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Editorial on the Research Topic

Involvements of TRP Channels, Oxidative Stress and Apoptosis in Neurodegenerative Diseases

The oxygen free radicals generated during metabolism can cause cumulative oxidative damage to
nucleic acids, lipids, and protein, resulting in structural degeneration, apoptosis, functional decline,
and age-related degenerative diseases involving the cardiovascular, endocrine, neurologic, immune,
respiratory, gastrointestinal, and reproductive systems. The transient receptor potential (TRP)
protein superfamily is composed of several cation-permeable channels that are widely distributed
in mammalian cells. TRP channels can be divided into six subfamilies that are dependent on
their sequence identity. These channels play a crucial role in the regulation of oxidative stress and
should be considered as likely targets for the treatment of age-related neurodegenerative diseases
associated with chronic oxidative stress, decreases in metabolic regulation, and cell viability.

At least three subfamilies of TRP channels are associated with oxidative stress. These include
the TRPV subfamily (characterized by chemical, mechanical, and physical stimuli); the TRPC
subfamily (characterized by receptor operated calcium entry channels); and the TRPM subfamily
(with roles in cell proliferation and death).

The articles in this Research Topic review current thinking with regards to the role of TRP
channels in oxidative stress, aging, and neurodegenerative diseases, and highlight the involvement
of these channels in the pathobiology of selected neurodegenerative diseases including Alzheimer’s
disease and Parkinson’s disease. Therapeutic strategies that modulate the activation of specific
TRP channels may be beneficial for attenuating cellular damage due to oxidative stress in
neurological disorders.

The first article by Duitama et al. provides a broad perspective of the role of TRP-dependent
mechanism(s), which canmediate pain sensation in neurodegenerative diseases such as Alzheimer’s
and Parkinson’s diseases. It discusses the therapeutic approaches available to palliate pain and
neurodegenerative symptoms throughout the regulation of these channels. TRP channels are
postulated to be involved in the pathobiology of neurodegenerative diseases and pain nociception
through modulation of intracellular Ca2+ signaling, oxidative stress, and the production and
release of inflammatory mediators.
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The second article by Hong et al. provides an overview of the
role of TRP channels as potential targets for neurodegenerative
diseases. The review provides an up-to-date summary of the
involvement of TRP channels in neurological disorders and
discusses recent work on the development of therapeutic
candidates for neurodegenerative disorders targeting TRP
channels. As the structures of TRP channels are beginning
to be elucidated using cryo-electron microscopy, TRP channel
antagonists are beginning to be developed to mitigate symptoms
in neurodegenerative disorders.

Some TRP channels can be activated downstream of
NMDA receptor activation and contribute to reduced synaptic
transmission, excitotoxicity, and cell death. The original
research article by Doğan et al. examined the interaction
between the purinergic receptors (PzX7Rs) and the NMDA
receptor in a rat model for absence epilepsy. The findings
of this study demonstrate that P2X7Rs play an independent
role in the formation of absence seizures. More specifically,
treatment with a P2X7Rs agonist lowered the antioxidant
activity of the NMDA receptor antagonist memantine whereas
the agonist of P2X7Rs lowered the anticonvulsant action
of memantine, suggesting a partial interaction between
P2X7 and NMDA receptors with potential implications for
TRP channels in absence epilepsy. Ru et al. showed that
tea polyphenols can attenuate methamphetamine-induced
neuronal cell loss by protecting against apoptosis and
DNA damage in PC12 cells. Furthermore, ubiquitination
appears to be regulated to some extent by TRP channels.
The systematic review by Momtaz et al. highlights the
involvement of the ubiquitin-proteosome pathway in
neurodegenerative diseases and how natural products can
interfere with this complex regulatory system at various stages of
the disease.

It is well-established that TRPV1 is involved in oxidative
stress-induced pain and neuronal injury, associated with
neuropathy reported in neurodegenerative diseases and
glaucomatous optic neuropathy. An original research article
by McGrady et al. provides renewed insight into the role
of TRPV1 on optic nerve axon excitability in an animal
model for glaucoma. The study found that in the absence
of TRPV1, energy demand following intraocular pressure-
related stress is increased, leading to alterations to axon
transport and maintain optimal voltage-dependent axon
signaling. Therefore, in glaucoma, TRPV1 may modulate
the expression of voltage-gated sodium channels in neurons
exposed to stress to maintain axonal excitability and preserve
energy resources.

The TRPV1 channel has also been proposed to act as
a steroid receptor to protect tissues against oxidant stress.
Ramirez-Barrantes et al. demonstrated that TRPV1 is necessary
for 17β-estradiol to improve metabolic function in vulnerable
cells. As well, 17β-estradiol but not 17α-estradiol increases the
effect of TRPV1 single channel activity leading to increased
open probability. The protective effects of 17β-estradiol were
found to be independent of estrogen receptor pathway activation,

membrane started and stereospecific. These findings suggest
that TRPV1 is a 17β-estradiol-activated ionotropic membrane
receptor coupling that can influence mitochondrial function and
cell viability.

The TRPCs serve as a redox-sensitive ion channel that can
play a prominent role in neurodegeneration. Maria-Ferreira
et al. review the role of TRPCs in the pathogenesis of
Parkinson’s disease. The review discusses the role of TRPCs in
the various biochemical and molecular processes associated with
the pathobiology of Parkinson’s disease that consequently led
to increased oxidative stress, impaired dopaminergic signaling,
and apoptosis.

The TRPM family member TRPM2 has several physiologic
isoforms that are present in a variety of cell types and respond
to oxidant stress, pro-inflammatory mediators such as TNFα,
and β-amyloid peptide. The perspective article by Wang et al.
discusses the important role of TRPM2 in Alzheimer’s diseases,
citing recent studies using divergent cell systems and techniques
including overexpression, channel depletion or inhibition,
and calcium chelation. The review also provides a causative
relationship between exposure to particular matters, TRPM2
channel activation, Alzheimer’s disease risk, and age-related brain
damage. Therapeutic strategies targeting the TRPM2 channel
represent a potential strategy for lowering the risk of exposure
to particular matters in Alzheimer’s disease.

The mini review article by Santoni et al. provides an overview
of the role of endosome/lysosome Ca2+ permeable channels
known as mucolipins (TRPML) in the regulation of calcium
signaling associated with oxidative stress induced oxidative
stress. TRPMLs represent a key candidate for the treatment
of several neurodegenerative diseases, including Alzheimer’s
disease, Parkinson’s disease, ALS, mucolipidosis type IV, and
Neimann-Pick disease.

TRPM7 has been strongly implicated in the regulation of
intracellular Ca2+ influx and anoxic neuronal cell death. In the
last article, Sun et al. demonstrated in a neuroblastoma cell line
that treatment with the β-adrenergic receptor (β-AR) agonist
isoproterenol could enhance Mg2+ influx and cell survival
in the presence of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), and potentiate TRPM7 channel
activation that leads to an increase in intracellular Mg2+ levels.
The effect of isoproterenol was reversed following the addition of
2APB, a known TRPM7 channel antagonist. Moreover, TRPM7
expression and function neurotoxins were inhibited following
exposure to neurotoxins. These findings suggest a positive role
for β-AR in activating TRPM7 channels, modulating Mg2+

homeostasis, and promoting the survival of SH-SY5Y cells
following exposure to potent neurotoxins.

The sum of the articles adds to our recent work in the area
of TRP channel signaling and neurodegenerative diseases. The
articles in this special issue provide a summary of the multiple
roles of TRP channels in the pathogenesis of neurodegenerative
disorders and provide emerging evidence for TRP channels as
a target for the development of therapeutic agents to improve
neurological dysfunction.
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DNA integrity plays a crucial role in cell survival. Methamphetamine (METH) is an illegal 
psychoactive substance that is abused worldwide, and repeated exposure to METH could 
form mass free radicals and induce neuronal apoptosis. It has been reported that free 
radicals generated by METH treatment can oxidize DNA and hence produce strand breaks, 
but whether oxidative DNA damage is involved in the neurotoxicity caused by METH 
remains unclear. Tea polyphenols exert bioactivities through antioxidant-related 
mechanisms. However, the potential neuroprotective effect of tea polyphenols on METH-
induced nerve cell damage and the underlying mechanism remain to be clarified. In this 
study, oxidative stress, DNA damage, and cell apoptosis were increased after METH 
exposure, and the expressions of DNA repair-associated proteins, including the 
phosphorylation of ataxia telangiectasia mutant (p-ATM) and checkpoint kinase 2 (p-Chk2), 
significantly declined in PC12 cells after high-dose or long-time METH treatment. 
Additionally, tea polyphenols could protect PC12 cells against METH-induced cell viability 
loss, reactive oxide species and nitric oxide production, and mitochondrial dysfunction 
and suppress METH-induced apoptosis. Furthermore, tea polyphenols could increase 
the antioxidant capacities and expressions of p-ATM and p-Chk2 and then attenuate 
DNA damage via activating the DNA repair signaling pathway. These findings indicate 
that METH is likely to induce neurotoxicity by inducing DNA damage, which can be reversed 
by tea polyphenols. Supplementation with tea polyphenols could be an effective nutritional 
prevention strategy for METH-induced neurotoxicity and neurodegenerative disease.

Keywords: tea polyphenols, methamphetamine, apoptosis, DNA damage, oxidative stress

INTRODUCTION

The synthetic central stimulant methamphetamine (METH) is widely abused in the world. 
Clinical toxicology surveys have shown that METH can induce neuronal damage in abusers 
(Gold et  al., 2009; O’Dell and Marshall, 2014; Ren et  al., 2016). In line with these clinical 
reports, numerous animal studies have revealed that METH can induce long-term damage to 
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dopaminergic neurons and cause cell apoptosis (Li et  al., 2017; 
Dang et al., 2018). The neurotoxicity of METH is mainly believed 
to be  dependent on its structural similarity to dopamine (DA), 
which makes it easier for it to enter dopaminergic neurons 
via the DA transporter (DAT) and causes DA to be  over-
released into the cytoplasm, where DA can undergo auto-oxidation 
rapidly to form a large number of toxic materials such as 
superoxide radicals, resulting in oxidative stress, decreased 
mitochondrial membrane potential (ΔΨm), and neuronal 
apoptosis (Krasnova and Cadet, 2009). METH treatment may 
also lead to a decline in superoxide dismutase (SOD) and 
glutathione peroxidase activities, with increased lipid peroxidation 
and levels of reactive oxygen species (ROS) (Qie et  al., 2017). 
Pretreatment with antioxidants such as N-acetylcysteine has 
been shown to exert neuroprotection against the nerve damage 
caused by METH (Nakagawa et  al., 2018). However, little is 
known concerning how METH impairs adaptation to cellular 
stresses such as oxidant injury and can thus cause cellular 
dysfunction leading to disease.

Genome integrity is important for cell survival. DNA damage 
is closely related to the growth status and function of cells, so 
nerve damage caused by METH may be related to DNA damage. 
Based on the generally accepted theory, highly conserved DNA 
repair system including ataxia telangiectasia mutant (ATM) and 
checkpoint kinase 2 (Chk2) can deal with both exogenous and 
endogenous DNA damage under normal conditions, resulting in 
damage at low homeostasis levels compatible with normal cellular 
function (Terabayashi and Hanada, 2018). However, endogenous 
damage cannot be repaired in a timely manner under the condition 
of DNA repair deficiency and keeps accumulating over time, 
leading to unscheduled alterations in the genome or instability, 
which can induce cell damage or apoptosis (Mirza-Aghazadeh-
Attari et al., 2018). The neurotoxicity induced by the accumulation 
of DNA damage has been widely reported in neurodegenerative 
disease (Fernandez-Bertolez et  al., 2018; Wu et  al., 2018). For 
instance, alcohol abuse may significantly increase the level of 
ROS, which leads to DNA damage and may trigger apoptosis 
via activation of the mitochondrial pathway (Fowler et  al., 2012; 
Kotova et  al., 2013). Repeated exposure to METH could form 
large amounts of free radicals and causes DNA oxidation and 
strand breaks (Johnson et  al., 2015). Therefore, we  speculated 
that DNA damage may be  an important cause of neurotoxicity 
induced by METH and that free radicals may be  involved in 
DNA damage and apoptosis, while reducing the levels of free 
radicals could partially inhibit METH-induced neuronal DNA 
damage and apoptosis.

Tea polyphenols are natural compounds extracted from tea 
leaves and show good antioxidant capacities both in vitro and 
in vivo (Mao et  al., 2017; Qi et  al., 2017a, 2018). However, 
there have been few reports regarding whether tea polyphenols 
have a protective effect on METH-induced neuronal damage. 
Therefore, the purpose of the current research was to study 
whether tea polyphenols could alleviate apoptosis induced by 
METH through the inhibition of oxidative stress and DNA 
damage in dopaminergic neurons. For this purpose, we determined 
cell survival rates, apoptotic rates, ΔΨm, ROS production, 
oxidative enzyme activities, nitric oxide (NO) production, and 

expressions of DNA damage and repair-related proteins in rat 
adrenal pheochromocytoma cells (PC12). PC12 cells were selected 
because they can synthesize and store DA, and they have many 
biochemical mechanisms related to dopaminergic cells (Greene 
and Tischler, 1976; Li et  al., 2017). The results of this study 
demonstrate that METH exposure can increase oxidative stress 
and DNA damage and that tea polyphenols may be  considered 
an effective protective substance to mitigate the DNA damage 
and apoptosis caused by METH in future clinical practice.

MATERIALS AND METHODS

Chemicals and Drug Preparations
Methamphetamine (METH) was provided by the Hubei Provincial 
Public Security Department. Tea polyphenols were purchased 
from Beijing Yihua Tongbiao Technology Co. Ltd. (tea polyphenol 
purity >98%, including catechin content >70%, epigallocatechin 
gallate content >40%; Beijing, China). 3-(4,5-Dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2′,7′- 
dichlorodihydrofluorescein diacetate (DCFH-DA) were purchased 
from Sigma-Aldrich, Inc. (St Louis, USA). Fetal bovine serum 
(FBS) and RPMI-1640 medium were purchased from Thermo 
Fisher Scientific (Carlsbad, USA). The Muse MitoPotential Kit, 
Muse Multi-Color DNA Damage kit, and Muse Annexin V & 
Dead Cell Kit were procured from Millipore Corporation 
(Darmstadt, Germany). The lactate dehydrogenase (LDH) 
cytotoxicity assay kit, reduced glutathione (GSH) assay kit, total 
superoxide dismutase (T-SOD) assay kit, and malondialdehyde 
(MDA) assay kit were procured from Nanjing Jiancheng 
Bioengineering Institute (Nanjing, China). The NO and ΔΨm 
detection kit were obtained from Beyotime Biotechnology 
(Haimen, China). The RIPA lysis buffer, phosphatase inhibitors, 
and protease inhibitor cocktail were purchased from Boster 
Biological Technology Co. Ltd. (Wuhan, China). Antibodies 
against cleaved caspase-3, phospho-ATM (p-ATM), phospho-
Histone H2AX (γ-H2AX), and phospho-Chk2 (p-Chk2) were 
purchased from Cell Signaling Technology, Inc. (Beverly, USA). 
All other chemicals were of analytical grade.

Cell Culture
Rat adrenal pheochromocytoma cells (PC12, high differentiation) 
were provided by the cell bank of the Chinese Academy of 
Sciences (Shanghai, China) and cultured in RPMI-1640 medium 
containing 10% FBS (complete medium). Cells were passaged 
every 3  days to maintain exponential growth.

Cell Proliferation Experiment
Cell proliferation was examined by using MTT assay. Cells 
were seeded in 96-well plates and incubated overnight. MTT 
solution (final concentration of 0.5  mg/ml) was added after 
treatment with different substances, and incubation was continued 
for 4  h. The culture medium was then discarded, and DMSO 
was added into each well. Subsequently, a microplate reader 
(Thermo Scientific, USA) was used to measure the absorbance 
at 570  nm.
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Lactate Dehydrogenase Release Assay
The cytotoxicity of cells exposed to different treatments was 
determined by LDH activity in culture medium. After being 
treated with different substances, the cultural supernatant of each 
well was transferred as the measured group. According to the 
instructions of the manufacturer, the blank group, control group, 
and standard group were also prepared. Finally, optical density 
(OD) was measured at 450  nm using the microplate reader. The 
activity of LDH was calculated according to the following formula:

LDH
U

L

OD OD

OD OD
activity

measured control

standard blank







 = −

–

×× ×0 2 1 000. / ,mmol L

Cell Apoptosis Detection
Cell apoptosis was detected by flow cytometry. After treatment, 
cells were harvested and resuspended in a mixture of complete 
medium and Annexin V and Dead cell reagent. The mixture 
was incubated with gentle oscillation at 25°C for 20  min. In 
apoptotic cells, the membrane phospholipid phosphatidylserine 
(PS) is translocated from the inner to the outer leaflet of the 
plasma membrane, thereby exposing PS to the external cellular 
environment. Annexin V has a high affinity for PS and binds 
to cells with exposed PS. In Annexin V and Dead cell reagent, 
Annexin V is conjugated to fluorescein (FITC). This format retains 
its high affinity for PS and thus serves as a sensitive probe for 
flow cytometric analysis of cells that are undergoing apoptosis. 
In addition, the reagent includes 7-Amino-Actinomycin (7-AAD), 
which can bind tightly to the nucleic acids in cells and is 
impermeant to live cells and early apoptotic cells but stains dead 
cells and late apoptotic cells. The percentage of apoptotic cells 
was quantified with flow cytometry (Muse Cell Analyzer, Germany).

Analysis of Mitochondrial  
Membrane Potential
The changes in ΔΨm were detected by using JC-1  in PC-12 
cells treated with METH with or without tea polyphenols. JC-1 
is a cationic dye that accumulates in energized mitochondria. 
JC-1 is predominantly a monomer that yields green fluorescence 
with an emission of 530  ±  15  nm at low ΔΨm and aggregates, 
yielding a red-colored emission (590 ± 17.5 nm), at high ΔΨm. 
After being treated, cells were stained with JC-1 working solution, 
rinsed twice with ice-cold staining buffer, resuspended in complete 
medium, and immediately examined with a fluorescent microscope 
(IX71, Olympus, Japan). The excitation wavelength of JC-1 
monomers was 488  nm, and the emission wavelength was 
535  nm. The excitation wavelength of JC-1 aggregates was 
525  nm, and the emission wavelength was 595  nm.

The proportion of cells in which ΔΨm had declined was 
measured by using a Muse MitoPotential Kit. After being 
treated, cells were harvested and suspended in assay buffer. 
Changes in ΔΨm were then evaluated according to the 
instructions of the manufacturer.

DNA Damage Detection
Alkaline Comet Assay was applied to detect DNA strand breaks. 
Cells were suspended in low-melting agarose, plated on pre-coated 

microscope slides, and lysed in pre-chilled lysis solution for 
1  h at 4°C. After incubation in alkaline buffer for 20  min, 
cells were electrophoresed for 15  min at 25  V, soaked in 
neutralization buffer for 5 min, and dyed with ethidium bromide 
in the dark. Images were analyzed using a fluorescent microscope 
20  min later, and comets were analyzed with the Comet Assay 
Software Project. The percentage of DNA in the tail was used 
to reflect the extent of DNA damage.

A Muse Multicolor DNA Damage Kit was also used to 
investigate the DNA damage. After being treated, cells were 
harvested, washed with cold PBS, and fixed for 10  min on 
ice. The percentage of DNA-damaged cells was quantified after 
being permeabilized according to the manufacturer’s instructions.

Measurement of Nitric Oxide Release
Quantitative determination of nitrite ions was applied as an 
indirect method for determining the level of NO. In simple 
terms, cells were seeded and incubated for 24  h. After exposed 
to different substances, cell culture mediums were collected to 
analyze the release of NO, following the manufacturer’s instructions.

Detection of Reactive Oxygen Species
DCFH-DA can be oxidized by ROS into 2′,7′-dichlorofluorescin 
(DCF) after entering cells, so the intensity of DCF can represent 
the level of intracellular ROS. After different treatments, cells 
were suspended in DCFH-DA solution, and the cell suspensions 
were incubated at 37°C for 20  min. PBS was then used to 
resuspend the cells, and the intensity of DCF was measured 
with a fluorescent microplate reader (excitation 485  nm, 
emission 500  nm).

Determination of Antioxidant System and 
Lipid Peroxidation
The oxidative stress induced by METH and the protection 
from tea polyphenols were assessed by using the oxidative 
enzyme system (SOD, GSH, and MDA) to examine the oxygen 
reactivity of PC12 cells. After treatment with different substances, 
cells were harvested, resuspended, sonicated, and centrifuged 
for 15  min at 4,000  rpm. Subsequently, supernatants were 
individually used to measure the activities of the antioxidases 
SOD and GSH using corresponding diagnostic kits. The 
concentration of MDA in supernatants, which could express 
the degree of lipid peroxidation, was also determined according 
to the instructions of the manufacturer.

Western Blotting
RIPA buffer supplemented with phosphatase inhibitors and 
cocktail was used to lyse PC12 cells, and lysed cells were 
centrifuged for 15 min at 12,000 rpm to gather the supernatant. 
Stain-Free Gels (Bio-Rad) were used to separate proteins, and 
isolated proteins were electroblotted onto polyvinylidene 
difluoride (PVDF) membrane (Millipore). After blocking, the 
PVDF membrane was incubated with primary antibodies (anti-
cleaved caspase-3, anti-γ-H2AX anti-p-ATM, and anti-p-Chk2) 
overnight at 4°C, followed by a horseradish-peroxidase-conjugated 
secondary antibody. Finally, the PVDF membrane was incubated 
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with ECL substrate (Thermo Fisher Scientific Inc.) and scanned 
with a ChemiDoc Touch Imager (Bio-Rad). The results of 
Western Blotting were analyzed with Image J. All gels were 
imaged after electrophoresis. It has been reported in previous 
studies that normalization of samples to total protein density 
values is more reliable than normalization to individual protein 
levels (Vegh et  al., 2014).

Statistical Analysis
All data are shown as means ± SEM. Differences among groups 
were calculated by one-way ANOVA using SPSS 20.0 software, 
and Tukey’s HSD was applied as a post-hoc test. p  <  0.05 
was considered statistically significant.

RESULTS

Effect of Methamphetamine on Cell 
Viabilities in PC12 Cells
Both MTT assay and LDH cytotoxicity assay were used to 
measure the effect of METH on the viabilities of PC12 cells. 
Figure  1A shows that METH could significantly inhibit the 
proliferation of PC12 cells in MTT assay and that exposure 
to 3  mmol/L METH caused a 40.5  ±  5.3% reduction in the 
number of viable PC12 cells (p  <  0.01). Meanwhile, the 
activities of LDH progressively increased by 23.6, 29.2, and 
43.1%, respectively, after incubation with 3, 5, and 7  mmol/L 
METH for 24  h compared with the control group (p  <  0.05, 
Figure  1B). Collectively, these results suggested that METH 
exposure could induce significant neurotoxic effects in PC12 
cells in vitro.

Effect of Methamphetamine on Nitric 
Oxide and Reactive Oxygen Species 
Levels in PC12 Cells
To investigate whether oxidative stress is involved in the 
cytotoxic effect of METH, the production of NO and ROS 
was examined (Figure  2). The results showed that levels of 

NO and ROS were remarkably increased after METH exposure 
compared with the control group. For instance, exposure to 
1.0 mmol/L METH for 24 h increased NO- and ROS-production 
by 4.96-fold and 2.05-fold, respectively (p  <  0.05), and these 
increases reached 12.00-fold and 2.63-fold, respectively, when 
the dose of METH was 3.0  mmol/L (p  <  0.01). The levels of 
NO and ROS production were 2.83-fold and 1.60-fold higher 
respectively after METH (3.0  mmol/L) treatment for 3  h 
(p  <  0.05), and these effects increased gradually over time. 
These results indicated that METH induced significant oxidative 
stress in PC12 cells.

Effect of Methamphetamine on the ΔΨm  
in PC12 Cells
The loss of ΔΨm, an indication of mitochondrial function, is 
one of the important indicators of apoptosis. Compared with 
the control group, METH induced a significant increase in 
total mitochondrial depolarization (Figures  3A,B, p  <  0.05). 
For instance, compared to the control group, the proportion 
of depolarized cells in 3 mmol/L and 6 mmol/L METH-treated 
cells were increased significantly by 2.35-fold and 2.85-fold, 
respectively, after 24-h exposure (p  <  0.05).

Effect of Methamphetamine on Cell 
Apoptosis in PC12 Cells
The flow cytometry results showed that METH treatment 
could remarkably increase cell apoptosis, and the apoptosis 
rate increased with an increase in the concentration and 
incubation time (Figures  3C,D). For example, after exposure 
to METH (1  mmol/L) for 24  h, the rate of apoptotic cells 
increased 2.2-fold (p < 0.01), and this increase reached 3.4-fold 
when the dose of METH was 6 mmol/L (p < 0.01). In addition, 
the rate of apoptotic cells was increased to 2.1-fold higher 
after 3  mmol/L METH treatment for 6  h (p  <  0.01), and 
this effect increased gradually over time. As shown in Figure 4, 
the protein levels of cleaved caspase-3 in METH-treated groups 
were also significantly higher than that of the control group 
(p  <  0.05).

A B

FIGURE 1 | Effect of methamphetamine on the viability in PC12 cells. (A) After PC12 cells were treated with different concentrations of methamphetamine for 24 h, 
the cell viability was measured by MTT assay. (B) After PC12 cells were treated with different concentrations of methamphetamine for 24 h, the activities of LDH in 
the supernatant of culture medium were detected. Data are presented as mean ± SEM; *p < 0.05 and **p < 0.01 versus the control group.
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Effect of Methamphetamine on DNA 
Damage in PC12 Cells
The expressions of DNA damage and repair-related protein 
markers in PC12 cells after METH treatment were determined 
to evaluate the influence of METH on DNA damage. As showed 
in Figure  4, METH exposure greatly increased the expression 
of γ-H2AX. For instance, exposure to METH (2.0  mmol/L) 
for 24 h increased the expression of γ-H2AX 2.45-fold (p < 0.05), 
and this increase reached 5.11-fold when the dose of METH 
was 6.0  mmol/L (p  <  0.01). In addition, the expression of 
γ-H2AX increased gradually with an increase in meth 
concentration (p  <  0.05). These findings indicated that METH 
could induce DNA damage in PC12 cells.

The results in Figure  4 also show that low-dose or short-
time METH treatment could significantly increase the expressions 
of p-ATM and p-Chk2, while high-dose or long-time METH 
treatment could reduce their expression levels (Figure  4). For 
instance, exposure to 1.0 mmol/L METH for 24 h and exposure 
to 3.0  mmol/L METH for 3  h could significantly increase the 
protein levels of p-ATM and p-Chk2 (p  <  0.05), while their 
expressions were decreased substantially compared with the 
control group by 24-h exposure to 3.0 mmol/L METH (p < 0.05). 
These results showed that METH could induce significant DNA 
damage and inhibit the activation of the DNA repair system 

in PC12 cells, and the cell apoptosis caused by METH may 
be related to the oxidative stress and DNA damage that it induces.

Effect of Tea Polyphenols on the 
Cytotoxicity of PC12 Cells Caused  
by Methamphetamine
As shown in Figure 5A, the cell survival rate of METH-treated 
group was significantly lower than that of the control group 
(p < 0.01), and the survival rates of groups treated with different 
doses of tea polyphenols (5, 10, 20, and 40  μmol/L; p  <  0.05) 
were increased significantly compared with the METH group. 
For instance, the cell survival rate of the 40-μmol/L tea 
polyphenols group was 99.93 ± 0.91%, while that of the METH 
group was 60.23  ±  0.97% (p  <  0.01).

Effect of Tea Polyphenols on Nitric Oxide 
and Reactive Oxygen Species Production 
After Methamphetamine Exposure in  
PC 12 Cells
As shown in Figure 5B, NO production was increased significantly 
in the METH group compared with the control group (p < 0.01). 
When the concentration of tea polyphenols increased to 
20  μmol/L, the contents of NO were decreased significantly 

A

D

B

C

FIGURE 2 | Effect of methamphetamine on NO and ROS production in PC12 cells. PC12 cells were treated with 1–6 mmol/L METH for 24 h (A,C) or with 
3.0 mmol/L METH for 3–24 h, as indicated (B,D). The supernatant from each group was collected to determine the production of NO (A,B). DCFH-DA was 
incubated with cells for 1 h in a CO2 incubator, and then the fluorescent signal was obtained to evaluate the intracellular ROS level in different groups (C,D).  
Data are presented as mean ± SEM; *p < 0.05 and **p < 0.01 versus the control group.
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compared with the METH group (p  <  0.05). As shown in 
Figure  5C, METH also significantly promoted the generation 
of ROS (p  <  0.01). Additionally, with incremental increases in 
the dose of tea polyphenols, the levels of ROS gradually decreased, 
and 40 μmol/L tea polyphenols significantly decreased the ROS 
production in comparison with the METH group (p  <  0.05).

Effect of Tea Polyphenols on the 
Antioxidant System and Lipid Peroxidation 
After METH Exposure in PC12 Cells
Figure  6 presents the data from the SOD, GSH, and MDA 
detection experiments. Compared with the control group, SOD 
activities in the METH group were significantly reduced in PC12 
cells (71.21  ±  1.52 vs. 33.51  ±  1.59, p  <  0.01), and 10, 20, and 
40 μmol/L of tea polyphenols significantly increased SOD activities 
compared with the METH group (Figure  6A, p  <  0.05). 
Additionally, METH significantly decreased GSH levels compared 
with the control group (1.83  ±  0.13 vs. 5.64  ±  0.21, p  <  0.01), 
and 10, 20, and 40  μmol/L of tea polyphenols significantly 
increased GSH levels (Figure  6B, p  <  0.05). Finally, the MDA 
contents were greatly increased after METH treatment (5.57 ± 0.42 
vs. 11.36  ±  0.65, p  <  0.01) compared with the control group, 
and all doses of tea polyphenols decreased the MDA contents 

significantly (8.00  ±  0.68, 7.23  ±  0.29, 7.82  ±  0.21, 6.02  ±  0.10 
vs. 11.36  ±  0.65, Figure  6C, p  <  0.05).

Effect of Tea Polyphenols on ΔΨM and  
Cell Apoptosis After Methamphetamine 
Exposure in PC 12 Cells
JC-1 assay and flow cytometry were both used to measure 
mitochondrial depolarization, which occurs in the early phase 
of apoptosis. In the JC-1 assay, decreased red fluorescence and 
increased green fluorescence represented decreased ΔΨm in 
mitochondria. As shown in Figure  7A, the increased number 
of green-stained cells indicated that METH had a strong 
pro-apoptotic effect on PC 12 cells, and different concentrations 
of tea polyphenols could effectively inhibit the METH-induced 
decrease in ΔΨm. Muse MitoPotential assay was applied to 
further detect the proportion of cells with decreased membrane 
potential (Figure  7B). Figure  7C shows that METH could 
significantly increase the rate of mitochondrial depolarized cells 
in comparison with the control group (p  <  0.01), indicating 
that a remarkable dissipation of ΔΨm was induced by METH. 
In addition, 20 and 40  μmol/L tea polyphenols could greatly 
reduce the total depolarization of mitochondria compared with 
the METH group (p  <  0.01).

A B

DC

FIGURE 3 | Effect of methamphetamine on mitochondrial membrane potential and apoptosis in PC12 cells. PC12 cells were treated with 1–6 mmol/L METH for 
24 h (A,C) or with 3.0 mmol/L METH for 3–24, as indicated (B,D). Mitochondrial membrane potentials in different groups were analyzed by Muse MitoPotential 
assay (A,B). Cell apoptosis was analyzed by Muse Annexin V & Dead Cell Assay (C,D). Data are presented as mean ± SEM; *p < 0.05 and **p < 0.01 versus the 
control group.
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A B

DC

FIGURE 4 | Effect of methamphetamine on apoptosis and DNA damage in PC12 cells. (A) PC12 cells were treated with 1–6 mmol/L METH for 24 h, and the 
expressions of cleaved caspase-3, γ-H2AX, p-ATM, and p-CHK2 were detected using Western Blot; total protein was used as a loading control. Densitometric 
analysis of the blots is shown in (B). (C) PC12 cells were treated with 3.0 mmol/L METH for 3–24 h, and the expressions of cleaved caspase-3, γ-H2AX, p-ATM, 
and p-CHK2 were detected using Western Blot; total protein was used as a loading control. Densitometric analysis of the blots is shown in (D). Data are presented 
as mean ± SEM, *p < 0.05 and **p < 0.01 versus the control group.

A B C

FIGURE 5 | Intervention effects of tea polyphenols on viability and oxidative stress in PC12 neuronal cells. PC12 cells were treated with METH (3.0 mmol/L) with or 
without treatment with tea polyphenols (5, 10, 20, and 40 μmol/L) for 24 h. (A) Cell viability was measured by MTT assay. (B) The supernatant from each group was 
collected to determine the production of NO. (C) DCFH-DA was incubated with cells for 1 h in a CO2 incubator, and then the fluorescent signal was obtained to 
evaluate the intracellular ROS level in different groups. Data are presented as mean ± SEM; **p < 0.01 versus the control group; #p < 0.05 and ##p < 0.01 versus the 
METH group.
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METH caused a remarkable increase in the apoptosis rate 
compared with the control group (p  <  0.01). Treatments of 
20 and 40  μmol/L tea polyphenols greatly decreased the 
apoptotic rates compared with the METH group (Figure  8, 
p  <  0.05).

Effect of Tea Polyphenols on DNA Damage 
After METH Exposure in PC12 Cells
Immunostaining combined with flow cytometry, comet assay, 
and Western Blot were performed after exposure of METH with 
or without tea polyphenols to investigate the protection provided 

by tea polyphenols against DNA damage in PC12 cells. After 
METH exposure, the percentage of DNA-damaged cells increased 
compared with the control group (Figure  9). All concentrations 
of tea polyphenols could remarkably reduce the percentage of 
DNA-damaged cells (p < 0.01). The results of comet assay showed 
that the METH exposure group had a higher percentage of tail 
DNA than the control group (Figures  10A,B, p  <  0.01). The 
METH-induced DNA damage was remarkably decreased in the 
tea polyphenols pretreatment groups (p  <  0.05). Furthermore, 
the protein expression of γ-H2AX in the METH group was 
substantially higher than that in the control group (p  <  0.01). 

A B A

FIGURE 6 | Intervention effects of tea polyphenols on the oxidative enzyme system in PC12 neuronal cells. PC12 cells were treated with METH (3.0 mmol/L) with 
or without treatment with tea polyphenols (5, 10, 20, and 40 μmol/L) for 24 h. Cell samples were collected for measurements of the levels of SOD (A), GSH (B), and 
MDA (C) using corresponding commercial detection kits. Data are presented as mean ± SEM; **p < 0.01 versus the control group; #p < 0.05 and ##p < 0.01 versus 
the METH group.

A

CB

FIGURE 7 | Effect of tea polyphenols on mitochondrial membrane potential in PC 12 cells after METH exposure. PC12 cells were treated with METH  
(3.0 mmol/L) with or without treatment with tea polyphenols (5, 10, 20, and 40 μmol/L) for 24 h. (A) The mitochondrial membrane potential was examined by JC-1 
staining (×200). The mitochondrial membrane potential in PC 12 cells was also analyzed by Muse MitoPotential assay. Representative dot plots in the live, 
depolarized/live, depolarized/dead, and dead phases are shown in the left panel (B), and the mean percentage of depolarized cells is expressed in a histogram in 
the right panel (C). Data are presented as mean ± SEM; **p < 0.01 versus the control group; ##p < 0.01 versus the METH group.
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In contrast, 40  μmol/L tea polyphenols significantly decreased 
protein expression of γ-H2AX (p  <  0.05).

Additionally, the protein expressions of p-Chk2 and p-ATM 
were significantly decreased after 3 mmol/L METH treatment 
(p < 0.05). In contrast, 20 μmol/L tea polyphenols significantly 
increased the protein levels of p-ATM and p-Chk2 
(Figures  10C,D, p  <  0.05). Therefore, the above findings 
indicated that tea polyphenols could reduce METH-induced 
DNA damage by increasing the expressions of DNA repair-
related proteins in PC12 cells.

DISCUSSION

METH is a widely abused central neurostimulant that has been 
shown to produce complex neurotoxicity (Du et  al., 2018;  
Li et  al., 2018). The exact mechanism of the toxic effects of 
METH has not been fully elucidated, despite increasing evidence 
regarding the nerve cell damage induced by METH. Moreover, 
there is still a lack of effective treatment strategies for the 
neurotoxicity caused by METH, and more effective candidates 
need to be  developed. In the present study, levels of NO and 

A

B

FIGURE 8 | Effect of tea polyphenols on apoptosis in PC12 cells after METH exposure. PC12 cells were treated with METH (3.0 mmol/L) with or without treatment 
with tea polyphenols (10, 20, and 40 μmol/L) for 24 h. Cell apoptosis was analyzed by Muse Annexin V & Dead Cell Assay. Representative dot plots in the live, dead, 
late apoptotic/dead, and early apoptotic phases are shown in the upper panel (A), and the mean percentage of cell apoptosis is expressed in a histogram in the 
lower panel (B). Data are presented as mean ± SEM; *p < 0.05 and **p < 0.01 versus the control group; #p < 0.05 and ##p < 0.01 versus the METH group.
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ROS were significantly increased after METH treatment in vitro. 
We  also found that DNA damage and apoptosis were triggered 
by METH in PC12 cells, while tea polyphenols could alleviate 
METH-induced DNA damage and apoptosis via increasing 
antioxidant capacity and the expressions of DNA damage repair-
associated proteins. These findings indicated that METH can cause 
a significant increase in free radicals and induce DNA damage 
and cell apoptosis and that this can be reversed by tea polyphenols.

Mounting evidence suggests that the mass formation of free 
radicals and oxidative stress may be involved in the neurotoxicity 
induced by METH (Huang et  al., 2017; Yang et  al., 2018), 
although the exact underlying mechanism is not yet clear. 
Oxidative stress induced by METH can cause damage to proteins, 
lipids, and DNA, altering cellular signal transduction (Krasnova 
and Cadet, 2009; Shokrzadeh et  al., 2015). In line with these 
findings, we found that METH could significantly increase levels 

A

B

FIGURE 9 | Effect of tea polyphenols on DNA damage in PC12 cells after METH exposure. PC12 cells were treated with METH (3.0 mmol/L) with or without 
treatment with tea polyphenols (10, 20, and 40 μmol/L) for 24 h. Cell DNA damage was analyzed by Muse Multi-Color DNA damage assay. Representative dot plots 
are shown in the upper panel (A), and the mean percentage of DNA damaged cells is expressed in a histogram in the lower panel (B). Data are presented as 
mean ± SEM; **p < 0.01 versus the control group; ##p < 0.01 versus the METH group.
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of NO and that the increase was positively correlated with 
METH exposure time and concentration. The induced free 
radicals may be  the triggering factors to induce DNA strand 
breaks and mitochondrial-mediated apoptosis (Chen et al., 2017). 
We  found that the level of γ-H2AX, an indicator of DNA 
strand breaks, was remarkably elevated after METH treatment, 
and levels of γ-H2AX were also positively correlated with METH 
exposure time and concentration. Previous reports have shown 
that METH could significantly increase the apoptosis rate and 
elevate the protein levels of cleaved PARP, cleaved caspase-3, 
and Bax (Li et  al., 2018; Sharikova et  al., 2018; Zhao et  al., 
2018). In agreement with these findings, the level of cleaved 
caspase-3 was increased significantly after METH treatment, 
and METH remarkably increased depolarization of the 
mitochondria and the cell apoptotic rate compared with the 
control group. Our data, combined with previous reports, indicate 
that highly active free radicals and oxidative damage may 
be  partially involved in the apoptosis caused by METH.

Unless an effective repair mechanism corrects the damage to 
the double helix, DNA damage may cause persistent abnormalities 
after mitosis and in irreplaceable cells such as neurons (Milanese 
et  al., 2018). Fortunately, cells have evolved DNA damage repair 

(DDR) mechanisms to alleviate a variety of damages (Henssen 
et  al., 2017). Once DNA damage is triggered by exogenous and 
endogenous factors such as free radicals, the DDR can be activated 
to alter expressions of the damage sensor γ-H2AX and subsequent 
signal transduction pathways such as ATM/Chk2 pathway-related 
proteins (Ronco et  al., 2017; He et  al., 2018). If the damage is 
mild, it can be  repaired through DDR; otherwise, it will result 
in gene mutation or apoptosis (Jackson and Bartek, 2009). However, 
whether DNA damage and repair-related proteins are involved 
in the neurotoxicity induced by METH remains unclear. In the 
present study, the expressions of p-ATM and p-Chk2 were 
significantly increased at 3  h after METH treatment and were 
reduced at 24  h. Consequently, we  speculated that PC12 cells 
excited the expressions of DDR-associated proteins as a stress 
defense mechanism to prevent cytotoxicity at the early phase 
after METH treatment. However, if DNA damage is not repaired, 
the cellular protective effect may not overcome the toxicity 
induced by METH, and cells are likely to undergo programmed 
cell death such as mitochondria-mediated apoptosis.

Previous studies have found that pretreatment with antioxidants 
such as N-acetylcysteine and ascorbic acid can prevent METH-
induced cell damage, and these reports further confirm the 

A

DC

B

FIGURE 10 | Effect of tea polyphenols on DNA damage and related protein expression in PC12 cells after METH exposure. PC12 cells were treated with METH 
(3.0 mmol/L) with or without treatment with tea polyphenols (10, 20, and 40 μmol/L) for 24 h. Cell DNA damage was analyzed by comet assay (A), and the statistical 
result is expressed by a histogram in the right panel (B). The expressions of γ-H2AX, p-ATM, and p-CHK2 were detected using Western Blot (C); total protein was 
used as a loading control. Densitometric analysis of the blots is shown in (D). Data are presented as mean ± SEM; *p < 0.05 and **p < 0.01 versus the control 
group; #p < 0.05 and ##p < 0.01 versus the METH group.
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potential role of oxidation mechanisms in METH neurotoxicity 
(Chandramani Shivalingappa et  al., 2012; Huang et  al., 2017; 
Zeng et  al., 2018). Tea polyphenols are bioactive catechins that 
have been shown to exert protection against neuronal cell 
damage (Ding et  al., 2017; Chen et  al., 2018). For example, 
tea polyphenols can suppress the ROS release and reduction 
of SOD activities and apoptosis induced by glutamate in primary 
cortical neurons (Cong et al., 2016). Furthermore, tea polyphenols 
also possess neuroprotective activities via the activation of the 
Keap1/Nrf2 pathway in vitro and in vivo (Qi et  al., 2017b). In 
this study, we found that tea polyphenols have protective effects 
against METH-induced toxicity. Similar to previous studies, tea 
polyphenols were able to reverse the decline of SOD and GSH 
significantly and inhibit the increase in MDA contents as well 
as the production of NO and ROS that is induced by METH 
exposure. We  further verified that tea polyphenols are highly 
likely to reduce the apoptosis in PC12 cells induced by METH 
through the mitochondria-mediated pathway. Additionally, our 
results indicated that tea polyphenols increased levels of  
DDR related proteins (p-ATM and p-Chk2) and decreased 

METH-induced DNA damage marker γ-H2AX expression. Based 
on these results, a series of events might occur in the procedure 
of the apoptotic pathway, and we speculated that tea polyphenols 
may attenuate ROS and NO production, promote the expressions 
of the oxidative enzyme system and DDR-related proteins, 
protect against DNA damage, and prevent apoptosis during 
treatment with METH. A schematic representation presenting 
the relationship among oxidative stress, DNA damage, and 
apoptosis after METH treatment and the underlying mechanism 
of action of tea polyphenols on the apoptosis induced by METH 
is shown in Figure  11.

In summary, oxidative stress, DNA damage, and apoptosis 
are interrelated in the pathology of many nerve system diseases. 
In the current study, we  found that tea polyphenols protected 
against the neurotoxicity induced by METH in PC12 cells. 
Furthermore, we  have demonstrated that the protective effect 
of tea polyphenols was mediated through attenuated oxidative 
stress, DNA damage, and mitochondrial apoptosis. Therefore, 
our research supports the hypothesis that supplementation with 
tea polyphenols might effectively prevent METH-induced 
neurotoxicity and neurodegenerative disease, and it is necessary 
to carry out further investigation in the future.
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Accumulating epidemiological evidence supports that chronic exposure to ambient
fine particular matters of <2.5 µm (PM2.5) predisposes both children and adults to
Alzheimer’s disease (AD) and age-related brain damage leading to dementia. There
is also experimental evidence to show that PM2.5 exposure results in early onset
of AD-related pathologies in transgenic AD mice and development of AD-related
and age-related brain pathologies in healthy rodents. Studies have also documented
that PM2.5 exposure causes AD-linked molecular and cellular alterations, such as
mitochondrial dysfunction, synaptic deficits, impaired neurite growth, neuronal cell
death, glial cell activation, neuroinflammation, and neurovascular dysfunction, in addition
to elevated levels of amyloid β (Aβ) and tau phosphorylation. Oxidative stress and the
oxidative stress-sensitive TRPM2 channel play important roles in mediating multiple
molecular and cellular alterations that underpin AD-related cognitive dysfunction.
Documented evidence suggests critical engagement of oxidative stress and TRPM2
channel activation in various PM2.5-induced cellular effects. Here we discuss recent
studies that favor causative relationships of PM2.5 exposure to increased AD prevalence
and AD- and age-related pathologies, and raise the perspective on the roles of oxidative
stress and the TRPM2 channel in mediating PM2.5-induced predisposition to AD and
age-related brain damage.

Keywords: Alzheimer’s disease, age-related brain pathologies, PM2.5, oxidative stress, TRPM2 channel

INTRODUCTION

Air pollution has increasingly become an environmental risk to public health worldwide,
particularly to people living in large cities. This has been supported by compelling evidence for
strong association of chronic exposure to ambient air pollution with increased morbidity and
mortality of respiratory and cardiovascular diseases (Liu et al., 2019). There is growing evidence
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to show that exposure to polluted ambient air is also injurious to
the brain (Brockmeyer and D’Angiulli, 2016; Clifford et al., 2016;
Power et al., 2016; Babadjouni et al., 2017; Cohen et al., 2017;
Sripada, 2017; Underwood, 2017; Bencsik et al., 2018). Among
other air pollutants, the fine particulate matters (PM) with
an aerodynamic diameter of <2.5 µm (PM2.5), which include
ultrafine PM with a size of <200 nm (PM0.2) and nanometer-
sized PM (nPM) or nanoparticles (NPs), has attracted particular
attentions for their potential damage to the brain because they
more readily enter the brain; they can penetrate the olfactory
epithelium and, alternatively and/or additionally, travel deep
into the airways and lungs, infiltrate into the blood circulation,
and finally cross the blood–brain barrier (BBB) (Heusinkveld
et al., 2016; Maher et al., 2016; Underwood, 2017; Bencsik
et al., 2018). Such tiny particles in ambient air can be mainly
derived from diesel exhaust (DE) and traffic/combustion-related
air pollution, and also increasingly result from manufacturing,
application, and subsequent release of nanomaterials (Bencsik
et al., 2018). In general, the smaller their size, the greater their
capacity of inducing oxidative stress and thus the more severe
the resulting cytotoxicity is (Underwood, 2017). It has been
shown that exposure to traffic-related air pollution and PM2.5
during early life can damage brain and cognitive development
and increase the prevalence of autism spectrum disorders (Raz
et al., 2015; Saenen et al., 2015; Sunyer et al., 2015; Sram et al.,
2017; Sripada, 2017; Fu et al., 2019; Jo et al., 2019; Pagalan et al.,
2019a,b). Accumulating evidence also supports predisposition by
PM2.5 exposure of both children and adults to various brain
pathologies including Alzheimer’s disease (AD), Parkinson’s
disease, amyotrophic lateral sclerosis, and stroke and depressive
disorders (Mushtaq et al., 2015; Kioumourtzoglou et al., 2017;
Seelen et al., 2017; Sram et al., 2017; Bencsik et al., 2018; Bazyar
et al., 2019; Fu et al., 2019; Shou et al., 2019). Air pollution has
increasingly become a major environmental risk factor inducing
dementia (Underwood, 2017). AD represents the most common
cause of age-related brain damage and dementia. In this article,
we discuss the studies showing predisposition by PM2.5 exposure
to AD and age-related brain damage, and hypothesize the roles
of oxidative stress and the oxidative stress-sensitive transient
receptor potential melastatin 2 (TRPM2) channel in PM2.5-
induced AD and age-related brain pathologies.

ALZHEIMER’S PATHOLOGIES AND
OXIDATIVE STRESS

Alzheimer’s disease is an age-related neurodegenerative
condition manifested by progressive decline and loss of cognitive
function. AD patients in the later disease stage suffer brain
structural alterations, including shrinking of hippocampus and
cerebral cortex (Drew, 2018). Prior to such structural atrophy, the
AD brain is more often than not characterized at the microscopic
level by widespread aggregation and deposition of extracellular
amyloid β (Aβ) peptides in amyloid plaques and intra-neuronal
hyper-phosphorylated tau proteins into neurofibrillary tangles
(NFT). Genetically, AD can be familial and sporadic. Familiar
AD (FAD), identified in a very small number of cases, arises

predominantly from mutations in amyloid precursor protein
(APP), presenilin 1 (PS1), and PS2 that lead to excessive Aβ

generation and neurotoxic Aβ fibrillary formation, a process
often referred to as amyloidogenesis. Sporadic form, accounting
for a vast majority of cases, results from aging, genetic [e.g.
carrying apolipoprotein E (APOE) ε4 allele which is associated
with a reduced capacity of clearing and degrading Aβ], and
environmental risk factors that aggravate amyloidogenesis
(Blennow et al., 2010; Buxbaum, 2019; Licher et al., 2019).

The amyloid cascade hypothesis of AD posits that Aβ directly
or indirectly causes synaptic deficits and neuronal loss, leading to
cognitive dysfunction (Blennow et al., 2010; Selkoe and Hardy,
2016). The direct toxicity of Aβ to synapses and neurons is
well attested by in vitro studies exposing cultured neurons to
Aβ alongside in vivo studies using various strains of transgenic
AD mice that express AD-linked human mutant genes leading
to elevated Aβ levels (e.g. APP/PS1, 5xFAD, or APOE ε4 mice)
or wild-type animals, predominantly mice and rats, with intra-
hippocampal administration of neurotoxic Aβ (Blennow et al.,
2010; Buxbaum, 2019). Recent studies have disclosed AD-related
alterations in the genetic and functional profile of microglia,
the immune-competent cells in the brain, and association of
mutations in microglia-specific genes (e.g. TREM2) with AD,
which triggers an escalating interest in microglia, particularly
microglia-mediated neuroinflammation, and recognition of its
importance in AD pathogenesis and progression (McQuade
and Blurton-Jones, 2019; Wang and Colonna, 2019). The brain
is highly vulnerable to oxidative damage, due to its high
oxygen consumption, high content of fatty acids, and weak
antioxidant capacity. Aβ can promote ROS generation and in
return ROS can enhance Aβ generation and aggregation. ROS
are potent in modifying functionally important molecules (e.g.
DNA and proteins) and damaging intracellular organelles (e.g.
lysosomes and mitochondria) (Jiang et al., 2016; Butterfield,
2018). Aβ and ROS synergistically can damage synapses and
neurons, induce microglial activation and neuroinflammation,
and impair neurovascular and BBB function (Sweeney et al.,
2018). Oxidative damage is a prominent and common feature of
many neurodegenerative diseases and accepted as an important
neurodegeneration mechanism (Jiang et al., 2016; Butterfield,
2018; Trist et al., 2019).

CAUSATIVE RELATIONSHIPS OF PM2.5
EXPOSURE WITH AD AND
AGE-RELATED PATHOLOGIES

PM2.5 Exposure Induces Predisposition
to Dementia, AD, and Age-Related Brain
Damage
The interest in PM2.5-induced brain damage and cognitive
dysfunction was in fact triggered by a histochemical study
revealing widespread pathological modifications (e.g.
degenerating cortical neurons, apoptotic white matter glial
cells, NFT, and BBB impairment) in the brains of demented
dogs living in a highly air polluted urban region of Mexico
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City (Calderon-Garciduenas et al., 2002). Subsequent studies by
the same group have documented numerous early pathological
indicators of neurodegenerative diseases, including accumulation
of Aβ42, oxidative stress, neuroinflammation, and neurovascular
damage in the brains of children and young people in Mexico
City experiencing chronic exposure to high levels of air pollution
and PM2.5 (Calderon-Garciduenas et al., 2004, 2008, 2012, 2016,
2018; Gonzalez-Maciel et al., 2017). Consistently, epidemiological
studies support significant association of chronic exposure to
PM2.5 or traffic-related air pollution with increased risk to
dementia and AD (Kioumourtzoglou et al., 2016; Chen et al.,
2017; Fu et al., 2019) and age-related cerebral atrophy (Wilker
et al., 2015). Chronic PM2.5 exposure has also been associated
with accelerated loss of gray and white matters or increased
risk of cognitive impairment in older women (Casanova et al.,
2016; Cacciottolo et al., 2017). Collectively, these studies support
predisposition to AD and age-related brain damage by chronic
PM2.5 exposure. Further supporting evidence comes from
studies examining cognitive function and neuro-behaviors in
rodents after exposure to ambient PM2.5 with various doses
and durations. An early study using 4-week-old male mice
reported that PM2.5 exposure (94.4 µg/m3, 6 h per day, and
5 days per week) for 10 months impaired learning and memory
and also resulted in depressive-like responses (Fonken et al.,
2011). A recent study shows that PM2.5 exposure (3 mg/kg every
other day) for 4 weeks also damaged learning and memory in
young mice (4 weeks). However, such PM2.5 exposure-induced
detrimental effects were not observed in adult (4 months) and
middle-aged (10 months) mice (Ning et al., 2018), suggesting an
age-ceiling effect. Another recent study using 2-month-old male
rats reports that intra-tracheal injection of PM2.5 (20 mg/kg
every 7 days) for 3–12 months damaged sensory functions as
well as learning and memory (Zhang et al., 2018). As discussed
in detail below, studies provide further evidence to suggest that
PM2.5 exposure predisposes humans to AD and development
of AD-related pathologies in rodents via exacerbating the
pathological pathways that are known to be implicated in AD,
namely, directly causing synaptic deficits and neuronal cell death,
or indirectly inducing microglia-mediated neuroinflammation
and disrupting neurovascular function (Figure 1).

PM2.5 Exposure Impairs Neurite Growth,
Expression of Synapse Proteins and
Receptors, and Neuronal Cell Viability
Studies have investigated the effects of PM2.5 exposure
on neurons, drawing particular attention to neurite growth,
synaptic structure and function, and neuronal cell viability.
In the above-mentioned study, exposure of 4-week-old mice
to PM2.5 for 10 months reduced dendritic spine density of
hippocampal neurons in the CA1 region and also dendritic
length and branching in the CA3 region (Fonken et al.,
2011). Another study using 8-week-old male mice showed that
exposure to PM2.5 (65.7 ± 34.2 µg/m3, 6 h per day, and
5 days per week) for 9 months induced synaptic alterations
by increasing the expression of postsynaptic density protein
95 (PSD95) without effect on the expression of presynaptic

protein synaptophysin (Bhatt et al., 2015). A recent study
using 3-month-old mice shows that exposure to ambient nPM
(5 h per day and 3 days per week) for 10 weeks caused
white matter damage in the CA1 and DG regions of the
hippocampus, and suppressed neurite outgrowth in the CA1
region (Woodward et al., 2017). The same study examined
the receptors for glutamate, the key excitatory neurotransmitter
in the hippocampus. The expression of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) class receptor GluR1
subunit was reduced, whereas the expression of GluR2 subunit,
or N-methyl-D-aspartate (NMDA) class receptor NR2A or NR2B
subunit remained unchanged. Such nPM-induced effects on
white matter and GluR1 expression in 3-month-old mice were
similar to these in 18-month-old mice due to aging. Moreover,
in the old mice, nPM exposure induced no further detrimental
effect, again indicating an age-ceiling effect (Woodward et al.,
2017). Another recent study shows that exposure of female mice
to nPM for 10 weeks selectively reduced neurite density in
the CA1 region and attenuated the GluR1 expression without
effect on the expression of GluR2, NR2A, NR2B, synaptophysin,
and PSD95 (Cacciottolo et al., 2017). The study also shows
that nPM exposure selectively decreased neurite density and the
GluR1 expression in hippocampus of 5xFAD+/− mice carrying
the human APOE ε4 gene as observed in wild-type mice. In
addition, PM2.5-induced AD-related pathologies are associated
with neuronal death. For example, a recent study demonstrates
that intra-tracheal injection of PM2.5 in 2-month-old male
rats induced necrosis and apoptosis of cortical neurons (Zhang
et al., 2018). A more recent study using human neuroblastoma
SH-SY5Y cells, a widely used cell model in the study of
neurodegeneration mechanism (Xicoy et al., 2017), also shows
that exposure to PM2.5 (25–250 mg/mL) for 24 h reduced
cell viability (Wang et al., 2019). Collectively, these studies
suggest that PM2.5 exposure can lead to neurodegeneration by
compromising neurite growth, expression of synapse proteins
and receptors, and neuronal cell viability (Figure 1).

PM2.5 Exposure Induces Microglial Cell
Activation and Generation of
Proinflammatory Cytokines
As has been introduced above, microglia-mediated
neuroinflammation has attracted increasing attention for
its role in AD. Interleukin (IL)-1β, tumor necrosis factor
(TNF)-α, and IL-6 are the major neurotoxic pro-inflammatory
cytokines in AD-related neuroinflammation. Studies, both
in vivo using rodents and in vitro using cultured cells, have
provided evidence to suggest that PM2.5 exposure can induce
deleterious effects on the brain via neuroinflammation, mainly
through excessive generation of these proinflammatory cytokines
by microglia (Brockmeyer and D’Angiulli, 2016; Jayaraj et al.,
2017). An early study showed that exposure of 4-week-old male
mice to PM2.5 for 10 months upregulated the expression of
IL-1β and TNF-α in the brain (Fonken et al., 2011). Another
early study using 12-to-14-week-old male rats reported that
exposure to DE (0.5 and 2.0 mg/m3, 4 h per day, and 5 days
per week) for 1 month resulted in concentration-dependent
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FIGURE 1 | Schematic summary of potential molecular and cellular pathways involved in PM2.5-induced predisposition to AD and age-related brain damage.
Chronic exposure to PM2.5 in ambient polluted air can predispose humans to AD or rodents to AD-related brain damage through generation or activation of multiple
pathological factors and pathways. PM2.5 exposure can induce or enhance amyloid β (Aβ) accumulation; tau hyper-phosphorylation; NADPH oxidase
(NOX)-mediated reactive oxygen species (ROS) generation; mitochondrial dysfunction; and mitochondrial ROS generation. In addition, PM2.5 exposure-induced
AD-related brain pathologies engage multiple cellular pathways, including synaptic deficits, impaired neurite growth and cell death in neurons; microglia (and
astrocytes) activation and generation of neurotoxic proinflammatory meditators [e.g., interleukin (IL)-1β, tumor necrosis factor-α, IL-6, ROS]; neurovascular unit and
blood–brain barrier (BBB) dysfunction. We have hypothesized the roles of oxidative stress and subsequent activation of the TRPM2 channel (not depicted here) in
coupling PM2.5 exposure to predisposition to AD and age-related brain damage leading to cognitive dysfunction.

increases in the expression of ionized calcium-binding adaptor
molecule 1 (Iba-1), a microglial cell marker, and IL-6 in
the whole brain (Levesque et al., 2011). More specifically,
such exposure elevated the levels of Iba-1, IL-1β, IL-6, and
TNF-α in the cortex and midbrain regions. The same study
also showed that intra-tracheal administration of single high
dose of DE-derived particles (20 mg/kg) increased the TNF-α
level in the serum and whole brain and that exposure to DE-
derived nPM (50 µg/mL) enhanced TNF-α generation from rat
immortalized microglial cells prior primed by lipopolysaccharide
(LPS) (Levesque et al., 2011). Similarly, a recent study using
3-month-old mice shows that exposure to ambient nPM for
10 weeks increased the Iba-1 expression in the CA1 and DG
regions of the hippocampus and the TNF-α expression level
in the whole brain (Woodward et al., 2017). Another recent
study using 3-month-old mice also reports that exposure
to DE containing 250–300 µg/m3 PM2.5 for 6 h induced
morphological changes of microglial cells and elevated Iba-1
expression in the hippocampus, similarly in male and female
mice (Cole et al., 2016). Furthermore, nPM exposure massively
elevated the levels of IL-1β, IL-6, TNF-α, and IL-3 and the level
of malondialdehyde (MDA), a biomarker of oxidative stress, in
the hippocampus, and such brain inflammation and oxidative
stress were noticeably higher in male mice than in female
mice, suggesting sex difference (Cole et al., 2016). A separate
study using cultured rat microglial and astrocytes demonstrated
that exposure to traffic-derived PM0.2 (6–12 µg/ml) induced

the TNF-α expression (Cheng et al., 2016). The study also
showed that the neurite length of rat cortical neurons, when
cultured in media conditioned by PM0.2-exposed microglia,
astrocytes, or mixed cell cultures, was significantly shorter.
PM0.2-induced reduction in neurite growth was prevented
by siRNA-mediated knockdown of the TNF-α expression,
indicating that PM0.2-induced TNF-α generation by glial cells
mediates such neurotoxicity (Cheng et al., 2016). Another
recent study using 15/16-week-old mice shows that exposure
to traffic-derived nPM (330 µg/m3, 5 h per day, and 3 days
per week) for 10 weeks induced microglial cell activation and
increased the deposition of complement C5/C5α proteins and
C5a receptor 1 in the corpus callosum (Babadjouni et al., 2018).
Taken together, these studies support that PM2.5 exposure
causes AD- and age-related brain pathologies via inducing
neuroinflammation (Figure 1).

Both in vivo studies using APP/PS1 mice and in vitro studies
using cultured microglial cells have revealed an important role
for Aβ-induced activation of the multi-protein complex NLRP3
inflammasome and caspase-1 and ensuring generation of IL-1β in
AD pathologies (Heneka et al., 2015; Wes et al., 2016; White et al.,
2017). Consistently, a recent study using LPS-primed cultured
mouse microglial cells shows that exposure to PM2.5 (50 µg/ml)
for 4 h enhanced Aβ-induced NLRP3 inflammasome activation
and IL-1β generation (Wang et al., 2018). Such PM2.5-induced
effects were dependent upon both NADPH oxidase (NOX)-
and mitochondria-dependent generation of ROS. Furthermore,
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PM2.5 exposure enhanced the capacity of Aβ-treated microglia
to induce neuronal cell death in cortical neuron/microglia co-
cultures, where microglia and neurons were separately seeded in
the upper and lower chambers, respectively, in trans-well plates.
Such PM2.5-induced microglia-mediated neuronal cell death
was prevented by pharmacological inhibition of NOX-mediated
and mitochondrial ROS generation or caspase-1 activation
(Wang et al., 2018). These results therefore suggest that PM2.5
exposure can induce neuroinflammation via sequential induction
of oxidative stress, NLRP3 inflammasome activation, and IL-
1β generation.

PM2.5 Exposure Induces Neurovascular
Unit and BBB Dysfunction
Impairment in the neurovascular unit and BBB function can
render enhanced infiltration of peripheral immune cells and
proinflammatory mediators to intensify brain inflammation as
well as the entry of PM2.5 into the brain. Evidence exists
to indicate that Aβ can induce neurovascular unit and BBB
dysfunction and thereby increase susceptibility to AD (Park et al.,
2014; Sweeney et al., 2018). As mentioned above, histochemical
studies of the brain of young people who lived in Mexico City
suggest that chronic exposure to PM2.5 or combustion-derived
nNPs can compromise the neurovascular unit and BBB function
(Calderon-Garciduenas et al., 2016; Gonzalez-Maciel et al., 2017)
and thereby aggravate AD-related pathologies (Figure 1).

INDUCTION OF AD-ASSOCIATED
MOLECULAR ALTERATIONS BY PM2.5
EXPOSURE

PM2.5 Exposure Enhances Aβ

Accumulation and Tau
Hyper-Phosphorylation
There is evidence to indicate that PM2.5 exposure enhances
the levels of Aβ and tau hyper-phosphorylation. As shown in
an aforementioned recent study using 8-week-old male mice,
exposure to ambient PM2.5 (65.7 ± 34.2 µg/m3, 6 h per
day, and 5 days per week) for 9 months reduced the level of
APP protein and increased the levels of beta-site APP cleaving
enzyme (BACE) protein and Aβ40 in the cerebral temporal
cortex (Bhatt et al., 2015). A recent study using 2-month-old
female 5xFAD+/−/APOE ε4 mice reports that nPM exposure for
15 weeks accelerated amyloid deposition and plaque formation
and elevated the level of Aβ oligomers, which may contribute
to nPM-induced selective reduction in neurite density in the
CA1 region (Cacciottolo et al., 2017). The same study also shows
that exposure of mouse neuroblastoma N2a cells expressing
Swedish mutant APP to 10 µg/ml nPM for 24 h enhanced
Aβ42 generation. Another recent study using 10-week-old female
5xFAD mice reports that exposure to DE (0.95 mg/m3, 6 h
per day, and 5 days per week) for 3 weeks elevated the levels
of cortical Aβ plaque load and whole brain Aβ42 (Hullmann
et al., 2017). However, prolonged exposure for 13 weeks resulted
in no effect on the levels of Aβ plaque load and whole brain

Aβ42, which were already high due to aging and AD progression
(Hullmann et al., 2017). Such an observation further indicates
an age-related ceiling effect as previously reported in wild-
type mice (Woodward et al., 2017). Another recent study
using 10-month-old mice has found that exposure to ambient
PM2.5 (3 mg/kg) for 4 weeks increased the level of tau hyper-
phosphorylation as well as altering neuronal mitochondria,
inducing ROS generation and reducing the cellular ATP content
(Gao et al., 2017). Therefore, PM2.5 exposure can induce AD-
related pathologies via stimulating Aβ generation and tau hyper-
phosphorylation (Figure 1).

PM2.5 Exposure Stimulates ROS
Generation and Oxidative Stress
As discussed above, excessive ROS generation and ensuing
oxidative damage play an important role in AD. There is
increasing evidence to indicate that PM2.5-induced AD-related
pathologies are associated with increased ROS generation and
oxidative stress. For example, a recent study using 2-month-
old male rats shows that intra-tracheal injection of PM2.5
significantly reduced the activities of superoxide dismutase
(SOD), a superoxide radical scavenger, and glutathione (GSH)
peroxidase, an important antioxidant enzyme catalyzing the
reduction of hydrogen peroxide (H2O2) by GSH, and increased
the level of MDA (Zhang et al., 2018). There were also
substantial mitochondrial dysfunction and loss of cristae
within mitochondria in cortical neurons of PM2.5-exposed
rats (Zhang et al., 2018). A more recent study using SH-
SY5Y cells shows that exposure to PM2.5 (25, 100, and
250 mg/mL) concentration-dependently increased the levels
of intracellular Ca2+ and ROS, and reduced the cellular
ATP content and GSH/GSSG ratio (Wang et al., 2019).
PM2.5 exposure also induced mitochondrial fragmentation
and increased the level of optic atrophy 1 (OPA1) protein,
which is critical for mitochondrial fusion, without change in
the level of dynamin-related protein 1 (Drp1) protein, which
is important for mitochondrial fission. Furthermore, PM2.5
exposure triggered the opening of mitochondrial permeability
transition pore, decreased the mitochondrial membrane potential
and mitochondrial SOD activity, and elevated the mitochondrial
content of MDA (Wang et al., 2019). Therefore, accumulating
evidence suggests that ambient PM2.5 exposure induces oxidative
stress and mitochondrial dysfunction, leading to neuronal cell
death (Figure 1).

PERSPECTIVE ON ROLES OF OXIDATIVE
STRESS AND TRPM2 CHANNEL IN
PM2.5-INDUCED DISPOSITION TO AD
AND AGE-RELATED BRAIN DAMAGE

TRPM2 Channel Is Critical in Mediating
AD- and Age-Related Cognitive
Dysfunction
The TRPM2 channel, member of the mammalian TRP channel
superfamily, is a Ca2+-permeable cationic channel gated
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by intracellular ADP-ribose (ADPR) and related compounds
(Perraud et al., 2001; Yu et al., 2017, 2019). The TRPM2
channel is highly sensitive to ROS due to the potent capacity
of ROS to promote ADPR generation (Jiang et al., 2010).
Studies using transgenic TRPM2-knockout (TRPM2-KO) mice
and/or derived cell cultures provide compelling evidence to
show the TRPM2 channel expression in neurons, microglia,
astrocytes, neuro-endothelial cells, and pericytes in the brain
and demonstrate its crucial role in mediating brain damage
induced by various pathological conditions (Li et al., 2015;
Jiang et al., 2018; Malko et al., 2019; Mai et al., 2020).
For example, a recent study introducing TRPM2-KO in the
APP/PS1 mice has disclosed a key role of the TRPM2 channel
in Aβ-induced synaptic deficits, microglial cell activation, and
age-related impairment in learning and memory (Ostapchenko
et al., 2015). Studies using cultured hippocampal neurons have
revealed TRPM2 channel activation to be essential in a positive
feedback loop that couples ROS/Aβ-induced NOX-mediated and
mitochondrial ROS generation, lysosomal and mitochondrial
dysfunction to neuronal cell death (Li et al., 2017; Li and Jiang,
2018, 2019). Studies using cultured microglial cells support a
critical role for the TRPM2 channel in microglial cell activation,
ROS generation, and production of proinflammatory cytokines
induced by exposure to ROS, Aβ, and other pathological stimuli
(Aminzadeh et al., 2018; Syed Mortadza et al., 2018). In addition,
there is evidence to indicate a significant role for the TRPM2
channel in endothelial cells in mediating Aβ-induced oxidative
damage to the neurovascular unit and BBB function (Park et al.,
2014). As illustrated in Figure 2, accumulating evidence supports
the roles of oxidative stress and the TRPM2 channel in AD-
related pathologies via mediating Aβ-induced synaptic deficits,
neuronal cell death, microglia-mediated neuroinflammation, and
neurovascular and BBB dysfunction (Jiang et al., 2018).

A recent study has examined the effect of TRPM2-KO on
age-related loss of cognitive function in mice (Kakae et al.,
2019). There was noticeable decline in working and cognitive
memory in middle-age WT mice at the age of 12–16 months
and significant impairment in spatial memory in aged WT mice
reaching 20–24 months compared with young WT mice of 2–
3 months. Such age-related cognitive dysfunction in WT mice
was not observed in age-matched TRPM2-KO mice. This study

also has documented substantial white matter damage, loss of
neuronal cells in hippocampus, and an increase in the number
of Iba1-positive microglial/macrophage cells and CD3-positive T
cells and a greater level of TNF-α in the corpus callosum and
hippocampus in aged WT mice. Interestingly, all of these age-
related detrimental effects were almost completely prevented by
TRPM2-KO. These results provide clear evidence to suggest an
important role for the TRPM2 channel in mediating age-related
loss of cognitive function, at least in part via neuroinflammation.

Oxidative Stress and TRPM2 Channel
Activation Are Important in NPs-Induced
Damaging Effects
There is increasing evidence to show important roles for
ROS generation and TRPM2 channel activation in mediating
multiple cellular effects induced by ultrafine PM, particularly
various types of NPs. For example, our study showed that
in human embryonic kidney 293 (HEK293) cells expressing
a low level of the TRPM2 channel, exposure to silica NPs
for 3–6 h initially induced TRPM2-independent generation of
ROS, which sufficiently activated the TRPM2 channel and up-
regulated the NOX2 expression to further provoke oxidative
stress and subsequent cell death (Yu et al., 2015). Intriguingly,
silica NPs-induced cell death in HEK293 cells was attenuated by
elevating the TRPM2 expression. This was due to selective and
TRPM2-dependent down-regulation of the NOX4 expression
and ROS generation. There was similar TRPM2 expression-
dependence of silica NPs-induced cell death in bone marrow-
derived macrophages. Collectively, this study suggests a dual role
of the TRPM2 channel in NPs-induced effect on cell viability.
A recent study also supports a significant role of the TRPM2
channel in mediating the cytotoxicity of mesoporous silica NPs
to HEK293 cells (Mohammadpour et al., 2019). A separate study
showed that exposure to lanthanide-based nanoparticles (LNs)
induced NLRP3 inflammasome activation and IL-1β generation
from LPS-primed mouse bone marrow-derived macrophages,
human THP-1, and mouse peritoneal macrophages in vitro and
also from mice intraperitoneally injected with LNs in vivo (Yao
et al., 2016). LNs-induced NLRP3 inflammasome activation and
IL-1β generation were reduced by inhibiting mitochondrial ROS

FIGURE 2 | Roles of oxidative stress and TRPM2 channel in mediating Aβ-induced AD-related brain damage. Chronic exposure to elevated levels of amyloid β

peptide (Aβ) induces NADPH oxidase (NOX)-mediated and mitochondrial generation of reactive oxygen species (ROS), giving rise to oxidative stress in neuronal,
microglial, and endothelial cells in the brain. Activation of the TRPM2 channels in these cells by ROS or under oxidative stress, respectively, mediates synaptic
deficits, neuronal cell death, microglial cell activation and generation of neurotoxic proinflammatory mediators, neurovascular unit, and blood–brain barrier (BBB)
dysfunction. These changes contribute to Alzheimer’s disease (AD)-related brain damage leading to cognitive dysfunction.
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generation and strongly suppressed by inhibiting NOX, and
also by pharmacological inhibition of the TRPM2 channel or
genetic depletion of the TRPM2 expression. These results support
critical roles of ROS generation and subsequent TRPM2 channel
activation in NPs-induced NLRP3 inflammasome activation and
IL-1β generation (Yao et al., 2016). Our recent study shows that
zinc oxide NPs (ZnO-NPs) induced brain pericyte cell death,
which was prevented by siRNA-mediated knockdown of the
TRPM2 expression in cultured pericytes and in mice by TRPM2-
KO (Jiang et al., 2017). ZnO-NPs induced pericyte cell death
was also suppressed by inhibiting nitric oxide synthase and
scavenging peroxynitrite. Moreover, our study provides evidence
to show that ZnO-NPs-induced TRPM2 protein nitration acts
as a molecular inducer of autophagy that mediates pericyte cell
death (Jiang et al., 2017). Collectively, accumulating evidence
shows important roles of oxidative stress and TRPM2 channel in
NPs-induced cellular effects.

CONCLUDING REMARKS

It is clear from the above discussion that epidemiological
studies support association of PM2.5 exposure with increased
risk to AD and age-related brain damage. Experimental studies
consistently support causative relationships of PM2.5 exposure
to AD and age-related pathologies and, in addition, identify
engagement of multiple pathological factors such as oxidative
stress and multiple pathways. Nonetheless, it is noticeable that
the current understanding is largely piecemeal and remains

poor with respect to the underlying molecular and signaling
mechanisms. Emerging evidence also suggests important roles
of oxidative stress and the TRPM2 channel in mediating various
NPs-induced cellular effects, prompting an attractive hypothesis
that oxidative stress and the TRPM2 channel play similar roles
in mediating PM2.5 exposure-induced AD predisposition and
age-related brain damage. Further investigations are required to
support or refute this hypothesis. Our hypothesis, if proves true,
raises an interesting perspective on targeting the TRPM2 channel
as a preventative and therapeutic strategy to limit the risk of
PM2.5 exposure to AD and age-related brain damage in humans.
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Mucolipins (TRPML) are endosome/lysosome Ca2+ permeable channels belonging
to the family of transient receptor potential channels. In mammals, there are three
TRPML proteins, TRPML1, 2, and 3, encoded by MCOLN1-3 genes. Among these
channels, TRPML1 is a reactive oxygen species sensor localized on the lysosomal
membrane that is able to control intracellular oxidative stress due to the activation
of the autophagic process. Moreover, genetic or pharmacological inhibition of the
TRPML1 channel stimulates oxidative stress signaling pathways. Experimental data
suggest that elevated levels of reactive species play a role in several neurological
disorders. There is a need to gain better understanding of the molecular mechanisms
behind these neurodegenerative diseases, considering that the main sources of free
radicals are mitochondria, that mitochondria/endoplasmic reticulum and lysosomes are
coupled, and that growing evidence links neurodegenerative diseases to the gain or
loss of function of proteins related to lysosome homeostasis. This review examines the
significant roles played by the TRPML1 channel in the alterations of calcium signaling
responsible for stress-mediated neurodegenerative disorders and its potential as a new
therapeutic target for ameliorating neurodegeneration in our ever-aging population.

Keywords: neurodegenerative disease, TRPML1, lysosomal storage disease, oxidative stress, mitochondria,
autophagy, Ca2+ signaling

INTRODUCTION

Neurodegenerative diseases entail progressive destruction and loss of neural cells and impairment
of both motor and cognitive functions. They include Parkinson’s disease (PD), Alzheimer’s
disease (AD) and Amyotrophic lateral sclerosis (ALS), as well as pathologies caused by lysosomal
accumulation, such as Mucolipidosis type IV (MLIV) and Niemann-Pick disease (NPD).

All neurodegenerative disorders are marked by the accumulation of abnormally aggregated
proteins and mitochondrial dysfunction. Some genes involved in PD or ALS are related to
mitochondria, the main source of reactive oxygen species (ROS) in aging cells (Indo et al., 2015). In
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addition, aggregated misfolded proteins can inhibit
mitochondrial functions and induce oxidative stress
(Abramov et al., 2017).

Several studies demonstrated the importance of maintaining
the balance between oxidative stress and the antioxidant system
(Li et al., 2013). Under physiological conditions, low levels of
ROS are required in processes such as inflammation, synaptic
plasticity, learning and memory. On the other hand, high
ROS levels are dangerous for the cells themselves, due to
their high reactivity against biological structures (Kishida and
Klann, 2007). In this regard, the central nervous system is
particularly susceptible to oxidative stress and its related damage,
because of high oxygen consumption and poor counteracting
antioxidant defenses.

These antioxidant defenses are generally classified as
enzymatic or non-enzymatic. Among the former are superoxide
dismutase, catalase, glutathione peroxidase, and glutathione
reductase, while the latter include glutathione, selenium and
vitamins A, E and C (Rego and Oliveira, 2003).

Evidence indicates that transient receptor potential (TRP)
channels play a central role in the modulation of oxidative stress
and lysosome functions, in particular by regulating calcium ion
influx and efflux (Sterea et al., 2018). In the TRP family, the
mucolipin (TRPML) subfamily is of particular interest because
it localizes to the endo-lysosomal compartment. The best-
characterized member is TRPML1, encoded by the MCOLN1
gene. TRPML1 is permeable to Ca2+, Na+, Fe2+, Mg2+,
and K+ (Xu et al., 2007; Dong et al., 2008, 2009). It has
an intraluminal loop that can be protonated activating the
channel (Xu et al., 2007; Dong et al., 2008). It is activated by
phosphatidylinositol-3,5-biphosphate (PtdIns(3,5)P2), voltage,
low pH, and the synthetic compounds MK6-83 and ML-SA1
(Raychowdhury et al., 2004; Dong et al., 2010; Grimm et al.,
2010; Shen et al., 2012; Zhang et al., 2012; Chen et al.,
2014). It is inhibited by phosphatidylinositol-4,5-biphosphate
(PtdIns(4,5)P2), sphingomyelins, and lysosomal adenosine (Shen
et al., 2012; Zhang et al., 2012). Some studies indicate that
TRPML1 is also involved in lysosomal storage, transportation
and acidic homeostasis and in this way it promotes the cation
efflux into the cytosol (Morgan et al., 2011). TRPML1 is also
classified as an important regulator of autophagy, given that
TRPML1 mutations affect lysosomal storage and lysosomal
impairment is responsible for autophagy defects. TRPML1
can also be negatively regulated through the phosphorylation
of Ser572 and Ser576 residues by the target of rapamycin
(TOR) with a consequent autophagy decrease (Onyenwoke
et al., 2015). Autophagy can target oxidized and damaged
molecules for lysosomal degradation. ROS are able to induce
autophagy and their major sources are mitochondria, localized
in proximity of lysosomes (Elbaz-Alon et al., 2014; Li et al.,
2015). Zhang et al. demonstrated that endogenous ROS are
able to regulate lysosomal activities through the TRPML1
channel, which functions as a “ROS sensor” (Zhang et al.,
2016). In this way, lysosomal Ca2+ release induces nuclear
translocation of transcription factor EB (TFEB) (Medina et al.,
2015), followed by autophagosome and lysosome biogenesis,
induction of autophagic flux and re-establishment of redox

homeostasis. Hence, we are interested in the interplay between
TRPML1, calcium flux and neurodegenerative diseases.

There are two other members in the TRPML subfamily,
TRPML2 and TRPML3, encoded by MCOLN2 and
MCOLN3 genes. Like TRPML1, they are active in late
endosomes/lysosomes; in addition, TRPML2 and TRPML3
are active in early endosomes, and TRPML2 also in recycling
(Chen et al., 2017; Plesch et al., 2018). They have not been
correlated with neurodegeneration in humans so far.

The aim of this review is to highlight the role of TRPML1 in
neurodegenerative diseases, reporting the current data available
in the literature. The following sections describe some of the most
important neurodegenerative diseases, with attention to the role
of TRPML1 functions.

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by marked cognitive disabilities, ranging from
memory loss to synapse disappearance. Pathologic changes occur
in the brain such as pyramidal neuron damage, extracellular
accumulation of β-amyloid aggregates and neurofibrillary tangles
containing hyperphosphorylated Tau protein (Selkoe, 2001).
A central hallmark of AD pathogenesis is Ca2+ dyshomeostasis.
Mutations in the β-amyloid precursor protein (APP) or in
presenilin (PS) 1/2, characteristics of familial AD, are associated
with aberrant Ca2+ concentrations responsible for apoptosis and
excitotoxicity in neurons (Yamamoto et al., 2007). In particular,
models of AD show an atypical efflux of lysosomal Ca2+, which
leads to impaired autophagy, a process in which lysosomes
degrade proteins or cytoplasmic organelles (Komatsu et al.,
2006). Autophagy also contributes to β-amyloid secretion and
metabolism, and its dysfunction is associated with the induction
of neuronal lesions (Nixon, 2017). Related to autophagy,
anomalies of the endosomal-lysosomal network are characteristic
of AD. Studies performed in PS1 mutated neurons demonstrated
that the loss of PS1 disrupts lysosome acidification and thus
impairs autophagy.

In APP/PS1 transgenic mice, neuronal TRPML1 is
downregulated, the mTOR pathway is inhibited and beclin and
LC3 protein upregulated. Conversely, TRPML1 overexpression
triggers autophagy by activating the mTOR pathway (Zhang
et al., 2017) thus diminishing neuronal apoptosis. When primary
neurons, isolated from hippocampus of APP/PS1 transgenic
mice, were treated with β-amyloid peptides, cell viability was
impaired and lysosomal Ca2+ concentration was reduced. The
upregulation of TRPML1 expression is able to strongly attenuate
these effects, and thus it is possible that the channel plays an
important role in the maintenance of lysosomal homeostasis
(Zhang et al., 2017).

Lee and coworkers demonstrated that PS1 knock-out (KO)
cells, used as model of early AD, display elevated lysosomal pH
due to vATP-ase deficiency. This alkaline lysosomal pH inhibits
the function of the two-pore channel 2 (TPC2) and stimulates an
abnormal TRPML1-mediated depletion of lysosomal Ca2+ (Lee
et al., 2015). Their results indicated that the endogenous TRPML1
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is present in a hyperactive state in PS1 KO cells and contributes
to Ca2+ efflux from lysosomes thus leading to autophagy
impairment. In addition, the observation that treatment of PS1
KO cells with an inhibitor of NAADP-dependent channels resets
Ca2+ homeostasis suggests that there is a complex interplay
between TRPML and NAADP signaling. However, normalization
of Ca2+ levels is not able to reverse proteolytic and autophagic
defects in PS1 KO cells. Rather, the associated changes in
lysosomal pH appear to be more functionally significant. No
data are reported in this study about changes in β-amyloid
peptide ratio, production and clearance; thus, the involvement,
in β-amyloid alterations, of the lysosomal Ca2+ efflux evoked by
TRPML1 has not been clarified so far in PS1 KO cells.

However, in a triple transgenic gp120/APP/PS1 mouse model,
a role of TRPML1 in the regulation of β-amyloid peptide
clearance has been suggested. In fact, there is evidence in
the brain of HIV-infected patients that β-amyloid peptides
accumulate causing cognitive deficits that overlap with those
of the AD. It has been demonstrated that the viral protein
gp120 promotes the accumulation of β-amyloid peptides,
sphingomyelin and Ca2+ inside lysosomes and autophagic
compartments. The activation of TRPML1, by its agonists,
induces Ca2+ efflux from lysosomes with consequent pH
acidification that promotes the clearance of intraneuronal
β-amyloid/sphingomyelin deposits (Bae et al., 2014). So, these
findings showed that the induction of lysosomal acidification
by activating the TRPML1-induced Ca2+ efflux reduces the
deposition of β-amyloid peptides in the HIV-infected brain.

Among the potential factors implicated in AD, an impairment
of the blood brain barrier (BBB), responsible for the increase
in LDL flux from the peripheral circulation into the brain, has
been described. Moreover, high plasma levels of cholesterol are
found to be able to compromise the BBB. Once inside the
brain, LDL can enter into endolysosomes and deacidify them,
thus blocking their function. This mechanism is responsible for
the LDL-induced increases in β-amyloid peptides generation in
neurons. It has been demonstrated that the TRPML1 agonist
ML-SA1 is able to prevent LDL-induced increases in β-amyloid
peptides, while TRPML1 silencing potentiates LDL-induced
effects (Hui et al., 2019).

PARKINSON’S DISEASE

Parkinson’s disease (PD) is characterized by the progressive
degeneration of the dopaminergic neurons located in the
substantia nigra pars compacta (SNc) (Lima et al., 2009).
The main hallmarks of PD are progressive neuronal loss and
intracellular inclusions known as Lewy bodies and neurites,
predominantly composed of misfolded and aggregated forms of
α-synuclein (Lotharius and Brundin, 2002). The causes involved
are mitochondrial dysfunction and oxidative stress supported by
PTEN-induced kinase 1, Parkin, Protein deglycase-1, and Leucine-
rich repeat kinase 2 (LRRK2) genes that regulate mitochondrial
and ROS homeostasis (Kilpatrick, 2016).

Recent studies have reported that in Parkinson’s disease,
the mitochondrial Ca2+ dynamics are altered when impaired

formation of membrane connections between mitochondria and
the endoplasmic reticulum (ER) or other components of Ca2+

signaling cause neurodegeneration in SNc neurons, which are
already vulnerable due to excessive Ca2+ influx. Indeed, SNc
neurons are subjected to an excessive influx of Ca2+ through
voltage-gated calcium (Cav1.3) channels (Guzman et al., 2009).
This Ca2+ exposure comes at an energetic cost to mitochondria.
As a result, neurons experience oxidative stress, which might
make them less tolerant to stressors (Guzman et al., 2010).

Since mitochondria, ER and lysosomes communicate through
Ca2+ signals, and since TRPML1, like other endo-lysosomal
Ca2+ channels, crosstalks with ER Ca2+ channels, it may
be that alterations in TRPML1 activity contribute to PD
(Kilpatrick, 2016).

Lysosomes are also involved in endocytic, autophagic
and secretory pathways. Since lysosomes degrade α-synuclein
through chaperone-mediated autophagy (CMA) (Cuervo et al.,
2004), the accumulation of α-synuclein implicates lysosomal
dysfunction in PD. Lysosomal Ca2+ content is impaired in a
beta-glucocerebrosidase GBA1-mutated PD model and is related
to altered endo-lysosomal morphology. In addition, the LRRK2-
mutated PD model shows deregulated lysosomal Ca2+ signaling
and altered morphology. It has been suggested that excessive
activation of TRPML channels, caused by changes in lysosomal
pH, depletes lysosomal Ca2+ (Lee et al., 2015). If this is the case,
then the increased NAADP-evoked Ca2+ signals measured in
LRRK2-mediated PD (Hockey et al., 2015) probably drain the
lysosomes of Ca2+.

Moreover, in a PARK9-mutant PD model, the loss of
lysosomal type 5 P-type ATPase function leads to α-synuclein
accumulation. Indeed, PARK9 regulates lysosomal exocytosis,
a pathway that could be potentiated to reduce α-synuclein
accumulation. Tsunemi demonstrated that TRPML1 agonists are
able to increase lysosomal exocytosis, thus impairing α-synuclein
intracellular levels (Tsunemi et al., 2019).

Since neuroinflammation seems to be essential for PD
pathogenesis (Whitton, 2007; Ransohoff, 2016), Gao et al. (2003)
conceived a PD mouse model based on treatment with the
inflammogen lipopolysaccharide (LPS) plus the neurotoxin 1-
methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this
model, NADPH-oxidase-dependent ROS generation has a central
role (Gao et al., 2003). Through metabolomics analysis, Huang
et al. exploited the LPS-MPTP model to identify adenosine and
adenosine deaminase (ADA) as the most promising therapeutic
targets for PD (Huang et al., 2019). Previously it had already
been demonstrated that the neuromodulator adenosine is able to
weaken oxidative stress and excitotoxicity (Fredholm, 2007; Min
et al., 2008). However, its use is limited by several adverse side
effects, rapid metabolism and difficulty in penetrating the blood
brain barrier (Phillis and Wu, 1981). Therefore, increasing its
local release through the inhibition of ADA could be a promising
approach. Indeed, compared to controls, mice exposed to MPTP
have impaired adenosine concentration and increased ADA
activity. Treatment with the ADA inhibitor deoxycoformycin
(DCF) is able to reverse the effects of MPTP (Huang et al.,
2019). However, in lysosomes of ADA mutant B-lymphocytes,
adenosine accumulation impairs TRPML1 activity and triggers
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lysosome enlargement and dysfunction (Zhong et al., 2017).
These data suggest that the lack of TRPML1 activity could lead
to an increased susceptibility to oxidative stress and cell death.
Therefore, rigorous experiments should be conducted to further
explore the possible role of TRPML1 as a therapeutic target in PD.

AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease that leads to progressive loss of motor neurons in the
anterior horn of the spinal cord, with muscle weakness, wasting,
and spasticity (Kiernan et al., 2011). It is classified as either
sporadic or familial: for familial ALS mutations in superoxide
dismutase 1 (SOD1) enzyme, TAR DNA binding protein 43 and
proteins involved in autophagic pathway and lysosome function
are present (Chen et al., 2013). The latter two are regulated by
intracellular Ca2+ flux inside the cell. In particular, lysosomal
Ca2+ can be released by intracellular signals, such as NAADP
(Kauppila et al., 2017) and PI(3,5)P2 (López-Otín et al., 2013).
TRPML1 could play an important role in restoring autophagy
and lysosome function in ALS, given that Ca2+ release is crucial
for lysosome function, that TRPML1 is implicated in lysosomal
Ca2+ release, and that PI(3,5)P2 levels are impaired in ALS. In the
ALS mouse model, chronic exposure to the neurotoxin L-BMAA
impairs autophagy in primary motor neurons, leading to ER
stress and cell death (Tedeschi et al., 2019a; Figure 1). In these
neurons, TRPML1 protein levels are downregulated; however,
early channel activation induced by the ML-SA1 agonist is able to
counteract TRPML1 impairment and reduce ER stress proteins
and Caspase-9 upregulation, thus rescuing motor neurons from
death. Under normal conditions in motor neuronal cells, the
lysosomal TRPML1 colocalizes with the ER Ca2+ sensor STIM1,
which suggests that there is cross-talk between ER and lysosomes,
in which lysosomal Ca2+ efflux through TRPML1 plays a pivotal
role (Tedeschi et al., 2019b). The depletion of ER Ca2+ stores
affects the lysosomal Ca2+ release that takes place through the
action of TRPML1. These data suggest that ER is a key source of
lysosomal Ca2+ in motor neurons, as demonstrated also in HEK
293 cells that stably express GCaMP3-TRPML1 (Garrity et al.,
2016); altered Ca2+ homeostasis in one of these organelles has
dramatic implications on the other stores (Tedeschi et al., 2019a).

Furthermore, ER dysfunction is common to different forms
of ALS, from sporadic ALS, which is characterized by misfolding
of wild-type SOD1, to the L-BMAA-induced ALS mouse model.
Tedeschi et al. demonstrated that the agonist ML-SA1 is able
to prevent the increase of ER stress markers. Thus it can be
assumed that the proximity to ER store and lysosomes means that
lysosomal Ca2+ release through TRPML1 may contribute to ER
Ca2+ concentration and stress prevention by continuous refilling
of Ca2+ (Tedeschi et al., 2019b).

MUCOLIPIDOSIS TYPE IV

Mucolipidosis type IV (MLIV) is an autosomal recessive
lysosomal storage disorder due to MCOLN1 gene mutations

(Bargal et al., 2000; Sun et al., 2000). Neurodegeneration with
spasticity, hypotonia, and the inability to walk independently are
common hallmarks (Altarescu et al., 2002).

Some publications have connected TRPML1 mutations with
the lower lysosomal pH registered in MLIV patients compared
with normal control (Raychowdhury et al., 2004; Soyombo
et al., 2006), although these results are different from data
reported by Bach (Bach et al., 1999). In particular, Soyombo
et al. has demonstrated that TRPML1 is able to prevent
lysosomal overacidification because it is permeable to H+ and
thus it dissipates high H+ concentration to maintain lysosomal
homeostasis under normal condition (Soyombo et al., 2006). In
the absence of TRPML1 regulation of pH, the acidic conditions
result in the dysfunction of lysosomal hydrolase and thus
substrates accumulation.

Given its permeability to Ca2+, TRPML1 activation is required
to allow the attachment of vesicles to motor proteins along the
microtubules and the fusion with plasma membrane in normal
cells. In MLIV, the loss of TRPML1 function is related to defects
in lysosomal biogenesis and exocitosis (LaPlante et al., 2006).

Fibroblasts of MLIV patients contain soluble protein and
lipid aggregates (Bach, 2001; Altarescu et al., 2002; Smith
et al., 2002) due to abnormal sorting and/or transport of
these macromolecules along the late endocytic pathway (Bargal
and Bach, 1997; Chen et al., 1998). Typical aspects of MLIV
are mitochondrial fragmentation and decreased mitochondrial
Ca2+ buffering efficiency (Jennings et al., 2006; Kiselyov
et al., 2007b). Since lysosomes are significant players in the
autophagic recycling of mitochondria, defects in their function
may affect recycling and thus lead to the storage of fragmented
mitochondria and the failure to buffer cytoplasmic Ca2+. The
reduced buffering capacity could make cells more sensitive to
pro-apoptotic signals (Kiselyov et al., 2007a; Venugopal et al.,
2009; Demers-Lamarche et al., 2016).

As described above, TRPML1 induces TFEB transcriptional
activity, and TRPML1 is itself the target of TFEB (Medina
et al., 2015). This creates a feedback loop that activates
autophagy. In addition, a new TFEB-independent pathway has
been demonstrated (Scotto Rosato et al., 2019). Acute activation
of TRPML1 is able to increase phagophore formation, thus
activating calcium/calmodulin-dependent protein kinase kinase
β (CaMKKβ) and AMP-activated protein kinase (AMPK), and
also inducing the formation of the Beclin1/VPS34 autophagic
complex and the production of phosphatidylinositol 3-phosphate
(PI3P). PI3P-enriched ER subdomains act as platforms for
phagophore formation. These results are of considerable
importance because in the cells of MLIV patients, defective
production of PIP3 impairs recruitment of PI3P-binding
proteins (WIPI2 and DFCP1) to the phagophore during
autophagy induction.

Moreover, TRPML1 could also have a role in the preservation
membrane potential useful for the efficient transport of
chaperone-mediated autophagy (CMA) substrate proteins for
degradation. The intraluminal loop of TRPML1 seems to interact
directly with heat shock cognate protein of 70 kDa and heat shock
proteins of 40 kDa, members of a molecular chaperone complex
required for protein transport into the lysosome during CMA
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FIGURE 1 | In a neurotoxin L-BMAA-induced ALS mouse model, TRPML1 is downregulated, autophagy is impaired and motor neurons die from accumulation of
misfolded proteins. However, administration of the TRPML1 agonist, ML-SA1, activates the channel and leads to lysosomal Ca2+ release, autophagic flux and motor
neuron survival.

(Venugopal et al., 2009). Of note, lysosomes from MLIV patients
exhibit a reduction in CMA. Also, in MLIV lysosomes there is
a reduced amount of lysosomal-associated membrane protein
type 2A essential for the chaperones complex bound to the
lysosome membrane. Related to the impairment of CMA, MLIV
fibroblasts increase the oxidized protein levels that sensitize
neurons to apoptosis, thus leading to neuronal degeneration
(Venugopal et al., 2009).

Neurodegenerative effects have been also correlated to
zinc accumulation in lysosomes in MLIV fibroblasts or in
TRPML1-knockdown HEK-293 cells (Eichelsdoerfer et al., 2010).
This accumulation is not reverted by treatment with the
TRPML1 agonist MK6-83; in contrast, treatment with MK6-
83 significantly reduces zinc accumulation in F408del TRPML1
mutant-expressing fibroblasts (Chen et al., 2014).

Several patients show MCOLN1 gene mutations that introduce
premature stop signals and result in an absent TRPML1 protein,
or a protein lacking the ion-conducting pore between TMD5
and TMD6. Some have single point mutations that maintain an
open reading frame (Altarescu et al., 2002; Manzoni et al., 2004),
some have mislocalized proteins, some have TRPML1 correctly
localized but incapable of responding to endogenous ligands. In

the latter situation, there may be promise in therapy based on
the use of an agonist of TRPML1 to enhance its activity. Indeed,
in vitro results demonstrated that small-molecule ligands are able
to recover endogenous channel activity and also endo-lysosomal
trafficking defects and accumulation of zinc (Chen et al., 2014).

NIEMANN-PICK DISEASE

Niemann-Pick diseases (NPD) are lipid storage pathologies
associated with central nervous system impairment due to lipid
accumulation (Patterson and Walkley, 2017; Torres et al., 2017).
Three types of NPD have been identified. Types A and B are
characterized by deficient activity of acid sphingomyelinase,
which degrades lysosomal sphingomyelin; type C shows defective
function in cholesterol efflux from lysosomes (Patterson and
Walkley, 2017; Schuchman and Desnick, 2017; Torres et al.,
2017) as a consequence of mutation in NPD type C1
(NPC1) or NPD type C2 (NPC2) genes, responsible for
cholesterol transport. This causes an increase in concentration
of cholesterol with accumulation of unesterified cholesterol in
late endosomes/lysosomes. Accumulation of sphingomyelin and
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FIGURE 2 | Cellular Ca2+ homeostasis is regulated by a complex interplay between plasma membrane and organelles. Lysosomes are important organelles directly
involved in Ca2+ signaling and homeostasis and express a variety of Ca2+ channels, including TRPML1 and TPCs.

cholesterol affects lysosomal Ca2+ release and blocks endocytosis
and fusion between late endosomes and lysosomes, resulting in
endocytosis and autophagy dysfunction (Samie and Xu, 2014;
Höglinger et al., 2019; Tancini et al., 2019).

Sphingomyelin is able to inhibit Ca2+ efflux through the
TRPML1 channel. Therefore, by inhibiting TRPML1 activity, the
accumulation of sphingomyelin could influence both lysosomal
pH and Ca2+ signaling through ER and mitochondria (Lloyd-
Evans and Platt, 2010; Wheeler et al., 2019). Moreover, TRPML1
forms a complex with the large conductance Ca2+-activated
K+ channels (BK) in lysosomes. The BK channels are activated
by TRPML1-mediated Ca2+ release to maintain the negative

membrane potential needed for sustained lysosomal Ca2+ release
(Cao et al., 2015). Either TRPML1 or BK deficiency results in
lysosomal Ca2+ accumulation, defective lysosomal membrane
trafficking, and lysosome storage. Furthermore, upregulation of
TRPML1 or BK reverses the impaired lysosome Ca2+ release
and membrane trafficking in NPC1 fibroblasts. Moreover, in
NPC1 or NPC2 KO HeLa cells, cholesterol accumulates in
late endosomes, and the treatment with 2-hydroxypropyl-ß-
cyclodextrin reduces cholesterol content (Vacca et al., 2019).
Here TRPML1 silencing abrogates this effect: this may suggest
that TRPML1 is directly implicated in the regulation of endo-
lysosome secretion.
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DISCUSSION

Neurodegenerative diseases are serious health problems.
Numerous efforts have been made to identify neuropathological,
biochemical and genetic biomarkers for them. Mitochondrial
function and resistance to oxidative stress are compromised
during the aging phase, and this is a starting point for the
onset of neurodegenerative diseases (Cenini et al., 2019). Other
factors that promote oxidative stress are excitotoxicity and
aberrant protein processing, which lead to outcomes such as
impairment of lysosome integrity. Given that lysosomes are the
major contributors to autophagic recycling of mitochondria, to
misfolded protein and to damaged organelles, it may be that
defects in lysosome function affect mitochondrial recycling, cause
accumulation of fragmented mitochondria, and block the ability
to buffer cytoplasmic Ca2+, and that these processes in turn
sensitize cells to pro-apoptotic signals. In this regard, several
reports suggest that lysosomal Ca2+ impairment is involved
in the pathogenesis of neurodegenerative diseases. For this
reason, the calcium channels expressed on lysosomes have been
attracting a lot of attention lately, especially as potential new
targets for fighting neurodegeneration. It is now well known that
TPCs and TRPMLs are the two main calcium permeable receptor
families expressed on lysosomes. However, the pharmacology
of these receptors has not yet been well elucidated and still
requires further studies. In addition, new findings are necessary
to clarify if the Ca2+ efflux from lysosomes is helpful or
not. In fact, contradictory data are present in the scientific
literature. According to some researchers, the accumulation of
calcium in lysosomes seems to be associated with lysosomal
dysfunctions in neurodegenerative diseases (Bae et al., 2014).
Others, instead, suggest that the inhibition of the NAADP-
induced Ca2+ mobilization is beneficial in some experimental
models of neurodegenerative diseases. It is well established that
the NAADP-induced lysosomal Ca2+ efflux is dependent on
TPCs (Brailoiu et al., 2010; Yamaguchi et al., 2011; Morgan
et al., 2015; Pitt et al., 2016; Grimm et al., 2017; Patel et al.,
2017). However, recent findings also indicate that TRPML1 is
a target of NAADP, thus supporting the view that it plays a role in
endosome/lysosome interaction, lipid trafficking and alterations
in autophagy machinery (Lee et al., 2015). In fact, it has also been
shown that in a MCOLN1−/− fibroblast model, NAADP action
is abolished, an observation that suggests that NAADP-TRPML1
signaling plays a significant role (Zhang et al., 2011).

In neurons, the regulation of Ca2+ concentrations in each
cellular compartment is essential for the maintenance of

normal cellular functions and for neuronal plasticity (Ureshino
et al., 2019). Ca2+ buffering is controlled by the interplay
between ER, mitochondria and lysosomes that express Ca2+

transport mechanisms such as TRPML channels. Moreover, Ca2+

mobilization is regulated by several cation channels expressed
in the plasma membrane involved in the cation exchange with
the microenvironment. It is definitively clear that the imbalance
of Ca2+ concentrations is strongly involved in the pathogenesis
of neurodegenerative diseases, as in these pathologies there is
often an evident defect in intracellular calcium storage. In fact,
in many different experimental models of neurodegeneration,
Ca2+ mobilization from organelles to cytoplasm or vice versa
is impaired. However, it is still difficult to clarify whether Ca2+

plays the same role in the different neuronal disorders, especially
because it functions as a messenger in an intricate network
regulated by the ER/mitochondria/lysosome axis involving both
pro-survival and death pathways (Figure 2; Ureshino et al.,
2019). Therefore, calcium dyshomeostasis in both lysosome and
cytoplasm is detrimental. In this regard, there is no doubt
that channel dysfunctions are manifest in vesicular trafficking
defects, and further work is required to delineate the affected
processes more precisely.

As shown in this review, calcium imbalance, lysosomes and
oxidative stress, as well as the function of TRPML1 seem to be
highly significant in the neurodegenerative diseases described.
Unfortunately, to date little data is available linking TRPML
channels and neurodegeneration, and more studies are needed in
order to clarify the role of these channels. In conclusion, a deeper
understanding of the exact mechanism of neurodegeneration will
offer a valid starting point for the development of new therapeutic
strategies, and in this regard TRPML1 is turning out to be
a key candidate.
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TRPV1 Tunes Optic Nerve Axon
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Nolan R. McGrady, Michael L. Risner, Victoria Vest and David J. Calkins*

Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville,
TN, United States

The transient receptor potential vanilloid member 1 (TRPV1) in the central nervous
system may contribute to homeostatic plasticity by regulating intracellular Ca2+, which
becomes unbalanced in age-related neurodegenerative diseases, including Alzheimer’s
and Huntington’s. Glaucomatous optic neuropathy – the world’s leading cause of
irreversible blindness – involves progressive degeneration of retinal ganglion cell (RGC)
axons in the optic nerve through sensitivity to stress related to intraocular pressure
(IOP). In models of glaucoma, genetic deletion of TRPV1 (Trpv1−/−) accelerates
RGC axonopathy in the optic projection, whereas TRPV1 activation modulates RGC
membrane polarization. In continuation of these studies, here, we found that Trpv1−/−

increases the compound action potential (CAP) of optic nerves subjected to short-term
elevations in IOP. This IOP-induced increase in CAP was not directly due to TRPV1
channels in the optic nerve, because the TRPV1-selective antagonist iodoresiniferatoxin
had no effect on the CAP for wild-type optic nerve. Rather, the enhanced CAP
in Trpv1−/− optic nerve was associated with increased expression of the voltage-
gated sodium channel subunit 1.6 (NaV1.6) in longer nodes of Ranvier within RGC
axons, rendering Trpv1−/− optic nerve relatively insensitive to NaV1.6 antagonism
via 4,9-anhydrotetrodotoxin. These results indicate that with short-term elevations in
IOP, Trpv1−/− increases axon excitability through greater NaV1.6 localization within
longer nodes. In neurodegenerative disease, native TRPV1 may tune NaV expression
in neurons under stress to match excitability to available metabolic resources.

Keywords: glaucoma, transient receptor potential vanilloid member 1, optic nerve, compound action potential,
nodes of Ranvier, NaV1.6

INTRODUCTION

Transient receptor potential vanilloid member 1 (TRPV1) channels are activated by both
physiologically relevant and pathological stimuli, conducting large Ca2+ currents that initiate
downstream signaling cascades (Caterina et al., 1997; Hui et al., 2003; Patapoutian et al., 2009;
Weitlauf et al., 2014). TRPV1 channels densely accumulate in nociceptor cells of dorsal root
ganglia to transduce noxious sensory input into the electrochemical responses of the spinal
nerve (Simone et al., 1989; Caterina et al., 1997, 2000; Bolcskei et al., 2005). Recent evidence
shows widespread TRPV1 expression in the central nervous system (CNS) tissues, including the
cortex, hippocampus, hypothalamus, and retina (Mezey et al., 2000; Roberts et al., 2004; Cristino
et al., 2006; Sappington et al., 2009, 2015; Jo et al., 2017; Lakk et al., 2018). TRPV1 has also
been implicated in neurodegenerative disorders such as Alzheimer’s disease (Jayant et al., 2016;
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Balleza-Tapia et al., 2018), Parkinson’s disease (Marinelli et al.,
2003; Morgese et al., 2007; Nam et al., 2015; Chung et al.,
2017), Huntington’s disease (Lastres-Becker et al., 2003), and
glaucomatous optic neuropathy, or glaucoma (Ward et al.,
2014; Weitlauf et al., 2014). Glaucoma is the leading cause of
irreversible blindness (Quigley and Broman, 2006), involving
sensitivity to intraocular pressure (IOP) that stresses retinal
ganglion cell (RGC) axons as they form the optic nerve (Calkins,
2012). Many RGCs express TRPV1 channels (Jo et al., 2017; Lakk
et al., 2018), localizing to dendrites, unmyelinated axon segment,
and cell body, where it increases with short-term elevations in
IOP (Sappington et al., 2009, 2015; Weitlauf et al., 2014) but
is negligible within the optic nerve itself (Choi et al., 2015).
Even so, Trpv1−/− accelerates optic nerve degeneration with
elevated IOP and increases the depolarization necessary for RGCs
to produce action potentials (Ward et al., 2014; Weitlauf et al.,
2014). To better understand the early stages of this acceleration,
we investigated how Trpv1−/− influences physiological signaling
along the optic nerve with short-term elevations in IOP. We
found that enhanced excitability in Trpv1−/− optic nerve was
associated with longer axonal nodes of Ranvier with greater
levels of the voltage-gated sodium channel, NaV1.6. These results
suggest a role for TRPV1 in native tissue to regulate NaV in
response to disease-relevant stressors. The absence of this tuning
in Trpv1−/− mice suggests that accelerated axonopathy could
arise from excessive excitation even as elevated IOP stresses
match available metabolic resources in the optic projection to the
brain (Baltan et al., 2010; Calkins, 2012).

MATERIALS AND METHODS

Animal Experiments
Adult male Trpv1−/− (B6.129 × 1-Trpv1TM1Jul/J) mice (1.5–
2 months old) were obtained from The Jackson Laboratory,
whereas the appropriate wild-type (WT) background strain
C57Bl/6 mice were purchased from Charles River Laboratories
(male, 1.5–2 months old). The Trpv1−/− mice have a
targeted mutation causing a non-functional truncated form
of TRPV1 (Caterina et al., 2000; Ren et al., 2019; Stanford
et al., 2019). Trpv1−/− animals were genotyped prior to
performing experiments, following our protocol (Ward et al.,
2014; Weitlauf et al., 2014; Sappington et al., 2015) using
primers recommended by the vendor. The mutant forward
primer was TAA AGC GCA TGC TCC AGA CT compared
with the WT forward primer of TGG CTC ATA TTT GCC
TTC AG. The common primer was CAG CCC TAG GAG
TTG ATG GA. DNA gel electrophoresis of Trpv1−/− animals
showed a single band at 176 bp, indicative of truncated
TRPV1 (Caterina et al., 2000; Ren et al., 2019; Stanford
et al., 2019), whereas WT showed a single band at 289 bp
indicative of the native protein. We verified this pattern in each
animal utilized.

Mice were maintained in a 12 h light/dark cycles, and
animals were allowed water and standard rodent chow
as desired. All animal experiments were approved by The
Vanderbilt University Medical Center Institutional Animal Care

and Use Committee. Baseline IOP was measured bilaterally
in anesthetized (2.5% isoflurane) mice using Tono-Pen
XL (Medtronic Solan) for 1–2 days prior to experimental
manipulation. Baseline IOP measurements were averaged (day
0). After baseline IOP measurements, unilateral elevation of
IOP was induced by injecting 1.5 µl of 15 µm polystyrene
microbeads (Invitrogen) into the anterior chamber; the fellow
eye received an equal volume of sterile saline to serve as
control. We measured IOP 2–3 times per week for 2 weeks as
described previously (Crish et al., 2010; Weitlauf et al., 2014;
Risner et al., 2018).

Optic Nerve Compound Action Potential
Electrophysiology
Animals were euthanized by cervical dislocation and decapitated.
The skull was cut along the sagittal suture and removed, and the
optic nerves were sectioned from the brain. Optic nerves were
cut at the optic chiasm and posterior to the optic nerve head, and
nerves were placed in carbogen-saturated (95% O2, 5% CO2) ice-
cold (4◦C) artificial cerebrospinal fluid (aCSF) for 30 min (Wang
et al., 2012). The aCSF contained (in mM/L) 124 NaCl, 3 KCl,
2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, 23 NaHCO3, and 10 glucose
(Baltan et al., 2010). The pH of the aCSF was 7.4.

Optic nerves were incubated in ice-cold aCSF to slow
metabolism because we recorded from optic nerves one at a time.
The first nerve recorded from (saline- or microbead-injected
eyes) was alternated daily to avoid any possible order effects. After
incubation, one optic nerve was transferred into a physiological
chamber (Model PH1, Warner Instruments) and continually
perfused at a rate of 2 mL/min using a peristaltic pump (Model
7518, Masterflex) and maintained at 35◦C (Model TC-344C,
Warner Instruments). Optic nerves adjusted to physiological
conditions for 30 min prior to recording. After adjustment to
physiological conditions, the rostral end of the optic nerve was
positioned into a bipolar recording suction electrode (Model
573040, A-M Systems), and the caudal end of the optic nerve
was positioned into a custom-made bipolar stimulating suction
electrode. The syringe section of each electrode was attached
to separate micromanipulators (Model MM33, WPI) to allow
fine positioning of the electrodes. The electrode section of
the suction electrodes was fabricated from borosilicate glass
(Model TW150-4, WPI) that was heat-pulled (Model P2000,
Sutter Instruments) to form an average opening of ∼350 µm in
diameter. The stimulating electrode contained a Ag wire, and the
recording pipette contained a Ag/AgCl wire; both pipettes were
filled with aCSF.

Evoked potentials were bandpass filtered (0.0001–10 kHz),
amplified (100 × gain, DAM-60, WPI), digitized (Digidata
1440A, Molecular Devices), and sampled at 50 kHz (Clampex
10.6, Molecular Devices). Afterward, we measured the resistance
between the nerve and recording pipette by stimulating the nerve
with 10-µs 100-µA pulses at a minimum of three positions along
the optic nerve and measuring the compound action potential
(CAP) (Model ISO-STIM 01-DPI, NPI). The resistance of the
optic nerve and pipette at each spatial position along the nerve
was computed using Ohm’s law.
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Current-evoked CAPs were obtained for at least three spatial
positions along each optic nerve. Thus, at each spatial position,
the resistance between the recording pipette and nerve was
unique. We then plotted the resultant CAP area obtained at each
spatial position as a function of resistance. Then, we obtained
the slope of the linear regression of these data. The slope of the
data represents an approximation of the current-induced voltage
output of the nerve (Stys et al., 1991).

In a subset of experiments, CAPs were evoked with brief,
10 µs, square pulses, ranging from 10 to 200 V, every 30 s
until a maximal response was produced. Maximal response was
defined by the peak of the CAP. Once we determined the
voltage required to produce a maximum response, we challenged
optic nerve excitability by bath application of 300 and 600
nM of 4,9-anhydrotetrodotoxin (aTTX; Alomone Labs) or 100
nM of iodoresiniferatoxin (IRTX; Tocris). After 5 min of drug
application, an evoked CAP was obtained using the max-response
stimulus previously determined under normal bath conditions.
To assess excitability within the optic nerve, we computed the
percent decrease or percent of baseline of the evoked CAP based
on before and after drug responses.

At the end of each recording session, optic nerves
were placed in 4% paraformaldehyde overnight at −4◦C.
Afterward, we placed nerves on slides, imaged nerves on a
microscope slide micrometer, and quantified length and width
using the “segmented line” tool in ImageJ [Version 1.51i,
National Institutes of Health (NIH)]. The average optic nerve
width for WT and Trpv1−/− mice was 0.329 ± 0.004 and
0.333 ± 0.003 mm, respectively. There was no difference in
optic nerve length between genotypes (p = 0.45) or between
experimental condition (p = 0.56).

Optic Nerve Immunohistochemistry,
Imaging, and Analysis
For optic nerve sections, mice were first perfused with phosphate-
buffered saline (PBS) followed by 4% paraformaldehyde.
Optic nerves were placed separately into optimal cutting
temperature (OCT) compound (Fisher Scientific). Optic nerves
were sectioned longitudinally every 7 µm, taking care to keep
the nerves as flat as possible. Sections were first blocked with 5%
normal donkey serum for 2 h and then incubated in primary
antibodies for 3 days at 4◦C with gentle shaking. Primary
antibodies used for optic nerve sections were mouse-contactin-
associated protein 1 (Caspr1, 1:300, Millipore) and rabbit-NaV1.6
(1:200, Alomone). Confocal micrographs of all sections were
acquired using an Olympus FV1000 inverted microscope with
100× objective and 2× zoom.

Optic nerve node–paranode complexes were assessed using
similar methods as Arancibia-Cárcamo et al. (2017). To
determine the length of the node and paranode segments for each
node–paranode complex, the following analysis was performed
for each complex using a series of custom-written MATLAB
functions: First, the most prominent trough of the Caspr1
staining intensity profile was noted, and the location of its
minimum point identified. Next, the most prominent peak to
both the right and left of this minimum point was identified.

These maxima were averaged, and half of the average value
was used to define a threshold intensity value to distinguish
node and paranode segments. For each of the two identified
peaks, the contiguous region surrounding the peak and above
the threshold was considered paranode, whereas the region
between the two paranode segments and under the threshold was
considered node. The length of these segments and their average
staining intensity (Caspr1 for paranode and NaV1.6 for node)
were calculated.

All data are presented as mean ± SEM. Graphs were made
using Sigma Plot Version 14 (Systat, San Jose, CA, United States).
Statistical analyses were performed using Sigma Plot and Matlab
(R2019a, Natick, MA, United States). Parametric statistics were
performed (t-tests, ANOVAs) if data passed normality and equal
variance tests; otherwise, we performed non-parametric statistics
(Mann–Whitney, ANOVA on ranks).

RESULTS

Trpv1−/− Following Short-Term
Intraocular Pressure Elevation Increases
Optic Nerve Excitability
Following our protocol for conformational genotyping (Ward
et al., 2014; Weitlauf et al., 2014; Sappington et al., 2015),
Trpv1−/− mice showed a single product band at 176 bp,
indicative of a non-functional truncated form of Trpv1 (Caterina
et al., 2000; Ren et al., 2019; Stanford et al., 2019), whereas WT
C57 mice had a prominent band at 289 bp characteristic of the
native protein (Figure 1A).

Recently, we discovered that short-term (2 weeks) elevations
in IOP enhance excitability in multiple types of RGCs and
their axons (Risner et al., 2018). Following the same procedure
for unilateral microbead injection, IOP significantly increased
for the 2-week duration of the experiment for both WT and
Trpv1−/− mice (Figure 1B). In WT mice, IOP increased by
33% (20.5 ± 1.3 mmHg) compared with saline-injected eyes
(15.4± 1.1 mmHg, ∗p < 0.01). Similarly, in Trpv1−/− mice, IOP
increased by 29% in microbead-injected eyes (19.6± 1.1 mmHg)
relative to saline controls (15.2 ± 1.0 mmHg, p < 0.01,
Figure 1C). Genotype had no influence on IOP for either saline-
or microbead-injected eyes (p ≥ 0.96).

To determine whether IOP modulates electrical activity in the
myelinated optic nerve as it does for the retina, we measured
the current-evoked CAP (Baltan et al., 2010). Optic nerve
CAP typically demonstrated a single voltage peak following
depolarizing current stimulation (Figure 2A), which could be
eliminated by blocking voltage-gated sodium channels with
tetrodotoxin (TTX; 1 µM; Figure 2B). In the retina, RGC
excitability can be modulated directly by TRPV1 activation and
inhibition (Weitlauf et al., 2014). This is not so for optic nerve.
Application of the TRPV1-specific antagonist IRTX at sub-
micromolar concentrations known to inhibit TRPV1 (Wahl et al.,
2001) did not significantly affect the evoked CAP for naïve WT
optic nerve (p = 0.91, Figure 2C).
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FIGURE 1 | (A) Genotype confirmation shows the band for wild-type (WT) Trpv1 at 289 bp (lane 1, C57 background strain) vs. the 176 bp mutant Trpv1 (lanes 2 and
3). (B) Intraocular pressure (IOP) for WT and Trpv1−/− mice following unilateral injection of microbeads (vs. saline injection control, Ctrl) was similar between
genotypes. (C) IOP significantly increased in WT (33%) and Trpv1−/− (29%) eyes compared with their respective saline-injected control eyes (WT: *p < 0.01,
Trpv1−/−: *p < 0.01). Statistics: Independent samples t-tests. n = 16 (WT Ctrl), 16 (WT 2Wk), 15 (Trpv1−/− Ctrl), and 15 (Trpv1−/− 2Wk).

FIGURE 2 | (A) Compound action potential (CAP) area measured as integral (vertical gray lines) above baseline (dashed line) for current-evoked voltage changes
over time. (B) Example of CAP from wild-type (WT) naïve optic nerve in artificial cerebral spinal fluid (aCSF) and with 1 µM of tetrodotoxin (TTX) added, which
eliminated the CAP. (C) Example CAP from WT naïve optic nerve before and after bath application of 100 nM of iodoresiniferatoxin (IRTX) (left), which did not
influence area when normalized to aCSF (p = 0.34, n = 5). (D) Integrated CAP calculated as in (A) increases with nerve resistance for individual WT (n = 7) and
Trpv1−/− (n = 5) nerves from control eyes. Slope of best-fitting regression line indicates CAP voltage (right), which did not differ between WT, Trpv1−/−, and WT
naïve (n = 4; p = 0.62). Latency too did not differ (p = 0.40). (E) Integrated CAP for individual WT (n = 7) and Trpv1−/− (n = 5) nerves following 2 weeks of elevated
IOP (left). For Trpv1−/− nerves, elevated IOP increased slope of best-fitting line compared with that of corresponding control (CAP voltage, right; *p = 0.001).
Latency did not differ for either WT or Trpv1−/− nerves compared with control nerves (p = 0.59). Statistics: (C,E) independent samples t-tests; (D) one-way ANOVA.

Resistance to stimulating current varies with axon density and
diameter, extra-axonal space and glia, and positioning of the
recording electrode, all of which alter the measured response
(Stys et al., 1991). To compare optic nerve CAP between
animals more accurately, we obtained multiple measurements
while varying the positioning of the recording electrode. As
resistance increased, so too did the integral of the CAP response
(Figures 2D,E), with the slope of the best-fitting line yielding
a more precise measure of CAP voltage (Stys et al., 1991).
In addition, we assessed the amount of time required for
axons to conduct action potentials by measuring the response
latency as the time from stimulus onset to peak of the CAP.
For control nerves, Trpv1−/− did not influence the CAP
voltage (p = 0.16) or latency (p = 0.40) as compared with

WT (Figure 2D). In contrast, following 2 weeks of elevated
IOP, Trpv1−/− significantly increased the CAP voltage relative
to control nerves (6.3 ± 0.4 vs. 4.2 ± 0.3 mV; p = 0.001)
but did not modulate latency. Elevated IOP did not affect
the WT CAP voltage or latency as compared with control
nerves (Figure 2E).

Trpv1−/− Optic Nerve Is Less Sensitive
to NaV1.6 Antagonism
Action potentials are propagated in myelinated nerve by
activation of the voltage-gated sodium (NaV) channel
1.6, which densely accumulates within nodes of Ranvier
(Craner et al., 2003). Because IRTX did not significantly
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modulate optic nerve CAP (Figure 2C), we tested whether
the increase in Trpv1−/− optic nerve CAP with elevated IOP
(Figure 2E) is due to NaV1.6 activity. We again measured optic
nerve CAP following bath application of 300 and 600 nM of
aTTX, a selective inhibitor of the NaV1.6 subunit (Hargus et al.,
2013). For WT optic nerve, the CAP was suppressed by 300
nM and further reduced by 600 nM of aTTX (Figure 3A). In
contrast, the Trpv1−/− optic nerve CAP appeared relatively
insensitive to aTTX of either concentration (Figure 3B). We
quantified the influence of aTTX as the percent decrease in
CAP area following drug administration, normalized to baseline
area for each nerve. In WT nerve, regardless of IOP elevation
or aTTX concentration, CAP area declined significantly with
time after drug application (Figure 3C), as indicated by the
slope of the best-fitting regression line. The CAP for WT control
nerves decreased by 50% following 300 nM of aTTX and by 91%

following 600 nM of aTTX compared with baseline (Figure 3D).
Elevated IOP had little influence for either aTTX concentration,
as compared with control nerves (p ≥ 0.53). For Trpv1−/−,
aTTX had little influence on CAP over time, with the slope of
the best-fitting regression line significantly declining only for 600
nM of aTTX treatment of control nerves (Figure 3E). With 300
nM, only the CAP for 2-week nerves declined compared with
baseline, whereas only control nerves declined further with 600
nM compared with treatment with 300 nM (Figure 3F).

Trpv1−/− Alters NaV1.6 Density and
Node Length With Elevated Intraocular
Pressure
The results in Figure 3 indicate that Trpv1−/− optic nerve is
relatively insensitive to aTTX suppression of NaV1.6 activation

FIGURE 3 | (A,B) Example compound action potential (CAP) responses of nerves from Ctrl eyes and following 2 weeks of elevated intraocular pressure (IOP) from
wild-type (WT) and Trpv1−/− mice with bath application of 300 and 600 nM of aTTX. (C) Mean WT CAP area for control and 2-week nerves decreases over time
following bath application of 300 and 600 nM of aTTX. Individual recordings normalized to corresponding baseline (pre-drug) response. Slopes of best-fitting
regression lines indicated significant decline (p-values indicated). (D) Final CAP area for WT decreases significantly following 300 nM of aTTX for both control (n = 7,
50% decrease) and 2-week (n = 6, 59% decrease) nerves compared with baseline for each (#p ≤ 0.03). CAP area decreased further from baseline for control (n = 6,
91% decrease) and 2-week nerves (n = 6, 83% decrease) following application of 600 nM of aTTX, both significant declines compared with 300 nM (*p < 0.001). (E)
Mean Trpv1−/− CAP area following bath application of 300 and 600 nM of aTTX; for slopes of best-fitting regression lines, only control nerves with 600 nM of aTTX
showed significant decline (p-values indicated). (F) Final CAP area for Trpv1−/− control nerves were minimally affected by 300 nM of aTTX (n = 5, 0.5% decrease),
whereas area for 2-week nerves declined compared with baseline (n = 5, 18% decrease; #p = 0.02). Like WT, 600 nM of aTTX caused a greater reduction in CAP
area compared with 300 nM for Ctrl nerves (35% decrease; *p = 0.02). Statistics: (C,E) linear regressions; (D,F): one-way ANOVAs, Tukey post-hoc.
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FIGURE 4 | (A–D) Representative confocal micrographs of Caspr1 (green) and NaV1.6 (red) immunostaining of longitudinal optic nerve sections from wild-type (WT)
(A,B) and Trpv1−/− (C,D) mice. Scale bar = 10 µm.

than are WT nerves. In the myelinated optic nerve, NaV1.6
localizes to nodes of Ranvier flanked by paranodes defined
by the membrane protein Caspr1 (contactin associated protein
1; Craner et al., 2003). Immunolabeling for NaV1.6 and
Caspr1 in longitudinal sections confirmed this fundamental
configuration in both WT and Trpv1−/− optic nerves (Figure 4).
Compared with WT nerves from control and IOP-stressed eyes
(Figures 4A,B), the node–paranode complex appeared smaller in

Trpv1−/− optic nerves with more intense location of NaV1.6
(Figures 4C,D).

To quantify these apparent differences, we measured paranode
and node length and intensity of Caspr1 and NaV1.6 localization
within well-defined paranode–node complexes (Figure 5A). For
WT optic nerve, elevated IOP had no effect on levels of paranodal
Caspr1 compared with control (p = 0.76) nor on paranode
length (p = 0.81; Figure 5B). However, for Trpv1−/− optic
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FIGURE 5 | (A) High magnification confocal micrographs of longitudinal sections through Ctrl and 2 Wk wild-type (WT) and Trpv1−/− optic nerves show
Caspr1-labeled paranodes (green) flanking NaV1.6 (red) within nodes of Ranvier. (B) Trpv1−/− 2 Wk paranodes contain increased Caspr1 than did WT 2 Wk nerves
(left, *p = 0.012) and are shorter (right, *p < 0.001). (C) NaV1.6 is higher in nodes of Ranvier of Trpv1−/− nerves (left) compared with WT Ctrl (#p < 0.001) and 2 Wk
(*p < 0.001) optic nerve (left), although node length is significantly shorter for both Trpv1−/− Ctrl (#p < 0.001) and 2 Wk (*p < 0.001) nerves. Elevated intraocular
pressure (IOP) had no effect on either measure (p ≥ 0.88). (D) There is a positive relationship between node and paranode lengths in WT optic nerves (left), however,
this relationship is lost in Trpv1−/− (right) optic nerves. Elevated IOP had no effect on this relationship for WT or Trpv1−/− optic nerves. (E) NaV1.6 intensity
decreases as node length increases in WT (left) and Trpv1−/− (right) control optic nerves. Following IOP elevation, this relationship is lost in WT nerves, whereas the
relationship becomes positive in Trpv1−/− nerves. Scale = 5 µm (A). Statistics: (B,C): one-way ANOVAs, Tukey post-hoc; (D,E) linear regressions. Total nodes
analyzed: WT Ctrl, 3,942; WT 2 Wk, 3,890; Trpv1−/− Ctrl, 2,024; Trpv1−/− 2 Wk, 2,191. Five animals per condition. Ten images per animal.

nerve, elevated IOP increased Caspr1 significantly compared
with that for WT (p = 0.012; Figure 5B, left) whereas
significantly shortening paranode length compared with that for
WT (p < 0.001; Figure 5B, right). Within the nodes themselves,
NaV1.6 was significantly higher for Trpv1−/− compared with
WT for both control and 2-week nerves (p < 0.001; Figure 5C,
left). As with Caspr1-labeled paranodes, Trpv1−/− significantly
shortened the nodes compared with WT (p < 0.001; Figure 5C,
right). Thus, NaV1.6 concentrates at a higher level in truncated
paranode–node complexes in Trpv1−/− optic nerve. We found
significant positive correlations between node and paranode
length in WT control and 2-week nerves (p < 0.001, Figure 5D,
left). For Trpv1−/− optic nerve, there was no correlation
(Ctrl, p = 0.62; 2Wk, p = 0.09, Figure 5D, right). For
both WT and Trpv1−/− control nerves, NaV1.6 intensity
decreased significantly with increasing nodal length, so that
NaV1.6 was more concentrated in shorter nodes (p ≤ 0.03,
Figure 5E). However, for Trpv1−/− nerves with elevated IOP,

the relationship was reversed so that NaV1.6 concentrated in
longer nodes (p = 0.05, Figure 5E, right); this was not so for
WT nerves (p = 0.07). These results suggest that the combined
increase in NaV1.6 localization with decreased length of the
paranodal complex strengthens the Trpv1−/− CAP, rendering
these nerves far less sensitive to aTTX antagonism (Figure 3).
That elevated IOP increases NaV1.6 with increasing node length
likely explains the increased CAP for Trpv1−/− nerves under
these conditions.

DISCUSSION

Previously, we found that Trpv1−/− accelerates optic nerve
axonopathy with elevated IOP, reducing nerve area, axon density,
and axon transport to the brain (Ward et al., 2014). The
deleterious influence of Trpv1−/− on nerve health and axon
function with IOP-related stress likely can be linked to cationic
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activity. Here, we sought to determine the impact of Trpv1−/−

with short-term IOP elevation on optic nerve signaling to the
brain, using the evoked CAP. As expected (Baltan et al., 2010), the
optic nerve CAP demonstrated a single-peaked voltage inflection
in response to depolarizing current that was eliminated by
application of the voltage-gated sodium channel antagonist, TTX
(Figures 2A,B), underscoring the dependence of CAP on these
channels. Under control conditions, in the absence of IOP-related
stress, the CAP for WT and Trpv1−/− optic nerves was identical,
and naïve CAP was unaffected by specific pharmacological
antagonism of TRPV1 (Figures 2C,D).

Our key physiological result is that modest, short-term IOP
elevation significantly increases Trpv1−/− optic nerve CAP.
On the surface, this finding is paradoxical. We have recently
shown TRPV1 expression and RGC excitability concurrently
increase following 2 weeks of elevated IOP (Weitlauf et al.,
2014). In that study, Trpv1−/− eliminated the stress-related
enhancement of RGC excitability, and Trpv1−/− RGCs required
larger depolarizing currents to generate action potentials with
elevated IOP. On the basis of this collective evidence, one would
expect IOP elevation to reduce Trpv1−/− optic nerve CAPs.
How then do we explain our results? Trpv1−/− nerves were
relatively impervious to NaV1.6 antagonism by aTTX, which
suppressed the WT CAP (Figure 3). This difference accompanies
shorter nodes of Ranvier with far greater NaV1.6 localization in
Trpv1−/− but not WT nerves (Figures 4, 5). In fact, NaV1.6 in
WT optic nerve nodes is unaltered following up to 5 weeks of
microbead-induced IOP elevation (Smith et al., 2018). This novel
finding suggests that TRPV1, which is typically associated with
presynaptic potentiation of glutamatergic action (Marinelli et al.,
2003; Medvedeva et al., 2008), can also tune channel expression
within axons – even though localization of TRPV1 in the optic
nerve head is negligible (Choi et al., 2015).

Our data show that Trpv1−/− causes a compensatory
aggregation of NaV1.6 protein expression within nodes of
Ranvier and a significant decrease in nodal length (Figure 5C).
This may serve as a cautionary note that genetic excision of a
single gene, Trpv1 in this case, can lead to unexpected effects on
neuronal structure and expression levels of other channels. Here,
we observed that Trpv1−/− led to increased NaV1.6 expression,
which conferred greater resistance to the NaV1.6 antagonist,
aTTX (Figure 3). The general observation that overexpression
of a drug target correlates with a higher resistance to inhibition
is a fundamental assumption for drug target identification. This
assumption is often true when inhibition of the target only
reduces target activity. However, if inhibition of the target also
catalyzes harmful downstream effects, drug efficacy cannot be
predicted (Palmer and Kishony, 2014). Although it is unknown
if inhibition of NaV1.6 by aTTX impacts off-target sites, here, we
find that for WT control nerves, 300 nM of aTTX caused a 50%

reduction of the CAP and 600 nM of aTTX decreased the CAP
near 100%, suggesting that NaV1.6 resistance to aTTX is linear
(Figures 3D,F).

Finally, we found that Trpv1−/− with elevated IOP causes a
modest but significant shift in the relationship between NaV1.6
expression and node length, where NaV1.6 accumulates more in
longer nodes (Figure 5E). Interestingly, others have found that
increased nodal length and ectopic expression of NaV1.6 in aged
optic nerves are related to larger CAP despite decreased levels of
ATP (Stahon et al., 2016). We previously found that elevated IOP
in Trpv1−/− mice accelerates ATP-dependent anterograde axon
transport deficits and optic nerve axon degeneration (Ward et al.,
2014). Ultimately, our results indicate that IOP-related stress,
like aging, requires a redistribution of energy resources at the
expense of axon transport to preserve voltage-dependent axon
signaling. In the absence of TRPV1, this demand is increased,
further taxing a vulnerable system. Thus, in glaucoma and other
age-related neurodegenerative diseases, TRPV1 may reconfigure
NaV expression in neurons under stress to normalize excitability
to existing metabolic resources.
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The development of treatment for neurodegenerative diseases (NDs) such as
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral
sclerosis is facing medical challenges due to the increasingly aging population. However,
some pharmaceutical companies have ceased the development of therapeutics for
NDs, and no new treatments for NDs have been established during the last decade.
The relationship between ND pathogenesis and risk factors has not been completely
elucidated. Herein, we review the potential involvement of transient receptor potential
(TRP) channels in NDs, where oxidative stress and disrupted Ca2+ homeostasis
consequently lead to neuronal apoptosis. Reactive oxygen species (ROS) -sensitive
TRP channels can be key risk factors as polymodal sensors, since progressive late
onset with secondary pathological damage after initial toxic insult is one of the
typical characteristics of NDs. Recent evidence indicates that the dysregulation of
TRP channels is a missing link between disruption of Ca2+ homeostasis and neuronal
loss in NDs. In this review, we discuss the latest findings regarding TRP channels to
provide insights into the research and quests for alternative therapeutic candidates for
NDs. As the structures of TRP channels have recently been revealed by cryo-electron
microscopy, it is necessary to develop new TRP channel antagonists and reevaluate
existing drugs.

Keywords: TRP, Ca2+, ROS, cell death, neurodegeneration, AD, PD, HD

INTRODUCTION

Neurodegenerative disorders (NDs) are one of the most devastating types of chronic diseases and
lead to a significant social and medical burden on society. With the growing elderly population,
the number of patients with NDs is also increasing. Although many pharmaceutical companies
are struggling to develop novel therapeutics for neurological diseases, some of the world’s leading
pharmaceutical companies have declared their abandonment of the development of therapeutics for
NDs. Alzheimer’s disease (AD) is the most common ND, which accounts for 60–70% of all dementia
(Association, 2016). Nevertheless, no new treatments for AD have been developed in over a decade.
Some of the reasons for the difficulty in treating NDs are the combination of complex causative
factors and irreversible structural and functional damage of neurons.

Frontiers in Physiology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 23849

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.00238
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.00238
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.00238&domain=pdf&date_stamp=2020-04-15
https://www.frontiersin.org/articles/10.3389/fphys.2020.00238/full
http://loop.frontiersin.org/people/868062/overview
http://loop.frontiersin.org/people/873705/overview
http://loop.frontiersin.org/people/873709/overview
http://loop.frontiersin.org/people/90741/overview
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00238 April 13, 2020 Time: 18:47 # 2

Hong et al. Therapeutic Potential of TRP Channels in NDs

Neurodegenerative disorders are typically progressive, late-
onset disorders, and aging is the greatest risk factor (Wakabayashi
et al., 2014). In addition, genetic and environmental factors not
only contribute to their pathogenesis independently but also
interact with each other to increase their effects. The pathogenesis
of NDs involves an initial toxic insult and consequences of
the secondary pathological damage. The most primary causative
hypothesis of AD is the intraneuronal accumulation of amyloid-
beta (Aβ) and hyperphosphorylated tau protein (Iqbal et al., 2010;
Murphy and LeVine, 2010). Parkinson’s disease (PD) is caused by
the degeneration of dopaminergic neurons in the substantia nigra
par compacta (SNpc), with subsequent dopamine deficiency
(Michel et al., 2013; Kalia and Lang, 2015). A type of hereditary
ND, Huntington’s disease (HD) is an autosomal dominant
disorder caused by CAG repeat expansion within the Huntington
(HTT) gene (Kremer et al., 1994). The third common ND
after AD and PD is amyotrophic lateral sclerosis (ALS) that is
characterized by the deterioration of motor neurons.

Neurodegenerative disorders such as AD, PD, HD, and
ALS are distinguished by clinical symptoms and specific
neuronal sites with distinct pathology. However, apparent clinical
symptoms are manifested only after extensive pathological
damage, with significant neuronal and synaptic loss. Eventually,
the contribution of individual insults reaches a common end
state, which causes severe impairments in the function and
plasticity of neuronal and glial cells (Rasband, 2016). Over the
past few decades, there has been considerable effort to understand
the pathogenesis of NDs. To date, a number of studies have
reported that oxidative stress, ER (endoplasmic reticulum) stress,
abnormal Ca2+ homeostasis, protein misfolding, aggregation,
neuroinflammation, and mitochondrial dysfunction are highly
related to neuronal damage. The relationship between them,
however, has not been completely elucidated. Besides, even
though Aβ is still a compelling candidate in the pathogenesis of
AD, the latest experiments raise doubts about the Aβ hypothesis
and Aβ -based drug development for AD (Du et al., 2018).
Therefore, it is necessary to find the missing links amongst the
risk factors of NDs and to discover new therapeutic targets based
on novel mechanisms.

Ion channels are key determinants of brain function, since
the physiological function of neurons is to carry information or
impulses via electrical signals (action potentials) to communicate
with each other at synapses. Thus, neurological channelopathies
have been identified mainly in voltage-gated and ligand-gated
channels or receptors that result from genetically determined
defects in their function. However, based on patients with
progressive NDs with adulthood manifestations, we have
focused on the age-related susceptibility to environmental
toxins and chemicals. Recently, emerging evidence has indicated
that transient receptor potential (TRP) channels, ubiquitously
expressed throughout the brain (Sawamura et al., 2017), play a
significant role in the regulation of physiological functions, as
well as in reactive oxygen species (RO)-related human diseases.
Based on the polymodal activation of TRP channels acting
as cellular sensors, many researchers are investigating their
activation mechanisms (Takada et al., 2013). Here, we review the
potential involvement of TRP channels in NDs, where oxidative

stress and disrupted Ca2+ homeostasis have been characterized
with respect to pathological consequences in neuronal apoptosis.
Second, we discuss the latest findings in the field of TRP
to provide insight into the research and quest for alternative
therapeutic candidates for the treatment of NDs.

THE CRITICAL ROLE OF Ca2+ IN THE
PATHOGENESIS OF
NEURODEGENERATIVE DISEASES

Ca2+ homeostasis is crucial to the normal physiological
functions of neurons, such as neuronal survival, growth, and
differentiation. Hence, long-lasting Ca2+ dyshomeostasis can
eventually lead to neuronal loss. Accumulated evidence strongly
implicates that abnormal Ca2+ levels stimulate dysregulation
of intracellular signaling, which consequently induces neuronal
cell death (Barnham et al., 2004). Therefore, disruption of
Ca2+ homeostasis in neuronal cells leads to ROS generation
and ATP depletion, following the mitochondrial dysfunction
in NDs such as AD, PD, HD, and ALS. Interestingly, a close
correlation between the increase in [Ca2+]i and other pathogenic
mechanisms has been reported, such as Aβ deposition (Demuro
et al., 2010), imbalance between ROS and antioxidant function
(Gorlach et al., 2015), and mitochondrial dysfunction (Contreras
et al., 2010; Pivovarova and Andrews, 2010).

Some reports have shown bidirectional crosstalk between
amyloid pathology and the Ca2+ pathway. Most studies reported
that Aβ increases intracellular Ca2+ levels by inducing ER Ca2+

depletion (Suen et al., 2003; Abramov et al., 2004b; Ferreiro
et al., 2008). Abramov et al. (2004a) identified that Aβ causes
Ca2+-dependent oxidative stress by the activation of NADPH
oxidase in astrocytes and that the reduced antioxidant activity
induces neuronal death. Recently, Calvo-Rodriguez et al. (2019)
suggested that Aβ oligomers exacerbate Ca2+ remodeling from
ER to mitochondria in aged neurons but not in young neurons.
Conversely, Itkin et al. (2011) argued that Ca2+ stimulates the
formation of Aβ oligomers, leading to neuronal toxicity in AD.

The imbalance between ROS production and antioxidant
defenses results in the excessive accumulation of ROS and
oxidative stress. Since aged neurons with low antioxidant capacity
are more vulnerable to oxidative insults (Chen et al., 2012), ROS
overproduction can chronically lead to irreversible oxidation
(Ivanova et al., 2016). Oxidative stress also causes mitochondrial
dysfunction, which itself aggravates ROS generation. Moreover,
the opening of the mitochondrial permeability transition pore
(mPTP) and the release of cytochrome c into cytoplasm activate
pro-apoptotic caspases (Guo et al., 2013). Oxidative stress and
mitochondrial dysfunction are well known to be related to an
increase in cytosolic Ca2+ levels that underlies the pathogenesis
of AD (Cenini and Voos, 2019), PD (Blesa et al., 2015), HD
(Zheng et al., 2018), and ALS (Carri et al., 2015). Interestingly, the
mitochondrial metabolic state can affect the Mg2+ concentration
of both the matrix and the cytoplasm, where Mg2+ interferes
with mitochondrial Ca2+ transport and mitochondrial ATP
generation (Llorente-Folch et al., 2015). Since the efficient
removal of [Ca2+]i requires ATP, impairment of mitochondrial
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ATP generation prevents Ca2+ pumps from operating both in
the plasma membrane and in the ER (Ott et al., 2007). Thus,
dysregulation of Ca2+ signaling is one of the key processes in
early stage neuronal loss. In spite of its significance, the mediator
of such aberrant Ca2+ increase and its source are not fully
understood. To test the effectiveness of preventing Ca2+ overload
for ND therapy, a variety of appropriate channel candidates
should be further examined by developing channel-specific drugs
for new channel targets. Last but not least, experimental data on
existing drugs also need to be reevaluated.

Oxidative stress can directly modulate the gating properties
of ion channel proteins. Pathological mechanisms underlying the
dysregulation of ion channels by oxidation have been previously
proposed in a variety of diseases, especially cancer (Reczek and
Chandel, 2018) and NDs (Gorlach et al., 2015). Under normal
conditions, defensive antioxidants can protect or repair the
damage caused by oxidation. However, the target proteins are
retained in their oxidized forms and are activated as long as
the antioxidant activity is reduced. To date, several studies have
shown that oxidative stress is involved in the modulation of
activities of voltage-gated Ca2+ (Gorlach et al., 2015; Ramirez
et al., 2016), Na+, and K+ (Sesti et al., 2010) channels and ligand-
gated receptors such as NMDA (Kamat et al., 2016), AMPA (Joshi
et al., 2015), GABA (Bradley and Steinert, 2016), and RyR (Zima
and Mazurek, 2016). However, there is limited evidence that
directly identifies the oxidative modification of a channel protein
based on molecular mechanisms.

Since TRP channels are non-selective, Ca2+-permeable
channels that can be opened at resting membrane potential in
response to various stimuli, we focused on TRP channels. The
activation of TRP channels consequently changes membrane
depolarization toward the action potential threshold. When
TRP channels open, they allow sodium and calcium into the
cytoplasm, which subsequently triggers the opening of voltage-
dependent Ca2+ channels. This is why TRP channels are
upstream risk factors, ahead of voltage-dependent channels
(Numata et al., 2011). Therefore, the hyperactivation of TRP
channels is responsible for neuronal excitotoxicity, which is
closely associated with NDs. In the following section, we will
address the physiological and pathological roles of TRP channels
in neurons through the recent studies related to TRP channels
and our study of the TRPC5 channel.

THE PHYSIOLOGICAL AND
PATHOLOGICAL ROLE OF TRP
CHANNELS IN NEURONS

As mentioned above, TRP channels are widely expressed in
almost every mammalian cell, predominantly in the brain. TRP
channels can be activated by diverse stimuli ranging from
temperature, mechanical or osmotic stress, chemical compounds,
and redox modification (Sawamura et al., 2017; Samanta et al.,
2018). Based on sequence homology, the TRP superfamily is
divided into six subfamilies in mammals: TRPC (classical or
canonical; seven sub-members), TRPM (melastatin; eight sub-
members), TRPV (vanilloid; six sub-members), TRPA (ankyrin;

one sub-member), TRPP (polycystin; three sub-members),
and TRPML (mucolipin; three sub-members) (Figure 1).
Notably, most TRP channels (except TRPM4 and TRPM5)
are non-selective channels with consistent Ca2+ permeability
(Guinamard et al., 2011). TRP channels are tetrameric protein
complexes that can be assembled into homomeric or heteromeric
channels, either with the same subfamily members or with the
other subfamily members. Thus, when TRP channels assemble
with different subunits, further heterogeneity diversifies their
functions. In addition to the physiological roles of TRP channels
in neurons, a number of studies regarding the pathological
functions have been reported. Intracellular Ca2+ influx through
TRP channels is involved either in neuronal survival or death and
is discussed with respect to the different TRP channel families in
the following sections (Bollimuntha et al., 2011).

TRPC (Classical or Canonical)
TRPC was the first group of TRPs to be discovered in a mammal
(Wes et al., 1995), and it shows the highest amino acid similarity
to the Drosophila TRP channel. The TRPC subfamily is divided
into seven subtypes, namely, TRPC1–7. Depending on amino
acid similarities, the subtypes are divided into four groups:
TRPC1, 2, 3/6/7, 4/5 (Venkatachalam and Montell, 2007). There
is still disagreement over the mechanism of action of TRPC;
TRPC has been reported to be involved in ion permeation as
receptor operated channel (ROC) or to influence intracellular
mechanisms of store-operated calcium entry (SOCE) (Vazquez
et al., 2004). Recently, as the TRPC channel has been found to
have regulation, structure, and novel small molecular probes,
research is being actively conducted on it as a therapeutic target
for various diseases (Wang et al., 2020).

TRPC1
In particular, there has been debate about the role or opening
mechanisms of TRPC1. Initially, TRPC1 was claimed to take
the role of a SOCE in regulating Orai1-mediated Ca2+ entry
(Ambudkar et al., 2017). Consistent with this claim, the role
of TRPC1 in AD has been reported by Linde et al. (2011).
Knock-down (KD) of the amyloid precursor protein (APP) gene
decreased store-operated Ca2+ channel-mediated Ca2+ entry
and expression of TRPC1 and Orai1 in cultured astrocytes.
However, overexpression of APP in TG5469 did not alter
TRPC1/4/5 and stored Ca2+ level in astrocytes. In SH-SY5Y
human neuroblastoma cells, TRPC1 has been reported to reduce
expression levels by MPP+ (Bollimuntha et al., 2006). Activation
of TRPC1 by TRPC1 overexpression or by ER depletion using
thapsigargin (TG) ameliorates neurotoxicity. Selvaraj et al.
(2009, 2012) showed that Ca2+ entry through the activation
of store-operated channels (SOC) is important for the survival
of dopaminergic neurons (Figure 2C). In the MPTP-induced
PD model, TRPC1 expression was suppressed and induced the
death of dopaminergic neurons in the substantia nigra. The
authors suggested that the cause was reduced interaction with
the SOCE modulator stromal interaction molecule 1 (STIM1)
and decreased Ca2+ entry into the cell. However, our recent
study showed that TRPC1 functions as a negative regulator of
TRPC4 and TRPC5 (Figure 2C; Kim et al., 2019). Heterodimers
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FIGURE 1 | Summary of TRP studies using knockout mice or antagonists to investigate therapeutic targets of neurodegenerative diseases. ND, neurodegenerative
diseases; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis.

of TRPC1/4 and TRPC1/5 suppressed inward current, which may
reduce Ca2+ influx and Ca2+-dependent apoptosis in neurons.
We identified that the expression level of endogenous TRPC1 in
striatal cells of the HD model was decreased compared to wild-
type cells, indicating that HD cells could be more susceptible to
oxidative stress due to the activity of the dominant homomeric
TRPC5 (Figure 2D; Hong et al., 2015).

TRPC3
The important roles of TRPC3 in the hippocampus have
been implicated in ND more than in other TRP channels
with higher expression levels (Neuner et al., 2015). TRPC3
notably contributes to the maintenance of Ca2+ homeostasis
and cell growth, such as differentiation and proliferation.
In a study conducted by Wu et al. (2004) it was reported

that switching proliferation to differentiation is related
to TRPC3-induced Ca2+ influx and TRPC3-mediated
SOCE in the H19-7 hippocampal cell line. Under cell
differentiation conditions, TRPC3 expression and TRPC3-
induced SOCE levels were increased. The differentiation
was blocked by siRNA KD of TRPC3. In addition, TRPC3
is indirectly activated by BDNF. In a study conducted
by Li et al. (1999) TRPC3 was activated by neurotrophin
receptor TrkB, which is affected by BDNF. A non-selective
cationic current was observed in CA1 pyramidal neurons
treated with BDNF, although the current was inhibited
by siRNA-mediated TRPC3 KD and TrkB-lgG (Amaral
and Pozzo-Miller, 2007). This study suggests that BDNF-
induced membrane current is due to stimulation of TRPC3 by
TrkB (Figure 2A).
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FIGURE 2 | Schematic of TRP channel-mediated mechanisms in neurodegenerative diseases. (A) Activation of TRPC3, TRPC6 and TRPV1 channel increase
neuronal survival in AD. (B) Neuronal loss can be induced by Aβ toxicity, ROS generation, and mitochondrial damage resulting from TRPM2 channel-mediated Ca2+

entry in AD. TRPA1 is also involved in neuroinflammation in AD. (C) Inhibition of TRPC4/5 by TRPC1 contribute to inhibition of apoptotic pathways and
TRPM7-mediated Mg2+ influx is involved in neuronal survival in PD. (D) Increased activity of TRPC5 by oxidative stress induces striatal neuronal loss via
Ca2+-dependent pathways in HD. (E) Activation of TRPV1 by an agonist improves HD symptoms. (F) Activation of TRPV4 and TRPA1 induces a proinflammatory
response in astrocytes (G) whereas upregulation of surface TRPC3 induced by BDNF regulates microglial functions and reduces inflammation. (H) Upregulation of
TRPC4 promotes neurite outgrowth and differentiation in DRG (GTEx Consortium, 2013).
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In a recent study by Mizoguchi et al. (2014) TRPC3 was found
to be involved in the function of microglia, such as the release of
cytokines and nitric oxide (NO). Treatment with BDNF rapidly
increased the surface expression levels of TRPC3 in rodent
microglial cells. In addition, pre-treatment with BDNF inhibited
the release NO-induced tumor necrosis factor α (TNFα),
which was rescued by treatment with TRPC3 inhibitor. This
report suggests that Ca2+ influx and concentration maintenance
by TRPC3 plays an important role in the improvement of
NDs (Figure 2G).

Another characteristic of TRPC3 related to neurodegeneration
is directly activated by oxidative stress. The change in Ca2+

influx by TRPC3 is associated with neuronal cell death (Selvaraj
et al., 2010). Treatment with tertiary butyl hydroperoxide (tBHP)
increased the Na+ current in HEK293T cells overexpressing
TRPC3. Further, Rosker et al. (2004) reported the increase of
Na+ influx by TRPC3-regulated Ca2+ influx in overexpressed
HE293T cells. When the Na+ concentration of extracellular
solution decreased to 5 mM, Ca2+ influx was increased by
TRPC3 agonist. In addition, treatment of the inhibitor of
the Na+/Ca2+ exchanger strongly inhibited Ca2+ influx but
Na+ did not. This suggests that Ca2+ influx by TRPC3
is accompanied by Na+/Ca2+ exchange. Pesticides, such as
rotenone and paraquat, are neurotoxins that induce PD by
increasing intracellular oxidative stress. Moreover, both of
these pesticides induce the loss of dopaminergic neurons in
the SNpc. In a recent study by Roedding et al., chronic
treatment of rotenone and paraquat dose-dependently reduced
expression levels of TRPC3 and TRPC3-mediated Ca2+ influx
in primary rat cortical neurons and astrocytes. In another
report, OAG-induced Ca2+ transients were inhibited in MPP+-
treated murine striatal astrocytes, and the same was observed
in HEK293 cells overexpressing TRPC3 (Streifel et al., 2014).
These studies suggest that an increased Na+ influx of TRPC3
due to oxidative stress may reduce Ca2+ influx and contribute
to the treatment of PD. Inhibition of TRPC3 was shown to
depolarize GABA neurons in the substantia nigra pars reticulate
(SNpr), which are associated with parkinsonism (Zhou et al.,
2008). In summary, AD symptoms are recovered by TRPC3
activation. In a previous study, BDNF protected neurons from
the neurotoxicity of Aβ and tau (Arancibia et al., 2008; Jiao
et al., 2016). TRPC3 activation may decrease Ca2+ concentration
due to a change in the influx ratio of Na+/Ca2+. Insufficient
Ca2+ concentration by TRPC3 activation may be involved in
BDNF-induced interference of Aβ plaque formation and tau
hyperphosphorylation (Figure 2A).

TRPC4 and TRPC5
TRPC4 and TRPC5, which share similar amino acid sequence
identity, have important roles in the neuron (Tables 1, 2),
in particular with respect to memory in the hippocampus.
TRPC5 regulates synaptic plasticity by changing the presynaptic
Ca2+ homeostasis of hippocampal neurons (Schwarz et al.,
2019). TRPC1/4/5 knockout (KO) mice show reduced action
potential-triggered excitatory postsynaptic currents (EPSCs) in
hippocampal neurons and deficits in spatial working memory
(Broker-Lai et al., 2017). However, comprehensive studies

of TRPC4 in ND are yet to be undertaken. Only axonal
regeneration is associated with TRPC4 expression in the
dorsal root ganglia (DRG) (Wu et al., 2008). Neuron growth
factor (NGF) and dibutyryl cAMP increase the expression
level of TRPC4 in DRG differentiation. Improvement of
TRPC4-siRNA reduces the length of neuritis. These results
suggest a role for TRPC4 in ALS (Figure 2H). TRPC5,
together with TRPC1, has high expression levels in the
SN and an important role in dopaminergic neurons (De
March et al., 2006). In rat PC12 cells, overexpression of
TRPC5 inhibited the neurite outgrowth induced by NGF,
and shRNA-mediated KD of TRPC5 enhanced outgrowth
(Kumar et al., 2014). TRPC5 has also been reported to
regulate neuronal growth cone morphology and nervous
system development. In the downstream processes involving
semaphorin 3A, growth cone collapse is induced through the
cleavage and activation of TRPC5, using calpain (Kaczmarek
et al., 2012). In neural progenitor cells, KD of TRPC5 using
siRNA reduced the elevation of SOCE and blocked the switch
between proliferation and neuronal differentiation (Shin et al.,
2010). TRPC5 activity also inhibited neural migration and neurite
extension (Tian et al., 2010). Similarly, in the striatum of both
YAC128 HD transgenic (Tg) mice and patients, we identified
that altered glutathione homeostasis, or increased oxidative
potential, resulted in Ca2+-dependent apoptosis of striatal
neurons, consistent with increased TRPC5 S-glutathionylation
and hyperactivation (Figure 2D). Thus, downregulation of
TRPC5 activity by siTRPC5 KD and ML204-specific blocker
improved the survival of striatal neurons and behavioral motor
symptoms (Hong et al., 2015). Furthermore, we recently
reported that TRPC5 instability induced by depalmitoylation
protects against neuronal death of HD striatal cells (Hong
et al., 2019). S-palmitoylation is a reversible covalent lipid
modification that promotes membrane trafficking and stability
by anchoring the palmitoylated protein to the membrane
(Greaves et al., 2009).

TRPC6
It is known that early onset dominant AD is caused by mutations
in the APP (Dahlgren et al., 2002) or presenilin 1 (PS1) genes
(Dillen and Annaert, 2006). APP is a precursor protein of Aβ,
and PS1 is a key enzyme family that cleaves APP in complex
with γ-secretase and cleavage of Notch. TRPC6 regulated the
mechanism of the PS gene to prevent the progression of
AD (Lu et al., 2017). Previous studies have reported that
tetrahydrohyperforin, an agonist of TRPC6, lowers Aβ levels
and ROS generation, also preventing learning and memory
deficits in the AD model. In the research of Dinamarca and
colleagues, tetrahydrohyperforin reduced amyloid deposition
in rats injected with amyloid fibrils into the hippocampus,
inhibited the neurotoxicity of amyloid fibrils and Aβ oligomers in
hippocampal neurons, and improved neuropathological behavior
in an amyloidosis rat model (Dinamarca et al., 2006). It
has also been shown that interaction between TRPC6 and
APP leads to inhibition of its cleavage by γ-secretase and a
reduction in Aβ production (Wang et al., 2015). The authors
also reported that expression of TRPC6 interferes with the
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TABLE 1 | Expression levels of TRP channels in human brain, as reported by the Human Protein Atlas.

0 0.1 1 10 <

pTPM

TRPA TRPC TRPM TRPV

Al C1 C2 C3 C4 C5 C6 C7 Ml M2 M3 M4 M5 M6 M7 M8 VI V2 V3 V4 V5 V6

Amygdala 0.0 5.5 0.1 0.8 0.6 0.1 0.5 0.0 0.1 4.5 3.1 3.3 0.0 0.7 2.0 0.0 5.4 2.0 2.8 0.1 0.2 0.7

Basal ganglia

Cerebellum 0.0 19.2 0.0 5.3 0.3 0.2 0.6 0.0 0.1 19.1 20.0 8.6 0.0 0.7 15.8 0.0 23.6 3.0 1.8 0.2 0.1 0.8

Cortex 0.0 8.2 0.0 1.4 0.5 0.3 0.7 0.0 0.1 16.7 3.3 6.2 0.0 0.7 3.3 0.0 6.9 5.6 3.6 0.2 0.2 4.9

Hippocampal formation 0.0 6.8 0.1 0.8 0.8 0.2 0.5 0.0 0.2 5.3 1.8 2.7 0.0 1.1 2.5 0.0 5.8 2.5 2.8 0.2 0.4 1.1

Hypothalamus 0.0 9.8 0.1 1.3 1.1 0.3 0.7 0.5 0.0 7.8 4.0 4.3 0.0 0.8 2.9 0.1 6.8 7.2 2 0.2 0.2 0.9

Mid brain (Substantia nigra) 0.0 7.0 0.1 1.1 0.6 0.1 0.7 0.0 0.5 5.9 4.9 4.3 0.0 1.6 2.8 0.0 6.8 4.1 2.7 0.2 0.5 2.4

Pituitary gland

Spinal cord 0.0 11.9 0.1 0.6 0.3 0.5 0.3 0.0 0.6 5.1 1.9 3.3 0.0 4.5 4.2 0.0 8.3 3.5 4.4 0.3 1.7 8.3

The table represents the expression levels of each TRP channel in nine regions of the human brain. For ease of understanding, we have used different cell colors depending
on the level of protein expression from a TPM value of zero (white) to a value greater than 10 (black). The data used for the analyses described in this manuscript were
obtained from the Human Protein Atlas1. We refer to the TPM calculation method of τi and νi, paragraph 1.1 in Li et al. (2010). pTPM values were rounded to two decimal
places (Uhlen et al., 2015).

TABLE 2 | Expression levels of TRP channels in the human brain, as reported by the GTEx project.

0 0.1 1 10 <

pTPM

TRPA TRPC TRPM TRPV

Al C1 C2 C3 C4 C5 C6 C7 Ml M2 M3 M4 M5 M6 M7 M8 VI V2 V3 V4 V5 V6

Amygdala 0.0 4.6 1.7 0.7 0.6 0.1 0.4 0.0 0.1 2.7 3.8 1.8 0.0 0.3 2.1 0.1 1.8 2.8 0.0 0.1 0.2 0.1

Basal ganglia 0.0 5.7 2.6 3.8 0.4 0.0 0.6 0.1 0.1 2.6 3.1 1.9 0.0 0.3 3.1 0.1 1.7 1.7 0.1 0.1 0.2 0.1

Cerebellum 0.0 17.2 9.8 5.1 0.3 0.2 0.5 0.0 0.0 9.8 20.1 4.5 0.0 0.4 15.0 0.0 3.0 2.5 0.0 0.2 0.1 0.2

Cortex 0.1 8.7 8.0 1.5 0.6 0.4 0.8 0.0 0.0 8.0 3.4 2.9 0.0 0.3 3.3 0.0 1.7 5.0 0.0 0.1 0.1 0.1

Hippocampal formation 0.0 5.8 2.4 0.7 0.9 0.1 0.5 0.0 0.2 2.4 3.2 1.8 0.0 0.5 2.6 0.0 1.8 2.5 0.0 0.2 0.4 0.3

Hypothalamus 0.0 8.2 3.6 1.2 1.2 0.4 0.7 0.2 0.0 3.6 5.0 2.6 0.0 0.4 3.0 0.1 2.4 7.7 0.0 0.1 0.3 0.3

Mid brain 0.0 5.7 2.9 1.0 0.5 0.1 0.9 0.0 0.5 2.9 5.0 2.5 0.0 0.7 2.8 0.0 2.7 4.9 0.0 0.1 0.6 0.9

Pituitary gland 0.0 14.6 0.8 10.8 0.3 0.0 0.3 0.0 0.0 0.8 4.2 6.5 0.4 0.3 8.3 0.8 2.3 2.4 0.0 3.2 0.0 0.7

Spinal cord 0.0 8.7 3.2 0.5 0.3 0.0 0.2 0.5 0.7 3.2 3.3 2.9 0.0 1.8 4.4 0.0 1.7 4.5 0.2 0.3 1.5 2.9

The table represents the expression levels of each TRP channel in seven regions of the human brain. For a better understanding, we have used different cell colors
depending on the level of expression from a TPM value of zero (white) to a value greater than 10 (black). The Genotype-Tissue Expression (GTEx) Project was supported
by the Common Fund of the Office of the Director of the National Institutes of Health and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses
described in this manuscript were obtained from the GTEx Portal on 12/08/2019. We refer to the TPM calculation method of τi and νi, paragraph 1.1 in Li et al. (2010).
pTPM values were rounded to two decimal places.

interaction of APP (C99) with PS1 but does not interact with
Notch. Crossing TRPC6 Tg mice and APP/PS1 model mice
reduced plaque load and Aβ levels and improved cognition
(Figure 2A). Lessard et al. (2005) reported the effect of PS2
on TRPC6-mediated Ca2+ entry. In this study, PS2 inhibited
the influx of Ca2+ from TRPC6. Induction of Ca2+ was higher
when FAD-linked PS2, a dominant negative form, was co-
expressed with TRPC6 than with wild-type (WT) PS2 and TRPC6
(Figure 2A). However, TRPC6 was still activated by 1-oleoyl-
2-acetyl-sn-glycerol (OAG), suggesting that it does not impair
channel function1.

1http://www.proteinatlas.org

TRPM (Melastatin)
The TRPM subfamily has the highest expression level in the
brain amongst the TRP channels, and there are many reports in
relation to ND. One of the most distinctive features of TRPM ion
channels is the high permeability to Ca2+ and Mg2+ (Hashimoto
and Kambe, 2015). The important role of Mg2+ signaling in
neuroprotection and neurodevelopment has been reported on
(Lingam and Robertson, 2018). Thus, studies of TRPM in ND
relate pathogenesis to Mg2+ signaling.

TRPM2
TRPM2 is an ion channel that is abundantly expressed in the
brain (Tables 1, 2). TRPM2 has been reported to be activated
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by a wide range of factors, such as oxidative stress, NAD+-
related metabolites, and ADP-ribose (Huang et al., 2018). In the
study of Belrose et al. (2012) depletion of glutathione (GSH) was
reported to be a factor in activating TRPM2. In hippocampal
neurons, an increase in ROS due to GSH depletion activated
TRPM2, and an increase in TRPM2-dependent Ca2+ influx
induced neuronal apoptosis (Ovey and Naziroglu, 2015). In the
study of Fonfria et al. (2005) an increase in intracellular Ca2+ and
Aβ induced by TRPM2 activity induced neuronal cell death in
rat striatal. Treatment with TRPM2 blocker or SB-750139, which
inhibits the production of ADP-ribose, inhibited intracellular
Ca2+ concentration and cell death via H2O2 and Aβ. In the study
of Ostapchenko et al. (2015) an aged APP/PS1 AD mouse model
showed increased ER stress and decreased presynaptic markers
(Figure 2B). However, elimination of TRPM2 in APP/PS1 mice
improved abnormal response regardless of plaque burden. Age-
dependent spatial memory deficits were observed in APP/PS1
mice (Ostapchenko et al., 2015). However, the absence of TRPM2
in these mice attenuated synapse loss and spatial memory. In
summary, GSH deficiency and ROS induction activate TRPM2,
and Ca2+ influx by TRPM2 contributes to the neuronal toxicity
of Aβ. TRPM2 may be an important therapeutic target for AD.
In the study of PD, Ca2+ influx through the TRPM2 channel
was induced by ROS and promoted the death of dopaminergic
neurons in the SN (Sun et al., 2018). A variant of TRPM2
(P1018L) was found in a Guamanian ALS/PD patient. P1018L
attenuates oxidative stress-induced Ca2+ influx through TRPM2
(Hermosura et al., 2008).

TRPM7
TRPM7 has the Mg2+ permeability to maintain the homeostasis
of Mg2+. In HEK293 cells overexpressing TRPM7, H2O2
increased Ca2+ concentration and TRPM7 current (Nadler
et al., 2001). In mouse cortical neurons, TRPM7-siRNA KD and
treatment with TRPM7 inhibitors protected against neuronal
cell damage (Coombes et al., 2011). In contrast, TRPM7-
overexpressing HEK293 cells aggravated cell damage from H2O2,
which was independent of the voltage-gated Ca2+ channel.
Interestingly, in the study of Aarts et al. (2003) blocking of
Ca2+-permeable non-selective cation conductance or KD
of TRPM7 inhibited TRPM7 currents, anoxic Ca2+ uptake,
ROS production, and anoxic death in cortical neurons. Mg2+

permeability of TRPM7 is implicated in PD (Figure 2C).
Continuous administration of Mg2+ significantly inhibited the
neurotoxicity of MPP+, reduced the death of dopaminergic
neurons, and improved the length of dopaminergic neurites
(Hashimoto et al., 2008). In a recent zebrafish study, TRPM7
mutation suppressed dopamine-dependent developmental
transitions and increased sensitivity to the neurotoxicity of
MPP+ (Decker et al., 2014), and expression of the channel-dead
variant of TRPM7 in SH-SY5Y cells increased cell death. These
studies suggest that the role of Mg2+ influx and TRPM7 in
dopaminergic neurons is important and could be a therapeutic
target for PD. A variant of TRPM7 (T1482I) was also found
in Guamanian ALS/PD cases. Incidentally, mutant G93A-
superoxide dismutase (SOD1) mice are used as an ALS model
(Guo et al., 2009).

TRPV (Vanilloid)
The TRPV subfamily has been reported to have the highest
number of sensory functions, such as nociception, mechano-
sensing, osmolarity-sensing, and thermo-sensing. Usually, TRPV
is expressed in peripheral sensory nerves, although pathological
studies have also reported expression in the brain. The
various antagonists of TRPV4 could protect damaged neurons
and inhibit the production of ROS (Suresh et al., 2018;
Wu et al., 2019).

TRPV1
TRPV1 is expressed not only in the plasma membrane but also
in the ER and calcium storage vesicles (Marshall et al., 2003).
TRPV1 is phosphorylated to enable translocation from the ER to
the plasma membrane. TrkA activity due to NGF increases the
surface expression level of TRPV1 located in the ER through PKC
phosphorylation (Zhang et al., 2005). An increase in intracellular
calcium levels due to TRPV1 activity may aggravate neuronal
cell death. In microglia cells, TRPV1 activity by agonists such
as capsaicin (CAP) and resiniferatoxin (RTX) induce apoptosis
(Kim et al., 2006). Dopamine release is dependent on the
mechanosensitive TRPV1 channels activated by cannabinoid
receptor stimulation in dopaminergic neurons (Oakes et al.,
2019). Capsaicin, a TRPV1 agonist, induces the death of
mesencephalic dopaminergic neurons through the activation of
TRPV1 and CB1 receptors. Activation of TRPV1 increases the
release of the mitochondrial cytochrome C and caspase3 cleavage.
Cell damage is attenuated by an intracellular Ca2+-chelator. In
a recent study, the activity of TRPV1 was reported to decrease
Aβ-induced cytotoxicity (Balleza-Tapia et al., 2018). Treatment
with a TRPV1 agonist rescued Aβ-induced degradation of
hippocampal neuron function (Figure 2A). In addition, it is
suggested that TRPV1 contributes to the movement of patients
with HD (Figure 2E). In the 3-nitropropionic acid-induced
HD model, hyperkinesia was attenuated by administering
AM404, an endocannabinoid reuptake inhibitor (Lastres-Becker
et al., 2003). This phenomenon is reversed by the TRPV1
antagonist capsazepine, suggesting that TRPV1 activity may
facilitate the movement of HD patients. Depending on the
pathological mechanism, the role of TRPV1 activity can be
distinguished accordingly and can be an important drug
development target of NDs.

TRPV4
The activity of TRPV4 causes neuronal injury in pathological
conditions. In many types of cells, TRPV4 activity increases the
production of ROS and NO (Hong et al., 2016). GSK1016790A,
an agonist of TRPV4, increased the concentration and NO in
the hippocampus. TRPV4 agonist-induced neuronal cell death
in hippocampal CA1 was inhibited by treatment with ROS
scavengers such as Trolox or ARL-17477. In a recent report,
TRPV4 enhanced neuronal inflammatory responses and pro-
inflammatory cytokine release (Figure 2F; Wang et al., 2019).
GSK1016790A-injected mice also showed increased levels of
the pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 and
showed TRPV4-mediated microglial and astrocyte activation.
Although direct evidence linking TRPV4 to NDs has not
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been reported, these results suggest a clear association between
neuronal cell death and ROS.

TRPA
The TRP ankyrin 1 (TRPA1) channel is a non-selective
transmembrane cation channel with multiple ankyrin repeats at
its N-terminal. TRPA1 is mainly expressed in primary sensory
neurons and non-neuronal cells (Jo et al., 2013). According
to RNA-seq ALTAS data (Tables 1, 2), the expression level of
TRPA1 in the brain is low, but various functions have been
reported in recent studies. Reported TRPA1 functions are mainly
the detection of pain, cold temperature, and cannabinoids, in
addition to noxious compounds that elicit pain and neurogenic
inflammation (Paulsen et al., 2015).

TRPA1
Until now, the role of TRPA1 in neurons has only been reported
on with respect to pain and inflammation, although recent studies
have revealed a potential involvement in AD pathogenesis.
Deposition of Aβ is an important factor in the exacerbation
of AD, and soluble Aβ oligomers mediate fast and widespread
Ca2+ influx in astrocytes (Bosson et al., 2017). TRPA1 was first

identified in mouse hippocampal astrocytes and associated with
Aβ-mediated Ca2+ signaling (Figure 2F; Lee et al., 2016). The
cause of Aβ oligomer-mediated fast Ca2+ signaling appears to
be the hyperactivation of TRPA1 (Bosson et al., 2017). TRPA1-
induced Ca2+ signaling initiates the release of inflammatory
factors such as PP2B, NF-κB, and NFAT (Figure 2F). APP/PS1 Tg
mice, an AD mouse model, have increased expression of TRPA1
in hippocampal astrocytes. Loss of function of TRPA1 channels
improves spatial learning, memory and cognition, and decreases
Aβ deposition in APP/PS1 Tg mouse also (Lee et al., 2016).
In summary, TRPA1-induced Ca2+ influx in astrocytes may be
evidence of the critical role of Aβ in inflammatory processes and
AD progression. Drug development focused on TRPA1 could be
a novel target for treating dysfunction in AD.

TRP CHANNELS: NOVEL THERAPEUTIC
CANDIDATE FOR
NEURODEGENERATIVE DISEASE

Various causes of NDs have been reported recently. However,
most of the brain lesions in ND present alongside several

TABLE 3 | Disease-related functions of TRP channels.

Disease Region Channel Mechanism of related disease References

NDs Microglia TRPC C3 Inhibit to release cytokines and NO Mizoguchi et al., 2014

Neuronal progenitor C5 Reduce elevation of SOCE
Regulate the switching between proliferation and differentiation

Shin et al., 2010

Hippocampus TRPM M2 Activate due to ROS and increase Ca2+-mediated cell death Ovey and Naziroglu, 2015

Cortical M7 Aggravate cell damage by increase Ca2+ induced oxidative stress Coombes et al., 2011

Microglia TRPV V1 Increase neuronal cell death by agonist, such as cannabinoid,
Capsaicin

Kim et al., 2005

Microglia Astrocyte V4 Enhance neuronal inflammatory responses Inhibit pro-inflammatory
cytokine release

Wang et al., 2019

Hippocampus TRPC C3 Regulate to switch between proliferation and differentiation
Change influx ratio of Na+/Ca2+ when activate by oxidative stress

Wu et al., 2004; Rosker et al.,
2004

C5 Regulate neuronal growth cone morphology and nervous system
development

Kumar et al., 2014; Kaczmarek
et al., 2012

C6 Inhibit function of y-secretase and reduced Aβ level by PS1
PS2 regulate TRPC6-mediated Ca2+ entry Interaction between
TRPC6 and APP inhibit PS1 process

Lu et al., 2017; Lessard et al.,
2005; Wang et al., 2015

AD Hippocampus Striatum TRPM M2 Increase Aβ-mediated and Ca2+-mediated cell death
Damage to neuronal cell in APP/PS mice

Fonfria et al., 2005
Ostapchenko et al., 2015

Hippocampus TRPV V1 Decrease Aβ-induced cytotoxicity and apoptosis Balleza-Tapia et al., 2018

V4 Aggravate neuronal cell death from oxidative stress Hong et al., 2016

TRPA A1 Exacerbate spatial learning, memory and cognition
Increase Aβ deposition and release inflammatory factors

Lee et al., 2016

PD Substantia nigra TRPC C1 Decrease neurotoxicity and unfolded protein response
Regulate SOCE and increase survival of dopaminergic neuron

Bollimuntha et al., 2006
Selvaraj et al., 2009, 2012

Dopaminergic neuron TRPM M7 Reduce neurons death and activate growth the length of DA
neurites

Hashimoto et al., 2008; Oakes
et al., 2019

HD Striatum TRPC C1 Inhibit neuronal cell death by reducing TRPC5 activity Hong et al., 2015

C5 Increase neuronal apoptosis by activation induced oxidative stress Hong et al., 2015

Basal ganglia TRPV V1 Improve the movement of HD patient models Lastres-Becker et al., 2003

ALS DRG TRPC C4 Activate growth of neurite length and regulation of differentiation Wu et al., 2008

ND, neurodegenerative diseases; AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis; SOCE, store-operated
calcium entry; PS, presenilin1; ROS, reactive oxygen species; Aβ, amyloid-beta; DA, dopamine; DRG, dorsal root ganglia.

Frontiers in Physiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 23857

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00238 April 13, 2020 Time: 18:47 # 10

Hong et al. Therapeutic Potential of TRP Channels in NDs

pathological environments, such as the presence of ROS,
impaired antioxidant systems, and disrupted Ca2+ homeostasis
(Di Meo et al., 2016). In consideration of the results discussed
above, the regulation of TRP channels plays a key role in the
Ca2+-dependent neuronal death in NDs. The involvement of
TRP channels in NDs is summarized in Figure 1. To investigate
the role of TRP channels in NDs, TRP channel antagonists and
TRP-KO mice have been generated and utilized. TRP KO mice
exhibit behavioral and neurological phenotypes.

TRPC3 is required for slow excitatory postsynaptic potential
in cerebellar Purkinje cell synapses, and consequently, severe
ataxic phenotypes have been shown in TRPC3 KO mice. In
contrast to TRPC1/4 double-KO or TRPC1/4/6 triple-KO mice,
TRPC3 KO mice show movement deficits of the hind-paws
(Hartmann et al., 2008). In addition, TRPC4 plays a role in
fear and anxiety-related behaviors. TRPC4 KO mice show innate
fear responses in elevated plus maze and open-field tests. These
fear responses result from mGluR-mediated EPSC in the lateral
nucleus of the amygdala neurons (Riccio et al., 2014). TRPC5
also plays an essential role in fear-related behavior. In addition,
disruption of burst firing in the potent muscarinic antagonist
pilocarpine-induced seizure in TRPC5 KO mice was reduced.
Seizure-induced neuronal loss in the hippocampal region was
also reduced in TRPC5 KO mice (Phelan et al., 2013). TRPM2
KO mice exhibited disturbed EEG rhythms and bipolar disease-
related behavior, including impairment of social behavior and
increased anxiety (Jang et al., 2015). TRPM7 KO mice exhibited
clasping, tremors, and slow movement associated with Mg2+

deficiency (Ryazanova et al., 2010).
TRPC KO mice combined with ND models have also been

generated. In models of AD, TRPC6 modulates cleavage of APP
by gamma secretase and APP (C99) interaction with PS1 (Wang
et al., 2015). TRPC6 overexpression in APP/PS1 mice results in
a reduction of Aβ accumulation in the hippocampus (Table 3).
Therefore, TRPPC6 overexpression improves spatial learning and
memory in APP/PS1 mice. In addition, the expression of the
inflammatory factors TNF-α, IL-1β, COX-2, and IL-6 is regulated
by levels of TRPC6 via Aβ, and levels of TRPC6 are increased by
Aβ via NF-κB in BV-2 microglia cells (Lu et al., 2018). TRPM2
expression is involved in synapse loss, microglial activation, and
spatial memory deficits in APP/PS1 mice (Ostapchenko et al.,
2015). Activation of TRPV1 channels is required to trigger long-
term depression at interneuronal synapses (Gibson et al., 2008)
and prevents Aβ-involved impairment of functional networks in
the hippocampus (Balleza-Tapia et al., 2018). Astrocytic Ca2+

hyperactivity is induced by Aβ oligomers via TRPA1 in the
hippocampus. Moreover, astrocyte hyper-excitability is replaced
by CA1 neuronal activity in APP/PS1 mice (Lee et al., 2016).
Moreover, TRPA1 regulates astrocyte-derived inflammation in
APP/PS1 mice. TRP channel antagonists regulate the production
of ROS, APP processing, and Aβ accumulation. The TRPV4
antagonist HC-067047 attenuates the H2O2-induced Ca2+ influx
(Suresh et al., 2015). Aβ-mediated cell damage was attenuated by
treatment with TRPV4 blockers ruthenium red and gadolinium
chloride (Bai and Lipski, 2014).

TRPC1, TRPC3, TRPM2, TRPM7, and TRPV1 have been
shown to be involved in PD. TRPC1 activation reduces

dopaminergic neuronal death (Selvaraj et al., 2009). TRPC3-
mediated Ca2+ influx contributes to the survival of neurons
in the SN (Zhou et al., 2008). Additionally, MPP+-induced
oxidative stress increases intracellular Ca2+ via TRPM2
activation (Sun et al., 2018). TRPM7 channels regulate
magnesium homeostasis in cells, and the presence of Mg
ameliorates MPP+ toxicity (Hashimoto et al., 2008; Paravicini
et al., 2012). Ca2+ influx via TRPV1 in dopaminergic neurons
mediates mitochondrial dysfunction, microglial activation,
ROS generation, and cell death (Kim et al., 2005; Nam et al.,
2015). TRPV1 or TRPN-like channel-dependent dopamine
release is mediated by CB1 stimulation (Table 3; Oakes et al.,
2019). In addition, regulation of TRPV1 activity is closely
related to the survival of dopaminergic neurons. TRPM2 is
controlled by oxidative stress (Belrose et al., 2012; Huang
et al., 2018). Therefore, the regulation of TRP channels
contributes to overcoming dopamine depletion and the loss
of dopaminergic neurons in PD patients. Likewise, oxidizing
modulation of posttranslational modification (glutathionylation)
of TRPC5 leads to apoptosis in an HD model (Figure 2D;
Hong et al., 2015). Attenuation of TRPC5 activity by KD,
blocker, or depalmitoylation shows therapeutic effects against
oxidative stress by lowering TRPC5 toxicity (Hong et al., 2019).
Additionally, regulation of TRPML1, TRPM2, and TRPM7
activity might also be a therapeutic strategy for ALS (Hermosura
and Garruto, 2007; Hermosura et al., 2008; Tedeschi et al., 2019).
The TRPV1 antagonist capsazepine has antihyperkinetic effects
in a model of HD (Lastres-Becker et al., 2003).

As previously reported, TRP channels can be assembled as
homo- or heteromeric complexes in nature. However, individual
TRP channel KO models that lack phenotypes are limited in their
ability to determine the cause of the functional compensation
of each TRP channel. Moreover, in vivo studies regarding
chronological changes in TRP channel expression patterns in the
brain are needed for NDs. The regulation of TRP channels can be
a novel therapeutic target for NDs. Nevertheless, a limitation to
the development of TRP channel-specific antagonists is that their
structures remain unknown. Therefore, structural analyses must
precede pathological and clinical studies.

CONCLUSION

Transient receptor potential channels may not be the only, or
main, pathogenic factors contributing to the pathogenesis of ND.
Research in the field of ND is challenging; it is necessary to either
conclusively prove a relationship between pathogenic factors or
identify new therapeutic targets. In achieving one of these two
possibilities, it is important not to underestimate the potential
of TRP channels, based on the physiological and pathological
functions of TRP channels discovered so far. Through the
interrelationship between disruption of Ca2+ homeostasis and
the development of NDs, lowering the activity of TRP channels
is sufficient to enable expectations for new therapeutic strategies.
As we have discussed, increased TRP channel activity has
been widely observed in NDs, and model studies have shown
that abnormal function due to upregulation of TRP channels
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can be controlled by drug treatments. Since many drugs have
been reported to be TRP channel inhibitors, understanding
binding modes will provide deep insight for pharmacological
application in NDs. However, direct evidence for drug binding
to TRP channels is unavailable. To address this issue, the most
effective approach for understanding drug binding would be a
structural study.

POSSIBILITIES OF DRUG-BOUND
STRUCTURE

For several decades, the detailed structures and topologies of TRP
channels were not understood, although the first high-resolution
structure of TRPV1 was recently resolved by a single particle
cryo-EM (Liao et al., 2013). Since TRPV1 was the first membrane
protein to be characterized from single particle cryo-EM and
the biochemical methods were relatively similar for other family
members, most follow-up studies concentrated on TRP channel
structure. However, though high-resolution structures have been
resolved for most ND-related TRP channels, the structures of
the drug-bound forms are mostly unknown. Here we discuss the
technical possibilities for determining the drug-bound structure
of the TRP channel family.

For analysis of drug-channel binding, which would improve
our understanding of the inhibition mechanisms and would
provide clues for developing drug design, the determination of
the high-resolution structure is absolutely necessary. In the TRP
family, the resolutions of most ND-related TRP structures are
above 3.5 Å, with a few exceptions such as TRPC6, TRPA1, and
TRPV4 (3.8, 4.24, and 3.8 Å, respectively) (Paulsen et al., 2015;
Deng et al., 2018; Tang et al., 2018). TRPC5 broke the 3 Å barrier
(Duan et al., 2019), and TRPM2 also came close to hitting the
barrier (3.07 Å) (Zhang et al., 2018). The structures of other

members of the TRP family that are associated with NDs, such
as TRPC3, TRPC4, TRPM7, and TRPV1, were determined at
∼3.3 Å (Liao et al., 2013; Duan et al., 2018; Fan et al., 2018;
Liu et al., 2018). Therefore, there is still room for improvement
in their resolutions, possibly by biochemical techniques such as
nanodisc reconstruction. The resolution of the drug-bound form
does not always guarantee higher resolution than that of the apo
structure, but generally, the occupation of an inhibitor in the
binding cavity facilitates conformational stabilization, resulting
in higher resolution. Therefore, since there is optimism regarding
drug-binding studies, we suggest that ongoing attention and
efforts be focused on this area of therapeutic target research.
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Neuronal function and their survival depend on the activation of ion channels. Loss
of ion channel function is known to induce neurodegenerative diseases such as
Parkinson’s that exhibit loss of dopaminergic neurons; however, mechanisms that
could limit neuronal loss are not yet fully identified. Our data suggest that neurotoxin-
mediated loss of neuroblastoma SH-SY5Y cells is inhibited by the addition of β-
adrenergic receptor (β-AR) agonist isoproterenol. The addition of isoproterenol to
SHSY-5Y cells showed increased Mg2+ influx and cell survival in the presence of
neurotoxin especially at higher concentration of isoproterenol. Importantly, isoproterenol
potentiated transient receptor potential melastatin-7 (TRPM7) channel activation that
leads to an increase in intracellular Mg2+ levels. The addition of 2APB, which is
a known TRPM7 channel blocker, significantly decreased the TRPM7 function and
inhibited isoproterenol-mediated protection against neurotoxins. Moreover, neurotoxins
inhibited TRPM7 expression and function, but the restoration of TRPM7 expression
increased neuroblastoma cell survival. In contrast, TRPM7 silencing increased cell
loss, decreased Mg2+ homeostasis, and inhibited mitochondrial function. Moreover,
isoproterenol treatment prevented neurotoxin-mediated loss of TRPM7 expression and
inhibited Bax expression that induces cell survival. These effects were dependent on
the neurotoxin-induced increase in oxidative stress, which inhibits TRPM7 expression
and function. Together, our results suggest a positive role for β-AR in activating TRPM7
channels that regulate Mg2+ homeostasis and are essential for the survival of SH-SY5Y
cells from neurotoxin.

Keywords: Mg2+ influx, TRPM7 activation, β-AR, cell survival, apoptosis, neurodegeneration

INTRODUCTION

Parkinson’s disease (PD) is an age-related movement disorder that is mainly due to selective
degeneration of nigrostriatal dopaminergic (DA) neurons (Venderova and Park, 2012). The major
clinical symptoms observed in PD are rigidity, bradykinesia, and resting tremor, which are
caused by the deficiency in neurotransmitter dopamine-mediated signaling (Javitch et al., 1985;
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Venderova and Park, 2012). Additionally, non-motor symptoms
are also present in these patients, including cognitive and
autonomic functions, olfactory, sleep, mood disorders, and gut
physiology, which may not be directly due to the loss of other
neurons (Chen et al., 2019). Although several mutations have
been identified, majority of them (90%) of these PD cases
identified, are idiopathic or sporadic in nature, and only a small
percentage of patients exhibit genetic mutations, suggesting that
exogenous factors makes these DA neurons vulnerable (Surmeier
et al., 2017). Environmental factors such as neurotoxins have
been one of the major inducers of PD, thus toxin-induced animal
models have been crucial in elucidating the pathophysiology
of PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
is an exogenous neurotoxin that induces Parkinson’s like
symptoms in humans, monkeys, and other small animals.
MPTP is metabolized by monoamine oxidase type B (MAO-
B) that is present in microglia/astrocytes cells, into 1-methyl-
4-phenyl-pyridinium ion (MPP+), which selectively destroys
the nigrostriatal DA neurons (Javitch et al., 1985). Although
protection against neurotoxins-mediated loss of DA neurons has
been a major focus in preventing PD, the exact mechanisms
involved in DA neuronal loss are not known. Recent studies
have shown that imbalance in divalent cations that could lead
to ER/oxidative stress and/or mitochondrial dysfunction could
contribute to PD (Tatton and Olanow, 1999; Dawson and
Dawson, 2003; Selvaraj et al., 2012; Sukumaran et al., 2018).
Moreover, divalent cations such as calcium (Ca2+) or magnesium
(Mg2+), which modulates cellular processes such as cell
proliferation, mitochondrial function and energy metabolism,
gene regulation, and synthesis of biomacromolecules (Selvaraj
et al., 2012) has gained much attention as this could be a possible
target for understanding PD.

Lower Mg2+ concentrations have been observed in the
brain samples of PD patients as compared with non-PD
subjects (Uitti et al., 1989; Bocca et al., 2006). Importantly,
these decreases in Mg2+ concentrations were present in the
substantia nigra region/mid brain region especially nucleus
accumbens and the caudate nucleus (Uitti et al., 1989; Bocca
et al., 2006). Furthermore, intracellular Mg2+ concentrations
showed a significant correlation with the severity of PD and the
extend of the disease phenotype observed (Uitti et al., 1989).
Consistent with these reports, mice that had decreased Mg2+

concentrations exhibited an increase in the loss of neurotoxin-
mediated cell death, especially in the DA neurons (Muroyama
et al., 2009). Similarly, animals treated with another neurotoxin,
6-hydroxydopamine also exhibited decreased intracellular Mg2+

concentrations when compared with control mock-treated mice
(Sturgeon et al., 2016). Although the channels that modulate
Mg2+ influx are not well identified, Transient receptor potential
Melastatin 6 and 7 (TRPM 6 and 7) channels are the main
channels that modulate intracellular Mg2+ levels in various
cells. Interestingly, TRPM7 has been observed to be mutated
in Guamanian ALS/PD patients (Hermosura et al., 2005) and
TRPM7 expression is observed to be blunted in PD patients
along with a similar decrease in neurotoxin models of PD
(Sun et al., 2015). Similarly, TRPM7 mutants in zebrafish have
decreased DA neurons (Decker et al., 2014), suggesting that

changes in the Mg2+ influx could induce neurodegeneration.
Consistent with this observation, decreased Mg2+ intake induced
DA neuron loss, whereas Mg2+ supplementation prevented
neurotoxin-mediated decrease in DA neurons (Oyanagi and
Hashimoto, 2011; Sun et al., 2019). These results suggest
that TRPM7-mediated regulation of intracellular Mg2+ could
promote neuronal survival, however, its regulation, specifically
TRPM7 activation in DA cells is not fully identified.

Increased intracellular levels of cAMP have also been shown
to increase DA neurons survival and protect them from MPP+-
mediated degeneration (Scarpace et al., 1991; Hartikka et al.,
1992). Importantly, β-adrenergic receptors (β1-, β2-, and β3-
AR subtypes) mediate the action of catecholamines via the
classical adenylyl cyclase/cAMP/protein kinase A (PKA) cascade
to modulate important biological responses (Hishida et al., 1992).
Previous studies utilizing small groups of PD patients have
demonstrated that co-administration of salbutamol (a β2-AR
agonist) with levodopa helps reduce parkinsonian symptoms
(Alexander et al., 1994; Uc et al., 2003). Furthermore, longitudinal
analyses of PD incidents in Norway demonstrated that the use of
salbutamol is associated with a decreased risk of developing PD
while treatment with β-AR antagonist (beta-blocker) propranolol
increased the risk of suffering from PD (Mittal et al., 2017).
Similarly, β2-AR agonist clenbuterol reduced the levels of α-
synuclein protein and protected against neurotoxin-induced
degeneration of dopaminergic neurons (Mittal et al., 2017).
Importantly, TRPM7 has been shown to be activated by β-
AR in non-excitable cells, however, is similar mechanisms are
observed in DA neurons is not yet defined. Thus, the purpose
of this study was to establish if TRPM7 activation via β2-
AR agonist modulates neuronal survival. Our data suggest
that β-AR agonist protects against neurotoxin-mediated loss of
neuroblastoma cells, which was mediated through TRPM7. β-
AR agonist potentiated TRPM7 function and maintained Mg2+

homeostasis that is essential for the survival of neurotoxin-
induced loss of neuroblastoma SH-SY5Y cells. Furthermore,
knockdown of TRPM7 abolished the protective effect of β-AR
agonist, whereas TRPM7 overexpression increased intracellular
Mg2+ levels and prevented MPP+-induced cellular death. These
results suggest that β-AR-mediated activation of TRPM7 could
be essential in the survival of neurons especially in neurotoxin-
induced degeneration.

MATERIALS AND METHODS

Cell Culture and Chemicals
Neuroblastoma cells (SH-SY5Y) were previously obtained
from the American Type Culture Collection (Manassas,
VA, United States), which were cultured as suggested and
differentiated into dopaminergic like cells using retinoic acid
(10 µM) for 7 days as previously described (Bollimuntha et al.,
2005) prior to be used for all the experiments. The chemicals used
were: 1-Methyl-4-phenylpyridinium, 2-Aminoethoxydiphenyl
borate, Isoproterenol (+)-bitartrate salt which were purchased
from Sigma-Aldrich. ISO was freshly prepared and dissolved in
PBS and used for the experiments.

Frontiers in Physiology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 30565

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00305 April 22, 2020 Time: 19:22 # 3

Sun et al. β-AR Stimulation Modulates Cell Survival

Transient Transfections and Cell Viability
Assays
For the silencing of TRPM7 expression, shRNA plasmids that
specifically targets the coding sequence of human TRPM7 was
obtained from Origene (Rockville, MD, United States). All
transfections were transient and differentiated SH-SY5Y cells
were used for all experiments using lipofectamine as previously
described (Sun et al., 2018). For TRPM7 overexpression, full
length HA-TRPM7 plasmids was used to transiently overexpress
TRPM7 in these cells. Briefly, 5 µg of the plasmid DNA was used
to transform differentiated SH-SY5Y cells using Lipofectamine in
the Opti-MEM medium for 24 h as indicated. To measure cell
viability SH-SY5Y cells were trypsinized, counted, and seeded
equally on 96-well plates at a density of 0.5 × 105 cells/well.
The cultures were grown for 24 h with appropriate treatments as
labeled in the figure and cell viability under various conditions
was measured using the MTT regents as previously described
by us (Selvaraj et al., 2012). Cell viability was expressed as
a percentage of the control (untreated) when compared with
neurotoxin treatment. The methods described here are modified
from our previous publication (Sun et al., 2018).

Electrophysiology
For patch-clamp experiments, differentiated SH-SY5Y cells were
grown on glass coverslips and single coverslips were placed
in the recording chamber. The cells perfused with an external
Ringer’s solution that has the following composition (in mM):
NaCl, 145; CsCl, 5; MgCl2, 1; CaCl2, 1; Hepes, 10; Glucose, 10;
pH 7.3 (NaOH). Whole-cell currents were recorded using an
Axopatch 200B (Axon Instruments, Inc.) (Singh et al., 2000).
The patch pipette used for each experiment had a resistance
between 3 and 5 M�, which was measured after filling the
standard intracellular solution, which contained the following
(in mM): Cesium methanesulfonate, 150; NaCl, 8; Hepes, 10;
EDTA, 10; pH 7.2 (CsOH). After whole cell configuration was
established, the voltage ramp protocol was initiated that ranged
from −100 mV to +100 mV and 100 ms duration were delivered
at every 2 s intervals formed. Currents observed in each condition
were recorded at 2 kHz, digitized followed by analysis using the
pClamp 10.1 software that was used for data acquisition as well.
The data presented is from an average of 6–10 cells in each
condition. Basal leak currents were subtracted from the final
currents (when current reach the peak) and average currents
are shown. The methods used for this study are taken from our
previous publication (Sun et al., 2018).

Magnesium/Calcium Imaging
For Imaging experiments, differentiated cells that were grown
on glass bottom coverslips were incubated with 2 µM Mag-
Fura 2-AM (Invitrogen) for the measurement of intracellular
Mg2+ or with Fura-2 (Molecular Probes for 45 min) for the
measurement of intracellular Ca2+. After loading cells were
washed twice with SES (Standard External Solution that includes:
10 mM HEPES, 120 mM NaCl, 5.4 mM KCl, 1 mM MgCl2,
10 mM glucose, pH 7.4) buffer. For fluorescence measurements,
the fluorescence intensity of Fura-2 or Mag-FURA-loaded cells

was monitored with a CCD camera-based imaging system
linked with an Olympus XL70 inverted fluorescence microscope.
Fluorescence traces from individual cells imaged were obtained
and the data shown represent [Mg2+]i or Ca2+ values that are
average from at least 30–40 cells. Also, the data presented are
representative of at least 3–4 individual experiments performed
in duplicate. Mg2+ or Ca2+ concentrations in individual cells
were estimated by evaluating the 340/380 ratio as described
before in (Sun et al., 2018).

Western Blot Analysis
Cell lysates (differentiated SH-SY5Y cells) under different
conditions (as labeled in the figures) were obtained using NP40 or
0.5% SDS treatment for 15 min on ice followed by centrifugation
at 10,000 × g for 15 min at 4◦C. Protein concentrations from
all treatments as labeled in the figures were evaluated using
the Bradford reagent (Bio-Rad) and 25 µg of total lysates from
individual samples were resolved on NuPAGE 4–12% Bis-Tris
gels. Western blotting were performed using specific antibodies
(Singh et al., 2000; Selvaraj et al., 2009). The antibodies used
were the following monoclonal or polyclonal antibodies: anti-
TRPM7 (Abcam, MA; Cat# 109438; 213 kDa; Dilution in 1:500),
anti-Bcl2 (Cell Signaling, MA; Cat# 209039; Dilution used were
1:1000), anti-Bax (Cell Signaling, MA; Cat# 5023; Dilution used
was 1:1000), anti-β-Actin (Cell Signaling, MA; Cat# 4970, at
1:2000 dilution) and anti- β2-AR (Abcam, MA; Cat# ab36956;
Dilution used was 1:1000). The methods described here are taken
from our previous publication (Sun et al., 2018).

Mitochondrial Membrane Potential
Rhodamine 123 was used to measure the Mitochondrial
transmembrane potential as described in Selvaraj et al. (2009). To
quantify the membrane potential, fluorescence signals observed
in different conditions were measured (excitation wavelength
used was 488 nm and an emission wavelength used was
510 nm) using a fluorescence microplate reader (biotex) and
plotted as percentage.

Statistical Analysis
Origin 9.0 (Origin Lab) was used for all data analysis. Statistical
significance was established either using Student’s t-test or
one-way ANOVA (post hoc using Tukeys or Fisher test when
compared between more than 2 variables). All values indicated
in the figure are shown as means± SEM or± SD as stated in the
figure legends. p-value are also indicated and 0 < 0.05 or lower
were considered significant.

RESULTS

β-Adrenergic Receptor Agonist Protects
Against Neurotoxin-Dependent Loss
of Cells
Neurotoxins, such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) metabolite MPP+, induce a
loss of DA neurons in most vertebrate animals including
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sub-human primates lower animals that show Parkinson’s
disease (PD) like symptoms (Burns et al., 1983). We thus used
differentiated neuroblastoma SH-SY5Y cells that were treated
with MPP+ to examine the effect of this neurotoxin on its
survival. Consistent with our previous results (Sun et al., 2017),
addition of neurotoxin, MPP+ showed an increase in cell
death in differentiated SH-SY5Y cells (Figure 1A). Importantly,
pretreatment of SH-SY5Y cells with β-adrenergic receptor (β-
AR) agonist, isoproterenol showed a dose-dependent increase in
cell survival (Figure 1A). Interestingly, even low doses (20 µM)
of isoproterenol (ISO) showed a significant decrease in cell death
when compared with cells that were treated with MPP+ alone.
Furthermore, increase in the doses used for ISO treatment (more
than 40 µM) further increased cell survival, which was much
higher than control untreated cells in 100 µM of ISO treatment.
β-AR activation has been shown to mobilize intracellular
Ca2+ via the non-canonical cAMP-independent pathway
(Galaz-Montoya et al., 2017), thus we evaluated if isoproterenol
treatment induces Ca2+ entry. However, as shown in Figure 1B,
the addition of isoproterenol did not increase cytosolic

Ca2+ levels in these cells. In contrast, an increase in Mg2+

concentration was observed upon addition of isoproterenol,
which was significantly decreased upon the addition of 2APB
(Figures 1C,D). Together these results suggest that isoproterenol
stimulation modulates intracellular Mg2+ concentration that
could protect against neurotoxin-induced cell death.

Recent studies have shown that intracellular Mg2+

concentration is mediated through TRPM6/7 channels (Sun
et al., 2019). Whole-cell current recordings were used to further
establish the channel identity that is responsible for Mg2+

influx. In differentiated SH-SY5Y cells decrease in intracellular
Mg2+ generated a current, which was both inward and outward
rectifying and reversed around zero mV (Figures 2A–C).
The properties of the currents were similar as observed
with TRPM6/7 channels. 2APB has been previously used to
differentiate TRPM6/7 currents as addition of 2APB potentiates
TRPM6 function, but inhibits TRPM7 currents (Mishra et al.,
2009; Sun et al., 2019). Thus, to differentiate between these two
Mg2+ channels we further studied the effects of 2-APB that
further decreased these currents, suggesting that these currents

FIGURE 1 | Isoproterenol treatment induces survival of neuroblastoma cells: (A) Cell survival under conditions as labeled was performed using MTT assays on
control and MPP+ (500µM for 24 h) treated SH-SY5Y cells. The conditions used were control (mock treatment), ISO 20, 40, and 100 µM, which was added 15 min
prior to the addition of MPP+. Individual columns show the means ± SD of 5 separate experiments performed in triplicates (*p < 0.05, **p < 0.01; One-way ANOVA,
Tukey post hoc test). (B) Ca2+ imaging in Fura 2 loaded cells was performed by the application of ISO (100 µM) in normal SES (1 mM Ca2+, 1 mM Mg2+) solution
in SH-SY5Y cells. (C) Mg2+ imaging was performed using mag-Fura in normal SES (1 mM Ca2+, 1 mM Mg2+) solution using differentiated SH-SY5Y cells.
Application of ISO (100 µM) in the external solution induces Mg2+ influx and addition of 2APB (100 µM) inhibits Mg2+ influx in these cells. (D) Quantification
(mean ± SE) of intracellular Mg2+ concentrations are also included as bar graph.
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are mainly through TRPM7 channels (Figures 2A–C). Also,
the characteristics of the current observed was consistent with
TRPM7 channels, which have been previously reported (Sun
et al., 2013). Importantly, addition of isoproterenol further
increased TRPM7 currents at both positive and negative
membrane potentials, which was again inhibited by the addition
of 2APB (Figures 2D–F).

TRPM7 Expression and Function
Modulate Cell Survival in SH-SY5Y Cells
The data presented thus far suggest that isoproterenol
activates TRPM7 currents. Hence, we further investigated
this relationship, and cells overexpressing TRPM7 showed
increased TRPM7 protein levels, without altering the expression
of β-actin, which was used as a loading control (Figure 3A).
Furthermore, an increase in the TRPM7 currents was observed
in SH-SY5Y cells overexpressing TRPM7 (Figures 3A,B).
Importantly, overexpression of TRPM7 inhibited MPP+-
mediated cell death of neuroblastoma cells (Figure 3C).
Moreover, addition of low doses of isoproterenol (20 µM) in
TRPM7 overexpressing cells did not increase cell protection
any further (Figure 3C). In contrast, inhibition of TRPM7
currents using 2APB further increased MPP+-mediated cell
death even at low doses (20 µM) of isoproterenol, which was

again blocked in TRPM7 overexpressed cells (Figure 3C).
Similar results were obtained where MPP+-inhibited cell
survival of control untreated cells that do not overexpress
TRPM7 (Figure 3D). In contrast, ISO treatment (20 µM)
blunted the effects of MPP+; however, pretreatment with 2APB
inhibited ISO-mediated protection in control cells (Figure 3D).
Importantly, the addition of non-specific Ca2+ channel blocker
(SKF 96365) failed to block isoproterenol-mediated protection of
differentiated SH-SY5Y cells (Figure 3E). Furthermore, addition
of MPP+ decreased TRPM7 expression, whereas addition of
isoproterenol (even at lower doses, 20 µM) was able to prevent
MPP+-induced loss of TRPM7 (Figure 3F). We next evaluated
the expression of various proteins upon exposure of SH-SY5Y
cells to MPP+ in the absence or presence of isoproterenol.
Importantly, a significant decrease in DA neuron marker
[tyrosine hydroxylase (TH)] was observed upon addition of
MPP+, which was partially rescued upon prolonged treatment
with isoproterenol (Figure 3G). Consistent with TH expression,
MPP+-treatments also significantly increased expression of
Bax, which is a pro-apoptotic protein along with a subsequent
decrease in Bcl2, an anti-apoptotic protein, without any change
in actin levels (Figures 3G,H). Furthermore, treatments with
isoproterenol decreased the expression of Bax and increased
expression of Bcl2 (Figures 3G,H), suggesting that TRPM7
expression and function are modulated via isoproterenol,

FIGURE 2 | Isoproterenol-Induces TRPM7 activation in neuroblastoma cells: (A) Representative trace showing whole cell recording (outward currents) in control cells
and cells pretreated with 2APB (100 µM). The external solution used was normal SES solution that had 1 mM Ca2+ and Mg2+ respectively was used to obtain the
currents (outward/inward) at +100 mV/–100 mV in differentiated SH-SY5Y cells. (B) IV curves under these conditions (control and bath pre application of 100 µM
2APB) as labeled in the figure were obtained using peak currents. Quantitation of current density at ±100 mV is shown in (C). * Indicate significance (p < 0.05) and
** Indicate significance (p < 0.01). (D) Traces showing whole cell recording in control cells at ±100 mV were recorded followed by stimulation with ISO (bath
application of 20 µM ISO, with and without pretreatment of 100 µM 2APB) as labeled in the figure. IV curves shown are acquired when currents reach their peak in
each condition and are shown in (E) Quantitation of current density at ±100 mV is shown in (F). The columns show the means ± SD of 6 experiments.
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FIGURE 3 | Restoration of TRPM7 expression inhibits neurotoxin-induced loss of SH-SY5Y cells: IV curves in control and TRPM7 overexpressing cells were
measured and shown in (A). Western blots were also performed in these cells to look at TRPM7 expression under these conditions. Quantitation of current density at
+100 mV is demonstrated in (B). (C–E) MTT assays were performed to observe cell survival on TRPM7 overexpressed cells (C) and control cells (D,E) with and
without MPP+ (500 µM for 24 h) under various conditions as labeled (+ISO 20 µM, or +SKF 10 µM). The columns show the means ± SD of 5 individual experiments
performed in triplicates. (*p < 0.05; One-way ANOVA, Tukey post hoc test). Sample from differentiated SH-SY5Y [treated for 24 h with MPP+ 500 µM, with and
without ISO 20 µM (L) and 40 µM (H)] were resolved and protein expression was evaluated by western blotting, antibodies use is labeled in the figures (F).
Quantification of TRPM7 is shown as bar graph. (G) Also shows western blots under different conditions, antibodies used are labeled in the figure. (H) Shows
quantification where the columns represent mean ± SD of 3 independent experiments that were normalized by β-actin expression. (*p < 0.05; **p < 0.01; One way
ANOVA, Tukey post hoc test).

which is essential for the neurotoxin-induced survival of
neuroblastoma cells.

It is also possible that neurotoxin treatment could alter the
expression of β-AR subtype, which could contribute toward
cell death. Interestingly, neurotoxin treatment did not alter
the expression of β2-AR subtype (Figure 4A); whereas loss of
TRPM7 protein was observed in MPP+-treated neuroblastoma
cells (Figure 4B). These results strongly suggest that neurotoxin-
mediated loss of neuroblastoma SH-SY5Y cells are dependent
on TRPM7 expression. To further establish the role of TRPM7,
we transiently knocked down TRPM7 expression in these cells.
TRPM7 silencing decreased TRPM7 protein levels, its function,
and addition of neurotoxin in TRPM7 silenced SH-SY5Y cells
showed a further decrease in TRPM7 activity (Figure 4C).
Moreover, TRPM7 silencing, abolished the isoproterenol-
induced increase in intracellular Mg2+ (Figure 4D). Similarly,
the protective effect observed with isoproterenol was also
abolished as TRPM7 knockdown prevented cell survival
and inhibition of apoptosis by isoproterenol was inhibited
(Figure 4E). As mitochondrial membrane potential is critical
for cell survival, we used rhodamine 123 to elucidate the
role of TRPM7 activity in regulating neurotoxin-mediated loss
of mitochondrial membrane potential. As expected, MPP+
treatment resulted in a reduction of mitochondrial membrane

potential as compared with control untreated cells (Figure 4F).
Moreover, silencing of TRPM7 further decreased MPP+-
mediated mitochondrial membrane potential, which was not
restored even upon isoproterenol treatment (Figure 4F). These
results further show that isoproterenol-mediated protection is
dependent on TRPM7 expression and function.

Neurotoxin Treatment Induces Reactive
Oxygen Species That Modulates TRPM7
Expression and Function
Oxidative stress has also been suggested to be a cause for
the degeneration of dopaminergic neurons (Bollimuntha et al.,
2011). Thus, H2O2 generation in neurotoxin-treated cells was
evaluated. Addition of MPP+ showed a time dependent increase
in intracellular H2O2 generation (Figure 5A). To evaluate the
consequence of endogenous H2O2, we evaluated the expression
and function of TRPM7 channels. MPP+ treatment significantly
decreased TRPM7 protein level within 12 h of exogenous H2O2
treatment, without any noticeable change in the actin levels
(Figure 5B). Consistent with western blot data, exogenous H2O2
application in SH-SY5Y cells decreased TRPM7 activity, which
was reversed upon isoproterenol treatment (Figures 5C,D).
Consistent with TRPM7 activity, the cell death was also
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FIGURE 4 | Neurotoxin treatment inhibits TRPM7 expression/function: (A) Western blots showing the expression of β2-adrenergic receptor (A), TRPM7 (B). β-actin
was used as a loading control in CTRL and MPP+-treated (500 µM for 24 h) cells. (C) IV curve and quantitation of currents observed are shown from control, MPP+

treatment (500 µM, 24 h), and shTRPM7 cells. (D) The columns represent means ± SD of 6 independent experiments. (**p < 0.01, *p < 0.05; was established
using one-way ANOVA, Tukey post hoc test). MTT assays (E) and mitochondrial transmembrane potential (F) were evaluated under various conditions as labeled in
the figure. The concentration of ISO used was 20 µM and for MPP+ 500 µM was used for each experiment. The columns show the means ± SEM of 4 independent
experiments. (**p < 0.01, *p < 0.05).

significantly higher in H2O2 treated cells, which was further
reversed upon isoproterenol treatment (data not shown). These
findings implicate that H2O2 accumulation is observed upon
neurotoxin-treatment that decreases TRPM7 expression thereby
decreasing intracellular Mg2+ concentration essential for the
survival of neuroblastoma cells.

DISCUSSION

Neurotoxin treatment has been well used as a model for PD
and using this in vitro model we have here established the
significance of β−AR-mediated activation of TRPM7 in the
loss of neuroblastoma cells. We have previously shown that
Mg2+ homeostasis prevents neurotoxin-induced cell death (Sun
et al., 2019), however, the mechanisms for TRPM7 activation
are not known. Importantly, increasing Mg2+ concentration
has been shown to protect against neurotoxin-induced loss of
dopaminergic cells (Hashimoto et al., 2008; Muroyama et al.,
2009), suggesting that Mg2+ influx leads to the survival of
dopaminergic neurons. Mg2+ is a divalent cation that regulates
physiological processes such as mitochondrial function, ATP
modulation, and cell survival (Romani, 2011; Zhang et al., 2012).

The data presented here indicate that loss of Mg2+ homeostasis
(either by the addition of neurotoxin or by artificially
silencing TRPM7 expression) results in a loss of mitochondrial
membrane potential, which leads to apoptosis. Importantly,
loss of mitochondrial integrity facilitates the translocation of
Bax protein to the mitochondria activating the mitochondrial
transition pore that induces apoptosis-mediated cell death (Enari
et al., 1998). Apoptosis is the main mechanism that promotes
the loss of DA neurons (Selvaraj et al., 2009; Venderova and
Park, 2012). Consistent with these published studies, our results
using differentiated SH-SY5Y cells also showed that neurotoxin
treatment leads to alteration in protein expression that are
involved in apoptosis. Importantly, Bax, a pro-apoptotic protein,
was decreased upon the addition of isoproterenol; whereas,
Bcl2 (a member of anti-apoptotic proteins) expression was
sequestered upon neurotoxin treatment (but reversed upon the
addition of isoproterenol) that could initiate mitochondrial-
mediated cell death.

One of the important findings presented here was that
TRPM7 is the major ion channel that modulates Mg2+

homeostasis in neuroblastoma cells. Our results also show
that MPP+ or H2O2 treatments, which induces ROS,
significantly decrease TRPM7 protein levels. Although the

Frontiers in Physiology | www.frontiersin.org 7 April 2020 | Volume 11 | Article 30570

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00305 April 22, 2020 Time: 19:22 # 8

Sun et al. β-AR Stimulation Modulates Cell Survival

FIGURE 5 | Oxidative stress induced by neurotoxin treatment inhibits TRPM7 expression/function: (A) Relative H2O2 release was evaluated under various conditions
(MPP+-treated 500 µM) in SH-SY5Y cells. The columns show the means ± SEM of 4 experiments. (*p < 0.05, **p < 0.01; One-way ANOVA, Tukey post hoc test).
(B) Western blots showing the expression of TRPM7 and loading control β-actin in CTRL and H2O2-treated (1 mM) in SH-SY5Y cells. (C) IV curves of TRPM7
currents under conditions as labeled in the figure, which are quantitation as current density at ±100 mV [mean ± SD of 6 experiments (**p < 0.01)] are shown in (D).
(E) Proposed model for the role of TRPM7 in MPP+ mediated cell death.

exact mechanism as how TRPM7 expression is decreased is
not known, ROS has been shown to alter gene expression.
This neurotoxin-mediated loss of TRPM7 expression further
decreases TRPM7 activity thereby decreasing intracellular
Mg2+, which leads to the loss of neuroblastoma cells. Although
the mechanisms involved in TRPM7-mediated protection
of neuronal cells is not clear, an increase in pro-apoptotic
proteins along with a decrease in ATP levels could be the
major reason for the loss of neuroblastoma cells. In addition,
the presence of ROS could increase the release of Zn2+

from TRPM7 vesicles which could also contribute toward
neurodegeneration.

Importantly, the decrease in TRPM7 expression was specific,
since no change in actin levels were observed upon neurotoxin-
treatment. Consistent with these studies a decrease in TRPM7
expression has also been shown in PD patients and in the samples
from neurotoxin-induced substantia nigra pars compacta regions
(Sun et al., 2019), which further suggests that loss of TRPM7
could lead to neurodegeneration. Similarly, mutations in TRPM7
has been reported in some familial PD patients (Hermosura
et al., 2005), and although the expression and/or function
of TRPM7 was not identified in this study, a decrease in
TRPM7 expression and/or function could be the reason for
the observed neuronal loss. Intracellular Mg2+ levels have been
shown to rescue cell growth and increase viability (Schmitz
et al., 2003), and as TRPM7 down-regulation further leads

to a decrease in intracellular Mg2+, it could be suggested
that loss of Mg2+ homeostasis could be the reason for the
loss of dopaminergic cells; however, activation of TRPM7 is
not known. Importantly, our data showed that addition of β-
adrenergic receptor agonist, isoproterenol, even at low doses
that are physiologically relevant significantly increased TRPM7
activity and inhibited neurotoxin-mediated cell death. Moreover,
isoproterenol-mediated activation of TRPM7 restored Mg2+

homeostasis in neuroblastoma cells. Another important aspect of
this study was that the concentration of isoproterenol used was
much lower that will limit any off target effects. Furthermore,
ISO-mediated protection was dependent on TRPM7 expression,
as TRPM7 silencing cells failed to show increased cell survival
even in the presence of isoproterenol. Moreover, apoptosis
was increased in cells treated with siTRPM7 even in the
presence of isoproterenol. In contrast, restoration of TRPM7
expression increased intracellular Mg2+, inhibited apoptosis,
and promoted cell survival. These results further emphasize
the importance of TRPM7 as expression of other Mg2+

transporters were unable to overcome the loss of TRPM7.
β-AR agonists, have been shown to increase the survival
of DA neurons (Peterson et al., 2014; Sun et al., 2018),
however, the mechanism is not clear. Based on our findings,
we postulated that β-AR agonist activates TRPM7 channel
activity that could modulate the survival of DA cells/neurons.
Importantly, TRPM7 levels were decreased in the presence of
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neurotoxins, but pretreatment with β-AR agonists even at low
doses increased TRPM7 levels, which restored Mg2+ homeostasis
thereby inhibiting cell death. Although the exact mechanism
involved in isoproterenol-mediated protection of dopaminergic
neurons is not fully established, it could inhibit reactive oxygen
species (ROS) formation, which regulates TRPM7 expression
and maintains appropriate Mg2+ levels in dopaminergic cells.
Importantly, a recent study has shown that addition of low
concentrations of β-AR agonist inhibited the LPS-induced
production of inflammatory mediators, such as ROS, TNFα, and
nitric oxide (NO) (Izeboud et al., 1999; Sun et al., 2013), which
further supports the interpretation of our results.

Mitochondrial dysfunction, as well as oxidative damage, are
typical features observed in neurodegeneration including PD,
which not only decline ATP production, but also increases
ROS generation and induction of apoptosis. Mutations in genes
that maintain mitochondrial quality control and function have
been suggested as the main culprit that contributes toward
familial PD (McLelland et al., 2014; Kazlauskaite and Muqit,
2015). Moreover, ROS production in neuronal cells (due to
increase in ATP demand) is an important factor that leads to
the demise of dopaminergic neurons. Mg2+ is also essential
for ATP production and dysregulation of mitochondrial Mg2+

homeostasis has been shown to disrupt ATP production via
the shift of mitochondrial energy metabolism and morphology
(Romani, 2011; Zhang et al., 2012). Our results further
provide evidence and we show for the first time that β-AR
agonists activate TRPM7, which modulate Mg2+ homeostasis
that prevents neurotoxin-induced loss of neuroblastoma cells.

However, as these studies are mainly performed in isolated cells,
they need to be replicated using dopaminergic cells and tissues.
Nevertheless, these results identify the mechanisms involved
in β-AR agonist induced protection of dopaminergic neurons
by modulating TRPM7 expression thereby contributing to the
survival of DA neurons.
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Misfolded proteins are the main common feature of neurodegenerative diseases, thereby,

normal proteostasis is an important mechanism to regulate the neural survival and

the central nervous system functionality. The ubiquitin-proteasome system (UPS) is a

non-lysosomal proteolytic pathway involved in numerous normal functions of the nervous

system, modulation of neurotransmitter release, synaptic plasticity, and recycling of

membrane receptors or degradation of damaged and regulatory intracellular proteins.

Aberrant accumulation of intracellular ubiquitin-positive inclusions has been implicated to

a variety of neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s

disease (PD), Huntington disease (HD), Amyotrophic Lateral Sclerosis (ALS), and

Multiple Myeloma (MM). Genetic mutation in deubiquitinating enzyme could disrupt

UPS and results in destructive effects on neuron survival. To date, various agents were

characterized with proteasome-inhibitory potential. Proteins of the ubiquitin-proteasome

system, and in particular, E3 ubiquitin ligases, may be promising molecular targets

for neurodegenerative drug discovery. Phytochemicals, specifically polyphenols (PPs),

were reported to act as proteasome-inhibitors or may modulate the proteasome

activity. PPs modify the UPS by means of accumulation of ubiquitinated proteins,

suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of

synaptic plasticity and transmission. This is the first comprehensive review on the effect

of PPs on UPS. Here, we review the recent findings describing various aspects of

UPS dysregulation in neurodegenerative disorders. This review attempts to summarize

the latest reports on the neuroprotective properties involved in the proper functioning
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of natural polyphenolic compounds with implication for targeting ubiquitin-proteasome

pathway in the neurodegenerative diseases. We highlight the evidence suggesting that

polyphenolic compounds have a dose and disorder dependent effects in improving

neurological dysfunctions, and so their mechanism of action could stimulate the UPS,

induce the protein degradation or inhibit UPS and reduce protein degradation. Future

studies should focus on molecular mechanisms by which PPs can interfere this complex

regulatory system at specific stages of the disease development and progression.

Keywords: ubiquitin-proteasome pathway, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease,

Huntington disease, Amyotrophic lateral sclerosis, Multiple myeloma, polyphenols

GRAPHICAL ABSTRACT | Polyphenols can act as proteasome-inhibitors or may modulate the proteasome activity, thereby improving neurodegenerative disorders

by means of accumulation of ubiquitinated proteins, suppression of neuronal apoptosis, reduction of neurotoxicity, and improvement of synaptic plasticity and

transmission.

HIGHLIGHTS

• Aberrant accumulation of intracellular ubiquitin-positive
inclusions associated to neurodegenerative disorders.

• Polyphenols, can act as proteasome-inhibitors or may
modulate the proteasome activity.

• Polyphenols can manage neurodegenerative impairments by
targeting the ubiquitin-proteasome system (UPS).

• Polyphenols exert UPS inhibitory activity, resulting in
the accumulation of ubiquitinated proteins, suppression
of neuronal apoptosis, reduction of neurotoxicity, and
improvement of synaptic plasticity and transmission.

INTRODUCTION

Proper production and degradation of proteins are vital for both
cellular homeostasis and neuronal function. Approximately,
the majority of cellular proteins are degraded by UPS,

highlighting its regulatory effect on cell cycle, proliferation,
and survival procedures. Generally, UPS modulates the

procedure of proteolysis in neurons. In this manner, an
evolutionarily conserved small protein named ubiquitin

attached to the substrates (misfolded proteins); under precisely
controlled conditions, via the sequential participation of several
ubiquitinating and deubiquitinating enzymes, tagging them for

degradation by a multi-subunit complex called the proteasome
(Hegde and van Leeuwen, 2017). Later, the 26S proteasome binds
to the polyubiquitinated proteins and efficiently degrades them

(Grice and Nathan, 2016). In addition, proteolysis by UPS has

great importance in regulation of many physiological processes,
from gene transcription to posttranslational modification of
proteins (Hegde and van Leeuwen, 2017).

Emerging data revealed that UPS plays an undeniable role in

several neurodegenerative diseases, although, UPS impairment
has been reported during the process of neurodegeneration. The
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proper function of proteasome and UPS are essential factors for
specific function of neurons (Jara et al., 2013). The deposition
of protein aggregates and the formation of inclusion bodies
are common features of most neurodegenerative diseases, since,
the majority of intracellular inclusions contain ubiquitin. For
instance, mutant α-synuclein (SACN) protein in PD, Amyloid-
β (Aβ) and tau protein in AD, expanded polyglutamine tracts
in HD and misfolded prion protein in Prion disorders (Zheng
et al., 2016); besides, UPS dysregulation results in increased
endoplasmic reticulum stress, and cell death in neuronal cells
(Jara et al., 2013). In addition, current pharmacological standard
treatments for neurodegenerative diseases, such as cholinesterase
inhibitors licensed to treat AD; dopaminergic treatments for
PD; antidepressants, neuroleptics, and tetrabenazine for HD;
glutamate blockers to treat ALS; elicit a wide range of side
effects. In this context, identification and characterization of
compounds that selectively inhibit UPS and/or proteasome
functions, or the substrates capable of triggering deubiquitinases,
gained much attention, particularly in line of drug discovery for
neurodegenerative diseases and various cancers.

Accordingly, herbal based interventions, predominantly PPs,
seems to be an alternative adjuvant therapeutic approach
to delay the onset of neurodegeneration and to reduce the
burden of symptoms, to maximize the function and optimize
the quality of patient’s life. Mechanistic studies on the
neuroprotective/neuroregenerative effects of PPs, exhibited that
these compounds persuasively act as anti-inflammatory agents
and antioxidants, either by quenching free radical species or by
inhibiting pro-oxidant enzymes. PPs also function as modulators
of the anti-apoptotic factors expression; intracellular neuronal
signaling and metabolism; cell survival/death genes; protein
aggregation and degradation pathways; and have mitochondrial
function either directly or by regulating the mitochondrial
signaling pathways (Mandel et al., 2011; Branquinho Andrade
et al., 2016; Nabavi et al., 2018b).

Recently, both scientific and public interests shifted toward
dietary regimens and nutraceuticals associated with reduced
risk of neurodegenerative diseases, in a way to find molecules
exploitable for prevention of the onset, progression, and severity
of such impairments. Reliable evidence supports the beneficial
effects of natural phytochemicals, in particular polyphenolic
compounds in attenuating neurological deterioration by means
of protein clearance machineries. Among these systems, UPS
plays a crucial role in degradation of misfolded protein
aggregates. Thereby, the scope of this review is to introduce
the UPS in neurodegenerative diseases, to assess the favorable
effects of PPs in UPS inhibition, and to discuss their
potential application in clinical trials to target neurodegeneration
pathologies in the quest for a disease modifying therapy.

UBIQUITIN-PROTEASOME SYSTEM

The ubiquitin proteasome system (UPS), a 76-amino acid
complex, is a key regulator of protein catabolism in the
mammalian nucleus and cytosol. The UPS is essential for the
regulation of almost all vital processes including, organelles

biogenesis, cell cycle, differentiation and development, immune
response and inflammation, neural and muscular degeneration,
as well as response to stress and extracellular modulators. Under
extremely controlled conditions, UPS affects a wide variety of
cellular substrates and molecular pathways; furthermore, UPS
defects could result in the pathogenesis of numerous devastating
human diseases (Leestemaker and Ovaa, 2017).

Protein degradation via UPS involves two separate and
consecutive phases named conjugation and degradation.
Throughout the conjugation phase, the substrate protein
is tagged by the covalent attachment of multiple ubiquitin
molecules, thereafter, 26S proteasome (composed of the catalytic
20S core and the regulatory 19S part) degrades the tagged protein,
such process is called the degradation phase. This conventional
function of UPS is usually associated with antigenic peptide
generation, regulation of protein turnover, and housekeeping
functions. Recently, it has been shown that protein modification
by UPS also has unconventional (non-degradative) functions
that is dictated by the number of ubiquitin units covalently
tagged to proteins (poly vs. mono-ubiquitination), and by the
type of ubiquitin chain linkage that is present (Akutsu et al.,
2016). Ubiquitin is tagged to the ε-amine of lysine residues of
target proteins via a series of ATP-dependent enzymatic steps
named; E1 (ubiquitin activating), E2 (ubiquitin conjugating),
and E3 (ubiquitin ligating) enzymes. Moreover, the C-terminal
Gly75-Gly76 residues of ubiquitin are the key residues that play
critical roles in the diverse chemistry of ubiquitin reactions.
Ubiquitin could be conjugated to itself through particular lysine
residues (K6, K11, K27, K29, K33, K48, or K63), resulting
in various types of chain linkages. The isopeptide binds to a
target protein and ubiquitin, thereby; specific deubiquitinating
enzymes (DUBs) can reverse the linkages between several
ubiquitins in a chain. Recent studies have revealed that many
DUBs are parts of ubiquitin ligase complexes, which enables
DUBs to regulate the activity and abundance of both the ligase
and the substrate (Stolz and Dikic, 2018).

Substantial evidence has clarified the determinative role
of UPS dysfunction in neurodegenerative disorders, involving
abnormal accumulation of inclusion bodies or insoluble protein
aggregates in neurons. Furthermore, dysregulation of UPS could
impede the degradation of aberrant or misfolded proteins and
negatively upset synaptic transmission (Zheng et al., 2014).
Eventually, unsuccessful removal of damaged proteins could
result in the aggregation of these proteins and neuronal apoptosis
(Hyttinen et al., 2014). On the other hand, in neurodegenerative
disorders, defectiveness in synaptic plasticity is attributed to
dysregulation of ubiquitin-mediated proteolysis (Selkoe, 2002).

DEUBIQUITATION

DUBs play pivotal roles in hemostasis of biological processes
such as cell cycle, proliferation, programmed cell death apoptosis,
and DNA repair mechanisms. Ubiquitin-specific-proteasome-
7 is a DUB enzyme. Its overexpression has been detected
in numerous types of cancers (Hu et al., 2002; Li et al.,
2004; Nicholson et al., 2007), in particular, stabilization of
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MDM-2 (murine double minute). USP7 deubiquinates MDM2,
therefore, maintaining the tumor suppressor p53 ubiquitinated,
it also degraded by proteasome under normal condition (Everett
et al., 1997; Cummins et al., 2004). In MM patients, deletion
or mutation in p53 was detected, thereby; the inhibition of
USP7 could be a useful therapeutic target for accumulation of
functional p53.

Both USP14 ubiquitin-specific-protease and the ubiquitin
C-terminal hydrolyase (UCHL5) are cysteine proteases. DUBs
are associated with 19S proteasome regulatory subunit; hence,
they may modulate the capability of proteasome for target
proteins to be degraded (Borodovsky et al., 2001; Al-Shami et al.,
2010; Lee et al., 2010). They are able to regulate the signaling
pathways such as nuclear factor (NF)-κB (Al-Shami et al., 2010),
transforming growth factor (TGF)-β (Wicks et al., 2005), and
CXCR4 chemotaxis (Mines et al., 2009). USP14 and UCHL5
expression levels are upregulated in different types of tumors
such as colorectal cancer (Shinji et al., 2006), ovarian cancer and
MM (Tian et al., 2013). Selective USP14 and UCHL5 inhibitor b-
AP15, induced apoptosis in MM cell lines and in primary MM
cells via downregulation of cell division cycle 25C (CDC25C),
CDC2, and cyclin-B1, as well as the activation of caspases
and unfolded protein response pathways (p-IREα, p-eIF2α, and
CHOP) (Tian et al., 2013). VLX1570 is another USP14 inhibitor,
which induced apoptosis in MM cells (Wang et al., 2016).

ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is recognized as a highly common
neurodegenerative disease with visual-spatial confusion and loss
of short-term memory. It is known that memory loss exacerbates
over time, leading to cognitive dysfunction and reduced
intellectual capacity in AD patients. The pathology of AD is
related to misfolded-protein aggregation, inflammatory changes,
and oxidative damage, resulting in neuronal loss (Querfurth
and LaFerla, 2010). In an AD brain, the most important
pathognomonic lesions include the intracellular neurofibrillary
tangles (NFTs) and extracellular senile plaques (ESPs). Senile or
neuritic plaques [composed of Aβ containing 39 to 42 amino-
acid peptides, a product of the sequential cleavage of the β-
amyloid precursor protein (APP)] and neurofibrillary tangles
(filamentous bundles comprised of hyperphosphorylated tau
proteins) are typical characteristic lesions in affected tissues
(Haass and Selkoe, 2007). To date, two types of medications
including cholinesterase inhibitors (Donepezil, Rivastigmine,
Galantamine), and N-methyl-D-aspartate (NMDA) receptor
antagonist (memantine) were approved by the U.S. Food and
Drug Administration (FDA) to treat moderate to severe AD
symptoms (Briggs et al., 2016).

Although the major cause of AD remains unknown, the
familial type of autosomal dominant inheritance is involved in
nearly 0.1% of cases. Mutations in genes encoding presenilin
1 (PS1), PS2, and amyloid precursor protein (APP), are
incorporated to this type of AD (Waring and Rosenberg, 2008).
Nearly 95% of all AD patients suffer from sporadic AD, which
is associated with the late onset of symptoms (above 65 years)

(Minati et al., 2009). According to a recent investigation, UPS
either is damaged or appears inadequate in some regions of
the brain of young mice (Liu et al., 2014). In this regard,
the interaction of ubiquitin C with different AD factors was
reported by a proteomic study; accordingly, UPS dysregulation
was introduced as amechanism underlying AD (Manavalan et al.,
2013). UPS dysregulation can prevent calmodulin degradation
and block Ca2+/calmodulin-dependent signaling pathways in
AD (Esteras et al., 2012). Some UPS and AD-related proteins,
such as C-terminus of Hsc70-interacting protein (CHIP) and
ubiquitin carboxyl terminal esterase L1 (UCHL1), may be
expressed aberrantly. These proteins along with a mutant
form of ubiquitin, can inhibit the UPS and cause proteasomal
dysfunction in AD patients (Oddo, 2008; Bilguvar et al., 2013).

Ubiquitin-Proteasome System and Amyloid
Beta
Aβ is identified as a peptide from APP, cleaved by β- and
γ-secretases. Following cleavage of APP in its ectodomain by
β -secretase 1 (BACE1), γ-secretase splits the transmembrane
domain of carboxy-terminal fragments and discharges Aβ

peptides into the extracellular environment (Wang et al., 2018).
Overexpression of APP increased the activity of UPS in the
frontal cortex of transgenic AD mice model (Seo and Isacson,
2010). According to the literature, Lysine (Lys)-203 and Lys-382
are indispensable to proteasomal degradation of BACE1 (Wang
et al., 2012). On the other hand, BACE1 proteasomal degradation
is accelerated by ubiquitin carboxylterminal hydrolase L1
(UCHL1) (Zhang et al., 2012). It was shown that due to the
accumulation of Aβ in neurons, the activities of proteasomes
and the deubiquitinating enzymes reduced (Almeida et al., 2006).
Clearance of Aβ can significantly diminish the early pathogenesis
of tau (Budd Haeberlein et al., 2017). However, Aβ accumulation
may damage proteasome function and promote tau accumulation
(Tseng et al., 2008). In addition, mutant or wild-type APP in
neural cells is known to affect downstream protease inhibition
(Cecarini et al., 2014).

Ubiquitin-Proteasome System and Tau
Tau, which is described as a soluble protein in neurons, is
concentrated in axons and stabilizes the microtubule network
(Lee et al., 2013). In adult human brain, six tau isoforms are
expressed. Although, the mechanism of tau fibrillization is still
indefinite in pathological disorders, formation of paired helical
filaments (PHFs) is triggered by hexapeptide motifs. Overall,
diverse posttranslational modifications such as glycosylation,
ubiquitination, hyperphosphorylation, and proteolysis could
occur in tau (Hernandez and Avila, 2007; Martin et al., 2011).
Besides, tau hexapeptide motifs, ubiquitin and apolipoprotein
E are among other NFT components. Stepwise fragmentation
happens in tau to generate cleavedmolecules with proaggregation
features, such as neurodegeneration (Wang et al., 2010). In a
study by Dolan and Johnson, the autophagy system removed
truncated tau, while UPS was not involved (Dolan and Johnson,
2010). On the other hand, Grune et al. (2010) reported
that ATP/ubiquitin-independent 20S proteasome catalyzed tau
degradation. Valosin-containing proteins (part of UPS; the
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machinery that degrades damaged, misshapen, and excess
proteins within cells) in AD synapses are negatively correlated
with the buildup of hyperphosphorylated tau oligomers,
and UPS dysfunction may progress concomitantly with tau
hyperphosphorylation (Tai et al., 2012).

Ubiquitin-Proteasome System and
Ubiquitin Carboxyl Terminal Esterase L1
UCHL1 enzyme attributed to the removal of ubiquitin from
unfolded proteins and disassembly of polyubiquitin chains for
recycling of ubiquitin. The enzyme is also capable of eliminating
abnormal proteins, as it stabilizes monoubiquitinated proteins
(Setsuie and Wada, 2007). In a model of APP/PS1 mice, UCHL1
transduction restored normal cognition and synaptic function in
hippocampal slices treated with Aβ (Gong et al., 2006). The direct
correlation of neuronal UPS with sporadic AD has been proven
(Oddo et al., 2006). In a study on Chinese Han patients, AD
was associated with serine-to-tyrosine substitution at codon 18
in exon 3 of UCHL1 gene; the genotypes were also more resistant
in females (Xue and Jia, 2006). According to a recent study by
Poon et al., UCHL1 was recognized vital for the regulation of
neurotrophin receptors and supporting retrograde transport. It
is also known that Aβ downregulates the UCHL1 in AD, thereby,
compromising synaptic plasticity, as well as neuronal survival
(Poon et al., 2013).

Ubiquitin-Proteasome System and
Ubiquilin-1
Polyubiquitinated proteins are delivered to proteasomes for
degradation by several proteins, including ubiquilin-1 with
ubiquitin-like domains. The increased risk of AD is associated
with the ubiquilin-1 gene (UBQLN1) allelic variant (Li et al.,
2017). In a study by Stieren et al., reduction of ubiquilin-1
activity, led to the production of APP fragments, along with
neuronal cell death (Stieren et al., 2011). Ubiquilin-1 seems to
also contribute to the pathogenesis of other neurodegenerative
disorders (Safren et al., 2015).

Ubiquitin-Proteasome System and
Sequestosome 1 (p62)
Most NFTs contain p62, which is a UPS-related protein
(Morawe et al., 2012). P62 serves as a receptor to bind
ubiquitinated proteins and to shuttle proteins to proteasome for
the purpose of degradation (Zaffagnini et al., 2018). Similarly,
p62 shuttles polyubiquitinated tau to proteasome. In AD, p62 is
detected in neuronal inclusion bodies, containing aggregates of
ubiquitinated protein (Salminen et al., 2012).

PARKINSON DISEASES

PD is associated with severe motor symptoms, attributing
to dopaminergic neuron death in the substantia nigra (Kaur
et al., 2018). A number of medications have been approved
to treat PD symptoms, of which Levodopa is the most
effective pharmacologic treatment for severe motor symptoms,
moreover, monoamine oxidase type B (MAO-B) inhibitors,

dopamine agonists (i.e., Bromocriptine, Pergolide, Pramipexole,
Ropinirole) are effective for patients with mild symptoms at a
younger age (Jankovic and Poewe, 2012). Of course, patients
using such drugs are facing a verity of complicated adverse
effects. Aside from reduced function of UPS, oxidative stress, and
mitochondrial metabolism impairment seem to be involved in
PD pathogenesis (Winklhofer and Haass, 2010). PD is associated
with 10 different mutations, some of which is correlated with
UPS, such as alpha-synuclein (α-SNCA), protein deglycase DJ-1
(or PARK7), UCHL1, PTEN-induced kinase 1 (PINK1), and PD
protein 2 (PARK2 or parkin). Overall, parkin, PINK1, and DJ-1
mutations are involved in the autosomal recessive familial type of
PD (Lunati et al., 2018; Zeng et al., 2018).

Ubiquitin-Proteasome System and
α-synuclein
α-SNCA is described as the major constituent of Lewy bodies
(LBs) in the brain of PD patients. LBs contain ubiquitinated
proteins, such as α-SNCA. The LB protofibrils exert inhibitory
effects against the degradation of 26S proteasome-mediated
proteins (Chen et al., 2006; Zhang et al., 2008). α-SNCA is
encoded by SNCA gene. Several mutations in SNCA at A53T,
and A30P are directly linked to the familial form of PD
and α-SNCAopathies (Kaur et al., 2018). It was shown that
proteasome inhibitors cause α-SNCA aggregation and formation
of LBs (Banerjee et al., 2014). Moreover, rats exposed to
proteasome inhibitors displayed PD-like behavior and damage
to the central nervous system similar to that observed in PD
patients (Lorenc-Koci et al., 2011). Meanwhile, the α-SNCA
aggregations may in turn selectively bind to the 6S subunit of the
26S proteasome to inhibit the proteasome activity, and to further
induce neurons cytotoxicity, including mitochondrial damage
and apoptosis (Tanaka et al., 2001; Snyder et al., 2003). Therefore,
proteasome inhibition and α-SNCA may reciprocally regulate a
feed forward mechanism and exacerbate the development of PD
(Xie and Wu, 2016).

Ubiquitin-Proteasome System and Protein
Deglycase DJ-1
Although DJ-1 protein is majorly expressed in the cytosol, it can
also be detected in the nucleus. According to a study by Khasnavis
et al., astrocytes produce DJ-1 in mice brain (Khasnavis and
Pahan, 2014). Similarly, in a normal human brain, the astrocytes
express DJ-1 (van Horssen et al., 2010). As suggested in literature,
patients with sporadic PD have reduced levels of DJ-1 protein in
the substantia nigra (Nural et al., 2009; Cookson and Bandmann,
2010). Familial forms of PD is associated with DJ-1 mutations
(Giguere et al., 2018). In a study by Xiong et al., DJ-1 deficiency
reduced parkin ubiquitination and improved aggregation of
misfolded parkin substrates (Xiong et al., 2009). Nonetheless,
to maintain the mitochondrial function, DJ-1 acts along with
the PINK1/parkin pathway. Therefore, the association between
DJ-1 and PINK1/parkin should be confirmed in further studies.
Moreover, DJ-1 is described as a substrate for small ubiquitin-like
modifier-1 (SUMO-1) conjugation, and its simulation is crucial
(Shinbo et al., 2006).
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Ubiquitin-Proteasome System and
PTEN-Induced Kinase 1
PINK1 is expressed in different brain regions, including the
hippocampus and substantia nigra (Blackinton et al., 2007;
Heeman et al., 2011). Degradation of heat-induced misfolded
proteins, mediated by parkin, is increased by the PINK1
expression. On the contrary, parkin and PINK1 mutations in
PD, are less potent in promoting parkin substrate degradation.
In fact, PINK1 leads to the clearance of aberrant proteins
via proteasomal degradation (Clements et al., 2006). PINK1
mutations are involved in some cases of autosomal recessive
and sporadic PD (Blackinton et al., 2007). The symptoms of
PINK1 knockout mice, including mitochondrial dysfunction
and reduced corticostriatal synaptic plasticity in dopaminergic
neurons, are similar to PD patients (Kitada et al., 2007, 2009).
Liu and colleagues reported that PINK1 deficiency interrupts
proteasome activity and leads to α-SNCA aggregation. They
also suggested a relationship between PINK1 and UPS in PD
(Liu et al., 2009).

Ubiquitin-Proteasome System and Parkin
Considering the direct correlation between UPS and PD, the
parkin gene mutations have been suggested to be involved.
The amino acid sequence of parkin contains an ubiquitin-like
domain at the N-terminus, as well as a RING box at the C-
terminus with E3 ubiquitin-ligase activity (Kaur et al., 2018).
Respecting T240R mutations in parkin gene, the association
between autosomal recessive familial PD and parkin was
identified. In addition, parkin can be found in PD-affected
brain regions. Parkin exhibits neuroprotective functions in PD,
which can be attributed to its E3 ubiquitin-ligase activity (Song
et al., 2009). Wild-type α-SNCA is the most important target
of ubiquitin degradation (Li et al., 2018). Research on the
possible association of parkin with neurodegeneration reveals
that parkin can regulate the aggresome-autophagy pathway (Lim
et al., 2006). In addition, parkin triggers ubiquitination, as well
as polyglutamine-expanded ataxin-3 degradation, resulting in
reduced toxicity in cells (Kumar et al., 2012; Zheng et al.,
2014). The deubiquitinating enzyme activity of ataxin-3, as a
deubiquitinating enzyme, is improved through ubiquitination
(Todi et al., 2009). To eliminate misfolded proteins, ataxin-
3 and parkin contribute to aggresome formation (Olzmann
et al., 2008). Parkin gene mutations lead to abnormal toxic
substrate aggregation due to UPS dysfunction. Parkin might
also be associated with the pathogenesis of PD, considering
its role in mitochondrial functioning (Kumar et al., 2012). In
addition, many mitochondrial processes in PD, involving parkin,
are interrupted.

MULTIPLE MYELOMA

Multiple myeloma (MM) is a hematologic malignancy of bone
marrow characterized by the accumulation and infiltration of
mature plasma cells in the bone marrow (cells that produce high
level of antibodies) (Morgan et al., 2012). The cancer incidence
is low around 1, in every 132 individuals (0.76%). According

to American cancer society, around 30,770 new cases will be
diagnosed (16,400 in men and 14,370 in women) with MM and
around 12,770 deaths will be expected (6,830 in men and 5,940
in women).

The offered treatment regimens for MM patients mainly
include chemotherapy with a response range of 40 to 70%.
Unfortunately, most patients suffer from relapsing due to
the recurrence of the disease. Bone marrow transplantation
combined with chemotherapy (Attal et al., 1996) is another
regimen; still patients suffer from the recurrence of the cancer
(Attal et al., 1996; Mitsiades et al., 2002). The urine and serum
of patients contains high level of monocolonal immunoglobulins
called M-protein or paraprotein, which is consisted of a heavy
(most often IgG or IgA but also IgM, IgD, or IgE) and a light
chain of kappa or lambda. In some patients, the plasma cells only
produce light chain immunoglobulins, which dose not bind to
the heavy chain. The light chain immunoglobulins are normally
excreted in the urine, although their levels in the urineare
considered as a prognostic marker for the MM patient.

Proteasome in Multiple Myeloma
Production of high amount of immunoglobulins require
functional endoplasmic reticulum (ER) and ER quality control
system (Ibba and Söll, 1999;Wickner et al., 1999), which prevents
the processing of misfolded proteins and their translocation to
its distinct location. Unfolded proteins induce the activation of
unfolded protein response (UPR) pathway, leading to inhibition
of further protein synthesis, and the expression of chaperones
and enzymes required for folding proteins. Once, proteins cannot
be refolded, misfolded proteins will be tagged for proteasome
degradation by 26S proteasome (Ellgaard et al., 1999), however,
unfolded protein stress is intolerable and unfixable, the cells
will undergo apoptosis (Zinszner et al., 1998; Brewer and Diehl,
2000). Consequently, inhibition of UPR is a chemotherapeutic
target in MM cells.

It was found that MM cells and the primary cells from
MM patients express high level of UPR genes (i.e., chaperones
glucose-regulated protein 78/binding-immunoglobulin protein
(GRP78/Bip) and GRP94/gp96) (Obeng et al., 2006). Proteasome
26S is playing a vital role in maintaining cellular hemostasis
via degradation of misfolded proteins, regulation of stress
responses, cell cycle, DNA repair pathway, and apoptosis
(Ciechanover, 2005). Proteasome 20S is a multi-catalytic enzyme
with multi subunits. Each subunit performs one of the classical
proteolytic activities; either chymotrypsin-like (ChT-L) activity
localized in β5 subunit, trypsin-like (T-L) in β2 subunit, or
peptidylglutamyl-peptide hydrolyzing (PGPH) activity in β1
subunit (Orlowski and Wilk, 2000).

There are two isoforms of proteasome, constitutive and
immunoproteasome. The constitutive proteasome is distributed
in most cells, while the immunoproteasome is expressed in cells
of lymphoid organs. Immuoproteasome has great importance in
antigen presentation by major histocompatibility class I (Rock
et al., 1994, 2002), and also in proteolysis of proteins (Rivett and
Hearn, 2004). The level of circulating proteasome was examined
in 50 patients with MM, which showed a positive correlation
with the advanced stages of the disease (Jakob et al., 2007);
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representative of chemotherapeutic potential of proteasome
in MM. The NFκB signaling pathway plays a major role in
hemostasis of B-cells progenitor, where it inhibits the assembly
of Igκ gene in prematured B-lymphocytes (Scherer et al., 1996),
protects B cell lymphoma from apoptosis (Wu et al., 1996),
induces the stimulus-dependent proliferation (William et al.,
1995), and B cell receptor (BCR) responses (Bendall et al., 1999).

The cancer cells are characterized by high proliferative rate
coupled with high levels of misfolded proteins, DNA damage
and stress in comparison with normal cells, thus, cancer cells
highly require a functional proteasome system. Bortezomib is
a proteasomal inhibitor of MM, approved by FDA (Richardson
et al., 2003). Bortezomib suppresses the NFκB signaling pathway
through inhibition of proteasome degradation of iκB, which
can maintain the NFκB sequestered and latent in the cytoplasm
(Brockman et al., 1995; Hideshima et al., 2001; Russo et al., 2001;
Sunwoo et al., 2001; Ma et al., 2003), activation of p53-mediated
apoptosis, cell cycle arrest, and induction of both intrinsic
and extrinsic apoptotic pathways. It also activates apoptosis via
the c-Jun amino-terminal kinase (JNK)-dependent induction of
mitochondrial release of second mitochondria-derived activator
of caspase (SMAC) (Chauhan et al., 2003). The resistance of
MM cells toward bortezomib, initiates an urgent need for either
alternative or combinatorial therapy for MM patients (Figure 1).

Ubiquitin in Multiple Myeloma
CRL4 (Cullin-RING ubiquitin ligase) is an E3 ubiquitin ligase,
composed of three subunits DDB1, cullin 4 (CUL4), and
regulator of cullins 1 (RBX1/ROC1). This enzyme has great
importance in ubiquitination of different cellular proteins
such as c-MYC, interferon regulatory factor 4 (IRF4), Ikaros
(IKZF1), and Aiolos (IKZF3) transcription factors. Lenalidomide
treatment led to targeted degradation of IKZF1 and IKZF3 in
different MM cell lines and primary cells from patients, via
inhibition of CLR4 E3 ligase enzyme (Krönke et al., 2013).

Cereblon is a substrate recognizing subunit in E3 ligase
enzyme, which binds to the DNA damage binding protein-1
(DDB1), CUL4, and Roc1 to form a functional enzyme complex
(Fischer et al., 2014; Sang et al., 2015). Cereblon (442 amino
acid protein) is ubiquity expressed in plants, rats, mice as well
as humans, and is known to be responsible for memory and
intelligence in humans (Higgins et al., 2010). Deletion of C-
terminal of cereblon due to a non-sense mutation at amino
acid 419 (R419X), resulted in intellectual disability syndrome.
Cereblon binds to potassium (Higgins et al., 2008) and chloride
channels in the brain and retina (Jo et al., 2005; Hohberger and
Enz, 2009; Aizawa et al., 2011), respectively. It also inhibited
the activation of adenosine monophosphate (AMP) kinase via
binding to its subunit α1 (Lee et al., 2011) (Figure 2). Cereblon
was found to be a selective target for thalidomide PS-341 (Ito
et al., 2010) and lenalidomide (Krönke et al., 2013) activities
in MM, leading to the degradation of IKZF3 and IKZF1. The
degradation of IKZF3 transcription factor by lenalidomide led
to reduction in mRNA and protein levels of IRF4 in multiple
myeloma cells. IRF4 is a transcription factor required for the
activation of lymphocytes (Mittrücker et al., 1997) and the plasma
cells differentiation and maturation (immunoglobulin producing
cells) (Klein et al., 2006; Sciammas et al., 2006). Shaffer et al.

(2008) showed that IRF4 is not genetically altered in myeloma
cells, but it is addicted for the maturation and activation of B
cells. Such data highlighted the role of CRL4 and Cereblon in
regulating the pathogenesis of MM and could be used as further
objects for MM treatment.

Skeletrophin is an E3 ligase, required for Notch signaling

pathway activation (Saurin et al., 1996; Freemont, 2000). The
Notch extracellular domains are composed of epidermal growth

factor (EGF) repeats (29-36), Lin-12/Notch repeat (LIN), linker
to the transmembrane and an intracellular domain. The Notch

ligands are the transmembrane proteins and divided into two
classes, Delta or Delta-like (Dll) and Serrate (Jagged-1 and

Jagged-2 in mammals). Upon binding of the ligand to the
Notch, a mechanical force leads to the cleavage of the Notch
ectodomain, which is followed by endocytosis. Skeletrophin
facilitates the Jagged-2-bound to Notch endocytosis, leading to
a second cleavage in the intracellular domain of Notch and its
translocation to the nucleus (Figure 3).

T-cell acute lymphoblastic leukemia (T-ALL) is characterized

by chromosomal translocation, resulting in expression of
truncated Notch characterized by constitutive Notch signaling

activation. Moreover, myeloma cells as well as primary MM cells

express high levels of Jagged-1 and−2, and play a role in the
interaction between stromal and myeloma cells (Houde et al.,
2004; Jundt et al., 2004). Such data introduce a new ubiquitin
ligase, favorable for MM treatment.

CKS1B (Cyclin-Dependent Kinases Regulatory Subunit 1) is

an accessory protein in SCF SKP2. F-box (40 amino acids motif)-
containing protein S-phase kinase-associated protein 2 (SKP2)
is one of the four subunits of ubiquitin ligase complex [SCF
(Skp1, Cullin 1, F-box protein)]. SKP2 potentially regulates the

transition of cells fromG1 to S phase, through a phosphorylation-
dependent degradation of cell cycle inhibitor p27 (Cyclin-

dependent kinase inhibitor 1B) (Tsvetkov et al., 1999), which is
considered as an oncoprotein. The inhibitor p27 downregulation,
led to the inhibition of p21 (Yu et al., 1998), p27 (Tsvetkov
et al., 1999), and p57 (Kamura et al., 2003) degradation, and

prevention of other tumor suppressors such as c-MYC (Kim
et al., 2003; Von Der Lehr et al., 2003; Song et al., 2008),
transducer of ERBB2, 1 (Tob 1) (Hiramatsu et al., 2006), and
Forkhead transcription factors FOXO1 (Huang et al., 2005).
The P27 cell cycle inhibitor is also downregulated in numerous

cancers including MM (Filipits et al., 2003). In the same time,
the CKS1B is overexpressed in oral, gastric, breast and colon
cancers, spectating the possible role of CKS1B in regulating
the p27 degradation. (Zhan et al., 2007) showed that the
silencing of CKS1B led to stabilization of p27 in 4 different MM
cell lines.

AMYOTROPHIC LATERAL SCLEROSIS

ALS is a neurodegenerative disorder, sporadic in most cases,

involved in progressive motor neuron degeneration in the brain
and spinal cord, associated with muscle weakness (Zheng et al.,

2014). ALS characterized by paralysis and death within 3 to 5

years from day of appearance of symptoms due to the impairment
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FIGURE 1 | Clinically tested drugs against MM and their targets.

FIGURE 2 | Ubiquitinated or deubiquitinated genes in MM cells.

of respiratory systems (Hardiman et al., 2011). The loss of bulbar

and limb function are the main features of ALS. According
to Logroscino et al. (2010) study, the incidence rate in the
Europe continent is 2.16/100,000 per year. The incidence rate was
higher in men than women. Around 10% of patients inherited
the disease (autosomal dominant) and 90% of patients have

no family history of ALS (FALS), although they still show the
pathologic features of FALS. Until now, there is no effective
treatment for ALS, so the survival rate is low for the affected
patients (Kim et al., 2009). In this context, only 2 drugs have
FDA approval; Riluzole (glutamate inhibitor) and Edaravone
(free radical and peroxynitrite scavenger with anti-inflammatory
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FIGURE 3 | Signaling pathways involved in MM.

properties), although they might cause side effects such as
bruising, gait disturbance, hives, dizziness, gastrointestinal, and
liver dysfunctions, as well as allergic reactions (Jaiswal, 2018).
Although the cause of ALS is unknown in most cases, several
mutations are related to familial ALS, including superoxide
dismutase 1 (SOD1), ubiquilin 2 (UBQLN2), and RNA-binding
protein fused in sarcoma (FUS) protein (Kwiatkowski et al., 2009;
Vance et al., 2009; Deng et al., 2011). Twenty percentage of the
familial ALS is linked to a genetic modification in chromosome
21 long arm q (Rosen et al., 1993).

Amyotrophic Lateral Sclerosis and
Superoxide Dismutase 1
Based on several studies, UPS is associated with superoxide
dismutase 1 (SOD1) turnover; however, the exact mechanism
remains unclear. UPS degradesmutant SOD1 proteins faster than
wild-type SOD1, and the proteasome inhibition improves the
SOD1 stability (Bendotti et al., 2012). ALS-like pathologies are
found in mice with conditional knockout of proteasome subunit,
Rpt3 (Tashiro et al., 2012). ALS is also related to the induction of
immunoproteasome subunits (Bendotti et al., 2012). In a study
using a mutant SOD1-G93A model, pyrrolidine dithiocarbamate
treatment reduced the survival of ALS (Ahtoniemi et al., 2007),
therefore, the immunoproteasome expression may increase the
coping of the nervous system with SOD1 mutations- induced
ALS (Rao et al., 2015). In ALS, the function of SOD1 does
not decrease, and mice with increased or decreased levels of
SOD1 do not show ALS-like pathologies. On the other hand,

SOD1 mutation is known to trigger a toxic gain of function,
causing SOD1 aggregation. Moreover, in some cases of sporadic
ALS, wild-type SOD1 aggregates support the gain of function
(Bosco et al., 2010). Mutant SOD1 can transfer the misfolded
SOD1, which is followed by degradation (Crippa et al., 2010). In
this regard, an increase was reported in the expression level of
immunoproteasome (Cheroni et al., 2008). However, according
to the literature, autophagy has greater significance in SOD1
turnover, compared to UPS (Dennissen et al., 2012).

In FALS, virtually 11 missense mutations in cytosolic Cu/Zn
SOD1 linked to the accumulation of free radicals to the
neurodegenerative diseases, where it leads to a damage in
the mitochondrial hemostasis, axon transport, and glutamate
transporter function (Rosen et al., 1993). It was found that the
mutated form of SOD 1 inhibits the chymotrypsin-like activity
of proteasome in Neuro2A cells and depresses the induction of
motor neuron death in the transgenic mouse model (Urushitani
et al., 2002). Kabashi et al. (2004) found that the mutant SOD 1
caused inhibition in chymotrypsin-like, caspase-like and trypsin-
like activities of proteasome, without decreasing its level in
lumbar spinal cord of the transgenic mice. These data indicated
the importance of functional proteasome system in preventing
the ALS development.

Amyotrophic Lateral Sclerosis and Fused
in Sarcoma Protein
It was evidenced that genetic modifications such as angiogenin
3 (ANG), transactive response (TAR) DNA-binding protein

Frontiers in Physiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 36182

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Momtaz et al. Polyphenols Induce Neuroprotection Through UPS

TDP-43 (TARDP), sarcoma/translated in liposarcoma and
optineurin (OPTN) are linked to FALS. Ubiquitination of
misfolded proteins is a pre-step in degradation by proteasome
system. The accumulation of misfolded proteins in the
hippocampus, neocortex and spinal cord is a pathologic feature
of neurodegenerative diseases, TDP-43 protein is composed
of glycine-rich C-terminal with two RNA-recognition motifs
and it is the main pathologic manifestation for ALS (Wang
et al., 2004). Its phosphorylation, ubiquitination and cleavage
into two peptide fragments have been linked to the poor
prognosis of ALS patients (Leigh et al., 1991; Okamoto et al.,
1991; Neumann et al., 2006). It was found that ubiquilin
1 (UBQLN) (proteasome targeting cochaperone factor) binds
to the ubiquitinylated TDP-43 aggregates and targets them
either to autophagy or proteasomal degradation. The binding
of the mutated form of TDP-34 (D169G) to UBQLN was
greatly decreased in comparison with the wild-type TDP-43.
More studies are required to confirm such hypothesis in the
pathogenesis of ALS.

ALS has major similarities to the frontotemporal dementia
(FTD) spectrum. FUS and TAR DNA- TDP-43 inclusions are
detected in sporadic ALS (Deng et al., 2010). According to the
literature, inclusions co-localize with ubiquitin similar to FTD.
Moreover, VCP/P97, C9ORF72, and optineurin polymorphisms
can produce FALS (Johnson et al., 2010; Maruyama et al.,
2010; Deng et al., 2011; Renton et al., 2011). TARDP is
localized in chromosome 1p36.2. The mutations in TARDP gene
(p.Gly290Ala and p.Gly298Ser mutations) were found to be
linked to the sporadic and FALS (Kabashi et al., 2008). The
mutation either leads to gain- or loss-of-function in TDP-43, and
may be essential in binding to hnRNPs (heterogeneous nuclear
riboproteins) (Van Deerlin et al., 2008). However, the main
molecular mechanism of ALS remains undetermined.

Amyotrophic Lateral Sclerosis and
Ubiquilin-2
UBQLN2 disorders involved in the pathogenesis of different
neurodegenerative disorders, as this protein regulates
ubiquitinated protein degradation. Besides, UBQLN-2 mutations
result in FALS, and UBQLN-2 accumulation co-localizes
with skein-like inclusions (Deng et al., 2011). UBQLN-2
proteins contribute to the transfer of ubiquitinated proteins to
proteasomes. The UBQLN-2 overexpression reduces PS1 and
PS2 ubiquitination (Massey et al., 2004). The influence of ALS
on lysosomal degradation has been confirmed in a previous
study, as UBQLN proteins can increase the binding of early
autophagosomes to the lysosomes (N’Diaye et al., 2009).

Amyotrophic Lateral Sclerosis and
Optineurin
Optineurin (OPTN) was found to have three different types
of mutations in familial and sporadic ALS. The heterozygous
Glu478Gly missense mutation ubiquitin-binding region,
homozygous Gln398X non-sense mutation and a homozygous
deletion of exon 5 (Maruyama et al., 2010). Both missense
and non-sense mutations prevented the inhibition of NF-κB

(Wagner et al., 2008; Maruyama et al., 2010). Glu478Gly
missense mutation induces the accumulation of the mutated
protein in the neurons and modulates the formation of inclusion
bodies, resulting in a disturbance in the cell biological functions
(Maruyama et al., 2010).

Amyotrophic Lateral Sclerosis and Cyclin F
Williams et al. (2016) performed exome-sequencing for locus
chromosome 16p13.3 in order to discover new leads related to
ALS pathogenesis. The authors discovered a missense mutation
in CCNF gene (nucleotide A replaced by G, resulted in amino
acid substitution Ser621Gly), which encodes the cyclin F in
neuronal cells. Cyclin F (786 amino acid protein) contains F-
box motif that recognizes and binds to SKP1 and CUL1 in order
to form SCF E3 ligase complex (SKP1-CUL1-F-box protein)
(D’Angiolella et al., 2013; Williams et al., 2016). The mutated
cyclin F leads to abnormal ubiquitination and aggregation of
ubiquitinated proteins such as TDP-43, forming ubiquitinated
inclusion (Williams et al., 2016).

Amyotrophic Lateral Sclerosis and
Neural-Precursor-Cell-Expressed-
Developmentally-Down-Regulated-8
Ubiquitin-like protein Neural-precursor-cell-expressed-
developmentally-down-regulated-8 (NEDD8) has a structure
similar to ubiquitins and called Ub-like proteins. Ub-like
proteins are classified into two groups according to the
manner of protein conjugation; type 1 Ub-like proteins
conjugate with the target protein in a way similar but not
totally identical to the known ubiquitination mechanism
such as NEDD8 and small Ub-related modifier (SUMO1),
while type 2 Ub-like proteins have Ub-like protein structure
with broad biological functions such Elongin B (subunit of
the transcription factor B), Rad23 (Radiation sensitive), and
Parkin (Parkinson Protein 2 E3 Ubiquitin Protein Ligase)
(Tanaka et al., 1998).

NEDD8 immuno-reactivity was detected in different
neurodegenerative diseases such as Parkinson disease
(in LBs and Lewy neurites), multiple system atrophy (in
ubiquitinated inclusions and oligodendroglial inclusions),
AD (in neurofibrillary tangles), motor neuron disease (in
ubiquitinated inclusions), and in triplet repeat diseases (in
intranuclear inclusions) (Mori et al., 2005). Moreover, its
immune-reactivity was also detected in other diseases such as
alcoholic liver disease and astrocytoma (in Rosenthal fibers)
(Dil Kuazi et al., 2003).

Signaling proteins and phosphoprotein array study in muscles
of 36 ALS patients revealed that there are 17 differentially
expressed proteins and phosphoprteins in ALS compared to
normal muscle cells. In between, heat shock protein 90 (HSP90)
(chaperone), and phospho-retinonlastoma (tumor suppressor,
p-Rb at Ser780) were overexpressed, while cyclin-dependent
kinase 4 (CDK4) and p-p53 at Ser392 were downregulated
(Yin et al., 2012). The accumulation of P53 was detected in
the nucleus of lumbar spinal cord of ALS patients. Moreover,
the study showed that the immuostaining for p53 was also

Frontiers in Physiology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 36183

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Momtaz et al. Polyphenols Induce Neuroprotection Through UPS

positive for cell cycle regulators (pRb and E2F-1) and apoptotic
proteins (Bax, caspase 8 and caspase 3). P53 stabilization
is regulated by MDM2 via ubiquitin-proteasome machinery.
ALS is characterized by dysfunction in ubiquitin-proteasome
system and this may explain the stabilization of p53 and its
translocation into the nucleus of the lumbar spinal cord. P53-
MDM2 interaction could be a therapeutic target for improving
the survival of ALS patients.

HUNTINGTON DISEASES

HD is a progressive hereditary neurodegenerative disorder
caused by an autosomal dominant defective gene on
chromosome 4 that encodes the huntingtin (HTT) protein,
containing a repeating sequence of CAG at the N-terminus of
HTT, a protein with an abnormally long polyglutamine (polyQ)
sequence. In addition, amyloidogenic mutant huntingtin
(mHTT) aggregates were implicated in progression of HD
(Popovic et al., 2014). Generally, these neuronal aggregates
containing N-terminal fragments of polyQ HTT are located
in the striatum and in the cortex of HD patients; either in
nuclear or in cytoplasmic regions of affected neurons (DiFiglia
et al., 1997). Cognitive decline, behavioral abnormalities and
involuntary movements accounted as marked hallmarks of HD;
probably caused by both neuronal dysfunction and neuronal cell
death; leading to a progressive decline in functional capacity,
and ultimately death. Several factors have been associated with
HD including alterations in calcium level, IGF signaling, vesicle
transport, endoplasmic reticulum maintenance, and autophagy
(Martin et al., 2015). Yet, there is no definite cure for HD,
although several medications are prescribed to treat movement
difficulties (Chorea Huntington) such as monoamine depletors
(i.e., Tetrabenazine); or those targeting the atypical behavioral
aspects of HD such as antidepressants [i.e., serotonin reuptake
inhibitor (SSRI)] and antipsychotic drugs (i.e., Olanzapine)
(Chen et al., 2012).

Various in vitro and in vivo studies ratified that dysfunction
in ubiquitin metabolism contributes to the pathogenesis of
HD, leading to the accumulation and aggregation of insoluble
ubiquitin-containing mHTT (Bennett et al., 2007). Typically,
HTT is ubiquitinated at amino acids K6, K9, and K15, resulting in
its degradation and decreasing the toxicity of mHTT (Kalchman
et al., 1996). The accumulation of K48-, K11-, and K63-linked
ubiquitin chains in HD mouse models, and the brains from HD
patients was shown to be a common feature of HD (Zucchelli
et al., 2011). The fact that mHTT aggregates are abnormally
enriched for ubiquitin and contain ubiquitin E3 ligases, confirms
that the ubiquitination is a key factor in aggregate formation.
Global changes in UPS, alike the accumulation of Lys48-,
Lys63-, and Lys11-linked polyubiquitin chains associated with
HD pathology (Bennett et al., 2007).

Ubiquitin-Proteasome System and Tumor
Necrosis Factor Receptor Associated
Factor 6
Tumor necrosis factor receptor associated factor 6 (TRAF6) is
an E3 ubiquitin ligase and was found to be overexpressed in

postmortem brains of HD patients. In vitro cultured cells, TRAF6
promoted the aggregate formation through mediating atypical
ubiquitination of Lys6-, Lys27-, and Lys29-linked chains related
to HTT. Both mHTT and TRAF6 were localized to insoluble
protein fraction.

POLYPHENOLS IN NEURODEGENERATIVE
DISORDERS

Various pharmacological agents have been studied and used
to find suitable therapeutic interventions in neurodegenerative
diseases; however, some defects have always been associated with
such treatments, since the pathophysiology of such impairments
is yet to be elucidated. A wide range of phytopharmaceuticals
are being explored to improve the effects of commonly
used drugs in the treatment of neurogenic disorders (Farzaei
et al., 2018a), both via prophylactic and disease controlling
approaches (Gorji et al., 2018). Natural products can also provide
templates for the development of other drug compounds and to
design new effective complex molecules (Babitha et al., 2014).
Phytochemicals proven to possess potential neuroprotective
effects and are able to protect the central nervous system
(CNS) against neuronal injury (Kumar, 2006); hence people
who consumed higher amounts of natural functional foods were
found to show a lower risk for diseases caused by neuronal
damage (Lobo et al., 2010).

PPs are the most abundant natural phytochemicals, capable of
protecting neuronal cells in different in vivo and in vitro models
through diverse intracellular targets. Various epidemiological and
preclinical investigations confirmed the favorable effects of PPs
in neurodegenerative diseases, primarily due to their antioxidant
properties and their influence on stress response, mainly through
nuclear factor erythroid 2-related factor (Nrf2) signaling,
triggering the antioxidant defense machinery (Pandareesh et al.,
2015; Farzaei et al., 2018b). In addition, polyphenolic compounds
may exert neuroprotective effects involving phosphoinositide 3-
kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-
3β (GSK-3β) (PI3K/Akt/GSK3β) neuronal survival pathway,
through the N-methyl-D-aspartate (NMDA) receptors and
by downstream signaling in hippocampus and cognitive
deficits through tyrosine receptor kinase β (Trkβ) and brain-
derived neurotrophic factor (BDNF) in hippocampus (Srivastava
et al., 2018). Generally, natural compounds have shown
inhibitory or therapeutic effects on neurodegerative disorders via
biological effects such as antioxidant, anti-inflammatory, calcium
antagonization, anti-apoptosis, and neurofunctional regulation
(Choudhary et al., 2013).

Beside their free radical scavenger properties, the mechanisms
by which polyphenolic compounds are able to counteract
and prevent neurodegenerative diseases include: (1) anti-
inflammatory activity through chromatin remodeling
(modulation of both DNA methyl transferase and histone
deacetylase activities) and alteration in the expression of related
transcription factors such as NF-kB (Rahman and Chung,
2010), and dampening of microgliosis, astrogliosis, and glia-
derived pro-inflammatory cytokines (Sundaram and Gowtham,
2012; Peña-Altamira et al., 2017; Sarubbo et al., 2017); (2)
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improvement of mitochondrial function through stimulating
the mitochondrial membrane potential and respiratory chain
complex IV, enhancing the mitochondrial complex I-IV
enzymatic potential, moderating the mitochondrial free radical
production, and increasing endogenous antioxidant defense
(Fiorani et al., 2010; Davinelli et al., 2013; Cai et al., 2015; de
Oliveira et al., 2015) as well as mitochondrial biogenesis through
activation of the AMPK/Sirt1/PGC-1α axis (Ayissi et al., 2014;
Cao et al., 2014; de Oliveira et al., 2016; Valenti et al., 2016); (3)
antioxidant activity through activation of Nrf2/ARE signaling
pathway, increasing the expression of nerve growth factor, glial
cell line-derived neurotrophic factor, BDNF, TrkA/B, activation
of ERK1/2-CREB-BDNF and Akt/Glycogen synthase kinase 3β
signaling pathways (Lin et al., 2010; Bagli et al., 2016; Moosavi
et al., 2016; Martínez-Huélamo et al., 2017; Sanadgol et al., 2017).

Anthocyanins (Orhan et al., 2015), proanthocyanidins
(Strathearn et al., 2014), stilbenes (Braidy et al., 2016),
isoflavons (Devi et al., 2017), and curcumin (Hu et al.,
2015), are among the most studied dietary phenolic compounds
demonstrating protective effects against AD and PD, while
there are also studies showing the potential of S-allylcysteine as
organosulfur compounds (Farooqui and Farooqui, 2018) and
isothiocyanates such as 6-methylsulfinylhexyl isothiocyanate
(6-HITC) and sulforaphane (Giacoppo et al., 2015) to be active
as neuroprotective dietary phytochemicals.

These herbal constituents seem to create their neuroprotective
effects through mechanisms involving the activation of
cellular antioxidant responses including activation of the
Nrf2-mediated antioxidant response, stimulation of PGC-
1α-mediated mitochondrial biogenesis, and alleviating
neuroinflammation evoked by the activation of glial cells
(de Rus Jacquet et al., 2017a). Several flovonoids like hesperidin,
kaempferol, naringin, and epigallocatechin gallate (EGCG)
have also been reported to show efficacy against 3-NP-induced
neurotoxicity, which is an extensively used animal model
for HD (Dey and De, 2015). Onjisaponin B and trehalose
enhanced autophagy as one of therapeutic approach against toxic
intracytosolic aggregate-prone mHtt protein in HD (Dey and
De, 2015).

A number of PPs can modulate neural toxicity or loss by
means of their antioxidant properties. For example, it was shown
that a synthesized mitochondria-targeted curcumin (MTC),
triphenylphosphonium cation-curcumin, reduced free radicals-
induced neurotoxicity and mitochondrial impairments in vivo
and in vitro (Hasan et al., 2019a). Similarly, curcumin and MTC
showed protective effects against oxidative damage and cerebellar
toxicity induced by rotenone in vivo, mainly through decrease
of lipid peroxidation, and nitric oxide levels, and reduction of
glutathione, SOD, and catalase activities, while enhancing the
acetylcholine esterase activity (Hasan et al., 2019b).

Beside flavonoids, various non-flavonoid antioxidant
phytochemicals like α-mangostin, curcumin, lycopene, and
melatonin, have been reported as effective natural compounds
in different HD models (Choudhary et al., 2013). Considering
the role of oxidative stress and chronic inflammation in
the ALS pathophysiology, natural compounds targeting
such stressors are supposed to be effective alone or in

combination with other natural/chemical substances to find
new therapeutic approach for ALS management (Nabavi et al.,
2015).

EGCG, quercetin, quercitrin, and curcumin have been found
to be effective in ALS models (Koh et al., 2006; Ip et al., 2017). A
12-month, double-blind, randomized, placebo-controlled study
on ALS patients, demonstrated that nanocurcumin combined
with riluzole improved survival rate during the trial (Ahmadi
et al., 2018).

Polyphenols, Ubiquitin–Proteasome, and
Neurodegenerative Diseases
PPs directly or indirectly interfere with the cellular protein
degradation systems including the chaperone-mediated
autophagy; the ubiquitin–proteasome degradation pathway;
and the lysosome-autophagy system, by eliminating the
misfolded and damaged proteins. The accumulation of insoluble
protein aggregates is a common mark of neurodegenerative
diseases, making PPs a great interest for therapeutic strategies
(Hajieva, 2017). On one hand, proteasomal inhibition by PPs
would be undesirable in neurodegenerative disorders, and
in the other hand, proteasome stimulation and reduction
of protein degradation by proteasome inhibitors have
shown beneficial consequences and were found to be
presumably neuroprotective (del Rosario Campos-Esparza
and Adriana Torres-Ramos, 2010; de Rus Jacquet et al.,
2017b).

PPs and their derivatives have been shown to inhibit UPS
(Nabavi et al., 2018a), yet, a number of limitations have impeded
their clinical applications. PPs may target various components
of this system through mechanisms involving proteasome
inhibition, deubiquitinase activity and/or the activities of E1, E2,
or E3, thereby, physiologically affecting the essential proteins
and/or by effect on the protein substrates, leading to the
imbalanced coordinated intracellular protein homeostasis and
the consequent off-target effects (del Rosario Campos-Esparza
and Adriana Torres-Ramos, 2010; Liu et al., 2015).

Aforementioned, several PPs were reported to act as
proteasome-inhibitors, mainly through chymotrypsin-like
activity (on both intracellular 26S and purified 20S proteasome)
(Nam et al., 2001; Smith et al., 2002; Kazi et al., 2003; Marambaud
et al., 2005; Chen et al., 2007a,b; Chang et al., 2015; Ding et al.,
2018). Structure activity relationship studies showed that
flavonoids with a hydroxylated B ring and/or unsaturated C ring
are potent proteasome inhibitors, of which the carbonyl carbon
on the C ring could be the site of nucleophilic attack on the
proteasome β5 subunit (Chen et al., 2007a). Anthocyanins and
anthocyanidins were reported to possess proteasome inhibitory
effects, contributing to their neuroprotective activities (Dreiseitel
et al., 2008). Several studies demonstrated that the proteasome
inhibitory activities of green tea PPs, are responsible for its
anticancer and neuroprotective assets (del Rosario Campos-
Esparza and Adriana Torres-Ramos, 2010), for instance, EGCG
and its analogs were shown to inhibit the chymotrypsin-like
activity of the purified 20S proteasome in vitro (Nam et al., 2001;
Smith et al., 2002). As an exception, curcumin exhibits a binary
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function against proteasome. Curcumin at low concentrations
activates the proteasome (Jana et al., 2004), while at high doses,
the compound suppresses the proteasome activity by enhancing
the accumulation of ubiquitinated proteins. In neuro 2a and
Hela cells, curcumin inhibited the chymotrypsin, trypsin, and
post-glutamyl peptidyl-like protease activity of the proteasome,
decreased the free ubiquitin levels and increased the protein
polyubiquitination (Jana et al., 2004). The neuroprotective
effect of curcumin could also be explained by deubiquitination
enzymes that specifically regulate the protein polyubiquitination,
through cleavage of ubiquitin from ubiquitin-conjugated protein
substrates, preventing molecular aggregation (Reyes-Turcu
et al., 2009). Curcumin treatment reduced the activities of
deubiquitination enzymes in HeLa cells (Si et al., 2007), also
curcumin inhibited the ubiquitin isopeptidase activity (Mullally
and Fitzpatrick, 2002). In a recent in vitro study, myricetin
modulated endogenous levels of quality control E3 ubiquitin
ligase E6-AP and reduced the misfolded proteins inclusions,
resulting in the maintenance of proteostasis (Joshi et al.,
2019).

A polyphenol-rich extract from elderflower was shown
to suppress neurotoxicity elicited by PD-related symptoms
in cortical astrocytes via Nrf2 stabilization and inhibition
of Nrf2 degradation mediated by the ubiquitin proteasome
pathway. Another way, down-regulation of UPS by elderflower
polyphenols induces the Nrf2 activation through up-regulation
of macroautophagy pathway (also called the lysosome–
autophagy protein degradation pathway), leading to the
Nrf2 stabilization (de Rus Jacquet et al., 2017b). Nrf2 is a
transcription factor involved in regulating the expression
of cellular antioxidant enzymes and the genes encoding
cytoprotective proteins (Tambe, 2015). Up-regulation of the
Nrf2-mediated cellular antioxidant response (i.e., increase in
glutathione synthesis and glutathione metabolites levels), results
in alleviation of neurodegeneration in PD (de Rus Jacquet
et al., 2017b). Quercetin was shown to induce the expression
of proteasome subunits by a similar mechanism (Kwak et al.,
2003).

In AD brains, Aβ neurotoxicity has been shown to have an
inhibitory impact on the activity of UPS (Tseng et al., 2008),
compelling a decrease in proteasome activity. In HEK293 and
neuro 2a cells transfected with human APP695, resveratrol
promoted the intracellular degradation of Aβ in a way that total
activity of the proteasome did not increase. This was proved
where several proteasome inhibitors such as lactacystin, Z-GPFL-
CHO, and YU101 significantly prevented the resveratrol-induced
inhibition of Aβ activity, and the siRNA-directed silencing of
the proteasome β5 subunit (Marambaud et al., 2005). In mouse
model of early PD, an extract of mulberry fruits, rich in phenolic
contents (i.e., flavonoids, anthocyanins, and arotenoids), down-
regulated the expression of components such as α-SNCA and
ubiquitin, also reduced neuronal toxicity; representing that the
neuroprotective effect of this plant might be partially mediated
by inhibition of the LBs formation in the brain. LBs is thought to
trigger dopaminergic neurodegeneration in PD (Gu et al., 2017)
(Figure 4).

Polyphenols/Ubiquitin-Proteasome System
Interactions, Clinical Trials
Pharmacological activities of several phytochemicals in
neurodegenerative diseases are extensively supported by
preclinical and epidemiological studies, which some have
shown the mechanistic potential of these compounds as the
UP pathway inhibitors (Murakami, 2013). Previously stated, a
variety of phenolic compounds have been characterized with
their proteasome-inhibitory activity such as resveratrol, EGCG,
curcumin, quercetin, chrysin, genistein, kampferol, myrycetin,
luteolin, apigenin, gallic acid, ellagic acid, and tannic acid.
However, few clinical trials were carried out on a limited basis.
Up to date, curcumin and resveratrol are the most studied
compounds followed by EGCG and genistein, alone or in
combination with other conventional drugs.

Curcumin
Currently, 6 clinical trials related to the effects of curcumin
on AD is being conducted (http://clinicaltrials.gov/ct2/results?
term=alzheimer\pmand\pmcurcumin), of which 3 have been
completed (4, 5, 6) and 2 studies are still in progress, whereas
1 study has unknown status (Table 1). In a pilot randomized
clinical trial in China, 34 patients with a diagnosis of probable
or possible AD were investigated in 3 subgroups including 4, 1
(compared with 3 g placebo), or 0 g curcumin (compared with 4 g
placebo) once daily. They additionally received the standardized
extract of gingko leaf (120 mg/day). Compared with the placebo,
there was not any significant difference in cognitive function

(as secondary outcome) or plasma isoprostanes iPF2α-III and
plasma Aβ40 levels (as primary outcome) between 0, 1, and 6
months. Curcumin seemed to cause no major side effects in AD
patients in this study (Baum et al., 2008).

In a double-blinded, placebo-controlled trial in the
United States, a mixture of curcumin derivatives (2 and 4
g/day), consisting of curcuminoids, demethoxycurcumin, and
bisdemethoxycurcumin was prescribed to the patients with
mild-to-moderate AD for 24 weeks and an open-label extension
to 48 weeks. No significant differences in cognitive function
and in plasma or cerebrospinal fluid (CSF) biomarkers of AD
(including Aβ40 and Aβ42 levels, and total tau and p-tau)
were observed between curcumin and the placebo groups
(Ringman et al., 2012).

A double-blind, randomized, placebo-controlled trial in Iran
was designed to evaluate the safety and efficacy of nanocurcumin
in ALS adults. Subjects with a definite or probable ALS diagnosis
were received either nanocurcumin (80 mg/day) or placebo
for 12 months. The primary outcomes were considered to be
survival/death and any mechanical ventilation dependency. The
authors found a considerable difference between the study groups
survival. No major adverse events or drug adverse effects and
death were reported (Ahmadi et al., 2018).

Another pilot randomized trial was carried out in Italy to
investigate the efficacy of the higher dose of oral curcumin
(600 mg/day, Brainoil) on clinical parameters and biochemical
markers, in 42 ALS patients. The first 3 months of the study
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FIGURE 4 | Polyphenols, ubiquitin–proteasome system and neurodegenerative diseases.

was double blind and the last 3 months were open-label. Clinical
criteria were consisted of ALS Functional Rating Scale Revised
(ALS-FRS-r), BMI, Medical Research Council (MRC) scale,
and Maximum Handgrip Force (MHF) scale; and the plasma
metabolic biomarkers (i.e., plasma values of Advanced Oxidative
Protein Products (AOPPs), ferric reducing ability (FRAP), total
thiols (T-SH) groups and lactate). Data were not significant,
however, the authors concluded further studies is required due
to disparity of results (Chico et al., 2018).

Resveratrol
There are 5 recorded clinical trials related to the effects
of resveratrol on AD (http://clinicaltrials.gov/ct2/results?
term$=$alzheimer\pmand\pmresveratrol), 3 studies have been

completed, 1 has been withdrawn and 1 is still active. Two
clinical trials have reported that resveratrol altered several AD
specific biomarkers with no major adverse effects in AD patients
(Turner et al., 2015; Moussa et al., 2017). A phase 2 randomized,
double-blind, placebo-controlled trial was performed in the
United States, mainly to determine the safety, tolerability and
pharmacokinetics of synthetic resveratrol (500mg orally, once
daily, increasing at 13 weeks intervals to a maximum of 1 g)
in 119 individuals with mild to moderate AD for 52-weeks.
They found that resveratrol was able to penetrate into the
blood–brain barrier; likewise, the compound changed the AD
biomarkers (Aβ40, Aβ42, tau, and phospho-tau) in the plasma
and CSF. Plasma Aβ40 and CSF Aβ40 levels were found to
be stabilized by resveratrol compared with a decrease in the
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TABLE 1 | Clinical trials relevant to the phytochemicals with UPS inhibitory activity.

ID number

(www.ClinicalTrials.gov)

Phase Medication and dose Duration Number of

subjects/Condition

Status Country

NCT00164749 Phase 1,2 Curcumin 1 or 4 g/day

(standardized ginkgo extract 120

mg/day)

6 months 34

Probable or

possible AD

Published China

NCT00099710 Phase 2 Curcumin C3 Complex® 2 or 4

g/day (1.9 or 3.8 g/day

curcuminoids) a

24 weeks with an

open-label

extension to 48

weeks

36

Mild-to-moderate

AD

Published USA

NCT00595582 – Curcumin 5.4 g/day (bioperine) 24 months 10 MCI or mild AD Completed

Results

not available

USA

NCT01001637 Phase 2 Longvida® 4 or 6 g/day 2 months 26 Probable AD Unknown India

NCT01383161 Phase 2 TheracurminTM 2.79 g/day (180

mg/day curcumin)

18 months 132 MCI Active, not

recruiting

USA

NCT01811381 Phase 2 Longvida Curcumin® (800

mg/day of curcumin)

12 months 80 MCI Recruiting USA

NCT01504854 Phase 2 Resveratrol 500 mg/day with

dose excalation by 500mg

increments ending with 2 g/day

52 weeks 119

Mild-to-moderate

AD

Published USA

NCT00743743 Phase 3 Longevinex brand resveratrol

supplement (resveratrol 215

mg/day)

52 weeks 50

Mild-to-moderate

AD

Withdrawn USA

NCT00678431 Phase 3 Resveratrol with glucose and

malate

12 months 27

Mild-to-moderate

AD

Completed Result

not available

USA

NCT01126229 Phase 1 Resveratrol 300 mg/day or 1,000

mg/day

12 weeks 32 ≥65 years old Completed Result

not available

USA

NCT01219244 Phase 4 Resveratrol or omega-3

supplementation or caloric

restriction

6 months 330

MCI

Recruiting Germany

NCT01766180 - ResVida (resveratrol 150 mg/day)

alone or associated with

Fruitflow a-II 150 mg/day

3 months 80 Subjects with

memory

impairment

Recruiting USA

NCT02621554 Phase 2/Phase 3 Resveratrol (dose not reported) 12 months 60 ≥50 years

Healthy or with

subjective memory

complaints

Recruiting Germany

NCT02502253 Phase 1 Bioactive Dietary Polyphenol

Preparation (BDPP) at low,

moderate, and high dose

4 months 48 MCI Recruiting USA

NCT01982578 - Genistein (60mg BID) 180 days 50

AD

Unknown Spain

NCT00205179 Phase 2 Soy isoflavones

100 mg/day; Novasoy®; (85%

daidzin and genistin, as

glycosides)

6 month 59

AD

Published USA

NCT00951834 Phase 2, 3 Epigallocatechin-gallate (EGCG)

with increasing doses (in months

1–3: 200mg EGCG, months

4–6: 400mg, months 7–9:

600mg and months 10–18:

800mg EGCG).

18 month 21 subjects in the

early stages of AD

Completed

Results

not available

Germany

NCT01699711 Phase 2 9 mg/kg of EGCG, (in green tea

extract standardized for EGCG)

12 month 84

DS

Published Spain

NCT01662414 Phase 4 Soy protein (as placebo) vs. HMS

90® (whey protein) by the dose

of 1 sachect (10 g) 2 times/day

as add-on (adjuvant) therapy.

6 month 32

Idiopathic PD

Published Thailand

(Continued)
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TABLE 1 | Continued

ID number

(www.ClinicalTrials.gov)

Phase Medication and dose Duration Number of

subjects/Condition

Status Country

NCT02336633 – Resveratrol

(80 mg/j = 4 capsules/day)

12 month 120

HD

Recruiting France

Not available Pilot Curcumin (600 mg/day, Brainoil)

(for the first 3 months), followed

by an open-label phase (for the

last 3 months)

6 month 42

ALS

Published Italy

Not available – Nanocurcumin (80mg daily) 12 month 54 Subjects with

definite or

probable ALS

Published Iran

AD, Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington disease; DS, Down syndrome; ALS, Amyotrophic Lateral Sclerosis.

placebo group; it also stabilized CSF Aβ42 in the subset of
patients with biomarker-confirmed AD (baseline Aβ42 <

600 ng/ml). Additionally, the brain volume loss was increased
in resveratrol treated group (3 vs. 1%), probably due to anti-
inflammatory activity of resveratrol. Totally, the results were
not interpretable due to the study limitations; furthermore,
no significant effects were found on clinical (secondary)
outcomes. Resveratrol was found safe and well-tolerated
with minor side effects such as nausea, diarrhea and weight
loss (Turner et al., 2015).

Moussa et al., suggested that resveratrol treatment could
preserve the integrity of the blood-brain barrier in AD patients
with CSF Aβ42 < 600 ng/ml, declined the level of CSF MMP9
(matrix metallopeptidase 9), and elevated macrophage-derived
chemokine (MDC), interleukin (IL)-4, and the fibroblast growth
factor (FGF)-2 (Moussa et al., 2017).

Moreover, resveratrol enhanced the plasma MMP10 and
decreased the pro-inflammatory makers including IL-1R4, IL-
12P40, IL-12P70, TNF-α, and RANTES compared to the
baseline values. It also attenuated the accumulation of Aβs
in the brain with no alterations in CSF tau and p-tau. From
clinical point of view, resveratrol improved cognitive and
functional decline (mini-mental state examination (MMSE) and
activities of daily living) during 12-months study. The authors
concluded that resveratrol reduced CSF MMP9, modified neuro-
inflammatory factors, and caused adaptive immunity (Moussa
et al., 2017).

Another randomized, double-blind phase 3 study has been
carried out on 27 participants with mild-to-moderate AD.
The treatment group received resveratrol (unknown dose)
with glucose and malate, delivered in grape juice. Cognitive
measurements (the ADAS-Cog scale and Clinical Global
Impression of Change (CGIC) scale) were used at follow up
visits at months 3, 6, 9, and 12 months. Although this study was
completed, results are unpublished to date (Zhu et al., 2018).

One randomized double-blind placebo controlled trial is
already running to investigate the effect of resveratrol on 102
early affected HD patients in France (5≤UHDRS≤40). Subjects
received either resveratrol at 80mg or placebo for 1 year. Clinical
outcomes and biological tolerance evaluated every 3 months.
The primary measure is the rate of caudate atrophy after 1-
year treatment.

Genistein
Despite promising pre-clinical data, there is no clinical trials
on the applications of genistein for AD treatment. Up to our
knowledge, only one trial was conducted. Genistein (60mg)
administration for 180 days changed the Aβ level in CSF of AD
patients, besides, improved MMSE, ADAS-cog and the memory
alteration test at determined intervals. Although, the study has
passed its completion date, but the results are not available
(Yassa et al., 2009).

Soy Isoflavones
There is a pilot randomized clinical trial examining the effect of
soy isoflavones on cognitive function in oldmen and women over
the age of 60 diagnosed with AD. Sixty-five participants were
randomized to treatment for 6 months by soy isoflavone (100
mg/day; 85% daidzin and genistin as glycosides), or matching
placebo capsules. No significant differences were observed
between isoflavones treated group and placebo group or between
the genders in terms of cognition outcomes, and self-report of
mood symptoms. Besides, it was found that cognitive functions
(speed dexterity and verbal fluency) were associated with equal
levels (Gleason et al., 2015). A double-blind, placebo-controlled,
Phase IV trial was designed in Thailand to compare HMS 90 R©

(an immune system stimulant) vs. soy protein (as placebo), by
the dose of 1 sachet (10 g) 2 times/day as adjuvant therapy in 38
individuals with idiopathic PD. No significant clinical outcomes
were observed in biomarkers of oxidative stress (glutathione),
plasma amino acids, and the brain function in both groups
(Tosukhowong et al., 2016).

Epigallocatechin Gallate
The normalization of tyrosine phosphorylation regulated kinase
1A gene (Dyrk1A) and APP functions as therapeutic approaches
for cognition improvement and slowing AD progression was
investigated in a phase 2 randomized clinical study. Down
syndrome (DS) patients received a daily oral dose of 9 mg/kg
of EGCG, (in green tea extract standardized for EGCG) for 12
months. EGCG caused significant improvement in the adaptive
behavior and brain-related changes in young adults with DS
(de la Torre et al., 2016). In a phase 2 randomized placebo-
controlled clinical trial, 21 patients over the age of 60 and in
the early stages of AD received EGCG in an increasing manner
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(in months 1–3: 200mg EGCG, months 4–6: 400mg, months
7–9: 600mg, and months 10–18: 800mg EGCG). ADAS-COG
score, MMSE score, safety and tolerability, and the brain atrophy
were assessed, although the study is completed but data are
not available (https://clinicaltrials.gov/ct2/show/NCT00951834).

CONCLUSION AND FUTURE PROSPECTS

The unique involvement of UPS in malfunction of the
nervous system encloses a broad range from drug abuse
to neuroinflammation, making UPS an emerging topic
in neurodegeneration and an important target for drug
discovery. Since, UPS function is downregulated in
vulnerable degenerating neurons in neurodegenerative
diseases, thus, normal function of UPS assures a balanced
regulation of misfolded protein degradation, which
contributes to eliminate abnormal protein aggregates and
to maintain the cellular protein homeostasis in the brain and
neural network.

So far, a number of UPS regulators were developed. For
example, cAMP phosphodiesterases inhibitors and UCHL1 that
can modulate the brain cAMP-dependent protein kinase A
(PKA)-cAMP response element binding protein (CREB) PKA-
pCREB levels in AD subjects, resulting in enhanced protein
degradation and synaptic functions (Cao et al., 2019). According
to the collected data, a number of PPs are able to exert UPS
inhibitory activity, mainly through chymotrypsin-like activity
on both intracellular 26S and purified 20S proteasome. PPs
interfere in many steps of degradation processes by means of
proteasome inhibition, deubiquitinase activity, and stimulation
of E1, E2, or E3, resulting in reduction of neurotoxicity,
improvement of synaptic plasticity, and transmission, as well as
enhanced neuronal survival. In this context, few clinical trials
were carried out, mostly on a limited basis, however, the results
are inconclusive and in most cases statistically insignificant.
However, concerning PPs and their probable interaction with
UPS, two hypotheses can be speculated; either their proteasomal
inhibitory effects or their proteasomal stimulatory functions.
PPs can induce ubiquitination which results in accelerating
the elimination of damaged soluble proteins and degradation
of short-lived regulatory proteins. Another way, inhibition of
proteasomal activity by proteasome inhibitors i.e., PPs has been
linked to synaptic plasticity.

Considering PPs and their roles in neuroprotection,
curcumin, and resveratrol are the most studied polyphenolic

compounds followed by EGCG and genistein, alone or in
combination with other conventional drugs. Recently, it
was proposed that UPS dysregulation, aberrant mRNA splicing,
mitochondrial dysfunction, and excessive oxidative stress directly
interplay with the process of neurodegeneration, thereby, future
design of biomarkers and the drug development plans have to
focus on concurrent targeting of multiple components and steps
of neurodegenerative diseases (Tan et al., 2019). It is plausible
that a combination of PPs and current drugs may improve the
PPs therapeutic application for neuronal related destruction
disorders. In this way, PPs offers considerable opportunity
for development of specific therapeutics approaches via UPS,
for particular groups of misfolded proteins. However, direct
links and molecular mechanisms remain elusive and require to
be addressed.

This is important to have a clear understanding of PPs
molecular mechanism of action and their possible interplay
with UPS. In addition, the upstream regulators or downstream
targets of UPS have to be characterized, empowering researches
to develop treatment strategies with more specificity and
efficacy. Another question that has to be responded is
whether the inhibition of UPS by PPs is more favorable
for the neurodegenerative diseases or the stimulation of
this system? Concerning neurodegeneration, further clinical
interventions with greater sample size, proper duration,
applicable formulations, and/or dosages should be designed to
assess the potential efficacy of natural bioactive compounds as
UPS inhibitors/regulators.
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P2X7 receptors (P2X7Rs) are ATP sensitive cation channels and have been shown
to be effective in various epilepsy models. Absence epilepsy is a type of idiopathic,
generalized, non-convulsive epilepsy. Limited data exist on the role of P2X7Rs and
no data has been reported regarding the interaction between P2X7Rs and glutamate
receptor NMDA in absence epilepsy. Thus, this study was designed to investigate
the role of P2X7 and NMDA receptors and their possible interaction in WAG/Rij rats
with absence epilepsy. Permanent cannula and electrodes were placed on the skulls
of the animals. After the healing period of the electrode and cannula implantation,
ECoG recordings were obtained during 180 min before and after drug injections.
P2X7R agonist BzATP, at doses of 50 µg and 100 µg (intracerebroventricular; i.c.v.)
and antagonist A-438079, at doses of 20 µg and 40 µg (i.c.v.) were administered
alone or prior to memantine (5 mg/kg, intraperitoneal; i.p.) injection. The total number
(in every 20 min), the mean duration, and the amplitude of spike-wave discharges
(SWDs) were calculated and compared. Rats were decapitated and the right and
left hemisphere, cerebellum, and brainstem were separated for the measurements of
the advanced oxidation protein product (AOPP), malondialdehyde (MDA), superoxide
dismutase (SOD), glutathione (GSH), catalase (CAT), glutathione peroxide (GPx), and
glutathione reductase (GR). BzATP and A-438079 did not alter measured SWDs
parameters, whereas memantine reduced them, which is considered anticonvulsant.
BzATP did not alter the anticonvulsant effect of memantine, while A-438079 decreased
the effect of memantine. Administration of BzATP increased the levels of SOD and GR
in cerebrum hemispheres. A-438079 did not alter any of the biochemical parameters.
Memantine reduced the levels of MDA, GSH, and GR while increased the level of
CAT in the cerebrum. Administration of BzATP before memantine abolished the effect
of memantine on MDA levels. The evidence from this study suggests that P2X7Rs
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does not directly play a role in the formation of absence seizures. P2X7Rs agonist,
reduced the antioxidant activity of memantine whereas agonist of P2X7Rs reduced the
anticonvulsant action of memantine, suggesting a partial interaction between P2X7 and
NMDA receptors in absence epilepsy model.

Keywords: absence, epilepsy, memantine, NMDA, oxidative, P2X7, stress, WAG/Rij

INTRODUCTION

P2X7 receptors (P2X7Rs) are purinergic cation channels. They
are sensitive to high concentrations of ATP in the extracellular
space, and they have essential roles in inflammation (Burnstock
and Knight, 2018). P2X7Rs could be permeable to small
cations when they are stimulated within milliseconds. However,
prolonged stimulation (within seconds) of P2X7Rs allows
permeation by molecules with a mass of up to 900 Da,
leading to the release of inflammatory cytokines and apoptosis
(Burnstock and Knight, 2018). Stimulation of P2X7Rs also
leads to neuroinflammatory responses, including, ADAM10, and
ADAM17 activation, and causes the secretion of prostaglandin
E2 and proinflammatory cytokines, such as interleukin-1β (IL-
1β), IL-2, IL-4, IL-6, and tumor necrosis factor (TNF) (Engel
et al., 2012b; Beamer et al., 2017). P2X7Rs mediate NLRP3
inflammasome-dependent IL-1β secretion following activation
of NF-κB in the brain and immune cells (Albalawi et al., 2017;
Burnstock and Knight, 2018). Therefore, P2X7Rs are a target for
neurodegenerative diseases.

P2X7R expression has been widely shown in the central
nervous system, including microglia, oligodendrocytes, and
ependymal cells (Jimenez-Mateos et al., 2019). The P2X7R is
mainly expressed on microglia, but not on the neurons (Jimenez-
Pacheco et al., 2016; Kaczmarek-Hajek et al., 2018). P2X7R is
expressed in the CA1 pyramidal and dentate granule neurons,
as well as in microglia of epileptic mice (Jimenez-Pacheco et al.,
2016) and in the neurons of rat hippocampus (Sperlagh et al.,
2002). Moreover, P2X7R expression has been detected in both
the astrocyte culture of brain/spinal cord slices (Illes et al.,
2012, 2017). This conflicting data about functional expression
of P2X7R could be attributed to both brain region-specific
expression and the pathological conditions of the brain such as
epilepsy (Beamer et al., 2017). P2X7R expression has increased
in the hippocampus and neocortex regions of the brain in
many epilepsy models (Jimenez-Pacheco et al., 2016; Huang
et al., 2017; Rodriguez-Alvarez et al., 2017; Zeng et al., 2017;
Jimenez-Mateos et al., 2019).

Absence epilepsy is a common neurological disease in children
that affects educational success. Absence epilepsy is a loss
of consciousness with a sudden pause in behavior, and if
electroencephalography is recorded during seizures, bilateral
synchronous 3-Hz frequency spike-wave discharges (SWDs)
are observed (Russo et al., 2016; Fisher et al., 2017). Its
pathophysiology is unclear, but it has been shown that absence
seizures start from a glutamatergic focus located in the perioral
region of the somatosensory cortex, and then this area affects
the thalamus over time and creates a cortico-thalamo-cortical
circuit (Meeren et al., 2005; Pinault and O’Brien, 2005). Wistar

Albino Glaxo/Rijswijk (WAG/Rij) rats are also a validated
genetic model of absence epilepsy characterized by SWDs on
electroencephalography with a spontaneous pause in behavior
(Russo et al., 2016). IL-1β increases in the somatosensory
cortex and IL-1β antagonist administration reduces SWDs in
the Genetic Absence Epilepsy Rat from Strasbourg (GAERS)
model, which is also a validated genetic absence epilepsy model
(Akin et al., 2011).

The effects of P2X7Rs on epilepsy have been investigated
in various experimental epilepsy models (Fischer et al., 2016;
Huang et al., 2017; Nieoczym et al., 2017; Rodriguez-Alvarez
et al., 2017; Arslan et al., 2019). In a kainic acid-induced
status epilepticus (SE) model, P2X7R expression was shown to
increase, and seizure severity and neuronal death decreased after
pre-treatment or post-treatment with intracerebroventricular
(i.c.v.) injection of A-438079 or systemic administration of JNJ-
47965567 (Engel et al., 2012a; Jimenez-Pacheco et al., 2013, 2016).
Systemic administration of A-438079 reduced convulsions in
the kainic acid-induced SE model and reduced neuronal death
more than phenobarbital in 10-day-old rats (Mesuret et al.,
2014). In a penicillin-induced epilepsy model, a P2X7R agonist
showed proconvulsant effects that could be reversed by A-
438079 and a T-type calcium channel blocker, whereas a P2X7R
antagonist, A-438079, showed an anticonvulsant effect (Arslan
et al., 2019). In a pentylenetetrazol (PTZ) kindling model, P2X7R
antagonists, Brilliant Blue G (BBG) and tanshinone showed a
slight delay in kindling development, and JNJ-47965567 and
AFC-5128 showed a strong delay (Soni et al., 2015; Fischer
et al., 2016). However, P2X7R antagonists were ineffective in fully
kindled rats (Fischer et al., 2016). They also did not affect the
number of seizures in the kainic acid-induced kindling model,
but they gave rise to less severe chronic seizures (Amhaoul
et al., 2016). Systemic administration of A-438079 reduced acute
seizures during hypoxia in neonatal mice but had no effect on
post-hypoxia seizures (Rodriguez-Alvarez et al., 2017). P2X7R
antagonists did not affect the maximal electroshock seizure
threshold test or PTZ seizure threshold test, but AFC-5128 or
JNJ-47965567 combination with carbamazepine increased the
seizure threshold more than carbamazepine alone (Fischer et al.,
2016; Nieoczym et al., 2017). BBG showed a week anticonvulsant
action on the threshold of 6 Hz induced psychomotor seizures
in mice (Nieoczym et al., 2017). However, P2X7R knockout
mice were more susceptible to pilocarpine-induced seizures
(Kim and Kang, 2011), and blockade of P2X7Rs increased the
number and severity of pilocarpine-induced seizures in mice
(Rozmer et al., 2017).

On the other hand, NMDA receptors are cation channels, and
over-stimulation leads to an increase in intracellular calcium,
which could be toxic for cells (Rosini et al., 2019). Memantine,
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a non-competitive NMDA receptor antagonist, has also shown
anticonvulsant effects in many experimental epilepsy models,
including a penicillin-induced epilepsy model, an audiogenic
seizure model, and a PTZ kindling model (Frey and Voits, 1991;
Cakil et al., 2011; Kim et al., 2012; Zaitsev et al., 2015). Only
one study has been conducted with WAG/Ola/Hsd rats, which
are thought to be a model of genetic absence epilepsy (Frey and
Voits, 1991), but there is no much information about this rat
substrain. The impairment of gamma-aminobutyric acid (GABA)
and glutamate leads to epilepsy. GABAergic antiepileptic drugs
worsen absence seizures (Panayiotopoulos, 2001). However, the
NMDA receptor NR1 subunit showed a decrease depending on
age in WAG/Rij rats (van de Bovenkamp-Janssen et al., 2006).
In addition, in both 2-month-old and 6-month-old WAG/Rij
rats, the NR2B subunit was lower in various layers of the
somatosensory cortex than in the Wistar rats of the same age
(Karimzadeh et al., 2013). Stimulation of NMDA receptors
increased SWDs in WAG/Rij rats, whereas NMDA receptor
reduced SWDs (Peeters et al., 1994).

The P2X7R increases glutamate secretion in a vesicular and
non-vesicular manner (Sperlagh et al., 2002; Cho et al., 2010).
It also affects GABA and glutamate reuptake in a calcium-
dependent manner (Barros-Barbosa et al., 2018). The P2X7R
was found to be non-desensitizing, and it allows substantial
calcium influx (Fischer et al., 2016). It activates intracellular
signaling pathways (Takenouchi et al., 2010). Both P2X7R and
NMDA receptor activation can activate pathways of reactive
oxygen species (ROS) (Davidson and Duchen, 2006). ROS cause
many changes such as aging, cardiovascular disease, cancer,
and neurodegenerative diseases, including epilepsy, by damaging
proteins, lipids, carbohydrates, and nucleic acids, and they can be
controlled by antioxidant systems, preventing the formation of
ROS, and damage (Droge, 2002; Terrone et al., 2019).

x There are limited data on the interaction between
P2X7Rs and NMDA receptors in epilepsy. Thus, the effects
of P2X7Rs and NMDA receptors and their relationship were
investigated using a P2X7R agonist, BzATP, which is more
selective for P2X7R than for other P2X receptors, a P2X7R
antagonist, A-438079, which highly targets the P2X7R, and
a selective antagonist of the NMDA receptor, memantine, in
WAG/Rij rats with both electrophysiological and biochemical
analysis methods.

MATERIALS AND METHODS

Animals
In this study, 63 male, 6–8 months old, 250–300 g weighing
WAG/Rij rats were used with the permission of Ondokuz
Mayis University Animal Experiments Local Ethics Committee
(2015/56). Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats with
spontaneous seizures were purchased from Charles River
Lab (Germany). Animals were fed ad libitum and housed
in heat-regulated rooms, on a 12 h light-dark cycle. All
experimental procedures were conducted under the European
Union Directive (2010/63/EU), and Turkish legislation acts
concerning animal experiments.

Animals were divided into nine groups (n = 7) randomly as
follows:

1. Control group (WAG/Rij rat)
2. Sham Group (WAG/Rij rat, 2 µl sterile distilled water;

i.c.v.)
3. BzATP 50 µg (i.c.v.) group
4. BzATP 100 µg (i.c.v.) group
5. A-438079 20 µg (i.c.v.) group
6. A-438079 40 µg (i.c.v.) group
7. Memantine 5 mg/kg (i.p.) group
8. BzATP 100 µg (i.c.v.) + Memantine 5 mg/kg (i.p.) group
9. A-438079 20 µg; (i.c.v.) + Memantine 5 mg/kg (i.p.) group.

Surgery and Electrocorticography
Recording
Animals were anesthetized and sedated with ketamine/xylazine
(90/10 mg/kg; i.p.) and placed in the stereotaxic apparatus. After
the skin was cut off about 3 cm and folded back, subcutaneous
tissue was removed from the cranium. According to the rat brain
atlas (Paxinos and Watson, 2007), four burr holes were drilled
in the skull with a microdrill without damaging the dura mater.
For ECoG recordings, three screw electrodes were placed into the
holes as coordinates: first electrode; 2 mm anterior and 3.5 mm
right lateral to bregma, second electrode; 6 mm posterior and
4 mm right lateral to bregma and earth electrode was placed
on the cerebellum. For i.c.v. injections, an external cannula
was advanced into the brain as coordinates: 1.1 mm posterior,
1.5 mm right lateral and 3.2 mm vertical to bregma. Afterward,
the electrodes and cannula were fixed to the skull with dental
cement. The cannula was covered with a dust cup until used.
After the surgery, animals were housed individually for a week
and habituated to the recording cage (32 cm × 30 cm in width,
50 cm high) for 3 days before the experimental procedure.

On the experiment day, animals were connected to the ECoG
recording system (PowerLab, 16/SP, AD Instruments, Australia)
by an isolated flexible cable. Baseline electrocorticography
(ECoG) recordings were taken for 3 h from all awake animals
at the same time of day (10:00 AM). After the drug injection,
ECoGs recording continued for another 3 h (Aygun et al.,
2019). The number of SWDs and the mean duration and
amplitude of SWDs were measured and calculated for every
20 min offline with LabChart 7 Pro (AD Instruments, Australia)
(Arslan et al., 2013, 2014).

Drugs and Drug Administration
Ketamine hydrochloride, xylazine hydrochloride, A-438079
hydrochloride hydrate, BzATP [2′(3′)-O-(4-Benzoylbenzoyl)
adenosine 5′-triphosphate triethylammonium] and memantine
hydrochloride were purchased from Sigma Chemical Co., St.
Louis, MO, United States and dissolved in sterile distilled
water. After obtaining 180 min of baseline ECoG recordings,
A-438079, at the doses of 20 and 40 µg, and BzATP, at the
doses of 50 and 100 µg were administered into the lateral
ventricle within a thin internal cannula (4.2 mm vertical to the
bregma) in a volume of 2 µl. Memantine, at a dose of 5 mg/kg,
was injected intraperitoneally in a volume of 0.5 ml. For the
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interaction groups, memantine was administered 10 min after the
chosen doses of BzATP (100 µg) or A-438079 (20 µg) (Arslan
et al., 2019). The sham group was given sterile distilled water
(2 µ l, i.c.v.).

Biochemical Analysis
After the end of the ECoG recordings, all rats were decapitated
following ketamine/xylazine anesthesia. Right and left
hemisphere, cerebellum, and brainstem were separated in
oxygenated artificial cerebrospinal fluid [aCSF containing
(mM): NaCl, 124; KCl, 5; KH2PO4, 1.2; CaCl2, 2.4; MgSO4,
1.3; NaHCO3, 26; glucose, 10; HEPES, 10, at pH 7.4 when
saturated with 95% O2 and 5% CO2]. The tissues were frozen
in liquid nitrogen, homogenized immediately, and soaked in
phosphate buffer solution (PBS, 10 mM, and pH 7.2). After 1 min
of sonication at +4◦C with 220 V (METU Electromechanical,
Germany), homogenates were stored at −80◦C. On the
evaluation day, the homogenates were defrosted at room
temperature and were centrifuged at +4◦C for 5 min with
15,000× g (Sigma 3K30, Germany) for biochemical analysis.

Tissue protein concentrations were determined with Lowry’s
method (Lowry et al., 1951). The results were expressed per
mg protein. Advanced protein oxidation products (AOPP),
malondialdehyde (MDA), superoxide dismutase (SOD), catalase
(CAT), glutathione (GSH), glutathione peroxidase (GPx) and
glutathione reductase (GR) concentrations in the tissues
were examined with commercial rat ELISA kits (SunRed
Biotechnology Co., Shanghai, China). These kits all use a
double-antibody sandwich enzyme-linked immunosorbent assay
(Arslan et al., 2019).

Statistical Analysis
Spike-wave discharges parameters were calculated, by using the
raw data obtained from LabChart 7-Pro, with an excel program.
The total number of SWDs after drug injections was calculated
for every 20 min and these data were converted to percentage
values by comparing to the baseline values. The mean duration
and the amplitude of SWDs during 180 min after injections were
calculated as a percentage by comparing to the baseline data.

SPSS 15.0 data analysis software was used for statistical
analyses. The normality of the data was tested with the Shapiro–
Wilk test. After verifying that the data were normally distributed
paired-samples t-test was performed between dependent groups,
and one- or two-way ANOVA and then post hoc Tukey tests
were used for multiple comparisons. The results are expressed as
mean± standard error (SEM). For all statistical analyses, p < 0.05
was considered statistically significant.

RESULTS

All rats showed SWDs in ECoG characterized by paroxysmal
unresponsiveness to environmental stimuli (Figure 1). Paired-
samples t-test revealed that the total numbers and the mean
duration of SWDs did not significantly change after the injection
of solvent compared to baseline values. The total numbers
and mean durations of SWDs were 108.4 ± 4.8, 111.0 ± 3.8
and 8.67 ± 0.18, 8.76 ± 0.21 s during 180 min before and

after the administration of sterile distilled water, respectively.
The mean amplitudes of SWDs were 0.635 ± 0.039 and
0.648 ± 0.048 mV before and after the administration of sterile
distilled water, respectively. There was no statistical difference
regarding the parameters of SWDs between the control and
sham groups (p > 0.05).

Table 1 shows the biochemical analysis for the left and right
hemispheres, cerebellum, and brainstem of the groups. There was
no significant difference between the sham group and the control
group in any of the biochemical parameters.

The Role of P2X7Rs in WAG/Rij Rats
Administration of P2X7Rs agonist BzATP, at the doses of 50 and
100 µg, did not significantly change any of the total numbers
[F(8,162) = 0.12] and durations [F(2,18) = 1.54] of SWDs compared
to the control group (Figure 2). Total numbers, mean durations
and mean amplitudes of SWDs were 12.2 ± 0.9, 11.1 ± 0.9;
9 ± 0.4, 8.9 ± 0.4 s;0.6490 ± 0.013, 0.6148 ± 0.016 mV in the
80th minute in the BzATP 50 µg and BzATP 100 µg groups,
respectively. After the injections of BzATP, at doses of 50 and
100 µg, the total numbers and mean durations of SWDs were
107.3 ± 4.2, 102.7 ± 5.4; 8.82 ± 0.38, 8.52 ± 0.29 s during
180 min, respectively. Injection of A-438079, at the doses of
20 and 40 µg, did not alter the total numbers [F(8,162) = 0.54]
and durations [F(2,18) = 6.54] of SWDs compared to the control
group (Figure 3). The total numbers and mean durations
of SWDs were 107.8 ± 7.7, 102.7 ± 9.4; 8.38 ± 0.28, 8.2
6 ± 0.34 s during 180 min after the injections of 20 and 40 µg
A-438079, respectively.

BzATP, at a dose of 100 µg, injection significantly increased
SOD and GR levels in the left and right hemispheres (p < 0.05).
Other biochemical parameters were not different in the BzATP
group compared to the control group (p > 0.05). A-438079,
at a dose of 20 µg, did not alter any of the biochemical
parameters (Table 1).

The Effect of Memantine on WAG/Rij
Rats
Intraperitoneal injection of memantine (5 mg/kg) significantly
decreased the total number [F(8,108) = 0.66, p < 0.001] and mean
duration of SWDs [F(1,12) = 6.34, p < 0.05] 20 min after injection
compared to control group (Figure 4). The total number, mean
duration and amplitude of SWDs were 32.5 ± 3.6; 7.74 ± 0.19 s
and 0.635 ± 0.03 mV during 180 min after the administration of
memantine, respectively.

Memantine significantly decreased MDA levels in all brain
regions compared to the control group (p < 0.05). In the
cerebrum, injection of memantine decreased GSH and GR
levels, and increased CAT levels (p < 0.05). Other biochemical
parameters were not different in the memantine group compared
to the control group (Table 1).

Interaction Between P2X7R and
Memantine in WAG/Rij Rats
Injection of BzATP (100 µg) 10 min before memantine decreased
the total number of SWDs after 20 min [F(8,216) = 1.10,
p < 0.001] and the mean duration of SWDs [F(3,24) = 10.60,
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FIGURE 1 | Representative ECoG recordings for all groups at 80th minute: (A) Control ECoG activity in WAG/Rij rats (n = 7); (B) BzATP, at the dose of 50 µg, i.c.v.
(n = 7); (C) BzATP, at dose of 100 µg, i.c.v. (n = 7); (D) A-438079, at dose of 20 µg, i.c.v. (n = 7); (E) A-438079, at dose of 40 µg, i.c.v. (n = 7); (F) Memantine
administration, at dose of 5 mg/kg, i.p. (n = 7); (G) BzATP (100 µg) administration 10 min before memantine (n = 7); (H) A-438079 (20 µg) administration 10 min
before memantine (n = 7).

p < 0.05] compared to the control group (Figure 4). However,
the total number and the mean duration of SWDs were not
found to be different after the co-administration of BzATP with
memantine compared to the alone memantine injection. The
total number and the mean duration of SWDs were 26.3 ± 2.8
and 7.56 ± 0.42 s for 180 min after the co-administration of
BzATP with memantine, respectively.

Co-administration of BzATP with memantine decreased the
levels of GSH and GR, and increased CAT levels in the cerebrum
compared to the control group (p < 0.05). Other biochemical
parameters did not alter with the co-administration of BzATP
with memantine compared to the control group.

Although administration of A-438079 10 min prior to
memantine decreased the total number of SWDs after 40 min
compared to the control group (p < 0.05), but it appears
that A-438079 partially reversed the anticonvulsant activity of
memantine after 20th minute compared to the memantine group
alone [F(8,216) = 1.97, p < 0.001]. The mean duration of SWDs did
not alter compared to both the control and memantine groups
[F(3,24) = 6.74, Figure 5]. The total number and mean duration

of SWDs were 59.7 ± 6.6 and 8.05 ± 0.21 s for 180 min after the
co-administration of A-438079 with memantine, respectively.

Malondialdehyde levels significantly decreased in all regions
after the co-administration of A-438079 with memantine
(p < 0.05). In the cerebrum, the combination of A-
438079 + memantine decreased GSH and GR levels, and
increased CAT levels compared to the control group (p < 0.05).
Interestingly, CAT levels were decreased in the brainstem with
the injections of A-438079 and memantine (p < 0.05). The rest
of the measured biochemical parameters were not changed in
the A-438079 + memantine group compared to the control
group (Table 1).

DISCUSSION

In the present study, the electrophysiological results revealed
that the administration of memantine showed an anticonvulsant
effect without changing the mean amplitude of SWDs. Neither
BzATP nor A-438079 affected the parameters of SWDs in
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TABLE 1 | The levels of advanced oxidation protein products (AOPP), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT),
glutathione peroxide (GPx), and glutathione reductase (GR) in the left and right hemispheres, cerebellum and brainstem of all experimental groups.

AOPP MDA SOD GSH CAT GPx GR

(nmol/mL) (nmol/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL) (ng/mL)

LEFT HEMISPHERE Control 4.7 ± 0.7 5.7 ± 0.8 5.1 ± 0.5 52.8 ± 5.6 10.8 ± 0.8 8.8 ± 0.7 5.9 ± 0.5

BzATP (100 µg) 5.65 ± 0.9 6.7 ± 0.8 7.1 ± 0.6* 60.6 ± 5.5 10.1 ± 0.7 9.7 ± 1.04 8.7 ± 1.1*

A-438079 (20 µg) 4.4 ± 0.5 6.04 ± 0.7 4.6 ± 0.2 48.4 ± 4.3 11.8 ± 1.3 6.4 ± 0.9 4.7 ± 0.7

Memantine (5 mg/kg) 3.6 ± 0.5 2.6 ± 0.4* 4.6 ± 0.4 35.02 ± 3.5* 17.3 ± 0.6** 7.6 ± 0.6 2.6 ± 0.3**

BzATP + memantine 4.9 ± 0.7 4.7 ± 0.6 4.5 ± 0.7 37.4 ± 2.9* 15.06 ± 0.3* 9.5 ± 1.1 3.7 ± 0.3*

A-438079 + memantine 3.4 ± 0.6 3.1 ± 0.3* 4.3 ± 0.6 32.2 ± 4.1* 16.1 ± 0.5* 6.9 ± 0.4 3.07 ± 0.4*

RIGHT HEMISPHERE Control 5.02 ± 1.03 5.8 ± 0.7 5.06 ± 0.4 47.5 ± 4.7 11.3 ± 1.8 7.6 ± 0.5 5.7 ± 0.3

BzATP (100 µg) 6.1 ± 1.07 7.1 ± 1.1 8.03 ± 0.8* 56.4 ± 53 10.5 ± 1.3 8.8 ± 0.8 8.1 ± 0.5*

A-438079 (20 µg) 4.6 ± 0.7 5.06 ± 1.01 4.5 ± 0.3 50.6 ± 5.1 9.9 ± 2.01 7.04 ± 0.33 5.07 ± 0.4

Memantine (5 mg/kg) 4.5 ± 0.6 3.1 ± 0.4* 5.2 ± 0.6 27.9 ± 3.1* 18.2 ± 0.7* 6.04 ± 0.7 2.5 ± 0.4**

BzATP + memantine 6.09 ± 0.9 4.7 ± 0.6 5.2 ± 0.7 25.5 ± 3.09* 19.7 ± 1.3* 6.4 ± 0.8 3.4 ± 0.5*

A-438079 + memantine 4.2 ± 1.02 3.3 ± 0.3* 4.6 ± 0.4 29.06 ± 4.1* 17.8 ± 0.6* 5.7 ± 0.4 2.4 ± 0.6**

CEREBELLUM Control 11.2 ± 1.3 7.4 ± 1.05 9.07 ± 1.06 73.8 ± 8.3 15.7 ± 1.9 10.5 ± 1.3 9.1 ± 0.5

BzATP (100 µg) 12.1 ± 1.2 7.6 ± 1.07 10.3 ± 0.8 78.5 ± 2.06 15.6 ± 2.4 12.5 ± 0.9 9.02 ± 0.4

A-438079 (20 µg) 10.3 ± 1.01 6.6 ± 0.9 8.4 ± 0.9 62.8 ± 8.4 13.7 ± 2.1 10.7 ± 1.05 8.4 ± 0.8

Memantine (5 mg/kg) 8.9 ± 0.7 4.4 ± 0.6* 7.7 ± 1.2 60.02 ± 7.1 20.7 ± 2.4 9.7 ± 0.7 7.9 ± 0.8

BzATP + memantine 9.1 ± 1.1 7.08 ± 0.8 7.2 ± 1.1 66.4 ± 6.5 17.6 ± 3.4 8.7 ± 1.05 10.03 ± 1.2

A-438079 + memantine 7.7 ± 1.4 3.6 ± 0.5* 8.03 ± 0.8 59.7 ± 5.9 19.9 ± 3.6 8.6 ± 0.8 8.9 ± 0.7

BRAINSTEM Control 9.3 ± 0.9 11.8 ± 1.2 7.1 ± 0.5 100.4 ± 9.9 18.1 ± 1.9 17.8 ± 2.6 8.05 ± 1.1

BzATP (100 µg) 10.1 ± 1.3 13.3 ± 0.9 9.3 ± 0.7 103.7 ± 11.7 17.9 ± 1.7 19.7 ± 2.1 8.4 ± 0.6

A-438079 (20 µg) 8.6 ± 0.9 10.7 ± 0.6 6.8 ± 0.6 108.4 ± 11.05 19.5 ± 3.08 17.45 ± 1.3 7.1 ± 0.7

Memantine (5 mg/kg) 7.6 ± 0.7 6.4 ± 1.1* 6.3 ± 0.8 92.3 ± 10.5 17.8 ± 2.1 16.9 ± 1.4 7.3 ± 0.8

BzATP + memantine 8.3 ± 0.8 9.1 ± 0.8 5.9 ± 0.4 89.7 ± 8.8 21.8 ± 3.4 14.3 ± 1.2 10.1 ± 1.2

A-438079 + memantine 7.5 ± 1.05 7.1 ± 0.7** 6.09 ± 0.6 82.3 ± 7.1 14.6 ± 1.7* 16.5 ± 1.07 7.6 ± 0.7

*p < 0.05, **p < 0.01 compared to control group.

FIGURE 2 | The effects of P2X7R agonist BzATP on (A) the total number of SWDs in every 20 min and (B) the mean duration of SWDs for 180 min.

WAG/Rij rats. BzATP did not reverse the anticonvulsant activity
of memantine. However, A-438079 reduced the anticonvulsant
activity of memantine.

BzATP increased only the SOD and GSH levels in the
cerebrum, whereas A-438079 did not significantly affect any
of the biochemical parameters. Memantine showed antioxidant
effects by decreasing MDA levels in all tissue samples. Memantine
also reduced GSH and GR and increased CAT levels in the

cerebrum. BzATP reversed the antioxidant effects of memantine
on MDA, while A-438079 enhanced the anticonvulsant effects of
memantine in the brainstem.

The Role of P2X7R in WAG/Rij Rats
The P2X7R is the newest member of the purinergic receptor
family and has been the subject of epilepsy research with its
widespread presence in the nervous system (Jimenez-Mateos
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FIGURE 3 | The effects of P2X7R antagonist A-438079 on (A) the total number of SWDs in every 20 min and (B) the mean duration of SWDs for 180 min.

FIGURE 4 | The effects of memantine at a dose of 5mg/kg and its interaction with BzATP on (A) the total number of SWDs in every 20 min and (B) the mean
duration of SWDs for 180 min. *p < 0.05, ***p < 0.001 compared to control group.

FIGURE 5 | The effects of memantine at a dose of 5mg/kg and its interaction with A-438079 on (A) the total number of SWDs in every 20 min and (B) the mean
duration of SWDs for 180 min. *p < 0.05, ***p < 0.001 compared to the control group. +p < 0.05, ++p < 0.01, +++p < 0.001 compared to the – memantine group.

et al., 2019). The involvement of the P2X7R in epilepsy has been
demonstrated by several researchers with either anticonvulsant,
proconvulsant, or no effects in various models of epilepsy
(Jimenez-Pacheco et al., 2016; Rodriguez-Alvarez et al., 2017;

Arslan et al., 2019). These controversial results depend on
experimental differences, such as the selection of the epilepsy
model, the dosage of the P2X7R agonist and antagonist used,
and the species of the experimental animals. We used an absence
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epilepsy model in this study, which was a chronic non-convulsive
epilepsy model, and there are some unique mechanisms known
to create absence seizures (Meeren et al., 2005; D’Antuono
et al., 2006; Luttjohann and van Luijtelaar, 2012; Scicchitano
et al., 2015). The P2X7R is a non-selective cation channel,
and it allows calcium influx, which is essential for the absence
epilepsy pathogenesis.

BzATP and A-438079 have high potency for the P2X7R.
BzATP is the most potent for the P2X7R, but it is not a
selective P2X7R agonist (Donnelly-Roberts and Jarvis, 2007).
Thus, BzATP may also be effective in other P2X receptors that
may also have an important role in epilepsy (Michel et al., 2001;
Henshall et al., 2013). The potent inhibition of the P2X7R with
A-438079 confirms that the P2X7R accounts for ATP-triggered
Ca2+ entry (Fischer et al., 2016). The moderate bioavailability
and moderate plasma elimination half-life were 19% and 1.02 h,
respectively, for intraperitoneal A-438079 in rats (McGaraughty
et al., 2007). Brain levels of A-438079 rapidly declined after
parenteral injection, and Mesuret et al. (2014) suggested that
the rapid elimination of the compound restricts the therapeutic
window of this compound. However, in our previous study, i.c.v.
injection of BzATP and A-438079 showed their effects on the
penicillin-induced epileptiform activity within 20 and 60 min
after their injections, respectively, and lasted for 120 min (Arslan
et al., 2019). BzATP is the most potent agent for the P2X7R, and
A-438079 is specific and can almost abolish the effects of BzATP
(Anderson and Nedergaard, 2006; Fischer et al., 2016). The multi-
targeting of different P2X receptors and their stability in the
brain may be considered possible limitations for such studies in
epilepsy. In addition, P2X7Rs release cytokines during normal
brain function (Sperlagh and Illes, 2014). In particular, P2X7R
activation might be linked to the regulation of various aspects
of immunocompetent cells through the expression and secretion
of many inflammatory mediators, including IL-1b, IL-2, IL-4, IL-
6, IL-8, and TNFα (Engel et al., 2012b). However, inflammatory
mediators were not measured, which might be another limitation
of the present study. Therefore, further studies are required to
determine both receptor-specific localization and the level of
inflammatory mediators in an absence epilepsy model.

In an Alzheimer’s disease model, P2X7R activity affected
nicotinamide adenine dinucleotide phosphate (NADPH) activity
and increased the formation of the O.− radical by acting on p38
MAPK (Parvathenani et al., 2003). The antioxidant enzyme that
converts the O.− radical into H2O2 is SOD, and an increase in
the SOD level promotes the increase of O.− radicals (Younus,
2018). Activation of the P2X7R due to BzATP promotes ROS
production through NADPH oxidase in macrophages, microglia,
and neurons that can be blocked by P2X7R inhibitors (Hewinson
and Mackenzie, 2007; Mead et al., 2012; Munoz et al., 2017).
The P2X7R has also been shown to directly affect SOD in
amyotrophic lateral sclerosis models and cell culture studies
(Gandelman et al., 2013; Fabbrizio et al., 2017). GR is used in
the reduction reaction of NADPH to GSH disulfide, which is
a way to decrease NADPH. BzATP increases the production
and release of ROS in the substantia gelatinosa of the spinal
cord by stimulating P2X7Rs in astroglia (Ficker et al., 2014).
However, Safiulina et al. (2006) showed ATP-induced ROS

generation in CA3 pyramidal neurons due to the stimulation
of P2Y1 receptors, not P2X7Rs. ATP treatment increased the
expression of Cu/Zn SOD in the RBA-2 astrocyte cell line of
cell culture (Chen et al., 2006). In our previous study, BzATP
increased lipid peroxidation and the levels of protein oxidation
and antioxidant proteins in the brain of penicillin-induced
epileptic rats (Arslan et al., 2019). In the present study, BzATP
and A-438079 did not affect protein or lipid oxidation, but
BzATP increased SOD and GR in the cerebrum. Accordingly,
the P2X7R seems to be more effective in the cerebral cortex in
WAG/Rij rats with absence epilepsy. Since it has been suggested
that oxidative mechanisms and inflammatory mechanisms do
not cause the formation of absence epilepsy (Grosso et al.,
2011) and there are no inflammatory processes in WAG/Rij
rats, it is logical to expect that the low number of P2X7Rs and
efficacy may be the reason for the ineffectiveness of BzATP and
A-438079 observed in the present study in absence epileptic
rats. However, children with absence epilepsy have shown no
oxidant markers, while increased lipid peroxidation and protein
oxidation levels have been observed in epileptic encephalopathic
patients (Grosso et al., 2011).

The Role of NMDA Receptors in WAG/Rij
Rats
Although memantine is mostly used in Alzheimer’s disease
to improve cognitive function, the anticonvulsant activity
of memantine has been demonstrated in various models of
experimental epilepsy (Frey and Voits, 1991; Cakil et al., 2011;
Kim et al., 2012; Zaitsev et al., 2015). Memantine showed an
anticonvulsant effect both in a penicillin-induced epilepsy model
and in Krushinsky–Molodkina rats with audiogenic seizures
(Cakil et al., 2011; Kim et al., 2012). Memantine was also effective
on the tonic component of seizures in a PTZ kindling model,
and it prevented neuronal death (Zaitsev et al., 2015). Moreover,
memantine showed anticonvulsant effects in WAG/Ola/Hsd rats,
which are thought to be a model of genetic absence epilepsy (Frey
and Voits, 1991), but there is no sufficient information about
this rat substrain. In agreement with these studies, memantine
has an anticonvulsant effect on absence epilepsy in WAG/Rij
rats, which was used in the present study. Recent studies have
shown that the initial focal point of absence epilepsy is in the
perioral area of the somatosensory cortex and that the cortex
is present in NMDA receptor-mediated glutamatergic pyramidal
neurons and is present in layers V and VI (Miras-Portugal et al.,
2003; Scicchitano et al., 2015; Russo et al., 2016). Thus, it can
be concluded that seizures can be prevented without initially
entering the thalamo-cortical circuit by decreasing the activity in
this region in the presence of memantine.

As an NMDA receptor blocker, memantine has an antioxidant
effect by blocking calcium entry, affecting intracellular signaling
pathways (Flores et al., 2011; Annweiler and Beauchet, 2012;
Gubandru et al., 2013; Lee et al., 2018). Memantine decreased
the level of MDA, which is the final product of polyunsaturated
fatty acid peroxidation, in all brain tissue samples and
decreased GSH and GR levels but increased CAT levels in the
cerebrum in this study.
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Functional Interaction Between P2X7Rs
and NMDA Receptors
Pre-treatment of organotypic hippocampal slice cultures with
ATP reduced NMDA-induced neuronal death in microglia,
suggesting microglia-mediated neuroprotection depends on
P2X7Rs (Masuch et al., 2016). The glutamatergic agonists NMDA
and AMPA increased the BzATP-induced current amplitudes
in organotypic hippocampal slice cultures (Khan et al., 2018).
Intravitreal injection of A-438079 and BBG significantly reduced
NMDA-induced cell loss in the retinae of male Wistar rats,
suggesting a strong link between P2X7R and NMDA (Sakamoto
et al., 2015). Activation of the P2X7R has been shown to
trigger the release of glutamate from neurons and astrocytic
cells by vesicular and non-vesicular pathways (Sperlagh et al.,
2002; Cho et al., 2010). Stimulation of NMDA receptors also
increases ATP release (Cho et al., 2010; Engel et al., 2012a,b).
In addition, P2X7Rs have been observed on presynaptic in
glutamatergic pyramidal neurons (Sperlagh et al., 2002; Miras-
Portugal et al., 2003), suggesting a P2X7-NMDA receptors
interaction in pyramidal cells located in the perioral region of the
somatosensory cortex, which is considered to be the initial focal
point of absence epilepsy. In addition, both receptors are known
to increase the intracellular calcium level. Thus, the interaction
between P2X7 and NMDA receptors may increase excitability
in the brain and may cause neurotoxicity by increasing ROS
(Carrasco et al., 2018). In a phencyclidine-induced schizophrenia
model, prefrontocortical postsynaptic NMDA currents slightly
decreased due to both genetic deletion (P2X7R -/-) and
pharmacological blockade with JNJ-47965567 (Kovanyi et al.,
2016). However, NMDA currents were not affected in either
wild type or P2X7R-deficient mice in in situ cortical astroglia
(Oliveira et al., 2011). In contrast, electrophysiological recordings
revealed that stimulation of the P2X7R with BzATP did not
reverse memantine’s anticonvulsant effect; the anticonvulsant
activity of memantine was maintained in the presence of BzATP,
but it neutralized the level of MDA. The administration of A-
438079 reduced the anticonvulsant activity of memantine, but
the net effect remained anticonvulsive in this study. This finding
might have been due to increased glutamate through BzATP
activity, leading to cytotoxic effects through other glutamate
receptors, such as AMPA and kainate (Coyle and Puttfarcken,
1993; Quincozes-Santos et al., 2014). There is evidence that some
intracellular pathways affect the interaction of the two receptors.
They both affect phosphokinase C (Ortega et al., 2010), pannexin-
1 (Bravo et al., 2015), and the MAP kinase pathway (Gandelman
et al., 2013; Fabbrizio et al., 2017; Lee et al., 2018). Therefore, it
appears that this effect is due to the possible interaction of P2X7
and NMDA receptors in intracellular pathways. In addition, A-
438079 and memantine decreased MDA levels in all tissues and

changed antioxidant parameters similar to the memantine group
in the present study, suggesting a strong interaction between the
P2X7R and NMDA receptors in the brainstem.

CONCLUSION

Electrophysiological data from the present study suggest
that P2X7Rs are ineffective for absence epilepsy whereas a
biochemical analysis revealed a partial interaction between
P2X7 and NMDA receptors in WAG/Rij rats with absence
epilepsy. It seems logical to expect this interaction since
P2X7R and the NMDA receptor both allow calcium influx.
P2X7 and NMDA receptors use common intracellular signal
pathways, but this interaction cannot be limited to calcium
influx in epilepsy. Many other systems and receptors are
involved in calcium influx without P2X7 or NMDA receptors
and contribute to epileptogenesis. Besides, the P2X7R has been
linked to inflammatory mediators in neurological diseases.
Therefore, further studies are required to determine the
level of inflammatory mediators and their localization in
absence epilepsy.
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Parkinson’s disease (PD) represents one of the most common multifactorial
neurodegenerative disorders affecting the elderly population. It is associated with
the aggregation of α-synuclein protein and the loss of dopaminergic neurons in the
substantia nigra pars compacta of the brain. The disease is mainly represented by motor
symptoms, such as resting tremors, postural instability, rigidity, and bradykinesia, that
develop slowly over time. Parkinson’s disease can also manifest as disturbances in non-
motor functions. Although the pathology of PD has not yet been fully understood, it has
been suggested that the disruption of the cellular redox status may contribute to cellular
oxidative stress and, thus, to cell death. The generation of reactive oxygen species and
reactive nitrogen intermediates, as well as the dysfunction of dopamine metabolism,
play important roles in the degeneration of dopaminergic neurons. In this context, the
transient receptor potential channel canonical (TRPC) sub-family plays an important role
in neuronal degeneration. Additionally, PD gene products, including DJ-1, SNCA, UCH-
L1, PINK-1, and Parkin, also interfere with mitochondrial function leading to reactive
oxygen species production and dopaminergic neuronal vulnerability to oxidative stress.
Herein, we discuss the interplay between these various biochemical and molecular
events that ultimately lead to dopaminergic signaling disruption, highlighting the recently
identified roles of TRPC in PD.

Keywords: TRPC channels, Parkinson’s disease, oxidative stress, dopamine release, neuronal apoptosis

INTRODUCTION

Neurological disorders continue to increase in tandem with longer lifespans in populations, with
aging remaining the biggest risk factor for developing neurodegenerative diseases. Parkinson’s
disease (PD) is one of the most common multifactorial neurodegenerative disorders. Indeed, it
affects approximately 2% of the elderly population and 4% of individuals aged over 80 years
(Berman and Nichols, 2019).

Disease onset usually occurs at the age of 65–70 years (Marino et al., 2019). However, its
pathological changes can be observed as early as 20 years prior to the appearance of motor
symptoms and include unspecific signs such as fatigue, hyposmia, and constipation (Hawkes
et al., 2010). Motor symptoms develop slowly over time and are the main clinical characteristics
of PD. These include dysfunctions of the somatomotor system such as resting tremors, rigidity,
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bradykinesia, and postural instability (Schapira et al., 2017). In
turn, there is a progressive physical limitation, in addition to
impairments in non-motor functions such as neuropsychiatric
(sleep disorders, depression, and dementia) and autonomic
symptoms (bladder and gastrointestinal alterations) (Sakakibara
et al., 2012; Fasano et al., 2015).

The pathogenesis of PD is not completely understood.
However, different studies have contributed to the dissection
and determination of some of the mechanisms involved
in its establishment and progression. Classically, the
progressive neurodegeneration in PD is associated with the
aggregation of α-synuclein, a small lipid-binding protein, into
structures called Lewy bodies in the substantia nigra pars
compacta (SNpc).

Accumulation of dopamine (DA) and DA products has also
been pointed as a potential mechanism involved in neuronal
death (Mullin and Schapira, 2015). Indeed, the neurotoxic
effects of the endogenous DA derivative N-methyl-(R)-salsolinol
(NMSAL) (Naoia et al., 2002) was shown to induce oxidative
stress and decrease the levels of reduced glutathione (GSH)
in dopaminergic SH-SY5Y cells (Wanpen et al., 2004). The
progressive loss of DA neurons leads to a subsequent reduction
of DA levels. All these alterations contribute to an abnormal
neuronal functioning, and thus, to motor deficiency and
worsening of the quality of life of patients at advanced stages of
PD (Magrinelli et al., 2016).

For instance, many studies have provided substantial evidence
of the role of neuroinflammation (Tansey and Goldberg,
2010), mitochondrial dysfunction (Park et al., 2018, 2019),
and oxidative and nitrosative stresses in PD (Puspita et al.,
2017). In this context, disruption of neuronal calcium ion
(Ca2+) homeostasis in the central nervous system plays a
critical role in the cascade of events that culminates in the
degeneration of dopaminergic neurons (Zaichick et al., 2017).
Also, a correlation between reactive oxygen species (ROS)
production and Ca2+ channel activation has already been
explored (Görlach et al., 2015).

Recent studies have focused in the identification of a
link between Ca2+-mediated signaling and neuroinflammation
(Sama and Norris, 2013). It observed an association between
neurodegeneration, mitochondrial dysfunction, and, oxidative
and nitrosative stresses (Celsia et al., 2009). This evidence points
to a role for transient receptor potential channels (TRP) in PD
(Takahashi and Mori, 2011).

First discovered in Drosophila melanogaster as key molecules
in phototransduction, the TRP channels comprise a family
of non-selective cation channels that are widely expressed
on mammalian cells, including neurons and different types
of non-neuronal cells. They are distributed in six different
subfamilies: ankyrin (TRPA1), canonical (TRPC1-7), melastatin
(TRPM1-8), mucolipin (TRPML1-3), polycystin (TRPP1-3),
and vanilloid (TRPV1-6). Their broad tissue expression
confers them the ability to influence different pathologies
and physiological states. In this context, it is now known
that these channels participate in the development and
maintenance of inflammation and pain, are important sensors
of molecules such as lipids and ROS, and are involved in

thermoregulation, tissue remodeling, and neuronal plasticity,
among other responses.

OXIDATIVE AND NITROSATIVE
STRESSES IN PARKINSON’S DISEASE

Reactive oxygen species and reactive nitrogen intermediates
(RNIs) are natural byproducts necessary for cellular homeostasis
(Liguori et al., 2018) (Figure 1). ROS are formed during
metabolic redox reactions and include hydrogen peroxide
(H2O2), singlet oxygen (1O2), hydroxyl (•OH), and superoxide
(O2•−) radicals (Sies et al., 2017). RNIs are produced in neuronal
cells from arginine by the neuronal nitric oxide synthase (nNOS)
and include nitric oxide (NO•), nitrite (NO2), and S-nitrosothiols
and peroxynitrite (OONO−) (Adams et al., 2015).

Excessive ROS and RNI formation during oxidative and
nitrosative stresses results in a variety of detrimental effects
in the cell, thus, contributing to organelle and membrane
structural damages and cellular apoptosis (Guo et al., 2018).
This cytotoxic environment has been recognized as a common
underlying phenomenon in the dopaminergic neurodegenerative
process (Dias et al., 2013). Indeed, an irregular oxidation of
macromolecules, such as lipids, proteins, and nucleic acids,
was observed in the brain tissues of PD patients (Bosco
et al., 2006; Nakabeppu et al., 2007). Also, higher levels of
the oxidative stress markers 8-OhdG (8-Oxo-2′-deoxyguanosine)
and malondialdehyde, in addition to NO2, were detected in the
peripheral blood of PD patients in comparison with healthy
individuals (Wei et al., 2018). The same patients presented
systemic down-regulation of the antioxidant proteins glutathione
and catalase (CAT).

In addition, major genetic insights indicate that specific
mutations in a series of primary genes that are responsible for
PD-related synucleopathy and the regulation of mitochondrial
and ROS equilibrium can disrupt cellular homeostasis
(Cacabelos, 2017). For instance, an elevated expression of
the wα-synuclein protein and oxidative stress genes [HSPB1,
Heat Shock Protein Family B (Small) Member 1; NOX1, NADPH
oxidase 1; and MAOB, Monoamine oxidase B] was observed
in induced pluripotent stem cell (iPSC)-derived dopaminergic
neurons (Nguyen et al., 2011). Similarly, iPSC midbrain
dopaminergic neurons from patients with PTEN-induced
putative kinase 1 (PINK1) or Parkin mutations presented
abnormal mitochondria (Chung et al., 2016) (Figure 1).

Accordingly, evidence suggests that in PD, the mitochondrion
represents the primary source of ROS, contributing to
intracellular oxidative stress and therefore, to the vulnerability
of dopaminergic neurons to apoptosis (Beal, 2005). Moreover,
knockout mice for Dynamin-1-like protein (Drp1), a guanosine
triphosphate (GTP)ase that regulates mitochondrial fission,
exhibited degeneration of nigrostriatal dopaminergic neurons
(Berthet et al., 2014). This response was associated with a
reduced mitochondrial mass in axons, which was associated
with impaired mitochondrial dynamics denoted by the loss of
coordination of mitochondrial movements.
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FIGURE 1 | Parkinson’s disease (PD) suggested pathways. (A,B) PD has been associated with the aggregation of α-synuclein into Lewy bodies in dopaminergic
neurons of the substantia nigra pars compacta. Other factors such as gene mutations (DJ-1, SNCA, UCH-L1, PINK-1, and Parkin) may contribute to mitochondrial
dysfunction and neuronal death in PD. The accumulation of dopamine (DA) and its products in DA neurons may also be a causative factor of neuronal death. This
may lead to mitochondrial dysfunction, changes in protein degradation [by impairing the ubiquitin-proteasome system (UPS) function], and increased generation of
reactive oxygen species (ROS) and reactive nitrogen intermediates (RNIs). (C) Members of the transient receptor potential canonical (TRPC) subfamily of
non-selective Ca2+ channels are able to recognize ROS and RNIs and have been implicated in neuronal survival; in fact, different oxidative/nitrosative stress
products can directly activate TRPC complexes.

Additionally, disruption of respiratory chain complexes,
especially the mitochondrial complex I (NADH-quinone
oxidoreductase), was implicated in the enhanced production
of ROS in PD (Ryan et al., 2015). Human studies also
indicated that the dysfunction of this specific complex
occurs in the SNpc of PD patients (Schapira et al., 1990).
Of note, mitochondrial integrity in SNpc neurons was found
to be dependent on Parkin expression (Park et al., 2006;
Stichel et al., 2007).

In regard to RNIs, the excessive or inappropriate generation
of NO and O2•−-derived reactive species, plays a critical role
in mediating the neurotoxicity associated with mitochondrial
damage (Kaludercic and Giorgio, 2016). The reaction between
NO and O2•− represents an important source of OONO−,
a highly reactive molecule for a broad range of chemical
targets that potently inhibits mitochondrial proteins. OONO−
overproduction was found to enhance the levels of oxidized

lipids and DNA in the dopaminergic neurons of PD patients
(Ebadi and Sharma, 2003). Depletion of antioxidant defenses,
including GSH, was also observed in the same samples (Franco
and Cidlowski, 2009). Interestingly, nNOS- and inducible NO
synthase (iNOS)-dependent NO levels were increased in the
SNpc of PD patients (Hancock et al., 2008). Also, high levels
of NO and OONO− correlated with a worse prognosis in
PD (Kouti et al., 2013), corroborating the hypothesis that
both RNI and ROS generation may strongly contribute to
neurodegeneration in PD.

Antioxidant proteins such as superoxide dismutase (SOD),
CAT, glutathione peroxidase (GPx), and GSH counteract
excessive ROS production. Therefore, reductions in their
activities and/or expression may favor lipid peroxidation
or promote neuronal excitotoxicity with subsequent protein
modifications and eventual neuronal death (Deponte, 2013;
Patlevič et al., 2016). Interestingly, evident differences were
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found in the levels of GSH of post-mortem brain samples
of PD patients in comparison with other brain regions
(Perry et al., 1982; Sian et al., 1994). Also, animal studies
revealed that down-regulation of GSH synthesis results in a
progressive degeneration of nigrostriatal dopaminergic neurons
(Garrido et al., 2011).

By using agonists and antagonists, knockout mice and cells,
and a diverse range of molecular biology techniques, several
roles have been suggested for the TRPC subfamily. These
include their importance as sensors of molecules involved
in oxidative and nitrosative stresses (Figure 1) known to
influence neuronal survival and function (Chen et al., 2009;
Delgado-Camprubi et al., 2017).

TRANSIENT RECEPTOR POTENTIAL
CHANNELS AND THE CANONICAL
SUBFAMILY

In humans, the TRPC subfamily is formed by six channels
(TRPC1 and TRPC3-7), which are considered the mammalian
TRPs most closely related to those of D. melanogaster. TRPC
channels are formed by four subunits and each subunit has six
transmembrane domains and a pore region between the fifth and
the sixth transmembrane domain (Feng, 2017).

TRPCs assemble into tetramers to form functional channels.
Each monomer consists of a transmembrane domain and
a cytosolic domain (Li et al., 2019). The cytosolic domain
contains the N- and C-terminal subdomains. The N-terminal
is composed of four ankyrin repeats and linker helices, whilst
the C-terminal is formed by a connecting helix and a coiled-
coil domain (Li et al., 2019). All TRPC channels contain
the calmodulin and inositol trisphosphate (IP3) receptor-
binding motif, which is able to interact with phosphoinositides,
inositol polyphosphates, Gαi/o proteins, and SEC14 domain
and spectrin repeat-containing protein 1 (SESTD1), a Ca2+-
dependent phospholipid/cytoskeleton-binding protein (Wang
et al., 2020). These different interacting pathways may
influence TRPC functions.

Distributed in two subgroups, diacylglycerol (DAG)-activated
(TRPC3/6/7) and non-DAG-activated receptors (TRPC1/4/5),
TRPC channels can form homo- and heterotetramers (Strübing
et al., 2001; Zagranichnaya et al., 2005; Poteser et al., 2006; Woo
et al., 2014; Myeong et al., 2016; Bröker-Lai et al., 2017; Sunggip
et al., 2018; Ko et al., 2019). Their assembly in these complexes
may vary with their expression sites and functions. Additionally,
members of the TRPC subfamily, such as TRPC1, can also
form heterotetramers with channels of other TRP subfamilies,
including TRPV4 and TRPP2 (Kobori et al., 2009; Greenberg
et al., 2017). Despite the advances in elucidating the structure
and assembly of TRPCs, the definite functions of their homo-
and heterotetramers remain unclear and represent a whole new
avenue of knowledge to be pursued.

So far, different roles have been identified for TRPC channels
including in cardiovascular, lung, kidney and neurological
diseases, inflammation, and cancer, among others. Of importance
to our review, TRPCs are involved in neurotransmission, neural

development, excitotoxicity, and neurodegeneration (Wang et al.,
2020). Interestingly, TRPC channels, especially TRPC1, have
topped the list of molecules involved in store-operated Ca2+

entry. However, it is now well-established that their importance
goes beyond the endoplasmic reticulum Ca2+ store (Wang et al.,
2020). Herein, we will focus on the importance of TRPC channels
as oxidative and nitrosative sensors in PD.

In regard to oxidative stress, TRPC5 is perhaps the most
well investigated member of the TRPC subfamily. It can be
activated by both oxidant and antioxidant molecules such as
H2O2 and reduced thioredoxin, respectively (Yoshida et al.,
2006; Xu et al., 2008; Naylor et al., 2011). TRPC5 can be also
activated by NO and reactive disulfides (Yoshida et al., 2006;
Maddox et al., 2018). However, TRPC5 sensitivity to NO has
been argued by other studies (Xu et al., 2008; Wong et al., 2010),
indicating this response may vary with cell type, generated NO
concentrations, and other experimental conditions. Interestingly,
TRPC5/TRPC4 complexes were found to be involved in the
regulation of Ca2+-dependent production of NO by endothelial
cells (Yoshida et al., 2006). TRPC5-dependent NO generation
via endothelial NOS (eNOS) activation was later confirmed
(Sunggip et al., 2018).

Another interesting finding is the ability of oxidant
products such as OONO− to up-regulate both the mRNA
and protein expressions of TRPC6 and TRPC3 in monocytes.
Of note, OONO−-induced Ca2+ influx in these cells is
reversed by the TRPC channel blocker 2-APB (Wuensch
et al., 2010). Additionally, TRPC3/TRPC4 assembly forms
redox-sensitive complexes on endothelial cells (Poteser et al.,
2006). Adding another layer of complexity to TRPC roles in
oxidative/nitrosative stresses, it is important to highlight that
these channels do not only form complexes but are also able to
down-regulate each other’s’ responses. Indeed, TRPC3/TRPC6-
mediated Ca2+ influx can be down-regulated by activation of the
TRPC5-NO axis (Sunggip et al., 2018).

Evidence also indicates that TRPC1 negatively regulates
TRPC5-mediated Ca2+ influx in striatal neurons undergoing
oxidative stress (Hong et al., 2015). Interestingly, TRPC1/TRPC5
complexes have been shown to mediate the protective effects of
reduced thioredoxin in inflammation, therefore acting as a target
for this antioxidant molecule (Xu et al., 2008).

Importantly, TRPCs are highly expressed in various regions
of the brain in which they play different roles (Table 1). Thus,
due to their ability to sense and modulate oxidative/nitrosative
stress responses, they should be considered as potential mediators
of neuroinflammation. Therefore, the importance of TRPC
channels in PD will now be discussed.

TRPC CANONICAL CHANNELS IN
PARKINSON’S DISEASE

Reports of the contribution of TRPC channels in PD are relatively
new and we have not yet uncovered their definite roles in disease
progression and maintenance. Also, few studies have attempted
to link their expression and/or activation with the ongoing
oxidative and nitrosative stresses that occur in PD.
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TABLE 1 | Neuronal expression and functions of TRPC channels.

Receptor Animal
species/strains/cell lines

Expression site Possible roles/effects following activation References

TRPC1 Sprague-Dawley rats Telencephalon Renewal of neural stem cells Fiorio Pla et al., 2005;

Wistar rats cerebellum, and midbrain cortical pyramidal and
SNpc neurons

Modulation of neuronal firing somato-dendritic release of dopamine
following activation of mGluR and synaptic plasticity

Martorana et al., 2006; Valero et al.,
2015; Martinez-Galan et al., 2018

C57BL/6J mice Hippocampal neural progenitor cells and neurons Mediation of store-operated Ca2+ entry and neuronal cell differentiation
and mediation of glutamate-induced cell death

Narayanan et al., 2008; Li et al.,
2012

SH-SY5Y cells and TRPC1
wild type and knockout mice
(C57BL/6J background)

Neuroblastoma cells and mouse DA neurons
from SNpc

Increased cell survival Selvaraj et al., 2012

Human Brain cortical lesions from epilepsy patients and
healthy tissues,

Mediation of astrocyte-induced epilepsy Zang et al., 2015

Cell line D54 human glioma cells, H19-7 hippocampal
neurons, PC12 cells

Store-operated Ca2+ entry and activation of Cl− channels,
differentiation of hippocampal neuronal cells, stimulation of neurite
outgrowth and down-regulation of TRPC5-mediated responses

Wu et al., 2004; Heo et al., 2012;
Cuddapah et al., 2013

TRPC3 Sprague-Dawley rats Cerebellum, striatal cholinergic interneurons, striatal
cholinergic interneurons, cortical neurons

Increased neuronal survival, modulation of the tonic activity of striatal
cholinergic interneurons following activation of mGluR1/5, neuronal
depolarization via interaction with dopamine receptors, mediation of low
calcium and magnesium-induced depolarization, epileptiform activity,
and redox-signaling

Berg et al., 2007; Jia et al., 2007;
Roedding et al., 2013; Xie and
Zhou, 2014; Zhou and Roper, 2014

Wistar rats Hippocampus Integrity of the neuronal morphology, synaptic plasticity and cognition Qin et al., 2015

Balb/c Prefrontal cortex Depression-like behavior Buran et al., 2017

Wild type and Mwk mice Cerebellum Regulation of Purkinje cell development and survival, and synaptic
plasticity

Becker et al., 2009; Dulneva et al.,
2015

C57Bl6J/SJL, and TRPC3
wild type and knockout
(Sv129 background)

Hippocampus Decrease in neuronal excitability, and early-onset memory deficits Neuner et al., 2015

Human Cerebellar Purkinje neurons Downstream signaling to mGluR activation; contribution of the TRPC3c
isoform to focal ischaemic brain injury

Cederholm et al., 2019

Cell line H19-7 hippocampal neurons Differentiation of hippocampal neuronal cells via store-operated calcium
entry

Wu et al., 2004

TRPC4 TRPC4 wild type and
knockout rats

Dopamine neurons Dopaminergic activity and cocaine addition Klipec et al., 2016

C57BL/6 mice Hippocampus, cortex, olfactory bulb, lateral
septum, coronal brain slices, and prefrontal cortex

Neuronal development, anxiety, and depression Zechel et al., 2007; Yang et al.,
2015; Just et al., 2018

(Continued)
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TABLE 1 | Continued

Receptor Animal
species/strains/cell lines

Expression site Possible roles/effects following activation References

Gonadotropin-releasing
hormone (GnRH) transgenic
mice

GnRH neurons from the pre-optic area Sustained excitation of GnRH neurons and gonadotropin release Zhang et al., 2013

TRPC4 wild type and
knockout mice (mixed
background)

Amygdala, hippocampus, lateral septum, and
hippocampus

Innate fear responses, downstream signaling to mGluR activation,
seizure-induced excitotoxicity and neurodegeneration

Phelan et al., 2012;
Riccio et al., 2014

BL/6 P0 mice Hippocampal neurons Inhibition of neurite outgrowth Jeon et al., 2013

Human Brain cortical lesions from epilepsy patients and
healthy tissues

Seizure events Wang et al., 2017

Cell line PC12 cells Exocytosis in neuroendocrine cells Obukhov and Nowycky, 2002

TRPC5 Sprague-Dawley rats Pyramidal and hippocampal neurons Seizure events, inhibition of dendritic development Tai et al., 2011; He et al., 2012

C57BL/6 mice Coronal brain slices, cerebellar granular neurons,
hippocampus, prefrontal cortex and retinal ganglion
cells

Anxiety and depression, neuronal regeneration, retinal ganglion cell
death

Yang et al., 2015; Wu et al., 2016;
Just et al., 2018; Oda et al., 2019

TRPC5 wild type and
knockout mice (129/SvImJ
background)

Cortical neurons Oxidative stress-induced neuronal cell death Park et al., 2019

YAC128 mutant Huntington’s
disease transgenic mice

Striatal cells Oxidative stress-induced neuronal damage Hong et al., 2015

TRPC5 wild type and
knockout mice (C57BL/6 and
129/SvImJ mixed
background)

Hippocampus and amygdala Fear-related responses Riccio et al., 2009

Human Brain cortical lesions from epilepsy patients and
healthy tissues

Seizure events Xu et al., 2015

Cell line E18 hippocampal neurons, PC12 cells, NG108-15
neuroblastoma/glioma hybrid cells

Axon formation, neuronal development and plasticity, growth cone
morphology and motility, neuronal regeneration

Greka et al., 2003; Wu et al., 2007;
Davare et al., 2009; Wu et al., 2016

TRPC6 Sprague-Dawley rats Cerebellum and substantia nigra Neuronal survival, downstream signaling to mGluR activation Giampà et al., 2007; Jia et al., 2007

C57BL/6J mice
TRPC6 wild type and
over-expressing mice
Cell line

Hippocampus
E18 hippocampal neurons

Neuronal survival
Synaptic and behavioral plasticity
Dendritic growth

Kunert-Keil et al., 2006; Tai et al.,
2008; Zhou et al., 2008; Boisseau
et al., 2009; Du et al., 2010; Lin
et al., 2013; Yao et al., 2013

TRPC7 Sprague-Dawley rats Cholinergic interneurons, substantia nigra,
subthalamic nucleus neurons

Downstream signaling to striatal mGluR1/5 receptors and
NMDA-induced depolarization-activated inward current and firing

Zhu et al., 2005; Berg et al., 2007
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TRPC1 is the most well investigated member of the
canonical subfamily in PD. A study in SH-SY5Y cells
demonstrated that TRPC1 protein expression becomes down-
regulated in these cells following incubation with salsolinol
(Bollimuntha et al., 2006), a neurotoxin endogenously found
in the nigrostriatal cells and cerebrospinal fluid samples
of patients with PD (Moser et al., 1995; Maruyama et al.,
1996). Despite its low expression on the cell membrane, the
TRPC1 protein was detected in the cytosol (Bollimuntha
et al., 2006). This result suggests that salsolinol may cause
TRPC1 translocation from the neuronal cell membrane
to the cytoplasm.

Interestingly, the endogenous salsolinol derivative NMSAL
was detected in the nigrostriatum and intraventricular fluid
samples of patients with PD (Maruyama et al., 1996). NMSAL
induces neuronal apoptosis via mitochondrial and caspase-
3-dependent pathways (Akao et al., 1999; Maruyama et al.,
2001; Arshad et al., 2014) and it is considered to be far
more toxic to neurons than salsolinol (Maruyama et al.,
1996). NMSAL exhibited similar effects to those of salsolinol
in neuronal TRPC1 expression and localization (Arshad
et al., 2014). All this evidence indicates a protective role
for TRPC1 in PD.

Ca2+-induced ROS generation in cultured rat DA neurons
treated with the neurotoxin 1-methyl-4-phenylpyridinium ion
(MPP+) was also linked to TRPC1 (Chen et al., 2013).
Another study by Selvaraj et al. (2009) showed that 1-methyl-
4-phenyl-1, 2,3,6-tetrahyrdro-pyridine (MPTP), a compound
known to cause PD in mice by inducing mitochondrial
dysfunction and neuronal apoptosis, reduces the expression of
TRPC1 in the SNpc. A similar result was observed in PC12
cells incubated with MPP+. The same study also found that
TRPC1 over-expression increases the survival of PC12 cells
incubated with MPP+ by preserving mitochondrial membrane
potential and regulating the expression of the anti-apoptotic
genes Bcl2 and Bcl-xl (Selvaraj et al., 2009). Of note, the
authors highlighted in their study that TRPC1 over-expression
only partly restores mitochondrial membrane potential and
neuronal survival.

The contribution of other TRPCs to PD has also been
investigated. Analysis of TRPC3 expression patterns revealed
that the TRPC3 protein is increased in the SNpc following
exposure to MPTP (Selvaraj et al., 2009). On the other
hand, no alterations in TRPC3 levels were noted in DA
neurons from PD patients (Sun et al., 2017). Of note, these
controversial data on TRPC3 expression have been obtained
in different experimental settings. Therefore, TRPC3’s role in
PD cannot be overruled. Also, it is possible that other TRPC
channels and their complexes may contribute to changes in
neuronal survival in PD.

In this context, it is important to highlight the complexes
formed by TRPC1 with TRPC5. Although no studies have yet
investigated these complexes in PD, they have been pointed
as mediators of other neurodegenerative diseases such as
Huntington’s. In a recent report, it was demonstrated that
intracellular oxidized glutathione activates TRPC5 in striatal cells

of Huntington’s disease (Q111 cells). The same study showed
that upon oxidative stress, TRPC5-mediated Ca2+ influx leads
to increased cytosolic Ca2+ levels and activation of the calpain-
caspase pathway, leading to apoptosis of striatal neurons (Hong
et al., 2015). In parallel, as observed for PD, TRPC1 protein and
mRNA expression is down-regulated in Huntington’s striatal cells
favoring the formation of TRPC5 heterotetramers in these cells
(Hong et al., 2015). These results reinforce the protective role
of TRPC1 in neurodegenerative diseases and shed light on the
deleterious importance of TRPC5 in neuronal survival.

From the best of our knowledge, no studies have yet
investigated the association between TRPC channels and RNI
in PD, highlighting the need for further studies to fill this
gap of information.

FUTURE PERSPECTIVES

Herein, we presented evidence and discussed the importance of
TRPC channels in the recognition and regulation of oxidative
and nitrosative stress responses, as well as their contributions
to PD. The recent advances in the field of TRPC channels,
in particular the protective functions of TRPC1 and the
deleterious role of TRPC5 in PD, highlight their importance as
pharmacological targets in treating neurodegenerative diseases.
Considering the ability of TRPC channels to assemble as homo-
and heterotetramers with channels of the same subfamily and
also as members of other subfamilies of TRPs, and the lack of
antagonists and agonists capable of selectively differentiating the
individual actions of each one of these channels, their targeting
of PD may become a difficult task. Therefore, efforts need
to be made in order to develop effective and more selective
pharmacological tools to investigate TRPC channels. This will
be an essential step to achieve a broader knowledge of the
pathophysiological roles of their different assembly modes and
establish their definite importance in PD.
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de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile, 4 Centro Interoperativo en
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17β-estradiol is a neuronal survival factor against oxidative stress that triggers its
protective effect even in the absence of classical estrogen receptors. The polymodal
transient receptor potential vanilloid subtype 1 (TRPV1) channel has been proposed as
a steroid receptor implied in tissue protection against oxidative damage. We show here
that TRPV1 is sufficient condition for 17β-estradiol to enhance metabolic performance
in injured cells. Specifically, in TRPV1 expressing cells, the application of 17β-estradiol
within the first 3 h avoided H2O2-dependent mitochondrial depolarization and the
activation of caspase 3/7 protecting against the irreversible damage triggered by H2O2.
Furthermore, 17β-estradiol potentiates TRPV1 single channel activity associated with
an increased open probability. This effect was not observed after the application of
17α-estradiol. We explored the TRPV1-Estrogen relationship also in primary culture of
hippocampal-derived neurons and observed that 17β-estradiol cell protection against
H2O2-induced damage was independent of estrogen receptors pathway activation,
membrane started and stereospecific. These results support the role of TRPV1 as a 17β-
estradiol-activated ionotropic membrane receptor coupling with mitochondrial function
and cell survival.

Keywords: TRPV1, 17β-estradiol, cell death, membrane receptor, neuroprotection

Abbreviations: 17α-E2/αE2, 17α-Estradiol, 17β-E2/βE2, 17β-Estradiol, 17β-E2-BSA/βE2-BSA, 17β-Estradiol conjugated
with Bovine Serum Albumin, AVD, Alive-Vulnerable-Dead, CAP, Capsaicin, CPZ, Capsazepine, DMEM, Dulbecco modified
Eagle medium, ERα, Estrogen receptor α, ERβ, Estrogen receptor β, FACS, Fluorescence activated cell sorting, FBS, Fetal
bovine serum, H2O2, Hydrogen Peroxide, HP/HeLa-p, Parental HeLa cells, mRNA, Messenger RNA, NT, Non-treated, PI,
Propidium Iodide, Q-PCR, Quantitative PCR, Rhod123, Rhodamine 123, ROS, Reactive oxygen species, RT-PCR, Reverse
transcription PCR, shRNA, Short RNA hairpin, shRNA-SS, shRNA-Scrambled Sequence, st-TRPV1, Stable expression of
TRV1, TRPV, Vanilloid transient receptor potential cannel, TMX, Tamoxifen, TUB-III, Beta Tubulin III.
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GRAPHICAL ABSTRACT | TRPV1 is sufficient condition for 17β-estradiol resistance against oxidative stress-induced cell death. The cell death induced by
oxidative stress could be characterized by a kinetic model of three state: alive, vulnerable and dead. In particular, the transition from alive to vulnerable state involves
the depolarization of mitochondrial membrane potential, and the evolution to cell death the activation of caspases. Only in TRPV1 expressing cells, the initial
application of 17β-estradiol protects against the irreversible damage triggered by oxidative stress, by inhibition of the transition from alive to vulnerable state. This
mechanism includes blocking oxidative stress-dependent mitochondrial depolarization and the activation of caspases 3/7. Furthermore, 17β-estradiol potentiates
TRPV1 activity associated with an increased open probability. Despite the relationship between the activation of TRPV1 and the maintenance of the mitochondrial
membrane potential should be clarified, it could include the increase of the calcium buffer capacity of the mitochondria and/or the overexpression of anti-apoptotic
proteins such as the Bcl-2 family as previously reported. Finally, the 17β-estradiol cell protection was independent of estrogen receptors, and was membrane started
and stereospecific. These results support the role of TRPV1 as a 17β-estradiol ionotropic receptor being critical to cell survival.
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INTRODUCTION

Oxidative dynamics is involved in several physiological processes,
and disruption of redox control is a general pathological
condition that induces cell dysfunction and death (Ghezzi et al.,
2017). Oxidative stress is involved in several chronic conditions
such as Parkinson’s disease and Alzheimer’s disease (Islam, 2017)
and also in acute injuries as stroke and ischemia/reperfusion,
damaging damaging several organs (Rodrigo et al., 2013). In
this sense, aromatization of testosterone to estradiol is not
restricted to classical endocrine tissues and has been associated
with neurogenesis and tissue response to injury (Tenkorang et al.,
2018; Duncan and Saldanha, 2019). Apart from classical steroid
mechanism of action, a large body of evidence nowadays shows a
new mechanism which appear to involve membrane-associated
signaling complexes (Wu et al., 2005, 2011). Such responses
could be independent or in conjunction with estrogen receptors α

and β, suggesting that estrogens such as 17β-estradiol modulate
neural function by direct effects on membrane receptors
(Balthazart and Ball, 2006; Vega-Vela et al., 2017). These
“membrane actions” of estrogen involve mainly ionic channels
conduction and permeation regulation, kinase activation and
transient increase of intracellular Ca2+. These effects can trigger
different signaling pathways that are critical for regulation
of plasticity, cognition, neuroprotection and maintenance of
homeostasis. Moreover, this extra-nuclear action has been shown
to be critical for protection against oxidative stress-induced cell
death. For instance, it has been demonstrated that estrogen-
induced rapid Ca2+ influx, via the voltage-gated L-type Ca2+

channel is key to initiate the downstream Src/ERK signaling
pathways leading to estrogen neuroprotection through activation
of the transcription factor CREB and subsequent increase of
Bcl-2 expression in hippocampal neurons (Wu et al., 2005).
Also, this Ca2+ himself triggered by estrogen could induce
an increase in mitochondrial Ca2+ sequestration and promote
mitochondrial tolerance against glutamate excitotoxicity in
hippocampal neurons.

In this context, the polymodal TRP ion channels have
emerged as potential targets of membrane signaling of steroids, in
particular, those of the melastatin (M) and vanilloid (V) families
(Kumar et al., 2015). TRPM3 was the first described steroid-
sensitive ionotropic receptor shown to be rapidly and reversibly
activated by pregnenolone sulfate, inducing transient calcium
influx (Wagner et al., 2008; Thiel et al., 2013). Additionally,
17β-estradiol triggers a physiological rapid intracellular calcium
response, via Ca2+ influx through TRPV5 and TRPV6, during
transepithelial Ca2+ transport (Irnaten et al., 2008, 2009; Kumar
et al., 2017). In particular, 17β-estradiol modulates TRPV1
expression and activity in cervical afferent neurons, in dorsal
root ganglion cells and hippocampus (Tong et al., 2006; Wu
et al., 2010; Cho and Chaban, 2012; Pohóczky et al., 2016;
Yamagata et al., 2016) controlling pain sensation and tissue
viability, through fine regulation of calcium homeostasis. It has
been recently demonstrated that the TRPV family located at
the central nervous system (hypothalamus, hippocampus, cortex,
brainstem) has estrogen receptor binding sites that are inducible
by gene promoters, whose expression may be regulated by the
estrous cycle (Kumar et al., 2018).

The modulation of TRP family by estrogens could be
relevant due to the variety of roles that TRPs play in excitable
and non-excitable cells, accounting for sensory physiology,
proliferation, growth, male fertility, neuronal plasticity and
regulation of oxidative stress-induced cell death. The function
of TRPV family and particularly TRPV1 member in cell death
merits special consideration. With a still unclear role in cell
viability, TRPV1 non-selective cation channel is able to integrate
physicochemical stimuli such as temperature, voltage, proton
gradients and osmolarity (Caterina et al., 1997; Nishihara et al.,
2011; Canul-Sánchez et al., 2018). Micromolar concentrations of
the classical TRPV1-agonist capsaicin (CAP) and acid solution
(pH 5.5) induce cytosolic calcium increase, ROS production,
mitochondrial membrane depolarization and cell death (Hu et al.,
2008). In rat cortical neurons TRPV1 activation by CAP induces
apoptotic cell death via L-Type Ca2+ channels, generating Ca2+

influx, ERK phosphorylation, ROS production and caspase-3
activation (Shirakawa et al., 2008). However, similar results have
been reported for CAP without TRPV1 participation, suggesting
both dependent and independent effects of this vanilloid (MacHo
et al., 2000). Our explanation is that the amount of CAP is able to
modify the amount of calcium entry and release from inner cell
stores (Ramírez-Barrantes et al., 2018).

The regulation of the channel might be critical for maintaining
cellular homeostasis in oxidative environment. TRPV1 knock-
out (KO) mice have estrogen sensitive tissues like testis, much
more sensitive to cell death by oxidative stress stimuli (Mizrak
and van Dissel-Emiliani, 2008). Moreover, in hippocampus
subjected to 10 min ischemia, CA1 neurons pre-treated with
CAP are less sensitive to cell death and the effect is inhibited
by the TRPV1 antagonist capsazepine (CPZ). The mechanism
suggested involves a moderate increase in Ca2+ via TRPV1. This
transient Ca2+ influx may induce tolerance to the subsequent
calcium overload, preconditioning the response and inducing
neuroprotection (Pegorini et al., 2005; Huang et al., 2017). Also,
in rats, the activation of TRPV1 by CAP in substancia nigra
pars compacta is able to diminish cell death triggered by MPP,
via reduced activation of microglia and decrease of ROS levels
(Park et al., 2012).

This paradoxical effect of TRPV1 points the importance
of the channel in cell survival, choosing the activation of
different responses depending on the cell context, the moment
of activation, and transience of the signal.

The ability of estrogen to modulate the expression and
function of TRPV1 channel may imply a specific mechanism
to control cellular homeostasis. Cholesterol, pregnenolone and
testosterone can inhibit TRPV1-mediated currents by different
ways. However, 17β-estradiol is the only steroid able to modulate
the activation of the channel during enhanced CAP-evoked
current in dorsal root ganglion neurons (Chen et al., 2004) and
in CAP-induced nociception (Lu et al., 2009). Although the
differential role of 17β-estradiol, an aromatic steroid, in allosteric
modulation of TRPV1 is unclear, aromatization seems to convert
an inhibitory steroid to an excitatory one. Then, can steroids
differentially modulate cell viability through TRPV1? and can
be the aromatic capacity relevant for paracrine and autocrine
cellular protection against oxidative cell death? Here, we show
that 17β-estradiol and not testosterone or 17α-estradiol, induced
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cell protection via modulation of TRPV1 activity during oxidative
injury independently of estrogen receptor expression.

METHODS

Cell Culture
HeLa cells were obtained from ATCC (Manassas, VA,
United States). We used culture medium DMEM (Dulbecco’s
Modified Eagle medium) supplemented with 10% fetal bovine
serum (FBS) and 50 U/mL of penicillin-streptomycin. We
incubated cells in conventional incubator at 37◦C, in steam
saturated 95% air, 5% CO2 atmosphere.

TRPV1 Stable Line Construction
Transfections were performed using DNA: Transit IT-LT1 (Mirus
Bio LLC, Madison, United States) at a ratio of 1:3 according
to the manufacturer’s protocol. Cell dishes were transfected
with the pCDNA3.1-TRPV1. We selected the HeLa cells 48 h
after transfection using Geneticin (Sigma-Aldrich, St. Louis,
MO, United States, 800 mg/mL). Cells were maintained at this
Geneticin concentration in all experiments. Time course of stable
TRPV1 expression was followed by PCR once a week.

Reverse Transcription PCR (RT-PCR)
Total RNA from both parental and transfected TRPV1 cell
lines was extracted with Trizol (Invitrogen, Carlsbad, CA,
United States). cDNA libraries were generated by RT-PCR
using M-MLV reverse transcriptase (Invitrogen, Carlsbad, CA,
United States). Equal amounts of RNA were used as templates
in each reaction. The RT-PCR product for TRPV1 generated
a 167 bp amplicon. The other targets had the following sizes:
estrogen receptor α, 153 bp; estrogen receptor β, 139 bp;
aromatase, 134 bp; and S16, 102 bp. All of the samples
were simultaneously amplified with appropriate primers and
annealing temperature. The PCR reaction was performed
using the Go Taq master mix (Promega Corp., Madison, WI,
United States) containing all of the reagents for the amplification
reaction except for the cDNA template. The protocol consisted
in denaturation at 94◦C for 5 min, followed by 40 cycles of:
30 s denaturation at 94◦C, 30 s annealing at 55–58◦C and
30 s extension at 72◦C. The final elongation was performed
at 72◦C for 10 min, and the samples were held at 4◦C once
the final PCR step was completed. The PCR products and
ladder (New England Biolabs, United Kingdom) were loaded
onto a 2% agarose gel (Lonza Rockland, ME, United States),
electrophoresed and stained with ethidium bromide (Merck
KGaA, Darmstadt, Germany).

Calcium Signal Recordings
Cell cultures were loaded with Fura-2AM (Molecular Probes,
Eugene, OR, United States) for 30 min at room temperature in
extracellular solution containing 130 mM NaCl, 5.4 mM KCl,
2.5 mM CaCl2, 0.8 mM MgCl2, 5.6 mM glucose, and 10 mM
HEPES, pH 7.4 (adjusted with Tris base). The cells were then
rinsed and allowed to equilibrate for 5–10 min. CAP-induced
Ca2+ activity was recorded by epifluorescence microscopy using

an Olympus IX81 microscope (Olympus, Japan) equipped with
dual-excitation wavelength with a minimum recording time
of 2 s for Fura 2. The maximum resolution was obtained
using objective lens Olympus Plan Apo X40 oil 1.3 NA. We
calculated the concentration of cytosolic calcium from the
recorded fluorescence intensity using the following equation:

[Ca2+
] = Kd ×

[
R− Rmin

Rmax − R

]
×

Sf
Sb

where Kd is the Fura 2 dissociation constant at 37◦C (224 nM),
R is the ratio of fluorescence measured at 340 and 380 nm,
respectively, and Sf/Sb is the 380 nm ratio of fluorescence in
low-calcium buffer referred to high-calcium buffer.

Animal Experimentation
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of the National
Institute of Health (USA) and performed in strict accordance
with the recommendations of the Guide for the Care and
Use of Laboratory Animals of the Ethics Committee for
Animal Experimentation Committee as well as the Biosecurity
Committee of the University of Valparaíso. All of the animals
were handled according to approved institutional animal care
and used committee protocols (BEA125-18) of the University of
Valparaiso. All surgery was performed under tricaine anesthesia,
and every effort was made to minimize suffering.

Heterologous Expression System
Xenopus laevis oocytes were used to measure TRPV1 currents.
mMESSAGE mMACHINE from Ambion (Waltham, MA,
United States) was used for in vitro transcription of the cRNA
of wild type TRPV1 rats (GenBankTM accession no. NM031982).
The oocytes were injected with 3 ng of cRNA and then
incubated in ND96 solution (in mM: 96 NaCl, 2 KCl, 1.8 CaCl2,
1 MgCl2, 5 HEPES, pH 7.4) at 18◦C for 3–5 days before
electrophysiological recordings.

Electrophysiological Recordings
Macroscopic and single channel current recordings were made
employing the patch-clamp technique with the cell-attached and
inside-out configurations, respectively. Symmetrical recording
solutions contained: 150 mM NaCl, 10 mM EGTA, 2 mM MgCl2,
10 mM HEPES, pH 7.4. 17β-estradiol (E2) and other hormones
were prepared in recording solutions at the final concentrations
indicated, and perfused into the recording chamber, exchanging
at least 10-times the chamber volume. Data were acquired
with an Axopatch 200B amplifier (Molecular Devices), and the
Clampex 10.7 acquisition software (Molecular Devices). Both the
voltage command and current output were recorded at 100 kHz
and filtered at 20 kHz using an 8-pole Bessel low-pass filter
(Frequency Devices) and sampled with a 16-bit A/D converter
(Digidata 1550B; Molecular Devices). Borosilicate capillary
glasses (1B150F-4, World Precision Instruments, Sarasota, FL,
United States) were pulled in a horizontal pipette puller (Sutter
Instrument, Novato, CA, United States) and fire-polished with a
microforge (MF-830, Narishige, Tokyo, Japan). All experiments
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were performed at room temperature (20–22◦C). Macroscopic
current recordings were evoked by pulses of −100 to +350 mV
in 20 mV increments, with pulses of decreasing duration as
potential increases, followed by a step at 190 mV, to obtain
the tail currents.

Cell Death Protocols
Cells were exposed to the experimental conditions in DMEM
supplemented with 1% bovine serum albumin instead of FBS.
H2O2 (Merck KGaA, Darmstadt, Germany) was added to
cell cultures for 24 h in the absence or presence of the
following drugs: CAP, CPZ, 17β-estradiol, 17α-estradiol (Tocris
Bioscience, Bristol, United Kingdom), 17β-estradiol-BSA and
testosterone (Sigma-Aldrich, St. Louis, MO, United States).
After 24 h, the cultures were stained with Rhodamine 123
(Rhod 123; Invitrogen, Carlsbad, CA, United States; 100 nM)
and propidium iodide (PI; Sigma-Aldrich, St. Louis, MO,
United States; 10 µg/mL), JC-1 (Invitrogen, Carlsbad, CA,
United States, 2 µM), or cell event caspase 3/7 (Invitrogen,
Carlsbad, CA, United States).

Three State Model Evaluation by Flow
Cytometry
We interpreted our results using a three-state, alive (A)-
vulnerable (V)-dead (D) model. To quantify the three cellular
states, mitochondrial function and plasma membrane integrity
were recorded over time using Rhod 123 and PI fluorescence
intensity. Mitochondrial membrane potential (1ψ) was
monitored using Rhod 123 in non-quenching mode. Rhod
123 is a fluorescent membrane-permeant cation, which
passively distributes across membranes according to the
membrane potential. In non-quenching mode, mitochondrial
depolarization causes Rhod 123 efflux from the mitochondrial
matrix into the cytosol resulting in a decrease of fluorescence
intensity. Depolarized mitochondria will have lower cationic dye
concentrations and lower fluorescence, while hyperpolarized
mitochondria will have higher dye concentrations and
fluorescence. To calibrate Rhod 123, we performed a
temporal course of mitochondrial depolarization using the
mitochondrial uncoupler carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP, 10 µM) by flow cytometry. We
determined that a 15 min exposition to Rhod 123 at 0.5 µg/mL
was sufficient to measure the mitochondrial depolarization
in non/quenching mode and applied this strategy in each
experiment. To measure the integrity of plasma membrane, we
used propidium iodide (PI, 10 µg/mL), a DNA intercalating
that binds to cellular DNA when plasma membrane integrity is
lost. We recorded the time course of cell death in ethanol 10%
to determine the maximum signal of PI. Each experiment was
accompanied with an ethanol control.

The A-V-D model distinguishes three states from the
fluorescence intensity of Rhod 123 and PI. The alive state
corresponds to cells with high fluorescence intensity for Rhod 123
and low PI fluorescence intensity, which indicate, respectively,
optimal function of mitochondrial membrane potential and
impermeability of plasma membrane. Conversely, the dead state

identifies cells with low Rhod 123 fluorescence intensity and high
PI fluorescence intensity, indicating a fall in the mitochondrial
membrane potential and the permeabilization of the plasma
membrane. Finally, the vulnerable state corresponds to cells with
one of these two parameters altered. Cells were measured by flow
cytometry (FACScalibur, BD, Biosciences, CA, United States).
We acquired a minimum of 10,000 cells in each experiment and
excluded from the analysis debris and duplets. The analysis was
performed using FlowJo software (Tree Star Inc., Ashland, OR,
United States). To calculate the cell fraction or probability of each
state, the data were normalized using the following formula:

X(A−V−D) =
n◦x

n◦(A+ V + D)

Where, X is cell state fraction or probability, n◦x the number of
cells in state x, and n◦(A + V + D) total number of cells.

Measurement of Mitochondrial
Membrane Potential (19m)
JC-1, a sensitive fluorescent probe for 19m, was used
(Invitrogen, Carlsbad, CA, United States) after specific
experimental procedure. Parental HeLa cells and st-TRPV1
were rinsed twice with PBS and stained with 2 µM JC-1
for 30 min at 37◦C. Cells were rinsed twice with PBS and
immediately analyzed by FACScalibur flow cytometer (BD,
Biosciences, CA, United States). We used a 488 nm excitation
filter, a 530 nm emission filter (FL1) and a 585 nm emission
filter (the fluorescence 2: FL2). A logarithmic transformation
was applied to the values of photomultiplier. Green fluorescence
(FL1) represents the monomeric form of JC-1 corresponding
to the mitochondrial mass. Red-orange fluorescence (FL2)
corresponds to the J-aggregate form of JC-1. The analysis was
performed using FlowJo software (Tree Star Inc., Ashland, OR,
United States). Mitochondrial depolarization was indicated by
an increase in the red/green fluorescence intensity ratio.

Caspases-3/7 Activity Measurement
Cell EventTM assay (Invitrogen, Carlsbad, CA, United States)
was used to measure the activity of caspase-3/7 enzymes.
After specific experimental procedure Parental HeLa cells and
st-TRPV1 cells were collected, and the reagents were incubated
for 30 min. The fluorescent intensity (at 485 nm excitation and
535 nm emission) was monitored with FACScalibur cytometer,
BD, Biosciences, CA, United States) using 488 nm laser of
excitation and FL1 emission filter (530/30 bp). The analysis
was performed using FlowJo software (Tree Star Inc., Ashland,
OR, United States).

Primary Hippocampal Cultures
Pregnant Sprague Dawley rats were handled under standard
conditions of temperature (12 h light/dark cycle) and ad libitum
feeding, according to the guidelines of the Animal Care
Committee of the University of Valparaíso (CICUAL-UV).
Hippocampi were isolated at embryonic day 18 and washed with
Hanks saline solution containing in mM (135 NaCl, 5.4 KCl,
0.5 NaH2PO4, 0.33 Na2HPO4, and 5.5 D-glucose) balanced
at pH 7.4 at 4◦C. They were trypsinized and mechanically
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disaggregated into MEM 10 (MEM, 19.4 mM D-glucose, 26 mM
NaHCO3, supplemented with 10% horse serum, 10 U/mL
penicillin, 10 µg/mL streptomycin). The non-disintegrated tissue
was centrifuged at 800 rpm for 10 s. The cell suspension was
seeded in MEM 10 at a density of 40,000 cells per 12 mm diameter
glass cover previously treated with poly-lysine (50 µg/mL) and
kept in a humid atmosphere, saturated with 5% CO2. After
1 h, MEM 10 was replaced by serum-free neurobasal medium
supplemented with B27 and 2 mM GlutamaxTM (Invitrogen,
Carlsbad, CA, United States). Cells were used at 11–14 DIV
(Muñoz et al., 2011).

Immunofluorescence
Adult rats (1 month) were transcardially perfused with
4% paraformaldehyde (PFA) in phosphate buffer. The brain
was equilibrated in 30% sucrose solution, embedded in
cryopreservant (OCT) and sectioned at 20 µm using a
cryostat (Leica CM1900). Floating cuts were incubated in
permeabilization/blocking buffer (0.7% Triton X-100, 0.1%
sodium borohydride and 10% goat serum in PBS) overnight
at 4◦C. Sections were washed and incubated with primary
rabbit polyclonal antibody against TRPV1 (dilution 1: 200,
abcam, Cambridge, MA, United States) and with primary
mouse monoclonal antibody against anti-β-Tubulin III (1: 500,
Millipore) overnight at 4◦C in PBS-TX (0.7% Triton X-100 and
10% goat serum in PBS). The slices were then washed and
incubated for 2 h with donkey-antirabbit Alexa Fluor 546 and
donkey-antimouse AlexaFluor 488 antibodies (1: 500), obtained
from Molecular Probes. Hoechst R© 33342 was used as nuclei
marker according to the manufacturer’s instructions (Molecular
Probes). Images were obtained using a confocal microscope
(Nikon Eclipse C180i).

For immunofluorescence in cultured neurons, we used a
similar protocol to that previously described, with the exception
that the cells were fixed directly by incubation with 4% PFA and
4% sucrose for 40 min and subsequently blocked in solution
without borohydride.

Neuronal Viability Determined Using 4,
5-Dimethylthiazol-2-yl)-2, 5-Diphenyl
Tetrazolium (MTT)
MTT assay was used to evaluate the reduction-oxidation status
of living cells and mitochondrial activity, reflecting cell survival
due to the formation of formazan. A density of 1 × 104

cells/well in 96-well plates was used for the MTT assay. Briefly,
after treatment neurons were incubated in medium containing
500 µg/mL MTT for 3 h at 37◦C. MTT medium was removed
by plate inversion and 100 µL DMSO was added to each well
to dissolve the formazan crystals. The plates were read using an
Anthos2020 microplate reader at a wavelength of 570 nm and a
reference of 690 nm.

Data Analysis
All the results are presented as mean ± S.D. from at least three
independent assays for each experimental condition. Data were
analyzed with Origin Pro (OriginLab Corporation Northampton,

United States). We compared multiple groups with the Fisher’s
least significant difference procedure and ANOVA followed by
the Bonferroni post hoc test in Statgraphics Plus 5.0 (GraphPad
Software, Inc., San Diego, CA, United States). The results
were considered statistically significant with P < 0.05. All
electrophysiology data analyses were performed with Clampfit
10.7 (Molecular Devices), GraphPad Prism 6, and Excel 2013
(Microsoft, Redmont, WA, United States). Tail currents were
used to build the G-V relationships, fitted with a Boltzmann
function: G = Gmax/(1-exp(−zF(V−V0.5)/RT )), where Gmax is
the maximum conductance, z is the voltage dependence of
activation, V0.5 is the half-activation voltage, T is the absolute
temperature, F is the Faraday’s constant and R is the universal gas
constant. Gmax, V0.5, and z were determined by using the solver
complement of Microsoft Excel. Data were aligned by shifting
them along the voltage axis by the mean 1V0.5 = (−V0.5), then
binning them in a range of 25 mV, between −100 mV and up to
350 mV. Statistical analysis used a two-tailed Student’s t-test with
a non-parametric t-test.

RESULTS

17β-Estradiol Enhanced
TRPV1–Dependent Calcium Influx
In order to study the effect of 17β-estradiol in TRPV1
activity, parental cell cultures were stably transfected with
pCDNA3.1-TRPV1 (st-TRPV1) and examined for TRPV1
functional expression. TRPV1 mRNA expression in st-TRPV1
was confirmed by RT-PCR that yielded a 104 bp amplicon
in st-TRPV1 but not in parental cells. Immunofluorescence
microscopy and flow cytometry also confirmed the expression
of the protein, which was present in more than 80% of the cells
(Supplementary Figure S1). To demonstrate that st-TRPV1 cells
express a functional TRPV1, we performed functional analysis
by means of the calcium imaging. st-TRPV1 showed a transient
calcium influx after the exposition to 250 nM of the TRPV1
agonist CAP, followed by a decay to basal levels, even under
sustained stimulation. Only st-TRPV1 cells were able to respond
to several concentrations of CAP. TRPV1 activation saturated
at 1 µM CAP. The dose-response CAP data were fitted using
a Hill function finding an EC50 of 78 nM for st-TRPV1. Next,
we studied the effect of 17β-estradiol in the TRPV1-dependent
changes in intracellular Ca2+ concentration. The increase in
calcium influx triggered by CAP was enhanced by 17β-estradiol
(Fig. 1A) shifting the EC50 to 18 nM. The 17β-estradiol effect
was completely inhibited by 10 µM CPZ. Additionally, st-TRPV1
incubated with 17α-estradiol failed to induce the increase of
Ca2+ entry mediated by CAP (Fig. 1B), suggesting that estradiol
enhances TRPV1-dependent intracellular Ca2+ concentration in
a stereospecific manner.

Specificity of 17β-Estradiol-Induced Cell
Death Protection
To evaluate the role of TRPV1 in estrogen protection against
oxidative stress-induced cell death, we utilized as inductor
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hydrogen peroxide (H2O2) and recorded simultaneously
the mitochondrial function and plasma membrane integrity
by flow cytometry applying the AVD model analysis
(Ramírez-Barrantes et al., 2018). We performed a dose-response
curve of H2O2 in both cell types and measured cell viability
(Figure 1C). The mere expression of TRPV1 induced resistance
to H2O2 injury at three different concentrations, but, at 1 mM
H2O2 the cell dies independent of TRPV1 expression. The
concomitant application of CAP (250 nM), however, favored the
protective effect at 1 mM H2O2; this effect being abolished by
CPZ (Supplementary Figures S2A,B).

In turn, 17β-estradiol exposure induced resistance to
H2O2-induced cell death only in st-TRPV1 cells (Figure 1D).
17β-estradiol oxidative cell death protection was concentration-
dependent and occurred through TRPV1 modulation
(Figure 1D). In parental cells, 17β-estradiol had no protective
effect, except for saturated concentration (100 µM) possibly
via triggering a non-specific effect (Figure 1D). The protection
elicited by 17β-estradiol was abolished using 10 µM CPZ
reaching levels similar to controls (Figure 1E). None of the
compounds used except for H2O2 modified the viability of HeLa
cells (Supplementary Figure S3). Moreover, 17β-estradiol-
mediated H2O2-induced cell death protection was significantly
decreased by knocking down the expression of TRPV1 in
st-TRPV1 cells with a shRNA-TRPV1 (Figure 1E). In addition,
st-TRPV1 cells transfected with a scramble shRNA-SS did
not show any difference compared with non-transfected cells
(Figure 1E). This evidence strongly suggests that cell protection
against oxidative stress by 17β-estradiol is mediated by TRPV1.

The Membrane-impermeable 17β-estradiol conjugated with
albumin (17β-estradiol-BSA) was employed in order to test
whether estrogen could exert its effects through membrane
receptor. Interestingly, this probe preserved the cellular
protection against H2O2 in st-TRPV1 cells, which was abolished
by the TRPV1 antagonist CPZ (Figure 1F), supporting that
a membrane receptor mediates the estrogen effect. To study
whether the protective effect of 17β-estradiol was stereospecific,
we carried out an experiment using 17α-estradiol, the 17β-
estradiol stereoisomer. Parental and st-TRPV1 cells were
exposed to 1 mM H2O2 in the absence or presence of 17β-
estradiol, 17α-estradiol or testosterone and cell viability was
tested by flow cytometry. 17α-estradiol (1 µM) was unable
to protect against H2O2 (Figure 1G). Similarly, cells treated
with testosterone did not show any protection against H2O2-
induced cell death (Figure 1G). These results indicate that the
TRPV1-dependent protection against H2O2-induced cell death
is specifically mediated by 17β -estradiol.

17β-Estradiol Increased TRPV1 Activity
In order to explore if 17β-estradiol can modulate TRPV1
activity, we measured TRPV1 currents in Xenopus laevis oocytes
using the patch-clamp technique. The presence of 1 µM
17β-estradiol promoted a remarkable leftward shift in the
conductance versus potential (G/V) relationships (Figure 2). The
half voltage, V0.5, for activation shifted from 131.6 ± 9.4 mV to
46.2± 8.3 mV, revealing that TRPV1 can be directly activated by
this steroid hormone. However, the stereoisomer 17α-estradiol

did not increase TRPV1 activity. On the contrary, 1 µM 17α-
estradiol rightward shifted the G/V curve to 206.7 ± 18 mV
(Figures 2A,B). Moreover, an increase in TRPV1 activity induced
by 17β-estradiol was also observed in single-channel recordings
where the probability to find the channel open (Po) was
significantly increased compared to controls when −100 mV
was imposed to the patch membrane. 17β-estradiol NPo was:
0.052 ± 0.012 (n = 3; Control) and 0.355 ± 0.066 (0.5 µM 17β-
estradiol; n = 3). This effect, however, was not reproduced by 17α-
estradiol; 1 µM 17α-estradiol produced a NPo = 0.058 ± 0.017
(n = 5) a value similar to the control (Figures 2C–F).

An Early Pulse of 17β-Estradiol Is
Sufficient to Trigger TRPV1-Dependent
Cell Protection
We have studied the characteristics of the time-course of H2O2-
induced cell death by performing a viability bioassay and
kinetic recordings of the progression of the three-state cell
model in parental and st-TRPV1 cells. Independently of TRPV1
expression, H2O2 exposure elicited almost complete cell death
(Figures 3A,B). The analysis of vulnerable state indicated that
H2O2 induced a vulnerable state via the loss of mitochondrial
function in both cell lines, followed by plasma membrane
disruption and cell death (Supplementary Figure S2). However,
in st-TRPV1 we observed a delayed decrease in the alive state
under H2O2 challenge compared to parental cells, and the peak of
vulnerable state changed from 1 h for parental cells to 3 h for st-
TRPV1 cells (Figures 3A,B), suggesting that TRPV1 expression
is sufficient condition to improve cell viability under oxidative
stress. Also, parental and st-TRPV1 cells were treated during
the first 3 h of H2O2 challenge with a pulse of 1 µM 17β-
estradiol. Parental cells showed similar results to those obtained
without 17β-estradiol incubation (Figures 3A,C). Conversely,
the exposure to 3 h 17β-estradiol was sufficient to induce cell
protection against H2O2 cytotoxicity in TRPV1 expressing cell
lines (Figures 3B,D). It is noteworthy that the preservation of
the healthy condition was accompanied by the abolition of the
vulnerable state peak. These data suggest that cells subjected to an
initial pulse of 17β-estradiol became protected against oxidative
cell death via a TRPV1 activated pathway.

TRPV1 Mediated 17β-Estradiol-Improved
Mitochondrial Function and Avoided
Caspase Activation
To investigate the link between the TRPV1 activation by
17β-estradiol and mitochondrial function, we measured
mitochondrial membrane potential (19) using JC-1 probe.
As shown in Figure 4E, exposure to 1 mM H2O2 reduced the
mitochondrial membrane potential in both cell lines exhibiting
the same delay in the decay as previously shown during the alive
to vulnerable state transition (Figures 3A,B). However, a pulse
of 1 µM 17β-estradiol preserved the mitochondrial function in
st-TRPV1 parental cells (Figure 3E). The loss of 19 could be
related to the opening of MMP and the activation of caspases
generally associated with apoptotic-like cell death by an intrinsic
pathway. To determine the role of the activation of caspases
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FIGURE 1 | TRPV1 expression is necessary and sufficient condition to deploy specific 17β-estradiol protection against oxidative stress. (A) Fura2-AM calcium
imaging of HeLa parental and HeLa st-TRPV1 in the presence or absence of 17β-/17α-estradiol exposed to different concentrations of capsaicin (M). (B) Calculated
concentration of cytosolic calcium (nM) from the peak signal of previous recorded fluorescence. (C) Cell viability as a function of H2O2 (10−5–10−3 M) in parental and
st-TRPV1 cells. (N = 9). (D) Dose-response bars graph of 17β-Estradiol (10−8–10−4 M) in parental (filled bars) and st-TRPV1 (empty bars) cells in presence of H2O2

(N = 9). (E) Bar graph of the effect of knocking-down TRPV1 (sh-RNA-TRPV1) on H2O2-induced cell death in presence of 17β-estradiol (N = 9, scramble shRNA,
shRNA-ss). (F) H2O2-induced cell death (1 mM) in cells treated with 17β-estradiol (10−6 M) or 17β-estradiol-BSA (10−6 M). (G) Effect of H2O2 co-administered with
steroids 17β-estradiol, 17α-estradiol (10−6 M) and testosterone (10−6 M). Graph bars show means ± SD. All the viability experiments were registered at 24 h and
the results expressed as data normalized to untreated condition. Statistical differences were assessed by one-way analysis of variance followed by Bonferroni’s
post hoc test. #P < 0.05 vs. NT st-TRPV1, *P < 0.01 vs. parental cells.
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FIGURE 2 | TRPV1 activity is enhanced by 17β-estradiol. (A) Macroscopic current recordings of TRPV1 channel from X. laevis membrane patches evoked by pulses
of −100 to + 350 mV in 20 mV increments, with decreasing duration as potential increases, followed by a step at 190 mV to obtain the tail currents (bottom).
17-βE2: 17β-estradiol; 17-αE2: 17α-estradiol. (B) G/Gmax versus Voltage relationships generated from the tail currents and adjusted to a Boltzmann fit as follows:
1/(1 + exp(z(Vh-V)/RT)). 17β-estradiol produced a left shift of the G/V curve decreasing the V0.5 for activation from 131.6 ± 9.4 mV (n = 25, gray) to 46.2 ± 8.3 mV
(n = 6, green). In contrast, 17α-estradiol produced a right shift of the G/V curve to 206.7 ± 18 mV (n = 7, blue). A bar plot showing V0.5 for each experimental
condition is provided (lower panel). ***P < 0.0001 and **P < 0.001, non-parametric t test followed by Mann Whitney test. (C) Single channel recordings of TRPV1
exposed to different concentrations of 17β-E2. (D) Quantification of NPo for the experiment showed in (C). NPo for control was 0.052 ± 0.009 (n = 3), 0.5 µM
17β-E2 increases NPo to 0.35 ± 0.05 (n = 3), NPo for 1 µM was 0.15 ± 0.018 (n = 2) and NPo for 5 µM was 0.21 ± 0.027 (n = 3). (E) Single channel recordings of
TRPV1 exposed to 1 µM 17β-E2. (F) Quantification of NPo from experiment showed in (E). Estimated NPo for control was 0.16 ± 0.023 (n = 5). When membrane
patches were exposed to 1 µM 17α-E2 on NPo was 0.58 ± 0.017 (n = 4). Single channels were recorded at −100 mV.
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FIGURE 3 | TRPV1 mediated 17β-estradiol improving of mitochondrial stability during oxidative stress. Time course of H2O2-induced cell death (1 mM) following a
kinetic model of cell death in HeLa parental (HeLa-P) (A) and st-TRPV1 cells (B) (N = 9). (C,D) Effect of initial pulse of 17β-estradiol on time course of H2O2-induced
cell death in HeLa Parental (C) and st-TRPV1 (D) cell line (N = 9). (E) Temporal course of 19 in parental and st-TRPV1 cell lines measured by the rationometric
probe JC-1. The data shows the first 3 h effect of 1 mM H2O2 and 17β-estradiol (N = 9). (F) Activation of caspase 3/7 by H2O2 in parental and st-TRPV1 cell lines in
presence or absence of 10−6 M of 17β-estradiol at the first 3 h (N = 6).
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in the H2O2 induced-cell death, we measured the time course
of activation of total caspase (3–7) by flow cytometry in both
cell lines compared with those obtained after 3 h exposure to 1
µM 17β-estradiol. We found that H2O2 induced the activation
of caspases in both cell lines at different temporal windows. In
parental cells, H2O2 exposure elicited the activation of caspase
in the first hour (Figure 3F). However, at 3 h on 17β-estradiol
we observed a reduction of caspase activity only in st-TRPV1.
Overall, this evidence suggests that the activation of caspases
induced by loss of mitochondrial membrane potential can
be decreased by 17β-estradiol through an increase in TRPV1
activity. Altogether, our data suggest that TRPV1 is a membrane
receptor of 17β-estradiol and that the protection against oxidative
stress is related to the maintenance of mitochondrial function to
preventing caspase activation.

TRPV1 Mediated Membrane
17β-Estradiol-Induced Protection
Against Neuronal Oxidative Stress
To corroborate our results, we tested the participation of TRPV1
in 17β-E2 cell protection in a primary cell culture derived from
hippocampal neurons. Hippocampal neurons express functional
TRPV1 and show intrinsic capacity to produce steroids and
particularly estrogens (Mukai et al., 2006; Chávez et al., 2011).
We confirmed the expression of TRPV1 in neurons only, both
in hippocampus tissue and hippocampus-derived neurons by
immunofluorescence, with highest expression in the cellular
layer of CA1 region, mainly in cell bodies and dendrites
(Figures 4A,B), confirming previous reports. Using cultured
hippocampal neurons, we measured the effect of 17β-estradiol
against oxidative stress produced by H2O2. We evaluated the cell
viability of neuronal cells after 1 h of treatment with increasing
concentrations of H2O2 in presence and absence of 17β-estradiol
added 3 h before the oxidative insult (Figure 4C). Under all
conditions, we observed a decrease in cell viability compared to
controls and cell protection against H2O2 in those exposed to
17β-estradiol. Besides, the protective effect showed a biphasic
component, with a peak of effect at 10−7 M and a decrease
at micromolar concentration (Figure 4D). The half maximal
effective concentration (EC50), was 52 ± 5 10−6 M. Using the
EC50 for H2O2, we compared the effect of 17β-estradiol added
3 h before the oxidative insult. We found that the incubation of
10−7 M 17β-estradiol was sufficient to induce neuroprotection
against H2O2 (Figure 4E). To evaluate the possible role of
TRPV1 in cell protection, we blocked the channel activity with
CPZ. We observed that, whereas CPZ significantly prevented
the neuroprotective effect mediated by 17β-estradiol, tamoxifen
and ICI 182780 (10−6 M) antagonists of estrogen receptors
α and β, did not alter 17β-estradiol- induced neuroprotection
(Figure 4E). Furthermore, 17β-estradiol-BSA produced the same
protective effect as 17β-estradiol alone, suggesting that 17β-
estradiol does not require diffusing through the membrane
to exert its effect (Figure 4F). Altogether these data suggest
that the expression of TRPV1 can mediate neuroprotection
against oxidative stress, acting as a membrane receptor of the
steroidal hormone.

DISCUSSION

This study demonstrates that 17β-estradiol is able to induce
cell protection against oxidative stress through a mechanism
dependent on TRPV1 activity. In addition, 17β-estradiol
exposure prior to the oxidative injury only is sufficient to prevent
H2O2-induced cell death. This level of control may be relevant
in tissues that have the ability to aromatize androgens (Carreau
et al., 2008; Zhang et al., 2014). For instance, mammalian
glial cells do not produce 17β-estradiol under basal conditions.
However, following brain injury and ischemia (Yague et al., 2008;
Zhang et al., 2017) brain tissue expresses aromatase.

In general, estrogens are able to induce differential
physiological effects through several mechanisms, some
of them depend on the interaction with nuclear estrogen
receptors whereas others may result from the activation of
alternative estrogen-dependent routes with differential timelines.
Here, TRPV1 expression was sufficient condition to confer
17β-estradiol-mediated protection against H2O2 challenge,
independent of any intracellular classic receptor or plasma
membrane diffusion. It has been reported that 17β-estradiol
allows brain tissue protection, possibly by activating a voltage-
dependent calcium channel (VDCC) (Wu et al., 2005; Feng
et al., 2013). However, TRPV1-expressing HeLa cell lines exhibit
17β-estradiol-induced cell protection disregarding the expression
of VDCC (Negulyaev et al., 1993).

In particular, estrogen can regulate TRPV1 activity and
expression, playing a role in the sensitization of nociception
(Cho and Chaban, 2012; Ho, 2013; Kumar et al., 2018).
TRPV1 is differentially regulated by sexual steroids estrogen
and testosterone, acting as positive and negative modulators,
respectively (Chen et al., 2004). Our results show that 17β-
estradiol-induced TRPV1 activity was not mimicked by its
17α-estradiol stereoisomer, suggesting that TRPV1 is able
to discriminate between optical isomers with differential
consequences. Moreover, the high lipophilicity of steroids
raises the possibility that action mechanisms may occur
through specific interaction with a protein inserted in the
plasma membrane or by unspecific perturbation of lipid rafts
surrounding the TRPV1 channel. 17β-estradiol may enhance
TRPV1-mediated transient calcium influx in a stereospecific
manner. In addition, the protection against oxidative stress
obtained using 17β-estradiol-BSA, an impermeable probe
which prevents plasma membrane diffusion, indicated that
estrogen protection was initiated at the plasma membrane. This
modulatory effect of 17β-estradiol has been previously reported
with endogenous TRPV1 agonists in other tissues. For instance,
17β-estradiol enhances TRPV1-mediated vasorelaxation induced
by CAP and anandamide (Ho, 2013). This role is particularly
important considering that TRPV1 can integrate environmental
physicochemical signals that are critical in controlling excitability
and cell survival. Thus, integration of several signals may
converge to improve cellular ability to deal with injury.

Similar to TRPV1, TRPM8 channel has been recently
described as a testosterone receptor (Asuthkar et al., 2015).
Both TRPV1 and TRPM8 are involved in pain nociception,
inflammation and cell death, highlighting the therapeutic
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FIGURE 4 | Membrane activity of TRPV1 is sufficient condition to run 17β-estradiol protection against oxidative stress. (A) Immunostaining for TRPV1 expression in
rat hippocampus. The technique selectively detected the CA3 region of hippocampus. (B) TRPV1 detection in 7-day cultured hippocampal neurons. (C) Changes in
cell viability after 24 h incubation with H2O2 at increasing concentrations in presence and absence of 17β-estradiol in primary culture of hippocampal neurons.
(D) Bar graph summarizes the effect of increasing doses of 17β-estradiol over H2O2 50 nM (N = 3) (E) Bar graph shows the effect of 10−7 M of 17β-estradiol on

(Continued)
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FIGURE 4 | Continued
5 × 10−5 M of H2O2 in hippocampus-derived neurons (N = 5). (F) The graph summarizes the effect of the impermeable adduct 17β-estradiol-BSA, 10−7

(17β-estradiol-BSA) on cell death induced by 5 × 10−5 M of H2O2 (N = 3). CPZ: capsazepine (10 µM); TMX, inhibitor of estrogen receptor α tamoxifen (10−6 M); ICI,
inhibitor of estrogen receptor β ICI 182780 (10−6 M). Results are expressed as data normalized to untreated condition (UT) (without H2O2 or 17β-estradiol). Bars
indicate means ± SD. Statistical differences correspond to one-way analysis of variance and Bonferroni’s post hoc test. #P < 0.05 vs. 17β-estradiol CPZ; *P < 0.01
vs. 17β-estradiol H2O2.

potential of determining the role of these channels in hormone
related activities and cell stress injuries. Besides the wide
distribution of TRPV1 channels, their ability to activate different
response pathways according with the nature of the stimuli, their
intensity or time pattern, support the idea that they are far more
complex structures than sensory transmitters. We believe that
TRPV1 has to be considered as a stress response protein. By
integrating multiple signaling pathways, TRPV1 can modulate
intracellular calcium levels to run the cellular response to stress
and injury, a strategy that may underlie the implication of TRPV1
in glial, neuronal and cardiomyocyte death.

On the other hand, we propose that 17β-estradiol is also
an inductor of stress response, because it is able to directly
activate classical proteins involved in stress response such as
heat shock protein (Stice et al., 2011) and also, because it exerts
control of mitochondrial function by several means in oxidative
environment. It is likely that both 17β-estradiol and TRPV1 are
involved in oxidative stress survival response.

17β-estradiol may act as an acute or allosteric modulator of
TRPV1 activity (Chen et al., 2004). It is well known that transient
calcium influx is necessary to induce cell protection (Bickler and
Fahlman, 2004; Feng et al., 2013). It is thus possible that TRPV1
mediates extra-nuclear action of steroids, similar to other TRP
channels (Thiel et al., 2013; Wagner et al., 2008). This process
must be rapidly activated in order to prevent calcium overload
and loss of chemical potential energy (Feng et al., 2013). It can
be regulated by transitory calcium signaling to establish direct or
indirect coupling between the mitochondria and calcium waves
(Malli et al., 2003; Zhao and Brinton, 2007). TRPV1 could act
as a critical sensor that stimulates mitochondrial function in
oxidative environment.

Actually, TRPV1 channels control the mitochondrial integrity
through regulation of mitochondrial membrane depolarization
in neurons (Medvedeva et al., 2008; Ramírez-Barrantes et al.,
2018). For example, low doses of capsaicin in dorsal root
ganglion trigger a transitory calcium signaling by TRPV1, which,
in turn, activates calcium uptake by mitochondria and slow
release (10–20 min later) to prolong glutamate release from
these sensory neurons (Medvedeva et al., 2008). This particular
ability to integrate environmental signals as steroid hormones
and coupling with such vital organelles as mitochondria,
could explain the opposite effects of TRPV1 described in the
literature. We hypothesize that, at low concentrations, TRPV1
activators can induce beneficial effects on cell viability, i.e.,
the agonist CAP, preventing oxidative stress-induced cell death.
High concentrations of activators or sustained activation of the
channel might induce toxicity by deregulation of mitochondrial
function. If TRPV1 is overactivated, a loss of transience of the
signal is accompanied by dysfunction of mitochondria, calcium
overload and cell death (Ramírez-Barrantes et al., 2018). It is

likely that the physiological mechanism of action of TRPV1
(Pegorini et al., 2005; Huang et al., 2017) consists in, sequentially:
activation, transient raise in intracellular calcium and consequent
calcium-mediated desensitization. These regulated actions would
allow preserving the integrity of mitochondrial function and cell
viability. Estrogen, as suggested by the effect of a 3 h pulse, would
produce a high-intensity initial signal activating TRPV1 with a
large calcium influx, followed by an increase in mitochondrial
calcium buffer capacity.

Further experiments are needed to clarify the specific
steroid interaction with the TRPV1 channel and coupling of
mitochondrial function. Considering that 17β-estradiol has been
related to controlling the production of ATP, it is possible that
cell protection is due to modulation of mitochondrial function.
Estradiol can potentiate a cell protective pathway associated to
functional coupling between TRPV1 activity and mitochondrial
function in addition to other extra-nuclear estrogen actions
described (Bao et al., 2011). The TRPV1 contribution to
mitochondrial function needs to be further studied with focus
on the coupling between TRPV1 activity and mitochondrial
membrane potential.

Evidence that an initial pulse of 17β-estradiol is sufficient for
cell protection is noteworthy. It is likely that H2O2 induces cell
vulnerability through early mitochondrial failure, determining
progression to cell death. Here, TRPV1 mediated 17β-estradiol
ability to inhibit mitochondria depolarization thus preserving
its function, diminishing the size of vulnerable population and
decreasing cell death.

Furthermore, previous experiments of calcium imaging
suggest that mitochondrial function is coupled to TRPV1-
dependent intracellular calcium increase (Ramírez-Barrantes
et al., 2018). We hypothesized that in the context of oxidative
environment the possible mechanism of TRPV1-dependent
protection could be mediated by a transient calcium increase
leading to expand the mitochondrial calcium buffer capacity and
cellular survival potential as has been previously suggested (Ge
et al., 2016). Additionally, this transient calcium increase has been
associated with a primary signal for expressing the anti-apoptotic
protein Bcl-2 (Wu et al., 2005, 2011).

The role of mitochondria in cytosolic Ca2+ signaling has been
related to calcium uptake and calcium buffering. Usually, when
mitochondria are depolarized, the transient raise in cytosolic
Ca2+ induced by different stimuli is larger (Vay et al., 2007)
than in basal optimal mitochondrial conditions and inhibits the
production of regenerative oscillations (Dedov et al., 2001; Vay
et al., 2007; Medvedeva et al., 2008). This evidence indicates
that mitochondria take up significant amounts of Ca2+ during
cell stimulation and shows their vital role in regulating the
calcium influx as a specific signal rather than a basic response
to unspecific calcium overload. This function seems to be
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very important for many models of oxidative cell death, both
mitochondria depolarization and calcium overload are present
in cell death in glutamate cytotoxicity and ischemia reperfusion
models (Nilsen and Diaz Brinton, 2003; Bickler and Fahlman,
2004; Wu et al., 2005). However, it has been reported that when
calcium influx is triggered concomitantly with or just before the
cytotoxic event, an increase in the mitochondrial calcium buffer
capacity prevented cell death. This coupling activity between
calcium influx and mitochondria is associated with a long-lasting
conservation of the mitochondrial membrane potential due to
the expression of anti-apoptotic protein Bcl-2 (Nilsen and Diaz
Brinton, 2003). In fact, the calcium influx elicited by 17β-estradiol
through VDCC, or even by ionomicin, is able to induce the active
calcium uptake by mitochondria directly, but it relates also to the
activation of MAPK pathway and AKT pathway to induce the
expression of Bcl-2, inhibiting the mitochondria outer membrane
permeabilization, and preventing the release of cytochrome c
and the activation of caspases (Nilsen and Diaz Brinton, 2003;
Bickler and Fahlman, 2004; Wu et al., 2005). In the same line,
we suggest that the maintenance of mitochondrial function was
able to diminish the activity of caspase enzymes necessary to
induce apoptotic-like cell death via intrinsic pathways. It is
possible that the membrane-associated action of 17β-estradiol
through TRPV1 was able to induce cell protection not only by
increasing the calcium buffering capacity but also by avoiding
the activation of intrinsic apoptotic pathway. Nevertheless, the
mechanisms of coupling between intracellular calcium influx,
calcium buffer capacity and apoptosis are still to be clarified
(Graphical Abstract).

We employed primary cultures of hippocampal neurons
because they are responsive to estrogen and express TRPV1
endogenously (Chávez et al., 2011; Mukai et al., 2006). These
neurons are very sensitive to oxidative environment. In these
cells we demonstrated that 17β-estradiol and estradiol-BSA are
capable of exerting protective effects, depending on a membrane
receptor different from estrogen receptors α and β. In addition
to classical TRPV1-expressing tissues, the channel appears at
diverse locations in the context of oxidative injury. Our evidence
that 17β-estradiol potentiates the activity of the channel by
extra-nuclear mechanisms introduces important perspectives
regarding the function of polymodal channels and of steroidal
hormones (Ramírez-Barrantes et al., 2016). The study of the
properties of TRPV1 may have several implications in cell
physiology and therapeutic development. TRPV1 control of
cellular response against oxidative environments to improve cell
survival may lead to progress in stem cells graft, organ transplant,
ischemia reperfusion disorders and neurodegenerative disease.
TRPV1 have been used to control specific functions in neuronal
and non-neuronal context, in vitro and in behaving animals
(Huang et al., 2010; Stanley et al., 2012). In pancreas and
neurons, the controlled activation of TRPV1 has been used
to modulate responses as insulin secretion or producing fast
activity onset. The interaction proposed in this paper points in
the same line, being especially relevant in tissues that express
TRPV1 and have the ability to produce relevant quantities
of 17β-estradiol such as the gonads and brain. This could
reveal new interesting routes for development of multidrug

strategies on the basis of molecular discoveries conducted by
clinical questions.

INTEREST

The novel mechanism of 17β-estradiol may directly activate
TRPV1-driven plasma membrane signaling coupled with
mitochondrial function in a stereospecific manner, and it role to
regulation of oxidative stress-induced cell death. This mechanism
described in this study could generate molecular strategies for
preventing oxidative stress-induced cell death, which occurs
during neural-degeneration.
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FIGURE S1 | TRPV1 overexpression in heterologous expression system. (A)
Representative RT-PCR experiment showing TRPV1 mRNA expression (167 pb)
for HeLa Parental (HeLa), HeLa st-TRPV1, Hippocampal tissue and transfection
vector pCDNA3.1-TRPV1 plasmid. Housekeeping gene was s16 (102 pb). (B)
Flow cytometry histogram showing TRPV1 protein expression by Immuno-FACS
for HeLa Parental and HeLa st-TRPV1 and in presence of Anti-TRPV1. Negative
control corresponds to the same technique in the absence of the primary antibody
for TRPV1 (n = 4). (C) Immunofluorescence for TRPV1 by epifluorescence
microscopy show distribution of TRPV1 protein in st-TRPV1 and
parental HeLa cells.

FIGURE S2 | Capsaicin and 17β-Estradiol protects against H2O2-induced cell
death by preserving mitochondrial function in TRPV1 expressing cells. (A)
Representative plots of the effect of CAP a TRPV1 agonist on H2O2-iduced cell

death. (B) Bar graph summarizes the effect of CAP in cell death induced by H2O2.
Bars show the mean ± SD (N = 9). (C,D) Representative dot-plot of temporal
course of cell death from the kinetic model of cell death (Figure 3). (C,D) The data
shows an initial phase of cell damage induced by H2O2 (1 mM) represented by the
transition from alive (A) to vulnerable (V) state due to the collapse of mitochondrial
function in both st-TRPV1 and HeLa-P, which eventually end in cell death for both
cell lines. (E,F) However, after 3 h of 17β-Estradiol treatment only st-TRPV1 cells
show a decrease in the number of vulnerable cells due to loss of mitochondrial
function which in turns decrease the total number of dead cells (N = 9).

FIGURE S3 | Effect on cell viability of pharmacological activators and inhibitors of
estrogen receptor and TRPV1. Effect of 17β-estradiol E2, capzasepine (CPZ),
tamoxifen (TMX), ICI-182 and hydrogen peroxide (H2O2) in st-TRPV1 cell viability
measured by flow cytometry.
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Transient receptor potential (TRP) are cation channels expressed in both non-excitable
and excitable cells from diverse tissues, including heart, lung, and brain. The TRP
channel family includes 28 isoforms activated by physical and chemical stimuli, such
as temperature, pH, osmotic pressure, and noxious stimuli. Recently, it has been
shown that TRP channels are also directly or indirectly activated by reactive oxygen
species. Oxidative stress plays an essential role in neurodegenerative disorders, such
as Alzheimer’s and Parkinson’s diseases, and TRP channels are involved in the
progression of those diseases by mechanisms involving changes in the crosstalk
between Ca2+ regulation, oxidative stress, and production of inflammatory mediators.
TRP channels involved in nociception include members of the TRPV, TRPM, TRPA,
and TRPC subfamilies that transduce physical and chemical noxious stimuli. It has
also been reported that pain is a complex issue in patients with Alzheimer’s and
Parkinson’s diseases, and adequate management of pain in those conditions is still
in discussion. TRPV1 has a role in neuroinflammation, a critical mechanism involved
in neurodegeneration. Therefore, some studies have considered TRPV1 as a target
for both pain treatment and neurodegenerative disorders. Thus, this review aimed
to describe the TRP-dependent mechanism that can mediate pain sensation in
neurodegenerative diseases and the therapeutic approach available to palliate pain and
neurodegenerative symptoms throughout the regulation of these channels.

Keywords: pain, Alzheimer’s disease, Parkinson’s disease, TRP channels, neurodegeneration

Transient receptor potential (TRP) proteins constitute a group of non-selective cation channels
(Gees et al., 2010) found in most cell membranes, except in the nuclear and mitochondrial
membranes. TRPs are expressed in plasma membrane and help to modulate the driving force for
the influx of Na+, K+, Ca2+, and Mg2+ ions, and trace metal ions (Nilius and Owsianik, 2011),
while in specific organelles, such as the cilium and lysosomes, they regulate organelle and cellular
activity (Moran, 2018). Numerous excitable and non-excitable tissues express TRPs, where they
are involved in sensory signal transduction (nociception, taste, pressure, temperature, vision, and
pheromone signaling), as well as homeostatic regulation (muscle contraction, vessel relaxation, and
cell proliferation) (Gees et al., 2010). In the central nervous system (CNS), several TRP channels
are expressed in both neurons and glia, fulfilling critical roles in neurogenesis, structural/functional
plasticity, and cell homeostasis (Nilius, 2012; Vennekens et al., 2012; Katz et al., 2017).

Frontiers in Neuroscience | www.frontiersin.org 1 August 2020 | Volume 14 | Article 782137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00782
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9035-5117
https://doi.org/10.3389/fnins.2020.00782
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00782&domain=pdf&date_stamp=2020-08-04
https://www.frontiersin.org/articles/10.3389/fnins.2020.00782/full
http://loop.frontiersin.org/people/978084/overview
http://loop.frontiersin.org/people/927884/overview
http://loop.frontiersin.org/people/1039612/overview
http://loop.frontiersin.org/people/214251/overview
http://loop.frontiersin.org/people/166623/overview
http://loop.frontiersin.org/people/166155/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00782 July 31, 2020 Time: 15:59 # 2

Duitama et al. TRP Channels in Neurodegenerative Diseases

It has been described that diverse ion channels expressed in the
brain’s cells, including TRPs, are involved in the progression of
neurodegenerative diseases such as Parkinson’s and Alzheimer’s.
Also, several members of TRPs subfamilies are highly expressed
in neurons and microglia mediating neuropathic pain (Haraguchi
et al., 2012). TRP channels are part of cellular pathways related
to the synthesis of many inflammatory mediators associated
with neuroprotection/neurotoxicity, where they contribute to
intracellular calcium regulation and signaling and painful stimuli
transduction (Ji and Suter, 2007; Miyake et al., 2014; Lee and
Kim, 2017). Therefore, TRP channels became of interest as
promising targets for the treatment of both neurodegenerative
diseases and pain.

In this review, we summarize the evidence of the role of TRP
channels in the progression of neurodegenerative diseases such
as Alzheimer’s and Parkinson’s diseases. Also, we discussed the
possible involvement of TRP channels in pain associated with
these neurodegenerative diseases and the use of TRP channels
as possible pharmacological targets for pain treatment in
patients with neurodegenerative diseases. A better understanding
of the molecular mechanisms involved in neurodegeneration
and pain is necessary to prevent and treat neurodegeneration
and chronic pain.

TRPs STRUCTURE AND EXPRESSION

TRP multigene superfamily is formed by 28 members that
encode integral membrane proteins that function as cation
channels (Vennekens et al., 2012). TRP channels have some
structural similarity, sharing as common a three-dimensional
structure with six transmembrane segments (S1 through S6),
two variable cytoplasmic domains (N- and C terminal), and
small loop forming the channel pore between S5 and S6
segments (Catterall and Swanson, 2015). The distinguishing
features between TRP channel subfamilies have been reported
in the N- and C-terminal cytosolic domains, which contain
residues and regulatory motifs unique for each family
(Gaudet, 2008).

Unlike other cation-selective channel families, TRPs are
classified by primary amino acid sequence rather than selectivity,
ligand function, mechanisms of regulation, or sequence
homology (Moran et al., 2004; Wu et al., 2010). TRP channels
are divided into seven subfamilies: TRPC (Canonical), TRPV
(Vanilloid), TRPA (Ankyrin), and TRPM (Melastatin), TRPP
(Polycystic), and TRPML (Mucolipin). The seventh family,
the no mechanoreceptor potential C channels (NOMPC or
TRPN), is not found in mammals (Skryma et al., 2011).
Alternatively, based on their sequence and topological features,
TRP genes superfamilies are divided into Group 1 (TRPC,
TRPV, TRPM, TRPA, and TRPN), and Group 2 (TRPP and
TRPML). TRP subunits, in the same or different subfamilies,
form functional homomeric or heteromeric ion channels
with distinct biophysical and regulatory properties (Hellwig
et al., 2005; Cheng, 2018). Heteromultimerization among
mammalian TRP subunits have been observed for the TRPC,
TRPV, TRPM, and TRPP families, displaying distinctive features

(Hellwig et al., 2005; Cheng, 2018). For instance, formation of
heteromeric complexes TRPC1/3, TRPC1/4, TRPC1/5, TRPC3/4,
TRPC4/5 showed novel non-selective cationic channels with
a voltage dependence or dynamic gating (Cheng et al., 2010;
Kim et al., 2014; Woo et al., 2014). Also, TRPV1/3, TRPV5/6,
TRPM6/TRPM7 or TRPML1/2 channels form heteromeric
channels with intermediate conductance levels and gating kinetic
properties (Cheng et al., 2007; Ma et al., 2011; Zhang et al., 2014;
Goldenberg et al., 2015; Kim et al., 2016). Heteromerization
within the mammalian TRP channel superfamily has also
been observed. For instance, heteromeric TRPP2/TRPC1
and TRPP2/TRPV4 channels exhibit new receptor-operated
property implicated in mechanosensation or thermosensitive
roles (Du et al., 2014), and TRPC1/TRPC6/TRPV4 may mediate
mechanical hyperalgesia and primary afferent nociceptor
sensitization (Cheng, 2018).

The first TRP subfamily characterized was the canonical
TRPC. The seven members of this subfamily are divided into
four groups according to their sequence homology into Group
I (TRPC1), group II (TRPC2), group III (TRPC3, TRPC6,
TRPC7), and group IV (TRPC4 and TRPC5) (Nilius and
Flockerzi, 2014). TRPC channels at the N-terminal domain
show ankyrin repeats (3–4), a coiled-coil region, and a caveolin
binding region. Meanwhile, the cytoplasmic C-terminal domain
contains the TRP motif EWKFAR, a highly conserved proline-
rich motif, and a region to interact with the IP3 receptor as
well with calmodulin (calmodulin/IP3 receptor-binding region)
(Putney et al., 2004). All TRPC are non-selective cation
channels permeable to Ca2+ (Bon and Beech, 2013) linked to
cellular processes such as cell division, differentiation, apoptosis,
transduction of external stimuli, and refill of intracellular Ca2+

stores. In addition, they act amplifying receptor-activated Ca2+

signaling via interaction with second messengers (Numaga-
Tomita et al., 2019). TRPC channels are widely distributed
in cells of different tissues, including brain, heart, smooth
muscle, liver, testis, ovaries, salivary glands (Beech et al., 2003),
endothelium, kidneys (Freichel et al., 2005), and adrenal glands
(Philipp et al., 2000). For instance, TRPC4/5 mRNA has been
found in cortico-limbic brain regions, like the hippocampus
and prefrontal cortex of adult rats (Fowler et al., 2007). TRPC
channels are involved in diverse neuronal functions via receptor-
mediated regulation by neurotrophic factors or neuropeptides,
and cation influx through TRPCs control cellular functions
and neuronal activity by regulating the membrane potential
(Katz et al., 2017).

The TRPV subfamily is made up of six members, which
are classified into four groups according to their homology:
TRPV1/TRPV2, TRPV3, TRPV4, and TRPV5/TRPV6 (Smith
et al., 2002; Xu et al., 2002; Nilius and Owsianik, 2011). TRPV
channels were named after the discovery that its founding
member (TRPV1) was activated by the vanilloid capsaicin,
the compound responsible for a hot spicy taste (Szallasi and
Blumberg, 1999). TRPV channels form homo- or hetero-
tetramers, highly calcium selective, and mostly located on the
plasma membrane. Each monomeric subunit typically contains
three to five N-terminal ankyrin repeats and a TRP box at
their C terminal. To this date, the most studied member of the
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TRP family is the TRPV1 receptor. TRPV1, TRPV2, TRPV3,
and TRPV4 are moderately Ca2+ permeable, while TRPV5
and TRPV6 are highly selective Ca2 + channels and strictly
regulated by [Ca2 +]i (Gees et al., 2010). It is known that
TRPV members have different gating properties, as studies
using wild type and knockout mice models revealed that
although TRPV2–6 channels share high sequence similarities
with TRPV1, and they do not respond to temperature stimuli
(Samanta et al., 2018). Furthermore, TRPV2 and TRPV4,
unlike to other members of the family, are not sensitive to
capsaicin (Caterina et al., 1999). TRPV1 channel is a homo-
tetramer in which each monomer contains six ankyrin repeats
in the N-terminal domain. The ion-conducting pore is formed
by the transmembrane segments S5 and S6 and the pore-
forming P loop and is similar to voltage-gated Na+ and K+
channels (Samanta et al., 2018). TRPV1 channels were first
described in pain-sensitive neurons in dorsal root ganglia
(DRG) and trigeminal ganglion neurons (Gees et al., 2010).
Specifically, they are localized in peripheral small unmyelinated
C- fibers, where they act as polymodal integrators of noxious
stimuli in skin, muscles, joints, and internal organs (Samanta
et al., 2018); also, TRPV2-4 channels are expressed in DRG
neurons. TRPV3 is found in the brain, tongue, testis (Xu
et al., 2002), skin, keratinocytes, and in cells surrounding hair
follicles (Mandadi et al., 2009), while TRPV4 is expressed in
non-neuronal cells like insulin-secreting β-cells, keratinocytes,
smooth muscle cells, and different epithelial and bone cell types
(Nilius et al., 2008).

The TRPA subfamily is constituted exclusively by the
mammalian TRPA1 channel, first identified as an ankyrin-
like transmembrane protein sharing similarities with other
TRP channel subfamilies (Jaquemar et al., 1999). TRPA1 is
a non-selective cation channel formed by homo- or hetero-
tetramer subunits. The structure of human TRPA1 (hTRPA1)
was determined by cryo-electron microscopy and shares a
common structure with other TRP channels (Paulsen et al.,
2015). TRPA1 has calcium-binding domains located in the
C-terminal (Meents et al., 2019), 16 ankyrin repeat sequences
in the N-terminal domain (Meents et al., 2017; Samanta et al.,
2018), a putative selectivity filter located at the entrance of the
pore, and a voltage sensor in the C-terminal (Meents et al., 2019).
These domains allow TRPA1 channels to interact with other
proteins, form molecular springs, and have better elasticity. This
channel is expressed throughout the body, including the brain,
heart, small intestine, lung, bladder, joints, and skeletal muscles
(Kono et al., 2013). TRPA1 is highly expressed in DRG and
trigeminal ganglia neurons (Takahashi et al., 2008) and acts as a
mechanosensor in peripheral sensory pathways and the inner ear
(Brierley et al., 2011).

TRPM channel subfamily consists of eight members grouped
in four pairs: TRPM1 and TRPM3; TRPM2 and TRPM8;
TRPM4 and TRPM5; and TRPM6 and TRPM7 (Fleig and
Penner, 2004). All TRPM family members share common
structural characteristics with other TRP channels (Fujiwara and
Minor, 2008); however, they have a large cytosolic domain of
between 732 and 1,611 amino acids for each subunit, which
makes them the largest members of the TRP superfamily

(Huang et al., 2020). Furthermore, unlike the TRPC, TRPV, and
TRPA subfamilies, TRPM have a unique N-terminal (TRPM
homology domain) without ankyrin repeats implicated in the
channel assembly and trafficking (Kraft and Harteneck, 2005).
Within subfamily members, the C-terminal section of TRPM
channels is particularly variable, with TRPM2, TRPM6, and
TRPM7, including active enzymatic domains (Samanta et al.,
2018). TRPM2 has a nucleoside diphosphate pyrophosphatase
domain (Chubanov et al., 2004) that specifically binds and
hydrolyzes to ADP-ribose, while TRPM6 and TRPM7 contain
α-kinase domains (Nadler et al., 2001; Drennan and Ryazanov,
2004). TRPMs are widely expressed in different tissues and
organs; for instance, TRPM 2, 3, 4, 5, 6, and 7 are expressed
in the CNS and periphery nervous system (PNS) (Mickle et al.,
2015). Also, TRPM4, TRPM5, and TRPM8 are preferentially
expressed in the prostate, while TRPM4, TRPM5, and TRPM6 are
expressed in the intestine, and TRPM7 in heart, pituitary, bone,
and adipose tissue (Bernardini et al., 2015). By contrast, TRPM1
is expressed by melanocytes and in malignant melanoma cells
(Mickle et al., 2015).

As mentioned before, several members of the TRPC, TRPV,
TRPM, and TRPA families are expressed in neurons and glial cells
in the CNS and PNS (Figure 1; Riccio et al., 2002; Moran et al.,
2004; Abel and Zukin, 2008; Harteneck and Leuner, 2014; Zhang
and Liao, 2015; Echeverry et al., 2016; Belrose and Jackson, 2018).
Evidence has shown that TRPs in the CNS have critical roles
in modulating growth cone guidance, synaptogenesis, synaptic
plasticity, and in the development of several neurodegenerative
diseases (Nilius, 2012; Vennekens et al., 2012; Katz et al., 2017).
Notably, even when the role of TRPs in nociception in the PNS
has been extensively described, their role in the CNS is almost
unknown, and it has only recently gained attention.

ACTIVATION MECHANISMS OF TRPs

TRP channels display a wide variety of activation mechanisms,
which include physical stimuli, ligand binding, second
messengers, and reactive oxygen and nitrogen species
(Vennekens et al., 2012).

TRPC channels are modulated by a diverse group of second-
messengers lipids that either regulate the channel activity or
its insertion into the plasma membrane (Nilius and Szallasi,
2014). TRPCs activation mechanism converges various types of
intracellular stimuli, including phospholipase C (PLC), protein
kinase C (PKC) activity, diacylglycerol (DAG), intracellular
calcium, and phosphatidylinositol 4,5-bisphosphate (PIP2) levels
to modulate membrane potential and calcium input (Ramsey
et al., 2006). Due to the flexible role of TRPC3 channel in calcium
signaling and functional coupling with metabotropic receptors
involving the PLC pathway in DRGs, as well as its regulation
by pro-inflammatory molecules inducing channel sensitization
(Séguéla et al., 2014), it has been of interest as a potential target
for the management of chronic pain. Although most TRPCs
are activated through PLC, which is a downstream effector
of growth factors and neurotrophins, For instance, TRPC3, 6,
and 7 are activated primarily by Gq/11 proteins, which are
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FIGURE 1 | TRP channels expressed in the nervous system cells. Several members of the TRPC, TRPV, TRPM, and TRPA families are highly expressed in cells of
the central and peripheral nervous system (neurons, astrocytes, oligodendrocytes, and microglia). TRP families are represented by capital letters as follow, C, TRPC;
M, TRPM; V, TRPV; A, TRPA. Numbers indicates specific members of each family.

coupled downstream PLC-β; nevertheless, the Gαi/o family are
the dominant activators for TRPC4 and 5 (Nilius and Szallasi,
2014), which effectors of the PLC pathway are critical for the
activation of TRPC channels remains a matter of debate, however,
it is thought that specific TRPC channels may use different
signaling effectors of this pathway (Putney, 2005). In this vein,
it has been described that TRPC activation is dependent on
recognition and lipid signals, and for instance, TRPC1, 2, 4, and
5 are activated by several DAGs (Lucas et al., 2003).

Besides lipid signaling, oxidative metabolism has a pivotal
role in regulating TRPC channels activity (Kitajima et al., 2011)
since they can be modulated by the production of reactive
oxidative species (ROS) and reactive nitrogen species (RNS).
TRPC channels can be considered redox-sensitive proteins that
are targeted by ROS (Kim et al., 2013), and specifically, it has
been reported that TRPC3 and TRPC4 are directly activated
in response to oxidative stress (Aarts and Tymianski, 2005;
Miller, 2006). It has been described that redox sensed by
TRPC channels let the system indirectly to transduce lipid
accumulation produced by the PIP2/DAG pathway (Malczyk
et al., 2016), and the redox modifications of the lipid membrane
environment that surrounds the channel (Poteser et al., 2006).
For instance, TRPC3 activation by 1-oleoyl-2-acetyl-sn-glycerol
(OAG) or mechanical stretch has shown to induce ROS
production in rat neonatal cardiomyocytes (Kitajima et al., 2011).

Additionally, it has been described in human embryonic kidney
(HEK) cells that nitric oxide (NO) activates TRPC5 channels
through mechanisms that require oxidation of extracellular
cysteines in response to the NO donor S-nitroso-N-acetyl-DL-
penicillamine (Yoshida et al., 2006). Also, intracellular oxidation
regulates TRPC5 activation by glutathionylation, nitrosylation,
and hydroxylation reactions, respectively, in Cys176 and Cys178
in contact with the intracellular redox environment, resulting
in a sustained increase in [Ca2+]i and consequent cellular
toxicity and neurodegeneration (Hong et al., 2015). In addition,
oxidative metabolism also regulates the expression of TRPC
channels (Song et al., 2011). Together ROS generation and Ca2+

signaling through TRPC channels modulate cellular processes
that allow physiological and pathological responses in several
organs (Malczyk et al., 2016) including kidney (Kim et al., 2013),
brain (Hong et al., 2015), and the immune system (López-
Requena et al., 2019). These factors have been associated in the
pathogenesis of several chronic neurological disorders, including
Alzheimer’s disease (AD) and Parkinson’s disease (PD), since
ROS could activate cell death processes directly, through protein
oxidation, lipids, and acting as second messengers in the cell
death process (Gopalakrishna and Jaken, 2000; Nakamura and
Lipton, 2009).

TRPV channels are activated by chemical ligands, such as
capsaicin or cannabinoids, but also by noxious heat (>43◦C),
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low pH (<6) (Caterina et al., 1997; Tominaga et al., 1998) and
voltage changes inducing depolarization (Cao, 2020). TRPVs are
also activated by lipid signaling (Cortright and Szallasi, 2004;
Jung et al., 2004), and eicosanoids, signaling molecules produced
by the enzymatic or non-enzymatic oxidation of arachidonic
acid or other similar polyunsaturated fatty acids (Hwang et al.,
2000). Specifically, TRPV1 activation can be achieved, regulated,
and enhanced by several inflammatory molecules throughout
metabolites downstream of G-protein coupled, such as PIP2
(Bhave et al., 2002), IP3 and DAG (Burgess et al., 1989), protein
kinases such as PKA (Vlachová et al., 2003), PKC (Bhave et al.,
2002; Varga et al., 2006), Ca2+/calmodulin-dependent protein
kinase II (CaMKII) (Jin et al., 2004; Rosenbaum et al., 2004), and
arachidonic acid metabolites like 12-HPETE (Shin et al., 2002).

It has been described that DRG neurons express TRPV1 to
transduce and modulate pain stimuli in response to ligands
and temperature (Caterina et al., 1997; Basbaum et al., 2009).
Furthermore, it has also been shown that Bradykinin can regulate
nociceptors such as TRPV1 activity, an inflammatory response
mediator, that simultaneously stimulates the synthesis of PLC
and its downstream targets (PIP3 and DAG), and arachidonic
acid that further enhance cell excitation (Suh and Oh, 2005).
During the inflammatory response, other pro-inflammatory
mediators such as prostaglandins and sympathetic amines,
sensitize nociceptors, including TRPV1, boosting pain sensation,
or hyperalgesia (Zarpelon et al., 2013). A relationship between
cytokines and oxidative stress has been found in hyperalgesia.
For instance, NADPH oxidase leads to the production of
superoxide anion by the TNF-α-induced NF-kB activation
and consequentially causes overexpression of pro-inflammatory
cytokines such as IL-1β (Possebon et al., 2014). Also, TNF-α and
IL-1β activate cyclooxygenase-2 to produce prostanoids, which
sensitize nociceptors, causing hyperalgesia (Verri et al., 2006).

TRPA1 channels have a wide range of natural and synthetic
ligands (reactive electrophilic agonists) that induce channel
gating by covalently bound to cysteine and lysine residues within
the N-terminal and transmembrane domains, or promote the
formation of C422–C622 disulfide bonds (Kimura, 2015). Also,
polyunsaturated fatty acids (Viana, 2016), temperature (17–
40◦C) (Laursen et al., 2014; Moparthi et al., 2016) and changes
in pH can activate TRPA1channels (Fujita et al., 2008; De La
Roche et al., 2013; Zimova et al., 2018). De La Roche et al.
(2013) reported activation of TRPA1, expressed in HEK 293T
cells, with solutions above pH 5.4. However, it has been shown
that in a Ca2+ dependent manner, pH between 7.4 and 8.5,
also activates mouse TRPA1 channels heterologous expressed in
HEK 293 cells (Fujita et al., 2008). Although the mechanism
of how Ca2+ can modulate the sensitivity of the channel to
more basic pH is still elusive, it has been shown that Ca2+

potentiates the activation and desensitization states of TRPA1
channels (Zimova et al., 2018). TRPA1 is a sensor for chemical
irritants and a major contributor to chemo-nociception that
is closely associated with TRPV1 channels, in terms of both
expression and function (reviewed in Wang et al., 2019). Similarly
to TRPV1, allogenic activators of TRPA1 channels are released
from inflammatory environments or tissue injury sites to activate
the channel (Chen and Hackos, 2015). For example, several

lipid peroxidation products, oxidized lipids, and activators of
the inflammasome, stimulate TRPA1 channels by an indirect
mechanism involving H2O2 production (Trevisan et al., 2014).
Additionally, endogenous lipidergic activators like nitrated fatty
acids, produced by inflammatory processes, covalently bind to
activate TRPA1 channels (Brewster et al., 2015).

TRPM activation mechanisms vary greatly among subfamily
members, however, more than half of the members are sensitive
to a wide range of temperatures, from cold to hot. For instance,
TRPM4 and TRPM8 are activated by temperatures below 15
and 26◦C, respectively (Talavera et al., 2005; Yao et al., 2011),
while TRPM5 and TRPM2 are activated by temperatures above
35◦C (Togashi et al., 2006). TRPM3 is the only member of
this family that is activated by harmful heat, around 52◦C in
peripheral sensory neurons (Vriens et al., 2011). Some channels
in this subfamily also respond to redox status, intracellular
calcium, low temperatures, or ligands such as menthol. For
instance, TRPM2 play a role in the transduction of oxidative
stress stimuli (Oancea et al., 2011). In cortical neurons, TRPM2
channels are involved in the cytotoxic influx of Ca2+ that
is induced by reactive oxygen species such as H202 (Kaneko
et al., 2006). TRPM2 also activated by-products of nucleotides
metabolisms like ADP-ribose (ADPR) and nicotinamide adenine
dinucleotide (NAD) (Nadler et al., 2001; Hara et al., 2002; Kraft
and Harteneck, 2005). It is not clear whether ROS directly
or indirectly activates TRPM2 downstream of ADPR or NAD,
however, recent evidence shows that oxidative stress triggers
the production of ADPR mitochondrial that is released to the
cytosol to activate TRPM2 (Perraud et al., 2005). It has been also
described that H2O2 production after DNA damage, especially
during certain phases of the cell cycle, induces an accumulation
of 2′-deoxy-ATP mediated by an increase in NAD synthesis
and a decrease in reserves of cellular ATP (Fliegert et al.,
2017). The increased ratio of 2′-deoxy-ATP to ATP facilitates
the synthesis of 2′-deoxy-NAD and subsequent hydrolysis to 2′-
deoxy-ADPR. It is known that increasing amounts of cellular 2′-
deoxy-ADPR mediates TRPM2 activation with similar potency
but greater efficacy than ADPR, making it a TRPM2 super-
antagonist (Fliegert et al., 2017). These findings are in congruence
with the suggestions that TRPM2 activation under an oxidative
environment could be related to pathological cell death in
neurodegenerative diseases (Xie et al., 2010). TRPM4 and TRPM5
channels are activated by Ca2+, but they are not calcium-
permeable (Oancea et al., 2011). The sensitivity of TRPM4 to
intracellular Ca2+ is controlled by multiple signaling events,
including ATP, PKC-dependent phosphorylation, calmodulin
(CaM) binding, and membrane potential (Nilius et al., 2005).
PIP2, Ca2+, and the voltage regulate the sensitivity of these
channels, however, an increase in temperature in the range of
15 to 35◦C further displaces the dependence of the voltage
toward more negative potentials (Talavera et al., 2005). TRPM7
is also regulated by ROS and Ca2+ entry. Ca2+ has been
considered as a relevant factor for the strong and lasting
activation of TRPM7 in conditions of anoxia, oxidative stress,
and metabolic imbalance, which could suggest mechanisms in
which TRPM7 is involved and could induce even cell death
(Aarts et al., 2003).
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The PLC pathway, mediated by increased in intracellular
calcium concentration, is an important mechanism involved in
the modulation of some members of the TRPM family involved
in depletion of PIP2 and the desensitization of TRPM4, TRPM5,
TRPM7, and TRPM8 channels. Specifically, for TRPM4 it has
been reported to cause a shift to the left of its voltage dependence
and increase its sensitivity to Ca2+ 100 times (Owsianik et al.,
2006). TRPM8 activation is inhibited by Gq-coupled receptors
that mediate PLC activation, however, depletion of Ca2+ store
activates chemical signaling through lysophospholipids (LPLs),
enhancing TRPM8 activity (Vanden Abeele et al., 2006). Also,
exogenous PIP2 (Liu and Qin, 2005), cold, or menthol (Rohács
et al., 2005) activates TRPM8.

TRP CHANNELS AND
NEURODEGENERATIVE DISEASES

Neuronal cell death rarely occurs in healthy brains, however,
it can be triggered by internal/external factors in most
neurodegenerative diseases (NDDs), where neurons initially lose
their ability to maintain homeostasis due to changes in neuronal
morphology, function, and viability (Dugger and Dickson, 2017;
Chi et al., 2018). NDDs are categorized by their clinical features,
anatomical structures affected, or molecular abnormalities
(Kovacs, 2016). Although different in etiology, NDDs share
common features, including mitochondria dysfunction,
impaired energy metabolism, abnormal voltage-dependent
anion channel activation, DNA damage, pro-inflammatory
cytokines production, and disruption of cellular and axonal
transport (Dugger and Dickson, 2017; Chi et al., 2018).

In the elderly, neurodegenerative diseases are a common
and growing cause of mortality and morbidity, being AD and
PD the most studied (Rahimi and Kovacs, 2014). AD is the
most common form of dementia and makes up to 60–80%
of all dementia cases worldwide, affecting an estimated 34
million people globally (Erkkinen et al., 2018). Meanwhile, PD
affects 0.2 people per 100 of the population (independently of
age), and almost 1–3% of the population older than 60 years
(Tysnes and Storstein, 2017). Patients with AD or PD present
learning and memory impairments, poor communication skills,
irritability, symptoms of anxiety/depression, and progressive
motor dysfunction (Batista and Pereira, 2016), and 40–85% of
them suffer from painful conditions (Jost and Buhmann, 2019).
Although the mechanisms that lead to these painful conditions
are not fully understood, it is thought that neuropathological
changes that occur in people with AD and PD dementia could
alter pain perception (Van Kooten et al., 2016).

Calcium concentration level in neurons is exquisitely
controlled to maintain cell homeostasis and to prevent
neurodegeneration. The machinery that regulates intracellular
Ca2+ levels is complex and includes several voltage-dependent
plasma membrane calcium-conducting channels, glutamate
receptors such as N-methyl-D-aspartate receptors and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, calcium
release activated channels, and TRPCs. In addition, calcium flow
from the endoplasmatic reticulum (ER) is highly regulated by

Ryanodine receptors, Inositol trisphosphate receptor, calcium-
dependent kinases, and phosphatases (Brini et al., 2014).
Alterations in Ca2 + homeostasis have been related to the
appearance and progression of several NDDs, including AD and
PD (Marambaud et al., 2009; Nevzati et al., 2014). Indeed, it
has been reported that exposure to either Aβ peptides (Li et al.,
2009) or α-synuclein oligomers (Danzer et al., 2007) induces
neuronal death by activating Ca2+dependent signaling pathways
and metabolic derangements (Arundine and Tymianski, 2003),
most likely by increasing mitochondrial Ca2+ levels and the
release of proapoptotic factors (Orrenius et al., 2003; Beech, 2005

In physiological conditions, activation of G-coupled receptors
at the plasma membrane induces the release of Ca2+ from
the ER, which in turn stimuli the influx of extracellular
Ca2+ through a diversity of plasma membrane channels.
This process is known as store-operated Ca2+ entry (SOCE)
(Putney, 1986). SOCE calcium fluxes are mediated by calcium
selective ion channels ORAI (calcium release-activated calcium
channel proteins) (Kraft, 2015) that allow the calcium release-
activated calcium current (ICRAC) and store-operated calcium
current (ISOC) mediated by relatively selective Ca2+ to non-
selective cation channels, such as TRPC1/4/5 (Parekh and
Putney, 2005; Yuan et al., 2007). It has been suggested that
Orai binds to TRPC1 and the stromal interaction molecule 1
(STIM1) during SOCE activation, enhancing calcium currents
(Liao et al., 2008; Zhang et al., 2016). In this regard,
TRPCs play a role in [Ca2+]i regulation by modulating
SOCE (Minke and Cook, 2002), which joint to other TRPs,
such as TRPC3, TRPC4, TRPM2, and TRPM7, respond to
oxidative stress (Selvaraj et al., 2012), and may contribute to
neurodegeneration (Figure 2). Given the expression of TRP
channels in brain regions damaged during the development
of PD and AD, and their role in Ca2+ homeostasis and
ROS/RNS sense, they are now considered key players in
neuronal degeneration and potentially on altered pain perception
(Figure 3) (Bernd and Appendino, 2007; Nilius and Flockerzi,
2014; Rojo et al., 2014).

TRPs IN PARKINSON’S DISEASE

PD is characterized by a marked loss of dopaminergic
neurons (DNs) in substantia nigra (SN) (Cacabelos, 2017).
Although the mechanism by which these neurons degenerate
is not well known, mitochondrial dysfunction, oxidative stress,
inflammation, altered calcium homeostasis, NO synthesis,
protein aggregation, excitotoxicity, and glutathione (GSH)
depletion (Mandel et al., 2003), and activation of microglia-
mediated by glucocorticoid receptors (GR) (Maatouk et al., 2018),
are related to degeneration of DNs (Channels, 2017). Considering
that oxidative stress and changes in Ca2+ homeostasis are
involved in PD, it has been suggested that TRP channels
could mediate some of the mechanisms that lead to the
development of the disease.

Kim et al. (2005) showed that capsaicin, a TRPV1 agonist,
elicits cell death of mesencephalic DNs. Additionally, it has
been reported that TRPV1 activation triggers Ca2+-dependent
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FIGURE 2 | SOCE through TRP channels. Activation of G-protein coupled receptors activates the phospholipase C pathway that induces the hydrolysis of PIP2 to
DAG (red arrows) that actives PKC, which in turn phosphorylates TRP channels. In parallel, the generation of IP3 (green arrows) promotes the release of Ca2+ from
the ER. The depletion of intracellular Ca2+ stores from the ER is sensed by STIM1, which also activates Ca2+ channels in the plasma membrane such as TRPs (dark
green arrow), allowing the entry of Ca2+ from the extracellular medium to the cytosol (black arrows) to refill de ER deposits.

FIGURE 3 | Alterations in calcium homeostasis mediated by SOCE during inflammation and oxidative stress. Activation of G-coupled receptors by pro-inflammatory
mediators, such as bradykinin, induces the release of Ca2+ from the ER stores through the PLC pathway (green arrows), followed by an influx of Ca2+ through Ca2+

permeable channels such as TRPs (black arrows). The increase [Ca2+]i then induces mitochondrial dysfunction that leads to caspase activation, ROS and RNS
production, microglia activation, and production of pro-inflammatory mediators (yellow arrows).
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cell death (Kim et al., 2006) and NADPH-oxidase-mediated
production of ROS in microglia (Shirakawa and Kaneko, 2018),
suggesting that a similar mechanism could operate in death
of DNs in PD. For instance, TRPV1 antagonists such as
capsazepine and iodo-resiniferatoxin inhibit DNs death in vivo
and in vitro (Kim et al., 2005). Mechanistically, it is thought
that TRPV1 activation induces an increase in [Ca2+]i that
impairs mitochondrial function, induces cytochrome release,
and caspase-3 cleavage. Consequently, activation of TRPV1
channels contributes to dopaminergic neuron damage via Ca2+

signaling and mitochondrial disruption (Kim et al., 2005).
Although the nature of the endogenous ligands that induce
the activation of TRPV1 in PD has not been elucidated,
these channels are endogenously activated by anandamide, an
endocannabinoid, which is increased in untreated PD patients
(Pisani et al., 2010).

In contrast to the toxic role of TRPV1 activation on DNs,
TRPC1 has been suggested as a protector and critical mediator
of DNs survival (Sun et al., 2012). DNs are characterized
by a pacemaker activity that is thought to be dependent
on the activation of the Ca2+ channel Cav1.3 and Na+
channels. Interestingly, Cav1.3-mediated cell death is prevented
by translocation of stromal interacting molecule-1 (STIM1)
induced by Ca2+depletion of ER, allowing it to interact with
and activate calcium permeable channels like TRPC1 to refill
the ER Ca2+ store (Soboloff et al., 2012; Kraft, 2015). That
process protects DNs against the Cav1.3-mediated cell death.
Neurotoxins that mimic PD symptoms, such as 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), increase the activity
of the Cav1.3 channel by downregulating the expression of
TRPC1, which lead to a decrease in SOCE and the release of
Ca2+ from ER to the cytosol in DNs and mesenchymal stem cells
(Sun et al., 2018). It has been described that MPP+ (1-methyl-
4-phenylpyridinium), a toxic metabolite product of enzymatic
activity of MAO-B on MPTP, kills DNs in SN (Choi et al., 2015).
In this vein, it has been shown that Cav1.3 silencing or TRPC1
overexpression decreases caspase 3 and inhibits MPP+-induced
cell death. Therefore, TRPC1 expression facilitates STIM1-Cav1.3
interaction, and it is essential for the survival of DNs in PD
(Sun et al., 2017). Moreover, Chen et al. (2013) found that the
downregulation of Homer 1 protein inhibited the generation of
ROS induced by MPP+ in DNs, without affecting the activity
of endogenous antioxidant enzymes; this inhibition was further
potentiated by BAPTA-AM. Exposure of DNs to MPP+ induces a
rapid increase in cytosolic Ca2+ concentrations after its release
from the ER, an effect that was prevented in DNs with low
Homer1 expression (Chen et al., 2013).

Beyond its role in DNs-induced cell death, MPP+ can
directly activate microglia and promote the production of
several pro-inflammatory mediators and iNOS (Kim et al., 2018;
Lee et al., 2019). Once microglia are activated, the release of
pro-inflammatory microglial cytokines and chemokines induce
the death of dopaminergic (DA) neurons, evidencing the
vulnerability of these neurons to glia-mediated neurotoxicity.
In the MPTP model, M1 microglia have been associated with
dopamine neurodegeneration by the induction of microglial NOS
and NADPH oxidase (NOX) (Appel et al., 2015). Mizoguchi et al.
found that brain derived neurotrophic factor (BDNF) induces

a sustained elevation of [Ca2+]i through the overregulation of
TRPC3, which is also crucial for the suppression of NO induced
by BDNF-activated microglia. This signaling pathway has been
linked to the inflammatory response that mediates DA death in
PD (Mizoguchi et al., 2014).

Furthermore, Parkinsonian disorders are often associated
with changes in the frequency and firing mode of GABAergic
neurons (Zhou et al., 2008). In SN and Globus Pallidus
internus, GABAergic neurons project and regulate the firing
pattern of thalamic nuclei, superior colliculus, and brainstem
motor nuclei, regulating the smoothness and coordination of
movements (Zhou et al., 2008). TRPC3 channels selectively
expressed in the SN GABA projection neurons regulate the
firing pattern of these neurons. The expression of TRPC3
in SN maintains a constant influx of Na+ that generates
a tonic depolarized potential that contributes to the high
frequency and regularity pattern of firing of these neurons (Zhou
et al., 2008). However, it has been described that ROS-induced
increased TRPC3 activity could lead to a more depolarized
potential in GABAergic projecting neurons, contributing to the
unbalance of disinhibition and inhibition cycles observed in PD
(Zhou et al., 2008).

TRPM7, a Zn2+, Ca2+, and Mg2+ permeable channel, has
been associated with NDDs given its regulation by intracellular
Mg2+ levels and ROS (Nadler et al., 2001; Sun et al., 2015).
PD animal models have shown that Mg2+ deficits increase the
vulnerability of DNs to MPTP neurotoxicity (Muroyama et al.,
2009). Furthermore, Mg2+supplementation inhibits the toxicity
of (methyl-4-phenylpyridium ion) by decreasing the death of
DNs and maintaining the length of their neurites. These results
are in agreement with the observation that TRPM7 is significantly
decreased in the SN of PD patients and that long-term Mg2+

deficiencies significantly decrease the number of DNs in SN
(Oyanagi et al., 2006). These results suggest that DNs utilize
TRPM7 channels to regulate Mg2+ levels, and that loss of TRPM7
channel function may be involved in the development of PD
(Landman et al., 2006).

It has been reported that PD patients have significantly
elevated cortisol levels compared to control subjects of the
same age (Bellomo et al., 1991; Ros-Bernal et al., 2011).
Interestingly, expression of TRPM6 and TRPM7 can be regulated
by glucocorticoids (GCs) in a tissue-dependent manner (Cuffe
et al., 2015). In the brain, GC signaling is mediated by GRs
well as by mineralocorticoid receptors expressed in neurons and
glia (Sierra et al., 2008). A large number of studies indicate
that activation of GRs by GC promotes inflammatory response
(Bhattacharyya et al., 2010), particularly in microglia (Maatouk
et al., 2018). For instance, inflammation caused by a low
dose of Lipopolysaccharides (LPS) directly administrated in
substantia nigra causes a specific loss of dopaminergic neurons
(Castaño et al., 2002). Interestingly, pre-treatment with a low
dose of dexamethasone (DXM, 1 mg/Kg) diminished nigrostriatal
dopaminergic neurons damage in mice treated with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropiridine (MPTP, 40 mg/Kg), while
a high dose of DXM (10 mg/Kg) further aggravate loss of
dopaminergic neurons (Kurkowska-Jastrzȩbska et al., 2004).
However, physiological levels of GC and functional response
of GRs are necessary to prevent neurodegeneration; indeed, it
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has been reported that in the absence of GR, microglia-induced
dopaminergic neuronal loss (Barcia et al., 2011).

TRPs IN ALZHEIMER DISEASE

Altered Ca2+ homeostasis has been considered one critical factor
regulating neuronal death in AD (Small, 2009). For instance,
mutations in presenilins, catalytic subunits of the gamma-
secretase, have been linked to Ca2+ signaling dysregulation,
proteolytic processing of amyloid precursor protein (APP),
and thereby increasing production of Aβ peptide (Guo
et al., 1997, 1999; Schneider et al., 2001; Banerjee and
Hasan, 2005). Aggregation of the Aβ peptide may induce
the release of Ca2+ stored in the ER, resulting in an
overload of cytosolic Ca2+. In response to the rise in
[Ca2+]i, endogenous levels of GSH are reduced, leading to
a ROS accumulation within cells (Ferreiro et al., 2008). In
addition, the deposition of Aβ also induces microglial activation
(Seabrook et al., 2006) and the release of pro-inflammatory
cytokines, initiating pro-inflammatory signaling pathways that
subsequently contributes to neuronal damage and death (Wang
et al., 2015). Pro-inflammatory cytokines also sensitized TRPV1
channels expressed in a variety of cells, such as microglia,
astrocytes, pericytes, and neurons (Tóth et al., 2005), suggesting
that these channels contribute to AD-related neuroinflammatory
processes. Inhibition of TRPV1 dependent generation of ROS
significantly diminishes the detrimental effect of activated
microglia and the inflammatory response elicited by astrocytes
upon stimulation with the Aβ peptide (Harada and Okajima,
2006; Benito et al., 2012). However, capsaicin activation of
TRPV1 protects the hippocampus function by rescuing the effect
of Aβ peptide on the hippocampal gamma oscillations (Balleza-
Tapia et al., 2018). These differences compared to the response
of TRPV1 after activation by capsaicin, could be accounted
for by experimental conditions, likely related to β-amyloid
concentrations used in both studies (Balleza-Tapia et al., 2018).
Purely fibrillary beta-amyloid preparations have been reported
to be more toxic in some experimental models (Kurudenkandy
et al., 2014; Cohen et al., 2015), and this possibly induces
pathological activation of inflammatory mechanisms, mediated
by TRPV1 in primary astrocyte culture (Devesa et al., 2011; Tsuji
and Aono, 2012).

In the brain, TRPA1 channels play an essential role in
their development and function of non-neuronal cells, such as
astrocytes (Shigetomi et al., 2012, 2013). Although AD is a
complex disease in which several mechanisms may act, recent
studies have evaluated the role of Ca2+ related signaling pathways
in the etiology and development of the disease (Yamamoto
et al., 2007; Takada et al., 2013). Lee et al. (2016) demonstrated
in vitro that Aβ triggers a TRPA1-dependent Ca2+ influx
and astrocytic activation. Additionally, ablation of TRPA1 in
APP/PS1 transgenic mice slowed the progression of AD and
improved learning and memory performance, and reduced Aβ

plaques and cytokines (Lee et al., 2016). These results have
been further supported by TRPA1 expression in HEK cells,
where Aβ is also capable of inducing TRPA1 dependent Ca2+

signaling, that activate transcription factors such as NF-κB and
NFAT and promote expression of pro-inflammatory cytokines
(Lee et al., 2016).

Interestingly, loss-of-function or pharmacological inhibition
of TRPM2 channels prevents microglial activation and TNF-α
production induced by a wide range of Aβ42 concentrations
(10–300 nM), proving a novel role of TRPM2 in microglial
activation triggered by Aβ42 peptides (Alawieyah et al., 2018).
Likewise, Ostapchenko et al. (2015) demonstrated that TRPM2
ablation in AD models decreases microglial activation, improves
the expression of synaptic markers and reduces the deficits
in memory observed in aging animals (Ostapchenko et al.,
2015). Furthermore, it has been shown that TRPM2 endogenous
expression in rat striatum neurons and activation by Aβ and
oxidative stress is enough to drive cell death, suggesting that
TRPM2 is an active transducer of ROS signaling that may
contribute to neuronal death in AD (Fonfria et al., 2005).
At a cellular level, ROS levels are regulated by a complex
mechanism that involves antioxidant enzymes and small-
molecule antioxidants such as GSH (Geon et al., 2015). GSH
levels tend to be lower with age and have been considered as
markers of cognitive impairment severity (McCaddon et al.,
2003). Interestingly, in neuronal cultures that recapitulate aging,
GSH supplementation significantly decreases TRPM2 expression
and activity (Sita et al., 2018). Therefore, downregulation of the
antioxidant defense plus the Aβ-induced production of ROS and
cytokines in AD can lead to the activation of several TRP channels
that can increase [Ca2+]i, leading to excitotoxicity and apoptosis
(Park et al., 2014).

Although some advances have made in understanding the
role of TRP channels in neurodegenerative diseases, we are
still far from having an integrated comprehension of the role
of these channels in the etiology and development of these
diseases. For instance, more studies are needed to unveil how
all these channels work together either to degenerate or protect
neurons in PD and AD.

TRPs INVOLVEMENT IN PAIN,
ALZHEIMER’S, AND PARKINSON’S
DISEASES

During the past decade it has been an increasing awareness of
pain and pain management as important issues to address in
the elderly (Ali et al., 2018) and patients with neurodegenerative
diseases (Cravello et al., 2019). Pain symptoms in NDD patients
include sleep disorders, musculoskeletal problems, reduced
mobility, falls, malnutrition, cognitive impairment, increased
drugs use, diminished social behavior, anhedonia, and depression
(Cravello et al., 2019). Prevalence of painful symptoms in patients
with AD range from 38 to 75%, and from 40 to 86% in PD (Batista
and Pereira, 2016; Van Kooten et al., 2016; de Tommaso et al.,
2017; Cravello et al., 2019).

Even when PD was previously considered as a purely
motor disorder, now it is known that non-motor symptoms,
including pain, occur throughout the course of the disease and
significantly affect the quality of life (Jost and Buhmann, 2019).
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Some nociceptive pain associated with PD is a secondary
consequence of the motor impairment (abnormal muscular
tone, spasms, rigidity, reduced active mobility, osteoarticular
problems, and local inflammation), however, as many as 43% of
Parkinson patients exhibits characteristics typical of neuropathic
dysfunction (burning, tingling, formicating, decreased
nocifensive flexion reflex, and lowered cold threshold) (Reichling
and Levine, 2011; Skogar and Lokk, 2016; de Tommaso et al.,
2017). Neuropathic pain has been recently studied in a model
of nigro-estriatal pathway lesion, which induces allodynia and
hyperalgesia in rats (Romero-Sánchez et al., 2019).

Similarly, it has been described that pain is more prevalent
in AD patients, and that intensity of pain is also positively
correlated with dementia severity (Cao et al., 2019). Typical
cognitive impairment observed in AD also affect the assessment
of a painful experience and the ability to describe it (Cravello
et al., 2019). It has been reported that neural circuits mediating
pain perception and its behavioral expression may be hyperactive
or underactive in AD: Specifically, altered pain response seems
to depend on the extension of the brain tissue damage, stage of
the disease, and type of pain (acute stimuli or chronic medical
conditions) (Monroe et al., 2012).

Recently, neuropathological changes occurring during
the progress of dementias are being considered as possible
causes of pain perception alterations (Cravello et al., 2019),
and it has been suggested that primary neuropathic pain is
not a simple consequence of nervous system deterioration
but instead the result of the very same cellular processes that
underlie neurodegenerative diseases (Reichling and Levine,
2011; Cravello et al., 2019). The neuropathological changes that
occur in AD affect structures comprised in CNS processing
affective-motivational (hippocampus, entorhinal cortex,
cingulate gyrus, hippocampus, amygdala), cognitive-evaluative

(prefrontal cortices), and sensory-discriminative (somatosensory
cortex) aspects of pain (Monroe et al., 2012; Achterberg et al.,
2013; Dugger and Dickson, 2017). Similarly, in PD, insufficient
input from dopaminergic neurons to basal ganglia and motor
and prefrontal cortices results in enhanced inhibitory inputs,
which leads not only to body movement-related symptoms but
also cognitive and emotional symptoms associated to altered
pain perception (Chi et al., 2018).

Figure 4 shows brain’s structures involved in pain perception,
which include the prefrontal cortex, hippocampus, amygdala,
entorhinal cortex, anterior cingulate cortex, basal ganglia,
thalamus, insula, and sensory cortex (Fenton et al., 2015; Mano
and Seymour, 2015; Cao et al., 2019), and TRP channels
expressed in each one of these structures (Kauer and Gibson,
2009; Harteneck and Leuner, 2014; Nilius and Szallasi, 2015;
Frias and Merighi, 2016; Katz et al., 2017). As described
before, TRP channels have an unique role in nociceptive,
neuropathic, and inflammatory pain as diverse members of
their families are involved in pain pathways (Hung and Tan,
2018). For instance, members of TRPA, TRPV, and TRPM
subfamilies have high expression levels in neurons mediating
neuropathic pain (Naziroğlu, 2012). Interestingly, members of
the TRPC and TRPM families are expressed in SN, basal ganglia,
and hippocampus, brain structures that exhibit significant loss
of neurons at the initial stages of the development of AD
or PD, respectively. The specific role of TRPs on NDD-
related pain symptoms have not been thoroughly studied.
However, several lines of evidence indicate a relationship
between pain, neurodegeneration and TRPs, particularly related
to inflammation.

At the molecular level, it has been proposed that pain-
related to NDDs is associated, not only to loss of selected
neuronal population but to microglial activation, that response

FIGURE 4 | TRP channels are expressed in brain structures involved in pain perception. Pain processing includes cortical (prefrontal, parietal, somatosensory, and
cingulate), limbic (amygdala, hippocampus, thalamus, hypothalamus), and movement-related structures (Basal Ganglia, Substantia Nigra, and Cerebellum) that
express several members of the TRP channels. TRP families are represented by capital letters as follow, C, TRPC; M, TRPM; V, TRPV; A, TRPA. Numbers indicates
specific members of each family.
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to noxious stimuli realizing inflammatory mediators such
as pro-inflammatory cytokines, interleukins, and tumor
necrosis factor alpha (TNFα) (Carniglia et al., 2017). Notably,
chronic pain (inflammatory or neuropathic pain) related to
neurodegeneration is also accompanied by neuroimmune
activation and an escalated response that impairs homeostatic
balance since anti-inflammatory mediators are not released,
inducing further tissue damage, neuroinflammation, and
neurodegeneration (Carniglia et al., 2017; Salter and Stevens,
2017; Inoue and Tsuda, 2018). The role of glial cells in the
initiation, sensitization, and maintenance of chronic pain has
been studied during the past two decades (Cravello et al.,
2019), and it has been found that neuromodulators produced
by microglia can rapidly alter synaptic plasticity, a driving
force for the pathogenesis of pain after tissue or nerve injury
(Chen et al., 2018).

During inflammatory pain, inflammatory molecules can
change the TRP threshold activation, inducing mechanical
allodynia, thermal hyperalgesia, and spontaneous pain. TRPV1,
TRPA1, and TRPM2 channels have been intensely studied in
pain sensation because they participate in the cellular signaling
mechanism through which injury produces pain hypersensitivity.
These channels can be activated by thermal stimuli and
endogenous molecules derived from the inflammation process
(Ma and Quirion, 2007; Hung and Tan, 2018). After an injury,
inflammatory molecules such as eicosanoids, neuropeptides,
and cytokines decrease the thresholds of sensory neurons,
inducing sensitization in TRPV1 (Julius, 2013). As TRPA1 is
highly regulated by oxidative stress and is targeted by different
reactive species, so that they are activated during inflammatory
progression, where ROS produced after tissue injury induces
superoxidation of membrane phospholipids and activation of the
channel (Julius, 2013; Mori et al., 2016; De Logu et al., 2017;
Hung and Tan, 2018). The role of TRPM2 in pain generation
is through their activation by reactive nitrogen species (Kaneko
et al., 2006). Similar to TRPV1, TRPM2 suffers sensitization
by H2O2 that lowered the temperature of activation (Kashio
et al., 2012). Interestingly, it has been described that chronic
pain is a risk factor to develop memory impairment, dementia,
and other neuropsychiatric conditions (Moriarty and Finn, 2014;
Whitlock et al., 2017).

TRP channels expressed in sensory neurons have an essential
function in pain and inflammation transduction (Fernandes
et al., 2012; Smani et al., 2015). Similarly, it has been reported
that microglial TRP channels have a significant role in pain
modulation as well as in AD and PD (Cravello et al., 2019) by
regulating the levels of ROS, pro-inflammatory cytokines, and
the homeostasis of Ca2+. All these processes are connected with
microglial activation, which is a cellular process proposed as
a central player in both pain and neurodegenerative diseases
(Miyake et al., 2014; Echeverry et al., 2016). For example, during
inflammation, an upregulation of TRPM2 channels in microglia
leads to an exacerbated inflammatory response mediated by
ROS. This mechanism has been proposed as one of the primary
inductors of inflammation and neuropathic pain (Haraguchi
et al., 2012). However, It has also been shown that TRPV1
channels protect mesencephalic DA neurons by inhibiting

microglia-originated oxidative stress, suggesting that TRPV1
channels may be novel targets for regulating the oxidative stress-
mediated neurodegeneration observed in PD (Park et al., 2012).

TRP-dependent microglial activation involves the influx
of Ca2+ and the activation of Ca2+ -mediated signaling
pathways that induce the synthesis of pro-inflammatory
molecules, including interleukins (IL-1β and IL-12), chemokines,
prostaglandins (PGs), TNF-α, ROS, and NO. These molecules
promote an exacerbated inflammatory response by the
recruitment of other immune cells that conduce to neuronal
damage. However, when the injurious stimuli are controlled,
the inflammatory response is diminished by cytokines with
anti-inflammatory activity such as transforming growth factor
(TGF-β) and IL-10 by microglia. Therefore, the imbalance of
microglial activation could exacerbate the pro-inflammatory
response, leading to neuronal degeneration and cell death in AD
and PD, and neuropathic and inflammatory pain (Suter et al.,
2007; Ji et al., 2013; Beggs and Salter, 2016; Carniglia et al., 2017).

Some kinases have a described role in pain. It was reported
that extracellular signal-regulated kinases 1/2 and 5 (ERK1/2 and
ERK5) are expressed in microglia, and their phosphorylation is
induced during neuropathic pain (Tatsumi et al., 2015; Carniglia
et al., 2017). Furthermore, it was observed that neuropathic pain
induced by nerve injury, promoted the phosphorylation of p38
mitogen-activated protein kinase (MAPK) in spinal microglia.
p38 MAPK is activated by multiple microglial receptors,
inflammatory cytokines, membrane depolarization, and Ca2+

influx. This pathway regulates pro-inflammatory signaling
networks as well as the production of diverse inflammatory
molecules associated with pain facilitation, including the
cytokines TNF-α and IL-1β (Ji and Suter, 2007; Lee and Kim,
2017). Moreover, it was confirmed that the inhibition of p38
MAPK decreases the release of pro-inflammatory cytokines,
inducing relieve of mechanical allodynia in diverse models of
neuropathic and inflammatory pain (Jin et al., 2003; Lee and Kim,
2017; Inoue and Tsuda, 2018). Interestingly, in addition to their
role in pain, the p38 MAPK pathway has also been involved in
the cellular mechanisms that regulate neurodegeneration (Lee
and Kim, 2017; Kheiri et al., 2019). Activated p38 MAPK was
observed in peripheral blood leukocytes and neuronal cells, as
well as in postmortem brain from patients with AD (Sun et al.,
2003; Kheiri et al., 2019).

p38 MAPK role in AD has been associated with both Tau
protein and Aβ peptide, which are essential players in AD
pathologies. For instance, Aβ peptide promotes the activation
of p38 MAPK, which in turn, phosphorylates Tau protein
in neuronal cells (Lee and Kim, 2017). In this vein, it has
been described that Aβ peptides suppress nociception and
inflammatory pain in APP overexpressing CRND8 transgenic
mice (Shukla et al., 2013); this finding is in accordance with the
finding that mice treated with a single intracerebroventricular
injection of Aβ fragment (1–40) (400 pmol/mice) displayed
increased pain tolerance (Pamplona et al., 2010). However, pain
sensitivity could be altered in a more complex form since i.c.v.
Aβ treated mice also display anxiogenic-like and depressive-like
states, which are related to alterations in cognitive/emotional
components of pain processing (Pamplona et al., 2010). Also, it
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has been described that Tau depletion, in-vivo studies, negatively
affects the main systems conveying nociceptive information to
the CNS (Sotiropoulos et al., 2014). Tau-null (Tau−/−) mice
display reduced C-fiber density and Aδ-fiber hypomyelination
followed by diminished conduction properties sciatic nerves and
decreased nociception but increased excitability of second-order
spinal cord nociceptive neurons, resulting in heightened pain-
like behaviors (Sotiropoulos et al., 2014; Lopes et al., 2016). These
findings suggest that APP and Aβ peptides and Tau protein could
affect in a complex way pain perception in AD patients.

Several reports also suggest that p38 MAPK is also involved
in PD. It is proposed that oxidative stress in dopaminergic
neurons prompted the activation of the p38 MAPK and c-Jun
N-terminal kinase (JNK) signaling pathways that have linked to
neuronal apoptosis in several models of PD (Oh et al., 2011;
Sabens Liedhegner et al., 2011; Bohush et al., 2018). p38-MAPK
activation has also been reported to contribute to mitophagy, a
fundamental mechanism underlying α-synuclein accumulation
associated with PD (Cheng et al., 2018).

TRP channels function has been related to p38 MAPK
pathway activity. It has been reported that phosphorylated p38
MAPK stimulated by noxious cold colocalized in neurons
that express TRPA1 channels (Mizushima et al., 2006).
Additionally, stimulation of microglia with lipopolysaccharide
and interferon γ (LPS/IFN γ) promoted the activation of
TRPM2 channels and Ca2+ dependent signaling pathways,
and the increase in p38 MAPK signaling (Miyake et al.,
2014). Interestingly, the use of TRPM2 inhibitors inhibited
the extracellular Ca2+ influx, affecting the activation of the
p38 MAPK pathway. Similar results have been observed in
TRPM2-KO microglia, where NO release was attenuated
(Haraguchi et al., 2012). It is suggested that TRPM2 recruits
the p38 MAPK pathways for NO production induced by
LPS/INFγ. Furthermore, phosphorylation of p38 MAPK was
abolished in TRPM2-knockout microglia, indicating that
this process is selectively dependent on TRPM2 signaling.
Similarly, lisophosphatidylcholine (LPC), an endogenous
inflammatory phospholipid that induces TRPM2 translocation
to the plasma membrane, also promotes Ca2+ influx and
microglia activation. It has been demonstrated that LPC
increases phosphorylation of p38 MAPK in microglia, which
was eliminated in TRPM2-KO. From these results, it is feasible
to propose TRPM2 channels as potential therapeutic targets
to inhibit excessive microglial activation, neuroinflammation,
and, therefore, pain through modulation of p38 MAPK
phosphorylation (Miyake et al., 2014; Jeong et al., 2017;
Shirakawa and Kaneko, 2018).

Considering that the p38 MAPK pathway is a central player
in neurodegeneration and pain, several recent studies have been
focused in search of p38 MAPK activity modulators, and some
molecules have shown anti-inflammatory activity (Jeong et al.,
2017; Kheiri et al., 2019). However, cross-reactivity with other
kinases and the appearance of cardiovascular, psychiatric, and
hepatic side effects have halted the use of these molecules,
suggesting that it is necessary to study further the mechanism by
which p38 MAPK could be modulated to avoid the adverse side
effects observed (Ji and Suter, 2007; Kheiri et al., 2019).

In addition to the regulation of p38 MAPK phosphorylation
in microglia, TRP channels also play a role in the generation
of peripheral pain through oxidative stress. Oxidative stress-
mediated by lipid peroxidation has been observed in both
neurological and peripheral pain. It has been proposed that
selenium could act as neuroprotector through a mechanism
that involves TRP channels inhibition, which in turn, induces
modulation of ROS overproduction and Ca2+ influx (Nazıroğlu
et al., 2020). Selenium is an inhibitor of TRPM2 channels,
which reduces oxidative stress in the cytosol (Zeng et al.,
2012). Besides TRPM2, selenium also acts as TRPA1 and
TRPV1 inhibitor, suggesting that selenium could be used as a
modulator of neuropathic pain through TRP channel modulation
(Nazıroğlu et al., 2020).

Despite high rates of painful comorbidities, lower use of
analgesics among individuals with dementia has been reported
(Van Kooten et al., 2016). Detriment in pain management seems
to occur in part due to challenging pain assessment in patients
with compromised cognition and impaired communication
skills, as well as barriers to analgesics (Shen et al., 2018).

Currently, several families of agents have been of clinical
utility to treat pain. The most common analgesic drug
prescribed for mild to moderate pain is paracetamol (also
known as acetaminophen); however, for peripheral or central
neuropathic pain, this analgesic drug has poor effectiveness.
Opioids, anticonvulsants, nonsteroidal anti-inflammatory drugs
(NSAIDs), topical medications, and more recently, third-
generation antidepressants have been used to treat pain related
to nerve injury (Lynch and Watson, 2006; Yaksh et al., 2015).
However, important drugs safety and side effects limit their
use; this is particularly important in the case of opioids, which
are the most effective pain killers but have high potential
to induce addiction and may cause sedation and respiratory
depression (Moran and Szallasi, 2018). Clinical daily work
shows that the use of painkillers, opioids, antidepressants,
or anticonvulsive drugs are often not sufficient to treat pain
in neurodegenerative diseases, so it has been suggested that
in selected individuals, refractory to conventional treatment
of pain, cannabinoid management could be attempted (Jost
and Buhmann, 2019). It has been recently shown that
cannabinoids provide promising multitarget approach for the
treatment of pain and neurodegeneration since they regulate
the activity of TRP channels, which are considered non-
cannonical endocannabionoid receptors. In this vein, it has
been shown that cannabidiol, cannabinol, cannabigerol, or
cannabidiolic acid binds TRPs, including TRPV1–4, TRPA1,
and TRPM8 (Shirakawa and Kaneko, 2018; Muller et al., 2019;
Starkus et al., 2019).

Since TRPs are involved in the progression of
neurodegenerative diseases and have a role in pain, they
are remarkable potential targets for the treatment of both pain
and neurodegenerations (Zündorf and Reiser, 2011; Naziroğlu,
2012; Maiese, 2017; Echeverry et al., 2016; Belrose and Jackson,
2018). Recent evidence regarding the involvement of TRP
channels in several diseases has led to the identification of TRP
channels as potential drug targets to manage pain. For instance,
capsaicin, an agonist of TRPV1, has been used in clinical trials
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to control neuropathic pain conditions (Kiani et al., 2015;
Derry et al., 2017), however, its use would be limited by two
major adverse effects of TRPV1 channel agonists/antagonists:
(a) dysregulation of body temperature, and (b) long-lasting
compromise of temperature sensation leading to burning
injuries. Agents targeting TRPM8, TRPV2, TRPV3, TRPV4, and
TRPA1 have also been tested with mixed results. Interestingly,
in animal models, TRPA1 deletion or inhibition reduces pain
associated with inflammation, as well as inflammation per se
(Moilanen et al., 2015, 2016; Horváth et al., 2016). A role for
TRPA1 channels in neurogenic inflammation has been suggested
(Moran and Szallasi, 2018); indeed, a Phase 2 clinical trial has
have reported that the Glenmark’s GRC 17536 TRPA1 channel
antagonist significantly reduce pain scores in a pre-specified
subset of patients with painful diabetic neuropathy and intact
sensory responses without notable side effects (Moran and
Szallasi, 2018). Recently, TRPM2 inhibitors have been proposed
as a potential candidate to treat neurodegeneration and pain,
and several novel molecules targeting TRPM2 (8Br-ADPR, 8-Ph-
2’-deoxy-ADPR and novel ADPR analogs capable of selectively
inhibiting TRPM2) appear as potential candidates to develop
novel therapeutic agents (Belrose and Jackson, 2018). Notably, a
cell-permeable peptide tat-M2NX that inhibits TRPM2 provides
protection from ischemic stroke in adult mice decreases infarct
volume with a clinically relevant therapeutic window (when
provided either prior to the infarct or 3 h following the insult)
(Shimizu et al., 2016).

Since TRP channels are involved in numerous physiological
processes, attention should be paid to potential side effects of
drugs able to block TRP channels their function. Concerns
predominantly relate to the roles of TRP channels in temperature
sensation and regulation, immune function, and insulin
release (Belrose and Jackson, 2018). Ultimately, assessment
of the risk-benefit profile of TRPs as therapeutic targets
will require the development of specific compounds with
favorable pharmacokinetic and pharmacodynamic properties
and identification of specific patient populations that would
benefit the most (Belrose and Jackson, 2018). In this vein,
it would be worth testing selective drugs targeting TRPs to
manage neurodegeneration and treat associated symptoms such
as pain and cognitive/motor dysfunction. The evidence suggests
that the effectiveness of pharmacological agents regulating
TRP channel activity to treat neuropathological processes and
pain deserves further research. Evaluation of the risks and
benefits of TRPs’ use as therapeutic targets will need the
development of compounds with favorable pharmacological
properties and identification of specific patient populations

that would benefit the most. In this regard, it would be
worthy of testing selective drugs targeting TRPs to manage
neurodegeneration and treat associated symptoms, such as
pain and cognitive/motor dysfunctions. Furthermore, given
that TRPs are involved in the progression of neurodegenerative
diseases and have a role in pain, it is feasible to propose that
these channels could act as central players that connect both
processes, making TRP channels potential targets to treat pain
in NDDs patients (Zündorf and Reiser, 2011; Naziroğlu, 2012;
Echeverry et al., 2016; Maiese, 2017). Direct evidence describing
the role of TRPs on pain related to NDDs development is
still required, however, indirect evidence suggests that this
subject deserves further research and supposes and interesting
field of research.
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