in a N = 1,000 graph with static

short-range connectivity H = 10, 50, 100 averaged over 100 samples, shown in semilogarithmic x-axis. Inset, shown in non-logarithmic x-axis. The vertical dotted

lines represent the bounds of the critical regime for networks H = 10 and H = 100. Note that the criticality contracts as the static short-range connectivity decreases.

(B) Small-world coefficients in a N = 1,000 graph with static long-range connectivity G (G ≈ 0.001, 0.03, 0.8, 10) averaged over 100 samples. Note that the

short-range state curves converge to the critical state despite the underlying static long-range connectivity G. (C) The first derivative of the state curves, shown in A

and B, constitutes state mobility of the network, i.e., how well it transitions from one topological state to another. Note that modulation of short-range connections h

provides near null mobility of the topological state, vs. modulation of long-range connections g. Mobility of the topological state is mainly situated within subcritical and

critical spaces, leaving near null mobility at high-connectivity values. (D) Difference in state mobility between networks with static short-range connectivity H = 10 and

H = 100. The diagram shows that the topological state is stabilized in the subcritical space (negative values) and destabilized near criticality (positive values). Note that

all plots have logarithmic x-axes. Data points are mean ± standard error of the mean.

Network Synchronizability
To extend our topological findings, we examined the
synchronization properties offered by small-world networks
of varying short- and long-range connectivity parameters
(Figure 3). To this end, we quantified the global network
synchrony at the steady-state using Kuramoto’s order parameter
r, which reflects that the global phase uniformity of the network
nodes (see Methods).

By gradually integrating long-range connections into
the network structure, our simulations show that the

synchronizability abruptly reaches a critical point at which the
network shifts from a state of low synchrony to near-complete
synchrony (Figure 3A). Such “explosive synchronization,” a
critical transitioning, is characteristic for the Kuramoto-type
coupled oscillators (Kuramoto, 1984; Gómez-Gardeñes et al.,
2011; Boccaletti et al., 2016), and mirrors the topological
criticality of small-world networks (Figure 1) (Watts and
Strogatz, 1998).

Next, we modeled the synchronizability using four-parameter
logistic regression (Figure 3B). Like in our topological findings,
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we found that the slope of the critical transitioning b steepened
as the static short-range connectivity H was reduced, indicating
a destabilization and narrowing of the critical regime (Figure 3B,
inset). The minimal synchronizability a of the network moreover
related proportionally to the static short-range connectivity,
indicating baseline synchronization hinged separately on short-
range interactions. Indeed, as more short-range connections are
introduced, the network ultimately reaches a point of saturation
where global synchronization becomes deterministic, invariant to
topological modulations (Barahona and Pecora, 2002).

Finally, by calculating the divergence of the network from a
predefined initial synchrony level (see Methods), we examined
the stability and attractiveness of different network states
(Figure 4). First, these data confirm that the stability of the
critical regime narrows as short-range connectivity decreases.
Second, as short-range connections are removed, we find
that the network becomes increasingly attracted to subcritical
synchrony states (Figure 4B), which aligns with the topological
destabilization that favors subcriticality presented earlier (cf. red
curves in Figures 2D, 4D, and inset).

Network Metastability Depends on
Short-Range Connections
Our data show that the functional interactions of the network
converge as the static short-range connectivity decreases
(Figure 3B, note narrowing standard deviation). Accordingly, we
found that the long-range connectivity g in the poorly clustered
network (low H) had a very high predictive power (PPS) on
the global synchrony r of the network, whereas highly clustered
networks (high H) were generally poorly predictable (H = 10,
PPS = 0.93; H = 100, PPS = 0.43) (Wetschoreck et al., 2020).
Furthermore, as the short-range connectivity of the networks
tends to saturation (H to N = 1,000), the PPS drops to 0. More
specifically, we find that the PPS is linearly proportional to the
short-range connectivity of the network (PPS = −0.010H +

0.985; R2 = 0.99) (Supplementary Figure 1).
The PPS can be used to assess themetastability of the network.

Thought to be inherent to cognition (Alderson et al., 2020),
metastability defines a dynamical regime that accommodates
flexible interactions of network nodes without stagnating in the
fixed positions (Hellyer et al., 2015). Thus, our results show that
metastability of the network depends linearly on the underlying
short-range connectivity (by dominance analysis, R2 = 0.438
for the short-range vs. R2 = 0.136 for long-range connections).
These simulation data altogether mirror our topological findings
by suggesting that short-range connections are pivotal for the
network’s system dynamics (Figure 4).

DISCUSSION

We have investigated the effects of short- and long-range
connections on the topological and dynamical properties of the
small-world network. Converging with previous work (Watts
and Strogatz, 1998), we demonstrate, first, that long-range
connections determine the topological and functional state of the
network. Second, we show that short-range connections shape

the dynamics of the system, i.e., the stability of the system across
diverse topological regimes (Figures 2, 4). Our findings together
provide evidence that short- and long-range connections play
distinct roles in shaping the behavior of the small-world network.

The topological properties of a network have fundamental
effects on the activity taking place on it (Strogatz, 2001). Several
works have, for instance, analyzed the spread of infectious disease
in small-world networks, finding fluctuations between sporadic
endemic and self-sustaining epidemic infectious cycles based
on network disorder (Kuperman and Abramson, 2001; Rüdiger
et al., 2020). Others have examined the synchronizability of
coupled oscillators on small-world graphs (Barahona and Pecora,
2002; Nishikawa et al., 2003). Later, such simulations have been
expanded to examine cortical oscillations and neuroplasticity
(Maistrenko et al., 2007; Breakspear et al., 2010).

The human brain is a complex system sustained by the
interactions of billions of neurons across local and global
spatial scales. Previous work has shown that the functional
topology of the brain tends to a small-world-like criticality that
accommodates both local (subcritical) and global (supercritical)
system properties (Bassett and Bullmore, 2017; Takagi, 2018).
The hypothesis that the brain maintains a proximity to the
critical state stems from the premise of superior computational
adaptability to rapidly changing operational demands (Massobrio
et al., 2015a). Contention posits, however, that signatures for
criticality, e.g., power-law distributions, could be artifacts of
sampling (Touboul and Destexhe, 2010; Marsili et al., 2013),
multiplicative noise (Sornette, 1998) or emerge from “hidden
variables” not necessarily linked to network topology (Aitchison
et al., 2016; Morrell et al., 2021). While an exhaustive review is
beyond the scope of this discussion (Beggs and Timme, 2012), we
note that diverse data supports the relationship between critical
neural dynamics and small-world topologies (Massobrio et al.,
2015b; Tan and Cheong, 2017; Takagi, 2018) and the presence of
critical signatures in human fMRI (Kitzbichler et al., 2009), local
field potentials (Petermann et al., 2009), spike data (Friedman
et al., 2012), human brain oscillations (Poil et al., 2008),
and artificial neural networks (Shin and Kim, 2006). Indeed,
congruent with a near-critical regime (Priesemann, 2015), the
brain operates within a wide dynamic range that accommodate
high-level cognition through global neural coordination (Taylor
et al., 2015), and low-activity states, such as anesthesia (Brown
et al., 2010), and, to some extent, sleeping (Priesemann et al.,
2013; Tagliazucchi and van Someren, 2017), marked by weaker,
more fragmented interactions outside the local milieu.

It is believed that neural oscillations, or “brain waves,”
mediate short- and long-range neural connectivity through high-
and low-frequency wavebands, respectively (Kopell et al., 2000;
Buzsáki, 2006; Tiesinga and Sejnowski, 2009). In essence, the
wave interference of oscillating neural populations facilitates the
selective transfer of information (Singer, 1999; Buzsáki, 2006;
Akam and Kullmann, 2010). Thus, it has been hypothesized
that the malfunction of such neural interactions may have
deleterious effects on the brain’s system dynamics (Uhlhaas
and Singer, 2006; Pevzner et al., 2016). In agreement with this
premise, our results indicate that impairments to the network’s
short-range connectivity destabilize the small-world criticality in
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FIGURE 3 | Simulations of Kuramoto’s coupled oscillators in small-world networks. (A) Upper panel shows the network activity over time. Colormap represents the

phase of the nodes (faint: hyperpolarized–strong: depolarized). g, long-range connectivity. Lower panel shows the global synchrony of the network over time. The

network activity, sampled in the upper panel, was mapped by r(θm) to reveal the network synchrony/order r given the set of oscillatory phases θm. The lines represent

individual trials, color-shaded to increase visual separability. Red, H = 10, low short-range connectivity. Green, H = 50, intermediate short-range connectivity. Blue, H

= 100, high short-range connectivity. (B) Averaged over 15 trials, this diagram shows the steady-state synchronizability of the network as the long-range connectivity

g increases. Data points are mean ± SD of the mean. The shaded area corresponds to the SD of the mean, fitted to the logistic function. The SD of the mean is

equivalent to metastability of the network, defining a dynamical regime that facilitates flexible nodal interactions without stagnating in fixed positions (Hellyer et al.,

2015). Logistic curve parameters: a, minimum synchronizability; b, critical slope; d, maximum synchronizability; H, short-range connectivity. Red, H = 10, low

short-range connectivity. Green, H = 50, intermediate short-range connectivity. Blue, H = 100, high short-range connectivity.

favor of extreme network regimes, i.e., sub- and supercriticality
(Figures 2D, 4C). Such departure from criticality has been linked
to large-scale fMRI signatures of unconsciousness (Tagliazucchi
et al., 2016).

Subcritical networks tend to be states of desynchronization
and clustering that perturb global network processing, e.g.,
cognition (Roozenbeek et al., 2013). Congruently, our
simulations show that sparsely clustered networks, with
poor short-range connectivity, exhibit weak metastability
(Supplementary Figure 1), which has been correlated with
deficits in cognitive flexibility (Hellyer et al., 2015).

Notably, our stability analysis indicates that damage to
the short-range connectivity of the network could produce a
“repellant peak” that effectively barricades the critical regime,
trapping the network activity in a subcritical trough (Figure 4D).
Such “subcritical entrapment” aligns with the behavioral

heterogeneity of persistent disorders of consciousness (Giacino
et al., 2014), e.g., partial retainment of cognitive processing,
and lends theoretical support to the rehabilitation of the system
dynamic, e.g., through short-range neural potentiation.

The supercritical network, on the other hand, tends to
hypersynchrony, broadly resembling the state of seizures
(Szaflarski et al., 2014; Zimmern, 2020). Indeed, researchers have
argued that epileptiform seizures reflect a critical–supercritical
transition (Arviv et al., 2016; Bauer et al., 2017; Freestone
et al., 2017), which was recently supported by a strong
electroencephalographic sign in human patients (Scheffer et al.,
2009; Maturana et al., 2020). Similarly, Gerster et al. report that
artificial neuronal oscillators on supercritical small-world graphs
mirror electroencephalographic epileptic patterns (Gerster et al.,
2020). The refractoriness of some types of epilepsy could thus
reflect an underlying destabilization of the critical regime by
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FIGURE 4 | Network stability. (A) Heat map of the stability of different network states. Note the narrowing stability of the critical regime in the sparsely clustered

network H = 10, vs. H = 50, 100. H, short-range connectivity; g, long-range connectivity; r, network synchrony; Blue, stable; Yellow, unstable. (B) Heat map of the

attractiveness of different network states. Note the increased attractiveness of extreme network regimes, particularly subcriticality, in the sparsely clustered network H

= 10. H, short-range connectivity; g, long-range connectivity; r, network synchrony; Blue, highly attractive; Yellow, less attractive; White, unattractive. (C) Difference in

state attractiveness between low (H = 10) and intermediate (H = 50) short-range connectivity networks. H, short-range connectivity; g, long-range connectivity; r,

network synchrony; Red, increased attractiveness; Green, decreased attractiveness; Faint, unchanged attractiveness. (D) The difference in attractiveness between

differently clustered networks, meaned along the long-range connectivity g-axis. Note the repellant peak at the critical–subcritical boundary, and the subcritical trough,

which together could facilitate subcritical entrapment. Inset shows the main plot data in a transposed view AT , which makes its similarity to the topological

destabilization pattern clearer (Figure 2D). Red, dashed curve shows the attractiveness difference of sparsely clustered H = 10 and densely clustered H = 100

networks. Green, solid curve shows the attractiveness difference of sparsely clustered H = 10 and intermediately clustered H = 100 networks.
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elimination of the short-range connections, such as through
cortical dysgenesis or brain trauma (Semah et al., 1998).
Interestingly, recent work on the Kuramoto model has shown
that generalized resource constraints seed the network to self-
terminating supercritical episodes (Frolov and Hramov, 2021),
consistent with epileptic recurrences.

One potential mechanism for the disruption of short-range
neural connectivity may be an injury to key brain hubs that
contain a high-cumulative weight of short-range connections
(Gratton et al., 2012; Zhou et al., 2012; Haimovici et al., 2016;
Yuan et al., 2017). Indeed, hubs, e.g., the cingulate cortex,
have been shown to be instrumental for cognitive performance
(Fagerholm et al., 2015; Li et al., 2019), and have profound
effects on the functional connectivity of simulated networks
(Aerts et al., 2016). It is interesting to note that compensation
to injury could thus predictably be offered by the recruitment,
or hyperactivity, of dense hub regions, which has been widely
hypothesized (Hillary et al., 2011, 2015; Tang et al., 2012; Iraji
et al., 2016), e.g., in components of the default mode network
(Zhou et al., 2012).

Our findings altogether lend support to combinatorial
neuromodulation strategies that target short- and long-range
neural connectivity differentially, to normalize the system
dynamic and mobilize the system state, respectively. Future
work will target components of short- and long-range neural
communication, e.g., through pharmacological neurostimulation
via amantadine to preferentially enhance low-frequency brain
oscillations (Ott et al., 2018; Ma and Zafonte, 2020), direct
current stimulation of deep brain structures, e.g., hippocampal
theta (Lee et al., 2013), or modulation of cerebral cortex gamma
(Pink et al., 2019), e.g., using cell-type-specific optogenetic or
pharmacogenetic modulation (Liu et al., 2020), or non-invasive
transcranial magnetic stimulation at low frequencies (Farzan
et al., 2012).

STUDY LIMITATIONS

There are several limitations to this study. First, while providing
a useful conceptual framework, Watts and Strogatz’s ring model
does not reflect real brain connectivity known to contain non-
random edge distributions, e.g., “rich hubs” (van den Heuvel
and Sporns, 2011), and a scale-free degree distribution (Eguíluz
et al., 2005). Still, reduced topologies, e.g., generative small-
worlds (Netoff et al., 2004; Perc, 2007; Tekin and Tagluk,
2017), and randomized graphs (van Vreeswijk and Sompolinsky,
1996; Tsodyks et al., 2000) remain valuable to neural network
analysis by offering a controlled computational environment
with manageable parameters and optimized network conditions.

Second, Kuramoto’s oscillatory model represents a reduction
of the complex interactions of distributed neural populations
(Singer, 1999; Buzsáki, 2006). It is plausible that fuller
physiological models would provide deeper insights into the
precise mechanisms of such neural interactions. In support of the

applicability of Kuramoto’s equations, however, simulations have
previously been applied to macaque (Honey and Sporns, 2008),
and human brain research (Kitzbichler et al., 2009; Cabral et al.,
2014), showing high congruence between simulation data and
resting-state activity (Cabral et al., 2014; Vuksanović and Hövel,
2014). More broadly, reduced models (Siettos and Starke, 2016),
such as two-state units (van Vreeswijk and Sompolinsky, 1996),
and the FitzHugh–Nagumo model (Perc, 2007; Gerster et al.,
2020), have been used extensively to examine complex network
behaviors, such as self-organized balanced states (van Vreeswijk
and Sompolinsky, 1996). Similarly, the abstraction offered by
Kuramoto’s model allows tractable simulations and analyses,
holding high value for the investigation of more fundamental
principles of oscillatory dynamics (Breakspear et al., 2010), such
as the functional division of network connectivity examined here.

Despite these limitations, this study provides important
insights into the relationship between network connectivity and
critical system dynamics, which are broadly consistent with
empirical reports and previous work (Haimovici et al., 2016).
Future research should apply brain connectomic data and fuller
network simulations to extend these findings.
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Schizophrenia has a complex etiology and symptomatology that is difficult to untangle.
After decades of research, important advancements toward a central biomarker are
still lacking. One of the missing pieces is a better understanding of how non-linear
neural dynamics are altered in this patient population. In this study, the resting-
state neuromagnetic signals of schizophrenia patients and healthy controls were
analyzed in the framework of criticality. When biological systems like the brain are in
a state of criticality, they are thought to be functioning at maximum efficiency (e.g.,
optimal communication and storage of information) and with maximum adaptability
to incoming information. Here, we assessed the self-similarity and multifractality of
resting-state brain signals recorded with magnetoencephalography in patients with
schizophrenia patients and in matched controls. Schizophrenia patients had similar,
although attenuated, patterns of self-similarity and multifractality values. Statistical
tests showed that patients had higher values of self-similarity than controls in fronto-
temporal regions, indicative of more regularity and memory in the signal. In contrast,
patients had less multifractality than controls in the parietal and occipital regions,
indicative of less diverse singularities and reduced variability in the signal. In addition,
supervised machine-learning, based on logistic regression, successfully discriminated
the two groups using measures of self-similarity and multifractality as features. Our
results provide new insights into the baseline cognitive functioning of schizophrenia
patients by identifying key alterations of criticality properties in their resting-state
brain data.

Keywords: complexity, criticality, multifractal analysis, machine-learning, magnetoencephalography, resting-
state, scale-free dynamics
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INTRODUCTION

The global prevalence of schizophrenia is reported to be
close to 21 million individuals (Charlson et al., 2018). The
symptoms and poor prognosis of those affected can deeply
impact their daily functioning, and weigh on those close
to them. Unfortunately, progress in therapeutic development
is slow in the field of psychiatry due to the extreme
complexity of the brain, the heterogeneity of patients’ symptoms
and difficulties in translational research. More knowledge
is needed to better understand what alterations occur in
the neural activity of patients. Among the missing pieces,
further characterization of the resting neural dynamics of
schizophrenia, and their relationship to patients’ symptoms, is
needed. Alterations in the rhythmic (oscillatory) neural activity
of schizophrenia patients have been widely reported in the
neuroimaging literature (reviews: Uhlhaas and Singer, 2010;
Maran et al., 2016; Alamian et al., 2017). In addition, an emerging
body of research has reported changes in the arrhythmic
properties of brain dynamics in schizophrenia (Breakspear,
2006; Fernández et al., 2013). A powerful concept that has
so far remained under-exploited and poorly understood in
neuropsychiatry is criticality.

What Is Criticality?
The dynamics of many complex systems, such as the human
brain, appear to reside around the critical point of a phase
transition (Beggs and Plenz, 2003; Stam and De Bruin, 2004;
Fraiman and Chialvo, 2012; Palva and Palva, 2018). At this
point of criticality, these systems are in a wavering state, at the
cusp of a new phase, between the states of order and disorder
(Beggs and Timme, 2012; Cocchi et al., 2017; Souza França
et al., 2018). The brain requires such a balance of regularity
(i.e., structure) on the one hand, to maintain coherent behavior,
and flexibility (i.e., local variability) on the other hand, to adapt
to ongoing changes in the environment (Chialvo, 2004; Beggs
and Timme, 2012). Indeed, critical brain dynamics have been
shown to be optimal for fast switching between metastable brain
states, for maximizing information transfer and information
storage within neural networks (Socolar and Kauffman, 2003;
Haldeman and Beggs, 2005), and for optimizing phase synchrony
(Yang et al., 2012). Importantly, it is within a critical state
that neural communication can span the greatest distance and
achieve maximal correlational length (Fraiman and Chialvo,
2012). Thus, the brain’s state of criticality is thought to affect the
functional properties of oscillations, local synchronization and
signal processing (Palva and Palva, 2018). Changes to this state,
due to psychiatric illness for instance, can alter certain properties
of this balance (e.g., in terms of strength and number of synaptic
connections) (Beggs and Timme, 2012). Some of the tuning
parameters of criticality appear to be embedded in the balance
between neural excitation and inhibition (e.g., through NMDA
receptors; Mazzoni et al., 2007; Shew et al., 2009; Hobbs et al.,
2010; Poil et al., 2012), in neural network connection strengths,
and synaptic plasticity (Rubinov et al., 2011; Beggs and Timme,
2012).

Measures of Criticality
Self-Similarity and Multifractality
Within the framework of criticality, local and large-scale
fluctuations arise from excitatory post-synaptic potentials
(EPSPs) and modulate brain states by facilitating or suppressing
neuronal firing (Palva and Palva, 2018), with long-range spatial
spread (He et al., 2010; Zilber, 2014). Systems in this state are
characterized by power-law distributions, fractal geometry and
fast metastable state transitions (Plenz and Chialvo, 2009; Cocchi
et al., 2017; Chialvo, 2018; Palva and Palva, 2018). These features
of a critical state are said to be scale-free or scale invariant.
Power-law distributions of a given signal can be recognized as
a linear slope in the log-log plot of the feature distribution, and
they imply that the signal’s statistics and structural characteristics
are preserved across spatiotemporal scales—in other words,
that the signal has fractal properties (Beggs and Plenz, 2003;
Chialvo, 2018). Fractal architectures describe objects that contain
identical, or statistically equivalent, repetitive patterns at different
magnifying scales (Mandelbrot, 1983, 1985; Van Orden et al.,
2012; Fetterhoff et al., 2015).

Scale invariant dynamics of systems at criticality (i.e., power-
law distributions and fractal architecture) have often been
described using a 1/fβ power law fitted to Fourier-based spectral
estimations. On the other hand, self-similarity is a well-accepted
model for scale-free dynamics and is richer than the sole measure
of β, as it captures fractional Gaussian noise and fractional
Brownian motion. Self-similarity can be measured by the Hurst
exponent, H. In the brain, H is thought to index how well
neural activity is temporally structured (via its autocorrelation).
The smoother the signal, the higher the value of H (Zilber,
2014). However, self-similarity alone does not fully account
for scale-free dynamics or criticality, since it can only capture
additive processes (La Rocca et al., 2018). Combining self-
similarity with multifractality improves on this framework to
better capture criticality in a system. Multifractality can account
for the remaining non-additive, non-Gaussian processes. The
multifractality parameter, M, quantifies the diversity of H’s
(singularities) and the overarching geometry of spatiotemporal
fluctuations (Leonarduzzi et al., 2016; La Rocca et al., 2018).
Generally, fractals are evaluated using the topological dimension,
D, which describes the complexity and structure of an object
by measuring the change in detail based on the change in scale
(Di Ieva, 2016). In multifractal analysis, the local regularity of a
signal is quantified using the Hölder exponent, D(h) (Jaffard et al.,
2016), allowing a more realistic characterization of phenomena
that are too complex to be explained solely by Euclidian models.
In sum, the brain’s degree of criticality is defined by its scale-free
dynamics, which are best quantified by combining measures of
self-similarity and multifractality.

Common Measures of Criticality
Numerous metrics have been developed to measure the scale-
free properties that define criticality, such as Detrended
Fluctuation Analysis (DFA) applied to oscillatory envelopes
(Linkenkaer-Hansen et al., 2001; Hardstone et al., 2012)
and neuronal avalanche detection (Beggs and Plenz, 2003).
Non-linear dynamics, and specifically multifractal analysis,
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has been used to address questions of self-similarity and
multifractality. Multifractal analysis can characterize both
the amount of global self-similarity in a system and the
amount of local fluctuations (i.e., number of singularities)
(Zilber et al., 2012). This approach allows for more in-depth
interpretations of the electrophysiological data compared to more
conventional analytical approaches. A number of mathematical
frameworks have tapped into this, such as the Multifractal
Detrended Fluctuation Analysis (MFDFA; Kantelhardt et al.,
2002; Ihlen, 2012) and the Wavelet Leaders-based Multifractal
Analysis (WLMA; Wendt and Abry, 2007; Serrano and
Figliola, 2009). For reviews of scale-free and multifractal
analytical approaches (see Lopes and Betrouni, 2009; Zilber,
2014).

Application to Psychiatry
A scoping review of alterations of brain criticality changes
in clinical populations was recently discussed in Zimmern
(2020). An insightful illustration of reported changes to the
state of criticality across multiple neurological and psychiatric
disorders, from the perspective of self-similarity, are illustrated
in Figure 6 of that article (Zimmern, 2020). The application
of criticality models to psychiatry, and in particular to the
study of schizophrenia (SZ), is well in line with leading theories
for this pathology, which are centered around dysconnectivity
and altered information processing and transfer (Weinberger
et al., 1992; Friston and Frith, 1995; Fernández et al., 2013).
So far, most of the empirical evidence for dysconnectivity
theory in SZ has come from functional magnetic resonance
imaging studies, which highlight several important alterations
in anatomical and functional connectivity that exist in SZ
patients, as well as from electroencephalography (EEG) and
magnetoencephalography (MEG) connectivity studies (review:
Alamian et al., 2017). However, we still lack a complete, in-depth
understanding of the brain alterations inherent to this pathology
in the temporal domain.

In terms of scale-free analyses in psychiatry, power spectral
densities (PSD) of resting-state fMRI scans have shown SZ
patients to have reduced complexity and disrupted scale invariant
dynamics compared to controls in the precuneus, inferior frontal
gyrus and temporal gyrus, and these changes correlated with their
symptoms (Lee et al., 2021). Electrophysiological studies have
found altered dimensional complexity and increased variability
in SZ patients’ signal (Koukkou et al., 1993). A number of
studies have applied different versions of multifractal analysis
on electrophysiological (Slezin et al., 2007; Racz et al., 2020) or
white-matter MRI data in SZ (Takahashi et al., 2009). One of
these used the multifractal analysis on resting-state EEG data, and
found increased long-range autocorrelation and multifractality in
patients compared to controls (Racz et al., 2020).

In addition, two insightful reviews have examined how
non-linear methods could improve our understanding of SZ
(Breakspear, 2006; Fernández et al., 2013). They highlighted
conflicting results among studies reporting on complexity
changes in SZ, which they proposed were attributable to
participants’ symptomatic state, the method of imaging or
medication. Complexity as measured by Lempel–Ziv complexity

(LZC) or correlation dimension (D2) was typically found to
be increased in SZ in studies that recruited younger, first-
episode patients who were drug-naïve and symptomatic, while
studies reporting SZ-related reductions in complexity tended
to recruit older, chronic, patients who were on medication
and hence less symptomatic (Lee et al., 2008; Fernández et al.,
2013). Although these measures have been widely applied to
neuroscientific data, they each come with caveats that affect their
precision or generalizability. Moreover, these reviews highlight
the importance of controlling for factors such as age and
medication when studying complex pathologies, such as SZ.

Goals of the Study
The brain is functionally optimal when in a state of criticality—
in other words, when neural activity can spread equally
well at long and short distances in time and space and
information is processed and stored efficiently (Shew et al.,
2009)—and multifractality analysis is an efficient indicator of
criticality. Meanwhile, leading neural theories of SZ emphasize a
pathological connectivity among neural signals across both space
and time. It follows that multifractal analysis of brain signals
in SZ may provide important insights into the nature of the
pathological alterations that are associated with the disease and
that underlie the severity of its symptoms.

Based on previous research that used self-similarity metrics
(e.g., DFA) among the SZ population (Nikulin et al., 2012;
Alamian et al., 2020), we expected altered self-similarity and
multifractality values compared to healthy controls. Moreover,
based on the literature on altered complexity in SZ (e.g., Lee
et al., 2008, 2021; Fernández et al., 2013) we hypothesize that
our patient group would show reduced multifractality compared
to controls. We also predict significant correlations between
measures of criticality and patients’ clinical symptom scores. The
aim of the present study is to test these hypotheses by examining
how criticality is altered in the neural activity of chronic SZ
patients. More specifically, we set out to address this question by
using a multimodal neuroimaging approach, combining resting-
state MEG and structural MRI, and wavelet-based estimations of
multifractality and self-similarity.

MATERIALS AND METHODS

Participants
Participant data collection was conducted at the Cardiff
University Brain Research Imaging Centre in Wales,
United Kingdom., and the data analyses were conducted at
the University of Montreal, QC, Canada. Ethical approval was
obtained for the data collection according to the guidelines
of the United Kingdom National Health Service ethics board,
and the Cardiff University School of Psychology ethics board
(EC.12.07.03.3164). Ethical approval was also obtained for
these analyses from the research committee of the University of
Montréal (CERAS-2018-19-069-D).

Behavioral and neuroimaging data from 25 chronic SZ
patients (average age = 44.96 ± 8.55, 8 females) and 25 healthy
controls (average age = 44.04 ± 9.20, 8 females) were included
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in this study. Healthy controls had no history of psychiatric or
neurological disorders. The collected demographic information
from all participants included: age, gender, depression score
on the Beck Depression Inventory—II (BDI-II, Beck et al.,
1996), and mania score on the Altman Self-Rating Mania
Scale (ASRM, Altman et al., 1997). For the SZ patient group,
additional information was collected: scores on the Scale of
the Assessment of Positive Symptoms (SAPS) and the Scale
of the Assessment of Negative Symptoms (SANS) (Kay et al.,
1987), and information on antipsychotic doses standardized
using olanzapine equivalents (Gardner et al., 2010). All of these
data were anonymized, such that no identifiable information of
participants was associated with their data nor with data from
subsequent analyses. Patients were overall fairly asymptomatic
on the testing day. No statistically significant group differences
were observed across these demographic and clinical metrics,
except for BDI-II scores, where SZ patients had on average mild
depression (14.83 ± 9.11), compared to controls (4.50 ± 4.67).
Additional details on participant information (i.e., recruitment
procedure, exclusions, inclusions, and sample size calculation)
can be found in Alamian et al. (2020).

Magnetoencephalography Experimental
Design
The brain imaging data used for this study comes from 5-min
of resting-state MEG recorded during an eyes-closed condition,
with a 275-channel CTF machine. Reference electrodes were
placed on each participant to account for cardiac, ocular, and
other potential artifacts (Messaritaki et al., 2017). The MEG
signal was initially recorded at a sampling frequency of 1,200
Hz. A 3 Tesla General Electric Signa HDx scanner with an eight-
channel receive-only head RF coil was used to acquire MRI data.
Each participant had a 5-min weighted 3D T1 anatomical scan
(TR/TE/TI = 7.8/3.0/450 ms, flip angle = 20◦FOV = 256∗192∗172
mm, 1 mm isotropic resolution) that was later used for source-
reconstruction of the MEG data.

Data Preprocessing and
Magnetoencephalography Source
Reconstruction
Reference electrodes were placed on each participant above and
below the center of the left eye, on the left and right pre-
auricular, under the left and right temples and behind the left
ear, to account for cardiac, ocular, and other potential artifacts
(Messaritaki et al., 2017). The MEG signal was initially recorded
at a sampling frequency of 1,200 Hz. NeuroPycon (Meunier
et al., 2020), an open-source python toolbox, was used for
the preprocessing and source-reconstruction analyses. First, the
continuous raw data was down-sampled from 1,200 to 600 Hz,
and band-pass filtered between 0.1 and 150 Hz using a finite
impulse response filtering (FIR 1, order = 3) and a Hamming
window. Next, independent component analysis (ICA) was used
to remove artifacts (i.e., blinks, horizontal eye movements,
heartbeat) from the MEG signal using MNE-python (Hyvarinen,
1999; Gramfort et al., 2013). ICs related to heart and ocular
artifacts were identified based on the correlation with ECG and

EoG channels. ICs were visually inspected to check the reliability
of the automatic procedure implemented in MNE. On average we
removed 1–2 ICs related to cardiac artifacts and 1–2 ICs related
to ocular artifacts.

Since it has been reported that the values of the Hurst
exponent, H, are unusually low in sensor-space, and tend to
increase when moving from sensor to source space (based
on simulations and real data: Blythe et al., 2014), source-
reconstruction steps were taken to present cortical-level results in
multifractal analysis. To generate individual anatomical source-
spaces, the anatomical T1-MRI information of each subject was
segmented with FreeSurfer (Fischl, 2012). However, given that
this process would produce different source-space dimensions
for each participant, individual source spaces were morphed and
projected onto a standardized space from FreeSurfer (fsaverage)
(Greve et al., 2013). The resulting source-space comprised 8,196
nodes on the cortical surface, where dipoles were 5 mm apart.
The single layer model boundary element method implemented
in MNE-python was used to compute the lead field matrix
(Gramfort et al., 2013). Weighted Minimum Norm Estimate
(Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994;
Hincapié et al., 2016), implemented in the MNE-python package
(Hyvarinen, 1999; Gramfort et al., 2013), was used to compute
the inverse solution with a Tikhonov regularization parameter
of lambda = 1.0 (Hincapié et al., 2016). Dipoles of the source-
space were constrained to have an orientation perpendicular to
the cortical surface. Thus, for this study, 8,196 time series were
extracted at the cortical level.

Characterization of Criticality Through
Self-Similarity and Multifractality
Measuring Self-Similarity and Multifractality
The singularity spectrum is a concise way to summarize
information about scale-free dynamics. It allows the plotting of
the Hölder exponents (h) about local variability in a time series,
against the Fractional (Hausdorff) Dimensions, D(h), as can be
seen in Figure 1.

Multifractal analysis builds on measures of self-similarity
(e.g., slope of the PSD, DFA) to provide information about
local fluctuations (singularities) in time. The multifractality
spectrum and the scaling function ζ(q) (in terms of statistical
moments q) are related, and can be described using the Legendre
transformation:

D
(
h
)
≤

min
q6=0(1 + qh− ζ

(
q
)
).

When a signal is monofractal, this becomes a linear function,
where ζ(q) = qH, as it would only have a single singularity
(one unique property, Figure 1A). Here, the self-similarity
parameter would be equal to H, the Hurst exponent (Wendt
and Abry, 2007). When a signal is multifractal, the function
ζ(q) has a curvature, as in Figure 1B, which shows the global
spectrum of singularities. The Hölder exponent (h) with the
largest Fractal dimension, D (apex of the curve), is said to be
the most common singularity in the time-series. The width of
the curve can be described with the multifractality parameter, M
(Wendt and Abry, 2007).
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FIGURE 1 | Sketch of a singularity spectrum. These sketches illustrate the multifractal scaling function, which depicts a singularity spectrum. Local variability in the
signal is represented by Hölder exponents, h, on the x-axis, while the amount of singularities is represented by the Fractal Dimension, D(h), on the y-axis. The apex of
the curve reveals the most common h exponent, while the width of the curve reveals the multifractal spectrum. Using log-cumulants from the WLBMF (described in
section “Defining Parameters of Log-Cumulants”) to describe the singularity spectrum, C1 informs on the apex, while C2 informs on the width of the function. (A)
Shows a monofractal function, where C1 = H, the Hurst exponent, and C2 = 0. (B) Shows a multifractal function, where the concavity shows the distribution of h
singularities.

In this study, to meaningfully estimate self-similarity and
multifractality, we used the Wavelet p-Leader and Bootstrap
based MultiFractal analysis (WLBMF). This approach builds on
the Wavelet leaders-based multifractal analysis (WLMA) method
that has been thoroughly described elsewhere (Wendt and Abry,
2007; Wendt et al., 2007; Serrano and Figliola, 2009; Ciuciu et al.,
2012; Fetterhoff et al., 2015). Briefly, this WLMA method of
estimating the singularity spectrum was shown to be efficient
in untangling the scaling properties of neuronal signal, and
more robust than other algorithms in addressing non-stationarity
issues (Wendt, 2008). The curved shape of the scaling function
ζ(q) can be written in its polynomial expansion around its
maximum to allow the evaluation of Cp, log-cumulants:

ζ(q) =

∞∑
p=1

Cp(
qp

p!
).

The singularity spectrum can be thus derived from the series-
expansion of Cp. The first two log-cumulants are the most
informative, with C1, the first log-cumulant, reflecting self-
similarity [and the location of the maximum of D(h), similar
to H]. Its values approximate those of the H, and typically
range between 0 and 1, although values above 1 have been
observed (Samoradnitsky and Taqqu, 1994). C1 values above 0.5
indicate positive correlation (signal has memory), values below
0.5 indicate negative correlation, and a value of 0.5 indicates lack
of correlation (random signal). Meanwhile, C2, the second log-
cumulant, reflects multifractality (and the width of the singularity
spectrum, like M) (Wendt and Abry, 2007; Wendt et al., 2009;
Zilber, 2014; Diallo and Mendy, 2019). Given the concavity of the
scaling function, C2 is always negative, and when C2 equals 0, it
is said to indicate monofractality. Typically, the few studies that
have applied this novel analytical approach have observed values
between 0 and−0.02 (Zilber, 2014) or 0 and−0.07 (Ciuciu et al.,
2012).

Hölder exponents cannot take on negative values. Thus, most
multifractal analyses are constrained to scaling functions that

have only positive local regularities, implying that there is a
continuous temporal positive correlation in the signal (i.e., locally
bound everywhere in the function). However, this is not true of
all brain signals, which can present with discontinuities in the
signal and can thus take on negative regularities. Thus, p-leaders
have been proposed as a way to circumvent this limitation
(Jaffard et al., 2016). The p-leader formalism has been proposed
as an extension of and improvement on older mathematical
frameworks of multifractal analysis (e.g., MFDFA) using wavelet-
projections, by allowing the analysis of negative local regularities
and by providing more accurate and detailed characterization
of singularities in the signal. Different p-leader values change
the regularity exponents, where p = infinity corresponds to the
original wavelet-leaders analysis, p = 2 brings about similar
exponents as observed using DFA. For a deeper understanding
of the mathematical details, we refer the reader to Jaffard et al.
(2016) and Leonarduzzi et al. (2016).

Defining Parameters of Log-Cumulants
One method to detect criticality in the brain is through the
Wavelet p-Leader and Bootstrap based MultiFractal (WLBMF)
analysis and, more specifically, through the evaluation of log-
cumulants (Wendt and Abry, 2007; Wendt et al., 2007). This
MATLAB-implemented technique uses the discrete wavelet
domain for the analysis of self-similarity and multifractality
in signals. In order to compute C1 and C2 in our study, we
first plotted the PSD of each participant group (SZ patients,
controls) in log-log space and identified the portion of the PSD
function exhibiting a log-linear relationship. In our data, the
log-linear portion of the PSD belonged to j1 = 7 and j2 = 10,
which correspond to 3.5 and 0.4 Hz, respectively, as deduced by
the following equation: Scale = 3 × Sf

4 × 2j , where Sf represents the
sampling frequency, j1 and j2 represent the start and end points
of the log-linear portion, respectively, and the scale represents
the frequency bin to which it corresponds. This frequency range
is similar to those of other researchers who have used the same
multifractal analysis (Zilber, 2014). For a step-by-step illustration
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of the method, we direct the reader to Figure 7.1 in Zilber (2014)
for an illustration of these steps. The PSD was calculated at
the overall cortical level and also at the ROI level, using the
Destrieux Atlas (Destrieux et al., 2010), to ensure that the linear
part of the spectrum was comparable across brain regions. For
the purposes of this study, we used second order statistics in the
evaluation of the log-cumulants (i.e., p-leader of p = 2), which is
comparable to long-range temporal correlations computed with
DFA (Leonarduzzi et al., 2016). For the ROI-based investigations,
the C1 and C2 log-cumulants were first computed for each node
(n = 8,196 sources) in cortical source-space, and then averaged
across ROIs (n = 148 ROIs based on the Destrieux atlas, Destrieux
et al., 2010). Although we calculate group differences across all
individual nodes, we chose to also run ROI based analysis to help
with the interpretability of the brain regions involved.

Statistics and Machine-Learning
Analyses
Conventional Statistics and Correlation Analyses
Group statistical analyses were conducted between SZ patients
and matched-controls to test for group-level differences in C1,
C2, and demographic and clinical data. This was done at the ROI
and source levels. To do so, we used non-parametric statistical
tests (two-tailed, unpaired, pseudo t-tests), corrected with
maximum statistics using permutations (n = 1000, p < 0.001)
(Nichols and Holmes, 2001; Pantazis et al., 2005).

Moreover, Pearson correlations with False Discovery Rate
(FDR) correction (Genovese et al., 2002) were used to explore
the relationship between cortex-level C1/C2 values and scores
on the SANS, SAPS and medication-dosage, in patients. FDR
correction (Benjamini-Hochberg) was applied to each p-value
(computed for each of the 8,196 nodes) to account for the
multiple comparisons in order to achieve a significance threshold
of p < 0.05, corrected.

Machine Learning Analyses
MEG signal classification was conducted using a logistic
regression model and a stratified 10-fold cross-validation scheme
to evaluate the discriminative power of the log-cumulants C1
and C2 in classifying SZ patients and controls. First, at each
of the 8,196 nodes, the feature vector (either C1 or C2 values),
computed for each participant, was split into 10-folds, while
maintaining a balance between the two classes (SZ and controls).
Next, the classifier was trained on the data from nine of the 10-
folds and tested on the remaining fold (test set). The classification
performance was assessed using the decoding accuracy (DA) on
the test set (i.e., percentage of correctly classified participants
across the total number of participants in the test set). This
operation was repeated iteratively until all the folds were used as
test sets. The mean DA was used as the classification performance
metric. In order to infer the statistical significance of the obtained
DAs, permutation tests were applied to derive a statistical
threshold as described in Combrisson and Jerbi (2015). This
method consists of generating a null-distribution of DAs obtained
by running multiple instances of the classification (n = 1,000),
and randomly shuffling class labels each time. Maximum statistics
were applied in order to control for multiple comparisons across

FIGURE 2 | Group averages of C1 and C2 values in SZ patients and controls.
Averaged C1 and C2 values were computed for each of the 8,196 nodes,
within each group. P-leader p = 2 was used. SZ, schizophrenia.

all the nodes (Nichols and Holmes, 2001; Pantazis et al., 2005).
Visbrain was used for all the ROI and cortical-level visualizations
(Combrisson et al., 2019).

RESULTS

Alterations in Self-Similarity and
Multifractality
The group averages of C1 and C2 values for SZ patients and
healthy controls can be seen in Figure 2. Across both participant
groups, a clear gradient in C1 values was observed, where self-
similarity values increase gradually from the frontal lobe to the
occipital lobe. Interestingly, a similar gradient, but in the opposite
direction, is observed in terms of C2 values in both groups, with
C2 values gradually increasing from the occipital lobe to the
frontal lobe. Moreover, the magnitude of this gradient appears
less pronounced in patients than in controls.

Conventional unpaired t-tests between the two subject groups
did not yield any statistically significant differences in terms of
C1 or C2 values (p < 0.05, two-tailed t-test). Figure 3A shows
t-values for the direction and magnitude of group differences for
C1 and C2 values, where positive (red) t-values indicate brain
areas where SZ patients have smaller C1 or C2 values compared to
controls, and negative (blue) t-values indicate brain areas where
patients have larger C1 or C2 values compared to controls.

By contrast, when using a machine-learning approach to test
for out-of-sample generalization in the same data, we found that
C1 and C2 in multiple brain regions led to statistically significant
classification of the two subject groups, with up to 77% decoding
accuracy (Figure 3D, max statistics correction, p < 0.05). More
specifically, using source-space C1 values as a decoding feature
led to statistically significant discrimination of SZ and controls
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FIGURE 3 | Group differences and machine-learning results. (A) Shows
t-values from the unpaired t-tests (non-significant), showing
(controls—patients). Positive (red) t-values illustrate brain regions where
patients show smaller C1/C2 values than controls, while negative (blue)
t-values illustrate regions where patients have larger C1/C2 values than
controls. (B) Shows unthresholded DA values based on logistic regression,
using C1/C2 as a single feature. (C) Shows the same DA values, thresholded
at p < 0.05. (D) Shows the DA values corrected for multiple comparisons
using maximum statistics (p < 0.05), thresholded at the chance level of 70%.
P-leader p = 2 was used. DA, decoding accuracy.

in the subcallosal gyrus, middle fontal gyrus and anterior part of
the cingulate gyrus, bilaterally. The left superior frontal gyrus, the
left inferior frontal gyrus and sulci, and the right orbital, straight
and frontomarginal gyri were also significant. The maximum
decoding occurred in the left superior frontal gyrus (77%,
compared to the chance level of 70%). Meanwhile, using source-
space C2 values as a decoding feature led to statistically significant
classification of SZ patients and controls in the superior parietal
lobule, precuneus and posterior-ventral part of the cingulate
gyrus in the right hemisphere. The left post-central gyrus, and
superior temporal gyrus and occipital gyrus, bilaterally, were also
significant. The maximum decoding accuracy took place in the
right temporal gyrus (76%, compared to the chance level of 70%).
Figures 3B–D show the unthresholded DA values for C1 and C2,

FIGURE 4 | ROI-based classification of SZ and controls using C1 and C2.
Machine-learning classification of SZ patients and healthy controls using
logistic regression and the features of C1 or C2 at the ROI-level. The ROI
analysis was based on the Destrieux Atlas, p < 0.05, corrected for multiple
comparisons. DA, decoding accuracy; SZ, schizophrenia.

as well as the uncorrected results at p < 0.05, and the corrected
classification results at p < 0.05, with multiple comparisons
correction using max statistics.

Figure 4 shows the classification results based on C1 and
C2 values computed at the ROI-level (p < 0.05, corrected for
multiple comparisons). The ROIs involved in the significant
discrimination of patients and controls were the left straight
gyrus, the triangular part of the inferior frontal gyrus and
the medial transverse frontopolar gyrus and sulcus for C1,
and the superior occipital gyrus, the right cuneus and the
left angular gyrus for C2. To illustrate how the classifier was
able to successfully separate SZ patients from healthy controls,
individual C1 and C2 values were computed and averaged across
all brain sites that had shown significant decoding at the source-
level. These values are presented in a scatter plot in Figure 5. The
distribution of the individual C1 and C2 values (averaged over all
sources with significant decoding accuracy) shows that C1 values
are higher in patients than in controls (i.e., a trend toward more
self-similarity) and C2 values also shift upwards in patients (i.e.,
a trend toward less multifractality).

It is noteworthy that this scatter plot reveals the presence of
positive C2 values in the dataset, primarily in patients. Although
mathematically ill-defined, the observation of positive C2 is not
unprecedented. Positive C2 values in some individuals can be
attributed to numerical instabilities (and might be statistically
undistinguishable from 0) or to the fact that the data in these
participants cannot be modeled using the multifractal formalism.
The safest interpretation for the positive C2 values observed in
Figure 5 (primarily in patients), is that data in these individuals
were neither multifractal (C2 < 0) nor monofractal (C2 = 0).
Given that this specific type of multifractal analysis has never
been conducted on clinical data before, we explored how the
results would change when using a p-leader of p = 4 (as opposed
to the p = 2 we have used up to now). This analysis found fewer
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FIGURE 5 | Scatter plot visualization of individual C1 and C2 values. This
figure shows individual C1 and C2 values, averaged across all the nodes that
showed statistically significant patient vs. controls decoding (n = 50). This
scatter plot illustrates that patients exhibit overall higher self-similarity (higher
C1) and less multifractality (higher, less negative, C2).

participants to have positive C2 values compared to p = 2, and
generally allowed for a better modeling of multifractality in the
resting neuromagnetic signal of participants. Figures of C1/C2
group averages and classification patterns based on p = 4 can be
found in Supplementary Material 1. In summary, we observed
a similar albeit stronger decoding of patients and controls based
on C2 values in p = 4 than p = 2. Interestingly, C1 values were
smaller (Supplementary Figure 1), and the strong frontal lobe
classification results based on C1 values at p = 2 diminished
at p = 4 (Supplementary Figures 2C,D). Taken together, the
results of C1 estimation (self-similarity) were more reliable in
our data when using a p-leader of p = 2, while C2 estimation
(multifractality) provided more robust results with p = 4. Most
importantly, the trends in terms of increasing C1 and C2 values
in patients compared to controls was present irrespective of
the choice of p.

Correlations With Clinical
Scores/Information
The investigation of potential correlations between C1/C2 and
clinical information resulted in a number of interesting results.
Specifically, the correlations between C1 values and patients’
SANS scores (maximum r = 0.78, p < 0.05) in the left
inferior frontal gyrus and sulcus (Figure 6A), and between
C2 values and patients’ SAPS scores (maximum r = 0.78,
p < 0.05) in the circular sulcus of the insula (Figure 6B) were
statistically significant. In addition, the relationship between C1
and medication dosage yielded a statistically significant positive

FIGURE 6 | Correlational results between C1 and C2 values and patients’
clinical information. Pearson correlation results between patients’ (A) C1
values and negative symptom scores on the SANS (p < 0.05), (B) C2 values
and positive symptom scores on the SAPS (p < 0.05), and (C) C1 values and
medication dosages (olanzapine equivalent in mg), p < 0.05.

correlation (maximum r = 0.79, p < 0.05, after correcting across
all nodes). Figures 6C, 7C illustrate that patients with higher
medication dosage exhibited higher C1 values. This was especially
significant in the superior frontal gyri, the right middle temporal
gyrus, left mid-anterior cingulate gyrus and left inferior temporal
sulcus (see Figure 6C). The positive correlations in these analyses
are shown in the scatter plots in Figures 7A–C. These plots
depict the relationship between individually averaged C1 and C2
values (based on the significant nodes), and patients’ symptom
severity and medication dosages. To further clarify the C1 ×
SANS correlational results, a Pearson correlation was conducted
between SANS scores and medication dosage, revealing a low-to-
moderate correlation coefficient. The r2 of the regression model
suggested that this relationship explained 27–40% of the data,
meaning that the correlation of C1 × SANS was only partially
mediated by medication.

Uncorrected Spearman correlations were also computed
and reasonable overlap was observed between the Pearson-
based correlations and the Spearman findings. Similar to the
Pearson correlations, the Spearman analysis revealed a positive
correlation between C1 values and patients’ SANS scores in the
left mid-anterior part of the cingulate gyrus and sulcus (r = 0.65,
p < 0.0005), in the left precentral gyrus (r = 0.67, p < 0.0005),
in the left temporal pole (r = 0.66, p < 0.0005), and in the right
middle frontal sulcus (r = 0.71, p < 0.0005). Future studies with
larger cohorts would be critical to probe the robustness of these
results and should take into account covariates such as age, sex
and illness duration.

DISCUSSION

The central goal of this study was to examine and characterize
criticality features in the baseline neural dynamics of
schizophrenia. To do so, we evaluated the first two log-cumulants
of the Wavelet p-Leader and Bootstrap based MultiFractal
(WLBMF) analysis on the resting-state neuromagnetic signals
of chronic SZ patients and healthy controls. This allowed us to
determine the values of C1 (reflective of self-similarity) and C2
(reflective of multifractality) on the linear, scale-free portion of
participants’ arrhythmic MEG signal in source-space. In brief,
our findings partially supported our initial hypotheses about
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FIGURE 7 | Scatter plots showing the positive correlations between C1/C2
values and clinical information. These scatter plots depict correlations
(p < 0.05) between individually averaged C1 and C2 values and subjects’
clinical information. The averaging of C1 and C2 values was over significant
nodes. (A) Shows the correlation between C1 values and patients’ SANS
scores, (B) shows the correlation between C2 values and SAPS scores, and
(C) shows the correlation between C1 values and patients medication dosage
(olanzapine equivalent in mg).

self-similarity and multifractality changes in SZ, whilst also
revealing unexpected alterations in criticality.

Specifically, the findings of this study show that there are
clear opposite gradients in the values of C1 and C2, along the
rostro-caudal axis. A progression from low to high values of C1
were observed from anterior to posterior poles (i.e., frontal to
occipital lobes), while C2 values showed the reverse progression.
For both of these metrics, the gradient was less clear in SZ
patients than in healthy controls. The t-values of the unpaired
t-tests showed that patients had higher C1 values in the fronto-
temporal area, and lower C1 values in the parieto-occipital
areas compared to controls. In contrast, patients appeared to
have higher C2 values in the temporal, parietal, and occipital
areas than controls. Conventional t-test statistics failed to reach
significance after multiple comparisons correction. However, a
machine-learning approach based on logistic regression yielded
statistically significant decoding (up to 77%) of patients and
controls in a number of brain regions. Indeed, SZ patients
and controls were categorized using C1 values in the anterior
part of the cingulate gyrus (ACC), the left inferior gyrus, and
the mid and superior frontal gyri, among other brain regions.
Meanwhile, using C2 as a feature, we were able to statistically
significantly classify patients and controls in the right temporal
gyrus, precuneus, and occipital gyrus, among other brain regions.

In terms of the first log-cumulant, patients had a range of C1
values of [0.07, 1.44] in significant regions. In controls, this range
was of [0.18, 1.16]. Typically, C1 (and thus H) values would be
expected to be between 0 and 1 (where 0 < C1 < 0.5 implies
negatively autocorrelated signal, C1 = 0.5 implies uncorrelated
signal, and 0.5 < C1 < 1 implies positively autocorrelated signal),
although values above 1 have been observed within the theory of
generalized processes and tempered distributions (Samoradnitsky
and Taqqu, 1994). In terms of the second log-cumulant, patients
had a range of C2 values of [−0.01, 0.015] in significant brain
regions, while controls had a range of [−0.02, 0.011]. These values
fall within the same ranges reported by previous researchers (e.g.,
Zilber, 2014). As a reminder, higher C1 values are indicative
of more self-similarity and memory in the signal, while lower
(more negative) C2 values are indicative of more complexity in
the form of multifractality. From our results, we infer that SZ
patients exhibited more self-similar neural dynamics than healthy
controls, and thus more regularity in the frontal and temporal
brain areas. In addition, patients had fewer singularities (less
diverse h) in the parietal and occipital brain regions, compared
to healthy controls whose neural signals were more multifractal.

Further investigation of this analysis revealed that a
subportion of participants (predominantly patients) had some
positive C2 values. Theoretically, only [C2 < 0] (multifractal
signals) or [C2 = 0] (monofractal signals) are expected. Observing
positive C2 values implies that the multifractal formalism could
not properly model the neuromagnetic data recorded in these
patients. So, what does this tell us about the success of the
classifier in using C2 to distinguish between patients and
controls? The simplest explanation is that individuals with more
negative C2 (stronger multifractal properties) were identified
as healthy, whereas individuals with C2 values closer to zero
(monofractal), or even higher than zero (neither multifractal no
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monfractal), were classified as patients. As a side note, we found
that using an alternate p-leader of p = 4 improved C2 values,
and the classifier reaffirmed the diminished multifractality
characteristics of patients’ resting neuromagnetic signal. Taken
together, we observe clear rostro-caudal gradients of ascending
self-similarity and multifractality across both participant groups,
albeit more clearly in controls. The reduced multifractality and
increased self-similarity might reflect a certain rigidity in the
temporal dynamics of SZ patients’ neural activity.

Our findings are consistent with recent publications that have
characterized complexity in SZ in the same regions in which
we observed alteration in the log-cumulants C1 and C2 [i.e.,
precuneus, inferior frontal gyrus and temporal gyrus, (e.g., Lee
et al., 2021)]. Interestingly, a recent resting-state MEG-based
study of SZ patients by La Rocca et al. (2018) also found a
gradient in C1 values along the longitudinal axis; however, in
contrast to our own finding of an ascending anterior-posterior
gradient, they instead found an opposite, descending anterior-
posterior gradient (La Rocca et al., 2018). In addition, La Rocca
et al. (2018) compared how criticality features changed during a
perceptual task. They reported that in healthy individuals, global
self-similarity decreased, while focal multifractality increased
when switching from rest to task. Moreover, the changes in
multifractality correlated with brain regions implicated in the
task. This finding could suggest that the metric of C2 has a
functional role in cognitive processes (La Rocca et al., 2018).
Of note, there are some methodological differences between our
studies, such as the choice of scale (j1 and j2) for the linear portion
of the PSD. Differences could also be due to age differences.
Indeed, the authors reported the mean age of their participants
to be 22 years old, while our group’s mean age was of 44 years
old. In the complexity literature, it has been often reported
that the properties of scale-free dynamics change with age (e.g.,
Fernández et al., 2011; Churchill et al., 2016), and so it is possible
that there is a reversal of the self-similarity gradient with age.
More work is needed to elucidate this.

Positive correlations were observed between the metrics
of self-similarity and multifractality and patients’ clinical
information. In particular, we observed an increase in C1 values
in patients with increasing severity of scores on the negative
symptoms scale (SANS) in the inferior frontal gyrus, as well
as with patient’s medication dosage, the latter of which was
especially strong (r = 0.79). The left frontal gyrus plays an
important role in cognitive functioning (Swick et al., 2008) and
language (Klaus and Hartwigsen, 2019). At the structural level,
cortical thinning has been observed in the inferior frontal gyrus in
SZ patients compared to healthy controls, which correlated with
cognitive dysfunction (Kuperberg et al., 2003; Oertel-Knöchel
et al., 2013). Correlation between inferior frontal gyrus volume
and negative symptoms in SZ patients have been previously
observed, but not in their non-affected siblings (Harms et al.,
2010). At the functional level, higher cluster coefficients have
been observed in the left inferior frontal compared to bipolar
patients or controls (Kim et al., 2020), as well as weaker
connectivity within the language network (Jeong et al., 2009). In
addition to the reported structural alterations in this language
processing center, the reduction in the temporal flexibility and

enhanced regularity in the signal might explain why patients’
have poorer speech understanding, such as difficulty detecting
metaphors, sarcasm or jokes (Rossetti et al., 2018). A correlational
trend was also observed between multifractality and patients’
scores on the positive symptom scale (SAPS) in the circular
sulcus of the insula. In past studies, negative correlations have
been observed between reduced gray matter volume of the
insula and SZ patients’ positive symptoms (Wylie and Tregellas,
2010; Cascella et al., 2011). It is interesting to note that self-
similarity and multifractality were oppositely (and perhaps
complementarily) correlated with symptom severity scores.

Taking into account the correlational findings, it is not
surprising that, in our dataset of chronic and medicated patients,
antipsychotic medication dosage was related to symptom
severity, which itself was related to scale-free neural properties.
Psychiatrists typically increase pharmaceutical dosage, gradually
and as needed, to help manage symptoms. Sometimes, certain
drug combinations that help manage positive symptoms
(hallucinations, delusions) can worsen negative symptoms
(Schooler, 1994; Goff et al., 1996). Evidence from other studies
(Koukkou et al., 1993; Saito et al., 1998; Raghavendra et al., 2009)
suggests that drug-naïve and first-episode patients may display
a different pattern of criticality, thus the generalizability of our
results is limited to other medicated, chronic SZ patients.

Another parallel can be drawn between this study’s results
and findings from DFA analyses. The log-cumulants (C1 and
C2) derived from WLBMF analysis using a p-leader of p = 2,
as was used in the present study, are similar to scaling
exponents obtained using DFA (Leonarduzzi et al., 2016), in
that they both reflect temporal autocorrelations. In one of our
recent publications, we computed DFA exponents on oscillatory
envelopes in this same dataset of SZ patients and healthy controls
(Alamian et al., 2020). The scale used for the computation of
the log-cumulants (j1,2: 0.4–3.5 Hz) overlaps with the delta
oscillatory band (0.5–3.5 Hz). Comparing delta DFA exponents
and C1 between the studies reveals a good agreement: DFA
exponents were reduced in patients compared to controls in the
occipital and parietal lobes and increased values in the prefrontal
and temporal lobes, similar to the C1 topology. The overlap was
remarkably good considering that DFA was computed on band-
limited rhythmic brain signal, while the log-cumulants of the
singularity spectrum were computed on the arrhythmic raw brain
signal. This comparison shows that while DFA is an adequate
measure of the self-similarity aspect of criticality, it does not,
however, provide any information on the multifractality of a
signal, as does the second log-cumulant, C2. In this respect, they
capture different properties of the neural signal, and should be
treated as such. Several studies have examined the alterations of
DFA across a number of psychiatric and neurological disorders.
They found that a drop in DFA exponents occurs in SZ as well as
in Alzheimer’s and Parkinson’s disease, whereas other conditions,
such as depression, insomnia and epilepsy are typically associated
with increases in DFA exponents (Zimmern, 2020). These
findings reveal that reduced temporal autocorrelations observed
in SZ are not disease-specific, but capture alterations that might
be common to multiple psychiatric or neurological conditions.
This again highlights the need for more elaborate measures of

Frontiers in Neural Circuits | www.frontiersin.org 10 March 2022 | Volume 16 | Article 630621142

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-16-630621 March 22, 2022 Time: 15:2 # 11

Alamian et al. Altered Brain Criticality in Schizophrenia

brain criticality, such as through the WLBMF analysis carried out
in the present manuscript.

Criticality in the brain likely informs on the spatiotemporal
organization and functioning of neural networks at the micro-
and macroscopic levels (Hesse and Gross, 2014; Cocchi et al.,
2017). While the origins of criticality are still debated, many agree
that scale-free neural fluctuations are the signature of a brain in
a state of criticality. A right balance of scale invariant properties
(self-similarity, multifractality) is thought to be needed to adapt
and respond to ever changing environments (Linkenkaer-Hansen
et al., 2001; Plenz and Chialvo, 2009; Beggs and Timme, 2012;
Palva et al., 2013; Shew and Plenz, 2013). Consequently, we
propose that a change in this equilibrium could disrupt optimal
brain functioning. When self-similarity is strong in a signal,
as in the brain signals of our SZ cohort, the signal’s temporal
autocorrelation decays slowly, such that signal memory lasts a
long time. While still the subject of debate, it has been proposed
that this enhanced temporal persistence (or redundancy) may
make the brain less efficient in information processing (Zilber
et al., 2013). Lower levels of self-similarity in signals, as in
those of our healthy controls, are thought to reflect enhanced
neural excitability and more efficient processing (He, 2011, 2014;
Zilber et al., 2013). Interpretations of multifractality are still
unclear, but it appears that a richer repertoire of singularities
(multifractality > monofractality) suggests more variability and
flexibility in the neural signal (Beggs and Timme, 2012), and
thus in behavior. In our dataset, patients exhibited reduced
multifractality in certain areas, thus suggesting a decrease in
complexity and flexibility in their resting neuromagnetic signal.
The observed alterations in these criticality metrics in SZ
could explain the long, sustained nature of patients’ positive
symptoms (delusions, hallucinations) and their difficulty in
breaking away from them.

CONCLUSION

The overarching scale invariance of brain activity is thought to
be a useful indicator of its organization across both temporal
and anatomical scales (Werner, 2007; Zilber, 2014). Indeed, many
have suggested that biological systems optimally process, adapt to
and communicate information over long neural distances when
in a state of criticality. This critical state involves a balance
between regularity (structure) and flexibility (variability, local
fluctuations). Disruption of this equilibrium may reduce the
efficiency with which the system responds to changes in the
environment. In this study, we applied WLBMF analysis to
resting MEG signals and observed clear deviations in both the
self-similarity and multifractality of these signals in chronic
SZ patients compared to healthy controls. These changes in
the state of criticality of patients lend further support to the
theory of dysconnectivity in SZ from the perspective of temporal
dynamics, as it characterizes a different way in which information
interruption occurs in patients. This study also demonstrated
that alterations in neural criticality can be used to accurately
differentiate between chronic SZ patients and controls. We expect
that these findings will fuel the search for strong biomarkers in
SZ, borrowing a new, largely uncharted path.
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Addressing skepticism of the
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The hypothesis that living neural networks operate near a critical phase

transition point has received substantial discussion. This “criticality hypothesis”

is potentially important because experiments and theory show that optimal

information processing and health are associated with operating near the

critical point. Despite the promise of this idea, there have been several

objections to it. While earlier objections have been addressed already, the

more recent critiques of Touboul and Destexhe have not yet been fully met.

The purpose of this paper is to describe their objections and offer responses.

Their first objection is that the well-known Brunel model for cortical networks

does not display a peak in mutual information near its phase transition, in

apparent contradiction to the criticality hypothesis. In response I show that

it does have such a peak near the phase transition point, provided it is

not strongly driven by random inputs. Their second objection is that even

simple models like a coin flip can satisfy multiple criteria of criticality. This

suggests that the emergent criticality claimed to exist in cortical networks

is just the consequence of a random walk put through a threshold. In

response I show that while such processes can produce many signatures

criticality, these signatures (1) do not emerge from collective interactions,

(2) do not support information processing, and (3) do not have long-range

temporal correlations. Because experiments show these three features are

consistently present in living neural networks, such random walk models are

inadequate. Nevertheless, I conclude that these objections have been valuable

for refining research questions and should always be welcomed as a part of

the scientific process.
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neuronal avalanche, criticality, hypothesis, phase transition, temporal correlations
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Introduction

“I am that gadfly which God has attached to the state, all day
long. . .arousing and persuading and reproaching. . .You will
not easily find another like me.”

-Socrates, in Plato’s Apology

The “criticality hypothesis” states that the brain operates
near a phase transition point for optimal information processing
(Beggs, 2008; Chialvo, 2010; Shew and Plenz, 2013; Cocchi et al.,
2017). The origins of this idea trace back over several decades
and derive from many investigators: Kauffman (1969); Wilson
and Cowan (1972); Kelso (1984); Freeman (1987); Dunkelmann
and Radons (1994); Bienenstock (1995); Herz and Hopfield
(1995); Bak (1996); Chialvo and Bak (1999); De Carvalho and
Prado (2000); Greenfield and Lecar (2001); Linkenkaer-Hansen
et al. (2001); Eurich et al. (2002); Worrell et al. (2002).

To illustrate this hypothesis, consider the three possible
ways that activity could propagate in a neural network. First,
it could be damped so that activity in one neuron would, on
average, lead to activity in less than one neuron in the next
time step. This is the subcritical phase. To quantify this, we can
use the branching ratio, σ, which gives the average number of
descendant neurons from a single active parent neuron. Thus,
the subcritical phase has a branching ratio of less than one
(σ < 1). Second, activity could be amplified so that one active
neuron would, on average, activate more than one neuron in the
next time step. This is the supercritical phase, characterized by
a branching ratio greater than one (σ > 1). Third, activity could
be balanced so that one active neuron would, on average, activate
one neuron in the next time step. This is a critical point, poised
between the damped and amplified phases, and characterized by
a branching ratio exactly equal to one (σ = 1). When a network
operates near a critical point (σ ≈ 1), it produces avalanches
of neural activity whose size distributions approximately follow
power laws (Beggs and Plenz, 2003; Petermann et al., 2009; Shew
et al., 2015; Ponce-Alvarez et al., 2018).

In addition, near a critical point, information processing
functions like the dynamic range (Kinouchi and Copelli, 2006;
Shew et al., 2009) and the amount of information that can be
transmitted through a network (Greenfield and Lecar, 2001;
Beggs and Plenz, 2003; Shew et al., 2011) are maximized. Very
briefly, this is because communication between neurons is
extremely weak in the subcritical phase when activity dies out,
and it is saturated in the supercritical phase when it is amplified
(Beggs, 2008; Shew and Plenz, 2013). Between these extremes,
near a critical point, information transmission is greatest. Both
models and experimental data are consistent with this picture.
Other functions that are predicted to be optimized near the
critical point include computational power (Bertschinger and
Natschlager, 2004; Legenstein and Maass, 2007), information

storage (Haldeman and Beggs, 2005), sensitivity to changes
in inputs (Williams-Garcia et al., 2014), and controllability of
dynamics without instability (Chialvo et al., 2020; Finlinson
et al., 2020). Many of these functions are nicely reviewed in Shew
and Plenz (2013).

Evidence for nearly critical dynamics now has been found in
a wide range of species including zebrafish (Ponce-Alvarez et al.,
2018), turtles (Shew et al., 2015), rodents (Fontenele et al., 2019),
monkeys (Petermann et al., 2009), and humans (Priesemann
et al., 2013; Shriki et al., 2013).

In this paper we will cover ideas and models that are
positioned as rivals to the criticality hypothesis. Such rivals are
extremely useful, as they become dialog partners, helping us to
refine what we really mean when we say a network is critical, or
what falsifiable predictions need to be addressed in experiments.
These rivals may even be right, and objective science should
always leave open the possibility that a hypothesis, however
beautiful or psychologically dear, might be wrong. In the interest
of such rational discussion, and to guard against becoming too
subjective, it is vitally important to examine these alternative
ideas–to not kill the gadfly but let it bite. One way to do this
is by presenting the opposition in the strongest way possible,
and not as a weakened straw man that can be easily knocked
down. What are the best counterarguments? Can the criticality
hypothesis meet them, or does it survive only if opposing ideas
arrive pre-damaged before doing battle?

Let us overview several waves of criticism so far. Briefly, an
early wave argued that many neural data sets that were claimed
to follow power laws did not pass appropriate statistical tests.
The field responded by consistently applying more statistical
rigor. This revealed that while some neural data sets were not
best fit by power laws, many in fact were (Klaus et al., 2011;
Bellay et al., 2015; Shew et al., 2015; Timme et al., 2016; Ponce-
Alvarez et al., 2018). Another early issue raised as criticism was
that several non-critical processes, like successive fragmentation
or random combinations of exponentials, could also produce
power laws (Reed and Hughes, 2002; Mitzenmacher, 2004).
Here, the field responded by developing additional tests for
criticality that went beyond power laws. These included the
exponent relation (Sethna et al., 2001; Friedman et al., 2012),
avalanche shape collapse, evidence of long-range temporal
correlations (Hardstone et al., 2012) and a more accurate
measure of the branching ratio (Wilting and Priesemann, 2018),
improvements that are now widely adopted. A summary of
many of these critiques and how they were met can be found
in Beggs and Timme (2012). Toolboxes for implementing these
improvements can be found in Hardstone et al. (2012); Ihlen
(2012); Alstott et al. (2014); Marshall et al. (2016); Spitzner et al.
(2020).

Another issue that has been raised is that there may be
no critical phase transition at all. For example, (Martinello
et al., 2017) argue that neutral drift can account for many
of the observations seen in experiments, like scale-free power
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laws. However, this idea of neutral drift is difficult to reconcile
with experimental evidence of homeostasis actively working
to restore perturbed networks back toward the critical point
(Meisel et al., 2013; Shew et al., 2015; Ma et al., 2019; Meisel,
2020).

A more recent wave of criticism has come through the
work of Touboul and Destexhe (Touboul and Destexhe, 2017;
Destexhe and Touboul, 2021). Their first claim is that operating
near the critical point does not necessarily optimize information
processing. To demonstrate their point, they investigated the
well-known model of spiking cortical networks developed by
Brunel (2000). In their hands, they showed that response
entropy (which can also be called the information capacity)
did not have a peak, but rather a step-like transition, as the
model was moved from the synchronous irregular (SI) phase
of firing to the asynchronous irregular (AI) phase (Touboul
and Destexhe, 2017). The lack of a peak in information
capacity, they claim, demonstrates that operating near a phase
transition does not optimize information processing. This
would be a clear contradiction of the criticality hypothesis.
Their second claim is that when a Brunel model with no
internal synaptic connections is driven by a very simple
random process like a coin flip or a modified random walk,
it can show many signatures of criticality (Touboul and
Destexhe, 2017; Destexhe and Touboul, 2021). If random noise
passed through a threshold can mimic the power laws and
exponent relation seen in the data, then why do we need
to hypothesize that the apparent criticality in living neural
networks is anything more than this? The contradiction with
the criticality hypothesis here is somewhat less obvious. The
claim is that signatures of criticality present in living neural
networks are not a result of collective interactions among
neurons. In other words, neuronal criticality is not emergent like
the criticality observed in an ensemble of water molecules or in
a sample of iron.

Before going further, let us revisit and update the criticality
hypothesis to explain it in more detail. This will allow us
to respond to the two critiques more specifically. I take the
criticality hypothesis to mean the following:

When a network of neurons operates near a critical
phase transition point, multiple information processing
functions (e.g., information transmission and storage, dynamic
range, susceptibility to inputs and computational power) are
simultaneously optimized through collective interactions among
neurons.

I want to emphasize three facets of this hypothesis. First, the
network needs to be near a critical point. This will lead us to
consider multiple signatures of criticality. Second, near a critical
point, information processing will be optimized. This will lead
us to search for a peak in information transmission (objection 1).
Third, both a critical point and optimal information processing
emerge through the collective interactions of many neurons in a
network. This will lead us to distinguish collective models with

interacting neurons from simple, random walk models without
interactions (objection 2).

In what follows, I first review the criteria that we will apply to
determine if a system is operating near the critical point. I next
explain the claims of Touboul and Destexhe with more detail so
they can be assessed by the reader. I then present computational
demonstrations to challenge their claims. To streamline the
presentation, methodological details of these simulations are
contained in the Supplementary material. I conclude by noting
that their arguments against the criticality hypothesis do not
constitute a refutation. However, they are still very useful in
refining our interpretations of criticality experiments.

Signatures of criticality

An intuitive description of criticality

In the most simplified terms, a system that exhibits criticality
must be a tunable system. For example, at a particular pressure,
water can be tuned from its gas phase to its liquid phase as
the temperature is reduced. To take another example, when a
piece of iron is cooled, it is tuned from a phase where its spins
were pointing equally up and down, to a phase where they are
all pointing in the same direction. Similarly, as the strength of
synaptic connections is increased, a neural network can be tuned
from a phase where neurons are firing independently to a phase
where they are all firing synchronously. In these examples, the
variable that tunes the system is called the control parameter; for
water and iron this is the temperature, while for neural networks
it is the connection strengths.

Notice also the differences between the two phases. One
phase is random, high in energy and has symmetry, while
the other is ordered, lower in energy and is associated with
some breaking of symmetry. For the water example, the high
energy phase is the gas, where molecules are equally likely to
be in any location within the volume. The low energy phase
is the liquid, where the molecules coalesce into a reduced
volume. For the iron example, the high energy phase consists
of spins pointing equally up and down, while the low energy
phase breaks this symmetry and has all the spins pointing the
same way. For neural networks, disconnected, randomly firing
neurons visit a broad range of network states, while strongly
coupled synchronous neurons are confined to a relatively small
region of state space.

The critical point in such tunable systems occurs right
between these phases, when the control parameter is at its
critical value. At the critical point, these systems are a mixture
of randomness and order. They have neither the complete
symmetry associated with randomness nor the order associated
with symmetry-breaking. Rather, they have both variety and
structure across all scales.
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The most common way to identify this scale-invariant
structure has been to observe power law distributions. At
the critical point, spatial and temporal correlations fall off
slowly with power law tails; distributions of avalanche sizes
and durations also follow a power law. When the system
is sufficiently far away from the critical point, power law
distributions disappear. The power laws at criticality indicate
that spatial and temporal correlations diverge–which means
that their average values become infinite. This also allows
information to pass through the system most readily at the
critical point. As a result, plots of mutual information or
temporal correlations should show a peak when the control
parameter is tuned to its critical value.

As mentioned earlier, power laws by themselves are
insufficient to determine whether a system operates near a
critical point–additional criteria are needed. Some phenomena
like successive fractionation and the summation of many
exponential processes can produce power law distributions.
Yet these are not clearly tunable systems that exhibit phase
transitions or symmetry breaking. How then can we distinguish
between critical and non-critical systems that both produce
power laws?

Moving beyond power laws

Fortunately, critical phase transitions have been studied
extensively in physics, and the literature there provides guidance
on how to proceed. In a seminal paper published in 2001, Sethna
et al. (2001) argued that to move beyond power laws alone,
we should examine scaling functions. Perhaps the easiest way
to describe a scaling function is by giving an example of it
from neural data.

Consider a toy raster plot of activity from a neural network,
shown in Figure 1A. In the avalanche there, we can plot the
number of neurons active in each time bin to produce an
avalanche shape that describes how the activity unfolds over
time (Figure 1B). When this is done for an actual data set,
we see shapes that look like inverted parabolas (Figure 1C).
More generally, such shapes could be semicircular or skewed
parabolas (Laurson et al., 2013). No matter what the shapes, if
they are rescaled, they can be made to collapse onto each other
(Figure 1D) in systems near the critical point. This rescaling is
done for both the time and the height of the avalanche. For time,
each avalanche is divided by its duration, so that all avalanche
shapes to be compared will have a length of 1. For height, each
avalanche is rescaled by dividing it by its maximum height, so
all avalanches will have the same height. To get the maximum
height, hmax, we realize that the size S of the avalanche (its area
under the curve) is proportional to (∝) its duration T times
hmax. This means hmax is proportional to S divided by T: hmax

∝ S/T. As we see in Figure 1E, there is a scaling relation (∼)
between avalanche size and duration: S ∼ Tγ. Thus, we have

hmax ∝ Tγ−1/T = Tγ−1. If we divide each average avalanche
shape by Tγ−1, then they will all have the same heights. Note
that this is possible only if they follow a scaling relation like the
one shown in Figure 1E.

When this avalanche shape collapse occurs, it shows that the
avalanche shapes are all similar, no matter what their sizes. In
other words, they are fractal copies of each other, each merely
being a version of an inverted parabola that is either scaled up
for larger avalanches or scaled down for smaller ones. Because
all the average avalanches can be made to follow this shape by
rescaling, it is called a universal scaling function.

You might think that such a function should always occur,
but it does not. For example, consider what would happen if a
network produced tent-like avalanche shapes (Figure 1B), but
with different slopes. Say the longer avalanches had shallower
slopes and the shorter avalanches has steeper ones. While it
might be possible to rescale all of them to the same length, they
would not then all have the same heights, and so they would
not collapse on top of each other. Likewise, one could rescale
all their heights, but then they would not all have the same
lengths. Avalanche shape collapse is only possible if the system
in question has scale-free properties in many domains, and this
is empirically found to occur only when near a critical phase
transition point.

By scale-free, we mean that some relationships between
numbers will be the same across scales. To illustrate, consider
the Gutenberg-Richter law for earthquakes. Here, there is a
power law relationship between the frequency of an earthquake
occurring and its energy. An earthquake with a magnitude of
7 on the Richter scale has 10 times the energy of a Richter
scale 6 earthquake; it also occurs only 1/10 as often as Richter
scale 6 earthquake. Thus, there is an inverse relationship, by
powers of 10, between earthquake magnitude and frequency
per year. This relationship occurs again between Richter scale 3
earthquakes and Richter scale 2 earthquakes. The former have 10
times the energy but occur 1/10 as often. For any pair of adjacent
magnitudes, this type of relationship will apply–at the smallest
scales and also at the largest scales. This is why power laws are
often called scale-free.

When a system is operating very close to a critical point,
its activity is expected to be scale free. By this, we mean that
many variables of the system will follow power law relationships.
With the neuronal avalanches we discussed previously, this
was shown in the distribution of avalanche sizes and in the
distribution of avalanche lengths. Recall also Figure 1E, where
there is a relationship between avalanche size and duration.
Without this relationship, avalanche shape collapse would not
be possible. Shape collapse is thus an indicator that the network
is operating near a critical point. The existence of a universal
scaling function, in our case the inverted parabola, is evidence
that even the shapes of things replicate across different scales.
Because a parametric description of this shape would require not
just a single number, but several, it is considered by physicists
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FIGURE 1

Additional signatures of criticality. (A) A toy raster plot where spikes are represented by 1 s and no activity by 0 s. Here, five neurons are recorded
over seven time bins. An avalanche is a sequence of consecutively active time bins, bracketed by time bins with no activity. (B) The raster can be
used to construct the avalanche shape, which is just the number of active neurons at each time bin. Here, we have a tent shape. (C) Average
avalanche shapes for three different lengths, taken from microelectrode array recordings of cortical slice cultures. Here, the shapes are like
inverted parabolas. (D) With appropriate rescaling of avalanche duration and height (explained in text), these avalanche shapes collapse on top
of each other, demonstrating that the inverted parabola is a scaling function for this network. Such a scaling function is expected to exist only
very close to a critical point. (E) Avalanche size is related to avalanche duration by a power law. The y-axis is the average avalanche size, <S>,
for a given duration, T. The x-axis is the avalanche duration, T. Because these data nearly follow a straight line in log-log axes, we can say that
they approximate a power law. We can estimate the exponent, γ, of the power law by the slope of the line. In this case, it is 1.34. Thus,
avalanche size scales with the duration according to this relationship: <S>(T) ∼ T1 .34. A scaling relationship between size and duration is
necessary for avalanche shape collapse. Data from Fosque et al. (2021). The portion of the data used for estimating the power law is shown as
filled circles with dashed line. Fitting was performed using software from Marshall et al. (2016). Panels (C,D) adapted from Friedman et al. (2012).

to be an excellent indicator that a system is near a critical point
(Spasojević et al., 1996; Papanikolaou et al., 2011). Power laws, in
contrast, are typically described by only one number, their slope.

Let us now discuss another indicator of proximity to a
critical point. Each of the power laws we mentioned has its own
slope, given by its exponent: τ for avalanche size, α for avalanche
duration, and γ for avalanche size vs. duration. The values of
these exponents cannot be arbitrary if everything is scale-free;
they must interlock in just the right proportions if they are to
describe avalanches whose sizes and durations are all fractal
copies of each other. By simple reasoning, described in Scarpetta
et al. (2018), one can show that they must be related by this
exponent relation equation:

α− 1
τ− 1

= γ

This then is another signature of a neural network operating
near a critical point–the exponents obtained from empirical
data must satisfy this equation within some statistical limits
(Ma et al., 2019). This relationship has been adopted by
experimenters using cortical slice cultures (Friedman et al.,
2012), zebrafish (Ponce-Alvarez et al., 2018), turtles (Shew et al.,
2015), mice (Fontenele et al., 2019), rats (Ma et al., 2019),
monkeys (Miller et al., 2019), and humans (Arviv et al., 2015) to
assess closeness to a critical point. There is currently much work

exploring why so many data sets follow this relation (Carvalho
et al., 2020; Fosque et al., 2021; Mariani et al., 2021).

Criticality can also be suggested by long-range temporal
correlations, and these have often been reported in neuronal
data (Linkenkaer-Hansen et al., 2001; Lombardi et al., 2012,
2014, 2021; Meisel et al., 2017a,b). As we mentioned earlier,
when a system is brought to the critical point, both spatial and
temporal correlations can become scale-invariant.

A common way to quantify temporal correlations is through
the Hurst exponent, H. This describes how the standard
deviation scales with the duration of the data. See Hardstone
et al. (2012) and Ihlen (2012) for excellent tutorial reviews with
software. For example, consider a random walker on the number
line whose position, x, is known over time (Figure 2A). It starts
at the origin and takes either a step forward (+1) or backward
(−1) with equal probability.

To illustrate how to calculate H, let’s consider a simulation
of this process. We observe that after t = 131,072 time steps, the
standard deviation is measured to be 70.26. Next, we expand
the recording length by a factor of L = 8. By how much will
the standard deviation, STD(x), increase? We want to know
if the standard deviation is somehow related to the duration
of the recording in a scale-free manner. In other words, the
standard deviation should scale with the duration by some
exponent. To continue our example, we observe that over
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FIGURE 2

Calculating the Hurst exponent from a random walk. (A) A random walk process is started at the origin. At each time step, it randomly moves
either forward (+1) or backward (–1) by one step. The position of the walker is plotted against the number of time steps. (B) The average
standard deviation of the random walk is plotted for window lengths, L, of many different sizes. If L = 8, for example, the entire random walk is
broken up into segments of eight time steps each and the average standard deviation from them all is calculated. When the average standard
deviation for each window size is plotted against window size, a nearly linear relationship is revealed in these log-log coordinates. The Hurst
exponent, H, is the slope of the best fit line through these data. In this case, H = 0.47. This linear relationship is evidence of scaling; when
H > 0.5, it is evidence of long-range temporal correlations (LRTCs), often found in systems operating near the critical point.

L× 131,072 = 1,048,576 time steps the standard deviation is now
measured to be 202.13. We can relate these numbers through
the equations below to find the scaling exponent H. Recall that
in our example, t = 131,072, L = 8, and the standard deviation
when t = 131,072 is just 70.26 (STD(131,072) = 70.26). We now
want to find H:

STD (Lt) = LHSTD (t)

STD (8× 131, 072) = 8HSTD (131, 072)

STD (1, 048, 576 ) = 8HSTD (131, 072)

202.13 = 8H70.26
202.13
70.26

= 8H

log8(2.88) = log8(8H)

0.51 = H

Here the Hurst exponent is approximately 0.5, which
matches the analytic results for a random walk (Tapiero and
Vallois, 1996). For any window of length L, the standard
deviation of the random walk will be LH . If we plot the standard
deviation for each window length L against the window length,
we can get several data points (Figure 2B). The slope of the best
fit line through these points will give an estimate of the Hurst
exponent H; in this case it is H = 0.47. This is then a scale-free
relationship, like what we saw with avalanche shapes, where the
duration and height of the avalanches had the same relationship
across all scales.

The Hurst exponent can also tell us things about long-
range temporal correlations. In the case of the random walk,
there is no temporal memory. This means that each step
taken is independent of all the previous steps. For memoryless
processes like these, the Hurst exponent is known to be about
0.5 (Hu et al., 2013).

But there are processes where some temporal memory is
present. What happens if each successive step is influenced by
previous steps? For example, in a correlated random walk, we
could make it such that a step in one direction would slightly
increase the odds of drawing another step in the same direction.
This would cause the random walker to move away from the
origin more rapidly than in the balanced, uncorrelated situation.
In this case, the standard deviation would grow more quickly
with the recording duration and so the Hurst exponent would
be greater than 0.5. Conversely, if we made it such that a step
in one direction would slightly decrease the odds of drawing
another step in the same direction (anticorrelated), the walker
would remain closer to the origin and the Hurst exponent would
be less than 0.5 (Hu et al., 2013). In EEG data from humans,
H has been reported to be in the range of 0.55 ≤ H ≤ 0.85
over several frequency bands (Colombo et al., 2016). These
data show that neuronal processes near the critical point are
not memoryless–they are correlated. Experiments have shown
that temporal correlations in systems near the critical point
do not decay as exponentials but as power laws (Linkenkaer-
Hansen et al., 2001). Thus, long-range temporal correlations
are another signature of criticality that have been consistently
reported in neural data.
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Continuing with signatures of being near the critical point,
it is important to mention the recent advancements made
by Wilting and Priesemann in estimating the branching ratio
σ under conditions of sparse data sampling (Wilting and
Priesemann, 2018). Recall that σ should be very close to one
when the network is near a critical point. When they applied
their method to data sets of spiking activity recorded in vivo
from monkeys (n = 8), cats (n = 1), and rats (n = 5), they
found the average value to be σ = 0.9875 ± 0.0105 (Wilting
and Priesemann, 2019). In our own data from hundreds
of measurements taken from networks of primary cultured
neurons, we find the mode of the branching ratio to be σ = 0.98
(Timme et al., 2016). While there is still some discussion as to
whether the networks are exactly at a critical point or slightly
below it, there is now growing consensus they are very near it.
Being near a critical point to optimize information processing
would still be consistent with the criticality hypothesis.

Taken together, these advancements show that the field has
tools beyond power laws to assess proximity to a critical point.
When the control parameter in a tunable system is moved, we
can now tell with confidence when the system is near criticality.
These criteria for assessing criticality will be useful later when
we examine systems based on random walks.

Objection one: The Brunel
network model is not critical and
does not show a peak in
information processing at the
phase transition. Reply: When
properly tuned and stimulated, the
Brunel model shows a critical
phase transition and a peak in
mutual information

We will now consider the first objection, raised by Jonathan
Touboul and Alain Destexhe in their paper entitled “Power
law statistics and universal scaling in the absence of criticality,”
(Touboul and Destexhe, 2017). There, they claim that the well-
known Brunel model (Brunel, 2000) of spiking cortical networks
does not show critical dynamics. Further, they claim that this
model does not show a peak in information capacity. As the
model is expected to represent cortical network dynamics, these
results would seem to refute the criticality hypothesis.

We can begin by describing the Brunel model (Brunel,
2000). Briefly, it consists of leaky integrate-and-fire neurons that
are sparsely connected so that 10% of all possible connections
are present. It contains 80% excitatory neurons and 20%
inhibitory neurons; there is also an external input to simulate
thalamic drive (Figure 3A). Nicolas Brunel showed that by
tuning the parameters of this model, like the relative strength

of inhibition compared to excitation, he could cause it to
display different phases of activity commonly reported in
experimental studies of cortical networks (Figure 3B). For
example, the synchronous regular (SR) phase was characterized
by neurons firing synchronously in a rhythmic, or regular,
manner reminiscent of cortical oscillations. Recordings of
cortical neurons in vivo have been typically thought to fire with
AI activity, where neurons do not tend to fire at the same
time and there is no pronounced rhythm, while those in vitro
have been thought to fire with SI patterns characterized by
simultaneous firings but not at regular intervals. However, a
recent report of in vivo activity in awake behaving rodents has
shown that over several hours activity often switches between AI
and SI phases, with signatures of criticality found between them
(Fontenele et al., 2019). The Brunel model can capture all these
activity phases.

In Touboul and Destexhe’s implementation, they made the
external random drive equal in strength to the drive from
excitatory neurons within the model. With this, they showed
that as the model was tuned from the SR phase to the AI and
SI phases by increasing the relative strength of inhibition, there
was a jump in the entropy of the network activity, also known as
the information capacity. The information capacity did not drop
back down after the transition; rather it stayed high throughout
the AI and SI phases (Figure 4, red arrow). They did not observe
a peak near the transition to the SI phase, where they found
power law distributions. Yet this should be expected by the
criticality hypothesis. In addition, as they increased the external
drive by raising the ratio νext/νthresh for a fixed value of g, they
did not observe a peak in response entropy either (Figure 4, blue
arrow). They claimed that the lack of a peak in the information
capacity argued against the critical brain hypothesis, which
would predict a peak near a phase transition. They stated “. . .we
observe no difference between entropy levels in the SI or AI
states, Therefore, we conclude that the maximality of entropy is
not necessarily related to the emergence of power-law statistics”
(Touboul and Destexhe, 2017, pages 7–8).

To investigate these issues, I modified the Matlab code
used to simulate the Brunel model that was freely provided by
Destexhe and Touboul in their most recent paper on this subject
(Destexhe and Touboul, 2021). I explored the model under
more controlled conditions, where I could deliver stimulation
pulses and observe the response of the network without random
background activity. I brought the external drive to zero and,
for example, activated 320 randomly chosen neurons (out
of 1,000) only at one given time step. The results of these
experiments are shown in Figure 5. When the parameter g,
which controls the relative strength of inhibition, is low, then
activity is quickly amplified (Figures 5A,D). When g is at an
intermediate value, stimulation produces very slowly decaying
activity (Figures 5B,E). When g is large, strong inhibition
quickly dampens activity from the stimulus (Figures 5C,F). This
shows that the network can be tuned from an active, amplifying
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FIGURE 3

The Brunel model and its phase space. (A) Schematic of the Brunel model. It consists of an excitatory population of neurons (E), an inhibitory
population (I), and a source of external excitatory drive (Eext). Excitatory connections are given by solid lines and inhibitory connections are
given by dashed lines. (B) The phase space of the model is plotted as a function of two parameters, the ratio of external drive to the drive
needed to exceed threshold (νext/νthr), and the relative strength of inhibitory connections (g). There are four main regions, or phases: SR for
synchronous regular; AI for asynchronous irregular; SI with slow oscillations; SI with fast oscillations. The dashed arrows represent the types of
paths we will take in parameter space to explore the model. We will increase inhibition while keeping external drive fixed (red horizontal arrow)
and we will increase external drive while keeping inhibition fixed (blue vertical arrow). Delays between neurons were 1.8 ms (D = 1.8 ms). Panel
(A) is adapted from Nordlie et al. (2009); panel (B) is adapted from Brunel (2000).

FIGURE 4

The continuously driven Brunel model does not show a peak in response entropy. The diagram shows the phase space of the model as a
function of two parameters: g, the relative strength of inhibition, and the ratio of external drive to drive required to exceed threshold, νext/νthresh,
similar to what was shown previously in Figure 3B. The z-axis gives the entropy of the activity produced by the network in response to this drive,
H(R). Each dot shows a location in parameter space that was sampled with the model by Touboul and Destexhe (2017). As described earlier,
there are multiple phases: SR, synchronous regular; AI, asynchronous irregular; SI, synchronous irregular. One phase transition could occur at
the boundary between regular (SR) and irregular (AI/SI) activity. For a given ratio of νext/νthresh, the entropy increases in a step-like manner as g is
increased through this transition. This is shown by the red line, which jumps upward near g = 3.5 and stays elevated. It does not drop back down
as expected from the critical brain hypothesis. Another phase transition could occur as the model is moved from the SI phase to the AI phase at
a constant value of g (blue line). Along either path, the response entropy does not show a peak as the model transitions from one phase to
another. The model here is being constantly driven by random external input whose strength is equal to the strength of internal feedback
connections within the network. Adapted from Touboul and Destexhe (2017).
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phase to an inactive, dampening phase as g is increased. Here,
g serves as the control parameter for tuning the network while
the average firing rate serves as the order parameter giving the
phase of the system. This path through phase space, changing g
while keeping the amount of external drive fixed, is like the path
shown by the red arrow in Figures 3B, 4. The phase plot shown
in Figure 5G looks just like what we should expect for a system
with a critical phase transition.

If this really is a critical phase transition, then we should also
expect to see peaks in some functions near the phase transition
point. To examine this, I extracted time constants from a Brunel
model with 8,000 neurons with activity curves like those shown
in Figure 5D through Figure 5F. As the relative strength of
inhibition was increased, the model showed a transition from
an active phase to an inactive phase (Figure 6A). When the
8,000 neuron network was near the phase transition point
(g = 3) activity decayed quite slowly. But away from the phase
transition point this was not the case. In the amplified network,
activity quickly saturated so the time constant was short; in the
dampened network, activity quickly died so the time constant
was also short. Plotting the time constants against the control
parameter revealed a sharp peak near the phase transition
(Figures 6B,C). This showed that temporal correlations were
maximized, just as we would expect in a critical system.

Next, I turned to examine the mutual information. Here,
I stimulated a network at one time step with eight different
numbers of randomly chosen neurons (thus giving 8 = 23

or 3 bits of input entropy) and used the number of neurons
active in the network as a measure of the response. As many
readers may know, the mutual information can be written as a
difference between two quantities, the entropy of the response,
H(R), and the entropy of the response conditioned on the
stimulus, H(R| S). Thus we have: MI(S;R) = H(R)–H(R| S).
For mutual information to be high there should be a wide
variety of responses, making H(R) large, and a narrow and
reliable set of responses for each given stimulus, making H(R|
S) low. The information capacity is merely the H(R) term
and does not include the H(R| S) term. Note it is possible to
have a high information capacity but low mutual information
if H(R| S) is large. This would occur if the network had
highly variable output and rarely gave the same response to
a given stimulus. When Touboul and Destexhe measured the
information capacity, they were only measuring H(R) and were
not delivering stimuli. Thus, they did not measure information
transmitted through the network. When the mutual information
MI(S;R) was measured in the stimulated Brunel networks, I
found a peak near g = 3, in agreement with the peak for the time
constants (Figure 7). For smaller networks this peak occurred
for lower values of g, but as network sizes were increased,
the peak value of g asymptotically approached g = 2.952, in
good agreement with the peak value of g for the time constant
measurements (g = 2.99). These findings suggest that the Brunel
model indeed has a phase transition and that information

transmission is maximized there. This all agrees with the
criticality hypothesis stated earlier.

Given this result, one might wonder why Touboul and
Destexhe reported only that there was no peak in information
capacity. First, as we just explained, information capacity is not
the same thing as mutual information. The criticality hypothesis
predicts a peak in information transmission through a network
when it is at a critical point. To assess this, one must measure
mutual information, which is the difference between the
information capacity, H(R), and the conditional entropy, H(R|
S). Second, the Brunel model tested by Touboul and Destexhe
was receiving external input that had a total synaptic weight
equal to the weight of all the excitatory neuron synapses within
the network. This arrangement made the network activity very
dependent on the random external drive and made the internal
network dynamics more difficult to observe. Interestingly,
experiments in cortical slice networks have shown that limited
thalamic stimulation does not seem to disrupt ongoing cortical
network activity (MacLean et al., 2005). However, more recent
work has shown that an intrinsically critical network will be
pushed away from the critical point as external drive is increased
(Fosque et al., 2021). This makes it reasonable to explore how the
network functions under conditions of reduced external drive.
To see how influential strong random drive can be, let us move
on to the second objection.

Objection two: Very simple
unconnected models can show
signatures of criticality when
randomly driven. Reply: Such
models have many of these
signatures, but the signatures
largely arise from the noise source
itself. Such models also fail to
account for experiments showing
neuronal criticality: (1) Processes
information, (2) depends on
connections between neurons,
and (3) produces long-range
temporal correlations

In their 2017 paper, entitled “Power law statistics and
universal scaling in the absence of criticality,” Touboul and
Destexhe continued their computational experiments by
exploring the behavior of an ensemble of neurons without
internal connections that received strong, correlated,
randomly varying external drive. They first showed that
this model could produce power law distributions of
avalanches that satisfied avalanche shape collapse (Figure 8;
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FIGURE 5

A phase transition in the Brunel model. Here, the random external drive was turned off and stimulation was delivered once at a prescribed time.
The top row shows raster plots of activity produced by the Brunel model when it was stimulated once at the 100th time step (red arrows).
Stimulation consisted of randomly activating 320 out of 1,000 neurons. Each spike is given by a blue dot. (A) When the inhibitory connection
strength, g, was low, activity rapidly increased. (B) When g was at an intermediate value, activity died out slowly. (C) When g was large, activity
was quickly damped. The middle row shows the average number of neurons activated after stimulation for the three conditions (D–F). Each
curve shows an average of 30 trials. Cyan curves show one standard deviation. Exponential curves in red were fit to time steps 3 through 40,
shown in circles. Note that while conditions (D,F) have opposite directions of growth, they both have short time constants (sharply bending
curves). Condition (E), in contrast, has a long time constant (gradually bending curve). (G) The average firing rate for the model is plotted against
different values of g, showing a clear transition from an active phase to an inactive phase. Matlab code for producing all these plots is given in
the Supplementary material.
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FIGURE 6

A sharp peak in the time constant near the phase transition point. (A) The firing rate in a Brunel model with 8,000 neurons is plotted as a
function of the inhibitory strength g. The model was stimulated by randomly activating 20% of the neurons; the number of spikes divided by the
total number of time steps was taken to be the firing rate. Note active phase on the left and inactive phase on the right. Dashed gray line
denotes approximate border between them. (B) Time constant for exponential decay of activity after stimulation shows a sharp peak near the
phase transition. Peak value of time constant occurred at g = 2.99 and is indicated by the red circle. Dashed gray line again drawn at transition.
(C) Same plot as shown in panel (B), but with the time constant measured in log scale, showing transition region in more detail. A total of 93
different values of g were probed. Probing was densest near the transition region; each probe consisted of 30 stimulations of the network.
Exponential curves were fit to each stimulation and the average time constant for the 30 stimulations is shown as a single circle. Matlab code
for producing all these plots is given in the Supplementary material.

FIGURE 7

The peak in the mutual information coincides with the peak in the time constant. (A) Mutual information between the response and the stimulus
was measured in Brunel models of different sizes (250, 500, 1,000, and 1,500 neurons shown) as the inhibitory strength, g, was varied. Stimuli
consisted of eight different numbers of neurons (e.g., 0, 125, 250, 375, . . . for N = 1,000 neuron model) randomly activated at one time; the
average number of neurons active at time steps 3 through 5 after the stimulus was taken as the response. Black curves show mutual information
for each model; cyan curves show one standard deviation. Five models of a given size were run 30 times each to produce each data point;
more details are in the Supplementary material. Peak mutual information values for each model size are indicated by red arrows. Note that as
model size increases, peaks become taller and move toward g = 3. Dashed vertical line is at g = 3 for reference. (B) The value of g at which
mutual information peaks is plotted against model sizes (N = 500, 1,000, 1,500, 2,000 shown). Blue circle tokens were jittered slightly to
improve visibility. An exponential fit to these data gives an asymptotic value of g = 2.952, with 95% confidence bounds at 2.637 and 3.268. This is
within experimental error of the peak in the time constant found for the Brunel model with 8,000 neurons (g = 2.99) shown in Figures 6B,C.
This agreement of peak values in mutual information and time constant duration is what would be expected for a second order phase transition
and supports the hypothesis that the Brunel model has a critical point. It also supports the criticality hypothesis. Matlab code for producing all
these plots is given in the Supplementary material.

Touboul and Destexhe, 2017), and later showed that it could
satisfy the exponent relation (Destexhe and Touboul, 2021).
This model suggests that the signatures of criticality observed
in neuronal experiments may be produced by a simple process,
like a random walk, that is passed through a threshold. In
other words, the criticality that has been claimed to exist in
living neuronal networks may not be the result of collective
interactions among neurons. If true, this would contradict
the criticality hypothesis mentioned earlier, which claims that

optimal information processing is emergent near the critical
point and depends on interactions between neurons.

My response will consist of five parts. (A) First, we will
cover some details of their unconnected model and its external
noise source. (B) Second, to understand the contributions of
external noise, we will examine how the behavior of the Brunel
model changes when it is driven by uncorrelated random noise.
(C) Third, we will examine how the behavior of the Brunel
model changes when it is driven by correlated random noise.
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FIGURE 8

The output of the Ornstein-Uhlenbeck model implemented by Touboul and Destexhe (2017). (A) A raster plot of spiking activity. Neuron number
is on the y-axis, and time is on the x-axis. Each dot represents a spike from a model neuron. The summed activity of all the neurons in each time
bin is plotted below to show how firing rate changes with time. Here it is in the synchronous irregular (SI) phase. (B) Distribution of avalanche
sizes for the model approximately follows a power law with exponent –1.5. (C) Distribution of avalanche durations approximately follows a
power law with exponent –1.9. The two blue lines are parallel and are shown as an example of a slope that would be slightly shallower than the
one found by Touboul and Destexhe (2017). (D) Average avalanche size for a given duration, plotted against avalanche duration, approximately
follows a power law with exponent 1.5. (E) Average avalanche shapes, for durations of 10–40 time steps (ms) of the model. (F) Avalanche shapes
collapse well for exponent of γ = 1.5, as expected. Figure adapted from Touboul and Destexhe (2017).

These two types of drive produce materially different behaviors,
although both degrade information processing. (D) Fourth, we
will examine the properties of the correlated noise itself and
show that it can be tuned to produce power laws and even
avalanche shape collapse, something that cannot be shown for
uncorrelated noise. This will explain how even a network with
no internal connections can show signatures of criticality. (E)
Fifth, we will draw three distinctions between the signatures of
criticality produced by correlated noise and those produced by
a connected network of neurons. Connected networks transmit
information well, have emergent criticality that depends on
connections, and show long-range temporal correlations. In
contrast, disconnected networks transmit information poorly if

at all, do not display emergent criticality and show no long-
range temporal correlations. We will show that the experimental
data are consistent with connected network models but not with
disconnected network models.

Understanding the disconnected
model

Let us now turn to the model. It consists of an ensemble
of neurons with no internal synaptic connections that is driven
by external noise. This noise source is an Ornstein-Uhlenbeck
process that we will explain more below. The model output
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can be seen in Figure 8, taken from Touboul and Destexhe
(2017). There, three power law plots are shown for avalanche
size, duration, and size vs. duration. In addition, the average
avalanche shapes show excellent collapse. While the exponents
given from these power laws (τ = 1.5, α = 1.9, γ = 1.5) do not
closely satisfy the exponent relation [(1.9–1)/(1.5–1) = 1.8 6=
1.5], they are not too far off. A slightly shallower slope of α = 1.75
for the avalanche duration plot, for example, would cause the
exponent relation to be satisfied.

How does the Ornstein-Uhlenbeck process drive the
population of neurons? It has a single variable, x, that zigs and
zags across a threshold, as shown in Figure 9A. The equation
governing the behavior of x is given in Figure 9B, and has two
parts, one of which is random. The other part has the effect
of constraining, or counteracting, the randomness. To turn the
movements of this single variable into something that could
represent a population of neurons, a threshold is introduced.
Here, to prevent inaccuracies that can arise from setting the
threshold too high (Villegas et al., 2019), we will set the threshold
at zero. Whenever x crosses above the time axis, we can say that
neurons become active. Whenever it is below the axis, there is
no activity. The number of neurons activated is proportional
to the height of x. For example, shortly before 20 time steps, x
has a value of about 2. When multiplied by a proportionality
constant of 3, this would mean that six neurons should be
active at that time. Six neurons are randomly chosen out of the
population and made active. When this is done for 128 neurons
over about 800 time steps, you get the raster of activity shown in
Figures 9C,D.

Clearly a very important part of this model is the random
drive that activates the disconnected population. To better
understand the role of random drive, let us return to the Brunel
model. Recall that it can be tuned to a critical point when
external drive is limited. Now we will examine the Brunel model
dynamics when it is continually driven by two types of noise:
uncorrelated and correlated. This will position us to better
understand how the Ornstein-Uhlenbeck model can generate
signatures of criticality, and how those signatures fail to match
what is observed in experiments with living neurons.

Brunel model driven by uncorrelated
random noise

Figure 10A shows how the mutual information curves
from the Brunel model (shown previously in Figure 7A)
change when uncorrelated noise is added, as Brunel originally
proposed (Brunel, 2000). Increased noise decreases the mutual
information; it also reduces the response entropy, as shown in
Figure 10B. These results are consistent with the principle of
quasicriticality (Williams-Garcia et al., 2014; Girardi-Schappo
et al., 2020; Fosque et al., 2021), which describes how external
drive will affect information processing functions in networks
near the critical point.

Note also that by increasing external drive, we are moving
through phase space along the path of the blue arrow shown
in Figures 3B, 4. But uncorrelated noise is not the only type
of noise that we need to consider along this path. There is
much research investigating the effects of correlated noise on
neural networks (Lee et al., 1998; Cohen and Kohn, 2011). Let
us explore this next.

Brunel model driven by correlated
random noise

To produce a correlated noise source, I followed one of the
models used by Touboul and Destexhe (2017) and drove the
network with the output of a rectified coin flip. I will explain
this mechanism more later, but for now it is enough to state
that it is conceptually similar to the Ornstein-Uhlenbeck process
mentioned earlier. The total number of neurons that could be
activated in a 1,000 neuron model was varied among these
values: 10, 100, 500, and 1,000. By increasing the number of
neurons that could be activated, we could increase the relative
strength of the external drive. Again, this would be moving along
the blue arrow in phase space, as shown in Figures 3B, 4.

When correlated noise like this is added to the Brunel model,
we also see a decline in mutual information (Figure 11A). This
is expected, as random background unrelated to the stimulus
will alter the input patterns to the network, making the response
variability go up. Interestingly, strong correlated noise does not
always reduce the response entropy (or information capacity),
in contrast to what we observed when the model was driven by
uncorrelated noise. This can be seen in Figure 11B by following
the red curve produced by the N = 1,000 condition. Notice
that this curve does not drop back down to the axis as the
inhibitory strength g is increased beyond 3. Rather, it remains
high, and is roughly 2.5 bits when g = 4. This is consistent
with the findings reported by Touboul and Destexhe (2017) who
noted that there was not a peak in the information capacity as
the model was moved across a phase transition. As we pointed
out earlier, though, there is a peak in the mutual information
(Figure 11A), as predicted by the criticality hypothesis. Thus,
mutual information does show a peak, even though information
capacity does not clearly show one for high values of g.

Let us now explore the cause of this elevated response
entropy. What will it look like if we disconnect the neurons
from each other in the Brunel model, thus imitating what
was done in the Ornstein-Uhlenbeck model used by Touboul
and Destexhe (2017)? As shown in Figure 11B by the black
curve, a disconnected model has nearly the same amount of
response entropy as that found in a connected model (red
curve). The difference between the curves is indicated by the
small green arrow to the right of Figure 11B. Compare this to
the red arrow, the response entropy produced by the connected
model when 1,000 neurons are driven by correlated noise.
From this we can conclude that nearly 90% of the response
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FIGURE 9

The Ornstein-Uhlenbeck model. (A) The variable x moves up and down across a threshold over time. The threshold is given by the horizontal
line at zero. (B) The equation governing how x changes (ẋ) has negative feedback (-ηx) and a random noise term (+(1-η)·random). (C) Number
of neurons firing is proportional to how far x is above threshold. (D) A zoomed out view of the raster plot, showing synchronous irregular (SI)
activity.

entropy is caused by the external drive, and only about 10%
of it is caused by interactions among the neurons within
the network.

Because this external drive is so dominant, it deserves
further scrutiny. What are the statistical properties of a rectified
coin flip? We will turn to this in the next section.

Correlated random noise can show
many signatures of a critical process

I will now explain the rectified coin flip process in more
detail. We are all familiar with flipping a fair coin that has equal

probability of landing heads (H) or tails (T). If we take this
process and map it onto the number line, we could take one step
forward (+1) for each head and one step backward (−1) for each
tail. An example “avalanche” here could be a run like this: (H, H,
H, T, T, T), as shown in Figure 12A (gray triangle). The process
starts at the origin and returns there after an equal number of
heads and tails have been flipped. The duration of this avalanche
would be six, as there were six flips. The height of the avalanche
at any given time is determined by the net excess of heads. In
this case, it would be: (1, 2, 3, 2, 1, 0). The size of the avalanche
would just be the sum of these numbers: 9. Let us introduce one
last condition on this process–we will rectify it so that excursions
from the origin that go negative will be made positive. This way,
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FIGURE 10

Random uncorrelated noise reduces mutual information and response entropy. (A) Mutual information was plotted for a Brunel model with
1,000 neurons, using the same procedures described previously, but now with varying amounts of externally generated uncorrelated noise.
Noise was simulated by giving each neuron an independent probability of spontaneously firing, Ps, that varied (0.001, 0.01, 0.1, 0.5). This noise is
uncorrelated because the activity in the randomly driven neurons was independent. Note that as uncorrelated noise is increased, the peak in
mutual information declines. (B) Response entropy also declines as uncorrelated noise is increased. These results are consistent with the
principle of quasicriticality (Williams-Garcia et al., 2014; Fosque et al., 2021). Matlab code for producing these plots is given in the
Supplementary material.

FIGURE 11

Random correlated noise reduces mutual information but can increase response entropy. (A) Mutual information was plotted for a Brunel
model with 1,000 neurons, using the same procedures described previously, but now with varying amounts of externally generated correlated
noise. Correlated noise was added by simultaneously driving varying numbers of neurons (Nd = 10, 100, 500, 1,000) with a rectified coin flip
process (details described in text and in Supplementary material). This type of drive was also used by Touboul and Destexhe (2017) and
Destexhe and Touboul (2021). Note that as this noise is increased, the peak in mutual information declines. (B) Response entropy, however,
remains high near the peak (close to g = 3) for all numbers of neurons driven, and in the case of 1,000 neurons driven, it remains high even as g
is increased beyond 3. This is consistent with the findings of Touboul and Destexhe (2017), who called the response entropy the “information
capacity.” Note however that the mutual information, shown in panel (A), does decline as external drive increases, consistent with the critical
brain hypothesis. Note further that the high response entropy is largely the result of external drive and not the network itself: The horizontal
black curve shows the response entropy produced by a network with no internal connections, only receiving external drive. This curve is slightly
below that produced by the Brunel model with its default setting of 10% connectivity (red curve). The difference between these is shown by the
small green arrow to the right of the plot; the response entropy produced by the disconnected network is shown by the taller red arrow to the
right. There is about an 11% difference between them, indicating that 89% of the response entropy can be accounted for by the external drive
alone. Matlab code for producing these plots is given in the Supplementary material.

only the absolute value of avalanches will be considered. Now,
what are the statistics of this process? Can it produce signatures
of criticality?

In fact, it can. Analytic work has shown that the distribution
of first return times to the origin of a fair coin flip follow a
power law distribution (Kostinski and Amir, 2016). To probe
this further, I simulated two billion coin flips and then plotted
the resulting distributions, as shown in Figures 12D–F. They

are all significantly better fit by power laws than by other
distributions. Moreover, the exponents from these power laws
satisfy the exponent relation, within an error of 2.9%. The
exponent γ can be used to perform avalanche shape collapse, as
shown in Figure 12C. All of these signatures of criticality are
clearly satisfied.

In addition, the process is tunable: These signatures appear
at the critical point, when the coin is exactly fair. They will
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FIGURE 12

The reflected coin flip satisfies multiple signatures of criticality without any connections. (A) The reflected coin flip steps upward in y every time
a head is flipped and downward for every tail. All negative excursions are reflected to produce only positive avalanches. Here, only 64 flips are
shown; simulation had 2 billion flips. The gray triangle highlights an example run of six flips mentioned in the text. (B) Average avalanche shapes
with durations from 8 to 32 are shown. (C) Average avalanche shapes are fractal copies of each other and show good collapse when rescaled
using the exponent γ. (D) Avalanche size distribution followed a power law with exponent τ = 1.32. Distribution was significantly better fit by
truncated power law than by other distributions (p = 0.786). (E) Avalanche duration distribution followed a power law with exponent α = 1.49.
Distribution was significantly better fit by truncated power law than by other distributions (p = 0.402). (F) Average avalanche sizes plotted against
durations follows a power law with exponent γ = 1.50. Using all three exponents, the error in fitting the exponent relation was 2.9%. Code for
producing this simulation can be found in the Supplementary material. Dashed lines show approximate regions over which power laws were fit.

disappear when the coin is biased to produce more heads
than tails. These biased conditions reveal the two phases–one
where heads occur most often and another where tails occur
most often. Perfect symmetry occurs only when the coin is
exactly fair, and the signatures of criticality appear right at
the point where this symmetry is about to be broken, at the
transition between phases.

However, the coin flip does not show long-range temporal
correlations as measured by the Hurst exponent: H ≈ 0.5,
indicating a memoryless process as we mentioned earlier. Still,
many of the signatures of criticality we highlighted can be
fulfilled by the coin flip.

This result suggests that a neural network model without
internal connections and driven by an external source like a
rectified coin flip could show some signatures of criticality. But
these signatures would largely reflect the statistics of the noise
source and not the network itself. To explore this situation
further, we will next describe the differences between emergent
and non-emergent criticality.

Emergent vs. non-emergent criticality

To adequately address this situation, it is necessary to first
explain a key difference between the type of criticality we saw
in the Brunel model and the signatures of criticality we saw in
the coin flip model. This will require a short digression into
degrees of freedom.

In describing any system, it is important to mention how
many degrees of freedom it has. Briefly, the degrees of freedom
are the number of parameters that would be needed to accurately
specify the system. For example, in the coin flip model there was
only one degree of freedom, given by the probability of getting
heads. This could be for example p = 0.500 in a fair coin, or
p = 0.501 in a biased coin. In the Brunel network model, the
parameters included not only the relative strength of inhibition
(g) and the relative frequency of external drive (νext/νthresh), but
also the list of all the connections made between the neurons.
This list would include at least 100,000 more parameters (10%
connection density× 1,000 neurons× 1,000 neurons = 100,000
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connections). These examples illustrate the difference between
systems with few degrees of freedom and those with many.

The criticality hypothesis as stated earlier assumes that the
brain is a system with many degrees of freedom and that
criticality emerges there as a result of interactions between
neurons. Criticality in systems with many degrees of freedom
is most often studied with the tools of statistical mechanics.
In the example of the piece of iron, the spins in the lattice
must be influencing their nearest neighbors. In the example
of a neural network model, the neurons must be capable of
stimulating each other through synapses. In these types of
systems, when the interactions are reduced in strength or cut,
the signatures of criticality are diminished or disappear. Power
laws are destroyed and peaks in mutual information or temporal
correlations are flattened. A way to probe this type of criticality is
by observing what happens in the system when the connections
are manipulated. An example of this is given in Figure 11,
where the density of connections in the Brunel model is reduced.
When they are, the model no longer produces a power law of
avalanche sizes (Figure 13A); it no longer has a sharp peak in the
time constant at the phase transition (Figure 13B); it no longer
transmits information through the network (Figure 13C).
Signatures of criticality in the Brunel model clearly depend on
interactions within the ensemble; this criticality is therefore
emergent. Other investigators have also recently noted that
emergent criticality can be distinguished from external effects by
tracking the mutual information (Nicoletti and Busiello, 2021;
Mariani et al., 2022). This approach should be very fruitful
in future studies.

In contrast, systems with few degrees of freedom may not
have any connections at all. Signatures of criticality can still exist
in these systems but can arise over time as a single unit interacts
with itself. Activity in these systems is typically studied from the
perspective of dynamical systems. For example, consider a single
unit whose dynamics are given by the branching ratio, σ. If a
small perturbation to the system grows over time (σ > 1), it is
chaotic. If a small perturbation shrinks over time (σ < 1), it is
damped and stable. Only when a small perturbation is neither
amplified nor damped but relatively preserved (σ = 1) is the
system poised near the critical point. For activity to arise in
these systems, they need to be driven, and this often comes
from an external source of randomness. This external drive is
sometimes called a latent variable (Schwab et al., 2014). When
internal connections are cut in systems like these, it does not
affect signatures of criticality. It would make no difference in the
Ornstein-Uhlenbeck model proposed by Touboul and Destexhe
because there are no connections to begin with.

Which type of criticality is observed in living neural
networks? Fortunately, there are numerous experiments that
have addressed this through the application of pharmacological
agents that disrupt synaptic transmission. If the non-interacting
models with few degrees of freedom are correct, then this
should have no effect on signatures of criticality. But if criticality

emerges through the interactions of neurons in systems with
many degrees of freedom, then these manipulations should
disrupt signatures of criticality.

Let us now summarize results from a few of these
experiments. Application of picrotoxin (PTX), a GABAA

antagonist that blocks inhibitory synaptic transmission, causes
disruption of power laws in acute cortical slices (Beggs and
Plenz, 2003). In this experiment, when picrotoxin was washed
out the activity returned toward a power law distribution.
Shew et al. (2009) showed that application of AP5 and
DNQX, which together block excitatory synaptic transmission,
disrupted power laws in organotypic cortical cultures. When
the GABAA antagonist bicuculline and the GABAA agonist
muscimol were applied in vivo, they tuned cortical activity away
from a critical point and into the supercritical and subcritical
phases, respectively (Gautam et al., 2015; Figure 14A). Similar
manipulations also cause cortical slice networks to move
away from peak information capacity (Figure 14B) and peak
information transmission (Figure 14C). These manipulations
of criticality are not confined to chemical synapses, though,
as even the gap junction blocker heptanol disrupts the quality
of avalanche shape collapse in zebrafish larvae (Ponce-Alvarez
et al., 2018), again moving the neural network away from a
critical point. In addition, these findings extend to human
patients; antiepileptic drugs reduce cortical connectivity and
produce subcritical avalanche size distributions as well as a
reduction in long-range temporal correlations (Meisel, 2020).

Taken together, these results consistently demonstrate
that neuronal criticality is an emergent phenomenon that
depends on collective interactions between neurons. Thus,
low-dimensional models without interactions are inadequate
for capturing the type of criticality that occurs in the neural
systems just mentioned.

Are there any cases from biology that support the models
with few degrees of freedom? Several studies have noted that a
randomly varying external drive, when applied to an ensemble
of units, can produce apparent signatures of criticality (Schwab
et al., 2014; Priesemann and Shriki, 2018), much like what we
discussed with the Ornstein-Uhlenbeck and coin flip models.
Swarming animals like starlings and insect midges have been
shown to have spatial correlations that scale with the size
of the swarm, suggesting criticality (Cavagna et al., 2010).
However, when swarms of midges were isolated from external
perturbations like wind and light, these correlations disappeared
(van der Vaart et al., 2020); this has not yet been tried with
starlings (release them into a domed stadium?). This result
suggests that at least in the case of midges, signatures of
criticality may not be intrinsic to the swarm itself but rather
produced by an extrinsic source.

Let us finally return to the issue of long-range temporal
correlations. Recall that in the coin flip process the Hurst
exponent was H ≈ 0.5, indicating no temporal memory. Given
that random walk models do not show emergent criticality or
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FIGURE 13

Power laws, peak decay constants and peak mutual information depend on connections between neurons in the Brunel model. (A) Avalanche
size distributions deviate from power law form when connectivity between neurons is reduced. Black line shows power law distribution from
the Brunel model when connectivity is set to the sparse default of 10%. It was statistically more similar to a truncated power law than other
distributions (p = 0.238). Dashed line shows region over which power law scaling was found. Blue line shows downwardly curved distribution
produced when connectivity is reduced to 5%. This was not statistically similar to a power law distribution (p = 0.076). (B) As connectivity is
reduced from the default 10–2%, the time constant of temporal correlations drops and the peak near the phase transition point disappears.
Note that as connectivity is increased, the peaks become taller and narrower, consistent with finite size effects observed in emergent criticality.
Thus, temporal correlations in the Brunel model emerge from neuronal interactions near the critical point. (C) Mutual information shows a peak
near g = 3 in the model when it has 10% connectivity, but this peak disappears completely when connectivity is reduced to 1%. Black lines are
the average of five runs; cyan lines show one standard deviation. Each run of the model consisted of 30 networks constructed for each value of
g. These figures demonstrate that criticality in the Brunel model emerges through the interactions among neurons. The code used for
producing these figures is available in the Supplementary material.

FIGURE 14

Power laws and peak information transmission depend on connections between neurons in living neural networks. (A) Avalanche size
distributions recorded in vivo deviate from power law form when synaptic transmission is manipulated. Black line shows approximate power law
distribution from an unmanipulated recording; dashed line has slope τ = −1.5 for reference. Blue line shows downwardly curved distribution
caused by enhancement of inhibitory synaptic transmission (application of muscimol). Red line shows distribution when inhibitory synaptic
transmission is disrupted (application of bicuculline). The value of κ parameterizes how close a given distribution is to an ideal power law (κ ≈ 1
if nearly critical, κ > 1 if supercritical, κ < 1 if subcritical). Adapted from Gautam et al. (2015). (B,C) Pharmacological manipulations that disrupt
excitatory synaptic transmission (application of AP5 and DNQX, blue dots) or inhibitory synaptic transmission (PTX, pink dots) reduce the evoked
entropy (B) and the mutual information (C) between the stimulus and the response. Gray dots show network responses where no manipulations
were applied. Adapted from Shew et al. (2011). Cortical slice cultures were placed on a 60-electrode array and stimulated electrically with 10
different amplitudes. The distribution of network responses to each stimulus provided H(R| S), while the distribution of network responses
provided H(R). Mutual information is calculated as MI(R;S) = H(R)–H(R| S). Note that MI peaks at κ = 1. The black curve shows results produced
by all 60 electrodes, while the green curve shows results produced by a coarse-grained approach where four neighboring electrodes are
grouped together into a super-electrode. In both conditions, manipulations that disrupt synaptic connectivity reduce response entropy and
mutual information. These figures demonstrate that the type of criticality in these networks depends on connections between neurons and is
therefore emergent.

long-range temporal correlations, it is worth asking if there
are models that do. Even the simple Brunel model showed a
spike in its time constant, when the network was connected
and tuned to the critical point (Figure 13B). It is known

that a population of neurons modeled as a critical branching
process can produce avalanche distributions that follow power
laws, the exponent relation and show good shape collapse
(Friedman et al., 2012). However, critical branching by itself can
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only produce short-range temporal correlations up to the length
of the longest avalanche (Poil et al., 2008). But when neural
network models include some type of homeostatic plasticity,
over longer durations they can produce Hurst exponents up
to H = 1, greater than the H ≈ 0.5 seen in random walks
(Poil et al., 2012). Perhaps the addition of a simple temporal
feedback term would allow random walk models to show
long-range temporal correlations also, but they would still
fail to show emergent criticality that depends on connections
between neurons.

To conclude this section, random walk models fail to capture
emergent criticality, they fail to support information processing,
and they fail to exhibit long-range temporal correlations, all of
which are observed in neural experiments. Because there are
models that do capture these features (Poil et al., 2012; de Candia
et al., 2021), random walk models should be discarded.

Closing

The criticality hypothesis states that ensembles of neurons
collectively interact to operate near a critical point. Near this
point, they optimize multiple information processing functions
simultaneously. The challenges to this hypothesis have taken
several forms and have been met in different ways. Below is a
summary of some recent challenges and how they have been
addressed:

• An early objection was that many non-critical processes
could produce power laws, so power laws alone were
not sufficient to establish criticality. The field responded
by developing additional ways to assess proximity to
a critical point. These ways included the exponent
relation, avalanche shape collapse, assessment of long-
range temporal correlations and a better way of measuring
the branching ratio. These methods are increasingly applied
now and consistently show that many neural systems are
operating near a critical point.
• A more recent objection is that even the well-known

Brunel model of cortical networks does not show a peak
in information capacity as it is tuned across a phase
transition. In this paper, we saw that mutual information
did show a peak, even if information capacity did not,
when the Brunel model was decoupled from strong,
correlated random drive. This result was consistent with the
criticality hypothesis.
• Another recent objection is that even simple random

walk processes like a coin flip can display signatures of
criticality. This raises the possibility that signatures of
criticality in living neural networks do not arise from
collective interactions, but merely from external sources of
randomness. While these simple models do produce many
signatures of criticality and might be considered critical in

some sense, they are unable to capture the type of criticality
that emerges in neural networks through the interactions
of many neurons. Because neuronal experiments show
criticality produces a peak in mutual information, depends
on synaptic transmission, and has long-range temporal
correlations, these simple models are inadequate.

It is worth reviewing that in two of the objections, random
noise played a key role. The peak in mutual information we
observed in the Brunel model is suppressed in the presence of
strong, external random drive (Figures 10A, 11A). The recent
principle of quasicriticality notes that increased external drive
will push an intrinsically critical network slightly away from the
critical point (Williams-Garcia et al., 2014; Fosque et al., 2021).
And paradoxically, if all we have is a random walk or a coin
flip, we can get some signatures of criticality (Figure 12), except
for a peak in mutual information and the long-range temporal
correlations. This highlights that apparent criticality can arise
in two different ways–either intrinsically, through interactions
among many units in an ensemble, or extrinsically, through a
driving process or latent variable like a random walk. How then
can we decide what type of system we have if both show some
signatures?

Figure 15 shows a flow chart for this decision process,
starting with the condition that we have some power law data in
hand. To properly interrogate the system we must both analyze
the data and perform causal interventions, as noted clearly
by Priesemann and Shriki in their analysis of this situation
(Priesemann and Shriki, 2018).

The first step is to determine if the data show more than
just power laws. Do they support the exponent relation and
show some type of scaling collapse? Can the process be tuned
away from the point where these power laws are produced?
Does the system show long-range temporal correlations? If most
of these conditions are not satisfied, then the process under
consideration is likely to be not critical. We discussed successive
fractionation and the sum of many exponential distributions as
examples of this category.

The second step is to determine if the signatures of criticality
persist after the source of randomness is blocked. Note that
this source of randomness can in theory arise from the system’s
internal dynamics, but in practice, experimental systems are
often driven by external sources of randomness. If blocking this
source, whatever its origins, removes signatures of criticality,
then the system has few degrees of freedom. These systems
are often studied within the framework of dynamical systems.
Examples here include the coin flip, a random walk, the
Ornstein-Uhlenbeck process when η is small, and possibly
swarms of midges.

The third step is to determine if the signatures of criticality
persist after internal connections are reduced or cut. If the
connections were necessary, then we have a system with
emergent criticality. It has many degrees of freedom and is
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FIGURE 15

Flow chart describing classification of power law data described in this paper. For explanation, see text.

typically studied with the tools of statistical mechanics [but
see Dahmen et al. (2019) for a powerful dynamical systems
approach to ensembles]. Examples of such systems would
include networks of neurons, spins in a piece of iron, or
interacting water molecules poised between gas and liquid
phases, and possibly murmurations of starlings.

If signatures of criticality persist even after sources of
randomness and internal interactions are removed, then we
are dealing with a novel type of system that has not to my
knowledge been seen.

More broadly, this flow chart is part of a larger process:
distinguishing things that are primarily driven by their
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environment from things that are more autonomous and
governed by internal dynamics. This process may eventually
be refined to distinguish between things that are living and
thinking generators of complexity from things that merely react
to external inputs.

We have now come to the end of considering alternatives.
Skeptical questions, far from being troublesome, are essential
for us to clearly and correctly work through the implications
of our experiments. Here, they force us to think carefully
about what it means for a network of neurons to operate
near criticality and what mechanisms could produce criticality.
This in turn helps us to interpret the experiments we need to
distinguish between competing models. Those who raise these
questions are doing an essential service for science, helping the
dialog to go further.
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